
IBM Workload Scheduler

User’s Guide and Reference
Version 9 Release 4

IBM

IBM Workload Scheduler

User’s Guide and Reference
Version 9 Release 4

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 957.

This edition applies to version 9, release 4, modification level 0 of IBM Workload Scheduler (program number
5698-WSH) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1999, 2016. © Copyright HCL Technologies Limited 2016, 2018

Contents

Figures ix

Tables xi

About this publication xv
What is new in this release xv
What is new in this publication xv
Who should read this publication xv
Accessibility xv
Technical training xvi
Support information xvi
Conventions used in this publication xvi

Typeface conventions xvi
Operating system-dependent variables and
paths xvii
Command syntax xvii

Chapter 1. IBM Workload Scheduler
overview 1
Understanding basic concepts 1

IBM Workload Scheduler database objects . . . 1
The IBM Workload Scheduler network 18
Configuring your IBM Workload Scheduler
runtime environment 19
Defining scheduling activities using IBM
Workload Scheduler 20
Controlling job and job stream processing . . . 20
Managing production scheduling activities with
IBM Workload Scheduler 26
Automating workload using event rules 27

IBM Workload Scheduler user interfaces 28
Starting production 30

Chapter 2. Understanding basic
processes and commands 35
Issuing commands on Windows operating systems 35
IBM Workload Scheduler workstation processes . . 35
Starting and stopping processes on a workstation . 40

Starting and stopping the agent 42
Workstation inter-process communication 42
IBM Workload Scheduler network communication 45

Support for Internet Protocol version 6 47

Chapter 3. Configuring the job
environment 49
Job environment overview 49
Environment variables exported by jobman. . . . 50

Customizing date formatting in the stdlist . . . 52
Customizing job processing on a UNIX workstation
- jobmanrc 53

Customizing the MAIL_ON_ABEND section of
jobmanrc 55

Customizing job processing for a user on UNIX
workstations - .jobmanrc 55

Customizing job processing on a Windows
workstation - jobmanrc.cmd 57

Customizing the MAIL_ON_ABEND section of
jobmanrc.cmd 57

Customizing job processing on a Windows
workstation - djobmanrc.cmd 58
Setting up options for using the user interfaces . . 60

Chapter 4. Managing the production
cycle 63
Plan management basic concepts 63
Preproduction plan 65

Identifying job stream instances in the plan. . . 66
Managing external follows dependencies for jobs
and job streams 67

Production plan 77
Understanding carry forward options. 77

Trial plan 79
Forecast plan 80
Customizing plan management using global options 81
Creating and extending the production plan . . . 85

JnextPlan 86
Planman command line 88

Creating an intermediate production plan . . . 89
Creating an intermediate plan for a plan
extension 90
Retrieving the production plan information. . . 91
Creating a trial plan 92
Creating a trial plan of a production plan
extension 93
Creating a forecast plan 94
Deploying rules 95
Unlocking the production plan 96
Resetting the production plan 97
Removing the preproduction plan 97
Replicating plan data in the database 98
Monitoring the replication of plan data in the
database 99

The stageman command. 100
Managing concurrent accesses to the Symphony
file 101

Scenario 1: Access to Symphony file locked by
other IBM Workload Scheduler processes . . . 102
Scenario 2: Access to Symphony file locked by
stageman 102

Managing follows dependencies using carry
forward prompt 102
The logman command 102

Estimated duration of a job and related
confidence factor 104

Starting production plan processing 106
Automating production plan processing 106

iii

|
||

Chapter 5. Using workload service
assurance 109
Enabling and configuring workload service
assurance 110
Planning critical jobs 113
Processing and monitoring critical jobs 115
Workload service assurance scenario. 117

Chapter 6. Customizing your workload
using variable tables 119
Migrating global parameters from previous
versions 119
The default variable table 120
Data integrity for variable tables 121
Locking mechanism for variable tables 121
Variable table security 121
Variable resolution 122

Chapter 7. Condition-based workload
automation 125
A business scenario 128

Chapter 8. Running event-driven
workload automation 131
The event rule management process 134

Using the involved interfaces and commands 136
Defining event rules 138

Event rule examples 140
Rule operation notes 147

Triggered rule elements 149
Defining custom events 149

Chapter 9. Defining objects in the
database 151
Defining scheduling objects 151

Workstation definition 154
Workstation class definition 170
Domain definition 171
Job definition 173
User definition 185
Calendar definition 190
Variable and parameter definition 191
Variable table definition 195
Prompt definition 197
Resource definition 199
Run cycle group definition 200
Job stream definition 209
Job stream definition keyword details 216
vartable 269
Event rule definition 269
Workload application definition 281
Security object definition 283

Chapter 10. Managing objects in the
database - composer 297
Setting up the composer command-line program 297

Setting up the composer environment 298
Running the composer program 300

Running commands from composer 302
Filters and wildcards 303
Delimeters and special characters. 306
Composer return codes 306

Composer commands 307
Referential integrity check 308
add. 312
authenticate 314
continue 314
delete 315
display 319
edit. 324
exit 325
extract 325
help 330
list 330
lock 337
modify 341
new 346
print 348
redo 348
rename 349
replace 352
system command 353
unlock. 353
update 357
validate 359
version 360

Chapter 11. Managing workload
applications 361
Creating a workload application template 362
Exporting a job stream definition as a workload
application template 365
Importing a workload application template . . . 366
Resolving the mapping file 367
Using regular expressions to modify the mapping
file 371
Deploying a workload application 372
wappman 374

Chapter 12. Managing objects in the
plan - conman 379
Setting up the conman command-line program . . 379

Setting up the conman environment 380
Running conman 381

Running commands from conman 384
Wildcards 384
Delimiters and special characters 385
Conman commands processing 386

Selecting jobs in commands 386
Syntax. 386
Arguments 387

Selecting job streams in commands 395
Syntax. 395
Arguments 395

Managing jobs and job streams from back-level
agents 401
Conman return codes. 402
Conman commands 402

iv IBM Workload Scheduler: User’s Guide and Reference

=
==
==

//

||

||

|
||
||
|
||
||
||
=
==
||
||

||

adddep job 405
adddep sched 407
altjob 409
altpass. 410
altpri 411
bulk_discovery 412
cancel job. 412
cancel sched 414
checkhealthstatus 415
confirm 416
console 418
continue 420
deldep job 420
deldep sched 422
deployconf 423
display 424
exit 426
fence 427
help 428
kill 429
limit cpu 430
limit sched 431
link. 432
listsym 434
Listsucc 436
recall 437
redo 438
release job 440
release sched 441
reply 443
rerun 444
Rerunsucc 448
resetFTA 450
resource 451
setsym 452
showcpus 453
showdomain 459
showfiles 461
showjobs 463
showprompts 481
showresources 484
showschedules 486
shutdown 491
start 492
startappserver 494
startbrokerapp 495
starteventprocessor 496
startmon 496
status 497
stop 498
stop ;progressive 499
stopappserver 500
stopbrokerapp 502
stopeventprocessor 502
stopmon 503
submit docommand 504
submit file 507
submit job 511
submit sched 514
switcheventprocessor 518
switchmgr 520

system command 521
tellop 521
unlink 522
version 524

Chapter 13. Using advanced statistics
to forecast the estimated duration of a
job 525
Installing the SPSS statistics subset 525
Selecting the jobs to be measured by the advanced
statistical tool 527
Importing and configuring the ELAB_JOB_STAT_JS
job stream 527
Running the ELAB_JOB_STAT_JS job stream and
viewing results 529
Troubleshooting the ELAB_JOB_STAT_JS job
stream. 529

Chapter 14. Extending IBM Workload
Scheduler capabilities 531
Prerequisite steps to create job types with
advanced options 535
Creating advanced job definitions 536
Job definition - z/OS jobs 537
Remote command jobs 538
IBM i jobs 540
Executable jobs 543
Access method jobs 545
Prerequisite steps to create Provisioning jobs . . . 546

IBM SmartCloud Provisioning jobs 547
Shadow jobs. 550
File transfer jobs 552
Prerequisite steps to create OSLC Automation and
OSLC Provisioning jobs 560

Job definition - OSLC Automation 561
Job definition - OSLC Provisioning 563

Database jobs 565
Prerequisites to run branch jobs 570
Web services jobs 570
RESTful Web Services jobs 572
Java jobs 576
J2EE jobs 577
JSR 352 Java Batch. 579
MQTT 582
Variable Table jobs. 584
Job Management jobs. 586
Job Stream Submission jobs. 591
Return codes 594
Automatically installing plug-ins by running job
types with advanced options on dynamic agents . 595
Defining variables and passwords for local
resolution on dynamic agents 595

Specifying local variables and passwords in the
job definitions 596
Defining variables in dynamic workload broker
jobs 598

Passing variables between jobs 599
Passing job properties from one job to another
in the same job stream instance 600

Contents v

**

==

==

|
|
||
||
|
||
|
||
|
||
|
||

|
||
|
||
||
||
||
||
||
||
||
||
||
||
|
||
||
||
||
||
||
||
||
||
||
||
||
==
==
||
|
||
|
||
|
||
|
||
||
|
||

Passing job standard output from one job to
another in the same job stream instance . . . 611
Passing job standard output from one job to
another as standard input in the same job
stream instance 612
Passing variables set by using jobprop in one
job to another in the same job stream instance . 613
Passing variables from one job to another in the
same job stream or in a different job stream by
using variable tables 614

Running a script when a job completes 615

Chapter 15. Managing dynamic
scheduling capabilities in your
environment 617
A business scenario on dynamic capability . . . 618
Scenario: Creating a job definition and submitting
to a dynamic pool 619
Scenario: Creating a job definition and submitting
to a pool 620
Defining affinity relationships 621
Defining file dependencies in dynamic scheduling 621
Promoting jobs scheduled on dynamic pools . . . 623
Adding dynamic capabilities to existing IBM
Workload Scheduler jobs 624
Limitations in dynamic scheduling 624
Limitations for jobs in USERJOBS job stream in
dynamic scheduling 625

Chapter 16. Using utility commands 627
Command descriptions 627

at and batch 629
cpuinfo 631
datecalc 634
datamigrate 638
delete 640
evtdef 641
evtsize. 645
Filemonitor 646
jobinfo. 650
jobstdl 652
maestro 654
makecal 655
metronome 657
morestdl 657
parms 659
release. 661
rmstdlist 666
sendevent 667
showexec 668
shutdown 669
ShutDownLwa - Stop the agent 670
StartUp 670
StartUpLwa - Start the agent 671
tws_inst_pull_info 671
version 671
Unsupported commands 673

Chapter 17. Using utility commands in
the dynamic environment 675
Command-line configuration file 676
exportserverdata 679
importserverdata 681
jobprop 682
movehistorydata 683
param 685
resource 688

Using the resource command from an agent . . 696
sendevent 698
twstrace 699

Chapter 18. Getting reports and
statistics 701
Setup for using report commands 701

Changing the date format 702
Command descriptions 702

rep1 - rep4b 702
rep7 704
rep8 705
rep11 706
reptr 707
xref. 708

Sample report outputs 709
Report 01 - Job Details Listing: 709
Report 02 - Prompt Listing:. 712
Report 03 - Calendar Listing: 712
Report 04A - Parameter Listing: 713
Report 04B - Resource Listing: 713
Report 07 - Job History Listing: 713
Report 08 - Job Histogram: 714
Report 9B - Planned Production Detail: 714
Report 10B - Actual Production Detail: 715
Report 11 - Planned Production Schedule: . . . 716
Report 12 - Cross Reference Report: 717

Report extract programs 719
jbxtract 720
prxtract 721
caxtract 722
paxtract 722
rextract 723
r11xtr 724
xrxtrct 725

Running Dynamic Workload Console reports and
batch reports 730

Historical reports 732
Production reports. 735
Running batch reports from the command line
interface 735

Chapter 19. Managing time zones. . . 741
Enabling time zone management 741
How IBM Workload Scheduler manages time zones 742
Moving to daylight saving time on 744
Moving to daylight saving time off 744
General rules 744

vi IBM Workload Scheduler: User’s Guide and Reference

|
||
|
|
||
|
||
|
|
||
||

==

Chapter 20. Defining access methods
for agents 747
Access method interface 748

Method command line syntax 748
Method response messages 750
Method options file 751

Running methods 753
Launch job task (LJ) 753
Manage job task (MJ) 754
Check file task (CF) extended agents only . . . 755
Get status task (GS) extended agents only . . . 755
Cpuinfo command for extended agents only . . 756

Troubleshooting 756
Job standard list error messages 756
Method not executable 756
Console Manager messages for extended agents
only 757
Composer and compiler messages for extended
agents only 757
Jobman messages for extended agents only . . 757

Chapter 21. Managing internetwork
dependencies 759
Internetwork dependencies overview 759

Understanding how an internetwork
dependency is shown 760

Configuring a network agent 761
A sample network agent definition 762

Defining an internetwork dependency 763
Managing internetwork dependencies in the plan 763

States of jobs defined in the EXTERNAL job
stream. 764
Working with jobs defined in the EXTERNAL
job stream 764
Sample internetwork dependency management
scenarios 765

Internetwork dependencies in a mixed
environment. 766

Chapter 22. Applying conditional
branching logic 769
Setting up conditional dependencies. 771
Joining or combining conditional dependencies . . 773
Scheduling and submitting conditional
dependencies 774
Evaluating and processing a conditional
dependency flow 775
Monitoring conditional dependencies 781
Plan handling of conditional dependencies . . . 783

Chapter 23. Defining and managing
cross dependencies 785
An introduction to cross dependencies 785
Processing flow across the distributed scheduling
environment. 787
Defining a cross dependency 789
Monitoring a cross dependency resolution in the
production plan 791

How the shadow job status changes until a bind
is established 791
How the shadow job status changes after the
bind is established. 797
How to see why the shadow job status is FAIL 798
Shadow job status during the remote job
recovery or rerun 799
How carry forward applies to cross
dependencies 799

Managing shadow jobs in the production plan . . 799

Chapter 24. Managing an IBM i
dynamic environment 801
Defining agents on IBM i systems 801
Defining jobs on IBM i systems 801
Managing agents on IBM i systems 802

Starting and stopping agents on IBM i systems 802
Using utility commands for agents on IBM i
systems 803

Scheduling and monitoring jobs on IBM i systems 803
The agent joblog and TWSASPOOLS
environment variable 805
Child job monitoring on IBM i agents 806
The agent return code retrieval 809
Controlling the job environment with the user
return code 810
Alternative method to set the user return code 811

Appendix A. Event-driven workload
automation event and action
definitions. 813
Event providers and definitions 813

TWSObjectsMonitor events 813
FileMonitor events 816
TWSApplicationMonitor events 823
DatasetMonitor events 824

Action providers and definitions 825
GenericAction actions 826
MailSender actions 826
MessageLogger actions 827
SmartCloud Control Desk actions 827
ServiceNow actions 827
TBSMEventForwarder actions 828
TECEventForwarder actions 828
TWSAction actions 828
TWSForZosAction 829

Appendix B. Job Submission
Description Language schema
reference 831
JSDL elements 837
Resources in the job definition. 870

Appendix C. Quick reference for
commands 873
Managing the plan 873
Managing objects in the database. 874

General purpose commands 874
Scheduling objects 875

Contents vii

||

||

//

Composer commands 880
Managing objects in the plan 884

Conman commands 884
Utility commands 889
Report commands 892

Appendix D. Defining and managing
generic branch jobs 895
Introduction 895

Terminology. 896
Branch job capabilities 898
Branch job advantages 899

Sample scenarios 900
Scenarios based on condition type 900
Scenarios based on action type 927
Signal action scenario 934

Working with the branch job 937
Prerequisites to run branch jobs 937

Defining the branch job and signal job in the
database 938
Placing the branch job into the job stream . . . 940
Using the ABEND job 941

Specifying the branch job parameters 941
Parameters reference 942
Case sensitivity. 946
Sample condition examples. 946

Important notes about the branch job 952

Appendix E. Accessibility 955

Notices 957
Trademarks 959
Terms and conditions for product documentation 959

Index 961

viii IBM Workload Scheduler: User’s Guide and Reference

||

Figures

1. Single-domain network 15
2. Multiple-domain network 16
3. Process tree in UNIX 38
4. Process tree in Windows 39
5. Inter-process communication on the master

domain manager 44
6. Inter-process communication on the master

domain manager and fault-tolerant agent . . 45
7. Sameday matching criteria 67
8. Closest preceding matching criteria 67
9. Within a relative interval matching criteria 68

10. Within an absolute interval matching criteria 69
11. Closest preceding predecessor job 69
12. Pending predecessor instance 70
13. Sameday matching criteria - Step 1: at Start of

Day (SOD) on a Thursday 71
14. Sameday matching criteria - Step 2: at 9:00 72
15. Sameday matching criteria - Step 3: at 15:00 72
16. Closest preceding matching criteria - Step 1:

before 08:00 73
17. Closest preceding matching criteria - Step 2: at

08:00 on weekdays except Thursdays and
Fridays 73

18. Closest preceding matching criteria - Step 3: at
09:00 on Thursdays and Fridays. 73

19. Closest preceding matching criteria - Step 4: at
15:00 on every day 74

20. Relative Interval matching criteria - at start of
day on Thursday. 75

21. Absolute interval matching criteria - at start of
day on Thursday. 76

22. Critical path 116
23. Condition-based workload automation 127
24. User definition 189
25. Network links 433
26. Example network 494
27. Example network 499
28. Example network 500
29. Unlinked network workstations 523
30. Example when start of day conversion is not

applied 743
31. Example when start of day conversion is

applied 743
32. Local and remote networks 762
33. A follows dependency on the ABSENCES job 775
34. Two different conditional dependencies on

SUCC and ABEND statuses on the
ABSENCES job 776

35. Conditional dependencies on output
conditions on the ABSENCES job 777

36. A join dependency containing three
dependencies on SUCC status 778

37. Status conditional dependency on a job with
recovery stop setting 779

38. ABEND status conditional dependency 779
39. STATUS_OK output condition 780
40. ERROR output condition. 780
41. STATUS_OK output condition 781
42. Cross dependency logic 787
43. Shadow job status transition until the bind is

established 792
44. Instance to be bound if the shadow job

scheduled time is included in the CP interval . 795
45. Instance to be bound if the instance that most

closely precedes the shadow job scheduled
time exists in the LTP but was canceled from
the CP 796

46. The scheduled time of the shadow job is
included in the CP but no instance to bind
exists 796

47. The instance to be bound exists but it is not
yet included in the CP 797

48. The LTP interval still does not contain the
shadow job scheduled time 797

49. Shadow job status transition chain after the
bind was established 798

50. Purpose of the branch job 896
51. Terms related to job stream definition 897
52. Terms related to job stream run (concrete job

stream instance). 898
53. Simple branch (SUCC) definition 901
54. Simple branch (SUCC) final status 901
55. Simple branch (ABEND) definition 902
56. Long branch (SUCC) definition 904
57. Long branch(ABEND) final status. 906
58. Multiple branch jobs within one job stream 908
59. Parent abend (SUCC) definition 909
60. Pattern scenario - definition. 912
61. Negated Pattern scenario definition 914
62. Pattern within pattern row definition 917
63. Pattern within pattern row negated definition 919
64. Numeric comparison branch definition 922
65. Complex condition definition 925
66. Pause and Release actions definition 929
67. Multiple pause and release scenario definition 933
68. Signal action definition 935

ix

==

x IBM Workload Scheduler: User’s Guide and Reference

Tables

1. Command syntax xvii
2. Scenario 1. No time restriction in the run cycle

group 7
3. Scenario 2. Time restriction in the run cycle

group without offset 8
4. Scenario 3. Time restriction in the run cycle

group with offset (+1 12:00) 8
5. Tip 17
6. Starting and stopping IBM Workload

Scheduler on a workstation 40
7. Starting and stopping the agent 42
8. Job environment variables for Windows 50
9. Job environment variables for UNIX 51

10. Variables defined by default in the jobmanrc
file 53

11. Variables defined by default in the
jobmanrc.cmd file 57

12. Carry forward global options settings 77
13. Resulting carry forward settings 78
14. Workload service assurance global options 110
15. Workload service assurance local options 112
16. The relationship between variable tables and

their enclosed variables in the IBM Workload
Scheduler security file 122

17. conman commands for managing monitoring
engines 135

18. conman commands for managing the event
processing server 136

19. Interfaces and commands for managing
event-driven workload automation 137

20. List of supported scheduling object keywords 152
21. List of supported security object keywords 152
22. List of reserved words when defining jobs

and job streams 152
23. List of reserved words when defining

workstations 153
24. List of reserved words when defining users 153
25. Attribute settings for management

workstation types 155
26. Attribute settings for target workstation types 156
27. Type of communication depending on the

security level value 166
28. Examples: renaming the job defintion 175
29. Comparison operators 178
30. Logical operators 179
31. Recovery options and actions 182
32. How to handle a backslash in variable

substitution 192
33. Keywords that can take local parameters in

submit commands 193
34. Required access keyword on variable table in

Security file (vartable object) and allowed
actions. 197

35. List of scheduling keywords 211

36. Explanation of the notation defining the
number of occurrences for a language
element. 270

37. TWSObjectsMonitor events. 273
38. TWSApplicationMonitor events.. 275
39. FileMonitor events. 275
40. DatasetMonitor events. 275
41. Action types by action provider. 277
42. Security object types 287
43. Actions that users or groups can perform on

the different objects 287
44. Actions that users or groups can perform

when designing and monitoring the workload 289
45. Actions that users or groups can perform

when modifying current plan 290
46. Actions that users or groups can perform

when submitting workload 290
47. Actions that users or groups can perform

when managing workload environment. . . 291
48. Actions that users or groups can perform

when managing event rules 292
49. Administrative tasks that users or groups can

perform 292
50. Actions that users or groups can perform on

workload reports 293
51. Actions that users or groups can perform on

Application Lab. 293
52. Attributes for security object types 293
53. Scheduling objects filtering criteria 304
54. Delimeters and special characters for

composer 306
55. List of composer commands 307
56. Object identifiers for each type of object

defined in the database 308
57. Object definition update upon deletion of

referenced object 309
58. Referential integrity check when deleting an

object from the database 309
59. Output formats for displaying scheduling

objects 323
60. Output formats for displaying scheduling

objects 334
61. Objects extracted during the export process 368
62. Resolving the mapping file 370
63. Delimiters and special characters for conman 385
64. List of conman commands 402
65. State change after confirm command 417
66. Opened links 434
67. Recovery options retrieval criteria. 445
68. Successors status 449
69. Started workstations 494
70. Stopped workstations 499
71. Stopped workstations with stop ;progressive 500
72. Unlinked workstations 523
73. Job types with advanced options 531

xi

||
||

==
==

||

74. Required and optional attributes for the
definition of a z/OS job. 537

75. Required and optional attributes for the
definition of a remote command job 538

76. Required and optional attributes for the
definition of an IBM i job. 540

77. Required and optional attributes for the
definition of an executable job. 544

78. Required and optional attributes for the
definition of an access method job 545

79. Required and optional attributes for the
definition of a Provisioning job 547

80. Required and optional attributes for the
definition of a file transfer job 552

81. Required and optional attributes for the
definition of an OSLC Automation job. . . . 561

82. Required and optional attributes for the
definition of an OSLC Provisioning job. . . . 563

83. Required and optional attributes for the
definition of a database job 565

84. Required and optional attributes for the
definition of an MSSQL job.. 568

85. Required and optional attributes for the
definition of a web services job 570

86. Required and optional attributes for the
definition of a RESTful Web Services job . . 573

87. Required and optional attributes for the
definition of a Java job. 576

88. Required and optional attributes for the
definition of a J2EE job. 577

89. Required and optional attributes for the
definition of a JSR 352 Java Batch job . . . 580

90. Required and optional attributes for the
definition of an MQTT job 582

91. Required and optional attributes for the
definition of a Variable Table job 584

92. Required and optional attributes for the
definition of a Job Management job 587

93. Required and optional attributes for the
definition of a Job Stream Submission job . . 591

94. Supported IBM Workload Scheduler variables
in JSDL definitions. 598

95. Properties for IBM InfoSphere DataStage jobs 603
96. Properties for shadow jobs 604
97. Properties for OSLC jobs 604
98. Properties for IBM WebSphere MQ jobs 604
99. Properties for IBM Sterling Connect:Direct

jobs 604
100. Properties for Salesforce jobs 605
101. Properties for SAP BusinessObjects BI jobs 605
102. Properties for Oracle E-Business Suite jobs 605
103. Properties for file transfer jobs 606
104. Properties for Hadoop Map Reduce jobs 606
105. Properties for Hadoop Distributed File

System jobs 607
106. Properties for IBM BigInsights jobs,

Application section 607
107. Properties for JSR 352 Java Batch jobs 607
108. Properties for MQTT jobs 608
109. Properties for Apache Oozie jobs 608
110. Properties for Cloudant jobs 609

111. Properties for OpenWhisk jobs 609
112. Properties for Job Management jobs 610
113. Properties for Job Stream Submission jobs 610
114. Properties for database jobs 610
115. Properties for Apache Spark jobs 610
116. Properties for Amazon EC2 jobs 610
117. Properties for IBM SoftLayer jobs 611
118. Properties for Microsoft Azure jobs 611
119. Features partially or not supported for

dynamic scheduling 625
120. Features partially or not supported for jobs in

USERJOBS job stream. 625
121. List of utility commands 627
122. Additional properties that can be used for

defininig custom events. 643
123. List of utility commands for dynamic

workstations 675
124. Date formats 702
125. List of report commands 702
126. Report extract programs. 719
127. Jbxtract output fields 720
128. Prxtract output fields 721
129. Caxtract output fields 722
130. Paxtract output fields 723
131. Rextract output fields 723
132. R11xtr output fields 724
133. Xdep_job output fields 726
134. Xdep_job output fields (continued) 726
135. Xdep_sched output fields 726
136. Xfile output fields 727
137. Xjob output fields 727
138. Xprompts output fields 728
139. Xresource output fields 728
140. Xsched output fields 729
141. Xwhen output fields 729
142. Supported report output formats 731
143. Summary of historical reports 732
144. Summary of production reports 735
145. Method command task options 748
146. Launch job task (LJ) messages 754
147. Check file task (CF) messages 755
148. Get status task (GS) messages 756
149. Internetwork dependencies in a mixed

environment 767
150. Shadow job status transition 787
151. Matching criteria for distributed shadow jobs 790
152. Regular expression syntax. 816
153. Regular expression examples. 818
154. SMF events 824
155. Parameters of ReadCompleted and

ModificationCompleted event types 824
156. Hierarchical structure of the JSDL file 832
157. Resource types and properties 871
158. Commands used against the plan 873
159. General purpose commands 875
160. Composer commands 881
161. Commands that can be run from conman 885
162. Utility commands available for both UNIX

and Windows 889
163. Utility commands available for UNIX only 892
164. Utility commands available for Windows only 892

xii IBM Workload Scheduler: User’s Guide and Reference

|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
=
==
=
==
|
||
||
||
||
||
|
||
||
||
||
||
||
|
||
|
||
||
||
||
||

||
==
==
==
**
**
**
**
|
||

165. Report commands 892
166. Report extract programs 893
167. Input parameters for the negative branch job

scenario 910
168. Input parameters for the pattern job scenario 913
169. Input parameters for the negated pattern job

scenario 915
170. Input parameters for the pattern within

pattern row scenario 918
171. Input parameters for negated pattern within

pattern row scenario 920

172. Input parameters for the Numeric comparison
scenario 923

173. Input parameters for the complex condition
scenario 926

174. Input parameters for the pause and release
scenario 931

175. Input parameters for the signal action
scenario 936

176. Parameters and values 945
177. Arithmetical operators description 946

Tables xiii

xiv IBM Workload Scheduler: User’s Guide and Reference

About this publication

IBM Workload Scheduler simplifies systems management across distributed
environments by integrating systems management functions. IBM Workload
Scheduler plans, automates, and controls the processing of your enterprise's entire
production workload. The IBM Workload Scheduler User's Guide and Reference
provides detailed information about the command line interface, scheduling
language, and utility commands for IBM Workload Scheduler.

What is new in this release
Learn what is new in this release.

For information about the new or changed functions in this release, see IBM
Workload Automation: Overview, section Summary of enhancements.

For information about the APARs that this release addresses, see the IBM Workload
Scheduler Release Notes at http://www-01.ibm.com/support/docview.wss?rs=672
&uid=swg27048863 and the Dynamic Workload Console Release Notes at
http://www-01.ibm.com/support/docview.wss?rs=672&uid=swg27048864.

New or changed content is marked with revision bars. For the PDF format, new or
changed V9.4 content is marked in the left margin with a pipe (|) character and
new or changed V9.4FP1 content is marked with an equal sign (=).

What is new in this publication
Learn what is new in this publication.

APARs and defects have been fixed. All changes are marked with revision bars.

Who should read this publication
Learn the audience of this publication.

This publication is intended for those involved in planning, scheduling,
monitoring, or managing a workload scheduling environment. Typically these are
IBM Workload Scheduler operators and administrators.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

With this product, you can use assistive technologies to hear and navigate the
interface. You can also use the keyboard instead of the mouse to operate all
features of the graphical user interface.

For full information, see the Accessibility Appendix in the IBM Workload Scheduler
User's Guide and Reference.

xv

=
=
=

http://www-01.ibm.com/support/docview.wss?rs=672&uid=swg27048863
http://www-01.ibm.com/support/docview.wss?rs=672&uid=swg27048863
http://www-01.ibm.com/support/docview.wss?rs=672&uid=swg27048864

Technical training
Cloud & Smarter Infrastructure provides technical training.

For Cloud & Smarter Infrastructure technical training information, see:
http://www.ibm.com/software/tivoli/education

Support information
IBM provides several ways for you to obtain support when you encounter a
problem.

If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:
v Searching knowledge bases: You can search across a large collection of known

problems and workarounds, Technotes, and other information.
v Obtaining fixes: You can locate the latest fixes that are already available for your

product.
v Contacting IBM Software Support: If you still cannot solve your problem, and

you need to work with someone from IBM, you can use a variety of ways to
contact IBM Software Support.

For more information about these three ways of resolving problems, see the
appendix about support information in IBM Workload Scheduler: Troubleshooting
Guide.

Conventions used in this publication
Learn what conventions are used in this publication.

This publication uses several conventions for special terms and actions, operating
system-dependent commands and paths, command syntax, and margin graphics.

Typeface conventions
This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip:, and Operating system considerations:)

v Keywords and parameters in text

Italic

v Words defined in text
v Emphasis of words (words as words)
v New terms in text (except in a definition list)
v Variables and values you must provide

Monospace

v Examples and code examples

xvi IBM Workload Scheduler: User’s Guide and Reference

http://www.ibm.com/software/tivoli/education

v File names, programming keywords, and other elements that are difficult
to distinguish from surrounding text

v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths
This publication uses the UNIX convention for specifying environment variables
and for directory notation, except where the context or the example path is
specifically Windows.

When using the Windows command line, replace $variable with % variable% for
environment variables and replace each forward slash (/) with a backslash (\) in
directory paths. The names of environment variables are not always the same in
Windows and UNIX environments. For example, %TEMP% in Windows is
equivalent to $tmp in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

Command syntax
This publication uses the following syntax wherever it describes commands:

Table 1. Command syntax

Syntax
convention

Description Example

Name of
command

The first word or set of consecutive
characters.

conman

Brackets ([
])

The information enclosed in brackets
([]) is optional. Anything not
enclosed in brackets must be
specified.

[-file definition_file]

Braces ({ }) Braces ({ }) identify a set of mutually
exclusive options, when one option is
required.

{-prompts | -prompt prompt_name }

Underscore
(_)

An underscore (_) connects multiple
words in a variable.

prompt_name

Vertical bar
(|)

Mutually exclusive options are
separated by a vertical bar (|).

You can enter one of the options
separated by the vertical bar, but you
cannot enter multiple options in a
single use of the command.

{-prompts | -prompt prompt_name }

Bold Bold text designates literal
information that must be entered on
the command line exactly as shown.
This applies to command names and
non-variable options.

composer add file_name

Italic Italic text is variable and must be
replaced by whatever it represents. In
the example to the right, the user
would replace file_name with the
name of the specific file.

file_name

About this publication xvii

Table 1. Command syntax (continued)

Syntax
convention

Description Example

Ellipsis (...) An ellipsis (...) indicates that the
previous option can be repeated
multiple times with different values. It
can be used inside or outside of
brackets.

[–x file_name]...

An ellipsis outside the brackets
indicates that –x file_name is optional
and may be repeated as follows: –x
file_name1 –x file_name2–x file_name3

[–x file_name...]

An ellipsis inside the brackets
indicates that –x file_name is optional,
and the file variable can be repeated
as follows: –x file_name1 file_name2
file_name3

–x file_name [–x file_name]...

An ellipsis used with this syntax
indicates that you must specify –x
file_name at least once.

xviii IBM Workload Scheduler: User’s Guide and Reference

Chapter 1. IBM Workload Scheduler overview

IBM Workload Scheduler provides you with the ability to manage your production
environment and automate many operator activities. IBM Workload Scheduler
manages job processing, resolves interdependencies, and launches and tracks jobs.
Because jobs start as soon as their dependencies are satisfied, idle time is
minimized and throughput is significantly improved. If a job fails, IBM Workload
Scheduler manages the recovery process with little or no operator intervention.

This chapter is divided into the following sections:
v “Understanding basic concepts”
v “IBM Workload Scheduler user interfaces” on page 28
v “Starting production” on page 30

Understanding basic concepts
This section describes the basic concepts of IBM Workload Scheduler and is
divided into the following sections:
v “IBM Workload Scheduler database objects”
v “The IBM Workload Scheduler network” on page 18
v “Configuring your IBM Workload Scheduler runtime environment” on page 19
v “Defining scheduling activities using IBM Workload Scheduler” on page 20
v “Managing production scheduling activities with IBM Workload Scheduler” on

page 26

IBM Workload Scheduler database objects
This section introduces the IBM Workload Scheduler database objects that you
work with. The following database objects are described:
v Job, see “Job”
v Job stream, see “Job stream” on page 2
v Workload application, see “Workload application” on page 3
v Run cycle, see “Run cycle” on page 3
v Run cycle group, see “Run cycle group” on page 4
v Calendar, see “Calendar” on page 9
v Prompt, see “Prompt” on page 9
v Workstation, see “Workstation” on page 10
v Workstation class, see “Workstation class” on page 13
v Domain, see “Domain” on page 14
v Event rule, see “Event rule” on page 17
v Resource, see “Resource” on page 17
v Parameter, see “Parameter” on page 17
v Variable table, see “Variable table” on page 18

Job
A job is a unit of work specifying an action, such as a weekly data backup, to be
performed on specific workstations in the IBM Workload Scheduler network. In a

1

IBM Workload Scheduler distributed environment, jobs can be defined either
independently from job streams or within a job stream definition.

Job types can be divided between existing IBM Workload Scheduler jobs and job
types with advanced options. The existing job types are standard jobs with generic
scripts or commands you customize according to your needs. The job types with
advanced options are jobs designed to perform specific operations, such as
database, file transfer, Java, and web service operations. You schedule these jobs
types only on dynamic agents, pools and dynamic pools.

If you want to leverage the dynamic capability when scheduling job types with
advanced options, you schedule them on pools and dynamic pools, which assign
dynamically the job to the best available resource. If you are interested only in
defining job types with advanced options, without using the dynamic scheduling
capability, you schedule these jobs on a specific agent, on which the job runs
statically.

Regardless whether the IBM Workload Scheduler engine is distributed or z/OS
based, you can define locally a shadow job to map a remote job instance running on
a different IBM Workload Scheduler engine.

For information about how to define jobs, see “Job definition” on page 173.

For information about how to define workstations, see “Workstation definition” on
page 154.

Once job definitions have been submitted into the production plan, you still have
the opportunity to make one-off changes to the definitions before they run, or after
they have run. You can update the definition of a job that has already run and then
rerun it. The job definition in the database remains unchanged.

Job stream
A job stream is a sequence of jobs to be run, together with times, priorities, and
other dependencies that determine the order of processing. Each job stream is
assigned a time to run, represented by run cycle with type calendar, set of dates, or
repetition rates.

Dependencies in a distributed environment:
You can have dependencies between both jobs and job streams. They can
be:

Internal dependencies
These are dependencies established between jobs belonging to the
same job stream.

External dependencies
These are dependencies between job streams, or between job
streams and jobs belonging to other job streams, or between jobs
belonging to different job streams.

Internetwork dependencies
These are dependencies on jobs or job streams running in another
IBM Workload Scheduler network. Internetwork dependencies
require a network agent workstation to communicate with the
external IBM Workload Scheduler network.

Dependencies on resources are supported by IBM Workload Scheduler both in the
distributed and in the z/OS environments.

2 IBM Workload Scheduler: User’s Guide and Reference

*
*
*
*

For information about how to define job streams, see “Job stream definition” on
page 209.

Workload application
A workload application is one or more job streams together with all the referenced
jobs that can be shared with other IBM Workload Scheduler environments through
an easy deployment process.

A workload application is an IBM Workload Scheduler database object that acts as
a container for one or more job streams. You can use workload applications to
standardize a workload automation solution so that the solution can be reused in
one or more IBM Workload Scheduler environments thereby automating business
processes.

You can prepare a workload application template in a source IBM Workload
Scheduler environment and then export it so that it can be deployed in a target
environment. The export process extracts from the source environment all of the
elements necessary to reproduce the solution in another environment. It produces a
compressed file containing a number of files required to import the workload
application into the target environment. These files contain a definition of the
objects in the source environment extracted from the IBM Workload Scheduler
database. For those elements that depend on the topology of the target
environment, some manual configuration is required. For example, the definitions
extracted from the source environment contain references to workstations that do
not exist in the target environment. For this reason, before proceeding with the
import, a mapping of some of the elements must be made associating the name of
the object in the target environment.

The exported workload application template contains definitions or references for
all of the following objects:
v Job streams
v Jobs
v Workstations, workstation classes
v Calendars
v Prompts
v Run cycles
v Run cycle groups
v Resources
v Internetwork dependencies
v External dependencies
v Event rules

For information about how to define workload application templates, see "Defining
workload application" in the IBM Workload Scheduler: User's Guide and Reference.

Run cycle
A run cycle specifies the days that a job stream is scheduled to run. A cycle is
defined for a specific job stream and cannot be used by multiple job streams. You
can specify the following types of run cycle:

simple
A specific set of user-defined days a job stream is run. A simple run cycle
is defined for a specific job stream and cannot be used by other job
streams.

Chapter 1. IBM Workload Scheduler 3

daily A run cycle that specifies that the job stream runs according to a day
frequency and type that you set. For example, it might run daily, every
three days, or just on working days.

weekly
A run cycle that specifies the days of the week that a job stream is run. For
example, a job stream can be specified to run every Monday, Wednesday,
and Friday using a weekly run cycle.

monthly
A run cycle that specifies that the job stream runs according to a monthly
day or date that you set. For example, it might run every 1st and 2nd day
of the month, every two months, or every 1st Monday and 2nd Tuesday of
the month, every three months.

yearly A run cycle that specifies that a job stream runs, for example, yearly or
every three years.

offset-based
A run cycle that uses a combination of user-defined periods and offsets.
For example, an offset of 3 in a period of 15 days is the third day from the
beginning of the period. It is more practical to use offset-based run cycles
when the cycle is based on cyclic periods. This term is only used as such in
IBM Workload Scheduler for z/OS , but the concept applies also to the
distributed product.

rule-based
A run cycle that uses rules based on lists of ordinal numbers, types of
days, and common calendar intervals (or period names in IBM Workload
Scheduler for z/OS. For example, the last Thursday of every month.
Rule-based run cycles are based on conventional periods, such as calendar
months, weeks of the year, and days of the week. In IBM Workload
Scheduler for z/OS, run cycles can also be based on periods that you
define, such as a semester. This term is only used as such in IBM Workload
Scheduler for z/OS, but the concept applies also to the distributed product.
You can also specify a rule to establish when a job stream runs if it falls on
a free day.

Any of these run cycle types can be either inclusive or exclusive; that is:

inclusive
A run cycle that specifies the days and times that a job stream is scheduled
to run. Inclusive run cycles give precedence to exclusive run cycles.

exclusive
A run cycle that specifies the days and times that a job stream cannot be
run. Exclusive run cycles take precedence over inclusive run cycles.

Run cycle group
You can optionally define a run cycle group for your job stream instead of, or in
addition to, a number of single run cycles.

A run cycle group is a list of run cycles that are combined together to produce a
set of run dates.

By using run cycle groups, you can benefit from the following advantages:

A run cycle group is a distinct database object
It is defined by itself and can be matched with one or more job streams. It
is not defined as part of a specific job stream like single run cycles.

4 IBM Workload Scheduler: User’s Guide and Reference

The same run cycle group can be used on different job streams
This improves the overall usability of the run cycles, because you can
specify the same run cycle group in multiple job streams, avoiding the
need to have multiple run cycle definitions for the same scheduling rules.

Run cycle groups enhance the use of exclusive run cycles
Exclusive (or negative) run cycles are used to generate negative
occurrences, which identify the days when a job stream would normally be
scheduled but is not required. The sum of the exclusive run cycles are
subtracted from the inclusive ones. A negative occurrence always cancels
any matching positive occurrences and you can specify a negative
occurrence only if the positive equivalent already exists. An exact matching
of the days, as well as any time restrictions, is required between the
exclusive and inclusive run cycles for the cancellation to occur. Run cycle
groups add much flexibility by allowing users to apply exclusive run
cycles to a subset of the positive ones rather than to all of them. Group
your run cycles into subsets so that the exclusive run cycles can be applied
only to the positive occurrences generated by the run cycles belonging to
the same set.

Run cycles must be organized into subsets within a run cycle group. The
subsets are always in a logical OR relationship with each other. The result
of the run cycle group is always a date or set of dates; it cannot be
negative.

For example, you might want your job stream to run every day of the
month except the last day of the month. But, you also want the it to be
scheduled on the last day of the year (the last day of December). You can
define a run cycle group using subsets, as follows:

Subset 1

v Run cycle 1 - Inclusive run cycle every day of the month
v Run cycle 2 - Exclusive run cycle on the last day of the month

Subset 2

v Run cycle 3 - Inclusive run cycle on December 31st

where, run cycle 2 cancels the last day of each month in Subset 1, while
run cycle 3 generates December 31st as a separate date and therefore you
can schedule the job stream on Dec 31st.

Run cycle groups allow the use of a logical AND between individual run cycles
in the subset

By default, the run cycles within a subset are in a logical OR relationship
but you can change this to a logical AND, if the run cycle group result is a
positive date or set of dates (Inclusive). For each run cycle, you can specify
either operator (AND ,OR), obtaining the following behavior:
1. All the run cycles of the group that are in AND relationship are

calculated first. The result of this calculation is a date or a set of dates.
2. Then, all the run cycles in an OR relationship are added to the result of

the previous step.

A similar behavior is applied to inclusive and exclusive run cycles to
determine the final date or set of dates of a group.

Inclusive (A)
Rule-based run cycle. Select days when the job stream is to be run
if they belong to all A types of the set of run cycles.

Chapter 1. IBM Workload Scheduler 5

Exclusive (D)
Exclusion rule-based run cycle. Select days when the job stream is
NOT to be run if they belong to all D types of the set of run cycles.

For example, you can add two conditions together:
Run on Wednesday “AND” the 8th workday of the month.

In this way, the only scheduled dates are any 8th work day of the month
that falls on a Wednesday.

Full compatibility with traditional run cycles
The traditional run cycles specified in the job stream definition can
reference run cycle groups, with the possibility to specify shift or offsets on
them (as with periods for z/OS or calendars for distributed systems).

A set of dates (interval starts) is created automatically either at run cycle
level directly (inclusively or exclusively with offsets, or in the rule. This is
a two-step process with run cycles:
1. Define the key "business event", such as, Month End, using run cycles

and free day rules
2. Define rules that use the dates of the "business event" as the intervals

against which the other batch run can be scheduled relative to.

For example, you have a Month End process that runs on the Last Friday of
a month, but that moves forward to the next working day, except in
December when it runs on the 3rd Friday of the month. This scheduling
rule can be defined with a few rules, run cycles, and free day rules.

Two working days before Month End you need to run a pre-validation
process to allow problems to be addressed before the run. You cannot
choose the last Wednesday of the month, because in some months this
might occur after the last Friday. Similarly, if the last Friday was a free day,
the last Wednesday will not be 2 working days before it, because the Free
Day rule applies ONLY to the day the rule falls on, it cannot look at
anything else.

Many other batch runs might also need to be run on a certain number of
days before or after the Month End, but the same restrictions apply.

You can now define work to run relative to something defined by a
combination of run cycles and free day rules.

Use of calendars with run cycles within a run cycle group

Optionally, you can specify more than one calendar to calculate the
working and non-working days definition for a run cycle. The primary
calendar is used to calculate which working days are valid, and a
secondary calendar is used to calculate specific non-working dates. If the
dates calculated according to the secondary calendar match with the
working days in the primary calendar, the job is scheduled; if they do not
match, the job is not scheduled.

For example, a global company that runs workload in the United States for
many other countries needs many calendar combinations to ensure that the
batch jobs only run on a day that is a working day both in the United
States and the other country. The calendar can be defined at job stream
level and, if not specified, a default calendar is used. However, the
calendar at run cycle level, whenever defined, can be used as secondary
calendar and the job stream (or default) calendar can be used as the
primary calendar.

6 IBM Workload Scheduler: User’s Guide and Reference

For example, Primary calendar can be WORKDAYS, which is defined as
MONDAY to FRIDAY excluding US holiday dates. You might also need to
calculate the job runs based on calendar HKWORK, which is defined as
Monday to Friday excluding Hong Kong holiday dates. The job might
have several schedules:
v Run on working days, but not the last working day and not Mondays
v Run on Mondays, but not on the last working day
v Run on the last working day

Because each schedule is calculated against the WORKHK calendar it is
also checked against the WORKDAYS calendar to ensure that it is
scheduled on a US working day.

The use of time restrictions with run cycle groups
You can specify time constraints to define the time when processing must
start or the time after which processing must no longer start. To do this,
you can associate time restrictions to job, job streams, run cycles, and run
cycle groups. When you define a time restriction, you basically obtain a
time. Because you can associate time restrictions to multiple objects, the
following hierarchy shows the order by which the different time
restrictions are taken into consideration to actually define when to start the
processing:
1. Time restriction defined in the run cycle into the job stream
2. Time restriction defined in the job stream
3. Time restriction defined in the run cycle contained in the run cycle

group associated to the job stream.
4. Time restriction defined in the run cycle group associated to the job

stream.
5. Start of Day

This means that:

Time restrictions in the job stream
Override and take precedence over any other time restrictions defined
in the run cycles or run cycle groups associated to the job stream.

No time restrictions in the job stream nor in the run cycle group
The group generates only a date that is the Start Of Day. If offsets
and free day rules are to be calculated, the calculation always starts
from the Start Of Day.

Time restrictions in the run cycle group (not in the job stream)
Time restrictions (and possible offset) are calculated starting from
the Start Of Day and the resulting date and time indicate the start
of processing.

Examples

Table 2. Scenario 1. No time restriction in the run cycle group

Run cycle group Scheduled date Earliest Start

Run cycle group 10/24 10/24

Run cycle group with offset (+ 3 days) 10/27 (Saturday) 10/27/ (Saturday)

Run cycle group with free day rule 10/29/ (Monday) 0/29/ (Monday)

Run cycle in the job stream with time
restrictions

Chapter 1. IBM Workload Scheduler 7

Table 2. Scenario 1. No time restriction in the run cycle group (continued)

Run cycle group Scheduled date Earliest Start

Run cycle in the job stream with + 4
working days shift

11/02 (Friday) 11/02 (Friday)

Run cycle in the job stream with free day
rule

11/02 (Friday) 11/02 (Friday)

Run cycle in the job stream with earliest
start +1 1pm

11/02 (Friday) 11/03 (Saturday) 1pm

Run cycle in the job stream without
time restrictions

Run cycle in the job stream with + 4
working days shift

11/02 (Friday) 11/02 (Friday) Start of
Day

Run cycle in the job stream with free day
rule

11/02 (Friday) 11/02 (Friday) Start of
Day

Table 3. Scenario 2. Time restriction in the run cycle group without offset

Run cycle group Scheduled date Earliest Start

Run cycle group 10/24 10/24

Run cycle group with calendar offset (+ 3
days)

10/27/ (Saturday) 10/27/ (Saturday)

Run cycle group with free day rule 10/29/ (Monday) 0/29/ (Monday)

Run cycle in the job stream with time
restrictions

Run cycle in the job stream with + 4
working days shift

11/02 (Friday) 11/02 (Friday)

Run cycle in the job stream with free day
rule

11/02 (Friday) 11/02 (Friday)

Run cycle in the job stream with earliest
start +1 1pm

11/02 (Friday) 11/03 (Saturday) 1pm

Run cycle in the job stream without
time restrictions

Run cycle in the job stream with + 4
working days shift

11/02 (Friday) 11/02 (Friday) Start of
Day

Run cycle in the job stream with free day
rule

11/02 (Friday) 11/02 (Friday) Start of
Day

Table 4. Scenario 3. Time restriction in the run cycle group with offset (+1 12:00)

Run cycle group Scheduled date Earliest Start

Run cycle group 10/24 10/24

Run cycle group with calendar offset (+ 3
days)

10/27/ (Saturday) 10/27/ (Saturday)

Run cycle group with free day rule 10/29/ (Monday) 10/29/ (Monday)

Run cycle group with offset +1 12:00 10/29/ (Monday) 10/30 12:00 (Tuesday)

8 IBM Workload Scheduler: User’s Guide and Reference

Table 4. Scenario 3. Time restriction in the run cycle group with offset (+1
12:00) (continued)

Run cycle group Scheduled date Earliest Start

Run cycle in the job stream with time
restrictions

Run cycle in the job stream with + 4
working days shift

11/02 (Friday) 11/02 (Friday)

Run cycle in the job stream with free day
rule

11/02 (Friday) 11/02 (Friday)

Run cycle in the job stream with earliest
start +1 1pm

11/02 (Friday) 11/03 (Saturday) 1pm

Run cycle in the job stream without
time restrictions

Run cycle in the job stream with + 4
working days shift

11/02 (Friday) 11/03 12:00 (Saturday)

Run cycle in the job stream with free day
rule

11/02 (Friday) 11/03 12:00 (Saturday)

z/OS Availability of the GENDAYS command at run cycle group level
Using GENDAYS, you can check the result of the combination of all the
run cycles in the group.

Calendar
A calendar is a list of dates which define if and when a job stream runs.

A calendar can also be designated for use as a non-working days calendar in a job
stream. A non-working days calendar is a calendar that is assigned to a job stream
to represent the days when the job stream and its jobs do not run. It can also be
used to designate Saturdays or Sundays, or both, as workdays. By convention
many users define a non-working days calendar named holidays, where habitually
Saturday and Sunday are specified as non-working days.

For information about how to define calendars, see “Calendar definition” on page
190.

Prompt

A prompt identifies a textual message that is displayed to the operator and halts
processing of the job or job stream until an affirmative answer is received (either
manually from the operator or automatically by an event rule action). After the
prompt is replied to, processing continues. You can use prompts as dependencies
in jobs and job streams. You can also use prompts to alert an operator that a
specific task was performed. In this case, an operator response is not required.

There are three types of prompts:

global or named
A prompt that is defined in the database as a scheduling object. It is
identified by a unique name and can be used by any job or job stream.

local or ad-hoc
A prompt that is defined within a job or job stream definition. It does not

Chapter 1. IBM Workload Scheduler 9

have a name, and it is not defined as a scheduling object in the database,
therefore it cannot be used by other jobs or job streams.

recovery or abend
A special type of prompt that you define to be used when a job ends
abnormally. The response to this prompt determines the outcome of the job
or job stream to which the job belongs. A recovery prompt can also be
associated to an action and to a special type of job called a recovery job.

For information about how to define prompts, see “Prompt definition” on page 197

Workstation
Read this section for information about the use of workstations for scheduling jobs
and job streams. If, instead, you want to learn about workstations because you are
planning your network, you can find the information you need in the IBM
Workload Scheduler: Planning and Installation.

The computer system where you run your jobs and job streams is called a
workstation. When you define a job or job stream in the IBM Workload Scheduler
database you identify the workstation definitions for the physical or virtual
computer systems on which your job is scheduled to run. Workstations can be
grouped logically into workstation classes and organized hierarchically into domains,
managed by domain managers.

For more information about workstation classes, see “Workstation class” on page
13, and for domains, see “Domain” on page 14.

When you create a workstation definition for a system in your network you define
a set of characteristics that uniquely identify the system and affect the way jobs
run on it. Some examples of these characteristics are the IP address of the
workstation, if it is positioned behind a firewall, the secure or unsecure
communication, the time zone where the workstation is located, and the identity of
its domain manager.

Workstations in the IBM Workload Scheduler scheduling network perform job and
job stream processing, but can also have other roles. When your network was
designed, these roles were assigned to these workstations to suit the specific needs
of your business. The following list describes all the workstation roles:

Master domain manager
A workstation acting as the management hub for the network. It manages
all your scheduling objects. This workstation is registered in the IBM
Workload Scheduler database as master.

Backup master domain manager
A workstation which can act as a backup for the master domain manager,
when problems occur. It is effectively a master domain manager, waiting to
be activated. Its use is optional. Learn more about switching to a backup
master domain manager in the IBM Workload Scheduler: Administration
Guide. This workstation must be installed as "master domain manager
configured as backup". This workstation is registered in the IBM Workload
Scheduler database as fta.

Domain manager
A workstation that controls a domain and shares management
responsibilities for part of the IBM Workload Scheduler network. It is
installed as an agent, and then configured as a domain manager

10 IBM Workload Scheduler: User’s Guide and Reference

workstation when you define the workstation in the database. This
workstation is registered in the IBM Workload Scheduler database as
manager.

Dynamic domain manager
An installed component in a distributed IBM Workload Scheduler network
that is the management hub in a domain. All communication to and from
the agents in the domain is routed through the dynamic domain manager.
When you install a dynamic domain manager the following workstation
types are created in the database:

fta Fault-tolerant agent component manually configured as domain
manager

broker
Broker server component

agent Dynamic agent component

Backup dynamic domain manager
A workstation that can act as a backup for the dynamic domain manager
when problems occur. It is effectively a dynamic domain manager, waiting
to be activated. Its use is optional. Learn more about switching to a backup
dynamic domain manager in the IBM Workload Scheduler: Administration
Guide. When you install a dynamic domain manager the following
workstation types are created in the database:

fta Fault-tolerant agent component.

broker
Broker server component

agent Dynamic agent component

Fault-tolerant agent
A workstation that receives and runs jobs. If there are communication
problems with its domain manager, it can run jobs locally. It is installed as
an agent, and then configured as a fault-tolerant agent workstation when
you define the workstation in the database. This workstation is registered
in the IBM Workload Scheduler database as fta.

Standard agent
A workstation that receives and runs jobs only under the control of its
domain manager. It is installed as an agent, and then configured as a
standard agent workstation when you define the workstation in the
database. This workstation is registered in the IBM Workload Scheduler
database as s-agent.

Extended agent
A workstation on which an IBM Workload Scheduler access method has
been installed as a bridge so that you can schedule jobs in the SAP R/3,
Oracle E-Business Suite, PeopleSoft, z/OS, or custom applications. It must
be physically hosted by a master domain manager, domain manager,
standard agent, or a fault-tolerant agent (up to 255 extended agents per
fault-tolerant agent) and then defined as an extended agent in the
database. For more information, see the IBM Workload Scheduler User's
Guide. This workstation is registered in the IBM Workload Scheduler
database as x-agent.

Workload broker
A workstation that runs both existing job types and job types with

Chapter 1. IBM Workload Scheduler 11

advanced options. It is the broker server installed with the master domain
manager and the dynamic domain manager. It can host one or more of the
following workstations:
v Extended agent
v Remote engine
v Pool
v Dynamic pool
v Agent. This definition includes the following agents:

– Agent
– IBM Workload Scheduler for z/OS Agent
– Agent for z/OS
For more information about the agent and IBM Workload Scheduler for
z/OS Agent, see Scheduling Workload Dynamically. For more information
about the agent for z/OS, see Scheduling with the agent for z/OS.

This workstation is registered in the IBM Workload Scheduler database as
broker.

Dynamic agent
A workstation that manages a wide variety of job types, for example,
specific database or FTP jobs, in addition to existing job types. This
workstation is automatically created and registered in the IBM Workload
Scheduler database when you install the agent. The agent is hosted by the
workload broker workstation. Because the installation and registration
processes are performed automatically, when you view the agent in the
Dynamic Workload Console, it results as updated by the Resource Advisor
Agent. You can group agents in pools and dynamic pools. This workstation
is registered in the IBM Workload Scheduler database as agent.

In a simple configuration, dynamic agents connect directly to a master
domain manager or to a dynamic domain manager. However, in more
complex network topologies, if the network configuration prevents the
master domain manager or the dynamic domain manager from directly
communicating with the dynamic agent, then you can configure your
dynamic agents to use a local or remote gateway.

Note: If you have the enAddWorkstation global option set to "yes", the
dynamic agent workstation definition is automatically added to the Plan
after the installation process creates the dynamic agent workstation in the
database.

Pool A logical workstation that groups a set of agents with similar hardware or
software characteristics to which to submit jobs. IBM Workload Scheduler
balances the jobs among the agents within the pool and automatically
reassigns jobs to available agents if an agent is no longer available. To
create a pool of agents in your IBM Workload Scheduler environment,
define a workstation of type pool hosted by the workload broker
workstation, then select the agents you want to add to the pool. You can
define the pool using the Dynamic Workload Console or the composer
command.

You can also register an agent with a pool by directly editing the
pools.properties file located in <TWS_home>/ITA/cpa/config. See the topic
about automatically registering agents to a pool in the Planning and
Installation. This workstation is registered in the IBM Workload Scheduler
database as pool. When you create a pool in your IBM Workload Scheduler

12 IBM Workload Scheduler: User’s Guide and Reference

-
-
-
-

environment, a logical resource with the same name is automatically
created in the Dynamic Workload Broker. This logical resource is used to
correlate and group together the agents belonging to the same pool, and as
a requirement for the jobs scheduled in the IBM Workload Scheduler pool.
Consider that these database objects are two different objects. If you
rename the IBM Workload Scheduler pool, this change is not made to the
Dynamic Workload Broker logical resource.

Dynamic pool
A logical workstation that groups a set of agents,which is dynamically
defined based on the resource requirements you specify and hosted by the
workload broker workstation. For example, if you require a workstation
with low CPU usage and Windows installed to run your job, you specify
these requirements using the Dynamic Workload Console or the composer
command. When you save the set of requirements, a new workstation is
automatically created in the IBM® Workload Scheduler database. This
workstation maps all the agents in your environment that meet the
requirements you specified. The resulting pool is dynamically updated
whenever a new suitable agent becomes available. Jobs scheduled on this
workstation automatically inherit the requirements defined for the
workstation. This workstation is hosted by the workload broker
workstationand registered in the IBM Workload Scheduler database as
d-pool.

Remote engine
A workstation that manages the exchange of information about cross
dependencies resolution between your environment and a remote IBM
Workload Scheduler engine (controller) or an IBM Workload Scheduler
engine (master domain manager or backup master domain manager). This
workstation is hosted by the workload broker workstation and registered
in the IBM Workload Scheduler database as rem-eng.

Note: If you plan to change the workstation types, consider the following rules:
v You can change fault-tolerant agent, standard agent, extended agent, domain

manager and dynamic workload broker workstations to any workstation type,
with the exception of dynamic agent, pool, dynamic pool, and remote engine.

v You cannot change the type of dynamic agent, pool, dynamic pool, and remote
engine.

For information about how to define workstations, see “Workstation definition” on
page 154.

Workstation class
Workstations can be grouped into classes. A workstation class is a group of
workstations with similar job scheduling characteristics. Any number of
workstations can be grouped in a class, and a workstation can be in many classes.
Jobs and job streams can be assigned to run on a specific workstation class and
this makes the running of jobs and job streams across multiple workstations easier.

For example, you can set up the following types of workstation classes:
v Workstation classes that group workstations according to your internal

departmental structure, so that you can define a job to run on all the
workstations in a department

v Workstation classes that group workstations according to the software installed
on them, so that you can define a job to run on all the workstations that have a
particular application installed

Chapter 1. IBM Workload Scheduler 13

v Workstation classes that group workstations according to the role of the user, so
that you can define a job to run on all the workstations belonging to, for
example, managers

In this example, an individual workstation can be in one workstation class for its
department, another for its user, and several for the software installed on it.

Workstations can also be grouped into domains. This is done when your network
is set up. The domain name is not one of the selection criteria when choosing
where to run a job, so you might need to mirror your domain structure with
workstation classes if you want to schedule a job to run on all workstations in a
domain.

For more information about domains, see “Domain”

For more information about how to define workstation classes, see “Workstation
class definition” on page 170.

Domain
All workstations in a distributed IBM Workload Scheduler network are organized
in one or more domains, each of which consists of one or more agents and a
domain manager acting as the management hub. Most communication to and from
the agents in the domain is routed through the domain manager.

All networks have a master domain where the domain manager is the master
domain manager. It maintains the database of all scheduling objects in the domain
and the central configuration files. The master domain manager generates the plan
and creates and distributes the Symphony file. In addition, logs and reports for the
network are maintained on the master domain manager.

You can organize all agents in your network in a single domain, or in multiple
domains.

Single-domain networks
A single domain network consists of a master domain manager and any
number of agents. The following shows an example of a single domain
network. A single domain network is well suited to companies that have
few locations and business functions. All communication in the network is
routed through the master domain manager. With a single location, you are
concerned only with the reliability of your local network and the amount
of traffic it can handle.

14 IBM Workload Scheduler: User’s Guide and Reference

Multiple-domain network
Multiple domain networks are especially suited to companies that span
multiple locations, departments, or business functions. A multiple domain
network consists of a master domain manager, any number of lower tier
domain managers, and any number of agents in each domain. Agents
communicate only with their domain managers, and domain managers
communicate with their parent domain managers. The hierarchy of
domains can go down to any number of levels.

Master
Domain
Manager

Agents

Figure 1. Single-domain network

Chapter 1. IBM Workload Scheduler 15

In this example, the master domain manager is located in Atlanta. The
master domain manager contains the database files used to document the
scheduling objects, and distributes the Symphony file to its agents and the
domain managers in Denver and Los Angeles. The Denver and Los
Angeles domain managers then distribute the Symphony file to their
agents and subordinate domain managers in New York, Aurora, and
Burbank. The master domain manager in Atlanta is responsible for
broadcasting inter-domain information throughout the network.

All communication to and from the Boulder domain manager is routed
through its parent domain manager in Denver. If there are schedules or
jobs in the Boulder domain that are dependent on schedules or jobs in the
Aurora domain, those dependencies are resolved by the Denver domain

Tivoli Dynamic

Workload Console

Master

Domain

Manager

Master domain

Denver

Backup Master

Domain Manager

Agent

Domain

Manager

Agent Agent Agent

Second-level

domains
Los

Angeles

Domain

Manager

Agent

Agent

New

York

Domain

Manager

Agent Agent

Aurora
Domain

Manager

Agent Agent

Burbank

Domain

Manager

Agent Agent

Third-level

domains

Atlanta

Figure 2. Multiple-domain network

16 IBM Workload Scheduler: User’s Guide and Reference

manager. Most inter-agent dependencies are handled locally by the lower
tier domain managers, greatly reducing traffic on the network.

You can change the domain infrastructure dynamically as you develop your
network. To move a workstation to a different domain, just requires you to change
the domain name in its database definition.

Table 5. Tip

Tip: You cannot schedule jobs or job streams to run on all workstations in a domain
by identifying the domain in the job or job stream definition. To achieve this,
create a workstation class that contains all workstations in the domain.

For more information about workstation classes, see “Workstation class” on page
13

For information about how to define domains, see “Domain definition” on page
171.

Event rule
An event rule defines a set of actions that run when specific event conditions occur.
An event rule definition correlates events and trigger actions.

For information about how to define event rules, see “Defining event rules” on
page 138.

Resource
A resource is either a physical or logical system resource that you use as a
dependency for jobs and job streams. A job or job stream with a resource
dependency cannot start to run until the required quantity of the defined resource
is available.

For information about how to define resources, see “Resource definition” on page
199.

Parameter
A parameter is an object to which you assign different values to be substituted in
jobs and job streams, either from values in the database or at run time. Parameters
are useful when you have values that change depending on your job or job stream.
Job and job stream definitions that use parameters are updated automatically with
the value at the start of the production cycle. Use parameters as substitutes for
repetitive values when defining jobs and job streams. For example, using
parameters for user logon and script file names in job definitions and for file and
prompt dependencies allows the use of values that can be maintained centrally in
the database on the master.

For more information about how to define parameters, see “Variable and
parameter definition” on page 191.

User
A User is the user name used as the logon value for several operating system job
definition. Users must be defined in the database.

If you schedule a job on an agent, on a pool, or on a dynamic pool, the job runs
with the user defined on the pool or dynamic pool. However, the user must exist
on all workstations in the pool or dynamic pool where you plan to run the job.

Chapter 1. IBM Workload Scheduler 17

Note: If you have the enAddUser global option set to "yes", the user definition is
automatically added to the plan after you create or modify the user definition in
the database.

Variable table
A variable table is a table containing multiple variables and their values. All global
parameters, now called variables, are contained in at least one variable table.

You are not required to create variable tables to be able to use variables, because
the scheduler provides a default variable table.

However, you might want to define a variable with the same name, but different
values, depending on when and where it is used. You do this by assigning
different values to the same variable in different variable tables. You can then use
the same variable name in different job definitions and when defining prompts and
file dependencies. Variable tables can be assigned at run cycle, job stream, and
workstation level.

Variable tables can be particularly useful in job definitions when a job definition is
used as a template for a job that belongs to more than one job stream. For
example, you can assign different values to the same variable and reuse the same
job definition in different job streams.

For information about how to define variable tables, see “Variable table definition”
on page 195.

The IBM Workload Scheduler network
An IBM Workload Scheduler network consists of a set of linked workstations on
which you perform batch job processing using IBM Workload Scheduler
management capabilities.

Workstations communicate using TCP/IP links, and a store-and-forward
technology to maintain consistency and fault-tolerance across the network. This
means that if a workstation is not linked, all the information is stored in the
messages file and only sent when the link is reestablished.

The IBM Workload Scheduler network consists of one or more domains, each
having a domain manager workstation acting as a management hub, and one or
more agent workstations.

There are four types of agent: standard, fault-tolerant, extended, and workload
broker. Standard and fault-tolerant agents can be defined on UNIX and Windows
computers. Extended agents are logical definitions, each hosted by a physical
workstation, and are used to perform job processing where an agent is not
installed. For example, extended agents are available for Peoplesoft, SAP R/3,
z/OS®, CA-7, JES, OPC, Oracle EBS, and VMS but you can also install them on
UNIX and Windows systems. Workload broker agents are workstations that
manage the lifecycle of IBM Workload Scheduler Workload Broker type jobs in
dynamic workload broker.

Another type of workstation that you can define in your network is a remote
engine workstation. This kind of workstation is used to manage the
communication with a remote IBM Workload Scheduler engine, either distributed
or z/OS based, to manage dependencies for local jobs from jobs defined on the
remote engine. For more information, see Chapter 23, “Defining and managing
cross dependencies,” on page 785.

18 IBM Workload Scheduler: User’s Guide and Reference

For information about workstations, see “Workstation definition” on page 154.

In the hierarchical IBM Workload Scheduler topology, the master domain manager
is the domain manager of the topmost domain. All production setup tasks and the
generation of the production plan are performed on the master domain manager. A
production plan contains all job management activities to be performed across the
IBM Workload Scheduler network during a specific time frame. A copy of the
production plan is distributed from the master domain manager to the other
workstations. On each workstation IBM Workload Scheduler launches and tracks
its own jobs, and sends job processing status to the master domain manager.

For more information about IBM Workload Scheduler plan management
capabilities, refer to Chapter 4, “Managing the production cycle,” on page 63.

Configuring your IBM Workload Scheduler runtime
environment

About this task

This section gives you a high level overview of how you can configure your IBM
Workload Scheduler runtime environment.

Configuring properties
About this task

You can set two types of properties to configure your IBM Workload Scheduler
runtime environment, properties that are set on the master domain manager and
affect processing on all workstations in the IBM Workload Scheduler network, and
properties that are set locally on a workstation and affect processing on that
workstation only. The former are managed using the IBM Workload Scheduler
command line program named optman, and the latter you define locally on the
workstation by customizing the configuration files useropts, localopts, and
jobmanrc.

For more information on how to use the optman command line to manage global
options and about local options defined in the localopts file, refer to
Administration Guide.

For more information about the local options defined in the useropts file, refer to
“Setting up options for using the user interfaces” on page 60.

Configuring security
About this task

Each time you run an IBM Workload Scheduler program, or invoke an IBM
Workload Scheduler command, security information is read from a special file, the
Security file, to determine your user capabilities. This file contains one or more
user definitions. A user definition is a group of one or more users who are either
allowed or denied to perform specific actions against specific scheduling object
types.

The main IBM Workload Scheduler user, TWS_user, is defined at installation time
in the security file. That user ID can be used to complete the setup procedure, to
set properties, and to manage user definitions inside the security file. You can
modify the security file at any time to meet your system requirements.

Chapter 1. IBM Workload Scheduler 19

For more information about managing user authorizations, refer to IBM Workload
Scheduler: Administration Guide.

Defining scheduling activities using IBM Workload Scheduler
About this task

To perform scheduling activities using IBM Workload Scheduler you must first
define the environment you want to manage in terms of scheduling objects and in
terms of rules to be applied when scheduling operations to run on these objects.
This information is stored by IBM Workload Scheduler in a DB2® or Oracle
Relational Data Base, from now on called the database.

In addition to the definitions of scheduling objects, such as jobs, job streams,
resources, workstations, and so on, the database also contains statistics about
processed jobs and job streams, as well as information about the user who created
an object and when an object was last modified. You can manage the scheduling
object definitions in the database using either the IBM Workload Scheduler
command-line program named composer or the graphical user interfaces, the
Dynamic Workload Console. You can retrieve statistics or history information
about processed jobs and job streams in the database using:
v The IBM Workload Scheduler report utilities from the command line.
v The Dynamic Workload Console.
v The database views.

For more information about how to define scheduling objects, see Chapter 9,
“Defining objects in the database,” on page 151.

For more information about report utility commands, refer to Chapter 18, “Getting
reports and statistics,” on page 701.

For more information about the Dynamic Workload Console, refer to the
corresponding documentation.

For more information on database views, refer to Database Views.

Controlling job and job stream processing
About this task

You can control how jobs and job streams are processed by setting one or more
rules from the following:

Defining dependencies
About this task

A dependency is a prerequisite that must be satisfied before processing can
proceed. You can define dependencies for both jobs and job streams to ensure the
correct order of processing. Within your IBM Workload Scheduler distributed
scheduling environment you can choose from the following different types of
dependencies:
v On successful completion of jobs and job streams: a job or a job stream, named

successor, must not begin processing until other jobs and job streams, named
predecessor, have completed successfully. For more information, see “follows” on
page 230.

20 IBM Workload Scheduler: User’s Guide and Reference

v On satisfaction of specific conditions by jobs and job streams: a job or a job
stream, named successor, must not begin processing until other jobs and job
streams, named predecessor, have met one, all, or a subset of specific conditions
that can be related to the status of the job or job stream, the return code, output
variables, or job log content. When the conditions are not met by the
predecessor, then any successor jobs with a conditional dependency associated to
them are put in suppress state. Successor jobs with a standard dependency are
evaluated as usual.
You can also join or aggregate conditional dependencies related to different
predecessors into a single join dependency. A join contains multiple
dependencies, but you decide how many of those dependencies must be
satisfied for the join to be considered satisfied. You can define an unlimited
number of conditional dependencies, standard dependencies, or both in a join.
Ensure that all the components in the IBM Workload Scheduler environment are
at version 9.3 Fix Pack 1, or later. This dependency type is not supported on
Limited Fault-Tolerant Agent IBM i. For more information, see Chapter 22,
“Applying conditional branching logic,” on page 769, “follows” on page 230,
and “join” on page 236.

v Resource: a job or a job stream needs one or more resources available before it
can begin to run. For more information, refer to “needs” on page 245.

v File: a job or a job stream needs to have access to one or more files before it can
begin to run. For more information, refer to “opens” on page 254.

v Prompt: a job or a job stream needs to wait for an affirmative response to a
prompt before it can begin processing. For more information, refer to “Prompt
definition” on page 197 and “prompt” on page 257.

You can define up to 40 dependencies for a job or job stream. If you need to define
more than 40 dependencies, you can group them in a join dependency. In this case,
the join is used simply as a container of standard dependencies and therefore any
standard dependencies in it that are not met are processed as usual and do not
cause the join dependency to be considered as suppressed. For more information
about join dependencies, see “Joining or combining conditional dependencies” on
page 773 and “join” on page 236.

In an IBM Workload Scheduler network, dependencies can cross workstation
boundaries. For example, you can make job1, which runs on your IBM Workload
Scheduler local environment site1, dependent on the successful completion of
job2, which runs on a remote IBM Workload Scheduler environment site2. The
remote scheduling environment can be either IBM Workload Scheduler for z/OS
engines (controller) or another IBM Workload Scheduler engines (master domain
manager). Two types of dependencies implement such requirement:

Internetwork dependency
It is a simple and distributed based implementation. Use this type of
dependency when:
v The local IBM Workload Scheduler environment is distributed.
v You want to search for a remote predecessor job instance only in the

plan currently running (production plan) on the remote environment.
v You need to match a predecessor instance in the remote plan, not that

specific predecessor instance.
v You can wait for the polling interval to expire before being updated

about the remote job status transition.

Chapter 1. IBM Workload Scheduler 21

=
=
=
=
=
=
=

v You do not mind using different syntaxes and configurations based on
whether the remote IBM Workload Scheduler environment is distributed
rather than z/OS.

v You do not mind using a proprietary connection protocol for
communicating with the remote engine.

For more information, see Chapter 21, “Managing internetwork
dependencies,” on page 759.

Cross dependency
It is a more comprehensive and complete implementation. Use this type of
dependency when:
v Your local IBM Workload Scheduler environment can be either

distributed or z/OS.
v You want to search for the remote predecessor instance also among the

scheduled instances that are not yet included in the plan currently
running on the remote engine.

v You want to match a precise remote predecessor instance in the remote
engine plan. To do this you can use different out-of-the-box matching
criteria.

v You want your dependency to be updated as soon as the remote job
instance changes status. To do this the product uses an asynchronous
notifications from the remote engine to the local engine.

v You want to use the same syntax and configuration regardless of
whether the local IBM Workload Scheduler environment is distributed or
z/OS.

v You want to use HTTP or HTTPS connections for communicating with
the remote engine.

For more information, see Chapter 23, “Defining and managing cross
dependencies,” on page 785.

Setting time constraints
About this task

Time constraints can be specified for both jobs and job streams. For a specific run
cycle, you can specify the time that processing begins, by using the keyword at, or
the time after which processing is no longer started, by using the keyword until.
By specifying both, you define a time window within which a job or job stream
runs. Both at and until represent time dependencies.

As an alternative to the until keyword, you can specify the jsuntil keyword. The
jsuntil keyword also defines the latest start time of a job stream. It also determines
the behavior of the jobs in the job stream when the job stream is approaching its
latest start time. Use the jsuntil keyword to avoid that the job stream is either
suppressed, canceled, or set to continue (depending on the action specified in the
onuntil keyword) if it starts before its latest start time. For example, if you have a
job stream with jsuntil set to 10:00 am, and one of the jobs starts running at 9:59
am, the job and its successors run as scheduled.

There is also a major difference with between the until and jsuntil keywords:

If you specify the until keyword in your job stream definition
This keyword is evaluated also after the job stream has started. As a result,
if the latest start time expires before the job stream completes successfully,

22 IBM Workload Scheduler: User’s Guide and Reference

=
=
=
=
=
=
=
=

=

=
=
=

the action specified in the related onuntil keyword is performed on the job
stream and on its jobs, which have not yet started.

If you specify the jsuntil keyword in your job stream definition
This keyword is evaluated only once, as soon as all dependencies of the
job stream are satisfied and the job stream state changes to READY. If the
latest start time defined using the jsuntil keyword has not expired at this
time, it is no longer evaluated and the job stream runs independently of it.
However, to prevent the job stream from remaining in READY state
indefinitely, two days after the time specified in the jsuntil keyword has
expired, the job stream is suppressed by default.

Another time setting that can be specified is the schedtime; it indicates the time
that is referred to when calculating jobs and job streams dependencies. You can
also specify a repetition rate; for example, you can have IBM Workload Scheduler
launches the same job every 30 minutes between 8:30 a.m. and 1:30 p.m.

You can also specify a maximum duration or a minimum duration for a job
defined within a job stream. If a job is running and the maximum duration time
has been exceeded, then the job can either be killed or can continue to run. If a job
does not run long enough to reach the minimum duration time specified, then the
job can be set to Abend status, to Confirm status awaiting user confirmation, or it
can continue running.

For more information, refer to “at” on page 216, “deadline” on page 219, “every
(used for jobs)” on page 222, “schedtime” on page 258, “until” on page 265,
“jsuntil” on page 238, “maxdur” on page 242, and “mindur” on page 244.

Setting job priority and workstation fence
About this task

IBM Workload Scheduler has its own queuing system, consisting of levels of
priority. Assigning a priority to jobs and job streams gives you added control over
their precedence and order of running.

The job fence provides another type of control over job processing on a
workstation. When it is set to a priority level, it only allows jobs and job streams
whose priority exceeds the job fence to run on that workstation. Setting the fence
to 40, for example, prevents jobs with priorities of 40 or less from being launched.

For more information, refer to “fence” on page 427 and “priority” on page 256.

Setting limits
About this task

The limit provides a means of setting the highest number of jobs that IBM
Workload Scheduler is allowed to launch. You can set a limit:
v In the job stream definition using the job limit argument
v In the workstation definition using the limit cpu command

Setting the limit on a workstation to 25, for example, allows IBM Workload
Scheduler to have no more than 25 jobs running concurrently on that workstation.

For more information, refer to “limit cpu” on page 430, and “limit sched” on page
431.

Chapter 1. IBM Workload Scheduler 23

=
=

=
=
=
=
=
=
=
=

Defining resources
About this task

You can define resources to represent physical or logical assets on your system.
Each resource is represented by a name and a number of available units. If you
have three tape units, for example, you can define a resource named tapes with
three available units. A job that uses two units of the tapes resource would then
prevent other jobs requiring more than the one remaining unit from being
launched. However because a resource is not strictly linked to an asset, you can
use a mock resource as a dependency to control job processing.

For more information, refer to “Resource definition” on page 199.

Asking for job confirmation
About this task

There might be scenarios where the completion status of a job cannot be
determined until you have performed some tasks. You might want to check the
results printed in a report, for example. In this case, you can set in the job
definition that the job requires confirmation, and IBM Workload Scheduler waits for
your response before marking the job as successful or failed.

For more information, refer to “confirm” on page 416.

Defining job rerun and recovery actions
About this task

You have several options when defining recovery actions for your jobs, both when
creating the job definition in the database and when monitoring the job execution
in the plan.

When you create a job definition, either in the composer command line or in the
Workload Designer, you can specify the type of recovery you want performed by
IBM Workload Scheduler if the job fails. The predefined recovery options are:

stop If the job ends abnormally, do not continue with the next job.

You can also stop the processing sequence after a prompt is issued which
requires a response from the operator.

continue
If the job ends abnormally, continue with the next job.

You can also continue with the next job after a prompt is issued which
requires a response from the operator.

rerun If the job ends abnormally, rerun the job.

You can add flexibility to the rerun option by defining a rerun sequence
with specific properties. The options described below are mutually
exclusive.

repeatevery hhmm for number attempts
You can specify how often you want IBM Workload Scheduler to
rerun the failed job and the maximum number of rerun attempts to
be performed. If any rerun in the sequence completes successfully,
the remaining rerun sequence is ignored and any job dependencies
are released.

24 IBM Workload Scheduler: User’s Guide and Reference

=
=
=

=
=
=
=
=
=

rerun after prompt
IBM Workload Scheduler reruns the failed job after the operator
has replied to a prompt.

same_workstation
If the parent job ran on a workstation that is part of a pool or a
dynamic pool, you can decide whether it must rerun on the same
workstation or on a different one. This is because the workload on
pools and dynamic pools is assigned dynamically based on a
number of criteria and the job might be rerun on a different
workstation.

You can also decide to rerun the job in the IBM Workload Scheduler plan.
In this case, you have the option of rerunning the job, or rerunning the job
with its successors, either all successors in the same job stream, or all
successors overall, both in the same job stream and in other job streams, if
any. From the conman command line, use the “Listsucc” on page 436
command to identify the job's successors and the “Rerunsucc” on page 448
command to rerun them.

The rerun option is especially useful when managing long and complex job
streams. In case of a job completing in error, you can rerun the job with all
its successors. You can easily identify the job successors, both in the same
job stream and in any external job streams from the conman “Listsucc” on
page 436 and “Rerunsucc” on page 448 commands or the Dynamic
Workload Console. From the Dynamic Workload Console, you can easily
view the list of all job successors before rerunning them from the Monitor
Workload view, by selecting the job and clicking More Actions> Rerun
with successors. You can also choose whether you want to run all
successors of the parent job or only the successors in the same job stream
as the parent job. To manage the rerun option for parent job successors, see
“Rerunsucc” on page 448 and “Listsucc” on page 436.

When you decide to rerun the job in the IBM Workload Scheduler plan,
you have the option to modify the previous job definition. From the
conman “rerun” on page 444 command, you can specify that the job is
rerun under a new user name in place of the original user name. Also, you
can specify the new command or script that the rerun job must run in
place of the original command or script. From the Dynamic Workload
Console, this is done from the Monitor Workload view, by selecting the job
and clicking Rerun>Edit Definition.

recovery job
If the job ends abnormally, run a recovery job you have previously defined
to try and solve the error condition. For example, you know that a job
which requires a database connection might fail because the database
happens to be unreachable. To solve this error condition, you might define
a recovery job which restarts the database.

You can combine the rerun sequence with the recovery job, so that if the parent job
fails, a recovery job is started. When the recovery job completes successfully, the
parent job is restarted after the specified interval, if any, for a specific number of
times, with or without its successors.

For example, if you define a rerun sequence in which a parent job is associated
with a recovery job and the parent job is scheduled to be rerun for three times
after waiting for one minute for the recovery job to complete, the rerun sequence
unfolds as follows:

Chapter 1. IBM Workload Scheduler 25

=
=
=

=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=
=
=
=

*
*
*
*
*
*
*
*

=
=
=
=

=
=
=
=

1. The parent job runs and ends abnormally.
2. The recovery job starts and completes successfully.
3. The parent job waits for the specified interval after the recovery job completion

before restarting, then restarts.
4. If it completes successfully, the remaining rerun sequence is ignored and any

job dependencies are released. If the parent job completes in error again, steps 2
and 3 are repeated for three times, unless one of the reruns completes
successfully.

5. If all reruns end abnormally, the job stream fails or remains in STUCK state.

For more information, refer to “Job definition” on page 173.

Modifying job instances in the plan to control job processing

Even after your jobs have been submitted into the current plan, you still have
opportunities to modify them without having to go back to the original job
definition in the database. When modifying a job instance, you can change the
definition if the job has not yet started to run, or you can change the definition of
a job that has already run and rerun it with the new definition. For example, you
can update a command or script, rerun a job with a different logon name or
priority, or edit connection server details. Whatever the change, this is a quick and
easy way to react and recover.

To modify the job definition of a job instance that has not yet run, perform the
following steps:
1. From Monitor Workload, run a query on your jobs.
2. From the resulting list of jobs, select a job that has not yet run and click More

Actions > Edit Job.
3. Modify the job definition then click OK to save the changes. To restore original

definition, click Reload.

To rerun a job with a different definition, perform the following steps:
1. From Monitor Workload, run a query on your jobs.
2. From the resulting list of jobs, select a job that has already run and then click

Rerun.
3. From the Rerun Job dialog, select Edit Job and then click Edit Job.
4. Modify the job definition then click OK to save the changes. To restore original

definition, click Reload.
5. Click Rerun to rerun the job with the modified definition.

Managing production scheduling activities with IBM Workload
Scheduler

About this task

Each time a new production plan is generated, IBM Workload Scheduler selects the
job streams that run in the time window specified for the plan, and carries forward
uncompleted job streams from the previous production plan. All the required
information is written in a file, named Symphony, which is continually updated
while processing to indicate work completed, work in progress, and work to be
done. The IBM Workload Scheduler conman (Console Manager) command-line
program is used to manage the information in the Symphony file. The conman
command-line program can be used to:

26 IBM Workload Scheduler: User’s Guide and Reference

=

=

=
=

=
=
=
=

=

*

*
*
*
*
*
*
*
*

*
*

*

*
*

*
*

*

*

*
*

*

*
*

*

v Start and stop IBM Workload Scheduler control processes.
v Display the status of jobs and job streams.
v Alter priorities and dependencies.
v Alter the job fence and job limits.
v Rerun jobs.
v Cancel jobs and job streams.
v Submit new jobs and job streams.
v Reply to prompts.
v Link and unlink workstations in the IBM Workload Scheduler network.
v Modify the number of available resources.

Starting with version 9.1, all of the plan information written to the Symphony file is
then replicated to the database. Various monitoring operations requested from the
Dynamic Workload Console access the database, rather than the Symphony file,
resulting in quicker response times and overall performance. The following
operations requested from the Dynamic Workload Console access information from
the database:
v Monitoring jobs and job streams
v Refreshing job and job stream monitoring views
v Monitoring workstations
v Monitoring resources, files, prompts
v Running baseline reports
v Displaying the plan in a graphical view
v Displaying the job stream in a graphical view

Note: This feature does not work with DB2 JDBC driver type = 2. IBM Workload
Scheduler is supplied with JDBC driver type 4

Automating workload using event rules
About this task

Beside doing plan-based job scheduling, you can automate workload based on
demand with the aid of event rules. The objective of event rules is to carry out a
predefined set of actions in response to specific events affecting IBM Workload
Scheduler and non-IBM Workload Scheduler objects.

With respect to IBM Workload Scheduler objects, the product provides a plug-in
that you can use to detect the following events:
v A specific job or job stream:

– Changes status
– Is beyond its latest start time
– Is submitted
– Is cancelled
– Is restarted
– Becomes late

v A certain workstation:
– Changes status
– Changes its link status from its parent workstation
– Changes its link status from its child workstation

v A specific prompt is displayed or replied to

Chapter 1. IBM Workload Scheduler 27

=

v The application server on a certain workstation is started or stopped

When any of these events takes place, any of the following actions can be
triggered:
v Submit a job stream, a job, or a task
v Reply to a prompt
v Run non-IBM Workload Scheduler commands
v Log an operator message
v Notify users via email
v Send messages to Tivoli Enterprise Console

You can also define and run event rules that act either on the detection of one or
more of these events or on a sequence or set of these events not completing within
a specific length of time.

More information is available on Chapter 8, “Running event-driven workload
automation,” on page 131.

IBM Workload Scheduler user interfaces
A combination of graphical and command-line and API interface programs are
provided to work with IBM Workload Scheduler. In particular, the command-line
interface is available for certain advanced features which are not available in the
graphical user interface. The available IBM Workload Scheduler user interface
programs are:

Single Entry Point
Single Entry Point is a web-based page to access all the IBM Workload
Scheduler user interfaces:
v Dynamic Workload Console
v Self Service UIs (Self-Service Catalog and Self-Service Dashboards)
v Application Lab

Single Entry Point is a role-based interface that you can access from any
computer in your environment by using a web browser through the secure
HTTPS.

Single Entry Point provides quick links to the most important Dynamic
Workload Console tasks: connect your engines, design your workload,
monitor your workload, and dashboard. With Single Entry Point you can
access the mobile applications, the Self-Service Catalog and the Self-Service
Dashboards, through the link or the Qrcode. To access the Application Lab
you must add configuration settings to define your engine and your
environment ID. The environment ID is defined by the Administrators
when they configure access to the Application Lab in the security file and
it is identified by a two-letter prefix.

Dynamic Workload Console
A Web-based user interface available for viewing and controlling
scheduling activities in production on both the IBM Workload Scheduler
distributed and z/OS environments. With the Dynamic Workload Console
you can use any supported browser to access the IBM Workload Scheduler
environment from any location in your network.

You can use the Dynamic Workload Console to:
v Define scheduling objects in the IBM Workload Scheduler database

28 IBM Workload Scheduler: User’s Guide and Reference

v Browse and manage scheduling objects involved in current plan
activities

v Create and control connections to IBM Workload Scheduler
environments

v Submit jobs and job streams in production
v Set user preferences
v Create and manage event rules
v Define and manage mission-critical jobs

Dynamic Workload Console must be installed on a server that can reach
the IBM Workload Scheduler nodes using network connections. See the
IBM Workload Scheduler: Planning and Installation for information.

Application Lab
A Web-based user interface available for creating, running, and monitoring
a set of simple business processes. It connects to an existing Dynamic
Workload Console distributed engine that is either shared or configured in
single sign-on. This interface is easy-to-use and is dedicated to application
developers who require control and autonomy when driving workloads,
but that are not required to handle complex workload automation
concepts. It uses simplified terminology to express concepts like jobs, job
streams, and run cycles. Application developers create their processes which
are made up of one or more steps. The processes can be scheduled to run
(on dynamic agents only) according to the triggers defined for them. You
can use any supported browser to access the IBM Workload Scheduler
environment from any location in your network through the secure HTTPS
protocol. An administrator must enable users to access Application Lab
through the definition of a working environment

You can use the Application Lab to:
v Define a process to run any number of steps, where steps can perform

simple operations or integrate with external application to perform more
complex operations. See the overview section in theIBM Workload
Automation: Application Lab User's Guide for more detailed information
about the types of operations supported.

v Import existing crontab files or Windows Task Scheduler tasks and
benefit from the full set of IBM Workload Scheduler capabilities.

v Set up processes to run according to a scheduler.
v Publish processes to the Self-Service Catalog and submit them to run on

demand from a mobile device.
v Move your processes to the Dynamic Workload Console to run it with

more complex scheduling conditions.
v Monitor the progress and status of processes.

Application Lab is not an installable component. It is accessed through a
URL that connects to an existing Dynamic Workload Console engine. An
administrator must perform some preparatory steps before application
developers can access and use Application Lab. See the IBM Workload
Automation: Application Lab User's Guide for information.

composer
A command-line program used to define and manage scheduling objects in
the database. This interface program and its use are described in Chapter 9,
“Defining objects in the database,” on page 151 and Chapter 10, “Managing
objects in the database - composer,” on page 297.

Chapter 1. IBM Workload Scheduler 29

conman
A command-line program used to monitor and control the IBM Workload
Scheduler production plan processing. This interface program is described
in Chapter 12, “Managing objects in the plan - conman,” on page 379.

Java™ API and plug-ins
A set of available classes and methods running in a JAVA environment that
you use to create your custom interface to manage scheduling objects in
the database and in the plan. This API cannot be used to create your
custom interface to set global options. In addition, you can use and modify
a set of plug-ins that perform specific tasks, or create your own plug-ins.
The API is available through a Software Development Kit, which is part of
the product. For more information and to learn how to access the
documentation of the API and plug-ins, refer to IBM Workload Automation:
Developer's Guide: Extending IBM Workload Automation.

optman
A command-line program used to manage the settings that affect the entire
IBM Workload Scheduler environment. These settings, also called global
options, are stored in the database. This interface program is described in
the IBM Workload Scheduler: Administration Guide.

planman
A command-line program used to manage the IBM Workload Scheduler
planning capability. This interface program is described in “Planman
command line” on page 88.

Web Services Interface
An interface that provides you with a web services based access
mechanism to a subset of functionality used to manage jobs and job
streams in the plan. It does not allow you to manage the plan, to set global
options, to manage objects in the database. For more information refer to
IBM Workload Automation: Developer's Guide: Driving IBM Workload Scheduler
for z/OS.

You must install the IBM Workload Scheduler Command Line Client feature on
fault-tolerant agents and systems outside the IBM Workload Scheduler network to
use the composer and optman command-line programs and to run planman
showinfo and planman unlock commands.

For information on how to set the options needed to allow a user to access the
command-line interfaces, refer to “Setting up options for using the user interfaces”
on page 60.

Starting production
About this task

This section provides you with a step-by-step path of basic operations you can
perform quickly implement IBM Workload Scheduler in your environment using
the command-line interface. It is assumed that:
v These steps are performed on the master domain manager immediately after

successfully installing the product on the systems where you want to perform
your scheduling activities.

v The user ID used to perform the operations is the same as the one used for
installing the product.

30 IBM Workload Scheduler: User’s Guide and Reference

If you are not familiar with IBM Workload Scheduler you can follow the
non-optional steps to define a limited number of scheduling objects, and add more
as you become familiar with the product. You might start, for example, with two
or three of your most frequent applications, defining scheduling objects to meet
their requirements only.

Alternatively, you can use the Dynamic Workload Console to perform both the
modeling and the operational tasks. Refer to the corresponding product
documentation for more information.

The first activity you must perform is to access the IBM Workload Scheduler
database and to define the environment where you want to perform your
scheduling activities using the IBM Workload Scheduler scheduling object types. To
do this perform the following steps:
1. Set up the IBM Workload Scheduler environment variables

Run one of the following scripts:
. ./TWS_home/tws_env.sh for Bourne and Korn shells in UNIX
. ./TWS_home/tws_env.csh for C shells in UNIX
TWS_home\tws_env.cmd in Windows
in a system shell to set the PATH and TWS_TISDIR variables.

2. Connect to the IBM Workload Scheduler database

You can use the following syntax to connect to the master domain manager as
TWS_user:
composer -user <TWS_user> -password <TWS_user_password>

where TWS_user is the user ID you specified at installation time.

Note: If you want to perform this step and the following ones from a system
other than the master domain manager you must specify the connection
parameters when starting composer as described in “Setting up options for
using the user interfaces” on page 60.

3. Optionally add in the database the definitions to describe the topology of
your scheduling environment in terms of:

v Domains

Use this step if you want to create a hierarchical tree of the path through
the environment. Using multiple domains decreases the network traffic by
reducing the communications between the master domain manager and the
other workstations. For additional information, refer to “Domain definition”
on page 171.

v Workstations

Define a workstation for each machine belonging to your scheduling
environment with the exception of the master domain manager which is
automatically defined during the IBM Workload Scheduler installation. For
additional information, refer to “Workstation definition” on page 154. The
master domain manager is automatically defined in the database at
installation time.

4. Optionally define the users allowed to run jobs on Windows workstations

Define any user allowed to run jobs using IBM Workload Scheduler by
specifying user name and password. For additional information, refer to “User
definition” on page 185.

5. Optionally define calendars

Chapter 1. IBM Workload Scheduler 31

Calendars allow you to determine if and when a job or a job stream has to
run. You can use them to include or exclude days and times for processing.
Calendars are not strictly required to define scheduling days for the job
streams (simple or rule run cycles may be used as well); their main goal is to
define global sets of dates that can be reused in multiple job streams. For
additional information refer to “Calendar definition” on page 190.

6. Optionally define parameters, prompts, and resources

For additional information refer to “Variable and parameter definition” on
page 191, “Prompt definition” on page 197, and “Resource definition” on page
199.

7. Define jobs and job streams

For additional information refer to “Job” on page 876, and to “Job stream
definition” on page 209.

8. Optionally define restrictions and settings to control when jobs and job
streams run.

You can define dependencies for jobs and job streams. There can be up to 40
dependencies for a job stream. If you need to define more than 40
dependencies, you can group them in a join dependency. In this case, the join
is used simply as a container of standard dependencies and therefore any
standard dependencies in it that are not met are processed as usual and do
not cause the join dependency to be considered as suppressed. For more
information about join dependencies, see “Joining or combining conditional
dependencies” on page 773 and “join” on page 236.They can be:
v Resource dependencies
v File dependencies
v Job and job stream follow dependencies, both on successful completion of

jobs and job streams and on satisfaction of specific conditions by jobs and
job streams

v Prompt dependencies

You can define time settings for jobs and job streams to run in terms of:
v Run cycles
v Time constraints

You can tailor the way jobs run concurrently either on a workstation or within
a job stream by setting:
v Limit
v Priority

9. Automate the plan extension at the end of the current production term

Add the final job stream to the database to perform automatic production
plan extension at the end of each current production term by running the
following command:
add Sfinal

For additional information, refer to “Automating production plan processing”
on page 106.

10. Generate the plan

Run the JnextPlan command to generate the production plan. This command
starts the processing of the scheduling information stored in the database and
creates the production plan for the time frame specified in the JnextPlan

32 IBM Workload Scheduler: User’s Guide and Reference

=
=
=
=
=
=
=

command. The default time frame is 24 hours. If you automated the plan
generation as described in the previous step, you only need to run the
JnextPlan command the first time.

When you complete this step-by-step process, your scheduling environment is up
and running, with batch processing of an ordered sequence of jobs and job streams
being performed against resources defined on a set of workstations, if defined. By
default, the first time you run the JnextPlan command, the number of jobs that can
run simultaneously on a workstation is zero, so make sure that you increase this
value by changing the limit cpu to allow job execution on that workstation, see
the section “limit cpu” on page 430 for more details.

If you want to modify anything while the production plan is already in process,
use the conman program. While the production plan is processing across the
network you can still continue to define or modify jobs and job streams in the
database. Consider however that these modifications will only be used if you
submit the modified jobs or job streams, using the command sbj for jobs or sbs for
job streams, on a workstation which has already received the plan, or after a new
production plan is generated using JnextPlan. See Chapter 12, “Managing objects
in the plan - conman,” on page 379 for more details about the conman program
and the operations you can perform on the production plan in process.

Chapter 1. IBM Workload Scheduler 33

34 IBM Workload Scheduler: User’s Guide and Reference

Chapter 2. Understanding basic processes and commands

In a multi-tier IBM Workload Scheduler network, locally on each workstation a
group of specialized scheduling processes performs job management and sends
back the information about job processing throughout the hierarchical tree until the
master domain manager is reached. Using the information received from the
workstations, the master domain manager then updates both its copy of the
Symphony file and the replicated plan in the database, which contain the records
describing the job processing activities to be performed across the IBM Workload
Scheduler network during the current production plan, and sends the updates on
the activities to be performed to the workstations involved.

Issuing commands on Windows operating systems
On Windows operating systems, ensure that you are issuing the IBM Workload
Scheduler commands from a command prompt with the Run as administrator
privilege level.

IBM Workload Scheduler workstation processes
The management of communication between workstations and local job processing,
together with the notification of state updates, are performed on each IBM
Workload Scheduler workstation by a series of management processes that are
active while the engine is running. On fault-tolerant agents and domain managers
these processes are based on the WebSphere Application Server infrastructure. This
infrastructure is automatically installed with the workstation and allows IBM
Workload Scheduler to:
v Communicate across the IBM Workload Scheduler network.
v Manage authentication mechanisms for remote clients, such as command-line

programs, connecting to the master domain manager using the HTTP or HTTPS
protocols.

For information on how to start and stop both the WebSphere Application Server
infrastructure and the IBM Workload Scheduler processes on a workstation refer to
“Starting and stopping processes on a workstation” on page 40. Except for
manually starting and stopping the WebSphere Application Server and managing
connection parameters when communicating across the IBM Workload Scheduler
network, the WebSphere Application Server infrastructure is transparent when
using IBM Workload Scheduler.

In this guide IBM Workload Scheduler processes or workstation processes are used to
identify the following processes:

netman
monman
writer
mailman
batchman
jobman

With the exception of standard agents, these processes are started in the following
order on the IBM Workload Scheduler workstations:

35

netman
Netman is the Network Management process. It is started by the Startup
command and it behaves like a network listener program which receives
start, stop, link, or unlink requests from the network. Netman examines
each incoming request and creates a local IBM Workload Scheduler
process.

monman
Monman is a process started by netman and is used in event management.
It starts monitoring and ssmagent services that have the task of detecting
the events defined in the event rules deployed and activated on the
specific workstation. When these services catch any such events, after a
preliminary filtering action, they send them to the event processing server
that runs usually in the master domain manager. If no event rule
configurations are downloaded to the workstation, the monitoring services
stay idle.

Ssmagent services are used only for file monitoring event types. For more
information, see paragraph "File monitoring events" in the section "Event
management" in chapter "IBM Workload Scheduler Concepts" of the Dynamic
Workload Console User's Guide.

The communication process between the monitoring agents and the event
processing server is independent of the IBM Workload Scheduler network
topology. It is based directly on the EIF port number of the event processor
and the event information flows directly from the monitoring agents
without passing through intermediate domain managers. A degree of
fault-tolerance is guaranteed by local cache memories that temporarily
store the event occurrences on the agents in case communication with the
event processor is down.

writer Writer is a process started by netman to pass incoming messages to the
local mailman process. The writer processes (there might be more than one
on a domain manager workstation) are started by link requests (see “link”
on page 432) and are stopped by unlink requests (see “unlink” on page
522) or when the communicating mailman ends.

mailman
Mailman is the Mail Management process. It routes messages to either
local or remote workstations. On a domain manager, additional mailman
processes can be created to divide the load on mailman due to the
initialization of agents and to improve the timeliness of messages. When
the domain manager starts, it creates a separate mailman process instance
for each ServerID specified in the workstation definitions of the
fault-tolerant agents and standard agents it manages. Each workstation is
contacted by its own ServerID on the domain manager. For additional
information, refer to “Workstation definition” on page 154.

batchman
Batchman is the Production Control process. It interacts directly with the
copy of the Symphony file distributed to the workstations at the beginning
of the production period and updates it. Batchman performs several
functions:
v Manages locally plan processing and updating.
v Resolves dependencies of jobs and job streams.
v Selects jobs to be run.
v Updates the plan with the results of job processing.

36 IBM Workload Scheduler: User’s Guide and Reference

Batchman is the only process that can update the Symphony file.

jobman
Jobman is the Job Management process. It launches jobs under the
direction of batchman and reports job status back to mailman. It is
responsible for tracking job states and for setting the environment as
defined in the jobmanrc and .jobmanrc scripts when requesting to launch
jobs. For information about these scripts, see Chapter 3, “Configuring the
job environment,” on page 49. When the jobman process receives a launch
job message from batchman, it creates a job monitor process. The
maximum number of job monitor processes that can be created on a
workstation is set by using the limit cpu command from the conman
command line prompt (see “limit cpu” on page 430).

job monitor (jobman on UNIX, JOBMON.exe and joblnch.exe on
Windows operating system)

The job monitor process first performs a set of actions that set the
environment before the job is launched, and then launches the job
by running the script file or command specified in the job
definition. For additional details on how to specify the script file or
the command launched with the job, refer to “Job” on page 876.

The setup activities consist of launching the standard configuration
file (TWS_home/jobmanrc in UNIX and TWS_home/jobmanrc.cmd in
Windows) which contains settings that apply to all jobs running on
the workstation. In addition, on UNIX workstations a local
configuration script TWS_user/.jobmanrc is launched, if it exists in
the home directory of the user launching the job. This local
configuration file contains settings that apply only to jobs launched
by the specific user. If any of these steps fails, the job ends in the
FAIL state.

Attention: If, on Windows systems, a system variable called TEMP
exists, user TWS_user must be authorized to create files in the
directory to which the variable is set. If this requirement is not
met, the JOBMON.exe binary file fails to start successfully.

All processes, except jobman, run as the TWS_user. Jobman runs as root.

On standard agent workstations, the batchman process is not launched because
this type of workstation does not manage job scheduling. These workstations only
launch jobs under the direction of their domain manager. Locally on the
workstation the management processes wait for a request to launch a job from the
domain manager in LISTEN mode. When the request is received the job is
launched locally and the result is sent back to the domain manager. For additional
information on standard agent workstations refer to IBM Workload Scheduler:
Planning and Installation Guide.

Figure 3 on page 38 shows the process tree on IBM Workload Scheduler
workstations, other than standard agents, installed on UNIX:

Chapter 2. Understanding basic processes and commands 37

Figure 4 on page 39 shows the process tree on IBM Workload Scheduler
workstations, other than standard agents, installed on Windows:

Figure 3. Process tree in UNIX

38 IBM Workload Scheduler: User’s Guide and Reference

On Windows platforms there is an additional service, the Tivoli Token Service,
which enables IBM Workload Scheduler processes to be launched as if they were
issued by the IBM Workload Scheduler user.

job file job filejob file

serverA
(mailman.exe)

netman.exe

mailman.exe

batchman.exe

jobman.exe

writer.exe

jobmon.exe

joblnch.exe joblnch.exe joblnch.exe

jobmanrc.cmd jobmanrc.cmd jobmanrc.cmd

ssmagent.exe

monman.exe

Figure 4. Process tree in Windows

Chapter 2. Understanding basic processes and commands 39

Starting and stopping processes on a workstation
About this task

The type of operating system installed on the workstation determines how IBM
Workload Scheduler processes can be started from the command line. Table 6
explains how you can start and stop both the WebSphere Application Server
infrastructure and IBM Workload Scheduler processes on a workstation based on
the operating system installed.

Table 6. Starting and stopping IBM Workload Scheduler on a workstation

Action Commands used on
UNIX platform

Commands used on Windows
platform

Start all IBM Workload
Scheduler processes including
WebSphere Application Server
and the event monitoring
engine.

conman start
conman startappserver
conman startmon

conman start
conman startappserver
conman startmon

Start netman and WebSphere
Application Server. On
Windows starts also the
Tivoli Token Service

./StartUp.sh StartUp

Stop all IBM Workload
Scheduler processes and
WebSphere Application
Server.

conman shutdown
./stopWas.sh

conman shutdown -appsrv
shutdown -appsrv

Stop all IBM Workload
Scheduler processes with the
exception of WebSphere
Application Server.

conman shutdown
conman shutdown
shutdown

Start all IBM Workload
Scheduler processes with the
exception of WebSphere
Application Server and the
event monitoring engine.

conman start conman start

Stop all IBM Workload
Scheduler processes but
netman, monman, writer, and
appservman.

conman stop conman stop

Stop all IBM Workload
Scheduler processes
(including netman).

conman shutdown conman shutdown
shutdown

Start WebSphere Application
Server ./startWas.sh

or
conman startappserver

startWas
or
conman startappserver

Stop WebSphere Application
Server ./stopWas.sh

or
conman stopappserver

stopWas
or
conman stopappserver

Start the event monitoring
engine

conman startmon conman startmon

Stop the event monitoring
engine

conman stopmon conman stopmon

40 IBM Workload Scheduler: User’s Guide and Reference

Table 6. Starting and stopping IBM Workload Scheduler on a workstation (continued)

Action Commands used on
UNIX platform

Commands used on Windows
platform

Start the agent locally ./StartUpLwa.sh
Note: can be run by
TWS_user or root user
only.

startuplwa
Note: On Windows 2008 must
be run as Administrator.

Stop the agent locally ./ShutDownLwa.sh
Note: can be run by
TWS_user or root user
only.

shutdownlwa
Note: On Windows 2008 must
be run as Administrator.

Note: On Windows systems refrain from using Windows services to stop
WebSphere Application Server. Use one of the commands listed in this table
instead. If you use Windows services to stop WebSphere Application Server, the
appserverman process, which continues to run, will start it again.

Refer to “StartUp” on page 670 for more information on the StartUp utility
command.

Refer to “shutdown” on page 669 for more information on the shutdown utility
command.

Refer to IBM Workload Scheduler: Administration Guide for more information on
startWas and stopWas commands.

Refer to “start” on page 492 for more information on the conman start command.

Refer to “stop” on page 498 for more information on the conman stop command.

Refer to “shutdown” on page 491 for more information on the conman shutdown
command.

Refer to “startappserver” on page 494 for more information on the conman
startappserver command.

Refer to “stopappserver” on page 500 for more information on the conman
stopappserver command.

Refer to “startmon” on page 496 for more information on the conman startmon
command.

Refer to “stopmon” on page 503 for more information on the conman stopmon
command.

If the agent is installed on a Windows system, WebSphere Application Server and
the netman processes are automatically started at start time as services together
with the Tivoli Token Service. If the agent is installed on a UNIX system,
WebSphere Application Server and the netman processes can be automatically
started at start time by adding a statement invoking Startup in the /etc/inittab
file.

Chapter 2. Understanding basic processes and commands 41

Starting and stopping the agent
About this task

The type of operating system installed on the workstation determines how agents
can be started from the command line.

Table 7. Starting and stopping the agent

Action Commands used on
UNIX platform

Commands used on Windows
platform

Start the agent locally ./StartUpLwa.sh
Note: can be run by
TWS_user or root user
only.

startuplwa
Note: On Windows 2008 must
be run as Administrator.

Stop the agent locally ./ShutDownLwa.sh
Note: can be run by
TWS_user or root user
only.

shutdownlwa
Note: On Windows 2008 must
be run as Administrator.

For more infomation about stopping and starting the agent, see ShutDownLwa and
StartUpLwa.

Workstation inter-process communication
IBM Workload Scheduler uses message queues for local inter-process
communication. There are 11 message files, which reside in the TWS_home
directory:

Appserverbox.msg
This message file is written by the conman and mailman processes and
read by the appservman process. It receives messages such as WebSphere
Application Server START and STOP.

auditbox.msg
This message file is written by the mailman process and read by the
WebSphere Application Server process. It receives audit messages to be
stored in the database.

Courier.msg
This message file is written by the batchman process and read by the
jobman process.

Intercom.msg
This message file is read by the batchman process and contains
instructions sent by the local mailman process.

Mailbox.msg
This message file is read by the mailman process. It receives messages,
through the graphical user interface (Dynamic Workload Console) or the
console manager (conman), incoming from the local batchman and jobman
processes and from other IBM Workload Scheduler workstations in the
network.

mirrorbox.msg
This message file is written by the mailman process and read by the
WebSphere Application Server process. It receives any batchman incoming
messages.

42 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

awsrgShutLwa.htm
awsrgstartLwa.htm

Monbox.msg
This message file is written by the mailman, batchman, and appservman
processes and read by the monman process. It receives messages such as
QUEUE_EVENT.

Moncmd.msg
This message file is written by the conman, batchman, mailman processes
and by the Dynamic Workload Console, and read by the monman process.
It receives messages such as STOP, DEPLOY_CONFIG,
UPGRADE_WORKSTATION

NetReq.msg
This message file is read by the netman process for local commands. It
receives messages such as START, STOP, LINK, and UNLINK.

PlanBox.msg
This message file is written by the batchman process and read by the
engine.

Server.msg
This message file is written by the batchman process and read by the
engine.

This figure illustrates the inter-process communication on the master domain
manager.

Chapter 2. Understanding basic processes and commands 43

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

This figure illustrates the inter-process communication on the master domain
manager and fault-tolerant agent.

conman stop,
start or shutdown

Dynamic
Workload Console
or conman

Operator input

Appserver
box.msg

Auditbox.msg

application
server

Mirrorbox.msg

Dynamic
Workload Console
or conman

Operator input

PlanBox.msg

Appserver
box.msg

Auditbox.msg

application
server

appservman

Figure 5. Inter-process communication on the master domain manager

44 IBM Workload Scheduler: User’s Guide and Reference

These files have a default maximum size of 10MB. The maximum size can be
changed using the evtsize utility (see “evtsize” on page 645).

IBM Workload Scheduler network communication
IBM Workload Scheduler uses the TCP/IP protocol for network communication.
The node name and the port number used to establish the TCP/IP connection are
set for each workstation in its workstation definition. Refer to “Workstation
definition” on page 154 for additional details.

A store-and-forward technology is used by IBM Workload Scheduler to maintain
consistency and fault-tolerance at all times across the network by queuing
messages in message files while the connection is not active. When TCP/IP
communication is established between systems, IBM Workload Scheduler provides

netman

writer

mailman

batchman

jobman

From
remote
mailman

To
remote
mailman

NetReq.msg

Mailbox.msg

Courier.msg

conman stop,
start or shutdown

Dynamic
Workload Console
or conman

Operator input
netman spawns
writer for each
incoming
connection

Server.msg

application
server

Monbox.msg

Moncmd.msg

Intercom.msg

monman

netman

writer

mailman

batchman

jobman

From
remote
mailman

To
remote
mailman

NetReq.msg

Mailbox.msg

Courier.msg

conman stop,
start or shutdown

Dynamic
Workload Console
or conman

Operator input
netman spawns
writer for each
incoming
connection

Server.msg

application
server

Monbox.msg

Moncmd.msg

Intercom.msg

monman

Figure 6. Inter-process communication on the master domain manager and fault-tolerant agent

Chapter 2. Understanding basic processes and commands 45

bi-directional communication between workstations using links. Links are
controlled by the autolink flag set in the “Workstation definition” on page 154,
and by the “link” on page 432 and “unlink” on page 522 commands issued from
the conman command-line program.

When a link is opened, messages are passed between two workstations. When a
link is closed, the sending workstation stores messages in a local message file and
sends them to the destination workstation as soon as the link is re-opened.

There are basically two types of communication that take place in the IBM
Workload Scheduler environment, connection initialization and scheduling event
delivery in the form of change of state messages during the processing period.
These two types of communication are now explained in detail.

Connection initialization and two-ways communication setup
These are the steps involved in the establishment of a two-ways IBM
Workload Scheduler link between a domain manager and a remote
fault-tolerant agent:
1. On the domain manager, the mailman process reads the host name,

TCP/IP address, and port number of the fault-tolerant agent from the
Symphony file.

2. The mailman process on the domain manager establishes a TCP/IP
connection to the netman process on the fault-tolerant agent using the
information obtained from the Symphony file.

3. The netman process on the fault-tolerant agent determines that the
request is coming from the mailman process on the domain manager,
and creates a new writer process to handle the incoming connection.

4. The mailman process on the domain manager is now connected to the
writer process on the fault-tolerant agent. The writer process on the
fault-tolerant agent communicates the current run number of its copy of
the Symphony file to the mailman process on the domain manager. This
run number is the identifier used by IBM Workload Scheduler to
recognize each Symphony file generated by JnextPlan. This step is
necessary for the domain manager to check if the current plan has
already been sent to the fault-tolerant agent.

5. The mailman process on the domain manager compares its Symphony
file run number with the run number of the Symphony file on the
fault-tolerant agent. If the run numbers are different, the mailman
process on the domain manager sends to the writer process on the
fault-tolerant agent the latest copy of the Symphony file.

6. When the current Symphony file is in place on the fault-tolerant agent,
the mailman process on the domain manager sends a start command
to the fault-tolerant agent.

7. The netman process on the fault-tolerant agent starts the local mailman
process. At this point a one-way communication link is established
from the domain manager to the fault-tolerant agent.

8. The mailman process on the fault-tolerant agent reads the host name,
TCP/IP address, and port number of the domain manager from the
Symphony file and uses them to establish the uplink back to the netman
process on the domain manager.

9. The netman process on the domain manager determines that the
request is coming from the mailman process on the fault-tolerant agent,
and creates a new writer process to handle the incoming connection.
The mailman process on the fault-tolerant agent is now connected to

46 IBM Workload Scheduler: User’s Guide and Reference

the writer on the domain manager and a full two-way communication
link is established. As a result of this, the writer process on the domain
manager writes messages received from the fault-tolerant agent into the
Mailbox.msg file on the domain manager, and the writer process on the
fault-tolerant agent writes messages from the domain manager into the
Mailbox.msg file on the fault-tolerant agent.

Job processing and scheduling event delivery in the form of change of state
messages during the processing day performed locally by the fault-tolerant
agent During the production period, the Symphony file present on the

fault-tolerant agent is read and updated with the state change information
about jobs that are run locally by the IBM Workload Scheduler workstation
processes. These are the steps that are performed locally on the
fault-tolerant agent to read and update the Symphony file and to process
jobs:
1. The batchman process reads a record in the Symphony file that states

that job1 is to be launched on the workstation.
2. The batchman process writes in the Courier.msg file that job1 has to

start.
3. The jobman process reads this information in the Courier.msg file,

starts job1, and writes in the Mailbox.msg file that job1 started with its
process_id and timestamp.

4. The mailman process reads this information in its Mailbox.msg file, and
sends a message that job1 started with its process_id and timestamp, to
both the Mailbox.msg file on the domain manager and the local
Intercom.msg file on the fault-tolerant agent.

5. The batchman process on the fault-tolerant agent reads the message in
the Intercom.msg file and updates the local copy of the Symphony file.

6. When job job1 completes processing, the jobman process updates the
Mailbox.msg file with the information that says that job1 completed.

7. The mailman process reads the information in the Mailbox.msg file, and
sends a message that job1 completed to both the Mailbox.msg file on
the domain manager and the local Intercom.msg file on the
fault-tolerant agent.

8. The batchman process on the fault-tolerant agent reads the message in
the Intercom.msg file, updates the local copy of the Symphony file, and
determines the next job that has to be run.

For information on how to tune job processing on a workstation, refer to the IBM
Workload Scheduler: Administration Guide.

Support for Internet Protocol version 6
IBM Workload Scheduler supports Internet Protocol version 6 (IPv6) in addition to
the legacy IPv4. To assist customers in staging the transition from an IPv4
environment to a complete IPv6 environment, IBM Workload Scheduler provides
IP dual-stack support. In other terms, the product is designed to communicate
using both IPv4 and IPv6 addresses simultaneously with other applications using
IPv4 or IPv6.

To this end, the gethostbyname and the gethostbyaddr functions were dropped
from IBM Workload Scheduler as they exclusively support IPv4. They are replaced
by the new getaddrinfo API that makes the client-server mechanism entirely
protocol independent.

Chapter 2. Understanding basic processes and commands 47

The getaddrinfo function handles both name-to-address and service-to-port
translation, and returns sockaddr structures instead of a list of addresses These
sockaddr structures can then be used by the socket functions directly. In this way,
getaddrinfo hides all the protocol dependencies in the library function, which is
where they belong. The application deals only with the socket address structures
that are filled in by getaddrinfo.

48 IBM Workload Scheduler: User’s Guide and Reference

Chapter 3. Configuring the job environment

This chapter describes how to customize the way job management is performed on
a workstation. This customization is made by assigning locally on each workstation
values to variables that have an impact on the processing of jobman. This chapter
includes the following sections:
v “Job environment overview”
v “Environment variables exported by jobman” on page 50
v “Customizing job processing on a UNIX workstation - jobmanrc” on page 53
v “Customizing job processing for a user on UNIX workstations - .jobmanrc” on

page 55
v “Customizing job processing on a Windows workstation - jobmanrc.cmd” on

page 57
v “Customizing job processing on a Windows workstation - djobmanrc.cmd” on

page 58

Job environment overview
On each workstation, jobs are launched by the batchman production control
process. The batchman process resolves all job dependencies to ensure the correct
order of job processing, and then queues a job launch message to the jobman
process.

Each of the processes launched by jobman, including the configuration scripts and
the jobs, retains the user name recorded with the logon of the job. Submitted jobs
(jobs, files, or commands submitted not through a scheduled plan, but manually by
a user) retain the submitting user's name.

The jobman process starts a job monitor process that begins by setting a group of
environment variables, and then runs a standard configuration script named
TWS_home/jobmanrc which can be customized. The jobmanrc script sets variables
that are used to configure locally on the workstation the way jobs are launched,
regardless of the user.

On UNIX workstations, if the user is allowed to use a local configuration script,
and the script USER_HOME/.jobmanrc exists, the local configuration script .jobmanrc
is also run. The job is then run either by the standard configuration script, or by
the local one. The results of job processing are reported to jobman which, in turn,
updates the Mailbox.msg file with the information on job completion status. To
have jobs run with the user's environment, add the following instruction in the
local configuration script:
. $USER_home/.profile

Note: Before adding the .profile in the .jobmanrc file, make sure that it does not
contain any stty setting or any step that requires user manual intervention. In case
it does, add in the .jobmanrc file only the necessary steps contained in the
.profile.

On Windows workstations the local configuration script djobmanrc.cmd is run if it
exists in the user's Documents and Settings directory which is represented by the

49

environment variable %USERPROFILE% and depends on the Windows language
installation. The djobmanrc.cmd script will be ran by jobmanrc.cmd script.

Environment variables exported by jobman
The variables listed in Table 8 are set locally on the workstation and exported by
jobman on Windows operating systems:

Table 8. Job environment variables for Windows

Variable Name Value

COMPUTERNAME The value of the COMPUTERNAME set in the user
environment.

HOME The path where the IBM Workload Scheduler
instance was installed.

HOMEDRIVE The value of the HOMEDRIVE set in the user
environment.

HOMEPATH The value of the HOMEPATH set in the user
environment.

LANG The value of the LANG set in the user environment.
If not set, its value is set to C.

LOGNAME The login user's name.

MAESTRO_OUTPUT_STYLE The setting for output style for long object names.

SystemDrive The value of the SYSTEMDRIVE set in the user
environment.

SystemRoot The value of the SYSTEMROOT set in the user
environment.

TEMP The value of the TEMP set in the user environment.
If not specified, its value is set to c:\temp.

TIVOLI_JOB_DATE The scheduled date for a job.

TMPTEMP The value of the TMP set in the user environment. If
not specified, its value is set to c:\temp.

TMPDIR The value of the TMPDIR set in the user
environment. If not specified, its value is set to
c:\temp.

TWS_PROMOTED_JOB Applies to the Workload Service Assurance
functions. Can be YES or No. When the value is YES,
it means that the job (a critical job or one of its
predecessors) was promoted.

TZ The time zone, if it was set in the operating system
environment.

UNISON_CPU The name of this workstation.

UNISON_DIR The value of the UNISON_DIR set in the user
environment.

UNISON_EXEC_PATH The jobmanrc fully qualified path.

UNISONHOME The path where the IBM Workload Scheduler
instance was installed.

UNISON_HOST The name of the host CPU.

UNISON_JOB The absolute job identifier:
worktation#sched_id.job.

UNISON_JOBNUM The job number.

50 IBM Workload Scheduler: User’s Guide and Reference

Table 8. Job environment variables for Windows (continued)

Variable Name Value

UNISON_MASTER The name of the master workstation.

UNISON_RUN The IBM Workload Scheduler current production
run number.

UNISON_SCHED The job stream name.

UNISON_SCHED_DATE The IBM Workload Scheduler production date
(yymmdd) reported in the header of the Symphony
file.

UNISON_SCHED_ID The jobstreamID of the job stream containing the job
in process.

UNISON_SCHED_IA The date when the job stream has been added to the
plan.

UNISON_SCHED_EPOCH The IBM Workload Scheduler production date
expressed in epoch form.

UNISON_SHELL The login shell of the user running the job.

UNISON_STDLIST The path name of the standard list file of the job.

UNISON_SYM The Symphony record number of the launched job.

USERDOMAIN The value of the USERDOMAIN set in the user
environment.

USERNAME The value of the USERNAME set in the user
environment.

USERPROFILE The value of the USERPROFILE set in the user
environment.

The variables listed in Table 9 are set locally on the workstation and exported by
jobman on UNIX operating systems:

Table 9. Job environment variables for UNIX

Variable Name Value

HOME The home directory of the user.

LANG The value of the LANG set in the user
environment.

LD_LIBRARY_PATH The value of the LD_LIBRARY_PATH set in
the user environment.

LD_RUN_PATH The value of the LD_RUN_PATH set in the
user environment.

LOGNAME The login user name.

MAESTRO_OUTPUT_STYLE The setting for output style for long object
names.

PATH /bin:/usr/bin

TIVOLI_JOB_DATE The scheduled date for a job.

TWS_PROMOTED_JOB Applies to the Workload Service Assurance
functions. Can be YES or No. When the value
is YES, it means that the job (a critical job or
one of its predecessors) was promoted.

TWS_TISDIR The value of the TWS_TISDIR set in the user
environment.

Chapter 3. Configuring the job environment 51

Table 9. Job environment variables for UNIX (continued)

Variable Name Value

TZ The time zone set.

UNISON_CPU The name of this workstation.

UNISON_DIR The value of the UNISON_DIR set in the
user environment.

UNISON_EXEC_PATH The .jobmanrc fully qualified path.

UNISONHOME The path where the IBM Workload
Scheduler instance was installed.

UNISON_HOST The name of the host CPU.

UNISON_JOB The absolute job identifier:
worktation#sched_id.job.

UNISON_JOBNUM The job number.

UNISON_MASTER The name of the master workstation.

UNISON_RUN The IBM Workload Scheduler current
production run number.

UNISON_SCHED The job stream name.

UNISON_SCHED_DATE The IBM Workload Scheduler production
date (yymmdd) reported in the header of
the Symphony file.

UNISON_SCHED_ID The jobstreamID of the job stream containing
the job in process.

UNISON_SCHED_IA The date when the job stream has been
added to the plan.

UNISON_SCHED_EPOCH The IBM Workload Scheduler production
date, expressed in epoch form.

UNISON_SHELL The login shell of the user running the job.

UNISON_STDLIST The path name of the standard list file of the
job.

UNISON_SYM The Symphony record number of the launched
job.

Customizing date formatting in the stdlist
About this task

You can use an environment variable named UNISON_DATE_FORMAT to specify
the date format that is used for the date in the header and in the footer of the
stdlist file. This variable can be set on both UNIX and Windows workstations
and must be set before starting IBM Workload Scheduler processes on that
workstation to become effective. To set this variable, follow these steps:

On UNIX workstations

1. Add the statement to export the UNISON_DATE_FORMAT variable in
the root .profile file.

2. Run the .profile file.
3. Run conman shutdown and then ./StartUp.sh.

On Windows workstations

52 IBM Workload Scheduler: User’s Guide and Reference

1. From the System Properties set the UNISON_DATE_FORMAT in the
System Variable.

2. Run conman shutdown and then StartUp.

These are some examples of the settings used to display the year format in the
date field in the header and footer of the stdlist file. The setting:
UNISON_DATE_FORMAT = "%a %x %X %Z %Y"

produces an output with the following format:
Fri 15/10/04 11:05:24 AM GMT 2004

The setting:
UNISON_DATE_FORMAT = "%a %x %X %Z"

produces an output with the following format:
Fri 15/10/04 11:05:24 AM GMT

Set this variable locally on every workstation for which you want to display the
4-digit year format. If omitted, the standard 2-digit format is used.

Customizing job processing on a UNIX workstation - jobmanrc
About this task

A standard configuration script template named TWS_home/config/jobmanrc is
supplied with IBM Workload Scheduler. It is installed automatically as
TWS_home/jobmanrc. This script can be used by the system administrator to set the
required environment before each job is run. To alter the script, make your
modifications in the working copy (TWS_home/jobmanrc), leaving the template file
unchanged. The file contains variables which can be configured, and comments to
help you understand the methodology. Table 10 describes the jobmanrc variables.

Table 10. Variables defined by default in the jobmanrc file

Variable Name Value

UNISON_JCL The path name of the job's script file.

UNISON_STDLIST The path name of the job's standard list file.

UNISON_EXIT yes | no

If set to yes, the job ends immediately if any
command returns a nonzero exit code. If set
to no, the job continues to run if a command
returns a nonzero exit code. Any other
setting is interpreted as no.

LOCAL_RC_OK yes | no

If set to yes, the user's local configuration
script is run (if it exists), passing
$UNISON_JCL as the first argument. The
user might be allowed or denied this option.
See “Customizing job processing for a user
on UNIX workstations - .jobmanrc” on page
55 for more information. If set to no, the
presence of a local configuration script is
ignored, and $UNISON_JCL is run. Any
other setting is interpreted as no.

Chapter 3. Configuring the job environment 53

Table 10. Variables defined by default in the jobmanrc file (continued)

Variable Name Value

MAIL_ON_ABEND yes | no

For UNIX operating systems: If set to yes, a
message is mailed to the login user's
mailbox if the job ends with a non zero exit
code. This can also be set to one or more
user names, separated by spaces so that a
message is mailed to each user. For example,
"root mis sam mary". If set to no, no
messages are mailed if the job abends.
Abend messages have the following format:

cpu#sched.job

jcl-file failed with exit-code

Please review standard-list-filename

You can change the wording of the message
or translate the message into another
language. For an explanation of how to do
this, see “Customizing the
MAIL_ON_ABEND section of jobmanrc” on
page 55.

SHELL_TYPE standard | user | script

If set to standard, the first line of the JCL
file is read to determine which shell to use
to run the job. If the first line does not start
with #!, then /bin/sh is used to run the local
configuration script or $UNISON_JCL.
Commands are echoed to the job's standard
list file. If set to user, the local configuration
script or $UNISON_JCL is run by the user's
login shell ($UNISON_SHELL). Commands
are echoed to the job's standard list file. If
set to script, the local configuration script or
$UNISON_JCL is run directly, and
commands are not echoed unless the local
configuration script or $UNISON_JCL
contains a set -x command. Any other
setting is interpreted as standard.

USE_EXEC yes | no

If set to yes, the job, or the user's local
configuration script is run using the exec
command, thus eliminating an extra process.
This option is overridden if
MAIL_ON_ABEND is also set to yes. Any
other setting is interpreted as no, in which
case the job or local configuration script is
run by another shell process.

54 IBM Workload Scheduler: User’s Guide and Reference

Customizing the MAIL_ON_ABEND section of jobmanrc
About this task

You can modify the wording used in the message sent to the users specified in the
MAIL_ON_ABEND field of the TWS_home/jobmanrc configuration file by accessing
that file and changing the wording in the parts highlighted in bold:
Mail a message to user or to root if the job fails.

if ["$MAIL_ON_ABEND" = "YES"]
then

if [$UNISON_RETURN -ne 0]
then
mail $LOGNAME <<-!

$UNISON_JOB
\’$UNISON_JCL\’ failed with $UNISON_RETURN
Please review $UNISON_STDLIST

!
fi

elif ["$MAIL_ON_ABEND" = "ROOT"]
then

if [$UNISON_RETURN -ne 0]
then
mail root <<-!

$UNISON_JOB
\’$UNISON_JCL\’ failed with $UNISON_RETURN
Please review $UNISON_STDLIST

!
fi

elif ["$MAIL_ON_ABEND" != "NO"]
then

if [$UNISON_RETURN -ne 0]
then
mail $MAIL_ON_ABEND <<-!

$UNISON_JOB
\’$UNISON_JCL\’ failed with $UNISON_RETURN
Please review $UNISON_STDLIST

!
fi

fi

Customizing job processing for a user on UNIX workstations -
.jobmanrc

About this task

On UNIX workstations, the local configuration script .jobmanrc permits users to
establish a required environment when processing their own jobs. Unlike the
jobmanrc script, the .jobmanrc script can be customized to perform different
actions for different users. Each user defined as tws_user can customize in the
home directory the .jobmanrc script to perform pre- and post-processing actions.
The .jobmanrc script is an extra step that occurs before the job is actually launched.

The .jobmanrc script runs only under the following conditions:
v The standard configuration script, jobmanrc, is installed, and the environment

variable LOCAL_RC_OK is set to yes (see Table 10 on page 53).
v If the file TWS_home/localrc.allow exists, the user's name must appear in the

file. If the TWS_home/localrc.allow file does not exist, the user's name must not
appear in the file, TWS_home/localrc.deny. If neither of these files exists, the user
is permitted to use a local configuration script.

Chapter 3. Configuring the job environment 55

v The local configuration script is installed in the user's home directory
(USER_home/.jobmanrc), and it has execute permission.

Jobs are not automatically run, the command or script must be launched from
inside the .jobmanrc. Depending on the type of process activity you want to
perform, the command or script is launched differently. Follow these general rules
when launching scripts from inside .jobmanrc:
v Use eval if you want to launch a command.
v Use either eval or exec if you want to launch a script that does not need post

processing activities.
v Use eval if you want to launch a script that requires post processing activities.

If you intend to use a local configuration script, it must, at a minimum, run the
job's script file ($UNISON_JCL). IBM Workload Scheduler provides you with a
standard configuration script, jobmanrc, which runs your local configuration script
as follows:
$EXECIT $USE_SHELL $USER_home/.jobmanrc "$UNISON_JCL" $IS_COMMAND

where:
v The value of USE_SHELL is set to the value of the jobmanrc SHELL_TYPE

variable (see Table 10 on page 53).
v IS_COMMAND is set to yes if the job was scheduled or submitted in production

using submit docommand.
v EXECIT is set to exec if the variable USE_EXEC is set to yes (see Table 10 on

page 53), otherwise it is null.

All the variables exported into jobmanrc are available in the .jobmanrc shell,
however, variables that are defined, but not exported, are not available.

The following example shows how to run a job's script file, or command, in your
local configuration script:
#!/bin/ksh

PATH=TWS_home:TWS_home/bin:$PATH

export PATH

/bin/sh -c "$UNISON_JCL"

The following is an example of a .jobmanrc that does processing based on the exit
code of the user's job:
#!/bin/sh

#

PATH=TWS_home:TWS_home/bin:$PATH

export PATH

/bin/sh -c "$UNISON_JCL"

#or use eval "$UNISON_JCL" and the quotes are required

RETVAL=$?

if [$RETVAL -eq 1]

then

echo "Exit code 1 - Non Fatal Error"

exit 0

elif [$RETVAL -gt 1 -a $RETVAL -lt 100]

then

56 IBM Workload Scheduler: User’s Guide and Reference

conman "tellop This is a database error - page the dba"

elif [$RETVAL -ge 100]

then

conman "tellop Job aborted. Please page the admin"

fi

Customizing job processing on a Windows workstation -
jobmanrc.cmd

About this task

A standard configuration script template named TWS_home\config\jobmanrc.cmd is
supplied with IBM Workload Scheduler. It is installed automatically as
TWS_home\jobmanrc.cmd. You can use this command file to set the required
environment before each job is run. To alter the file, make your modifications in
the working copy (TWS_home\jobmanrc.cmd), leaving the template file unchanged.
The file contains variables which can be configured, and comments to help you
understand the methodology. Table 11 describes the jobmanrc.cmd variables.

Table 11. Variables defined by default in the jobmanrc.cmd file

Variable Name Value

HOME The path to the TWS_home directory

POSIXHOME The path to the TWS_home directory in a
POSIX complaint format

LOCAL_RC_OK v If set to yes, the user's local configuration
script is run, if existing.

v If set to no, the presence of a local
configuration script is ignored. Any other
setting is interpreted as no.

MAIL_ON_ABEND v If set to YES, an email is sent to the email
ID defined in the email_ID variable, if the
job ends in error.

v If set to any value other than YES or NO,
an email is sent to the email ID specified
in this variable if the job ends in error.

v If set to NO, no messages are sent if the
job ends in error.

For more details, see “Customizing the
MAIL_ON_ABEND section of
jobmanrc.cmd.”

Customizing the MAIL_ON_ABEND section of jobmanrc.cmd
About this task

You can modify the wording used in the message sent to the users specified in the
MAIL_ON_ABEND field of the TWS_home/jobmanrc.cmd configuration file by
accessing that file and changing the wording in the parts highlighted in bold. To
clarify how to generate the email message, a sample mail program with name
bmail.exe is used.
if /I "%MAIL_ON_ABEND%"=="NO" (goto :out) else (goto :mail_on_abend)

:mail_on_abend

Chapter 3. Configuring the job environment 57

REM ******email, task or other action inserted here *******************
if /I "%MAIL_ON_ABEND%"=="YES" (goto :email) else (goto :email_spec)

:email
c:\"Program Files"\utils\bmail.exe -s smtp.yourcompany.com -t %EMAIL_ID%
-f %COMPUTERNAME%@yourcompany.com -h -a "Subject: Job %UNISON_JOB% abended"
-b "Job %UNISON_JOB% Job Number %UNISON_JOBNUM% abended"
goto :out

:email_spec
REM set > c:\tmp\abended_jobs\%UNISON_JOB%.j%UNISON_JOBNUM%
c:\"Program Files"\utils\bmail.exe -s smtp.yourcompany.com -t %MAIL_ON_ABEND%
-f %COMPUTERNAME%@yourcompany.com -h -a "Subject: Job %UNISON_JOB% abended"
-b "Job %UNISON_JOB% Job Number %UNISON_JOBNUM% abended“

Customizing job processing on a Windows workstation -
djobmanrc.cmd

About this task

On Windows workstations, you can use the local configuration script
djobmanrc.cmd to establish a specific environment when processing your custom
jobs. Unlike the jobmanrc.cmd script, you can customize the djobmanrc.cmd script
to perform different actions for different users.

The following conditions apply:
v The script must contain all environment application variables or paths necessary

for IBM Workload Scheduler to launch correctly.
v The script must exist if a user-specific environment for running job is required

or if an email must be sent to the job logon user when the IBM Workload
Scheduler job ends in error.

To create a custom djobmanrc.cmd script, perform the following steps:
1. Logon as the user who defines environment variables for launching IBM

Workload Scheduler jobs.
2. Open a DOS command prompt.
3. Type the set command redirecting standard output to a flat file named

user_env.
4. Create a file named djobmanrc.cmd in the user's Documents and Settings

directory with the following default text at the beginning:
@ECHO OFF

echo Invoking %USERNAME% DJOBMANRC.CMD V.1
set USERPROFILE=%USERPROFILE%
::Setup User Environment Phase

5. Edit the user_env file created in step 3.
6. Insert the set command on each line before each environment variable.
7. Add the changes to the PATH variable at the end of the djobmanrc.cmd in a

string similar to the following:
set PATH=<TWSHOME>;<TWSHOME>\bin;%PATH%

8. Add the following text at the end of the user_env file and replace the string
user email id with the email ID of the user that receives the email notification if
the job ends in error.

58 IBM Workload Scheduler: User’s Guide and Reference

set EMAIL_ID=<user email id>
::Launch Operation Phase
%ARGS%
::Post Operations Phase
:out

9. Add the updated user_env file to the end of the djobmanrc.cmd file. The edited
djobmanrc.cmd file should look like the following example:
@ECHO OFF

echo Invoking %USERNAME% DJOBMANRC.CMD V.1
set USERPROFILE=%USERPROFILE%
::Setup User Environment Phase
set ALLUSERSPROFILE=C:\Documents and Settings\All Users
set APPDATA=C:\Documents and Settings\petes\Application Data
set CommonProgramFiles=C:\Program Files\Common Files
set COMPUTERNAME=PSOTOJ
set ComSpec=C:\WINDOWS\system32\cmd.exe
set CURDRIVE=C
set FP_NO_HOST_CHECK=NOset
set HOMEDRIVE=c:
set HOMEPATH=\docs
set LOGONSERVER=\\PSOTOJ
set NEWVAR=c:\tmp\tmp\mlist1
set NUMBER_OF_PROCESSORS=1
set OPC_CLIENT_ROOT=C:\opc\Client
set OS=Windows_NT
set Path=C:\Program Files\utils;C:\PROGRAM
FILES\THINKPAD\UTILITIES;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\Program
Files\IBM\Infoprint Select;C:\Utilities;C:\Notes;C:\Program Files\IBM\Trace Facility\;C:\Program
Files\IBM\Personal Communications\;C:\Program Files\XLView\;C:\lotus\compnent\;C:\WINDOWS\Downloaded
Program Files;C:\Program Files\Symantec\pcAnywhere\;"C:\Program Files\Symantec\Norton Ghost
2003\";C:\Infoprint;
set PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH
set PCOMM_Root=C:\Program Files\IBM\Personal Communications\
set PDBASE=C:\Program Files\IBM\Infoprint Select
set PDHOST=
set PD_SOCKET=6874
set PROCESSOR_ARCHITECTURE=x86
set PROCESSOR_IDENTIFIER=x86 Family 6 Model 9 Stepping 5, GenuineIntel
set PROCESSOR_LEVEL=6
set PROCESSOR_REVISION=0905
set ProgramFiles=C:\Program Files
set PROMPT=PG
set SESSIONNAME=Console
set SystemDrive=C:
set SystemRoot=C:\WINDOWS
set TEMP=C:\DOCUME⌂1\petes\LOCALS⌂1\Temp
set TMP=C:\DOCUME⌂1\petes\LOCALS⌂1\Temp
set tvdebugflags=0x260
set tvlogsessioncount=5000
set TWS4APPS_JDKHOME=c:\win32app\TWS\pete\methods_tools
set USERDOMAIN=PSOTOJ
set USERNAME=petes
set USERPROFILE=C:\Documents and Settings\petes
set windir=C:\WINDOWSPATH=c:\win32app\tws\twsuser:c:\win32app\tws\twsuser\bin:%PATH%
set PATH=c:\win32app\TWS\twsuser;c:\win32app\TWS\twsuser\bin;%PATH%
set EMAIL_ID=johndoe@yourcompany.com
::Launch Operation Phase
%ARGS%
::Post Operations Phase
:out

The Launch Operations Phase in the script is where script, binary or command
defined for job is completed. The “%ARGS%” text is required.

The Post Operations Phase in the script is where a job exit code might be
re-adjusted from ABEND to SUCC state, changing a non-zero exit code to a zero
exit code. Some applications might have exit codes that might be warnings. IBM
Workload Scheduler evaluates exit codes as either zero or non-zero. Zero exit codes
indicate a job in “SUCC” state. All other codes indicate a job in ABEND state.
Specific non-zero exit codes can be adjusted if necessary. The following example
shows what might be included in the Post Operations Phase. The example retrieves
the exit code of the defined job to determine how to handle itbased on the If
statements:
set EMAIL_ID=johndoe@yourcompany.com

::Launch Operation Phase
%ARGS%
::Post Operations Phase
set RETVAL=%ERRORLEVEL%
if “%RETVAL%”==“0” goto out

Chapter 3. Configuring the job environment 59

if “%RETVAL%”==“1” set RETVAL=0
if “%RETVAL%”==“6” set RETVAL=0
:out
exit %RETVAL%

Setting up options for using the user interfaces
About this task

To use the Dynamic Workload Console, the connection parameters are supplied
within the console and saved as part of its configuration.

To use the IBM Workload Scheduler command line client, you need to provide the
following setup information (called the connection_parameters) to connect to the
master domain manager via HTTP/HTTPS using the WebSphere Application
Server infrastructure:

hostname
The hostname of the master domain manager.

port number
The port number used when establishing the connection with the master
domain manager.

user name, password
The credentials, user name and password, of the TWS_user.

proxy hostname
The proxy hostname used in the connection with the HTTP protocol.

proxy port number
The proxy port number used in the connection with the HTTP protocol.

protocol
The protocol used during the communication. This can be HTTP with basic
authentication, or HTTPS with certificate authentication.

timeout
The timeout indicating the maximum time the connecting user interface
program can wait for the master domain manager response before
considering the communication request as failed.

default workstation
The workstation name of the master domain manager you want to connect
to.

SSL parameters
If you have configured your network to use SSL to communicate between
the interfaces and the master domain manager, you need also to supply the
appropriate set of SSL parameters (which depends on how your SSL is
configured.

In the case of the command line client installed on the master domain manager,
this configuration is performed automatically at installation.

For the command line client installed on other workstations, this information can
be supplied either by storing it in properties files on those workstations, or by
supplying the information as part of the command string of the commands you
use.

The properties files referred to are the localopts and useropts files:

60 IBM Workload Scheduler: User’s Guide and Reference

localopts
This contains a set of parameters applicable to the local workstation for a
specific instance of the installed product.

useropts
This contains a subset of those localopts parameters that have custom
values for a specific user. The path of this file is within the user's home
directory, which maintains the privacy of this information.

Because IBM Workload Scheduler supports multiple product instances
installed on the same machine, there can be more than one useropts file
instance of each user. The possibility to have more useropts files, having a
different name each, provides the ability to specify different sets of
connection settings for users defined on more than one instance of the
product installed on the same machine.

In the localopts file of each instance of the installed product the option
named useropts identifies the file name of the useropts file that has to be
accessed to connect to that installation instance.

This means that, if two IBM Workload Scheduler instances are installed on
a machine and a system user named operator is defined as user in both
instances, then in the localopts file of the first instance the local option
useropts = useropts1 identifies the useropts1 file containing the
connection parameters settings that user operator needs to use to connect
to that IBM Workload Scheduler instance. On the other hand, in the
localopts file of the second IBM Workload Scheduler instance the local
option useropts = useropts2 identifies the useropts2 file containing the
connection parameters settings that user operator needs to use to connect
to that IBM Workload Scheduler instance.

Full details of how to configure this access are given in the IBM Workload Scheduler:
Administration Guide, in the topic entitled "Configuring command-line client access
authentication"

Chapter 3. Configuring the job environment 61

62 IBM Workload Scheduler: User’s Guide and Reference

Chapter 4. Managing the production cycle

The core part of a job management and scheduling solution is the creation and
management of the production plan. The production plan is the to-do list that
contains the actions to be performed in a stated interval of time on the
workstations of the scheduling network using the available resources and
preserving the defined relationships and restrictions.

This chapter describes how IBM Workload Scheduler manages plans.

The chapter is divided into the following sections:
v “Plan management basic concepts”
v “Customizing plan management using global options” on page 81
v “Creating and extending the production plan” on page 85
v “Planman command line” on page 88
v “Starting production plan processing” on page 106
v “Automating production plan processing” on page 106

Plan management basic concepts
The production plan contains information about the jobs to run, on which
fault-tolerant agent, and what dependencies must be satisfied before each job is
launched. IBM Workload Scheduler creates the production plan starting from the
modeling data stored in the database and from an intermediate plan called the
preproduction plan. The preproduction plan is automatically created and managed
by the product. To avoid problems, the database is locked during the generation of
the plan, and is unlocked when the generation completes or if an error condition
occurs. The preproduction plan is used to identify in advance the job stream
instances and the external follows job stream dependencies involved in a specified
time-window.

You use the JnextPlan script on the master domain manager to generate the
production plan and distribute it across the IBM Workload Scheduler network.

You can run the JnextPlan command from a command prompt shell on the master
domain manager if you are one of the following users:
v The TWS_user user for which you installed the product on that machine, if not

disabled by the settings that are defined in the security file.
v Root on UNIX operating systems or Administrator on Windows operating

systems, if not disabled by the settings that are defined in the security file.

For additional information on the JnextPlan script, refer to “Creating and
extending the production plan” on page 85.

To generate and start a new production plan IBM Workload Scheduler performs
the following steps:
1. Updates the preproduction plan with the objects defined in the database that

were added or updated since the last time the plan was created or extended.

63

2. Retrieves from the preproduction plan the information about the job streams to
run in the specified time period and saves it in an intermediate production
plan.

3. Includes in the new production plan the uncompleted job streams from the
previous production plan.

4. Creates the new production plan and stores it in a file named Symphony. The
plan data is also replicated in the database.

5. Distributes a copy of the Symphony file to the workstations involved in the new
product plan processing.

6. Logs all the statistics of the previous production plan into an archive
7. Updates the job stream states in the preproduction plan.

The copy of the newly generated Symphony file is deployed starting from the top
domain's fault-tolerant agents and domain managers of the child domains and
down the tree to all subordinate domains.

Each fault-tolerant agent and domain manager that receives the new Symphony file,
archives the previous Symphony to Symphony.last in the path <TWA_home>/TWS/, so
that a backup copy is maintained. This permits viewing of the previous Symphony
data in case there were any message updates on the job and job stream states that
were lost between the agent and its master domain manager.

Each fault-tolerant agent that receives the production plan can continue processing
even if the network connection to its domain manager goes down.

At each destination fault-tolerant agent the IBM Workload Scheduler processes
perform the following actions to manage job processing:
1. Access the copy of the Symphony file and read the instructions about which jobs

to run.
2. Make calls to the operating system to launch jobs as required.
3. Update its copy of the Symphony file with the job processing results and send

notification back to the master domain manager and to all full status
fault-tolerant agents. The original copy of the Symphony file stored on the master
domain manager and the copies stored on the backup master domain
managers, if defined, are updated accordingly.

This means that during job processing, each fault-tolerant agent has its own copy
of the Symphony file updated with the information about the jobs it is running (or
that are running in its domain and child domains if the fault-tolerant agent is
full-status or a domain manager). Also the master domain manager (and backup
master domain manager if defined) has the copy of the Symphony file that contains
all updates coming from all fault-tolerant agents. In this way the Symphony file on
the master domain manager is kept up-to-date with the jobs that must be run,
those that are running, and those that have completed.

The processing that occurs on each workstation involved in the current production
plan activities is described in more detail in “IBM Workload Scheduler workstation
processes” on page 35.

Note: While the current production plan is in process, any changes you make to
the plan using conman do not affect the definitions in the database, but the replica
of the plan data in the database is updated with the changes. Subsequent updates
to job instances in the plan are supported, but do not affect the job definitions in
the database. Changes to the objects in the database do not affect the plan until the

64 IBM Workload Scheduler: User’s Guide and Reference

production plan is extended or created again using the JnextPlan script or
planman command-line interface. Updates to objects in the database do not affect
instances of those objects already in the production plan.

Preproduction plan
The preproduction plan is used to identify in advance the job stream instances and
the job stream dependencies involved in a specified time period.

This improves performance when generating the production plan by preparing in
advance a high-level schedule of the anticipated production workload.

The preproduction plan contains:
v The job stream instances to be run during the covered time interval.
v The external follows dependencies that exist between the job streams and jobs

included in different job streams.

A job or job stream that cannot start before another specific external job or job
stream is successfully completed is named successor. An external job or job stream
that must complete successfully before the successor job or job stream can start is
named predecessor.

IBM Workload Scheduler automatically generates, expands, and updates, if
necessary, the preproduction plan by performing the following steps:
v Removes the job stream instances in COMPLETE and CANCEL states.
v Selects all the job streams scheduled after the end of the current production plan

and generates their instances.
v Resolves all job and job stream dependencies, including external follows

dependencies, according to the defined matching criteria.

To avoid any conflicts the database is locked during the generation of the
preproduction plan and unlocked when the generation completes or if an error
condition occurs.

At this stage only the job streams with the time they are scheduled to start and
their dependencies are highlighted. All the remaining information about the job
streams and the other scheduling objects (calendars, prompts, domains,
workstations, resources, files, and users) that will be involved in the production
plan for that time period are not included, but are retrieved from the database as
soon as the production plan is generated.

When the production plan is extended, old job stream instances are automatically
removed. The criteria used in removing these instances takes into account this
information:
v The first job stream instance that is not in COMPLETE state at the time the new

plan is generated (FNCJSI). This job stream instance can be both a planned
instance, that is an instance added to the plan when the production plan is
generated, and a job stream instance submitted from the command line during
production using the conman sbs command.

v The time period between the time FNCJSI is planned to start and the end time
of the old production plan.

Assuming T is this time period, the algorithm used to calculate which job stream
instances are removed from the preproduction plan is the following:

Chapter 4. Managing the production cycle 65

if T < 7
All job stream instances older than 7 days from the start time of the new
production plan are removed from the preproduction plan; all job stream
instances closer than 7 days to the start time of the new production plan
are kept regardless of their states.

if T > 7
All job stream instances older than FNCJSI are removed from the
preproduction plan; all job stream instances younger than FNCJSI are kept.

This algorithm is used to ensure that the preproduction plan size does not increase
continuously and, at the same time, to ensure that no job stream instance that is a
potential predecessor of a job stream newly added to the new preproduction plan
is deleted.

For more information about how you can open the preproduction plan in view
mode from the Dynamic Workload Console, see the Dynamic Workload Console
User’s Guide, section about View preproduction plan.

Note: In the IBM Workload Scheduler for z/OS terminology the concept that
corresponds to the preproduction plan is long term plan (LTP).

Identifying job stream instances in the plan
In earlier versions than 8.3 the plan had a fixed duration of one day. Since version
8.3 the plan can cover a period lasting several days or less than one day. This
change has added the possibility to have in the same plan more than one instance
of the same job stream with the same name, and also the need to define a new
convention to uniquely identify each job stream instance in the plan. Each job
stream instance is identified in the plan by the following values:

workstation
Specifies the name of the workstation on which the job stream is scheduled
to run.

jobstreamname
Corresponds to the job stream name used in earlier versions of IBM
Workload Scheduler.

scheddateandtime
Represents when the job stream instance is planned to start in the
preproduction plan. It corresponds to the day specified in the run cycle set
in the job stream definition by an on clause and the time set in the job
stream definition by an at or schedtime keyword. If set, the schedtime
keyword is used only to order chronologically the job stream instances in
the preproduction plan while, if set, the at keyword also represents a
dependency for the job stream. For more information about these
keywords refer to “on” on page 246, “at” on page 216 and “schedtime” on
page 258.

Together with these two values that you can set in the job stream definition, IBM
Workload Scheduler generates and assigns a unique alphanumeric identifier to
each job stream instance, the jobstream_id, for its internal processing. For more
information on the format of the jobstream_id refer to “showjobs” on page 463.

You can use any of the two types of identifiers, workstation#jobstreamname and
scheddateandtime instead of workstation#jobstream_id, to uniquely identify a job
stream instance when managing job streams in the plan using the conman

66 IBM Workload Scheduler: User’s Guide and Reference

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

command-line program. The default convention used to identify a job stream
instance, both in this guide and in the command-line interfaces of the product, is
the one that uses workstation#jobstreamname and scheddateandtime. For more
information on how to specify a job stream instance in a command using conman,
refer to “Selecting job streams in commands” on page 395.

Managing external follows dependencies for jobs and job
streams

During the creation of the preproduction plan, all external follows dependencies to
job streams and jobs are resolved using four different possible matching criteria:

Same day
Considering the job or job stream instances planned to run on the same
day. In this case you set the clause follows...sameday in the object
definition. Figure 7 shows a job stream named Js1 which has an external
follows dependency on the instance of the job stream Js2 that is scheduled
to start on the same day.

Below is an example of how to define the involved job streams.

schedule Js2 schedule Js1
on everyday on everyday
at 0700 at 1000
:job2 follows wk1#Js2 sameday
end :job1

end

The job stream Js1 in not launched until the job stream instance of Js2 on
the workstation wk1 completes successfully.

Closest preceding
Using the closest job or job stream instance (earlier or same time). The job
or job stream instance that IBM Workload Scheduler uses to resolve the
dependency is the closest in time before the instance that includes the
dependency. In this case you set the follows ... previous clause in the
object definition. Figure 8 shows a job stream named Js1 which has an
external follows dependency on the closest earlier instance of job stream
Js2. The time frame where the predecessor is searched is greyed out in the
figure.

Js1
startOfDay 1 minute before

the next

startOfDay

Js2

Figure 7. Sameday matching criteria

Js1

Js2

Figure 8. Closest preceding matching criteria

Chapter 4. Managing the production cycle 67

Below is an example of how to define the involved job streams.

schedule Js2 schedule Js1
on Th on Fr
at 0700 at 1000
:job2 follows wk1#Js2 previous
end :job1

end

The job stream Js1 in not launched until the closest preceding job stream
instance of Js2 on the workstation wk1 completes successfully.

Within a relative interval
Considering the job or job stream instances defined in a range with an
offset relative to the start time of the dependent job or job stream. For
example, from 25 hours before the dependent job stream start time to 5
hours after the dependent job stream start time. In this case you set the
follows ... relative from ... to ... clause in the object definition. Figure 9
shows a job stream named Js1 which has an external follows dependency
on the job stream instance of Js2 that starts with an offset of 2 hours with
respect to Js1. The job or job stream instance that IBM Workload Scheduler
considers to resolve the dependency is the closest one within the relative
time interval you chose.

Below is an example of how to define the involved job streams.

schedule Js2 schedule Js1
on everyday on everyday
at 0900 at 1000
:job2 follows wk1#Js2 relative from 0200 to

0200
end :job1

end

The job stream Js1 in not launched until the job stream instance of Js2 on
the workstation wk1 that runs in the 08:00 to 12:00 time frame completes
successfully.

Within an absolute interval
Using only the job or job stream instances defined in a range. For example
from today at 6:00 a.m. to the day after tomorrow at 5:59 a.m. In this case
you set the follows ... from ... to ... clause in the object definition. Figure 10
on page 69 shows a job stream named Js2 which has an external follows
dependency on the instance of job stream Js1 that is positioned in the
preproduction plan between 7 a.m. and 9 a.m. The job or job stream
instance that IBM Workload Scheduler considers to resolve the dependency
is the closest one within the absolute time interval you chose. The time
interval specifies the time of the day on which the interval starts and ends,
either on the same day as the instance that include the dependency or on a
day defined relative to that day.

Js1
-2h +2h

Js2

Figure 9. Within a relative interval matching criteria

68 IBM Workload Scheduler: User’s Guide and Reference

Below is an example of how to define the involved job streams.

schedule Js1 schedule Js2
on everyday on everyday
at 0800 at 1000
:job1 follows wk1#Js1 from 0700 to 0900
end :job2

end

The job stream Js2 in not launched until the job stream instance of Js1 on
the workstation wk1 that runs in the 07:00 to 09:00 time frame on the same
day completes successfully.

Regardless of which matching criteria are used, if multiple instances of potential
predecessor job streams exist in the specified time interval, the rule used by the
product to identify the correct predecessor instance is the following:
1. IBM Workload Scheduler searches for the closest instance that precedes the

depending job or job stream start time. If such an instance exists, this is the
predecessor instance.

2. If there is no preceding instance, IBM Workload Scheduler considers the correct
predecessor instance as the closest instance that starts after the depending job
or job stream start time.

This behavior applies for external follows dependencies between job streams. For
external follows dependencies of a job stream or job from another job the criteria
are matched by considering the start time of the job stream hosting the predecessor
job instead of the start time of the predecessor job itself. Figure 11 shows in bold
the instances of job1 the successor job or job stream is dependent on.

External follows dependencies are identified between jobs and job streams stored
in the database whose instances are added to the preproduction plan when the
preproduction plan is automatically created or extended. Job and job stream
instances submitted in production from the conman command line are written in
the preproduction plan but they are not used to recalculate predecessors of
external follows dependencies already resolved in the preproduction plan.

Js1
7a.m. 9a.m.

Js2

Figure 10. Within an absolute interval matching criteria

Successor
job or job stream

job1

Js1 job1

Js1

Figure 11. Closest preceding predecessor job

Chapter 4. Managing the production cycle 69

The scheduler classifies follows dependencies as internal when they are specified
only by their job name within the job stream. It classifies them as external when
they are specified in the jobStreamName.workstationName.jobName format.

When a job stream includes a job with a follows dependency that shares the same
job stream name (for example, job stream schedA includes a job named job6 that
has a follows dependency on schedA.job2), the dependency is added to the plan as
an external follows dependency. Since Version 8.3, unlike in previous versions,
because the scheduler uses the sameday matching criteria to resolve external
dependencies, dependencies originated in this way are never added the first time
the object is submitted.

A job or job stream not yet included in the production plan, but that can be a
potential predecessor of instances of jobs and job streams added to the production
plan as the production plan is extended, is called a pending predecessor. A pending
predecessor is like a dummy occurrence created by the planning process to honor a
dependency that has been resolved in the preproduction plan, but that cannot be
resolved in the current production plan because the predecessor's start time is not
within the current production plan end time. Figure 12 shows how a pending
predecessor and its successor are positioned in the preproduction plan.

The way in which pending predecessors are managed is strictly linked to whether
or not the successor job or job stream is carried forward:
v If the successor is carried forward when the production plan is extended, the

predecessor is included in the new production plan and the dependency
becomes current. A pending predecessor job or job stream is marked with a [P]
in the Dependencies column in the output of the conman showjobs and conman
showschedules commands.

v If the successor is not carried forward when the production plan is extended, the
predecessor is included in the new production plan, but the dependency
becomes orphaned. This can happen, for example, if, when extending the
production plan, the successor is carried forward and the pending predecessor is
not added to the plan because it was flagged as draft in the database. The
orphaned dependencies are marked with a [O] in the Dependencies column in
the output of the conman showjobs command. When dealing with an orphaned
dependency you must verify if it can be released and, if so, cancel it.

Note that when an IBM Workload Scheduler network includes agents running on
IBM Workload Scheduler versions older than 8.3 and the enLegacyId option is set
to yes on the master domain manager, having multiple instances of a job stream as
pending predecessors produces errors caused by identification problems at
submission time.

Pending
predecessor

Successor
End of

Production Plan

Figure 12. Pending predecessor instance

70 IBM Workload Scheduler: User’s Guide and Reference

External follows dependency resolution and status transition
examples

This section includes examples for each of the four matching criteria described in
the previous paragraphs. In all the examples, the start of day time (SOD) is set to
06:00 AM.

Same day

The job or job stream instance to be considered in resolving the
dependency is the closest one on the same day in which the instance that
includes the dependency is scheduled to run. In this example, two job
streams, Js1 and Js2, each have one job. Job stream Js1 is scheduled to run
every day at 08:00 and on Thursdays also at 07:00. Js1.Job1 runs at 09:00.
Job stream Js2 has no time restrictions and is scheduled by default at the
defined start of day time. Js2.Job2 is scheduled to run at 15:00 and has an
external follows dependency on the closest earlier instance of the job
stream Js1 running on the same day. The two job streams are defined in
this way:
SCHEDULE MY_MASTER#JS1
ON RUNCYCLE RULE1 "FREQ=WEEKLY;BYDAY=TH"
(AT 0700)
ON RUNCYCLE RULE2 "FREQ=DAILY"
(AT 0800)
:
MY_MASTER#JOB1
AT 0900
END

SCHEDULE MY_MASTER#JS2
ON RUNCYCLE RULE2 "FREQ=DAILY;"
FOLLOWS MY_MASTER#JS1.@ SAMEDAY
:
MY_MASTER#JOB2
AT 1500
END

When the schedules are included in the plan, the sequence of graphics
illustrate how the dependency is resolved:
1. On Thursdays, the instance of Js2 scheduled at 06:00 depends on the

instance of Js1 scheduled to run at 07:00. On any other day of the
week, Js2 has a dependency on the instance of Js1 scheduled at 08:00.
Figure 13 shows the status of the two job streams in the plan at 06:00
(SOD) on Thursday:

2. At 09:00, Js1.job1 starts and Js1 changes status. Js2.job2 is held until
its scheduled time.Figure 14 on page 72 shows the status of the job

Js2 Js2.job2Js1 Js1.job1

= 06:00SOD 05:59

Ready Ready HoldHold Hold

(07:00)(06:00) (08:00) (09:00) (15:00)

Js1

Figure 13. Sameday matching criteria - Step 1: at Start of Day (SOD) on a Thursday

Chapter 4. Managing the production cycle 71

streams in the plan at 09:00.

3. On Thursdays at 15:00, Js2 changes to ready status and Js2.job2 starts.
Figure 15 shows the status of the two job streams in the plan at 15:00.

Closest preceding

v In this example, two job streams, Js1 and Js2, each have one job. The
job in Js2 has an external follows dependency on the closest preceding
instance of the job in Js1. The two job streams are defined in this way:
SCHEDULE MY_MASTER#JS1
ON RUNCYCLE RULE1 "FREQ=DAILY;"
(AT 0800)
ON RUNCYCLE RULE2 "FREQ=WEEKLY;BYDAY=TH,FR"
(AT 0900)
:
MY_MASTER#JOB1
END

SCHEDULE MY_MASTER#JS2
ON RUNCYCLE RULE1 "FREQ=DAILY;"
(AT 1200)
FOLLOWS MY_MASTER#JS1.@ PREVIOUS
:
MY_MASTER#JOB2
AT 1500
END

Job stream Js1 runs every day at 0800 and on Thursdays and Fridays
also at 0900. Job stream Js2 runs every day at 1200, and has an external
dependency on the closest preceding instance of Js1. When the job
streams are included in the plan, the sequence of graphics illustrates
how the dependency is resolved:
1. Before 12:00 on Thursdays and Fridays, there are two instances of

Js1.Job1. Job stream Js2 has a dependency on the instance of

Js1Js2 Js1 Js2.job2Js1.job1

= 06:00SOD 05:59

Hold Hold

(08:00)(07:00)(06:00) (09:00) (15:00)

Started Started Started

Figure 14. Sameday matching criteria - Step 2: at 9:00

Js2 Js1 Js2.job2Js1.job1Js1.job1

= 06:00SOD 05:59

(08:00)(07:00)(06:00) (09:00) (15:00)

Succ Started Started HoldReady

Figure 15. Sameday matching criteria - Step 3: at 15:00

72 IBM Workload Scheduler: User’s Guide and Reference

Js1.Job1 that is scheduled to run at 09:00, because it is the closest
preceding in terms of time. Figure 16 shows the status of the two job
streams in the plan on Thursdays and Fridays.

2. On any other day of the week, the only instance of Js1.Job1 in plan,
is the one scheduled to run at 08:00. In this case, Js2 has a
dependency on this instance. When Job1 completes successfully, the
status of Js2 becomes Ready. Figure 17 shows the status of the two
job streams in the plan on any other weekday except Thursdays and
Fridays.

3. On Thursdays and Fridays at 09:00, the second instance of Js1.Job1
completes successfully. Job stream Js2 changes to Ready. Js2.Job2 is
held until its scheduled start time. Figure 18 shows the status of the
two job streams in the plan.

4. At 15:00 the time dependency of Js2.Job2 is satisfied and Job2 starts.
Figure 19 on page 74 shows the status of the two job streams in the
plan at 15:00.

Js2 Js2.job2Js1.job1 Js1.job1

= 06:00SOD 05:59

Ready Ready Hold Hold

(08:00) (09:00) (12:00) (15:00)

Figure 16. Closest preceding matching criteria - Step 1: before 08:00

Js2 Js2.job2Js1.job1

= 06:00SOD 05:59

Ready Hold

(08:00) (12:00) (15:00)

Succ

Figure 17. Closest preceding matching criteria - Step 2: at 08:00 on weekdays except
Thursdays and Fridays

Js2 Js2.job2Js1.job1 Js1.job1

= 06:00SOD 05:59

Ready Hold

(08:00) (09:00) (12:00) (15:00)

Succ Succ

Figure 18. Closest preceding matching criteria - Step 3: at 09:00 on Thursdays and Fridays

Chapter 4. Managing the production cycle 73

In the job stream definition, run cycle Rule1 can be substituted by the
keywords ON EVERYDAY.

v In this second example, the difference between the use of sameday and
closest preceding matching criteria in a plan is described. Job stream
Js1 runs every Friday at 0900, while job stream Js2 and Js3 run every
Saturday at 0900. The three job streams are defined in this way:
SCHEDULE ACCOUNTING#JS1
ON RUNCYCLE RULE1 "FREQ=WEEKLY;BYDAY=FR"
:
ACCOUNTING#JOB1
AT 0900
END

SCHEDULE ACCOUNTING#JS2
ON RUNCYCLE RULE2 "FREQ=WEEKLY;BYDAY=SA"
FOLLOWS ACCOUNTING#JS1.@ PREVIOUS
:
ACCOUNTING#JOB1
AT 0900
END

SCHEDULE ACCOUNTING#JS3
ON RUNCYCLE RULE2 "FREQ=WEEKLY;BYDAY=SA"
FOLLOWS ACCOUNTING#JS1.@
:
ACCOUNTING#JOB1
AT 0900
END

Job stream Js2 has an external dependency on the closest preceding
instance of Js1, which is resolved as described in the previous example.
Job stream Js3 is defined with sameday matching criteria, so it does not
have any dependency on job stream Js1, because Js1 is not defined to
run on the same day as Js2.

Within a relative interval

In this example, the job or job stream instance considered to resolve the
dependency is the closest one in a time interval of your choice, which is
defined relatively to the time when the instance that includes the
dependency is scheduled to run. Job stream Js1 is scheduled to run every
day at 15:00 and on Thursdays also at 08:00. Js2 is scheduled to run every
day at 13:00 and on Thursdays also at 06:00, because no specific time is
defined in the run cycle, it is scheduled at start of day time. Js2 uses the
relative interval criteria (-04:00 to +04:00) to determine which instance is
used to solve the dependency. The interval is based on the time the job
stream enters the plan. The job streams are defined as follows:

Js2 Js2.job2Js1.job1 Js1.job1

= 06:00SOD 05:59

(08:00) (09:00) (12:00) (15:00)

SuccSucc Started Started

Figure 19. Closest preceding matching criteria - Step 4: at 15:00 on every day

74 IBM Workload Scheduler: User’s Guide and Reference

SCHEDULE MY_MASTER#JS1
ON RUNCYCLE RULE1 "FREQ=WEEKLY;BYDAY=TH"
(AT 0800)
ON RUNCYCLE RULE2 "FREQ=DAILY"
(AT 1500)
:
MY_MASTER#JOB1
END

SCHEDULE MY_MASTER#JS2
ON RUNCYCLE RULE3 "FREQ=WEEKLY;BYDAY=TH"
ON RUNCYCLE RULE2 "FREQ=DAILY;"
(AT 1300)
FOLLOWS MY_MASTER#JS1.@
RELATIVE FROM -0400 TO 0400
:
MY_MASTER#JOB2
AT 1300
END

At plan creation time, conman showjobs produces the following output:
%sj @#@

(Est) (Est)
CPU Schedule SchedTime Job State Pr Start Elapse RetCode Deps
MY_MASTER#JS1 0800 11/13 ******** READY 10 (00:06)

JOB1 HOLD 10 (00:06)
MY_MASTER#JS1 1500 11/13 ******** READY 10 (00:06)

JOB1 HOLD 10 (00:06)
MY_MASTER#JS2 0600 11/13 ******** HOLD 10 JS1(0800 11/13/09).@

JOB2 HOLD 10(13:00)
MY_MASTER#JS2 1300 11/13 ******** HOLD 10(13:00) JS1(1500 11/13/09).@

JOB2 HOLD 10(13:00)

Figure 20 shows the status of the job streams in the plan at start of day on
Thursday.

The instance of Js2 scheduled at 06:00 has a dependency on Js1.job1
which is scheduled at 08:00, within the relative interval based on the
scheduled time (06:00). Js2.job2 depends on the instance of Js1.job1
within the relative interval based on the scheduled time (13:00). When the
instance of Js1.job1 starts at 08:00, the status ofJs2 changes to Ready.
From this point onwards, the sequence in which the job streams and jobs
run follows the typical process.

Within an absolute interval

In this example, the job or job stream instance considered to resolve the
dependency is the closest one in a fixed time interval of your choice. The
time interval specifies the time of day on which the interval begins and the
time of day on which it ends, either on the same day as the instance that

Js2 Js2.job2 Js1.job1Js1.job1

= 06:00SOD 05:5904000400 04000400

Hold Hold

(08:00)(06:00) (13:00) (15:00)

Ready Ready

+ +--

Figure 20. Relative Interval matching criteria - at start of day on Thursday

Chapter 4. Managing the production cycle 75

includes the dependency, or on a day defined relatively to that date. Js1 is
scheduled to run every day at 08:00 and on Thursdays also at 07:00. Job
Js1.job1 is scheduled to run at 09:00. Job stream Js2 is scheduled every
day at 10:00 and on Thursdays also at start of day (06:00) and has a
dependency on Js1 based on the absolute interval occurring on the same
day between 06:00 and 11:00. The job streams are defined as follows:
SCHEDULE MY_MASTER#JS1
ON RUNCYCLE RULE1 "FREQ=WEEKLY;BYDAY=TH"
(AT 0700)
ON RUNCYCLE RULE2 "FREQ=DAILY"
(AT 0800)
:
MY_MASTER#JOB1
AT 0900
END

SCHEDULE MY_MASTER#JS2
ON RUNCYCLE RULE3 "FREQ=WEEKLY;BYDAY=TH"
ON RUNCYCLE RULE2 "FREQ=DAILY;"
(AT 1000)
FOLLOWS MY_MASTER#JS1.@ FROM 0600 TO 1100
:
MY_MASTER#JOB2
AT 1300
END

At plan creation time, conman showjobs produces the following output:
%sj @#@

(Est) (Est)
CPU Schedule SchedTime Job State Pr Start Elapse RetCode Deps
MY_MASTER#JS1 0700 11/13******** READY 10 (00:06)

JOB1 HOLD 10(09:00)(00:06)
MY_MASTER#JS1 0800 11/13 ******** READY 10 (00:06)

JOB1 HOLD 10(09:00)(00:06)
MY_MASTER#JS2 0600 11/13 ******** HOLD 10 JS1(0700 11/13/09).@

JOB2 HOLD 10(15:00)
MY_MASTER#JS2 1000 11/13 ******** HOLD 10(10:00) JS1(0800 11/1309).@

JOB2 HOLD 10(15:00)

Figure 21 shows the status of the job streams in the plan at start of day on
Thursday.

At 09:00, Js1.job1 starts, and at 10:00 the dependency is released and Js2
becomes ready. From this point onwards, the sequence is the same as
described in the previous matching criteria.

Js2 Js2 Js2.job2Js1.job1Js1 Js1

= 06:00SOD 05:59

11:00 AM06:00 AM

Hold Hold Hold Hold

(08:00) (09:00)(06:00) (10:00)(07:00) (15:00)

Ready Ready

Figure 21. Absolute interval matching criteria - at start of day on Thursday

76 IBM Workload Scheduler: User’s Guide and Reference

Production plan
After having created or updated the preproduction plan, IBM Workload Scheduler
completes the information stored in the preproduction plan with the information
stored in the database about the operations to be performed in the selected time
period and the other scheduling objects involved when processing the plan and
copies it in a new Symphony file. It also adds in this file the cross-plan
dependencies, such as job streams carried forward from the production plan
already processed, and archives the old Symphony file in the schedlog directory.

At the end of this process, the new Symphony file contains all the information
implementing the new production plan, and in addition, all of the plan data is
replicated in the database for easy querying from the Dynamic Workload Console
and APIs.

A copy of the new Symphony file is distributed to all the workstations involved in
running jobs or job streams for that production plan.

In the security file the user authorization required to generate the production plan
is the build access keyword on the prodsked and Symphony files.

Note: To avoid running out of disk space, keep in mind that each job or job stream
instance increases the size of the Symphony file by 512 bytes.

For information on how to generate the production plan refer to “Creating and
extending the production plan” on page 85.

Understanding carry forward options
Job streams are carried forward when the production plan is generated. How the
job stream is carried forward depends on:
v The carryforward keyword in the job stream. See “carryforward” on page 217.
v The enCarryForward global option. See IBM Workload Scheduler Administration

Guide.
v The stageman -carryforward command-line keyword. See “The stageman

command” on page 100.
v The carryStates global option. See IBM Workload Scheduler Administration Guide.

If a job is running when the production plan is generated, and the job stream that
contains it is not carried forward, the job continues to run and is placed in a
dedicated job stream called USERJOBS in the new production plan.

Table 12 shows how the carry forward global options work together.

Table 12. Carry forward global options settings

Global options Carry forward operation

enCarryForward=all
carryStates=()

Job streams are carried forward only if they did not
complete. All jobs are carried forward with the job
streams. This is the default setting.

enCarryForward=no No job streams are carried forward. If this option is set
to no, running jobs are moved to the USERJOBS job
stream.

Chapter 4. Managing the production cycle 77

Table 12. Carry forward global options settings (continued)

Global options Carry forward operation

enCarryForward=yes
carryStates=(states)

Job streams are carried forward only if they have both
jobs in the specified states and the carryforward
keyword set in the job stream definition. Only the jobs
in the specified states are carried forward with the job
streams.

enCarryForward=yes
carryStates=()

Job streams are carried forward only if they did not
complete and have the carryforward keyword set in the
job stream definition. All jobs are carried forward with
the job streams.

enCarryForward=all
carryStates=(states)

Job streams are carried forward only if they have jobs in
the specified states. Only jobs in the specified states are
carried forward with the job streams.

Table 13 shows the result of the carry forward setting based on how the
enCarryForward global option and the stageman -carryforward keywords are set.

Table 13. Resulting carry forward settings

enCarryForward stageman -carryforward Resulting carry forward setting

NO YES NO

NO ALL NO

YES NO NO

ALL NO NO

ALL YES ALL

YES ALL ALL

YES YES YES

The carry forward option set in the job stream definition is persistent. This means
that an unsuccessful job stream that is marked as carryforward, continues to be
carried forward until one of the following occurs:
v It ends in a SUCC state
v Its UNTIL time is reached
v It is cancelled.

The carried forward job stream naming convention is affected by the value
assigned to the global option enLegacyId. For more information on the different
settings for this option, refer to “Customizing plan management using global
options” on page 81.

Note: Regardless of how carry forward options are set, job streams that do not
contain jobs are not carried forward.

If you set carryStates=(succ) and either enCarryForward=all or
enCarryForward=yes, then the next time you run JnextPlan there will be
misalignment between the preproduction plan and the new Symphony file. This
happens because, the preproduction plan does not contain the instances of job
streams that ended successfully, but the new Symphony file does. The result of this
misalignment is that dependencies are not resolved according to carried forward
successful job stream instances because they no longer exist in the preproduction
plan.

78 IBM Workload Scheduler: User’s Guide and Reference

The decision to carry forward a repetitive job, that is a job that contains an every
time setting in its definition, or a chain of rerun jobs is based on the state of its
most recent run. Only the first job and the last job of the chain are carried forward.

Trial plan
A trial plan is a projection of what a production plan would be if it covered a
longer period of time. For example, if you generate a production plan that covers
two days, but you want to know what the plan would be if it covered three days
you can generate a trial plan.

These are the characteristics of a trial plan:
v Its start date matches:

– The preproduction plan start date.
– The production plan end date.

v It is based on the static information stored in the current preproduction plan.
v It cannot be run to manage production.
v It can be managed by users with access build on trialsked file object type set in

the security file on the master domain manager.
v It produces a file stored in the schedlog directory with these properties:

– The same format as the Symphony file.
– The file name starts with a leading T.

Trial plan generations may result in the extension of the preproduction plan end
time. This depends on the settings of the minLen and maxLen global options.
When this happens, the database is locked and only unlocked when the operation
completes.

There is no restriction on the time period selected for a trial plan, but the size of
the resulting file containing all trial plan information must be taken into account.

Because the trial plan is based on the static information stored in the
preproduction plan, it does not take into account any dynamic updates made to
the Symphony file while the production plan is being processed, so all the job
streams it contains are in one of these two states:

HOLD
If they are dependent on other job streams or if their start time is later than
the start of plan time.

READY
If they are free from dependencies and their start time has elapsed.

The operations that can be performed on a trial plan on the master domain
manager are:

creation
Used to create a trial plan to have an overview of production when a
production plan does not yet exist.

extension
Used to create a trial plan of the extension of the current production plan
to have an overview of how production evolves in the future.

For information on how to create or extend a trial plan, refer to “Planman
command line” on page 88.

Chapter 4. Managing the production cycle 79

Forecast plan
The forecast plan is a projection of what the production plan would be in a chosen
time frame. For example, if you generated a production plan that covers two days
and you want to know what the plan would be for the next week you can
generate a forecast plan.

These are the characteristics of a forecast plan:
v It covers any time frame, in the future, in the past or even partially overlapping

the time period covered by the current production plan.
v It is based on a sample preproduction plan covering the same time period

selected for the forecast plan. This sample preproduction plan is deleted after the
forecast plan is created.

v It cannot be run to manage production.
v It can be managed by users with access build on trialsked file object type set in

the security file on the master domain manager.
v It produces a file stored in the schedlog directory with these properties:

– The same format as the Symphony file.
– The file name starts with a leading F.

v When workload service assurance is enabled, it can calculate the predicted start
time of each job in the job stream. You can enable and disable this feature using
the enForecastStartTime global option. IBM Workload Scheduler calculates the
average run duration for each job based on all previous runs. For complex plans,
enabling this feature could negatively impact the time taken to generate the
forecast plan.

While creating a forecast plan the database is locked, and only unlocked when the
operation completes.

There is no restriction on the time period selected to generate a forecast plan, but
the size of the resulting file containing all forecast plan information must be taken
into account.

Because the forecast plan is based on the static information stored in the database,
it does not take into account any dynamic updates made to the Symphony file while
the production plan is being processed or the preproduction plan, so all the job
streams it contains are in one of these two states:

HOLD
If they are dependent on other job streams or if their start time is later than
the start of plan time.

READY
If they are free from dependencies and their start time has elapsed.

The operation that can be performed on a forecast plan on the master domain
manager is:

creation
It is used to create a forecast plan to have an overview of production in a
chosen time frame.

For information on how to create a forecast plan, refer to “Planman command line”
on page 88.

80 IBM Workload Scheduler: User’s Guide and Reference

Customizing plan management using global options
About this task

You can customize some criteria for IBM Workload Scheduler to use when
managing plans by setting specific options on the master domain manager using
the optman command-line program. You need to generate the plan again to
activate the new settings. The options you can customize are:

Properties impacting the generation of the preproduction plan:

minLen
It is the minimum length, calculated in days, of the preproduction
plan which is left, as a buffer, after the end of the newly generated
production plan. The value assigned to this option is used when
the script UpdateStats is run from within JnextPlan. The value can
be from 7 to 365 days. The default is 8 days.

maxLen
It is the maximum length, calculated in days, of the preproduction
plan which is left, as a buffer, after the end of the newly generated
production plan. The value can be from 8 to 365 days. The default
is 14 days.

If the values of minLen and maxLen are equal, the preproduction
plan is updated during the MakePlan phase. In general, the value of
maxLen should exceed the value of minLen by at least 1 day, so that
the preproduction plan can be updated during the UpdateStats
phase.

Properties impacting the generation or extension of the production plan:

startOfDay
It represents the start time of the IBM Workload Scheduler
processing day in 24-hour format: hhmm (0000-2359). The default
setting is 0000.

enCarryForward
This is an option that affects how the stageman command carries
forward job streams. Its setting determines whether or not job
streams that did not complete are carried forward from the old to
the new production plan. The available settings for enCarryForward
are yes, no, and all. The default setting is all.

carryStates
This is an option that affects how the stageman command manages
jobs in carried forward job streams. Its setting determines, based
on their state, the jobs to be included in job streams that are
carried forward. For example if :
carryStates=’abend exec hold’

then all jobs that are in states abend, exec, or hold are included in
carried forward job streams. The default setting is:
carryStates=null

that means that all jobs are included regardless of their states.

untilDays
If an until time (latest start time) has not been specified for a job
stream, then the default until time is calculated adding the value

Chapter 4. Managing the production cycle 81

|
|
|

of this option, expressed in number of days, to the scheduled time
for the job stream. If the enCarryForward option is set to all, and the
number of days specified for untilDays is reached, then any job
stream instances in the plan that ended in error are automatically
removed from the plan and not added to the new production plan.
The default value is 0. If the default value is used, then no default
time is set for the until time (latest start time).

enCFInterNetworkDeps
This is an option that affects how the stageman command manages
internetwork dependencies. Enter yes to have all EXTERNAL job
streams carried forward. Enter no to completely disable the carry
forward function for internetwork dependencies. The default
setting is yes.

enCFResourceQuantity
This is an option that affects how the stageman command manages
resources. When the production plan is extended, one of the
following situations occurs:
v A resource not used by any of the job streams carried forward

from the previous production plan is referenced by new job or
job stream instances added to the new production plan. In this
case the quantity of the resource is obtained from the resource
definition stored in the database.

v A resource used by one or more job streams carried forward
from the previous production plan is not referenced by job or job
stream instances added to the new production plan. In this case
the quantity of the resource is obtained from the old Symphony
file.

v A resource used by one or more job streams carried forward
from the previous production plan is referenced by job or job
stream instances added to the new production plan. In this case
the quantity of the resource that is taken into account is based
on the value assigned to the enCFResourceQuantity option:

If enCFResourceQuantity is set to YES
The quantity of the resource is obtained from the old
Symphony file.

If enCFResourceQuantity is set to NO
The quantity of the resource is obtained from the
resource definition stored in the database.

The default setting is yes.

enEmptySchedsAreSucc
This option rules the behavior of job streams that do not contain
jobs. The available settings are:

yes The jobs streams that do not contain jobs are marked as
SUCC as their dependencies are resolved.

no The jobs streams that do not contain jobs remain in
READY state.

enPreventStart
This is an option to manage, for multiple day production plan, any
job streams without an at time constraint set. It is used to prevent

82 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|
|
|
|

job stream instances not time dependent from starting all at once
as the production plan is created or extended. The available
settings are:

yes A job stream cannot start before the startOfDay of the day
specified in its scheduled time even if free from
dependencies.

no A job stream can start immediately as the production plan
starts if all its dependencies are resolved.

enLegacyId
This is an option that affects how job streams are named in the
plan. Its function is to keep consistency when identifying job
streams in the plan in mixed environments with versions of IBM
Workload Scheduler earlier than 8.3 managed by version 8.4 master
domain managers. This option is not supported by the Self Service
catalog, which ignores it even if its value is set to YES. The value
assigned to this option is read either when the production plan is
created or extended or when submitting job streams in production
using conman. The available settings are:

yes The jobstream_id of job stream named jobstream_name is set
to jobstream_nameN where N is an incremental number
assigned by an internal counter; it is set to null if only one
instance of that job stream exists in the plan.

If the job stream named jobstream_name is then carried
forward, its identifier is set to CFjobstream_nameN.

This setting is useful to keep consistency when managing
job streams, even those carried forward, using conman
when logged on an IBM Workload Scheduler 8.2.x agent in
an IBM Workload Scheduler network with an 8.4 master
domain manager.

In particular, if the production period is one day and no
multiple instances of the same job stream are submitted,
the compatibility with earlier versions, when managing job
streams in production from an IBM Workload Scheduler
version 8.2.x agent, is complete.

no The job stream identifier jobstream_id is generated as
described in “showjobs” on page 463. Carried forward job
streams keep their original names and identifiers, and they
report between braces {} the date when they were carried
forward.

logmanSmoothPolicy
This is an option that affects how the logman command handles
statistics and history. It sets the weighting factor that favors the
most recent job run when calculating the normal (average) run
time for a job. This is expressed as a percentage. The default
setting is 10.

logmanMinMaxPolicy
This option defines how the minimum and maximum job run
times are logged and reported by logman. The available settings
for the logmanMinMaxPolicy option are:

Chapter 4. Managing the production cycle 83

|
|
|
|
|

elapsedtime
The maximum and minimum run times and dates that are
logged are based only on a job's elapsed time. Elapsed
time, expressed in minutes, is greatly affected by system
activity. It includes both the amount of time a job used the
CPU and the time the job had to wait for other processes
to release the CPU. In periods of high system activity, for
example, a job might have a long elapsed time, and yet use
no more CPU time than in periods of low system activity.
The values are updated only if the latest job run has an
elapsed time greater than the existing maximum, or less
than the existing minimum.

cputime
The maximum and minimum run times and dates that are
logged are based only on a job's CPU time. The CPU time
is a measure, expressed in seconds, of the actual time a job
used the CPU, and it does not include the intervals when
the job was waiting. The values are updated only if the
latest job run has a CPU time greater than the existing
maximum, or less than the existing minimum.

both The elapsed time and CPU time values are updated
independently to indicate their maximum and minimum
extremes, but the run dates correspond only to the elapsed
time values. No record is kept, in this case, of the run dates
for maximum and minimum CPU times.

The default setting is both.

enTimeZone
By setting the option you enable or disable the management of
time zones across the IBM Workload Scheduler network. The
available settings for the enTimeZone option are:

no Disable time zone management. This means that the values
assigned to all timezone keywords in the definitions are
ignored.

yes Enable time zone management. This means that the values
assigned to the timezone settings are used to calculate the
time when the jobs and jobs streams will run on the target
workstations.

Refer to“Enabling time zone management” on page 741 for more
information about the enTimeZone variable.

enLegacyStartOfDayEvaluation
This option affects the way the startOfDay variable is managed
across the IBM Workload Scheduler network. This option requires
the enTimeZone variable set to yes to become operational. The
available settings for the enLegacyStartOfDayEvaluation option are:

no The value assigned to the startOfDay option on the master
domain manager is not converted to the local time zone set
on each workstation across the network.

yes The value assigned to the startOfDay option on the master
domain manager is converted to the local time zone set on
each workstation across the network.

84 IBM Workload Scheduler: User’s Guide and Reference

Refer to “How IBM Workload Scheduler manages time zones” on
page 742 for more information about the
enLegacyStartOfDayEvaluation variable.

For information on how to set options using the optman command-line program,
refer to the IBM Workload Scheduler Administration Guide.

Creating and extending the production plan
The entire process of moving from an old to a new production plan, including its
activation across the IBM Workload Scheduler network, is managed by the
JnextPlan script. You can run JnextPlan at any time during the processing day.
The new production plan that is generated is immediately activated on the target
workstations regardless of the time set in the startOfDay variable. When the
JnextPlan command is run, the $MANAGER variable is managed as follows:
v The variable is resolved if the workstation is a fault-tolerant agent of a version

earlier than 8.6.
v The variable is left unresolved for fault-tolerant agent workstations version 8.6.

When you run the JnextPlan script, the workstation processes are stopped and
restarted on all the workstations across the IBM Workload Scheduler network. For
more information about workstation processes, see Chapter 2, “Understanding
basic processes and commands,” on page 35.

The JnextPlan script can be run only from the master domain manager. It uses the
default connection parameters defined in either the localopts or useropts files (see
“Setting up options for using the user interfaces” on page 60). If you want to run
JnextPlan using different connection parameter settings, you can edit the MakePlan
script and modify the invocation to the planman statement as described in
“Planman command line” on page 88.

The JnextPlan script is composed of the following sequence of commands and
specialized scripts, each managing a specific aspect of the production plan
generation:

conman startappserver
This command is invoked to start the WebSphere Application Server if it is
not already running.

MakePlan
This script inherits the flags and the values assigned to them from
JnextPlan. Its syntax is:

MakePlan [-from mm/dd/[yy]yy[hh[:]mm[tz | timezone tzname]]] {-to
mm/dd/[yy]yy[hh[:]mm[tz | timezone tzname]] | -for [h]hh[:]mm [-days n] |
-days n}

MakePlan invokes internally the planman command line. MakePlan
performs the following actions:
1. Creates a new plan or extends the current plan and stores the

information in an intermediate production plan containing:
v All the scheduling objects (jobs, job streams, calendars, prompts,

resources, workstations, domains, files, users, dependencies) defined
in the selected time period.

v All dependencies between new instances of jobs and job streams and
the jobs and job streams existing in the previous production plan.

Chapter 4. Managing the production cycle 85

v All bind requests whose scheduled time is included in the selected
time period.

2. Deletes all bind requests in final state.
3. Prints preproduction reports.

SwitchPlan
This script invokes internally the stageman command. For more
information refer to “The stageman command” on page 100. SwitchPlan
performs the following actions:
1. Stops IBM Workload Scheduler processes.
2. Generates the new Symphony file starting from the intermediate

production plan created by MakePlan.
3. Archives the old plan file with the current date and time in the

schedlog directory.
4. Creates a copy of the Symphony file to distribute to the workstations.
5. Restarts IBM Workload Scheduler processes which distribute the copy

of the Symphony file to the workstation targets for running the jobs in
plan.

Note: Make sure no conman start command is run while the production
plan is been processed.

CreatePostReports
This script prints postproduction reports.

UpdateStats
This script invokes internally the logman command. For more information
refer to “The logman command” on page 102. UpdateStats performs the
following actions:
1. Logs job statistics.
2. Checks the policies and if necessary extends the preproduction plan.
3. Updates the preproduction plan reporting the job stream instance

states.

For more information about how to use the JnextPlan script, see “JnextPlan.”

Note: For information about specific scenarios that might require JnextPlan
customization, see the IBM Workload Scheduler Administration Guide

JnextPlan
The JnextPlan script is used to manage the entire process of moving from an old
to a new production plan (Symphony), including its activation across the IBM
Workload Scheduler network. Every time you run JnextPlan all workstations are
stopped and restarted.

When you run JnextPlan command a joblog file is created in the directory
<TWS_INST_DIR>\TWS\stdlist\<DATE>, where <TWS_INST_DIR> is the IBM
Workload Scheduler installation directory and <DATE> is the date when the script
run.

Authorization

You can run the JnextPlan command from a command prompt shell on the master
domain manager if you are one of the following users:

86 IBM Workload Scheduler: User’s Guide and Reference

v The TWS_user user for which you installed the product on that machine, if not
disabled by the settings that are defined in the security file.

v Root on UNIX operating systems or Administrator on Windows operating
systems, if not disabled by the settings that are defined in the security file.

Syntax

JnextPlan
[-V | -U] |
[-from mm/dd/[yy]yy[hh[:]mm[tz | timezone tzname]]]
{-to mm/dd/[yy]yy[hh[:]mm[tz | timezone tzname]] |

-for [h]hh[:]mm [-days n] | -days n}
[-noremove]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

-from Sets the start time of the production plan. The format of the date is
specified in the localopts file; where hhmm identifies the hours and the
minutes and tz is the time zone. This flag is used only if a production plan
does not exist. If the -from argument is not specified, the default value is
"today +startOfDay".

If the time zone is not specified, time zone GMT is used by default.

-to Is the production plan end time. The format for the date is the same as
that used for the -from argument. The -to argument is mutually exclusive
with the -for and -days arguments.

If the time zone is not specified, time zone GMT is used by default.

-for Is the plan extension expressed in time. The format is hhhmm, where hhh
are the hours and mm are the minutes. The -for argument is mutually
exclusive with -to.

-days n
Is the number of days you want to create or extend the production plan
for. The -days parameter is mutually exclusive with the -to parameter.

-noremove
Ensures that the completed job stream instances are not removed from the
new production plan.

If no -to, -for, or -days arguments are specified, then the default production plan
length is one day.

JnextPlan -for 0000

The JnextPlan -for 0000 command extends by 0 hours and 0 minutes the
production plan and adds into the production plan (Symphony) the newly-created
workstation, user, and calendar definitions in the database. It also removes all the
successfully completed job stream instances.

If you use the JnextPlan -for 0000 -noremove command, all the successfully
completed job stream instances in the Symphony are not removed.

Chapter 4. Managing the production cycle 87

The enCarryForward global option setting specifies if job streams that did not
complete are carried forward from the old to the new production plan. Ensure that
the enCarryForward option is set to ALL before running the command to have all
incompleted job stream instances in the new production plan or use the -noremove
option.

Example

Assuming that the value assigned to startOfDay is 00:00 a.m. and that the date
format set in the localopts file is mm/dd/yyyy, if the values set are -from
07/05/2011 and -to 07/07/2011, then the plan is created to span the time frame
from 07/05/2011 at 00:00 a.m. to 07/06/2011 at 11:59 p.m. and not to 07/07/2011
at 11:59 p.m.

Planman command line
The planman command line is used to manage intermediate production plans, trial
plans, and forecast plans. It is also used to have information about the currently
active production plan, to unlock the database entries locked by the plan
management processes, to deploy scheduling event rules, and to replicate plan
data in the database. The command runs on the master domain manager. Use the
following syntax when running planman:

planman -U

planman -V

planman [connection_parameters] command

where:

-U Displays command usage information and exit.

-V Displays the command version and exit.

connection_parameters
If you are using planman from the master domain manager, the connection
parameters were configured at installation and do not need to be supplied,
unless you do not want to use the default values.

If you are using planman from the command line client on another
workstation, the connection parameters might be supplied by one or more
of these methods:
v Stored in the localopts file
v Stored in the useropts file
v Supplied to the command in a parameter file
v Supplied to the command as part of the command string

For an overview of these options see “Setting up options for using the user
interfaces” on page 60. For full details of the configuration parameters see
the topic on configuring the command-line client access in the IBM
Workload Scheduler: Administration Guide.

command
Represents the command you run to manage plans using the planman
interface. These are the actions you can perform with plans:
v “Creating an intermediate production plan” on page 89

88 IBM Workload Scheduler: User’s Guide and Reference

v “Creating an intermediate plan for a plan extension” on page 90
v “Retrieving the production plan information” on page 91
v “Creating a trial plan” on page 92
v “Creating a trial plan of a production plan extension” on page 93
v “Creating a forecast plan” on page 94
v “Unlocking the production plan” on page 96
v “Removing the preproduction plan” on page 97
v “Resetting the production plan” on page 97
v “Replicating plan data in the database” on page 98
v “Monitoring the replication of plan data in the database” on page 99

You can also use planman to deploy scheduling event rules. The command
is explained in: “Deploying rules” on page 95. Refer to the related
subsections for additional details on these commands.

Creating an intermediate production plan
The planman with the crt option is invoked from within the JnextPlan command
in one of these two situations:
v The first time the JnextPlan command is run after having installed the product.
v When generating a production plan after having reset the production plan using

the ResetPlan command.

The result of running this command is the creation of a new intermediate
production plan, named Symnew, covering the whole time the new production plan
that is being generated will cover. The following syntax is used:

planman [connection_parameters] crt

[-from mm/dd/[yy]yy [hh[:]mm [tz | timezone tzname]]]

{-to mm/dd/[yy]yy[hh[:]mm[tz | timezone tzname]] |

-for [h]hh[:]mm [-days n] |

-days n}

where:

connection_parameters
Defines the settings to use when establishing the connection using HTTP
or HTTPS through WebSphere Application Server to the master domain
manager. For more information refer to “Planman command line” on page
88.

-from Sets the start time of the new production plan.

If the -from argument is omitted, then:
v The default date is today.
v The default hour is the value set in the startOfDay global option using

optman on the master domain manager.

-to Is the new production plan end time. The format for the date is the same
as that used for the -from argument. The -to argument is mutually
exclusive with the -for and -days arguments.

Chapter 4. Managing the production cycle 89

-for Is the plan extension expressed in time. The format is hhhmm, where hhh
are the hours and mm are the minutes. The -for argument is mutually
exclusive with -to argument.

-days n
Is the number of days you want to create the production plan for. The
-days argument is mutually exclusive with the-to argument.

Note:

1. Make sure you run the planman command from within the JnextPlan
command.

2. The format used for the date depends on the value assigned to the date format
variable specified in the localopts file.

If no -to, -for, or -days arguments are specified then the default production plan
length is one day.

These are some examples of using the planman command assuming the date
format set in the localopts file is mm/dd/yyyy:
1. This command creates the production plan from 03/21/2011 at 23:07 to

03/22/2011 at 23:06 in the local time zone:
planman crt –from 03/21/05 2307

2. This command creates the production plan from 03/21/2011 at 09:00 to
03/21/2011 at 15:00:
planman crt –from 03/21/2011 0900 for 0600

3. If today is 03/21/05 and the value set for the startOfDay variable stored in the
database is 0600, this command creates the production plan from 03/21/2011 at
6:00 to 03/25/2011 at 5:59:
planman crt –to 03/25/2011

4. This command creates a production plan from 03/21/2011 at 18:05 to
03/24/2011 at 23:00 in the time zone of Europe\Paris:
planman crt –from 03/21/2011 1805 tz Europe\Rome

–to 03/24/2011 2300 tz Europe\Rome

Creating an intermediate plan for a plan extension
The planman command with the ext option is invoked from within the JnextPlan
command when:
v JnextPlan is invoked.
v A production plan, represented by the Symphony file on the master domain

manager, already exists.

The result of running this command is the creation of a new intermediate
production plan, named Symnew, covering the extra time the new production plan
that is being generated will span. The following syntax is used:

planman [connection_parameters] ext

{-to mm/dd/[yy]yy[hh[:]mm[tz | timezone tzname]] |

-for [h]hh[:]mm [-days n] |

-days n}

where:

90 IBM Workload Scheduler: User’s Guide and Reference

connection_parameters
Defines the settings to use when establishing the connection using HTTP
or HTTPS through WebSphere Application Server to the master domain
manager. For more information refer to “Planman command line” on page
88.

-to Sets the end time of the extended production plan. The -to argument is
mutually exclusive with the -for and -days arguments.

-for Sets the length of the production plan extension. The format is hhhmm,
where hhh are the hours and mm are the minutes. The -for argument is
mutually exclusive with the -to argument.

-days n
Sets the number of days you want to extend the production plan for. The
-days argument is mutually exclusive with the-to argument.

Note:

1. Make sure you run the planman command from within the JnextPlan
command.

2. The format used for the date depends on the value assigned to the date format
variable specified in the localopts file.

3. When the production plan is extended the numbers associated to prompts
already present in the plan are modified.

If no -to, -for, or -days arguments are specified then the production plan is
extended by one day.

Retrieving the production plan information
The following syntax is used to show information about the current production
plan:

planman [connection_parameters] showinfo

where:

connection_parameters
Defines the settings to use when establishing the connection using HTTP
or HTTPS through WebSphere Application Server to the master domain
manager. For more information refer to “Planman command line” on page
88.

Note: You can install the IBM Workload Scheduler Command Line Client feature
on fault-tolerant agents and systems outside the IBM Workload Scheduler network
to issue from those systems the planman showinfo command.

The output of this command shows:
v The installation path.
v The start time of the production plan.
v The end time of the production plan.
v The duration of the production plan, after the last plan extension, if extended.
v The date and time of the last plan update, done either using JnextPlan or

planman.
v The end time of the preproduction plan.
v The start time of the first not completed job stream instance.

Chapter 4. Managing the production cycle 91

v The run number, that is the total number of times the plan was generated.
v The confirm run number, that is the number of times the plan was successfully

generated.

The start and end times of the production and preproduction plans are displayed
using the format specified in the date format variable set in the localopts file and
the time zone of the local machine.

A sample output of this command is the following:
planman showinfoIBM Workload Scheduler (UNIX)/PLANMAN 8.6 (20100715)
Licensed Materials - Property of IBM*
5698-WSH
(C) Copyright IBM Corp. 1998, 2011 All rights reserved.
* Trademark of International Business Machines
Installed for user "aix61usr".
Locale LANG set to the following: "en"
Plan creation start time: 07/21/2010 06:00 TZ Europe/Rome
Production plan start time of last extension: 07/21/2010 06:00 TZ Europe/Rome
Production plan end time: 07/22/2010 05:59 TZ Europe/Rome
Production plan time extension: 024:00
Plan last update: 07/21/2010 10:05 TZ Europe/Rome
Preproduction plan end time: 08/05/2010 06:00 TZ Europe/Rome
Start time of first not complete preproduction plan job stream instance:

07/21/2010 10:30 TZ Europe/Rome
Run number: 1
Confirm run number: 1

Creating a trial plan
The following syntax is used to create a trial plan:

planman [connection_parameters] crttrial file_name

[-from mm/dd/[yy]yy [hh[:]mm [tz | timezone tzname]]]

{-to mm/dd/[yy]yy[hh[:]mm[tz | timezone tzname]] |

-for [h]hh[:]mm [-days n] |

-days n}

where:

connection_parameters
Defines the settings to use when establishing the connection using HTTP
or HTTPS through WebSphere Application Server to the master domain
manager. For more information refer to “Planman command line” on page
88.

file_name
Assigns a name to the file to be created under the directory
TWS_home/schedTrial and that contains the trial plan. The file name of the
file containing the trial plan is Tfilename. This means that if the value
assigned to file_name is myfile then the file name that contains the
generated trial plan is Tmyfile.

-from Sets the start time of the trial plan.

If the -from argument is omitted, then:
v The default date is today.

92 IBM Workload Scheduler: User’s Guide and Reference

v The default hour is the value set in the startOfDay global option using
optman on the master domain manager.

-to Sets the end time of the trial plan. The -to argument is mutually exclusive
with the -for and -days arguments.

-for Sets the length of the trial plan. The format is hhhmm, where hhh are the
hours and mm are the minutes. The -for argument is mutually exclusive
with the -to argument.

-days n
Sets the number of days you want the trial plan to last for. The -days
argument is mutually exclusive with the -to argument.

Note: The format used for the date depends on the value assigned to the date
format variable specified in the localopts file.

If no -to, -for, or -days arguments are specified then the default trial plan length is
one day.

See also

From the Dynamic Workload Console you can perform the same task as described
in:

the Dynamic Workload Console User’s Guide, section Generating Trial and
Forecast Plans.

Creating a trial plan of a production plan extension
The following syntax is used to create a trial plan with the extension of the current
production plan:

planman [connection_parameters] exttrial file_name

{-to mm/dd/[yy]yy[hh[:]mm[tz | timezone tzname]] |

-for [h]hh[:]mm [-days n] |

-days n}

where:

connection_parameters
Defines the settings to use when establishing the connection using HTTP
or HTTPS through WebSphere Application Server to the master domain
manager. For more information refer to “Planman command line” on page
88.

file_name
Assigns a name to the file to be created under the directory
TWS_home/schedTrial and that contains the trial plan. The file name of the
file containing the trial plan is Tfilename. This means that if the value
assigned to file_name is myfile then the file name that contains the
generated trial plan is Tmyfile.

-to Sets the end time of the trial plan containing the production plan
extension. The -to argument is mutually exclusive with the -for and -days
arguments.

Chapter 4. Managing the production cycle 93

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

-for Sets the length of the trial plan containing the production plan extension.
The format is hhhmm, where hhh are the hours and mm are the minutes.
The -for argument is mutually exclusive with the -to argument.

-days n
Sets the number of days you want the trial plan containing the production
plan extension to last for. The -days argument is mutually exclusive with
the -to argument.

Note: The format used for the date depends on the value assigned to the date
format variable specified in the localopts file.

If no -to, -for, or -days arguments are specified then the default production plan
extension contained in the trial plan is one day.

See also

From the Dynamic Workload Console you can perform the same task as described
in:

the Dynamic Workload Console User’s Guide, section Generating Trial and
Forecast Plans.

Creating a forecast plan
The following syntax is used to create a forecast plan:

planman [connection_parameters] crtfc file_name

[-from mm/dd/[yy]yy [hh[:]mm [tz | timezone tzname]]]

{-to mm/dd/[yy]yy[hh[:]mm[tz | timezone tzname]] |

-for [h]hh[:]mm [-days n] |

-days n}

where:

connection_parameters
Defines the settings to use when establishing the connection using HTTP
or HTTPS through WebSphere Application Server to the master domain
manager. For more information refer to “Planman command line” on page
88.

file_name
Assigns a name to the file to be created under the directory
TWS_home/schedForecast and that contains the forecast plan. The name of
the file containing the forecast plan is Ffilename. This means that if the
value assigned to file_name is myfile then the file name that contains the
generated forecast plan is Fmyfile.

The maximum length of file_name can be 148 characters.

-from Sets the start time of the forecast plan. It includes the specified minute.

If the -from argument is omitted, then:
v The default date is today.

94 IBM Workload Scheduler: User’s Guide and Reference

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

v The default hour is the value set in the startOfDay global option using
optman on the master domain manager.

-to Sets the end time of the forecast plan. It excludes the specified minute. The
-to argument is mutually exclusive with the -for and -days arguments.

-for Sets the length of the forecast plan. The format is hhhmm, where hhh are
the hours and mm are the minutes. The -for argument is mutually
exclusive with the -to argument.

-days n
Sets the number of days you want the forecast plan to last for. If the
interval contains DST (daylight savings time), it is automatically included
in the calculation. The -days argument is mutually exclusive with the -to
argument.

Note: The format used for the date depends on the value assigned to the date
format variable specified in the localopts file.

If no -to, -for, or -days arguments are specified then the default forecast plan
length is one day.

See also

From the Dynamic Workload Console you can perform the same task as described
in:

the Dynamic Workload Console User’s Guide, section Generating Trial and
Forecast Plans.

Deploying rules
The planman deploy command is used in event management. You can use it to
manually deploy all rules that are not in draft state (the isDraft property is set to
NO in their definition). The command operates as follows:
1. Selects all event rule definitions not in draft state from the IBM Workload

Scheduler database.
2. Builds event rule configuration files.
3. Deploys the configuration files to the monitoring engines running on the IBM

Workload Scheduler agents.

The new configuration files update the event rules running on each monitoring
engine in terms of:
v New rules
v Changed rules
v Rules deleted or set back to draft state

You can use this command in addition to, or in replacement of, the
deploymentFrequency (df) optman configuration option, which periodically checks
event rule definitions for changes to deploy (see the Administration Guide for details
on this option).

The changes applied to the event rule definitions in the database become effective
only after deployment has taken place.

The command syntax is:

planman [connection_parameters] deploy [-scratch]

Chapter 4. Managing the production cycle 95

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

where:

connection_parameters
Defines the settings to use when establishing the connection using HTTP
or HTTPS through WebSphere Application Server to the master domain
manager. For more information refer to “Planman command line” on page
88.

-scratch
Without this option, the command affects only the rules that have been
added, changed, deleted, or set back to draft state .

With this option, the command deploys all the non-draft rules existing in
the database, including the ones that are already in deployment and have
not changed.

Note that the deployment time increases proportionally with the number
of active rules to deploy. If you need to deploy a large number of new or
changed rules, run planman deploy with this option to reduce the
deployment time.

Use of this option results in a complete reset of the event processor and
should be used with caution. The command may cause the loss of any rule
instances in progress at the time you issue it. The typical case is a
sequential rule that has been triggered and is waiting for additional events
to take place: if you use the option at this time, the event rule environment
is reset and the tracked events are lost.

To run this command, you need build access on the prodsked file.

Unlocking the production plan
When IBM Workload Scheduler starts to create the production plan, it locks the
definitions of scheduling objects in the database and then unlocks them either
when the creation of the production plan is finished or if an error condition occurs.
The lock is applied to prevent object definitions from being modified when the
production plan in generated or extended. If the processing ends abnormally the
database entries might remain locked. Only users with build access on the
prodsked file object type specified in the security file on the master domain
manager are allowed to unlock the database. The command used to perform this
action is:

planman [connection_parameters] unlock

where:

connection_parameters
Defines the settings to use when establishing the connection using HTTP
or HTTPS through WebSphere Application Server to the master domain
manager. For more information refer to “Planman command line” on page
88.

Note: You can install the IBM Workload Scheduler Command Line Client feature
on fault-tolerant agents and systems outside the IBM Workload Scheduler network
to issue from those systems the planman unlock command.

96 IBM Workload Scheduler: User’s Guide and Reference

Resetting the production plan
The following script is used to either reset or scratch the production plan:

ResetPlan [connection_parameters] [-scratch]

where:

connection_parameters
Defines the settings to use when establishing the connection using HTTP
or HTTPS through WebSphere Application Server to the master domain
manager. For more information refer to “Planman command line” on page
88.

The difference between resetting and scratching the production plan is the
following:
v If you reset the production plan, the preproduction plan is kept, it is updated

with job statistics, and it is used later to generate a new production plan. This
means that when you create a new production plan, it will contain all job stream
instances which were not in COMPLETE state when you run the ResetPlan. The
steps performed by the product when resetting the production plan are the
following:
1. The current Symphony file is archived.
2. The job statistics are updated.

v If you scratch the production plan, the preproduction plan is scratched too. The
preproduction plan will be created again based on the modeling information
stored in the database when you later generate a new production plan. This
means that the new production plan will contain all job stream instances
scheduled to run in the time frame covered by the plan regardless of whether or
not they were already in COMPLETE state when the plan was scratched. The
steps performed by the product when scratching the production plan are the
following:
1. The current Symphony file is archived and the plan data replicated in the

database is deleted.
2. The job statistics are updated.
3. The preproduction plan is scratched.

Note: If you use the -scratch option, make sure you run dbrunstats before the
JnextPlan script. See the Administration Guide for details on dbrunstats.

When you run ResetPlan command a joblog file is created in the directory
<TWS_INST_DIR>\TWS\stdlist\<DATE>, where <TWS_INST_DIR> is the IBM
Workload Scheduler installation directory and <DATE> is the date when the script
run.

Removing the preproduction plan
The following script is used to remove the preproduction plan, while maintaining
the Symphony file:

Planman reset -scratch

When you run this command, the preproduction plan is scratched. The
preproduction plan will be created again based on the modeling information stored
in the database when you later generate a new production plan. This means that
the new production plan will contain all job stream instances scheduled to run in

Chapter 4. Managing the production cycle 97

the time frame covered by the plan regardless of whether or not they were already
in COMPLETE state when the plan was scratched. The steps performed by the
product when scratching the production plan are the following:
1. The Symphony file is maintained.
2. The job statistics are updated.
3. The preproduction plan is scratched.

Note: If you use the -scratch option, make sure you run dbrunstats before the
JnextPlan script. See the Administration Guide for details on dbrunstats.

Replicating plan data in the database
Storing information about objects in the plan into a database makes accessing the
plan data easier and faster. When large numbers of users are accessing the IBM
Workload Scheduler backend environment concurrently, performance and
reliability can be compromised. By replicating the plan in a relational database,
users can access data quickly and reliably.

For versions earlier than 9.1, the following operations required access to the
Symphony plan:
v Running baseline reports
v Displaying the plan in a graphical view
v Displaying the job stream graphical view
v Triggering actions
v Refreshing job and job stream monitoring views

All of these modelling or monitoring activities required access to the plan and, if
you multiply these scenarios by the number of users who concurrently request
access to the plan to perform one or more of these activities, the result is slow
response times and overall performance.

To address this issue, IBM Workload Scheduler replicates the plan in a relational
database where SQL statements are used to retrieve data rapidly and reliably. New
message boxes, mirrorbox.msg and mirrorbox<n>.msg, are used to synchronize the
database with the Symphony file. If the mirrorbox.msg file becomes full, for
example, if the database remains unavailable for a long period of time, then the
plan is automatically reloaded into the database using the information in the
Symphony file.

In particular, the performance and response times of the UpdateStats script have
greatly improved with this new way of managing plan data.

In addition, each time the plan is extended, the plan in the database is scratched
and re-created, making the latest information available to all users. To manually
replicate plan data from the Symphony file to the database, run the planman
resync command.

The synchronization of the Symphony file with the database is enabled
automatically when you add the Sfinal file to the database with the composer add
Sfinal command. A new job, CHECKSYNC, has been added to the
FINALPOSTREPORTS job stream contained in the Sfinal file that is responsible for
monitoring the state of the process of replicating the Symphony file in the
database. it sends the progress and status of this process to the job log. If the
CHECKSYNC job should fail, then refer to the job log of the CHECKSYNC job, as

98 IBM Workload Scheduler: User’s Guide and Reference

=

well as the WebSphere Application Server log to determine the problem. After
resolving the problem, run the planman resync command to reload the plan data
from the Symphony file into the database.

To simplify integrations, a set of database views for a set of tables containing plan
data in the IBM Workload Scheduler database are provided.

To see the database views containing information about IBM Workload Scheduler
objects in the plan, refer to the views beginning with "PLAN_" in IBM Workload
Scheduler: Database Views.

When running operations from the Dynamic Workload Console that retrieve
current plan data, if you suspect the data is not up-to-date, you can run planman
resync to update the plan data in the database with the latest information in the
Symphony file. If the message box, mirrorbox<n>.msg, responsible for
synchronizing the database with the Symphony file becomes full, for example, the
database is unavailable for a long period of time, then a planman resync is
automatically issued so that the plan is fully reloaded in the database.

The following syntax is used to replicate plan data in the database with the data in
the Symphony file:

planman [connection_parameters] resync

where:

connection_parameters
Defines the settings to use when establishing the connection using HTTP
or HTTPS through WebSphere Application Server to the master domain
manager. For more information, see “Planman command line” on page 88.

Note:

v If you are upgrading your IBM Workload Scheduler environment to version 9.2,
then there are a few manual steps you need to implement before your plan data
is replicated in the database. See the section about customizing and submitting
the optional final job stream in Planning and Installation and “Automating
production plan processing” on page 106 for more information.

v Replicating plan data in the database requires that DB2 JDBC Driver Type 4 is
installed. DB2 JDBC Driver Type 2 is not supported.

v Ensure that in the database configuration the CUR_COMMIT property is set to
ENABLED. See DB2 documentation for more information about this setting.

For more information about how to optimize the process of plan replication in the
database see the topic about tuning plan replication in the Administration Guide.

Monitoring the replication of plan data in the database
The following syntax is used to monitor the progress and outcome of replicating
plan data in the database with the data in the Symphony file:

planman [connection_parameters] checksync

where:

connection_parameters
Defines the settings to use when establishing the connection using HTTP

Chapter 4. Managing the production cycle 99

|
|

|
|

or HTTPS through WebSphere Application Server to the master domain
manager. For more information refer to “Planman command line” on page
88.

Messages are written to standard output with the progress and status of the
command. The planman checksync command is also defined in the job, CHECKSYNC,
contained in the FINALPOSTREPORTS job stream contained in the Sfinal file. If
the CHECKSYNC job should fail, then refer to the job log of the CHECKSYNC job, as well
as the WebSphere Application Server log to determine the problem. After resolving
the problem, run the planman resync command to reload the plan data from the
Symphony file into the database.

For information about how to optimize the process of plan replication in the
database see the topic about tuning plan replication in the Administration Guide.

The stageman command

The stageman command carries forward uncompleted job streams, archives the old
production plan, and installs the new production plan. A copy of Symphony, is sent
to domain managers and agents as part of the initialization process for the new
production plan. When running JnextPlan, stageman is invoked from within the
SwitchPlan script.

You must have build access to the Symphony file to run stageman.

Syntax

stageman -V | -U

stageman
[-carryforward{yes|no|all}]
[-log log_file| -nolog]
[symnew]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

-carryforward
Defines how uncompleted job streams are managed when moving to a
new production plan. The available settings are:

no Does not carry forward any job streams.

yes Carries forward only the uncompleted job streams whose definition
contains the keyword carryforward.

all Carries forward all uncompleted job streams, regardless whether or
not contain the keyword carryforward in the job stream definition.

If you omit this keyword, by default it is set to the value specified globally
using optman for the enCarryForward option. Refer to “Understanding
carry forward options” on page 77 to have information on the resulting
carry forward setting when both the enCarryForward global option and the
-carryforward keywords are set.

-log Archives the old production plan in the directory TWS_home/schedlog with

100 IBM Workload Scheduler: User’s Guide and Reference

file name log_file. The archived production plans can then be listed and
selected using the commands “listsym” on page 434 and “setsym” on page
452. If neither -log nor -nolog keywords are specified, IBM Workload
Scheduler archives the old production plan using the following naming
convention:
Myyyymmddhhtt

where yyyymmddhhtt corresponds to the year, month, day, hour, minutes
the old production plan is archived. If you generate the production plan
using JnextPlan you can customize this naming convention in the
SwitchPlan script.

Note: Be sure to monitor the disk space in the schedlog directory and
remove older log files on a regular basis.

-nolog Does not archive the old production plan.

symnew
The name assigned to the intermediate production plan file created by
planman. If not specified, stageman uses the file name Symnew.

Comments

To allow carry forward procedures to work properly in a network, the master
domain manager's production plan file, Symphony, must be updated with the latest
job stream status from its agents and subordinate domain managers. Run the
following command:
conman "link @"

before running stageman. This command links any unlinked workstations so that
messages about job processing status queued in the Mailbox.msg file are sent back
to the master domain manager to update the Symphony file.

Note: In UNIX only, stageman also determines which executable files associated to
jobs submitted using the at and batch utility commands can be deleted when IBM
Workload Scheduler is started for the new production period. These jobs are not
carried forward.

Examples

Carry forward all uncompleted job streams (regardless of the status of the Carry
Forward option), log the old Symphony file, and create the new Symphony file:
DATE=’datecalc today pic YYYYMMDDHHTT’
stageman -carryforward all -log schedlog/M$DATE

Carry forward uncompleted job streams as defined by the carryforward global
option, do not log the old Symphony file, and create an intermediate production
plan named mysym:
stageman -nolog mysym

Managing concurrent accesses to the Symphony file
This section contains two sample scenarios describing how IBM Workload
Scheduler manages possible concurrent accesses to the Symphony file when running
stageman.

Chapter 4. Managing the production cycle 101

Scenario 1: Access to Symphony file locked by other IBM
Workload Scheduler processes

If IBM Workload Scheduler processes are still active and accessing the Symphony file
when stageman is run, the following message is displayed:
Unable to get exclusive access to Symphony.
Shutdown batchman and mailman.

To continue, stop IBM Workload Scheduler and rerun stageman. If stageman
aborts for any reason, you must rerun both planman and stageman.

Scenario 2: Access to Symphony file locked by stageman
If you try to access the plan using the command-line interface while the Symphony
is being switched, you get the following message:
Current Symphony file is old. Switching to new Symphony.
Schedule mm/dd/yyyy (nnnn) on cpu, Symphony switched.

Managing follows dependencies using carry forward prompt
To retain continuity when carrying forward job streams, stageman generates
prompts for each job stream that is carried forwarded and has a follows
dependency on another job stream which is not carried forward. These prompts
are issued after the new processing period begins, when IBM Workload Scheduler
checks to see if the job or job stream is ready to launch, and are replied to as
standard prompts. The following is an example of a carry forward prompt:
INACT 1(SYS2#SKED2[(0600 01/11/06),(0AAAAAAAAAAAAA2Y)]) follows

SYS1#SKED1, satisfied?

This prompt indicates that a job stream, which is carried forward from the
previous production plan, (SYS2#SKED2[(0600 01/11/06),(0AAAAAAAAAAAAA2Y)]),
has a follows dependency from a job stream named SYS1#SKED1 which was not
carried forward. For information on the syntax used to indicate the carried forward
job stream refer to “Selecting job streams in commands” on page 395.

The state of the prompt, INACT in this case, defines the state of the corresponding
follows dependency. The possible states are:

INACT
The prompt has not been issued and the dependency is not satisfied.

ASKED
The prompt has been issued, and is awaiting a reply. The dependency is
not satisfied.

NO Either a "no" reply was received, or it was determined before carry forward
occurred that the followed job stream SKED3 had not completed
successfully. The dependency is not satisfied.

YES Either a "yes" reply was received, or it was determined before carry
forward occurred that the followed job stream SKED3 had completed
successfully. The dependency is satisfied.

The logman command

The logman command logs job statistics from a production plan log file.

102 IBM Workload Scheduler: User’s Guide and Reference

Syntax

logman -V|-U

logman
[connectionParameters]
{-prod | symphony-file]
[-smooth weighting]
[-minmax {elapsed | cpu}]}

Arguments

-U Displays command usage information and exits.

-V Displays the command version and exits.

connectionParameters
Represents the set of parameters that control the interaction between the
product interface, logman running on the master domain manager in this
case, and the WebSphere Application Server infrastructure using HTTP or
HTTPS. Use this syntax to specify the settings for the connection
parameters:

[-host hostname] [-port port_number] [-protocol protocol_name] [-proxy
proxy_name] [-proxyport proxy_port_number] [-password user_password]
[-timeout timeout] [-username username]

where:

hostname
The hostname of the master domain manager.

port_number
The port number used when establishing the connection with the
master domain manager.

protocol_name
The protocol used during the communication. It can be HTTP with
basic authentication, or HTTPS with certificate authentication.

proxy_name
The proxy hostname used in the connection.

proxy_port_number
The proxy port number used in the connection.

user_password
The password of the user that is used to run logman.

Note: On Windows workstations, when you specify a password
that contains double quotation marks (") or other special
characters, make sure that the character is escaped. For example, if
your password is tws11"tws, write it as "tws11\"tws".

timeout
The maximum time, expressed in seconds, the connecting
command-line program can wait for the master domain manager
response before considering the communication request as failed.

username
The name of the user running logman.

Chapter 4. Managing the production cycle 103

If any of these parameters is omitted when invoking logman, IBM
Workload Scheduler searches for a value first in the useropts file and then
in the localopts file. If a setting for the parameter is not found an error is
displayed. Refer to “Setting up options for using the user interfaces” on
page 60 for information on useropts and localopts files.

-prod Updates the preproduction plan with the information on the job streams in
COMPLETE state in production. By doing so the preproduction plan is
kept up-to-date with the latest processing information. This avoids the
possibility of the new production plan running again, job streams already
completed in the previous production period.

-minmax {elapsed | cpu}
Defines how the minimum and maximum job run times are logged and
reported. The available settings are:

elapsed
Base the minimum and maximum run times on elapsed time.

cpu Base the minimum and maximum run times on CPU time.

This setting is used when the logman command is run from the command
line and not by the JnextPlan script. When the logman command is run by
JnextPlan, the setting used is the one specified in the logmanMinMaxPolicy
global option.

-smooth weighting
Uses a weighting factor that favors the most recent job run when
calculating the normal (average) run time for a job. This is expressed as a
percentage. For example, -smooth 40 applies a weighting factor of 40% to
the most recent job run, and 60% to the existing average. The default is
-smooth 10. This setting is used when the logman command is run from
the command line, as you may need in case of job recovery if you want to
replace the job statistics in the database. When the logman command is
run by JnextPlan, the setting used is the one specified in the
logmanSmoothPolicy global option.

symphony-file
The name of an archived symphony file from which job statistics are
extracted.

Comments

Jobs that have already been logged, cannot be logged again. Attempting to do so
generates a 0 jobs logged error message.

Examples

Log job statistics from the log file M201403170935:
logman schedlog/M201403170935

Estimated duration of a job and related confidence factor
The estimated duration of a job run, and related confidence factor, are provided
by logman as part of the daily planning cycle. The estimated duration of a job run
is based on the average of its preceding runs, calculated analyzing five different
time series: GLOBAL, WEEK_DAY, MONTH_DAY, MONTH_DAY_REVERSE,
RUN_CYCLE. To compute the average run time for a job, logman divides the total
run time for all successful runs by the number of successful runs. If a large

104 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

number of runs is used to compute the average, a sudden change in a job's run
time will not immediately be reflected in the average. To respond more quickly to
such changes, you can use the smooth option so that the average can be weighted
in favor of the most recent job runs. Use the -smooth option to enter a weighting
factor, as a percentage, for current job runs. For example, the logman -smooth 40
command will cause logman to use a weighting factor of 40 percent for the most
recent runs of the job, and 60 percent for the existing average. The logman -smooth
100 command will cause the most recent runs of the job to override the existing
average. The default value for the -smooth option is 10.

Logman retains the statistical data of job runs in the IBM Workload Scheduler
database. There is no limit to the number of job instances retained in the job
history.

For each critical job, a percentage value indicates the confidence with which the
critical job will meet its deadline. The confidence factor is calculated as the normal
cumulative density function: it is the probability that the job will end within its
deadline, calculated by using a Gaussian function, where the estimated end time is
the mean and the estimated end variance is the standard deviation. To reduce the
performance effort to a minimum, the confidence factor is calculated only when
the estimated times are updated. Consequently, the value of the confidence factor
always corresponds to the latest calculation.

A 95% confidence factor is associated to the estimated duration of a job. The
confidence factor provides an estimated range of values, which is likely to include
the job duration. For example, if the estimated duration of a job is 00:03:00, with a
confidence factor of 00:00:05, it means that you can be 95% certain that the actual
duration of the job is included between (00:03:00 - 00:00:05) and (00:03:00 +
00:00:05), that is, between 00:02:55 and 00:03:05.

When a new production plan is generated, you can display the estimated duration
of a job, and the related confidence factor, by running the following command,
from the conman command line:
showjobs job_name;props

You can display the same information from the Monitor Workload of the Dynamic
Workload Console.

Under certain conditions, you might decide to override the estimated duration of a
job, for example:
v For a new job, whose estimated duration is set, by default, to 00:00:00. You

might want to set the estimated duration to an initial value that is more realistic,
based on your experience.

v For a job whose estimated duration has a high confidence factor. You might
want to change the job scheduling and, consequently, its estimated duration.

Once the job completes, the confidence factor is set to 0% when the estimated
duration is exceeded and when the estimated duration is not exceeded, the
confidence factor is set to 100%. While statistical data is collected, the estimated
duration that you set is replaced by logman, according to the algorithm described
above.

You can override the estimated duration of a job in a job stream from the
Workload Designer of the Dynamic Workload Console.

Chapter 4. Managing the production cycle 105

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|

|
|

|
|
|

|
|

|
|
|
|
|

|
|

An alternative tool that provides estimated job duration forecasts and confidence
intervals through the same media is based on SPSS statistics. See Chapter 13,
“Using advanced statistics to forecast the estimated duration of a job,” on page 525
for details.

Starting production plan processing
About this task

To start a production cycle, follow these steps:
1. Log in as TWS_user on the master domain manager.
2. At a command prompt, run the script command . ./TWS_home/tws_env.sh in

UNIX or TWS_home\tws_env.cmd in Windows to set up the environment, then
run the JnextPlan job by entering, for example on a UNIX workstation, the
following command:
JnextPlan.sh -from 05/03/06 0400 tz Europe/Rome -to 06/06/06

This creates a new production plan that starts on the third of May 2006 at 4:00
a.m. (Europe/Rome time) and stops on the sixth of June 2006 at 3:59 a.m. The
processing day will start at the time specified on the master domain manager
in the variable startOfDay.

3. When the JnextPlan job completes, check the status of IBM Workload
Scheduler:
conman status

If IBM Workload Scheduler started correctly, the status is
Batchman=LIVES

If mailman is still running a process on the remote workstation, you might see
that the remote workstation does not initialize immediately. This happens
because the workstation needs to complete any ongoing activities involving the
mailman process before re-initializing. After the interval defined in the mm
retry link parameter set in the TWS_home/localopts configuration file elapses,
the domain manager tries again to initialize the workstation. As soon as the
ongoing activities complete, the activities for the next day are initialized. For
information about the localopts configuration file, refer to IBM Workload
Scheduler Administration Guide.

4. Increase the limit to allow jobs to run. The default job limit after installation is
zero. This means no jobs will run.
conman "limit;10"

Automating production plan processing
If you want to extend your production plan at a fixed time interval, for example
every week, you have the option to automate the extension. This section explains
how you can do this.

With IBM Workload Scheduler version 9.1 and later, the Sfinal file has been
modified to include two sample job streams named FINAL and FINALPOSTREPORTS
that help you automate plan management. A copy of these job streams are found
in the Sfinal file in the TWS_home directory. In addition, a copy of the job scripts is
also located in this same location.

You can use either this Sfinal file or create and customize a new one.

106 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|

Important: In any case, to be able to run these job streams successfully, the
TWS_user must have Write access to the tmp default temporary directory.

The FINAL job stream runs the sequence of script files described in JnextPlan to
generate the new production plan. See “Creating and extending the production
plan” on page 85 for reference.

The FINALPOSTREPORTS job stream, responsible for printing postproduction reports,
follows the FINAL job stream and starts only when the last job listed in the FINAL
job stream (SWITCHPLAN) has completed successfully. The FINALPOSTREPORTS
job stream also includes a job named, CHECKSYNC, that monitors the progress
and outcome of the planman resync command. The planman resync command
loads the plan data from the Symphony file to the database.

With IBM Workload Scheduler version 9.1 and later, plan data is now fully
replicated in the database. Each time the plan is extended, the plan in the database
is recreated, making the latest information available to all users. If you are
performing a fresh install of IBM Workload Scheduler, then this synchronization of
the Symphony file with the database is enabled automatically when you add the
Sfinal file to the database with the composer add Sfinal command. Since the Sfinal
file is not overwritten during an upgrade, you must add the updated FINAL and
FINALPOSTREPORTS job streams to the database by running the composesr add
Sfinal command. This ensures that you have the CHECKSYNC job that is
responsible for replicating plan data in the database. The updated Sfinal final can
be found in TWA_home/config/ directory. You must then run JnextPlan to include
the FINAL and FINALPOSTREPORTS job streams in the current production plan.
See the section about customizing and submitting the optional final job stream in
Planning and Installation

By default, the FINAL job stream is set to run once a day followed by the
FINALPOSTREPORTS job stream. You can modify the time the job streams run by
modifying two settings in the job stream definition. These are the details about the
two steps you need to follow to do this, for example, to make the job streams run
every three days:
v Schedule the job stream to run every three days by modifying the run cycle

inside the job stream definition.
v In the statement that invokes MakePlan inside the FINAL job stream, set the

production plan to last for three days by specifying -for 72.

Then you need to add the job streams to the database by performing the following
steps:
1. Log in as TWS_user.
2. Run the tws_env script to set the IBM Workload Scheduler environment as

follows:
v UNIX: on C shells launch . ./TWS_home/tws_env.csh
v UNIX: on Korn shells launch . ./TWS_home/tws_env.sh
v From a Windows command line: launch TWS_home\tws_env.cmd
where TWS_home represents the product installation directory.

3. Add the FINAL and FINALPOSTREPORTS job stream definitions to the database by
running the following command:
composer add Sfinal

If you did not use the Sfinal file provided with the product but you created a
new one, use its name in place of Sfinal.

Chapter 4. Managing the production cycle 107

4. Start the production cycle by running the JnextPlan script. In this way the
FINAL and FINALPOSTREPORTS job streams will be included in the current
production plan.

Note: Even if you decided to automate the production plan extension you can still
run JnextPlan at any time.

108 IBM Workload Scheduler: User’s Guide and Reference

Chapter 5. Using workload service assurance

Workload service assurance is an optional feature that provides the means to flag
jobs as mission critical for your business and to ensure that they are processed in a
timely manner. Using this function benefits your scheduling operations personnel
by enhancing their ability to meet defined service levels.

When the workload service assurance feature is enabled, you can flag jobs as
mission critical and ensure they have an associated completion deadline specified
in their definition or at submission. Two additional threads of execution, Time
Planner and Plan Monitor, that run within WebSphere Application Server, are
thereafter engaged to make sure that the critical jobs are completed on time.

Defining a critical job and its deadline triggers the calculation of the start times of
all the other jobs that are predecessors of the critical job. The set of predecessors of
a critical job make up its critical network. This might include jobs from other job
streams. Starting from the critical job's deadline and duration, Time Planner
calculates its critical start time, which is the latest starting time for the job to keep
up with its deadline. Moving backwards from the critical start time it calculates the
latest time at which each predecessor within the critical network can start so that
the critical job at the end of the chain can complete on time.

While the plan runs, Plan Monitor constantly checks the critical network to ensure
that the deadline of the critical job can be met. When changes that have an impact
on timings are made to the critical network, for example addition or removal of
jobs or follows dependencies, Plan Monitor requests Time Planner to recalculate
the critical start times. Also, when a critical network job completes, timings of jobs
that follow it are recalculated to take account of the actual duration of the job.

Within a critical network, the set of predecessors that more directly risk delaying
the critical start time is called critical path. The critical path is dynamically updated
as predecessors complete or their risk of completing late changes.

The scheduler (batchman) acts automatically to remedy delays by prioritizing jobs
that are actually or potentially putting the target deadline at risk, although some
conditions that cause delays might require operator intervention. A series of
specialized critical job views, available on the Dynamic Workload Console, allows
operators to browse critical jobs, display their predecessors and the critical paths
associated with them, identify jobs that are causing problems, and drill down to
identify and remedy problems.

For detailed information, see:
v “Enabling and configuring workload service assurance” on page 110
v “Planning critical jobs” on page 113
v “Processing and monitoring critical jobs” on page 115
v “Workload service assurance scenario” on page 117

For information about troubleshooting and common problems with the workload
service assurance, see the Workload Service Assurance chapter in IBM Workload
Scheduler: Troubleshooting.

109

Enabling and configuring workload service assurance
A number of global and local options control the management of critical jobs. The
IBM Workload Scheduler security file also must authorize users with proper access
to all jobs, job streams, and workstations associated with critical jobs.

Global options

The workload service assurance feature is enabled and disabled by the global
option enWorkloadServiceAssurance. It is enabled by default. Other global and
local options are used to control different aspects of the processing of critical jobs
and their predecessors.

Table 14 shows the global options that are used by workload service assurance. If
you want to customize the values, modify global options on the master domain
manager using the optman command line. In most cases, the changes take effect
after the next JnextPlan is run.

Table 14. Workload service assurance global options

Option Description

enWorkloadServiceAssurance | wa Enables or disables privileged processing of
mission-critical jobs and their predecessors.
The default value is YES. Specify NO to
disable.

promotionOffset | po Workload service assurance calculates a
critical start time for the critical job itself
and each of its predecessors. This is the
latest time that the job can start without
putting the timely completion of the critical
job at risk.

When the critical start time of a job is
approaching and the job has not started, the
promotion mechanism is used. A promoted
job is assigned additional operating system
resources and its submission is prioritized.
The promotionoffset global option
determines the length of time before the
critical start time that a job becomes eligible
for promotion. The default setting is 120
seconds.

110 IBM Workload Scheduler: User’s Guide and Reference

Table 14. Workload service assurance global options (continued)

Option Description

longDurationThreshold | ld The calculation of critical start times for the
jobs that form a critical network is based on
the deadline defined for the critical job and
the estimated durations of the critical job
and each of its predecessors.

If a job takes much longer than expected to
complete, it could cause jobs that follow it to
miss their critical start times and so put the
timely completion of the critical job at risk.

The longDurationThreshold global option is
a percentage value. The default is 150. Using
the default value, if the actual duration of a
job is 150% of the estimated duration or
longer, the job is considered to have a long
duration and is added to the hot list that can
be viewed on the Dynamic Workload
Console.

approachingLateOffset | al The critical start time of a job in the critical
network is the latest time that the job can
start without causing the critical job to end
after the deadline. In most cases, a job will
start well before the critical start time so that
if the job runs longer than its estimated
duration, the situation does not immediately
become critical. Therefore, if a job has not
started and the critical start time is only a
few minutes away, the timely completion of
the critical job is considered to be potentially
at risk.

The approachingLateOffset option allows
you to determine the length of time before
the critical start time of a job in the critical
network at which you are to alerted to this
potential risk. If a job has still not started the
specified number of seconds before the
critical start time, the job is added to a hot
list that can be viewed on the Dynamic
Workload Console. The default is 120
seconds.
Note: The value of this parameter is
checked regularly. JnextPlan does not need
to be run for changes to take effect.

Chapter 5. Using workload service assurance 111

Table 14. Workload service assurance global options (continued)

Option Description

deadlineOffset | do In general, a deadline should be specified
for a job flagged as critical. If it is not, the
scheduler uses the deadline defined for the
job stream.

The deadlineOffset option provides an
offset used to calculate the critical start time
in case the deadline is missing for both a
critical job and its job stream. The plan end
plus this offset is assumed as the critical
job's deadline. The offset is expressed in
minutes. The default is 2 minutes.
Important: When the plan is extended, the
start time of critical jobs whose deadline is
calculated with this mechanism is
automatically changed as a consequence of
the fact that it must now match the new
plan finishing time.

For more information about global options, see IBM Workload Scheduler
Administration Guide.

Local options

Workload service assurance uses local options to control the priority allocation of
system resources to jobs in the critical network that must be promoted to maintain
the critical deadline. Table 15 shows the local options used by the workload service
assurance feature. To set local options, edit the twshome\localopts file on each
workstation where critical jobs will be running. Run JnextPlan or restart the agent
for changes to the local options to take effect.

Table 15. Workload service assurance local options

Option Description

jm promoted nice Sets the nice value to be assigned to critical
jobs or critical job predecessors that need to
be promoted on UNIX and Linux operating
systems, so that they are assigned more
resources and processed ahead of other jobs.

Specific values vary for the different
platforms, but in general, the setting must
be a negative integer. The default is -1 and
lower numbers represent higher priorities. If
you specify a positive integer, the default
value is used.

The jm nice local option has a similar role in
prioritizing jobs that have been submitted by
the root user. A critical job that has been
submitted by the root user could be eligible
for both prioritization mechanisms. In such a
case, values would be added together. For
example, if jm promoted nice is set to -4
and jm nice to -2, the critical job submitted
by user root would have a priority of -6.

112 IBM Workload Scheduler: User’s Guide and Reference

Table 15. Workload service assurance local options (continued)

Option Description

jm promoted priority Sets the priority value for critical jobs or
critical job predecessors that need to be
promoted so that Windows operating
systems assign them more resources and
process them ahead of other jobs.

The possible values are:

v High

v AboveNormal

v Normal

v BelowNormal

v Low or Idle

The default is AboveNormal.

Note that if you set a lower priority value
than the one non-critical jobs might be
assigned, no warning is given and no
mechanism such as the one available for jm
promoted nice sets it back to the default.

Security file requirements

It is mandatory that the users who own the IBM Workload Scheduler instances
running critical jobs are authorized to work with all jobs, job streams, and
workstations associated with these jobs. These users must therefore have DISPLAY,
MODIFY, and LIST rights in the security file for all the JOB, SCHEDULE and CPU
associated objects.

See the IBM Workload Scheduler Administration Guide for details about the security
file.

Planning critical jobs
Workload service assurance provides the means to identify critical jobs, define
deadlines, and calculate timings for all jobs that must precede the critical job.

If it is critical that a job must be completed before a specific time, you can flag it as
critical when you add it to a job stream using the Workload Designer functions on
the Dynamic Workload Console. You can define the deadline either at job or job
stream level.

Jobs can also be flagged as critical by including the critical keyword in the job
statement when you create or modify a job stream using the composer command
line.

When the JnextPlan command is run to include the new job in the production
plan, all jobs that are direct or indirect predecessors of the critical job are
identified. These jobs, together with the critical job itself, form a critical network.

Because timing of jobs in the critical network must be tightly controlled, Time
Planner calculates the following timing benchmarks for each critical network job:

Chapter 5. Using workload service assurance 113

Critical start
It applies to distributed systems only and represents the latest time at
which the job can start without causing the critical job to miss its deadline.

Critical start times are calculated starting with the deadline set for the
critical job and working backwards using the estimated duration of each
job to determine its critical start time. For example, if the critical job
deadline is 19:00 and the estimated duration of the critical job is 30
minutes, the critical job will not finish by the deadline unless it has started
by 18:30. If the immediate predecessor of the critical job has an estimated
duration of 20 minutes, it must start at latest by 18.10.

Note: Only the deadline of the critical job is considered when calculating
critical start times for jobs in the critical network. If other jobs have
deadlines defined, their critical start times might be later than their
deadlines.

Earliest start
Represents the earliest time at which a job in the critical network could
start, taking into consideration all dependencies and resource requirements.

Estimated start and end times
Estimated start times are calculated starting with the earliest time at which
the first job or jobs in the critical network could start and working forward
using the estimated duration of each job to estimate the start time of the
job that follows it.

Planned start and end times
For the initial calculations, these values are set to the estimated start and
end times. They are subsequently recalculated to take into consideration
any changes or delays in the plan.

Estimated duration
The estimated duration of a job is based on the statistics collected from
previous runs of the job. Take this into account when considering the
accuracy of calculated timings for the critical job networks that include jobs
running for the first time. In the case of a shadow job, the estimated
duration is always set to the default value of one minute. This applies to
shadow jobs running for the first time, as well as any subsequent runs of
the shadow job.

Confidence Factor
For each critical job, you are provided with a percentage that indicates the
confidence with which the critical job will meet its deadline. When a job
finishes running, the confidence factor is overwritten and set to 0% when
the estimate deadline was exceeded and is set to 100% when the deadline
was not exceeded.

The timings for each job in the critical network are added to the Symphony file that
includes all the plan information and that is distributed to all workstations on
which jobs are to be run.

As the plan is run, Plan Monitor monitors all critical networks: subsequent changes
to the critical network that affect the timing of jobs will trigger the recalculation of
the critical and estimated start times. Changes might include manual changes, for
example releasing dependencies or rerunning jobs, and changes made
automatically by the system in response to a potential or actual risk to the timely
completion of the critical job.

114 IBM Workload Scheduler: User’s Guide and Reference

Specific views for critical jobs and their predecessors, available from the Dynamic
Workload Console, allow you to keep track of the processing of the critical
network. The views can immediately identify problems in your planning of the
critical job. For example, if the estimated start time of a job in the critical network
is later than the critical start time, this is immediately signalled as a potential risk
to the critical job.

Processing and monitoring critical jobs
Workload service assurance provides automatic tracking and prioritizing of critical
network jobs and online functions that you use to monitor and intervene in the
processing of critical network jobs.

Automatic tracking and prioritizing

To ensure that critical deadlines can be met, workload service assurance provides
the following automated services to critical jobs and the predecessor jobs that form
their critical networks:

Promotion
When the critical start time of a job is approaching and the job has not
started, the promotion mechanism is used. A promoted job is assigned
additional operating system resources and its submission is prioritized.

The timing of promotions is controlled by the global option
promotionoffset. Promoted jobs are selected for submission after jobs that
have priorities of "high" and "go", but before all other jobs. Prioritizing of
operating system resources is controlled by the local options jm promoted
nice (UNIX and Linux) and jm promoted priority (Windows).

Calculation of the critical path
The critical path is the chain of dependencies, leading to the critical job,
that is most at risk of causing the deadline to be missed at any given time.
The critical path is calculated using the estimated end times of the critical
job predecessors. Working back from the critical job, the path is constructed
by selecting the predecessor with the latest estimated end time. If the
actual end time differs substantially from the estimated end time, the
critical path is automatically recalculated.

Figure 22 on page 116 shows the critical path through a critical network at
a specific moment during the processing of the plan.

Chapter 5. Using workload service assurance 115

At this time, the critical path includes Job3a, Job2a, and Job1a. Job3a and
Job3b are the immediate predecessors of the critical job, Job4, and Job3a
has the later estimated end date. Job3a has two immediate predecessors,
Job2a and Job_y. Job2a has the later estimated end time, and so on.

Addition of jobs to the hot list
Jobs that are part of the critical network are added to a hot list that is
associated to the critical job itself. The hot list includes any critical network
jobs that have a real or potential impact on the timely completion of the
critical job. Jobs are added to the hot list for the one or more of the reasons
listed next. Note that only the jobs beginning the current critical network,
for which there is no predecessor, can be included in the hot list.
v The job has stopped with an error. The length of time before the critical

start time is determined by the approachingLateOffset global option.
v The job has been running longer than estimated by a factor defined in

the longDurationThreshold global option.
v The job has still not started, though all its follows dependencies have

either been resolved or released, and at least one of the following
conditions is true:
– The critical start time has nearly been reached.

Figure 22. Critical path

116 IBM Workload Scheduler: User’s Guide and Reference

– The job is scheduled to run on a workstation where the limit is set to
zero.

– The job belongs to a job stream for which the limit is set to zero.
– The job or its job stream has been suppressed.
– The job or its job stream currently has a priority that is lower than the

fence or is set to zero.

Setting a high or potential risk status for the critical job
A risk status can be set for the critical job, as follows:

High risk
Calculated timings show that the critical job will finish after its
deadline.

Potential risk
Critical predecessor jobs have been added to the hot list.

Online tracking of critical jobs

The Dynamic Workload Console provides specialized views for tracking the
progress of critical jobs and their predecessors. You can access the views from the
Dashboard or create a task to monitor critical tasks using Monitor Workload.

The initial view lists all critical jobs for the engine, showing the status: normal,
potential risk, or high risk. From this view, you can navigate to see:
v The hot list of jobs that put the critical deadline at risk.
v The critical path.
v Details of all critical predecessors.
v Details of completed critical predecessors.
v Job logs of jobs that have already run.
v The confidence factor expressed as a percentage. The probability with which a

critical job will meet its deadline.

Using the views, you can monitor the progress of the critical network, find out
about current and potential problems, release dependencies, and rerun jobs.

Workload service assurance scenario
This scenario illustrates the use of workload service assurance in ensuring that
important production deadlines can be met.

Fine Cola uses IBM Workload Scheduler to manage the timing and
interdependencies of its production and supply process.

Fine Cola has service level agreements with many customers that support
"just-in-time" restocking. This means that late starts on any of the delivery routes
will almost certainly result in Fine Cola's products not being on the shelves.

The job that produces the loading orders for trucks must be completed at latest by
5.30 a.m. This job is dependent on the successful completion of other jobs. For
example, although orders are processed ahead of time, last-minute changes often
arrive when trucks return after completing a delivery route. Fine Cola also
provides invoices with delivery notes, so changes to orders must also be reflected
in the pricing and might trigger special-offer adjustments to prices.

Chapter 5. Using workload service assurance 117

|
|
|

Planning the critical job

Using the Workload Designer on the Dynamic Workload Console, the Fine Cola
scheduler flags the loading order job as critical and sets the deadline for 5 a.m.

When JnextPlan is run, the critical start dates for this job and all the jobs that are
identified as predecessors of the critical job are calculated.

Tracking the critical job
1. The IBM Workload Scheduler operator checks the dashboards and sees that

there are critical jobs scheduled on one of the engines.
2. He sees that there is a critical job in potential risk. He clicks the potential risk

link to get the list of critical jobs in this state.
The loading orders job shows a status of "potential risk".

3. He selects the job and clicks Hot List to see the job or jobs that are putting the
critical job at risk.
The orders adjustment job is listed as being in error.

4. He selects the job and clicks Job log.
The log shows that the job failed because of incorrect credentials for the orders
database.

5. After discovering that the database password was changed that day, he changes
the job definition in the symphony file and reruns the job.

6. When he returns to the dashboard, he sees that there are no longer any jobs in
potential risk. Also, the critical jobs list that was opened when clicking on the
potential risk link no longer shows the critical job after the job is rerun.

7. The job is now running and has been automatically promoted to give it higher
priority for submission and system resources.

8. No further problems need fixing and the critical job finally completes at 4.45
a.m.

118 IBM Workload Scheduler: User’s Guide and Reference

Chapter 6. Customizing your workload using variable tables

This chapter introduces the concept of variable tables to group global parameters,
from now on called variables, to customize your workload.

Starting from IBM Workload Scheduler version 8.5, what were called global
parameters in previous versions, are now called variables. Variable definitions are
contained in variable tables. A variable table is an object that groups together
multiple variables. Using variable tables you can assign different values to the
same variable for use in job and job stream definitions in JCL, log on, prompts
dependencies, file dependencies, and recovery prompts. This is particularly useful
when a job definition is used as a template for a job that belongs to more than one
job stream. For example, you can assign different values to the same variable and
reuse the same job definition in different job streams saving therefore time and
avoiding errors.

When you define a variable, you assign it to a variable table because the same
variable can be defined in different variable tables with different values. Or, a
better approach is to create one or more variable tables, specifying a list of variable
names and values for each table. While doing this, you can add the same variable
name with different values in different tables. When you request a list of variables
you get variabletable.variablename pairs to easily identify to which variable table the
variable belongs.

For example, the VAR1 variable defined in the REP1_TABLE1 variable table is
shown as:
REP1_TABLE1.VAR1

You can assign variable tables to run cycles, job streams, and workstations.

Using variable tables you change the behavior of the workload according to when,
why, and where you want to run your schedule giving you more flexibility in
customizing your workload and meet your service level agreements. In detail:

When To change the behavior of jobs and job streams based on when they are
scheduled to run, that is, on which days they run. Using variable tables
with run cycles.

Why To change the behavior of jobs and job streams based on why they are
scheduled to run, for example to create a job that runs different commands.
Using variable tables with job streams.

Where To change the behavior of jobs and job streams based on where they run,
for example on different workstations. Using variable tables with
workstations.

Migrating global parameters from previous versions
Considerations when migrating global parameters from previous versions

When you upgrade from versions earlier than 8.5, the global parameter definitions,
now called variable definitions, that you have in the database, are automatically
migrated to the default variable table called MAIN_TABLE. After the upgrade:

119

v All variables are preceded by the default table name. For example, after you
migrate, the REP_PATH variable acquires the following name:
MAIN_TABLE.REP_PATH

When you request a list of variables you get variabletable.variablename pairs to
easily identify to which variable table the variable belongs.

v Your workload is resolved in the same way as before the migration because any
IBM Workload Scheduler object containing variables refers to the MAIN_TABLE
for variable resolution.

v For every user section that includes the parameter keyword, the following row is
added in the security file:
vartable name=@ access=add,delete,display,modify,list,use,unlock

For details about the upgrade process, see IBM Workload Scheduler: Planning and
Installation.

When upgrading from version 8.3 or later, do not modify variables until you
migrate the master domain manager and all its backup masters because in this
transition phase you have two different versions of the database. If you must add
or modify variables during this transition phase, make sure you make the change
in both version 8.3 or 8.4 and version 8.5 of the master domain managers.

Local parameters that were created and managed with the parms utility command
in the local parameter database on the workstations, work in the same way as
before.

In V8.3 and V8.4 the parameters are stored in the MDL.VAR_VARIABLES table of
the database. After you upgrade to V8.5 or later, the same parameters are stored in
the MAIN_TABLE contained in the MDL.VAR_VARIABLES2 database table. If you
started to migrate your environment, but did not yet complete the migration, and
the master domain manager is V8.3 or V8.4 and the backup master domain
manager is V8.5 or later, or viceversa, the V8.3 or V8.4 master domain manager
does not recognize the table MDL.VAR_VARIABLES2 so if you change a parameter
in the V8.3 or V8.4 master domain manager this change is stored in the old table
(MDL.VAR_VARIABLES). If you change the parameter in the V8.5 master domain
manager the change is stored in the MDL.VAR_VARIABLES2 table.

The default variable table
This topic describes the default variable table and how it works.

The default variable table is the table that contains all the variables that you
defined without specifying any variable table name. The default name of the
default variable table is MAIN_TABLE. You can modify this name at any time or
set another variable table as the default variable table. You cannot delete the
default variable table. When you set another variable table as the default, the
original default variable table is no longer marked as default. You can work with
the default variable table in the same way as any other variable table. You can
easily identify the default variable table on the user interface because it is marked
with a Y in the default field.

Example

This example shows a list of variable tables

120 IBM Workload Scheduler: User’s Guide and Reference

Variable Table Name Default Updated On Locked By
-- ------- ---------- ----------------
MAIN_TABLE Y 05/07/2008 -
VT_1 05/07/2008 -
VT_2 05/07/2008 -
VARTABLE3 05/07/2008 -
V4 05/07/2008 -
VT5 05/07/2008 -

AWSBIA291I Total objects: 6

Data integrity for variable tables
This topic explains how data integrity is guaranteed using variable tables.

In the same way as for other objects, IBM Workload Scheduler maintains variable
table data integrity whenever you run commands that create, modify, rename, or
delete the definition of a variable table.

When referencing a variable table from any run cycle, job stream, or workstation
IBM Workload Scheduler checks that the variable table exists and preserves the
link between it and the run cycle, job stream, and workstation. This means that
you cannot delete a variable table definition while a reference from a run cycle, a
job stream, or a workstation still exists.

Referential integrity is guaranteed at variable table level and not at variable level,
that is, when a run cycle, a job stream, and a workstation references a variable
table, IBM Workload Scheduler checks that the variable table exists, not that the
referenced variable exists.

Locking mechanism for variable tables
This topic describes how the locking mechanism works for variable tables.

Locking is set at variable table level to ensure that definitions in the database are
not overwritten by different users concurrently accessing the same variable table.
This means that both when you lock a variable table and when you lock a variable
you gain exclusive permissions for all the variables in that variable table. That is,
you can perform any commands on the locked variable table and on all the
variables in it. Any other user only has read-only access to this variable table and
to the variables in it.

This prevents any other user from changing the same variable table that you are
changing. If another user tries to lock a variable table or a variable that you have
already locked, an error message is returned.

Variable table security
This topic describes how to define security settings for variable tables.

User access to variable tables must be authorized in the IBM Workload Scheduler
security file. As for other objects, the connector verifies the existence of proper
authorization before executing an action that requires access to a variable table.
The following new keyword is available in the security file for this purpose:
vartable name=@ access=add,delete,display,modify,list,use,unlock

Chapter 6. Customizing your workload using variable tables 121

You need use access to be able to reference a variable table from other objects (job
streams, run cycles and workstations). Security filters are based on the name
attribute only, but your IBM Workload Scheduler administrator has the option to
use the $default keyword to specify security permissions on the default table,
regardless of its name.

Permission to work on a variable is no longer based on the individual variable but
on the table enclosing it. Access to a variable is granted only if the corresponding
action on the enclosing variable table is permitted. The following table shows the
corresponding permissions for variables and variable tables:

Table 16. The relationship between variable tables and their enclosed variables in the IBM
Workload Scheduler security file

Defined access to vartable Allowed action on enclosed variables

modify

add

delete

modify

display display

unlock unlock

Starting with version 8.5, the parameter keyword in the security file applies to local
parameters only.

See the IBM Workload Scheduler Administration Guide for details about the security
file.

Variable resolution
This topic describes how variables are resolved both when you generate a plan and
when you submit a job or a job stream to be run.

The format used to specify a variable can also determine when a variable is
resolved with a value. See “Variable and parameter definition” on page 191 for
information about the formats you can use.

When you generate a plan, IBM Workload Scheduler analyzes the variable tables in
the order shown below for variable resolution:
1. In the run cycle. The run cycle in the job stream is checked first, then the run

cycle in a run cycle group, and finally the variable table defined at the run
cycle group level.

2. In the job stream.
3. In the workstation. See “Workstation considered for variable resolution” on

page 123.
4. In the default variable table, but only when the variables are specified in the

^variablename^ format in the job definition. Variables specified in the
${variablename} format are not resolved.

At plan resolution time each level is analyzed in the order described above. If you
specify a variable that is not contained in any variable table, including the default,
a warning message containing the name of the unresolved variable is written in
the <WAS_profile_path>\logs\twaserver\SystemOut.log log file and the variable
name is left in the plan, where the default path for <WAS_profile_path> is
<TWA_home>/WAS/TWSprofile.

122 IBM Workload Scheduler: User’s Guide and Reference

When you submit a job stream, IBM Workload Scheduler resolves variables by
analyzing the variable tables in the order shown below:
1. Specified during the submit operation.
2. In the job stream.
3. In the workstation. See “Workstation considered for variable resolution.”
4. In the default variable table, but only when the variables are specified in the

^variablename^ format in the job definition. Variables specified in the
${variablename} format are not resolved.

When you submit a job, IBM Workload Scheduler resolves variables by analyzing
the variable tables in the order shown below:
1. Specified during the submit operation, but only when the variables are

specified in the ^variablename^ format in the job definition. Variables specified
in the ${variablename} format are not resolved.

2. In the workstation. See “Workstation considered for variable resolution.”
3. In the default variable table, but only when the variables are specified in the

^variablename^ format in the job definition. Variables specified in the
${variablename} format are not resolved.

Workstation considered for variable resolution

When the variable is resolved by the variable table specified in the workstation,
the workstation taken into consideration is:

For variable in file dependency
The workstation where the file resides.

For variable in job
The workstation where the job is defined.

For variable in prompt dependency

Global prompt
No workstation is taken into consideration. Variables in global
prompts are resolved always using the default variable table. This
is because global prompt are used by all jobs and job streams so
just one value must be used for variable resolution.

Ad hoc prompt
The workstation where the job or the job stream that depends on
the prompt dependency is defined.

Chapter 6. Customizing your workload using variable tables 123

124 IBM Workload Scheduler: User’s Guide and Reference

Chapter 7. Condition-based workload automation

Condition-based workload automation provides a simple and immediate way to
have your workflows start at just the right time. You can define in your job stream
a start condition that, when met, releases the job stream to run as scheduled.

For example, if you have a job stream containing jobs which analyze one or more
files, you can have the job stream start only after the file or files have been
modified or created. Also, you can condition the job stream to the output condition
of a specific job: the job stream starts only when the specified output condition is
met. For example, if the job stream contains jobs which process the data in a
database, you might want to have the job stream start after a new row has been
written into the database.

You can start your workflow based on one of the following conditions:
v One or more files being created
v One or more files being modified
v A job completing with its output condition satisfied

For conditions based on files being created or modified, when you save the job
stream, a monitoring job is automatically created to monitor the specified
condition. This job becomes the first job in the job stream and remains in EXEC
status until the condition it is monitoring is met or the job's deadline expires. This
job type is identified by the +AUTOGEN+ label in the command line and by an
icon with the A character in the Dynamic Workload Console.

For conditions based on the result of a specified job, when you save the job stream,
the job becomes the first job in the job stream and restarts until the condition is
satisfied, or the job's deadline expires. This applies also if the job completes in
Success status. This is the monitoring job. When you specify this condition type,
IBM Workload Scheduler automatically defines a success output condition on the
monitoring job. As a result, the monitoring job completes successfully when any of
its output conditions is satisfied, including the condition on the monitoring job
itself. You can apply this logic to the job stream or to specific jobs in the job
stream. For more information about output conditions, see the section about
Applying conditional branching logic in User's Guide and Reference.

When the condition is met, the job completes successfully and releases the
remaining part of the job stream. When the job's deadline expires without the
condition being met, the job stream is suppressed.

In the Workload Designer, you define condition-based workload automation in the
Start Condition tab when creating a job stream. You can select the type of
condition you want to monitor and specify the related settings. For more
information, see “A business scenario” on page 128 and the online help. From the
composer command line, you can define the start condition in the job stream
definition. For more information, see “Job stream definition” on page 209.

By default, IBM Workload Scheduler keeps monitoring the condition also after it is
first met. This is accomplished by automatically creating a new Job Stream
Submission job and adding it to the job stream as a successor of the monitoring
job. This job type is identified by the +AUTOGEN+ label in the command line and

125

=

=

=
=
=

=
=
=
=
=
=
=

=

=

=

=

=
=
=
=
=
=

=
=
=
=
=
=
=
=
=
=

=
=
=

=
=
=
=
=
=

=
=
=
=

by an icon with the A character in the Dynamic Workload Console. To have IBM
Workload Scheduler check the condition just one time and stop when it is first
met, select the Start once check box in the Workload Designer, or omit the rerun
keyword in the composer command line.

The Job Stream Submission job is defined on a specific pool workstation named
MASTERAGENTS. This pool workstation contains the dynamic agent installed on
the master domain manager and on the backup domain manager, if present. The
dynamic agent installed on the master domain manager and backup domain
manager (if present) are automatically added at installation time to this pool
workstation. If you delete the MASTERAGENTS pool workstation and then
recreate it, you must stop and restart the dynamic agent to add it back to the
MASTERAGENTS pool workstation. See the topic about automatically registering
agents to pools in the Planning and Installation Guide.

Note: The default name for the pool workstation, MASTERAGENTS, can be
modified using the optman global option resubmitJobName. See the detailed
description of the global options in the Administration Guide for details about this
option.

The Job Stream Submission job creates a new instance of the job stream in which
the start condition is defined. By default, the new job stream instance starts also if
the previous instance is still running and the two instances run concurrently. To
change this behavior, in the Workload Designer, switch to the Scheduling options
tab and select Queue the new instance in the Actions section. From the composer
command line, use the onoverlap keyword. For more information, see “onoverlap”
on page 253. The newly-generated instance is identical to the previous one it and is
set to repeat the condition check, therefore a series of new instances is created until
the job stream's deadline expires.

Figure 23 on page 127 illustrates the details of the default process. If you select the
Start once check box, the process stops after the condition is first met, therefore the
steps within the dotted line in the graphic are not performed.

126 IBM Workload Scheduler: User’s Guide and Reference

=
=
=
=

=
=
=
=
=
=
=
-
-

=
=
=
=

=
=
=
=
=
=
=
=
=

=
=
=
=

The monitoring job, the Job Stream Submission job, and the additional instances of
the job stream, are not visible in the database, but are visible in the plan, so that
you can check on the progress of the plan. In the Dynamic Workload Console, you

Monitoring job

NO

Job1

Job2

Job3

YES

Check condition
again

JS Submission job

A new instance
of the JS

is submitted

Is the condition
verified?

Start once check box empty

Figure 23. Condition-based workload automation

Chapter 7. Condition-based workload automation 127

=

=
=
=
=
=
=

can check the progress of the plan by the Monitor workload view, and in the
conman command line, you can use the showjobs command.

A business scenario
This scenario outlines one of the many ways in which condition-based workload
automation can help you improve your workload automation

About this task

IBM Workload Scheduler offers a number of powerful solutions to help make your
automation smarter. For example, using the iterative workflow automation feature,
you can implement iterative processing of a sequence of jobs within a job stream.

In an online retailer company, this feature is very useful, because it iterates the
processing of each item in each customer order, for each order in the database, by
scheduling just a single job stream.

But it is also possible to take this scenario further and make the automation even
more responsive to your needs. For example, you might want to have the orders
processed as soon as they are placed in the database, to ensure a quicker response
to customers' requests.

You can now create the job stream that processes the orders and add a start
condition to it, so that the job stream verifies that an order is placed in the
database before starting. As soon as the condition is met, the job stream starts.

In the following example, the ORDERS job stream starts running as soon as an
order is created in the database.

To set up this type of job processing, complete the following steps:
1. Create the job stream definition.
2. Define the start condition.

To create the ORDERS job stream, complete the following steps:

Procedure
1. In the Workload Designer, create the ORDERS job stream definition.
2. In the Start Condition tab, select Job condition met.
3. In the Job definition field, select the job whose output condition you want to

monitor: the QUERY_DB_ORDERS, the job that queries the orders in the database.
This is the monitoring job.

4. In the Workstation field, specify the workstation where the monitoring job is
scheduled to run.

5. In the Output condition value field, specify the output condition that, when
met, causes the job stream to start running. In the current scenario, the
condition to be met is that the number of rows in the database is higher than
zero. To monitor this condition, specify the following string:
${this.NumberOfRows} > 0. As a result, the ORDERS job stream will start when
the monitoring job completes with the specified output condition.

6. Leave the Start Once check box empty to keep monitoring the condition also
after it is first met. This is the default behavior.

7. Complete the remaining tabs and fields as required and add the relevant jobs.

128 IBM Workload Scheduler: User’s Guide and Reference

=
=

=
=

=
=

=

=
=
=

=
=
=

=
=
=
=

=
=
=

=
=

=

=

=

=

=

=

=

=
=
=

=
=

=
=
=
=
=
=

=
=

=

8. Save the job stream.

Results

The monitoring job starts checking the orders in the database repeatedly. As soon
as an order is found, the monitoring job releases the remaining part of the job
stream and then completes successfully.

A new instance of the job stream is automatically resubmitted, containing the same
start condition, so that the cycle iterates and verifies for the next order to be
inserted in the database. By default, the job stream instances run in parallel,
processing each order as it is stored in the database, and iterating for each item in
the order. If you do not want the instances to run in parallel, select Queue the new
instance in the Scheduling options tab. By selecting this option, the new instance
starts only after the previous instance has completed.

By combining two features, the automation of iterative workflows and
condition-based workload automation, you can increase control over your
workflow start conditions and process orders in real time. For more information
about iterative workflows, see the section about automation of iterative workflows
in Overview.

Example

You can define the same scenario by using the composer command line as follows:
SCHEDULE NewYork#ORDERS
ON RUNCYCLE RC_DST "FREQ=DAILY;INTERVAL=1;BYWORKDAY"
STARTCOND JOB S_AGT#QUERY_DB_ORDERS OUTCOND "${this.NumberOfRows} > 0" INTERVAL 300
(RERUN)
:
Dallas#DBUpdate

Denver#OrderProcess

Lexington#WarehouseInfo
END

For more information about defining start conditions using the composer
command line see “Job stream definition” on page 209.

Chapter 7. Condition-based workload automation 129

=

=

=
=
=

=
=
=
=
=
=
=

=
=
=
=
=

=

=

=
=
=
=
=
=
=
=
=
=
=

=
=

130 IBM Workload Scheduler: User’s Guide and Reference

Chapter 8. Running event-driven workload automation

Event-driven workload automation adds the capability to perform on-demand
workload automation in addition to plan-based job scheduling. It provides the
capability to define rules that can trigger on-demand workload automation.

The object of event-driven workload automation in IBM Workload Scheduler is to
carry out a predefined set of actions in response to events that occur on nodes
running IBM Workload Scheduler (but also on non-IBM Workload Scheduler ones,
when you use the sendevent command line). This implies the capability to submit
workload and run commands on the fly, notify users via email, or send messages
to Tivoli Enterprise Console.

The main tasks of event-driven workload automation are:
v Trigger the execution of batch jobs and job streams based on the reception or

combination of real time events.
v Reply to prompts
v Notify users when anomalous conditions occur in the IBM Workload Scheduler

scheduling environment or batch scheduling activity.
v Invoke an external product when a particular event condition occurs.

Event-driven workload automation is based upon the concept of event rule. In IBM
Workload Scheduler an event rule is a scheduling object that includes the following
items:
v Events
v Event-correlating conditions
v Actions

When you define an event rule, you specify one or more events, a correlation rule,
and the one or more actions that are triggered by those events. Moreover, you can
specify validity dates, a daily time interval of activity, and a common time zone for
all the time restrictions that are set.

The events that IBM Workload Scheduler can detect for action triggering can be:

Internal events
They are events involving IBM Workload Scheduler internal application
status and changes in the status of IBM Workload Scheduler objects. Events
of this category can be job or job stream status changes, critical jobs or job
streams being late or canceled, and workstation status changes.

External events
They are events not directly involving IBM Workload Scheduler that may
nonetheless impact workload submission. Events of this category can be
messages written in log files, events sent by third party applications, or a
file being created, updated, or deleted.

Within a rule two or more events can be correlated through correlation attributes
such as a common workstation or job. The correlation attributes provide a way to
direct the rule to create a separate rule (or copy of itself) for each group of events
that share common characteristics. Typically, each active rule has one copy that is
running in the event processing server. However, sometimes the same rule is
needed for different groups of events, which are often related to different groups of

131

resources. Using one or more correlation attributes is a method for directing a rule
to create a separate rule copy for each group of events with common
characteristics.

The actions that IBM Workload Scheduler can run when it detects any of these
events can be:

Operational actions
They are actions that cause the change in the status of scheduling objects.
Actions of this category are submitting a job, job stream, or command, or
replying to a prompt.

Notification actions
They are actions that have no impact on the status of scheduling objects.
Actions belonging to this category are sending an email, logging the event
in an internal auditing database, forwarding the event to Tivoli Enterprise
Console, or running a non-IBM Workload Scheduler command.

This classification of events and actions is conceptual. It has no impact on how
they are handled by the event-driven mechanism.

Simple event rule scenarios

This section lists some simple scenarios involving the use of event rules. The
corresponding XML coding is shown in “Event rule examples” on page 140.

Scenario 1: Send email notification

1. The administrator defines the following event rule:
v When any of the job123 jobs terminates in error and yields the

following error message:
AWSBHT001E The job "MYWORKSTATION#JOBS.JOB1234" in file "ls" has
failed with the error: AWSBDW009E The following operating system
error occurred retrieving the password structure for either the
logon user...

send an email to operator john.smith@mycorp.com. The subject of the
email includes the names of the job instance and of the associated
workstation.
The event rule is valid from December 1st to December 31st in the
12:00-16:00 EST time window.

2. The administrator saves the rule as non-draft in the database and it is
readily deployed by IBM Workload Scheduler.

3. The scheduler starts monitoring the jobs and every time one of them
ends in error, John Smith is sent an email so that he can check the job
and take corrective action.

Scenario 2: Monitor that workstation links back

1. The administrator defines the following event rule:
v If workstation CPU1 becomes unlinked and does not link back within

10 minutes, send a notification email to chuck.derry@mycorp.com.
2. The administrator saves the rule as non-draft in the database and it is

readily deployed by IBM Workload Scheduler.
3. The scheduler starts monitoring CPU1.

132 IBM Workload Scheduler: User’s Guide and Reference

If the workstation status becomes unlinked, IBM Workload Scheduler
starts the 10 minute timeout. If the CPU1 linked event is not received
within 10 minutes, the scheduler sends the notification email to Chuck
Derry.

4. Chuck Derry receives the email, queries the actions/rules that were
triggered in the last 10 minutes, and from there navigates to the CPU1
instance and runs a first problem analysis.

Scenario 3: Submit job stream when FTP has completed

1. The administrator defines the following event rule:
v When file daytransac* is created in the SFoperation directory in

workstation system1, and modifications to the file have terminated,
submit the calmonthlyrev job stream.
The event rule is valid year-round in the 18:00-22:00 EST time
window.

2. The administrator saves the rule as non-draft in the database and it is
readily deployed by IBM Workload Scheduler.

3. The scheduler starts monitoring the SFoperation directory. As soon as
file daytransac* is created and is no longer in use, it submits job stream
calmonthlyrev.

4. The operator can check the logs to find if the event rule or the job
stream were run.

Scenario 4: Start long duration jobs based on timeout

1. The administrator defines the following event rule:
v When the job-x=exec event and the job-x=succ/abend event are

received in 5 minutes, the scheduler should reply Yes to prompt-1
and start the jobstream-z job stream, otherwise it should send an
email to twsoper@mycompany.com alerting that the job is late.

2. The administrator saves the event rule in draft status. After a few days
he edits the rule, changes the email recipient and saves it as non-draft.
The rule is deployed.

3. Every time the status of job-x becomes exec, IBM Workload Scheduler
starts the 5 minutes timeout.
If the internal state of job-x does not change to succ or abend within 5
minutes and the corresponding event is not received, IBM Workload
Scheduler sends the email, otherwise it replies Yes to the prompt and
submits jobstream-z.

Scenario 5: Monitoring process status and running a batch script
The administrator creates a rule to monitor the status of IBM Workload
Scheduler processes and run a batch script.

Scenario 6: Integration with SAP R/3 (in combination with IBM Workload
Scheduler)

1. The administrator defines the following event rule:
v When an event called ID3965 is generated on SAP R/3 server

Billing, IBM Workload Scheduler must:
a. Run the command:

“/usr/apps/helpDesk –openTicket –text
'Processing error $parameter
on SAP system $wsname’”

to open a service desk ticket

Chapter 8. Running event-driven workload automation 133

b. Send an event to Tivoli Enterprise Console.
2. The administrator saves the rule as non-draft and it is readily

deployed.
3. IBM Workload Scheduler starts monitoring the status of SAP R/3

events activated on the Billing system.
When the ID3965 event is detected, IBM Workload Scheduler runs the
specified help desk command and sends an event to TEC.

4. After some time, the administrator sets the event rule in draft status.
The rule is automatically deactivated. It can be deployed again when
needed.

Scenario 7: Monitoring the Symphony file status and logging the occurrence of a
corrupt record

The administrator creates a rule to monitor the status of the Symphony file
in the IBM Workload Scheduler instance and logs the occurrence of a
corrupt Symphony dependency record in the internal auditing database.

The event rule management process
Event-driven workload automation is an ongoing process and can be reduced to
the following steps:
1. An event rule definition is created or modified with the Dynamic Workload

Console or with the composer command line and saved in the objects database.
Rule definitions can be saved as draft or non-draft.

2. All new and modified non-draft rules saved in the database are periodically (by
default every five minutes) found, built, and deployed by an internal process
named rule builder. At this time they become active. Meanwhile, an event
processing server, which is normally located in the master domain manager,
receives all events from the agents and processes them.

3. The updated monitoring configurations are downloaded to the IBM Workload
Scheduler agents and activated. Each IBM Workload Scheduler agent runs a
component named monman that manages two services named monitoring engine
and ssmagent that are to catch the events occurring on the agent and perform a
preliminary filtering action on them.

4. Each monman detects and sends its events to the event processing server.
5. The event processing server receives the events and checks if they match any

deployed event rule.
6. If an event rule is matched, the event processing server calls an actions helper

to carry out the actions.
7. The action helper creates an event rule instance and logs the outcome of the

action in the database.
8. The administrator or the operator reviews the status of event rule instances and

actions in the database and logs.

The event-driven workload automation feature is automatically installed with the
product. You can at any time change the value of the
enEventDrivenWorkloadAutomation global option if you do not want to use it in
your IBM Workload Scheduler network.

Event-driven workload automation is based on a number of services, subsystems,
and internal mechanisms. The following ones are significant because they can be
managed:

134 IBM Workload Scheduler: User’s Guide and Reference

monman
Is installed on every IBM Workload Scheduler agent where it checks for all
local events. All detected events are forwarded to the event processing
server. The following conman commands are available to manage monman:

Table 17. conman commands for managing monitoring engines

Command Purpose

deployconf Updates the monitoring configuration file for the event
monitoring engine on an agent. It is an optional
command since the configuration is normally deployed
automatically.

showcpus getmon Returns the list of event rules defined for the monitor
running on an agent. This command can be used
remotely to get the information of the configuration file
in another agent of the network

startmon Starts monman on an agent. Can be issued from a
different agent.

stopmon Stops monman on an agent. Can be issued from a
different agent.

monman starts automatically each time a new Symphony is activated. This is
determined by the autostart monman local option that is set to yes by
default (and that you can disable if you do not want to monitor events on
a particular agent).

Following each rule deployment cycle, updated monitoring configurations
are automatically distributed to the agents hosting rules that have been
changed since the last deployment. Note that there might be some
transitory situations while deployment is under course. For example, if a
rule is pending deactivation, the agents might be sending events in the
time fraction that the new configuration files have not been deployed yet,
but the event processor already discards them.

If an agent is unable to send events to the event processing server for a
specified period of time, the monitoring status of the agent is automatically
turned off. The period of time can be customized (in seconds) with the
edwa connection timeout parameter in the localopts file. By default, it is
set to 300 seconds (5 minutes).

The following events can be configured in the BMEvents.conf file to post
the monitoring status of an agent:
v TWS_Stop_Monitoring (261) : sent when the monitoring status of an

agent is set to off (for stopmon command or because the agent is unable
to send events to the event processing server).

v TWS_Start_Monitoring (262): sent when the monitoring status of an
agent is set to on (for startmon command or because the agent has
restarted to send events to the event processing server).

These events have the following positional fields:
1. Event number
2. Affected workstation
3. Reserved, currently always set to 1

Event processing server
Can be installed on the master domain manager, the backup master, or on
any fault-tolerant agent installed as a backup master. It runs in the

Chapter 8. Running event-driven workload automation 135

application server. It can be active on only one node in the network. It
builds the rules, creates configuration files for the agents, and notifies the
agents to download the new configurations. It receives and correlates the
events sent by the monitoring engines and runs the actions. The following
conman commands are available to manage the event processing server:

Table 18. conman commands for managing the event processing server

Command Purpose

starteventprocessor Starts the event processing server

stopeventprocessor Stops the event processing server

switcheventprocessor Switches the event processing server from the master
domain manager to the backup master or fault-tolerant
agent installed as a backup master, or vice versa

The event processing server starts automatically with the master domain
manager. Only one event processor may run in the network at any time. If
you want to run the event processor installed on a workstation other than
the master (that is, on the backup master or on any fault-tolerant agent
installed as backup master), you must first use the switcheventprocessor
command to make it the active event processing server.

Note: If you set the ignore keyword on the workstation definition of the
agent (installed as backup master) that at the time hosts the active event
processor, the first following JnextPlan occurrence acknowledges that this
particular agent is out of the plan. As a consequence, it cannot restart the
event processor hosted there. For this reason, the scheduler yields a
warning message and starts the event processor hosted by the master
domain manager.

Using the involved interfaces and commands
About this task

Running and managing event-driven workload automation calls for the following
tasks:
v Edit configuration settings
v Model event rules
v Manually deploy or undeploy event rules
v Manage monitoring and event processing devices
v Monitor and manage event rule instances

You must be ready to use several IBM Workload Scheduler interfaces and
commands to do them. Table 19 on page 137 summarizes the ones you need:

136 IBM Workload Scheduler: User’s Guide and Reference

Table 19. Interfaces and commands for managing event-driven workload automation

Interface or command Use to...

optman Change the default values of global options associated
with event management. Global options are used to
configure:
v The frequency with which rule definitions are checked

for updates (deploymentFrequency). Modified
definitions are deployed in the IBM Workload
Scheduler domain

v The EIF port number where the event processing server
receives events (eventProcessorEIFPort, or
eventProcessorEIFSSLPort when SSL-protected).

v Management of the cleanup policies of rule instance,
action run, and message log data
(logCleanupFrequency).

v SMTP server properties if you deploy rules
implementing actions that send emails via an SMTP
server (smtpServerName, smtpServerPort,
smtpUseAuthentication, smtpUserName,
smtpUserPassword, smtpUseSSL, smtpUseTLS).

v Tivoli Enterprise Console server properties if you
deploy rules implementing actions that forward events
to TEC (TECServerName, TECServerPort).

v The possibility to disable the event rule management
mechanism (enEventDrivenWorkloadAutomation) which
is installed by default with the product.

See the Administration Guide for a list of global options.

composer
Run modeling and management tasks of event rule
definitions like add, create, delete, display, extract, list,
lock, modify, new, print, unlock, validate. Event rules are
defined in XML.

Query the IBM Workload Scheduler relational database
for:
v event rule definitions filtered by:

– rule, event, and action properties
– jobs and job streams involved with the rule action

v event rule instances, actions run, and message log
records

See “Event rule definition” on page 269 to learn how to
define event rules. See Chapter 10, “Managing objects in
the database - composer,” on page 297 for command
reference.

Chapter 8. Running event-driven workload automation 137

Table 19. Interfaces and commands for managing event-driven workload
automation (continued)

Interface or command Use to...

Dynamic Workload Console Have a graphical user interface to:
v Model and manage event rule definitions (browse,

create, delete, modify, query, unlock)
v Query the IBM Workload Scheduler relational database

for:
– event rule definitions filtered by:

- rule, event, and action properties
- jobs and job streams involved with the rule action

– event rule instances, actions run, and message log
records

v Manage the event processing server and monitoring
engines, as described in tables Table 17 on page 135 and
Table 18 on page 136

See the Dynamic Workload Console documentation:

Dynamic Workload Console User’s Guide, section about
Creating an event rule.

Dynamic Workload Console User’s Guide, section about
Event management tasks.

conman
Manage the monitoring devices, namely the event
processing server and monitoring engines, as described in
tables Table 17 on page 135 and Table 18 on page 136.

See Chapter 12, “Managing objects in the plan - conman,”
on page 379 for command reference.

utility commands
Create custom event definitions and manually send
custom events to the event processing server. See “evtdef”
on page 641 and “sendevent” on page 667 for details on
these commands.

planman Manually deploy new and changed rules.

See “Deploying rules” on page 95 for details.

Security file Set security authorizations to manage event rules, events,
actions, and their instances.

See the IBM Workload Scheduler Administration Guide for
reference about configuring the IBM Workload Scheduler
security file.

Important: If you use a security firewall, make sure that the ports defined in
global option eventProcessorEIFPort and in the nm port local option on each agent
are open for incoming and outgoing connections.

Defining event rules
About this task

When you define an event rule, you specify one or more events, a correlation rule,
and one or more actions. To define event rules you can use:
v The composer command line

138 IBM Workload Scheduler: User’s Guide and Reference

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

v The Dynamic Workload Console
v A set of APIs described in a separate document

In composer, you edit the rules with an XML editor of your choice (preferable but
not mandatory) since event rule definitions are made using XML syntax.

The explanation of how you use composer to define event rules is in “Event rule
definition” on page 269, while the explanation of how you use the Dynamic
Workload Console can be found in: Dynamic Workload Console User’s Guide,
section about Creating an event rule.

Event rule definitions are saved in the IBM Workload Scheduler database like all
other scheduling objects. You can save them as:

Draft The rule is saved in the database but is not ready yet to be deployed and
activated.

This state is determined by the isDraft=yes attribute.

Not draft
This rule is being deployed or is ready to be deployed in the scheduling
environment.

This state is determined by the isDraft=no attribute.

Non-draft rules are ready to be activated. The rule builder calculates the
status of each rule. The status can be:
v active
v not active
v update pending
v update error
v activation pending
v activation error
v deactivation pending
v deactivation error

The scheduler periodically (every five minutes or in accordance with a time set in
the deploymentFrequency global configuration option) scans the database for
non-draft rules and builds rule configuration files for deployment. The new
monitoring configurations are downloaded to the agents (each agent gets its own
configuration file containing strictly the rules it is to run) only if there have been
changes since the previous configuration files.

As an additional feature, a planman deploy command is available to deploy rules
manually at any time.

The time required for deployment increases proportionally with the number of
active rules to deploy. If you need to manually deploy a large number of new or
changed rules, and you are concerned with keeping the deployment time low, run
planman deploy -scratch to reduce the deployment time.

You can deploy and undeploy rules as you need by setting the isDraft attribute to
no or to yes with composer or with the Dynamic Workload Console.

Based on their characteristics, rules are classified as:

filter The rule is activated upon the detection of a single specific event.

Chapter 8. Running event-driven workload automation 139

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

sequence
The rule is activated when an ordered group of events is detected or fails
to complete within a specific time interval.

set The rule is activated when an unordered group of events is detected or
fails to complete within a specific time interval.

Filter rules are based on the detection of one event such as a job being late, an IBM
Workload Scheduler workstation going down, a file being modified, a job stream
completing its run successfully, and so on.

Set and sequence rules are based on the detection of more events. Optionally, they
can be based on a timeout condition. A rule times out when the first event(s) in a
sequence or part of the events in a set are received, but not all the events are
received within a specified time interval counted from when the first event was
received.

Rule definitions may include attributes that specify a validity period and an
activity time window within each day of validity. If you do not specify these
attributes, the rule is active perpetually at all times once it is deployed and until it
is changed back to draft status or deleted from the database.

You can use variable substitution. This means that when you define action
parameters, you can use attributes of occurrences of events that trigger the event
rule in either of these two forms:
v ${event.property}

Replaces the value as is. This is useful to pass the information to an action that
works programmatically with that information, for example the schedTime of a
job stream.

v %{event.property}

Replaces the value formatted in human readable format. This is useful to pass
the information to an action that forwards that information to a user, for
example to format the schedTime of a job stream in the body of an email.

Where:

event Is the name you set for the triggering eventCondition.

property
Is the attributeFilter name in the filtering predicate of the triggering
event condition. The value taken by the attribute filter when the rule is
triggered is replaced as a parameter value in the action definition before it
is performed.

Note that you can use variable substitution also if no attributeFilter was
specified for an attribute and also if the attribute is read-only.

You can see the use of variable substitution in some of the following sample
definitions, where attribute filter values are replaced in email subject and body
matters.

Event rule examples
The following are examples of event rule definitions that apply to the scenarios
described in “Simple event rule scenarios” on page 132.

140 IBM Workload Scheduler: User’s Guide and Reference

Event rule definition for scenario #1

When any of the job123 jobs terminates in error and yields the following error
message:
AWSBHT001E The job "MYWORKSTATION#JOBS.JOB1234" in file "ls" has failed with
the error: AWSBDW009E The following operating system error occurred retrieving
the password structure for either the logon user...

send an email to operator john.smith@mycorp.com. The subject of the email
includes the names of the job instance and of the associated workstation.

The event rule is valid from December 1st to December 31st in the 12:00-16:00 EST
time window.
<?xml version="1.0"?>
<eventRuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/rules"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/tws/1.0/

event-management/rules/EventRules.xsd">
<eventRule name="scenario1_rule" ruleType="filter" isDraft="no">

<description>This is the definition for scenario1</description>
<timeZone>America/Indianapolis</timeZone>
<validity from="2015-12-01" to="2015-12-31" />
<activeTime start="12:00:00" end="16:00:00" />
<eventCondition name="event1"

eventProvider="TWSObjectsMonitor"
eventType="JobStatusChanged">

<filteringPredicate>
<attributeFilter name="JobStreamWorkstation" operator="eq">

<value>*</value>
</attributeFilter>
<attributeFilter name="JobStreamName" operator="eq">

<value>*</value>
</attributeFilter>
<attributeFilter name="JobName" operator="eq">

<value>job123*</value>
</attributeFilter>
<attributeFilter name="Status" operator="eq">

<value>Error</value>
</attributeFilter>
<attributeFilter name="ErrorMessage" operator="eq">

<value>*AWSBDW009E*</value>
</attributeFilter>

</filteringPredicate>
</eventCondition>
<action actionProvider="MailSender"

actionType="SendMail"
responseType="onDetection">

<description>Send email to John Smith including names of job
and associated workstation</description>

<parameter name="To">
<value>john.smith@mycorp.com</value>

</parameter>
<parameter name="Subject">

<value>Job %{event1.JobName} on agent %{event1.Workstation}
ended in error</value>

</parameter>
</action>

</eventRule>
</eventRuleSet>

Important: The error message that explains why a job terminates in error can be
found in the TWSMERGE log file. In this scenario, the TWSMERGE log file
contains the following statement:

Chapter 8. Running event-driven workload automation 141

BATCHMAN:+
BATCHMAN:+ AWSBHT001E The job "MYWORKSTATION#JOBS.JOB1234" in file "ls"
has failed with the error: AWSBDW009E The following operating system
error occurred retrieving the password structure for either the logon
user, or the user who owns a file or external dependency
BATCHMAN:+

where the error message is everything that follows the string:
has failed with the error:

Event rule definition for scenario #2

If workstation CPU1 becomes unlinked and does not link back within 1 hour, send a
notification email to chuck.derry@mycorp.com.
<?xml version="1.0"?>
<eventRuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/rules"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/tws/1.0/

event-management/rules http://www.ibm.com/xmlns/prod/tws/1.0/
event-management/rules/EventRules.xsd">

<eventRule name="SCENARIO2_RULE" ruleType="sequence" isDraft="no">
<description>This is the definition for scenario2</description>
<timeZone>America/Anchorage</timeZone>
<timeInterval amount="10" unit="minutes"/>
<eventCondition name="WSevent"

eventProvider="TWSObjectsMonitor"
eventType="ChildWorkstationLinkChanged">

<scope>
* TO CPU1

</scope>
<filteringPredicate>
<attributeFilter name="Workstation" operator="eq">
<value>CPU1</value>

</attributeFilter>
<attributeFilter name="LinkStatus" operator="eq">
<value>Unlinked</value>

</attributeFilter>
</filteringPredicate>
</eventCondition>
<eventCondition name="childWksLnkChgEvt1"

eventProvider="TWSObjectsMonitor"
eventType="ChildWorkstationLinkChanged">

<scope>
* TO CPU1
</scope>
<filteringPredicate>
<attributeFilter name="Workstation" operator="eq">
<value>CPU1</value>

</attributeFilter>
<attributeFilter name="LinkStatus" operator="eq">
<value>Linked</value>

</attributeFilter>
</filteringPredicate>
</eventCondition>
<action actionProvider="MailSender" actionType="SendMail"

responseType="onTimeOut">
<scope>

CHUCK.DERRY@MYCORP.COM : AGENT CPU1 HAS BEEN UNLINKED FOR AT LEAST 10 MINUTES
</scope>
<parameter name="Subject">
<value>Agent CPU1 has been unlinked for at least 10 minutes</value>
</parameter>
<parameter name="To">
<value>chuck.derry@mycorp.com</value>
</parameter>

142 IBM Workload Scheduler: User’s Guide and Reference

<parameter name="Body">
<value>The cause seems to be: %{WSevent.UnlinkReason}</value>
</parameter>
</action>
</eventRule>
</eventRuleSet>

Event rule definition for scenario #3

When file daytransac is created in the SFoperation directory in workstation
system1, and modifications to the file have terminated, submit the calmonthlyrev
job stream.

The event rule is valid year-round in the 18:00-22:00 EST time window.
<?xml version="1.0"?>
<eventRuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/rules"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/tws/1.0/

event-management/rules/EventRules.xsd">
<eventRule name="scenario3_rule"

ruleType="filter"
isDraft="no">

<description>This is the definition for scenario3</description>
<timeZone>America/Louisville</timeZone>
<validity from="2015-01-01" to="2015-12-31" />
<activeTime start="18:00:00" end="22:00:00" />
<eventCondition eventProvider="FileMonitor"

eventType="ModificationCompleted">
<filteringPredicate>

<attributeFilter name="FileName" operator="eq">
<value>daytransac</value>

</attributeFilter>
<attributeFilter name="Workstation" operator="eq">

<value>EVIAN1</value>
</attributeFilter>

</filteringPredicate>
</eventCondition>
<action actionProvider="TWSAction"

actionType="sbs"
responseType="onDetection">

<description>Submit the calmonthlyrev job stream.</description>
<parameter name="JobStreamName">

<value>calmonthlyrev</value>
</parameter>
<parameter name="JobStreamWorkstationName">

<value>act5cpu</value>
</parameter>

</action>
</eventRule>

</eventRuleSet>

Event rule definition for scenario #4

When the job-x=exec event and the job-x=succ/abend event are received in 500
seconds, the scheduler should reply Yes to prompt-1 and start the jobstream-z job
stream, otherwise it should send an email to twsoper@mycompany.com alerting that
the job is late.
<?xml version="1.0"?>
<eventRuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/rules"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/tws/1.0/

event-management/rules/EventRules.xsd">
<eventRule name="scenario4_rule"

Chapter 8. Running event-driven workload automation 143

ruleType="sequence"
isDraft="yes">

<description>This is the definition for scenario4</description>
<timeZone>America/Buenos_Aires</timeZone>
<timeInterval amount="500" unit="seconds" />
<eventCondition eventProvider="TWSObjectsMonitor"

eventType="JobStatusChanged">
<filteringPredicate>

<attributeFilter name="JobName" operator="eq">
<value>job-x</value>

</attributeFilter>
<attributeFilter name="InternalStatus" operator="eq">

<value>EXEC</value>
</attributeFilter>

</filteringPredicate>
</eventCondition>
<eventCondition eventProvider="TWSObjectsMonitor"

eventType="JobStatusChanged">
<filteringPredicate>

<attributeFilter name="JobName" operator="eq">
<value>job-x</value>

</attributeFilter>
<attributeFilter name="InternalStatus" operator="eq">

<value>ABEND</value>
<value>SUCC</value>

</attributeFilter>
</filteringPredicate>

</eventCondition>
<action actionProvider="MailSender"

actionType="SendMail"
responseType="onTimeOut">

<description>Send email to operator saying that job-x
is late</description>

<parameter name="To">
<value>twsoper@mycorp.com</value>

</parameter>
<parameter name="Subject">

<value>Job-x is late by at least 5 minutes</value>
</parameter>

</action>
<action actionProvider="TWSAction"

actionType="Reply"
responseType="onDetection">

<description>Reply Yes to prompt-1</description>
<parameter name="PromptName">

<value>prompt-1</value>
</parameter>
<parameter name="PromptAnswer">

<value>Yes</value>
</parameter>

</action>
<action actionProvider="TWSAction"

actionType="sbs"
responseType="onDetection">

<description>Submit jobstream-z</description>
<parameter name="JobStreamName">

<value>jobstream-z</value>
</parameter>
<parameter name="JobStreamWorkstationName">

<value>act23cpu</value>
</parameter>

</action>
</eventRule>

</eventRuleSet>

144 IBM Workload Scheduler: User’s Guide and Reference

Event rule definition for scenario #5

Monitor the status of IBM Workload Scheduler processes listed in ProcessName
and run the RUNCMDFM.BAT batch script located in E:\production\eventRules.

The TWSPATH keyword indicates the fully qualified path where the monitored
IBM Workload Scheduler instance is installed, including the /TWS suffix.

On Windows operating systems, the event rule is triggered every time the agent is
stopped using the ShutDownLwa command and every time the agent is stopped
manually. On UNIX operating systems, the event rule is triggered when you stop
the process manually, while it is not triggered by the ShutDownLwa command.

If you specify ProcessName=agent, the agent component is monitored, while the
TWS JobManager process is not monitored.
<?xml version="1.0"?>
<eventRuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/rules"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/tws/1.0/

event-management/rules/EventRules.xsd">
<eventRule name="scenario5rule" ruleType="filter" isDraft="no">

<eventCondition name="twsProcMonEvt1"
eventProvider="TWSApplicationMonitor"
eventType="TWSProcessMonitor">

<scope>
AGENT, NETMAN DOWN ON WIN86MAS

</scope>
<filteringPredicate>

<attributeFilter name="ProcessName" operator="eq">
<value>agent</value>
<value>appservman</value>
<value>batchman</value>
<value>jobman</value>
<value>mailman</value>
<value>monman</value>
<value>netman</value>

</attributeFilter>
<attributeFilter name="TWSPath" operator="eq">

<value>E:\Program Files\IBM\TWA\TWS</value>
</attributeFilter>
<attributeFilter name="Workstation" operator="eq">

<value>win86mas</value>
</attributeFilter>
<attributeFilter name="SampleInterval" operator="eq">

<value>5</value>
</attributeFilter>

</filteringPredicate>
</eventCondition>
<action actionProvider="GenericActionPlugin" actionType="RunCommand"

responseType="onDetection">
<scope>

RUNCMDFM.BAT
</scope>
<parameter name="Command">

<value>runCmdFM.bat</value>
</parameter>
<parameter name="WorkingDir">

<value>E:\production\eventRules</value>
</parameter>

</action>
</eventRule>

</eventRuleSet>

Chapter 8. Running event-driven workload automation 145

Event rule definition for scenario #6

When a specific event named ID3965 is generated, a command is run to open a
service ticket and an event is sent to the Tivoli Enterprise Console.
<?xml version="1.0"?>
<eventRuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/rules"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/

rules http://www.ibm.com/xmlns/prod/tws/1.0/event-management/
rules/EventRules.xsd">

<eventRule name="SCENARIO6RULE" ruleType="filter" isDraft="no">
<eventCondition name="R3EventRaised1" eventProvider="SapMonitor"

eventType="R3EventGenerated">
<scope>
ID3965 ON SAP_WKS
</scope>
<filteringPredicate>
<attributeFilter name="Workstation" operator="eq">
<value>SAP_WKS</value>

</attributeFilter>
<attributeFilter name="SAPEventId" operator="eq">
<value>ID3965</value>

</attributeFilter>

</filteringPredicate>
</eventCondition>
<action actionProvider="TWSAction" actionType="sbd" responseType="onDetection">
<scope>
SBD “/USR/APPS/HELPDESK –OPENTICKET –TEXT 'PROCESSING ERROR

%{R3EVENTRAISED1.SAPEVENTID} ON SAP SYSTEM %{R3EVE
</scope>
<parameter name="JobType">
<value>Script</value>
</parameter>
<parameter name="JobTask">
<value>“/usr/apps/helpDesk –openTicket –text 'Processing error

%{R3EventRaised1.SAPEventId} on SAP system
%{R3EventRaised1.Workstation}'”</value>

</parameter>
<parameter name="JobLogin">
<value>userLogin</value>
</parameter>
<parameter name="JobWorkstationName">
<value>AGENT1</value>
</parameter>
<parameter name="JobUseUniqueAlias">
<value>true</value>
</parameter>
</action>
</eventRule>
</eventRuleSet>

Event rule definition for scenario #7

Monitor the Symphony file status in the IT041866-9088 workstation and logs the
occurrence of a corrupt Symphony record in the internal auditing log database.

In each workstation, the Batchman process monitors the Symphony file. When it
detects a corrupt record, it send the corruption event to the Monman process
message queue and then to Event Processor in the Master workstation.

The event rule is triggered every time the Batchman process finds a corrupt
dependency record in the workstation specified in the event rule definition.

146 IBM Workload Scheduler: User’s Guide and Reference

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

If you set the workstation value to IT041866-9088, the Symphony file on this
workstation is monitored, and the event rule is triggered when the Batchman
process on this workstation detects a corrupt record in the Symphony file.

The occurrence of the corrupt record is written to the Messagge logger audit file.
?xml version="1.0"?>
<eventRuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/rules"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/rules
http://www.ibm.com/xmlns/prod/tws/1.0/event-management/rules/EventRules.xsd">
<eventRule name="TEST1" ruleType="filter" isDraft="no">
<eventCondition name="productAlertEvt1" eventProvider="TWSObjectsMonitor"
eventType="ProductAlert">
<scope>
IT041866-9088
</scope>
<filteringPredicate>
<attributeFilter name="Workstation" operator="eq">
<value>IT041866-9088</value>
</attributeFilter>

</filteringPredicate>
</eventCondition>
<action actionProvider="MessageLogger" actionType="MSGLOG"
responseType="onDetection">
<scope>
OBJECT=%{PRODUCTALERTEVT1.WORKSTATION} MESSAGE=%{PRODUCTALERTEVT1.WORKSTATION}
corruption
</scope>
<parameter name="ObjectKey">
<value>%{productAlertEvt1.Workstation}</value>
</parameter>
<parameter name="Message">
<value>%{productAlertEvt1.Workstation} corruption</value>
</parameter>
<parameter name="Severity">
<value>Info</value>
</parameter>
</action>
</eventRule>
</eventRuleSet>

Rule operation notes
The following contains critical information on event rule behavior that might help
you understand the reason for unexpected results:

Notes on rule status

v Depending on its from and to validity dates, the status of any rule
changes as follows upon deployment:
– If you create a rule with already expired from and to validity dates,

the rule is saved in activation pending state. When the rule is
deployed, it remains in activation pending status.

– If you set the to validity field to a future date, the rule is deployed in
the active state. If you reset it to a past date, the rule is redeployed
in the no active state.

v Rule activity times (start and end) do not affect rule status. As long as a
rule is within the right validity dates, the rule remains in the active
state regardless whether it is within its defined activity times. If the
scheduler receives a rule 's defined events outside its activity time, the
events are discarded but the rule stays in the active status.

Chapter 8. Running event-driven workload automation 147

Event rule paths
Only on Windows operating systems, when you define a path for an event
rule, you cannot use the slash / but only the single backslash \ or double
backslash \\.

Event rules constrained by files
When you have a file monitoring event rule constrained by the creation or
existence of a file, if this file is deleted and then re-created in the same
time interval between two consecutive checks, this file is unchanged for
IBM Workload Scheduler and the event rule is not triggered. The time
interval between checks can be reduced to a minimum of 5 seconds, but
this involves a significant performance degradation. To avoid this issue, do
not make file actions during this time interval.

File monitoring event rules for files on Network File Systems
To activate a file monitoring event rule for files on Network File Systems,
you must enable the property MonitorRemoteFS in the file
<tws_install_dir>/ssm/Config/init.cfg (for fault-tolerant agents), or in
the file <tws_install_dir>/EDWA/ssm/Config/init.cfg (for lightweight
agents), where <tws_install_dir> is the directory path where the IBM
Workload Scheduler agent is installed. To activate this property, perform
the following actions:
1. Edit the init.cfg file.
2. Change from MonitorRemoteFS=off to MonitorRemoteFS=on.
3. Stop the System Service Monitor (SSM) agent.
4. Start the SSM agent.

Note: On Windows operating systems, the remote workstation address
must be included at the beginning of the full path of the file to be
monitored. For example: \\123.123.123.123\images\Automation\
myFile.txt. This is not needed on UNIX operating systems.

Lack of persistence in rule instance status
If the event processor is stopped or crashes, the status of rule instances
that are only partially matched is lost.

Repeating set and sequence rules
Typically, each active rule has one, and only one, copy that runs in the
event processing server.Set and sequence rules use the mechanism
explained in the following example:
1. You define a sequence rule with two events, A and B.
2. When the first event that matches the sequence occurs (event A), it

activates the rule and waits for the second event (event B).
Once the rule is active, any additional event A events that may arrive
are ignored. No additional rules are created for any newly detected
event A events as long as the rule is waiting for event B.

3. Once event B occurs, the rule is completed and resets, waiting for event
A to occur again.

The mechanism of set and sequence rules is such that any additional
occurrences of an already detected event are ignored and discarded if the
other defined events have not arrived.

You can prevent this problem by using correlation attributes. Using one or
more correlation attributes is a method for directing a rule to create a
separate rule copy when another event A arrives.

148 IBM Workload Scheduler: User’s Guide and Reference

Set and sequence rule types with shorter than 24 hours activity time windows

Occurrences of set or sequence rules that were defined to be active for
only a few hours of every day, are not purged when the activity period
within each day expires if only part of the events arrive. They remain in an
idle state, waiting to receive the remaining events in the following days.

For example, you define a set rule that includes two events. The rule is
valid from January 1 to January 10, and is active daily from 6 to 10 AM.

If on January 1 the first event is received at 8 AM, the rule waits for the
second event to take place, and stays alive beyond 10 AM if the event is
not detected.

If the second event is received at 11 AM (which is out of the activity time
window), it is discarded, but the rule keeps on staying alive. If the second
event is received again at 7 AM of January 2, the rule is triggered and the
actions are implemented.

If you don not want the rule to carry over to the next day, you should
purge it.

Triggered rule elements
Every time the event conditions listed in a deployed event rule are matched, or
timeout, an event rule instance is created. An event rule instance includes
information like event rule name, date and time when it was matched, and the list
of action instances, and their status, that were run as a result of the matching event
conditions. The RuleInstance object is used to collect information about triggered
rules in a history log of rule instances.

Actions carried out by a triggered rule are collected in a history log of action runs.
The provided information includes action runs that have been completed with
errors or warnings, as opposed to successful ones. If at least one action ends in
error, then the whole rule instance will be reported in error. As part of the
information tracked in action runs, rule fields are also maintained, and queries can
be executed to look for action runs based on these fields (the rule instance
identifier is also available).

Defining custom events
In addition to the already defined event types and event classes (known as
providers) listed in detail in “Event providers and definitions” on page 813, IBM
Workload Scheduler supplies the template of a generic event provider named
GenericEventPlugIn that programmers with specific application and XML
programming skills can modify to define custom event types that might be of use
to the organization.

The tools supplied to define custom event types are:
v The GenericEventPlugIn event provider in XML
v The evtdef utility command with which a programmer can download the

GenericEventPlugIn event provider as a local file to define the custom events
v The XML schema definition (XSD) files necessary to validate the modified

generic event provider. They also contain online guidelines to aid in the
programming task.

v The sendevent utility command with which the custom events can be sent to the
event processing server to trigger rules from any agent or any workstation
running simply the IBM Workload Scheduler remote command line client.

Chapter 8. Running event-driven workload automation 149

This is the flow for defining and using custom events:
1. With the evtdef command, the programmer:

a. Downloads the generic event provider as a local file.
b. Follows the schema definitions to add custom event types and to define

their properties and attributes in the file with an XML editor.
c. Uploads the local file as the modified generic event provider containing the

new custom event type definitions. The modified generic event provider is
saved in an XML file on the master domain manager.

2. The rule builder, or the administrator, defines, with either composer or the
Dynamic Workload Console, the event rules that are to be triggered by these
custom events, specifying:
v The generic event provider as the event provider
v The custom event types as the event types
v The custom event type properties (or attributes) defined for the custom

events in the generic event provider with the particular values that will
trigger the rules.

3. Deploy the rules.
4. When the occurrence of a custom event takes place, it can be sent to the event

processing server in one of the following ways:
v By the sendevent command, run from a script or from the command line
v By another application, such as Tivoli Enterprise Console or Tivoli

Monitoring
As soon as the event is received by the event processing server, it triggers the
rule.

150 IBM Workload Scheduler: User’s Guide and Reference

Chapter 9. Defining objects in the database

IBM Workload Scheduler is based on a set of object definitions that are used to
map your scheduling environment into the database. Scheduling objects are:
v calendars
v domains
v event rules
v jobs
v job streams
v prompts
v parameters
v resources
v run cycle groups
v variable tables
v workload applications
v workstations
v workstation classes
v users

A special set of scheduling objects is composed of the security objects. Security
objects map the role-based security in your scheduling environment. Security
objects are:
v access control lists
v security domains
v security roles

Defining scheduling objects
Scheduling objects are managed with the composer command-line program and
are stored in the IBM Workload Scheduler database. The composer command-line
program can be installed and used on any machine connected through TCP/IP to
the system where the master domain manager is installed. It does not require the
installation of an IBM Workload Scheduler workstation as a prerequisite. It
communicates through HTTP/HTTPS with the master domain manager where the
DB2 database is installed. The HTTP/HTTPS communication setup and the
authentication check are managed by the WebSphere Application Server
infrastructure. The composer program uses edit files to update the scheduling
database. The format of the edit file used to define a specific object is described
later in this chapter. For example, to create a new object, enter its definition in an
edit file, and then use composer to add it to the database by specifying the edit file
containing the definition. The composer command-line program checks for correct
syntax inside the edit file, and, if correct, transforms the object definition into XML
language and then sends the request through HTTP/HTTPS to the master domain
manager.

On the master domain manager the XML definition is parsed, semantic and
integrity checks are performed, and then the update is stored in the database.

With this version of the product all entries are managed individually. Another
feature introduced with this new version is the object locking mechanism.
Scheduling objects defined in the database are locked while accessed by a user to
prevent concurrent accesses. This means that only the user locking the object has

151

write permission to that object, and other users have read only access to that
object. For additional information refer to “lock” on page 337 and “unlock” on
page 353.

You can use short and long keywords when issuing commands from composer, as
shown in Table 20 and Table 21. The first two columns on the left list the long and
short keyword formats currently supported by IBM Workload Scheduler. The
rightmost column lists the formats compatible with earlier versions that you want
to use if your network includes pre-version 8.3 installations.

Table 20. List of supported scheduling object keywords

Long keywords Short keywords

Keywords compatible with
installations earlier than

version 8.3

calendar cal calendars

domain dom cpu

eventrule erule | er —

jobdefinition jd jobs

jobstream js sched

parameter parm parms

prompt prom prompts

resource res resources

user user users

variabletable vt —

wat wat —

workstation ws cpu

workstationclass wscl cpu

Note: The cpu keyword is maintained to represent domains, workstations, and
workstation classes for compatibility with earlier versions.

Table 21. List of supported security object keywords

Long keywords Short keywords

Keywords compatible with
installations earlier than

version 8.3

accesscontrollist acl —

securitydomain sdom —

securityrole srol —

The composer program does not issue specific warnings if scheduling language
keywords are used as names of scheduling objects. However, the use of such
keywords can result in errors, so avoid using the keywords listed in Table 22 when
defining jobs and job streams:

Table 22. List of reserved words when defining jobs and job streams

List of reserved words:

abendprompt after as at autodocoff

autodocon canc carryforward confirmed continue

152 IBM Workload Scheduler: User’s Guide and Reference

Table 22. List of reserved words when defining jobs and job streams (continued)

List of reserved words:

dateval day(s) day_of_week deadline description

docommand draft end every everyday

except extraneous fdignore fdnext fdprev

filename follows freedays from go

hi i18n_id i18n_priority interactive isdefault

isuserjob jobfilename jobs join keyjob

keysched limit matching members needs

nextjob nop notempty number on

onuntil op opens order outputcond

previous priority prompt qualifier rccondsucc

recovery relative request rerun runcycle

sa sameday schedtime schedule scriptname

stop streamlogon su succoutputcond tasktype

timezone to token_in until validfrom

validto vartable vt weekday(s) workday(s)

Avoid using the keywords listed in Table 23 when defining workstations,
workstation classes, and domains:

Table 23. List of reserved words when defining workstations

List of reserved words:

access AIX agent_type autolink behindfirewall

command cpuclass cpuname description domain

enabled end extraneous for force

fta fullstatus host hpux ibm i

ignore isdefault linkto maestro manager

master members mpeix mpev mpexl

mpix node number off on

os other parent posix server

secureaddr securitylevel tcpaddr timezone type

tz tzid UNIX using vartable

wnt

Avoid using the keywords listed in Table 24 when defining users:

Table 24. List of reserved words when defining users

List of reserved words:

username password end

Chapter 9. Defining objects in the database 153

|

Using object definition templates

Scheduling object definition templates are available for your use in the
TWS_home\templates directory. You can use the templates as a starting point when
you define scheduling objects.

Note that the dates in the templates are in the format expressed in the date format
local option.

Workstation definition
In an IBM Workload Scheduler network, a workstation is a scheduling object that
runs jobs. You create and manage the scheduling object workstation in the IBM
Workload Scheduler database by using a workstation definition. A workstation
definition is required for every object that runs jobs. Typically, a workstation
definition is used to represent a physical workstation but, in the case of extended
agents for example, it represents a logical definition that must be hosted by a
physical workstation.

When defining a new workstation, you can choose the licensing type to be applied
to it. The licensing type determines the criteria by which the workload run by IBM
Workload Scheduler on the workstation is accounted for and license consumption
is evaluated. For more information about licensing, see the section about License
Management in IBM License Metric Tool in Administration Guide.

You can include multiple workstation definitions in the same text file, together
with workstation class definitions and domain definitions. A workstation definition
has the following syntax:

Syntax

cpuname workstation [description "description"]
[licensetype type]
[vartable table_name]
os os-type
[node hostname] [tcpaddr port]
[secureaddr port] [timezone|tz tzname]
[domain domainname]
[for maestro [host host-workstation [access method | agentID agentID]]

[type fta | s-agent | x-agent | manager | broker | agent | rem-eng |
pool | d-pool]

[ignore]
[autolink on | off]
[behindfirewall on | off]
[securitylevel enabled | on | force]
[fullstatus on | off]
[server serverid]]
[protocol http | https]
[members [workstation] [...]]

[requirements jsdl_definition]]
end

[cpuname ...]

[cpuclass ...]

154 IBM Workload Scheduler: User’s Guide and Reference

/
/
/
/
/

/

[domain ...]

Arguments

Table 25. Attribute settings for management workstation types

Attributes Master domain manager Domain manager Backup domain manager

cpuname The name of the workstation.

description A description for the workstation enclosed within double quotation marks. This
attribute is optional.

licensetype Specifies the licensing type to be applied to the workstation.

vartable The name of a variable table associated with the workstation. Variables used with
the workstation are defined in this table. This attribute is optional.

os The operating system installed on the system. Specify one of the following values:

UNIX
WNT
OTHER
IBM_i

node The system host name or IP address.

tcpaddr The value assigned to nm port in the localopts file. For multiple workstations on a
system, enter an unused port number. The default value is 31111.

secureaddr The value assigned to nm ssl port in the localopts file. Specify it if securitylevel is
set to on, force or enabled.

timezone | tz The time zone in which the system is located. It is recommended that the value
matches the value set on the operating system.

domain MASTERDM The name of the managed domain.

host Not applicable

access Not applicable

type manager fta

ignore Use this attribute if you do not want this workstation to be included in the next
production plan.

autolink It indicates if a link between workstations is automatically opened at startup time.
Specify one of the following values:

ON
OFF

This is an optional attribute. The default value is ON.

behindfirewall This setting is ignored. It indicates if there is a firewall between the
workstation and the master domain manager. Specify
one of the following values:

ON
OFF

The default value is OFF.

securitylevel The type of SSL authentication to use:

enabled
on
force

Chapter 9. Defining objects in the database 155

//

Table 25. Attribute settings for management workstation types (continued)

Attributes Master domain manager Domain manager Backup domain manager

fullstatus ON

server Not applicable This setting is ignored.

protocol Not applicable

members Not applicable

requirements Not applicable

Table 26 describes the values that you set for each attribute for target workstation
types. Following the table you find additional details about each attribute.

Table 26. Attribute settings for target workstation types

Attribute Fault-tolerant agent
and standard agent

Workload
broker
workstation

Extended
agent

Agent Remote engine
workstation

Pool Dynamic
pool

cpuname The name of the workstation.

description A description for the workstation enclosed within double quotation marks. This attribute is optional.

licensetype Specifies the licensing type to be applied to the workstation. This property applies to the following workstation
types:

v Fault-tolerant agent

v Standard agent

v Agent

vartable The name of a variable table associated with the workstation. Variables used with the workstation are defined in
this table. This attribute is optional.

os The operating
system installed on
the system. Specify
one of the following
values:

UNIX
WNT
OTHER
IBM_i

Specify OTHER for
IBM i systems
running as limited
fault-tolerant agents.

OTHER The operating
system
installed on the
machine.
Specify one of
the following
values:

UNIX
WNT
OTHER
IBM_i

This value
setting is
discovered on
the system.

The operating
system
installed on the
machine.
Specify one of
the following
values:

UNIX
WNT
ZOS

The operating system
installed on the
machine. Specify one
of the following
values:

UNIX
WNT
OTHER
IBM_i

node The system host name or IP address. The system
host name or
IP address.
Specify NULL
when host is
set to $MASTER,
or when
defining an
extended agent
for PeopleSoft,
SAP or Oracle.

Agent host
name or IP
address.

Remote engine
host name or
IP address.

Not applicable

156 IBM Workload Scheduler: User’s Guide and Reference

//
/
/
/
/

Table 26. Attribute settings for target workstation types (continued)

Attribute Fault-tolerant agent
and standard agent

Workload
broker
workstation

Extended
agent

Agent Remote engine
workstation

Pool Dynamic
pool

tcpaddr The value assigned
to nm port in the
localopts file. When
defining multiple
workstations on a
system, enter an
unused port
number. The default
value is 31111.

The value
assigned to nm
port in the
localopts file.
When defining
multiple
workstations
on a system,
enter an
unused port
number. The
default value is
41114.

See the
selected access
method
specifications.

The port
number to
communicate
with the agent
when the
protocol is
http.

The port
number to
communicate
with the
remote engine
when the
protocol is
http.

Not applicable

secureaddr The value assigned
to nm ssl port in the
localopts file.
Specify it if
securitylevel is set
to on, force or
enabled.

Not Applicable Not Applicable The port
number to
communicate
with the agent
when the
protocol is
https.

The port
number to
communicate
with the
remote engine
when the
protocol is
https.

Not applicable

timezone | tz The time zone in which the system is
located. It is recommended that the
value matches the value set on the
operating system.

The time zone
set on the
workstation
specified in the
host attribute.

The time zone
set on the
agent.

The time zone
set on the
remote engine.

The time
zone set
on the
pool
agents.

The time
zone set
on the
dynamic
pool
agents.

domain Specify an existing
domain. The default
value for
fault-tolerant agents
is MASTERDM. This
setting is mandatory
for standard agents.

Specify an
existing
domain. This
setting is
mandatory.

This setting is
needed only if
the value
assigned to
host is
$MANAGER.

Not applicable

host Not Applicable The host
workstation. It
can be set to
$MASTER or
$MANAGER.

The broker workstation.

access Not Applicable Select the
appropriate
access method
file name.

Not Applicable

agentID The unique
identifier of
the agent

type fta
s-agent

The default value is
fta.

Specify fta for IBM
isystems running as
limited fault-tolerant
agents.

broker x-agent agent rem-eng pool d-pool

ignore Use this attribute if you do not want this workstation to appear in the next production plan.

Chapter 9. Defining objects in the database 157

Table 26. Attribute settings for target workstation types (continued)

Attribute Fault-tolerant agent
and standard agent

Workload
broker
workstation

Extended
agent

Agent Remote engine
workstation

Pool Dynamic
pool

autolink It indicates if a link between
workstations is automatically opened
at startup. Specify one of the
following values:

ON
OFF

This is an optional attribute. The
default value is ON.

OFF Not applicable

behindfirewall It indicates if there is a firewall
between the workstation and the
master domain manager. Specify one
of the following values:

ON
OFF

The default value is OFF.

OFF Not applicable

securitylevel The type of SSL
authentication to
use:

enabled
on
force

Not applicable for
IBM i systems
running as limited
fault-tolerant agents.

Not Applicable

fullstatus It indicates if the
workstation is
updated about job
processing status in
its domain and
subdomains. Specify
one of the following
values:

ON
OFF

Specify OFF for
standard agents.

OFF Not applicable

server 0-9, A-Z. When specified, it requires
the creation of a dedicated mailman
processes on the parent workstation.

Not Applicable

158 IBM Workload Scheduler: User’s Guide and Reference

Table 26. Attribute settings for target workstation types (continued)

Attribute Fault-tolerant agent
and standard agent

Workload
broker
workstation

Extended
agent

Agent Remote engine
workstation

Pool Dynamic
pool

protocol Not applicable Specify one of the following
values:

http
https

This attribute is optional. When
not specified, it is automatically
determined from the settings
specified for tcpaddr and
secureaddr.

Not applicable

members Not applicable Required
value

Not
applicable

requirements Not applicable Required
value

The following list gives additional details for the workstation definition attributes:

cpuname workstation
Specifies the name of the workstation. Workstation names must be unique
and cannot be the same as workstation class names.

The name must start with a letter, and can contain alphanumeric
characters, dashes, and underscores. It can contain up to 16 characters.

Do not use in this field any of the reserved words specified in Table 22 on
page 152.

description ”description”
Provides a description of the workstation. The description can contain up
to 120 alphanumeric characters. The text must be enclosed within double
quotation marks.

licensetype type
Specifies the licensing type to be applied to the workstation. Use this
keyword when you set the licenseType optman keyword to
byWorkstation. The licensing type determines the criteria by which the
workload run by IBM Workload Scheduler on the workstation is accounted
for and license consumption is evaluated. For more information about
licensing, see the section about License Management in IBM License
Metric Tool in Administration Guide. Supported values are as follows:

perJob
Your license consumption is evaluated based on the number of jobs
that run on the workstation each month.

perServer
Your license consumption is evaluated based on the number of
chargeable IBM Workload Scheduler components installed on the
workstation.

If you install a dynamic agent and a fault-tolerant agent on the same
workstation in the same path, the agents share the same license file. As a
result, only the license type which is defined later in time is applied. For
this reason, it is advisable to define the same license type for both agent
workstations.

Chapter 9. Defining objects in the database 159

/
/
/
/
/
/
/
/

/
/
/

/
/
/
/

/
/
/
/
/

vartable table_name
Specifies the name of the variable table that you want to associate with the
workstation. Variables used with the workstation are defined in this table.

The name must start with a letter, and can contain alphanumeric
characters, dashes, and underscores. It can contain up to 80 characters.

os os_type
Specifies the operating system of the workstation. When used in remote
engine workstation definitions it represents the operating system of the
IBM Workload Scheduler remote engine.

Valid values are:

UNIX For supported operating systems running on UNIX-based systems,
including LINUX systems.

WNT For supported Windows operating systems.

OTHER
Mandatory value for: dynamic workload broker workstations, and
IBM i systems running as limited fault-tolerant agents. Optional
value for other types of workstations.

ZOS Used with remote engine workstations that are defined to
communicate with IBM Workload Scheduler for z/OS remote
engine.

IBM_i For supported IBM i operating systems.

Note: For an up-to-date list of supported operating systems, see the IBM
Workload Scheduler System Requirements document at http://www-
01.ibm.com/support/docview.wss?rs=672&uid=swg27048858.

node hostname
Specify the host name or the TCP/IP address of the workstation.
Fully-qualified domain names are accepted.

For host names, valid characters are alphanumeric, including dash (-). The
maximum length is 51 characters.

Specify NULL when:
v Defining an extended agent for PeopleSoft, SAP or Oracle.
v host is set to $MASTER

If you are defining a remote engine workstation, specify the host name of
the system where the remote engine is installed.

tcpaddr port
Specifies the netman TCP/IP port number that IBM Workload Scheduler
uses for communicating between workstations.

For workload broker workstations
Specify the value of the TWS.Agent.Port property of the
TWSAgentConfig.properties file.

For remote engine workstations using HTTP protocol to communicate
with the remote engine

Specify the HTTP port number of the remote engine.

For other types of workstations
Specify the value assigned in the localopts file for variable nm
port.

160 IBM Workload Scheduler: User’s Guide and Reference

http://www-01.ibm.com/support/docview.wss?rs=672&uid=swg27048858
http://www-01.ibm.com/support/docview.wss?rs=672&uid=swg27048858

The default value for this field is 31111. Specify a value in the range from 1
to 65535.

secureaddr
Defines the port used to listen for incoming SSL connections. This value is
read when the securitylevel attribute is set.

For workload broker workstations
Ignore this attribute.

For remote engine workstations using HTTPS protocol to communicate
with the remote engine

Specify the HTTPS port number of the remote engine.

For other types of workstations
Specify the value assigned in the localopts file for variable nm ssl
port. The value must be different value from the value assigned to
nm port variable in the localopts file.

If securitylevel is specified, but this attribute is missing, the default value
for this field is 31113. Specify a value in the range from 1 to 65535.See the
IBM Workload Scheduler Administration Guide for information about SSL
authentication and local options set in the TWS_home/localopts
configuration file.

timezone|tz tzname
Specifies the time zone of the workstation. To ensure the accuracy of
scheduling times, this time zone must be the same as the computer
operating system time zone.

When used in remote engine workstation definitions it represents the time
zone set on the IBM Workload Scheduler remote engine.

See Chapter 19, “Managing time zones,” on page 741 for valid time zone
names.

domain domainname
Specifies the name of IBM Workload Scheduler domain the workstation
belongs to. The default value for fault-tolerant workstation is MASTERDM.

IBM Workload Scheduler ignores domain setting when defined for
extended agents, except when the host attribute is set to $MASTER.

This setting is mandatory for standard agent and dynamic workload
broker workstations.

host host-workstation
This attribute is mandatory for extended agents and remote engine
workstations and specifies:

For remote engine workstations, agents, pools and dynamic pools:
The broker workstation hosting the workstation. This field cannot
be updated after the remote engine workstation creation.

For extended agents
The workstation with which the extended agent communicates and
where its access method is installed. The hosting workstation
cannot be another extended agent.

If the hosting workstation is a domain manager for which you
have defined a backup, you can specify one of the following values
to ensure the extended agent is not isolated if the hosting
workstation becomes unavailable:

Chapter 9. Defining objects in the database 161

$MASTER
To indicate that the host workstation for the extended
agent is the master domain manager.

$MANAGER
To indicate that the host workstation for the extended
agent is the domain manager. In this case you must specify
the domain where the agent is located.

In this case make sure that the extended agent methods are
installed also on the backup workstation. You can enable and
disable the automatic resolution of the $MASTER key using the mm
resolve master option in the localopts file.

For more information about the options available in the localopts file, see
IBM Workload Scheduler Administration Guide.

access method
Specifies an access method for extended and network agents. It
corresponds to the name of a file that is located in the TWS_home/methods
directory on the hosting workstation.

Specify NULL when defining an extended agent for PeopleSoft, SAP, or
Oracle.

agentID agentID
The unique identifier of the agent.

type Specifies the type of the workstation. If you plan to change the workstation
types, consider the following rules:
v You can change fault-tolerant agent, standard agent, extended agent,

domain manager and dynamic workload broker workstations to any
workstation type, with the exception of dynamic agent, pool, dynamic
pool, and remote engine.

v You cannot change the type of dynamic agent, pool, dynamic pool, and
remote engine.

Enter one of the following values:

fta If you define a fault-tolerant agent, that is an agent workstation that
launches jobs and resolves local dependencies without a domain
manager. This is the default value for this attribute.

You must specify fta if you want to assign the workstation the role
of backup domain manager or backup master domain manager.

Specify fta for IBM isystems running as limited fault-tolerant
agents.

s-agent
If you define a standard agent, that is an agent workstation that
launches jobs only under the direction of its domain manager.

x-agent
If you define an extended agent, that is an agent workstation that
launches jobs only under the direction of its hosting workstation.
Extended agents can be used to interface IBM Workload Scheduler
with non-IBM systems and applications.

For more information, see IBM Workload Scheduler for Applications.

162 IBM Workload Scheduler: User’s Guide and Reference

manager
If you define a domain manager, that is a workstation that manages
a domain. When defining this type of workstation, specify:

Server NULL

Domain
The name of the domain the workstation manages, if
different from MASTERDM domain.

You specify that a workstation is a manager also in the manager
field of the “Domain definition” on page 171. IBM Workload
Scheduler automatically checks that the values specified in these
fields are consistent.

broker
If you define a dynamic workload broker workstation, that is a
workstation that runs both existing job types and job types with
advanced options. It is the broker server installed with the master
domain manager and the dynamic domain manager. It hosts the
following workstations:
v Extended agent
v Remote engine
v Pool
v Dynamic pool
v Agent. This definition includes the following agents:

– agent
– IBM Workload Scheduler for z/OS Agent
– agent for z/OS
For more information about the agent and IBM Workload
Scheduler for z/OS Agent, see Scheduling Workload Dynamically.
For more information about the agent for z/OS, see Scheduling
with the agent for z/OS.

agent If you define a dynamic agent, that it is a workstation that manages
a wide variety of job types, for example, specific database or file
transfer jobs, in addition to traditional job types. It is hosted by the
workload broker workstation. The workstation definition is
automatically created and registered when you install the dynamic
agent component. In its definition you can edit only the following
attributes:
v Description
v Vartable

Note: If you have the enAddWorkstation global option set to
"yes", the dynamic agent workstation definition is automatically
added to the Plan after the installation process creates the dynamic
agent workstation in the database.

rem-eng
If you define a remote engine workstation, that it is a workstation
used to communicate with a remote engine when binding a locally
defined job, named shadow job, to a specific job running on the
remote engine, named remote job. When the two jobs are bound, the
shadow job status transition maps the remote job status transition.

Chapter 9. Defining objects in the database 163

This mapping is useful also to define and monitor dependencies of
local jobs on jobs running on the remote engine; such dependencies
are called cross dependencies.

For more information about shadow jobs and cross dependencies,
see Chapter 23, “Defining and managing cross dependencies,” on
page 785.

When defining this type of workstation, specify the following
fields:

os The operating system of the remote engine.

host The name of the hosting broker workstation.

node The hostname or the IP address of the remote engine.

When specifying the port number to use to communicate with the
remote engine, use secureaddr if the protocol used is HTTPS,
tcpaddr if the protocol used is HTTP. It is recommended that you
specify in the timezone field the time zone set on the remote
engine.

pool If you define a pool, that is a set of dynamic agents with similar
hardware or software characteristics to submit jobs to. This
workstation is hosted by the workload broker workstation. In its
definition you can edit only the following attributes:
v Description
v Vartable
v Members

d-pool If you define a dynamic pool, that is a set of dynamic agents which
is dynamically defined based on the requirements listed in the
JSDL file specified in the resources attribute. This workstation is
hosted by the workload broker workstation. In its definition you
can edit only the following attributes:
v Description
v Vartable
v Requirements

ignore Specifies that the workstation definition must not be added to the
production plan. If you specify this setting, job streams scheduled to run
on this workstation are not added to the production plan.

autolink
Specifies whether to open the link between workstations at startup.
Depending on the type of the workstation, when you set its value to on:

On a fault-tolerant agent or on a standard agents
It means that the domain manager open the link to the agent when
the domain manager is started.

On a domain manager
It means that its agents open links to the domain manager when
they are started.

This setting is particularly useful when a new production plan is created
on the master domain manager: As part of the production plan generation
all workstations are stopped and then restarted. For each agent with
autolink turned on, the domain manager automatically sends a copy of the

164 IBM Workload Scheduler: User’s Guide and Reference

new production plan and then starts the agent. If autolink is turned on
also for the domain manager, the agent opens a link back to the domain
manager.

If the value of autolink is off for an agent, you can open the link from its
domain manager by running the conman link command on the agent's
domain manager or the master domain manager.

behindfirewall
If set to on, it means there is a firewall between the workstation and the
master domain manager. In this case only a direct connection between the
workstation and its domain manager is allowed and the start workstation,
stop workstation, and showjobs commands are sent following the domain
hierarchy, instead of making the master domain manager or the domain
manager open a direct connection with the workstation.

Set this attribute to off if you are defining a workstation with type broker.

fullstatus
Specify this setting when defining a fault-tolerant agent workstation. For
domain managers this keyword is automatically set to on. Specify one of
the following values:

on If you want the fault-tolerant agent workstation to operate in full
status mode, meaning that the workstation is updated with the
status of jobs and job streams running on all other workstations in
its domain and subordinate domains, but not on peer or parent
domains. The copy of the production plan on the agent is kept at
the same level of detail as the copy of the production plan on its
domain manager.

off If you want the fault-tolerant agent workstation to be informed
about the status of jobs and job streams only on other workstations
that affect its own jobs and job streams. Specifying "off" can
improve performance by reducing network activity.

securitylevel
Specifies the type of SSL authentication for the workstation. Do not specify
this attribute for a workstation with type broker. It can have one of the
following values:
enabled

The workstation uses SSL authentication only if its domain
manager workstation or another fault-tolerant agent below it in the
domain hierarchy requires it.

on The workstation uses SSL authentication when it connects with its
domain manager. The domain manager uses SSL authentication
when it connects to its parent domain manager. The fault-tolerant
agent refuses any incoming connection from its domain manager if
it is not an SSL connection.

force The workstation uses SSL authentication for all of its connections
and accepts connections from both parent and subordinate domain
managers. The workstation refuses any incoming connection that is
not an SSL connection.

If this attribute is omitted, the workstation is not configured for SSL
connections and any value for secureaddr is ignored. Make sure, in this
case, that the nm ssl port local option is set to 0 to ensure that netman
process does not try to open the port specified in secureaddr. See the IBM
Workload Scheduler Administration Guide for information about SSL
authentication.

Chapter 9. Defining objects in the database 165

The following table describes the type of communication used for each
type of securitylevel setting.

Table 27. Type of communication depending on the security level value

Value set on the
Fault-tolerant Agent (or
the Domain Manager)

Value set on its Domain
Manager (or on its Parent
Domain Manager)

Type of connection
established

Not specified Not specified TCP/IP

Enabled Not specified TCP/IP

On Not specified No connection

Force Not specified No connection

Not specified On TCP/IP

Enabled On TCP/IP

On On SSL

Force On SSL

Not specified Enabled TCP/IP

Enabled Enabled TCP/IP

On Enabled SSL

Force Enabled SSL

Not specified Force No connection

Enabled Force SSL

On Force SSL

Force Force SSL

The value for securitylevel is not specified for dynamic workload broker
workstations or for workstations with an IBM Workload Scheduler agent
V8.2 or earlier.

server ServerID
Use the server attribute in the fault-tolerant agent workstation definition to
reduce the time required to initialize agents and to improve the timeliness
of messages. By default, communications with the fault-tolerant agents are
handled by a mailman process running on the domain manager. The
server attribute allows you to start a mailman process on the domain
manager to handle communications with this fault-tolerant agent
workstation only.

If you are defining a fault-tolerant agent that can work as a backup
domain manager, the ServerID is used only when the workstation works as
a fault-tolerant agent; the setting is ignored when the workstation works as
a backup domain manager.

Within the ServerID, the ID is a single letter or a number (A-Z and 0-9).
The IDs are unique to each domain manager, so you can use the same IDs
in other domains without conflict. A specific ServerID can be dedicated to
more than one fault-tolerant agent workstation.

As best practices:
v If more than 36 server IDs are required in a domain, consider to splitting

the domain into two or more domains.
v If the same ID is used for multiple agents, a single server is created to

handle their communications. Define extra servers to prevent a single
server from handling more than eight agents.

166 IBM Workload Scheduler: User’s Guide and Reference

If a ServerID is not specified, communications with the agent are handled
by the main mailman process on the domain manager.

protocol http | https
Specifies the protocol to use to communicate with:

The broker workstation
If the workstation is an agent workstation.

The remote engine
If the workstation is a remote engine workstation.

members [workstation] [...]
Use this value for a pool workstation to specify the agents that you want
to add to the pool.

requirements jsdl_definition
Use this value for a dynamic pool workstation to specify the requirements,
in JSDL format; the agents that satisfy the requirement automatically
belong to the dynamic pool. You use the following syntax:
jsdl_definition:
<jsdl:resources>
<jsdl:logicalResource subType="MyResourceType"/>
</jsdl:resources>

For more information about JSDL syntax, see Scheduling Workload
Dynamically.

Note: You can add workstation definitions to the database at any time, but you
must run JnextPlan -for 0000 again to be able to run jobs on newly created
workstations. Every time you run JnextPlan, all workstations are stopped and
restarted.

Examples

The following example creates a master domain manager named hdq-1, and a
fault-tolerant agent named hdq-2 in the master domain. Note that a domain
argument is optional in this example, because the master domain defaults to
masterdm.
cpuname hdq-1 description “Headquarters master DM”

os unix
tz America/Los_Angeles
node sultan.ibm.com
domain masterdm
for maestro type manager

autolink on
fullstatus on

end

cpuname hdq-2
os wnt
tz America/Los_Angeles
node opera.ibm.com
domain masterdm
for maestro type fta

autolink on
end

The following example creates a domain named distr-a with a domain manager
named distr-a1 and a standard agent named distr-a2:

Chapter 9. Defining objects in the database 167

domain distr-a
manager distr-a1
parent masterdm

end

cpuname distr-a1 description “District A domain mgr”
os wnt
tz America/New_York
node pewter.ibm.com
domain distr-a
for maestro type manager

autolink on
fullstatus on

end

cpuname distr-a2
os wnt
node quatro.ibm.com
tz America/New_York
domain distr-a
for maestro type s-agent

end

The following example creates a fault-tolerant workstation with SSL authentication.
The securitylevel security definition specifies that the connection between the
workstation and its domain manager can be only of the SSL type. Port 32222 is
reserved for listening for incoming SSL connections.
cpuname ENNETI3

os WNT
node apollo
tcpaddr 30112
secureaddr 32222
for maestro

autolink off
fullstatus on
securitylevel on

end

The following example creates a broker workstation. This workstation manages the
lifecycle of IBM Workload Scheduler workload broker type jobs in dynamic
workload broker.
cpuname ITDWBAGENT

vartable TABLE1
os OTHER
node itdwbtst11.ibm.com TCPADDR 41114
timezone Europe/Rome
domain MASTERDM
for MAESTRO

type BROKER
autolink OFF
behindfirewall OFF
fullstatus OFF

end

The following example creates a remote engine workstation to use to manage cross
dependencies and communicate with a remote engine installed on a system with
hostname London-hdq using the default HTTPS port 31116. The remote engine
workstation is hosted by the broker workstation ITDWBAGENT
cpuname REW_London

description "Remote engine workstation to communicate with London-hdq"
os WNT
node London-hdq secureaddr 31116
timezone Europe/London

168 IBM Workload Scheduler: User’s Guide and Reference

for maestro host ITDWBAGENT
type rem-eng
protocol HTTPS

end

The following example shows how to create a dynamic pool of agents. All agents
in the dynamic pool must have the HP-UX or Linux operating systems installed:
CPUNAME DPOOLUNIX

DESCRIPTION "Sample Dynamic Pool Workstation"
VARTABLE table1
OS OTHER
TIMEZONE Europe/Rome
FOR MAESTRO HOST MAS86MAS_DWB
TYPE D-POOL

REQUIREMENTS
<?xml version="1.0" encoding="UTF-8"?>

<jsdl:resourceRequirements
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl">

<jsdl:resources>
<jsdl:candidateOperatingSystems>

<jsdl:operatingSystem type="HPUX"/>
<jsdl:operatingSystem type="LINUX"/>

</jsdl:candidateOperatingSystems>
</jsdl:resources>

</jsdl:resourceRequirements>
END

The following example shows how to create a dynamic pool of agents. All agents
in the dynamic pool must have the Windows 2000 operating system installed:
CPUNAME DPOOLWIN

DESCRIPTION "Sample Dynamic Pool Workstation"
OS WNT
TIMEZONE Europe/Rome
FOR MAESTRO HOST MAS86MAS_DWB
TYPE D-POOL

REQUIREMENTS
<?xml version="1.0" encoding="UTF-8"?>

<jsdl:resourceRequirements
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl">

<jsdl:resources>
<jsdl:candidateOperatingSystems>

<jsdl:operatingSystem type="Windows 2000"/>
</jsdl:candidateOperatingSystems>

</jsdl:resources>
</jsdl:resourceRequirements>
END

The following example shows how to create a pool of agents with name
POOLUNIX and containing two agents: NC121105 and NC117248:
CPUNAME POOLUNIX

DESCRIPTION "Sample Pool Workstation"
OS OTHER
TIMEZONE Europe/Rome
FOR MAESTRO HOST MAS86MAS_DWB
TYPE POOL

MEMBERS
NC121105
NC117248

END

The following example shows how to create a standard agent on which license
consumption is evaluated based on the number of jobs that run on the workstation
each month:

Chapter 9. Defining objects in the database 169

/
/
/

CPUNAME SA1
DESCRIPTION "Sample Standard Agent"
LICENSETYPE PERJOB
VARTABLE TABLE1
OS UNIX
NODE sa1.mycompany.com TCPADDR 31111
SECUREADDR 31113
TIMEZONE Europe/Rome
DOMAIN MASTERDM
FOR MAESTRO
TYPE S-AGENT
IGNORE
AUTOLINK ON
BEHINDFIREWALL ON
SECURITYLEVEL FORCE
FULLSTATUS OFF
SERVER B

END

See also

For information about how to perform the same task from the Dynamic Workload
Console, see:

the Dynamic Workload Console User’s Guide, section about Creating distributed
workstations.

Workstation class definition
A workstation class is a group of workstations for which common jobs and job
streams can be written. You can include multiple workstation class definitions in
the same text file, along with workstation definitions and domain definitions.

When defining workstation classes, ensure that the workstations in the class
support the job types you plan to run on them. The following rules apply:
v Job types with advanced options run only on dynamic agents, pools, and

dynamic pools.
v Shadow jobs run only on remote engines.

Note: When defining a workstation class containing fault-tolerant agents at
versions earlier than 9.3 Fix Pack 1, the following problems might be encountered:
scheduled objects on the fault-tolerant agents are not correctly managed, the
statuses of jobs and job streams are not reported consistently, and the number and
statuses of unsatisfied dependencies related to conditional dependencies are
reported incorrectly.

Each workstation class definition has the following format and arguments:

Syntax

cpuclass workstationclass
[description "description"]
[ignore]
members [workstation | @] [...]
end

[cpuname ...]

[cpuclass ...]

170 IBM Workload Scheduler: User’s Guide and Reference

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

/

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

[domain ...]

Arguments

cpuclass workstationclass
Specifies the name of the workstation class. The name must start with a
letter, and can contain alphanumeric characters, dashes, and underscores. It
can contain up to 16 characters.

Note: You cannot use the same names for workstations and workstation
classes.

description ”description”
Provides a description of the workstation class. The description can contain
up to 120 alphanumeric characters. The text must be enclosed within
double quotes.

ignore Specifies that IBM Workload Scheduler must ignore all workstations
included in this workstation class when generating the production plan.

members workstation
Specifies a list of workstation names, separated by spaces, that are
members of the class. The @ wildcard character means that the workstation
class includes all workstations.

Examples

The following example defines a workstation class named backup:
cpuclass backup

members
main
site1
site2

end

The following example defines a workstation class named allcpus that contains
every workstation:
cpuclass allcpus

members
@

end

See also

For more information about how to perform the same task from the Dynamic
Workload Console, see:

the Dynamic Workload Console User’s Guide, "Designing your Workload" section.

Domain definition

A domain is a group of workstations consisting of one or more agents and a
domain manager. The domain manager acts as the management hub for the agents
in the domain. You can include multiple domain definitions in the same text file,
along with workstation definitions and workstation class definitions. Each domain
definition has the following format and arguments:

Chapter 9. Defining objects in the database 171

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

Syntax

domain domainname[description “description”]
* manager workstation
[parent domainname | ismaster]

end

[cpuname ...]

[cpuclass ...]

[domain ...]

Arguments

domain domainname
The name of the domain. It must start with a letter, and can contain
alphanumeric characters, dashes, and underscores. It can contain up to 16
characters.

description “description”
Provides a description of the domain. The text must be enclosed within
double quotation marks.

* manager workstation
This is a commented field used only to show, when displaying the domain
definition, the name of the workstation that has the role of domain
manager for that domain. Make sure this field remains commented. It is
kept for compatibility with earlier versions. With IBM Workload Scheduler
version 8.3, the information about whether a workstation is a domain
manager is set in the type field in the “Workstation definition” on page
154.

parent domainname
The name of the parent domain to which the domain manager is linked.
The default is the master domain, which does not require a domain
definition. The master domain is defined by the global options master and
master domain.

ismaster
If specified, indicates that the domain is the top domain of the IBM
Workload Scheduler network. If set it cannot be removed later.

Examples

The following example defines a domain named east, with the master domain as
its parent, and two subordinate domains named northeast and southeast:
domain east

description “The Eastern domain”
* manager cyclops

end
domain northeast

description “The Northeastern domain”
* manager boxcar
parent east

end
domain southeast

172 IBM Workload Scheduler: User’s Guide and Reference

description “The Southeastern domain”
* manager sedan
parent east

end

See also

From the Dynamic Workload Console you can perform the same task as described
in:

the Dynamic Workload Console User’s Guide, section about Creating a domain.

Job definition

A job is an executable file, program, or command that is scheduled and launched
by IBM Workload Scheduler. You can write job definitions in edit files and then
add them to the IBM Workload Scheduler database with the composer program.
You can include multiple job definitions in a single edit file.

Two different job types are available: the standard IBM Workload Scheduler job is
a generic executable file, program, or command that you can run statically, while
the job types with advanced options are predefined jobs that you can use to run
specific tasks, either statically or dynamically, such as file transfer operations or
integration with other databases.

The job types with advanced options run only on dynamic agents, pools, dynamic
pools, and remote engines.

To define standard jobs in the composer command line, you use the script and
docommand arguments; to define job types with advanced options, you use the
task argument.

For more information about job types with advanced options, see Chapter 14,
“Extending IBM Workload Scheduler capabilities,” on page 531.

For information about how to pass variables between jobs in the same job stream
instance, see “Passing variables between jobs” on page 599.

Note: Starting from product version 9.4, Fix Pack 1, the composer command line to
create job definitions uses REST APIs. This means that when you create a job using
composer, new APIs are used, which are not compatible with the APIs installed on
masters with previous product versions. As a result, you cannot use a composer at
version 9.4, Fix Pack1 level, to create a job definition on a master where a previous
version of the product is installed.

Each job definition has the following format and arguments:

Syntax

$jobs
[workstation#]jobname

{scriptname filename streamlogon username |
docommand "command" streamlogon username |
task job_definition }

[description "description"]
[tasktype tasktype]

Chapter 9. Defining objects in the database 173

|
|
|
|
|

|
|

|
|
|

|
|

=
=
=
=
=
=

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

[interactive]

[succoutputcond Condition_Name "Condition_Value"]
[outputcond Condition_Name "Condition_Value"]

[recovery
{stop
[after [workstation#]jobname]
[abendprompt "text"]]

|continue
[after [workstation#]jobname]
[abendprompt "text"]] |rerun [same_workstation]

[[repeatevery hhmm] [for number attempts]]
[after [workstation#]jobname]
|[after [workstation#]jobname]
[abendprompt "text"]}

A job itself has no settings for dependencies, these must be added to the job when
it is included in a job stream definition.

You can add or modify job definitions from within job stream definitions.
Modifications to jobs definitions made in job streams definitions are reflected in the
job definitions stored in the database. This means that if you modify the job
definition of job1 in job stream definition js1 and job1 is used also in job stream
js2, also the definition of job1 in js2 definition is modified accordingly.

Note: Wrongly typed keywords used in job definitions lead to truncated job
definitions stored in the database. In fact the wrong keyword is considered
extraneous to the job definition and so it is interpreted as the job name of an
additional job definition. Usually this misinterpretation causes also a syntax error
or a non-existent job definition error for the additional job definition.

Special attention is required in the case where an alias has been assigned to a job.
You can decide to use a different name to refer to a particular job instance within a
job stream, but the alias name must not conflict with the job name of another job
in the same job stream. If a job definition is renamed then jobs having the same
name as the job definition modify the name in accordance with the job definition
name. Here are some examples to understand the behavior of jobs when the job
definition name is modified:

174 IBM Workload Scheduler: User’s Guide and Reference

=
=

Table 28. Examples: renaming the job defintion

Original job definition
names in job stream Rename job definition Outcome

SCHEDULE WKS#JS
:
FTA1#A
FTA1#B as C
END

Rename job A to D SCHEDULE WKS#JS
:
FTA1#D
FTA1#B as C
END

Rename job B to D SCHEDULE WKS#JS
:
FTA1#A
FTA1#D as C
END

Rename job A to C An error occurs when
renaming job A to C because
job C already exists as the
alias for job B.

Refer to section “Job stream definition” on page 209 for information on how to
write job stream definitions.

Arguments

workstation#
Specifies the name of the workstation or workstation class on which the
job runs. The default is the workstation specified for defaultws when
starting the composer session.

For more information on how to start a composer session refer to
“Running the composer program” on page 300. The pound sign (#) is a
required delimiter. If you specify a workstation class, it must match the
workstation class of any job stream in which the job is included.

If you are defining a job that manages a workload broker job, specify the
name of the workstation where the workload broker workstation is
installed. Using the workload broker workstation, IBM Workload Scheduler
can submit job in the dynamic workload broker environment using the
dynamic job submission.

jobname
Specifies the name of the job. The name must start with a letter, and can
contain alphanumeric characters, dashes, and underscores. It can contain
up to 40 characters.

scriptname filename

Specifies the name of the file the job runs. Use scriptname for UNIX and
Windows jobs. For an executable file, enter the file name and any options
and arguments. The length of filename plus the length of Success Condition
(of the rccondsucc keyword) must not exceed 4095 characters. You can also
use IBM Workload Scheduler parameters.

Use this argument to define standard IBM Workload Scheduler jobs.

See “Using variables and parameters in job definitions” on page 184 for
more information.

Chapter 9. Defining objects in the database 175

|

For Windows jobs, include the file extensions. Universal Naming
Convention (UNC) names are permitted. Do not specify files on mapped
drives.

If you are defining a job that manages a workload broker job specify the
name of the workload broker job. Additionally you can specify variables
and the type of affinity that exists between the IBM Workload Scheduler
job and the workload broker job using the syntax outlined in the list below.
To identify an affine job using the:

IBM Workload Scheduler job name
jobName [-var var1Name=var1Value,...,varNName=varNValue]
[-twsAffinity jobname=twsJobName]

dynamic workload broker job ID
jobName [-var var1Name=var1Value,...,varNName=varNValue]
[-affinity jobid=jobid]

dynamic workload broker job alias
jobName [-var var1Name=var1Value,...,varNName=varNValue]
[-affinity alias=alias]

Refer to the IBM Workload Scheduler: Scheduling Workload Dynamically for
detailed information.

If the file path or the file name of the scriptname argument contains
spaces, the entire string must be enclosed between "\" and \" " as shown
below:
scriptname "\"C:\Program Files\tws\myscript.cmd\""

If special characters are included, other than slashes (/) and backslashes
(\), the entire string must be enclosed in quotes (").

The job fails if the script specified in the scriptname option is not found
or does not have execute permission. It abends if the script that is not
found or does not have execute permission includes parameters.

docommand command
Specifies a command that the job runs. Enter a valid command and any
options and arguments enclosed in double quotation marks ("). The length
of command plus the length of Success Condition (of the rccondsucc
keyword) must not exceed 4095 characters. You can also enter IBM
Workload Scheduler parameters.

Use this argument to define standard IBM Workload Scheduler jobs.

The job abends if the file specified with the docommand option is not
found or does not have execute permission.

See “Using variables and parameters in job definitions” on page 184 for
more information.

task job_definition
Specifies the XML syntax for job types with advanced options and shadow
jobs.

To define standard job types, use the docommand or the scriptname
arguments. This argument applies only to workstations of the following
types:
v agent
v pool
v d-pool

176 IBM Workload Scheduler: User’s Guide and Reference

|

|
|

v rem-eng

The syntax of the job depends on the job type you define.

For a complete list of supported job types, see “Creating advanced job
definitions” on page 536.

streamlogon username

The user name under which the job runs. This attribute is mandatory when
scriptname or docommand are specified. The name can contain up to 47
characters. If the name contains special characters it must be enclosed in
double quotation marks ("). Specify a user that can log on to the
workstation on which the job runs. You can also enter IBM Workload
Scheduler parameters.

See “Using variables and parameters in job definitions” on page 184 for
more information.

For Windows jobs, the user must also have a user definition.

See “User definition” on page 185 for user requirements.

If you are defining a job that manages a dynamic workload broker job,
specify the name of the user you used to install dynamic workload broker.

The job fails if the user specified in the streamlogon option does not
exist.

description "description"
Provides a description of the job. The text must be enclosed between
double quotation marks.The maximum number of characters allowed is
120.

tasktype tasktype

Specifies the job type. It can have one of the following values:

UNIX For jobs that run on UNIX platforms.

WINDOWS
For jobs that run on Windows operating systems.

OTHER
For jobs that run on extended agents. Refer to IBM Workload
Scheduler for Applications: User's Guide for information about
customized task types for supported vendor acquired applications.

BROKER
For jobs that manage the lifecycle of a dynamic workload broker
job. Refer to IBM Workload Scheduler: Scheduling Workload
Dynamically for information about how to use dynamic workload
broker.

When you define a job, IBM Workload Scheduler records the job type in
the database without performing further checks. However, when the job is
submitted, IBM Workload Scheduler checks the operating system on the
target workstation and defines the job type accordingly.

interactive

If you are defining a job that manages a dynamic workload broker job
ignore this argument. Specifies that the job runs interactively on your
desktop. This feature is available only on Windows environments.

Chapter 9. Defining objects in the database 177

|
|
|
|

succoutputcond Condition_Name "Condition_Value"
A condition that when satisfied qualifies a job as having completed
successfully and the job is set to the SUCC status. The condition is used
when you need a successor job to start only after the successful completion
of the predecessor job or job stream. They can also be used to specify
alternative flows in a job stream starting from a predecessor job or job
stream. The successor job is determined by which conditions the
predecessor job or job stream satisfies.

When the predecessor is a job stream, the conditional dependency is only a
status condition, as follows: abend, succ, and suppr. The successor job runs
when the predecessor job stream status satisfies the job status specified
using these arguments. You can specify one status, a combination of
statuses, or all statuses. When specifying more than one status or condition
name, separate the statuses or names by using the pipe (|) symbol.You can
specify any number of successful output conditions. The condition can be
expressed as follows:

A return code
On fault-tolerant and dynamic agent workstations only, you can
assign which return code signifies the successful completion of a
job. Job return codes can be expressed in various ways:

Comparison expression
The syntax to use to specify a job return code: The syntax
is:
(RC operator operand)

RC The RC keyword.

operator
Comparison operator. It can have the following
values:

Table 29. Comparison operators

Example Operator Description

RC<value < Less than

RC<=value <= Less than or equal to

RC>value > Greater than

RC>=value >= Greater than or equal to

RC=value = Equal to

RC!=value != Not equal to

RC<>value <> Not equal to

operand
An integer between -2147483647 and 2147483647.

For example, you can define a successful job as a job that
ends with a return code less than or equal to 3 as follows:
succoutputcond UPDATE_OK "(RC <= 3)"

Boolean expression
Specifies a logical combination of comparison expressions.
The syntax is:
comparison_expression operator comparison_expression

178 IBM Workload Scheduler: User’s Guide and Reference

comparison_expression
The expression is evaluated from left to right. You
can use parentheses to assign a priority to the
expression evaluation.

operator
Logical operator. It can have the following values:

Table 30. Logical operators

Example Operator Result

expr_a and expr_b And TRUE if both expr_a and expr_b are
TRUE.

expr_a or expr_b Or TRUE if either expr_a or expr_b is TRUE.

Not expr_a Not TRUE if expr_a is not TRUE.

For example, you can define a successful job as a job that
ends with a return code less than or equal to 3 or with a
return code not equal to 5, and less than 10 as follows:
succoutputcond "(RC<=3) OR ((RC!=5) AND (RC<10))"

A job state
On fault-tolerant and dynamic agent workstations only, you can
assign which job state signifies the successful completion of a job.

An output variable
On dynamic agent workstations only, qualify a job as having
completed successfully using output variables.
v You can set a success condition or other condition for the job by

analyzing the job properties.
For example, for a file transfer job specifically, you enter the
following expression:
${this.File.1.Size}>0

if you want to qualify a file transfer job as successful when the
size of the transferred file is greater than zero.

v You can set a success or other condition for the job by analyzing
the job properties or the job output of another job in the same
job stream.
For example, for a file transfer job, you enter the following
expression:
${this.NumberOfTransferredFiles}=
${job.DOWNLOAD.NumberOfTransferredFiles}

If you want to qualify a file transfer job as successful when the
number of uploaded files in the job is the same as the number of
downloaded files in another job, named DOWNLOAD, in the
same job stream.

v All Xpath (XML Path Language) functions and expressions are
supported, for the above conditions, in the succoutputcond field:
– String comparisons (contains, starts-with, matches, and so on)
– String manipulations (concat, substring, uppercase, and so on)
– Numeric comparison (=, !=, >, and so on)
– Functions on numeric values (abs, floor, round, and so on)

Chapter 9. Defining objects in the database 179

– Operators on numeric values (add, sum, div, and so on)
– Boolean operators

Content in the job log
On dynamic agent workstations only, you can consider a job
successful by analyzing the content of the job log.

You can set a success or unsuccess condition for the job by
analyzing the job output. To analyze the job output, you must
check the this.stdlist variable. For example, you enter the
following expression:
contains(${this.stdlist},"error")

The condition is satisfied if the word "error" is contained in the job
output.

outputcond Condition_Name "Condition_Value"
An output condition that when satisfied determines which successor job
runs. The condition is expressed as Condition_Name "Condition_Value". The
format for the condition expression is the same as that for the
succoutputcond conditions. The following are some examples of output
conditions. For example, to create a condition that signifies that the
predecessor job has completed with errors, you define the output condition
as follows:
v outputcond STATUS_ERR1 "RC=1" to create a condition named

STATUS_ERR1 that signifies that if the predecessor job completes with
return code = 1, then the job completed with errors.

v outputcond BACKUP_FLOW "RC != 5 and RC > 2" to create a condition
named BACKUP_FLOW. If the predecessor job satisfies the condition
then the successor job connected to the predecessor with this conditional
dependency runs.

recovery

Recovery options for the job. The default is stop with no recovery job and
no recovery prompt. Enter one of the recovery options, stop, continue, or
rerun. This can be followed by a recovery job, a recovery prompt, or both.

stop If the job ends abnormally, do not continue with the next job.

continue
If the job ends abnormally, continue with the next job. The job is
not listed as abended in the properties of the job stream. If no
other problems occur, the job stream completes successfully.

rerun If the job ends abnormally, rerun the job. You can use it in
association with the “after [workstation#]jobname” on page 181
and “repeatevery hhmm” options, or with the “after
[workstation#]jobname” on page 181 and “abendprompt "text"” on
page 181 options. You can optionally specify one or more of the
following options to define a rerun sequence:

same_workstation
Specifies whether the job must be rerun on the same
workstation as the parent job. This option is applicable
only to pool and dynamic pool workstations.

repeatevery hhmm
Specifies how often IBM Workload Scheduler attempts to
rerun the failed job. The default value is 0. The maximum

180 IBM Workload Scheduler: User’s Guide and Reference

==
=
=
=
=
=

=
=
=
=

=
=
=

supported value is 99 hours and 59 minutes. The
countdown for starting the rerun attempts begins after the
parent job, or the recovery job if any, has completed.

for number attempts
Specifies the maximum number of rerun attempts to be
performed. The default value is 1. The maximum
supported value is 10.000 attempts.

If you specify a recovery job and both the parent and recovery jobs
fail, the dependencies of the parent job are not released and its
successors, if any, are not run. If you have set the rerun option, the
rerun is not performed. In this case, you must manually perform
the following steps:
1. Manually confirm the recovery job is in SUCC state.
2. Clean up the environment by performing manually the

operations that were to be performed by the recovery job.
3. Submit a rerun of the parent job.

after [workstation#]jobname

Specifies the name of a recovery job to run if the parent job ends
abnormally. Recovery jobs are run only once for each abended
instance of the parent job.

You can specify the recovery job's workstation if it is different from
the parent job's workstation. The default is the parent job's
workstation. Not all jobs are eligible to have recovery jobs run on a
different workstation. Follow these guidelines:
v If either workstation is an extended agent, it must be hosted by

a domain manager or a fault-tolerant agent with a value of on
for fullstatus.

v The recovery job workstation can be in the same domain as the
parent job workstation or in a higher domain.

v If the recovery job workstation is a fault-tolerant agent, it must
have a value of on for fullstatus.

abendprompt "text"
Specifies the text of a recovery prompt, enclosed between double
quotation marks, to be displayed if the job ends abnormally. The
text can contain up to 64 characters. If the text begins with a colon
(:), the prompt is displayed, but no reply is required to continue
processing. If the text begins with an exclamation mark (!), the
prompt is displayed, but it is not recorded in the log file. You can
also use IBM Workload Scheduler parameters.

See “Using variables and parameters in job definitions” on page
184 for more information.

Table 31 on page 182 summarizes all possible combinations of recovery
options and actions.

The table is based on the following criteria from a job stream called sked1:
v Job stream sked1 has two jobs, job1 and job2.
v If selected for job1, the recovery job is jobr.
v job2 is dependent on job1 and does not start until job1 has completed.

Chapter 9. Defining objects in the database 181

=
=
=

=
=
=
=

=
=
=
=
=

=

=
=

=

Table 31. Recovery options and actions

Stop Continue Rerun

Recovery prompt: No
Recovery job: No

Intervention is
required.

Run job2. Rerun job1. If job1
ends abnormally, issue
a prompt. If reply is yes,
repeat above. If job1 is
successful, run job2.

Recovery prompt: Yes
Recovery job: No

Issue recovery
prompt.
Intervention is
required.

Issue recovery
prompt. If reply is
yes, run job2.

Issue recovery prompt.
If reply is yes, rerun
job1. If job1 ends
abnormally, repeat
above. If job1 is
successful, run job2.

Recovery prompt: No
Recovery job: Yes

Run jobr. If it
ends abnormally,
intervention is
required. If it is
successful, run
job2.

Run jobr. Run
job2.

Run jobr. If jobr ends
abnormally, intervention
is required. If jobr is
successful, rerun job1.
If job1 ends abnormally,
issue a prompt. If reply
is yes, repeat above. If
job1 is successful, run
job2.

Recovery prompt: Yes
Recovery job: Yes

Issue recovery
prompt. If reply is
yes, run jobr. If it
ends abnormally,
intervention is
required. If it is
successful, run
job2.

Issue recovery
prompt. If reply is
yes, run jobr. Run
job2.

Issue recovery prompt.
If reply is yes, run jobr.
If jobr ends abnormally,
intervention is required.
If jobr is successful,
rerun job1. If job1 ends
abnormally, repeat
above. If job1 is
successful, run job2.

Notes:

1. "Intervention is required" means that job2 is not released from its
dependency on job1, and therefore must be released by the operator.

2. The continue recovery option overrides the ends abnormally state,
which might cause the job stream containing the ended abnormally job
to be marked as successful. This prevents the job stream from being
carried forward to the next production plan.

3. If you select the rerun option without supplying a recovery prompt,
IBM Workload Scheduler generates its own prompt.

4. To reference a recovery job in conman, use the name of the original job
(job1 in the scenario above, not jobr). Only one recovery job is run for
each abnormal end.

Examples

The following is an example of a file containing two job definitions:
$jobs
cpu1#gl1

scriptname "/usr/acct/scripts/gl1"
streamlogon acct
description "general ledger job1"

182 IBM Workload Scheduler: User’s Guide and Reference

bkup
scriptname "/usr/mis/scripts/bkup"
streamlogon "^mis^"
recovery continue after recjob1

The following example shows how to define the IBM Workload Scheduler TWSJOB
job that manages the workload broker broker_1 job that runs on the same
workload broker agent where the TWSJOB2 ran:
ITDWBAGENT#TWSJOB
SCRIPTNAME "broker_1 -var var1=name,var2=address

-twsaffinity jobname=TWSJOB2"
STREAMLOGON brkuser
DESCRIPTION "Added by composer."
TASKTYPE BROKER
RECOVERY STOP

The following example shows how to define a job which is assigned to a dynamic
pool of UNIX agents and runs the df script:
DPOOLUNIX#JOBDEF7
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition

xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle">

<jsdl:application name="executable">
<jsdle:executable interactive="false">
<jsdle:script>df</jsdle:script>
</jsdle:executable>
</jsdl:application>
</jsdl:jobDefinition>

DESCRIPTION "Added by composer."
RECOVERY STOP

The following example shows how to define a job which is assigned to a dynamic
pool of Windows agents and runs the dir script:
DPOOLWIN#JOBDEF6
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition

xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle">

<jsdl:application name="executable">
<jsdle:executable interactive="false">
<jsdle:script>dir</jsdle:script>
</jsdle:executable>
</jsdl:application>
</jsdl:jobDefinition>

DESCRIPTION "Added by composer."
RECOVERY STOP

The following example shows how to define a job which is assigned to the
NC115084 agent and runs the dir script:
NC115084#JOBDEF3
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition

xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle">

<jsdl:application name="executable">
<jsdle:executable interactive="false">
<jsdle:script>dir</jsdle:script>
</jsdle:executable>

Chapter 9. Defining objects in the database 183

</jsdl:application>
</jsdl:jobDefinition>

DESCRIPTION "Added by composer."
RECOVERY STOP

The following example shows how to define a job which is assigned to a pool of
UNIX agents and runs the script defined in the script tag:
POOLUNIX#JOBDEF5
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition

xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle">

<jsdl:application name="executable">
<jsdle:executable interactive="false">
<jsdle:script>#!/bin/sh

sleep 60
dir</jsdle:script>

</jsdle:executable>
</jsdl:application>
</jsdl:jobDefinition>

DESCRIPTION "Added by composer."
RECOVERY STOP

The following example shows how to define a job which is assigned to a pool of
Windows agents and runs the script defined in the script tag:
POOLWIN#JOBDEF4
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition

xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle">

<jsdl:application name="executable">
<jsdle:executable interactive="false">
<jsdle:script>ping -n 120 localhost</jsdle:script>
</jsdle:executable>
</jsdl:application>
</jsdl:jobDefinition>

DESCRIPTION "Added by composer."
RECOVERY STOP

See also

From the Dynamic Workload Console you can perform the same task as described
in

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

Using variables and parameters in job definitions
A variable is a scheduling object that is part of a variable table and is defined in
the IBM Workload Scheduler database. It can be used by all the agents in the
domain as long as the users have proper authorization in the security file.

A parameter is defined and used locally on an agent (with the parms utility
command).

Variables and parameters have the following uses and limitations in job definitions:

184 IBM Workload Scheduler: User’s Guide and Reference

v Variables and parameters are allowed in the values for the streamlogon,
scriptname, docommand, and abendprompt keywords.

v A variable or parameter can be used as an entire string or as part of it.
v Multiple variables and parameters are permitted in a single field.
v Enclose variable names in carets (^), and enclose the entire string in quotation

marks. Ensure that caret characters are not preceded by a backslash in the string.
If necessary, include the backslash in the definition of the variable or parameter.

v Enclose parameter names in single quotes (') in UNIX, and enclose the entire
string in quotation marks.

v Refer to “Variable and parameter definition” on page 191 for additional
information and examples.

In the following example a variable named mis is used in the streamlogon value:
$jobs
cpu1#bkup

scriptname "/usr/mis/scripts/bkup"
streamlogon "^mis^"
recovery continue after recjob1

For additional examples, see “Variable and parameter definition” on page 191.

For information about passing variables between jobs in the same job stream, see
“Passing variables between jobs” on page 599.

User definition
The user names that are used as the streamlogon value for Windows job
definitions must have user definitions. This is not required for users who run jobs
on other operating systems. If you are using job types with advanced options, you
can use these values regardless of the operating system. For more information, see
“Using user definitions on job types with advanced options” on page 188.

Note: If you have the enAddUser global option set to "yes", the user definition is
automatically added to the plan after you create or modify the user definition in
the database.

Syntax

Each user definition has the following format and arguments:
username[workstation#][domain\]username[@internet_domain]
password “password”
end

Arguments

username

[workstation#]username

workstation
Specifies the workstation on which the user is allowed to
launch jobs. The number sign is required. The default is
blank, meaning all workstations.

username
Specifies the name of the Windows user. The username field
value can contain up to 47 characters.

[workstation#]domain\username

Chapter 9. Defining objects in the database 185

workstation
Specifies the workstation on which the user is allowed to
launch jobs. The number sign is required. The default is
blank, meaning all workstations.

domain\username

Specifies the name of the Windows domain user. The
domain\username field value can contain up to 47
characters.

[workstation#]username@internet_domain

workstation
Specifies the workstation on which the user is allowed to
launch jobs. The number sign is required. The default is
blank, meaning all workstations.

username@internet_domain

Specifies the name of the user in User Principal Name
(UPN) format. UPN format is the name of a system user in
an email address format. The user name is followed by the
"at sign" followed by the name of the Internet domain with
which the user is associated. The username@internet_domain
field value can contain up to 47 characters.

Note:

If you define a user for Windows operating systems:
v User names are case-sensitive. Also, the user must be authorized to log

on to the workstation on which IBM Workload Scheduler launches jobs,
and have the permission to Log on as batch.

v If the user name is not unique, it is taken to mean a local user, a domain
user, or a trusted domain user, in that order.

password
Specifies the user password. The password can contain up to 31 characters,
and must be enclosed in double quotation marks. To indicate a null
password, use two consecutive double quotation marks with no blanks in
between, ””. When a user definition has been saved, you cannot read the
password. Users with appropriate security privileges can modify or delete
a user, but password information is never displayed.

Examples

The following example defines four users:
username joe

password "okidoki"
end
#
username server#jane

password "okitay"
end
#
username dom1\jane

password "righto"
end
#
username jack

password ""

186 IBM Workload Scheduler: User’s Guide and Reference

end
#
username administrator@twsbvt.com

password "internetpwd"
end
#
username serverA#dom1\jack

password "righto"
end
#
username serverB#user1@twsbvt.com

password "internetpwd"
end
#

Comments

Passwords extracted with the composer extract command are of limited use.
When you run the composer extract command on a user definition, the password
is obfuscated with the "**********" reserved keyword. If you try running the
composer import, replace, or modify commands on an extracted user password,
the password replacement has no effect and the old password is maintained. Also,
if you try running the composer create, new, or add commands on a user where
the password equals the "**********" reserved keyword, the following error is
returned:
AWSJCL521E The password specified for the Windows user "USER_NAME" does
not comply with password security policy requirements.

Note that the reserved keyword is a string of ten asterisks (*). You cannot enter a
sequence of ten asterisks as a password, but you can have a password with any
other number of asterisks.

To fix this problem, make sure you run the composer extract with the ;password
option.

See also

For more information about how to perform the same task from the Dynamic
Workload Console, see:

the Dynamic Workload Console User’s Guide, "Designing your Workload" section.

Using the IBM Workload Scheduler user and streamlogon
definitions
On Windows workstations, user definitions are specified using composer in the
form [workstation#]username. The instance [workstation#]username uniquely
identifies the Windows user in the IBM Workload Scheduler environment. The
workstation name is optional; its absence indicates that the user named username is
defined on all the Windows workstations in the IBM Workload Scheduler network.
If the user named username is only defined on some Windows workstations in the
IBM Workload Scheduler network, to avoid inconsistencies, you must create a user
definition [workstation#]username for each workstation running on Windows where
the user username is defined.

If you schedule a job on an agent, on a pool or a dynamic pool, the job runs with
the user defined on the pool or dynamic pool. However, the user must exist on all
workstations in the pool or dynamic pool where you plan to run the job.

Chapter 9. Defining objects in the database 187

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

When you define a job using composer, you must specify both a workstation and a
valid user logon for the workstation. The logon is just a valid user name for
Windows, without the workstation name. For example, in the following job
definition:
$JOB
workstation#job01 docommand "dir"
streamlogon username

the value for streamlogon is username and not workstation#username.

However, when you use the altpass command, you must use the user definition in
the format
workstation#username

For this command, you can omit the workstation name only when changing the
password of the workstation from where you are running the command.

Trusted domain user
If IBM Workload Scheduler is to launch jobs for a trusted domain user, follow
these guidelines when defining the user accounts. Assuming IBM Workload
Scheduler is installed in Domain1 for user account maestro, and user account sue in
Domain2 needs to launch a job, the following must be true:
v There must be mutual trust between Domain1 and Domain2.
v In Domain1 on the computers where jobs are launched, sue must have the right

to Log on as batch.
v In Domain1, maestro must be a domain user.
v On the domain controllers in Domain2, maestro must have the right to Access

this computer from network.

Using user definitions on job types with advanced options
On job types with advanced options, regardless of the operating system of the
dynamic agent that will run the job, you can provide the username of a user
definition in the credentials section of the job and have the password field resolved
at runtime with the password value stored in the database.

For example, when you define the job with the Dynamic Workload Console, you
enter the username of a user definition and click the ellipsis (...) located next to the
password field to display the following Password type widget:

188 IBM Workload Scheduler: User’s Guide and Reference

where you select User as shown. You can likewise code this option in the task
section (JSDL) of the job definition in composer. See the related sections for more
information.

To be able to use this option when you define a job, you need to be authorized in
the security file with the use access keyword for object type userobj, that is:
userobj access=use

IBM Workload Scheduler follows this sequence when it is called to resolve the
username and the password at runtime:
v If the workstation is not specified (for example, ${password:myuser}):

1. Searches myuser on the workstation running the job applying a case sensitive
policy.

2. Searches myuser on the workstation running the job applying a case
insensitive policy.

3. Searches myuser without an associated workstation applying a case sensitive
policy.

4. Searches myuser without an associated workstation applying a case
insensitive policy.

v If the workstation is specified (for example, ${password:agent#myuser}):
1. Searches myuser on workstation agent applying a case sensitive policy.
2. Searches myuser on workstation agent applying a case insensitive policy.
3. Searches myuser without an associated workstation applying a case sensitive

policy.
4. Searches myuser without an associated workstation applying a case

insensitive policy.
v If the workstation is specified but is empty (for example, ${password:#myuser}):

1. Searches myuser without an associated workstation applying a case sensitive
policy.

Figure 24. User definition

Chapter 9. Defining objects in the database 189

2. Searches myuser without an associated workstation applying a case
insensitive policy.

Attention: User definitions lack referential integrity. This implies that, if a user
definition referenced in the credentials section of a job type with advanced options
is changed or deleted, no warning or error message is returned until the job is run.

Calendar definition

A calendar is a list of dates which define if and when a job stream runs. Each
calendar definition has the following format and arguments:

Syntax

$calendar
calendarname [“description”]

date [...]

[calendarname ...]

Arguments

calendarname
Specifies the name of the calendar. The name can contain up to eight
alphanumeric characters, including dashes (-) and underscores (_), and
must start with a letter.

“description”
Provides a description of the calendar. The description can contain up to
120 alphanumeric characters. It must be enclosed in double quotation
marks. It can contain alphanumeric characters as long as it starts with a
letter. It can contain the following characters: comma (,), period (.), dash (-),
plus (+), single quote ('), and equal (=). It cannot contain double quotation
marks (") other than the enclosing ones, colon (:), semi-colon (;), and
ampersand (&).

date [...]
Specifies one or more dates, separated by spaces. The format is mm/dd/yy.

Examples

The following example defines three calendars named monthend, paydays, and
holidays:
$calendar
monthend "Month end dates 1st half 2005"

01/31/2005 02/28/2005 03/31/2005 04/30/2005 05/31/2005 06/30/2005
paydays

01/15/2005 02/15/2005
03/15/2005 04/15/2005
05/14/2005 06/15/2005

holidays
01/01/2005 02/15/2005 05/31/2005

See also

For more information about how to perform the same task from the Dynamic
Workload Console, see:

190 IBM Workload Scheduler: User’s Guide and Reference

the Dynamic Workload Console User’s Guide, "Designing your Workload" section.

Variable and parameter definition
Variables and parameters are objects to which you assign different values.

Variables and parameters are useful when you have values that change depending
on your job streams and jobs. Job stream, job, and prompt definitions that use
them are updated automatically either at the start of the production cycle or at the
time the job runs depending on the format used when the variable is specified.

Use variables and parameters as substitutes for repetitive values when defining
prompts, jobs, and job streams. For example, using variables for user logon and
script file names in job definitions and for file and prompt dependencies permits
the use of values that can be maintained centrally in the database on the master.

While variables are scheduling objects that are defined in the IBM Workload
Scheduler database and can be used by any authorized users in the domain,
parameters are defined and used locally on individual agents.

The following sections describe variables and parameters in detail.

Variables

Variables are defined as scheduling objects in the database. Variables can be
defined individually with the following command:

$parm
[tablename.]variablename “variablevalue”
...

where:

tablename
Is the name of the variable table that is to contain the new variable. The
variable table must be already defined. If you do not specify a variable
table name, the variable is added to the default table.

variablename
Is the name of the variable. The name can contain up to 64 alphanumeric
characters, including dashes (-) and underscores (_), and must start with a
letter.

value Is the value assigned to the variable. The value can contain up to 1024
alphanumeric characters. Do not include the names of other variables.

However, the recommended way to define variables is to use a “Variable table
definition” on page 195. In any case, all variables are placed in a variable table. If
you define a variable and do not specify the name of a variable table, it is included
in the default variable table.

Variables can be used in job and job stream definitions. They are resolved; that is,
they are replaced with their assigned value when the production plan is generated
or extended, or when you submit a job or a job stream for running. The format
used to specify a variable also determines when the variable is resolved with a
value. The following formats can be used when specifying a variable:

Chapter 9. Defining objects in the database 191

|
|
|
|

||
|

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

^variablename^
Specify the variable in this format if you want it resolved when the plan is
generated or extended.

${variablename}
Specify the variable in this format if you want it resolved or overwritten
when the job or job stream is submitted to be run. An option in the job
definition that indicates to resolve variables at the job run time must also
be specified. If this variable is present only in the default variable table, the
variable cannot be resolved. See an example of an application of this kind
of variable in the section “Examples” on page 194.

Attention: When submitting a job stream from the Self-Service Catalog
that contains variables or that has a variable table associated to it, variables
specified in this format, ${variablename}, are not supported. They must be
specified in the ^variablename^ format.

For details on variable resolution, see “Variable resolution” on page 122.

The variable names specified in these definitions are first resolved against variable
table definitions and then on local parameters if the variables are not found.

When you specify a variable, enclose the entire string containing the variable in
quotation marks.

If the variable contains a portion of a path, ensure that the caret characters are not
immediately preceded by a backslash (\) because, in that case, the \^ sequence
could be wrongly interpreted as an escape sequence and resolved by the parser as
caret character. If necessary, move the backslash into the definition of the variable
between carets to avoid bad interpretation of the backslash character. For example,
the following table shows the correct way for defining and using a variable named
MYDIR in the default variable table:

Table 32. How to handle a backslash in variable substitution

Wrong way Right way

1. Define the MYDIR variable as:

$PARM
MYDIR "scripts"

2. Use it in this way:

job01 scriptname
"c:\operid\^MYDIR^\test.cmd"

3. Use it in this way:

job01 scriptname
"c:\operid\${MYDIR}\test.cmd"

1. Define the MYDIR variable as:

$PARM
MYDIR "\scripts"

2. Use it in this way:

job01 scriptname
"c:\operid^MYDIR^\test.cmd"

3. Use it in this way:

job01 scriptname
"c:\operid${MYDIR}\test.cmd"

This is true for all command line commands, graphical user interfaces, and APIs
through which you use variable substitution.

Parameters

Local parameters are defined in a local database on the workstation where the jobs
using them will run. To define them, you do not use this composer command but
the “parms” on page 659 utility command.

192 IBM Workload Scheduler: User’s Guide and Reference

*
*
*
*

Local parameters can be used in:
v JCL
v Log on
v Prompts dependencies
v File dependencies
v Recovery prompts

A local parameter is defined within these keywords or from within the invoked job
script using the following syntax:
’bin\parms PARAMETERNAME’

Local parameters are resolved using the definitions stored in the local PARMS
database as follows:
v At run time on the workstation where job processing occurs.
v At submission time on the workstation where the job or job stream is submitted

from the conman command line. Table 33 summarizes in which submit
command keyword you can use parameters.

Table 33. Keywords that can take local parameters in submit commands

Keyword

submit
docommand

(sbd command)
submit file (sbf

command)
submit job (sbj

command)

submit job
stream (sbs
command)

abendprompt U U U

scriptname U

docommand U

logon U U

opens U U U U

prompt U U U U

For more information on how to submit jobs and job streams in production from
the conman command line refer to Chapter 12, “Managing objects in the plan -
conman,” on page 379.

On UNIX, when you define a job or job stream in the database, you must enclose
the string
path/parms parametername

between ' ' characters to ensure the parameter is solved at run time on the
workstation even if a parameter with the same name is defined as a global
parameter in the IBM Workload Scheduler database. For example, if you add to the
database the following job definition:
$jobs
myjob

docommand "ls ^MYDIR^"
streamlogon "^MYUSER^"

and two parameters named MYDIR and MYUSER are defined in the database, then, as
the production plan is created or extended, the two parameters are resolved using
the definitions contained in the database and their corresponding values are
carried with the Symphony file. If you define in the database myjob as follows:
$jobs
myjob

docommand "ls ’bin/parms MYDIR’"
streamlogon "’bin MYUSER’"

Chapter 9. Defining objects in the database 193

then as the production plan is created or extended the only action that is
performed against the two parameters in the definition of myjob is the removal of
the ' ' characters, the parameters are carried in the Symphony file unresolved and
then are resolved at run time locally on the target workstation using the value
stored in the PARMS database.

Examples

Two parameters, glpah and gllogon, are defined as follows:
$parm
glpath "/glfiles/daily"
gllogon "gluser"

The glpath and gllogon parameters are used in the gljob2 job of theglsched job
stream:
schedule glsched on weekdays
:
gljob2

scriptname "/usr/gl^glpath^"
streamlogon "^gllogon^"
opens "^glpath^/datafile"
prompt ":^glpath^ started by ^gllogon^"

end

An example of a variable used with the docommand keyword is:
docommand "ls ^MY_HOME^"

The following example demonstrates how specifying variables in different formats
allow for variables to have different values because they are resolved at different
times. It also demonstrates how variables can be passed from job to job in a job
stream. The variable, SWITCH_VAR is defined in the variable table, STATETABLE,
with an initial default value of on. The job, UPDATE1, is responsible for changing
the value of the SWITCH_VAR variable in the STATETABLE variable table to off.
The job stream PROCJS contains two identical jobs, PROC1 and PROC2, in which
the SWITCH_VAR variable has been specified in two different formats. The first
sets off the variable with the caret (^) symbol ^var_name^, and the second, uses the
format ${var_name}:
<jsdle:script>echo ^SWITCH_VAR^:${SWITCH_VAR}</jsdle:script>

The order in which these jobs run is the following:
SCHEDULE NC117126#PROCJS
VARTABLE STATETABLE
:
NC117126_1# PROC1

NC117126_1# PROC2
FOLLOWS UPDATE1

NC117126_1# UPDATE1
FOLLOWS PROC1
END

When the job stream is added to the plan, SWITCH_VAR, defined in both PROC1
and PROC2, immediately assumes the default value assigned in the variable table,
on. When the job stream is submitted to be run, the first job to be submitted is
PROC1 and the variable defined as SWITCH_VAR is resolved to on so that the
variables in the PROC1 job are resolved as:
<jsdle:script>echo on:onjsdle:script>echo on:on</jsdle:script>

194 IBM Workload Scheduler: User’s Guide and Reference

UPDATE1 then runs setting the value of SWITCH_VAR in the variable table to off
so that when PROC2 runs, the variables are resolved as:
<jsdle:script>echo on:onjsdle:script>echo on:off</jsdle:script>

The variable specified as ^SWITCH_VAR^ in the job maintains the value of on
because variables in this format are resolved when the job stream is added to the
plan and are not refreshed when the job is submitted to run. Instead, the variable
specified in the format, ${SWITCH_VAR}, which was previously set to on is now
updated with the new value in the variable table off.

Creating a variable definition using the Dynamic Workload
Console

To create a variable definition in the Dynamic Workload Console, you must add it
to a variable table definition:
1. Click IBM Workload Scheduler→Workload→Design→Create Workload

Definitions

2. Select an engine name and click Go

3. Open in edit mode an existing variable table from the Quick Open pane, or
create a new variable table as described in “Variable table definition”

4. In the Properties - Variable Table panel, click the Variables tab and add new
variable definitions by clicking the "+" (Add) icon and specifying variable
names and values

For more information, see Chapter 6, “Customizing your workload using variable
tables,” on page 119.

Variable table definition
A variable table is an object that groups multiple variables. All the global
parameters (now named variables) that you use in workload scheduling are
contained in at least one variable table. Two ways of defining variables are
available:
v Define them when you define a variable table in the way described here. This is

the recommended way.
v Define them individually with the composer $parm command in the

[tablename.]variablename “variablevalue” format. If you do not specify a table name,
the new variable is placed in the default variable table.

You are not forced to create variable tables to be able to create and use variables.
You might never create a table and never use one explicitly. In any case, the
scheduler provides a default table and every time you create or manage a variable
without naming the table, it stores it or looks for it there.

You can define more than one variable with the same name but different value and
place them in different tables. Using variable tables you assign different values to
the same variable and therefore reuse the same variable in job definitions and
when defining prompts and file dependencies. Variable tables can be assigned at
run cycle, job stream, and workstation level.

Variable tables can be particularly useful in job definitions when a job definition is
used as a template for a job that belongs to more than one job stream. For
example, you can assign different values to the same variable and reuse the same
job definition in different job streams.

Chapter 9. Defining objects in the database 195

For more information, see Chapter 6, “Customizing your workload using variable
tables,” on page 119.

Syntax

vartable tablename
[description “description”]
[isdefault]
members
[variablename “variablevalue”]
...
[variablename “variablevalue”]
end

Arguments

vartable tablename
The name of the variable table. The name must start with a letter, and can
contain alphanumeric characters, dashes, and underscores. It can contain up to
80 characters.

description “tabledescription”
The description of the variable table. The text must be enclosed within double
quotation marks. The description can contain up to 120 alphanumeric
characters. It cannot contain double quotation marks (") other than the
enclosing ones, colon (:), semicolon (;), and ampersand (&).

isdefault
When specified, the table is the default table. You cannot mark more than one
table as the default table. When you mark a variable table as the default
variable table, the current variable table is no longer the default one. When
migrating the database from a previous version, the product creates the default
variable table with all the variables already defined.

members variablename “variablevalue”
The list of variables and their values separated by spaces. The name can
contain up to 64 alphanumeric characters, including dashes (-) and underscores
(_), and must start with a letter. The value can contain up to 1024
alphanumeric characters. Values must be enclosed within double quotation
marks.

Example

The following example shows a variable table and its contents.
VARTABLE TEST1

MEMBERS
DEVBATCH "DOMD\IMSBATCH\SAME"
PARAM_01 "date"
PARAM_02 "root"
PARM_01 "PARM_001"
PRPT_02 "PARM_002"
PRPT_03 "PARM_003"
PRPT_04 "PARM_004"
PRPT_05 "PARM_005"
SAME17 "test/for/variable âwith samename > variable/table"
SLAV10 "/nfsdir/billingprod/crmb/MAESTRO_JOB/AG82STGGDWHSCART"
SLAV11 "/nfsdir/billingprod/crmb/MAESTRO_JOB/AG82CDMGALLBCV"
SLAV12 "/nfsdir/billingprod/crmb/MAESTRO_JOB/AG82CDMGRISCTRAF"
SLAV13 "/opt/crm/DWH_OK/Businness_Copy_ok"
SLAV14 "/opt/crm/DWH_OK/DW_Canc_Cust_Gior_ok_"

196 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|
|
|

TRIGGER "/usr/local/samejobtriggers"
VFILE2 "testforvarwithsamename2.sh"
VUSER2 "same_user2"
WRAPPER "/usr/local/sbin/same/phi_job.ksh"

END

Security file considerations

From the standpoint of security file authorizations, permission to act on the
variable entries contained in a variable table is dependent on the overall
permission granted on the variable table, as shown in following table.

Table 34. Required access keyword on variable table in Security file (vartable object) and
allowed actions.

Required security file access keyword on
enclosing variable table

Allowed action on listed variable
entries

Modify

Add

Delete

Modify

Rename

Display Display

Unlock Unlock

See also

For more information about how to perform the same task from the Dynamic
Workload Console, see:

the Dynamic Workload Console User’s Guide, "Designing your Workload" section.

Prompt definition

A prompt identifies a textual message that is displayed to the operator and halts
processing of the job or job stream until an affirmative answer is replied (either
manually by the operator or automatically by an event rule action). After the
prompt is replied to, processing continues. You can use prompts as dependencies
in jobs and job streams. You can use variables in prompts.

There are two types of prompts:

local or unnamed prompts
An unnamed prompt is a prompt defined within a job or job stream
definition using the keyword prompt, it has no name assigned and is not
defined as a scheduling object in the database therefore it cannot be used
by other jobs or job streams.

global or named prompts
A global prompt is defined in the database as a scheduling object, it is
identified by a unique name and it can be used by any job or job stream.
Variables in global prompts are resolved always using the default variable
table. This is because global prompt are used by all jobs and job streams so
just one value must be used for variable resolution.

This section describes global prompts. For more information on local prompts refer
to “Job” on page 876 and “Job stream definition” on page 209.

Chapter 9. Defining objects in the database 197

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

Note: Predefined or global prompt definitions are reset each time the JnextPlan job
is run.

Syntax

$prompt
promptname “[: | !]text”

[promptname ...]

Arguments

promptname
Specifies the name of the prompt. The name can contain up to 8
alphanumeric characters, including dashes (-) and underscores (_), and
must start with a letter.

text

Provides the text of the prompt. The text of the prompt can contain up to
two hundred alphanumeric characters. Based on the character preceding
the text, the prompt can behave differently:
v If the text begins with a colon (:), the prompt is displayed, but no reply

is required to continue processing.
v If the text begins with an exclamation mark (!), the prompt is displayed,

but it is not recorded in the log file.

You can use one or more parameters as part or all of the text string for a
prompt. If you use a parameter, the parameter string must be enclosed in
carets (^). See “Variable and parameter definition” on page 191 for an
example.

Note: Within local prompts, carets (^) not identifying a parameter, must be
preceded by a backslash (\) to prevent them from causing errors in the
prompt. Within global prompts, carets do not have to be preceded by a
backslash.
You can include backslash n (\n) within the text to create a new line.

Examples

The following example defines three prompts:
$prompt

prmt1 "ready for job4? (y/n)"
prmt2 ":job4 launched"
prmt3 "!continue?"

See also

For more information about how to perform the same task from the Dynamic
Workload Console, see:

the Dynamic Workload Console User’s Guide, "Designing your Workload" section.

198 IBM Workload Scheduler: User’s Guide and Reference

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

Resource definition

Resources represent physical or logical scheduling resources that can be used as
dependencies for jobs and job streams. Resources can be used as dependencies
only by jobs and job streams that run on the workstation where the resource is
defined.

Due to the resources dependencies resolution mechanism, a resource dependency
at job stream level can be considered 'local' (and then its use supported) rather
than 'global', when both the job stream and all its jobs are defined on the same
workstation as the resource. However, a standard agent and its host can reference
the same resources. For more information, refer to the “needs” on page 245
keyword.

Syntax

$resource
workstation#resourcename units [“description”]

[workstation#resourcename ...]

Arguments

workstation
Specifies the name of the workstation or workstation class on which the
resource is used.

resourcename
Specifies the name of the resource. The name can contain up to eight
alphanumeric characters, including dashes (-) and underscores (_), and
must start with a letter.

units Specifies the number of available resource units. Values can be 0 through
1024.

“description”

Provides a description of the resource. The description can contain up to
120 alphanumeric characters. It must be enclosed in double quotation
marks.

The resource units involved in needs dependencies for a job or for a job stream
remain busy until the job or job stream is completed (successfully or not). The
resource units are released as soon as the job or job stream is completed.

When multiple jobs and job streams depend on the same resource, if not enough
resource units are currently available for all of them it is assigned according to the
job or job stream priority. The status of a job or job stream becomes READY as
soon as all its dependencies are resolved. If the limit CPU set on the workstation
does not allow it to run at the moment, it waits in READY state. The only
exception to this behavior is when the job or job stream is GO or HI, in which case
it starts regardless of the value set for limit CPU.

Examples

The following example defines four resources:

Chapter 9. Defining objects in the database 199

$resource
ux1#tapes 3 "tape units"
ux1#jobslots 24 "job slots"
ux2#tapes 2 "tape units"
ux2#jobslots 16 "job slots"

See also

For more information about how to perform the same task from the Dynamic
Workload Console, see:

the Dynamic Workload Console User’s Guide, "Designing your Workload" section.

Run cycle group definition
A run cycle group is a database object within which one or more run cycles is
defined. The run cycles combined together produce a set of run dates for a job
stream. A run cycle group can contain:
v Inclusive run cycles that specify when a job stream must run. The keywords

defining the run cycle follow the on keyword.
v Exclusive run cycles that specify when a job stream is not to run. The keywords

defining the run cycle follow the except keyword. Usually an exclusive run cycle
is matched against an inclusive one to define specific dates when the job stream
is exempted from running.

Each of the run cycles includes its own definition keywords. Some of these
keywords can also be defined at run cycle group-level. When a run cycle and the
run cycle group include the same keyword, the value in the run cycle definition is
used for the run cycle. When the run cycle definition omits a certain keyword that
is defined at run cycle group-level, it inherits the value.

Each run cycle group definition has the following format and arguments:

Syntax

$runcyclegroup
runcyclegroupname [“description”]

vartable tablename
[freedays calendarname [-sa] [-su]]

[on [runcycle name
[validfrom date] [validto date]
[description ”text”]
[vartable table_name]]

{date|day|calendar|request|”icalendar”} [,...]
[fdignore|fdnext|fdprev][subset subsetname AND|OR]
[({at time [+n day[s]] |
schedtime time [+n day[s]]}
[until | jsuntil time [timezone|tz tzname][+n day[s]]
[onuntilaction]]

[every rate {everyendtime time[+n day[s]]}
[deadline time [+n day[s]]])]]

[,...]]
[except [runcycle name]

[validfrom date] [validto date]
[description ”text”]
{date|day|calendar|request|”icalendar”} [,...]
[fdignore|fdnext|fdprev][subset subsetname AND|OR]

200 IBM Workload Scheduler: User’s Guide and Reference

=

|

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

[{(at time [+n day[s]])] |
(schedtime time [+n day[s]])}]

[,...]
[{at time [timezone|tz tzname] [+n day[s]] |
schedtime time [timezone|tz tzname] [+n day[s]]}]

[until | jsuntil time [timezone|tz tzname][+n day[s]] [onuntilaction]]
[every rate {everyendtime time[+n day[s]]}]
[deadline time [timezone|tz tzname] [+n day[s]]]

end

Arguments

runcyclegroupname
Specifies the name of the run cycle group. The name can contain up to
eight alphanumeric characters, including dashes (-) and underscores (_),
and must start with a letter.

“description”
Provides a description of the run cycle group. The description can contain
up to 120 alphanumeric characters. It must be enclosed in double quotation
marks. It can contain alphanumeric characters as long as it starts with a
letter. It can contain the following characters: comma (,), period (.), dash (-),
plus (+), single quote ('), and equal (=). It cannot contain double quotation
marks (") other than the enclosing ones, colon (:), semi-colon (;), and
ampersand (&).

vartable tablename
The name of the variable table. The name must start with a letter, and can
contain alphanumeric characters, dashes, and underscores. It can contain
up to 80 characters.

[freedays Calendar_Name [-sa] [-su]]
Specifies a freeday calendar for calculating workdays for the job stream. It
can also set Saturdays and Sundays as workdays.

Calendar_Name
The name of the calendar that must be used as the non-working
days calendar for the job stream. If Calendar_Name is not in the
database, IBM Workload Scheduler issues a warning message when
you save the job stream. If Calendar_Name is not in the database
when the command schedulr runs, IBM Workload Scheduler issues
an error message and uses the default calendar holidays in its
place. Do not use the names of weekdays for the calendar names.

-sa Saturdays are workdays.

-su Sundays are workdays.

See “freedays” on page 233 for details and examples.

runcycle name
Specifies a label with a friendly name for the run cycle specified in the
following lines.

valid from date ... valid to date
Delimits the time frame during which the job stream is active, that is the
job stream is added to the production plan. Note that the date specified as
valid to value is not included in the run cycle, therefore on this date the
job stream is not active.

Chapter 9. Defining objects in the database 201

=
|

description ”text”
Contains a description of the run cycle.

vartable
Specifies the name of the variable table to be used by the run cycle.

date Specifies a run cycle that runs on specific dates. The syntax used for this
type is:

yyyymmdd [,yyyymmdd][,...]For example, for a job stream that is scheduled
to run on the 25th of May 2009 and on the 12th of June 2009 the value is:
on
20090525,20090612

day Specifies a run cycle that runs on specific days. The syntax used for this
type is:

{mo|tu|we|th|fr|sa|su}For example, for a job stream that is scheduled to
run every Monday the value is:
on
mo

calendar
The dates specified in a calendar with this name. The calendar name can
be followed by an offset in the following format:

{+ | -}n {day[s] | weekday[s] | workday[s]}

Where:

n The number of days, weekdays, or workdays.

days Every day of the week.

weekdays
Every day of the week, except Saturday and Sunday.

workdays
Every day of the week, except for Saturdays and Sundays (unless
otherwise specified with the freedays keyword) and for the dates
marked either in a designated non-working days calendar or in the
holidays calendar.

request Selects the job stream only when requested. This is used for job streams
that are selected by name rather than date. To prevent a scheduled job
stream from being selected for JnextPlan, change its definition to ON
REQUEST.

Note: When attempting to run a job stream that contains "on request"
times, consider that:
v "On request" always takes precedence over "at".
v "On request" never takes precedence over "on".

icalendar
Represents a standard used to specify a recurring rule that describes when
a job stream runs.

The syntax used for run cycle with type icalendar is the following:

FREQ={DAILY|WEEKLY|MONTHLY|YEARLY}

[;INTERVAL=[-]n]

[;{BYFREEDAY|BYWORKDAY|BYDAY=weekday_list|

202 IBM Workload Scheduler: User’s Guide and Reference

BYMONTHDAY=monthday_list}]

where the default value for keyword INTERVAL is 1.

Using icalendar you can specify that a job stream runs:

every n days
by using the following format:

FREQ=DAILY[;INTERVAL=n]

where the value set for valid from is the first day of the resulting
dates.

For example, for a job stream that is scheduled to run daily the
value is:
FREQ=DAILY

For a job stream that is scheduled to run every second day the
value is:
FREQ=DAILY;INTERVAL=2

every free or work days
by using the following format:

FREQ=DAILY[;INTERVAL=n]

;BYFREEDAY|BYWORKDAY

For example, for a job stream that is scheduled to run every
non-working day the value is:
FREQ=DAILY;BYFREEDAY

For a job stream that is scheduled to run every second workday
the value is:
FREQ=DAILY;INTERVAL=2;BYWORKDAY

every n weeks on specific weekdays
by using the following format:

FREQ=WEEKLY[;INTERVAL=n]

;BYDAY=weekday_list

where the value set for weekday_list is
[SU][,MO][,TU][,WE][,TH][,FR][,SA]

For example, for a job stream that is scheduled to run every week
on Friday and Saturday the value is:
FREQ=WEEKLY;BYDAY=FR,SA

For a job stream that is scheduled to run every three weeks on
Friday the value is:
FREQ=WEEKLY;INTERVAL=3;BYDAY=FR

every n months on specific dates of the month
by using the following format:

FREQ=MONTHLY[;INTERVAL=n]

;BYMONTHDAY=monthday_list

where the value set for monthday_list is represented by a list of

Chapter 9. Defining objects in the database 203

[+number_of_day_from_beginning_of_month]
[-number_of_day_from_end_of_month]
[number_of_day_of_the_month]

For example, for a job stream that is scheduled to run monthly on
the 27th day the value is:
FREQ=MONTHLY;BYMONTHDAY=27

For a job stream that is scheduled to run every six months on the
15th and on the last day of the month the value is:
FREQ=MONTHLY;INTERVAL=6;BYMONTHDAY=15,-1

every n months on specific days of specific weeks
by using the following format:

FREQ=MONTHLY[;INTERVAL=n]

;BYDAY=day_of_m_week_list

where the value set for day_of_m_week_list is represented by a list
of
[+number_of_week_from_beginning_of_month]
[-number_of_week_from_end_of_month]
[weekday]

For example, for a job stream that is scheduled to run monthly on
the first Monday and on the last Friday the value is:
FREQ=MONTHLY;BYDAY=1MO,-1FR

For a job stream that is scheduled to run every six months on the
2nd Tuesday the value is:
FREQ=MONTHLY;INTERVAL=6;BYDAY=2TU

every n years
by using the following format:

FREQ=YEARLY[;INTERVAL=n]

where the value set for valid from is the first day of the resulting
dates.

For example, for a job stream that is scheduled to run yearly the
value is:
FREQ=YEARLY

For a job stream that is scheduled to run every two years the value
is:
FREQ=YEARLY;INTERVAL=2

Note: The following limitations apply:
v the maximum supported interval for a daily run cycle is 31 days.
v the maximum supported interval for a weekly run cycle is 8

weeks.
v the maximum supported interval for a monthly run cycle is 12

months. For run cycles specifying the day of the week based on
the month, for example the third Saturday or the second Friday,
the maximum supported interval is 5 days.

v the maximum supported interval for a yearly run cycle is 10
years.

204 IBM Workload Scheduler: User’s Guide and Reference

|

|

|
|

|
|
|
|

|
|

fdignore|fdnext|fdprev
Indicates the rule to be applied if the date selected for running the job or
job stream falls on a non-working day. The available settings are:

fdignore
Do not add the date.

fdnext Add the nearest workday after the non-working day.

fdprev
Add the nearest workday before the non-working day.

[subset subsetname AND|OR]

subset subsetname
Specifies the name of the subset. If you do not specify a name,
SUBSET_1, is used by default.

AND|OR
By default, run cycles within a subset are in a logical OR
relationship but you can change it to a logical AND, as long as the
run cycle group result is a positive date or set of dates (Inclusive).

at time [timezone|tz tzname][+n day[s]]

Specifies a time dependency

time Specifies a time of day. Possible values can range from 0000 to
2359.

tzname Specifies the time zone to be used when computing the start time.
See Chapter 19, “Managing time zones,” on page 741 for time zone
names. The default is the time zone of the workstation on which
the job or job stream is launched.

Note: If an at time and an until or deadline time are specified, the
time zones must be the same.

n Specifies an offset in days from the scheduled start date and time.

schedtime time [timezone|tz tzname][+n day[s]]

Represents the time when the job stream is positioned in the plan.

time Specifies a time of day in the format: HHHHmm. Possible values
are from 0000 to 320000.

tzname Specifies the time zone to be used when calculating the start time.
See Chapter 19, “Managing time zones,” on page 741 for time zone
names. The default is the time zone of the workstation on which
the job or job stream is launched.

n Specifies an offset in days from the scheduled start date and time.

until time [timezone|tz tzname][+n day[s]] [onuntil action]

Depending on the object definition the until keyword belongs to, specifies
the latest time a job stream must be completed or the latest time a job can
be launched. It is mutually exclusive with the jsuntil keyword.

time Specifies the time of day. The possible values are 0000 through
2359.

tzname Specifies the time zone to be used when computing the time. See

Chapter 9. Defining objects in the database 205

=

Chapter 19, “Managing time zones,” on page 741 for time zone
names. The default is the time zone of the workstation on which
the job or job stream is launched.

Note: If an until time and an at or deadline time are specified, the
time zones must be the same.

n Specifies an offset, in days, from the scheduled date and time.

onuntil action
Depending on the object definition the until keyword belongs to,
specifies:
v The action to be taken on a job whose until time has expired but

the job has not yet started.
v The action to be taken on a job stream whose until time has

expired but the job stream is not yet completed in SUCC state.

The following are the possible values of the action parameter:

suppr The job or job stream and any dependent job or job stream
do not run. This is the default behavior.

Once the until time expired on a job stream, the status for
the job stream is calculated following the usual rules;
suppressed jobs are not considered in the calculation. In
case the job stream contains at least one every job its status
is HOLD.

When the until time expires for a job, the job moves to
HOLD status or keeps any previous status which is a final
status.

If the until time is passed together with the onuntil suppr
and the carryforward options, the job stream is carry
forwarded by JnextPlan only if the until date is equal to
the date when JnextPlan runs. If the until and the
JnextPlan run dates are not the same, the job stream is not
carry forwarded.

cont The job or job stream runs when all necessary conditions
are met and a notification message is written to the log
when the until time elapses.

If the until time is passed together with the onuntil cont
and the carryforward options, the job stream is always
carry forwarded by JnextPlan.

canc A job or job stream is cancelled when the until time
specified expires. When using onuntil canc on jobs, the
cancel operation on the job is issued by the FTA on which
the job runs. Any job or job stream that was dependent on
the completion of a job or job stream that was cancelled,
runs because the dependency no longer exists.

If the until time is passed together with the onuntil canc
and the carryforward options, the job stream is not carry
forwarded by JnextPlan because it is already canceled.

Note: When using onuntil canc at job stream level, define
as owner of the job stream the workstation highest in the

206 IBM Workload Scheduler: User’s Guide and Reference

hierarchy of the scheduling environment, among all
workstations that own jobs contained in the job stream.

[jsuntil time [+n day[s]]] [onuntilaction]
Defines the latest start time of a job stream. It also determines the behavior
of the jobs in the job stream when the job stream is approaching its latest
start time. This keyword is mutually exclusive with the until keyword. Use
the jsuntil keyword to avoid your job stream being suppressed if it starts
right before its latest start time and the duration of one or more jobs in it
exceeds the latest start time. For example, if you have a job stream with
jsuntil set to 1000, and one of the jobs starts running at 959 and its
duration exceeds the latest start time, the job and its successors run as
scheduled.

time Specifies the time of day. The possible values are 0000 through
2359.

tzname Specifies the time zone to be used when computing the time. See
Chapter 19, “Managing time zones,” on page 741 for time zone
names. The default is the time zone of the workstation on which
the job or job stream is launched.

n Specifies an offset, in days, from the scheduled date and time.

onuntil action
Depending on the object definition the until keyword belongs to,
specifies:
v The action to be taken on a job whose until time has expired but

the job has not yet started.
v The action to be taken on a job stream whose until time has

expired but the job stream is not yet completed in SUCC state.

The following are the possible values of the action parameter:

suppr The job or job stream and any dependent job or job stream
do not run. This is the default behavior.

Once the until time expired on a job stream, the status for
the job stream is calculated following the usual rules;
suppressed jobs are not considered in the calculation. In
case the job stream contains at least one every job its status
is HOLD.

When the until time expires for a job, the job moves to
HOLD status or keeps any previous status which is a final
status.

If the until time is passed together with the onuntil suppr
and the carryforward options, the job stream is carry
forwarded by JnextPlan only if the until date is equal to
the date when JnextPlan runs. If the until and the
JnextPlan run dates are not the same, the job stream is not
carry forwarded.

cont The job or job stream runs when all necessary conditions
are met and a notification message is written to the log
when the until time elapses.

If the until time is passed together with the onuntil cont
and the carryforward options, the job stream is always
carry forwarded by JnextPlan.

Chapter 9. Defining objects in the database 207

=
=
=
=
=
=
=
=
=
=

==
=

==
=
=
=

==

=
=
=

=
=

=
=

=

==
=

=
=
=
=
=

=
=
=

=
=
=
=
=
=

==
=
=

=
=
=

canc A job or job stream is cancelled when the until time
specified expires. When using onuntil canc on jobs, the
cancel operation on the job is issued by the FTA on which
the job runs. Any job or job stream that was dependent on
the completion of a job or job stream that was cancelled,
runs because the dependency no longer exists.

If the until time is passed together with the onuntil canc
and the carryforward options, the job stream is not carry
forwarded by JnextPlan because it is already canceled.

Note: When using onuntil canc at job stream level, define
as owner of the job stream the workstation highest in the
hierarchy of the scheduling environment, among all
workstations that own jobs contained in the job stream.

every rate {everyendtime time[+n day[s]]}
Defines the repetition rate at which instances of the same job stream are
run over a time interval. The job stream is launched repeatedly at the
specified rate until the time specified in everyendtime.

rate The repetition rate, expressed in hours and minutes (hhmm), at
which the instances of the job stream are launched.

time The end time, expressed in hours and minutes (hhmm) when the
repetition interval stops. After this time no more instances of the
job stream are run. Use of the everyendtime keyword is mandatory.

n The number of days that the value of everyendtime can be
extended. For example, if you specify:
everyendtime 1550 + 1

and the job stream is scheduled to start running today at 10:00, the
end time that the job stream instances will stop being launched is
tomorrow at 15:50.

Example

The following example defines a run cycle group named, RCG2, that contains one
inclusive run cycle, RUN_CYCLE1, and two exclusive run cycles, RUN_CYCLE2,
and RUN_CYCLE3. To determine the run schedule of the job stream associated to
this run cycle group, the intersection of the two exclusive run cycles (the two
exclusive run cycles have a logical AND relationship between them) is subtracted
from the inclusive run cycle. The following are the characteristics of the run cycle
group:

An inclusive run cycle RUN_CYCLE1
where,
v The calendar, CAL1, defines days that should be considered

non-working days for the job stream. Saturday and Sunday are declared
working days.

v The job stream runs not earlier than two days after March 31, 2008
(April 2), and not later than two days after April 12, 2008 (April 14).
Every day, the job stream is delayed by two days.

v The job streams runs every day (after the two-day delay) beginning at 7
a.m. and it cannot start later than 9 a.m., otherwise, it is suppressed and
does not run at all. The job stream should complete by 10 a.m.

208 IBM Workload Scheduler: User’s Guide and Reference

==
=
=
=
=
=

=
=
=

=
=
=
=

=
|
|
|

||
|

||
|
|

||
|

|

|
|
|

An exclusive run cycle, RUN_CYCLE2
If the job stream falls on a non-working day, then the nearest workday
before the non-working day is excluded.

If the job stream falls on April 1, 2008, and this day happens to be a
non-working day, then the nearest workday after the non-working day is
excluded.

An exclusive run cycle, RUN_CYCLE3
If the job stream falls on April 1, 2008, and this day happens to be a
non-working day, then the nearest workday after the non-working day is
excluded.

RUNCYCLEGROUP RCG2
DESCRIPTION "Sample RunCycle Group"
VARTABLE TABLE1
FREEDAYS CAL1 -SA -SU

ON RUNCYCLE RUN_CYCLE1 VALIDFROM 03/31/2008 VALIDTO 04/12/2008 DESCRIPTION
"Inclusive Run Cycle" VARTABLE TABLE1 "FREQ=DAILY;" FDIGNORE
(AT 0700 +2 DAYS UNTIL 0900 +2 DAYS ONUNTIL SUPPR DEADLINE 1000 +2 DAYS)

EXCEPT RUNCYCLE RUN_CYCLE2 VALIDFROM 03/31/2008 VALIDTO 04/12/2008 DESCRIPTION
"Exclusive Run Cycle" CAL1 FDPREV SUBSET SUBSET_A AND
(AT 0700 +2 DAYS)

EXCEPT RUNCYCLE RUN_CYCLE3 VALIDFROM 03/31/2008 VALIDTO 04/12/2008 DESCRIPTION
"Exclusive Run Cycle" 04/01/2008 FDNEXT SUBSET SUBSET_A AND
(SCHEDTIME 0700 +2 DAYS)

SCHEDTIME 0700 TZ Europe/Berlin +2 DAYS UNTIL 0900 TZ Europe/Berlin +2 DAYS ONUNTIL
CONT DEADLINE 1000 TZ Europe/Berlin +2 DAYS

END

See also

From the Dynamic Workload Console you can perform the same task as described
in:

the Dynamic Workload Console User’s Guide, section about Creating job stream
definitions.

Job stream definition

A job stream consists of a sequence of jobs to be run, together with times,
priorities, and other dependencies that determine the order of processing.

A job stream begins with a schedule keyword followed by attributes and
dependencies. The colon delimiter introduces the jobs invoked by the job stream.
Each job has its own attributes and dependencies.

Syntax

schedule [workstation#][folder/]jobstreamname
comment
[validfrom date]
[timezone|tz tzname]
[description ”text”]
[draft]
[vartable table_name]
[freedays calendarname [-sa] [-su]]
[on [runcycle name

Chapter 9. Defining objects in the database 209

/

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

[validfrom date] [validto date]
[description ”text”]
[vartable table_name]]

{date|day|calendar|request|”icalendar”|runcyclegroup} [,...]
[fdignore|fdnext|fdprev]
[({at time [+n day[s]] |
schedtime time [+n day[s]]}
[until | jsuntil time [+n day[s]] [onuntil action]]
[every rate {everyendtime time[+n day[s]]}
[deadline time [+n day[s]]])]]

[,...]]
startcond filecreated | filemodified workstation_name#file_name user username
interval
seconds [(alias startcond_jobname rerun batch outfile outputfilename

params "filemonitor additional parameters")] |
startcond job workstation_name#job_name outcond joboutputcondition interval
seconds [(alias startcond_jobname rerun)]
:

[except [runcycle name]
[validfrom date] [validto date]
[description ”text”]
{date|day|calendar|request|”icalendar”|runcyclegroup} [,...]
[fdignore|fdnext|fdprev]
[{(at time [+n day[s]])] |
(schedtime time [+n day[s]])}]

[,...]
[{at time [timezone|tz tzname] [+n day[s]] |
schedtime time [timezone|tz tzname] [+n day[s]]}]
[until | jsuntil time [timezone|tz tzname] [+n day[s]] [onuntil action]]
[deadline time [timezone|tz tzname] [+n day[s]]]
[carryforward]
[matching {previous|sameday|relative from [+ | -] time to [+ | -] time|

from time [+ | -n day[s]] to time [+ n day[s]] [,...]}]
[follows {[netagent::][workstation#][folder/]jobstreamname[.jobname |

@] [previous|
sameday|relative from [+|-] time to [+|-] time|
from time [+|-n day[s]] to time [+|-n day[s]]
][if <condition> [| <condition>...]]
}] [,...]] [...]

[join condition_name [number | numconditions | all] of
description "..."]
.....
endjoin

[keysched]
[limit joblimit]
[needs { [n] [workstation#]resourcename } [,...]] [...]
[opens { [workstation#]"filename" [(qualifier)] [,...] }] [...]
[priority number | hi | go]
[prompt {promptname|"[:|!]text"} [,...]] [...]
[onoverlap {parallel|enqueue|donotstart}]

:
job-statement

comment
job_name [job_alias]
[outcond joboutputcondition interval seconds]

[{at time [timezone|tz tzname] [+n day[s]] |

210 IBM Workload Scheduler: User’s Guide and Reference

=
|

=
=
=
=
=
=

=

/

|

=
=

schedtime time [timezone|tz tzname] [+n day[s]]}][,...]
[until time [timezone|tz tzname] [+n day[s]] [onuntil action]
[deadline time [timezone|tz tzname] [+n day[s]] [onlate action]]
[maxdur time | percentage % onmaxdur action]
[mindur time | percentage % onmindur action]
[every rate]
[follows {[netagent::][workstation#]jobstreamname{.jobname @} [previous|

sameday|relative from [+|-] time to [+|-] time |
from time [+|-n day[s]] to time [+|-n day[s]]

]}][if <condition> [| <condition>...]] [,...]] [...]
[join condition_name [number | numconditions | all] of

description "..."]
.....

endjoin
[confirmed]

[critical]
[keyjob]
[needs { [n] [workstation#]resourcename } [,...]] [...]
[opens { [workstation#]"filename" [(qualifier)] [,...] }] [...]
[priority number | hi | go]
[prompt {promptname|"[:|!]text"} [,...]] [...]
[nop]
[statistictype custom]

[job-statement...]
end

Arguments

Table 35 contains a brief description of the job stream definition keywords. A
detailed description of each scheduling keyword is provided in the next
subsections.

Table 35. List of scheduling keywords

Keyword Description Page

at Defines the earliest time a job stream or a
job run can be launched. When defined in
a run cycle specifies the earliest time a job
or a job stream can be launched for that
specific run cycle.

“at” on page 216

carryforward Carries the job stream forward if it is not
completed.

“carryforward” on page
217

comment Includes comments in the definition of a
job stream or in a job contained in the job
stream.

“comment” on page 217

confirmed Specifies that the completion of this job
requires confirmation.

“confirmed” on page 218

critical Specifies that the job is mission critical
and must therefore be managed
preferentially.

“critical” on page 218

deadline Specifies the time within which a job or
job stream should complete. When
defined in a run cycle specifies the time
within which a job or a job stream must
complete in that specific run cycle.

“deadline” on page 219

Chapter 9. Defining objects in the database 211

=

|
|

Table 35. List of scheduling keywords (continued)

Keyword Description Page

description Contains a description of the job stream.
The maximum length of this field is 120
characters.

“description” on page 220

draft Specifies that the plan generation process
must ignore this job stream.

“draft” on page 220

end Marks the end of a job stream. “end” on page 221

every Launches a job stream or a job repeatedly
at a specified rate.

“every” on page 221

except Specifies dates that are exceptions to the
on dates the job stream is selected to run.
It can be followed by a run cycle
definition.

“except” on page 225

fdignore | fdnext
| fdprev

Specifies a rule that must be applied
when the date selected for exclusion falls
on a non-working day.

“except” on page 225

follows Specifies jobs or job streams that must
complete successfully or must satisfy one
or more output conditions before the job
or the job stream that is being defined is
launched.

“follows” on page 230

freedays Specifies a freeday calendar for
calculating workdays for the job stream. It
can also set Saturdays and Sundays as
workdays.

“freedays” on page 233

interval How often IBM Workload Scheduler
checks whether the condition is met.

“startcond” on page 261

job statement Defines a job and its dependencies. “job statement” on page
235

join Defines a set of conditional dependencies
on a job or job stream.

“join” on page 236

jsuntil Specifies that the job stream continues
running also if one of its jobs starts
running right before the time specified in
the jsuntil keyword. This keyword is
enabled by default starting from version
9.4, Fix Pack 1. It is mutually exclusive
with the until keyword. For more
information about the until keyword, see
“until” on page 265.

“jsuntil” on page 238

keyjob Marks a job as key in both the database
and in the plan for monitoring by
applications, such as IBM Tivoli® Business
Systems Manager or IBM Tivoli Enterprise
Console®.

“keyjob” on page 240

keysched Marks a job stream as key in both the
database and in the plan for monitoring
by applications, such as IBM Tivoli
Business Systems Manager or IBM Tivoli
Enterprise Console.

“keysched” on page 240

212 IBM Workload Scheduler: User’s Guide and Reference

|

==
=
=
=
=
=
=
=
=

=

Table 35. List of scheduling keywords (continued)

Keyword Description Page

limit Sets a limit on the number of jobs that
can be launched concurrently from the job
stream.

“limit” on page 240

matching Defines the matching criteria used when a
matching criteria is not specified in the
follows specifications in the job stream
definition or in the job definition within
the job stream.

“matching” on page 241

maxdur Specifies the maximum length of time a
job can run. You can express this time in
either minutes, or as a percentage of the
latest estimated duration for the job.

“maxdur” on page 242

mindur Specifies the shortest amount of time
within which a job normally runs and
completes.

“mindur” on page 244

needs Defines the number of units of a resource
required by the job or job stream before it
can be launched. The highest number of
resources the job stream can be dependent
from is 1024.

“needs” on page 245

nop Specifies that a job is not to be run when
the plan executes. The job is included in
the plan but, as the plan runs, it is placed
in Cancel Pending status and is not
executed.

“nop” on page 246

on Defines the dates on which the job stream
is selected to run. It can be followed by a
run cycle definition.

“on” on page 246

onlate Defines the action to be taken on a job in
the job stream when the job's deadline
expires.

“onlate” on page 252

onoverlap Specifies how to handle a job stream
instance that is scheduled to start
although the preceding instance has not
yet completed.

“onoverlap” on page 253

opens Defines files that must be accessible
before the job or job stream is launched.

“opens” on page 254

onuntil Specifies the action to take on a job or job
stream whose until time has been
reached.

“until” on page 265

outcond The output condition which, when met,
releases the remaining part of the job
stream or the job where it is specified.

“startcond” on page 261

priority Defines the priority for a job or job
stream.

“priority” on page 256

prompt Defines prompts that must be replied to
before the job or job stream is launched.

“prompt” on page 257

Chapter 9. Defining objects in the database 213

||
|
|
|
|

|

==
=
=

=

|

Table 35. List of scheduling keywords (continued)

Keyword Description Page

runcycle Specifies a label with a friendly name for
the run cycle. It is used in conjunction
with the following keywords:

except For exclusive run cycles, that
define when the job stream is not
to run.

on For inclusive run cycles, that
define when the job stream will
run.

v “except” on page 225

v “on” on page 246

schedule Assigns a name to the job stream. “schedule” on page 259

schedtime Specifies the time used to set the job
stream in the time line within the plan to
determine successors and predecessors.

“schedtime” on page 258

statisticstype
custom

Flags a job for the use of SPSS-based
statistical analysis to forecast its estimated
duration.

“statisticstype custom” on
page 261

startcond Builds into the job stream a mechanism
which checks for specific events and
conditions and releases the job stream
when the specified events or conditions
take place.

“startcond” on page 261

timezone | tz Specifies the time zone to be used when
computing the start time.

“timezone” on page 265

until Defines the latest time a job or a job
stream can be launched. When defined in
a run cycle specifies the latest time a job
or a job stream can be launched for that
specific run cycle. It is mutually exclusive
with the jsuntil keyword. For more
information about the jsuntil keyword,
see “jsuntil” on page 238.

“until” on page 265

validfrom Defines the date from which the job
stream instance starts.

“validfrom/validto” on
page 268

validto Indicates the date on which the job stream
instance ends.

“validfrom/validto” on
page 268

vartable Defines the variable table to be used by
the job stream and the run cycle.

“vartable” on page 269

Note:

1. Job streams scheduled to run on workstations marked as ignored are not added
to the production plan when the plan is created or extended.

2. Wrongly typed keywords used in job definitions lead to truncated job
definitions stored in the database. In fact the wrong keyword is considered
extraneous to the job definition and so it is interpreted as the job name of an
additional job definition. Usually this misinterpretation causes also a syntax
error or an inexistent job definition error for the additional job definition.

3. Granting access to a workstation class or a domain means to give access just to
the object itself, and grant no access to the workstations in the object.

214 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|
|

|
|

==
=
=
=
=

=

Time zone specification rules

You can specify a time zone at several keyword levels within a job stream
definition; that is:
v For the whole job stream (inclusive of all its keyword specifications)
v At time restriction level (with the at, deadline, schedtime, and until keywords)
v For each included job statement

The following rules apply when resolving the time zones specified within a job
stream definition:
v When you specify the time zone at job stream level, this applies to the time

definitions of the run cycle (defined with the on keyword) as well as to those in
the time restrictions.

v If you specify a time zone both at job stream level and at time restriction level,
they must be the same. If you specify no time zone, either at job stream and
time restriction levels, the time zone specified on the workstation is used.

v The time zone specified at job level can differ from the one specified at job
stream level and overrides it. If you specify no time zone, either at job stream
and job levels, the time zone specified on the workstation running the job is
used.

Time restriction specification rules

Within a job stream definition you can specify time restrictions (with the at,
deadline, schedtime, and until keywords) at both job stream and run cycle levels.
When both are specified, the time restrictions specified at run cycle level override
the ones specified at job stream level.

Example

This is an example of job stream definition:
SCHEDULE M235062_99#SCHED_FIRST1 VALIDFROM 06/30/2005
ON RUNCYCLE SCHED1_PREDSIMPLE VALIDFROM 07/18/2005 "FREQ=DAILY;INTERVAL=1"

(AT 1010)
ON RUNCYCLE SCHED1_PRED_SIMPLE VALIDFROM 07/18/2005 "FREQ=DAILY;INTERVAL=1"
CARRYFORWARD
PROMPT "parto o no?"
PRIORITY 55
:
M235062_99#JOBMDM
PRIORITY 30
NEEDS 16 M235062_99#JOBSLOTS
PROMPT PRMT3

B236153_00#JOB_FTA
FOLLOWS JOBMDM
END

See also

From the Dynamic Workload Console you can perform the same task as described
in:

the Dynamic Workload Console User’s Guide, section about Creating job stream
definitions.

Chapter 9. Defining objects in the database 215

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

Job stream definition keyword details
This section describes the job stream definition keywords listed in table Table 35 on
page 211.

at
Specifies a time dependency. If the at keyword is used, then the job or job stream
cannot start before the time set with this keyword.

Syntax

at time [timezone|tz tzname][+n day[s]] [absolute|abs]

Arguments

time Specifies a time of day. Possible values can range from 0000 to 2359.

tzname Specifies the time zone to be used when computing the start time. See
Chapter 19, “Managing time zones,” on page 741 for time zone names. The
default is the time zone of the workstation on which the job or job stream
is launched.

Note: If an at time and an until or deadline time are specified, the time
zones must be the same.

n Specifies an offset in days from the scheduled start date and time.

absolute
Specifies that the start date is based on the calendar day rather than on the
production day.

Comments

If an at time is not specified for a job or job stream, its launch time is determined
by its dependencies and priority and its position in the preproduction plan is
determined by the value assigned to the schedtime keyword. For more information
about the schedtime keyword refer to “schedtime” on page 258.

If the run cycle and job stream start times are both defined, the run cycle start time
takes precedence when the job stream is scheduled with JNextPlan. When the job
stream is launched with the submit command, the run cycle start time is not used.

The time value in the at option is considered as follows:
v If the time value is less than the value set in the startOfDay global option, it is

taken to be for the following day.
v If the time value is greater than the value set in the startOfDay global option, it

is taken to be for the current day.

If the master domain manager of your network runs with the
enLegacyStartOfDayEvaluation and enTimeZone options set to yes to convert the
startOfDay time set on the master domain manager to the local time zone set on
each workstation across the network, you must add the absolute keyword to make
it work when you submit a job or a job stream.

If neither the at nor the schedtime keywords are specified in the job stream
definition then, by default, the job or job stream instance is positioned in the plan
at the time specified in the startOfDay global option.

216 IBM Workload Scheduler: User’s Guide and Reference

/

/
/

/
/
/

/

/

/

//

//
/
/
/

/
/

//

/
/
/

/

/
/
/
/

/
/
/

/

/
/

/
/

/
/
/
/
/

/
/
/

Examples

The following examples assume that the IBM Workload Scheduler processing day
starts at 6:00 a.m.
v The following job stream, selected on Tuesdays, is launched no sooner than 3:00

a.m. Wednesday morning. Its two jobs are launched as soon as possible after
that time.
schedule sked7 on tu at 0300:
job1
job2
end

v The following example launches job stream mysked on Sundays at 8:00 a.m..
Jobs job1, job2, and job3 are all launched on Sundays.
schedule mysked on fr at 0800 + 2 days
:
job1
job2 at 0900
job3 follows job2 at 1200
end

v The time zone of workstation sfran is defined as America/Los_Angeles, and the
time zone of workstation nycity is defined as America/New_York. The
following job stream is selected to run on Friday. It is launched on workstation
sfran at 10:00 a.m. America/Los_Angeles Saturday. job1 is launched on sfran as
soon as possible after that time. job2 is launched on sfran at 2:00 p.m.
America/New_York (11:00 a.m. America/Los_Angeles) Saturday. job3 is
launched on workstation nycity at 4:00 p.m. America/New_York (1:00 p.m.
America/Los_Angeles) Saturday.
sfran#schedule sked8 on fr at 1000 + 1 day:
job1
job2 at 1400 tz America/New_York
nycity#job3 at 1600
end

carryforward
Makes a job stream eligible to be carried forward to the next production plan if it
is not completed before the end of the current production plan.

Syntax

carryforward

Examples

The following job stream is carried forward if its jobs have not completed before
preproduction processing begins for a new production time frame.
schedule sked43 on th
carryforward
:
job12
job13
job13a
end

comment
Includes comments in a job stream definition and the jobs contained in a job
stream.

Chapter 9. Defining objects in the database 217

/

/
/

/
/
/

/
/
/
/

/
/

/
/
/
/
/
/

/
/
/
/
/
/
/
/

/
/
/
/
/

/
/
/

/

/

/

/
/

/
/
/
/
/
/
/

/
/
/

Syntax

text

Comments

Inserts a comment line. The first character in the line must be a pound sign #.

You can add comments in a job stream definition immediately after the line with
the schedule keyword, or in a job contained in a job stream definition immediately
after the job statement line.

Examples

The following example includes both types of comments:
schedule wkend on fr at 1830
##########################
The weekly cleanup jobs
##########################
#
carryforward
:
job1
final totals and reports
job2
update database
end

confirmed

Specifies that a job's completion must be confirmed.

To confirm the completion of the job, run a conman confirm command. See
“confirm” on page 416 for more information.

Syntax

confirmed

Examples

In the following job stream, confirmation of the completion of job1 must be
received before job2 and job3 are launched.
schedule test1 on fr:
job1 confirmed
job2 follows job1
job3 follows job1
end

critical

Specifies that the job is mission-critical and must be processed accordingly.

A mission-critical job gets privileged treatment. Given its deadline and estimated
duration, the scheduler:
v While building the plan, or every time it runs the submit command, calculates

the latest start time each of its predecessors can start so that the job successfully

218 IBM Workload Scheduler: User’s Guide and Reference

/

/

/

/

/
/
/

/

/

/
/
/
/
/
/
/
/
/
/
/
/

/

/

/
/

/

/

/

/
/

/
/
/
/
/

/

/

/
/

/
/

meets its deadline. This is called the critical start time. The critical job and every
one of its predecessors are assigned a critical start time.
The entire set of predecessors to the critical job is referred to as the critical
network of the job.

v While running the plan, dynamically recalculates the critical start times within
the critical network.
When a predecessor risks compromising the timely completion of the critical job,
it is promoted; that is, using different operating system mechanisms, such as
implementing the nice command on UNIX or changing the priority level on
Windows, it is assigned additional resources and its submission is prioritized
with respect to other jobs that are out of the critical network. This action is
recurrently run on any predecessor within the critical network and, if necessary,
on the critical job as long as there is a risk that this job becomes late.

Important: Critical jobs, included in the plan because associated to a run cycle,
must have a deadline specified at job, job stream or run cycle level. Whereas,
critical jobs submitted in plan on request might not have a specified deadline, and,
in this case, the global option deadlineOffset is used.

Syntax

critical

deadline

Specifies the time within which a job or job stream must complete. Jobs or job
streams that have not yet started or that are still running when the deadline time is
reached, are considered late in the plan. When a job (or job stream) is late, the
following actions are performed:
v Job is shown as late in conman.
v An event is sent to the Tivoli Enterprise Console and the IBM Tivoli Business

Systems Manager.
v A message is issued to the stdlist and console logs.

When a job does not complete before its deadline, a warning message is displayed.
If this job is not part of a carried forward job stream and you run JnextPlan while
it is still running, the job is inserted in USERJOBS. In this case, another warning
message about the expired deadline is added in the TWS_home/stdlist/logs/
yyyymmdd_TWSMERGE.log file.

Note: When using the deadline keyword, ensure the bm check deadline option is
set to a value higher than 0 in the localopts configuration file on the workstation
you are working on. You can define the bm check deadline option on each
workstation on which you want to be aware of the deadline expiration, or, if you
want to obtain up-to-date information about the whole environment, define the
option on the master domain manager. Deadlines for critical jobs are evaluated
automatically, independently of the bm check deadline option. For more
information about the bm check deadline option, see the Administration Guide.

Syntax

deadline time [timezone|tz tzname][+n day[s]

Chapter 9. Defining objects in the database 219

/
/

/
/

/
/

/
/
/
/
/
/
/

/
/
/
/

/

/

/

/
/
/
/

/

/
/

/

/
/
/
/
/

/
/
/
/
/
/
/
/

/

/

Arguments

time Specifies a time of day. Possible values range from 0000 to 2359.

tzname Specifies the time zone to be used when computing the deadline. See
Chapter 19, “Managing time zones,” on page 741 for time zone names. The
default is the time zone of the workstation on which the job or job stream
is launched.

n Specifies an offset in days from the scheduled deadline time.

Note: If a deadline time and an until or at time are specified, the time zones must
be the same.

Examples

The following example launches job stream sked7 every day and job jobc to start
running at 14:30 and to be completed by 16:00.
schedule sked7 on everyday :

jobc at 1430 deadline 1600
end

description
Includes a description for the job stream.

Syntax

description ”text”

Comments

The maximum length of this field is 120 characters.

Examples
schedule test1
description ”Revenue at the end of the month”
on monthend
:
job1
job2
job3
end

draft
Marks a job stream as draft. A draft job stream is not added to the preproduction
plan.

Syntax

draft

Comments

A draft job stream is not considered when resolving dependencies and is not
added to the production plan. After removing the draft keyword from a job stream
you need to run JnextPlan command to add the job stream to the preproduction
plan and so to the production plan.

220 IBM Workload Scheduler: User’s Guide and Reference

/

//

//
/
/
/

//

/
/

/

/
/

/
/
/

/
/

/

/

/

/

/

/
/
/
/
/
/
/
/

/
/
/

/

/

/

/
/
/
/

Examples
schedule test1 on monthend
draft
:
job1
job2
job3
end

end
Marks the end of a job stream definition.

Syntax

end

Examples
schedule test1 on monthend
:
job1
job2
job3
end << end of job stream >>

every
Defines the repetition rate for a job stream or for a job. The syntax and the location
of the keyword vary according to which object the keyword is being used for.
When used for a job stream, it is specified within the definition of a run cycle for
the job stream. When used for a job, it is specified within the definition of the job
in the job stream.

For details, see:
v “every (used for job streams)”
v “every (used for jobs)” on page 222

every (used for job streams)
Defines the repetition rate for the job stream. The job stream is launched
repeatedly at the specified rate. The keyword can be specified only within the
definition of a run cycle for the job stream.

The use of this keyword results in the creation at plan-generation time of a number
of instances of the job stream that depends on the repetition rate, on the start time
(defined either with at or schedtime, or based on the start of day), and on the time
defined for everyendtime.

Syntax

every rate {everyendtime time[+n day[s]]}

Arguments

rate The repetition rate, expressed in hours and minutes (hhmm), at which the
instances of the job stream are launched.

time The end time, expressed in hours and minutes (hhmm) when the repetition
interval stops. After this time no more instances of the job stream are run.
Use of the everyendtime keyword is mandatory.

Chapter 9. Defining objects in the database 221

/

/
/
/
/
/
/
/

/
/

/

/

/

/
/
/
/
/
/

|
|
|
|
|
|

|

|

|

|
|
|
|

|
|
|
|

|

|

|

||
|

||
|
|

n The number of days that the value of everyendtime can be extended. For
example, if you specify:
everyendtime 1550 + 1

and the job stream is scheduled to start running today at 10:00, the end
time that the job stream instances will stop being launched is tomorrow at
15:50.

Comments

Based on the values used, the job stream instances are created at the time that the
plan is generated and run following the defined start dates for the job stream.
They are not created dynamically during the execution of the plan.

Examples
1. In the following example, an instance of job stream JS_151439298 is run every 2

hours until 6 PM starting from 2 PM of June 15, 2014.
SCHEDULE MDM021#JS_151439298
ON RUNCYCLE RC1 06/15/2014
(AT 1400 EVERY 0200 EVERYENDTIME 1800)
:
MDM021#J_151439298
END

2. In the following example, an instance of job stream JS_0415 is run every 10
minutes until 3:15 PM starting from 2:45 PM of June 16, 2014.
SCHEDULE MDM005#JS_0415
ON RUNCYCLE ACCTRC 06/16/2014
(SCHEDTIME 1445 DEADLINE 1530 EVERY 0010 EVERYENDTIME 1515)
:
MDM005#JS_0415
END

every (used for jobs)
Defines the repetition rate for a job. The job is launched repeatedly at the specified
rate. If the job has a dependency that is not satisfied, the iteration is started only
after the dependency is satisfied. The keyword is specified within the definition of
a job.

Syntax

every rate

Arguments

rate The repetition rate expressed in hours and minutes, in the hhmm format.
The rate can be longer than 24 hours. The maximum supported value is 99
hours and 59 minutes.

Comments
v The every iteration of a job does not stop even if one of the job repetitions

abends.
v If the every option is used without the at dependency, the rerun jobs are

scheduled respecting the every rate specified, starting from the time when the
job actually started.

v In the specific case that the every option is used with the at dependency and
one rerun is delayed (for a dependency or for any other reason), then, while

222 IBM Workload Scheduler: User’s Guide and Reference

||
|

|

|
|
|

|

|
|
|

|

|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
/
/
/
/

/

/

/

==
=
=

/

/
/

/
/
/

/
/

IBM Workload Scheduler realigns to the at time, there might one or two
iterations that do not respect the every rate. For all other cases the every rate is
always respected.
Example 2 explains how IBM Workload Scheduler realigns to the at time if the
job starts later than the defined at time and some iterations are lost.

v If an every instance of a job does not start at its expected start time, use the bm
late every option to set the maximum number of minutes that elapse before IBM
Workload Scheduler skips the job. The value of the option must be defined in
the <TWSHOME>/localopts file:

bm late every = xx
Where xx is the number of minutes.

This option is local for each agent, therefore it must be defined on every
fault-tolerant agent that has every jobs with bm late every option set.
The bm late every option applies only to jobs with both the every option and
the at time dependency defined, it has no impact on jobs that have only the
every option defined. Only jobs whose every rate is greater than the bm late
every value will be impacted.
Example 4 on page 224 shows the behavior of IBM Workload Scheduler when
the delay of an every instance does not exceed the bm late every option value.
Example 5 on page 225 shows the behavior of IBM Workload Scheduler when
the delay of an every instance exceeds the bm late every option value.
Example 6 on page 225 shows the behavior of IBM Workload Scheduler when
the first instance of a job does not run at its expected start time and exceeds the
bm late every option value.

v If the every keyword is defined for a job when the Daylight Saving Time (DST)
turns off, that is the clock is put one hour back, the command every job is DST
aware and it runs also during the second, repeated time interval.

Examples
1. The following example runs the testjob job every hour:

testjob every 100

2. The following example shows the testjob1 job that is defined to run every 15
minutes, between the hours of 6:00 p.m. and 8:00 p.m.:
testjob1 at 1800 every 15 until 2000

The job is supposed to run at 1800, 1815, 1830, and so on every 15 minutes.
If the job is submitted adhoc at 1833, the reruns are at 1833, 1834, 1845, etc. The
reason for this is explained next:
At first notice that in a job there are two time values to consider:
v The start_time; this is the time when the job is expected to run. It is set to the

at time specified for the job or to the time when the rerun should be
launched. This value can be viewed using conman showjobs before the job
iteration starts.

v The time_started; this is the time when the job actually starts, for example
1833. This value can be viewed by using conman showjobs after the job
iteration started.

Because testjob1 was submitted adhoc at 1833, this is the information you see
immediately after submission:

with conman showjobs
TESTJOB1 HOLD 1800

Chapter 9. Defining objects in the database 223

/
/
/

/
/

/
/
/
/

/
/

/
/

/
/
/
/

/
/

/
/

/
/
/

/
/
/

/

/

/

/
/

/

/

/
/

/

/
/
/
/

/
/
/

/
/

/
/

in the Symphony file

start_time=1800 (because the job is expected to run at 1800)

time_started=NULL (because the job has not yet started)

Since the start_time (1800) is smaller than the current time (1833), testjob1
starts immediately and the updated information becomes:

with conman showjobs
TESTJOB1 SUCC 1833

in the Symphony file

start_time=1800 (because the job was expected to run at 1800)

time_started=1833 (because the job started at 1833)

When batchman calculates the time for the next iteration, it uses the following
data:
start_time=1800

rate=0015

current_time=1833

Since the next iteration time (1800+0015=1815) would still be sooner than the
current_time value (1833), batchman identifies the last planned iteration that
was not run by adding to the start_time as many every_rate as possible without
exceeding the current_time

1800 + 0015 + 0015 = 1830 < 1833
and then issues the command to run that iteration. Assuming that this iteration
is run at 1834, the information, after the job starts, becomes the following:

with conman showjobs
TESTJOB1 SUCC 1834

in the Symphony file

start_time=1830 (because that job iteration was expected to run at
1830)

time_started=1834 (because that job iteration started at 1834)

After this job iteration completed, batchman calculates again the time the next
iteration has to start using these updated values:
start_time=1830

rate=0015

current_time=1834

The fact that the next iteration time (1830+0015=1845) is later than the
current_time value (1834), shows batchman that the iteration is recovered. The
iteration time, starting from 1845 onwards, can now be realigned with the
planned iteration times set in the job definition by the at and every keywords.

3. The following example does not start the testjob2 job iteration until job
testjob1 has completed successfully:
testjob2 every 15 follows testjob1

4. In the following example, the delay of an instance of an every job does not
exceed the bm late every option value:
bm late every = 10
JOB AT 1400 EVERY 0030

This job is supposed to run at 1400, 1430, 1500, and so on every thirty minutes.

224 IBM Workload Scheduler: User’s Guide and Reference

/

/

/

/
/

/
/

/

/

/

/
/

/

/

/

/
/
/
/

/

/
/

/
/

/

/
/

/

/
/

/

/

/

/
/
/
/

/
/

/

/
/

/
/

/

If the server is down from 1435 to 1605, the instances at 1500, 1530, and 1600
do not run. At 1605, IBM Workload Scheduler restarts. When it analyses the
Symphony file, it determines that the potential best time for the next every job
instance is 1600. IBM Workload Scheduler checks if the potential best time
(1600) exceeds the maximum allowed delay for an every job (10 minutes).
In this case the delay has not exceeded the bm late every option, therefore IBM
Workload Scheduler behaves as usual and creates the instance of the every job
with start time set to 1600. The subsequent instances are at 1630, 1700 and so
on, every thirty minutes.

5. In the following example, the delay of the instance of an every job exceeds the
bm late every option value:
bm late every = 10
JOB AT 1400 EVERY 00030

This job is supposed to run at 1400, 1430, 1500, and so, on every thirty minutes.
If the server is down from 1435 to 1620, the instances at 1500, 1530, and 1600
do not run. At 1620, IBM Workload Scheduler restarts. When it analyses the
Symphony file, it determines that the potential best time for the next every job
instance is 1600. IBM Workload Scheduler checks if the potential best time
(1600) exceeds the maximum allowed delay for an every instance of a job (10
minutes).
In this case the delay is greater that the bm late every option, therefore IBM
Workload Scheduler applies the new behavior, it does not launch the instance
of the every job at 1600 and it creates the instance of the every job with start
time set to 1630.

6. The following example shows the behaviour of IBM Workload Scheduler when
the first instance of a job does not run at its expected start time and exceeds the
bm late every option value:
bm late every = 10
JOB AT 1400 EVERY 00030

This job is supposed to run at 1400, 1430, 1500, and so on, every thirty minutes.
If the server is down from 1000 to 1415, the first instance of the job does not
run. At 1415, IBM Workload Scheduler restarts. When it analyses the Symphony
file, it determines that the first instance of this every job has not run. In this
case IBM Workload Scheduler launches the job at 1415.

except
Defines the dates that are exceptions to the on dates of a job stream. See “on” on
page 246 for more information.

Syntax

except [runcycle name]
[validfrom date] [validto date]
[description ”text”]
{date|day|calendar|request|”icalendar”}
[,...]
[fdignore|fdnext|fdprev][subset subsetname AND|OR]

Arguments

runcycle name
Specifies a label with a friendly name for the run cycle specified in the
following lines.

Chapter 9. Defining objects in the database 225

/
/
/
/
/

/
/
/
/

/
/

/
/

/

/
/
/
/
/
/

/
/
/
/

/
/
/

/
/

/

/
/
/
/

/
/
/

/

/
/
/
/
/
/

/

/
/
/

valid from date ... valid to date
Delimits the time frame during which the job stream is active, that is the
job stream is added to the production plan. Note that the date specified as
valid to value is not included in the run cycle, therefore on this date the
job stream is not active.

description ”text”
Contains a description of the run cycle.

date Specifies a run cycle that runs on specific dates. The syntax used for this
type is:

yyyymmdd [,yyyymmdd][,...]For example, for a job stream that is scheduled
to run on the 25th of May 2009 and on the 12th of June 2009 the value is:
on
20090525,20090612

day Specifies a run cycle that runs on specific days. The syntax used for this
type is:

{mo|tu|we|th|fr|sa|su}For example, for a job stream that is scheduled to
run every Monday the value is:
on
mo

calendar
The dates specified in a calendar with this name. The calendar name can
be followed by an offset in the following format:

{+ | -}n {day[s] | weekday[s] | workday[s]}

Where:

n The number of days, weekdays, or workdays.

days Every day of the week.

weekdays
Every day of the week, except Saturday and Sunday.

workdays
Every day of the week, except for Saturdays and Sundays (unless
otherwise specified with the freedays keyword) and for the dates
marked either in a designated non-working days calendar or in the
holidays calendar.

request Selects the job stream only when requested. This is used for job streams
that are selected by name rather than date. To prevent a scheduled job
stream from being selected for JnextPlan, change its definition to ON
REQUEST.

Note: When attempting to run a job stream that contains "on request"
times, consider that:
v "On request" always takes precedence over "at".
v "On request" never takes precedence over "on".

icalendar
Represents a standard used to specify a recurring rule that describes when
a job stream runs.

The syntax used for run cycle with type icalendar is the following:

FREQ={DAYLY|WEEKLY|MONTHLY|YEARLY}

226 IBM Workload Scheduler: User’s Guide and Reference

/
/
/
/
/

/
/

//
/

/
/

/
/

//
/

/
/

/
/

/
/
/

/

/

//

//

/
/

/
/
/
/
/

//
/
/
/

/
/

/

/

/
/
/

/

/

[;INTERVAL=[-]n]

[;{BYFREEDAY|BYWORKDAY|BYDAY=weekday_list|

BYMONTHDAY=monthday_list}]

where the default value for keyword INTERVAL is 1.

Using icalendar you can specify that a job stream runs:

every n days
by using the following format:

FREQ=DAILY[;INTERVAL=n]

where the value set for valid from is the first day of the resulting
dates.

For example, for a job stream that is scheduled to run daily the
value is:
FREQ=DAILY

For a job stream that is scheduled to run every second day the
value is:
FREQ=DAILY;INTERVAL=2

every free or work days
by using the following format:

FREQ=DAILY[;INTERVAL=n]

;BYFREEDAY|BYWORKDAY

For example, for a job stream that is scheduled to run every
non-working day the value is:
FREQ=DAILY;BYFREEDAY

For a job stream that is scheduled to run every second workday
the value is:
FREQ=DAILY;INTERVAL=2;BYWORKDAY

every n weeks on specific weekdays
by using the following format:

FREQ=WEEKLY[;INTERVAL=n]

;BYDAY=weekday_list

where the value set for weekday_list is
[SU][,MO][,TU][,WE][,TH][,FR][,SA]

For example, for a job stream that is scheduled to run every week
on Friday and Saturday the value is:
FREQ=WEEKLY;BYDAY=FR,SA

For a job stream that is scheduled to run every three weeks on
Friday the value is:
FREQ=WEEKLY;INTERVAL=3;BYDAY=FR

every n months on specific dates of the month
by using the following format:

FREQ=MONTHLY[;INTERVAL=n]

;BYMONTHDAY=monthday_list

Chapter 9. Defining objects in the database 227

/

/

/

/

/

/
/

/

/
/

/
/

/

/
/

/

/
/

/

/

/
/

/

/
/

/

/
/

/

/

/

/

/
/

/

/
/

/

/
/

/

/

where the value set for monthday_list is represented by a list of
[+number_of_day_from_beginning_of_month]
[-number_of_day_from_end_of_month]
[number_of_day_of_the_month]

For example, for a job stream that is scheduled to run monthly on
the 27th day the value is:
FREQ=MONTHLY;BYMONTHDAY=27

For a job stream that is scheduled to run every six months on the
15th and on the last day of the month the value is:
FREQ=MONTHLY;INTERVAL=6;BYMONTHDAY=15,-1

every n months on specific days of specific weeks
by using the following format:

FREQ=MONTHLY[;INTERVAL=n]

;BYDAY=day_of_m_week_list

where the value set for day_of_m_week_list is represented by a list
of
[+number_of_week_from_beginning_of_month]
[-number_of_week_from_end_of_month]
[weekday]

For example, for a job stream that is scheduled to run monthly on
the first Monday and on the last Friday the value is:
FREQ=MONTHLY;BYDAY=1MO,-1FR

For a job stream that is scheduled to run every six months on the
2nd Tuesday the value is:
FREQ=MONTHLY;INTERVAL=6;BYDAY=2TU

every n years
by using the following format:

FREQ=YEARLY[;INTERVAL=n]

where the value set for valid from is the first day of the resulting
dates.

For example, for a job stream that is scheduled to run yearly the
value is:
FREQ=YEARLY

For a job stream that is scheduled to run every two years the value
is:
FREQ=YEARLY;INTERVAL=2

Note: The following limitations apply:
v the maximum supported interval for a daily run cycle is 31 days.
v the maximum supported interval for a weekly run cycle is 8 weeks.
v the maximum supported interval for a monthly run cycle is 12 months.

For run cycles specifying the day of the week based on the month, for
example the third Saturday or the second Friday, the maximum
supported interval is 5 days.

v the maximum supported interval for a yearly run cycle is 10 years.

228 IBM Workload Scheduler: User’s Guide and Reference

/

/
/
/

/
/

/

/
/

/

/
/

/

/

/
/

/
/
/

/
/

/

/
/

/

/
/

/

/
/

/
/

/

/
/

/

|

|

|

|
|
|
|

|

fdignore|fdnext|fdprev
Specifies a rule that must be applied when the date selected for exclusion
falls on a non-working day. It can be one of the following:

fdignore
Do not exclude the date.

fdnext Exclude the nearest workday after the non-working day.

fdprev
Exclude the nearest workday before the non-working day.

subset subsetname
Specifies the name of the subset. If you do not specify a name, SUBSET_1, is
used by default.

AND|OR
By default, run cycles within a subset are in a logical OR relationship but
you can change it to a logical AND, as long as the run cycle group result is
a positive date or set of dates (Inclusive).

For an explanation about remaining keywords contained in the except syntax refer
to “on” on page 246.

Comments

You can define multiple instances of the except keyword for the same job stream.
Each instance is equivalent to a run cycle to which you can associate a freeday
rule.

Multiple except instances must be consecutive within the job stream definition.

Each instance of the keyword can contain any of the values allowed by the except
syntax.

Examples

The following example selects job stream testskd2 to run every weekday except
those days whose dates appear on calendars named monthend and holidays:
schedule testskd2 on weekdays
except monthend,holidays

The following example selects job stream testskd3 to run every weekday except
May 15, 2005 and May 23, 2005:
schedule testskd3 on weekdays
except 05/15/2005,05/23/2005

The following example selects job stream testskd4 to run every day except two
weekdays prior to any date appearing on a calendar named monthend:
schedule testskd4 on everyday
except monthend-2 weekdays

Select job stream sked4 to run on Mondays, Tuesdays, and 2 weekdays prior to
each date listed in the monthend calendar. If the run date is a non-working day, run
the job stream on the nearest following workday. Do not run the job stream on
Wednesdays.

Chapter 9. Defining objects in the database 229

/
/
/

/
/

//

/
/

/
/
/

/
/
/
/

/
/

/

/
/
/

/

/
/

/

/
/

/
/

/
/

/
/

/
/

/
/

/
/
/
/

schedule sked4
on mo
on tu, MONTHEND -2 weekdays fdnext
except we

Select job stream testskd2 to run every weekday except for the days listed in
monthend. If a date in monthend falls on a non-working day, exclude the nearest
workday before it. In this example, the non-working days are Saturdays, Sundays,
and all the dates listed in the default holidays calendar .
schedule testskd2
on weekdays
except MONTHEND fdprev

follows

Defines the other jobs and job streams that must complete successfully before a job
or job stream is launched.

Comments

Use the following syntax for job streams:

[follows {[netagent::][workstation#]jobstreamname

[previous|sameday|relative from [+/-] time to [+/-] time|from time [+/-n day[s]] to
time [+/-n day[s]]

Use the following syntax for jobs:

[follows {[netagent::][workstation#]jobstreamname{.jobname}

[previous|sameday|relative from [+/-] time to [+/-] time | from time [+/-n day[s]]
to time [+/-n day[s]] [if <condition> [| <condition>...]]

Arguments

netagent
The name of the network agent where the internetwork dependency is
defined.

workstation
The workstation on which the job or job stream that must have completed
runs. The default is the same workstation as the dependent job or job
stream.

If a workstation is not specified with netagent, the default is the workstation
to which the network agent is connected.

jobstreamname
The name of the job stream that must have completed. For a job, the
default is the same job stream as the dependent job.

time Specifies a time of day. Possible values range from 0000 to 2359.

jobname
The name of the job that must have completed. An at sign (@) can be used
to indicate that all jobs in the job stream must complete successfully.

230 IBM Workload Scheduler: User’s Guide and Reference

/
/
/
/

/
/
/
/

/
/
/

/

/
/

/

/

/

/
/

/

/

/
/

/

/
/
/

/
/
/
/

/
/

/
/
/

//

/
/
/

previous|sameday|relative from [+/-] time to [+/-] time | from time [+/-n day[s]]
to time [+/-n day[s]]

Defines how the job stream or job referenced by an external follows
dependency is matched to a specific job stream or job instance in the plan.
See “Comments” for a detailed explanation of these options.

[if <condition> [| <condition>...]]
Conditional dependencies are used when you need a successor job or job
stream to start only after certain conditions are satisfied by the predecessor
job or job stream. They can also be used to specify alternative flows in a
job stream starting from a predecessor job or job stream. The successor job
is determined by which conditions the predecessor job or job stream
satisfies. The jobs in the flow that do not run, because the output
conditions were not satisfied, are put in SUPPR state which is different
from regular dependencies where jobs are put in Hold until the
predecessor is in SUCC state.

The conditions expressed by [if <condition> [| <condition>...]] can be of
different types: based on the job execution status of the predecessor job or
job stream, the job status, and other conditions based on the output or
outcome of the predecessor job or job stream. You can specify more than
one condition, separated by the pipe (|) symbol but, you cannot specify a
combination of types, one type only. For example, IF ABEND | FAIL |
SUPPR.

When the predecessor is a job stream, the conditional dependency is only a
status condition, as follows: abend, succ, and suppr. The successor job runs
when the predecessor job stream status satisfies the job status specified
using these arguments. You can specify one status, a combination of
statuses, or all statuses. When specifying more than one status or condition
name, separate the statuses or names by using the pipe (|) symbol.

if Condition_Name
Where, Condition_Name can represent both a status or an actual
name that you assign to a condition that you define.

if exec The successor job runs when the predecessor job has
started.

if fail|abend|succ|suppr
The successor job runs when the predecessor job status
satisfies the job status specified using these arguments. You
can specify one status, a combination of statuses, or all
statuses. When specifying more than one status, separate
the statuses by using the pipe (|) symbol.

if Condition_Name]
The successor job runs when the predecessor job satisfies
the output conditions defined for the Condition_Name
specified. You can specify one condition name, or a
combination of names. When specifying more than one
condition name, separate the names by using the pipe (|)
symbol. These output conditions are initially defined in the
job definition.

Comments

Dependency resolution criteria define how the job stream or job referenced by an
external follows dependency is matched to a specific job stream or job instance in

Chapter 9. Defining objects in the database 231

/
/
/
/
/

/
/
/
/
/
/
/
/
/
/

/
/
/
/
/
/
/

/
/
/
/
/
/

/
/
/

//
/

/
/
/
/
/
/

/
/
/
/
/
/
/
/

/

/
/

the plan. Because the plan allows the inclusion of multiple instances of the same
job or job stream, you can identify the instance that resolves the external follows
dependency based on the following resolution criteria:

previous
Closest Preceding: The job or job stream instance that resolves the
dependency is the closest preceding the instance that includes the
dependency.

sameday
Same Day: The job or job stream instance that resolves the dependency is
the closest one in time scheduled to start on the day when the instance
that includes the dependency is scheduled to run.

relative from [+/-] time to [+/-] time
Within a Relative Interval: The job or job stream instance that resolves the
dependency is the closest one in a time interval of your choice, which is
defined relatively to the scheduled start time of the dependent instance.

from time [+/-n day[s]] to time [+/-n day[s]
Within an Absolute Interval: The job or job stream instance that resolves
the dependency is the closest one in a time interval of your choice. The
time interval is not related to the scheduled start time of the dependent
instance.

Regardless of which matching criteria are used, if multiple instances of potential
predecessor job streams exist in the specified time interval, the rule used by the
product to identify the correct predecessor instance is the following:
1. IBM Workload Scheduler searches for the closest instance that precedes the

depending job or job stream start time. If such an instance exists, this is the
predecessor instance.

2. If there is no preceding instance, IBM Workload Scheduler considers the correct
predecessor instance as the closest instance that starts after the depending job
or job stream start time.

The scheduler classifies follows dependencies as internal when they are specified
only by their job name within the job stream. It classifies them as external when
they are specified in the jobStreamName.workstationName.jobName format.

When a job stream includes a job with a follows dependency that shares the same
job stream name (for example, job stream schedA includes a job named job6 that
has a follows dependency on schedA.job2), the dependency is added to the plan as
an external follows dependency. Since Version 8.3, unlike in previous versions,
because the scheduler uses the sameday matching criteria to resolve external
dependencies, dependencies originated in this way are never added the first time
the object is submitted.

For more information and examples on how external follows dependencies are
resolved in the plan refer to “Managing external follows dependencies for jobs and
job streams” on page 67.

Examples

The following example specifies to not launch job stream skedc until the closest
preceding job stream instance sked4 on workstation site1 has completed
successfully:
schedule skedc on fr follows site1#sked4 previous

232 IBM Workload Scheduler: User’s Guide and Reference

/
/
/

/
/
/
/

/
/
/
/

/
/
/
/

/
/
/
/
/

/
/
/

/
/
/

/
/
/

/
/
/

/
/
/
/
/
/
/

/
/
/

/

/
/
/

/

The following example specifies to not launch job stream skedc until the job stream
instance of sked4 on workstation site1 that run between 12:00 of 3 days before to
3:00 of the day after have completed successfully:
schedule skedc on fr follows site1#sked4 from 1200 –3 days to 0300 1 day

The following example specifies not to launch job stream skedc until job stream
sked4 on workstation site1 and job joba in job stream sked5 on workstation site2
have completed successfully:
schedule skedc on fr
follows site1#sked4,site2#sked5.joba

Do not launch sked6 until jobx in the job stream skedx on network agent cluster4
has completed successfully:
sked6 follows cluster4::site4#skedx.jobx

The following example specifies not to launch jobd until joba in the same job
stream, and job3 in job stream skeda have completed successfully:
jobd follows joba,skeda.job3

The following example specifies to launch the job LOADDATA_INFO after the job
CHECKJOB in the CHECKDATA job stream, only if job CHECKJOB completes in FAIL or
ABEND state, and if job CHECKJOB1 in the CHECKDATA1 job stream satisfies the
condition STATUS_OK defined in the CHECKJOB1 job definition:
WK1#LOADDATA_INFO
FOLLOWS WK2#CHECKDATA.CHECKJOB IF FAIL|ABEND
FOLLOWS W32#CHECKDATA1.CHECKJOB1 IF STATUS_OK

freedays
Use freedays to specify the name of a non-working days calendar that lists the
non-working days for your enterprise. If and how a job stream runs on these
particular days is defined in a freedays rule during the run cycle setup. IBM
Workload Scheduler uses this calendar as the base calendar for calculating workdays
for the job stream.

The keyword affects only the scheduling of the job streams for which it is
specified.

Syntax

freedays Calendar_Name [-sa] [-su]

Arguments

Calendar_Name
The name of the calendar that must be used as the non-working days
calendar for the job stream. If Calendar_Name is not in the database, IBM
Workload Scheduler issues a warning message when you save the job
stream. If Calendar_Name is not in the database when the command
schedulr runs, IBM Workload Scheduler issues an error message and uses
the default calendar holidays in its place. Do not use the names of
weekdays for the calendar names.

-sa Saturdays are workdays.

-su Sundays are workdays.

Chapter 9. Defining objects in the database 233

/
/
/

/

/
/
/

/
/

/
/

/

/
/

/

/
/
/
/

/
/
/

/
/
/
/
/
/

/
/

/

/

/

/
/
/
/
/
/
/
/

//

//

Comments

If you specify a non-working days calendar in the job stream definition, then the
concept of workdays takes the following value: workdays = everyday excluding
saturday and sunday (unless you specified -sa or -su along with freedays) and excluding
all the dates of Calendar_Name

If you do not specify freedays in the job stream definition, then: workdays =
everyday excluding saturday and sunday and all the dates of the holidays calendar

By default, saturday and sunday are considered as non-working days unless you
specify the contrary by adding -sa, -su or both after Calendar_Name.

Examples

Select job stream sked2 to run on 01/01/2005 and on all workdays as long as they
are not listed in the non-working days calendar named GERMHOL.
schedule sked2
freedays GERMHOL
on 01/01/2005, workdays

Select job stream sked3 to run two workdays before each date in the PAYCAL
calendar. Workdays are every day from Monday to Saturday as long as they are
not listed in the non-working days calendar named USAHOL.
schedule sked3
freedays USAHOL -sa
on PAYCAL -2 workdays

Select job stream sked3 on the dates listed in the APDATES calendar. If the selected
date is a non-working day, do not run the job stream. In this example, Sundays
and all the dates listed in the GERMHOL calendar are to be considered as
non-working days. All days from Monday to Saturday, except for the dates listed
in GERMHOL, are workdays.
schedule sked3
freedays GERMHOL -sa
on APDATES fdignore

Select job stream testsked3 to run every weekday except 5/15/2005 and
5/23/2006. If 5/23/2006 is a non-working day, do not exclude it. In this example,
Saturdays, Sundays, and all the dates listed in GERMHOL are to be considered as
non-working days. All days from Monday to Friday, except for the dates listed in
GERMHOL, are workdays.
schedule testskd3
freedays GERMHOL
on weekdays
except 5/15/2005 fdignore
except 5/23/2006

Select job stream testsked4 to run every day except two weekdays prior to every
date listed in the MONTHEND calendar. If the date to be excluded is a non-working
day, do not exclude it, but exclude the nearest following workday. In this example,
non-working days are all the dates listed in USAHOL, while workdays are all the
days from Monday to Sunday that are not listed in USAHOL.
schedule testskd4
freedays USAHOL -sa -su
on everyday
except MONTHEND -2 weekdays fdnext

234 IBM Workload Scheduler: User’s Guide and Reference

/

/
/
/
/

/
/

/
/

/

/
/

/
/
/

/
/
/

/
/
/

/
/
/
/
/

/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/

job statement
Jobs can be defined in the database independently (as described in “Job” on page
876), or as part of job streams. In either case, the changes are made in the database
and do not affect the production plan until the start of a new production plan.

Syntax

To define a job as part of a job stream, use the following syntax inside the job
stream definition:

[workstation#]jobname [as newname]
{scriptname filename | docommand “command”}
streamlogon username
[description “description”]
[tasktype tasktype]
[interactive]
[succoutputcond Condition_Name "Condition_Value"]
[outputcond Condition_Name "Condition_Value"]
[recovery

{stop
[after [workstation#]jobname]
[abendprompt "text"]]

| continue
[after [workstation#]jobname]
[abendprompt "text"]]
|rerun [same_workstation]

[[repeatevery hhmm] [for number attempts]]
[after [workstation#]jobname]
| [after [workstation#]jobname]
[abendprompt "text"]}

To use a job already defined in the database in the job stream definition define job
statement using the following syntax:

[workstation#]jobname [as newname]

Arguments

as The name you want to use to refer to the job instance within that job
stream.

For the other keywords refer to “Job definition” on page 173.

Comments

When defining a job as part of a job stream as the job stream definition is added to
the database also the new job definition is added and can be referenced, from that
moment on, also from other job streams.

Note: Wrongly typed keywords used in job definitions lead to truncated job
definitions stored in the database. In fact the wrong keyword is considered
extraneous to the job definition and so it is interpreted as the job name of an
additional job definition. Usually this misinterpretation causes also a syntax error
or an inexistent job definition error for the additional job definition.

Chapter 9. Defining objects in the database 235

/
/
/
/

/

/
/

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
=
=
=
=
=

/
/

/

/

//
/

/

/

/
/
/

/
/
/
/
/

When a job stream is added or modified, the attributes or recovery options of its
jobs are also added or modified. Remember that when you add or replace a job
stream, any job modifications affect all other job streams that use the jobs. Note
that the cross reference report, xref, can be used to determine the names of the job
streams including a specific job.

For more information about cross reference report refer to “xref” on page 708.

Note: Jobs scheduled to run on workstations marked as ignored, and belonging to
job streams scheduled to run on active workstations, are added to the plan even
though they are not processed.

Examples

The following example defines a job stream with three previously defined jobs:
schedule bkup on fr at 20:00 :

cpu1#jbk1
cpu2#jbk2
needs 1 tape

cpu3#jbk3
follows jbk1

end

The following job stream definition contains job statements that add or modify the
definitions of two jobs in the database:
schedule sked4 on mo :

job1 scriptname “d:\apps\maestro\scripts\jcljob1”
streamlogon jack
recovery stop abendprompt “continue production”

site1#job2 scriptname “d:\apps\maestro\scripts\jcljob2”
streamlogon jack
follows job1

end

join

Defines a set of joined dependencies on a job or job stream. The set of joined
dependencies is satisfied when the specified number of dependencies are met.

Syntax

[join join_name [number | numconditions | ALL] OF

DESCRIPTION "..."]

...

ENDJOIN

Arguments

join_name
A meaningful name for the set of joined conditions. The maximum length
is 16 characters.

number
The number of dependencies that must be met for the joined conditions to
be satisfied. Supported values are:

0 All dependencies must be met.

236 IBM Workload Scheduler: User’s Guide and Reference

/
/
/
/
/

/

/
/
/

/

/

/
/
/
/
/
/
/

/
/

/
/
/
/
/
/
/
/

/

/
/

/

/

/

/

/

/

/
/
/

/
/
/

//

1 The number of dependencies that must be met for the joined
conditions to be satisfied.

numconditions
The number of dependencies that must be met for the joined conditions to
be satisfied.

ALL All dependencies must be met for the joined conditions to be satisfied

DESCRIPTION
A meaningful description for the set of joined conditions. This argument is
optional.

Comments

For any single object, you are limited to a maximum of 4 join instances for each
object with unlimited conditional statements within each join.

On a job, you can define standard and conditional dependencies, both internal and
external.

On a job stream , you can define standard and conditional dependencies, only
internal.

Internetwork dependencies are not supported.

Examples

The following example shows a job stream containing the following dependencies:
1. A follows dependency on a job stream in ABEND or SUPPRESS state
2. A set of joined conditional dependencies, containing two dependencies, the first

on job nc007108#COND_DEP_JS1.COND_DEP_J1, which must finish successfully for
the dependency to be satisfied, the second on job
nc007108#COND_DEP_JS2.COND_DEP_J2, which must meet the
EXT_STATUS_PREREQ_SUCC_2 condition. This condition is defined by the user
when creating the job definition. At least one of these conditions must be met
for the set of joined conditional dependencies to be satisfied.

3. A follows dependency on an external job stream in EXEC state.
4. A second set of joined conditional dependencies, containing two dependencies,

the first on job CDJ_PRED_2_163955532 which must be in SUCC state and the
second on job CDJ_PRED_1_163955532, which must be in
INT_STATUS_PREDEC_SUCC_1 state. The second condition is defined by the
user when creating the job definition. Both these conditions must be met for the
set of joined conditional dependencies to be satisfied.

:
SCHEDULE nc007108#CDJS_163955532
FOLLOWS nc007108#COND_DEP_JS1.@ IF ABEND | SUPPRESS

JOIN JOINDEP_COV_01 1 OF
DESCRIPTION "Description for join JOINDEP_COV_01"
FOLLOWS nc007108#COND_DEP_JS1.COND_DEP_J1 IF SUCC
FOLLOWS nc007108#COND_DEP_JS2.COND_DEP_J2 IF EXT_STATUS_PREREQ_SUCC_2
ENDJOIN

:
nc007108#CDJ_PRED_1_163955532
nc007108#CDJ_PRED_2_163955532

Chapter 9. Defining objects in the database 237

//
/

/
/
/

//

/
/
/

=

=
=

=
=

=
=

=

/

/

/

/
/
/
/
/
/
/

/

/
/
/
/
/
/

/

/
/
/
/
/
/
/
/
/
/
/
/
/

FTA_nc007108#CDJ_FTA_163955532
FOLLOWS nc007108#COND_DEP_JS1.COND_DEP_J1 IF EXEC

JOIN JOINDEP_COV_02 ALL OF
FOLLOWS CDJ_PRED_2_163955532 IF SUCC
FOLLOWS CDJ_PRED_1_163955532 IF INT_STATUS_PREDEC_SUCC_1
ENDJOIN

END

jsuntil
The jsuntil keyword defines the latest start time of a job stream. It also determines
the behavior of the jobs in the job stream when the job stream is approaching its
latest start time. Use the jsuntil keyword to avoid that the job stream is either
suppressed, canceled, or set to continue (depending on the action specified in the
onuntil keyword) if it starts before its latest start time. For example, if you have a
job stream with jsuntil set to 10:00 am, and one of the jobs starts running at 9:59
am, the job and its successors run as scheduled.

This keyword is mutually exclusive with the until keyword.

There is also a major difference with between the until and jsuntil keywords:

If you specify the until keyword in your job stream definition
This keyword is evaluated also after the job stream has started. As a result,
if the latest start time expires before the job stream completes successfully,
the action specified in the related onuntil keyword is performed on the job
stream and on its jobs, which have not yet started.

If you specify the jsuntil keyword in your job stream definition
This keyword is evaluated only once, as soon as all dependencies of the
job stream are satisfied and the job stream state changes to READY. If the
latest start time defined using the jsuntil keyword has not expired at this
time, it is no longer evaluated and the job stream runs independently of it.
However, to prevent the job stream from remaining in READY state
indefinitely, two days after the time specified in the jsuntil keyword has
expired, the job stream is suppressed by default.

For more information about the until keyword, see “until” on page 265.

Syntax

[jsuntil time [timezone|tz tzname][+n day[s]] [onuntilaction]]

Arguments

time Specifies the time of day. The possible values are 0000 through 2359.

tzname Specifies the time zone to be used when computing the time. See
Chapter 19, “Managing time zones,” on page 741 for time zone names. The
default is the time zone of the workstation on which the job or job stream
is launched.

n Specifies an offset, in days, from the scheduled date and time.

onuntil action
The action to be taken on a job stream whose until time has expired but
the job stream is not yet completed in SUCC state. The following are the
possible values of the action parameter:

238 IBM Workload Scheduler: User’s Guide and Reference

/
/
/
/
/
/
/
/
/

=
=
=
=
=
=
=
=

=

=

=
=
=
=
=

=
=
=
=
=
=
=
=

=

=

=

=

==

==
=
=
=

==

=
=
=
=

suppr The job or job stream and any dependent job or job stream do not
run. This is the default behavior.

Once the until time expired on a job stream, the status for the job
stream is calculated following the usual rules; suppressed jobs are
not considered in the calculation. In case the job stream contains at
least one every job its status is HOLD.

When the until time expires for a job, the job changes to HOLD
status or keeps any previous status which is a final status.

If the until time is passed together with the onuntil suppr and the
carryforward options, the job stream is carry forwarded by
JnextPlan only if the until date is equal to the date when
JnextPlan runs. If the until and the JnextPlan run dates are not the
same, the job stream is not carry forwarded.

cont The job or job stream runs when all necessary conditions are met
and a notification message is written to the log when the until time
elapses.

If the until time is passed together with the onuntil cont and the
carryforward options, the job stream is always carry forwarded by
JnextPlan.

canc A job or job stream is cancelled when the until time specified
expires. When using onuntil canc on jobs, the cancel operation on
the job is issued by the FTA on which the job runs. Any job or job
stream that was dependent on the completion of a job or job
stream that was cancelled, runs because the dependency no longer
exists.

If the until time is passed together with the onuntil canc and the
carryforward options, the job stream is not carry forwarded by
JnextPlan because it is already canceled.

Note: When using onuntil canc at job stream level, define as owner
of the job stream the workstation highest in the hierarchy of the
scheduling environment, among all workstations that own jobs
contained in the job stream.

Comments

The jsuntil keyword is supported on components at version 9.4 Fix Pack 1, or
later, with the exception of dynamic agents connected to a master at version 9.4 Fix
Pack 1, or later. On all other agent types where a previous version of the product is
installed, the jsuntil keyword is ignored.

Examples

To schedule the BankReports job stream so that it starts at 08:00 and continues
running if one of its jobs starts running within 9:59 and its duration exceeds 10:00,
specify the following syntax:
schedule BankReports
on everyday
AT 0800 JSUntil 1000
end

Chapter 9. Defining objects in the database 239

==
=

=
=
=
=

=
=

=
=
=
=
=

==
=
=

=
=
=

==
=
=
=
=
=

=
=
=

=
=
=
=

=

=
=
=
=

=

=
=
=

=
=
=
=

keyjob
The keyjob keyword is used to mark a job as key in both the database and in the
plan and for monitoring by applications, such as Tivoli Business Systems Manager
or Tivoli Enterprise Console. See the IBM Workload Scheduler Integrating with Other
Products guide for information about enabling the key flag mechanism.

Syntax

keyjob

Examples

In the following example, both the job and the job stream are marked as key.
SCHEDULE cpu1#sched1
ON everyday
KEYSCHED
AT 0100
cpu1#myjob1 KEYJOB
END

keysched
The keysched keyword is used to mark a job stream as key in both the database
and in the plan and for monitoring by applications, such as Tivoli Business
Systems Manager. See the IBM Workload Scheduler Integrating with Other Products
guide for information about enabling the key flag mechanism.

Syntax

keysched

Examples

The following example :
SCHEDULE cpu1#sched1
ON everyday
KEYSCHED
AT 0100
cpu1#myjob1 KEYJOB
END

limit
The limit keyword limits the number of jobs that can run simultaneously in a job
stream. This keyword works only if all the jobs in the job stream are defined on
workstations that are managed by the same batchman process. There are three
possible cases:

The workstation on which batchman runs is a fault-tolerant agent
In this case, the limit keyword limits the number of jobs, defined in the
fault-tolerant agent and in the extended agents defined on this
fault-tolerant agent, that can run simultaneously in the job stream. The job
stream must contain only jobs defined in the fault-tolerant agent or in the
extended agents running on the fault-tolerant agent.

The workstation on which batchman runs is a domain manager
In this case, in addition to workstations of the previous case, the job stream
can contain jobs running on standard agents connected to the domain
manager, or to any fault-tolerant agent managed by this domain manager,
configured with the FULLSTATUS parameter set to on.

240 IBM Workload Scheduler: User’s Guide and Reference

=
/
/
/
/

/

/

/

/

/
/
/
/
/
/

/
/
/
/
/

/

/

/

/

/
/
/
/
/
/

/
/
/
/
/

/
/
/
/
/
/

/
/
/
/
/

The workstation on which batchman runs is a dynamic domain manager
In addition to workstations of the previous cases, the job stream can
contain jobs defined on the broker and its dynamic agents.

In other scenarios, the use of the limit keyword to limit the number of jobs that
can run simultaneously might not work as expected.

Syntax

limit joblimit

Arguments

joblimit
Specifies the number of jobs that can be running at the same time in the
job stream. Possible values are 0 through 1024. If you specify 0, you
prevent all jobs from being launched, including the one with priority set to
GO or HI.

Examples

The following example limits to five the number of jobs that can run
simultaneously in job stream sked2:
schedule sked2 on fr

limit 5 :

matching
Sets a default for the matching criteria to be used in all follows dependencies
where a matching criteria is not set in the job stream definition or in the jobs
contained in the job stream.

Syntax

matching {previous |sameday | relative from [+/-] time to [+/-] time

Arguments

For information about the keyword used with matching see the “follows” on page
230 keyword.

Examples

The following example shows the definition of job stream SCHED2 that:
v Contains a job1 that can be run today only if it was run yesterday.
v Needs the instance of job stream SCHED1 running the same day to complete

before running.
SCHEDULE PDIVITA1#SCHED2
ON RUNCYCLE RULE1 "FREQ=DAILY;"
ON RUNCYCLE CALENDAR2 CAL1
MATCHING PREVIOUS
FOLLOWS PDIVITA1#SCHED1.@ SAMEDAY
FOLLOWS PDIVITA1#SCHED2.JOB1
:
PDIVITA1#JOB1

PDIVITA1#JOB2
END

Chapter 9. Defining objects in the database 241

/
/
/

/
/

/

/

/

/
/
/
/
/

/

/
/

/
/

/
/
/
/

/

/

/

/
/

/

/

/

/
/

/
/
/
/
/
/
/
/
/
/
/

In this sample the external follows dependency from PDIVITA1#SCHED2.JOB1
inherits the matching criteria specified in the matching keyword.

Comments

Note that if you delete a job stream and then add it again to the database, the job
stream gets another identifier. For this reason, if the job stream contains FOLLOWS
dependencies with PREVIOUS matching criteria, these dependencies are not matched
when JnextPlan runs again, because they are cross-plan dependencies that refer to
an old identifier.

In the following example, if you delete job stream JS01, to assure the referential
integrity of the database, also FOLLOWS TWS851MASTER#JS01.@ is deleted from the
definition of JS02 and from the Preproduction plan.

If you delete job stream JS03, to assure the referential integrity of the database,
also FOLLOWS TWS851MASTER#JS03.@ PREVIOUS is deleted from the definition of JS02
and from the Preproduction plan.

If you delete job stream JS02 and then add it again to the plan, also its FOLLOWS
dependencies are added again. When the plan is extended, the FOLLOWS
TWS851MASTER#JS03.@ PREVIOUS dependency of job stream JS02 does not match the
instance of job stream JS03 coming from the previous plan, and this dependency is
not added.

At the next plan extension, the process works again.
SCHEDULE TWS851MASTER#JS01
ON RUNCYCLE RULE1 "FREQ=DAILY;"
:
TWS851MASTER#J02
END
SCHEDULE TWS851MASTER#JS03
ON RUNCYCLE RULE1 "FREQ=DAILY;"
SCHEDTIME 1000
CARRYFORWARD
:
TWS851MASTER#J03
END
SCHEDULE TWS851MASTER#JS02
ON RUNCYCLE RULE1 "FREQ=DAILY;"
:
TWS851MASTER#J01
FOLLOWS TWS851MASTER#JS01.@
FOLLOWS TWS851MASTER#JS03.@ PREVIOUS
END

To avoid this problem, use the composer command replace because, in this case,
job stream identifiers do not change.

maxdur
Specifies the maximum length of time a job can run. You can express this time in
either minutes, or as a percentage of the latest estimated duration for the job. If a
job is running, and the maximum duration time has been exceeded, then the
following actions occur:
v One of the following actions is triggered: Kill or Continue.
v The job is shown as exceeded in the following places:

– When running showjob from the conman command line, MaxDurationExceeded
is displayed.

242 IBM Workload Scheduler: User’s Guide and Reference

/
/

/

/
/
/
/
/

/
/
/

/
/
/

/
/
/
/
/

/

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

/
/

/
/
/
/
/

/

/

/
/

– From the Dynamic Workload Console in the job properties for the job.
– An informational message is written to the TWS_home/stdlist/logs/

yyyymmdd_TWSMERGE.log file.

If this job is still running when JnextPlan is run, then the job is inserted in the
USERJOBS job stream. The maximum duration setting is not maintained for the job
in the USERJOBS job stream and will not be monitored. To have the job stream
carried forward and avoid having the job being moved to the USERJOBS job
stream, flag the original job stream where the maximum duration setting was
specified as a carryforward job stream (setting the carryforward keyword in the
job stream) if the enCarryForward global option is set to yes, otherwise, set the
enCarryForward global option to all.

Syntax

maxdur time | percentage % onmaxdur action

Arguments

time Specifies a length of time expressed using the syntax HHHMM where,

HHH Represents the number of hours and is a number ranging from
000-500.

MM Represents the number of minutes and is a number ranging from
00-59.

percentage
Specifies the percentage of the latest estimated duration. It can be a
number ranging from 0-1000000.

onmaxdur action
Specifies the action to be triggered on a job that is still running when the
maximum duration specified for this job has been exceeded. The following
are the possible values of the action parameter:

Kill Specify to stop the running job. Killed jobs end in the ABEND
state. Any jobs or job streams that are dependent on a killed job
are not released. Killed jobs can be rerun.

Continue
Specifies to let the running job continue to run even if it has
exceeded the maximum time duration.

When submitting a conman command to set or change the onmaxdur action,
you must also specify the maxdur keyword in connection with the onmaxdur
argument.

Examples

The following example specifies to continue a running job if it is still running after
one hour and 20 minutes:
MAXDUR 80 ONMAXDUR CONT

The following example specifies to kill a running job when if the job runs longer
than one hour and 20 minutes:
MAXDUR 80 ONMAXDUR KILL

Chapter 9. Defining objects in the database 243

/

/
/

/
/
/
/
/
/
/
/

/

/

/

//

//
/

//
/

/
/
/

/
/
/
/

//
/
/

/
/
/

/
/
/

/

/
/

/

/
/

/

The following example specifies to continue a running job if the job is still running
after it has exceeded 120% of its maximum duration where the maximum duration
is based on the latest estimated duration:
MAXDUR 120 % ONMAXDUR KILL

mindur
Specifies the shortest amount of time within which a job normally runs and
completes. If a job completes before this minimum amount of time is reached, then
the following actions are performed:
v One of the following actions is triggered: Abend, Confirm, or Continue.
v The job is shown as to have not reached its minimum duration in the following

places only if the job completes with SUCCESS:
– When running showjobs, showjobs ;props from the conman command line,

MinDurationNotReached is displayed.
– From the Dynamic Workload Console in the job properties for the job.
– An informational message is written to the TWS_home/stdlist/logs/

yyyymmdd_TWSMERGE.log file.

If this job is still running when JnextPlan is run, then the job is inserted in the
USERJOBS job stream. The minimum duration setting is not maintained for the job
in the USERJOBS job stream and will not be monitored. To have the job stream
carried forward and avoid having the job being moved to the USERJOBS job
stream, flag the original job stream where the minimum duration setting was
specified as a carryforward job stream (setting the carryforward keyword in the
job stream) if the enCarryForward global option is set to yes, otherwise, set the
enCarryForward global option to all.

Syntax

mindur time | percentage % onmindur action

Arguments

time Specifies a length of time expressed using the syntax HHHMM where,

HHH Represents the number of hours and is a number ranging from
000-500.

MM Represents the number of minutes and is a number ranging from
00-59.

percentage
Specifies the percentage of the latest estimated duration. It can be a
number ranging from 0-1000000.

onmindur action
Specifies the action to be triggered on a job that completes before its
minimum duration. The following are the possible values of the action
parameter:

Abend
The job is set to ABEND status.

Confirm
The job is set to CONFIRM status The workload requires a user
confirmation to proceed.

Continue
The workload running continues without taking any action.

244 IBM Workload Scheduler: User’s Guide and Reference

/
/
/

/

/
/
/
/

/

/
/

/
/

/

/
/

/
/
/
/
/
/
/
/

/

/

/

//

//
/

//
/

/
/
/

/
/
/
/

/
/

/
/
/

/
/

Examples

The following example specifies to continue a running workload even if the job
does not reach a minimum duration of at least 80 minutes:
MINDUR 120 ONMINDUR CONT

The following example specifies to set the job status to Error if the job does not
run for at least 80 minutes:
MINDUR 120 ONMINDUR ABEND

The following example requires a user to confirm the job when it has reached 50%
or half of its latest estimated minimum duration:
MINDUR 50 % ONMINDUR CONFIRM

needs

The needs keyword defines resources that must be available before a job or job
stream is launched. You can use the needs keyword either in a job stream
definition or in the definition of the contained jobs, not in both.

Syntax

needs [n] [workstation#]resourcename [,...]

Arguments

n Specifies the number of resource units required. Possible values are 1 to
1024 for each needs statement. The default is 1.

workstation
Specifies the name of the workstation on which the resource is locally
defined. If not specified, the default is the workstation where the
dependent job or job stream runs. Resources can be used as dependencies
only by jobs and job streams that run on the workstation where the
resource is defined.

Due to the resources dependencies resolution mechanism, a resource
dependency at job stream level can be considered 'local' (and then its use
supported) rather than 'global', when both the job stream and all its jobs
are defined on the same workstation as the resource.

However, a standard agent and its host can reference the same resources.

resourcename
Specifies the name of the resource.

Comments

A job or job stream can request a maximum of 1024 units of a resource in a needs
statement. At run time, each needs statement is converted in holders, each holding
a maximum of 32 units of a specific resource. Independently from the amount of
available units of the resource, for a single resource there can be a maximum of 32
holders. If 32 holders are already defined for a resource, the next job or job stream
waiting for that resource waits until a current holder terminates AND the needed
amount of resource becomes available.

Chapter 9. Defining objects in the database 245

/

/
/

/

/
/

/

/
/

/

/

/
/
/

/

/

/

//
/

/
/
/
/
/
/

/
/
/
/

/

/
/

/

/
/
/
/
/
/
/

Examples

The following example prevents job stream sked3 from being launched until three
units of cputime, and two units of tapes become available:
schedule sked3 on fr

needs 3 cputime,2 tapes :

The jlimit resource has been defined with two available units. The following
example allows no more than two jobs to run concurrently in job stream sked4:
schedule sked4 on mo,we,fr :

joba needs 1 jlimit
jobb needs 1 jlimit
jobc needs 2 jlimit <<runs alone>>
jobd needs 1 jlimit

end

nop
The nop keyword specifies that the job is not to run when the plan executes. The
job is included in the plan, as part of the job stream in which it is featured, but as
the plan runs, it is placed in Cancel Pending status and is not executed. If there are
standard dependencies defined on the job, the dependencies are released and the
successors are executed. In the case of conditional dependencies, the condition
must be verified as true for the successors to be executed.

This option represents a quick and easy way to temporarily disable a job from
executing without having to delete it from the job stream and change its
dependencies. For example, if you need to temporarily disable a print job from
running because the printer is out of service, you can NOP the job in the job
stream definition until the printer is fixed or replaced.

Syntax

job-statement
[...]
[nop]
[...]

Examples

In the following example job jbk1 is defined in job stream bkup with the NOP
option. It will be flagged as Cancel Pending in all the Symphony files to come as
long as the option is defined. Successor job jbk3 will run.
schedule bkup on fr at 20:00 :
cpu1#jbk1
nop
cpu2#jbk2
needs 1 tape
cpu3#jbk3
follows jbk1
end

on
This is a job stream keyword that defines when and how often a job stream is
selected to run. If omitted the job stream is not added to the preproduction plan.
The on keyword must follow the schedule keyword. See “except” on page 225 for
more information.

246 IBM Workload Scheduler: User’s Guide and Reference

/

/
/

/
/

/
/

/
/
/
/
/
/

/
/
/
/
/
/
/

/
/
/
/
/

/

/
/
/
/

/

/
/
/

/
/
/
/
/
/
/
/

/
/
/
/
/

Syntax

on [runcycle name

[valid from date] [valid to date]

[description ”text”]

[vartable table_name]]

{date|day|calendar|request|”icalendar”} [,...]

[fdignore|fdnext|fdprev][subset subsetname AND|OR]

Arguments

runcycle name
Specifies a label with a friendly name for the run cycle specified in the
following lines.

valid from date ... valid to date
Delimits the time frame during which the job stream is active, that is the
job stream is added to the production plan. Note that the date specified as
valid to value is not included in the run cycle, therefore on this date the
job stream is not active.

description ”text”
Contains a description of the run cycle.

vartable
Specifies the name of the variable table to be used by the run cycle.

date Specifies a run cycle that runs on specific dates. The syntax used for this
type is:

yyyymmdd [,yyyymmdd][,...]For example, for a job stream that is scheduled
to run on the 25th of May 2009 and on the 12th of June 2009 the value is:
on
20090525,20090612

day Specifies a run cycle that runs on specific days. The syntax used for this
type is:

{mo|tu|we|th|fr|sa|su}For example, for a job stream that is scheduled to
run every Monday the value is:
on
mo

calendar
The dates specified in a calendar with this name. The calendar name can
be followed by an offset in the following format:

{+ | -}n {day[s] | weekday[s] | workday[s]}

Where:

n The number of days, weekdays, or workdays.

days Every day of the week.

weekdays
Every day of the week, except Saturday and Sunday.

Chapter 9. Defining objects in the database 247

/

/

/

/

/

/

/

/

/
/
/

/
/
/
/
/

/
/

/
/

//
/

/
/

/
/

//
/

/
/

/
/

/
/
/

/

/

//

//

/
/

workdays
Every day of the week, except for Saturdays and Sundays (unless
otherwise specified with the freedays keyword) and for the dates
marked either in a designated non-working days calendar or in the
holidays calendar.

request Selects the job stream only when requested. This is used for job streams
that are selected by name rather than date. To prevent a scheduled job
stream from being selected for JnextPlan, change its definition to ON
REQUEST.

Note: When attempting to run a job stream that contains "on request"
times, consider that:
v "On request" always takes precedence over "at".
v "On request" never takes precedence over "on".

icalendar
Represents a standard used to specify a recurring rule that describes when
a job stream runs.

The syntax used for run cycle with type icalendar is the following:

FREQ={DAILY|WEEKLY|MONTHLY|YEARLY}

[;INTERVAL=[-]n]

[;{BYFREEDAY|BYWORKDAY|BYDAY=weekday_list|

BYMONTHDAY=monthday_list}]

where the default value for keyword INTERVAL is 1.

Using icalendar you can specify that a job stream runs:

every n days
by using the following format:

FREQ=DAILY[;INTERVAL=n]

where the value set for valid from is the first day of the resulting
dates.

For example, for a job stream that is scheduled to run daily the
value is:
FREQ=DAILY

For a job stream that is scheduled to run every second day the
value is:
FREQ=DAILY;INTERVAL=2

every free or work days
by using the following format:

FREQ=DAILY[;INTERVAL=n]

;BYFREEDAY|BYWORKDAY

For example, for a job stream that is scheduled to run every
non-working day the value is:
FREQ=DAILY;BYFREEDAY

For a job stream that is scheduled to run every second workday
the value is:

248 IBM Workload Scheduler: User’s Guide and Reference

/
/
/
/
/

//
/
/
/

/
/

/

/

/
/
/

/

/

/

/

/

/

/

/
/

/

/
/

/
/

/

/
/

/

/
/

/

/

/
/

/

/
/

FREQ=DAILY;INTERVAL=2;BYWORKDAY

every n weeks on specific weekdays
by using the following format:

FREQ=WEEKLY[;INTERVAL=n]

;BYDAY=weekday_list

where the value set for weekday_list is
[SU][,MO][,TU][,WE][,TH][,FR][,SA]

For example, for a job stream that is scheduled to run every week
on Friday and Saturday the value is:
FREQ=WEEKLY;BYDAY=FR,SA

For a job stream that is scheduled to run every three weeks on
Friday the value is:
FREQ=WEEKLY;INTERVAL=3;BYDAY=FR

every n months on specific dates of the month
by using the following format:

FREQ=MONTHLY[;INTERVAL=n]

;BYMONTHDAY=monthday_list

where the value set for monthday_list is represented by a list of
[+number_of_day_from_beginning_of_month]
[-number_of_day_from_end_of_month]
[number_of_day_of_the_month]

For example, for a job stream that is scheduled to run monthly on
the 27th day the value is:
FREQ=MONTHLY;BYMONTHDAY=27

For a job stream that is scheduled to run every six months on the
15th and on the last day of the month the value is:
FREQ=MONTHLY;INTERVAL=6;BYMONTHDAY=15,-1

every n months on specific days of specific weeks
by using the following format:

FREQ=MONTHLY[;INTERVAL=n]

;BYDAY=day_of_m_week_list

where the value set for day_of_m_week_list is represented by a list
of
[+number_of_week_from_beginning_of_month]
[-number_of_week_from_end_of_month]
[weekday]

For example, for a job stream that is scheduled to run monthly on
the first Monday and on the last Friday the value is:
FREQ=MONTHLY;BYDAY=1MO,-1FR

For a job stream that is scheduled to run every six months on the
2nd Tuesday the value is:
FREQ=MONTHLY;INTERVAL=6;BYDAY=2TU

every n years
by using the following format:

Chapter 9. Defining objects in the database 249

/

/
/

/

/

/

/

/
/

/

/
/

/

/
/

/

/

/

/
/
/

/
/

/

/
/

/

/
/

/

/

/
/

/
/
/

/
/

/

/
/

/

/
/

FREQ=YEARLY[;INTERVAL=n]

where the value set for valid from is the first day of the resulting
dates.

For example, for a job stream that is scheduled to run yearly the
value is:
FREQ=YEARLY

For a job stream that is scheduled to run every two years the value
is:
FREQ=YEARLY;INTERVAL=2

Note: The following limitations apply:
v the maximum supported interval for a daily run cycle is 31 days.
v the maximum supported interval for a weekly run cycle is 8

weeks.
v the maximum supported interval for a monthly run cycle is 12

months. For run cycles specifying the day of the week based on
the month, for example the third Saturday or the second Friday,
the maximum supported interval is 5 days.

v the maximum supported interval for a yearly run cycle is 10
years.

fdignore|fdnext|fdprev
Indicates the rule to be applied if the date selected for running the job or
job stream falls on a non-working day. The available settings are:

fdignore
Do not add the date.

fdnext Add the nearest workday after the non-working day.

fdprev
Add the nearest workday before the non-working day.

[subset subsetname AND|OR]

subset subsetname
Specifies the name of the subset. If you do not specify a name,
SUBSET_1, is used by default.

AND|OR
By default, run cycles within a subset are in a logical OR
relationship but you can change it to a logical AND, as long as the
run cycle group result is a positive date or set of dates (Inclusive).

Comments

You can define multiple instances of the on keyword for the same job stream.
Multiple on instances must be consecutive within the job stream definition. Each
instance is equivalent to a run cycle to which you can associate a freeday rule.

Each instance of the keyword can contain any of the values allowed by the on
syntax.

If the run cycle and job stream start times are both defined, the run cycle start time
takes precedence when the job stream is scheduled with JNextPlan. When the job
stream is launched with the submit command, the run cycle start time is not used.

250 IBM Workload Scheduler: User’s Guide and Reference

/

/
/

/
/

/

/
/

/

|

|

|
|

|
|
|
|

|
|

/
/
/

/
/

//

/
/

/

/
/
/

/
/
/
/

/

/
/
/

/
/

/
/
/

Examples

The following example selects job stream sked1 on Mondays and Wednesdays:
schedule sked1 on mo,we

The following example selects job stream sked3 on June 15, 2008, and on the dates
listed in the apdates calendar:
schedule sked3 on 6/15/08,apdates

The following example selects job stream sked4 two weekdays before each date
appearing in the monthend calendar:
schedule sked4 on monthend -2 weekdays

The following example selects job stream testskd1 every weekday except on
Wednesdays:
schedule testskd1 on weekdays

except we

The following example selects job stream testskd3 every weekday except May 15,
2008 and May 24, 2008:
schedule testskd3 on weekdays

except 05/16/2008,05/24/2008

The following example selects job stream testskd4 every day except two weekdays
prior to any date appearing in a calendar named monthend:
schedule testskd4 on everyday

except monthend -2 weekdays

Select job stream sked1 to run all Mondays, Fridays, and on 29/12/2009. If
Mondays and 29/12/2009 are non-working days, run the job stream on the nearest
following workday. If Fridays are non-working days, run the job stream on the
nearest preceding day. In this example, the non-working days are Saturdays,
Sundays, and all the dates listed in the default HOLIDAYS calendar. Workdays are all
days from Monday to Friday if they are not listed in the HOLIDAYS calendar.
schedule sked1
on mo, 12/29/2009 fdnext
on fr fdprev

This example shows the output of the display command of job stream testcli
defined to run on different run cycles on workstation site2:
display js=site2#testcli

obtained in 120-column format by setting MAESTROCOLUMNS=120 before
accessing the composer command-line:
JobstreamName Workstation Draft Valid From Valid To UpdatedBy UpdatedOn LockedBy
------------- ----------- ----- -------–- ------- --------- --------- --------
TESTCLI SITE2 Y 08/25/2008 - mdmDBE4 08/25/2008 mdmDBE4

SCHEDULE W5#TESTCLI VALID FROM 08/25/2008 TIMEZONE ACT
DESCRIPTION "Job stream with several run cycle settings."
DRAFT
ON RUNCYCLE M5 VALID FROM 08/25/2008

DESCRIPTION "monthly"
"FREQ=MONTHLY;INTERVAL=5;BYMONTHDAY=-3,1"
(AT 0000)

ON RUNCYCLE W4 VALID FROM 08/25/2008
DESCRIPTION "weekly"

Chapter 9. Defining objects in the database 251

/

/

/

/
/

/

/
/

/

/
/

/
/

/
/

/
/

/
/

/
/

/
/
/
/
/
/

/
/
/

/
/

/

/
/

/
/
/
/
/
/
/
/
/
/
/
/
/

"FREQ=WEEKLY;INTERVAL=5;BYDAY=MO,WE"
FDNEXT (AT 0000)

ON RUNCYCLE D3 VALID FROM 08/25/2008
DESCRIPTION "daily"
"FREQ=DAILY;INTERVAL=2"
FDPREV (AT 0000)

ON RUNCYCLE C2 VALID FROM 08/25/2008
DESCRIPTION "calendar"
ITALY +2 DAYS
(AT 0000)

ON RUNCYCLE M6 VALID FROM 08/25/2008
DESCRIPTION "monthly"
"FREQ=MONTHLY;INTERVAL=2;BYDAY=1MO,1TH,2WE"
(AT 0000 +2 DAYS)

ON RUNCYCLE Y7 VALID FROM 08/25/2008
DESCRIPTION "yearly"
"FREQ=YEARLY;INTERVAL=7"
(AT 0100)

ON RUNCYCLE SS1 VALID FROM 08/25/2008
08/10/2008,08/18/2008,08/20/2008,08/25/2008
(AT 0000 UNTIL 0000 +1 DAYS ONUNTIL SUPPR DEADLINE 0000 +2 DAYS)

EXCEPT RUNCYCLE S1 VALID FROM 08/25/2008
DESCRIPTION "simple"
08/26/2008,08/28/2008,08/30/2008,09/13/2008
(AT 0000)

CARRYFORWARD
MATCHING SAMEDAY
FOLLOWS LAB235004#SROBY2.@
FOLLOWS X8#COPYOFJS2.RR
FOLLOWS XA15::TPA
KEYSCHED
LIMIT 22
PRIORITY 15
:
X8#PIPPO AS JOBTC
CONFIRMED
PRIORITY 13
KEYJOB
FOLLOWS W5#POPO.@
FOLLOWS X8#JS2.F3
END

AWSBIA291I Total objects: 1

The calendar ITALY is a custom calendar defined in the database that sets the
workdays and holidays of the calendar in use in Italy.

onlate
The onlate keyword defines the action to be taken on a job in job stream when the
job's deadline expires.

Syntax

onlate action

Arguments

action Specifies the action to be taken on the job when the job's deadline expires.
The supported action is kill. If the job is running when the deadline
expires, it is killed. Killed jobs end in the ABEND state. Any jobs or job
streams that are dependent on a killed job are not released. If the
dependency on the job is a conditional dependency on the job completing
in ABEND state, that dependency is released.

252 IBM Workload Scheduler: User’s Guide and Reference

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

/
/

=
=
=

=

=

=

==
=
=
=
=
=

Comments

This keyword applies only to jobs defined in job streams.

If you do not specify an until time for the job and specify a deadline time with an
onlate kill action, the until keyword is automatically set to the same time as the
deadline keyword. As a result, if the job has not yet started, it is suppressed
anyway.

The until keyword is defined only at plan level, therefore it does not modify the
job definition.

Examples

The following example launches job stream ABSENCES every day and job calc_job
to start running at 14:30 and to be completed by 16:00. If the calc_job job does not
complete by the 1600 deadline, it is killed and stops running.
schedule ABSENCES on everyday :

ABSENCES at 1430 deadline 1600 onlate kill
end

onoverlap
Defines the action that the scheduler must take on a job stream instance that is
about to start but the previous instance has not yet completed. The options are to:
v Start the job stream instance anyway
v Wait for the previous instance to complete.
v Cancel running the new instance altogether

Syntax

onoverlap parallel|enqueue|donotstart

Arguments

parallel
The next instance is started regardless, and the two instances run
concurrently. This is the default behavior for the job stream if you do not
use the onoverlap keyword.

enqueue
The next instance is not started until the previous instance has completed
its run.

donotstart
The next instance is not started at all. At planning time, a new dependency
is added to the previous instance. The new instance will start when the
dependency is released, provided that the dependency is released within
four minutes of the previous instance start time. If this timeout is
exceeded, the new instance does not start.

Example

In the following example, an instance of job stream JS_0415 is run every 10
minutes. In case an instance has not completed when the next one is to start, the
next instance waits for its completion.

Chapter 9. Defining objects in the database 253

=

=

=
=
=
=

=
=

=

=
=
=

=
=
=

=
/
/

/

/

/

/

/

/

/
/
/
/

/
/
/

/
/
/
/
/
/

/

/
/
/

SCHEDULE MDM005#JS_0415
ON RUNCYCLE ACCTRC 06/16/2014
(SCHEDTIME 1445 DEADLINE 1530 EVERY 0010 EVERYENDTIME 1515)
ONOVERLAP ENQUEUE
:
MDM005#JS_0415
END

opens

Specifies files that must be available before a job or job stream can be launched.

Syntax

opens [workstation#]"filename" [(qualifier)] [,...]

Arguments

workstation
Specifies the name of the workstation or workstation class on which the
file exists. The default is the workstation or workstation class of the
dependent job or job stream. If you use a workstation class, it must be the
same as that of the job stream that includes this statement.

filename
Specifies the name of the file, inclusive of its full path, enclosed in
quotation marks. You can use IBM Workload Scheduler parameters as part
or all of the file name string. You can also use variables defined in the
variable table of the workstation on which the file exists. Refer to “Variable
and parameter definition” on page 191 for additional information and
examples.

qualifier
Specifies a valid test condition. In UNIX, the qualifier is passed to a test
command, which runs as root in bin/sh. However, on dynamic agents, if a
no root agent installation was performed, then you must verify that the
test command is available to the installation user and the test will be run
as the IBM Workload Scheduler user (for example, the installation user).

For pools and dynamic pools, because it is not possible to know in
advance on which member agent the test will run, and there is no affinity
between the agent that satisfies the condition and the agent that runs the
job, then a file dependency is recommended only in the case of a condition
that is to be evaluated on a shared file system.

If you want to have at least one agent satisfy the condition and to run the
job, see the event-driven workload automation file monitor with the
TWSAction submit actions, using a variable as the workstation. See
TWSAction actions in the Event-driven workload automation event and
action definitions section of the IBM Workload Scheduler: User's Guide and
Reference. See also the topic about using file dependencies in dynamic
scheduling for more information about managing file dependencies with
dynamic agents, pools, and dynamic pools in the IBM Workload Scheduler:
User's Guide and Reference.

254 IBM Workload Scheduler: User’s Guide and Reference

/
/
/
/
/
/
/

/

/

/

/

/

/
/
/
/
/

|
|
|
|
|
|
|

/
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

Attention:

v On UNIX operating systems, the list of the supported qualifiers depends
on the operating system type. You can verify the supported qualifiers by
running the bin/sh/test command.

v On Windows, the test function is performed as theIBM Workload
Scheduler user (for example, the installation user).

v The -e %p qualifier is not supported on Solaris operating systems.

The valid qualifiers are:

-d %p True if the file exists and is a directory.

-e %p True if the file exists.

-f %p True if the file exists and is a regular file.

-r %p True if the file exists and is readable.

-s %p True if the file exists and its size is greater than zero.

-w %p True if the file exists and is writable.

-a Boolean operator AND.

-o Boolean operator OR.

In both UNIX and Windows, the expression %p, is used to pass the value
assigned to filename to the test function.

Entering (notempty) is the same as entering (-s %p). If no qualifier is
specified, the default is (-f %p).

Comments

The combination of the path of the file and the qualifiers cannot exceed 120
characters, and the name of the file cannot exceed 28 characters.

Examples

The following example checks to see that file c:\users\fred\datafiles\file88 on
workstation nt5 is available for read access before launching ux2#sked6:
schedule ux2#sked6 on tu opens nt5#"c:\users\fred\datafiles\file88"

The following example checks to see if three directories, /john, /mary, and /roger,
exist under /users before launching job jobr2:
jobr2 opens "/users"(-d %p/john -a -d %p/mary -a -d %p/roger)

The following example checks to see if cron has created its FIFO file before
launching job job6:
job6 opens "/usr/lib/cron/FIFO"(-p %p)

The following example checks to see that file d:\work\john\execit1 on workstation
dev3 exists and is not empty, before running job jobt2:
jobt2 opens dev3#"d:\work\john\execit1"(notempty)

The following example checks to see that file c:\tech\checker\startf on
workstation nyc exists, is not empty, and is writable, before running job job77:
job77 opens nyc#"C:\tech\checker\startf"(-s %p -a -w %p)

Security for test(1) Commands:

Chapter 9. Defining objects in the database 255

|

|
|
|

|
|

|

|

||

||

||

||

||

||

||

||

|
|

|
|

/

/
/

/

/
/

/

/
/

/

/
/

/

/
/

/

/
/

/

/

In UNIX, a special security feature prevents unauthorized use of other commands
in the qualifier. For example, the file below contains a command in the qualifier:
/users/xpr/hp3000/send2(-n "`ls /users/xpr/hp3000/m*`" -o -r %p)

If the qualifier contains another command, the following checks are made:
v The local option jm no root must be set to no.
v In the security file, the user documenting the schedule or adding the Open Files

dependency with a conman adddep command, must have submit access to a job
with the following attributes:

name=cmdstest.fileeq
logon=root
jcl=the path of the opens files
cpu=the CPU on which the opens files reside

Note that cmdstest and fileeq do not exist.

priority
Sets the priority of a job or job stream. By assigning a different priority to jobs or
job streams you determine which one starts first, if the dependencies are solved.

Assuming the jobs and job streams are ready to be launched , if you set a priority
for the job streams and for the jobs in the job streams:
v The job stream that starts first is the one with the highest priority.
v Among the jobs in the job stream with the highest priority, the job that starts

first is the one with the highest priority.

Syntax

priority number | hi | go

Arguments

number
Specifies the priority. Possible values are 0 through 99. A priority of 0
prevents the job or job stream from launching. The default value is 10 and
is not displayed when viewing the job stream definition.

hi Represents a value higher than any value that can be specified with a
number. When set, the job or job stream is immediately launched as soon
as it is free from all dependencies.

go Represents the highest priority that can be set. When set, the job or job
stream is immediately launched as soon as it is free from all dependencies.

Comments

Jobs and job streams with hi or go priority levels are launched as soon as all their
dependencies are resolved. In this case:
v Job streams override the cpu job limit.
v Jobs override the cpu job limit, but they override neither the schedule job limit

nor the cpu job fence.

256 IBM Workload Scheduler: User’s Guide and Reference

/
/

/

/

/

/
/
/
/
/
/
/

/

/
/
/

/
/

/

/
/

/

/

/

/
/
/
/

//
/
/

//
/

/

/
/

/

/
/

Examples

The following example shows the relationship between job stream and job
priorities. The two job streams, sked1 and sked2 have the following definitions in
the database:
schedule sked1 on tu
priority 50
:
job1 priority 15
job2 priority 10
end

schedule sked2 on tu
priority 10
:
joba priority 60
jobb priority 50
end

Since the job stream sked1 has the highest priority then the jobs are launched in
the following order: job1, job2, joba, jobb.

If, instead, the job stream priorities are the same, the jobs are launched in the
following order: joba, jobb, job1, job2.

If job2 has a dependency A and job1 has a dependency B and the dependency A
becomes solved (while B remains not solved) then job2 starts before job1 even
though job2 has a priority lower than the one set for job1.

prompt

Specifies prompts that must be answered affirmatively before a job or job stream is
launched.

Syntax

prompt promptname [,...]

prompt "[: | !]text" [,...]

Arguments

promptname
Specifies the name of a prompt in the database. You can specify more than
one promptname separated by commas but you cannot mix under the same
prompt keyword prompts defined in the database with literal prompts.

text Specifies a literal prompt as a text string enclosed in quotes ("). Multiple
strings separated by backlash n (\n) can be used for long messages. If the
string begins with a colon (:), the message is displayed but no reply is
necessary. If the string begins with an exclamation mark (!), the message is
displayed, but it is not recorded in the log file. You can include backslash n
(\n) within the text for new lines.

You can use one or more parameters as part or all of the text string. To use
a parameter, place its name between carets (^). Refer to “Variable and
parameter definition” on page 191 for additional information and
examples.

Chapter 9. Defining objects in the database 257

/

/
/
/

/
/
/
/
/
/

/
/
/
/
/
/

/
/

/
/

/
/
/

/

/
/

/

/

/

/

/
/
/
/

//
/
/
/
/
/

/
/
/
/

Note: Within a local prompt, when not specifying a parameter, carets (^)
must be preceded by a backslash (\) or they cause errors in the prompt.
Within global prompts, carets do not have to be preceded by a backslash.

Examples

The following example shows both literal and named prompts. The first prompt is
a literal prompt that uses a parameter named sys1. When a single affirmative reply
is received for the prompt named apmsg, the dependencies for both job1 and job2
are satisfied.
schedule sked3 on tu,th

prompt "All ap users logged out of ^sys1^? (y/n)"
:

job1 prompt apmsg
job2 prompt apmsg

end

The following example defines a literal prompt that appears on more than one line.
It is defined with backlash n (\n) at the end of each line:
schedule sked5 on fr

prompt "The jobs in this job stream consume \n
an enormous amount of cpu time.\n
Do you want to launch it now? (y/n)"
:

j1
j2 follows j1

end

schedtime
Represents the time when the job stream is positioned in the plan. The value
assigned to schedtime does not represent a dependency for the job stream. While
the production plan is in process, the job or job stream instance might start
processing before the time set in the schedtime keyword if all its dependencies are
resolved and if its priority allows it to start.

Syntax

schedtime time [timezone|tz tzname][+n day[s]] [,...]

Arguments

time Specifies a time of day in the format: HHHHmm. Possible values are from
0000 to 320000.

tzname Specifies the time zone to be used when calculating the start time. See
Chapter 19, “Managing time zones,” on page 741 for time zone names. The
default is the time zone of the workstation on which the job or job stream
is launched.

n Specifies an offset in days from the scheduled start date and time.

Comments

Differently from the at key, the schedtime key does not represent a time
dependency, that is it does not state a time before which a job or job stream cannot
start. Instead, the value specified in the schedtime keyword is used only to
position the specific job or job stream instance in the preproduction plan. While the

258 IBM Workload Scheduler: User’s Guide and Reference

/
/
/

/

/
/
/
/

/
/
/
/
/
/

/
/

/
/
/
/
/
/
/
/

/
/
/
/
/
/

/

/

/

//
/

//
/
/
/

//

/

/
/
/
/

production plan is in process, the job or job stream instance might start processing
before the time set in the schedtime keyword if all its dependencies are resolved
and if its priority allows it to start.

For an explanation on how the schedtime keyword is used to identify predecessors
in the preproduction plan, refer to “Managing external follows dependencies for
jobs and job streams” on page 67.

The at and schedtime keywords are mutually exclusive. If schedtime is not
specified and the at keyword is specified in the job or job stream, then its value is
used to position the instance in the preproduction plan.

If neither the at nor the schedtime keywords are specified in the job or job stream
definition, it is assumed by default to be the value assigned to the startOfDay
global option set on the master domain manager.

For job streams with a schedtime definition, the value of the Start time field
displayed on the Dynamic Workload Console depends on the setting of the
enPreventStart global option (which determines if job streams without an at
dependency can start immediately, without waiting for the run cycle specified in
the job stream):
v If enPreventStart is set to yes, the start time is 12:00 AM converted to the time

zone specified on the graphical user interface.
v If enPreventStart is set to no, the start time field is blank.

Examples

The following examples assume that the IBM Workload Scheduler processing day
starts at 6:00 a.m.
v The following job stream, selected on Tuesdays, is scheduled to start at 3:00 a.m.

on Wednesday morning. Its two jobs are launched as soon as possible after the
job stream starts processing.
schedule sked7 on tu schedtime 0300:
job1
job2
end

v The time zone of workstation sfran is defined as America/Los_Angeles, and the
time zone of workstation nycity is defined as America/New_York. Job stream
sked8 is selected to run on Friday. It is scheduled to start on workstation sfran
at 10:00 a.m. America/Los_Angeles Saturday (as specified by the + 1 day offset).
Job job1 is launched on sfran as soon as possible after the job stream starts
processing. Job job2 is launched on sfran at 2:00 p.m. America/New_York (11:00
a.m. America/Los_Angeles) Saturday. job3 is launched on workstation nycity at
4:00 p.m. America/New_York (1:00 p.m. America/Los_Angeles) Saturday.
sfran#schedule sked8 on fr schedtime 1000 + 1 day:
job1
job2 at 1400 tz America/New_York
nycity#job3 at 1600
end

schedule
Specifies the job stream name. With the exception of comments, this must be the
first keyword in a job stream, and must be followed by the on keyword.

Chapter 9. Defining objects in the database 259

/
/
/

/
/
/

/
/
/

/
/
/

/
/
/
/
/

/
/

/

/

/
/

/
/
/

/
/
/
/

/
/
/
/
/
/
/
/

/
/
/
/
/

/
/
/

Syntax

schedule [workstation#]jstreamname

[timezone|tz tzname]

Arguments

workstation
Specifies the name of the workstation on which the job stream is launched.
The default is the workstation on which composer runs to add the job
stream.

jstreamname

Specifies the name of the job stream. The name must start with a letter,
and can contain alphanumeric characters, dashes, and underscores. It can
contain up to 16 characters.

timezone|tz tzname
Specifies the time zone to be used when managing for the job stream. This
setting is ignored if the global option enTimeZone is set to no on the master
domain manager. For information on time zone settings, refer to
Chapter 19, “Managing time zones,” on page 741.

Comments

In a job stream definition you can set a time zone for the entire job stream by
using the timezone keyword in the validity interval or when specifying time
restrictions using at, until, or deadline.

You can set also a time zone for a job contained in a job stream by setting
keywords at, until, or deadline for that job.

Regardless of whether you are defining a job or a job stream, if you use a time
zone in a time restriction, for example at then you must use the same time zone
when specifying the other time restrictions, such as deadline and until.

In a job stream definition you can set a time zone for the entire job stream and for
the jobs it contains. These time zones can differ from each other, in which case the
time zone set for the job is converted into the time zone set for the job stream.

To manage all possible time zone settings, the time zone conversion that is
performed when processing jobs and job streams across the IBM Workload
Scheduler network is made respecting the following criteria:
1. If a time zone is not set for a job within a job stream, then that job inherits the

time zone set on the workstation where the job is planned to run.
2. If a time zone is not set for a job stream, then the time zone set is the one set

on the workstation where the job stream is planned to run.
3. If none of the mentioned time zones is set, then the time zone used is the one

set on the master domain manager.

Examples

This is the definition of a time zone of the job sked8 on workstation sfran on
which is set the time zone America/New_York. The time zone set for job2 to run on
workstation LA is defined as America/Los_Angeles.

260 IBM Workload Scheduler: User’s Guide and Reference

/

/

/

/

/
/
/
/

/

/
/
/

/
/
/
/
/

/

/
/
/

/
/

/
/
/

/
/
/

/
/
/

/
/

/
/

/
/

/

/
/
/

schedule sfran#sked8
tz America/New_York
on fr at 1000 + 1 day:
job1
LA#job2 at 1400 tz America/Los_Angeles
end

statisticstype custom

Flags a job so that its estimated duration is calculated by a subset of IBM SPSS
Statistics instead of the default logman process (automatic).

The SPSS-based statistical tool calculates five-day forecasts of the job estimated
duration using historical data of up to ninety days. The estimated duration and an
associated confidence interval are returned in the output of the conman showjobs
command and in the following Dynamic Workload Console views:
v Job properties
v Monitor Workload
v Critical path
v What-if Analysis

This tool can be particularly useful to see beyond the accepted impacts of already
known periodicities, and understand what apparently hidden events affect the
duration of a job. It can be effective to measure and forecast the durations of jobs
along a critical path that occasionally does not meet its deadline.

See Chapter 13, “Using advanced statistics to forecast the estimated duration of a
job,” on page 525 to learn what else you must do to use SPSS-based statistics in
addition to using this keyword.

Syntax

statisticstype custom

If you omit this keyword, the estimated duration - and its associated confidence
interval - for the job is by default calculated by the process run by the logman
command and made available on the same media.

startcond
Use this keyword to build into the job stream a mechanism which checks for
specific events and conditions and releases the job stream when the specified
events or conditions take place.

You can check for one of the following event types:

filecreated
You can check whether one or more files have been created on the
specified workstation.

filemodified
You can check for modifications in one or more files present on the
specified workstation.

job You can define a job whose output condition is to be monitored.

For conditions based on files being created or modified, when you save the job
stream, a monitoring job is automatically created to monitor the specified
condition. This job becomes the first job in the job stream and remains in EXEC

Chapter 9. Defining objects in the database 261

/
/
/
/
/
/

/

/
/

/
/
/
/

/

/

/

/

/
/
/
/

/
/
/

/

/

/
/
/

=
=
=
=

=

=
=
=

=
=
=

==

=
=
=

status until the condition it is monitoring is met or the job's deadline expires. This
job type is identified by the +AUTOGEN+ label in the command line and by an
icon with the A character in the Dynamic Workload Console.

For conditions based on the result of a specified job, when you save the job stream,
the job becomes the first job in the job stream and restarts until the condition is
satisfied, or the job's deadline expires. This applies also if the job completes in
Success status. This is the monitoring job. When you specify this condition type,
IBM Workload Scheduler automatically defines a success output condition on the
monitoring job. As a result, the monitoring job completes successfully when any of
its output conditions is satisfied, including the condition on the monitoring job
itself. You can apply this logic to the job stream or to specific jobs in the job
stream. For more information about output conditions, see the section about
Applying conditional branching logic in User's Guide and Reference.

If you do not specify a name for the monitoring job, by default the file_StartCond
name is used. This value is defined using the fileStartConditionJobName optman
option. For more information about the fileStartConditionJobName option, see the
description of global options in Administration Guide.

By default, IBM Workload Scheduler keeps monitoring the condition also after it is
first met. This is accomplished by automatically creating a new Job Stream
Submission job and adding it to the job stream as a successor of the monitoring
job. This job type is identified by the +AUTOGEN+ label in the command line and
by an icon with the A character in the Dynamic Workload Console. To have IBM
Workload Scheduler check the condition just one time and stop when it is first
met, select the Start once check box in the Workload Designer, or omit the rerun
keyword in the composer command line.

The Job Stream Submission job is defined on a specific pool workstation named
MASTERAGENTS. This pool workstation contains the dynamic agent installed on
the master domain manager and on the backup domain manager, if present. The
dynamic agent installed on the master domain manager and backup domain
manager (if present) are automatically added at installation time to this pool
workstation. If you delete the MASTERAGENTS pool workstation and then
recreate it, you must stop and restart the dynamic agent to add it back to the
MASTERAGENTS pool workstation. See the topic about automatically registering
agents to pools in the Planning and Installation Guide.

Note: The default name for the pool workstation, MASTERAGENTS, can be
modified using the optman global option resubmitJobName. See the detailed
description of the global options in the Administration Guide for details about this
option.

The Job Stream Submission job creates a new instance of the job stream in which
the start condition is defined. By default, the new job stream instance starts also if
the previous instance is still running and the two instances run concurrently. To
change this behavior, in the Workload Designer, switch to the Scheduling options
tab and select Queue the new instance in the Actions section. From the composer
command line, use the onoverlap keyword. For more information, see “onoverlap”
on page 253. The newly-generated instance is identical to the previous one it and is
set to repeat the condition check, therefore a series of new instances is created until
the job stream's deadline expires.

The name of the Job Stream Submission job is defined using the value set for the
resubmitJobname optman option. By default, the value assigned to this option is

262 IBM Workload Scheduler: User’s Guide and Reference

=
=
=

=
=
=
=
=
=
=
=
=
=

=
=
=
=

=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
-
-

=
=
=
=

=
=
=
=
=
=
=
=
=

=
=

restart_StartCond. For more information about the resubmitJobname option, see
the description of global options in Administration Guide.

Syntax

startcond filecreated | filemodified | job

startcond filecreated workstation_name#file_name user username
interval seconds [alias startcond_jobname rerun batch outfile outputfilename params
"filemonitor additional parameters"]

startcond filemodified workstation_name#file_name user username
interval seconds [alias startcond_jobname rerun batch outfile outputfilename params
"filemonitor additional parameters"]

startcond job workstation_name#job_name outcond joboutputcondition
interval seconds [alias startcond_jobname rerun]

Arguments

filecreated workstation_name#file_name
Check whether the specified file or files are created, where:

workstation_name#file_name
Specifies the workstation name and the fully qualified path to file
or files to be monitored.

filemodified workstation_name#file_name
Check whether the specified file or files are modified, where:

workstation_name#file_name
Specifies the workstation name and the fully qualified path to file
or files to be monitored.

job workstation_name#job_name
Check whether the specified job has completed successfully meeting the
condition specified with the outcond keyword.

user username
The login information for accessing the workstation where the file or files
to be monitored are located. Applicable only to filecreated and
filemodified keywords.

interval seconds
How often IBM Workload Scheduler checks whether the condition is met,
expressed in seconds. For the job start condition only, the value will be
approximated to 60 seconds, if lower than 60 seconds. If the value is higher
than 60 seconds and not divisible by 60, it will be approximated to the
nearest value which is also divisible by 60.

alias startcond_jobname
The name of the job which is automatically added to the plan to run the
monitoring task.

For conditions with of type filecreated or filemodified
if you do not specify any names, the file_StartCond name is used
by default. The default name is retrieved from the
fileStartConditionJobName global option. For more information,
see the section about global options in the Administration Guide

Chapter 9. Defining objects in the database 263

=
=

=

=

=
=
=

=
=
=

=
=

=

=
=

=
=
=

=
=

=
=
=

=
=
=

=
=
=
=

=
=
=
=
=
=

=
=
=

=
=
=
=
=

For conditions of type job,
if you do not specify any value, the name of the job definition is
used.

rerun Have IBM Workload Scheduler automatically create a Job Stream
Submission job, which is added as a successor of the monitoring job. The
Job Stream Submission job submits a new instance of the job stream in
which the start condition is defined.

batch When the process returns multiple files at the same time, a single job
stream instance is used to process them in batch mode. If do not specify
this parameter, a job stream instance is launched for each file retrieved.
Applicable only to filecreated and filemodified keywords.

outfile outputfilename
The names of the retrieved file or files are returned as a variable. You can
optionally specify an output file where to store the file names. Ensure that
the directory where the output file is to be created is already existing.
Applicable only to filecreated and filemodified keywords.

params "filemonitor additional parameters"
Optionally specify filemonitor additional parameters. Applicable only to
filecreated and filemodified keywords. For more information, see
“Filemonitor” on page 646.

outcond
The output condition which, when met, releases the remaining part of the
job stream. Applicable only to the job keyword. You can specify this
keyword both at the job stream and job level. When you save the job
stream, the job restarts until the condition is met or the job's deadline
expires.

Comments

Ensure that all the components in the IBM Workload Scheduler environment are at
version 9.4, Fix Pack 1, or later.

The following workstation types are not supported if you specify a start condition
based on files being created or modified:
v Extended agent
v Workload broker
v Remote engine

Examples

The following example illustrates a job stream which starts only when the
Reports.txt file is created on workstation S_MDM in the /Reports path. The
FileMngr user is used to connect to the specified workstation and the check on the
condition is performed every 100 seconds. The monitoring job is named
ReportCheck and the retrieved information is stored in the /logs/
ReportsOutput.txt file. Using the params keyword, two filemonitor parameters
(-recursive -maxEventsThreshold) have been inserted to specify that the check is
performed also on sub folders and all events must be returned.
SCHEDULE S_MDM#JS1
VARTABLE MAIN_TABLE
ON RUNCYCLE RC2 08/04/2017
(AT 0800 +1 DAYS)
STARTCOND FILECREATED S_MDM#/Reports/Report.txt USER FileMngr INTERVAL 100

264 IBM Workload Scheduler: User’s Guide and Reference

=
=
=

==
=
=
=

==
=
=
=

=
=
=
=
=

=
=
=
=

=
=
=
=
=
=

=

=
=

=
=

=

=

=

=

=
=
=
=
=
=
=
=

=
=
=
=
=

(ALIAS ReportCheck PARAMS "-recursive -maxEventsThreshold all"
OUTFILE /logs/ReportsOutput.txt)
LIMIT 5
OPENS S_MDM#"/my file . txt" (-f %p)
:
S_MDM#NATIVE
NOP
FOLLOWS DYNAMIC

S_AGT#DYNAMIC

S_AGT#SLEEP3
FOLLOWS NATIVE
FOLLOWS S_MDM#JS1_EXT.SLEEP3

S_AGT#JOB_MGMT
FOLLOWS SLEEP3
END

timezone

Specifies-at job stream level-the time zone used to calculate the time when the job
stream must start processing.

Syntax

timezone|tz tzname

Arguments

tzname Specifies the name of the time zone. See Chapter 19, “Managing time
zones,” on page 741 for time zone names.

Comments

The time zone specified at job stream level applies to the time definitions for the
run cycles and the time restrictions (defined by the at, deadline, schedtime, and
until keywords).

If you specify a time zone for the job stream and one for a time restriction
keyword, they must be the same.

If you specify no time zone, either at job stream and time restriction levels, the
time zone specified for the workstation is used.

until
Depending on the object definition the until keyword belongs to, specifies the
latest time a job stream must be completed or the latest time a job can be launched.
This keyword is mutually exclusive with the jsuntil keyword. For more
information about the jsuntil keyword, see “jsuntil” on page 238.

Syntax

[until time [timezone|tz tzname][+n day[s]][absolute|abs][onuntil action]]

Arguments

time Specifies the time of day. The possible values are 0000 through 2359.

timezone tzname
Specifies the time zone to be used when computing the time. See

Chapter 9. Defining objects in the database 265

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

=

/
/

/

/

/

//
/

/

/
/
/

/
/

/
/

/
/
/
=
=

/

/

/

//

/
/

Chapter 19, “Managing time zones,” on page 741 for time zone names. The
default is the time zone of the workstation on which the job or job stream
is launched.

Note: If an until time and an at or deadline time are specified, the time
zones must be the same.

day n Specifies an offset, in days, from the scheduled date and time.

absolute
Specifies that the until date is based on the calendar day rather than on
the production day.

onuntil action
Depending on the object definition the until keyword belongs to, specifies:
v The action to be taken on a job whose until time has expired but the job

has not yet started.
v The action to be taken on a job stream whose until time has expired but

the job stream is not yet completed in SUCC state.

The following are the possible values of the action parameter:

suppr The job or job stream and any dependent job or job stream do not
run. This is the default behavior.

Once the until time expired on a job stream, the status for the job
stream is calculated following the usual rules; suppressed jobs are
not considered in the calculation. In case the job stream contains at
least one every job its status is HOLD.

When the until time expires for a job, the job moves to HOLD
status or keeps any previous status which is a final status.

If the until time is passed together with the onuntil suppr and the
carryforward options, the job stream is carry forwarded by
JnextPlan only if the until date is equal to the date when
JnextPlan runs. If the until and the JnextPlan run dates are not the
same, the job stream is not carry forwarded.

cont The job or job stream runs when all necessary conditions are met
and a notification message is written to the log when the until time
elapses.

If the until time is passed together with the onuntil cont and the
carryforward options, the job stream is always carry forwarded by
JnextPlan.

canc A job or job stream is cancelled when the until time specified
expires. When using onuntil canc on jobs, the cancel operation on
the job is issued by the FTA on which the job runs. Any job or job
stream that was dependent on the completion of a job or job
stream that was cancelled, runs because the dependency no longer
exists.

If the until time is passed together with the onuntil canc and the
carryforward options, the job stream is not carry forwarded by
JnextPlan because it is already canceled.

266 IBM Workload Scheduler: User’s Guide and Reference

/
/
/

/
/

//

/
/
/

/
/

/
/

/
/

/

//
/

/
/
/
/

/
/

/
/
/
/
/

//
/
/

/
/
/

//
/
/
/
/
/

/
/
/

Note: When using onuntil canc at job stream level, define as owner
of the job stream the workstation highest in the hierarchy of the
scheduling environment, among all workstations that own jobs
contained in the job stream.

Note:

v Both the keyword until and deadline can be used in the same definition but
they must be expressed using the same time zone setting.

v If an until time (latest start time) is not specified for a job stream, then a
default until time can be set using the untilDays global option. The until time
is calculated adding the value of the untilDays global option, expressed in
number of days, to the scheduled time for the job stream. If the enCarryForward
option is set to all, and the number of days specified for untilDays is reached,
then any job stream instances in the plan that ended in error are automatically
removed from the plan and are not added to the new production plan. If the
default value for untilDays is maintained (0), then no default time is set for the
until time.

Examples

The following example prevents sked1 from launching after 5:00 p.m. on Tuesdays:
schedule sked1 on tu until 1700 :

The following example launches sked1 at 5:00 p.m., when its until time is reached:
schedule sked1 until 1700 onuntil cont

The following example launches job1 between 1:00 p.m. and 5:00 p.m. on
weekdays:
schedule sked2 on weekdays :

job1 at 1300 until 1700
end

The following example launches joba every 15 minutes between 10:30 p.m. and
11:30 p.m. on Mondays:
schedule sked3 on mo :

joba at 2230 every 0015 until 2330
end

The following example launches job stream sked4 on Sundays between 8:00 a.m.
and 1:00 p.m. The jobs are to be launched within this interval:
schedule sked4 on fr at 0800 + 2 days

until 1300 + 2 days
:

job1
job2 at 0900 <<launched on sunday>>
job3 follows job2 at 1200 <<launched on sunday>>

end

The following example launches job stream sked8 on weekdays at 4:00 p.m. and
should complete running by 5 p.m. If the job stream is not completed by 5 p.m., it
is considered a late job stream. The jobs are to be launched as follows: job1 runs at
4 p.m., or at the latest, 4:20 p.m., at which time, if job1 has not yet started, a
notification message is written to the log and it starts running. job2 runs at 4:30
p.m. or at the latest 4:50 p.m., at which time, if job2 has not yet started, it is
cancelled.

Chapter 9. Defining objects in the database 267

/
/
/
/

/

/
/

|
|
|
|
|
|
|
|
|

/

/

/

/

/

/
/

/
/
/

/
/

/
/
/

/
/

/
/
/
/
/
/
/

/
/
/
/
/
/
/

schedule sked8 on weekdays at 1600 deadline 1700 :
job1 at 1600 until 1620 onuntil cont
job2 at 1630 until 1650 onuntil canc

end

The following example launches job stream sked01. When the until event occurs,
the job stream sked02 is run because the job stream sked01 is placed in SUCC state.
The job stream sked03, instead, is not run because it has a punctual time
dependency on job job01 and this dependency has not been released.
SCHEDULE sked01 on everyday:
job01 until 2035 onuntil suppr
end

SCHEDULE sked02 on everyday follows sked01.@
:
job02
end

SCHEDULE sked03 on everyday follows sked01.job01
:
job03
END

validfrom/validto
You can set a validity time for a job stream, which is a time frame within which
the job stream is included in the preproduction plan. The validity time is set using
the validfrom key in the job stream definition.

Syntax

validfrom date

Arguments

validfrom date
Defines from which date the job stream is active, that is it must be
included in a production plan if the production plan duration includes that
date.

Comments

Different versions of the same job stream can be defined by creating different job
streams with the same name and workstation, but having different validity
intervals. The concept of versions of the same job stream sharing the same
jobstreamname and the same workstationname are key when managing dependency
on that job stream. In fact when you define an external follows dependencies on a
job stream you identify the predecessor job stream using its jobstreamname and
workstationname. The job stream identified as the dependency is the one whose
validity interval is during the period the dependency is active.

If you change the jobstreamname or the workstationname in one version of the job
stream, the change is propagated in all its versions.

If you lock a version of the job stream, all versions of that job stream are locked.

If you change the name of a job defined in a job stream version then the new job
name is propagated in all versions of the job stream. This means that, if you
modify something, other than the jobstreamname or the workstationname, the internal
and external job stream associations remain consistent.

268 IBM Workload Scheduler: User’s Guide and Reference

/
/
/
/

/
/
/
/

/
/
/

/
/
/
/

/
/
/
/

/
/
/
/

/

/

/

/
/
/
/

/

/
/
/
/
/
/
/
/

/
/

/

/
/
/
/

When defining a job stream version, you are only asked to enter the validfrom
date, and the validto date is automatically set to the value of the validfrom date of
the following version. The validto date is shown when issuing list and display
command when MAESTROCOLUMNS is set to 120. Different versions of the same
job stream continue to share the name and workstation fields after their creation. If
you modify the name of a version or change the workstation on which it was
defined, the change is applied to all versions of that job stream.

Note: If the keywords used in the job stream definition are validfrom and validto,
the corresponding filtering keywords used when issuing commands against object
definitions stored in the database are validfrom and validto. For more information
refer to Chapter 10, “Managing objects in the database - composer,” on page 297.

The date specified as validto value is not included in the run cycle, therefore the
job stream is not active on this date.

vartable
Using variable tables you assign different values to the same variable and therefore
reuse the same variable in job definitions and when defining prompts and file
dependencies.

Syntax

vartable tablename

Arguments

vartable tablename
The name of the variable table. The name can contain up to 80 alphanumeric
characters including dashes (-) and underscores (_), and must start with a
letter.

Event rule definition
A scheduling event rule defines a set of actions that are to run upon the occurrence
of specific event conditions. The definition of an event rule correlates events and
triggers actions.

An event rule definition is identified by a rule name and by a set of attributes that
specify if the rule is in draft state or not, the time interval it is active, the time
frame of its validity, and other information required to decide when actions are
triggered. It includes information related to the specific events (eventCondition)
that the rule must detect and the specific actions it is to trigger upon their
detection or timeout (action). Complex rules may include multiple events and
multiple actions.

For an overview of scheduling event rules, see Chapter 8, “Running event-driven
workload automation,” on page 131.

Syntax

You define event rules directly in XML language with the use of any XML editor.
You can configure an environment variable on your computer to automatically
open an XML editor of your choice to work with event rule definitions. See “The

Chapter 9. Defining objects in the database 269

/
/
/
/
/
/
/

/
/
/
/

/
/

composer editor” on page 299 for details. The XML describing the event rule must
match the rule language schemas defined in EventRules.xsd and in
FilteringPredicate.xsd.

The rule language schemas defined in eventRules.xsd and in
FilteringPredicate.xsd are used to validate your rule definitions and, depending
upon the XML editor you have, to provide syntactic help. The files are located in
the schemas subdirectory of the IBM Workload Scheduler installation directory.

The following table lists all the language elements used for defining an event rule.
Table 36 explains the meaning of the notation that follows each language element.
n represents an unbounded number.

Table 36. Explanation of the notation defining the number of occurrences for a language
element.

Notation Meaning

(0, 1) 0 indicates that the language element is optional. 1
indicates that if coded, only 1 occurrence is allowed.

(0, n) 0 indicates that the language element is optional. n
indicates that if coded, multiple occurrences are
allowed.

(1, 1) The first 1 indicates that the language element is
required. The second 1 indicates that only 1 occurrence
is allowed.

(1, 2) 1 indicates that the language element is required. 2
indicates that 2 occurrences are required.

(1, n) 1 indicates that the language element is required. n
indicates that multiple occurrences are allowed.

v eventRule name=" " ruleType=" " isDraft=" " (1, 1)
– description (0, 1)
– timeZone (0, 1)
– validity from=" " to=" " (0, 1)
– activeTime start=" " end=" " (0, 1)
– timeInterval amount=" " unit=" " (0, 1)
– eventCondition eventProvider=" " eventType=" " (1, n)

- scope (0, 1)
- filteringPredicate (0, 1)
v attributeFilter name=" " operator="eq" (0, n)

– value (1, n)
v attributeFilter name=" " operator="ne" (0, n)

– value (1, n)
v attributeFilter name=" " operator="le" (0, n)

– value (1, 1)
v attributeFilter name=" " operator="ge" (0, n)

– value (1, 1)
v attributeFilter name=" " operator="range" (0, 1)

– value (1, 2)
– correlationAttributes (0, 1)

- attribute name=" " (1, n)
– action actionProvider=" " actionType=" " responseType=" " (0, n)

- description (0, 1)
- scope (0, 1)
- parameter name=" "(1, n)
- value (1, 1)

270 IBM Workload Scheduler: User’s Guide and Reference

Event rule definitions are grouped into event rule sets.
v eventRuleSet (1, 1)

– eventRule (1, n)

Use the eventRuleSet language element also if you have to enclose a single rule
definition.

Note: None of the comments that you write in the XML, in the form <!--text-->,
are saved in the database. The next time that you open a rule definition, the
comments that you wrote the first time are not there. Instead, use the description
attribute to write any additional information.

Arguments

The keywords that describe an event rule are the following XML tags:

eventRule

The scheduling object that encloses the definition of multiple event
conditions and multiple rule actions in addition to a set of attributes that
define when the rule is activated. An eventRule element typically includes:
v A number of required and optional rule attributes
v One or more event conditions
v One or more rule actions, although rules with no actions are also

allowed

The rule attributes are:
v Required attributes:

name The name of the event rule. It can be up to 40 alphanumeric
characters in length, it must start with a letter, and cannot
contain blanks. Underscore (_) and dash (-) characters are
allowed.

ruleType
The rule type is based on the number of events - and on their
correlation - that the rule is defined to detect. It can be one of
the following:

filter The rule is activated upon the detection of a single
specific event.

sequence
The rule is activated when an ordered sequence of
events arrives within a specific time interval.

set The rule is activated when an unordered sequence of
events arrives within a specific time interval.

Rules of type set and sequence can also be activated on timeout,
when one or more events arrive but the complete sequence does
not arrive within the specified time window.

isDraft
Specifies if the rule definition is currently enabled. Values can be
yes or no. The default is no.

v Optional attributes:

description
A description of the rule. It can be of up to 120 characters.

Chapter 9. Defining objects in the database 271

Remember to write any XML special characters you might use in
the XML special notation, such as:
– & for &
– > for >
– < for <
– " for "

and so on.

timeZone
Specifies a different time zone for the execution of the rule. The
default time zone is the time zone defined on the workstation
where the event processing server resides.

The application of daylight saving time (DST) has an impact on
the activeTime interval (described next) of event rules:
– On the day that DST is turned on (the clock is adjusted

forward one hour) the rule operation times that fall within the
hour absorbed by the application of DST are moved forward
by one hour. For example, 2:10 becomes 3:10.

– On the day that DST is turned off (the clock is adjusted
backward one hour) the rule operation times that fall within
the hour duplicated by the application of DST are regarded
without DST.

validity
Specifies the rule validity period in terms of:

from yyyy-mm-dd
The validity period starts at midnight (of the rule time
zone) of the specified day.

to yyyy-mm-dd
The validity period ends at midnight (of the rule time
zone) of the specified day.

activeTime
Specifies the rule activity time window within each day of
validity in terms of:

start hh:mm:ss
The beginning of the time window when the rule is
active in hours, minutes, and seconds.

end hh:mm:ss
The end of the time window when the rule is active in
hours, minutes, and seconds. If the time is earlier than in
start hh:mm:ss, it refers to the next day.

timeInterval
Applies to rules that include timeout actions. Specifies the time
interval within which all the events specified in the rule must
have been received before a corrective timeout action is started.
The time interval starts from the moment the first event
specified in the rule is detected. Specify the time interval in
terms of:

amount
The length of the time interval in time units.

unit The time unit in one of the following:
– hours

272 IBM Workload Scheduler: User’s Guide and Reference

– seconds
– milliseconds

This attribute is mandatory when there are timeout
actions in the event rule definition.

eventCondition
The event condition is made up by the following attributes:
v Required attributes:

eventProvider
Identifies the event monitoring provider that can capture a type
of event. The event providers supplied at installation time are:

TWSObjectsMonitor
Monitors the status of IBM Workload Scheduler plan
objects. This event provider runs on every IBM
Workload Scheduler agent and sends the events to the
event processing server.

TWSApplicationMonitor
Monitors IBM Workload Scheduler processes, file system,
and message box.

FileMonitor
Monitors events affecting files.

DatasetMonitor
Monitors events affecting Data sets.

eventType
Specifies the type of event that is to be monitored. Every event
can be referred to an event provider. The following tables list the
event types by event provider.

To see the properties of each event type, go to Appendix A,
“Event-driven workload automation event and action
definitions,” on page 813.

Table 37 lists the TWSObjectsMonitor events.

Table 37. TWSObjectsMonitor events.

Event type When the event is sent

JobStatusChanged The status of a job changes

JobUntil The latest start time of a job has elapsed

JobSubmit A job is submitted

JobCancel A job is canceled

JobRestart A job is restarted

JobLate A job becomes late

JobPromoted A job in a critical network approaches the critical start
time and has not yet started

Chapter 9. Defining objects in the database 273

Table 37. TWSObjectsMonitor events. (continued)

Event type When the event is sent

JobRiskLevelChanged v A new critical job is added to the plan with the risk
level set to either high or potential

v The risk level for a job is set to high risk or
potential risk and the risk level changes

v A critical job with the risk level set to either high or
potential is removed from the plan

An event is not sent if the critical job is in the job
stream named JOBS.

JobExceededMaximumDuration A job exceeds the maximum duration time established
for the job

JobDidnotReachMinimumDuration A job does not run long enough to reach the
minimum duration time established for the job

JobStreamStatusChanged The status of a job stream changes

JobStreamCompleted A job stream has completed

JobStreamUntil The latest start time of a job stream has elapsed

JobStreamSubmit A job stream is submitted

JobStreamCancel A job stream is canceled

JobStreamLate A job stream becomes late

WorkstationStatusChanged A workstation is started or stopped

ApplicationServerStatusChanged WebSphere Application Server has stopped or is
restarting

ChildWorkstationLinkChanged The workstation defined in the event rule links or
unlinks from its parent workstation (the parent
workstation sends the event)

ParentWorkstationLinkChanged The parent workstation links or unlinks from the
workstation defined in the event rule (the child
workstation sends the event)

PromptStatusChanged A prompt is asked or replied

ProductAlert The Symphony file in the workstation specified in the
event rule contains a corrupt record

Note:

Any change performed on a workstation referenced in a rule is
not reported in the rule. For example if you modify, update, or
delete a workstation that is referenced in a rule, the rule ignores
the change and continues to consider the workstation as it was
when it was included in the rule. A rule with event type
ParentWorkstationLinkChanged is not applicable when the Filters
Workstation is set to agent, pool, dynamic pool, or remote
engine and the ParentWorkstation attribute is set to broker. To
monitor a link status change between the workload broker
server and a workstation managed by the workload broker
server, define a rule with event type equal to
ChildWorkstationLinkChanged.

A rule with event type equal to ChildWorkstationLinkChanged
works only when the broker workstation is linked, unlinked,

274 IBM Workload Scheduler: User’s Guide and Reference

stopped, or started. If the change in the link status is due to a
stop or start operation on the agent workstation with the
StartupLwa and ShutDownLwa commands, no action is started. To
monitor stop or start operations on agent workstations, define a
rule with event type equal to WorkstationStatusChanged.

Table 38 lists the TWSApplicationMonitor events.

Table 38. TWSApplicationMonitor events.

Event type When the event is sent

MessageQueuesFilling A specified mailbox exceeds the
percentage full value.

TivoliWorkloadSchedulerFileSystemFilling The file system where the IBM
Workload Scheduler instance is
installed exceeds the percentage full
value.

TivoliWorkloadSchedulerProcessNotRunning A specified process is not running.

Table 39 lists the FileMonitor events.

Table 39. FileMonitor events.

Event type When the event is sent

FileCreated A file is created

FileDeleted A file is deleted

ModificationCompleted A file is modified (the event is sent only if two
consecutive monitoring cycles have passed since the file
was created or modified with no additional changes
being detected)

LoggedMessageWritten A specific string is found in a file (this event can be
used to monitor application or system logs)

Table 40 lists the DatasetMonitor events.

Table 40. DatasetMonitor events.

Event type When the event is sent

ModificationCompleted A data set is modified (the event is sent only if two
consecutive monitoring cycles have passed since the file
was created or modified with no additional changes
being detected)

ReadCompleted A data set is read.

v Optional attributes:

scope One or more qualifying attributes that describe the event. It can
be up to 120 characters. The scope is automatically generated
from what is defined in the XML. It cannot be specified by
users.

filteringPredicate
The filtering predicate sets the event conditions that are to be
monitored for each event type. It is made up by:

attributeFilter
The attribute filter is a particular attribute of the event
type that is to be monitored:

Chapter 9. Defining objects in the database 275

– Is defined by the following elements:

name The attribute, or property name, of the event
type that is to be monitored. Refer to “Event
providers and definitions” on page 813 for a
list of property names for every event type.

operator
Can be:
- eq (equal to)
- ne (not equal to)
- ge (equal or greater than)
- le (equal or less than)
- range (range)

– Includes one or more:

value The value on which the operator must be
matched.

Note: Every event type has a number of mandatory attributes,
or property names. Not all the mandatory property names have
default values. All the mandatory property names without a
default value must have a filtering predicate defined.

correlationAttributes
The correlation attributes provide a way to direct the rule to create a
separate rule copy for each group of events that share common
characteristics. Typically, each active rule has one rule copy that runs in the
event processing server. However, sometimes the same rule is needed for
different groups of events, which are often related to different groups of
resources. Using one or more correlation attributes is a method for
directing a rule to create a separate rule copy for each group of events with
common characteristics. Use with set and sequence rule types.

You can specify one or more attributes. Each is defined by:

attribute name=" "
The object attribute that you are correlating.

action The action that is to be triggered if the event is detected. Event rule
definitions with events but no actions are syntactically accepted, although
they may have no practical significance. You may save such rules as draft
and add actions later before they are deployed.
v Is defined by the following required attributes:

actionProvider
The name of the action provider that can implement one or more
configurable actions. The action providers available at
installation time are:
GenericAction

Runs non-IBM Workload Scheduler commands. The
commands are run on the same computer where the
event processor runs.

MailSender
Connects to an SMTP server to send an email.

MessageLogger
Logs the occurrence of a situation in an internal auditing
database.

TECEventForwarder
Forwards the event to an external Tivoli Enterprise

276 IBM Workload Scheduler: User’s Guide and Reference

Console (TEC) server, or any other application capable of
listening to events in TEC format.

TWSAction
Runs one of the following conman commands:
– submit job (sbj)
– submit job stream (sbs)
– submit command (sbd)
– reply to prompt (reply)

TWSForZosAction
Adds an application occurrence (job stream) to the
current plan on IBM Workload Scheduler for z/OS. This
provider is for use in IBM Workload Scheduler
end-to-end scheduling configurations.

The application description of the occurrence to be
added must exist in the AD database of IBM Workload
Scheduler for z/OS.

actionType
Specifies the type of action that is to be triggered when a
specified event is detected. Every action can be referred to an
action provider. The following table lists the action types by
action provider.

To see the properties of each action type, go to Appendix A,
“Event-driven workload automation event and action
definitions,” on page 813.

Table 41. Action types by action provider.

Action provider Action types

GenericAction RunCommand

MailSender SendMail

MessageLogger PostOperatorMessage

TECEventForwarder TECFWD

TWSAction

reply (ReplyPrompt)

sbd (SubmitAdHocJob)

sbj (SubmitJob)

sbs (SubmitJobStream)

TWSForZosAction AddJobStream

responseType
Specifies when the action is to run. Values can be:
onDetection

The action starts as soon as all the events defined in the
rule have been detected. Applies to all rule types. See
also “Rule operation notes” on page 147.

onTimeOut
The action starts after the time specified in timeInterval
has expired but not all the events defined in the rule
have been received. Applies to set and sequence rules
only.

Note that timeout actions are not run if you do not
specify a time interval. The scheduler will however let
you save event rules where timeout actions have been
defined without specifying a time interval, because you

Chapter 9. Defining objects in the database 277

could set the time interval at a later time. Until then,
only actions with the onDetection response type are
processed.

Timeout actions for which a time interval was not
defined are run only when the rules are deactivated. An
event rule is deactivated in either of two cases:
– The planman deploy -scratch command is issued
– The rule is modified (it is then deactivated as soon as

the planman deploy command is run)

In either case the rule is first deactivated and then
reactivated. At this time all pending actions are executed.

v Includes the following optional attributes:
description

A description of the action. It can be of up to 120 characters.

Remember to write any XML special characters you might use in
the XML special notation, such as:
– & for &
– > for >
– < for <
– " for "

and so on.
scope One or more qualifying attributes that describe the action. It can

be of up to 120 characters. The scope is automatically generated
from what is defined in the XML. It cannot be specified by
users.

v Includes a list of one or more parameters, or property names. All action
types have at least one mandatory parameter. Every parameter is
defined by:
parameter name=" "

See “Action providers and definitions” on page 825 for a list of
parameters, or property names, available for every action type.

value See “Action providers and definitions” on page 825 for a list of
possible values or value types.

You can use variable substitution. This means that when you define
action parameters, you can use the property names of the events that
trigger the event rule to replace the value of the action property name.
To do this, write the value for the action parameter you intend to
substitute in either of these two forms:
– ${event.property}

Replaces the value as is. This is useful to pass the information to an
action that works programmatically with that information, for
example the schedTime of a job stream.

– %{event.property}

Replaces the value formatted in human readable format. This is useful
to pass the information to an action that forwards that information to
a user, for example to format the schedTime of a job stream in the
body of an email.

Where:
event Is the name you set for the triggering eventCondition.
property

Is the attributeFilter name in the filtering predicate of the
triggering event condition. The value taken by the attribute filter

278 IBM Workload Scheduler: User’s Guide and Reference

when the rule is triggered is replaced as a parameter value in
the action definition before it is performed.

Note that you can use variable substitution also if no
attributeFilter was specified for an attribute and also if the
attribute is read-only.

For example, the task of an event rule is to detect when any of the jobs
that have a name starting with job15 end in error and, when that
happens, submit that job again. The eventCondition section of the rule is
coded as follows:
<eventCondition

name=“event1”
eventProvider=“TWSObjectsMonitor”
eventType=“JobStatusChanged”>

<filteringPredicate>
<attributeFilter

name=“JobName”
operator=“eq”>

<value>job15*</value>
</attributeFilter>
<attributeFilter

name=“Workstation”
operator=“eq”>

<value>*</value>
</attributeFilter>
<attributeFilter

name=“Status”
operator=“eq”>

<value>Error</value>
</attributeFilter>

</filteringPredicate>
</eventCondition>

Wildcards (* for multiple characters or ? for single characters) are used
to generalize the event condition that you want to apply to all the job
instances whose name starts with job15 and to their associated
workstation. Variable substitution is used in the action section to submit
again the specific job that ended in error on the same workstation. The
action section is:
<action

actionProvider=“TWSAction”
actionType=“sbj”
responseType=“onDetection”>

<description>Submit again the job that ended in error</description>
<parameter name=“JobDefinitionName”>
<value>${event1.JobName}</value>

</parameter>
<parameter name=“JobDefinitionWorkstationName”>
<value>${event1.Workstation}</value>

</parameter>
</action>

Examples

JOB7 has a file dependency on DAILYOPS.XLS. As soon as the file is received, JOB7
must start to process the file. The following rule controls that JOB7 starts within
one minute after the transfer of DAILYOPS.XLS is finished. If this does not happen,
an email is sent to the evening operator. This is accomplished by defining two
sequential event conditions that have to monitored:

Chapter 9. Defining objects in the database 279

1. The first event that triggers the rule is the creation of file DAILYOPS.XLS on the
workstation to which it is to be transferred. As soon as this event is detected, a
rule instance is created and a one minute interval count is begun to detect the
next event condition.

2. The second event is the submission of JOB7. If this event fails to be detected
within the specified time interval, the rule times out and the SendMail action is
started.

a?xml version=“1.0”?>
aeventRuleSet

xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”
xmlns=“http://www.ibm.com/xmlns/prod/tws/1.0/event-management/rules”
xsi:schemaLocation=“http://www.ibm.com/xmlns/prod/tws/1.0/event-management/rules
EventRules.xsd”>

<eventRule
name=“sample_rule”
ruleType=”sequence”
isDraft=“no”>

<description>An email is sent if job JOB7 does not start within
a minute after file DAILYOPS.XLS is created</description>

<timeZone>America/Indianapolis</timeZone>
<validity

from=“2007-01-01”
to=“2007-12-31” />

<activeTime
start=“20:00:00”
end=“22:00:00” />

<timeInterval
amount=“60”
unit=“seconds” />

<eventCondition
name=“DAILYOPS_FTPed_event”
eventProvider=“FileMonitor”
eventType=“FileCreated”>

<filteringPredicate>
<attributeFilter

name=“FileName”
operator=“eq”>

<value>c:/dailybus/DAILYOPS.XLS</value>
</attributeFilter>
<attributeFilter

name=“Workstation”
operator=“eq”>

<value>ACCREC03</value>
</attributeFilter>
<attributeFilter

name=“SampleInterval”
operator=“eq”>

<value>300</value>
</attributeFilter>

</filteringPredicate>
</eventCondition>
<eventCondition

name=“job_JOB7_problem_event”
eventProvider=“TWSObjectsMonitor”
eventType=“JobSubmit”>

<filteringPredicate>
<attributeFilter

name=“JobStreamWorkstation”
operator=“eq”>

<value>ACCREC03</value>
</attributeFilter>
<attributeFilter

name=“Workstation”
operator=“eq”>

<value>ACCREC03</value>
</attributeFilter>
<attributeFilter

name=“JobStreamName”
operator=“eq”>

280 IBM Workload Scheduler: User’s Guide and Reference

<value>JSDAILY</value>
</attributeFilter>
<attributeFilter

name=“JobName”
operator=“eq”>

<value>JOB7</value>
</attributeFilter>

</filteringPredicate>
</eventCondition>
<action

actionProvider=“MailSender”
actionType=“SendMail”
responseType=“onTimeOut”>

<description>Send email to evening operator stating job did not
start</description>

<parameter name=“To”>
<value>eveoper@bigcorp.com</value>

</parameter>
<parameter name=“Subject”>

<value>Job JOB7 failed to start within scheduled time on
workstation ACCREC03.</value>

</parameter>
</action>

</eventRule>
</eventRuleSet>

Note that the scope does not show the first time the rule is defined.

For more event rule examples, see “Event rule examples” on page 140.

See also

From the Dynamic Workload Console you can perform the same task as described
in:

the Dynamic Workload Console User’s Guide, section about Creating an event
rule.

Workload application definition
You can use workload applications to standardize a workload automation solution
so that the solution can be reused in one or more IBM Workload Scheduler
environments thereby automating business processes.

Workload applications are defined in an IBM Workload Scheduler environment,
referred to as the source environment, using composer command line or the
Workload Designer graphical user interface accessible from the Dynamic Workload
Console. You create a new workload application template and then add one or
more job streams to it. To reproduce the workload automation solution in another
IBM Workload Scheduler environment, the workload application template is
exported and then after some manual customizations, it can be imported in the
target environment.

The export process produces a compressed file containing all the files and
information required to make the workload run in a different IBM Workload
Scheduler environment. The compressed file contains:

A definitions file
An XML file, workload applicationtemplatename_Definitions.UTF8.xml, that
contains the definitions of all the exported objects. These definitions will be
deployed in the target environment so as to populate the target database
with the same objects existing in the source environment.

Chapter 9. Defining objects in the database 281

|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

A mapping file
A mapping file, workload applicationtemplatename_Mapping.UTF8.properties,
required to address those objects that are dependent on the topology of the
environment and that cannot be reproduced without some manual
customization. The target user will modify the file replacing the names of
the objects in the source environment with the names that these objects
have in the target environment.

A reference information file
A reference information file, workload
applicationtemplatename_SourceEnv_reference.txt, containing the definitions
of the workstations used in the workload application template and other
information that can be useful to correctly map the source environment
into the target environment so as to make the workload application run.

You can import the compressed package from the Dynamic Workload Console with
an intuitive guided procedure, as described in the section about importing a
workload application template in the Dynamic Workload Console User's Guide.

You can also manually import the compressed package into the target environment
where the workload application will be deployed, thus creating all the required
objects in the target environment. In the target environment, the workload
application name_Mapping.UTF8.properties file must be edited manually, using a
generic text editor, by specifying the names of the objects as they are defined in the
target environment (for example, the names of the workstations on which the job
streams run). The import operation must be performed in the target environment
by using the command line. For more details, see User's Guide and Reference
sections about workload applications and the wappman command.

When using composer command line, each workload application definition has the
following format and arguments:

Syntax

wat wat_name
[description "description"]
[vendor "vendor"]
jstreams
[workstation#jobstream [workstation#jobstream]...]

end

Arguments

wat Mandatory field that contains the name of the workload application
template. The maximum length is 80 characters. In product versions prior
to IBM Workload Scheduler version 94, Fix Pack 1, this keyword was
named bapplication.

description
Optional descriptive text to help workload application users understand
the purpose and characteristics of the workload application. The maximum
length is 120 characters.

vendor
Optional field that specifies the creator of the workload application
template. It can be useful to let workload application users know who
created and provided it. The maximum length is 120 characters.

282 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|

=

=
=
=
=
=
=

=

||
=
=
=

|
|
|
|

|
|
|
|

jstreams
The job streams that you want to add to the workload application
template.

Examples

To create two workload application templates, WAT_NAME1 and WAT_NAME2,
run:
new wat
WAT WAT_NAME1

DESCRIPTION "Description"
VENDOR "Provider"
JSTREAMS

FTA1#JS_1_1
AGENT1#JS_1_2

END

WAT WAT_NAME2
DESCRIPTION "Description"
VENDOR "Provider"
JSTREAMS

JS_2_1
JS_2_2

END

Security object definition
You can use composer command line program to define security objects in the
database.

Access control lists
Each access control list assigns security roles to users or groups, in a
certain security domain.

Security domains
Each domain represents the set of scheduling objects that users or groups
can manage.

Security roles
Each role represents a certain level of authorization that defines the set of
actions that users or groups can perform on a set of object types.

Security access control list definition
In the role-based security model, an access control list assigns security roles to
users or groups, in a certain security domain. You can include multiple security
access control list definitions in the same text file, along with security domain
definitions and security role definitions.

Each security access control list definition has the following format and arguments:

Syntax

accesscontrollist for security_domain_name
user_or_group_name [security_role[, security_role]...]

[user_or_group_name [security_role[, security_role]...]]...
end

[securitydomain ...]

[securityrole ...]

Chapter 9. Defining objects in the database 283

|
|
|

=

=
=

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

=

|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|

|

|
|
|
|

|

|

Arguments

security_domain_name
Specifies the name of the security domain on which you are defining the
access control list.

user_or_group_name [security_role[, security_role]
Assigns one or more security roles to a certain user or group, on the
specified security domain.

Examples

The following example defines an access control list on SECDOM1 domain and an
access control list on SECDOM2 domain:
ACCESSCONTROLLIST FOR SECDOM1

USER1 SECROLE1, SECROLE2, SECROLE3
USER2 SECROLE4
USER3 SECROLE2, SECROLE4

END

ACCESSCONTROLLIST FOR SECDOM2
USER1 SECROLE1, SECROLE2
USER2 SECROLE3

END

Security domain definition
In the role-based security model, a security domain represents the set of objects
that users or groups can manage. For example, you can define a domain that
contains all objects named with a prefix 'AA'. If you want to specify different
security attributes for some or all of your users, you can create additional security
domains based on specific matching criteria. You can filter objects by specifying
one or more attributes for each security object type. You can include or exclude
each attribute from the selection. For example, you can restrict access to a set of
objects having the same name or being defined on the same workstation, or both.

You can include multiple security domain definitions in the same text file, along
with security role definitions and access control list definitions.

Each security domain definition has the following format and arguments:

Syntax

Each attribute can be included or excluded from the selection using the plus (+)
and tilde (~) symbols.

securitydomain security_domain_name
[description "description"]

[common [[+|~]object_attribute [= value | @[, value | @]...]]]
object_type [[+|~]object_attribute [= value | @[, value | @]...]]
[object_type [[+|~]object_attribute [= value | @[, value | @]...]]]...

end

[securityrole ...]

[accesscontrollist ...]

284 IBM Workload Scheduler: User’s Guide and Reference

|

|
|
|

|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|

|

|
|

|
|
|
|
|
|

|

|

Arguments

securitydomainsecurity_domain_name
Specifies the name of the security domain. The name must start with a
letter, and can contain alphanumeric characters, dashes, and underscores. It
can contain up to 16 characters.

description ”description”
Provides a description of the security domain. The description can contain
up to 120 alphanumeric characters. The text must be enclosed within
double quotes.

common [[+|~]object_attribute [= value | @[, value | @]...]]
Provides object attributes that are common to all the security object types.

object_type [[+|~]object_attribute [= value | @[, value | @]...]]
For each object type, specifies the attributes that apply to that object type
and the related values. Each attribute can be included or excluded from the
selection using the plus (+) and tilde (~) symbols. Wildcard (@) is
supported for the attribute value: object_attribute =@ means that all the
objects matching the object attribute must be included in the domain. For
the use of wildcard (@), see the examples below.

For the attributes that you can specify for each security object type, see the section
about managing security with the Dynamic Workload Console, in the Dynamic
Workload Console User's Guide.

For the values that you can specify for each object attribute, see the section about
managing security with the Dynamic Workload Console, in the Dynamic Workload
Console User's Guide.

Examples

The following example defines a security domain named SECDOM1 and a security
domain named SECDOM2:
securitydomain SECDOM1
description "Sample Security Domain1"
job cpu = $THISCPU, # The workstation where the user logs on

$MASTER, # The master workstation
$SLAVES, # Any fault tolerant agent
$REMOTES # Any standard agent
cogs@ # Any workstation whose name starts with "cogs"

+ name = A@ # Any job whose name starts with "A"
⌂ name = A2@ # but doesn’t start with A2
+ jcltype = SCRIPTNAME # Allow only SCRIPTNAME type of job definition
+ jcltype = DOCOMMAND # Allow only DOCOMMAND type of job definition
+ logon = $USER, # Streamlogon is the conman/composer user

$OWNER, # Streamlogon is the job creator
$JCLOWNER, # Streamlogon is the OS owner of the file
$JCLGROUP # Streamlogon is the OS group of the file

⌂ logon = root, twsuser # The job cannot logon as "root" or "twsuser"
+ jcl = "/usr/local/bin/@" # The jobs whose executable file that is

present in /usr/local/bin
⌂ jcl = "@rm@" # but whose JSDL definition does not contain the

string "rm"
end

securitydomain SECDOM2
description "Sample Security Domain2"

common cpu=@+name=@
userobj cpu=@
job cpu=@

Chapter 9. Defining objects in the database 285

|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

schedule cpu=@+name=AP@
resource cpu=@
prompt
file name=@
cpu cpu=@
parameter cpu=@
calendar
report name=@
eventrule name=@
action provider=@
event provider=@
vartable name=@
wkldapp name=@
runcygrp name=@
lob name=@

end

Security role definition
In the role-based security model, a security role represents a certain level of
authorization and includes the set of actions that users or groups can do. You can
include multiple security role definitions in the same text file, along with security
domain definitions and access control list definitions.

Each security role definition has the following format and arguments:

Syntax

securityrole security_role_name
[description "description"]

object_type access[=action[,action]...]
[object_type access[=action[,action]...]]...

end

[securitydomain ...]

[accesscontrollist ...]

Arguments

securityrolesecurityrolename
Specifies the name of the security role. The name must start with a letter,
and can contain alphanumeric characters, dashes, and underscores. It can
contain up to 16 characters.

description ”description”
Provides a description of the security role. The description can contain up
to 120 alphanumeric characters. The text must be enclosed within double
quotes.

object_type access[=action[,action]...]
For each object type, specifies a list of actions that users or groups can
perform on that specific object type.

Table 42 on page 287 shows the different object types and how they are referenced
with composer and with the Dynamic Workload Console:

286 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|
|
|
|
|

|

|

|

|
|
|
|

|
|
|
|

|
|
|

|
|

Table 42. Security object types

Object
type -
composer

Object type -
Dynamic
Workload
Console

Description

action Actions Actions defined in scheduling event rules

calendar Calendars User calendars

cpu Workstations Workstations, domains, and workstation classes

event Events Event conditions in scheduling event rules

eventrule Event Rules Scheduling event rule definitions

file Files IBM Workload Scheduler database files

job Jobs Scheduled jobs and job definitions

lob IBM
Application
Lab

IBM Application Lab

parameter Parameters Local parameters

prompt Prompts Global prompts

report Reports The following reports in Dynamic Workload Console:

RUNHIST
Job Run History

RUNSTATS
Job Run Statistics

WWS Workstation Workload Summary

WWR Workstation Workload Runtimes

SQL Custom SQL

ACTPROD
Actual production details (for current and archived
plans)

PLAPROD
Planned production details (for trial and forecast
plans)

resource Recources Scheduling resources

runcygrp Run Cycle
Groups

Run cycle groups

schedule Job Streams Job streams

userobj User Objects User objects

vartable Variable
Tables

Variable tables

wkldappl Workload
Application

Workload application

Table 43 shows the actions that users or groups can perform on the different
objects.

Table 43. Actions that users or groups can perform on the different objects

Actions that users or groups can perform on the different objects

add deldep manage shutdown

Chapter 9. Defining objects in the database 287

||

|
|
|

|
|
|
|

|

|||

|||

|||

|||

|||

|||

|||

||
|
|

|

|||

|||

|||

|
|

|
|

||

||

||

|
|
|

|
|
|

|||

||
|
|

|||

|||

||
|
|

||
|
|

|

|
|

||

|

||||

Table 43. Actions that users or groups can perform on the different objects (continued)

Actions that users or groups can perform on the different objects

adddep delete modify start

altpass display release stop

altpri fence reply submit

build kill rerun submitdb

cancel limit resetfta unlink

confirm link resource unlock

console list run use

For the actions that users or groups can perform on a specific object type, for each
of the IBM Workload Scheduler task, see the section about managing security roles
with the Dynamic Workload Console, in the Dynamic Workload Console User's Guide.

Examples

The following example defines security role SECROLE1 and security role SECROLE2:
SECURITYROLE SECROLE1
DESCRIPTION "Sample Security Role"
SCHEDULE ACCESS=ADD,ADDDEP,ALTPRI,CANCEL,DELDEP,DELETE,DISPLAY,LIMIT,MODIFY,
RELEASE
RESOURCE ACCESS=ADD,DELETE,DISPLAY,MODIFY,RESOURCE,USE,LIST,UNLOCK
PROMPT ACCESS=ADD,DELETE,DISPLAY,MODIFY,REPLY,USE,LIST,UNLOCK
FILE ACCESS=BUILD,DELETE,DISPLAY,MODIFY,UNLOCK
CPU ACCESS=LIMIT,LINK,MODIFY,SHUTDOWN,START,STOP,UNLINK,LIST,UNLOCK,RUN
PARAMETER ACCESS=ADD,DELETE,DISPLAY,MODIFY,LIST,UNLOCK
CALENDAR ACCESS=ADD,DELETE,DISPLAY,MODIFY,USE,LIST,UNLOCK
REPORT ACCESS=DISPLAY
EVENTRULE ACCESS=ADD,DELETE,DISPLAY,MODIFY,LIST,UNLOCK
ACTION ACCESS=DISPLAY,SUBMIT,USE,LIST
EVENT ACCESS=USE
VARTABLE ACCESS=ADD,DELETE,DISPLAY,MODIFY,USE,LIST,UNLOCK
WKLDAPPL ACCESS=ADD,DELETE,DISPLAY,MODIFY,LIST,UNLOCK
RUNCYGRP ACCESS=ADD,DELETE,DISPLAY,MODIFY,USE,LIST,UNLOCK
LOB ACCESS=USE
END

SECURITYROLE SECROLE2
DESCRIPTION "Sample Security Role"
SCHEDULE ACCESS=ADD,ADDDEP,ALTPRI,CANCEL,DELDEP,DELETE,DISPLAY,LIMIT,MODIFY,
RELEASE
RESOURCE ACCESS=ADD,DELETE,DISPLAY,MODIFY,RESOURCE,USE,LIST,UNLOCK
PROMPT ACCESS=ADD,DELETE,DISPLAY,MODIFY,REPLY,USE,LIST,UNLOCK
END

Actions on security objects
The following tables show the actions that users or groups can perform on the
different object types, for each IBM Workload Scheduler task. See in parenthesis the
corresponding actions and objects values that you must use when defining
role-based security with composer command line interface.

288 IBM Workload Scheduler: User’s Guide and Reference

|

|

||||

||||

||||

||||

||||

||||

||||
|

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

Table 44. Actions that users or groups can perform when designing and monitoring the
workload

Design and Monitor Workload

Actions that users or groups can perform Security object types

List (list)

Display (display)

Create (add)

Delete (delete)

Modify (modify)

Use (use)

Unlock (unlock)

Actions on remote workstations while modeling
jobs (cpu-run)

Note: See in parenthesis the corresponding
actions and objects values that you must use when
defining role-based security with composer
command line interface.

Jobs (job)

Job Streams (schedule)

User Objects (userobj)

Prompts (prompt)

Resources (resource)

Calendars (calendar)

Run Cycle Groups (runcygrp)

Variable Tables (vartable)

Workload Application (wkldappl)

Parameters (parameter)

Chapter 9. Defining objects in the database 289

||
|

|

||

|

|

|

|

|

|

|

|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

Table 45. Actions that users or groups can perform when modifying current plan

Modify current plan

Actions that users or groups can perform on the current plan

Add job stream dependency (schedule - adddep)

Add job dependency (job - adddep)

Remove job dependency (job - deldep)

Remove job stream dependency (schedule - deldep)

Change job priority (job - altpri)

Change job stream priority (schedule - altpri)

Cancel job (job - cancel)

Cancel job stream (schedule - cancel)

Rerun job (job - rerun)

Confirm job (job - confirm)

Release job (job - release)

Release job stream (schedule - release)

Kill jobs (job - kill)

Reply to prompts (prompt - reply)

Reply to job prompts (job - reply)

Reply to job stream prompts (schedule - reply)

Alter user password (userobj - altpass)

Change jobs limit (schedule - limit)

Actions on job remote system (job - run)

Change resource quantity (resource - resource)

Note: See in parenthesis the corresponding actions and objects values that you must use when defining
role-based security with composer command line interface.

Table 46. Actions that users or groups can perform when submitting workload

Submit Workload

Workload definitions that can be added to the current plan

Only existing job definitions (job - submitdb)

Existing jobs definitions and ad hoc jobs (job - submit)

Existing job stream definitions (schedule - submit)

Note: See in parenthesis the corresponding actions and objects values that you must use when defining
role-based security with composer command line interface.

290 IBM Workload Scheduler: User’s Guide and Reference

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

||

|

|

|

|

|

|
|
|

Table 47. Actions that users or groups can perform when managing workload environment

Manage Workload Environment

Actions that users or groups can perform on workstations, domains, and workstation classes

List workstations (cpu - list)

Display workstation details (cpu - display)

Create workstations (cpu - add)

Delete workstations (cpu - delete)

Modify workstations (cpu - modify)

Use workstations (cpu - use)

Unlock workstations (cpu - unlock)

Start a workstation (cpu - start)

Stop a workstation (cpu - stop)

Change limit (cpu - limit)

Change fence (cpu - fence)

Shutdown (cpu - shutdown)

Reset FTA (cpu - resetfta)

Link (cpu - link)

Unlink (cpu - unlink)

Use 'console' command from conman (cpu - console)

Upgrade workstation (cpu - manage)

Note: See in parenthesis the corresponding actions and objects values that you must use when defining
role-based security with composer command line interface.

Chapter 9. Defining objects in the database 291

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

Table 48. Actions that users or groups can perform when managing event rules

Manage Event Rules

Actions that users or groups can perform on event rules

List event rules (eventrule - list)

Display event rules details (eventrule - display)

Create event rules (eventrule - add)

Delete event rules (eventrule - delete)

Modify event rules (eventrule - modify)

Use event rules (eventrule - use)

Unlock event rules (eventrule - unlock)

Display actions in the event rules (action - display)

Monitor triggered actions (action - list)

Use action types in the event rules (action - use)

Submit action (action - submit)

Use events in the event rules (event - use)

Use a File Monitor event on the workstation where the file resides. (event - display)

Note: See in parenthesis the corresponding actions and objects values that you must use when defining
role-based security with composer command line interface.

Table 49. Administrative tasks that users or groups can perform

Administrative Tasks

Administrative tasks that users or groups can perform

View configuration (dump security and global options) (file - display)

Change configuration (makesec, optman add) (file - modify)

Delete objects definitions (file - delete)

Unlock objects definitions (file - unlock)

Allow planman deploy, prodsked and stageman (file - build)

Note: See in parenthesis the corresponding actions and objects values that you must use when defining
role-based security with composer command line interface.

292 IBM Workload Scheduler: User’s Guide and Reference

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

||

|

|

|

|

|

|

|

|
|
|

Table 50. Actions that users or groups can perform on workload reports

Workload Reports

Actions that users or groups can perform on workload reports

Generate workload
reports (display
report)

Reports in Dynamic Workload Console

RUNHIST
Job Run History

RUNSTATS
Job Run Statistics

WWS Workstation Workload Summary

WWR Workstation Workload Runtimes

SQL Custom SQL

ACTPROD
Actual production details (for current and archived plans)

PLAPROD
Planned production details (for trial and forecast plans)

Note: See in parenthesis the corresponding actions and objects values that you must use when defining
role-based security with composer command line interface.

Table 51. Actions that users or groups can perform on Application Lab

Application Lab

Actions that users or groups can perform on Application Lab

Access Application Lab (use lob)

Note: See in parenthesis the corresponding actions and objects values that you must use when defining
role-based security with composer command line interface.

Attributes for security object types
Table 52 shows the attributes that you can specify for each security object type (see
in parenthesis the corresponding object type and object attribute that you must use
when defining security objects with the composer command line interface).

Table 52. Attributes for security object types
Attribute

Name
(name)

Workstation
(cpu)

Custom
(custom) JCL (jcl)

JCLtype
(jcltype)

Logon
(logon)

Provider
(provider)

Type
(type)

Host
(host)

Port
(port)Security object type

Actions (action) U U U U

Calendars (calendar) U

Workstations (cpu) U

Events (event) U U U

Event rules (event) U

Files (file) U

Jobs (job) U U U U U

Application Lab
(lob)

U

Parameters
(parameter)

U U

Prompts (prompt) U

Reports (report) U

Resource (resource) U U

RunCycle groups
(runcygrp)

U

Job streams
(schedule)

U U

Chapter 9. Defining objects in the database 293

||

|

|

|
|
|

|

|
|

|
|

||

||

||

|
|

|
|

|
|
|

||

|

|

|

|
|
|

|
|
|
|

||
||
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
||

|
|
||||||||||

|
|
||||||||||

Table 52. Attributes for security object types (continued)
Attribute

Name
(name)

Workstation
(cpu)

Custom
(custom) JCL (jcl)

JCLtype
(jcltype)

Logon
(logon)

Provider
(provider)

Type
(type)

Host
(host)

Port
(port)Security object type

User objects
(userobj)

U U

Variable tables
(vartable)

U

Workload
applications
(wkldappl)

U

For the values that are allowed for each object attribute, see “Specifying object
attribute values.”

Specifying object attribute values
The following values are allowed for each object attribute (see in parenthesis the
corresponding object type and object attribute for the composer command line
interface):

Name (name)
Specifies one or more names for the object type.
v For the Files (file) object type, the following values apply:

globalopts
Allows the user to set global options with the optman command.
The following access types are allowed:
– Display access for optman ls and optman show
– Modify access for optman chg

prodsked
Allows the user to create, extend, or reset the production plan.

security
Allows the user to manage the security file.

Symphony
Allows the user to run stageman and JnextPlan.

trialsked
Allows the user to create trial and forecast plans or to extend
trial plans.

Note: Users who have restricted access to files should be given at least
the following privilege to be able to display other object types that is,
Calendars (calendar) and Workstations (cpu):
file name=globalopts action=display

v For the Variable Tables (vartable) object type, you can use the
$DEFAULT value for the Name (name) attribute to indicate the default
variable table. This selects the table that is defined with the isdefault
attribute.

Workstation (cpu)
Specifies one or more workstation, domain, or workstation class name. If
this attribute is not specified, all defined workstations and domains can be
accessed. Workstation variables can be used:

$MASTER
The IBM Workload Scheduler master domain manager.

$SLAVES
Any fault-tolerant agent.

$REMOTES
Any standard agent.

294 IBM Workload Scheduler: User’s Guide and Reference

|
||
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
||
|
|
||||||||||

|
|
||||||||||

|
|
|

||||||||||

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|

|
|

|
|

|
|

$THISCPU
The workstation on which the user is running the IBM Workload
Scheduler command or program.

If you use composer command line to define security domains, the
following syntax applies:
cpu=workstation[,workstation]...

Custom (custom)

Use this attribute to assign access rights to events defined in event
plug-ins. The precise syntax of the value depends on the plug-in. For
example:
v Specify different rights for different users based on SAP R/3 event

names when defining event rules for SAP R/3 events.
v Define your own security attribute for your custom-made event

providers.
v Specify the type of event that is to be monitored. Every event can refer

to an event provider.

If you use composer command line to define security domains, the
following syntax applies:
custom=value[,value]...

JCL (jcl)
Specifies the command or the path name of a job object's executable file. If
omitted, all defined job files and commands qualify.

You can also specify a string that is contained in the task string of a JSDL
definition to be used for pattern matching.

If you use composer command line to define security domains, the
following syntax applies:
jcl="path" | "command" | "jsdl"

JCL Type (jcltype)
Specifies that the user is allowed to act on the definitions of jobs that run
only scripts (if set to scriptname) or commands (if set to docommand). Use
this optional attribute to restrict user authorization to actions on the
definitions of jobs of one type only. Actions are granted for both scripts
and commands when JCL Type (jcltype) is missing.

A user who is not granted authorization to work on job definitions that
run either a command or a script is returned a security error message
when attempting to run an action on them.

If you use composer command line to define security domains, the
following syntax applies:
jcltype=[scriptname | docommand]

Logon (logon)

Specifies the user IDs. If omitted, all user IDs qualify.

You can use the following values for the Logon (logon) attribute to
indicate default logon:

$USER
Streamlogon is the conman/composer user.

$OWNER
Streamlogon is the job creator.

Chapter 9. Defining objects in the database 295

|
|
|

|
|

|

|

|
|
|

|
|

|
|

|
|

|
|

|

|
|
|

|
|

|
|

|

|
|
|
|
|
|

|
|
|

|
|

|

|

|

|
|

|
|

|
|

$JCLOWNER
Streamlogon is the OS owner of the file.

$JCLGROUP
Streamlogon is the OS group of the file.

If you use composer command line to define security domains, the
following syntax applies:
logon=username[,username]...

Provider (provider)

For Actions (action) object types, specifies the name of the action provider.

For Events (event) object types, specifies the name of the event provider.

If Provider (provider) is not specified, no defined objects can be accessed.

If you use composer command line to define security domains, the
following syntax applies:
provider=provider_name[,provider_name]...

Type (type)

For Actions (action) object types, is the actionType.

For Events (event) object types, is the eventType.

For Workstations (cpu) object types, the permitted values are those used in
composer or the Dynamic Workload Console when defining workstations,
such as manager, broker, fta, agent, s-agent, x-agent, rem-eng, pool, and
d-pool.

Note: The value master, used in conman is mapped against the manager
security attributes.

If Type (type) is not specified, all defined objects are accessed for the
specified providers (this is always the case after installation or upgrade, as
the type attribute is not supplied by default).

If you use composer command line to define security domains, the
following syntax applies:
type=type[,type]...

Host (host)
For Actions (action) object types, specifies the TEC or SNMP host name
(used for some types of actions, such as sending TEC events, or sending
SNMP). If it does not apply, this field must be empty.

If you use composer command line to define security domains, the
following syntax applies:
host=host_name

Port (port)
For Actions (action) object types, specifies the TEC or SNMP port number
(used for some types of actions, such as sending TEC events, or sending
SNMP). If it does not apply, this field must be empty.

If you use composer command line to define security domains, the
following syntax applies:
port=port_number

296 IBM Workload Scheduler: User’s Guide and Reference

|
|

|
|

|
|

|

|

|

|

|

|
|

|

|

|

|

|
|
|
|

|
|

|
|
|

|
|

|

|
|
|
|

|
|

|

|
|
|
|

|
|

|

Chapter 10. Managing objects in the database - composer

This section describes how you use the composer command-line program to
manage scheduling objects in the IBM Workload Scheduler database. It is divided
into the following sections:
v “Setting up the composer command-line program”
v “Running commands from composer” on page 302
v “Composer commands” on page 307

Setting up the composer command-line program
About this task

The composer command line program manages scheduling objects in database.

The composer command line program manages scheduling objects.

You must install the IBM Workload Scheduler Command Line Client feature on
fault-tolerant agents and systems outside the IBM Workload Scheduler network to
use the composer command-line program.

Users can decide to maintain an audit trail recording any changes they perform
and the related justifications. To enable the justification option, set up in a system
shell the IBM Workload Scheduler environment variables listed below before
running any composer commands:

IWS_DESCRIPTION
Specify the description to be recorded for each change performed by
commands in the shell. The maximum length for this value is 512
characters. A warning message displays if you exceed the maximum and
excess characters are truncated.

IWS_CATEGORY
Specify the category to be recorded for each change performed by
commands in the shell. The maximum length for this value is 128
characters. A warning message displays if you exceed the maximum and
excess characters are truncated.

IWS_TICKET
Specify the ticket to be recorded for each change performed by commands
in the shell. The maximum length for this value is 128 characters. A
warning message displays if you exceed the maximum and excess
characters are truncated.

For more information about the justification option, see the section about keeping
track of changes in IBM Dynamic Workload Console User's Guide.

Note: On AIX systems, if you plan to define a large number of objects, the data
segment should be increased for ensuring product reliability.

297

|

|

|
|
|

|

|

|

|
|

|

|

|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

Setting up the composer environment
About this task

This section describes how you set up your composer environment.

Terminal output
The shell variables named MAESTROLINES and MAESTROCOLUMNS determine
the output to your computer. The variables are defined in the tws_env script, which
you run before running command line commands. If either variable is not set, the
standard shell variables, LINES and COLUMNS, are used. At the end of each
screen page, composer does not pause at the end of a page. If MAESTROLINES
(or LINES) is set to a positive number, composer prompts to continue.

Depending on the value set in the MAESTROCOLUMNS local variable, two
different sets of information are displayed about the selected object. There are two
possibilities:
v MAESTROCOLUMNS < 120 characters
v MAESTROCOLUMNS >= 120 characters

The value set in the MAESTROCOLUMNS local variable cannot be higher than
1024.

Refer to Table 59 on page 323 and Table 60 on page 334 to learn about the different
output formats.

Offline output
The ;offline option in composer commands is used to print the output of a
command. When you include it, the following variables control the output:

Windows variables:

MAESTROLP
Specifies the file into which a command's output is written. The default is
stdout.

MAESTROLPLINES
Specifies the number of lines per page. The default is 60.

MAESTROLPCOLUMNS
Specifies the number of characters per line. The default is 132.

UNIX variables:
The ;offline option in composer commands is used to print the output of a
command. When you include it, the following shell variables control the output:

MAESTROLP
Specifies the destination of a command's output. Set it to one of the
following:

> file Redirects output to a file, overwriting the contents of that file. If
the file does not exist, it is created.

>> file Redirects output to a file, appending the output to the end of the
file. If the file does not exist, it is created.

| command
Pipes output to a system command or process. The system
command is run whether or not output is generated.

298 IBM Workload Scheduler: User’s Guide and Reference

|| command
Pipes output to a system command or process. The system
command is not run if there is no output.

The default value for MAESTROLP is | lp -tCONLIST which directs the
command output to the printer and places the title “CONLIST” in the
banner page of the printout.

MAESTROLPLINES
Specifies the number of lines per page. The default is 60.

MAESTROLPCOLUMNS
Specifies the number of characters per line. The default is 132.

You must export the variables before you run composer.

The composer editor
Several composer commands automatically open a text editor. You can select which
editor you want composer to use.

In addition, in both Windows and UNIX, you can set the XMLEDIT environment
variable to point to an XML editor of your choice to edit event rule definitions. The
XML editor opens automatically each time you run the composer add, new, or
modify commands on an event rule.

Windows:
In Windows, Notepad is used as the default editor. To change the editor, set the
EDITOR environment variable to the path and name of the new editor before you
run composer.

UNIX:
Several commands you can issue from composer automatically open a text editor.
The type of editor is determined by the value of two shell variables. If the variable
VISUAL is set, it defines the editor, otherwise the variable EDITOR defines the
editor. If neither of the variables is set, a vi editor is opened.

Selecting the composer prompt on UNIX
About this task

The composer command prompt is defined in the TWS_home/localopts file. The
default command prompt is a dash (-). To select a different prompt, edit the
composer prompt option in the localopts file and change the dash. The prompt
can be up to ten characters long, not including the required trailing pound sign (#):

#--
Custom format attributes
#
date format = 1 # The possible values are 0-ymd, 1-mdy,
2-dmy, 3-NLS.
composer prompt = -
conman prompt = %
switch sym prompt = <n>%
#--

For additional information about localopts configuration file, refer to IBM
Workload Scheduler Administration Guide.

Chapter 10. Managing objects in the database - composer 299

Running the composer program
About this task

To configure your environment to use composer, set the PATH and TWS_TISDIR
variables by running one of the following scripts:

In UNIX:

v . ./TWS_inst/TWS/tws_env.sh for Bourne and Korn shells
v . ./TWS_isnt/TWS/tws_env.csh for C shells

In Windows:

v TWS_inst\TWS\tws_env.cmd

Then use the following syntax to run commands from the composer user interface:

composer [-file filename][connection_parameters] ["command[&[command]][...]"]

where:

-file filename
Indicates an alternate custom properties file containing the settings for the
connection parameters, used in place of the useropts and localopts files.

connection_parameters
If you are using composer from the master domain manager, the
connection parameters were configured at installation and do not need to
be supplied, unless you do not want to use the default values.

If you are using composer from the command line client on another
workstation, the connection parameters might be supplied by one or more
of these methods:
v Stored in the localopts file
v Stored in the useropts file
v Supplied to the command in a parameter file
v Supplied to the command as part of the command string

For an overview of these options see “Setting up options for using the user
interfaces” on page 60. For full details of the configuration parameters see
the topic on configuring the command-line client access in the IBM
Workload Scheduler: Administration Guide.

Note: If you are using composer from the command line client on another
workstation, for the following subset of scheduling objects:
v jobs
v job streams
v run cycle groups
v workload applications
v access control lists
v security domains
v security roles

the composer command line connects to the server by using an HTTPS
connection. In this case, the command line client assembles the full set of
connection parameters in the following order:
1. Parameters specified in the command string itself

300 IBM Workload Scheduler: User’s Guide and Reference

=
=

=

=

=

=

=

=

=

=
=
=

=

2. Parameters specified in the custom properties file
3. Parameters specified in the useropts file
4. Parameters specified in the localopts file
5. Parameters specified in the jobmanager.ini file

Valid values include:

[-username <user_name>]
An IBM Workload Scheduler user with sufficient privileges to
perform the operation.

[-password <password>]
The password of the IBM Workload Scheduler user.

[-host <hostname>]
The name of the host that you want to access by using wappman
command line.

[-port <port_number>]
The TCP/IP port number used to connect to the specified host.

[-protocol {http | https}]
The protocol used to connect to the specified host.

[-file <custom_properties_file>]
The custom properties file where you can specify connection
parameters that override the values specified in the useropts,
localopts and jobmanager.ini files. Connection parameters specified
in the custom properties file must have the following syntax:
HOST=<hostname>
PORT=<port>
PROTOCOL=<http/https>
USERNAME=<username>
PASSWORD=<password>

If host, port, and protocol parameters are specified in a file, all of them
must be specified in the same file.

The composer command-line program is installed automatically when installing
the master domain manager. It must be installed separately on top of an IBM
Workload Scheduler agent workstation or stand-alone on a node outside the IBM
Workload Scheduler network. The feature that installs the composer command-line
program is named Command Line Client. For information about how to install the
Command Line Client feature, refer to IBM Workload Scheduler: Planning and
Installation Guide.

You can use the composer command line both in batch and in interactive mode.

When running composer in interactive mode, you first launch the composer
command-line program and then, from the composer command line prompt, you
run commands one at a time, for example:

composer –username admin2 –password admin2pwd
add myjobs.txt
create myjobs.txt from jobs=@

When running composer in batch mode, you launch the composer command-line
program specifying as input parameter the command to be issued. When the
command is processed, the composer command-line program exits, for example,

composer –f “c:\TWS\network\mylocalopts” add myjobs.txt

Chapter 10. Managing objects in the database - composer 301

=

=

=

=

=

=
=
=

=
=

=
=
=

=
=

=
=

=
=
=
=
=

=
=
=
=
=

=
=

Note: If you use the batch mode to issue more than one command from within the
composer, make sure you manage the semi-colon (;) character in one of the
following ways:
v Using double quotation marks, for example:

composer "delete dom=old_domain; noask"

v Using a space character, for example:
composer delete dom=old_domain noask

v Escaping the ; character, for example:
composer delete dom=old_domain \; noask

Other examples on how to use the command, assuming connection parameters are
set in the local configuration scripts, are the following:
v Runs print and version commands, and quits:

composer "p parms&v"

v Runs print and version commands, and then prompts for a command:
composer "p parms&v&"

v Reads commands from cmdfile:
composer < cmdfile

v Pipes commands from cmdfile to composer:
cat cmdfile | composer

Note: On Windows workstations, if the User Account Control (UAC) is turned on
and the UAC exception list does not contain the cmd.exe file, you must open the
DOS command prompt shell with the "Run As Admnistrator" option to run
composer on your workstation as a generic user different from Administrator or
IBM Workload Scheduler user.

Control characters
You can enter the following control characters in conversational mode to interrupt
composer if your stty settings are configured to do so.

Ctrl+c composer stops running the current command at the next step that can be
interrupted and returns a command prompt.

Ctrl+d composer quits after running the current command.

Running commands from composer
About this task

Composer commands consist of the following elements:

commandname selection arguments

where:

commandname
Specifies the command name.

selection
Specifies the object or set of objects to be acted upon.

arguments
Specifies the command arguments.

302 IBM Workload Scheduler: User’s Guide and Reference

Filters and wildcards
In IBM Workload Scheduler composer you can use wildcards and filters when
issuing some specific commands to filter scheduling objects defined in the
database. The wildcards you can use from composer are:

@ Replaces one or more alphanumeric characters.

? Replaces one alphanumeric character.

To search for occurrences with names that contain either @ or ?, make sure you use
the backslash character \ before @ or ? to escape them so that they are not
interpreted as wildcards. Similarly, the backslash character must be prefixed by
another backslash character to be interpreted as an occurrence to be found. The
following examples clarify these rules, which also apply when specifying search
strings using the filter keyword.

S@E Search for all strings starting with S and ending with E, whatever is their
length.

S?E Search for all strings starting with S and ending with E, and whose length
is three characters.

S\@E Search for an exact match with string S@E.

S\?E Search for an exact match with string S?E.

S\\E Search for an exact match with string S\E.

The commands you can issue from composer and that support filtering are:
v display
v create
v delete
v list
v lock
v modify
v print
v unlock
v update

The syntax used to filter objects when issuing one of these commands is the
following:

command_name type_of_object=selection; [option;] [filter filter_keyword=selection [...]]

Table 53 on page 304 shows the scheduling objects you can filter when issuing the
commands listed above, and for each object, which fields can be filtered (in italic)
or which key (in bold) is used to filter its fields:

Chapter 10. Managing objects in the database - composer 303

|

Table 53. Scheduling objects filtering criteria

Scheduling
object

Filter keywords
or fields that can
be filtered

Description Example

workstation workstationname Applies the command to
the workstations whose
name satisfies the criteria.

list ws=p@

domain Applies the command to
the workstations which
belong to a domain.

mod ws=@; filter
domain=dom1

vartable Applies the command to
the workstations which
refer the specified variable
table.

mod ws=@; filter
vartable=table2

domain domainname Applies the command to
the domains whose name
satisfies the criteria.

display dom=dom?

parent Applies the command to
the domains whose parent
domain satisfies the criteria.

list dom=@; filter
parent=rome

prompt promptname Applies the command to
the global prompts whose
name satisfies the criteria.

lock prompt=p@

user workstationname#
username

Applies the command to
the users whose identifier
satisfies the criteria.

list users=cpu1#operator?

resource workstationname#
resourcename

Applies the command to
the resources whose
identifier satisfies the
criteria.

print res=cpu?#operator?

variable variablename Applies the command to
the parameters whose name
satisfies the criteria.

delete
vb=mytable.myparm@

job
definition

jobname Applies the command to
the job definitions whose
name satisfies the criteria.

mod jd=mycpu#myjob@

RecoveryJob Applies the command to
the jobs whose definition
contains the specified
recovery job definition.

list jobdefinition=@; filter
RecoveryJob=CPUA#job01

304 IBM Workload Scheduler: User’s Guide and Reference

Table 53. Scheduling objects filtering criteria (continued)

Scheduling
object

Filter keywords
or fields that can
be filtered

Description Example

job stream workstationname#
jobstreamname

Applies the command to
the job stream definitions
whose name satisfies the
criteria.

mod js=mycpu#myjs@

Calendar Applies the command to
the job streams that contain
the calendar specified in the
filter.

list js=@#@; filter
Calendar=cal1

Jobdefinition Applies the command to
the job streams that contain
the job definition specified
in the filter.

list js=@#@; filter
jobdefinition=CPUA#job01

Resource Applies the command to
the job streams that refer to
the resource specified in the
filter.

list js=@#@; filter
Resource=cpu1#disk1

Prompt Applies the command to
the job streams that refer to
the prompt specified in the
filter.

list js=@#@; filter
Prompt=myprompt

Vartable Applies the command to
the job streams that refer to
the variable table specified
in the filter. The variable
table can be specified either
in the run cycle or in the
job stream section.

list js=@#@; filter
Vartable=table1

Rcvartable Applies the command to
the run cycles in the job
streams that refer to the
variable table specified in
the filter.

list js=@#@; filter
Rcvartable=table1

Jsvartable Applies the command to
the job streams that refer to
the variable table specified
in the filter regardless of
what is specified in the run
cycle.

list js=@#@; filter
Jsvartable=table1

event rule eventrulename Applies the command to
the event rules that include
an action on a specific job
or job stream.

list er=@; filter js=accrecjs5

vartable vartablename Applies the command to
the variable tables whose
name satisfies the criteria.

list vartable=A@

isdefault Applies the command to
the default variable table.

list vartable=A@; filter
isdefault

You can combine more than one filter for the same object type as shown in the
following example:

Chapter 10. Managing objects in the database - composer 305

list js=@#@; filter Calendar=cal1 jobdefinition=CPUA#job01

The output of the command is a list of job streams using calendar cal1 and
containing a job with job definition CPUA#job01.

Delimeters and special characters
Table 54 lists characters have special meanings in composer commands.

Table 54. Delimeters and special characters for composer

Character Description

& Command delimiter. See “Running the composer program” on page 300.

; Argument delimiter. For example:

;info;offline

= Value delimiter. For example:

sched=sked5

: ! Command prefixes that pass the command on to the system. These
prefixes are optional; if composer does not recognize the command, it is
passed automatically to the system. For example:

!ls or :ls

<< >> Comment brackets. Comments can be placed on a single line anywhere in
a job stream. For example:

schedule foo <<comment>> on everyday

* Comment prefix. When this prefix is the first character on a line, the entire
line is a comment. When the prefix follows a command, the remainder of
the line is a comment. For example:

*comment
or
print& *comment

> Redirects command output to a file, overwriting the contents of that file. If
the file does not exist, it is created. For example:

display parms > parmlist

>> Redirects command output to a file and appends the output to the end of
file. If the file does not exist, it is created. For example:

display parms >> parmlist

| Pipes command output to a system command or process. The system
command is run whether or not output is generated. For example:

display parms | grep alparm

|| Pipes command output to a system command or process. The system
command is not run if there is no output. For example:

display parms || grep alparm

Composer return codes
Composer return codes

Composer return codes management

When you run a composer command, the command line can show an outcome
return code. To find the return code, perform the following action:

On Windows Operating systems:
echo %ERRORLEVEL%

306 IBM Workload Scheduler: User’s Guide and Reference

On UNIX Operating systems:
echo $?

The composer command line has the following return codes:

0 Command completed successfully.

4 Command completed with a warning.

8 Command completed with an error.

16 Command fails.

32 Command has a syntax error.

Composer commands
Table 55 lists the composer commands.

Note: Command names and keywords can be entered in either uppercase or
lowercase characters, and can be abbreviated to as few leading characters as are
needed to uniquely distinguish them from each other. Some of the command
names also have short forms.

However there are some abbreviations, such as v, that point to a specific
command, version in this case, even though they do not uniquely identify that
command in the list. This happens when the abbreviation is hard coded in the
product and so mismatches in invoking the wrong command are automatically
bypassed.

Table 55. List of composer commands

Command Short Name Description See page

add a Adds a scheduling objects definition to the database from a text
file.

“add” on page 312

authenticate au Changes the credentials of the user running composer. “authenticate” on page 314

continue co Ignores the next error. “continue” on page 314

create cr Extracts an object definition from the database and writes it in a
text file. Synonym for the extract command.

“extract” on page 325

delete de Deletes scheduling objects. “delete” on page 315

display di Displays the details of the specified scheduling object. “display” on page 319

edit ed Edits a file. “edit” on page 324

exit e Exits composer. “exit” on page 325

extract ext Extracts an object definition from the database and writes it in a
text file.

“extract” on page 325

help h Invoke the help on line for a command. “help” on page 330

list l Lists scheduling objects. “list” on page 330

lock lo Locks the access to database objects. “lock” on page 337

modify m Modifies scheduling objects. “modify” on page 341

new Creates a scheduling object using a text file where the object
definition is inserted online. If you specify the type of scheduling
object you want to define after new command, a predefined object
definition is written in the text file.

“new” on page 346

print p Prints scheduling objects. “display” on page 319

redo red Edits and reruns the previous command. “redo” on page 348

rename rn Changes the object name. “rename” on page 349

replace rep Replaces scheduling objects. “replace” on page 352

Chapter 10. Managing objects in the database - composer 307

Table 55. List of composer commands (continued)

Command Short Name Description See page

system command Invokes an operating system command. “system command” on
page 353

unlock u Releases lock on the scheduling object defined in the database. “unlock” on page 353

update up Updates the attributes settings of the scheduling object in the
database.

“update” on page 357

validate val Validates the syntax, semantic, and data integrity of an object
definition.

“validate” on page 359

version v Displays the composer command-line program banner. “version” on page 360

Referential integrity check
IBM Workload Scheduler automatically performs referential checks to avoid lack of
integrity in the object definitions in the database whenever you run commands
that create, modify, or delete the definition of a referenced object. These are the
checks performed by the product:
v Every time you use a command that creates a new object in the database, IBM

Workload Scheduler checks that:
– An object of the same type and with the same identifier does not already

exist.
– The objects referenced by this object already exist in the database.

v Every time you run a command that modifies an object definition in the
database, IBM Workload Scheduler checks that:
– The object definition to be modified exists in the database.
– The objects referenced by this object exist in the database.
– To avoid integrity inconsistencies, the object definition does not appear in the

definition of an object belonging to the chain of his ancestors.
v Every time you run a command that deletes an object definition in the database,

IBM Workload Scheduler checks that:
– The object definition to be deleted exists in the database.
– The object definition to be deleted is not referenced by other objects defined

in the database.

Note that there is no referential integrity check for event rules.

Table 56 shows, for each object type, the identifiers that are used to uniquely
identify the object in the database when creating or modifying object definitions:

Table 56. Object identifiers for each type of object defined in the database

Object type Object identifiers

domain domainname

workstation workstationname (checked across workstations and
workstation classes)

workstation class workstationclassname (checked across workstations and
workstation classes)

calendar calendarname

job definition workstationname and jobname

user workstationname and username

308 IBM Workload Scheduler: User’s Guide and Reference

Table 56. Object identifiers for each type of object defined in the database (continued)

Object type Object identifiers

job stream workstationname and jobstreamname and, if defined,
validfrom

job within a job stream workstationname and jobstreamname, jobname, and, if
defined, validfrom

resource workstationname and resourcename

prompt promptname

variable table variabletablename

variable variabletablename.variablename

event rule eventrulename

access control list securitydomainname

security domain securitydomainname

security role securityrolename

In general, referential integrity prevents the deletion of objects when they are
referenced by other objects in the database. However, in some cases where the
deletion of an object (for example a workstation) implies only the update of a
referencing object (for example a workstation class that includes it), the deletion
might be allowed. Table 57 shows all cases when a referenced object can be deleted
even if other objects reference it:

Table 57. Object definition update upon deletion of referenced object

Object References Upon deletion of the referenced object ...

Internetwork
Dependency

Workstation ... remove the dependency from the job or job
stream

External Follows
Depend

Job Stream ... remove the dependency from the job or job
stream

Job ... remove the dependency from the job or job
stream

Internal Dependency Job ... remove the dependency from the job or job
stream

Workstation Class Workstation ... remove the workstation from the workstation
class

Table 58 describes how the product behaves when it is requested to delete an
object referenced by another object with using a specific relationship:

Table 58. Referential integrity check when deleting an object from the database

Object to
be deleted

Referenced
by object

Relationship Delete rule

domain A domain B domain A is parent of
domain B

An error specifying the existing
relationship is displayed.

workstation
B

workstation B belongs to
domain A

An error specifying the existing
relationship is displayed.

Chapter 10. Managing objects in the database - composer 309

Table 58. Referential integrity check when deleting an object from the database (continued)

Object to
be deleted

Referenced
by object

Relationship Delete rule

workstation
A

workstation
B

workstation A is host for
workstation B

An error specifying the existing
relationship is displayed.

job B job B is defined on
workstation A

An error specifying the existing
relationship is displayed.

job stream B job stream B is defined on
workstation A

An error specifying the existing
relationship is displayed.

user B user B is defined on
workstation A

An error specifying the existing
relationship is displayed.

job stream B workstation A works as
network agent for
internetwork dependencies
set in job stream B

Both workstation A and the
internetwork dependency are
deleted

job stream B job stream B has a file
dependency from a file
defined on workstation A

Both workstation A and the file
dependency are deleted

job B within
job stream B

workstation A works as
network agent for
internetwork dependencies
set in job B

Both workstation A and the
internetwork dependency are
deleted

job B within
job stream B

job B has a file dependency
from a file defined on
workstation A

Both workstation A and the file
dependency are deleted

resource B resource B is defined on
workstation A

An error specifying the existing
relationship is displayed.

file B file B is defined on
workstation A

An error specifying the existing
relationship is displayed.

workstation
class B

workstation A belongs to
workstation class B

Both workstation A and its entry
in workstation class B are
deleted.

job B within
job stream B

job B contained in job
stream B is defined on
workstation A

An error specifying the existing
relationship is displayed.

job A job B job A is recovery job for job
B

An error specifying the existing
relationship is displayed.

job stream B job A is contained in job
stream B

An error specifying the existing
relationship is displayed.

job stream B job stream B follows job A job A and the follows
dependency in job stream B are
deleted.

job B within
job stream B

job B follows job A job A and the follows
dependency in job B are deleted.

event rule B job A is in the action
definition of event rule B
(and does not use variable
substitution)

An error specifying the existing
relationship is displayed.

calendar A job stream B job stream B uses calendar
A

An error specifying the existing
relationship is displayed.

310 IBM Workload Scheduler: User’s Guide and Reference

Table 58. Referential integrity check when deleting an object from the database (continued)

Object to
be deleted

Referenced
by object

Relationship Delete rule

workstation
class A

job B job B is defined on
workstation class A

An error specifying the existing
relationship is displayed.

job stream B job stream B is defined on
workstation class A

An error specifying the existing
relationship is displayed.

resource B resource B is defined on
workstation class A

An error specifying the existing
relationship is displayed.

file B file B is defined on
workstation class A

An error specifying the existing
relationship is displayed.

resource A job stream B needs dependency defined
in job stream B

An error specifying the existing
relationship is displayed.

job B within
job stream B

needs dependency defined
in job B

An error specifying the existing
relationship is displayed.

prompt A job stream B prompt dependency defined
in job stream B

An error specifying the existing
relationship is displayed.

job B within
job stream B

prompt dependency defined
in job B

An error specifying the existing
relationship is displayed.

variable A job stream B variable A is used in job
stream B in:

v in the text of an ad hoc
prompt

v or in the file name
specified in a file
dependency

variable A is deleted without
checking

job B variable A is used in job
stream B in:

v in the text of an ad hoc
prompt

v or in the file name
specified in a file
dependency

v or in the value specified
for streamlogon

v or in the value specified
for scriptname

variable A is deleted without
checking

prompt B variable A is used in the
text of prompt B

variable A is deleted without
checking

variable
table A

job stream B variable table A is
referenced in job stream B

variable table A is not deleted

job B variable table A is
referenced in job B

variable table A is not deleted

prompt B variable table A is
referenced in the text of
prompt B

variable table A is not deleted

Chapter 10. Managing objects in the database - composer 311

Table 58. Referential integrity check when deleting an object from the database (continued)

Object to
be deleted

Referenced
by object

Relationship Delete rule

job stream
A

job stream B job stream B follows job
stream A

job stream A and the follows
dependency in job stream B are
deleted.

job B within
a job stream
B

job B follows job stream A job stream A and the follows
dependency in job B are deleted.

event rule B job stream A is in the action
definition of event rule B
(and does not use variable
substitution)

An error specifying the existing
relationship is displayed.

security
domain A

access
control list B

access control list B is
defined on security domain
A

access control list B is deleted.

security
role A

access
control list B

security role A is referenced
in access control list B

security role A is not deleted.

add
Adds or updates scheduling objects to the database.

Authorization

You must have add access to add a new scheduling object. If the object already
exists in the database you must have:
v modify access to the object if the object is not locked.
v modify and unlock access to the object if the object is locked by another user.

To add security objects, you must have permission for the modify action on the
object type file with attribute name=security.

Syntax

{add | a} filename [;unlock]

Arguments

filename
Specifies the name of the text file that contains the object definitions. For
event rules, filename specifies the name of the XML file containing the
definitions of the event rules that you want to add (see “Event rule
definition” on page 269 for XML reference and see “The composer editor”
on page 299 for details about setting up an XML editor).

;unlock
Indicates that the object definitions must be unlocked if locked by the same
user in the same session. If you did not lock the object and you use the
;unlock option, when you issue the command you receive an error message
and the object is not replaced.

312 IBM Workload Scheduler: User’s Guide and Reference

Comments

The text file is validated at the client and, if correct, objects are inserted into the
database on the master domain manager. Composer transforms object definitions
into an XML definition used at the server; otherwise the command is interrupted
and an error message is displayed. This does not apply to event rule definitions
because they are provided directly in XML format.

With the add command, if an object already exists, you are asked whether or not
to replace it. This behavior does not affect existing job definitions inside job
streams, and the job definitions are automatically updated without prompting any
message. You can use the option unlock to update existing objects you previously
locked by using only one command. For all new objects inserted, the option is
ignored. If you change the name of an object, it is interpreted by composer as a
new object and will be inserted. A rename command is recommended in this case.

The add command checks for loop dependencies inside job streams. For example,
if job1 follows job2, and job2 follows job1 there is a loop dependency. When a
loop dependency inside a job stream is found, an error is displayed.

The add command does not check for loop dependencies between job streams
because, depending on the complexity of the scheduling activities, this check might
take too long.

Examples

To add the jobs from the file myjobs, run the following command:
add myjobs

To add the job streams from the file mysked, run the following command:
a mysked

To add the workstations, workstation classes, and domains from the file cpus.src,
run the following command:
a cpus.src

To add the user definitions from the file users_nt, run the following command:
lata users_nt

To add the event rule definitions you edited in a file named newrules.xml, run:
a newrules.xml

See also

From the Dynamic Workload Console you can perform the same tasks as described
in:

the Dynamic Workload Console User's Guide.
v To add workstations, see

the Dynamic Workload Console User's Guide, section about Creating distributed
workstations.

v To add event rules, see
the Dynamic Workload Console User's Guide, section about Creating an event rule.

v To add access control lists, security domains, and security roles, see

Chapter 10. Managing objects in the database - composer 313

|
|
|

the Dynamic Workload Console User's Guide, section about Managing Workload
Security.

v To add all other objects, see
the Dynamic Workload Console User's Guide, section about Designing your
Workload.

v To add workload application templates, see
the Dynamic Workload Console User's Guide, section about Creating a workload
application template.

authenticate
Switches to another user credentials while running composer.

Authorization

Any user authorized to run composer is authorized to issue this command.

Syntax

{authenticate | au} [username=username password=password]

Arguments

username=username
The username of the user you want to switch to.

password=password
The password of the user you want to switch to.

Comments

A message is displayed communicating the authentication failure or success. This
command is used only in interactive mode.

Examples

To switch to user tws_user1 with password mypasswd1 from within the composer
command-line program, run the following command:
au username=tws_user1 password=mypasswd1

continue
Specifies that the next command error is to be ignored.

Authorization

Any user authorized to run composer is authorized to issue this command.

Syntax

{continue | co}

Comments

This command is useful when multiple commands are entered on the command
line or redirected from a file. It instructs composer to continue running commands
even if the next command, following continue, results in an error. This command

314 IBM Workload Scheduler: User’s Guide and Reference

|

|
|

is not needed when you enter commands interactively because composer does not
quit on an error.

Examples

If you want the composer to continue with the print command if the delete
command results in an error, run the following command:
composer "co&delete cpu=site4&print cpu=@"

delete
Deletes object definitions in the database.

Authorization

To delete scheduling objects, you must have delete access to the objects being
deleted.

To delete security objects, you must have permission for the modify action on the
object type file with attribute name=security.

Syntax

{delete | de}
{[calendars | calendar | cal=calname] |
[domain | dom=domainame] |
[eventrule | erule | er=eventrulename] |
[parms | parm | vb=[tablename.]variablename] |
[prompts | prom=promptname] |
[resources | resource | res=[workstationame#]resourcename] |
[runcyclegroup | rcg=runcyclegroupname] |
[vartable | vt=tablename] |
[wat=workloadapplicationtemplatename]
[cpu={workstationame [;force] | workstationclassname [;force]| domainame}]
[workstation | ws=workstationame] [;force] |
[workstationclass | wscl=workstationclassname] [;force] |
[jobs | jobdefinition | jd=[workstationame#]jobname] |
[sched | jobstream | js= [workstationame#]jstreamname
[valid from date|valid to date |valid in date date]] |
[users | user=[workstationame#]username] |
[accesscontrollist | acl for securitydomainname] |
[securitydomain | sdom=securitydomainname] |
[securityrole | srol=securityrolename]}
[;noask]

Arguments

calendars | calendar | cal
If no argument follows, deletes all calendar definitions.

If argument calname follows, deletes the specified calendar. Wildcard
characters are permitted.

domain | dom
If no argument follows, deletes all domain definitions.

If argument domainname follows, deletes the specified domain. Wildcard
characters are permitted.

Chapter 10. Managing objects in the database - composer 315

eventrule | erule | er
If no argument follows, deletes all event rule definitions.

If argument eventrulename follows, deletes the specified event rule.
Wildcard characters are permitted.

parms|parm|vb
If no argument follows, deletes all global variable definitions found in the
default variable table.

If argument tablename.variablename follows, deletes the variablename variable
of the tablename table. If tablename is omitted, composer looks for the
variable definition in the default variable table. Wildcard characters are
permitted on both tablename and variablename. For example:
delete parms=@.@

Deletes all variables from all tables.
delete parms=@

Deletes all variables from the default table.
delete parms=@.acct@

Deletes all the variables whose name starts with acct from all the existing
tables.

Remember: While you delete a variable, the variable table that contains it
is locked. This implies that, while the table is locked, no other user can run
any other locking commands on it or on the variables it contains.

prompts | prom
If no argument follows, deletes all prompt definitions.

If argument promptname follows, deletes the specified prompt. Wildcard
characters are permitted.

resources | resource | res
If no argument follows, deletes all resource definitions.

If argument workstationame#resourcename follows, deletes the resourcename
resource of the workstationame workstation on which the resource is
defined. If workstationame is omitted, the default is the workstation on
which composer is running. Wildcard characters are permitted for both
workstationame and resourcename.

runcyclegroup | rcg
If no argument follows, deletes all run cycle group definitions.

If argument runcyclegroupname follows, deletes the specified run cycle
group. Wildcard characters are permitted.

vartable | vt
If no argument follows, deletes all variable table definitions.

If argument tablename variable table follows, deletes the specified variable
table. Wildcard characters are permitted.

wat If no argument follows, deletes all workload application template
definitions.

If argument workloadapplicationtemplate follows, deletes the specified
workload application template. Wildcard characters are permitted.

316 IBM Workload Scheduler: User’s Guide and Reference

cpu Deletes workstations, workstation classes, or domains.

workstation
The name of the workstation. Wildcard characters are permitted. If
you specify the force argument, the workstation definition is
removed from the IBM Workload Scheduler database.

workstationclass
The name of the workstation class. Wildcard characters are
permitted. If you specify the force argument, the workstationclass
definition is removed from the IBM Workload Scheduler database.

domain The name of the domain. Wildcard characters are permitted.

workstation | ws
If no argument follows, deletes all workstation definitions.

If argument workstationname follows, deletes the specified workstation.
Wildcard characters are permitted. If you specify the force argument, the
workstation definition is removed from the IBM Workload Scheduler
database.

workstationclass | wscl
If no argument follows, deletes all workstation class definitions.

If argument workstationclassname follows, deletes the specified workstation
class. Wildcard characters are permitted. If you specify the force argument,
the workstation class definition is removed from the IBM Workload
Scheduler database.

jobs | jobdefinition | jd
If no argument follows, deletes all job definitions.

If argument workstationame#jobname follows, deletes the jobname job of the
workstationame workstation on which the job runs. If workstationame is
omitted, the default is the workstation on which composer is running.
Wildcard characters are permitted for both workstationame and jobname.

sched | jobstream | js
If no argument follows, deletes all job stream definitions.

If argument workstationame#jstreamname follows, deletes the jstreamname job
stream of the workstationame workstation on which the job stream is
defined. If workstationame is omitted, the default is the workstation on
which composer is running. Wildcard characters are permitted for both
workstationame and jstreamname.

valid from
date Restricts the selection to job streams that have a valid from
date equal to the indicated value. The format is mm/dd/yyyy.

valid to
date Restricts the selection to job streams that have a valid to date
equal to the indicated value. The format is mm/dd/yyyy.

valid in
date date The time frame during which the job stream can run.
The format is mm/dd/yyyy - mm/dd/yyyy. One of the two dates can
be represented by @.

users | user
If no argument follows, deletes all user definitions.

Chapter 10. Managing objects in the database - composer 317

If argument workstationame#username follows, deletes the username user of
the workstationame workstation on which the user is defined. If
workstationame is omitted, the default is the workstation on which
composer is running. Wildcard characters are permitted for both
workstationame and username. The password field is not copied for security
reasons.

accesscontrollist | acl
If no securitydomainname argument follows, delete access control list
definitions for all the security domains.

If argument securitydomainname follows, delete the access control list
definitions for the securitydomainname security domain. Wildcard characters
are permitted for securitydomainname .

securitydomain | sdom
If no securitydomainname argument follows, delete all the security domains
definitions.

If argument securitydomainname follows, delete the securitydomainname
security domain definition. Wildcard characters are permitted for
securitydomainname .

securityrole | srol
If no securityrolename argument follows, delete all the security roles
definitions.

If argument securityrolename follows, delete the securityrolename security role
definition. Wildcard characters are permitted for securityrolename .

;noask Specifies not to prompt for confirmation before taking action on each
qualifying object.

Comments

If you use wildcard characters to specify a set of definitions, composer requires
confirmation before deleting each matching definition. A confirmation is required
before deleting each matching definition if you do not specify the noask option.

To delete an object, it must not be locked. If some matching objects are locked
during the command processing, an error message with the list of these objects is
shown to the user.

Examples

To delete job3 that is launched on workstation site3, run the following command:
delete jobs=site3#job3

To delete all workstations with names starting with ux, run the following
command:
de cpu=ux@

To delete all job streams with names starting with test on all workstations, run the
following command:
de sched=@#test@

To delete all the event rules named from rulejs320 to rulejs329, run the following
command:
de erule=rulejs32?

318 IBM Workload Scheduler: User’s Guide and Reference

See also

From the Dynamic Workload Console you can perform the same tasks as described
in:

the Dynamic Workload Console User's Guide.
v To delete workstations, see

the Dynamic Workload Console User's Guide, section about Editing workstation
definitions.

v To delete event rules, see
the Dynamic Workload Console User's Guide, section about Editing an event rule.

v To delete access control lists, security domains, and security roles, see
the Dynamic Workload Console User's Guide, section about Managing Workload
Security.

v To delete all other objects, see
the Dynamic Workload Console User's Guide, section about Listing object
definitions in the database.

display
Displays the details of one or more object definitions of the same type stored in the
database. The entire definition of the object is displayed.

Authorization

To display scheduling objects, you must have display access to the object being
displayed. If you want to use the full keyword you must have also the display
access to the jobs contained in the job stream definition. If you do not have the
required access, composer is unable to find the objects.

To display security objects, you must have permission for the display action on the
object type file with attribute name=security.

Syntax

{display | di}
{[calendars | calendar | cal=calname] |
[eventrule | erule | er=eventrulename] |
[parms | parm | vb=variablename.]variablename] |
[vartable | vt=tablename] |
[prompts | prom=promptname] |
[resources | resource | res=[workstationame#]resourcename] |
[runcyclegroup | rcg=runcyclegroupname] |
[cpu={workstationame | workstationclassname | domainame}]
[wat=workloadapplicationtemplatename]
[workstation | ws=workstationame] |
[workstationclass | wscl=workstationclassname] |
[domain | dom=domainame] |
[jobs | jobdefinition | jd=[workstationame#]jobname] |
[sched | jobstream | js= [workstationame#]jstreamname

[valid from date|valid to date |valid in date date]
[;full]] |

[users | user=[workstationame#]username] |
[accesscontrollist | acl for securitydomainname] |

Chapter 10. Managing objects in the database - composer 319

|

[securitydomain | sdom=securitydomainname] |
[securityrole | srol=securityrolename]}
[;offline]

Arguments

calendars | calendar | cal
If no argument follows, displays all calendar definitions.

If argument calname follows, displays the calname calendar. Wildcard
characters are permitted.

eventrule | erule | er

If argument eventrulename follows, displays the eventrulename event rule.
Wildcard characters are permitted.

parms | parm | vb
If no argument follows, displays all global variable definitions found in the
default variable table.

If argument tablename.variablename follows, displays the variablename
variable of the specified table. If tablename variable table is omitted,
composer looks for the variable definition in the default variable table.
Wildcard characters can be used on both tablename variable table and
variablename variable. For example:
display parms=@.@

Displays all variables on all tables.
display parms=@

Displays all variables on the default table.
display parms=@.acct@

Displays all the variables whose name starts with acct on all the existing
tables.

vartable | vt
If no argument follows, displays all variable table definitions.

If argument tablename variable table follows, displays the tablename variable
table. Wildcard characters are permitted.

prompts | prom
If no argument follows, displays all prompt definitions.

If argument promptname follows, displays the promptname prompt. Wildcard
characters are permitted.

resources | resource | res
If no argument follows, displays all resource definitions.

If argument workstationame#resourcename follows, displays the resourcename
resource of the workstationame workstation on which the resource is
defined. If workstationame is omitted, the default is the workstation on
which composer is running. Wildcard characters are permitted for both
workstationame and resourcename.

runcyclegroup | rcg
If no argument follows, displays all run cycle group definitions.

320 IBM Workload Scheduler: User’s Guide and Reference

If argument runcyclegroupname follows, displays the runcyclegroupname run
cycle group. Wildcard characters are permitted.

cpu Displays workstations, workstation classes, or domains.

workstation
The name of the workstation. Wildcard characters are permitted.

workstationclass
The name of the workstation class. Wildcard characters are
permitted.

domain The name of the domain. Wildcard characters are permitted.

wat If no argument follows, displays all workload application template
definitions.

If argument workloadapplicationtemplate follows, displays the specified
workload application template. Wildcard characters are permitted.

workstation | ws
If no argument follows, displays all workstation definitions.

If argument workstationname follows, displays the workstationname
workstation. Wildcard characters are permitted.

domain | dom
If no argument follows, displays all domain definitions.

If argument domainname follows, displays the domainname domain.
Wildcard characters are permitted.

workstationclass | wscl
If no argument follows, displays all workstation class definitions.

If argument workstationclassname follows, displays the workstationclassname
workstation class. Wildcard characters are permitted.

jobs | jobdefinition | jd
If no argument follows, displays all job definitions.

If argument workstationame#jobname follows, displays the jobname job of the
workstationame workstation on which the job runs. If workstationame is
omitted, the default is the workstation on which composer is running.
Wildcard characters are permitted for both workstationame and jobname.

sched | jobstream | js
If no argument follows, displays all job stream definitions.

If argument workstationame#jstreamname follows, displays the jstreamname
job stream of the workstationame workstation on which the job stream is
defined. If workstationame is omitted, the default is the workstation on
which composer is running. Wildcard characters are permitted for both
workstationame and jstreamname.

valid from
date Restricts the selection to job streams that have a valid from
date equal to the indicated value. The format is mm/dd/yyyy.

valid to
date Restricts the selection to job streams that have a valid to date
equal to the indicated value. The format is mm/dd/yyyy.

Chapter 10. Managing objects in the database - composer 321

||
|

|
|

valid in
date date The time frame during which the job stream can run.
The format is mm/dd/yyyy - mm/dd/yyyy. One of the two dates can
be represented by @.

full Displays also all job definitions contained in the job stream.

users | user
If no argument follows, displays all user definitions.

If argument workstationame#username follows, displays the username user of
the workstationame workstation on which the user is defined. If
workstationame is omitted, the default is the workstation on which
composer is running. Wildcard characters are permitted for both
workstationame and username.

accesscontrollist | acl
If no securitydomainname argument follows, displays access control list
definitions for all the security domains.

If argument securitydomainname follows, displays the access control list
definitions for the securitydomainname security domain. Wildcard characters
are permitted for securitydomainname .

securitydomain | sdom
If no securitydomainname argument follows, displays all the security
domains definitions.

If argument securitydomainname follows, displays the securitydomainname
security domain definition. Wildcard characters are permitted for
securitydomainname .

securityrole | srol
If no securityrolename argument follows, displays all the security roles
definitions.

If argument securityrolename follows, displays the securityrolename security
role definition. Wildcard characters are permitted for securityrolename .

;offline
Sends the output of the command to the composer output device. For
information about this device, see “Offline output” on page 298.

Results

The display command returns you the following information about the object to be
displayed:
v a summary row containing information about the selected object
v the selected object definition

Depending on the value set in the MAESTROCOLUMNS local variable the
summary row shows different sets of information about the selected object.

Table 59 on page 323 shows an example of the output produced based on the value
set for the MAESTROCOLUMNS variable.

322 IBM Workload Scheduler: User’s Guide and Reference

Table 59. Output formats for displaying scheduling objects

Object Type Output format if
MAESTROCOLUMNS<120

Output format if
MAESTROCOLUMNS ≥ 120

Calendar "CalendarName : UpdatedOn :
UpdatedBy : LockedBy"

"CalendarName : UpdatedBy :
UpdatedOn : LockedBy : LockedOn"

Domain "DomainName : ParentDomain :
Master : UpdatedOn : LockedBy"

"DomainName : ParentDomain :
Master : UpdatedBy : UpdatedOn :

LockedBy : LockedOn"

Event rule "EventRuleName : Type : Draft :
Status : UpdatedOn : LockedBy"

"EventRuleName : Type : Draft :
Status : UpdatedOn : LockedBy :

LockedOn"

Job "Workstation : JobDefinitionName :
UpdatedOn : LockedBy"

"Workstation : JobDefinitionName :
TaskType : UpdatedBy : LockedBy :

LockedOn"

Job Stream "Workstation : JobstreamName :
Validfrom : UpdatedOn : LockedBy"

"Workstation : JobstreamName : Draft
: ValidFrom : ValidTo : UpdatedBy :
UpdatedOn : LockedBy : LockedOn"

Parameter "VariableTableName : VariableName
: UpdatedOn : LockedBy"

"VariableTableName : VariableName :
UpdatedBy : UpdatedOn : LockedBy

: LockedOn"

Prompt "PromptName : UpdatedOn :
LockedBy "

"PromptName : UpdatedBy :
UpdatedOn : LockedBy : LockedOn"

Resource "Workstation : ResourceName :
Quantity : UpdatedOn : LockedBy "

"Workstation : ResourceName :
Quantity : UpdatedBy : UpdatedOn :

LockedBy : LockedOn"

Variable Table "VariableTableName : Default :
UpdatedOn : LockedBy "

"VariableTableName : Default :
UpdatedBy : UpdatedOn : LockedBy

: LockedOn"

User "Workstation : UserName :
UpdatedOn : LockedBy"

"UserName : Workstation :
UpdatedBy : UpdatedOn : LockedBy

: LockedOn"

Workstation "WorkstationName : Type : Domain
: Ignored : UpdatedOn : LockedBy"

"WorkstationName : Type : Domain :
OsType : Ignored : UpdatedBy :

UpdatedOn : LockedBy : LockedOn"

Workstation
Class

"WorkstationClassName : Ignored :
UpdatedOn : LockedBy"

"WorkstationClassName : Ignored :
UpdatedBy : UpdatedOn : LockedBy

: LockedOn"

See “Offline output” on page 298 for more information on how to set
MAESTROCOLUMNS.

Examples

To display all calendars, run the following command:
display calendars=@

this is a sample output:
Calendar Name Updated On Locked By
---------------- ---------- ---------------------
HOLIDAYS 12/31/2005 tws83
HOLIDAYS
01/01/2006 02/15/2006 05/31/2006

Chapter 10. Managing objects in the database - composer 323

Calendar Name Updated On Locked By
---------------- ---------- ---------------------
MONTHEND 01/01/2006 -

MONTHEND
"Month end dates 1st half 2006"
01/31/2006 02/28/2006 03/31/2006 04/30/2006 05/31/2006 06/30/2006

Calendar Name Updated On Locked By
---------------- ---------- ---------------------
PAYDAYS 01/02/2006 -

PAYDAYS
01/15/2006 02/15/2006 03/15/2006 04/15/2006 05/14/2006 06/15/2006

To print the output of the display command on all job streams that are launched
on workstation site2, run the following command:
di sched=site2#@;offline

See also

From the Dynamic Workload Console you can perform the same tasks as described
in:

the Dynamic Workload Console User's Guide.
v To display workstations, see

the Dynamic Workload Console User's Guide, section about Editing workstation
definitions.

v To display event rules, see
the Dynamic Workload Console User's Guide, section about Editing an event rule.

v To display access control lists, security domains, and security roles, see
the Dynamic Workload Console User's Guide, section about Managing Workload
Security.

v To display all other objects, see
the Dynamic Workload Console User's Guide, section about Listing object
definitions in the database.

edit
Edits a file.

Authorization

Any user authorized to run composer is authorized to issue this command.

Syntax

{edit | ed} filename

Arguments

filename
The name of the file to be edited.

324 IBM Workload Scheduler: User’s Guide and Reference

Comments

An editor is started and the specified file is opened for editing. See “The composer
editor” on page 299 for more information.

Examples

To open the file mytemp for editing, run the following command:
edit mytemp

To open the file resfile for editing, run the following command:
ed resfile

exit
Exits the composer command line program.

Authorization

Any user authorized to run composer is authorized to issue this command.

Syntax

{exit | e}

Comments

When you are running the composer command line program in help mode, this
command returns composer to command input mode.

Examples

To exit the composer command line program, run the following command:
exit

or:
e

extract
Creates a text file containing object definitions extracted from the database.

Authorization

To extract scheduling object, you must have display access to the objects being
copied and, if you want to use the ;lock keyword, also the modify access. If you do
not have the required access composer is unable to find the objects.

To extract security objects, you must have permission for the modify action on the
object type file with attribute name=security.

Syntax

{create | cr | extract | ext} filename from
{[calendars | calendar | cal=calname] |
[eventrule | erule | er=eventrulename] |

Chapter 10. Managing objects in the database - composer 325

[parms | parm | vb=[tablename.]variablename] |
[vartable | vt=tablename] |
[prompts | prom=promptname] |
[resources | resource | res=[workstationame#]resourcename] |
[runcyclegroup | rcg=runcyclegroupname] |
[cpu={workstationame | workstationclassname | domainame}] |
[workstation | ws=workstationame] |
[workstationclass | wscl=workstationclassname] |
[domain | dom=domainame] |
[jobs | jobdefinition | jd=[workstationame#]jobname] |
[sched | jobstream | js= [workstationame#]jstreamname

[valid from date|valid to date |valid in date date]
[;full]] |

[users | user=[workstationame#]username [;password]] |
[accesscontrollist | acl for securitydomainname] |
[securitydomain | sdom=securitydomainname] |
[securityrole | srol=securityrolename]}
[;lock]

Arguments

filename
Specifies the name of the file to contain the object definitions.

calendars | calendar | cal
If no argument follows, copies all calendar definitions into the file.

If argument calname follows, copies the calname calendar into the file.
Wildcard characters are permitted.

eventrule | erule | er
If no argument follows, copies all event rule definitions into the XML file.

If argument eventrulename follows, copies the eventrulename event rule into
the file. Wildcard characters are permitted.

parms | parm | vb
If no argument follows, copies all global variable definitions found in the
default variable table into the file.

If argument tablename.variablename follows, copies the variablename variable
of the specified tablename variable table into the file. If the tablename
variable table is omitted, composer looks for the variable definition in the
default variable table. Wildcard characters are permitted on both tablename
variable table and variablename variable.

For example:
create parmfile from parms=@.@

Copies all variables from all tables.
create parmfile from parms=@

Copies all variables from the default table.
create parmfile from parms=@.acct@

Copies all the variables whose name starts with acct from all the existing
tables.

326 IBM Workload Scheduler: User’s Guide and Reference

Remember: Using the ;lock option on a variable locks the variable table
that contains it. This implies that, while the table is locked, no other user
can run any other locking commands on it or on the variables it contains.

vartable | vt
If no argument follows, copies all variable table definitions into the file.

If argument tablename variable table follows, copies the tablename variable
table into the file. Wildcard characters are permitted.

prompts | prom
If no argument follows, copies all prompt definitions into the file.

If argument promptname follows, copies the promptname prompt into the
file. Wildcard characters are permitted.

resources | resource | res
If no argument follows, copies all resource definitions into the file.

If argument workstationame#resourcename follows, copies the resourcename
resource of the workstationame workstation on which the resource is defined
into the file. If workstationame is omitted, the default is the workstation on
which composer is running. Wildcard characters are permitted for both
workstationame and resourcename.

runcyclegroup | rcg
If no argument follows, copies all run cycle group definitions into the file.

If argument runcyclegroupname follows, copies the runcyclegroupname run
cycle group into the file. Wildcard characters are permitted.

cpu Copies workstations, workstation classes, or domains into the file.

workstation
The name of the workstation. Wildcard characters are permitted.

workstationclass
The name of the workstation class. Wildcard characters are
permitted.

domain The name of the domain. Wildcard characters are permitted.

workstation | ws
If no argument follows, copies all workstation definitions into the file.

If argument workstationname follows, copies the workstationname workstation
into the file. Wildcard characters are permitted.

domain | dom
If no argument follows, copies all domain definitions into the file.

If argument domainname follows, copies the domainname domain into the
file. Wildcard characters are permitted.

workstationclass | wscl
If no argument follows, copies all workstation class definitions into the file.

If argument workstationclassname follows, copies the workstationclassname
workstation class into the file. Wildcard characters are permitted.

jobs | jobdefinition | jd
If no argument follows, copies all job definitions into the file.

If argument workstationame#jobname follows, copies the jobname job of the
workstationame workstation on which the job runs into the file. If

Chapter 10. Managing objects in the database - composer 327

workstationame is omitted, the default is the workstation on which
composer is running. Wildcard characters are permitted for both
workstationame and jobname.

sched | jobstream | js
If no argument follows, copies all job stream definitions into the file.

If argument workstationame#jstreamname follows, copies the jstreamname job
stream of the workstationame workstation on which the job stream is
defined into the file. If workstationame is omitted, the default is the
workstation on which composer is running. Wildcard characters are
permitted for both workstationame and jstreamname.

valid from
date Restricts the selection to job streams that have a valid from
date equal to the indicated value. The format is mm/dd/yyyy.

valid to
date Restricts the selection to job streams that have a valid to date
equal to the indicated value. The format is mm/dd/yyyy.

valid in
date date The time frame during which the job stream can run.
The format is mm/dd/yyyy - mm/dd/yyyy. One of the two dates can
be represented by @.

full Copies also all job definitions contained in the job stream.

users | user
If no argument follows, copies all user definitions into the file.

If argument workstationame#username follows, copies the username user of
the workstationame workstation on which the user is defined into the file. If
workstationame is omitted, the default is the workstation on which
composer is running. Wildcard characters are permitted for both
workstationame and username.

If you do not add the ;password option, the password defined for the user
is saved in the output file as a sequence of 10 asterisks (*) and cannot be
reused.

If you do add the ;password option, the password defined for the user is
encrypted and saved in the output file. It can thus be re-imported and
used again.

accesscontrollist | acl
If no securitydomainname argument follows, copies the access control list
definitions for all the security domains into the file.

If argument securitydomainname follows, copies the access control list
definitions for the securitydomainname security domain into the file.
Wildcard characters are permitted for securitydomainname .

securitydomain | sdom
If no securitydomainname argument follows, copies all the security domain
definitions into the file.

If argument securitydomainname follows, copies the securitydomainname
security domain definition into the file. Wildcard characters are permitted
for securitydomainname .

328 IBM Workload Scheduler: User’s Guide and Reference

securityrole | srol
If no securityrolename argument follows, copies all the security role
definitions into the file.

If argument securityrolename follows, copies the securityrolename security
role definition into the file. Wildcard characters are permitted for
securityrolename .

;lock Specifies to keep locked the selected object.

Comments

You can use this command to create a file containing parameter definitions to be
imported into the parameter database defined locally on a workstation. For more
information on how to import parameter definitions locally, refer to “parms” on
page 659.

You can invoke the command with the old name “create” or the new name
“extract”. Without the lock option, database locking is not checked and all
matching objects are extracted to the file. After you create a file, you can use the
edit command to make changes to the file and the add or replace command to add
or update the database.

You can specify with the lock option, if the objects that respond to the selected
criteria, must remain locked by the user in the database. If composer, during the
extraction, find some of these objects already locked by someone else, these objects
are not inserted into the file and a message to stdout is presented for each locked
object.

Examples

To create a file named caltemp containing all calendars, run the following
command:
create caltemp from calendars=@

To create a file named stemp containing all job streams defined on the workstation
where composer runs, run the following command:
cr stemp from jobstream=@

To create a file named alljobs.txt containing all job definitions, run the following
command:
extract alljobs.txt from jd=@#@

To create a file named allrules.xml containing all event rule definitions, run the
following command:
ext allrules.xml from erule=@

To create a file named dbmainadm.txt with the definition of user princeps of
workstation dbserv349, including the encrypted password, run:
composer extract c:\dbmainadm.txt from user=dbserv349#princeps;password

The contents of file dbmainadm.txt will be:
USERNAME princeps

PASSWORD "ENCRYPT:EIu7PP+gvS8="
END

Chapter 10. Managing objects in the database - composer 329

help
Displays the on-line help for a command or displays the list of commands that can
be issued from composer. Not available in Windows.

Authorization

Any user authorized to run composer is authorized to issue this command.

Syntax

{help | h} {command|keyword}

Arguments

command
Specifies the name of a composer or system command. For composer
commands, enter the full command name; abbreviations and short forms
are not supported.

keyword

You can also enter the following keywords:

COMMANDS
Lists all composer commands.

RUNCONPOSER
How to run composer.

SETUPCOMPOSER
Describes how to setup to use composer.

SPECIALCHAR
Describes the wildcards, delimiters and other special characters
you can use.

Examples

To display a list of all composer commands, run the following command:
help commands

To display information about the add command, run the following command:
help add

To display information about the special characters you can use, run the following
command:
h specialchar

list
Lists, or prints summary information about objects defined in the IBM Workload
Scheduler database. List provides you with the list of objects names with their
attributes. Print sends the list of objects names with their attributes to the device or
file specified in the MAESTROLP local variable. The print command can be used
to send the output to a local printer, if the MAESTROLP variable is set
accordingly.

330 IBM Workload Scheduler: User’s Guide and Reference

Authorization

If the enListSecChk global option is set to yes on the master domain manager, then
to list or print an object you must have either list access, or list and display
access.

To list security objects, you must have permission for the display action on the
object type file with attribute name=security.

Syntax

{list | l}
{[calendars | calendar | cal=calname] |
[eventrule | erule | er=eventrulename] |
[parms | parm | vb=[tablename.]variablename] |
[vartable | vt=tablename] |
[prompts | prom=promptname] |
[resources | resource | res=[workstationame#]resourcename] |
[runcyclegroup | rcg=runcyclegroupname] |
[cpu={workstationame | workstationclassname | domainame}]
[wat=workloadapplicationtemplatename]
[workstation | ws=workstationame] |
[workstationclass | wscl=workstationclassname] |
[domain | dom=domainame] |
[jobs | jobdefinition | jd=[workstationame#]jobname] |
[sched |jobstream | js= [workstationame#]jstreamname

[valid from date|
valid to date |valid in date date] |

[users | user=[workstationame#]username] |
[accesscontrollist | acl for securitydomainname] |
[securitydomain | sdom=securitydomainname] |
[securityrole | srol=securityrolename]}
[;offline]

Arguments

calendars | calendar | cal
If no argument follows, lists or prints all calendar definitions.

If argument calname follows, lists or prints the calname calendar. Wildcard
characters are permitted.

eventrule | erule | er
If no argument follows, lists or prints all event rule definitions.

If argument eventrulename follows, lists or prints the eventrulename event
rule. Wildcard characters are permitted.

parms | parm | vb
If no argument follows, lists or prints all global variable definitions found
in the default variable table.

If argument tablename.variablename follows, lists or prints the variablename
variable of the tablename table. If tablename is omitted, composer looks for
the variable definition in the default variable table. Wildcard characters can
be used on both tablename and variablename. For example:
list parms=@.@

Lists all variables on all tables.

Chapter 10. Managing objects in the database - composer 331

list parms=@

Lists all variables on the default table.
list parms=@.acct@

Lists all the variables whose name starts with acct on all the existing
tables.

vartable | vt
If no argument follows, lists or prints all variable table definitions.

If argument tablename variable table follows, lists or prints the tablename
variable table. Wildcard characters are permitted.

prompts | prom
If no argument follows, lists or prints all prompt definitions.

If argument promptname follows, lists or prints the promptname prompt.
Wildcard characters are permitted.

resources | resource | res
If no argument follows, lists or prints all resource definitions.

If argument workstationame#resourcename follows, lists or prints the
resourcename resource of the workstationame workstation on which the
resource is defined. If workstationame is omitted, the default is the
workstation on which composer is running. Wildcard characters are
permitted for both workstationame and resourcename.

runcyclegroup | rcg
If no argument follows, lists or prints all run cycle groups.

If argument runcyclegroupname follows, lists or prints the runcyclegroupname
run cycle group. Wildcard characters are permitted.

cpu Lists or prints workstations, workstation classes, or domains.

workstation
The name of the workstation. Wildcard characters are permitted.

workstationclass
The name of the workstation class. Wildcard characters are
permitted.

domain The name of the domain. Wildcard characters are permitted.

wat If no argument follows, lists or prints all workload application template
definitions.

If argument workloadapplicationtemplate follows, lists or prints the specified
workload application template. Wildcard characters are permitted.

workstation | ws
If no argument follows, lists or prints all workstation definitions.

If argument workstationname follows, lists or prints the workstationname
workstation. Wildcard characters are permitted.

domain | dom
If no argument follows, lists or prints all domain definitions.

If argument domainname follows, lists or prints the domainname domain.
Wildcard characters are permitted.

332 IBM Workload Scheduler: User’s Guide and Reference

workstationclass | wscl
If no argument follows, lists or prints all workstation class definitions.

If argument workstationclassname follows, lists or prints the
workstationclassname workstation class. Wildcard characters are permitted.

jobs | jobdefinition | jd
If no argument follows, lists or prints all job definitions.

If argument workstationame#jobname follows, lists or prints the jobname job
of the workstationame workstation on which the job runs. If workstationame
is omitted, the default is the workstation on which composer is running.
Wildcard characters are permitted for both workstationame and jobname.

sched | jobstream | js
If no argument follows, lists or prints all job stream definitions.

If argument workstationame#jstreamname follows, lists or prints the
jstreamname job stream of the workstationame workstation on which the job
stream is defined. If workstationame is omitted, the default is the
workstation on which composer is running. Wildcard characters are
permitted for both workstationame and jstreamname.

valid from
date Restricts the selection to job streams that have a valid from date
equal to the indicated value. The format is mm/dd/yyyy.

valid to
date Restricts the selection to job streams that have a valid to date
equal to the indicated value. The format is mm/dd/yyyy.

valid in
date date The time frame during which the job stream can run. The
format is mm/dd/yyyy - mm/dd/yyyy. One of the two dates can be
represented by @.

users | user
If no argument follows, lists or prints all user definitions.

If argument workstationame#username follows, lists or prints the username
user of the workstationame workstation on which the user is defined. If
workstationame is omitted, the default is the workstation on which
composer is running. Wildcard characters are permitted for both
workstationame and username.

Note: If you are listing windows users in the UPN format
username@internet_domain , insert the escape character '\' before the '@'
character in the username@internet_domain value. For example if you are
listing the administrator@bvt.com user, run the following command:
list users=administrator\@bvt.com

accesscontrollist | acl
If no securitydomainname argument follows, lists or prints the access control
list definitions for all the security domains.

If argument securitydomainname follows, lists or prints the access control list
definitions for the securitydomainname security domain. Wildcard characters
are permitted for securitydomainname .

securitydomain | sdom
If no securitydomainname argument follows, lists or prints all the security
domain definitions.

Chapter 10. Managing objects in the database - composer 333

If argument securitydomainname follows, lists or prints the
securitydomainname security domain definition. Wildcard characters are
permitted for securitydomainname .

securityrole | srol
If no securityrolename argument follows, lists or prints all the security role
definitions.

If argument securityrolename follows, lists or prints the securityrolename
security role definition. Wildcard characters are permitted for
securityrolename .

;offline
Sends the output of the command to the composer output device. For
information about this device, see “UNIX variables” on page 298. The list
..... ;offline command is equivalent to the print command.

Results

List provides you with the list of objects names with their attributes. Print sends
the list of objects names with their attributes to the device or file set in the
MAESTROLP local variable. The print command can be used to send the output to
a local printer, if you set the MAESTROLP variable accordingly. Make sure the
MAESTROLP is set in your environment before running the print command.

Depending on the value set in the MAESTROCOLUMNS local variable the
different sets of information about the selected object can be shown.

Table 60 shows an example of the output produced according to the value set for
the MAESTROCOLUMNS variable.

Table 60. Output formats for displaying scheduling objects

Object Type Output format if
MAESTROCOLUMNS<120

Output format if
MAESTROCOLUMNS ≥ 120

Calendar "CalendarName : UpdatedOn :
UpdatedBy : LockedBy"

"CalendarName : UpdatedBy :
UpdatedOn : LockedBy : LockedOn"

Domain "DomainName : ParentDomain :
Master : UpdatedOn : LockedBy"

"DomainName : ParentDomain :
Master : UpdatedBy : UpdatedOn :

LockedBy : LockedOn"

Event rule "EventRuleName : Type : Draft :
Status : UpdatedOn : LockedBy"

"EventRuleName : Type : Draft :
Status : UpdatedOn : LockedBy :

LockedOn"

Job "Workstation : JobDefinitionName :
UpdatedOn : LockedBy"

"Workstation : JobDefinitionName :
TaskType : UpdatedBy : LockedBy :

LockedOn"

Job Stream "Workstation : JobstreamName :
Validfrom : UpdatedOn : LockedBy"

"Workstation : JobstreamName : Draft
: ValidFrom : ValidTo : UpdatedBy :
UpdatedOn : LockedBy : LockedOn"

Parameter "VariableTableName : VariableName
: UpdatedOn : LockedBy"

"VariableTableName : VariableName :
UpdatedBy : UpdatedOn : LockedBy

: LockedOn"

Prompt "PromptName : UpdatedOn :
LockedBy "

"PromptName : UpdatedBy :
UpdatedOn : LockedBy : LockedOn"

Resource "Workstation : ResourceName :
Quantity : UpdatedOn : LockedBy "

"Workstation : ResourceName :
Quantity : UpdatedBy : UpdatedOn :

LockedBy : LockedOn"

334 IBM Workload Scheduler: User’s Guide and Reference

Table 60. Output formats for displaying scheduling objects (continued)

Object Type Output format if
MAESTROCOLUMNS<120

Output format if
MAESTROCOLUMNS ≥ 120

Run cycle
group

"RunCycleGroupName :
UpdatedOn : LockedBy "

"RunCycleGroupName : UpdatedBy :
UpdatedOn : LockedBy : LockedOn"

Variable Table "VariableTableName : Default :
UpdatedOn : LockedBy "

"VariableTableName : Default :
UpdatedBy : UpdatedOn : LockedBy

: LockedOn"

User "Workstation : UserName :
UpdatedOn : LockedBy"

"UserName : Workstation :
UpdatedBy : UpdatedOn : LockedBy

: LockedOn"

Workstation "WorkstationName : Type : Domain
: Ignored : UpdatedOn : LockedBy"

"WorkstationName : Type : Domain :
OsType : Ignored : UpdatedBy :

UpdatedOn : LockedBy : LockedOn"

Workstation
Class

"WorkstationClassName : Ignored :
UpdatedOn : LockedBy"

"WorkstationClassName : Ignored :
UpdatedBy : UpdatedOn : LockedBy

: LockedOn"

See “Offline output” on page 298 for more information on how to set
MAESTROLP.

Examples
v To list all calendars, run the following command:

list calendars=@

this is a sample output:
Calendar Name Updated On Locked By
---------------- ---------- ---------------------
HOLIDAYS 03/02/2010
PAYDAYS 03/02/2010
HOLIDAYS 03/02/2010

01/01/2010 02/15/2010 05/31/2010

Calendar Name Updated On Locked By
---------------- ---------- ---------------------
MONTHEND 01/01/2010 -

MONTHEND
"Month end dates 1st half 2010"
01/31/2010 02/28/2010 03/31/2010 04/30/2010 05/31/2010 06/30/2010

Calendar Name Updated On Locked By
---------------- ---------- ---------------------
PAYDAYS 01/02/2010 -

PAYDAYS
01/15/2010 02/15/2010 03/15/2010 04/15/2010 05/14/2010 06/15/2010

v To list all your defined event rules, run the following command:
list er=@

If MAESTROCOLUMNS=80, the output looks something like this:
Event Rule Name Type Draft Status Updated On Locked By
---------------- --------- ----- --------- ---------- -------------
EVENT-MULTIPLE1 filter active 06/06/2009 -
EVENT-MULTIPLE2 filter active 06/06/2009 -
EVENT-MULTIPLE3 filter active 06/06/2009 -

Chapter 10. Managing objects in the database - composer 335

M_SUCC_12_S sequence Y inactive 06/07/2009 -
M_SUCC_12_S_A filter active 06/07/2009 -
M_SUCC_12_S_B filter Y inactive 06/07/2009 -
NEWEVENTRULE filter active 06/01/2009 administrator

If MAESTROCOLUMNS≥120, the output looks something like this:
Event Rule Name Type Draft Status Updated On Locked By
--------------------- --------- ----- -------- ---------- ---------
EVENT-MULTIPLE1 filter active 06/06/2009 -
EVENT-MULTIPLE2 filter active 06/06/2009 -
EVENT-MULTIPLE3 filter active 06/06/2009 -
M_SUCC_12_S sequence Y inactive 06/07/2009 -
M_SUCC_12_S_A filter active 06/07/2009 -
M_SUCC_12_S_B filter Y inactive 06/07/2009 -
NEWEVENTRULE filter active 06/01/2009 administrator

v To view the properties of the NC1150691 agent workstation, run the following
command:
list ws=NC1150691

An output similar to the following is displayed:
Workstation Name Type Domain Ignored Updated On Locked By
---------------- ------- ---------------- ------- ---------- ----------
NC1150691 agent - 03/31/2010 -

CPUNAME NC1150691
DESCRIPTION "This workstation was automatically created at agent

installation time."
OS WNT
NODE nc115069.romelab.it.ibm.com SECUREADDR 22114
TIMEZONE GMT+1
FOR MAESTRO HOST NC115069_DWB

TYPE AGENT
PROTOCOL HTTPS

END

v To view the properties of the POOL_A pool workstation, including all its
members, run the following command:
list ws=POOL_A

An output similar to the following is displayed:
Workstation Name Type Domain Ignored Updated On Locked By
---------------- ------- ---------------- ------- ---------- ----------------
POOL_A pool - 03/31/2010 -

CPUNAME POOL_A
DESCRIPTION "This is a manually created pool"
VARTABLE TABLE1
OS OTHER
TIMEZONE America/Argentina/Buenos_Aires
FOR MAESTRO HOST NC115069_DWB

TYPE POOL
MEMBERS

NC1150691
NC1150692

END

See also

From the Dynamic Workload Console you can perform the same tasks as described
in:

the Dynamic Workload Console User's Guide.
v To list or print workstations, see

336 IBM Workload Scheduler: User’s Guide and Reference

the Dynamic Workload Console User's Guide, section about Editing workstation
definitions.

v To list or print event rules, see
the Dynamic Workload Console User's Guide, section about Editing an event rule.

v To list or print access control lists, security domains, and security roles, see
the Dynamic Workload Console User's Guide, section about Managing Workload
Security.

v To list or print all other objects, see
the Dynamic Workload Console User's Guide, section about Listing object
definitions in the database.

lock
Locks the access to scheduling objects definitions in the database.

Authorization

To lock scheduling objects, you must have modify access to the object.

To lock security objects, you must have permission for the modify action on the
object type file with attribute name=security.

Syntax

{lock | lo}
{[calendars | calendar | cal=calname] |
[eventrule | erule | er=eventrulename] |
[parms | parm | vb=[tablename.]variablename] |
[vartable | vt=tablename] |
[prompts | prom=promptname] |
[resources | resource | res=[workstationame#]resourcename] |
[runcyclegroup | rcg=runcyclegroupname] |
[cpu={workstationame | workstationclassname | domainame}]
[workstation | ws=workstationame] |
[workstationclass | wscl=workstationclassname] |
[domain | dom=domainame] |
[jobs | jobdefinition | jd=[workstationame#]jobname] |
[sched|jobstream|js= [workstationame#]jstreamname

[valid from date|valid to date |valid in date date]] |
[users | user=[workstationame#]username] |
[accesscontrollist | acl for securitydomainname] |
[securitydomain | sdom=securitydomainname] |
[securityrole | srol=securityrolename]}

Arguments

calendars
Locks all calendar definitions.

calendars | calendar | cal
If no argument follows, locks all calendar definitions.

If argument calname follows, locks the calname calendar. Wildcard
characters are permitted.

eventrule | erule | er
If no argument follows, locks all event rule definitions.

Chapter 10. Managing objects in the database - composer 337

If argument eventrulename follows, locks the eventrulename event rule.
Wildcard characters are permitted.

parms | parm | vb
If no argument follows, locks the entire default variable table.

If argument tablename.variablename follows, locks the entire table containing
the variablename variable. If tablename is omitted, composer locks the entire
default variable table.

Note: When you lock a variable, this locks the entire variable table that
contains it. This implies that, while the table is locked, no other user can
run any other locking commands on it.
Wildcard characters can be used on both tablename and variablename. For
example:
lock parms=@.@

Locks all variables on all tables. As a result, all variable tables are locked.
lock parms=@

Locks all variables on the default table. As a result, the variable table is
locked.
lock parms=@.acct@

Locks all the variables whose name starts with acct on all the existing
tables. As a result, all the variable tables that contain at least one variable
named in this way are locked.

vartable | vt
If no argument follows, locks all variable table definitions.

If argument tablename variable table follows, locks the tablename variable
table. Wildcard characters are permitted.

prompts | prom
If no argument follows, locks all prompt definitions.

If argument promptname follows, locks the promptname prompt. Wildcard
characters are permitted.

resources | resource | res
If no argument follows, locks all resource definitions.

If argument workstationame#resourcename follows, locks the resourcename
resource of the workstationame workstation on which the resource is
defined. If workstationame is omitted, the default is the workstation on
which composer is running. Wildcard characters are permitted for both
workstationame and resourcename.

runcyclegroup | rcg
If no argument follows, locks all run cycle group definitions.

If argument runcyclegroupname follows, locks the runcyclegroupname run
cycle group. Wildcard characters are permitted.

cpu Locks workstations, workstation classes, or domains.

workstation
The name of the workstation. Wildcard characters are permitted.

338 IBM Workload Scheduler: User’s Guide and Reference

workstationclass
The name of the workstation class. Wildcard characters are
permitted.

domain The name of the domain. Wildcard characters are permitted.

workstation | ws
If no argument follows, locks all workstation definitions.

If argument workstationname follows, locks the workstationname workstation.
Wildcard characters are permitted.

domain | dom
If no argument follows, locks all domain definitions.

If argument domainname follows, locks the domainname domain. Wildcard
characters are permitted.

workstationclass | wscl
If no argument follows, locks all workstation class definitions.

If argument workstationclassname follows, locks the workstationclassname
workstation class. Wildcard characters are permitted.

jobs | jobdefinition | jd
If no argument follows, locks all job definitions.

If argument workstationame#jobname follows, locks the jobname job of the
workstationame workstation on which the job runs. If workstationame is
omitted, the default is the workstation on which composer is running.
Wildcard characters are permitted for both workstationame and jobname.

sched | jobstream | js
If no argument follows, locks all job stream definitions.

If argument workstationame#jstreamname follows, locks the jstreamname job
stream of the workstationame workstation on which the job stream is
defined. If workstationame is omitted, the default is the workstation on
which composer is running. Wildcard characters are permitted for both
workstationame and jstreamname.

valid from
date Restricts the selection to job streams that have a valid from
date equal to the indicated value. The format is mm/dd/yyyy.

valid to
date Restricts the selection to job streams that have a valid to date
equal to the indicated value. The format is mm/dd/yyyy.

valid in
date date The time frame during which the job stream can run.
The format is mm/dd/yyyy - mm/dd/yyyy. One of the two dates can
be represented by @.

users | user
If no argument follows, locks all user definitions.

If argument workstationame#username follows, locks the username user of the
workstationame workstation on which the user is defined. If workstationame
is omitted, the default is the workstation on which composer is running.
Wildcard characters are permitted for both workstationame and username.

Chapter 10. Managing objects in the database - composer 339

accesscontrollist | acl
If no securitydomainname argument follows, locks the access control list
definitions for all the security domains.

If argument securitydomainname follows, locks the access control list
definitions for the securitydomainname security domain. Wildcard characters
are permitted for securitydomainname .

securitydomain | sdom
If no securitydomainname argument follows, locks all the security domain
definitions.

If argument securitydomainname follows, locks the definition of the
securitydomainname security domain. Wildcard characters are permitted for
securitydomainname .

securityrole | srol
If no securityrolename argument follows, locks all the security roles
definitions.

If argument securityrolename follows, locks the definition of the
securityrolename security role. Wildcard characters are permitted for
securityrolename .

Comments

Objects are locked to make sure that definitions in the database are not overwritten
by different users accessing concurrently to the same objects.

With this command the user explicitly acquires locks of database objects. When one
user has an object locked, any other user has read only access until the object is
released or explicitly unlocked by the administrator. If one user tries to lock an
object that is already locked by someone else (other user), an error message is
returned.

Locks on database objects are acquired by the user using username and session,
where session is a string that can be set in the environment variable
TWS_SESSION identifying that specific user work session.

This means that, on a machine, the TWS_SESSION identifier is different for:
v a user connected in two different shells to the composer command line program.
v a user connected, disconnected and then connected again to the composer

command line from the same shell.

If no value is assigned to TWS_SESSION, then the default value identifying the
session is set as follows:
v If using composer in batch mode, the default value is the username used by the

user when connecting to the master domain manager.
v If using composer in interactive mode, the default value corresponds to an

alphanumeric string automatically created by the product.

Note: In the database the username of the user locking an object definition is saved
in uppercase.

340 IBM Workload Scheduler: User’s Guide and Reference

Examples

To lock the calendar named Holidays, run the command:
lock calendar=HOLIDAYS

See also

In the Dynamic Workload Console, objects are automatically locked as long as you
or another user have them open using the Edit button. Objects are not locked if
you or another user opened them with View.

modify
Modifies or adds scheduling objects. When modifying objects, the modify
command extracts only the objects that can be locked by the current user.

Authorization

You must have add access if you add a new scheduling object. If the object already
exists in the database, you must have modify access to the object, otherwise,
composer is unable to find the objects.

To modify security objects, you must have permission for the modify action on the
object type file with attribute name=security.

Syntax

{modify | m}
{[calendars | calendar | cal=calname] |
[eventrule | erule | er=eventrulename] |
[parms | parm | vb=[tablename.]variablename] |
[vartable | vt=tablename] |
[prompts | prom=promptname] |
[resources | resource | res=[workstationame#]resourcename] |
[runcyclegroup | rcg=runcyclegroupname] |
[cpu={workstationame | workstationclassname | domainame}]
[wat=workloadapplicationtemplatename]
[workstation | ws=workstationame] |
[workstationclass | wscl=workstationclassname] |
[domain | dom=domainame] |
[jobs | jobdefinition | jd=[workstationame#]jobname] |
[sched|jobstream|js= [workstationame#]jstreamname

[valid from date|valid to date |valid in date date]
[;full]] |

[users | user=[workstationame#]username] |
[accesscontrollist | acl for securitydomainname] |
[securitydomain | sdom=securitydomainname] |
[securityrole | srol=securityrolename]}

Arguments

calendars | calendar | cal
If no argument follows, modifies all calendar definitions.

If argument calname follows, modifies the calname calendar. Wildcard
characters are permitted.

Chapter 10. Managing objects in the database - composer 341

|

eventrule | erule | er
If no argument follows, modifies all event rule definitions.

If argument eventrulename follows, modifies the eventrulename event rule.
Wildcard characters are permitted.

parms|parm|vb
If no argument follows, modifies all global variable definitions found in
the default variable table.

If argument tablename.variablename follows, modifies the specified variable
of the tablename table. If tablename is omitted, composer looks for the
variablename variable definition in the default variable table. Wildcard
characters can be used on both tablename and variablename. For example:
modify parms=@.@

Modifies all variables on all tables.
modify parms=@

Modifies all variables on the default table.
modify parms=@.acct@

Modifies all the variables whose name starts with acct on all the existing
tables.

Remember: The action of modifying or adding a variable locks the
variable table that contains it. This implies that, while the table is locked,
no other user can run any other locking commands on it or on the
variables it contains.

vartable | vt
If no argument follows, modifies all variable table definitions.

If argument tablename variable table follows, modifies the tablename variable
table. Wildcard characters are permitted.

prompts | prom
If no argument follows, modifies all prompt definitions.

If argument promptname follows, modifies the promptname prompt.
Wildcard characters are permitted.

resources | resource | res
If no argument follows, modifies all resource definitions.

If argument workstationame#resourcename follows, modifies the resourcename
resource of the workstationame workstation on which the resource is
defined. If workstationame is omitted, the default is the workstation on
which composer is running. Wildcard characters are permitted for both
workstationame and resourcename.

runcyclegroup | rcg
If no argument follows, modifies all run cycle group definitions.

If argument runcyclegroupname follows, modifies the runcyclegroupname run
cycle group. Wildcard characters are permitted.

cpu Modifies workstations, workstation classes, or domains.

workstation
The name of the workstation. Wildcard characters are permitted.

342 IBM Workload Scheduler: User’s Guide and Reference

workstationclass
The name of the workstation class. Wildcard characters are
permitted.

domain The name of the domain. Wildcard characters are permitted.

wat If no argument follows, modifies all workload application template
definitions.

If argument workloadapplicationtemplatename follows, modifies the specified
workload application template. Wildcard characters are permitted.

workstation | ws
If no argument follows, modifies all workstation definitions.

If argument workstationname follows, modifies the workstationname
workstation. Wildcard characters are permitted.

domain | dom
If no argument follows, modifies all domain definitions.

If argument domainname follows, modifies the domainname domain.
Wildcard characters are permitted.

workstationclass | wscl
If no argument follows, modifies all workstation class definitions.

If argument workstationclassname follows, modifies the workstationclassname
workstation class. Wildcard characters are permitted.

jobs | jobdefinition | jd
If no argument follows, modifies all job definitions.

If argument workstationame#jobname follows, modifies the jobname job of the
workstationame workstation on which the job runs. If workstationame is
omitted, the default is the workstation on which composer is running.
Wildcard characters are permitted for both workstationame and jobname.

sched | jobstream | js
If no argument follows, modifies all job stream definitions.

If argument workstationame#jstreamname follows, modifies the jstreamname
job stream of the workstationame workstation on which the job stream is
defined. If workstationame is omitted, the default is the workstation on
which composer is running. Wildcard characters are permitted for both
workstationame and jstreamname.

valid from
date Restricts the selection to job streams that have a valid from
date equal to the indicated value. The format is mm/dd/yyyy.

valid to
date Restricts the selection to job streams that have a valid to date
equal to the indicated value. The format is mm/dd/yyyy.

valid in
date date The time frame during which the job stream can run.
The format is mm/dd/yyyy - mm/dd/yyyy. One of the two dates can
be represented by @.

full Modifies all job definitions contained in the job stream.

users | user
If no argument follows, modifies all user definitions.

Chapter 10. Managing objects in the database - composer 343

||
|

|
|

If argument workstationame#username follows, modifies the username user of
the workstationame workstation on which the user is defined. If
workstationame is omitted, the default is the workstation on which
composer is running. Wildcard characters are permitted for both
workstationame and username.

accesscontrollist | acl
If no securitydomainname argument follows, modifies the access control list
definitions for all the security domains.

If argument securitydomainname follows, modifies the access control list
definitions for the securitydomainname security domain. Wildcard characters
are permitted for securitydomainname .

securitydomain | sdom
If no securitydomainname argument follows, modifies all the security
domains definitions.

If argument securitydomainname follows, modifies the securitydomainname
security domain definition. Wildcard characters are permitted for
securitydomainname .

securityrole | srol
If no securityrolename argument follows, modifies all the security roles
definitions.

If argument securityrolename follows, modifies the securityrolename security
role definition. Wildcard characters are permitted for securityrolename .

Comments

The modify command performs the following sequence of actions:
1. Locks the objects in the database.
2. Copies the objects definition into a temporary file.
3. Edits the file.
4. Replaces the definition contained in the temporary file to the database.
5. If the modify command fails on a subset of the selected objects, composer asks

"do you want to re-edit?" and the file saved before is reopened for editing and
the next steps of the sequence are repeated.

6. Unlocks the objects in the database.

Event rule definitions are opened with an XML editor (see “Event rule definition”
on page 269 for XML reference and see “The composer editor” on page 299 for
details on setting up an XML editor).

If you modify with the same modify command two or more objects linked
together by any relationship, for example a successor job and its predecessor job,
then it might be relevant for the successful result of the modify command the
order in which the objects are listed in the temporary file. This happens because
the modify command reads in sequence the objects contained in the temporary
file; so, if the referencing object is displayed before the object being referenced, the
modify command might fail on the referencing object.

For example, if the command:
modify FTA1#@PROVA

produces the following temporary file:

344 IBM Workload Scheduler: User’s Guide and Reference

SCHEDULE FTA1#PROVA VALIDFROM 08/31/2005
MATCHING SAMEDAY
:
FTA2#MY-JOB
FOLLOWS FTA1#COPYOFPROVA.MY-JOB06
END

SCHEDULE FTA1#COPYOFPROVA VALIDFROM 08/31/2005
MATCHING SAMEDAY
:
FTA1#MY-JOBO6
END

and you change the name of the predecessor job from FTA1#MY-JOB06 to
FTA1#MY-JOB05 in both job streams FTA1#PROVA and FTA1#COPYOFPROVA, then the
modify command:
1. At first tries to change the definition of job stream FTA1#PROVA and it fails

because it finds a follows dependency from a job FTA1#MY-JOB05 which is still
unknown.

2. Then it tries to change the definition of FTA1#COPYOFPROVA and it succeeds.

The second time you run modify to change the predecessor job from
FTA1#MY-JOB06 to FTA1#MY-JOB05 in job stream FTA1#PROVA, the command is
successfully performed since the predecessor job FTA1#MY-JOB05 now exists in the
database.

If job stream FTA1#COPYOFPROVA had been listed in the temporary file before
FTA1#PROVA, then the modify command would have run successfully the first time
because the name of the predecessor job would have been modified before
changing the dependency definition in the successor job.

For user definitions, if the password field keeps the "*******" value when you exit
the editor, the old password is retained. To specify a null password use two
consecutive double quotation marks (").

The modify command checks for loop dependencies inside job streams. For
example, if job1 follows job2, and job2 follows job1 there is a loop dependency.
When a loop dependency inside a job stream is found an error is displayed. The
modify command does not check for loop dependencies between job streams
because, depending on the complexity of the scheduling activities, this check might
be too time and CPU consuming.

Examples

To modify all calendars, run the following command:
modify calendars=@

To modify job stream sked9 that is launched on workstation site1, run the
following command:
m sched=site1#sked9

To modify all the event rules that include an action with job DPJOB10, run:
mod er=@;filter job=DPJOB10

Chapter 10. Managing objects in the database - composer 345

See also

From the Dynamic Workload Console you can perform the same tasks as described
in:

the Dynamic Workload Console User's Guide.
v To modify workstations, see

the Dynamic Workload Console User's Guide, section about Editing workstation
definitions.

v To modify event rules, see
the Dynamic Workload Console User's Guide, section about Editing an event rule.

v To modify access control lists, security domains, and security roles, see
the Dynamic Workload Console User's Guide, section about Managing Workload
Security.

v To modify all other objects, see
the Dynamic Workload Console User's Guide, section about Listing object
definitions in the database.

new
Adds a new scheduling object definition in the database.

Authorization

You must have add access if you add a new scheduling object. If the object already
exists in the database you must have modify access to the object.

To add new security objects, you must have permission for the modify action on
the object type file with attribute name=security.

Syntax

new
[calendar |
domain |
eventrule |
job |
jobstream |
parameter |
prompt |
resource |
runcyclegroup |
user |
vartable |
wat |
workstation |
workstationclass |
accesscontrollist |
securitydomain |
securityrole]

346 IBM Workload Scheduler: User’s Guide and Reference

|

Arguments

The object you want to define: a calendar, a domain, an event rule, a job, a job
stream, a variable, a prompt, a resource, a user, a variable table, a workload
application template, a workstation, or a workstation class.

Comments

The command opens a predefined template that helps you edit the object definition
and adds it in the database when you save it.

The object templates are located in the templates subfolder in the IBM Workload
Scheduler installation directory. They can be customized to fit your preferences.

Event rule definitions are opened with an XML editor (see “Event rule definition”
on page 269 for XML reference and see “The composer editor” on page 299 for
details on setting up an XML editor).

While you create a variable, the destination variable table is locked. This implies
that, while the table is locked, no other user can run any other locking commands
on it.

Examples

To create a new user definition, run:
new user

To create a new prompt definition, run:
new prompt

To create a new event rule definition, run:
new erule

To create a new variable table definition, run:
new vartable

To create a new variable definition, run:
new parameter

To create two workload application templates, WAT_NAME1 and WAT_NAME2,
run:
new wat
BAPPLICATION WAT_NAME1

DESCRIPTION "Description"
VENDOR "Provider"
JSTREAMS

FTA1#JS_1_1
AGENT1#JS_1_2

END

BAPPLICATION WAT_NAME2
DESCRIPTION "Description"
VENDOR "Provider"
JSTREAMS

JS_2_1
JS_2_2

END

Chapter 10. Managing objects in the database - composer 347

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

See also

From the Dynamic Workload Console you can perform the same tasks as described
in:

the Dynamic Workload Console User's Guide.
v To create workstations, see

the Dynamic Workload Console User's Guide, section about Creating distributed
workstations.

v To create event rules, see
the Dynamic Workload Console User's Guide, section about Creating an event rule.

v To create access control lists, security domains, and security roles, see
the Dynamic Workload Console User's Guide, section about Managing Workload
Security.

v To create all other objects, see
the Dynamic Workload Console User's Guide, section about Designing your
Workload.

print
This is a synonym for the display command used with the ;offline option. See
“display” on page 319 for details.

redo
Edits and runs the previous command again.

Note: If the previous command was authenticate, redo does not display the
password specified.

Authorization

Any user authorized to run composer is authorized to issue this command.

Syntax

{redo | red}

Context

When you run the redo command, composer displays the previous command, so
that it can be edited and run again. Use the spacebar to move the cursor under the
character to be modified, and enter the following directives.

Directives

d[dir] Deletes the character above the d. This can be followed by other
directives.

itext Inserts text before the character above the i.

rtext Replaces one or more characters with text, beginning with the
character above the r. Replace is implied if no other directive is
entered.

>text Appends text to the end of the line.

348 IBM Workload Scheduler: User’s Guide and Reference

|

>d[dir | text]
Deletes characters at the end of the line. This can be followed by
another directive or text.

>rtext Replaces characters at the end of the line with text.

Directive Examples

ddd Deletes the three characters above the ds.

iabc Inserts abc before the character above the i.

rabc Replaces the three characters, starting with the one above the r,
with abc.

abc Replaces the three characters above abc with abc.

d diabc
Deletes the character above the first d, skips one character, deletes
the character above the second d, and inserts abc in its place.

>abc Appends abc to the end of the line.

>ddabc
Deletes the last two characters in the line, and inserts abc in their
place.

>rabc Replaces the last three characters in the line with abc.

Examples

To insert a character, run the following command:
redo
dislay site1#sa@

ip
display site1#sa@

To replace three characters, for example change site into serv by replacing ite
with erv, run the following command:
redo
display site1#sa@

rerv
display serv1#sa@

rename
Renames a scheduling object already existing in the database. The new name must
not identify an object already defined in the database.

Authorization

To rename scheduling objects, you must have delete access to the object with the
old name and add access to the object with the new name.

To rename security objects, you must have permission for the modify action on the
object type file with attribute name=security.

Syntax

{rename | rn}
{calendars|calendar|cal |
parms|parm|vb |

Chapter 10. Managing objects in the database - composer 349

vartable|vt |
prompts|prom |
resorces|resource|res |
runcyclegroup|rcg |
workstation|ws |
workstationclass|wscl |
domain|dom |
jobs|jobdefinition|jd |
jobsched|jb |
eventrule|erule|er |

sched|jobstream|js |
securitydomain|sdom |
securityrole|srol |
users|user }
old_object_identifier new_object_identifier

Arguments

old_object_identifier
Specifies the old external key identifying the scheduling object, for example
calendar name cal1 as identifier for a defined calendar object to be
renamed.

new_object_identifier
Specifies the new external key identifying the scheduling object, for
example calendar name cal2 as new identifier to be assigned to calendar
object previously named cal1.

For what concerns jobs, job streams, resources and users both the
old_object_identifier and new_object_identifier have the following formats:

[workstationame#]jobname
The command applies to this job definition. This format is used with the
jobs|jobdefinition|jd key.

[workstationame#]jstreamname
The command applies to all versions of this job stream. This format is used
with the sched|jobstream|js key.

[workstationame#]jstreamname.jobname
The command applies to this job instance defined in this job stream. See
the js keyword in the “Job stream definition” on page 209 syntax for
additional details. This format is used with the jobsched|jb key.

[workstationame#]resourcename
The command applies to this resource definition. This format is used with
the resources|resource|res key.

[workstationame#][domain\]username
The command applies to this user definition. This format is used with the
users|user key.

For what concerns variables (global parameters):

old_object_identifier
Must be specified in the tablename.variablename format. If tablename is
omitted, composer looks for the variable in the default variable table.

350 IBM Workload Scheduler: User’s Guide and Reference

new_object_identifier
Must be specified in the variablename format. Adding the table name here
generates an error.

Comments

To be renamed the object must be unlocked or locked by the user who issues the
rename command.

The variable table containing the variable is locked, while the variable is renamed.
This implies that, while the table is locked, no other user can run any other locking
commands on it.

If an object named as specified in the old_object_identifier field does not exist in the
database an error message is displayed.

The use of wildcards is not allowed with this command.

When workstationame is not specified for objects that have the workstation name
as part of their object identifier (for example, job or job stream definitions), the
scheduler uses one of the following for workstationame:
v The default workstation specified in the localopts file
v The master domain manager if the composer command line program is running

on a node outside the IBM Workload Scheduler network. In this case, in fact, the
default workstation set in the localopts file is the master domain manager.

The rename command is used to assign new names to objects already existing in
the database. The new name assigned to an object becomes immediately effective
in the database, while it becomes effective in the plan after the JnextPlan script is
run again. This can lead to incongruences when submitting ad-hoc jobs before
generating again the production plan.

Examples

To rename domain object DOMAIN1 to DOMAIN2 , run the following command:
rename dom=DOMAIN1 DOMAIN2

To rename job stream LABJST1 to LABJST2 on workstation CPU1, run the following
command:
rename js=CPU1#LABJST1 CPU1#LABJST2

To rename variable ACCTOLD (defined in table ACCTAB) to ACCTNEW, run the following
command:
rename parm=ACCTAB.ACCTOLD ACCTNEW

See also

From the Dynamic Workload Console you can perform the same tasks as described
in:

the Dynamic Workload Console User's Guide.
v To rename workstations, see

the Dynamic Workload Console User's Guide, section about Editing workstation
definitions.

Chapter 10. Managing objects in the database - composer 351

v To rename event rules, see
the Dynamic Workload Console User's Guide, section about Editing an event rule.

v To rename security domains and security roles, see
the Dynamic Workload Console User's Guide, section about Managing Workload
Security.

v To rename all other objects, see
the Dynamic Workload Console User's Guide, section about Listing object
definitions in the database.

replace
Replaces scheduling object definitions in the database.

Authorization

You must have add access if you add a new scheduling object. If the object already
exists in the database you must have:
v modify access to the object if the object is not locked.
v modify and unlock accesses to the object if you want to use the ;unlock option

against objects locked by other users.

To replace security objects, you must have permission for the modify action on the
object type file with attribute name=security.

Syntax

{replace | rep} filename [;unlock]

Arguments

filename
Specifies the name of a file containing the object definitions to replace. The
file can contain all types of scheduling objects definition.

unlock
Updates existing objects previously locked and unlocks them. An error is
displayed if the objects are not previously locked. For all new objects
inserted, this option, if specified, is ignored.

Comments

The replace command is similar to the add command, except that there is no
confirmation prompt to replace existing objects. For more information, refer to
“add” on page 312.

The replace command checks for loop dependencies inside job streams. For
example, if job1 follows job2, and job2 follows job1 there is a loop dependency.
When a loop dependency inside a job stream is found, an error is displayed.

The replace command does not check for loop dependencies between job streams
because, depending on the complexity of the scheduling activities, this check might
take too long. If you need to check for loop dependencies between job streams, use
the datamigrate utility.

352 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|

When performing an upgrade from IBM Workload Scheduler instances version 8.3
or later, you can check for loop dependencies between job streams by performing
the following steps:
1. Extract the object definitions from the database on an IBM Workload Scheduler

instance into a flat file using the composer extract command line.
2. Import the file into the database on the master domain manager with the

datamigrate utility.

The datamigrate utility imports the data saved in the file and checks for loop
dependencies inside the job streams.

For more information about the datamigrate utility, see “datamigrate” on page 638.

Examples

To replace the jobs from the file myjobs, run the following command:
replace myjobs

To replace all resources with those contained in the file myres, run the following
command:
rep myres

You want to change some existing event rule definitions in the database. You also
want to add some new ones as well. You use this command in the following way:
1. You write the entire definitions in an XML file you name 2Q07rules.xml.
2. You run:

rep 2Q07rules.xml

system command
Runs a system command.

Syntax

[: | !] system-command

Arguments

system-command
Specifies any valid system command. The prefix of colon (:) or exclamation
mark (!) is required only when the command is spelled the same as a
composer command.

Examples

To run a ps command on UNIX, run the following command:
ps -ef

To run a dir command on Windows, run the following command:
dir \bin

unlock
Releases access locks on scheduling objects defined in the database. By default to
unlock an object, the object must have been locked using the same user and
session.

Chapter 10. Managing objects in the database - composer 353

|
|
|

|
|

|
|

|
|

Authorization

You must have the unlock access to unlock scheduling objects locked by other
users.

To unlock security objects, you must have permission for the unlock action on the
object type file with attribute name=security.

Syntax

{unlock | u}
{[calendars | calendar | cal=calname] |
[eventrule | erule | er=eventrulename] |
[parms | parm | vb=[tablename.]variablename] |
[vartable | vt=tablename] |
[prompts | prom=promptname] |
[resources | resource | res=[workstationame#]resourcename] |
[runcyclegroup | rcg=runcyclegroupname] |
[cpu={workstationame | workstationclassname | domainame}]
[workstation | ws=workstationame] |
[workstationclass | wscl=workstationclassname] |
[domain | dom=domainame] |
[jobs | jobdefinition | jd=[workstationame#]jobname] |
[sched|jobstream|js= [workstationame#]jstreamname

[valid from date|valid to date |valid in date date]] |
[users | user=[workstationame#]username] |
[accesscontrollist | acl for securitydomainname] |
[securitydomain | sdom=securitydomainname] |
[securityrole | srol=securityrolename]}
[;forced]

Arguments

calendars | calendar | cal
If no argument follows, unlocks all calendar definitions.

If argument calname follows, unlocks the calname calendar. Wildcard
characters are permitted.

eventrule | erule | er
If no argument follows, unlocks all event rule definitions.

If argument eventrulename follows, unlocks the eventrulename event rule.
Wildcard characters are permitted.

parms|parm|vb
If no argument follows, unlocks the default variable table.

If argument tablename.variablename follows, unlocks the entire table
containing the variablename variable. If tablename is omitted, unlocks the
default variable table. Wildcard characters can be used on both tablename
and variablename. For example:
unlock parms=@.@

Unlocks all tables.
unlock parms=@

Unlocks the default table.

354 IBM Workload Scheduler: User’s Guide and Reference

unlock parms=@.acct@

Unlocks all the tables containing the variables whose name starts with
acct.
unlock parms=acct@

Unlocks the default table.

Remember: The action on a single variable unlocks the variable table that
contains it.

vartable | vt
If no argument follows, unlocks all variable table definitions.

If argument tablename variable table follows, unlocks the tablename variable
table. Wildcard characters are permitted.

prompts | prom
If no argument follows, unlocks all prompt definitions.

If argument promptname follows, unlocks the promptname prompt. Wildcard
characters are permitted.

resources | resource | res
If no argument follows, unlocks all resource definitions.

If argument workstationame#resourcename follows, unlocks the resourcename
resource of the workstationame workstation on which the resource is
defined. If workstationame is omitted, the default is the workstation on
which composer is running. Wildcard characters are permitted for both
workstationame and resourcename.

runcyclegroup | rcg
If no argument follows, unlocks all run cycle group definitions.

If argument runcyclegroupname follows, unlocks the runcyclegroupname run
cycle group. Wildcard characters are permitted.

cpu Unlocks workstations, workstation classes, or domains.

workstation
The name of the workstation. Wildcard characters are permitted.

workstationclass
The name of the workstation class. Wildcard characters are
permitted.

domain The name of the domain. Wildcard characters are permitted.

workstation | ws
If no argument follows, unlocks all workstation definitions.

If argument workstationname follows, unlocks the workstationname
workstation. Wildcard characters are permitted.

domain | dom
If no argument follows, unlocks all domain definitions.

If argument domainname follows, unlocks the domainname domain. Wildcard
characters are permitted.

workstationclass | wscl
If no argument follows, unlocks all workstation class definitions.

Chapter 10. Managing objects in the database - composer 355

If argument workstationclassname follows, unlocks the workstationclassname
workstation class. Wildcard characters are permitted.

jobs | jobdefinition | jd
If no argument follows, unlocks all job definitions.

If argument workstationame#jobname follows, unlocks the jobname job of the
workstationame workstation on which the job runs. If workstationame is
omitted, the default is the workstation on which composer is running.
Wildcard characters are permitted for both workstationame and jobname.

sched | jobstream | js
If no argument follows, unlocks all job stream definitions.

If argument workstationame#jstreamname follows, unlocks the jstreamname job
stream of the workstationame workstation on which the job stream is
defined. If workstationame is omitted, the default is the workstation on
which composer is running. Wildcard characters are permitted for both
workstationame and jstreamname.

valid from
date Restricts the selection to job streams that have a valid from
date equal to the indicated value. The format is mm/dd/yyyy.

valid to
date Restricts the selection to job streams that have a valid to date
equal to the indicated value. The format is mm/dd/yyyy.

valid in
date date The time frame during which the job stream can run.
The format is mm/dd/yyyy - mm/dd/yyyy. One of the two dates can
be represented by @.

users | user
If no argument follows, unlocks all user definitions.

If argument workstationame#username follows, unlocks the username user of
the workstationame workstation on which the user is defined. If
workstationame is omitted, the default is the workstation on which
composer is running. Wildcard characters are permitted for both
workstationame and username.

accesscontrollist | acl
If no securitydomainname argument follows, unlocks the access control list
definitions for all the security domains.

If argument securitydomainname follows, unlocks the access control list
definitions for the securitydomainname security domain. Wildcard characters
are permitted for securitydomainname .

securitydomain | sdom
If no securitydomainname argument follows, unlocks all the security domain
definitions.

If argument securitydomainname follows, unlocks the definition of the
securitydomainname security domain. Wildcard characters are permitted for
securitydomainname .

securityrole | srol
If no securityrolename argument follows, unlocks all the security roles
definitions.

356 IBM Workload Scheduler: User’s Guide and Reference

If argument securityrolename follows, unlocks the definition of the
securityrolename security role. Wildcard characters are permitted for
securityrolename .

forced If specified, allows the user who locked the object to unlock it regardless of
the session.

If this option is used by the superuser, then the unlock command can
operate regardless to the user and the session used to lock the object.

Comments

If a user, other than the superuser, tries to unlock an object that is locked by
another user, an error message is returned.

Examples

To unlock job definition JOBDEF1, run the following command:
unlock jd=@#JOBDEF1

To unlock event rule definition ERJS21, run the following command:
unlock erule=ERJS21

See also

From the Dynamic Workload Console you can perform the same tasks as described
in:

the Dynamic Workload Console User's Guide.
v To unlock workstations, see

the Dynamic Workload Console User's Guide, section about Editing workstation
definitions.

v To unlock event rules, see
the Dynamic Workload Console User's Guide, section about Editing an event rule.

v To unlock access control lists, security domains, and security roles, see
the Dynamic Workload Console User's Guide, section about Managing Workload
Security.

v To unlock all other objects, see
the Dynamic Workload Console User's Guide, section about Listing object
definitions in the database.

update
Modifies the attribute settings of some specific scheduling object type that is
defined in the database without using the modify or replace commands. You might
update some attribute settings for the specific object type in the database without
opening and modifying the object definition in a text editor or replace the object
definition by using the new content that is saved in a text file.

Authorization

You must have the modify and display access to update object properties,
otherwise composer is unable to update the object attributes.

Chapter 10. Managing objects in the database - composer 357

|

|
|
|
|
|

|

|
|

Syntax

{update | up}
{[cpu={workstationame | workstationclassname}] |
[workstation | ws=workstationame] |
[workstationclass | wscl=workstationclassname];
[filter workstation_filter_criteria= selection [...]];
set [ignore= on | off]]}
[;noask]

Arguments

cpu Updates workstations or workstation classes.

workstationame
The name of the workstation. Wildcard characters are permitted.

workstationclassname
The name of the workstation class. Wildcard characters are
permitted.

Note: The command does not update domains.

workstation | ws
If no argument follows, update all workstation definitions.

If argument workstationname follows, update the workstationname
workstation. Wildcard characters are permitted.

workstationclass | wscl
If no argument follows, modify all workstation class definitions.

If argument workstationclassname follows, update the workstationclassname
workstation class. Wildcard characters are permitted.

filter The workstation scheduling object filter criteria to use.

For more information about workstation scheduling object filtering criteria,
see Table 53 on page 304.

set The set criteria is mandatory and introduces the list of the object attribute
settings to modify.

ignore=on | off
The ignore workstation, cpu, and workstation class attribute. If you specify
on, the workstation or workstation class is set to ignore in the database and
the workstation or all workstations which belong to a workstation class are
not included in the next production plan. If you specify off, the
workstation or all workstations belong to a workstation class are included
in the next production plan.

Comments

Note: The scheduling object definition changes are applied only in the database.
To have the changes in the plan, you must wait for next production plan (Final job
stream running) or you might run JnextPlan command.

358 IBM Workload Scheduler: User’s Guide and Reference

|

|
|
|
|
|
|
|

|

||

|
|

|
|
|

|

|
|

|
|

|
|

|
|

||

|
|

||
|

|
|
|
|
|
|
|

|

|
|
|

Examples

If you want that all workstations with names starting with AB are not included in
the next production plan and you need to update the ignore attribute to ON on
their definitions, run the following command:
update ws=AB@;set ignore=on

If you want that all your workstations in the network are included in the next
production plan and you need to update the ignore attribute to OFF on all
workstations definition in your database, without replying to the composer
prompting confirmation, run the following command:
update ws;set ignore=off; noask

If you want that all workstations which belong to New York workstation class are
not included in the next production plan and you need to update the ignore
attribute to ON on their definitions, run the following command:
update wscl=NewYork;set ignore=on

If you want that all your workstations in the domain DOMWIN1 are included in the
next production plan and you need to update the ignore attribute to OFF on all
workstations definition in your database, without replying to the composer
prompting confirmation, run the following command:
update ws;filter domain=DOMWIN1; set ignore=off; noask

If you want that all your workstations in the MAIN_TABLE vartable are included in
the next production plan, and you need to update the ignore attribute to ON on all
workstations definition in your database, run the following command:
update ws=@; filter vartable=MAIN_TABLE domain=MASTER@; set ignore=on

See also

From the Dynamic Workload Console you can perform the same tasks as described
in:

the Dynamic Workload Console User's Guide.
v To delete workstations, see

the Dynamic Workload Console User's Guide, section about Editing workstation
definitions.

v To delete event rules, see
the Dynamic Workload Console User's Guide, section about Editing an event rule.

v To delete all other objects, see
the Dynamic Workload Console User's Guide, section about Listing object
definitions in the database.

validate
Performs the validation of the object definitions contained in a user file.

Authorization

You do not need any specific authorization to objects to run this command.

Chapter 10. Managing objects in the database - composer 359

|

|
|
|

|

|
|
|
|

|

|
|
|

|

|
|
|
|

|

|
|
|

|

|

|
|

|

|

|
|

|

|

|

|
|

|

Syntax

{validate | val} filename [;syntax]

Arguments

filename
Specifies the name of a file that contains calendars, workstations,
workstation classes, domains, jobs, parameters, prompts, resources, job
streams, event rules, or variable tables. For event rule definitions the file
must be in the XML language. See “Event rule definition” on page 269 for
details on writing event rule definitions.

syntax Checks the file for syntax errors.

Comments

The output of the validate command can be redirected to a file as follows:
composer "validate filename" > outfile

To include error messages in the output file, use the following:
composer "validate filename" > outfile 2>&1

Examples

To check the syntax of a file containing workstation definitions, run the following
command:
validate mycpus;syntax

version
Displays the composer command line program banner.

Authorization

Any user authorized to run composer is authorized to issue this command.

Syntax

{version | v}

Examples

To display the composer command line program banner, run the following
command:
version

or:
v

360 IBM Workload Scheduler: User’s Guide and Reference

Chapter 11. Managing workload applications

Workload applications can be created and then exported so that they can be shared
with other IBM Workload Scheduler environments. In the new environment, the
workload application can be subsequently updated, replaced, or deleted.

Efficient workload processes can be reused in multiple environments. If you have a
standardized solution that has been tested and fine-tuned then you can include it
in a workload application template and deploy it to other environments for reuse.

The lifecycle of a workload application begins with the definition of the workload
application template. The template is then exported to be deployed into the target
environment.

You can define the workload application template by using either composer
command line or the Dynamic Workload Console.

You can export the workload application template by using the procedure available
in the Dynamic Workload Console, as described in “Creating a workload
application template” on page 362. You can also export a job stream definition
from the Workload Designer, and save it as a workload application template in a
compressed file, as described in “Exporting a job stream definition as a workload
application template” on page 365.

You can import the workload application template by using the procedure
available in the Dynamic Workload Console, as described in “Importing a
workload application template” on page 366. When importing, you can choose
whether to import the workload application bound to the objects it contains, or to
import only the contents of the workload application eliminating any ties to the
workload application so that objects can be managed in the new environment with
more flexibility.

To export and import the workload application, you can also use the wappman
command line as described in the following topics.

The export process produces a compressed file containing five files:

workload applicationname_Definitions.UTF8.xml
A file in XML format containing a definition of all the objects referenced in
the workload application. The definitions are deployed in the target
environment to populate the target database with the same objects existing
in the source environment. Do not edit this file.

workload applicationname__Mapping.UTF8.properties
A mapping file that the target user modifies replacing the names of the
objects in the source environment with the names that the objects will have
in the target environment.

When the import process is performed from the wappman command line,
you can optionally request that the mapping file is automatically modified
according to rules defined using regular expressions and specified in one
of the following ad-hoc files:
v workload applicationname_BasicRegExpMapping.UTF8.rules
v workload applicationname_AdvancedRegExpMapping.UTF8.rules

361

|

|

|
|
|

|
|
|

|
|
|

|
|

=
=
=
=
=
=

-
-
-
-
-
-
-

|
|

|

|
|
|
|
|

|
|
|
|

=
=
=
=

=

=

These files are produced by the export process and, if used, must be
properly customized.

workload applicationname_SourceEnv_reference.txt
A file containing reference information about the workstations used in the
workload application and other information that can be useful to correctly
map the source environment to the target environment.

workload applicationname_BasicRegExpMapping.UTF8.rules
A file containing rules, defined using basic regular expressions, to modify
the mapping file. Optionally customize this file according to the names that
the objects will have in the target environment. The import process
performed from the wappman command line then applies the defined
rules to modify the mapping file.

workload applicationname_AdvancedRegExpMapping.UTF8.rules
A file containing rules, defined using advanced regular expressions, to
modify the mapping file. Optionally customize this file according to the
names that the objects will have in the target environment. The import
process performed from the wappman command line then applies the
defined rules to modify the mapping file.

Creating a workload application template
How to define a workload application template using the Dynamic Workload
Console.

Before you begin

To ensure the workload automation solution can be easily reproduced in another
environment, there are some best practices to consider when creating the workload
application template:

Job definitions
Jobs that refer to elements that are dependent on the environment or
topology in which they reside, such as web service jobs, file transfer jobs,
and database jobs to name a few, should make use of variables when
specifying these elements such as credentials, paths, and port numbers.
Variables can be managed in the mapping file so that the correct values
can be assigned to the variable.

Workstation names
When jobs and job streams are extracted from the workload application
during the export process, the names of the workstations are extracted as
they are found in the source environment. Meaningful names or a
standardized naming convention can simplify the mapping process.

Users Users are also extracted as they are found in the source environment. If the
same user is not present in both source and target environment, then
variables should be used to specify the user.

Mapping file
The mapping file should be maintained after performing the import
process. It can be useful in the case where you want to replace a workload
application or update it making the necessary changes to the mapping file.

Job stream variable table
All of the variables used to generically represent objects in the workload
application should be added to a specific variable table related to the job
stream in the workload application. This enables the customization of the

362 IBM Workload Scheduler: User’s Guide and Reference

=
=

|
|
|
|

=
=
=
=
=
=

=
=
=
=
=
=

|
|

|
|

|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

||
|
|

|
|
|
|

|
|
|
|

job stream to reflect the target environment through the mapping file.
Avoid associating the default variable table to a job stream. The default
variable table is extracted like any other table and will need to be renamed,
otherwise, the import process fails because a table with the same name
already exists. The target environment already has a default variable table,
MAIN_TABLE, defined.

Run cycle variable table
All of the variables used to generically represent objects in the workload
application should be added to a specific variable table related to the run
cycle in the workload application. This enables the customization of the
run cycle to reflect the target environment through the mapping file. Avoid
associating the default variable table to a run cycle. The default variable
table is extracted like any other table and will need to be renamed,
otherwise, the import process fails because a table with the same name
already exists. The target environment already has a default variable table,
MAIN_TABLE, defined.

About this task

From the Workload Designer, you can create the template of a workload that can
then be imported and run in another environment. You can create a workload
application template containing one or more job streams with all the related jobs
and internal or external dependencies (such as files, resources, prompts) so as to
have a self-contained workflow. You can then export the workload application
template to deploy and run it in another environment. To create a workload
application template, perform the following procedure:

Procedure
1. From the navigation toolbar, click Administration > Workload Design >

Manage Workload Definitions

2. Specify the name of a distributed engine. The Workload Designer opens.
3. In the Working List pane, select New > Workload Application Template. The

workload application template is created in the Details view and its properties
page is displayed.

4. In the properties pane, specify the attributes for the workload application
template that you are creating:

Name Mandatory field that contains the name of the workload application
template. The maximum length is 80 characters.

Description
Optional descriptive text to help workload application users
understand the purpose and characteristics of the workload application.
The maximum length is 120 characters.

Provider
Optional field that specifies the creator of the workload application
template. It can be useful to let workload application users know who
created and provided it. The maximum length is 120 characters.

5. From the Details view, right-click the workload application template and click
Add Job Stream to add job streams to it.

6. From the lookup dialog, select the job streams that you want to add. Together
with the job streams, the corresponding dependencies are automatically also
added to the workload application template.

7. Click Save to save the workload application template in the database.

Chapter 11. Managing workload applications 363

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|

|
|

|

|
|
|

|
|

||
|

|
|
|
|

|
|
|
|

|
|

|
|
|

|

8. Right-click the workload application template and click Export to produce a
compressed file, named workload application template name.zip, containing all
the files and information required to allow the workload to run also in another
environment.

Results

The compressed file contains:

workload application template name_Definitions.UTF8.xml
XML file that contains the definitions of all the exported objects. These
definitions will be deployed in the target environment to populate the
target database with the same objects existing in the source environment.
The objects in the definition file can remain as they are or you can choose
to rename them. If an object does not have a definition in the definition
file, for example, a workstation, then at import time, a corresponding
object will not be created in the target environment. The expectation is that
such object is already present in the target environment, therefore, for these
types of objects, you must map them in the mapping file.

workload application template name_Mapping.UTF8.properties
Mapping file that is used to replace the names of the objects in the source
environment with the names that these objects have in the target
environment. The objects that will be created in the target environment can
be created with the same names as those in the source environment or you
can specify a different name in this file.

When the import process is performed from the wappman command line,
you can optionally request that the mapping file is automatically modified
according to rules defined using regular expressions and specified in one
of the following ad-hoc files:
v workload application template name_BasicRegExpMapping.UTF8.rules
v workload application template name_AdvancedRegExpMapping.UTF8.rules

These files are produced by the export process and, if used, must be
properly customized.

workload application template name_SourceEnv_reference.txt
Reference information containing the definitions of the workstations used
in the workload application template and other information that can be
useful to correctly map the source environment into the target environment
so as to allow the workload application to run.

workload application template name_BasicRegExpMapping.UTF8.rules
A file containing rules, defined using basic regular expressions, to modify
the mapping file. Optionally customize the file according to the names that
the objects will have in the target environment. The import process
performed from the wappman command line then applies the defined
rules to modify the mapping file.

workload application template name_AdvancedRegExpMapping.UTF8.rules
A file containing rules, defined using advanced regular expressions, to
modify the mapping file. Optionally customize the file according to the
names that the objects will have in the target environment. The import
process performed from the wappman command line then applies the
defined rules to modify the mapping file.

364 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

=
=
=
=

=

=

=
=

|
|
|
|
|

=
=
=
=
=
=

=
=
=
=
=
=

You can import the compressed package from the Dynamic Workload Console with
an intuitive guided procedure, as described in the section about importing a
workload application template in the Dynamic Workload Console User's Guide.

You can also use the wappman command line to manually import the compressed
package into the target environment where the workload application will be
deployed, thus creating all the required objects in the target environment. In the
target environment, the workload application name_Mapping.UTF8.properties file
must be modified, manually or using regular expression mapping files, by
specifying the names of the objects as they are defined in the target environment
(for example, the names of the workstations on which the job streams run). For
more details, see User's Guide and Referencesections about workload applications
and the wappman command.

Exporting a job stream definition as a workload application template
From the Workload Designer, you can export a job stream definition and save it as
a workload application template in a compressed file. The job stream definition can
then be imported in another environment.

Before you begin

To perform this task, ensure the IBM Workload Scheduler engine connection is up
and running.

About this task

To export a job stream definition as a workload application template, run the
following procedure from the Workload Designer :

Procedure
1. Open the job stream whose definition that you want to export. To find the job

stream, do either of the following actions:
v Search for it using the Search menu in the Working List

v Select the job stream icon

and launch a search.
2. You can now export the job stream by using either the Details or the Graphical

view. Select the tab for the view you want.
v From the Details view or the Graphical view, by using the menus, do the

following:
a. Right-click the job stream and select the Download Job Stream

definition option from the context menu or select the job stream and
choose the same option from the Select an Action menu .

b. A system panel is displayed for you to specify the download location.

Results

The job stream definition is exported as a workload application template, in a
compressed file. The compressed file is named, by default, job_stream_name.zip. You
can now import the job stream definition in a different environment.

Chapter 11. Managing workload applications 365

|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|

|

|
|

|

|
|

|

|
|

|

|

|
|

|
|

|
|
|

|

|

|
|
|

Importing a workload application template
How to import a workload application template using the Dynamic Workload
Console.

Before you begin

Ensure you have created a workload application template as described in
“Creating a workload application template” on page 362 or “Exporting a job
stream definition as a workload application template” on page 365.

About this task

You can import a workload application template that represents an efficient
workload process or a standardized solution into a target environment to replicate
all of the required objects to run the workload in the new environment.

You can also decide whether or not to maintain a tie to the workload application
which binds the objects to the workload application, or to import the objects
eliminating any ties to the workload application. Eliminating ties to the workload
application allows you to manage objects with more flexibility.

To import a workload application template, perform the following procedure:

Procedure
1. From the navigation toolbar, click Administration > Workload Design >

Import Workload Application

2. Specify the name of a distributed engine
3. Browse to the workload application template.
4. Click Upload.
5. In the section Import Options, select Import only the contents of the

workload application template, if you want to import only the objects
contained in the template, without any ties to the workload application. This
allows you to work freely with the objects contained in the template. (This
import is supported only when connected to an engine with version 9.4.0.4 or
later)

6. You now need to edit the names of the objects as they are defined in the target
environment (for example, the names of the workstations on which the job
streams run). In the left column, under the Original Workload heading, you
can find the original objects, such as workstations, jobs, and job streams. In the
fields in the right column, you can enter the names to be assigned to the objects
in the target environment.

7. Click Import.

Results

The workload application template is now imported and ready for use in your
target environment.

366 IBM Workload Scheduler: User’s Guide and Reference

|
|

|
|

|

|
|
|

|

|
|
|

-
-
-
-

|

|

|
|

|

|

|

-
-
-
-
-
-

|
|
|
|
|
|

|

|

|
|

Resolving the mapping file
The mapping file produced by the export process of a workload application
contains a list of elements, some of which are dependent on the topology of the
environment in which it is used. These elements need to be customized to reflect
the target environment.

To use the workload application in a new environment, modify the mapping file to
reflect the destination environment using the information provided in the reference
file and then perform an import operation. The import operation is performed
passing the mapping file and the definition file as input to the wappman
command.

The wappman command can be used to import, export, replace, list, display, and
delete a workload application. See “wappman” on page 374 for the complete
command line usage and syntax to perform these actions on a workload
application and any special considerations to be aware of.

During the export process, the objects contained in the workload application are
extracted to the definitions file with the same definition they have in the source
environment. The definitions file can contain a complete object definition or in
some cases, only a name or reference to the object that is extracted. Simple
references and not a full object definition is extracted for those objects that require
to be mapped to an object already present in the target environment. For some
objects extracted by reference, the object definition is written to the mapping file
which requires a customization to map the objects in the IBM Workload Scheduler
source environment to the environment where the workload application will be
deployed.

The mapping file can be viewed and edited with a text editor. It is organized in
sections and contains comments to assist you in assigning the correct values to the
elements.

As an alternative, when the import process is performed from the wappman
command line, you can optionally request that the mapping file is automatically
modified according to rules defined using regular expressions and specified in one
of the following ad-hoc files:
v workload applicationname_BasicRegExpMapping.UTF8.rules
v workload applicationname_AdvancedRegExpMapping.UTF8.rules

These files are produced by the export process and, if used, must be properly
customized. For additional details, see “Using regular expressions to modify the
mapping file” on page 371.

The following table outlines all of the objects that can be contained in a workload
application or that are referenced by another element in the workload application
and how the export process manages them.

Chapter 11. Managing workload applications 367

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

=
=
=
=

=

=

=
=
=

|
|
|

Table 61. Objects extracted during the export process

Object type
What is exported to
the definitions file?

What requires
customization in the
mapping file? What happens during the import?

Job stream Object definition
including the job
stream start condition,
if specified.

Workstation
Job stream name
Job alias
Job stream
start condition,
if specified

Job stream is created in the database.
Restriction: If the job stream has a dependency
on a job stream or job external to the workload
application, the mapping file contains a
reference to the name of the external job stream
or job and the relative workstation definition,
however, the definitions file does not contain
the job stream or job definition. The name in the
mapping file must be mapped to an existing job
stream or job in the target environment to
successfully import the workload application.

Job Object definition Workstation
Job name
Affinity
Password variables

found in the JSDL

Job is created in the database.
Restriction: If the job has a dependency on a
job that is defined in a job stream external to
the workload application, the mapping file
contains a reference to te following objects: the
name of the external job stream, the job defined
int he external job stream, the workstation
definitions of the job stream, and the
workstation definitions of the job. However, the
definitions file does not contain the job
definition. The name in the mapping file must
be mapped to an existing job stream or job in
the target environment to successfully import
the workload application.

Affinity relationships cause jobs to run on the
same workstation. The workstation on which
the first job runs is chosen dynamically and the
affine job or jobs run on the same workstation.
The jobs must belong to the same job stream.
When a job with an affinity is exported, the
name of the job is added to the mapping file.

Variables in the JSDL use the format
${password:ws#user}. Only workstations are
generically represented. The user field is copied
as is to the target environment. Variables should
be used for user names.

Run cycle variable
tables

Job stream
variable tables

Object definition Table name
Variable name

Variable table is created in the database.

Workstation and default variable tables are
extracted by reference and written to the map
file.

The value associated to the variable can be
modified, but not variable names.

Avoid associating the default variable table to
job streams and run cycles.

User Nothing. Neither an
object definition nor a
reference is made in
the reference file.

The user must exist in the target environment.

Variables should be used to refer to users to
make the workload application more flexible for
reuse.

368 IBM Workload Scheduler: User’s Guide and Reference

||

|
|
|

|
|
||

||
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|||
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|

||
|
|

|
|
|

|
|

|
|

||
|
|
|

||

|
|
|

Table 61. Objects extracted during the export process (continued)

Object type
What is exported to
the definitions file?

What requires
customization in the
mapping file? What happens during the import?

Calendar Object definition Calendar name Calendar is created in the database

Run cycle Object definition Run cycle name Run cycle is created in the database

Run cycle group Object definition Run cycle group
name

Run cycle group is created in the database

Internetwork
dependencies

Referenced job or job
stream is not exported
since it belongs to a
different engine.

Name of the network
agent workstation
that handles the
follows dependencies
between the local
network and the
remote network.

Internetwork dependency is added to the job or
job stream.

External
dependencies

The referenced job or
job stream is exported
only if it belongs to
the workload
application template.

If the referenced job
or job stream does not
belong to the
workload application
template, assign a
name to the job, or
job stream that
corresponds to a job
or job stream that
already exists in the
target environment.

External dependency added to the job or job
stream

Resources Object definition Workstation
Resource name

Resources are created in the database

Global prompts Object definition Variables used in the
definition

Global prompts are created in the database.

Variables can be used. Since they are resolved
using the default table, the variable used in a
global prompt can be mapped to a variable in
the target environment.

Workstations Reference only Name Not imported.

Workstations are extracted to the definition file
as a reference. A definition is not imported
because the workstations are already defined in
the target environment, however, their names
do need to be mapped.

Workstation class Reference only Name Not imported.

Workstation classes are extracted to the
definition file as a reference. A definition is not
imported because the workstation classes are
already defined in the target environment,
however, their names do need to be mapped.

Variable Object definition Value Imported.

Variables are used in several places in a job
stream definition. A reference is added to the
definitions file.

Event rules Object definition Name Event rules are created in the database for the
workstations and job streams included in the
template.

Chapter 11. Managing workload applications 369

|

|
|
|

|
|
||

||||

||||

|||
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|||
|
|

|||
|
|

|
|
|
|

||||

|
|
|
|
|

||||

|
|
|
|
|

||||

|
|
|

||||
|
|

Example

The following example demonstrates how the information in the files contained in
the compressed file, created by the export of the workload application is used to
ready the files for deployment in the target environment.

Table 62. Resolving the mapping file

Definitions file Mapping file Reference information file

<model:JobStream carryforward=
"true" draft="false"
iskey="false" limit="55" name=
"$JOBSTREAM_BADPBN34_JS1_1I$"
onrequest="false" priority="100"
workstation="$WORKSTATION_
BADPBN34_WC1$">

<model:runcycles/>
<model:matching>

<model:sameDay/>
</model:matching>
<model:restrictions/>
<model:dependencies/>
<model:jobs>
<model:job confirmed="false"

definition=
"$WORKSTATION_MDM112097$

#$JOB_BADPBN34_J1$"
isCritical="false" iskey="false"
name="$JOB_BADPBN34_J1$"

priority="10">
<model:restrictions/>
<model:dependencies>
<model:predecessor target=
"$WORKSTATION_BADPBN34_
WC1$#$JOBSTREAM_BADPBN34_
JS2$.@">
<model:matching>
<model:previous>

</model:matching>
</model:predecessor>
</model:dependencies>

</model:job>
</model:jobs>

</model:JobStream>

#Workstation names
#Replace the value with the name
of a workstation that already
exists in target environment
#Refer to the MAIN_TEMPLATE_

SourceEnv_reference.txt file
for details about the
workstation.

#
#This workstation is of type

Manager
WORKSTATION_MDM112097=MDM112097
#This workstation is of type

Agent
WORKSTATION_MDM112097_1=

MDM112097_1
#This workstation is of type

Broker
WORKSTATION_MDM112097_DWB=

MDM112097_DWB

CPUNAME $WORKSTATION_MDM112097$
DESCRIPTION "Sample master domain
manager"

OS UNIX
NODE MDM112097.romelab.it.ibm.com
TCPADDR 35111

TIMEZONE Europe/Rome
DOMAIN MASTERDM
FOR MAESTRO

TYPE MDM
AUTOLINK ON
BEHINDFIREWALL ON
FULLSTATUS ON
SERVER A

END

The reference information file indicates that the workstation named, MDM112097, is of type, master domain
manager, running on a UNIX operating system. The definitions file contains references to the name of the
workstation so, the entry in the mapping file, WORKSTATION_MDM112097=MDM112097, must be updated. Replace
MDM112097 with the name of a workstation that already exists in the target environment, and has the same
characteristics as those outlined in the reference information file.

Definitions file

370 IBM Workload Scheduler: User’s Guide and Reference

|

|

|
|
|

||

|||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

<model:JobStream carryforward="true" draft="false"
iskey="false" limit="55" name="$JOBSTREAM_BADPBN34_JS1_1I$"
onrequest="false" priority="100"
workstation="$WORKSTATION_BADPBN34_WC1$">

<model:runcycles/>
<model:matching>
<model:sameDay/>

</model:matching>
<model:restrictions/>
<model:dependencies/>
<model:jobs>
<model:job confirmed="false"

defintion="$WORKSTATION_MDM112097$#$JOB_BADPBN34_J1$"
isCritical="false" iskey="false" name="$JOB_BADPBN34_J1$"
priority="10">

<model:restrictions/>
<model:dependencies>

<model:predecessor target="$WORKSTATION_BADPBN34_WC1$#$JOBSTREAM_
BADPBN34_JS2$.@">

<model:matching>
<model:previous>
</model:matching>

</model:predecessor>
</model:dependencies>
</model:job>
</model:jobs>

</model:JobStream>

Using regular expressions to modify the mapping file
You can optionally request that the mapping file produced by the export process is
automatically modified by the import process, according to rules defined using
regular expressions.

The mapping file produced by the export process of a workload application
contains a list of elements, some of which are dependent on the topology of the
environment in which it is used. These elements need to be customized to match
the target environment. When the import process is performed from the wappman
command line, you can optionally request that the mapping file is automatically
modified according to rules defined using regular expressions and specified in one
of the following ad-hoc files:

workload applicationname_BasicRegExpMapping.UTF8.rules
This file contains rules defined using basic regular expressions that include
only '*' and '?' wildcard characters.

workload applicationname_AdvancedRegExpMapping.UTF8.rules
This file contains rules defined using advanced regular expressions
according to Java standards. For additional details about advanced regular
expressions, see the related documentation.

These files are produced by the export process and, if used, must be properly
customized.

Select the file that better fits your needs and customize the regular expressions
according to the names that the objects will have in the target environment. The
import process, performed from the wappman command line, then applies the
defined rules to modify the value of the elements included in the mapping file.

Chapter 11. Managing workload applications 371

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
=

=
=
=

=
=
=
=
=
=
=

=
=
=

=
=
=
=

=
=

=
=
=
=

Each file is organized in sections, one for each type of object that can be contained
in a workload application. For each section, you can find comments including
examples of rules, defined using regular expressions, that apply to the specific
object. For example:
[JOBSTREAM]
#*_DEV=*_PRD
#A24Y?=B42X?

Uncomment the provided examples or add your own rules. For example:
[JOBSTREAM]
*_DEV=*_PRD
A24Y?=B42X?
J*=A*

Each rule is composed of two regular expressions. The regular expression on the
left defines the search pattern, the regular expression on the right defines the
replacing value of each matching element. During the import process, both the
search and the replace actions are performed on the value of the elements included
in the mapping file.

If an object of your workload application matches more than one entry in the file,
only the rule included in the last matching entry is applied. For example:
According to the above rules:
- the job stream JS1_DEV is renamed as AS1_DEV
- the job stream CCB_DEV is renamed as CCB_PRD
- the job stream A24YK is renamed as B42XK

Deploying a workload application
Deploying a workload application is a two-step process beginning with
customizing the mapping file and then importing the mapping file and definitions
file into the new IBM Workload Scheduler environment.

About this task

Procedure
1. Extract the content of the workload application template from the compressed

file created by the export operation.
2. Customize the mapping file. For each object listed in the mapping file, either

assign the name of an existing object in the target environment, or rename it
with the name you want the object to have in the target environment. For
information about modifying the mapping file, see “Resolving the mapping
file” on page 367. You can optionally modify the mapping file according to
rules defined using regular expressions and specified in ad-hoc files. These files
are produced by the export process and, if used, must be properly customized.
For information about using regular expressions, see “Using regular expressions
to modify the mapping file” on page 371.

3. When importing the workload application template into the target
environment, you have the option to import the objects contained in the
workload application template and maintain an association to the workload
application, or you can import only the contents of the workload application,
eliminating any ties to the workload application so that the objects can be
managed freely in the target environment. The import operation can be
performed either from the command line, submitting the wappman -import
command, or from the Dynamic Workload Console, selecting Administration >
Import Workload Application. See “wappman” on page 374 for more details

372 IBM Workload Scheduler: User’s Guide and Reference

=
=
=
=

=
=
=

=

=
=
=
=

=
=
=
=
=

=
=

=
=
=
=

=
|

|
|
|

|

|

|
|

=
=
=
=
=
=
=
=
=

-
-
-
-
-
-
|
|
|

about the command usage and syntax. See the topic about importing a
workload applicationtemplate from theDynamic Workload Console in the
Dynamic Workload Console User's Guide.

Results

All of the IBM Workload Scheduler objects defined in the definition_xml_file are
created in the target environment, if they do not already exist. You update the
mapping file to resolve references to objects that need to be customized to reflect
the target environment where the workload application will be deployed.

What to do next

You can subsequently update a workload application with a replace operation. The
behavior of the replace operation depends on whether or not the objects to be
replaced are tied to a workload application. If the objects are tied to a workload
application then, when an updated version of the workload application template is
reimported into the target environment, the objects in the target environment are
updated if they are still present in the database, created if they are no longer
present, and deleted if they are no longer present in the updated workload
application template. If the objects are not tied to a workload application or, if the
objects are tied to a workload application different from the one specified with the
replace operation, then the objects are not replaced and an error message is issued.
For more information about the replace operation see the “wappman” on page 374.

There are two ways in which the workload application can be updated or
modified:

Modifying the template in the source environment
An updated version of the template can be deployed again into the target
environment. Any objects already present in the IBM Workload Scheduler
database of the target environment are replaced with the updated versions,
any objects that do not already exist in the target environment are created,
and objects are deleted from the target environment if the object definition
has been removed from the updated workload application. The same
mapping file used to originally deploy the workload application can be
used to update it, customizing any new objects being deployed with the
update.

Modifying the instance in the target environment
After a workload application has been deployed, you can modify the
contents of the workload application, such as, adding a new job to a job
stream, modifying a job definition, or removing a job or job stream.
However, since the contents are still tied to workload application, if it is
replaced with a revised workload application template, then the changes
are not maintained.

If, instead, only the contents of the workload application template were
imported, then since they are not tied to the workload application, they
can be modified freely. A subsequent replace operation using the -contents
option will replace the objects that are present and maintain any other
changes that were made since the import.

Chapter 11. Managing workload applications 373

|
|
|

|

|
|
|
|

|

-
-
-
-
-
-
-
-
-
-
-

|
|

|
|
|
|
|
|
|
|
|
|

|
-
-
-
-
-
-

-
-
-
-
-

wappman
Imports, replaces, deletes, exports, displays and lists a workload application.

Note: On Windows 2012, the command is not supported on Windows PowerShell.

Authorization

You must have add access if you import a new workload application. If the object
already exists in the database you must have modify access to the object.

Syntax

wappman [connection_parameters]
[-u]|[-V]
| {-import|-replace} <definition_xml_file> <mapping_properties_file>

[-translationRules <translation_rules_file>]
[-workloadApplicationName <workload_application_name>]
[-contents]

-list
-delete <workload_application_name> [-noContents]
-export <workload_application_template> [-path <export_path>]

[-zip <export_zip_name>]
-display <workload_application_name>

Arguments

[connection_parameters]
A file with the connection parameters to be used to connect to the server
where you want to import, list, delete, export or display the workload
application. You can use connection parameters to override the values
specified in the useropts and localopts files. To determine which connection
properties to use, a check is made in the following order:
1. Parameters specified in the command string itself.
2. Parameters specified in the custom properties file.
3. The useropts file.
4. The localopts file.
5. The jobmanager.ini file.

Valid values include:

[-username <user_name>]
An IBM Workload Scheduler user with sufficient privileges to
perform the operation.

[-password <password>]
The password of the IBM Workload Scheduler user.

[-host <hostname>]
The name of the host that you want to access by using wappman
command line.

[-port <port_number>]
The TCP/IP port number used to connect to the specified host.

[-protocol {http | https}]
The protocol used to connect to the specified host.

374 IBM Workload Scheduler: User’s Guide and Reference

|
|

|

|

|

|
|

|

=
=
=
=
=
-
=
-
=
=
=

=

|
|
|
|
|
|

|

|

|

|

|

|

|
|
|

|
|

|
|
|

|
|

|
|

[-file <custom_properties_file>]
The custom properties file where you can specify connection
parameters that override the values specified in the useropts,
localopts and jobmanager.ini files. Connection parameters specified
in the custom properties file must have the following syntax:
HOST=<hostname>
PORT=<port>
PROTOCOL=<http/https>
USERNAME=<username>
PASSWORD=<password>

Note: If host, port, and protocol parameters are specified in a file, all of
them must be specified in the same file.

-u Displays command usage information and exits.

-V Displays the command version and exits.

{-import|-replace} <definition_xml_file> <mapping_properties_file>
[-translationRules <translation_rules_file>] [-workloadApplicationName
<workload_application_name>] [-contents]

The name of the definitions file and mapping file to use when importing
or replacing a workload application. The operation of importing a
workload application is the same as deploying a workload application.

-import
After customizing the mapping file, the mapping file together with
the definitions file are passed as input to the wappman -import
command to deploy the workload application in an IBM Workload
Scheduler environment different from the source environment
where the workload application template was originally created.

-import -contents
Imports only the objects contained in the workload
application template and not the workload application
itself. Any association to the workload application is not
created.

-replace
The behavior of the replace operation depends on whether or not
the objects to be replaced are tied to a workload application.

If the objects are tied to a workload application then, when an
updated version of the workload application template is
reimported into the target environment, the objects in the target
environment are updated if they are still present in the database,
created if they are no longer present, and deleted if they are no
longer present in the updated workload application template.

If the objects are not tied to a workload application or, if the
objects are tied to a workload application different from the one
specified with the replace operation, then the objects are not
replaced and an error message is issued.

The replace operation fails if an object external to the workload
application references an object in the workload application and
with the replace operation the referenced object is deleted because
it is no longer present in the updated workload application.
If references were made from the workload application to an
external element, the reference is deleted with the replace action.
The same mapping file used to originally deploy the workload

Chapter 11. Managing workload applications 375

|
|
|
|
|

|
|
|
|
|

|
|

||

||

|
|
-
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
-
-

-
-
-
-
-
-

-
-
-
-

-
-
-
-
-
-
-

application can be used to update it, making any necessary
changes to reflect the updated workload application. The mapping
file together with the definitions file are passed as input to the
wappman -replace command.

-replace -contents
The behavior of the replace operation depends on whether
or not the objects to be replaced are tied to a workload
application. If the objects already exist and are not tied to a
workload application, then the objects are replaced, but the
workload application is not created. If the objects do not
exist in the target environment, then they are created
without any ties to the workload application. If the objects
already exist and are tied to a workload application, then
the replace operation fails and an error message is issued.

Additional optional parameters that you can specify are:

-translationRules
The name of the file containing rules defined using regular
expressions that wappman -import|-replace command will use to
customize the mapping file.

-workloadApplicationName
The name of the workload application, in case you want to import
it with a new name.

-list Lists all of the workload applications present in the environment.

-delete <workload_application_name>
Deletes the specified workload application and all the objects that were
added to the environment when the workload application was originally
deployed.

-delete <workload_application_name> -noContents
The operation deletes the specified workload application, but
maintains the objects that were originally tied to it. There is more
flexibility in updating the objects as there is no longer an
association to the workload application.

-export <workload_application_template>
Creates the compressed file, named workload application template,
containing all the files and information required to deploy the workload
application into the target environment.

-path The file path where the workload application template is exported.

-zip The name of the workload application template zip file.

-display <workload_application_name>
Displays the contents of the specified workload application.

Displays all of the objects contained in the workload application that were
created during the import process.

Distributed

Comments

Users can decide to maintain an audit trail recording any changes they perform
and the related justifications. To enable the justification option, set up in a system
shell the IBM Workload Scheduler environment variables listed below before
running the wappman commands:

376 IBM Workload Scheduler: User’s Guide and Reference

-
-
-
-

-
-
-
-
-
-
-
-
-
-

=

=
=
=
=

=
=
=

||

|
|
|
|

-
-
-
-
-

|
|
|
|

||

||

|
|

|
|

|
|

|
|
|
|

IWS_DESCRIPTION
Specify the description to be recorded for each change performed by
commands in the shell. The maximum length for this value is 512
characters. A warning message displays if you exceed the maximum and
excess characters are truncated.

IWS_CATEGORY
Specify the category to be recorded for each change performed by
commands in the shell. The maximum length for this value is 128
characters. A warning message displays if you exceed the maximum and
excess characters are truncated.

IWS_TICKET
Specify the ticket to be recorded for each change performed by commands
in the shell. The maximum length for this value is 128 characters. A
warning message displays if you exceed the maximum and excess
characters are truncated.

To set up the environment, proceed as follows, depending on your operating
system:

On Windows operating systems
type one or more of the following commands, depending on the variable
you want to define:
set IWS_CATEGORY=’my category’
set IWS_DESCRIPTION=’my desc’
set IWS_TICKET=12345

On UNIX operating systems
type one or more of the following commands, depending on the variable
you want to define:
export IWS_CATEGORY=’my category’
export IWS_DESCRIPTION=’my desc’
export IWS_TICKET=12345

After setting the environment variables, all the commands you enter in the shell
inherit the values you defined for the shell. The auditing information from the
shell is stored as is in the Tivoli Common Reporting auditing reports. While the
information you provide in the Dynamic Workload Console is guided using a
pull-down menu, the information you provide from the command line is not
filtered.

For more information about the justification option Tivoli Common Reporting
auditing reports, see the section about keeping track of changes and Tivoli
Common Reporting in Dynamic Workload Console User's Guide.

Logs and traces

You can configure the wappman command line by modifying the parameters in the
CLI.ini file located in the path TWA_home/TWS/ITA/cpa/config. This file contains
parameters for the message logs and trace files related to workload applications.
You should only change the parameters if advised to do so in the IBM Workload
Scheduler documentation or requested to do so by IBM Software Support.

Examples

To import a workload application into a new environment, run:
wappman -import <definition_xml_file> <mapping_properties_file>

Chapter 11. Managing workload applications 377

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

|

|
|
|
|
|

|

|

|

To import only the contents of a workload application into a new environment,
without any ties to the workload application, run:
wappman -import <definition_xml_file> <mapping_properties_file> -contents

To replace an existing workload application, run:
wappman -replace <definition_xml_file> <mapping_properties_file>

To replace objects that are not tied to any workload applications in an
environment, run:
wappman -replace <definition_xml_file> <mapping_properties_file> -contents

To delete a workload application, run:
wappman -delete <workload_application_name>

To free objects from any ties to a workload application, run:
wappman -delete <workload_application_name> -noContents

To list all the workload applications available in an environment, run:
wappman -list

To display a specific workload application, run:
wappman -display <workload_application_name>

To export a specific workload application from a remote host, by using a custom
properties file, run:
wappman -export <workload_application_name> -path <export_path>
-host <remote_host> l <custom_properties_file>

See also

For information about defining a workload application template in the source
environment, see “Creating a workload application template” on page 362.

For more information about managing a workload application in the target
environment, see “Deploying a workload application” on page 372

378 IBM Workload Scheduler: User’s Guide and Reference

|
|

|

|

|

-
-

-

-

|

-

-

-

|

|

|

|
|

|
|

|

|
|

|
|

Chapter 12. Managing objects in the plan - conman

The IBM Workload Scheduler production plan environment is managed using the
conman command-line program. The conman program is used to start and stop
processing, alter and display the Symphony production plan, and control
workstation linking in a network. It can be used from the master domain manager
and from any fault-tolerant agent in the IBM Workload Scheduler network.

This chapter is divided into the following sections:
v “Setting up the conman command-line program”
v “Running commands from conman” on page 384
v “Selecting jobs in commands” on page 386
v “Selecting job streams in commands” on page 395
v “Managing jobs and job streams from back-level agents” on page 401
v “Conman commands” on page 402

Setting up the conman command-line program
About this task

The conman command-line program manages the production plan environment.

You can use the conman program from the master domain manager and from any
fault-tolerant agent workstation in the IBM Workload Scheduler network.

Users can decide to maintain an audit trail recording any changes they perform
and the related justifications. To enable the justification option, set up in a system
shell the IBM Workload Scheduler environment variables listed below before
running any conman commands:

IWS_DESCRIPTION
Specify the description to be recorded for each change performed by
commands in the shell. The maximum length for this value is 512
characters. A warning message displays if you exceed the maximum and
excess characters are truncated.

IWS_CATEGORY
Specify the category to be recorded for each change performed by
commands in the shell. The maximum length for this value is 128
characters. A warning message displays if you exceed the maximum and
excess characters are truncated.

IWS_TICKET
Specify the ticket to be recorded for each change performed by commands
in the shell. The maximum length for this value is 128 characters. A
warning message displays if you exceed the maximum and excess
characters are truncated.

For more information about the justification option, see the section about keeping
track of changes in IBM Dynamic Workload Console User's Guide.

379

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

Setting up the conman environment
About this task

This section gives you the information about the setup you can choose for your
conman environment.

Note: On Windows systems, before running conman ensure the code-page and
fonts are correctly set in the DOS shell to avoid bad character conversion. For
additional information about the required settings, see the Internationalization notes
section in the IBM Workload Scheduler: Release Notes® at http://www-01.ibm.com/
support/docview.wss?rs=672&uid=swg27048863.

Terminal output
The output to your computer is determined by the shell variables defined in the
tws_env script, which you run before running command line commands. If any of
the following variables is not set, the standard shell variables, LINES and
COLUMNS, are used. The variables can be set as follows:

MAESTROLINES
Specifies the number of lines per screen. The default is -1. At the end of
each screen page, conman does not pause at the end of a page. If
MAESTROLINES (or LINES) is set to a positive number, conman prompts
to continue.

Use of MAESTROLINES is recommended since the LINES variable is a
shell operating system variable and in most operating systems it is
automatically reset by the operating system itself.

MAESTROCOLUMNS
Specifies the number of characters per line. The following options are
available:
v Less than 120
v Equal to or more than 120

MAESTRO_OUTPUT_STYLE
Specifies how object names are displayed. If set to LONG, full names are
displayed. If set to any value other than LONG, long names are truncated
to eight characters followed by a plus sign (+).

Offline output
The ;offline option in conman commands is generally used to print the output of a
command. When you include it, the following shell variables control the output:

MAESTROLP
Specifies the destination of a command's output. Set it to one of the
following:

> file Redirects output to a file and overwrites the contents of that file. If
the file does not exist, it is created.

>> file Redirects output to a file and appends the output to the end of
that file. If the file does not exist, it is created.

| command
Pipes output to a system command or process. The system
command is run whether or not output is generated.

|| command
Pipes output to a system command or process. The system
command is not run if there is no output.

380 IBM Workload Scheduler: User’s Guide and Reference

http://www-01.ibm.com/support/docview.wss?rs=672&uid=swg27048863
http://www-01.ibm.com/support/docview.wss?rs=672&uid=swg27048863

The default value for MAESTROLP is | lp -tCONLIST which pipes the
command output to the printer and places the title “CONLIST” in the
printout's banner page.

MAESTROLPLINES
Specifies the number of lines per page. The default is 60.

MAESTROLPCOLUMNS
Specifies the number of characters per line. The default is 132.

The variables must be exported before running conman.

Selecting the conman prompt on UNIX
About this task

The conman command prompt is, by default, a percent sign (%). This is defined in
the TWS_home/localopts file. The default command prompt is a dash (-). To select a
different prompt, edit the conman prompt option in the localopts file and change
the dash. The prompt can be up to 10 characters long, not including the required
trailing pound sign (#).

#--
Custom format attributes
#
date format = 1 # The possible values are 0-ymd, 1-mdy,
2-dmy, 3-NLS.
composer prompt = -
conman prompt = %
switch sym prompt = <n>%
#--

Running conman
About this task

To configure the environment for using conman set the PATH and TWS_TISDIR
variables by running one of the following scripts:

In UNIX:

v . ./TWS_home/tws_env.sh for Bourne and Korn shells
v . ./TWS_home/tws_env.csh for C shells

In Windows:

v TWS_home\tws_env.cmd

Then use the following syntax to run commands from the conman user interface:

conman [connection_parameters] ["command[&[command]...] [&]"]

where:

connection_parameters
If you are using conman from the master domain manager, the connection
parameters were configured at installation and do not need to be supplied,
unless you do not want to use the default values.

If you are using conman from the command line client on another
workstation, the connection parameters might be supplied by one or more
of these methods:
v Stored in the localopts file

Chapter 12. Managing objects in the plan - conman 381

v Stored in the useropts file
v Supplied to the command in a parameter file
v Supplied to the command as part of the command string

For an overview of these options see “Setting up options for using the user
interfaces” on page 60. For full details of the configuration parameters see
the topic on configuring the command-line client access in the IBM
Workload Scheduler: Administration Guide.

Note: If you are using conman from the command line client on another
workstation, for the following commands:
v Rerunsucc
v Listsucc

the conman command line connects to the server by using an HTTPS
connection. In this case, the command line client assembles the full set of
connection parameters in the following order:
1. Parameters specified in the command string itself
2. Parameters specified in the custom properties file
3. The useropts file
4. The localopts file
5. The jobmanager.ini file

Valid values include:

[-username <user_name>]
An IBM Workload Scheduler user with sufficient privileges to
perform the operation.

[-password <password>]
The password of the IBM Workload Scheduler user.

[-host <hostname>]
The name of the host that you want to access by using wappman
command line.

[-port <port_number>]
The TCP/IP port number used to connect to the specified host.

[-protocol {http | https}]
The protocol used to connect to the specified host.

[-file <custom_properties_file>]
The custom properties file where you can specify connection
parameters that override the values specified in the useropts,
localopts and jobmanager.ini files. Connection parameters specified
in the custom properties file must have the following syntax:
HOST=<hostname>
PORT=<port>
PROTOCOL=<http/https>
USERNAME=<username>
PASSWORD=<password>

If host, port, and protocol parameters are specified in a file, all of them
must be specified in the same file.

You can invoke the conman command-line both in batch and in interactive mode.

382 IBM Workload Scheduler: User’s Guide and Reference

=
=

=

=

=
=
=

=

=

=

=

=

=

=
=
=

=
=

=
=
=

=
=

=
=

=
=
=
=
=

=
=
=
=
=

=
=

When running conman in interactive mode, you at first launch the conman
command-line program and then, from the conman command-line prompt you run
commands one at a time, for example:

conman –username admin2 –password admin2pwd
ss @+state=hold;deps
dds sked5;needs=2 tapes

When running conman in batch mode, you first launch the conman command-line
program specifying as input parameter the command to be issued. Once the
command is processed, the conman command-line program exits, for example

conman"sj&sp"

When issuing commands from conman in batch mode make sure you enclose the
commands between double quotation marks. The following are examples of using
batch mode to issue more than one command from within conman:
v conman runs the sj and sp commands, and then quits:

conman "sj&sp"

v conman runs the sj and sp commands, and then prompts for a command:
conman "sj&sp&"

v conman reads commands from the file cfile:
conman < cfile

v commands from the file cfile are piped to conman:
cat cfile | conman

Note: On Windows workstations, if the User Account Control (UAC) is turned on
and the UAC exception list does not contain the cmd.exe file, you must open the
DOS command prompt shell with the "Run As Admnistrator" option to run
conman on your workstation as a generic user different from Administrator or IBM
Workload Scheduler user.

Control characters
You can enter the following control characters to interrupt conman.

Control+c
conman stops running the current command at the next step that can be
interrupted, and returns a command prompt.

Control+d
conman quits after running the current command, on UNIX workstations
only.

Running system commands
About this task

When you enter a system command using a pipe or a system command prefix (: or
!), it is run by a child process. The child process's effective user ID is set to the ID
of the user running conman to prevent security breaches.

User prompting
About this task

When you use wildcard characters to select the objects to be acted upon by a
command, conman prompts for confirmation after finding each matching object.
Responding with yes allows the action to be taken, and no skips the object without
taking the action.

Chapter 12. Managing objects in the plan - conman 383

When you run conman interactively, the confirmation prompts are issued at your
computer. Pressing the Return key in response to a prompt is interpreted as a no
response. Prompting can be disabled by including the ;noask option in a
command.

Although no confirmation prompts are issued when conman is not running in
interactive mode, it acts as though the response had been no in each case, and no
objects are acted on. It is important, therefore, to include the ;noask option on
commands when conman is not run in interactive mode.

Running commands from conman
About this task

conman commands consist of the following elements:

commandname selection arguments

where:

commandname
Specifies the command name.

selection
Specifies the object or set of objects to be acted upon.

arguments
Specifies the command arguments.

The following is an example of a conman command:
sj sked1(1100 03/05/2006).@+state=hold~priority=0;info;offline

where:

sj The abbreviated form of the showjobs command.

sked1(1100 03/05/2006).@+state=hold~priority=0
Selects all jobs in the job stream sked1(1100 03/05/2006) that are in the
HOLD state with a priority other than zero.

;info;offline
Arguments for the showjobs command.

For conman commands that operate on jobs and job streams where job and job
stream specifications include '#' special character, the '=' value delimiter must
precede the object selection.

See the following example:
cj=site3#apwkly(0900 02/19/06).report

where:

cj The abbreviated form of the cancel job command.

site3#apwkly(0900 02/19/06).report
Selects job report in job stream apwkly(0900 02/19/06) on workstation site3.

Wildcards
The following wildcard characters are permitted:

384 IBM Workload Scheduler: User’s Guide and Reference

@ Replaces one or more alphanumeric characters.

? Replaces one alphanumeric character.

% Replaces one numeric character.

Delimiters and special characters
Table 63 lists characters having special meanings in conman commands:

Table 63. Delimiters and special characters for conman

Char. Description

& Command delimiter. See “Setting up the conman command-line program” on
page 379.

+ A delimiter used to select objects for commands. It adds an attribute the
object must have. For example:

sked1(1100 03/05/2006).@~priority=0

~ A delimiter used to select objects for commands. It adds an attribute the
object must not have. For example:

sked1(1100 03/05/2006).@~priority=0

; Argument delimiter. For example:

;info;offline

, Repetition and range delimiter. For example:

state=hold,sked,pend

= Value delimiter. For example:

state=hold

:! Command prefixes that pass the command on to the system. These prefixes
are optional; if conman does not recognize the command, it is passed
automatically to the system. For example:

!ls or :ls

* Comment prefix. The prefix must be the first character on a command line or
following a command delimiter. For example:

*comment

or

sj& *comment

> Redirects command output to a file and overwrites the contents of that file. If
the file does not exist, it is created. For example:

sj> joblist

>> Redirects command output to a file and appends the output to the end of that
file. If the file does not exist, it is created. For example:

sj >> joblist

| Pipes command output to a system command or process. The system
command is run whether or not output is generated. For example:

sj| grep ABEND

|| Pipes command output to a system command or process. The system
command is not run if there is no output. For example:

sj || grep ABEND

Chapter 12. Managing objects in the plan - conman 385

Conman commands processing
The conman program performs the commands that change the status of objects,
such as start or stop for a workstation, and the commands that modify objects in
the plan in an asynchronous way. This means that you might notice a delay between
the time you submit the command and the time the information stored in the
Symphony file is updated with the result of the command.

This occurs because the conman program does not update the information stored
in the Symphony file; conman submits the commands to batchman which is the only
process which can access and update the information contained in the Symphony
file. For this reason you need to wait for batchman to process the request of
modifying the object issued by conman and then to update the information about
the object stored in the Symphony file before seeing the updated information in the
output of the showobj command.

Any changes made using the conman program that affect the Symphony file are also
applied to the replicated plan information in the database.

For example, if you request to delete a dependency using the conman deldep
command, conman submits the deldep command by posting an event in the
Mailman.msg mailbox. The mailman process gets the information about the deletion
request from Mailman.msg and puts it in the Intercom.msg mailbox on the
workstation that owns the resource you delete the dependency from. On each
workstation, batchman receives the events in its Intercom.msg mailbox and
processes them in the same order as they were received. If batchman is busy for
any reason, events carrying requests to perform conman commands continue being
queued in the Intercom.msg file waiting to be read and processed by batchman.

In addition, when batchman processes the event, the operator is not notified. As a
result, you could delete a dependency and it might appear that it had not been
deleted because batchman was too busy to immediately perform the requested
operation. If you run the command again, the deletion might have already been
successful, even though a message saying that the command has been successfully
forwarded to batchman is displayed in the conman prompt.

Selecting jobs in commands
About this task

For commands that operate on jobs, the target jobs are selected by means of
attributes and qualifiers. The job selection syntax is shown below, and described on
the following pages.

Syntax
[jobstream_workstation#]{jobstreamname(hhmm[date]).jobname} [{+ | ~}jobqualifier[...]]

or

[job_workstation#]jobnumber [{+ | ~}jobqualifier[...]

or

[jobstream_workstation#]jobstream_id.job [{+ | ~]jobqualifier[...]];schedid

or:

386 IBM Workload Scheduler: User’s Guide and Reference

netagent::[jobstream_workstation#]{jobstreamname(hhmm[date]).jobname |
jobstream_id.jobname;schedid}

Arguments
workstation

When used with jobstream.job, this specifies the name of the workstation on
which the job stream runs. When used with jobnumber, it specifies the
workstation on which the job runs. Except when also using schedid,
wildcard characters are permitted. This argument might be required
depending on the workstation where you launch the command, as follows:
v If you launch the command on the workstation where the target jobs

have run, the workstation argument is optional.
v If you launch the command on a hosted workstation, the workstation

argument is required. Hosted workstations are:
– extended agents
– agents
– pools
– dynamic pools

jobstreamname
Specifies the name of the job stream in which the job runs. Wildcard
characters are permitted.

(hhmm [date])
Indicates the time and date the job stream instance is located in the
preproduction plan. The value hhmm corresponds to the value assigned to
the schedtime keyword in the job stream definition if no at time constraint
was set. After the job stream instance started processing, the value of
hhmm [date] is set to the time the job stream started. The use of wildcards
in this field is not allowed. When issuing inline conman commands from
the shell prompt enclose the conman command in double quotes " ". For
example, run this command as follows:
conman "sj my_workstation#my_js(2101 02/23).@"

jobstream_id
Specifies the unique job stream identifier. See “Arguments” on page 395 for
more information on job stream identifiers.

schedid Indicates that the job stream identifier is used in selecting the job stream.

jobname
Specifies the name of the job. Wildcard characters are permitted.

jobnumber
Specifies the job number.

jobqualifier
See the following section.

netagent
Specifies the name of the IBM Workload Scheduler network agent that
interfaces with the remote IBM Workload Scheduler network containing
the target job. The two colons (::) are a required delimiter. Wildcard
characters are permitted. For more information refer to Chapter 21,
“Managing internetwork dependencies,” on page 759.

Chapter 12. Managing objects in the plan - conman 387

Note: IBM Workload Scheduler helps you to identify the correct job stream
instance when the job stream selection provides an ambiguous result if more than
one instance satisfy your selection criteria. For example when more than one
instances of WK1#J1 are included in the production plan and so the job stream
selection provides an ambiguous result the following prompt is automatically
generated to allow you to choose the correct instance:
Process WK1#J1[(0600 03/04/06),(0AAAAAAAAAAAABTB)]

(enter "y" for yes, "n" for no)?y
Command forwarded to batchman for WK1#J1[(0600 03/04/06),(0AAAAAAAAAAAABTB)]
Process WK1#J1[(1010 03/04/06),(0AAAAAAAAAAAABTC)]

(enter "y" for yes, "n" for no)?n

In the output only the job stream instance scheduled on (0600 03/04/06) and with
identifier 0AAAAAAAAAAAABTB is selected to run the command.

Job qualifiers
Job qualifiers specify the attributes of jobs to be acted on by a command. They can
be prefixed by + or ~. If a job qualifier is preceded by + then the jobs containing
that specific attribute are selected for running the command. If a job qualifier is
preceded by ~ then the jobs containing that specific attribute are excluded from
running the command.

Job qualifier keywords can be abbreviated to as few leading characters as needed
to uniquely distinguish them from each other.

at[=time | lowtime, | ,hightime | lowtime,hightime]
Selects or excludes jobs based on the time specified in the at dependency.

time

Specifies the time as follows:

hhmm[+n days | date] [timezone|tz tzname]

where:

hhmm The hour and minute.

+n days
The next occurrence of hhmm in n number of days.

date The next occurrence of hhmm on date, expressed as
mm/dd[/yy].

timezone|tz tzname
The name of the time zone of the job. See Chapter 19,
“Managing time zones,” on page 741 for valid names.

time conforms to the following rules:
v When hhmm is earlier than the current time, the start time is

tomorrow; when hhmm is later than the current time, the start
time is today.

v When hhmm is greater than 2400, it is divided by 2400. Of the
division result, the whole part represents the number of + days,
while the decimal part represents the time.

lowtime
Specifies the lower limit of a time range, expressed in the same
format as time. Jobs are selected that are scheduled to start after
this time.

388 IBM Workload Scheduler: User’s Guide and Reference

hightime
Specifies the upper limit of a time range, expressed in the same
format as time. Jobs are selected that are scheduled to start before
this time.

If at is used alone and it is preceded by + then the jobs selected are those
containing an at dependency.

If at is used alone and it is preceded by ~ then the jobs selected are those
not containing an at dependency.

confirmed
Selects or excludes jobs that were scheduled using the confirm keyword.

critical
Selects or excludes jobs that were flagged with the critical keyword in a
job stream definition.

critnet Selects or excludes jobs that are flagged as critical or are predecessors of
critical jobs. Hence, it applies to all the jobs that have a critical start time
set.

The critical start time of a critical job is calculated by subtracting its
estimated duration from its deadline. The critical start time of a
predecessor is calculated by subtracting its estimated duration from the
critical start time of its successor. Within a critical network, critical start
times are calculated starting from the critical job and working backwards
along the line of its predecessors.

deadline[=time | lowtime, | ,hightime | lowtime,hightime]
Specifies the time within which a job must complete.

hhmm[+n days | date] [timezone|tz tzname]

hhmm The hour and minute.

+n days
An offset in days from the scheduled deadline time.

date The next occurrence of hhmm on date, expressed as mm/dd[/yy].

timezone|tz tzname
Specifies the time zone to be used when computing the deadline.
See Chapter 19, “Managing time zones,” on page 741 for time zone
names. The default is the time zone of the workstation on which
the job or job stream is launched.

lowtime
Specifies the lower limit of a time range, expressed in the same
format as time. Selected jobs have a scheduled deadline not earlier
than this time.

hightime
Specifies the upper limit of a time range, expressed in the same
format as time. Selected jobs have a scheduled deadline not later
than this time.

every[=rate | lowrate, | ,highrate | lowrate,highrate]
Selects or excludes jobs based on whether or not they have a repetition
rate.

rate Specifies the scheduled run rate, expressed as hours and minutes
(hhmm).

Chapter 12. Managing objects in the plan - conman 389

lowrate Specifies the lower limit of a rate range, expressed in the same
format as rate. Jobs are selected that have repetition rates equal to
or greater than this rate.

highrate
Specifies the upper limit of a rate range, expressed in the same
format as rate. Jobs are selected that have repetition rates less than
or equal to this rate.

If every is used alone and it is preceded by + then the jobs selected are
those containing any repetition rate.

If every is used alone and it is preceded by ~ then the jobs selected are
those not containing any repetition rate.

finished[=time | lowtime, | ,hightime | lowtime,hightime]
Selects or excludes jobs based on whether or not they have finished.

time Specifies the exact time the job finished, expressed as follows:

hhmm [date] [timezone|tz tzname]

hhmm The hour and minute.

date The next occurrence of hhmm on date, expressed as
mm/dd[/yy].

timezone|tz tzname
The name of the time zone of the job. See Chapter 19,
“Managing time zones,” on page 741 for valid names.

lowtime
Specifies the lower limit of a time range, expressed in the same
format as time. Jobs are selected that finished at or after this time.

hightime
Specifies the upper limit of a time range, expressed in the same
format as time. Jobs are selected that finished at or before this time.

If finished is used alone and it is preceded by + then the jobs selected are
the jobs that have finished running.

If finished is used alone and it is preceded by ~ then the jobs selected are
the jobs that have not finished running.

follows=[netagent::][workstation#]{jobstreamname(hhmm [mm/dd[/yy]])[.job | @] |
jobstream_id.job;schedid}| job[;nocheck][,...]

Selects or excludes jobs based on whether or not they have a follows
dependency.

netagent
Specifies the name of the IBM Workload Scheduler network agent
that interfaces with the remote IBM Workload Scheduler network
containing the prerequisite job. Wildcard characters are permitted.
For more information refer to Chapter 21, “Managing internetwork
dependencies,” on page 759.

workstation
Specifies the name of the workstation on which the prerequisite job
runs. Wildcard characters are permitted.

jobstreamname
Specifies the name of the job stream in which the prerequisite job

390 IBM Workload Scheduler: User’s Guide and Reference

runs. Wildcard characters are permitted. If you enter
jobstreamname.@, you specify that the target job follows all jobs in
the job stream.

jobname
Specifies the name of the prerequisite job. When entered without a
jobstreamname, it means that the prerequisite job is in the same job
stream as the target job. Do not specify the job name using
wildcard characters for a follows dependency.

jobstream_id
Specifies the unique job stream identifier. See “Arguments” on
page 395 for more information on job stream identifiers.

schedid
This keyword, if present, applies to all the job streams identifiers
specified in the clause and indicates that for all the job streams
specified you are using the jobstream_ids and not the
jobstreamnames. If you want to select some job streams using the
jobstream_id and some job streams using the jobstreamname, you
must use two different follows clauses, one containing the job
streams identified by the jobstreamname without the schedid
keywords, and the other containing the job streams identified by
the jobstream_id with the schedid keyword.

nocheck
Is valid only for the submission commands and used in
conjunction with theschedid keyword. The nocheck keyword
indicates that conman does not have to check for the existence of
the prerequisite job jobstream_id.job in the Symphony file. It is
assumed that jobstream_id.job exists, in case it does not exist
batchman prints a warning message in the stdlist.

If follows is used alone and it is preceded by + then the jobs are selected if
they contain follows dependencies.

If follows is used alone and it is preceded by ~ then the jobs are selected if
they contain no follows dependency.

logon=username
Select jobs based on the user names under which they run. If username
contains special characters it must be enclosed in quotes ("). Wildcard
characters are permitted.

needs[=[workstation#]resourcename]
Selects or excludes jobs based on whether or not they have a resource
dependency.

workstation
Specifies the name of the workstation on which the resource is
defined. Wildcard characters are permitted.

resourcename
Specifies the name of the resource. Wildcard characters are
permitted.

If needs is used alone and it is preceded by + then the jobs are selected if
they contain resource dependencies.

If needs is used alone and it is preceded by ~ then the jobs are selected if
they contain no resource dependency.

Chapter 12. Managing objects in the plan - conman 391

opens[=[workstation#]filename[(qualifier)]]
Select jobs based on whether or not they have a file dependency. A file
dependency occurs when a job or job stream is dependent on the existence
of one or more files before it can begin running.

workstation
Specifies the name of the workstation on which the file exists.
Wildcard characters are permitted.

filename
Specifies the name of the file. The name must be enclosed in
quotes (") if it contains special characters other than the following:
alphanumerics, dashes (-), slashes (/), backslashes (\), and
underscores (_). Wildcard characters are permitted.

qualifier
A valid test condition. If omitted, jobs are selected or excluded
without regard to a qualifier.

If opens is used alone and it is preceded by + then the jobs are selected if
they contain file dependencies.

If opens is used alone and it is preceded by ~ then the jobs are selected if
they contain no file dependency.

priority=pri | lowpri, | ,highpri | lowpri,highpri
Selects or excludes jobs based on their priorities.

pri Specifies the priority value. You can enter 0 through 99, hi or go.

lowpri Specifies the lower limit of a priority range. Jobs are selected with
priorities equal to or greater than this value.

highpri Specifies the upper limit of a priority range. Jobs are selected with
priorities less than or equal to this value.

prompt[=promptname | msgnum]
Selects or excludes jobs based on whether or not they have a prompt
dependency.

promptname
Specifies the name of a global prompt. Wildcard characters are
permitted.

msgnum
Specifies the message number of a local prompt.

If prompt is used alone and it is preceded by + then the jobs are selected if
they contain prompt dependencies.

If prompt is used alone and it is preceded by ~ then the jobs are selected if
they contain no prompt dependency.

recovery=recv-option
Selects or excludes jobs based on their recovery options.

recv-option
Specifies the job recovery option as stop, continue, or rerun.

scriptname=filename
Selects or excludes jobs based on their executable file names.

filename
Specifies the name of an executable file. The name must be
enclosed in quotes (") if it contains special characters other than the

392 IBM Workload Scheduler: User’s Guide and Reference

following: alphanumerics, dashes (-), slashes (/), backslashes (\),
and underscores (_). Wildcard characters are permitted.

started[=time | lowtime, | ,hightime | lowtime,hightime]
Selects or excludes jobs based on whether or not they have started.

time Specifies the exact time the job started, expressed as follows:

hhmm [date] [timezone|tz tzname]

hhmm The hour and minute.

date The next occurrence of hhmm on date, expressed as
mm/dd[/yy].

timezone|tz tzname
The name of the time zone of the job. See Chapter 19,
“Managing time zones,” on page 741 for valid names.

lowtime
Specifies the lower limit of a time range, expressed in the same
format as time. Only jobs that started at or after this time are
selected.

hightime
Specifies the upper limit of a time range, expressed in the same
format as time. Only jobs that started at or before this time are
selected.

If started is used alone and it is preceded by +, then only the jobs that
have started running at this time are selected.

If started is used alone and it is preceded by ~, then only the jobs that
have started running at or after this time and that are still running are
selected.

state=state[,...]
Selects or excludes jobs based on their states.

state Specifies the current state of the job. Valid job states are as follows:

ABEND
The job ended with a nonzero exit code.

ABENP
An abend confirmation was received, but the job has not
completed.

ADD The job is being submitted.

CANCL
For internetwork dependencies only. The remote job or job
stream has been cancelled.

DONE
The job completed in an unknown state.

ERROR
For internetwork dependencies only, an error occurred
while checking for the remote status.

EXEC The job is running. The + flag written beside the EXEC
status means that the job is managed by the local
batchman process.

Chapter 12. Managing objects in the plan - conman 393

EXTRN
For internetwork dependencies only, the status is
unknown. An error occurred, a rerun action was just
performed on the job in the EXTERNAL job stream, or the
remote job or job stream does not exist.

FAIL Unable to launch the job.

FENCE
The job's priority value is below the fence.

HOLD
The job is awaiting dependency resolution.

INTRO
The job is introduced for launching by the system. The +
flag written beside the INTRO status means that the job is
managed by the local batchman process.

PEND The job completed, and is awaiting confirmation.

READY
The job is ready to launch, and all dependencies are
resolved.

SCHED
The job's at time has not arrived.

SUCC The job completed with an exit code of zero.

SUCCP
A succ confirmation was received, but the job has not
completed.

WAIT The job is in the WAIT state (extended agent only).

until[=time | lowtime, | ,hightime | lowtime,hightime]
Selects or excludes jobs based on their scheduled end time.

time Specifies the scheduled end time expressed as follows:

hhmm[+n days | date] [timezone|tz tzname]

hhmm The hour and minute.

+n days
The next occurrence of hhmm in n number of days.

date The next occurrence of hhmm on date, expressed as
mm/dd[/yy].

timezone|tz tzname
The name of the time zone of the job. See Chapter 19,
“Managing time zones,” on page 741 for valid names.

lowtime
Specifies the lower limit of a time range, expressed in the same
format as time. Jobs are selected that have scheduled end times on
or after this time.

hightime
Specifies the upper limit of a time range, expressed in the same
format as time. Jobs are selected that have scheduled end times on
or before this time.

394 IBM Workload Scheduler: User’s Guide and Reference

To select a list of expected objects, hightime requires the date
option with the operating system time. It does not work if the
current operating system time is set later than the until hightime
value. To display job streams in the ready or hold state with until
set to 12:00, you must add the date value to until=,1200.

If until is used alone and it is preceded by + then the jobs are selected if
they have an until time specified.

If until is used alone and it is preceded by ~ then the jobs are selected if
they have no until time specified.

Selecting job streams in commands
About this task

For commands that operate on job streams, the target job streams are selected by
specifying attributes and qualifiers.

Because scheddateandtime is specified in minutes, the combination of the
jobstreamname and the scheddateandtime time might not be unique. For this reason
the jobstream_id has been made available to the user, either for display purposes
or to perform actions against a specific instance of a job stream.

The job stream selection syntax is shown below, and described on the following
pages. You can choose one of the two syntaxes described.

Syntax
[workstation#]jobstreamname(hhmm[date]) [{+ | ~}jobstreamqualifier[...]]

[workstation#]jobstream_id ;schedid

Arguments
workstation

Specifies the name of the workstation on which the job stream runs. Except
when also using schedid, wildcard characters are permitted.

jobstreamname
Specifies the name of the job stream. Wildcard characters are permitted.

(hhmm [date])
Indicates the time and date the job stream instance is located in the
preproduction plan. This value corresponds to the value assigned to the
schedtime keyword in the job stream definition if no at time constraint
was set. After the job stream instance started processing the value of hhmm
[date] is set to the time the job stream started. The use of wildcards in this
field is not allowed. When issuing in line conman commands from the
shell prompt enclose the conman command in double quotation marks (").
For example, run this command as follows:
conman "ss my_workstation#my_js(2101 02/23)"

jobstreamqualifier
See “Job Stream Qualifiers” below.

jobstream_id
Specifies the unique alphanumerical job stream identifier automatically
generated by the planner and assigned to that job stream. It is mainly used

Chapter 12. Managing objects in the plan - conman 395

by internal processes to identify that instance of the job stream within the
production plan, but it can often be used also when managing the job
stream from the conman command-line program by specifying the
;schedid option.

schedid
Indicates that the job stream identifier is used in selecting the job stream.

Note: IBM Workload Scheduler helps you to identify the correct job stream
instance when the job stream selection provides an ambiguous result if more than
one instance satisfy your selection criteria. For example when more than one
instances of WK1#J1 are included in the production plan and so the job stream
selection provides an ambiguous result the following prompt is automatically
generated to allow you to choose the correct instance:
Process WK1#J1[(0600 03/04/06),(0AAAAAAAAAAAABTB)]

(enter "y" for yes, "n" for no)?y
Command forwarded to batchman for WK1#J1[(0600 03/04/06),(0AAAAAAAAAAAABTB)]
Process WK1#J1[(1010 03/04/06),(0AAAAAAAAAAAABTC)]

(enter "y" for yes, "n" for no)?n

In the output only the job stream instance scheduled on (0600 03/04/06) and with
identifier 0AAAAAAAAAAAABTB is selected to run the command.

Job stream qualifiers
at[=time | lowtime, | ,hightime | lowtime,hightime]

Selects or excludes job streams based on the scheduled start time.

time Specifies the scheduled start time expressed as follows:

hhmm[+n days | date] [timezone|tz tzname]

hhmm The hour and minute.

+n days
The next occurrence of hhmm in n number of days.

date The next occurrence of hhmm on date, expressed as
mm/dd[/yy].

timezone|tz tzname
The name of the time zone of the job stream. See
Chapter 19, “Managing time zones,” on page 741 for valid
names.

lowtime
Specifies the lower limit of a time range, expressed in the same
format as time. Job streams are selected that have scheduled start
times on or after this time.

hightime
Specifies the upper limit of a time range, expressed in the same
format as time. Job streams are selected that have scheduled start
times at or before this time.

If at is used alone and it is preceded by + then the job streams selected are
those containing an at dependency.

If at is used alone and it is preceded by ~ then the job streams selected are
those not containing an at dependency.

396 IBM Workload Scheduler: User’s Guide and Reference

carriedforward
Selects job streams that were carried forward if preceded by +, excludes job
streams that were carried forward if preceded by ~.

carryforward
If preceded by + selects job streams that were scheduled using the
carryforward keyword; if preceded by ~ excludes job streams that were
scheduled using the carryforward keyword.

finished[=time | lowtime, | ,hightime | lowtime,hightime]
Selects or excludes job streams based on whether or not they have finished.

time Specifies the exact time the job streams finished, expressed as
follows:

hhmm [date] [timezone|tz tzname]

hhmm The hour and minute.

date The next occurrence of hhmm on date, expressed as
mm/dd[/yy].

timezone|tz tzname
The name of the time zone of the job stream. See
Chapter 19, “Managing time zones,” on page 741 for valid
names.

lowtime
Specifies the lower limit of a time range, expressed in the same
format as time. Job streams are selected that finished at or after this
time.

hightime
Specifies the upper limit of a time range, expressed in the same
format as time. Job streams are selected that finished at or before
this time.

If finished is used alone and it is preceded by + then the jobs streams
selected are the jobs that have finished running.

If finished is used alone and it is preceded by ~ then the jobs streams
selected are the jobs that have not finished running.

follows=[netagent::][workstation#]{jobstreamname(hhmm [mm/dd[/yy]])[.job | @] |
jobstream_id.job;schedid}| job[;nocheck] [,...]

Selects or excludes job streams based on whether or not they have a
follows dependency.

netagent
Specifies the name of the network agent that interfaces with the
remote IBM Workload Scheduler network containing the
prerequisite job or job stream. Wildcard characters are permitted.
For more information about network agents, refer to Chapter 21,
“Managing internetwork dependencies,” on page 759.

workstation
Specifies the name of the workstation on which the prerequisite job
or job stream runs. Wildcard characters are permitted.

jobstreamname
Specifies the name of the prerequisite job stream. Wildcard
characters are permitted.

Chapter 12. Managing objects in the plan - conman 397

jobname
Specifies the name of the prerequisite job. Wildcard characters are
permitted.

jobstream_id
Specifies the unique job stream identifier. See “Arguments” on
page 395 for more information on job stream identifiers.

schedid
This keyword, if present, applies to all the job streams identifiers
specified in the clause and indicates that for all the job streams
specified you are using the jobstream_ids and not the
jobstreamnames. If you want to select some job streams using the
jobstream_id and some job streams using the jobstreamname, you
must use two different follows clauses, one containing the job
streams identified by the jobstreamname without the schedid
keywords, and the other containing the job streams identified by
the jobstream_id with the schedid keyword.

nocheck
Is valid only for the submission commands and used in
conjunction with theschedid keyword. The nocheck keyword
indicates that conman does not have to check for the existence of
the prerequisite job jobstream_id.job in the Symphony file. It is
assumed that jobstream_id.job exists, in case it does not exist
batchman prints a warning message in the stdlist.

If follows is used alone and it is preceded by + then the jobs streams are
selected if they contain follows dependencies.

If follows is used alone and it is preceded by ~ then the jobs streams are
selected if they contain no follows dependency.

limit[=limit | lowlimit, | ,highlimit | lowlimit,highlimit]
Selects or excludes job streams based on whether or not they have a job
limit.

limit Specifies the exact job limit value.

lowlimit
Specifies the lower limit of range. Job streams are selected that
have job limits equal to or greater than this limit.

highlimit
Specifies the upper limit of a range. Job streams are selected that
have job limits less than or equal to this limit.

If limit is used alone and it is preceded by + then the jobs streams are
selected if they have any job limit.

If limit is used alone and it is preceded by ~ then the jobs streams are
selected if they have no job limit.

needs[=[workstation#]resourcename]
Selects or excludes job streams based on whether or not they have a
resource dependency.

workstation
Specifies the name of the workstation on which the resource is
defined. Wildcard characters are permitted.

398 IBM Workload Scheduler: User’s Guide and Reference

resourcename
Specifies the name of the resource. Wildcard characters are
permitted.

If needs is used alone and it is preceded by + then the jobs streams are
selected if they contain resource dependencies.

If needs is used alone and it is preceded by ~ then the jobs streams are
selected if they contain no resource dependency.

opens[=[workstation#]filename[(qualifier)]]
Selects or excludes job streams based on whether or not they have a file
dependency. A file dependency occurs when a job or job stream is
dependent on the existence of one or more files before it can begin
running.

workstation
Specifies the name of the workstation on which the file exists.
Wildcard characters are permitted.

filename
Specifies the name of the file. The name must be enclosed in
quotes (") if it contains special characters other than the following:
alphanumerics, dashes (-), slashes (/), backslashes (\), and
underscores (_). Wildcard characters are permitted.

qualifier
A valid test condition. If omitted, job streams are selected or
excluded without regard to a qualifier.

If opens is used alone and it is preceded by + then the jobs streams are
selected if they contain file dependencies.

If opens is used alone and it is preceded by ~ then the jobs streams are
selected if they contain no file dependency.

priority=pri | lowpri, | ,highpri | lowpri,highpri
Selects or excludes job streams based on their priorities.

pri Specifies the priority value. You can enter 0 through 99, hi or go.

lowpri Specifies the lower limit of a priority range. Job streams are
selected with priorities equal to or greater than this value.

highpri Specifies the upper limit of a priority range. Job streams are
selected with priorities less than or equal to this value.

prompt[=promptname | msgnum]
Selects or excludes job streams based on whether or not they have a
prompt dependency.

promptname
Specifies the name of a global prompt. Wildcard characters are
permitted.

msgnum
Specifies the message number of a local prompt.

If prompt is used alone and it is preceded by + then the jobs streams are
selected if they contain prompt dependencies.

If prompt is used alone and it is preceded by ~ then the jobs streams are
selected if they contain no prompt dependency.

Chapter 12. Managing objects in the plan - conman 399

started[=time | lowtime, | ,hightime | lowtime,hightime]
Selects or excludes job streams based on whether or not they have started.

time Specifies the exact time the job stream started, expressed as
follows:

hhmm [date] [timezone|tz tzname]

hhmm The hour and minute.

date The next occurrence of hhmm on date, expressed as
mm/dd[/yy].

timezone|tz tzname
The name of the time zone of the job stream. See
Chapter 19, “Managing time zones,” on page 741 for valid
names.

lowtime
Specifies the lower limit of a time range, expressed in the same
format as time. Job streams are selected that started at or after this
time.

hightime
Specifies the upper limit of a time range, expressed in the same
format as time. Job streams are selected that started at or before
this time.

If started is used alone and it is preceded by + then the jobs streams
selected are the jobs that have started running.

If started is used alone and it is preceded by ~ then the jobs streams
selected are the jobs that have not started running.

state=state[,...]
Selects or excludes job streams based on their states.

state Specifies the current state of the job stream. Valid job stream states
are as follows:

ABEND
The job stream ended abnormally.

ADD The job stream has just been submitted.

EXEC The job stream is running.

EXTRN
For internetwork dependencies only. This is the state of the
EXTERNAL job stream containing jobs referencing to jobs
or job streams in the remote network.

HOLD
The job stream is awaiting dependency resolution.

READY
The job stream is ready to launch, and all dependencies are
resolved.

STUCK
Execution is interrupted. No jobs are launched without
operator intervention.

SUCC The job stream completed successfully.

400 IBM Workload Scheduler: User’s Guide and Reference

until[=time | lowtime, | ,hightime | lowtime,hightime]
Selects or excludes job streams based on the scheduled end time.

time Specifies the scheduled end time expressed as follows:

hhmm[+n days | date] [timezone|tz tzname]

hhmm The hour and minute.

+n days
The next occurrence of hhmm in n number of days.

date The next occurrence of hhmm on date, expressed as
mm/dd[/yy].

timezone|tz tzname
The name of the time zone of the job stream. See
Chapter 19, “Managing time zones,” on page 741 for valid
names.

lowtime
Specifies the lower limit of a time range, expressed in the same
format as time. Job streams are selected that have scheduled end
times on or after this time.

hightime
Specifies the upper limit of a time range, expressed in the same
format as time. Job streams are selected that have scheduled end
times on or before this time.

If until is used alone and it is preceded by + then the jobs streams selected
are those containing any scheduled end time.

If until is used alone and it is preceded by ~ then the jobs streams selected
are those not containing any scheduled end time.

Managing jobs and job streams from back-level agents
About this task

The change in the job stream instance naming convention introduced with IBM
Workload Scheduler version 8.3 requires you to apply the following workaround
when issuing command-line commands against a plan generated on an IBM
Workload Scheduler version 8.3 (or later) master domain manager from IBM
Workload Scheduler version 8.1, 8.2, or 8.2.1 agents:
v You must use the @ symbol as the first character for the job stream instance

identifier. For example the job stream running on CPU1 workstation with
identifier 0AAAAAAAAAAAAY3 must be identified in the conman command line as
follows:
CPU1#@AAAAAAAAAAAAY3

v You cannot use the follows keyword when adding a dependency to a job or a
job stream or when submitting as a job a command or a file.

v You cannot use the into keyword to specify the job stream where the job must
be added when submitting as a job a command or a file.

For example, to display the information about the job job2 contained in the job
stream instance with identifier 0AAAAAAAAAAAAT1 running on CPU1 workstation, run
the following command on IBM Workload Scheduler version 8.1, 8.2, or 8.2.1
agents:
sj CPU1#@AAAAAAAAAAAAT1.job2

Chapter 12. Managing objects in the plan - conman 401

These changes will also be seen in reports and logs, and any other places where
job stream names are printed or displayed.

Conman return codes
Conman return codes

Conman return codes management

When you run a conman command, the command line can show an outcome return
code. To find the return code, perform the following action:

On Windows Operating systems:
echo %ERRORLEVEL%

On UNIX Operating systems:
echo $?

The conman command line provides the following return codes for the submit
sched and submit job commands:

0 The command completed successfully.

10 The submit sched encountered an error.

11 The submit job encountered an error.

All other commands always return the 0 return code.

Conman commands
Table 64 lists the conman commands. Command names and keywords can be
entered in either uppercase or lowercase characters, and can be abbreviated to as
few leading characters as are needed to uniquely distinguish them from each other.
Some of the command names also have specific short forms.

Note: The workstation types in the following table have these meanings:
D Dynamic domain managers, backup domain managers
M Master domain managers and backup masters
F Domain managers and fault-tolerant agents
T Fault-tolerant agents
S Standard agents (you can only display files on a standard agent)

Table 64. List of conman commands

Command Short Form Description Type Page

adddep { job | sched
}

adj | ads Adds job or job stream
dependencies.

F “adddep job” on page 405
“adddep sched” on page 407

altjob aj Modifies a job in the plan before
it runs.

F “altjob” on page 409

altpass Alters a user object definition
password.

F “altpass” on page 410

altpri ap Alters job or job stream
priorities.

F “altpri” on page 411

bulk_discovery bulk Performs a bulk discovery. For
use with IBM Tivoli Monitoring
6.1 (Tivoli Enterprise Portal).

F “bulk_discovery” on page 412

402 IBM Workload Scheduler: User’s Guide and Reference

|

|

|

|
|

|
|

|
|

|
|

||

||

||

|

Table 64. List of conman commands (continued)

Command Short Form Description Type Page

cancel { job | sched } cj | cs Cancels a job or a job stream. F “cancel job” on page 412
“cancel sched” on page 414

checkhealthstatus chs Invokes chkhltst service to
check if mailbox can be
successfully read by mailman or
if there are errors in the mailbox
header.

MFS “checkhealthstatus” on page 415

confirm conf Confirms job completion. F “confirm” on page 416

console cons Assigns the IBM Workload
Scheduler console.

FS “console” on page 418

continue cont Ignores the next error. FS “continue” on page 420

deldep { job | sched } ddj | dds Deletes job or job stream
dependencies.

F “deldep job” on page 420
“deldep sched” on page 422

deployconf deploy Gets the latest monitoring
configuration for the event
monitoring engine on the
workstation.

FS “deployconf” on page 423

display { file | job |
sched }

df | dj | ds Displays files, jobs, and job
streams.

FS “display” on page 424

exit e Exits conman. FS “exit” on page 426

fence f Sets IBM Workload Scheduler
job fence.

F “fence” on page 427

help(1) h Displays command information. FS “help” on page 428

kill k Stops an executing job. F “kill” on page 429

limit { cpu | sched } lc | ls Changes a workstation or job
stream job limit.

F “limit cpu” on page 430
“limit sched” on page 431

link lk Opens workstation links. FS “link” on page 432

listsym lis Displays a list of Symphony log
files.

F “listsym” on page 434

listsucc Lists the successors of a job. F “Listsucc” on page 436

recall rc Displays prompt messages. F “recall” on page 437

redo red Edits the previous command. FS “redo” on page 438

release { job | sched } rj | rs Releases job or job stream
dependencies.

F “release job” on page 440
“release sched” on page 441

reply rep Replies to prompt message. F “reply” on page 443

rerun rr Reruns a job. F “rerun” on page 444

rerunsucc Reruns a job and runs its
successors.

F “Rerunsucc” on page 448

resetFTA N/A Recovers a corrupt Symphony
file on the specified
fault-tolerant agent

T “resetFTA” on page 450

resource res Changes the number of resource
units.

F “resource” on page 451

setsym set Selects a Symphony log file. F “setsym” on page 452

showcpus sc Displays workstation and link
information.

FS “showcpus” on page 453

Chapter 12. Managing objects in the plan - conman 403

Table 64. List of conman commands (continued)

Command Short Form Description Type Page

showdomain showd Displays domain information. FS “showdomain” on page 459

showfiles sf Displays information about files. F “showfiles” on page 461

showjobs sj Displays information about jobs. F “showjobs” on page 463

showprompts sp Displays information about
prompts.

F “showprompts” on page 481

showresources sr Displays information about
resources.

F “showresources” on page 484

showschedules ss Displays information about job
streams.

F “showschedules” on page 486

shutdown shut Stops IBM Workload Scheduler
production processes.

FS “shutdown” on page 491

start Starts IBM Workload Scheduler
production processes.

FS “start” on page 492

startappserver Starts the WebSphere
Application Server process

DM “startappserver” on page 494

startbrokerapp Starts the dynamic workload
broker application.

DM “startbrokerapp” on page 495

starteventprocessor startevtp Starts the event processing
server.

M(2) “starteventprocessor” on page 496

startmon startm Starts the monman process that
turns on the event monitoring
engine on the agent.

FS “startmon” on page 496

status stat Displays IBM Workload
Scheduler production status.

FS “status” on page 497

stop Stops IBM Workload Scheduler
production processes.

FS “stop” on page 498

stop ;progressive Stops IBM Workload Scheduler
production processes
hierarchically.

“stop ;progressive” on page 499

stopappserver stopapps Stops the WebSphere
Application Server process

DM “stopappserver” on page 500

stopbrokerapp Stops the dynamic workload
broker application.

DM “stopbrokerapp” on page 502

stopeventprocessor stopevtp Stops the event processing
server.

M(2) “stopeventprocessor” on page 502

stopmon stopm Stops the event monitoring
engine on the agent.

FS “stopmon” on page 503

submit { docommand
| file | job | sched } sbd |

sbf |
sbj |
sbs

Submits a command, file, job, or
job stream.

FS(3) “submit docommand” on page 504
“submit file” on page 507
“submit job” on page 511
“submit sched” on page 514

switcheventprocessor switchevtp Switches the event processing
server from master domain
managers to backup masters or
vice versa.

M “switcheventprocessor” on page 518

switchmgr switchm Switches the domain manager. F “switchmgr” on page 520

404 IBM Workload Scheduler: User’s Guide and Reference

Table 64. List of conman commands (continued)

Command Short Form Description Type Page

system-command Sends a command to the
system.

FS “system command” on page 521

tellop to Sends a message to the console. FS “tellop” on page 521

unlink Closes workstation links. FS “unlink” on page 522

version v Displays conman's command
line program banner.

FS “version” on page 524

1. Not available on supported Windows operating system.
2. Includes workstations installed as backup masters but used as ordinary

fault-tolerant agents.
3. You can use submit job (sbj) and submit sched (sbs) on a standard agent by

using the connection parameters or specifying the settings in the useropts file
when invoking the conman command line.

Note: In the commands, the terms sched and schedule refer to job streams, and the
term CPU refers to workstation.

adddep job
Adds dependencies to a job.

You must have adddep access to the job. To include needs and prompt
dependencies, you must have use access to the resources and global prompts.

Syntax

{adddep job | adj} jobselect
;dependency[;...]
[;noask]

Arguments

jobselect
See “Selecting jobs in commands” on page 386.

dependency
The type of dependency. Specify one of the following. Wildcard characters
are not permitted.

at=hhmm[timezone | tz tzname][+n days | mm/dd[/yy]] | [absolute | abs]

confirmed

deadline=time [timezone|tz tzname][+n day[s | mm/dd[/yy]]

every=rate

follows=[netagent::][workstation#]{jobstreamname[hhmm [mm/dd[/yy]]][.job |
@] | jobstream_id.job;schedid}| job[,...] [if 'condition_name[|
condition_name][| ...]']

The condition_name variable indicates the name of the condition defined in
the job definition. Conditions must be separated by | and enclosed
between single quotes. Conditions can be status conditions, based on job
status, or other output conditions, based on a mapping expression such as
a return code, output variables, or output found in a job log. In each

Chapter 12. Managing objects in the plan - conman 405

follows statement, you can specify only one dependency type: either status
or output conditions. At submission time, you can add status or output
conditions, but no joined dependencies.

maxdur=[hhhmm] [onmaxdur action]

mindur=[hhhmm] [onmindur action]

needs=[num] [workstation#]resource[,...]

opens=[workstation#]"filename"[(qualifier)][,...] priority[=pri | hi | go]

prompt="[: | !]text" | promptname[,...]

until time [timezone|tz tzname][+n day[s]] | [absolute | abs] [;onuntil
action]

noask Specifies not to prompt for confirmation before taking action on each
qualifying job.

Note:

1. If you add twice a dependency on a job stream to a job, both dependencies are
treated.

2. When using the deadline keyword, ensure the bm check deadline option is set
to a value higher than 0 in the localopts configuration file on the workstation
you are working on. You can define the bm check deadline option on each
workstation on which you want to be aware of the deadline expiration, or, if
you want to obtain up-to-date information about the whole environment,
define the option on the master domain manager. Deadlines for critical jobs are
evaluated automatically, independently of the bm check deadline option.
For more information about the bm check deadline option, see the section
about localopts details in IBM Workload Scheduler: Administration Guide.

3. If you add a dependency to a job after it has completed, it is not evaluated.
However, any subsequent reruns of the job will process the dependency
correctly.

Comments

If you do not specify a value for priority, the job reverts to its original scheduled
priority. If you do not specify a workstation in follows, needs, or opens, the default
is the workstation on which the job runs.

You cannot use this command to add a resource or a prompt as dependencies
unless they are already referenced by a job or a job stream in the Symphony file.

Examples

To add a resource dependency to job job3 in job stream sked9(0900 02/19/16), run
the following command:
adj sked9(0900 02/19/16).job3 ; needs=2 tapes

To add an external follows dependency from to job JOB022 in job stream
MLN#SCHED_02(0600 02/24) to JOBA in job stream MLN#NEW_TEST(0900 02/19/16), run
the following command:
adj=MLN#NEW_TEST(0900 02/19/16).JOBA ; follows MLN#SCHED_02(0600 02/24/16).JOB022

To add a file dependency, and an until time to job j6 in job stream JS2(0900
02/19/16), run the following command:

406 IBM Workload Scheduler: User’s Guide and Reference

|
|
|

adj=WK1#JS2(0900 02/19/16).j6 ; opens="/usr/lib/prdata/file5"(-s %p) ; until=2330

To kill job PAYROLL_JOB in job stream ABSENCES_JS when it has run for more than 9
hours and 1 minute, run the following command:
adj DUBAI#ABSENCES_JS.PAYROLL_JOB ;maxdur=901 ;onmaxdur kill

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the Welcome page, select Monitor your workload, or in the navigation bar

at the top of the page, click System Status and Health > Workload Monitoring
> Monitor Workload.

2. Select an engine.
3. In Object Type, select Job.
4. From the Query drop-down list, select All Jobs in plan or another task to

monitor jobs.
5. Click Run to run the monitoring task.
6. From the table containing the list of jobs, select the job to which you want to

add a dependency and click Dependencies....
7. In the Dependencies panel, expand a dependency section and click the button

corresponding to the dependency action you want to add.

adddep sched
Adds dependencies to a job stream.

You must have adddep access to the job stream. To include needs and prompt
dependencies, you must have use access to the resources and global prompts.

Syntax

{adddep sched | ads} jstreamselect
;dependency[;...]
[;noask]

Arguments

jstreamselect
See “Selecting job streams in commands” on page 395.

dependency
The type of dependency. Specify one of the following. Wildcard characters
are not permitted.

at=hhmm[timezone | tz tzname][+n days | mm/dd[/yy]] | [absolute | abs]

carryforward

deadline=time [timezone|tz tzname][+n day[s | mm/dd[/yy]]

follows=[netagent::][workstation#]{jobstreamname[hhmm [mm/dd[/yy]]][.job |
@] | jobstream_id.job;schedid}| job[,...] [if'condition_name[| condition_name][|
...]']

The condition_name variable indicates the name of the condition defined in
the job definition. Conditions must be separated by | and enclosed
between single quotes. Conditions can be status conditions, based on job
status, or other output conditions, based on a mapping expression such as

Chapter 12. Managing objects in the plan - conman 407

|

|

|
|
|

|

|

|
|

|

|
|

|
|

a return code, output variables, or output found in a job log. In each
follows statement, you can specify only one dependency type: either status
or output conditions. At submission time, you can add status or output
conditions, but no joined dependencies.

limit=limit

needs=[num] [workstation#]resource[,...]

opens=[workstation#]"filename"[(qualifier)][,...] priority[=pri | hi | go]

prompt="[: | !]text" | promptname[,...]

until time [timezone|tz tzname][+n day[s] | [absolute | abs]] [;onuntil
action]

noask Specifies not to prompt for confirmation before taking action on each
qualifying job stream.

Note:

1. If you add twice a dependency on a job stream to another job stream, only one
dependency is considered.

2. When using the deadline keyword, ensure the bm check deadline option is set
to a value higher than 0 in the localopts configuration file on the workstation
you are working on. You can define the bm check deadline option on each
workstation on which you want to be aware of the deadline expiration, or, if
you want to obtain up-to-date information about the whole environment,
define the option on the master domain manager. Deadlines for critical jobs are
evaluated automatically, independently of the bm check deadline option.
For more information about the bm check deadline option, see the section
about localopts details in IBM Workload Scheduler: Administration Guide.

3. If you add a dependency to a job stream after it has completed, it is not
evaluated. However, any subsequent reruns of the job stream will process the
dependency correctly.

Comments
v If you do not specify a value for priority, the job stream reverts to its original

scheduled priority.
v If you do not specify a value for limit, the value defaults to 0.
v If you do not specify a workstation in follows, needs, or opens, the default is the

workstation on which the job stream runs.
v You cannot use this command to add a resource or a prompt as dependencies

unless they already exists in the production plan. To see which resource and
prompts exist in the plan refer to “showresources” on page 484 and
“showprompts” on page 481.

Examples

To add a prompt dependency to job stream sked9(0900 02/19/06), run the
following command:
ads sked9(0900 02/19/06) ; prompt=msg103

To add an external follows dependency from to job JOBB in job stream
CPUA#SCHED_02(0600 02/24/06) and a job limit to job stream CPUA#TEST(0900
02/19/06), run the following command:
ads=CPUA#TEST(0900 02/19/06) ; follows CPUA#SCHED_02(0600 02/24/06).JOBB; limit=2

408 IBM Workload Scheduler: User’s Guide and Reference

|
|
|

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Job Stream.
4. From the Query drop-down list, select All Job Streams in plan or another task

to monitor job streams.
5. Click Run to run the monitoring task.
6. From the table containing the list of job streams, select the job stream to which

you want to add a dependency and click the Dependencies....
7. In the Dependencies panel, expand a dependency section and click the button

corresponding to the dependency action you want to add.

altjob
Modify a job in the plan before it runs.

You must have submit access to the job.

Syntax

{altjob | aj} jobselect
[;streamlogon|logon=new_logon]
[;docommand="new_command"|;script="new_script"]
[;noask]

Arguments

jobselect
See “Selecting jobs in commands” on page 386. Wild cards are supported.

streamlogon|logon=new_logon
Specifies that the job must run under a new user name in place of the
original user name.

docommand="new_command"
Specifies the new command that the job must run in place of the original
command. This argument is mutually exclusive with the script argument.

script="new_script"
Specifies the new script that the job must run in place of the original script.
This argument is mutually exclusive with the docommand argument.

noask Specifies not to prompt for confirmation before taking action on each
qualifying job.

Comments

With altjob conman command, you can make changes to the job definition after it
has already been submitted into the plan, while maintaining the original definition
in the database. This can also be done from either the Job Stream Graphical View
or the job monitoring view of the Dynamic Workload Console.

Note: When you edit the definition of a job in the plan that contains variables, the
job runs and completes, but is unable to resolve the variables with their value.

Chapter 12. Managing objects in the plan - conman 409

|

|

|
|

|

|

|
|

|

|
|

|
|

*

*

*

*

*
*
*
*

*

*
*

*
*
*

*
*
*

*
*
*

**
*

*

*
*
*
*

*
*

For information about jobinfo, see “jobinfo” on page 650.

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the Welcome page, select Monitor your workload, or in the navigation bar

at the top of the page, click System Status and Health > Workload Monitoring
> Monitor Workload.

2. Select an engine.
3. In Object Type, select Job.
4. From the Query drop-down list, select All Jobs in plan or another task to

monitor jobs.
5. Click Run to run the monitoring task.
6. From the table containing the list of jobs, select a job and click Edit Job.

altpass
Alters the password of a user object in the current production plan.

You must have altpass access to the user object.

Syntax

altpass
[workstation#]
username
[;"password"]

Arguments

workstation
Specifies the workstation on which the user is defined. Use the upper case
for this field even though you used the mixed case when specifying the
workstation in the user definition. For more information refer to “User
definition” on page 185. Do not specify this field if the user belongs to a
Windows domain managed by active directory. The default is the
workstation on which you are running conman.

username
Specifies the name of a user. Use the same user name specified in the IBM
Workload Scheduler database and nothe that they are case-sensitive. For
more information, see “User definition” on page 185.

password
Specifies the new password. It must be enclosed in double quotation
marks. To indicate no password for the user, use two consecutive double
quotation marks ("").

Comments

If you do not specify a password, conman prompts for a password and a
confirmation. The password is not displayed as it is entered and should not be
enclosed in quotes. Note that the change is made only in the current production
plan, and is therefore temporary. To make a permanent change see “User
definition” on page 185.

410 IBM Workload Scheduler: User’s Guide and Reference

*

|

|

|
|
|

|

|

|
|

|

|

*

Examples

To change the password of user Jim on workstation mis5 to mynewpw, run the
following command:
altpass MIS5#JIM;”mynewpw”

To change the password of user jim on workstation Mis5 to mynewpw without
displaying the password, run the following command:
altpass MIS5#JIM
password: xxxxxxxx
confirm: xxxxxxxx

To change the password of user Jim, defined in an active directory managed
Windows domain named twsDom, to mynewpw, run the following command:
altpass TWSDOM\JIM;”mynewpw”

See also

From the Dynamic Workload Console you can perform the same task as described
in:

the Dynamic Workload Console User’s Guide, section about Changing user
password in the plan.

altpri
Alters the priority of a job or job stream.

You must have altpri access to the job or job stream.

Syntax

{altpri | ap} jobselect | jstreamselect
[;pri]
[;noask]

Arguments

jobselect
See “Selecting jobs in commands” on page 386.

jstreamselect
See “Selecting job streams in commands” on page 395.

pri Specifies the priority level. You can enter a value of 0 through 99, hi, or go.

noask Specifies not to prompt for confirmation before taking action on each
qualifying job or job stream.

Examples

To change the priority of the balance job in job stream glmonth(0900 02/19/06),
run the following command:
ap glmonth(0900 02/19/06).balance;55

To change the priority of job stream glmonth(0900 02/19/06), run the following
command:
ap glmonth(0900 02/19/06);10

Chapter 12. Managing objects in the plan - conman 411

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Job or Job Stream.
4. From the Query drop-down list, select a query to monitor jobs or job streams.
5. Click Run to run the monitoring task.
6. From the table containing the list of results, select the job or job stream whose

priority you want to change and click More Actions > Priority tab.
7. In the displayed panel, set the new priority and click OK.

bulk_discovery
Requests a bulk discovery to update the current status of monitored objects. It is
used for the integration with IBM Tivoli Monitoring 6.1 (Tivoli Enterprise Portal).

You must have display access to the file object.

Syntax

{bulk_discovery | bulk}

Comments

When the integration with IBM Tivoli Monitoring 6.1 is enabled, the
bulk_discovery command checks the status of all monitored jobs and job streams
within the plan and writes the corresponding events in the event log file.

By default, events are written in the event.log file.

Messages indicating the start and end of the bulk discovery activity are logged in
the twsmerge.logfile.

cancel job
Windows Cancels a job.

You must have cancel access to the job.

Syntax

{cancel job | cj} jobselect
[;pend]
[;noask]

Arguments

jobselect
See “Selecting jobs in commands” on page 386.

pend Cancels the job only after its dependencies are resolved.

noask Specifies not to prompt for confirmation before taking action on each
qualifying job.

412 IBM Workload Scheduler: User’s Guide and Reference

|
|

Comments

If you cancel a job before it is launched, it does not launch. If you cancel a job after
it is launched, it continues to run. If you cancel a job that is running and it
completes in the ABEND state, no automatic job recovery steps are attempted.

If you do not use the ;pend option, jobs and job streams that are dependent on the
cancelled job are released immediately from the dependency.

If you include the ;pend option, and the job has not been launched, cancellation is
deferred until all of the dependencies, including an at time, are resolved. Once all
the dependencies are resolved, the job is cancelled and any jobs or job streams that
are dependent on the cancelled job are released from the dependency. During the
period the cancel is deferred, the notation [Cancel Pend] is listed in the
Dependencies column of the job in a showjobs display.

If you include the ;pend option and the job has already been launched, the option
is ignored, and any jobs or job streams that are dependent on the cancelled job are
immediately released from the dependency.

You can use the rerun command to rerun jobs that have been cancelled, or that are
marked [Cancel Pend]. You can also add and delete dependencies on jobs that are
marked [Cancel Pend].

To immediately cancel a job that is marked [Cancel Pend], you can either enter a
release command for the job or enter another cancel command without the ;pend
option.

For jobs with expired until times, the notation [Until] is listed in the Dependencies
column in a showjobs display, and their dependencies are no longer evaluated. If
such a job is also marked [Cancel Pend], it is not cancelled until you release or
delete the until time, or enter another cancel command without the ;pend option.

To stop evaluating dependencies, set the priority of a job to zero with the altpri
command. To resume dependency evaluation, set the priority to a value greater
than zero.

Note: In the case of internetwork dependencies, cancelling a job in the EXTERNAL
job stream releases all local jobs and job streams from the dependency. Jobs in the
EXTERNAL job stream represent jobs and job streams that have been specified as
internetwork dependencies. The status of an internetwork dependency is not
checked after a cancel is performed. For more information see “Managing
internetwork dependencies in the plan” on page 763.

Examples

To cancel job report in job stream apwkly(0900 02/19/06) on workstation site3,
run the following command:
cj=site3#apwkly(0900 02/19/06).report

To cancel job setup in job stream mis5(1100 02/10/06), if it is not in the ABEND
state, run the following command:
cj mis5(1100 02/10/06).setup~state=abend

To cancel job job3 in job stream sked3(0900 02/19/03) only after its dependencies
are resolved, run the following command:

Chapter 12. Managing objects in the plan - conman 413

cj sked3(0900 02/19/06).job3;pend

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the Welcome page, select Monitor your workload, or in the navigation bar

at the top of the page, click System Status and Health > Workload Monitoring
> Monitor Workload.

2. Select an engine.
3. In Object Type, select Job.
4. Click Run to run the monitoring task.
5. From the table containing the list of jobs, select a job and click More Actions >

Cancel.

cancel sched
Cancels a job stream.

You must have cancel access to the job stream.

Syntax

{cancel sched | cs} jstreamselect
[;pend]
[;noask]

Arguments

jstreamselect
See “Selecting job streams in commands” on page 395.

pend Cancels the job stream only after its dependencies are resolved.

noask Specifies not to prompt for confirmation before taking action on each
qualifying job stream.

Comments

If you cancel a job stream before it is launched, it does not launch. If you cancel a
job stream after it is launched, the jobs that have started complete, but no other
jobs are launched.

If you do not use the ;pend option, jobs and job streams that are dependent on the
cancelled job stream are released immediately from the dependency.

If you use the ;pend option and the job stream has not been launched, cancellation
is deferred until all of its dependencies, including an at time, are resolved. Once all
dependencies are resolved, the job stream is cancelled and any dependent jobs or
job streams are released from the dependency. During the period the cancel is
deferred, the notation [Cancel Pend] is listed in the Dependencies column of a
showschedules display.

If you include the ;pend option and the job stream has already been launched, any
remaining jobs in the job stream are cancelled, and any dependent jobs and job
streams are released from the dependency.

414 IBM Workload Scheduler: User’s Guide and Reference

|
|
|

To immediately cancel a job stream marked [Cancel Pend], either enter a release
command for the job stream or enter another cancel command without the ;pend
option.

To stop evaluating dependencies, set the job stream's priority to zero with the
altpri command. To resume dependency evaluation, set the priority to a value
greater than zero.

If the cancelled job stream contains jobs defined with the every option, only the
last instance of such jobs is listed as canceled in a showjobs display.

Examples

To cancel job stream sked1(1200 02/17/06) on workstation site2, run the
following command:
cs=site2#sked1(1200 02/17)

To cancel job stream mis2(0900 02/19/06) if it is in the STUCK state, run the
following command:
cs mis2(0900 02/19)+state=stuck

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Job Stream.
4. From the Query drop-down list, select All Job Streams in plan or another task

to monitor job streams.
5. Click Run to run the monitoring task.
6. Select a job stream and click More Actions > Cancel.

checkhealthstatus
Invokes chkhltst service to verify the connectivity between the domain manager
and workstations. It checks that the Symphony file is not corrupted, the mailbox
files can be successfully read by mailman, without errors in the mailbox header,
and that the mailbox is not full. This command can be useful to diagnose the
reason for an unlinked workstation and to get suggestions about how to recover
the problem.

Syntax

{checkhealthstatus | chs} [workstation]

Comments

If workstation is not specified, the service is launched locally.

Examples

To check the health status of the site1 workstation, launch the following command:
checkhealthstatus site1

Chapter 12. Managing objects in the plan - conman 415

|
|

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Workstation.
4. From the Query drop-down list, select a query to monitor workstations.
5. Click Run to run the monitoring task.
6. From the table containing the list of workstations, select the workstation whose

connectivity you want to check and click More Actions > Check Health
Status....

confirm
Confirms the completion of a job that was scheduled with the confirmed keyword.
By default, evaluation on the job is performed when the job completes. However, if
you confirm the job while it is running, the confirmation overrides the evaluation
performed at job completion time. You can also override the evaluation of the
output conditions: for example, if you set one or more output conditions to true
(using confirm SUCC), the specified output conditions are set to true and any other
conditions in the job are set to false.

You must have confirm access to the job.

Syntax

{confirm | conf} jobselect
;{succ | abend}
[;IF 'output_condition_name[, output_condition_name]
[, ...]'] [;noask]

Arguments

jobselect
See “Selecting jobs in commands” on page 386.

succ Confirms that the job ended successfully.

abend
Confirms that the job ended unsuccessfully.

output_condition_name
Confirms the SUCC or ABEND status for one or more specified output
conditions. Any conditions not specified are set to not satisfied. This
setting overrides any other evaluation.

noask Specifies not to prompt for confirmation before taking action on each
qualifying job.

Comments

Changing the state of a job from ABEND to SUCC does not require that the
confirmed keyword be used to schedule the job. For more information about job
confirmation, see “confirmed” on page 218. For more information about EXTERNAL
jobs, see “Managing internetwork dependencies in the plan” on page 763.

416 IBM Workload Scheduler: User’s Guide and Reference

|

|

|
|

|

|

|

|

|
|
|

Table 65 shows the effect of the confirm command on the various states of jobs,
with or without output conditions:

Table 65. State change after confirm command

Initial Job State State after confirm ;succ State after confirm ;abend

READY No effect, with or without
output conditions

No effect, with or without
output conditions

HOLD No effect, with or without
output conditions

No effect, with or without
output conditions

EXEC
without output conditions

SUCC

with output conditions
SUCC_P and
selected output
conditions are set to
satisfied

without output conditions
ABEND

with output conditions
ABEND_P and
selected output
conditions are set to
satisfied

ABENP SUCCP, with or without
output conditions

No effect, with or without
output conditions

SUCCP No effect, with or without
output conditions

No effect, with or without
output conditions

PEND
without output conditions

SUCC

with output conditions
SUCC and selected
output conditions
are set to satisfied.

without output conditions
ABEND

with output conditions
ABEND and
selected output
conditions are set to
satisfied.

DONE SUCC, with or without
output conditions.

ABEND, with or without
output conditions.

SUCC
without output conditions

The operation is not
supported.

with output conditions
SUCC and selected
output conditions
are set to satisfied.

without output conditions
The operation is not
supported.

with output conditions
The operation is not
supported.

ABEND SUCC, with or without
output conditions.

No effect, with or without
output conditions.

SUPPR
without output conditions

SUCC

with output conditions
SUCC and selected
output conditions
are set to satisfied.

The operation is not
supported, with or without
output conditions.

FAIL The operation is not
supported, with or without
output conditions.

The operation is not
supported, with or without
output conditions.

SCHED No effect, with or without
output conditions

No effect, with or without
output conditions

Chapter 12. Managing objects in the plan - conman 417

Table 65. State change after confirm command (continued)

Initial Job State State after confirm ;succ State after confirm ;abend

ERROR (for shadow jobs
only)

SUCC, with or without
output conditions

ABEND, with or without
output conditions

any job in the EXTERNAL job
stream

SUCC, with or without
output conditions

ABEND, with or without
output conditions

Examples

To issue a succ confirmation for job job3 in job stream misdly(1200 02/17/06), run
the following command:
confirm misdly(1200 02/17/06).job3;succ

To issue an abend confirmation for job number 234, run the following command:
confirm 234;abend

To issue a ;succ confirmation for job job4 and set MYOUTPUTCOND to true in the
daily(1130 02/17/2016) job stream, run the following command:
confirm daily(1130 02/17/2016).job4;succ if MYOUTPUTCOND

The following example shows the effect of the confirm command on the status of
the 79765613 job and its output conditions. The 79765613 job completed in SUCC
status:
1. Type the showjobs;info command to retrieve information about the job:

sj 79765613;info

The following sample output is a subset of the information you obtain by
running the command:
Workstation Job Stream SchedTime Job
NC050239 #DUBAIJS1 1908 10/23 (NC050239_1#)JS2

oc: OUT1 false "RC=2"
oc: OUT2 true "RC=1500"

The first output condition, OUT1 is false and the second one, OUT2, is true.
2. Type the confirm command to confirm the ABEND status on condition OUT1:

confirm 79765613 ABEND; IF OUT1

3. Type the showjobs;info command again. The following sample output is a
subset of the information you obtain by running the command:
Workstation Job Stream SchedTime Job
NC050239 #DUBAIJS1 1908 10/23 (NC050239_1#)JS2

oc: OUT1 true "RC=2"
oc: OUT2 false "RC=1500"

The first output condition, OUT1 has now changed to true and the second one,
OUT2, has changed to false.

console
Assigns the IBM Workload Scheduler console and sets the message level.

You must have console access to the workstation.

418 IBM Workload Scheduler: User’s Guide and Reference

Syntax

{console | cons}
[sess | sys]
[;level=msglevel]

Arguments

sess Sends IBM Workload Scheduler console messages and prompts to standard
output.

sys Stops sending IBM Workload Scheduler console messages and prompts to
standard output. This occurs automatically when you exit conman.

msglevel
The level of IBM Workload Scheduler messages that are sent to the console.
Specify one of the following levels:

-1 This is the value the product automatically assigns if you modify
any of the arguments for the console and you do not reassign any
value to msglevel. With this value the product sends all the
messages generated by all agents and for all operations to the
console.

0 No messages. This is the default on fault-tolerant agents.

1 Exception messages such as operator prompts and job abends.

2 Level 1, plus job stream successful messages.

3 Level 2, plus job successful messages. This is the default on the
master domain manager.

4 Level 3, plus job launched messages.

Comments

If you enter a console command with no options, the current state of the console is
displayed.

By default, IBM Workload Scheduler control processes write console messages and
prompts to standard list files. In UNIX, you can also have them sent to the syslog
daemon.

Examples

To begin writing console messages and prompts to standard output and change the
message level to 1, run the following command:
console sess;level=1

To stop writing console messages and prompts to standard output and change the
message level to 4, run the following command:
cons sys;l=4

To display the current state of the console, run the following command:
cons
Console is #J675, level 2, session

675 is the process ID of the user's shell.

Chapter 12. Managing objects in the plan - conman 419

continue
Ignores the next command error.

Syntax

{continue | cont}

Comments

This command is useful when commands are entered non-interactively. It instructs
conman to continue running commands even if the next command, following
continue, results in an error.

Examples

To have conman continue with the rerun command even if the cancel command
fails, run the following command:
conman "cont&cancel=176&rerun job=sked5(1200 02/17/06).job3"

deldep job
Deletes dependencies from a job.

You must have deldep access to the job.

Syntax

{deldep job | ddj} jobselect
;dependency[;...]
[;noask]

Arguments

jobselect
See “Selecting jobs in commands” on page 386.

dependency
The type of dependency. Specify at least one of the following. You can use
wildcard characters in workstation, jstream, job, resource, filename, and
promptname.

at[=time | lowtime | hightime | lowtime,hightime]

confirmed

deadline[=time[timezone | tz tzname][+n days | mm/dd[/yy]]]

every

follows=[netagent::][workstation#]{jobstreamname(hhmm [mm/dd[/yy]]) [.job |
@] | jobstream_id.job;schedid}| job[,...] [if 'condition_name[|
condition_name][| ...]'][from join join_name]

The condition_name variable indicates the name of the condition defined in
the job definition. Conditions must be separated by | and enclosed
between single quotes. Conditions can be status conditions, based on job
status, or other output conditions, based on a mapping expression such as
a return code, output variables, or output found in a job log. In each
follows statement, you can specify only one dependency type: either status
or output conditions. At submission time, you can delete status or output

420 IBM Workload Scheduler: User’s Guide and Reference

conditions. If the conditional dependency belongs to a join, if the number
of conditions that must be met is different from ALL, the number is
automatically reduced by one.

maxdur=[hhhmm] [onmaxdur action]

mindur=[hhhmm] [onmindur action]

needs[=[num] [workstation#]resource[,...]]

opens[=[workstation#]"filename"[(qualifier)][,...]]

priority

prompt[="[: | !]text" | promptname[,...]]

until[=time [timezone|tz tzname][+n day[s]] [;onuntil action]]

noask Specifies not to prompt for confirmation before taking action on each
qualifying job.

Comments

If you delete priority, the job reverts to its original scheduled priority. When you
delete an opens dependency, you can include only the base file name and conman
performs a case-insensitive search for matching files, ignoring the directory names.
Dependencies on all matching files are deleted.

Deleted dependencies no longer remain in effect when running the rerun
command.

To delete all the follows dependencies from the jobs contained in a specific job
stream, specify the follows keyword as:
follows=job_stream_name

Do not use a wildcard in this case (such as follows=job_stream_name.@ because the
command will be rejected.

Examples

To delete a resource dependency from job job3 in job stream sked9(0900
02/19/06), run the following command:
ddj sked9(0900 02/19/06).job3 ; needs=2 tapes

To delete all external follows dependency from job stream CPUA#TEST(0900
02/19/06), run the following command:
ddj=CPUA#TEST(0900 02/19/06).JOBA ; follows

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Job.
4. From the Query drop-down list, select All Jobs in plan or another task to

monitor jobs.
5. Click Run to run the monitoring task.

Chapter 12. Managing objects in the plan - conman 421

|

|

|
|

|

|

|
|

|

6. From the table containing the list of jobs, select the job from which you want to
remove a dependency and click Dependencies....

7. In the Dependencies panel, select the dependency you want to delete and click
Delete.

deldep sched
Deletes dependencies from a job stream.

You must have deldep access to the job stream.

Syntax

{deldep sched | dds} jstreamselect
;dependency[;...]
[;noask]

Arguments

jstreamselect
See “Selecting job streams in commands” on page 395.

dependency
The type of dependency. Specify at least one of the following. You can use
wildcard characters in workstation, jstreamname, jobname, resource, filename,
and promptname, with the exception of workstation when used in a follows
dependency.

at[=time | lowtime | hightime | lowtime,hightime]

carryforward

deadline[=time[timezone | tz tzname][+n days | mm/dd[/yy]]]

follows=[netagent::][workstation#]{jobstreamname[hhmm [mm/dd[/yy]]][.job |
@] | jobstream_id.job;schedid}| job[,...][if 'condition_name[| condition_name][|
...]'][from join join_name]

The condition_name variable indicates the name of the condition defined in
the job definition. Conditions must be separated by | and enclosed
between single quotes. Conditions can be status conditions, based on job
status, or other output conditions, based on a mapping expression such as
a return code, output variables, or output found in a job log. In each
follows statement, you can specify only one dependency type: either status
or output conditions. At submission time, you can delete status or output
conditions. If the conditional dependency belongs to a join, if the number
of conditions that must be met is different from ALL, the number is
automatically reduced by one.

limit

needs[=[num] [workstation#]resource[,...]]

opens[=[workstation#]"filename"[(qualifier)][,...]]

priority

prompt[="[: | !]text" | promptname[,...]]

until[=time [timezone|tz tzname][+n day[s]] [;onuntil action]]

noask Specifies not to prompt for confirmation before taking action on each
qualifying job stream.

422 IBM Workload Scheduler: User’s Guide and Reference

|
|

|
|

/
/
/
/

/

/

/

/
/
/

/
/
/
/
/
/
/
/
/
/

/

/

/

/

/

/

Comments

If you delete priority , the job reverts to its original scheduled priority. When you
delete an opens dependency, you can include only the base file name, and conman
performs a case-insensitive search for matching files, ignoring the directory names.
Dependencies on all matching files are deleted.

Deleted dependencies no longer remain in effect when running the rerun
command.

Examples

To delete a resource dependency from job stream sked5(0900 02/19/06), run the
following command:
dds sked5(0900 02/19/06);needs=2 tapes

To delete all follows dependencies from job stream sked3(1000 04/19/06), run the
following command:
dds sked3(1000 04/19/06);follows

See also
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Job Stream.
4. From the Query drop-down list, select All Job Streams in plan or another task

to monitor job streams.
5. Click Run to run the monitoring task.
6. From the table containing the list of job streams, select the job streams from

which you want to remove a dependency and click Dependencies....
7. In the Dependencies panel, select the dependency you want to delete and click

Delete.

deployconf
Downloads the latest monitoring configuration for the event monitoring engine on
a workstation.

Syntax

{deployconf | deploy} [domain!]workstation

Arguments

domain Specifies the name of the destination domain for the operation. Wildcard
characters are not permitted.

If you do not include domain, the default domain is the one in which
conman is running.

workstation
Specifies the name of the workstation to which the configuration is to be
deployed. Wildcard characters are not permitted.

Chapter 12. Managing objects in the plan - conman 423

|

|
|

|

|

|
|

|

|
|

|
|

Comments

Use this command to deploy to one workstation at a time.

If the existing configuration is already up-to-date, the command has no effect.

Permission to start actions on cpu objects is required in the security file to be
enabled to run this command.

display
Displays a job file or a job stream definition.

If you specify a file by name, you must have read access to the file. For job files
and job stream definitions, you must have display access to the job or job stream.

Syntax

{display file | df} filename [;offline]

{display job | dj} jobselect [;offline]

{display sched | ds} jstreamselect
[valid {at date | in date date}
[;offline]

Arguments

filename
Specifies the name of the file, usually a job script file. The name must be
enclosed in quotes (") if it contains characters other than the following:
alphanumeric characters, dashes (-), slashes (/), backslashes (\), and
underscores (_). Wildcard characters are permitted. The file must be
accessible from your login workstation. Use this option is you want to
show only the content of the job script file.

jobselect
The job whose job file is displayed. See “Selecting jobs in commands” on
page 386. The job file must be accessible from your login workstation. This
keyword applies only to path and filename of the script file of jobs defined
with the scriptname option.

jstreamselect
The job stream whose definition is displayed. See “Selecting job streams in
commands” on page 395.

valid Specifies the day or the interval of days during which the job stream
instances to be displayed must be active. This means that the validity
interval of those job stream instances must contain the time frame specified
in valid argument. The format used for date depends on the value assigned
to the date format variable specified in the localopts file. If not specified
the selected instance is the one valid today.

offline
Sends the output of the command to the conman output device. For
information about this device, see “Offline output” on page 380.

424 IBM Workload Scheduler: User’s Guide and Reference

Examples

To display the file c:\maestro\jclfiles\arjob3, run the following command:
df c:\apps\maestro\jclfiles\arjob3

To display the script file for job createpostreports in job stream FINALPOSTREPORTS
offline, run the following command:
dj FINALPOSTREPORTS(2359 02/14/13).CREATEPOSTREPORTS

This is a sample output of this command:
M235062_99#FINALPOSTREPORTS(2359 02/14/13).CREATEPOSTREPORTS /opt/TWA/TWS/

CreatePostReports
#!/bin/sh
##
Licensed Materials - Property of IBM* and HCL**
5698-WSH
(C) Copyright IBM Corp. 1998, 2016 All rights reserved.
(C) Copyright HCL Technologies Ltd. 2016 All rights reserved
* Trademark of International Business Machines
** Trademark of HCL Technologies Limited
###
#@(#) $Id: CreatePostReports.sh,v 1.0

##
CreatePostReports message catalog definitions.
##

##
message set id
##
MAE_CREATEPOSTREPORTS_SET=226
MAE_COPYRIGHT_SET=234

##
....
...
....
#
End
#

To display the job stream definition for job stream mod, run the following
command:
ds mod

This is a sample output of this command:
Job Stream Name Workstation Valid From Updated On Locked By
---------------- ---------------- ---------- ---------- ----------------
MOD M235062_99 06/30/2007 03/04/2006 -

SCHEDULE M235062_99#MOD VALIDFROM 06/30/2007
ON RUNCYCLE SCHED1_PREDSIMPLE VALIDFROM 07/18/2007 "FREQ=DAILY;INTERVAL=1"
(AT 1111)
CARRYFORWARD
FOLLOWS M235062_99#SCHED_FIRST1.@
FOLLOWS M235062_99#SCHED_FIRST.JOB_FTA
PRIORITY 66
:
M235062_99#JOBMDM
SCRIPTNAME "/usr/acct/scripts/gl1" STREAMLOGON root
DESCRIPTION "general ledger job1"
TASKTYPE UNIX
RECOVERY STOP

Chapter 12. Managing objects in the plan - conman 425

PRIORITY 30
NEEDS 16 M235062_99#JOBSLOTS
PROMPT PRMT3

B236153_00#JOB_FTA
FOLLOWS M235062_99#SCHED_FIRST1.@
FOLLOWS M235062_99#SCHED_FIRST.JOB_FTA
PRIORITY 66
:
M235062_99#JOBMDM
SCRIPTNAME "/usr/acct/scripts/gl1" STREAMLOGON root
DESCRIPTION "general ledger job1"
TASKTYPE UNIX
RECOVERY STOP
PRIORITY 30
NEEDS 16 M235062_99#JOBSLOTS
PROMPT PRMT3

B236153_00#JOB_FTA
DOCOMMAND "echo pippo" STREAMLOGON root
DESCRIPTION "general ledger job1"
TASKTYPE UNIX
RECOVERY STOP
FOLLOWS JOBMDM
END

See also

From the Dynamic Workload Console you can perform the same task as described
in:

the Dynamic Workload Console User’s Guide, section about Listing object
definitions in the database.

For more information about how to create and edit scheduling objects, see:

the Dynamic Workload Console User’s Guide, section about Designing your
Workload.

exit
Exits the conman command line program.

Syntax

{exit | e}

Comments

When you are in help mode in UNIX, this command returns conman to
command-input mode.

Examples

To exit the conman command-line program, run the following command:
exit

or
e

426 IBM Workload Scheduler: User’s Guide and Reference

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

fence
Changes the job fence on a workstation. Jobs are not launched on the workstation
if their priorities are less than or equal to the job fence.

You must have fence access to the workstation.

Syntax

{fence | f} workstation
;pri
[;noask]

Arguments

workstation
Specifies the workstation name. The default is your login workstation.

pri Specifies the priority level. You can enter 0 through 99, hi, go, or system.
Entering system sets the job fence to zero.

noask Specifies not to prompt for confirmation before taking action on each
qualifying workstation.

Comments

The job fence prevents low priority jobs from being launched, regardless of the
priorities of their job streams. It is possible, therefore, to hold back low priority
jobs in high priority job streams, while allowing high priority jobs in low priority
job streams to be launched.

When you first start IBM Workload Scheduler following installation, the job fence
is set to zero. When you change the job fence, it is carried forward during
preproduction processing to the next day's production plan.

To display the current setting of the job fence, use the status command.

Examples

To change the job fence on workstation site4, run the following command:
fence site4;20

To change the job fence on the workstation on which you are running conman, run
the following command:
f ;40

To prevent all jobs from being launched by IBM Workload Scheduler on
workstation tx3, run the following command:
f tx3;go

To change the job fence to zero on the workstation on which you are running
conman, run the following command:
f ;system

See also

From the Dynamic Workload Console you can perform the same task as follows:

Chapter 12. Managing objects in the plan - conman 427

|

|

1. In the navigation bar at the top, click System Status and Health > Workload
Monitoring > Monitor Workload.

2. Select an engine.
3. In Object Type, select Workstation.
4. From the Query drop-down list, select a query to monitor workstations.
5. Click Run to run the monitoring task.
6. In the displayed panel, set the new priority and click OK.

help
Displays help information about commands. Not available in Windows.

Syntax

{help | h} {command|keyword}

Arguments

command
Specifies the name of a conman or system command. For conman
commands, enter the full command name; abbreviations and short forms
are not supported. For commands consisting of two words, enter the first
word, and help for all versions of the command is displayed. For example,
entering help display displays information about the display file, display
job, and display sched commands.

keyword

You can also enter the following keywords:

COMMANDS
Lists all conman commands.

SETUPCONMAN
Describes how to setup to use conman.

RUNCONMAN
How to run conman.

SPECIALCHAR
Describes the wildcards, delimiters and other special characters
you can use.

JOBSELECT
Lists information about selecting jobs for commands.

JOBSTATES
Lists information about job states.

JSSELECT
Lists information about selecting job streams for commands.

JSSTATES
Lists information about job stream states.

MANAGEBACKLEVEL
Managing jobs and job streams from back-level agents.

428 IBM Workload Scheduler: User’s Guide and Reference

|
|

|

|

|

|

|

Examples

To display a list of all conman commands, run the following command:
help commands

To display information about the fence command, run the following command:
help fence

To display information about the altpri job and altpri sched commands, run the
following command:
h altpri

To display information about the special characters you can use, run the following
command:
h specialchar

kill
Stops a job that is running. In UNIX, this is accomplished with a UNIX kill
command. You must have kill access to the job.

Syntax

{kill | k} jobselect
[;noask]

Arguments

jobselect
See “Selecting jobs in commands” on page 386.

noask Specifies not to prompt for confirmation before taking action on each
qualifying job.

Comments

The kill operation is not performed by conman; it is run by an IBM Workload
Scheduler production process, so there might be a short delay.

Killed jobs end in the ABEND state. Any jobs or job streams that are dependent on
a killed job are not released. Killed jobs can be rerun.

Examples

To kill the job report in job stream apwkly(0600 03/05/06) on workstation site3,
run the following command:
kill site3#apwkly(0600 03/05/06).report

To kill job number 124 running on workstation geneva, run the following
command:
kill geneva#124

See also

From the Dynamic Workload Console you can perform the same task as follows:

Chapter 12. Managing objects in the plan - conman 429

|

|

1. In the Welcome page, select Monitor your workload, or in the navigation bar
at the top of the page, click System Status and Health > Workload Monitoring
> Monitor Workload.

2. Select an engine.
3. In Object Type, select Job.
4. From the Query drop-down list, select All Jobs in plan or another task to

monitor jobs.
5. Click Run to run the monitoring task.
6. From the table containing the list of jobs, select the job you want to kill and

click More Actions > Kill .

limit cpu
Changes the limit of jobs that can run simultaneously on a workstation. You must
have limit access to the workstation.

Syntax

{limit cpu | lc } workstation
;limit
[;noask]

Arguments

workstation
Specifies the name of the workstation. Wildcard characters are permitted.
The default is your login workstation.

limit Specifies the how many jobs can run concurrently on the workstation.
Supported values are from 0 to 1024 and system.

If you set limit cpu to 0:
v For a job stream in the READY state, only jobs with hi and go priority

values can be launched on the workstation.
v For a job stream with a hi or go priority value, all jobs with a priority

value other than 0 can be launched on the workstation.

If you set limit cpu to system, there is no limit to the number of concurrent
jobs on the workstation. For the extended agent, the limit to SYSTEM sets
the job limit to 0.

noask Specifies not to prompt for confirmation before taking action on each
qualifying workstation.

Comments

To display the current job limit on your login workstation, use the status
command.

When you first start IBM Workload Scheduler following installation, the
workstation job limit is set to zero, and must be increased before any jobs are
launched. When you change the limit, it is carried forward during preproduction
processing to the next day's production plan.

IBM Workload Scheduler attempts to launch as many jobs as possible within the
job limit. There is a practical limit to the number of processes that can be started
on a workstation. If this limit is reached, the system responds with a message
indicating that system resources are not available. When a job cannot be launched

430 IBM Workload Scheduler: User’s Guide and Reference

|
|
|

|

|

|
|

|

|
|

for this reason, it enters the fail state. Lowering the job limit can prevent this from
occurring.

Examples

To change the job limit on the workstation on which you are running conman, run
the following command:
lc ;12

To change the job limit on workstation rx12, run the following command:
lc rx12;6

To set to 10 the job limit on all the workstations belonging to the domain and to
child domains, run the following command:
lc @!@;10

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Workstation.
4. From the Query drop-down list, select a query to monitor workstations.
5. Click Run to run the monitoring task.
6. From the table containing the list of workstations, select a workstation and click

More Actions > Limit....
7. Set the limit as required.

limit sched
Changes the limit set in the definition of a job stream. For additional information
on setting a limit in a job stream definition, refer to “limit” on page 240. You must
have limit access to the job stream.

Syntax

{limit sched | ls } jstreamselect
;limit
[;noask]

Arguments

jstreamselect
See “Selecting job streams in commands” on page 395.

limit Specifies the job limit. You can enter 0 through 1024.

noask Specifies not to prompt for confirmation before taking action on each
qualifying job stream.

Examples

To change the job limit on all job streams that include sales in their name, run the
following command:
ls sales@;4

Chapter 12. Managing objects in the plan - conman 431

|

|

|
|

|

|

|

|

|
|

|

To change the job limit on job stream CPUA#Job1, run the following command:
ls=CPUA#apwkly;6

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Job Stream.
4. Click Run to run the monitoring task.
5. Select a job stream and click More Actions > Limit....
6. Set the limit as required.

link
Opens communication links between workstations. In an IBM Workload Scheduler
network, fault-tolerant and standard agents are linked to their domain managers,
and domain managers are linked to their parent domain managers. Extended
agents are not linked; they communicate through a host.

You must have link access to the target workstation.

The command requires that another workstation be present in your environment in
addition to the master domain manager.

Syntax

{link | lk} [domain!]workstation
[;noask]

Arguments

domain Specifies the name of the domain in which links are opened. Wildcard
characters are permitted.

This argument is useful when linking more than one workstation in a
domain. For example, to link all the agents in domain stlouis, use the
following command:
lk stlouis!@

The domain is not needed if you do not include wildcard characters in
workstation.

If you do not include domain, and you include wildcard characters in
workstation, the default domain is the one in which conman is running.

workstation
Specifies the name of the workstation to be linked. Wildcard characters are
permitted.

This command is not supported on remote engine workstations.

noask Specifies not to prompt for confirmation before taking action on each
qualifying workstation.

432 IBM Workload Scheduler: User’s Guide and Reference

|

|

|
|

|

|

|

|

|

Comments

If the autolink option is set to on in a workstation definition, its link is opened
automatically each time IBM Workload Scheduler is started. If autolink is set to
off, you must use link and unlink commands to control linking. For information
about autolink see “Workstation definition” on page 154.

Assuming that a user has link access to the workstations being linked, the
following rules apply:
v A user running conman on the master domain manager can link any

workstation in the network.
v A user running conman on a domain manager other than the master can link

any workstation in its own domain and subordinate domains. The user cannot
link workstations in peer domains.

v A user running conman on an agent can link any workstation in its local
domain provided that the workstation is a domain manager or host. A peer
agent in the local domain cannot be linked.

v To link a subordinate domain while running conman in a higher domain, it is
not necessary that the intervening links be open.

Examples

Figure 25 and Table 66 on page 434 show the links opened by link commands run
by users in various locations in the network.
DMn are domain managers and Ann are agents.

A11 A12

DM1

DM2 DM3

DM4

A21 A22 A31 A32

A41 A42

Domain1

Domain2 Domain3

Domain4

User1

User2

User3

Figure 25. Network links

Chapter 12. Managing objects in the plan - conman 433

Table 66. Opened links

Command
Links Opened by
User1

Links Opened by
User2

Links Opened by
User3

link @!@ All links are
opened. DM1-DM2

DM2-A21
DM2-A22
DM2-DM4
DM4-A41
DM4-A42

DM2-A21

link @
DM1-A11
DM1-A12
DM1-DM2
DM1-DM3

DM1-DM2
DM2-A21
DM2-A22
DM2-DM4

DM2-A21

link DOMAIN3!@
DM3-A31
DM3-A32

Not allowed. Not allowed.

link DOMAIN4!@
DM4-A41
DM4-A42

DM4-A41
DM4-A42

Not allowed.

link DM2 DM1-DM2 Not applicable. DM2-A21

link A42 DM4-A42 DM4-A42 Not allowed.

link A31 DM3-A31 Not allowed. Not allowed.

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Workstation.
4. From the Query drop-down list, select a query to monitor workstations.
5. Click Run to run the monitoring task.
6. From the table containing the list of workstations, select a workstation and click

Link.

listsym
Lists the production plan (Symphony files) already processed.

When used from a fault-tolerant agent command line, this command shows the
latest Symphony file, saved as MSymOldBackup.

Syntax

{listsym | lis} [trial | forecast]
[;offline]

Arguments

trial Lists trial plans.

434 IBM Workload Scheduler: User’s Guide and Reference

|

|

|
|

|

|

|

|

|
|

forecast
Lists forecast plans.

offline
Sends the output of the command to the conman output device. For
information about this device, see “Offline output” on page 380.

Results

Schedule Date
The date used to select the job streams to run.

Actual Date
The date batchman began running the Symphony file.

Start Time
The time batchman began running the Symphony file.

Log Date
The date the plan (Symphony file) was logged by the stageman command.

Run Num
The run number assigned to the plan (Symphony file). This is used internally
for IBM Workload Scheduler network synchronization.

Size The number of records contained in the Symphony file.

Log Num
The log number indicating the chronological order of log files. This
number can be used in a setsym command to switch to a specific log file.

Filename
The name of the log file assigned by the stageman command.

Examples

To list the production plan files, run the following command:
listsym

this is a sample output for the command:
Job Stream Actual Start Log Run Log
Date Date Time Date Num Size Num Filename
03/05/06 03/05/06 21:06 03/05/06 42 534 1 M200603052111 Exp
03/04/06 03/04/06 15:59 03/05/06 41 463 2 M200603052106 Exp
03/04/06 03/04/06 15:51 03/04/06 40 362 3 M200603041559 Exp
03/04/06 03/04/06 14:31 03/04/06 39 460 4 M200603041551 Exp
03/04/06 03/04/06 14:26 03/04/06 38 436 5 M200603041431 Exp
03/04/06 03/04/06 14:24 03/04/06 37 436 6 M200603041426 Exp
03/04/06 03/04/06 14:19 03/04/06 36 436 7 M200603041424 Exp
03/04/06 03/04/06 14:17 03/04/06 35 436 8 M200603041419 Exp
03/04/06 03/04/06 14:17 03/04/06 34 364 9 M200603041417 Exp

To view the latest production plan file that was processed on a fault-tolerant agent,
run the following command from the fault-tolerant agent conman command line
program :
listsym

this is a sample output for the command:
Job Stream Actual Start Log Run Log
Date Date Time Date Num Size Num Filename
07/07/14 07/07/14 14:01 07/08/14 19 1607 1 MSymOldBackup (Exp)

Chapter 12. Managing objects in the plan - conman 435

To list files containing trial plans, run the following command:
listsym trial

this is a sample output for the command:
Job Stream Actual Start Log Run Log
Date Date Time Date Num Size Num Filename
03/03/06 03/03/06 0 126 1 Tpippo Exp
03/03/06 03/03/06 0 1850 2 Tangelo2 Exp
03/03/06 03/03/06 0 1838 3 Tangelo1 Exp

To list the files containing the forecast plans, run the following command:
listsym forecast

This is a sample output for the command:
Job Stream Actual Start Log Run Log
Date Date Time Date Num Size Num Filename
03/03/06 03/03/06 0 62 1 Fpluto Exp

See also

In the Dynamic Workload Console:
1. From the navigation bar, click Planning > Workload Forecast > Manage

Available plans.
2. Select an engine.
3. Click a plan type or write a plan filename
4. Click Display Plans List.

Listsucc
Lists the successors of a job.

You must have rerun access to the job.

Syntax

listsucc jobselect

Arguments

jobselect
See “Selecting jobs in commands” on page 386.

Comments

If the user running the command is not authorized to see and rerun all the
successors of the failed job, the list being displayed contains only the successors he
is allowed to see. An error message is displayed, stating there are some additional
successors he is not authorized to see or run.

The maximum number of successor jobs that can be returned is 1.000. To change
this value, edit the com.hcl.tws.conn.plan.rerun.successors.maxjobs property in
the TWSConfig.properties file, located in TWA_home/WAS/TWSprofile/properties.
To make this change effective, restart the master domain manager. When you run
the command, the parent job is returned in the list of successors, but it does not
count towards the total number of successor jobs listed. For example, if you set the
com.hcl.tws.conn.plan.rerun.successors.maxjobs property to ten, and the total

436 IBM Workload Scheduler: User’s Guide and Reference

=

=

=

=

=

=

=
=

=

=
=
=
=

=
=
=
=
=
=
=

number of successors of your parent job is ten, a total of eleven jobs will be
returned. This happens because the parent job is also listed, because it is scheduled
to be rerun with its successors.

The action is always performed on the last rerun instance of the specified job. Also
if you specify the job number of an intermediate job in the rerun sequence, the
action is performed on the last job in the rerun sequence.

Examples

When you launch the listsucc WXA_VMDM#FINAL.STARTAPPSERVER command,
the following output is displayed:
Successors in the same job stream
Workstation Job stream Job Status Sched Time Sched Id Messages
------------ --------------- ------------------- ----- ---------- ---------------- ----------------
WXA_VMDM FINAL STARTAPPSERVER HOLD 2359 03/17 0AAAAAAAAAAAAADY Invalid status
WXA_VMDM FINAL MAKEPLAN HOLD 2359 03/17 0AAAAAAAAAAAAADY Invalid status
WXA_VMDM FINAL SWITCHPLAN HOLD 2359 03/17 0AAAAAAAAAAAAADY Invalid status

Successors in other job streams
Workstation Job stream Job Status Sched Time Sched Id Messages
------------ ---------------- ------------------ ------ ---------- ---------------- ----------------
WXA_VMDM FINALPOSTREPORTS CREATEPOSTREPORTS HOLD 2359 03/17 0AAAAAAAAAAAAAEH Invalid status
WXA_VMDM FINALPOSTREPORTS CHECKSYNC HOLD 2359 03/17 0AAAAAAAAAAAAAEH Invalid status
WXA_VMDM FINALPOSTREPORTS UPDATESTATS HOLD 2359 03/17 0AAAAAAAAAAAAAEH Invalid status

The Messages column shows the value Invalid status when for a job it is not
possible to rerun all the successor jobs.

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the Welcome page, select Monitor your workload, or in the navigation bar

at the top of the page, click System Status and Health > Workload Monitoring
> Monitor Workload.

2. Select an engine.
3. In Object Type, select Job.
4. From the Query drop-down list, select All Jobs in plan or another task to

monitor jobs.
5. Click Run to run the monitoring task.
6. From the table containing the list of jobs, select a job and click Rerun with

successors....

recall
Displays prompts that are waiting for a response.

You must have display access to the prompts.

Syntax

{recall | rc} [workstation]
[;offline]

Chapter 12. Managing objects in the plan - conman 437

=
=
=

=
=
=

=

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

=
=

|

|

|
|
|

|

|

|
|

|

|
|

=

Arguments

workstation
Specifies the name of the workstation on which the prompt was issued. If
you do not specify a workstation, only prompts for the login workstation
and global prompts are displayed.

offline
Sends the output of the command to a file or command specified in
conman. For more information, see “Offline output” on page 380.

Results

State The state of the prompt. The state of pending prompts is always ASKED.

Message or Prompt
For named prompts, the message number, the name of the prompt, and the
message text. For unnamed prompts, the message number, the name of the
job or job stream, and the message text.

Examples

To display pending prompts issued on the workstation on which you are running
conman, run the following command:
recall

or:
rc

To display pending prompts on workstation site3, run the following command:
rc site3

To display pending prompts on all workstations and have the output sent to a file
or command, run the following command:
rc @;offline

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Prompt.
4. In the Query drop-down list, select All Prompts in plan, which will list all

prompts regardless of their status, or create and select another task.
5. Click Run to run the monitoring task.

redo
Edits and reruns the previous command.

Syntax

{redo | red}

438 IBM Workload Scheduler: User’s Guide and Reference

|

|

|
|

|

|

|
|

|

Context

When you run the redo command, conman displays the previous command, so
that it can be edited and rerun. Use the spacebar to move the cursor under the
character to be modified, and enter the following directives.

Directives

d[dir] Deletes the character above the d. This can be followed by other
directives.

itext Inserts text before the character above the i.

rtext Replaces one or more characters with text, beginning with the
character above the r. Replace is implied if no other directive is
entered.

>text Appends text to the end of the line.

>d[dir | text]
Deletes characters at the end of the line. This can be followed by
another directive or text.

>rtext Replaces characters at the end of the line with text.

Directive Examples

ddd Deletes the three characters above the ds.

iabc Inserts abc before the character above the i.

rabc Replaces the three characters, starting with the one above the r,
with abc.

abc Replaces the three characters above abc with abc.

d diabc
Deletes the character above the first d, skips one character, deletes
the character above the second d, and inserts abc in its place.

>abc Appends abc to the end of the line.

>ddabc
Deletes the last two characters in the line, and inserts abc in their
place.

>rabc Replaces the last three characters in the line with abc.

Examples

To insert a character, run the following command:
redo
setsm 4

iy
setsym 4

To replace a character, run the following command:
redo
setsym 4

5
setsym 5

Chapter 12. Managing objects in the plan - conman 439

release job
Releases jobs from dependencies.

You must have release access to the job.

Syntax

{release job | rj} jobselect
[;dependency[;...]]
[;noask]

Arguments

jobselect
Specifies the job or jobs to be released. See “Selecting jobs in commands”
on page 386.

dependency
The type of dependency. You can specify one of the following. You can use
wildcard characters in workstation, jstreamname, jobname, resource, filename,
and promptname.

at[=time | lowtime | hightime | lowtime,hightime]

confirmed

deadline[=time[timezone | tz tzname][+n days | mm/dd[/yy]]]

every

follows=[netagent::][workstation#]{jobstreamname[hhmm [mm/dd[/yy]]][.job |
@] | jobstream_id.job;schedid}| job[,...] [if 'condition_name[|
condition_name][| ...]'][from join join_name]

The condition_name variable indicates the name of the condition defined in
the job definition. Conditions must be separated by | and enclosed
between single quotes. Conditions can be status conditions, based on job
status, or other output conditions, based on a mapping expression such as
a return code, output variables, or output found in a job log. In each
follows statement, you can specify only one dependency type: either status
or output conditions. At submission time, you can release status or output
conditions. If the conditional dependency belongs to a join, if the number
of conditions that must be met is different from ALL, the number is
automatically reduced by one.

needs[=[num] [workstation#]resource[,...]]

opens[=[workstation#]"filename"[(qualifier)][,...]]

priority

prompt[="[: | !]text" | promptname[,...]]

until[=time [timezone|tz tzname][+n day[s]] [;onuntil action]]

noask Specifies not to prompt for confirmation before taking action on each
qualifying job.

Comments

The command applies only to jobs that are in the HOLD state; that is, jobs that are
waiting for the resolution of a dependency. Note also that the dependency is

440 IBM Workload Scheduler: User’s Guide and Reference

|
|

released only for the current run of the job and not for future reruns (the
permanent release from a dependency can be obtained with the deldep command).

When you release an opens dependency, you can include only the base file name,
and conman performs a case-insensitive search for matching files, ignoring the
directory names. Dependencies on all matching files are released.

For needs dependencies, the released job is given the required number of units of
the resource, even though they might not be available. This can cause the available
units in a showresources to display a negative number.

When you release a job from a priority dependency, the job reverts to its original
scheduled priority.

Released dependencies remain in effect when running the rerun command.

Examples

To release job job3 in job stream ap(1000 03/05/06) from all of its dependencies,
run the following command:
rj ap(1000 03/05/06).job3

To release all jobs on workstation site4 from their dependencies on a prompt
named glprmt, run the following command:
rj=site4#@.@;prompt=glprmt

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the Welcome page, select Monitor your workload, or in the navigation bar

at the top of the page, click System Status and Health > Workload Monitoring
> Monitor Workload.

2. Select an engine.
3. In Object Type, select Job.
4. From the Query drop-down list, select All Jobs in plan or another task to

monitor jobs.
5. Click Run to run the monitoring task.
6. From the table containing the list of jobs, select one or more jobs and click

Release Dependencies.

release sched
Releases job streams from dependencies.

You must have release access to the job stream.

Syntax

{release sched | rs} jstreamselect
[;dependency[;...]]
[;noask]

Chapter 12. Managing objects in the plan - conman 441

|
|

|

|

|
|
|

|

|

|
|

|

|
|

Arguments

jstreamselect
See “Selecting job streams in commands” on page 395.

dependency
The type of dependency. Specify one of the following. You can use
wildcard characters in workstation, jstream, job, resource, filename, and
promptname.

at[=time | lowtime | hightime | lowtime,hightime]

carryforward

deadline[=time[timezone | tz tzname][+n days | mm/dd[/yy]]]

follows=[netagent::][workstation#]{jobstreamname[hhmm [mm/dd[/yy]]][.job |
@] | jobstream_id.job;schedid}| job[,...] [if 'condition_name[|
condition_name][| ...]'][from join join_name]

The condition_name variable indicates the name of the condition defined in
the job definition. Conditions must be separated by | and enclosed
between single quotes. Conditions can be status conditions, based on job
status, or other output conditions, based on a mapping expression such as
a return code, output variables, or output found in a job log. In each
follows statement, you can specify only one dependency type: either status
or output conditions. At submission time, you can release status or output
conditions. If the conditional dependency belongs to a join, if the number
of conditions that must be met is different from ALL, the number is
automatically reduced by one.

limit

needs[=[num] [workstation#]resource[,...]]

opens[=[workstation#]"filename"[(qualifier)][,...]]

priority

prompt[="[: | !]text" | promptname[,...]]

until[=time [timezone|tz tzname][+n day[s]] [;onuntil action]]

noask Specifies not to prompt for confirmation before taking action on each
qualifying job stream.

Comments

When deleting an opens dependency, you can include only the base file name, and
conman performs a case-insensitive search for matching files, ignoring the
directory names. Dependencies on all matching files are released.

For needs dependencies, the released job stream is given the required number of
units of the resource, even though they might not be available. This can cause the
available units in a showresources to display a negative number.

When you release a job stream from a priority dependency, the job stream reverts
to its original priority.

In certain circumstances, when you have submitted a deldep command, the
command might have succeeded even though it is again forwarded to batchman.
For more information, see “Conman commands processing” on page 386.

442 IBM Workload Scheduler: User’s Guide and Reference

Examples

To release job stream instance with jobstream_id 0AAAAAAAAAAAABSE from all of its
dependencies, run the following command:
rs 0AAAAAAAAAAAABSE; schedid

To release job stream sked5(1105 03/07/06) from all of its opens dependencies, run
the following command:
rs sked5(1105 03/07/06);opens

To release all job streams on workstation site3 from their dependencies on job
stream main#sked23, run the following command:
rs=site3#@;follows=main#sked23

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Job Stream.
4. From the Query drop-down list, select All Job Streams in plan or another task

to monitor job streams.
5. Click Run to run the monitoring task.
6. From the table containing the list of job streams, select one or more job streams

and click Release Dependencies.

reply
Replies to a job or job stream prompt.

You must have reply access to the named or global prompt. To reply to an
unnamed prompt, you must have reply access to prompts, and reply access to the
associated job or job stream.

Syntax

{reply | rep}
{ promptname | [workstation#]msgnum}
;reply
[;noask]

Arguments

promptname
Specifies the name of a global prompt. Wildcard characters are permitted.

workstation
Specifies the name of the workstation on which an unnamed prompt was
issued.

msgnum
Specifies the message number of an unnamed prompt. You can display
message numbers with the recall and showprompts commands.

reply Specifies the reply, either Y for yes or N for no.

Chapter 12. Managing objects in the plan - conman 443

|

|

|
|

|

|

|
|

|

|
|

noask Specifies not to prompt for confirmation before taking action on each
qualifying prompt.

Comments

If the reply is Y, dependencies on the prompt are satisfied. If the reply is N, the
dependencies are not satisfied and the prompt is not reissued.

Prompts can be replied to before they are issued. You can use the showprompts
command to display all prompts, whether or not they have been issued.

Examples

To reply Y to the global prompt arpmt, run the following command:
reply arprmt;y

To reply N to message number 24 on workstation site4, run the following
command:
rep site4#24;n

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Prompt.
4. Select All Prompts in plan or another task to monitor prompts.
5. From the table of results, select a prompt and click Reply Yes or Reply No.

rerun
Reruns a job.

You must have rerun access to the job.

To use streamlogon|logon, docommand, or script arguments, you must have
submit access to the job.

To use the from argument, you must have submitdb access to the job.

Syntax

{rerun | rr} jobselect
[;from=[wkstat#]job
[;at=time]
[;pri=pri]]
[;sameworkstation=]
[;step=step]
[;streamlogon|logon=new_logon]
[;docommand="new_command"|;script="new_script"]
[;noask]

444 IBM Workload Scheduler: User’s Guide and Reference

|

|

|
|

|

|

|

|

*
*

-

*
*
*
*
*
*
*
*
*

Arguments

jobselect
See “Selecting jobs in commands” on page 386. Wildcards are supported.

from=[wkstat#]job
Specifies the name of a job defined in the database whose job file or
command will be run in place of the job specified by jobselect. You can
rerun jobs also in the SUPPR state, as long as they do not belong to job
streams that are in the cancelled or suppressed state.

wkstat#
Specifies the name of the workstation on which the from job runs.
The default is the workstation on which conman is running.

job Specifies the name of the from job definition The following types
of job names are not permitted:
v The names of jobs submitted using the submit file and submit

docommand commands.
v The alias names of jobs submitted using the submit job

command.

The recovery options, if any, are partly inherited from the original job
definition and partly retrieved from the from job. Table 67 describes the
criteria by which recovery options in the original and from job definition
are retrieved.

Table 67. Recovery options retrieval criteria

recovery option Inherited from original job Retrieved from "from" job

stop No Yes

continue No Yes

rerun Yes No

repeatevery Yes No

for Yes No

after Yes No

abendprompt Yes No

To use the from argument, you must have access to the database from the
computer on which you are running conman

at=time
Specifies the rerun job's start time, expressed as follows:

hhmm [timezone|tz tzname] [+n days | date]

where:

hhmm The hour and minute.

+n days
The next occurrence of hhmm in n number of days.

date The next occurrence of hhmm on date, expressed as mm/dd[/yy].

timezone|tz tzname
The name of the time zone of the job. See Chapter 19, “Managing
time zones,” on page 741 for valid names.

Chapter 12. Managing objects in the plan - conman 445

=
=
=

=
=
=
=

==

===

===

===

===

===

===

===

===
=

=

pri=pri
Specifies the priority to be assigned to the rerun job. If you do not specify
a priority, the job is given the same priority as the original job.

sameworkstation
If the parent job ran on a workstation that is part of a pool or a dynamic
pool, you can decide whether it must rerun on the same workstation or on
a different one. This is because the workload on pools and dynamic pools
is assigned dynamically based on a number of criteria and the job might be
rerun on a different workstation.

When you rerun the job manually, the sameworkstation setting you define
with the rerun command is applied only to the instance you rerun, and is
ignored in any subsequent reruns of that instance. For example, also if the
job you rerun already contains rerun information (defined with the rerun,
repeatevery, and for arguments in the job definition) the sameworkstation
setting you define with the rerun command applies only to the specific
instance you rerun. For the subsequent reruns, the setting defined in the
job definition is used. For more information about arguments in the job
definition, see “Job definition” on page 173.

step=step
Specifies that the job is rerun using this name in place of the original job
name. See “Comments” for more information.

streamlogon|logon=new_logon
Specifies that the job is rerun under a new user name in place of the
original user name. This argument applies only to completed jobs.

docommand="new_command"
Specifies the new command that the rerun job runs in place of the original
command. This argument is mutually exclusive with the script argument.
This argument applies only to completed jobs.

script="new_script"
Specifies the new script that the rerun job runs in place of the original
script. This argument is mutually exclusive with the docommand
argument. This argument applies only to completed jobs.

noask Specifies not to prompt for confirmation before taking action on each
qualifying job.

Comments

You can rerun jobs that are in the SUCC, FAIL, or ABEND state. A rerun job is
placed in the same job stream as the original job, and inherits the original job's
dependencies. If you rerun a repetitive (every) job, the rerun job is scheduled to
run at the same rate as the original job.

Note: You can issue rerun for jobs in the EXTERNAL job stream that are in the
ERROR state. Jobs in the EXTERNAL job stream represent jobs and job streams that
have been specified as internetwork dependencies. The job state is initially set to
extrn immediately after a rerun is run, and conman begins checking the state.

Note: When you rerun a job using docommand, or script arguments, if the job
contains variables, the job reruns and completes, but is unable to resolve the
variables with their value.

446 IBM Workload Scheduler: User’s Guide and Reference

=
=
=
=
=
=

=
=
=
=
=
=
=
=
=

*
*
*

*
*
*
*

*
*
*
*

*
*
*

When ;from is used, the name of the rerun job depends on the value of the Global
Option enRetainNameOnRerunFrom. If the option is set to Y, rerun jobs retain the
original job names. If the option is set to N, rerun jobs are given the from job
names. For more information, refer to the IBM Workload Scheduler Administration
Guide.

In conman displays, rerun jobs are displayed with the notation >>rerun as. To
refer to a rerun job in another command, such as altpri, you must use the original
job name.

When a job is rerun with the ;step option, the job runs with step in place of its
original name. Within a job script, you can use the jobinfo command to return the
job name and to run the script differently for each iteration. For example, in the
following UNIX script, the jobinfo command is used to set a variable named STEP
to the name that was used to run the job. The STEP variable is then used to
determine how the script is run.
...
MPATH=`maestro`
STEP=`$MPATH/bin/jobinfo job_name`
if [$STEP = JOB3]

then
...
STEP=JSTEP1
fi

if [$STEP = JSTEP1]
then
...
STEP=JSTEP2
fi

if [$STEP = JSTEP2]
then
...
fi

...

In conman displays, jobs rerun with the ;step option are displayed with the
notation >>rerun step.

For information about jobinfo, see “jobinfo” on page 650.

Examples

To rerun job job4 in job stream sked1 on workstation main, run the following
command:
rr main#sked1.job4

To rerun job job5 in job stream sked2 using the job definition for job jobx where
the job's at time is set to 6:30 p.m. and its priority is set to 25, run the following
command:
rr sked2.job5;from=jobx;at=1830;pri=25

To rerun job job3 in job stream sked4 using the job name jstep2, run the following
command:
rr sked4.job3;step=jstep2

See also

From the Dynamic Workload Console you can perform the same task as follows:

Chapter 12. Managing objects in the plan - conman 447

|

|

1. In the Welcome page, select Monitor your workload, or in the navigation bar
at the top of the page, click System Status and Health > Workload Monitoring
> Monitor Workload.

2. Select an engine.
3. In Object Type, select Job.
4. From the Query drop-down list, select All Jobs in plan or another task to

monitor jobs.
5. Click Run to run the monitoring task.
6. From the table containing the list of jobs, select a job and click Rerun....

Rerunsucc
Reruns a job and its successors. You can choose whether you want to rerun all
successors in the same job stream of the failed job (internal successors), or all
successors, both in the same job stream and in external job streams (internal and
external successors).

You must have rerun access to the job.

Syntax

rerunsucc jobselect [;internal][;all]

Arguments

jobselect
See “Selecting jobs in commands” on page 386.

;internal
Specifies that all successors of the failed job (parent job) in the same job
stream must be rerun. Any successors in external job streams are not rerun.

;all Specifies that all successors of the failed job (parent job) both in the same
job stream and in external job streams must be rerun.

Comments

If you enter the command without any options, a list of the internal and external
successors with the related status is returned. A message is displayed asking to
confirm whether you want to rerun only the internal successors or both the
internal and external successors.

If the user running the command is not authorized to see and rerun all the
successors of the failed job, the list being displayed contains only the successors he
is allowed to see. An error message is displayed, stating there are some additional
successors he is not authorized to see or run.

The maximum number of successor jobs that can be returned is 1,000. To change
this value, edit the com.hcl.tws.conn.plan.rerun.successors.maxjobs property in
the TWSConfig.properties file, located in TWA_home/WAS/TWSprofile/properties.
To make this change effective, restart the master domain manager. When you run
the command, the parent job is returned in the list of successors, but it does not
count towards the total number of successor jobs listed. For example, if you set the
com.hcl.tws.conn.plan.rerun.successors.maxjobs property to ten, and the total
number of successors of your parent job is ten, a total of eleven jobs will be
returned. This happens because the parent job is also listed, because it is scheduled
to be rerun with its successors.

448 IBM Workload Scheduler: User’s Guide and Reference

|
|
|

|

|

|
|

|

|

=

=
=
=
=

=

=

=

=

=
=

=
=
=

==
=

=

=
=
=
=

=
=
=
=

=
=
=
=
=
=
=
=
=
=

The rerun action is always performed on the last rerun instance of the specified
job. Also if you specify the job number of an intermediate job in the rerun
sequence, the action is performed on the last job in the rerun sequence.

You can rerun job successors only if they are in specific states. For example,
successors in intermediate states, such as EXEC, WAIT, INTRO, cannot be rerun.
See Table 68 for a complete list.

Table 68. Successors status

Status Expected behavior

WAIT An error is returned and the rerun operation
is not performed

INTRO An error is returned and the rerun operation
is not performed

EXEC An error is returned and the rerun operation
is not performed

EXTERNAL An error is returned and the rerun operation
is not performed

ABENDP/SUCCP An error is returned and the rerun operation
is not performed

READY An error is returned and the rerun operation
is not performed

PEND An error is returned and the rerun operation
is not performed

SUPPR (job stream) An error is returned and the rerun operation
is not performed

HOLD The predecessor of the job in HOLD status is
rerun, but the rerun sequence stops at the
job in HOLD status

BOUND The predecessor of the job in BOUND status
is rerun, but the rerun sequence stops at the
job in BOUND status

FENCE The predecessor of the job in FENCE status
is rerun, but the rerun sequence stops at the
job in FENCE status

SUPPR (job) The rerun operation is performed

SUCC The rerun operation is performed

CANCEL The rerun operation is performed

Examples

To return a list of all successors of the failed job (parent job) with the related
status, type the following command:
Rerunsucc MDM94FP1#RequestInfo.UpdateData

An output similar to the following is returned:
Successors in the same job stream:
MDM94FP1#RequestInfo.UpdateFunction SUCC
SUCCMDM04FP1#RequestInfo.NotifyOfTheRequestReived SUCC

Successors to be rerun in another job stream:
MDM94FP1#BatchProcessing.UpdateFunction SUCC

Chapter 12. Managing objects in the plan - conman 449

=
=
=

=
=
=

==

==

==
=

==
=

==
=

==
=

==
=

==
=

==
=

==
=

==
=
=

==
=
=

==
=
=

==

==

==
=

=

=
=

=

=

=
=
=
=
=
=

MDM94FP1#BatchProcessing.EvaluateRisk SUCC
....
MDM94FP1#ReportProcessing.RunReport SUCC
Do you want to run all successors, both internal and external? Y

To run the command in batch mode and rerun all internal successors without
confirmation by the user, type the following command:
Rerunsucc MDM94FP1#RequestInfo.UpdateData;internal

An output similar to the following is displayed:
Successors in the same job stream:

MDM94FP1#RequestInfo.UpdateFunction SUCC
MDM04FP1#RequestInfo.NotifyOfTheRequestReceived SUCC
.........

To run the command in batch mode and rerun all successors, both internal and
external, without confirmation by the user, type the following command:
Rerunsucc MDM94FP1#RequestInfo.UpdateData;all

An output similar to the following is displayed:
MDM94FP1#RequestInfo.UpdateFunction SUCC

MDM04FP1#RequestInfo.NotifyOfTheRequestReceived SUCC
MDM94FP1#BatchProcessing.UpdateFunction SUCC
MDM94FP1#BatchProcessing.EvaluateRisk SUCC
MDM94FP1#ReportProcessing.RunReport SUCC
.....
.........

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the Welcome page, select Monitor your workload, or in the navigation bar

at the top of the page, click System Status and Health > Workload Monitoring
> Monitor Workload.

2. Select an engine.
3. In Object Type, select Job.
4. From the Query drop-down list, select All Jobs in plan or another task to

monitor jobs.
5. Click Run to run the monitoring task.
6. From the table containing the list of jobs, select a job and click More Actions >

Rerun with successors.... A dialog is displayed listing all successors, both
internal and external in two separate tables. In the dialog you can choose
whether you want to rerun all successors in the same job stream or all
successors both in the same job stream and in any other job streams.

resetFTA
Generates an updated Sinfonia file and sends it to a fault-tolerant agent on which
the Symphony file has corrupted.

Note: Complete removal and replacement of the Symphony file causes some loss of
data, for example events on job status, or the contents of the Mailbox.msg message
and the tomaster.msg message queues. If state information about a job was
contained in those queues, that job is rerun. It is recommended that you apply this

450 IBM Workload Scheduler: User’s Guide and Reference

=
=
=
=

=
=

=

=

=
=
=
=
=

=
=

=

=

=
=
=
=
=
=
=

|

|

|
|
|

|

|

|
|

|

|
|
|
|
|

=

command with caution.
In the process, the following files are moved to the TWA_home/TWS/tmp
directory:
v Appserverbox.msg
v clbox.msg
v Courier.msg
v Intercom.msg
v Mailbox.msg
v Monbox.msg
v Moncmd.msg
v Symphony
v Sinfonia

Before the command is performed, an information message is displayed to request
confirmation and ensure the command is not issued by mistake. If one of the target
files cannot be moved because it is being used by another process (for example, the
mailman process is still running) the operation is not performed and an error
message is displayed.

Authorization

You must have RESETFTA access to the fault-tolerant agent you want to reset.

Syntax

resetFTA cpu

Arguments

cpu Is the fault-tolerant agent to be reset.

This command is not available in the Dynamic Workload Console.

Examples

To reset the fault-tolerant agent with name omaha, run the following command:
resetFTA omaha

See also

For more information about the fault-tolerant agent recovery procedure, see the
section about the recovery procedure on a fault-tolerant agent in IBM Workload
Scheduler: Troubleshooting Guide..

resource
Changes the number of total units of a resource.

You must have resource access to the resource.

Syntax

{resource | reso} [workstation#]
resource;num
[;noask]

Chapter 12. Managing objects in the plan - conman 451

Arguments

workstation
Specifies the name of the workstation on which the resource is defined.
The default is the workstation on which conman is running.

resource
Specifies the name of the resource.

num Specifies the total number of resource units. Valid values are 0 through
1024.

noask Specifies not to prompt for confirmation before taking action on each
qualifying resource.

Examples

To change the number of units of resource tapes to 5, run the following command:
resource tapes;5

To change the number of units of resource jobslots on workstation site2 to 23,
run the following command:
reso site2#jobslots;23

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the Welcome page, select Monitor your workload, or in the navigation bar

at the top of the page, click System Status and Health > Workload Monitoring
> Monitor Workload.

2. Select an engine.
3. In Object Type, select Resource.
4. From the Query drop-down list, select All Resources in plan or another task to

monitor resources.
5. Click Run to run the monitoring task.
6. From the table of results, select a resource and click Change Units....

setsym
Selects a production plan archive file. Subsequent display commands show the
contents of the archived production plan. You cannot modify the information in a
production plan archive file.

Syntax

{setsym | set} [trial | forecast] [filenum]

Arguments

trial Lists trial plans.

forecast
Lists forecast plans.

filenum
Specifies the number of the production plan archive file. If you do not

452 IBM Workload Scheduler: User’s Guide and Reference

|

|

|
|
|

|

|

|
|

|

|

specify a log file number, the pointer returns to zero, the current
production plan (Symphony). Use the listsym command to list archive file
numbers.

Examples

To select production plan archive file 5, run the following command:
setsym 5

To select the current production plan (Symphony file), run the following command:
set

See also

In the Dynamic Workload Console:
1. From the navigation bar, click Planning > Workload Forecast > Manage

Available Plans.
2. Select an engine.
3. Click Archived plans or provide a plan filename.
4. Click Display Plans List.

showcpus
Displays information about workstations and links.

The displayed information is updated only while IBM Workload Scheduler
(batchman) is running on the workstations. If batchman is up or down is confirmed
on screen by the Batchman LIVES or Batchman down message when you issue the
conman start command.

You must have list access to the object being shown if the enListSecChk option
was set to yes on the master domain manager when the production plan was
created or extended.

Syntax

{showcpus | sc} [[domain!]workstation]
[;info|;link]
[;offline]

{showcpus | sc} [[domain!]workstation] [;getmon]

Arguments

domain Specifies the name of a domain. The default is the domain in which the
command is run.

workstation
Specifies the name of a workstation. The default is the workstation where
the command is run. When no domain and no workstation are specified,
the output can be the following:
v The following command displays all the workstations that are in the

domain of the workstation where the command was run, plus all the
connected domain managers if the workstation is a domain manager.
conman "sc"

Chapter 12. Managing objects in the plan - conman 453

v The following command displays all the workstations that are in the
domain of the workstation where the command was run, without the
connected domain managers.
conman "sc @"

info Displays information in the info format.

link Displays information in the link format.

offline
Sends the output of the command to the conman output device. For
information about this device, see “Offline output” on page 380.

getmon
Returns the list of event rules defined for the monitor running on the
specified workstation in the following format:
<rule_name>::<eventProvider>#<eventType>:<scope>

The rule scope is automatically generated information about rule attributes,
such as the workstations where it is used, a job or file name, and so on.

The header of the output contains also the time stamp of when the rule
configuration package was last generated.

Note: This option is not valid on dynamic workload broker workstations
(or dynamic domain managers). In this case, you can retrieve the
information about the active rules defined in these workstations in the
TWA_home\TWS\monconf\TWSObjectsMonitor.cfg file on the master domain
manager.

Results

When the getmon parameter is not used, the output of the command is produced in
three formats, standard, info, and link. The default value is standard. The
meaning of the characters displayed depends on the type of format you select.

When run on a workstation with a version of IBM Workload Scheduler earlier than
version 8.6, the sc command shows as FTA the workstation types introduced with
IBM Workload Scheduler version 8.6, pool, dynamic pool, agent and remote
engine.

When the getmon parameter is used, the list of rules is provided as separate output.

Examples
1. To display information about the workstation on which you are running

conman in the info format, run the following command:
showcpus ;info

A sample output for this command is:
CPUID VERSION TIME ZONE INFO
MASTER 8.6.0.0 US/Pacific Linux 2.6.5-7.191-s390 #1 SM
FTA1 8.6.0.0 Linux 2.4.9-e.24 #1 Tue May
FTA2 8.6.0.0 HP-UX B.11.11 U 9000/785

2. To display link information for all workstations, run the following command:
sc @!@;link

A sample output is the following:

454 IBM Workload Scheduler: User’s Guide and Reference

CPUID HOST FLAGS ADDR NODE
MASTER MASTER AF T 51099 9.132.239.65
FTA1 FTA1 AF T 51000 CPU235019
FTA2 FTA2 AF T 51000 9.132.235.42
BROKER1 MASTER A T 51111 9.132.237.17

3. To display information about the workstation, run the following command:
showcpus

If you run this command in an environment when the primary connection of
the workstation with its domain or higher manager is not active, you receive
the following output:
CPUID RUN NODE LIMIT FENCE DATE TIME STATE METHOD DOMAIN
MASTER 360 *WNT MASTER 10 0 03/05/2010 1348 I J E MASTERDM
FTA1 360 WNT FTA 10 0 03/05/2010 1348 FTI JW M MASTERDM
FTA2 360 WNT FTA 10 0 03/05/2010 1348 FTI JW M MASTERDM
FTA3 360 WNT MANAGER 10 0 03/05/2010 1348 LTI JW M DOMAIN1
FTA4 360 WNT FTA 10 0 03/05/2010 1348 F I J M DOMAIN1
FTA5 360 WNT FTA 10 0 03/05/2010 1348 I J M DOMAIN1
SA1 360 WNT S-AGENT 10 0 03/05/2010 1348 F I J M DOMAIN1
XA_FTA4 360 OTHR X-AGENT 10 0 03/05/2010 1348 L I J M DOMAIN1
FTA6 360 WNT MANAGER 10 0 03/05/2010 1348 F I J M DOMAIN2
FTA7 360 WNT FTA 10 0 03/05/2010 1349 F I J M DOMAIN2
FTA7 360 WNT FTA 10 0 03/05/2010 1349 F I J M DOMAIN2
BROKER 360 OTHR BROKER 10 0 03/05/2010 1349 LTI JW MASTERDM

If you run this command in an environment when the primary connection of
the workstation with its domain or higher manager is active and at least one
secondary connection is not active, you receive the following output:
CPUID RUN NODE LIMIT FENCE DATE TIME STATE METHOD DOMAIN
MASTER 360 *WNT MASTER 10 0 03/05/2010 1348 I J E MASTERDM
FTA1 360 WNT FTA 10 0 03/05/2010 1348 FTI JW M MASTERDM
FTA2 360 WNT FTA 10 0 03/05/2010 1348 FTI JW M MASTERDM
FTA3 360 WNT MANAGER 10 0 03/05/2010 1348 FTI JW M DOMAIN1
FTA4 360 WNT FTA 10 0 03/05/2010 1348 F I J M DOMAIN1
FTA5 360 WNT FTA 10 0 03/05/2010 1348 L I M DOMAIN1
SA1 360 WNT S-AGENT 10 0 03/05/2010 1348 F I J M DOMAIN1
XA_FTA4 360 OTHR X-AGENT 10 0 03/05/2010 1348 L I J M DOMAIN1
FTA6 360 WNT MANAGER 10 0 03/05/2010 1348 F I J M DOMAIN2
FTA7 360 WNT FTA 10 0 03/05/2010 1349 F I J M DOMAIN2

If you run this command in an environment when the primary connection of
the workstation with its domain or higher manager and all secondary
connections are active, you receive the following output:
CPUID RUN NODE LIMIT FENCE DATE TIME STATE METHOD DOMAIN
MASTER 360 *WNT MASTER 10 0 03/05/2010 1348 I J E MASTERDM
FTA1 360 WNT FTA 10 0 03/05/2010 1348 FTI JW M MASTERDM
FTA2 360 WNT FTA 10 0 03/05/2010 1348 FTI JW M MASTERDM
FTA3 360 WNT MANAGER 10 0 03/05/2010 1348 FTI JW M DOMAIN1
FTA4 360 WNT FTA 10 0 03/05/2010 1348 F I J M DOMAIN1
FTA5 360 WNT FTA 10 0 03/05/2010 1348 F I M DOMAIN1
SA1 360 WNT S-AGENT 10 0 03/05/2010 1348 F I J M DOMAIN1
XA_FTA4 360 OTHR X-AGENT 10 0 03/05/2010 1348 L I J M DOMAIN1
FTA6 360 WNT MANAGER 10 0 03/05/2010 1348 F I J M DOMAIN2
FTA7 360 WNT FTA 10 0 03/05/2010 1349 F I J M DOMAIN2

4. To get a list of active rule monitors on the workstation named CPU1, run this
command:
sc CPU1 getmon

You get the following output:
Monitoring configuration for CPU1:

*** Package Date : 04/22/2009 12:00 GMT ***

Rule1::FileMonitor#FileCreated:Workstation=CPU1,CPU2;File=”\tmp\filename”

Chapter 12. Managing objects in the plan - conman 455

Rule2::FileMonitor#ModificationCompleted:Workstation=CPU1,CPU3;File=”\staging\orders”
Rule3::TWSObjectsMonitor#JobSubmit:JobKey=CPU1#JS1.Job1
Rule5::TWSObjectsMonitor#JobLate:JobKey=CPU1#JS1.Job1

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Workstation.
4. From the Query drop-down list, select a query to monitor workstations.
5. Click Run to run the monitoring task.

Standard format
CPUID

The name of the workstation to which this information applies.

RUN The run number of the Symphony file .

NODE
The node type and workstation type. Node types are as follows:
v UNIX
v WNT
v OTHER
v ZOS
v IBM i

Workstation types are as follows:
v MASTER
v MANAGER
v FTA
v S-AGENT
v X-AGENT
v AGENT
v POOL
v D-POOL
v REM-ENG

LIMIT
The IBM Workload Scheduler job limit.

FENCE
The IBM Workload Scheduler job fence.

DATE TIME
The date and time IBM Workload Scheduler started running the current
production plan (Symphony file).

STATE
Displays the following information:
v The state of the workstation's links and processes. Up to five characters

are displayed as follows. The explanation of the characters is divided
based on the character scope:
[L|F] [T|H|X|B] [I] [J] [W|H|X] [M] [E|e] [D] [A|R]

where:

456 IBM Workload Scheduler: User’s Guide and Reference

|

|

|
|

|

|

|

|

L The primary link is open (linked) to its domain or upper
manager.

If the workstation is of type agent or remote engine, this flag
indicates that the workstation is connected to the workload
broker server.

If the workstation is of type pool or dynamic pool, this flag
indicates that the workload broker workstation the pool or
dynamic pool is registered to is linked to its domain or upper
manager.

F The workstation is fully linked through primary and all
secondary connections. This flag appears only if the
enSwfaultTol global option is set to YES using the optman
command line on the master domain manager and it indicates
that the workstation is directly linked to its domain manager
and to all its full backup domain managers. For information on
how to use the optman command line, refer to IBM Workload
Scheduler Administration Guide.

T This flag is displayed if the fault-tolerant agent is directly linked
to the domain manager from where you run the command.

H The workstation is linked through its host.
X The workstation is linked as an extended agent (x-agent).
B The workstation communicates through the workload broker

server.
I If the workstation is of type agent, MASTER, MANAGER, FTA,

S-AGENT, X-AGENT, this flag indicates that jobman program
has completed startup initialization.

If the workstation is of type agent, pool or dynamic pool, this
flag indicates that the agent is correctly initialized.

If the workstation is of type remote engine, this flag indicates
that the communication between the remote engine workstation
and the remote engine is correctly initialized.

J If the workstation is of type agent MASTER, MANAGER, FTA,
S-AGENT, X-AGENT, this flag indicates that jobman program is
running.

If the workstation is of type agent, this flag indicates that
JobManager is running. Because no monitoring is performed on
dynamic pool workstations, for this workstation type the J
character is always shown.

If the workstation is of type pool, this flag indicates that the
JobManager process is running on at least one agent registered
to the pool.

If the workstation is of type remote engine, this flag indicates
that the ping command to the remote engine is successful.

W The workstation is linked via TCP/IP using the writer process.

If the workstation running conman is directly linked to the
remote workstation, you see the flag W because the local
mailman is linked to the remote writer process.
LTI JW

If the workstation running conman is not directly linked to the
remote workstation, you do not see the flag W because the local
mailman is not directly linked to the remote writer process.

Chapter 12. Managing objects in the plan - conman 457

L I J

For more details about the writer process, the topic about
network processes in the IBM Workload Scheduler: Administration
Guide.

Note: If the workstation running conman is the extended agent's host,
the state of the extended agent is
LXI JX

If the workstation running conman is not the extended agent's host, the
state of the extended agent is
LHI JH

v The state of the monitoring agent. Up to three characters are displayed
as follows:
[M] [E|e] [D]

where:
M The monman process is running. This flag is displayed for all the

workstations in the network when the event-driven workload
automation feature is enabled (global option
enEventDrivenWorkloadAutomation is set to yes), with the
exception of those workstations where monman was manually
stopped (using either conman or the Dynamic Workload
Console).

E The event processing server is installed and running on the
workstation.

e The event processing server is installed on the workstation but is
not running.

D The workstation is using an up-to-date package monitoring
configuration. This flag is displayed for the workstations on
which the latest package of event rules was deployed (either
manually with the planman deploy command or automatically
with the frequency specified by the deploymentFrequency global
option).

v The state of the WebSphere Application Server. A one-character flag is
displayed, if the application server is installed:
[A|R]

where:

A The WebSphere Application Server was started.

R The WebSphere Application Server is restarting.
The flag is blank if the application server is down or if it was not
installed.

METHOD
The name of the access method specified in the workstation definition. For
extended agents only.

DOMAIN
The name of the domain in which the workstation is a member.

Info format
CPUID

The name of the workstation to which this information applies.

458 IBM Workload Scheduler: User’s Guide and Reference

VERSION
The version of the IBM Workload Scheduler agent installed on the
workstation.

TIMEZONE
The time zone of the workstation. It is the same as the value of the TZ
environment variable. For an extended agent, this is the time zone of its
host. For a remote engine workstation, this is the time zone of the remote
engine.

INFO An informational field. For all the workstation types except the extended
agent and the broker workstations it contains the operating system version
and the hardware model. For extended agents and remote engine
workstations, no information is listed. For remote engine workstation it
shows Remote Engine.

Link format
CPUID

The name of the workstation to which this information applies.

HOST The name of the workstation acting as the host to a standard agent or
extended agent. For domain managers and fault-tolerant agents, this is the
same as CPUID. For standard agent and broker workstations, this is the
name of the domain manager. For extended agents, this is the name of the
host workstation.

FLAGS
The state of the workstation properties. Up to five characters are displayed
as follows:
[A] [B] [F] [s] [T]
A Autolink is turned on in the workstation definition.
B This flag is used only in end-to-end environment and it indicates if

the deactivate job launching flag is disabled.
F Full Status mode is turned on in the workstation definition.
s The ID of mailman server for the workstation.
T The link is defined as TCP/IP.

ADDR
The TCP/IP port number for the workstation.

NODE
The node name of the workstation.

showdomain
Displays domain information.

The displayed information is updated only as long as IBM Workload Scheduler
(batchman) is running. Whether batchman is up or down is confirmed on screen
by the Batchman LIVES or Batchman down message when you issue the conman start
command.

You must have list access to the object being shown if the enListSecChk option
was set to yes on the master domain manager when the production plan was
created or extended.

Chapter 12. Managing objects in the plan - conman 459

Syntax

{showdomain | showdom | sd} [domain]
[;info]
[;offline]

Arguments

domain Specifies the name of the domain. The default is the domain in which
conman is running. Wildcard characters are permitted.

info Displays information in the info format.

offline
Sends the output of the command to the conman output device. For
information about this device, see “Offline output” on page 380.

Results

The output of the command is produced in two formats, standard, and info.

Examples

To display information about the domain masterdm, run the following command:
showdomain masterdm

A sample output is the following:
DOMAIN MANAGER PARENT
*MASTERDM *MASTER

To display the member workstations in all domains in the info format, run the
following command:
showdomain @;info

a sample output is the following:
DOMAIN MEMBER-CPUs CPU-Type
MASTERDM *MASTER MASTER
DOM1 FTA1 MANAGER
DOM2 FTA2 MANAGER

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Domain.
4. From the Query drop-down list, select a task to monitor domains.
5. Click Run to run the monitoring task.

Standard format
DOMAIN

The name of the domain to which this information applies.

MANAGER
The name of the domain manager.

460 IBM Workload Scheduler: User’s Guide and Reference

|

|

|
|

|

|

|

|

PARENT
The name of the parent domain.

Info format
DOMAIN

The name of the domain to which this information applies.

MEMBER-CPUS
The names of the workstations in the domain.

CPU-TYPE
The type of each workstation: MASTER, MANAGER, FTA, S-AGENT,
X-AGENT, or BROKER.

showfiles
Displays information about file dependencies. A file dependency occurs when a job
or job stream is dependent on the existence of one or more files before it can begin
running.

The displayed information is updated only as long as IBM Workload Scheduler
(batchman) is running. Whether batchman is up or down is confirmed on screen
by the Batchman LIVES or Batchman down message when you issue the conman start
command.

Syntax

{showfiles | sf} [[workstation#]file]
[;state[;...]]
[;keys]
[;offline]

{showfiles | sf} [[workstation#]file]
[;state[;...]]
[;deps[;keys | info | logon]]
[;offline]

Arguments

workstation
Specifies the name of the workstation on which the file exists. The default
is the workstation on which conman is running. Wildcard characters are
permitted.

file Specifies the name of the file. The name must be enclosed in quotes (") if it
contains characters other than the following: alphanumerics, dashes (-),
slashes (/), backslashes (\), and underscores (_). The default is to display
all file dependencies. Wildcard characters are permitted.

state Specifies the state of the file dependencies to be displayed. The default is
to display file dependencies in all states. The states are as follows:

yes File exists and is available.

no File is unavailable, or does not exist.

? Availability is being checked.

<blank>
The file has not yet been checked, or the file was available and
used to satisfy a job or job stream dependency.

Chapter 12. Managing objects in the plan - conman 461

keys Displays a single column list of the objects selected by the command.

deps Displays information in the deps format. Use keys, info, or logon to
modify the display.

offline
Sends the output of the command to the conman output device. For
information about this device, see “Offline output” on page 380.

Results

The output of the command is produced in three formats: standard, keys, and
deps. The arguments keys, info, and logon modify the deps display.

Examples

To display the status of a file dependency for d:\apps\mis\lib\data4, run the
following command:
showfiles d:\apps\mis\lib\data4

To display offline the status of all file dependencies on all workstations in the deps
format, run the following command:
sf @#@;deps;offline

To display the status of all file dependencies on all workstations in the deps
format, run the following command:
sf @#@;deps

A sample output is the following:
(Est) (Est)

Workstation Job Stream SchedTime Job State Pr Start Elapse ReturnCode Dependencies

MASTER#/test/^LFILEJOB^ Dependencies are:
MASTER #LFILEJOB 0600 11/26 ******** READY 10

LFILEJOB HOLD 10 (11/26) ^LFILEJOB^

MASTER#/usr/home/me10_99/`/usr/home/me10_99/bin/parms FILE_JS1` Dependencies are:
MASTER #FILE_JS1 0600 11/26 ******** HOLD 10 (11/26) parms FILE_JS1`

FILE_JS1 HOLD 10 (11/26)

MASTER#/usr/home/me10_99/`/usr/home/me10_99/bin/parms FILE_JOB1` Dependencies are:
MASTER #FILE_JOB1 0600 11/26 ******** READY 10

FILE_JB1 HOLD 10 (11/26) parms FILE_JB1`

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select File.
4. From the Query drop-down list, select a task to monitor files.
5. Click Run to run the monitoring task.

Standard format
Exists The state of the file dependency.

462 IBM Workload Scheduler: User’s Guide and Reference

|
|

File Name
The name of the file.

Keys format
Files are listed with one file on each line. Directory names are not included. Each
file is listed in the following format:
workstation#file

Deps format
Files are listed followed by the dependent jobs and job streams. Jobs are listed in
the standard showjobs format. Job streams are listed in the standard
showschedules format.

Deps;keys format
Jobs and job streams that have file dependencies are listed with one on each line,
in the following format:
workstation#jstream[.job]

Deps;info format
Files are listed, followed by the dependent jobs and job streams. Jobs are listed in
the showjobs;info format. Job streams are listed in the standard showschedules
format.

Deps;logon format
Files are listed followed by the dependent jobs and job streams. Jobs are listed in
the showjobs;logon format. Job streams are listed in the standard showschedules
format.

showjobs
Displays information about jobs.

The displayed information is updated only as long as IBM Workload Scheduler
(batchman) is running. Whether batchman is up or down is confirmed on screen
by the Batchman LIVES or Batchman down message when you issue the conman start
command.

You must have list access to the object being shown if the enListSecChk option
was set to yes on the master domain manager when the production plan was
created or extended.

Syntax

{showjobs | sj} [jobselect]
[;keys | info | step | logon | crit | keys retcod]
[;short | single]
[;offline]
[;showid]

{showjobs | sj} [jobselect]
[;deps[;keys | info | logon]]
[;short | single]
[;offline]
[;showid]
[;props]

Chapter 12. Managing objects in the plan - conman 463

{showjobs | sj} [jobselect |
[workstation#]jobnumber.hhmm]
[;stdlist[;keys]]
[;short | single]
[;offline]
[;showid]
[;props]

Arguments

crit Displays information in the crit format.

deps Displays information in the deps format; that is, the jobs used in follows
dependencies are listed followed by the dependent jobs and job streams.
Jobs are listed in the basic showjobs format. Job streams are listed in the
basic showschedules format. Use "keys", "info", or "logon" to modify the
"deps" display.

hhmm The time the job started. Use this, together with the stdlist and single
arguments, to display a specific instance of the job.

info Displays information in the info format.

Note: When displaying the output for a job, the job definition is not
displayed correctly in USERJOBS and the output conditions are not
displayed. However, the correct information can be seen in the stdlist.

jobnumber
The job number.

jobselect
See “Selecting jobs in commands” on page 386.

keys Displays a single column list of the objects selected by the command.

logon Displays information in the logon format.

offline
Sends the output of the command to the conman output device. For
information about this device, see “Offline output” on page 380.

props Displays the following information about the specified job instance, you
must have display access to the props of the specified job instance being
shown:

General Information

v Job
v Workstation
v Task
v Task Type
v Job Stream
v Job Stream Workstation
v Scheduled Time
v Priority
v Login
v Monitored
v Requires Confirmation
v Interactive

464 IBM Workload Scheduler: User’s Guide and Reference

v Critical

Runtime Information

v Actual Workstation
v Status
v Internal Status
v Not Satisfied Dependencies
v Job Number
v Rerun Options
v Information
v Promoted
v Return Code
v Return Code Mapping Expression
v Successful output conditions related to a SUCC job status
v Other output conditions

Time Information

v Actual Start
v Earliest Start
v Latest Start
v Latest Start Action
v Maximum Duration
v Maximum Duration Action
v Minimum Duration
v Minimum Duration Action
v Critical Latest Start
v Deadline
v Repeat Range
v Actual Duration
v Estimated Duration
v Confidence Interval

Recovery Information

v Action
v Message
v Job Definition
v Workstation
v Retry after
v Number of attempts
v Current attempt
v Run on same workstation

Extra Information
This section shows additional properties specific for shadow jobs
and jobs defined by JSDL. For shadow jobs it contains the
following information:

For distributed shadow jobs:

v Remote Job Scheduled Time

Chapter 12. Managing objects in the plan - conman 465

/

=

=

=

=

v Remote Job
v Remote Job Stream
v Remote Job Stream Workstation

For z/OS shadow jobs:

v Remote Job Scheduled Time
v Remote Job
v Remote Job Workstation
v Remote Job Error Code

For more information, see “How the shadow job status changes
after the bind is established” on page 797.

Note: Information on archived jobs is not retrievable using the
props option.

Note: When displaying the output for a job, the job definition is
not displayed correctly in USERJOBS and the output conditions are
not displayed. However, the correct information can be seen in the
stdlist.

retcod Displays the return code for the job. This argument must be used in
conjunction with the keys argument, for example:
%sj @; keys retcod

short Shortens the display for every and rerun jobs to include only the
following:
v The first iteration
v Jobs in different states
v Exactly matched jobs

Note: This field shows the specific properties if the job is a shadow job
or a job defined by JSDL.

showid
Displays for each job stream the job stream identifier.

single Selects only the parent job in a chain that can include reruns, repetitions,
and recovery jobs. The job must be identified by job number in jobselect.
This is useful with the stdlist option.

stdlist Displays information in the stdlist format. Use the keys argument to
modify the display.

Note: Information on archived jobs is not retrievable using the stdlist
option.

step Displays information in the step format.

workstation
The name of the workstation on which the job runs. Wildcard characters
are permitted.

Comments

If a job fails because the agent is not available, the job is automatically restarted
and set to the READY status, waiting for the agent to connect again. As soon as
the agent connects again, the job is submitted.

466 IBM Workload Scheduler: User’s Guide and Reference

Results

The output of the showjobs command is produced in eight formats: standard,
keys, info, step, logon, deps, crit, and stdlist. The keys, info, crit, and logon
arguments modify the displays.

Examples

To display the status of all jobs in the acctg job stream on workstation site3, you
can run the showjobs command in one of these two formats:
showjobs site3#acctg.@

or:
showjobs site3#acctg

To display the status of job JBA belonging to job stream TEST1 on workstation CPUA,
on which you are running conman, and ask to show the job stream identifier for
the job stream, run the following command:
sj CPUA#TEST1(0900 02/19/15).JBA

A sample output for this command is the following:
Workstation Job Stream SchedTime Job State Pr Start Elapse ReturnCode Dependencies

CPUA #TEST1 0900 02/19 *** HOLD 0(02/19) {02/20/15}; -TEST-
JBA HOLD 66(14:30) J2(0600 02/24/15).JB1

v The at dependency is shown as (14:30) in the Start column and the follows
dependency from the job J2(0600 02/24/15).JB1 for job JOBA is shown in the
Dependencies column.

v In the Dependencies column the date enclosed in braces, {02/20/15}, indicates
that the job stream instance has been carried forward and the date indicates the
day when the job stream instance was added to the production plan for the first
time.

The following output example displays the status of all jobs, including
predecessors and, in particular, job, JOBVACS, defined in job stream, JSHOLIDAYS1,
that has a conditional dependency on predecessor job, JOBCHECKCALC, that specifies
that JOBVACS runs if JOBCHECKCAL goes into either ABEND or FAIL state:
S_MDM #JSHOLIDAYS 0600 09/23 ********************************** READY 10 (00:01)

(S_AGT#)JOBCHECKCAL HOLD 19
(S_AGT#)JOBVACS HOLD 10

JOBCHECKCAL IF ABEND | FAIL

To display the status of jobs belonging to job stream JSDOC on workstation site3,
on which you are running conman, and ask to show the job stream identifier for
the job stream, run the following command:
%sj JSDOC.@;showid

A sample output for this command is the following:
Workstation Job Stream SchedTime Job State Pr Start Elapse ReturnCode Dependencies

site3 #JSDOCOM 0600 11/26 *** SUCC 10 11/26 00:01 {0AAAAAAAAAAAACRZ}
JDOC SUCC 10 11/26 00:01 0 #J25565

The job stream identifier 0AAAAAAAAAAAACRZ for job stream JDOCOM is shown in the
Dependencies column.

Chapter 12. Managing objects in the plan - conman 467

Note: The time or date displayed in the Start column is converted in the time zone
set on the workstation where the job stream is to run.

To display the status of jobs belonging to job stream JSDOCOM on workstation site3,
and ask to show the information about the user ID under which the job runs, run
the following command:
sj site3#JSDOCOM.@;logon

A sample output for this command is the following:
Workstation Job Stream SchedTime Job State Job# Logon ReturnCode
site3 #JSDOCOM 0600 11/26

JDOCOM SUCC #J25565 me10_99 0

To display the status of all jobs in the HOLD state on all workstations, in the deps
format, run the following command:
sj @#@.@+state=hold;deps

a sample output is the following:
Workstation Job Stream SchedTime Job State Pr Start Elapse RetCode Dependencies

CPUA#JS2.JOBB Dependencies are:

CPUA #JS21 0900 02/19 ***** HOLD 0(02/19) {02/20/15}; -TEST- JOBA HOLD 66(14:30)
JS22(0600 02/24/15).JOBB

CPUA#JS25.JOBC Dependencies are:

CPUA #JS25 0600 02/24 ***** HOLD 10(02/24) {02/20/15}
jobaa HOLD 10(02/24)(00:01) TEST1; JOBC TEST2; JOB1

JS18(0600 02/24/15).@

CPUA#JS25.JOB1 Dependencies are:

CPUA #JS25 0600 02/24 ***** HOLD 10(02/24) {02/20/15}
JOBC HOLD 10(02/24)(00:01) JOB1
jobaa HOLD 10(02/24)(00:01) TEST1; JOBC TEST2; JOB1

JS18(0600 02/24/15).@

To display the log from the standard list files for the job JOBC in the job stream
JS25(0600 09/24/15) on workstation CPUA, running in a UNIX environment, run
the following command:
sj CPUA#JS25 (0600 09/24/15).JOBC;stdlist

The output is the following:
===
= JOB : CPUA#JS25[(0600 09/24/15),(0AAAAAAAAAAAABQM)].JOBC
= USER : mdm93mdm
= JCLFILE : ls
= TWSRCMAP :
= AGENT : CPUA
= Job Number: 987278608
= Thu Sep 24 17:06:27 CEST 2015
===
AE
CAP
IMShared
InstallationManager
tsamp

468 IBM Workload Scheduler: User’s Guide and Reference

TWA
WebSphere

===
= Exit Status : 0
= SC STATUS_OK : true
= OC OUTPUTCOND2 : false
= OC OUTPUTCOND1 : true= System Time (Seconds) : 0
Elapsed Time (hh:mm:ss) : 00:00:01
= User Time (Seconds) : 0
= Job CPU usage (ms) : 20
= Job Memory usage (kb) : 1272
= Thu Sep 24 15:16:25 CEST 2015

where:

Exit Status
Is the status of the job when it completed.

OC <output_condition_name>
The result of the evaluation of the output conditions that when satisfied,
determine which successor job runs. Output conditions that are satisfied
display true, and output conditions that are not satisfied display false.
Successful output conditions are represented by the sc flag in the ;stdlist
output.

System Time
Is the time the kernel system spent for the job.

Elapsed Time
Is the elapsed time for the job.

User Time
Is the time the system user spent for the job.

Note: The System Time and User Time fields are used only in UNIX. Their values
in Windows are always set to 0. This is because, in Windows, the joblnch.exe
process runs in a very short time, which can be considered null.

For workstations running an agent version earlier than 9.3, the Elapsed Time is
expressed in Hours: Minutes and is calculated as the execution time rounded up
to one minute, regardless of seconds. For example, an execution time of 4 minutes
20 seconds would be rounded up to 5 minutes, or an execution time of 10 minutes
would be rounded up to 11 minutes. For workstation running agent version v9.3
or later, the Elapsed Time is expressed in Hours: Minutes: Seconds, however, if
the workstation is under a master domain manager version earlier than 9.3, only
Hours: Minutes are shown by showjob.

To display the properties of the job with job number 227137038, run the following
command:
sj 227137038;props

A sample output for this command is the following:
sj SMA1964199;props
General Information
Job = JOBAUTO
Workstation = NC005090_1
Task =
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle=

"http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle">

Chapter 12. Managing objects in the plan - conman 469

|
|
|
|
|
|
|
|

=
=
=
=
=
=
=
=
=

<jsdl:application name="executable">
<jsdle:executable interactive="false">
<jsdle:script>ping -n 180 localhost</jsdle:script>
</jsdle:executable>
</jsdl:application>
</jsdl:jobDefinition>
Task Type = executable
Job Stream = SMA1964199
Job Stream Workstation = NC005090_1
Scheduled Time = 11/20/2014 16:57:00 TZ CET
Priority = 50
Login =
Monitored = No
Requires Confirmation = No
Interactive = No
Critical = No

Runtime Information
Status = Running
Internal Status = EXEC
Not Satisfied Dependencies = 0
Job Number = 227137038
Rerun Options =
Information =
Promoted = No
Return Code =
Success Output Conditions
STATUS_OK = true “RC=0”
Other Output Conditions
STATUS_ERR1 = false “RC=2”
STATUS_ERR2 = false “RC=3”

Time Information
Actual Start = 11/20/2014 16:57:36 TZ CET
Earliest Start =
Latest Start =
Latest Start Action =
Maximum Duration =
Maximum Duration Action =
Minimum Duration =
Minimum Duration Action =
Critical Latest Start =
Deadline =
Repeat Range =
Actual Duration =
Estimated Duration = 00:03:02 (hh:mm:ss)
Confidence Interval = 00:00:00 (hh:mm:ss)

Recovery Information
Action = Stop
Message =
Job Definition =
Workstation =
Retry after =
Number of attempts=
Current attempt =
Run on same workstation =

Extra Information
PID = 3132

For an explanation of the Estimated Duration and Confidence Interval job
properties, see “The logman command” on page 102.

The following example displays the status of the job dbseload with a return code
of 7 and a state of SUCCESSFUL:

470 IBM Workload Scheduler: User’s Guide and Reference

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

$conman sj workstation#DAILY_DB_LOAD
##
Licensed Materials - Property of IBM* and HCL**
5698-WSH
(C) Copyright IBM Corp. 1998, 2016 All rights reserved.
(C) Copyright HCL Technologies Ltd. 2016 All rights reserved
* Trademark of International Business Machines
** Trademark of HCL Technologies Limited
###

Installed for user "tme10_99".
Locale LANG set to the following: "en"
Scheduled for (Exp) 02/20/16 (#35) on CPUA.
Batchman LIVES. Limit:50,Fence:0,Audit Level:0
sj workstation#DAILY_DB_LOAD
(Est) (Est)
CPU Schedule Job State Pr Start
Elapse Dependencies Return Code
WORKSTATION #DAILY_DB_LOAD ****************************** SUCC 10 22:11
00:04
DATASPLT SUCC 10 22:11
00:01 #J17922 0
DATAMRGE ABEND 10 22:12
00:01 #J17924 1
CHCKMRGE SUCC 10 22:12
00:01 #J17926 0
DATACLNS SUCC 10 22:12
00:01 #J17932 0
DATARMRG SUCC 10 22:13
00:01 #J18704 0
DBSELOAD SUCC 10 22:13
00:01 #J18706 7
DATAREPT SUCC 10 22:13
00:01 #J18712 0
DATARTRN SUCC 10 22:14
00:01 #J18714 0
$

The following example displays the return code for a specific job named
workstation#daily_db_load.dbseload:
$ conman sj workstation#daily_db_load.dbseload\;keys\;retcod

##
Licensed Materials - Property of IBM* and HCL**
5698-WSH
(C) Copyright IBM Corp. 1998, 2016 All rights reserved.
(C) Copyright HCL Technologies Ltd. 2016 All rights reserved
* Trademark of International Business Machines
** Trademark of HCL Technologies Limited
###

Installed for user "tme10_99".
Locale LANG set to the following: "en"
Scheduled for (Exp) 02/20/16 (#35) on CPUA.
Batchman LIVES. Limit:50,Fence:0,Audit Level:0
sj workstation#daily_db_load.dbseload;keys;retcod 8
$

The retcod feature when integrated into a script can become quite powerful.

The following example shows a job stream containing a job (named
RE_ACCOUNTS_JOB) which ends in ABEND state. After the parent
RE_ACCOUNTS_JOB job fails, the recovery job starts. When the recovery job
completes in success state, the parent job waits a minute, then reruns. The
sequence is repeated for three times, if the parent job keeps failing. If the parent
job completes successfully, the rerun sequence is interrupted at the first successful
run of the parent job:

Chapter 12. Managing objects in the plan - conman 471

=
=
=
=
=
=
=

SCHEDULE NC053009#RE_JS_04
ON RUNCYCLE RC1 "FREQ=DAILY;INTERVAL=1"
:
NC053009_1#JOB_2
FOLLOWS RE_ACCOUNTS_JOB
NC053009_1#RE_ACCOUNTS_JOB
END

NC053009_1#RE_ACCOUNTS_JOB
DOCOMMAND "sleep 60; exit 5"
STREAMLOGON bankmngr
TASKTYPE UNIX
RECOVERY RERUN REPEATEVERY 0001 FOR 3
AFTER NC053009_1#RECOVERY_JOB

The following is the output of the sj command at the end of the sequence:
NC053009 #RE_JS_04 0000 01/24 ***************************************STUCK 10 17:40

(NC053009_1#)JOB_2 HOLD 10 RE_ACCOUNTS_JOB
(NC053009_1#)RE_ACCOUNTS_JOB ABEND 10 17:40 00:01 5 #J277948077

>>recovery (NC053009_1#)RECOVERY_JOB SUCC 10 17:42 00:01 0 #J277948082
>>rerun 1 of 3 (NC053009_1#)RE_ACCOUNTS_JOB ABEND 10 17:44 00:01 5 #J277948085
>>recovery (NC053009_1#)RECOVERY_JOB SUCC 10 17:45 00:01 0 #J277948087
>>rerun 2 of 3 (NC053009_1#)RE_ACCOUNTS_JOB ABEND 10 17:47 00:01 5 #J277948089
>>recovery (NC053009_1#)RECOVERY_JOB SUCC 10 17:48 00:01 0 #J277948090
>>rerun 3 of 3 (NC053009_1#)RE_ACCOUNTS_JOB ABEND 10 17:50 00:01 5 #J277948092

[Recovery]

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Job.
4. From the Query drop-down list, select All Jobs in plan or another task to

monitor jobs.
5. Click Run to run the monitoring task.

Standard format
CPU The workstation on which the job runs.

Schedule
The name of the job stream.

SchedTime
The time and date when the job was scheduled to run in the plan.

Job The name of the job. The following notation may precede a job name:

>> rerun as
A job that was rerun with the rerun command, or as a result of
automatic recovery.

>> rerun rerun_number of rerun_total
A job that is part of a rerun sequence and its position within the
sequence

>> rerun step
A job that was rerun with the rerun ;step command.

>> every run
The second and subsequent runs of an every job.

472 IBM Workload Scheduler: User’s Guide and Reference

=
=
=
=
=
=
=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=
=
=

=

|

|
|

|

|

|
|

|

=
=
=

>> recovery
The run of a recovery job.

State The state of the job or job stream. Job states are as follows:

ABEND
The job ended with a non-zero exit code.

ABENP
An abend confirmation was received, but the job is not completed.

ADD The job is being submitted.

CANCL
For internetwork dependencies only. The remote job or job stream
has been cancelled.

DONE
The job completed in an unknown state.

ERROR
For internetwork dependencies only, an error occurred while
checking for the remote status.

EXEC The job is running.

EXTRN
For internetwork dependencies only, the status is unknown. An
error occurred, a rerun action was just performed on the job in the
EXTERNAL job stream, or the remote job or job stream does not exist.

FAIL Unable to launch the job.

FENCE
The priority of the job is below the fence.

HOLD
The job is awaiting dependency resolution.

INTRO
The job is introduced for launching by the system.

PEND The job completed, and is awaiting confirmation.

READY
The job is ready to launch, and all dependencies are resolved.

SCHED
The at time set for the job has not been reached.

SUCC The job completed with an exit code of zero.

SUCCP
A SUCC confirmation was received, but the job is not completed.

SUPPR
The job is suppressed because the condition dependencies
associated to its predecessors are not satisfied.

WAIT The job is in the WAIT state (extended agent).

Job stream states are as follows:

ABEND
The job stream ended with a nonzero exit code.

ADD The job stream was added with operator intervention.

Chapter 12. Managing objects in the plan - conman 473

CANCELP
The job stream is pending cancellation. Cancellation is deferred
until all of the dependencies, including an at time, are resolved.

ERROR
For internetwork dependencies only, an error occurred while
checking for the remote status.

EXEC The job stream is running.

EXTRN
For internetwork dependencies only. This is the state of the
EXTERNAL job stream containing jobs referencing to jobs or job
streams in the remote network.

HOLD
The job stream is awaiting dependency resolution.

READY
The job stream is ready to launch and all dependencies are
resolved.

STUCK
Execution of the job stream was interrupted. No jobs are launched
without operator intervention.

SUCC The job stream completed successfully.

SUPPR
The job stream is suppressed because the condition dependencies
associated to its predecessors are not satisfied.

Pr The priority of the job stream or job. A plus sign (+) preceding the priority
means the job has been launched.

(Est)Start
The start time of the job stream or job. Parentheses indicate an estimate of
the start time. If the command is performed on the same day when the job
is scheduled to run, the Start parameter displays a time as (Est)Start. If the
command is performed on a day different from the day when the job is
scheduled to run, the Start parameter displays a date as (Est)Start. For
example if you have the following job whose start time occurs on the same
day when the job is scheduled to run:
SCHEDULE MASTERB1#JS_B
ON RUNCYCLE RULE1 "FREQ=DAILY;"
AT 1700
:
MASTERB1#JOB1
AT 1800
END

You receive the following output:
%sj @#@

(Est) (Est)
CPU Schedule SchedTime Job State Pr Start Elapse RetCode Deps
MASTERB1#JS_B 1700 08/18 ***** HOLD 10(17:00)

JOB1 HOLD 10(18:00)

For example if you have the following job whose start time occurs on a
day different from the day when the job is scheduled to run:

474 IBM Workload Scheduler: User’s Guide and Reference

SCHEDULE MASTERB1#JS_A
ON RUNCYCLE RULE1 "FREQ=DAILY;"
AT 0400
:
MASTERB1#JOB_A
AT 0500
END

You receive the following output:
%sj @#@

(Est) (Est)
CPU Schedule SchedTime Job State Pr Start Elapse RetCode Deps
MASTERB1#JS_A 0400 08/19 ***** HOLD 10(08/19)

JOB_A HOLD 10(08/19)

(Est)Elapse
The run time of the job stream or job. Parentheses indicate an estimate
based on logged statistics.

dependencies
A list of job dependencies and comments. Any combination of the
following can be listed:
v For a follows dependency, a job stream or job name is displayed.

If the job or job stream is a pending predecessor, its name is followed by
a [P].
In case of an orphaned dependency an [O] is displayed.
For conditional dependencies, the name of the predecessor job or job
stream is displayed followed by one or more output conditions in the
format, IF <condition_name> ... where condition_name can represent the
execution status of the predecessor job or job stream, the job or job
stream status, or other conditions based on the output or outcome of the
predecessor job. When there is more than one condition specified, the
conditions are separated by the pipe (|) symbol. The following is what
appears in the showjob output in the Dependencies column for a
predecessor job, JOBL1, with several output conditions set on it.
Whichever condition is satisfied determines which successor job runs:
JOBL1 IF EXEC

| STATUS_OK | STATUS_ERR12

When more than one output condition is aggregated or joined, for
example, when 2 conditions out of 2 need to be satisfied before the
successor job can run, then the output is displayed as follows:

JOIN MYJOIN 2 OF
JOBL1 IF EXEC
JOBL2 IF ABEND

For more information on pending predecessors and orphaned
dependencies refer to “Managing external follows dependencies for jobs
and job streams” on page 67.

v For an opens dependency, the file name is displayed. If the file resides
on an extended agent and its name is longer than 25 characters, only the
last 25 characters are displayed.

v For a needs dependency, a resource name enclosed in hyphens (-) is
displayed. If the number of units requested is greater than one, the
number is displayed before the first hyphen.

v For a deadline time, the time preceded by an angle bracket (<) is
displayed.

Chapter 12. Managing objects in the plan - conman 475

v For an every rate, the repetition rate preceded by an ampersand (&) is
displayed.

v For an until time, the time preceded by an angle bracket (<) is
displayed.

v For a maximum duration time that is exceeded, [MaxDurationExceeded]
is displayed in addition to the setting maxdur=hhh:mm.

v For a maximum duration time that is exceeded, and for which the
onmaxdur action is set to Kill, [KillSubmitted] is displayed.

v For a maximum duration time that is exceeded, and for which the
onmaxdur action is set to Continue, [Continue] is displayed.

v For a minimum duration time that is not reached and for which a job
completes with success, [MinDurationNotReached] is displayed in
addition to the setting mindur=hhh:mm.

v For a minimum duration time that is not reached, and for which the
onmindur action is set to Continue, [Continue] is displayed.

v For a minimum duration time that is not reached, and for which the
onmindur action is set to Abend, [Abended] is displayed.

v For a minimum duration time that is not reached, and for which the
onmindur action is set to Confirm, [ConfirmSubmitted] is displayed.

v For a prompt dependency, the prompt number is displayed in the format
#num. For global prompts, the prompt name follows in parentheses.

v For running jobs, the process identification number (PID) is displayed in
the format #Jnnnnn.

v Jobs submitted on UNIX using the IBM Workload Scheduler at and
batch commands are labeled [Userjcl].

v When reporting time dependencies the showjobs command shows in
the Start column:
– Only the time hh:mm if the day when the time dependencies is set

matches with the day when the showjobs command is run.
– Only the date MM/DD if the day when the time dependencies is set

does not match with the day when the showjobs command is run.
v Cancelled jobs are labeled [Cancelled].
v Jobs cancelled with ;pend option are labeled [Cancel Pend].
v Jobs with expired until times, including jobs cancelled with ;pend

option, are labeled [Until].
v [Recovery] means that operation intervention is required.
v [Confirmed] means that confirmation is required because the job was

scheduled using the confirm keyword.
v [Script] applies to end-to-end networks only; it means that this job has a

centralized script and that IBM Workload Scheduler for z/OS has not
yet downloaded it to the agent.

In the Dependencies column is also listed the name of the actual
workstation where the job ran. This detail is available only if the job has
started and has run on a pool workstation. This information can be useful,
for example when you need to determine your license consumption and
therefore need to know on which workstation in the pool the job actually
ran. For more information about licensing, see the section about license
management in IBM License Metric Tool in Administration Guide.

476 IBM Workload Scheduler: User’s Guide and Reference

/
/
/
/
/
/
/

Keys format
Job names are listed one on each line in the following format:
workstation#jstream hhmm mm/dd.job

for example:
CPU Schedule SchedTime Job State Pr Start Elapse RetCode Deps

MYCPU+#SCHED_F+ 0600 03/04 ******* HOLD 55(03/04) [03/04/06]; #33
(M235062+#)JOBMDM HOLD 30(03/04) #1(PRMT3);-16 JOBSLOTS-

MYCPU+#SCHED_F+ 1010 03/04 ******* HOLD 55(03/04) [03/04/06]; #34
(M235062+#)JOBMDM HOLD 30(03/04) #1(PRMT3);-16 JOBSLOTS-

Info format
CPU The workstation on which the job runs.

Schedule
The name of the job stream.

SchedTime
The time and date when the job was scheduled to run in the plan.

Job The name of the job. The following notation might precede a job name:

>> rerun as
A job that was rerun with the rerun command, or as a result of
automatic recovery.

>> rerun rerun_number of rerun_total
A job that is part of a rerun sequence and its position within the
sequence

>> rerun step
A job that was rerun with the rerun ;step command.

>> every run
The second and subsequent runs of an every job.

>> recovery
The run of a recovery job.

Job File
The name of the script or executable file of the job. Long file names might
wrap, causing incorrect paging. To avoid this, pipe the output to more.

Opt The job recovery option, if any. The recovery options are RE for rerun, CO
for continue, and ST for stop.

Job The name of the recovery job, if any.

Prompt
The number of the recovery prompt, if any.

For example:
conman "sj;info | more

produces a sample output like the following:
--------Restart---------
CPU Schedule SchedTime Job JobFile Opt Job Prompt
M235062+#SCHED_22 1010 03/06

JOBMDM /usr/acct/scripts/gl1
(B236153+#)JOB_FTA echo job12

M235062+#SCHED_22 0600 03/07

Chapter 12. Managing objects in the plan - conman 477

=
=
=

JOBMDM /usr/acct/scripts/gl1
(B236153+#)JOB_FTA echo job12

M235062+#FINAL 2359 02/13
STARAPPSERVER /opt/IBM/TWA/TWS/../wastools/startWas.sh

CO
MAKEPLAN /opt/IBM/TWA/TWS/MakePlan TWSRCMAP:(RC=0) OR (RC=4)
SWITCHPLAN /opt/IBM/TWA/TWS/SwitchPlan

M235062+#FINALPOSTREPORTS 2359 02/13
CHECKSYNC /opt/IBM/TWA/TWS/CheckSync
CREATEPOSTREPORTS /opt/IBM/TWA/TWS/CreatePostReports

CO
UPDATESTATS /opt/IBM/TWA/TWS/UpdateStats

CO
M235062+#SCHED12 1010 03/06

JOBMDM /usr/acct/scripts/gl1
(B236153+#)JOB_FTA echo job12

The following example displays the status of condition dependencies set on job,
JOB_WAGES, in job stream, PAYROLL. The output conditions are displayed with "sc" to
identify successful conditions and "oc" to identify other output conditions. For
each condition name and value pair, a value is assigned to identify whether the
condition was satisfied true, not satisfied false or not yet evaluated N/A. :
%sj RENOIR#PAYROLL.WAGES;info
-------- Restart ---------
Workstation Job Stream SchedTime Job JobFile Opt Job Prompt#
RENOIR #PAYROLL 0000 08/10

JOB_WAGES dir
sc: STATUS_OK true “RC=0”

oc: STATUS_ERR1 false “RC=2”
oc: STATUS_ERR2 false “RC=3”

Step format
This format is not supported in Windows.

CPU The workstation on which the job runs.

Schedule
The name of the job stream.

SchedTime
The time and date when the job was scheduled to run in the plan.

Job The name of the job. The following notation might precede a job name:

>> rerun as
A job that was rerun with the rerun command, or as a result of
automatic recovery.

>> rerun rerun_number of rerun_total
A job that is part of a rerun sequence and its position within the
sequence

>> repeated as
The second and subsequent runs of an every job.

State The state of the job or job stream. See “Standard Format” for information
about state.

Return code
The return code of the job.

Job# The process identification number displayed as #Jnnnnn.

Step A list of descendant processes that are associated with the job. For
extended agent jobs, only host processes are listed.

478 IBM Workload Scheduler: User’s Guide and Reference

=
=
=

Logon format
CPU The workstation on which the job runs.

Schedule
The name of the job stream.

SchedTime
The time and date when the job was scheduled to run in the plan.

Job The name of the job. The following notation might precede a job name:

>> rerun as
A job that was rerun with the rerun command, or as a result of
automatic recovery.

>> rerun rerun_number of rerun_total
A job that is part of a rerun sequence and its position within the
sequence

>> repeated as
The second and subsequent runs of an every job.

State The state of the job or job stream. See “Standard Format” for information
about state.

Return code
The return code of the job.

Job# The process identification number displayed as #Jnnnnn.

Logon The user name under which the job runs.

On Windows operating systems you can have one of the following
formats:

user name
Where username is the name of the Windows user.

domain\username
Where domain is the Windows domain of the user and the username
is the name of the Windows user.

username@internet_domain
Where username@internet_domain is the name of a system user in an
e-mail address format. The username is followed by the "at sign"
followed by the name of the Internet domain with which the user
is associated.

Note: Insert the escape character '\' before the '@' character in the
username@internet_domain value in the logon field. For example if
you are using the administrator@bvt.com user in the logon field,
use the following syntax:
..................... ; logon=administrator\@bvt.com

Stdlist format
A standard list file is created automatically by jobmon in Windows or jobman in
UNIX, for each job that jobmon and jobman launches. You can display the
contents of the standard list files using conman. A standard list file contains:
v Header and trailer banners.
v Echoed commands.
v The stdout output of the job.

Chapter 12. Managing objects in the plan - conman 479

=
=
=

v The stderr output of the job.

To specify a particular date format to be used in the standard list files, change the
IBM Workload Scheduler date format before creating the standard list files. You do
this by modifying the date locale format.

Depending on your environment, change the date locale format by performing the
steps listed below:
v In UNIX, set the LANG variable in the environment when netman starts. If the

LANG variable is not set, the operating system locale is set by default to "C".
v In Windows, perform the following steps:

1. Go to Control Panel→Regional Options and set your locale (location).
2. Right-click My Computer, go to Properties, click Advanced, go to

Environment Variables and set the LANG variable as a system variable.
3. Shut down and restart the system.

The standard list files for the selected jobs are displayed.

Stdlist;keys format
The names of the standard list files for the selected jobs are listed, one on each
line.

Crit format
CPU The workstation on which the job runs.

Schedule
The name of the job stream.

SchedTime
The time and date when the job was scheduled to run in the plan.

Job The name of the job. The following notation might precede a job name:

>> rerun as
A job that was rerun with the rerun command, or as a result of
automatic recovery.

>> rerun rerun_number of rerun_total
A job that is part of a rerun sequence and its position within the
sequence

>> repeated as
The second and subsequent runs of an every job.

State The state of the job or job stream. See “Standard Format” for information
about state.

Pr The priority of the job stream or job. A plus sign (+) preceding the priority
means the job has been launched.

(Est)Start
The start time of the job stream or job. Parentheses indicate an estimate of
the start time. If the start time is more than 24 hours in the past or future,
the date is listed instead of the time.

(Est)Elapse
The run time of the job stream or job. Parentheses indicate an estimate
based on logged statistics.

CP Indicates if the job is flagged as critical (C) and/or promoted (P).

480 IBM Workload Scheduler: User’s Guide and Reference

=
=
=

CritStart
The latest time a job can start without impacting the deadlines of mission
critical successors.

For example, the result of the following generic command:
%sj @#@;crit

is:
(Est) (Est) Crit

CPU Schedule SchedTime Job State Pr Start Elapse CP Start

MYCPU_F+#JSA 1600 03/05 ******** HOLD 10
JOBA1 HOLD 10 CP 1759 03/05
JOBA2 HOLD 10 1758 03/05
JOBA3 HOLD 10 1757 03/05
JOBA4 HOLD 10 C 1659 03/05

Note that:
v The C flag applies only to jobs defined as critical in their job stream definition. It

is set at plan or submit time.
v The P flag applies to both critical jobs and to their predecessors (which are jobs

that are not defined as critical but might nonetheless impact the timely
completion of a successor critical job). It is set at execution time if the job was
promoted.

v Both critical jobs and critical predecessors have a critical start time.
The scheduler calculates the critical start time of a critical job by subtracting its
estimated duration from its deadline. It calculates the critical start time of a
critical predecessor by subtracting its estimated duration from the critical start
time of its next successor. Within a critical network the scheduler calculates the
critical start time of the critical job first and then works backwards along the
chain of predecessors. These calculations are reiterated as many times as
necessary until the critical job has run.

Deps format
Jobs used in follows dependencies are listed followed by the dependent jobs and
job streams. Jobs are listed in the standard showjobs format. Job streams are listed
in the standard showschedules format.

Deps;keys format
Jobs and job streams that have follows dependencies are listed, one on each line.

Deps;info format
Jobs used in follows dependencies are listed, followed by the dependent jobs and
job streams. Jobs are listed in the showjobs;info format. Job streams are listed in
the standard showschedules format.

Deps;logon format
Jobs used in follows dependencies are listed, followed by the dependent jobs and
job streams. Jobs are listed in the showjobs;logon format. Job streams are listed in
the standard showschedules format.

showprompts
Displays information about prompts.

Chapter 12. Managing objects in the plan - conman 481

The displayed information is updated only as long as IBM Workload Scheduler
(batchman) is running. Whether batchman is up or down is confirmed on screen
by the Batchman LIVES or Batchman down message when you issue the conman start
command.

You must have list access to the object being shown if the enListSecChk option
was set to yes on the master domain manager when the production plan was
created or extended.

Syntax

{showprompts | sp} [promptselect]
[;keys]
[;offline]

{showprompts | sp} [promptselect]
[;deps[;keys | info | logon]][;offline]

Arguments

promptselect
[promptname | [workstation#]msgnum][;state[;...]]

promptname
Specifies the name of a global prompt. Wildcard characters are
permitted.

workstation
Specifies the name of the workstation on which an unnamed
prompt is issued. The default is the workstation on which conman
is running.

msgnum
Specifies the message number of an unnamed prompt.

state Specifies the state of prompts to be displayed. The states are as
follows:

YES The prompt was replied to with y.

NO The prompt was replied to with n.

ASKED
The prompt was issued, but no reply was given.

INACT
The prompt has not been issued.

keys Displays a single column list of the objects selected by the command.

deps Displays information in the deps format. Use keys, info, or logon to
modify the display.

info Displays information in the info format.

logon Displays information in the logon format.

offline
Sends the output of the command to the conman output device. For
information about this device, see “Offline output” on page 380.

Note: Prompt numbers assigned to both global and local prompts change when
the production plan is extended.

482 IBM Workload Scheduler: User’s Guide and Reference

Results

The output of the command is produced in three formats: standard, keys, and
deps. The arguments keys, info, and logon modify the deps display.

Examples

To display the status of all prompt issued on the workstation on which you are
running conman, run the following command:
showprompts

a sample is the following:
State Message or Prompt
ASKED 1(PRMT3) !continue?
INACT 3(CPUA#SCHED_12[(0600 03/12/06),

(0AAAAAAAAAAAABST)]) Are you ready to process job1?
INACT 5(CPUA#SCHED_12[(1010 03/12/06),(0AAAAAAAAAAAABSU)])

Are you ready to process job2?
INACT 7(CPUA#SCHED_22[(0600 03/12/06),(0AAAAAAAAAAAABTR)])

Are you ready to process job3?

To display the status of all mis prompts that have been issued, in the deps format,
run the following command:
sp mis@;asked;deps

To display the status of prompt number 7 on workstation CPUA, run the following
command:
sp CPUA#7

The output of the command is:
INACT 7(CPUA#SCHED_22[(0600 03/12/06),(0AAAAAAAAAAAABTR)])

Are you ready to process job3?

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Prompt.
4. In the Query drop-down list, select All Prompts in plan, which will list all

prompts regardless of their status, or create and select another task.

Standard format
State The state of the prompt.

Message or Prompt
For named prompts, the message number, the name, and the text of the
prompt. For unnamed prompts, the message number, the name of the job
or job stream, and the text of the prompt.

Keys format
The prompts are listed one on each line. Named prompts are listed with their
message numbers and names. Unnamed prompts are listed with their message
numbers, and the names of the jobs or job streams in which they appear as
dependencies.

Chapter 12. Managing objects in the plan - conman 483

|
|

Deps format
Prompts used as dependencies are listed, followed by the dependent jobs and job
streams. Jobs are listed in the standard showjobs format. Job streams are listed in
the standard showschedules format.

Deps;keys format
Jobs and job streams that have prompt dependencies are listed one on each line.

Deps;info format
Prompts used as dependencies are listed, followed by the dependent jobs and job
streams. Jobs are listed in the showjobs;info format. Job streams are listed in the
standard showschedules format.

Deps;logon format
Prompts used as dependencies are listed, followed by the dependent jobs and job
streams. Jobs are listed in the showjobs;logon format. Job streams are listed in the
standard showschedules format.

showresources
Displays information about resources.

The displayed information is updated only as long as IBM Workload Scheduler
(batchman) is running. Whether batchman is up or down is confirmed on screen
by the Batchman LIVES or Batchman down message when you issue the conman start
command.

You must have list access to the object being shown if the enListSecChk option
was set to yes on the master domain manager when the production plan was
created or extended.

Syntax

{showresources | sr} [[workstation#]resourcename]
[;keys]
[;offline]

{showresources | sr} [[workstation#]resourcename]
[;deps[;keys | info | logon]]
[;offline]

Arguments

workstation
Specifies the name of the workstation on which the resource is defined.
The default is the workstation on which conman is running.

resourcename
Specifies the name of the resource. Wildcard characters are permitted.

keys Displays a single column list of the objects selected by the command.

deps Displays information in the deps format. Use keys, info, or logon to
modify the display.

info Displays information in the info format.

logon Displays information in the logon format.

484 IBM Workload Scheduler: User’s Guide and Reference

offline
Sends the output of the command to the conman output device. For
information about this device, see “Offline output” on page 380.

Results

The output of the command is produced in three formats: standard, keys, and
deps. The arguments keys, info, and logon modify the deps display.

Examples

To display information about all resources on the workstation on which you are
running conman, run the following command:
showresources

A sample output is:
CPU#Resource Total Available Qty UsedBy
CPUA #JOBSLOTS 16 16 No holders of this resource

To display information about the jobslots resource on workstation CPUA in the
deps format, run the following command:
sr CPUA#JOBSLOTS;deps

A sample output is the following:
(Est) (Est)

Workstation Job Stream SchedTime Job State Pr Start Elapse RetCode Dependencies

CPUA #JOBSLOTS Dependencies are:

FTAA #SCHED_F+ 0600 03/04 ****** HOLD 55(03/04) [03/04/06];#33
(CPUA#)JOBMDM HOLD 30(03/04) #1(PRMT3);-16 JOBSLOTS-

FTAA #SCHED_F+ 1010 03/04 ****** HOLD 55(03/04) [03/04/06];#34
(CPUA#)JOBMDM HOLD 30(03/04) #1(PRMT3);-16 JOBSLOTS-

FTAA #SCHED_F+ 0600 03/05 ****** HOLD 55(03/05) [03/04/06];#35
(CPUA#)JOBMDM HOLD 30(03/05) #1(PRMT3);-16 JOBSLOTS-

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the Welcome page, select Monitor your workload, or in the navigation bar

at the top of the page, click System Status and Health > Workload Monitoring
> Monitor Workload.

2. Select an engine.
3. In Object Type, select Resource.
4. From the Query drop-down list, select All Resources in plan or another task to

monitor resources.
5. Click Run to run the monitoring task.

Standard format
CPU The workstation on which the resource is defined.

Resource
The name of the resource.

Chapter 12. Managing objects in the plan - conman 485

|
|
|

Total The total number of defined resource units.

Available
The number of resource units that have not been allocated.

Qty The number of resource units allocated to a job or job stream.

Used By
The name of the job or job stream.

Keys format
The resources are listed one on each line.

Deps format
Resources used as dependencies are listed, followed by the dependent jobs and job
streams. Jobs are listed in the standard showjobs format. Job streams are listed in
the standard showschedules format.

Deps;keys format
Jobs and job streams that have resource dependencies are listed one on each line.

Deps;info format
Resources used as dependencies are listed, followed by the dependent jobs and job
streams. Jobs are listed in the showjobs;info format. Job streams are listed in the
standard showschedules format.

Deps;logon format
Resources used as dependencies are listed, followed by the dependent jobs and job
streams. Jobs are listed in the showjobs;logon format. Job streams are listed in the
standard showschedules format.

showschedules
Displays information about job streams.

The displayed information is updated only as long as IBM Workload Scheduler
(batchman) is running. Whether batchman is up or down is confirmed on screen
by the Batchman LIVES or Batchman down message when you issue the conman start
command.

You must have list access to the object being shown if the enListSecChk option
was set to yes on the master domain manager when the production plan was
created or extended.

Syntax

{showscheds | ss} [jstreamselect]
[;keys]
[;offline]
[;showid]

{showscheds | ss} [jstreamselect]
[;deps[;keys | info | logon]]
[;offline]
[;showid]

486 IBM Workload Scheduler: User’s Guide and Reference

Arguments

jstreamselect
See “Selecting job streams in commands” on page 395.

keys Displays a single column list of the objects selected by the command.

deps Displays information in the deps format; that is, the job streams used in
follows dependencies are listed followed by the dependent jobs and job
streams. Jobs are listed in the basic showjobs format. Job streams are listed
in the basic showschedules format. Use "keys", "info", or "logon" to modify
the "deps" display.

info Displays information in the info format.

logon Displays information in the logon format.

offline
Sends the output of the command to the conman output device. For
information about this device, see “Offline output” on page 380.

showid
Displays for each job stream the job stream identifier.

Results

The output of the command is produced in three formats: standard, keys, and
deps. The arguments keys, info, and logon modify the deps display. The list
displayed in the output of the command does not include jobs that were rerun in
previous scheduling processes, but the total shown at the end does.

Examples

To display the status of job stream CLEM_DOCOM on workstation site3, and ask for
the job stream identifier run the following command:
%ss @#JS_DOCOM ;showid

A sample output of this command is the following:
(Est) (Est) Jobs Sch

Workstation Job Stream SchedTime State Pr Start Elapse # OK Lim
site3 #JS_DOCOM 0600 11/26 SUCC 10 11/26 00:01 1 1 {0AAAAAAAAAAAACRZ}

To display the status of all job streams in the HOLD state on the workstation on
which you are running conman, run the following command:
showschedules @+state=hold

A sample output for this command is the following:
(Est) (Est) Jobs Sch

Workstation Job Stream SchedTime State Pr Start Elapse # OK Lim
site3 #FILE_JS1 0600 11/26 HOLD 10 (11/26) 1 0 parms FILE_JS1`

To display the status of all job streams with name beginning with sched on
workstation CPUA in the deps;info format, run the following command:
ss CPUA#sched@;deps;info

A sample output is the following:
--------Restart---------
CPU Schedule SchedTime Job JobFile Opt Job Prompt

CPUA #JS_FIRST1[(0600 03/10/12),(0AAAAAAAAAAAABVY)] Dependencies are:

Chapter 12. Managing objects in the plan - conman 487

CPUA#MOD 0212 03/10
JOBMDM /usr/scripts/gl1(B236153+#)JOB_FTA1 echo Start gl1?

CPUA#MOD 0251 03/10
JOBMDM /usr/scripts/gl2(B236153+#)JOB_FTA2 echo Start gl2?

To display offline the status of all job streams in the ABEND state on all
workstations, run the following command:
ss @#@+state=abend;off

To display the status of all job streams on all workstations, run the following
command:
%ss @#@

This is a sample output for the command. The ouput includes a job stream with
two conditional dependencies. The first, job stream JS_CALC, has an external
conditional dependency on a predecessor job JOB12P in the JS_REPORT job stream.
If JOB12P satisfies the condition represented by ON STATUS_OK, then the
successor runs. The second, job stream JS_CALC has an external conditional
dependency on job stream JS_TAX on which two output conditions are set: IF
ABEND | SUPPR.

(Est) (Est) Jobs Sch
Workstation Job Stream SchedTime State Pr Start Elapse # OK Lim
site3 #JS_DOCOM 0600 09/20 SUCC 10 09/20 00:01 1 1
site3 #JS_SCRIPT 0600 09/20 SUCC 10 09/20 00:03 1 1
site2 #JS_PRED1 1000 09/20 SUCC 10 09/20 00:01 1 1
site3 #JS_SCRIPT1 0600 09/20 ABEND 10 09/20 00:01 1 0
site3 #LFILEJOB 0600 09/20 READY 10 1 0
site1 #RES_100 0600 09/20 SUCC 10 09/20 00:09 1 1
site3 #FILE_JS1 0600 09/20 HOLD 10 (09/20) 1 0 parms FILE_JS1`
site3 #FILE_JOB 0600 09/20 SUCC 10 09/20 00:01 1 1
site3 #JS_CALC 0000 09/20 HOLD 10 (09/20) 1 0
JS_REPORT (0000 09/20/15).JOB12P IF STATUS_OK
JS_TAX (0000 09/20/15).@ IF ABEND | SUPPR

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Job Stream.
4. From the Query drop-down list, select All Job Streams in plan or another task

to monitor job streams.
5. Click Run to run the monitoring task.

Standard format
CPU The workstation on which the job stream runs.

Schedule
The name of the job stream.

SchedTime
The time and date when the job stream was scheduled to run in the plan.

State The state of the job stream. The states are as follows:

ADD The job stream was added with operator intervention.

488 IBM Workload Scheduler: User’s Guide and Reference

|
|

ABEND
The job stream ended with a nonzero exit code.

CANCELP
The job stream is pending cancellation. Cancellation is deferred
until all of the dependencies, including an at time, are resolved.

ERROR
For internetwork dependencies only, an error occurred while
checking for the remote status.

EXEC The job stream is running.

EXTRN
For internetwork dependencies only. This is the state of the
EXTERNAL job stream containing jobs referencing to jobs or job
streams in the remote network.

HOLD
The job stream awaiting dependency resolution.

READY
The job stream is ready to launch and all dependencies are
resolved.

STUCK
Job stream execution was interrupted. No jobs are launched
without operator intervention.

SUCC The job stream completed successfully.

SUPPR
The job stream is suppressed because the condition dependencies
associated to its predecessors are not satisfied.

Pr The priority of the job stream.

(Est)Start
The start time of the job stream or job. Parentheses indicate an estimate of
the start time. If the command is performed on the same day when the job
stream is scheduled to run, the Start parameter displays a time as
(Est)Start. If the command is performed on a day different from the day
when the job stream is scheduled to run, the Start parameter displays a
date as (Est)Start. For example if you have the following job stream whose
start time occurs on the same day when the job stream is scheduled to run:
SCHEDULE MASTERB1#JS_B
ON RUNCYCLE RULE1 "FREQ=DAILY;"
AT 1800
:
MASTERB1#JOB1
END

You receive the following output:
%ss @#@

(Est) (Est) Jobs Sch
CPU Schedule SchedTime State Pr Start Elapse # OK Lim
MASTERB1#JS_B 1800 08/18 HOLD 10(18:00) 1 0

For example if you have the following job stream whose start time occurs
on a day different from the day when the job stream is scheduled to run:

Chapter 12. Managing objects in the plan - conman 489

SCHEDULE MASTERB1#JS_A
ON RUNCYCLE RULE1 "FREQ=DAILY;"
AT 0500
:
MASTERB1#JOB1
END

You receive the following output:
%ss @#@

(Est) (Est) Jobs Sch
CPU Schedule SchedTime State Pr Start Elapse # OK Lim
MASTERB1#JS_A 0500 08/19 HOLD 10(08/19) 1 0

(Est)Elapse
The run time of the job stream. Parentheses indicate an estimate based on
logged statistics.

Jobs # The number of jobs in the job stream.

Jobs OK
The number of jobs that have completed successfully.

Sch Lim
The job stream's job limit. If one is not listed, no limit is in effect.

dependencies
A list of job stream dependencies and comments. Any combination of the
following may be listed:
v For a follows dependency, a job stream or job name is displayed. If the

job or job stream is a pending predecessor, its name is followed by a [P].
v For conditional dependencies, the name of the predecessor job stream is

displayed followed by one or more output conditions in the format, IF
<condition_name> ... where condition_name can represent the execution
status of the predecessor job stream, the job stream status, or other
conditions based on the output or outcome of the predecessor job
stream. When there is more than one condition specified, the conditions
are separated by the pipe (|) symbol. The following is what appears in
the showschedules output in the Dependencies column for a predecessor
job stream, JOBSTREAML1, with an ABEND and FAIL status condition
set. Depending on whether JOBSTREAML1 completes in ABEND or
FAIL status determines which successor job runs:
JOBSTREAML1(0000 09/15/15).JOBL1 IF ABEND | FAIL

v For an opens dependency, the file name is displayed. If the file resides
on an extended agent, and its name is longer than 25 characters, only
the last 25 characters are displayed.

v For a needs dependency, a resource name enclosed in hyphens (-) is
displayed. If the number of units requested is greater than one, the
number is displayed before the first hyphen.

v For an until time, the time preceded by an angled bracket (<).
v For a prompt dependency, the prompt number displayed as #num. For

global prompts, the prompt name in parentheses follows.
v Cancelled job streams are labeled [Cancelled].
v Job streams cancelled with the ;pend option are labeled [Cancel Pend].
v For a deadline time, the time preceded by an angle bracket (<) is

displayed.
v Job streams that contain the carryforward keyword are labeled [Carry].

490 IBM Workload Scheduler: User’s Guide and Reference

v For job streams that were carried forward from the previous production
plan, the original name and date are displayed in brackets.

v When reporting time dependencies the showschedules command shows
in the Start column:
– Only the time hh:mm if the day when the time dependencies is set

matches with the day when the showschedules command is run.
– Only the date mm/dd if the day when the time dependencies is set

does not match with the day when the showschedules command is
run.

Note: The time or date displayed in the Start column is converted in the
time zone set on the workstation where the job stream is to run.

Keys format
The job streams are listed one on each line.

Deps format
Job streams used as dependencies are listed, followed by the dependent jobs and
job streams. Jobs are listed in the standard showjobs format. Job streams are listed
in the standard showschedules format.

Deps;keys format
Job streams that have follows dependencies are listed one on each line.

Deps;info format
Job streams used in as dependencies are listed, followed by the dependent jobs and
job streams. Jobs are listed in the showjobs;info format. Job streams are listed in
the standard showschedules format.

Deps;logon format
Job streams used in as dependencies are listed, followed by the dependent jobs and
job streams. Jobs are listed in the showjobs;logon format. Job streams are listed in
the standard showschedules format.

shutdown
Unconditionally stops all the IBM Workload Scheduler production processes and
services, including batchman, jobman, netman, mailman, appservman, all
mailman servers, and all writer processes.

Even though this command does stop the appservman service, it does not stop the
WebSphere Application Server services. To stop WebSphere Application Server
services, run the stopappserver command. For more information, see
“stopappserver” on page 500.

On Windows workstations, the shutdown command does not stop the tokensrv
service.

Note: This command is not supported on remote engine workstations.

You must have shutdown access to the workstation.

Syntax

{shutdown | shut} [;wait]

Chapter 12. Managing objects in the plan - conman 491

Arguments

wait Waits until all processes have stopped before prompting for another
command.

Comments

The shutdown command stops the processes only on the workstation on which
conman is running. To restart netman only, run the StartUp command. For
information about the StartUp command, see “StartUp” on page 670. To restart the
entire process tree, run the following conman commands:
start
startappserver
startmon

You must run a conman unlink @ command before executing a shutdown
command.

Examples

To shut down production on the workstation on which you are running conman,
run the following command:
unlink @
shutdown

To shut down production on the workstation on which you are running conman
and wait for all processes to stop, run the following command:
unlink@;noask
shut ;wait

start
Starts IBM Workload Scheduler production processes, except for the event
monitoring engine and WebSphere Application Server (see “startappserver” on
page 494 and “startmon” on page 496 to learn about the commands that start these
processes).

Note: Make sure conman start is not issued while either JnextPlan or stageman
runs.

You must have start access to the workstation.

Syntax

start [domain!]workstation
[;mgr]
[;noask]
[;demgr]

Arguments

domain Specifies the name of the domain in which workstations are started.
Wildcard characters are permitted.

This argument is useful when starting more than one workstation in a
domain. For example, to start all the agents in domain stlouis, use the
following command:
start stlouis!@

492 IBM Workload Scheduler: User’s Guide and Reference

If domain is omitted, and workstation contains wildcard characters, the
default domain is the one in which conman is running.

workstation
Specifies the name of the workstation to be started. Wildcard characters are
permitted.

This command is not supported on remote engine workstations.

mgr This can be entered only on the workstation on which conman is running.
It starts the local workstation as the domain manager. The workstation
becomes the new domain manager and the current domain manager
becomes a fault-tolerant agent. This form of the command usually follows
a stop command.

Note: The preferred method of switching a domain manager is to use a
switchmgr command. See “switchmgr” on page 520 for more information.

noask Specifies not to prompt for confirmation before taking action on each
qualifying workstation.

demgr This option prevents the opening of external connections during the
transition time between when an agent starts as an old domain manager,
and when the switchmgr command is run, depriving the agent of the
domain manager function. This option is run automatically, but until the
old domain manager has processed the switchmgr event (in the case, for
example, of delayed restart or restart after repairing a damaged agent), the
demgr option must be used to start the old domain manager from the local
command line. For more details on this option, see the IBM Workload
Scheduler Administration Guide.

Comments

The start command is used at the start of each production period to restart IBM
Workload Scheduler following preproduction processing. At that time it causes the
autolinked fault-tolerant agents and standard agents to be initialized and started
automatically. Agents that are not autolinked are initialized and started when you
run a link command.

Assuming the user has start access to the workstations being started, the following
rules apply:
v A user running conman on the master domain manager can start any

workstation in the network.
v A user running conman on a domain manager other than the master can start

any workstation in that domain and subordinate domains. The user cannot start
workstations in peer domains.

v A user running conman on an agent can start workstations that are hosted by
that agent.

Examples

Figure 26 on page 494 and Table 69 on page 494 below show the workstations
started by start commands run by users in various locations in the network.

DMn are domain managers and Ann are agents.

Chapter 12. Managing objects in the plan - conman 493

Table 69. Started workstations

Command Started by User1 Started by User2 Started by User3

start @!@ All workstations are
started DM2

A21
A22
DM4
A41
A42

A21

start @
DM1
A11
A12

DM2
A21
A22

A21

start DOMAIN3!@
DM3
A31
A32

Not allowed Not allowed

start DOMAIN4!@
DM4
A41
A42

DM4
A41
A42

Not allowed

start DM2 DM2 DM2 Not allowed

start A42 A42 A42 Not allowed

start A31 A31 Not allowed Not allowed

startappserver
Starts the WebSphere Application Server on the workstation.

Syntax

startappserver [domain!]workstation
[;wait]

Arguments

domain Specifies the name of the domain of the workstation. Because workstations

A11 A12

DM1

DM2 DM3

DM4

A21 A22 A31 A32

A41 A42

Domain1

Domain2 Domain3

Domain4

User1

User2

User3

Figure 26. Example network

494 IBM Workload Scheduler: User’s Guide and Reference

have unique names, the domain is not needed when starting the
WebSphere Application Server on a specific workstation. Wildcard
characters are permitted.

If domain is omitted, and workstation contains wildcard characters, the
default domain is the one in which conman is running.

workstation
Specifies the name of the workstation where you want to start the
monitoring engine. Wildcard characters are permitted. If no domain and
workstations are specified, the action is on the local workstation.

wait Waits until WebSphere Application Server has started before prompting for
another command.

Comments

Permission to start actions on cpu objects is required in the security file to be
enabled to run this command.

WebSphere Application Server can also be started with the StartUp utility
command.

startbrokerapp
Starts the dynamic workload broker application.

Syntax

startbrokerapp [domain!]workstation[;wait]

Arguments

domain Specifies the name of the domain of the workstation. Because workstations
have unique names, the domain is not needed when starting the dynamic
workload broker on a specific workstation. Wildcard characters are
permitted.

If domain is omitted, and workstation contains wildcard characters, the
default domain is the one in which conman is running.

workstation
Specifies the name of the workstation where you want to start the dynamic
workload broker. Wildcard characters are permitted. If no domain and
workstations are specified, the action is on the local workstation.

wait Specifies to not accept another command until the dynamic workload
broker has stopped.

Comments

Permission to start actions on cpu objects is required in the security file to be
enabled to run this command.

You can start the dynamic workload broker also with wastool
startBrokerApplication.

Chapter 12. Managing objects in the plan - conman 495

starteventprocessor
Starts the event processing server on the master domain manager, backup master,
or on a workstation installed as a backup master that functions as a plain
fault-tolerant agent.

Syntax

{starteventprocessor | startevtp} [domain!]workstation

Arguments

domain Specifies the name of the domain of the workstation.

workstation
Specifies the name of the workstation where you want to start the event
processing server. Wildcard characters are not permitted.

Comments

You can omit the workstation name if you run the command locally.

Permission to start actions on cpu objects is required in the security file to be
enabled to run this command.

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Workstation.
4. From the Query drop-down list, select a query to monitor workstations.
5. Click Run to run the monitoring task.
6. From the table containing the list of workstations, select a workstation and click

More Actions > Start Event Processor.

startmon
Starts the monman process that turns on the event monitoring engine on the
workstation.

Syntax

{startmon | startm} [domain!]workstation
[;noask]

Arguments

domain Specifies the name of the domain of the workstation. Because workstations
have unique names, the domain is not needed when starting the
monitoring engine on a specific workstation. Wildcard characters are
permitted.

If domain is omitted, and workstation contains wildcard characters, the
default domain is the one in which conman is running.

496 IBM Workload Scheduler: User’s Guide and Reference

|

|

|
|

|

|

|

|

|
|

workstation
Specifies the name of the workstation where you want to start the
monitoring engine. Wildcard characters are permitted.

noask Specifies not to prompt for confirmation before taking action on each
qualifying workstation.

Comments

Permission to start actions on cpu objects is required in the security file to be
enabled to run this command.

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Workstation.
4. From the Query drop-down list, select a query to monitor workstations.
5. Click Run to run the monitoring task.
6. From the table containing the list of workstations, select a workstation and click

More Actions > Start Event Monitoring.

status
Displays the conman banner and the IBM Workload Scheduler production status.

Syntax

{status | stat}

Results

Following the word schedule on the second line of output, the production plan
(Symphony file) mode is shown in parentheses. The Def or Exp information can
appear. Def means that the production plan is in non-expanded mode, and Exp
means it is in expanded mode. The mode of the production plan is determined by
the setting of the global option expanded version. With IBM Workload Scheduler,
Version 8.2, databases and plans are always expanded, but this information
appears for compatibility with earlier versions.

Examples

The following example displays the status of the current production plan.
%status
##

Licensed Materials - Property of IBM* and HCL**
5698-WSH
(C) Copyright IBM Corp. 1998, 2016 All rights reserved.
(C) Copyright HCL Technologies Ltd. 2016 All rights reserved
* Trademark of International Business Machines
** Trademark of HCL Technologies Limited
###.

Job stream (Exp) 11/26/16 (#34) on site3.
Batchman LIVES. Limit:19, Fence:0, Audit Level:0

Chapter 12. Managing objects in the plan - conman 497

|

|

|
|

|

|

|

|

|
|

stop
Stops IBM Workload Scheduler production processes. To stop the netman process,
use the shutdown command. You must have stop access to the workstation.

Syntax

stop [domain!]workstation
[;wait]
[;noask]

Arguments

domain Specifies the name of the domain in which workstations are stopped.
Because workstations have unique names, the domain is not needed when
stopping a specific workstation. Wildcard characters are permitted.

This argument is useful when stopping more than one workstation in a
domain. For example, to stop all the agents in domain stlouis, use the
following command:
stop stlouis!@

If domain is omitted, and workstation contains wildcard characters, the
default domain is the one in which conman is running.

workstation
Specifies the name of the workstation to be stopped. Wildcard characters
are permitted.

This command is not supported on remote engine workstations.

wait Specifies not to accept another command until all processes have stopped.

noask Specifies not to prompt for confirmation before taking action on each
qualifying workstation.

Comments

If the stop command cannot be applied to a distant workstation (for example, if
the TCP/IP path is not available), the command is stored locally in a pobox file,
and is sent to the workstation when it becomes linked.

Assuming the user has stop access to the workstations being stopped, the
following rules apply:
v A user running conman on the master domain manager can stop any

workstation in the network.
v A user running conman on a domain manager other than the master can stop

any workstation in that domain and subordinate domains. The user cannot stop
workstations in peer domains.

v A user running conman on an agent can stop any workstation in the local
domain.

When you issue a stop @ command on a domain manager, a local conman stop
command runs on the remote CPUs. The command starts running on the lowest
stations in the network hierarchy, then finally runs on the domain manager.
However, the Symphony file is not updated before the CPUs go down. Therefore, if
you issue a conman sc@!@ command from any CPU, the resulting information
might be an up to date picture of the states of the CPUs, even of the domain
manager.

498 IBM Workload Scheduler: User’s Guide and Reference

Examples

Figure 27 and Table 70 below show the workstations stopped by different stop
commands run by users in different locations in the network.

DMn are domain managers and Ann are agents.

Table 70. Stopped workstations

Command Stopped by: User1 Stopped by User2 Stopped by User3

stop @!@ All workstations are
stopped DM2

A21
A22
DM4
A41
A42

DM2
A21
A22

stop @
DM1
A11
A12

DM2
A21
A22

DM2
A21
A22

stop DOMAIN3!@
DM3
A31
A32

Not allowed Not allowed

stop DOMAIN4!@
DM4
A41
A42

DM4
A41
A42

Not allowed

stop DM2 DM2 DM2 DM2

stop A42 A42 A42 Not allowed

stop A31 A31 Not allowed Not allowed

stop ;progressive
Stops IBM Workload Scheduler production processes hierarchically when you have
defined at least one workstation as BEHINDFIREWALL in an IBM Workload
Scheduler network. Similar to the stop @!@ command, but more effective in

A11 A12

DM1

DM2 DM3

DM4

A21 A22 A31 A32

A41 A42

Domain1

Domain2 Domain3

Domain4

User1

User2

User3

Figure 27. Example network

Chapter 12. Managing objects in the plan - conman 499

improving plan performance. The command does not run from the domain in
which the command was initially issued for each subordinate domain, but runs at
each hierarchical level.

Note: This command is not supported on remote engine workstations.

You must have stop access to the workstation.

Syntax

stop ;progressive

Comments

When you issue the command on a domain manager, all workstations in that
domain are stopped and then the domain manager itself is stopped and the
command continues to run on any subordinate domains. The command continues
to run in this hierarchical manner, the domain manager stops workstations in the
same domain, stops itself, and then continues to run on subordinate domains.

Examples

Figure 28 and Table 71 show the workstations stopped by issuing the stop
;progressive command on DM2 and DM4.

DMn are domain managers and Ann are agents.

Table 71. Stopped workstations with stop ;progressive

Command Stopped by DM2 Stopped by DM4

stop ;progressive
A21
A22
DM2

A41
A42
DM4

stopappserver
Stops the WebSphere Application Server on the workstation.

A11 A12

DM1

DM2 DM3

DM4

A21 A22 A31 A32

A41 A42

Domain1

Domain2 Domain3

Domain4

User1

User2

User3

Figure 28. Example network

500 IBM Workload Scheduler: User’s Guide and Reference

Syntax

{stopappserver | stopapps} [domain!]workstation
[;wait]

Arguments

domain Specifies the name of the domain of the workstation. Because workstations
have unique names, the domain is not needed when stopping the
WebSphere Application Server on a specific workstation. Wildcard
characters are permitted.

If domain is omitted, and workstation contains wildcard characters, the
default domain is the one in which conman is running.

workstation
Specifies the name of the workstation where you want to stop the
monitoring engine. Wildcard characters are permitted. If no domain and
workstations are specified, the action is on the local workstation.

wait Waits until WebSphere Application Server has stopped before prompting
for another command.

Comments

Permission to stop actions on cpu objects is required in the security file to be
enabled to run this command.

On Windows systems refrain from using Windows services to stop WebSphere
Application Server. If you use Windows services, the appserverman process, which
continues to run, will start WebSphere Application Server again. Use this command
or the stopWas command (without the -direct option) instead.

When you run the command, the appserverman process first checks if WebSphere
Application Server can retrieve the user's credentials (username and password)
from the soap.client.props file located in the WebSphere Application Server
profile. If the check is negative, appserverman reads them from the useropts file of
the user and runs the stopServer.sh (bat) script to pass them to WebSphere
Application Server.

To be able to run the command, you must therefore complete one of the following
two customization procedures to provide the user credentials to WebSphere
Application Server:
v Customize the user name (com.ibm.SOAP.loginUserid) and password

(com.ibm.SOAP.loginPassword) properties in the soap.client.props file located
in:

WAS_profile_path/properties (Version 9.1 and later master and agents)

where WAS_profile_path corresponds to the WebSphere Application Server profile
path you specified at installation time. The default path is <TWA_home>/WAS/
TWSprofile.
You must also:
1. Set property com.ibm.SOAP.securityEnabled to true in the same file to enable

the SOAP client security
2. Run the encryptProfileProperties.sh script to encrypt the password. See

the IBM Workload Scheduler Administration Guide for more information on this
application server tool.

Chapter 12. Managing objects in the plan - conman 501

v Customize the Attributes for conman connections section in the localopts file
by specifying the details of the connector or of the master domain manager.
You must also:
1. Create (or customize if already present) the useropts file manually, adding

the USERNAME and PASSWORD attributes for the user who will run
stopappserver . Make sure the useropts file name is entered in the USEROPTS
key in the Attributes for conman (CLI) connections section. See the IBM
Workload Scheduler Administration Guide for further details.

2. Encrypt the password in the useropts file simply by running conman.

stopbrokerapp
Stops the dynamic workload broker application.

Syntax

{stopbrokerapp} [domain!]workstation

Arguments

domain Specifies the name of the domain of the workstation. Because workstations
have unique names, the domain is not needed when stopping the dynamic
workload broker on a specific workstation. Wildcard characters are
permitted.

If domain is omitted, and workstation contains wildcard characters, the
default domain is the one in which conman is running.

workstation
Specifies the name of the workstation where you want to stop the dynamic
workload broker. Wildcard characters are permitted. If no domain and
workstations are specified, the action is on the local workstation.

Comments

Permission to stop actions on cpu objects is required in the security file to be
enabled to run this command.

You can stop the dynamic workload broker also with wastool
stopBrokerApplication.

stopeventprocessor
Stops the event processing server.

Syntax

{stopeventprocessor | stopevtp} [domain!][workstation]

Arguments

domain Specifies the name of the domain of the workstation.

workstation
Specifies the name of the master domain manager, backup master, or
workstation installed as a backup master that functions as a plain
fault-tolerant agent where you want to stop the event processing server.
Wildcard characters are not permitted.

502 IBM Workload Scheduler: User’s Guide and Reference

You can omit the workstation name if you run the command locally.

Comments

This command cannot be issued in an asynchronous way.

If you issue the command from a workstation other than the one where the event
processor is configured, the command uses the command-line client, so the user
credentials for the command-line client must be set correctly.

Permission to stop actions on cpu objects is required in the security file to be
enabled to run this command.

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Workstation.
4. From the Query drop-down list, select a query to monitor workstations.
5. Click Run to run the monitoring task.
6. From the table containing the list of workstations, select a workstation and click

More Actions > Stop Event Processor.

stopmon
Stops the event monitoring engine on the workstation.

Syntax

{stopmon | stopm} [domain!]workstation
[;wait]
[;noask]

Arguments

domain Specifies the name of the domain of the workstation. Because workstations
have unique names, the domain is not needed when stopping the
monitoring engine on a specific workstation. Wildcard characters are
permitted.

If domain is omitted, and workstation contains wildcard characters, the
default domain is the one in which conman is running.

workstation
Specifies the name of the workstation where you want to stop the
monitoring engine. Wildcard characters are permitted.

wait Specifies not to accept another command until the monitoring engine has
stopped.

noask Specifies not to prompt for confirmation before taking action on each
qualifying workstation.

Chapter 12. Managing objects in the plan - conman 503

|

|

|
|

|

|

|

|

|
|

Comments

The monitoring engine is restarted automatically when the next production plan is
activated (on Windows also when IBM Workload Scheduler is restarted) unless you
disable the autostart monman local option.

The command is asynchronous, unless you specify the wait keyword.

Permission to stop actions on cpu objects is required in the security file to be
enabled to run this command.

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Workstation.
4. From the Query drop-down list, select a query to monitor workstations.
5. Click Run to run the monitoring task.
6. From the table containing the list of workstations, select a workstation and click

More Actions > Stop Event Monitoring.

submit docommand
Submits a command to be launched as a job.

To run this command, in the security file you must have submit access for the job
with the name specified in its database definition and, if you use the alias
keyword, also with the name specified with this keyword. In addition, if you use
the recoveryjob keyword, you must have submit access for the job specified with
that keyword.

To include needs and prompt dependencies, you must have use access to the
resources and global prompts.

If you submit the job from a workstation other than the master domain manager,
you must be connecting as a user that:
v has proper credentials defined in the useropts file to connect to the master

domain manager through WebSphere Application Server
v is authorized to perform submit commands in the security file stored on the

master domain manager

Syntax

{submit docommand | sbd} [workstation#]"cmd"
[;alias[=name]]
[;into=[workstation#]
{jobstream_id;schedid |jobstreamname ([hhmm[date]])}]
[;joboption[;...]]

Arguments

workstation
Specifies the name of the workstation on which the job will be launched.

504 IBM Workload Scheduler: User’s Guide and Reference

|

|

|
|

|

|

|

|

|
|

Wildcard characters are permitted, in which case, the job is launched on all
qualifying workstations. The default is the workstation on which conman
is running. You cannot specify a domain or workstation class.

Note: Because of a limitation in the way Windows manages the equal (=)
sign in the shell environment, you must mask the equal (=) sign as follows
'\='\ when submitting Windows commands using submit docommand.
For example, to set the local variable var1 to hello you must issue the
following command:
%sbd "set var1\"=\"hello"

cmd Specifies a valid system command of up to 255 characters. The entire
command must be enclosed in quotes ("). The command is treated as a job,
and all job rules apply.

alias=name
Specifies a unique name to be assigned to the job. If you enter the alias
keyword without specifying a name, a name is constructed using up to the
first six alphanumeric characters (in upper case) of the command,
depending on the number of characters in the command, followed by a ten
digit random number. If there are blanks in the command, the name is
constructed using up to the first six alphanumeric characters before the
blank. For example, if the command is "rm apfile", the generated name
will be similar to RM0123456789. If the command is longer than six
alphanumeric characters such as, "wlsinst", the generated name will be
wlsins0396578515.

If you do not include alias the first time you submit the command, a job
name is constructed using up to 255 characters of the command name. If
you submit a command a second time from the same workstation, the alias
keyword is mandatory and must be unique for each command submission.

into=jobstream_instance
Identifies the job stream instance into which the job will be placed for
launching. Select the job stream instance as follows:

[workstation#]jobstreamname([hhmm[date]])

or

[workstation#]jobstream_id ;schedid

If into is not used, the job is added to a job stream named JOBS.

joboption
Specify any of the following:

at=hhmm [timezone|tz tzname] [+n days | mm/dd[/yy]] | [absolute | abs]

confirmed

critical

deadline=time [timezone|tz tzname][+n day[s | mm/dd[/yy]]

every=rate

follows=[netagent::][workstation#]{jobstreamname(hhmm [mm/dd[/yy]]) [.job |
@] | jobstream_id.job;schedid}| job '[IF condition_name[| condition_name][|
...]]' [;nocheck][;wait=time][,...]

The condition_name variable indicates the name of the condition defined in
the job definition. Conditions can be status conditions, based on job status,
or other output conditions, based on a mapping expression such as a

Chapter 12. Managing objects in the plan - conman 505

return code, output variables, or output found in a job log. In each follows
statement, you can specify only one dependency type: either status or
output conditions. At submission time, you can add status or output
conditions, but no joined dependencies.

wait The time in seconds IBM Workload Scheduler waits before
performing a second check on the dependency if the object
specified in the dependency does not exist. If the object specified in
the dependency was created during the wait interval, the
submission is performed, otherwise the job is not submitted.

nocheck
Ignores the dependency. If the object specified in the dependency
does not exist, the submission is performed anyway.

Note: The ;nocheck argument is not supported in internetwork
dependencies.

interactive

Note: This keyword can be used in Windows environments only.

maxdur=time[onmaxdur action]

mindur=time[onmindur action]

logon=user.

needs=[num] [workstation#]resource[,...]

opens=[workstation#]"filename"[(qualifier)][,...]

priority=[pri | hi | go]

prompt="[: | !]text" | promptname[,...]

recovery=stop | continue | rerun

recoveryjob=[workstation#]jobname

The name of a recovery job different from the one (if present) specified in
the job definition in the database.

after[workstation#]jobname

abendprompt “text”

until time [timezone|tz tzname][+n day[s] | [absolute | abs]] [;onuntil
action]

The default value for joboption is the user on the workstation from which
the command is being run.

Using local parameters

You can use local parameters as values with the following keywords:
v cmd

v opens

v logon

v prompt

v abendprompt

506 IBM Workload Scheduler: User’s Guide and Reference

Local parameters are defined and managed with the parms utility command in a
local database on the workstation where the job is run. The parameters are
resolved on the workstation while the submit command is in execution.

Comments

Jobs submitted in production from the conman command line are not included in
the preproduction plan and so they cannot be taken into account when identifying
external follows dependencies predecessors.

If you do not specify a workstation with follows, needs, opens, or into, the default
is the workstation of the job.

The scheduler classifies follows dependencies as internal when they are specified
only by their job name within the job stream. It classifies them as external when
they are specified in the jobStreamName.workstationName.jobName format.

When you submit the object into a job stream and add a follows dependency that
shares the same job stream name (for example, you submit the object into job
stream schedA and define a follows dependency on schedA.job2), the dependency
is treated as an external follows dependency. Since Version 8.3, unlike in previous
versions, because the scheduler uses the sameday matching criteria to resolve
external dependencies, dependencies originated in this way are never added the
first time the object is submitted.

Examples

To submit an rm command into the job stream JOBS with a follows dependency,
run the following command:
submit docommand="rm apfile";follows sked3

To submit a sort command with the alias sortit and place the job in the job stream
reports with an at time of 5:30 p.m., run the following command:
sbd "sort < file1 > file2";alias=sortit;into=reports;at=1730

To submit chmod commands on all workstations with names beginning with site,
run the following command:
sbd=site@#"chmod 444 file2";alias

See also

From the Dynamic Workload Console you can perform the same task as described
in:

the IBM Workload Automation: Dynamic Workload Console User's Guide, section about
Submitting ad hoc jobs.

submit file
Submits a file to be launched as a job.

To run this command, in the security file you must have submit access for the job
with the name specified in its database definition and, if you use the alias
keyword, also with the name specified with this keyword. In addition, if you use
the recoveryjob keyword, you must have submit access for the job specified with
that keyword.

Chapter 12. Managing objects in the plan - conman 507

To include needs and prompt dependencies, you must have use access to the
resources and global prompts.

If you submit the job from a workstation other than the master domain manager,
you must be connecting as a user that:
v Has proper credentials defined in the useropts file to connect to the master

domain manager through WebSphere Application Server
v Is authorized to perform submit commands in the security file stored on the

master domain manager

Syntax

{submit file | sbf} "filename"
[;alias[=name]]
[;into=[workstation#]{jobstream_id

;schedid |jobstreamname([hhmm[date]])}]
[;joboption[;...]]
[;noask]

Arguments

filename
Specifies the name of the file, up to 255 characters. Wildcard characters are
permitted. The name must be enclosed in quotes (") if it contains characters
other than alphanumeric characters, dashes (-), slashes (/), and underscores
(_). See the examples.

alias=name
Specifies a unique name to be assigned to the job. If you enter the alias
keyword without specifying a name, a name is constructed using up to the
first six alphanumeric characters (in upper case) of the file name,
depending on the number of characters in the file name, followed by a ten
digit random number. For example, if the file name is jclttx5, the
generated name will be similar to JCLTTX0123456789.

If you do not include alias, a filename is constructed using up to 255
alphanumeric characters of the file's base name, in upper case.

In either of the above cases, if the file name does not start with a letter,
you are prompted to use alias= name.

If you submit a file a second time from the same workstation, the alias
keyword is mandatory and must be unique for each file submission.

into=jobstream_instance
Identifies the job stream instance into which the job will be placed for
launching. Select the job stream instance as follows:

[workstation#]jobstreamname([hhmm[date]])

or

[workstation#]jobstream_id ;schedid

If into is not used, the job is added to a job stream named JOBS.

joboption
Specify one of the following:

at=hhmm [timezone|tz tzname] [+n days | mm/dd[/yy]] | [absolute | abs]

confirmed

508 IBM Workload Scheduler: User’s Guide and Reference

critical

deadline=time[timezone | tz tzname][+n days | mm/dd[/yy]]

every=rate

follows=[netagent::][workstation#]{jobstreamname(hhmm [mm/dd[/yy]]) [.job |
@] | jobstream_id.job;schedid}| job '[IF condition_name[| condition_name][|
...]]' [;nocheck][;wait=time][,...]

The condition_name variable indicates the name of the condition defined in
the job definition. Conditions can be status conditions, based on job status,
or other output conditions, based on a mapping expression such as a
return code, output variables, or output found in a job log. In each follows
statement, you can specify only one dependency type: either status or
output conditions. At submission time, you can add status or output
conditions, but no joined dependencies.

wait The time in seconds IBM Workload Scheduler waits before
performing a second check on the dependency if the object
specified in the dependency does not exist. If the object specified in
the dependency was created during the wait interval, the
submission is performed, otherwise the job is not submitted.

nocheck
Ignores the dependency. If the object specified in the dependency
does not exist, the submission is performed anyway.

Note: The ;nocheck argument is not supported in internetwork
dependencies.

interactive

Note: This keyword can be used in Windows environments only.

logon=user

maxdur=time[onmaxdur action]

mindur=time[onmindur action]

needs=[num] [workstation#]resource[,...]

opens=[workstation#]"filename"[(qualifier)][,...]

priority=[pri | hi | go]

prompt="[: | !]text" | promptname[,...]

recovery=stop | continue | rerun

recoveryjob=[workstation#]jobname

The name of a recovery job different from the one (if present) specified in
the job definition in the database.

after [workstation#]jobname

abendprompt “text”

until time [timezone|tz tzname][+n day[s] | [absolute | abs]] [;onuntil
action]

noask Specifies not to prompt for confirmation before taking action against each
qualifying file.

Chapter 12. Managing objects in the plan - conman 509

Using local parameters

You can use local parameters as values with the following keywords:
v opens

v logon

v prompt

v abendprompt

Local parameters are defined and managed with the parms utility command in a
local database on the workstation where the job is run. The parameters are
resolved on the workstation while the submit command is running.

Comments

Jobs submitted in production from the conman command line are not included in
the preproduction plan and so they cannot be taken into account when identifying
external follows dependencies predecessors.

If you do not specify a workstation with follows, needs, opens, or into, the default
is the workstation on which conman is running.

The scheduler classifies follows dependencies as internal when they are specified
only by their job name within the job stream. It classifies them as external when
they are specified in the jobStreamName.workstationName.jobName format.

When you submit the object into a job stream and add a follows dependency that
shares the same job stream name (for example, you submit the object into job
stream schedA and define a follows dependency on schedA.job2), the dependency
is treated as an external follows dependency. Since Version 8.3, unlike in previous
versions, because the scheduler uses the sameday matching criteria to resolve
external dependencies, dependencies originated in this way are never added the
first time the object is submitted.

Examples

To submit a file into the job stream jobs (the job name is myjcl), run the following
command:
submit file=d:\jobs\lib\daily\myjcl

where the ;into sequence was omitted.

To submit a file, with a job name of misjob4, into the job stream missked, run the
following command:
sbf /usr/lib/mis/jcl4;alias=misjob4;into=missked ;needs=2 slots

The job needs two units of the slots resource.

To submit all files that have names beginning with back into the job stream bkup,
run the following command:
sbf "/usr/lib/backup/back@";into=bkup

To submit file tws_env.cmd, whose path contains a blank, on a Windows
workstation run:
v In interactive mode:

510 IBM Workload Scheduler: User’s Guide and Reference

sbf "\"C:\Program Files\IBM\TWS\lucaMDM\tws_env.cmd\"";alias=MYJOB

Being in Windows, the double quotation marks (") must be escaped by the "\
character sequence.

v In command line mode:
conman sbf "\"\\\"C:\Program Files\IBM\TWS\lucaMDM\tws_env.cmd\\\"\"";alias=MYJOB

Being in Windows, and running the command externally from the conman
environment, the escape sequence becomes longer.

where "\" is the escape character for the blank in the file path.

submit job
Submits a job to be launched.

To run this command, in the security file you must have submit (submitdb) access
for the job with the name specified in its database definition and, if you use the
alias keyword, also with the name specified with this keyword. In addition, if you
use the recoveryjob keyword, you must have submit access for the job specified
with that keyword.

Note that if you have security submitdb rights only, you are limited to submit jobs
defined in the database. You cannot submit ad-hoc jobs.

To include needs and prompt dependencies, you must have use access to the
resources and global prompts.

If you submit the job from a workstation other than the master domain manager,
you must be connecting as a user that:
v Has proper credentials defined in the useropts file to connect to the master

domain manager through WebSphere Application Server
v Is authorized to perform submit commands in the security file stored on the

master domain manager

If you submit a shadow job, see Chapter 23, “Defining and managing cross
dependencies,” on page 785 for more details.

Syntax

{submit job | sbj} [workstation#]jobname
[;alias[=name]]
[;into=[workstation#]{jobstream_id

;schedid | jobstreamname([hhmm[date]])}]
[;joboption[;...]]
[;vartable=tablename]
[;noask]

Arguments

workstation
Specifies the name of the workstation on which the job will be launched.
Wildcard characters are permitted, in which case, the job is launched on all
qualifying workstations. The default is the workstation on which conman is
running. You cannot specify a domain or workstation class.

Chapter 12. Managing objects in the plan - conman 511

jobname
Specifies the name of the job. Wildcard characters are permitted, in which
case, all qualifying jobs are submitted. If the job is already in the
production plan, and is being submitted into the same job stream, you
must use the alias argument to assign a unique name.

alias=name
Specifies a unique name to be assigned to the job in place of jobname. If
you enter the alias keyword without specifying a name, a name is
constructed using the first five alphanumeric characters of jobname
followed by a ten digit random number. The name is always upshifted. For
example, if jobname is jcrttx5, the generated name will be similar to
JCRTT1234567890.

into=jobstream_instance
Identifies the job stream instance into which the job will be placed for
launching. Select the job stream instance as follows:

[workstation#]jobstreamname([hhmm[date]])

or

[workstation#]jobstream_id ;schedidIf into is not used, the job is added to a
job stream named JOBS.

joboption
Specify one of the following:

at=hhmm [timezone|tz tzname] [+n days | mm/dd[/yy]] | [absolute | abs]

confirmed

critical

deadline=time[timezone | tz tzname][+n days | mm/dd[/yy]]

every=rate

follows=[netagent::][workstation#]{jobstreamname(hhmm [mm/dd[/yy]]) [.job |
@] | jobstream_id.job;schedid}| job '[IF condition_name[| condition_name] [|
...]]' [;nocheck][;wait=time][,...]

The condition_name variable indicates the name of the condition defined in
the job definition. Conditions can be status conditions, based on job status,
or other output conditions, based on a mapping expression such as a
return code, output variables, or output found in a job log. In each follows
statement, you can specify only one dependency type: either status or
output conditions. At submission time, you can add status or output
conditions, but no joined dependencies.

wait The time in seconds IBM Workload Scheduler waits before
performing a second check on the dependency if the object
specified in the dependency does not exist. If the object specified in
the dependency was created during the wait interval, the
submission is performed, otherwise the job is not submitted.

nocheck
Ignores the dependency. If the object specified in the dependency
does not exist, the submission is performed anyway.

Note: The ;nocheck argument is not supported in internetwork
dependencies.

maxdur=time[onmaxdur action]

512 IBM Workload Scheduler: User’s Guide and Reference

mindur=time[onmindur action]

needs=[num] [workstation#]resource[,...]

opens=[workstation#]"filename"[(qualifier)][,...]

priority=[pri | hi | go]

prompt="[: | !]text" | promptname[,...]

recovery=stop | continue | rerun

recoveryjob= [workstation#]jobname

The name of a recovery job different from the one (if present) specified in
the job definition in the database.

after [workstation#]jobname

abendprompt “text”

until time [timezone|tz tzname][+n day[s] | [absolute | abs]] [;onuntil
action]

vartable=tablename
Specifies the name of the variable table, if different than the default one,
where the variables you intend to use are defined.

Remember:

v With this command, you can use variable substitution for the following
keywords:
– opens
– prompt
– abendprompt

v Enclose the variable between carets (^), and then enclose the entire
string between quotation marks. If the variable contains a portion of a
path, ensure that the caret characters are not immediately preceded by a
backslash (\) because, in that case, the \^ sequence could be wrongly
interpreted as an escape sequence and resolved by the parser as caret
character. If necessary, move the backslash into the definition of the
variable between carets.

v Variables specified in the job definition with the ${variablename} format
are not resolved.

If you submit a job containing variables defined in a variable table that is
not the default variable table and you do not specify the variable table in
the run-cycle, job stream, or workstation, the variables are not resolved.
See Chapter 6, “Customizing your workload using variable tables,” on
page 119.

noask Specifies not to prompt for confirmation before taking action against each
qualifying job.

Comments

Jobs submitted in production from the conman command line are not included in
the preproduction plan and so they cannot be taken into account when identifying
external follows dependencies predecessors.

If you do not specify a workstation with follows, needs, opens, or into, the default
is the workstation of the job.

Chapter 12. Managing objects in the plan - conman 513

at specifies at which time the job can be submitted. If the at keyword is used, then
the job cannot start before the time set with this keyword. Note that if the master
domain manager of your network runs with the enLegacyStartOfDayEvaluation
and enTimeZone options set to yes to convert the startOfDay time set on the master
domain manager to the local time zone set on each workstation across the
network, you must add the absolute keyword to make it work.

The scheduler classifies follows dependencies as internal when they are specified
only by their job name within the job stream. It classifies them as external when
they are specified in the jobStreamName.workstationName.jobName format.

When you submit the object into a job stream and add a follows dependency that
shares the same job stream name (for example, you submit the object into job
stream schedA and define a follows dependency on schedA.job2), the dependency
is treated as an external follows dependency. Since Version 8.3, unlike in previous
versions, because the scheduler uses the sameday matching criteria to resolve
external dependencies, dependencies originated in this way are never added the
first time the object is submitted.

Examples

To submit the test jobs into the job stream JOBS, run the following command:
sbj test

To submit a job with an alias of rptx4 and place the job in the job stream reports
with an at time of 5:30 p.m., run the following command:
sbj rjob4;alias=rptx4;into=reports;at=1730

To submit job txjob3 on all workstations whose names begin with site, run the
following command:
sbj=site@#txjob3;alias

See also

From the Dynamic Workload Console you can perform the same task as described
in:

the IBM Workload Automation: Dynamic Workload Console User's Guide, section about
Submitting predefined jobs.

submit sched
Submits a job stream for processing.

To run this command, in the security file you must have submit access for the job
stream with the name specified in its database definition and, if you use the alias
keyword, also with the name specified with this keyword. To include needs and
prompt dependencies, you must have use access to the resources and global
prompts.

The submit schedule command uses the credentials set in the useropts file
belonging to the TWS_user who installed that workstation.

If you submit the job stream from a workstation other than the master domain
manager, you must be connecting as a user that:

514 IBM Workload Scheduler: User’s Guide and Reference

v has proper credentials defined in the useropts file to connect to the master
domain manager through WebSphere Application Server

v is authorized to perform submit commands in the security file stored on the
master domain manager

Syntax

{submit sched | sbs} [workstation#]jstreamname
[;alias[=name]]
[;jstreamoption[;...]]
[;vartable=tablename]
[;noask]

Arguments

workstation
Specifies the name of the workstation on which the job stream will be
launched. Wildcard characters are permitted, in which case, the job stream
is launched on all qualifying workstations. The default is the workstation
on which conman is running. You cannot specify a domain or workstation
class.

jstreamname
Specifies the name of the job stream. Wildcard characters are permitted, in
which case, all qualifying job streams are submitted. If the job stream is
already in the production plan, you must use the alias argument to assign
a unique name.

alias=name
Specifies a unique name to be assigned to the job stream in place of
jstreamname. If set, this value corresponds also to the jobstream_id. If you
enter the alias keyword without specifying a name, a name is constructed
using the first five alphanumeric characters of jstreamname followed by a
ten digit random number. The name is always upshifted. For example, if
jstreamname is sttrom, the generated name will be similar to
STTRO1234567890.

The authorization to submit the schedule is checked in the Security file
using the original name not the alias name.

jstreamoption
Enter any of the following (refer to “Job stream definition keyword details”
on page 216 to find which options are mutually exclusive):

[at=hhmm [timezone|tz tzname] [+n days | date] [absolute | abs]] |
[schedtime=[hhmm [date] | [+n days]]

where:

at specifies at which time the job stream can be launched. If the at
keyword is used, then the job stream cannot start before the time
set with this keyword (see the topic on the job stream definition
keywords in the chapter on "Defining objects in the database" in
"IBM Workload Scheduler User's Guide and Reference" for more
information about the "at" keyword). Note that if the master
domain manager of your network runs with the
enLegacyStartOfDayEvaluation and enTimeZone options set to yes
to convert the startOfDay time set on the master domain manager
to the local time zone set on each workstation across the network,
you must add the absolute keyword to make it work.

Chapter 12. Managing objects in the plan - conman 515

schedtime represents the day and time when the job stream is
positioned in the plan. If by this time the job stream is free from
dependencies, and has no defined at time restrictions, it is
launched. The value assigned to schedtime does not represent a
dependency for the job stream. Its value is then displayed in the
SchedTime columns in the output of the show commands. If an at
restriction is defined, then the value assigned to schedtime is
overwritten by the at value. When the job stream actually starts,
the value assigned to schedtime is overwritten by the actual start
time of the job stream.

The format used for date depends on the value assigned to the date
format variable specified in the localopts file.

If no additional time zone is specified, the time zone set on the
workstation running the command is assumed.

carryforward
Makes a job stream eligible to be carried forward to the next
production plan if it is not completed before the end of the current
production plan.

deadline=time[timezone | tz tzname][+n days | date]
If no additional time zone is specified, the time zone set on the
workstation running the command is assumed.

follows=[netagent::][workstation#]{jobstreamname(hhmm [mm/dd[/yy]]) [.job |
@] | jobstream_id.job;schedid}| job '[IF condition_name[| condition_name][|
...]]' [;nocheck][;wait=time][,...]

The matching criteria used when submitting job streams in
production is different from the way follows dependencies are
resolved in the preproduction plan. When a job stream, for
example JS_A, containing a follows dependency from a job or a job
stream, for example JS_B, is submitted from the conman command
line program, the predecessor instance of JS_B is defined following
this criterion:
1. The closest instance of JS_B preceding JS_A.
2. If no preceding instance of JS_B exists, then the predecessor

instance is the closest instance of JS_B following JS_A.
3. Otherwise an error is displayed and the command fails if the

;nocheck keyword is not used.

The predecessor job stream instance is searched among the
instances added to the production plan when JnextPlan was run
and the instances submitted in production with the sbs command,
including those submitted with an alias.

The condition_name variable indicates the name of the condition
defined in the job definition. Conditions can be status conditions,
based on job status, or other output conditions, based on a
mapping expression such as a return code, output variables, or
output found in a job log. In each follows statement, you can
specify only one dependency type: either status or output
conditions. At submission time, you can add status or output
conditions, but no joined dependencies.

wait The time in seconds IBM Workload Scheduler waits before
performing a second check on the dependency if the object
specified in the dependency does not exist. If the object

516 IBM Workload Scheduler: User’s Guide and Reference

specified in the dependency was created during the wait
interval, the submission is performed, otherwise the job is
not submitted.

nocheck
Ignores the dependency. If the object specified in the
dependency does not exist, the submission is performed
anyway.

Note: The ;nocheck argument is not supported in internetwork
dependencies.

limit=joblimit
Limits the number of jobs that can run simultaneously in a job
stream on the same CPU.

needs=[num] [workstation#]resource[,...]
Defines resources that must be available before a job or job stream
is launched. You can use the needs keyword either in a job stream
definition or in the definition of the contained jobs, not in both.

opens=[workstation#]"filename"[(qualifier)][,...]
Specifies files that must be available before a job or job stream can
be launched.

priority=[pri | hi | go]
Sets the priority of a job or job stream. By assigning a different
priority to jobs or job streams you determine which one starts first,
if the dependencies are solved.

prompt="[: | !]text" | promptname[,...]
Specifies prompts that must be answered affirmatively before a job
or job stream is launched.

until time [timezone|tz tzname][+n day[s] | [absolute | abs]] [;onuntil
action] Depending on the object definition the until keyword belongs to,

specifies the latest time a job stream must be completed or the
latest time a job can be launched.

If no additional time zone is specified, the time zone set on the
workstation running the command is assumed.

vartable=tablename
Specifies the name of the variable table, if different than the default one,
where the variables you intend to use are defined.

Remember:

v With this command, you can use variable substitution for the following
keywords:
– opens

– prompt

v Enclose the variable between carets (^), and then enclose the entire
string between quotation marks. If the variable contains a portion of a
path, ensure that the caret characters are not immediately preceded by a
backslash (\) because, in that case, the \^ sequence could be wrongly
interpreted as an escape sequence and resolved by the parser as caret
character. If necessary, move the backslash into the definition of the
variable between carets.

Chapter 12. Managing objects in the plan - conman 517

If you submit a job stream with jobs containing variables defined in a
variable table that is not the default variable table and you do not specify
the variable table in the run-cycle, job stream, or workstation, the variables
are not resolved. See Chapter 6, “Customizing your workload using
variable tables,” on page 119.

noask Specifies not to prompt for confirmation before taking action against each
qualifying job stream.

Comments

Job streams submitted in production from the conman command line are not
included in the preproduction plan and so they cannot be taken into account when
identifying external follows dependencies predecessors.

If you do not specify a workstation with follows, needs, or opens, the default is the
workstation of the job stream.

The scheduler classifies follows dependencies as internal when they are specified
only by their job name within the job stream. It classifies them as external when
they are specified in the jobStreamName.workstationName.jobName format.

When you submit a job stream that includes a job with a follows dependency that
shares the same job stream name (for example, job stream schedA includes a job
named job6 that has a follows dependency on schedA.job2), the dependency is
added as an external follows dependency. Since Version 8.3, unlike in previous
versions, because the scheduler uses the sameday matching criteria to resolve
external dependencies, dependencies originated in this way are never added the
first time the object is submitted.

Examples

To submit the adhoc job stream on workstation site1 and flags it as a carryforward
job stream, run the following command:
submit sched=site1#adhoc;carryforward

To submit job stream fox4 with a job limit of 2, a priority of 23, and an until time
of midnight, run the following command:
sbs fox4;limit=2;pri=23;until=0000

To submit job stream sched3 on all workstations with names that start with site,
run the following command:
sbs=site@#sched3

See also

From the Dynamic Workload Console you can perform the same task as described
in:

the IBM Workload Automation: Dynamic Workload Console User's Guide, section about
Submitting predefined job streams.

switcheventprocessor
Switches the event processing server from the master domain manager to the
backup master or vice versa.

518 IBM Workload Scheduler: User’s Guide and Reference

Note that you can run the event processing server also on a workstation installed
as a backup master that runs as a plain fault-tolerant agent.

Syntax

{switcheventprocessor | switchevtp} workstation

Arguments

workstation
Specifies the name of the master domain manager or of the backup master
where you want to switch the event processing server. Wildcard characters
are not permitted.

Comments

If you issue the command from a workstation other than the one where the event
processor is configured, the command uses the command-line client, so the user
credentials for the command-line client must be set correctly.

In case of backup masters the workstation must have the full-status attribute set
to on.

Permission to start and stop actions on cpu objects is required in the security file
to be enabled to run this command.

The correlation state of pending correlation rule instances is lost whenever the
server is turned off or migrated. If caching of received events is enabled in the
configuration file of the EIF listener, the cached events are lost after the event
processor is switched.

Important:
v Before running this command, run planman deploy as a precaution. Do this to

make sure that your latest changes or additions to active event rules are
deployed before the event processor is switched and so avoid the risk that,
because of a time mismatch, the latest updates (sent automatically based on the
setup of the deploymentFrequency global option) are received by the old event
processor instead of the new one.

v The master and backup masters designated to run the event processor should
have their clocks synchronized at all times to avoid inconsistencies in the
calculation of the time interval of running event rules. In fact, if the event
processor is switched to a not-synchronized computer, timeout actions in the
process of being triggered might undergo unexpected delays. Use a Network
Time Protocol (NTP) server to keep all clocks synchronized.

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Workstation.
4. From the Query drop-down list, select a query to monitor workstations.
5. Click Run to run the monitoring task.

Chapter 12. Managing objects in the plan - conman 519

|

|

|
|

|

|

|

|

6. From the table containing the list of workstations, select a workstation and click
More Actions > Become Event Processor.

switchmgr
Switches domain management from the current domain manager to a backup
domain manager.

You must have start and stop access to the backup domain manager.

The switchmgr command must only be used as part of specific procedures for
switching domain management capabilities from a domain manager to its backup
domain manager either permanently or temporarily. For information about these
procedures, refer to the IBM Workload Scheduler: Administration Guide.

Syntax

{switchmgr | switchm} domain;newmgr

Arguments

domain Specifies the domain in which you want to switch managers.

newmgr
Specifies the name of the new domain manager. This must be a
workstation in the same domain, and should be defined beforehand as a
fault-tolerant agent with Resolve Dependencies and Full Status enabled.

Comments

The command stops a specified workstation and restarts it as the domain manager.
All domain member workstations are informed of the switch, and the old domain
manager is converted to a fault-tolerant agent in the domain.

The next time JnextPlan is run on the old domain manager, the domain acts as
though another switchmgr command had been run and the old domain manager
automatically resumes domain management responsibilities.

Fault-tolerant agents defined with securitylevel = on might fail to use the SSL
port to connect to the new master domain manager after the switchmgr command
is run. In this case do either of the following to let the agent start correctly:
v Unlink and then link the agent from the new master domain manager.
v Use the securitylevel = force option on the agent.

Examples

To switch the domain manager to workstation orca in the masterdm domain, run
the following command:
switchmgr masterdm;orca

To switch the domain manager to workstation ruby in the bldg2 domain, run the
following command:
switchmgr bldg2;ruby

See also

From the Dynamic Workload Console you can perform the same task as follows:

520 IBM Workload Scheduler: User’s Guide and Reference

|
|

|

|

1. In the navigation bar at the top, click System Status and Health > Workload
Monitoring > Monitor Workload.

2. Select an engine.
3. In Object Type, select Workstation.
4. From the Query drop-down list, select a query to monitor workstations.
5. Click Run to run the monitoring task.
6. From the table containing the list of workstations, select a workstation and click

More Actions > Become Master Domain Manager.

system command
Runs a system command.

Syntax

[: | !] system-command

Arguments

system-command
Specifies any valid system command. The prefix (: or !) is required only
when a command name has the same spelling as a conman command.

Examples

To run a ps command in UNIX, run the following command:
ps -ef

To run a dir command in Windows, run the following command:
dir \bin

tellop
Sends a message to the IBM Workload Scheduler console.

Syntax

{tellop | to} [text]

Arguments

text Specifies the text of the message. The message can contain up to 900
characters.

Comments

If tellop is issued on the master domain manager, the message is sent to all linked
workstations. If issued on a domain manager, the message is sent to all of the
linked agents in its domain and subordinate domains. If issued on a workstation
other than a domain manager, the message is sent only to its domain manager if it
is linked. The message is displayed only if the console message level is greater
than zero. See “console” on page 418.

If tellop is entered alone, it prompts for the message text. At the prompt, type each
line and press the Return key. At the end of the message, type two slashes (//) or
a period (.), and press the Return key. You can use the new line sequence (\n) to

Chapter 12. Managing objects in the plan - conman 521

|
|

|

|

|

|

|
|

format messages. Typing Control+c at any time will exit the tellop command
without sending the message.

Examples

To send a message, run the following command:
tellop TWS will be stopped at\n4:30 for 15 minutes.

To prompt for text before sending a message, run the following command:
to
TELLOP>*********************************
TELLOP>* TWS will be stopped at *
TELLOP>* 4:30 for 15 minutes. *
TELLOP>*********************************
TELLOP>//

unlink
Closes communication links between workstations.

You must have unlink access to the target workstation.

Syntax

unlink [domain!]workstation
[;noask]

Arguments

domain Specifies the name of the domain in which to close links. It is not
necessary to specify the domain name of a workstation in the master
domain. Wildcard characters are permitted.

Note: You must always specify the domain name when unlinking a
workstation not in the master domain.

This argument is useful when unlinking more than one workstation in a
domain. For example, to unlink all the agents in domain stlouis, use the
following command:
unlink stlouis!@

If you do not specify domain, and workstation includes wildcard characters,
the default domain is the one in which conman is running.

workstation
Specifies the name of the workstation to be unlinked. Wildcard characters
are permitted.

This command is not supported on remote engine workstations.

noask Specifies not to prompt for confirmation before taking action on each
qualifying workstation.

Comments

Assuming that a user has unlink access to the workstations being unlinked, the
following rules apply:
v A user running conman on the master domain manager can unlink any

workstation in the network.

522 IBM Workload Scheduler: User’s Guide and Reference

v A user running conman on a domain manager other than the master can unlink
any workstation in its own domain and subordinate domains. The user cannot
unlink workstations in peer domains.

v A user running conman on an agent can unlink any workstation in its local
domain provided that the workstation is either a domain manager or host. A
peer agent in the same domain cannot be unlinked.

For additional information see “link” on page 432.

Examples

Figure 29 and Table 72 show the links closed by unlink commands run by users in
various locations in the network.

DMn are domain managers and Ann are agents.

Table 72. Unlinked workstations

Command Closed by User1 Closed by User2 Closed by User3

unlink@!@ All links are closed
DM1-DM2
DM2-A21
DM2-A22
DM2-DM4
DM4-A41
DM4-A42

DM2-A21

unlink @
DM1-A11
DM1-A12
DM1-DM2
DM1-DM3

DM1-DM2
DM2-A21
DM2-A22
DM2-DM4

DM2-A21

unlink DOMAIN3!@
DM3-A31
DM3-A32

Not allowed Not allowed

A11 A12

DM1

DM2 DM3

DM4

A21 A22 A31 A32

A41 A42

Domain1

Domain2 Domain3

Domain4

User1

User2

User3

Figure 29. Unlinked network workstations

Chapter 12. Managing objects in the plan - conman 523

Table 72. Unlinked workstations (continued)

Command Closed by User1 Closed by User2 Closed by User3

unlink DOMAIN4!@
DM4-A41
DM4-A42

DM4-A41
DM4-A42

Not allowed

unlink DM2 DM1-DM2 Not applicable DM2-A21

unlink A42 DM4-A42 DM4-A42 Not allowed

unlink A31 DM3-A31 Not allowed Not allowed

See also

From the Dynamic Workload Console you can perform the same task as follows:
1. In the navigation bar at the top, click System Status and Health > Workload

Monitoring > Monitor Workload.
2. Select an engine.
3. In Object Type, select Workstation.
4. From the Query drop-down list, select a query to monitor workstations.
5. Click Run to run the monitoring task.
6. From the table containing the list of workstations, select a workstation and click

Unlink.

version
Displays the conman program banner, inclusive of the version up to the installed
fix pack level.

Syntax

{version | v}

Examples

To display the conman program banner, run the following command:
%version

The output is similar to this:
##
Licensed Materials - Property of IBM* and HCL**
5698-WSH
(C) Copyright IBM Corp. 1998, 2016 All rights reserved.
(C) Copyright HCL Technologies Ltd. 2016 All rights reserved
* Trademark of International Business Machines
** Trademark of HCL Technologies Limited
###

Installed for user "twsuser".
Locale LANG set to the following: "en"
Scheduled for (Exp) 05/20/16 (#8) on LB001542_MASTER.Batchman LIVES.
Limit:55,Fence:0,Audit Level:0

524 IBM Workload Scheduler: User’s Guide and Reference

|

|

|
|

|

|

|

|

|
|

Chapter 13. Using advanced statistics to forecast the
estimated duration of a job

A powerful statistical tool for the prediction of estimated job durations - in
addition to the one provided by the logman command - is available by installing a
subset of IBM SPSS Statistics software packaged with IBM Workload Scheduler.
This tool does not employ specific time series to calculate the estimated job
durations, as logman does. On the contrary, it uses a very sophisticated algorithm
on all the history of the previous ninety days to forecast the estimated durations
for the next five days. The forecasts are precise to the very second.

Whereas logman is tailored to provide accurate estimates when the workload is
subject to periodical shifts, the advanced statistical tool is ideal in case of more
complex patterns. For example, the tool can be particularly useful to see beyond
the accepted impacts of already known cyclic events, and understand what
apparently hidden conflicts can affect the duration of a job. It can be effective to
measure and forecast the durations of jobs along a critical path that occasionally
does not meet its deadline.

The logman command logs job statistics from a production plan log file. By default,
the statistics are logged automatically for all the jobs in the plan. On the contrary,
the SPSS-powered statistical tool processes only the jobs that you previously
flagged for this purpose.

Deploying the advanced statistical tool

To use the SPSS-based statistical tool on selected jobs to have a 5-day forecast of
their estimated duration, follow these steps:
1. “Installing the SPSS statistics subset.” Install the SPSS subset packaged with

IBM Workload Scheduler on an agent of your choice
2. Flag the jobs that you want to be processed by the advanced statistical tool
3. Configure and import as a job stream the ELAB_JOB_STAT workload

application template
4. Run the ELAB_JOB_STAT_JS job stream after the plan has completed to

calculate the estimated job durations

Installing the SPSS statistics subset

About this task

Install the SPSS statistics subset on an agent of your IBM Workload Scheduler
network. Follow these steps to install the SPSS statistics subset:

Procedure
1. Download or copy the .zip file IBMWorkload Scheduler Advanced Statistics

Tool onto the agent from the IBM Workload Scheduler eImage according to the
operating system running on the agent.

2. Unzip the file.
3. Run:
v ./iws_spss_install.sh -inst_dir installation path (UNIX)

525

|

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|

|
|

|

|
|

|
|

|
|

|

|
|

|

|
|
|

|

|

|

v drive\iws_spss_install.bat -inst_dir installation path (Windows)

where installation path is an installation path that you specify on the agent. You
will later have to specify this installation path in one of the jobs that make up
the ELAB_JOB_STAT_JS job stream. If you run iws_spss_install with no
arguments, you get the usage in return.

Results

The installation is complete. On the AIX platform, an additional step is required to
complete the installation.

What to do next

Attention: For AIX platforms only. This additional configuration step is required
to complete the installation.

If you are installing on an AIX platform, you must modify the JobManager.ini file
as follows to complete the installation:
1. Locate the JobManager.ini file on the local agent instance where the SPSS job

will run. The file is located in the TWA_home/TWS/ITA/cpa/config directory on
the agent.

2. In the [ITA Env] section of the file, modify the value of the LIBPATH keyword
by appending the following text displayed in bold typeface. The entire value
must be entered in a single continuous row. This example assumes that SPSS
was installed in the /opt/IBM/SPSS folder:
[ITA Env]
SHLIB_PATH = $SHLIB_PATH:.:
LIBPATH = $LIBPATH:/home/spss_075/TWS/JavaExt
/jre/jre/bin/j9vm:/home/spss_075/
TWS/JavaExt/jre/jre/bin/j9vm/../../lib/ppc64
:/opt/IBM/SPSS:/opt/IBM/SPSS/ext/
bin/pasw.adp:/opt/IBM/SPSS/ext/bin/pasw.aedata:
/opt/IBM/SPSS/ext/bin/pasw.alm:/
opt/IBM/SPSS/ext/bin/pasw.bagging:/opt/IBM/SPSS
/ext/bin/pasw.boosting:/opt/IBM/
SPSS/ext/bin/pasw.cognos:/opt/IBM/SPSS/ext/bin
/pasw.common:/opt/IBM/SPSS/ext/
bin/pasw.externalrule:/opt/IBM/SPSS/ext/bin
/pasw.glmm:/opt/IBM/SPSS/ext/bin/
pasw.me:/opt/IBM/SPSS/ext/bin/pasw.netezzaindb:
/opt/IBM/SPSS/ext/bin/
pasw.neuralnet:/opt/IBM/SPSS/ext/bin/pasw.outerpartition:
/opt/IBM/SPSS/ext/
bin/pasw.pmmlmerge:/opt/IBM/SPSS/ext/bin/pasw.psm:
/opt/IBM/SPSS/ext/bin/
pasw.scoring:/opt/IBM/SPSS/ext/bin/pasw.simulation:
/opt/IBM/SPSS/ext/bin/
pasw.split:/opt/IBM/SPSS/ext/bin/pasw.stb:/opt/IBM
/SPSS/ext/bin/pasw.tm1:/
opt/IBM/SPSS/ext/bin/pasw.transformation:/opt/IBM
/SPSS/ext/bin/pasw.tree:/opt/
IBM/SPSS/ext/bin/pasw.xmldata:/opt/IBM/SPSS/ext
/bin/spss.C5:/opt/IBM/SPSS/ext/
bin/spss.bayesiannetwork:/opt/IBM/SPSS/ext/bin
/spss.binning:/opt/IBM/SPSS/ext/
bin/spss.cplex:/opt/IBM/SPSS/ext/bin/spss.dataview:
/opt/IBM/SPSS/ext/bin/
spss.inlinecsp:/opt/IBM/SPSS/ext/bin/spss.knn:
/opt/IBM/SPSS/ext/bin/
spss.modelaccreditation:/opt/IBM/SPSS/ext/bin/
spss.modelevaluation:/opt/IBM/SPSS/

526 IBM Workload Scheduler: User’s Guide and Reference

|

|
|
|
|

|

|
|

|

|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

ext/bin/spss.optimization:/opt/IBM/SPSS/ext/bin
/spss.predictoreffectiveness:/opt/
IBM/SPSS/ext/bin/spss.predictorstat:/opt/IBM/SPSS
/ext/bin/spss.propensitymodelling:/
opt/IBM/SPSS/ext/bin/spss.selflearning:/opt/IBM
/SPSS/ext/bin/spss.svm:/opt/IBM/SPSS/
ext/bin/spss.xd:/opt/IBM/SPSS/jre/bin/classic:
/opt/IBM/SPSS/jre/lib/ppc64:/opt/IBM/
SPSS/jre/lib/ppc64/j9vm:/opt/IBM/SPSS/jre/bin
LD_LIBRARY_PATH = $LD_LIBRARY_PATH:.

3. Save the changes to the file.

Selecting the jobs to be measured by the advanced statistical tool
To select the jobs for which the estimated duration is to be forecasted by the
SPSS_based tool, you can use either the composer command line or the Dynamic
Workload Console. In either case you update the definition of the job within the
job stream definition.

In composer:

1. Open the job stream definition that includes the jobs that you want to
flag.

2. Flag the jobs by adding the statisticstype custom keyword in their
definition.

In the Dynamic Workload Console:

1. In Manage Workload Definitions, edit the job stream definition that
includes the jobs that you want to flag.

2. In the job stream definition, select every job you want to flag to open
its definition.

3. In the Properties panel of the job, select the Duration forecast tab.
4. In Duration forecast, select the Use Advanced analytics checkbox.

You can change your selection anytime around your workload. The jobs that are
not flagged for advanced statistics have their estimated duration calculated by
logman.

While you do not have to take additional steps to have estimated job durations
calculated by logman, to have them calculated by the advanced statistical tool you
must also create and customize the ELAB_JOB_STAT_JS job stream as described
next.

The estimated durations of the flagged jobs are, however, calculated by the
SPSS-based advanced statistical tool only when you run the ELAB_JOB_STAT_JS
job stream after running the plan (JnextPlan).

Importing and configuring the ELAB_JOB_STAT_JS job stream
The ELAB_JOB_STAT workload application template (WAT) is provided as a zip
file together with the installation code of the SPSS software subset. You must
unpack the workload application template from the zip file and import it to the
master domain manager of your network as a job stream. The ELAB_JOB_STAT_JS
job stream is made up of three jobs that you must configure before you can run it
once the plan has completed.

ELAB_JOB_STAT_JS must be launched after the plan has run. Its function is to:

Chapter 13. Using advanced statistics to forecast the estimated duration of a job 527

|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|

|

|
|

|
|

|

|
|

|
|

|

|

|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|

1. Search the plan for all the flagged jobs, get their past duration histories (of up
to 90 days), and copy them into the exportjobstat.zip file.

2. Export exportjobstat.zip to the SPSS-based statistical tool (which calculates
the estimated durations of the flagged jobs for the next 5 days and copies them
in the importjobstat.zip file).

3. Import importjobstat.zip and make the estimated durations (and their
confidence intervals) available in conman and in the Dynamic Workload
Console.

To create and customize the ELAB_JOB_STAT_JS job stream, follow these steps:
1. To create the ELAB_JOB_STAT_JS job stream:

a. Find the custom_stats_wat.zip file in the same medium from where you
extracted the installation file of the SPSS software subset.

b. Download this file, unpack it, and find the
ELAB_JOB_STAT_WAT_Mapping.UTF8.properties file.

c. Edit ELAB_JOB_STAT_WAT_Mapping.UTF8.properties to replace the value of
the WORKSTATION_ELAB_JOB_STAT_WS key with the name of the agent
workstation that is to run the ELAB_JOB_STAT job stream.

d. Use the following command to import the modified WAT file in to the
master domain manager:
wappman -import ELAB_JOB_STAT_WAT_Definitions.UTF8.xml ELAB_JOB_STAT_WAT_
Mapping.UTF8.properties

See “Workload application definition” on page 281 for reference on
workload application templates.
The ELAB_JOB_STAT_JS job stream is thus created. It includes the following
jobs that you need to customize:
v EXPORT_JOB_STAT
v ELAB_JOB_STAT
v IMPORT_JOB_STAT

The name of the workstation that is to run the job stream is the one you
provided when you edited the properties file of the workload application
template.

2. To customize the ELAB_JOB_STAT_JS job stream:
v Open EXPORT_JOB_STAT and IMPORT_JOB_STAT for editing. These jobs

are RESTful Web Services jobs. In composer edit the JSDL definition. In the
Dynamic Workload Console right click the jobs in the job stream definition
and select Open Job Definition:
– In Authentication, enter the login user name and password
– In Actions, enter the host name and port of the master domain manager

in the Service URI field
v Open ELAB_JOB_STAT for editing. The type of this job is SPSS Job Duration

Prediction. In composer edit the JSDL definition. In the Dynamic Workload
Console right click the jobs in the job stream definition and select Open Job
Definition:
– In SPSS Job Duration Prediction, enter the installation path of the SPSS

software subset in the Installation directory field
– In SPSS Job Duration Prediction, specify the path names to the

exportjobstat.zip and importjobstat.zip files. The directories must
already exist before the job stream is run.

528 IBM Workload Scheduler: User’s Guide and Reference

|
|

|
|
|

|
|
|

|

|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|

|

|

|

|
|
|

|

|
|
|
|

|

|
|

|
|
|
|

|
|

|
|
|

Running the ELAB_JOB_STAT_JS job stream and viewing results
Submit the ELAB_JOB_STAT_JS job stream after JnextPlan has run. Optionally,
schedule the job stream to run regularly after JnextPlan (after the FINAL job, if it
exists).

The estimated durations and the related confidence intervals can be viewed, as it
happens with the values calculated by the logman command, in the following
ways:

conman command line
As the output of:
showjobs job_name;props

Dynamic Workload Console
In one of the following views:
v Monitor jobs
v Job properties
v Critical path
v What-if Analysis

Troubleshooting the ELAB_JOB_STAT_JS job stream
If the ELAB_JOB_STAT job abends at runtime and the following error is recorded
in the job log:
Failed to connect to server ’Local Server’

proceed to fix as follows:
1. Stop the agent where the job runs.
2. Edit the JobManager.ini file located in the TWA_home/TWS/ITA/cpa/config

directory of the agent.
Add the following string to the SHLIB_PATH, LIBPATH, and LD_LIBRARY_PATH
keywords located in the [ITA] section of the file:
:SPSS_home/clemrtl/cspj/bin:SPSS_home:SPSS_home/bin:SPSS_home/lib:

where SPSS_home is the absolute directory where the SPSS statistics subset is
installed (for example, /opt/IBM/SPSS/ModelerSolutionPublisher/16).

3. Restart the agent and submit the ELAB_JOB_STAT job or the
ELAB_JOB_STAT_JS job stream again.

Chapter 13. Using advanced statistics to forecast the estimated duration of a job 529

|
|

|
|
|

|
|
|

|
|

|

|
|

|

|

|

|

|
|

|
|

|

|

|

|
|

|
|

|

|
|

|
|

530 IBM Workload Scheduler: User’s Guide and Reference

Chapter 14. Extending IBM Workload Scheduler capabilities

You can extend IBM Workload Scheduler capabilities by integrating with IBM and
third-party products, such as IBM Sterling Connect:Direct or MS SQL. This
integration allows you to easily start IBM Workload Scheduler jobs on external
products, while using IBM Workload Scheduler scheduling capabilities. IBM
Workload Scheduler also provides jobs that perform everyday operations, such as
file transfer and web services, and utility jobs that automate and simplify
operations such as the centralized agent update.

The integration consists of a number of job types with advanced options available
with the Dynamic Workload Console and with the composer command.

You can also create custom plug-ins to implement your own job types with
advanced options for applications that are not supported by IBM Workload
Scheduler. For more information about how to create custom plug-ins, see
Extending IBM Workload Automation.

Standard IBM Workload Scheduler jobs are generic executable files, programs, or
commands. You can define jobs to perform specific tasks, such as invoking OSLC
providers, performing file transfers, and running commands on remote systems
where no IBM Workload Scheduler component is installed, using the job types
with advanced options. You can easily define these jobs without having specific
skills on the applications on which the job runs.

For more information about defining standard IBM Workload Scheduler jobs, see
“Job definition” on page 173.

Once job definitions have been submitted into the production plan, you still have
the opportunity to make one-off changes to the definitions before they run, or after
they have run. You can update the definition of a job that has already run and then
rerun it. The job definition in the database remains unchanged.

The following job types with advanced options are available:

Table 73. Job types with advanced options
Category Job Type Description

Native Windows Jobs that run on Windows operating systems.

UNIX Jobs that run on UNIX platforms. Jobs that run on
limited fault-tolerant agent for IBM i.

Other Jobs that run on extended agents. Refer to Scheduling
Applications with IBM Workload Automation for
information about customized task types for supported
vendor acquired applications.

z/OS Jobs that run the specified command in the JCL tab on a
JCL system.

Remote Command Jobs that run on remote computers where no IBM
Workload Scheduler agent installation is installed.
Note: On z/OS systems, you create it by using the
Dynamic Workload Console.

IBM i Jobs that run a command on IBM i systems.

Executable Jobs that run scripts or commands with advanced
options, such as redirecting standard input and standard
output to a file.

531

|

|

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

|
|

*
*
*
*

|

||
|||
|||
||
|
||
|
|
|
||
|
||
|
|
|
||
||
|
|

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html

Table 73. Job types with advanced options (continued)
Category Job Type Description

ERP SAP Job on XA Workstations Jobs that run on an SAP extended agent. This includes
the following types of SAP R/3 job definitions:

v Standard R/3 job

v BW Process Chain job

v BW InfoPackage job

For more information, see Scheduling Applications with
IBM Workload Automation.

SAP Job on Dynamic Workstations Jobs that run on dynamic agent workstations, pools,
dynamic pools, and z-centric agents. The following types
of SAP job definition are available:

v Standard R/3 job

v BW Process Chain job

v BW InfoPackage job

For more information, see Scheduling Applications with
IBM Workload Automation.

Access Method Jobs that extend IBM Workload Scheduler scheduling
functions to other systems and applications by using
access methods. The access methods communicate with
the external system to launch the job and return the
status of the job. The following access methods are
available:

v PeopleSoft

v SAP

v z/OS

v Unixssh

v Custom methods

For more information, see Scheduling Applications with
IBM Workload Automation.

SAP PI Channel Jobs that run SAP Process Integration (PI) Channel jobs
to control communication channels between the Process
Integrator and a backend SAP R/3 system. For more
information, see Scheduling Applications with IBM
Workload Automation.

SAP BusinessObjects Business
Intelligence (BI)

Jobs that enable automation, monitor and control of
workflows containing SAP BusinessObjects BI reports
(Crystal and Webi reports). For more information, see
Scheduling Applications with IBM Workload
Automation.

Oracle E-Business Suite Jobs that enable automation, monitor and control of
workflows containing Oracle E-Business Suite jobs. For
more information, see Scheduling Applications with IBM
Workload Automation.

532 IBM Workload Scheduler: User’s Guide and Reference

|
|||
|||
|
|
|
|

|
|
||
|
|
|
|
|

|
|
||
|
|
|
|
|
|
|
|
|
|

|
|
||
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html

Table 73. Job types with advanced options (continued)
Category Job Type Description

Cloud Workload Broker Jobs that manage the lifecycle of a dynamic workload
broker job. For information about how to use dynamic
workload broker, see IBM Workload Scheduler
Scheduling Workload Dynamically .

Provisioning Jobs that span physical computers, virtual machines, and
private and public cloud environments creating an
on-demand environment. This job type integrates with
IBM SmartCloud Provisioning.

Salesforce Jobs that enable automation, monitor and control of
Salesforce activities and data. For more information, see
Scheduling Applications with IBM Workload
Automation.

Apache Spark Jobs that enable automation, monitor and control of
Apache Spark activities and data. For more information,
see Scheduling Applications with IBM Workload
Automation.

Amazon EC2 Jobs that enable automation, monitor and control of
Amazon EC2 activities. For more information, see
Scheduling Applications with IBM Workload
Automation.

IBM SoftLayer Jobs that enable automation, monitor and control of IBM
SoftLayer activities. For more information, see
Scheduling Applications with IBM Workload
Automation.

Microsoft Azure Jobs that enable automation, monitor and control of
Microsoft Azure activities. For more information, see
Scheduling Applications with IBM Workload
Automation.

File Transfer
and
Coordination

Shadow Distributed Jobs that run locally and map other jobs running in
remote IBM Workload Scheduler distributed
environments.

Shadow z/OS Jobs that run locally and map other jobs running in
remote IBM Workload Scheduler for z/OS environment.

File Transfer Jobs that run programs to transfer files to and from a
server reachable using FTP, SSH, or other protocols.

IBM Sterling Connect:Direct Jobs that run IBM Sterling Connect:Direct programs to
transfer one or more files from a primary node to a
secondary node. For more information, see Scheduling
Applications with IBM Workload Automation.

Hadoop Distributed File System Jobs that defines, schedules, monitors, and manages file
transfer programs between your workstation and the
Hadoop Distributed File System server. For more
information, see Scheduling Applications with IBM
Workload Automation.

OSLC OSLC Automation Jobs that invoke any OSLC provider that is
implementing the OSLC Automation Specification.
Automation resources define automation plans,
automation requests, and automation results of the
software development, test, and deployment lifecycle.

OSLC Provisioning Jobs that invoke any OSLC provider, such as IBM
Workload Scheduler and IBM SmartCloud Orchestrator,
that is implementing the OSLC Provisioning
Specification. Provisioning resources define provisioning
plans, provisioning requests, and provisioning results of
the software development, test, and deployment lifecycle.

Chapter 14. Extending IBM Workload Scheduler capabilities 533

|
|||
|||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
||
|
|
|
|
|
|

||
|
|
||
|
||
|
||
|
|
|
||
|
|
|
|
|||
|
|
|
|
||
|
|
|
|
|

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_swd/awsbrmst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_swd/awsbrmst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html

Table 73. Job types with advanced options (continued)
Category Job Type Description

Database and
Integrations

Database Jobs that perform queries, SQL statements, and jobs on a
number of databases, including custom databases. You
can also create and run stored procedures on DB2,
Oracle, Microsoft SQL Server, Netezza, Hive, and
BigSql databases.

IBM Cloudant Jobs that run actions on the IBM Cloudant database, on
its documents, or attachments.

MS SQL Jobs that run a Microsoft SQL Server job.

IBM WebSphere MQ Jobs that enable communications among applications that
run in different distributed environment at different
times. Communications are based on the following
message exchange patterns:

v Request/Response.

v Publish on queues or topics.

For more information, see Scheduling Applications with
IBM Workload Automation.

Web Services Jobs that run a web service.

RESTful Web Services Jobs that send requests via HTTP methods (PUT, POST,
GET, HEAD, DELETE) to Web resources.

Java Jobs that run a Java class.

J2EE Jobs that allow Java applications in the same network to
send and receive messages to and from a JMS
destination.

JSR 352 Java Batch Jobs that allow to run Java Batch applications that
implement the JSR 352 standard programming
specification.

MQTT Jobs that allow to run publish and subscribe actions on
topics managed by an MQTT message broker.

Business
Analytics

InfoSphere DataStage Jobs that run IBM InfoSphere DataStage jobs. For more
information, see Scheduling Applications with IBM
Workload Automation.

IBM Cognos Reports Jobs that run IBM Cognos reports, interactive reports,
queries, and report views. For more information, see
Scheduling Applications with IBM Workload
Automation.

Informatica PowerCenter Jobs that schedule Informatica PowerCenter workflows
and track their outcome from the Dynamic Workload
Console and from the IBM Workload Scheduler
command line. For more information, see Scheduling
Applications with IBM Workload Automation.

Hadoop Map Reduce Jobs that define, schedule, monitor, and manage the
execution of Hadoop Map Reduce .jar files. For more
information, see Scheduling Applications with IBM
Workload Automation.

Apache Oozie Jobs that define, schedule, monitor, and manage the
execution of Apache Oozie workflows and of the
following Hadoop jobs:

v MapReduce,

v Pig,

v Hive,

v Sqoop.

For more information, see Scheduling Applications with
IBM Workload Automation

IBM BigInsights Jobs that define, schedule, monitor, and manage IBM
BigInsights Workbook data sheets or Applications. For
more information, see Scheduling Applications with IBM
Workload Automation.

534 IBM Workload Scheduler: User’s Guide and Reference

|
|||
|
|
||
|
|
|
|
||
|
||
||
|
|
|
|
|

|
|
||
||
|
||
||
|
|
||
|
|
||
|
|
|
||
|
|
||
|
|
|
||
|
|
|
|
||
|
|
|
||
|
|
|
|
|
|

|
|
||
|
|
|

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/apps/src_usr/awsaumst_welcome.html

Table 73. Job types with advanced options (continued)
Category Job Type Description

Automation
Utilities

Jobs that
facilitate
specific IBM
Workload
Scheduler
operations

Centralized agent update Jobs that schedule the centralized update of multiple
agent instances. For more information, see IBM Workload
Scheduler Planning and Installation.

Variable Table Jobs that add or modify a variable in a specified variable
table. The Variable Table jobs enable variable passing
from one job to another, in the same job stream or in a
different job stream. For more information, see IBM
Workload Scheduler User's Guide and Reference.

Job Management Jobs that run actions on a job in a job stream. For more
information, see IBM Workload Scheduler User's Guide
and Reference.

Job Stream Submission Jobs that submit a job stream for processing. For more
information, see IBM Workload Scheduler User's Guide
and Reference.

The access methods and application plug-ins needed to run the jobs listed above are packaged with IBM Workload
Scheduler. Entitlement to use some of them requires that you purchase a separate chargeable component in addition
to IBM Workload Scheduler.

See the table about IBM Workload Scheduler chargeable access methods and application plug-ins in Administration
Guide for a list of the chargeable components that must be purchased separately.
Note: For detailed information about software requirements, see System Requirements Document.

You can run job types with advanced options only on workstations with dynamic
capabilities that is dynamic agents, pools, and dynamic pools. These workstation
types use the dynamic functions built into IBM Workload Scheduler and provide
the possibility at run time to dynamically associate your submitted workload (or
part of it) to the best available resources. For more information about dynamic
scheduling, see Chapter 15, “Managing dynamic scheduling capabilities in your
environment,” on page 617.

Prerequisite steps to create job types with advanced options
How to define a new job definitions using the Dynamic Workload Console.

About this task

Perform the following steps before you define and schedule job types with
advanced options.

Procedure
1. Install a number of dynamic agents and add the Java run time

To install dynamic agents, run the installation program. You can install the
dynamic agents during the full installation of IBM Workload Scheduler or in a
stand-alone installation of just the agent. During the installation, you have the
option of adding the Java run time to run job types with advanced options,
both those types supplied with the product and the additional types
implemented through the custom plug-ins.
Follow the installation wizard to complete the installation.
See the section about installation options in Planning and Installation Guide for
descriptions of the installation parameters and options.

2. Organize the dynamic agents in pools and dynamic pools.

Pools and dynamic pools help you organize the environment based on the
availability of your workstations and the requirements of the jobs you plan to
run.
a. From the navigation toolbar, click Administration > Workload

Environment Design > Create Workstations.

Chapter 14. Extending IBM Workload Scheduler capabilities 535

|
|||
|
|

|
|
|
|
|
|

||
|
|
||
|
|
|
|
||
|
|
||
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

|

|

|
|

|

|

|
|
|
|
|
|

|

|
|

|

|
|
|

|
|

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_pi/awspimst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_pi/awspimst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_ref/awsrgmst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_ref/awsrgmst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_ref/awsrgmst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_ref/awsrgmst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_ref/awsrgmst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_ref/awsrgmst_welcome.html

b. Select an engine.
c. Select the workstation type you want to create.
v To create a pool, define the dynamic agents you want to add to the pool

and the workload broker workstation where the pool is hosted.
v To create a dynamic pool, specify the requirements that each dynamic

agent must meet to be added to the dynamic pool.
3. Grant the required authorization for defining job types with advanced

options.

The IBM Workload Scheduler administrator has to grant specific authorizations
in the security file to allow the operators to create job types with advanced
options.
a. Navigate to the TWA_home/TWSdirectory from where the dumpsec and

makesec commands must be run.
b. Run the dumpsec command to decrypt the current security file into an

editable configuration file.
For more information, see the section about dumpsec in Administration
Guide.

c. Add display and run access to the workstation, as follows:
v If the operation is performed on the IBM Workload Scheduler Connector,

display and run access is required on the CPU corresponding to the
workstation where the job is created.

v If the operation is performed on the workstation where the job runs,
display access is required on the workload broker workstation.

For more information, see the section about configuring the security file in
Administration Guide.

d. Close any open conman user interfaces using the exit command.
e. Stop any connectors on systems running Windows operating systems.
f. Run the makesec command to encrypt the security file and apply the

modifications.
For more information, see the section about makesec in Administration Guide.

g. If you are using local security, the file is immediately available on the
workstation where it has been updated.
1) If you are using a backup master domain manager, copy the file to it.
2) Distribute the centralized file manually to all fault-tolerant agents in the

network (not standard, extended, or broker agents), and store it in the
TWA_home/TWS directory.

3) Run JnextPlan to distribute the Symphony file that corresponds to the
new security file.

4. Define the job types with advanced options as described in “Creating advanced
job definitions.”

Creating advanced job definitions

From the composer command line you can create both standard jobs and job types
with advanced options. The syntax for creating both job types is similar; the only
difference is in the arguments that you use to define the job to be run.

To define standard job types, use the docommand or scriptname arguments; to
define job types with advanced options, use the task argument, as described in
“Job definition” on page 173. Each job type with advanced options has specific

536 IBM Workload Scheduler: User’s Guide and Reference

|

|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|

|
|
|

|
|

|
|

|

|

|
|

|

|
|

|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

attributes, which are described in detail in the following sections.

See also

From the Dynamic Workload Console you can perform the same task as described
in:

the Dynamic Workload Console User’s Guide, section about Creating job
definitions.

For more information about how to create and edit scheduling objects, see:

the Dynamic Workload Console User’s Guide, section about Designing your
Workload.

Job definition - z/OS jobs
A z/OS job runs the command you specify in the JCL tab on a JCL system. This
job type runs only on IBM Workload Scheduler distributed - Agent for z/OS.

This section describes the required and optional attributes for z/OS jobs. Each job
definition has the following format and arguments:

Table 74. Required and optional attributes for the definition of a z/OS job.

Attribute Description/value Required

application name jcl U

byDefinition The type of job submission. This is the only
supported submission type.

jclDefinition The operation to be performed on the JCL system. U

The following example shows a job that returns the status of the JCL system:
ZOSAGENT#JCLDEF
TASK
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl=="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlnss:jsdljcl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdljcl">
<jsdl:application name="jcl">
<jsdljcl:jcl>
<jsdljcl:JCLParameters>
<jsdljcl:jcl>
<jsdljcl:byRefOrByDef>
<jsdljcl:byDefinition>
<jsdljcl:jclDefinition>//NORMAL JOB ,’TWS JOB’,CLASS=A,MSGCLASS=A,>
// MSGLEVEL=(1,1)
//*
//STEP1 EXEC PGM=IEFBR14</jsdljcl:jclDefinition>
</jsdljcl:byDefinition>
</jsdljcl:byRefOrByDef>
</jsdljcl:jcl>
</jsdljcl:JCLParameters>
<jsdljcl:JOBParameters>
<jsdljcl:jobStreamName>${tws.jobstream.name}jsdljcl:jobStreamName>${tws.jobstream.name}>
<jsdljcl:inputArrival>${tws.job.ia}jsdljcl:inputArrival>${tws.job.ia}>
</jsdljcl:JOBParameters>
</jsdljcl:jcl>
</jsdl:application>
</jsdl:jobDefinition>
DESCRIPTION "Sample JCL Job Definition"

See also

From the Dynamic Workload Console you can perform the same task as described
in

Chapter 14. Extending IBM Workload Scheduler capabilities 537

|

|

|
|

|
|

|

|
|

|
|

|
|

|
|

||

|||

|||

||
|
|

|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

Remote command jobs
A remote command job runs on remote computers that are not required to have
the IBM Workload Scheduler agent installed.

To read a common real-life scenario that achieves business goals, including the
implementation of a remote command job, see Cloud scenarios - Managing
workload in dynamic environments.

A description of the job properties and valid values are detailed in the
context-sensitive help in the Dynamic Workload Console by clicking the question
mark (?) icon in the top-right corner of the properties pane.

Note: On Windows systems, the RemoteCommand plug-in has a hardcoded
timeout set to 5 minutes (300 seconds). It might happen that this timeout is
reached when a job is still running, causing its abnormal ending. To prevent this, a
new property file, RemoteCommandExecutor.properties, has been added to the
plug-in, having the attribute timeout that can be set to a different amount of
seconds to give more time to run to the job. The attribute format is as follows:
timeout=sec, where sec is the amount of time in seconds. Restart the agent to make
this change effective.

This section describes the required and optional attributes for remote command
jobs. Each job definition has the following format and arguments:

Table 75. Required and optional attributes for the definition of a remote command job
Attribute Description/value Required

application name remotecommand U

userName The user name authorized to start a connection on the remote computer
using the defined protocol. As an alternative to hard-coding actual values,
you can parametrize in one of the following ways:

v Enter a username specified in the database with the user definition (it is
applicable to all operating systems on this job type) and key the
statement:

<jsdl:password>${password:username}</jsdl:password>

The password is retrieved from the username user definition in the
database and resolved at runtime. See “Using user definitions on job
types with advanced options” on page 188 for further details.

You can also specify the user of a different workstation and use the
following syntax for the password:

<jsdl:password>${password:workstation#username}
</jsdl:password>

v Enter a user and password defined with the param utility command
locally on the dynamic agent that will run the job (if the job is to be
submitted to a pool or to a dynamic pool, the definition must be present
on all the agents of the pool). Provided you defined the user name with
the variable user and a password, the corresponding credential statements
would be:

<jsdl:userName>${agent:user}</jsdl:userName>
<jsdl:password>${agent:password.user}</jsdl:password>

U

538 IBM Workload Scheduler: User’s Guide and Reference

|

|

|

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

||
|||
|||
||
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/scen/src_cloud/awsbsscp_rc.htm
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/scen/src_cloud/awsbsscp_rc.htm

Table 75. Required and optional attributes for the definition of a remote command
job (continued)

Attribute Description/value Required

password The password of the authorized user. The password is encrypted when the
job is created. See description for userName for more details.

server name The host name of the computer where the remote command instance is
running.

U

port The port number of the remote computer where the command runs. U

protocol Possible values:

AUTO The protocol is selected automatically from the existing protocols:
SSH, Windows, RSH and REXEC. The product tries using the
SSH protocol first. If this protocol fails, the Windows protocol is
used. When using SSH, the path has to be in the SSH format. In
this case the Cygwin ssh server is mounted on
/home/Administrator.

SSH A network protocol that provides file access, file transfer, and file
management functions over any data stream.

WINDOWS
The Microsoft file sharing protocol. The default port used is 445.
At least one samba share must exist on the server regardless of
the command to be executed.

RSH Remote Shell Protocol (rsh) is a protocol that allows a user to
execute commands on a remote system without having to log in
to the system.

REXEC The Remote Execution (REXEC) server is a Transmission Control
Protocol/Internet Protocol (TCP/IP) application that allows a
client user to submit system commands to a remote system. The
Remote Execution Protocol (REXEC) allows processing of these
commands or programs on any host in the network. The local
host then receives the results of the command processing.

keystore file path The fully qualified path of the keystore file containing the private key used
to make the connection. A keystore is a database of keys. Private keys in a
keystore have a certificate chain associated with them which authenticates
the corresponding public key on the remote server. A keystore also contains
certificates from trusted entities. Applicable to SSH protocol only.

keystore password The password that protects the private key and is required to make the
connection. This attribute is required only if you specify a keystore file path.
If the keystore file path and keystore password combination fail to make a
connection, then an attempt is made using the userName and password that
correspond to the user authorized to start a connection on the remote
computer.

U

command Type the command to be submitted on the remote computer. U

environment The standard output and standard error files for the remote command.
These files are located on the agent, not locally on the workstations where
the remote command runs. Ensure you have write rights on the specified
directories, otherwise no file will be created.

Standard Output
Specify the path and file name where the standard output for the
command is to be saved. Specify either an absolute path name or
a path name relative to the working directory. The file is
overwritten each time the command produces a new output.

Standard Error
Specify the path and file name where the standard error for the
command is to be saved. Specify either an absolute path name or
a path name relative to the working directory. The file is
overwritten each time the command produces a new error.

The following example shows the JSDL “application” section of a sample job
definition for a remote command job:
$JOBS
NC112016#REMCMD
TASK

<?xml version="1.0" encoding="UTF-8"?>

Chapter 14. Extending IBM Workload Scheduler capabilities 539

|
|
|||
||
|
|

||
|
|

|||
||

||
|
|
|
|
|

||
|

|
|
|
|

||
|
|

||
|
|
|
|
|

|

||
|
|
|
|

|

||
|
|
|
|
|

|

|||
||
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|

|
|

|
|
|
|

<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdlremotecommand="http://www.ibm.com/xmlns/prod/scheduling/1.0/
jsdlremotecommand" name="REMOTECOMMAND">

<jsdl:application name="remotecommand">
<jsdlremotecommand:remotecommand>
<jsdlremotecommand:RemoteCommandParameters>
<jsdlremotecommand:taskPanel>
<jsdlremotecommand:command>ping -c 10 localhost </jsdlremotecommand:command>

</jsdlremotecommand:taskPanel>
<jsdlremotecommand:environmentPanel>
<jsdlremotecommand:standardOutput>stdout</jsdlremotecommand:standardOutput>
<jsdlremotecommand:standardError>stderr</jsdlremotecommand:standardError>

</jsdlremotecommand:environmentPanel>
<jsdlremotecommand:serverPanel>
<jsdlremotecommand:serverInfo>
<jsdlremotecommand:serverName>9.168.112.16</jsdlremotecommand:serverName>
<jsdlremotecommand:port>23</jsdlremotecommand:port>
<jsdlremotecommand:protocol>ssh</jsdlremotecommand:protocol>
</jsdlremotecommand:serverInfo>
<jsdlremotecommand:credentials>
<jsdl:userName>userName</jsdl:userName>
<jsdl:password>{aes}mv0GJqOHWo8lbuhcpFaluL9RkGQKrYvTiAUpKTMgp90=

</jsdl:password>
</jsdlremotecommand:credentials>
<jsdlremotecommand:certificates>
<jsdlremotecommand:keystoreFilePath>/var/keyStoreFile</jsdlremotecommand:

keystoreFilePath>
<jsdlremotecommand:keystorePassword>pwd</jsdlremotecommand:keystorePassword>
</jsdlremotecommand:certificates>

</jsdlremotecommand:serverPanel>
</jsdlremotecommand:RemoteCommandParameters>
</jsdlremotecommand:remotecommand>
</jsdl:application>

</jsdl:jobDefinition>
RECOVERY STOP

See also

From the Dynamic Workload Console you can perform the same task as described
in

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

IBM i jobs
An IBM i job runs the command you specify on an IBM i system (formerly known
as AS/400 and i5 OS).

This section describes the required and optional attributes for IBM i jobs. Each job
definition has the following format and arguments:

Table 76. Required and optional attributes for the definition of an IBM i job.

Attribute Description/value Required

application name ibmi U

otherCommandType The generic command to be run
on the IBM i system.

Required for
generic type

command

540 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

|

|
|

|
|

|
|

||

|||

|||

||
|
|
|
|

Table 76. Required and optional attributes for the definition of an IBM i job. (continued)

Attribute Description/value Required

SBMJOBType The SBMJOB command to be run
on the IBM i system.

Required for
SBMJOB type

command

jobName The name of the job that is
associated with the submitted job
while it is being processed by the
system.

jobDescription The job description used to
submit jobs for batch processing.

jobDescriptionLibrary The library that qualifies the job
description.

jobQueue The qualified name of the job
queue on which the job is placed.

jobQueueLibrary The library that qualifies the job
queue.

jobPriority The scheduling priority for the
submitted job.

outputPriority The output priority for spooled
files that are produced by the
submitted job.

outputQueue The qualified name of the output
queue used for spooled files.

outputQueueLibrary The library that qualifies the
output queue.

printDevice The qualified name of the default
printer device for the submitted
job.

systemLibraryList The system portion of the initial
library list that is used by the
submitted job.

currentLibrary The name of the current library
associated with the submitted job.

initialLibraryList The initial user part of the library
list that is used to search for any
object names that were specified
without a library qualifier.

Chapter 14. Extending IBM Workload Scheduler capabilities 541

|

|||

||
|
|
|
|

||
|
|
|

|

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

||
|
|

|

||
|
|

||
|
|

||
|
|

|

||
|
|

|

||
|
|

||
|
|
|

|

Table 76. Required and optional attributes for the definition of an IBM i job. (continued)

Attribute Description/value Required

msgReplyList The list of messages for which
you want to define an automated
reply. For each message, specify:

msgReply

msgId The message
identifier.

msgCmpDta
The message
text.

msgRpy
The automated
reply that you
want to define.

Message Max Replies
The maximum
number of
automated
replies accepted
for the message.
Valid range is
from 0 to 100.
Default value is
10. If 0 is
specified, the
automated reply
to the message
is disabled.

For more information about how to define the Submit Job (SBMJOB) command
parameters, see IBM i product documentation.

The following example shows a job that issues a SBMJOB command with the
related parameters:
$JOBS
IBMI72_94#IBMI_NEWDEF_TEST
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdlibmi="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdlibmi" name="ibmi">
<jsdl:application name="ibmi">
<jsdlibmi:ibmi>

<jsdlibmi:IBMIParameters>
<jsdlibmi:Task>

<jsdlibmi:command>WRKSYSSTS</jsdlibmi:command>
<jsdlibmi:commandTypeGroup>

<jsdlibmi:SBMJOBType>
<jsdlibmi:jobName>TESTMEL</jsdlibmi:jobName>
<jsdlibmi:jobDescription>QDFTJOBD</jsdlibmi:jobDescription>
<jsdlibmi:jobDescriptionLibrary>QGPL</jsdlibmi:jobDescriptionLibrary>
<jsdlibmi:jobQueue/>
<jsdlibmi:jobQueueLibrary/>
<jsdlibmi:jobPriority>3</jsdlibmi:jobPriority>
<jsdlibmi:outputPriority>4</jsdlibmi:outputPriority>
<jsdlibmi:outputQueue>*DEV</jsdlibmi:outputQueue>
<jsdlibmi:outputQueueLibrary/>
<jsdlibmi:printDevice>PRT01</jsdlibmi:printDevice>
<jsdlibmi:systemLibraryList/>
<jsdlibmi:currentLibrary>*CRTDFT</jsdlibmi:currentLibrary>
<jsdlibmi:initialLibraryList>QGPL QTEMP QDEVELOP

QBLDSYS</jsdlibmi:initialLibraryList>

542 IBM Workload Scheduler: User’s Guide and Reference

|

|||

||
|
|

|

||
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

</jsdlibmi:SBMJOBType>
</jsdlibmi:commandTypeGroup>

</jsdlibmi:Task>
</jsdlibmi:IBMIParameters>

</jsdlibmi:ibmi>
</jsdl:application>

</jsdl:jobDefinition>
RECOVERY STOP

The following example shows a job that runs a command on an IBM i system and
defines automated message replies, both for parent and child IBM i jobs . For more
information about defining an automated reply for a message, see “Scheduling and
monitoring jobs on IBM i systems” on page 803.
$JOBS
AGTIBMI_MEL#IBMI_MSG_REPLY
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdlibmi="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdlibmi" name="ibmi">
<jsdl:application name="ibmi">
<jsdlibmi:ibmi>

<jsdlibmi:IBMIParameters>
<jsdlibmi:Task>

<jsdlibmi:command>SBMJOB CMD(CALL PGM(MINERMA/SENDMSGALL)) INQMSGRPY(*SYSRPYL)
</jsdlibmi:command>
<jsdlibmi:commandTypeGroup>

<jsdlibmi:otherCommandType/>
</jsdlibmi:commandTypeGroup>
<jsdlibmi:msgReplyList>

<jsdlibmi:msgReply>
<jsdlibmi:msgId>CPA2401</jsdlibmi:msgId>
<jsdlibmi:msgCmpDta>*</jsdlibmi:msgCmpDta>
<jsdlibmi:msgRpy>Y</jsdlibmi:msgRpy>
<jsdlibmi:msgMaxReplies>2</jsdlibmi:msgMaxReplies>

</jsdlibmi:msgReply>
<jsdlibmi:msgReply>

<jsdlibmi:msgId>CPA24*</jsdlibmi:msgId>
<jsdlibmi:msgCmpDta>*1*</jsdlibmi:msgCmpDta>
<jsdlibmi:msgRpy>Y</jsdlibmi:msgRpy>
<jsdlibmi:msgMaxReplies>54</jsdlibmi:msgMaxReplies>

</jsdlibmi:msgReply>
</jsdlibmi:msgReplyList>

</jsdlibmi:Task>
</jsdlibmi:IBMIParameters>

</jsdlibmi:ibmi>
</jsdl:application>

</jsdl:jobDefinition>
RECOVERY STOP

See also

From the Dynamic Workload Console you can perform the same task as described
in

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

Executable jobs
An executable job runs scripts or commands with advanced options, such as
redirecting standard input and standard output to a file.

A description of the job properties and valid values are detailed in the
context-sensitive help in the Dynamic Workload Console by clicking the question
mark (?) icon in the top-right corner of the properties pane.

Chapter 14. Extending IBM Workload Scheduler capabilities 543

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

|

|
|

|
|

|
|
|

This section describes the required and optional attributes for executable jobs. Each
job definition has the following format and arguments:

Table 77. Required and optional attributes for the definition of an executable job.

Attribute Description/value Required

application name executable U

interactive Specify whether the job requires user intervention.
This option applies only to jobs that run on Windows
operating systems.

U

value Specify the name and value of one or more
arguments.

script Type a script to be run by the job. The script is
created and ran when the job runs. You can specify
the arguments in this tag, or you can type them in
the value tag and call them in the script.

U

suffix Specify the file name extension for the script to be
run by the job. This option applies only to jobs that
run on Windows operating systems. Do not insert the
"." at the begin of the extension name.

The following example shows a job that pings two web sites. The address of the
web sites is defined in the value tag and called in the script tag. This job has an
affinity relationship with job affine_test, which means this job runs on the same
workstation as affine_test:
$JOBS
AGENT#EXECUTABLE
TASK
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle" name="executable">
<jsdl:application name="executable">
<jsdle:executable interactive="false" workingDirectory="c:\">

<jsdle:arguments>
<jsdle:value>www.mysite.com</jsdle:value>
<jsdle:value>www.yoursite.com</jsdle:value>

</jsdle:arguments>
<jsdle:script>ping %1 ping %2</jsdle:script>

</jsdle:executable>
</jsdl:application>

</jsdl:jobDefinition>
DESCRIPTION "Defined using composer."
TWSAFFINITY "affine_test"
RECOVERY STOP

The following example shows a job that runs a vbs script on Windows operating
systems. The file name extension is defined in the suffix attribute of the script
tag:
WIN_WKS1#VBS_NAT1
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle" name="executable">
<jsdl:application name="executable">
<jsdle:executable interactive="true" workingDirectory="c:\tws">

<jsdle:script suffix="vbs">Wscript.Echo "ciao"</jsdle:script>
</jsdle:executable>

</jsdl:application>
</jsdl:jobDefinition>
RECOVERY STOP

544 IBM Workload Scheduler: User’s Guide and Reference

|
|

||

|||

|||

||
|
|

|

||
|
|

||
|
|
|

|

||
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

See also

From the Dynamic Workload Console you can perform the same task as described
in

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

Access method jobs
Access method jobs extend IBM Workload Scheduler scheduling functions to other
systems and applications using access methods. The access methods communicate
with the external system to launch the job and return the status of the job.

A description of the job properties and valid values are detailed in the
context-sensitive help in the Dynamic Workload Console by clicking the question
mark (?) icon in the top-right corner of the properties pane.

This section describes the required and optional attributes for access method jobs.
Each job definition has the following format and arguments:

Table 78. Required and optional attributes for the definition of an access method job
Attribute Description/value Required

application name xajob U

accessMethod The name of the access method used to communicate with the
external system to start the job and return the status of the job.

U

target The name of an option file.

taskString Command to be interpreted by the selected method. The maximum
line length is 8 KB.

U

credentials The name and password of the user running this job. As an
alternative to hard-coding actual values, you can parametrize in one
of the following ways:

v Enter a username specified in the database with the user definition
(it is applicable to all operating systems on this job type) and key
the statement:

<jsdl:password>${password:username}</jsdl:password>

The password is retrieved from the username user definition in the
database and resolved at runtime. For further details, see “Using
user definitions on job types with advanced options” on page 188.

You can also specify the user of a different workstation and use the
following syntax for the password:

<jsdl:password>${password:workstation#username}
</jsdl:password>

v Enter a user and password defined with the param utility command
locally on the dynamic agent that will run the job (if the job is to
be submitted to a pool or to a dynamic pool, the definition must be
present on all the agents of the pool). If you defined the user name
with the variable user and a password, the corresponding credential
statements is:

<jsdl:userName>${agent:user}</jsdl:userName>
<jsdl:password>${agent:password.user}</jsdl:password>

The user and password variables are resolved on the agent at
runtime. For further details, see “Defining variables and passwords
for local resolution on dynamic agents” on page 595.

Chapter 14. Extending IBM Workload Scheduler capabilities 545

|

|
|

|

|

|

|
|

|
|
|

|
|
|

|
|

||
|||
|||
||
|
|

|||
||
|
|

||
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

The following example shows a job that creates a file in the /methods folder using
a default access method job:
$JOBS
AGENT#XA_JOB
TASK
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl" xmlns:jsdlxa=
"http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdlxa" name="xajob">
<jsdl:application name="xajob">
<jsdlxa:xajob accessMethod="unixlocl" target="optionFile">

<jsdlxa:taskString>touch file</jsdlxa:taskString>
<jsdlxa:credentials>
<jsdlxa:userName>TestUser</jsdlxa:userName>
<jsdlxa:password>{aes}IEr/DES8wRzQEij1ySQBfUR587QBxM0iwfQ1EWJaDds=</jsdlxa:password>

</jsdlxa:credentials>
</jsdlxa:xajob>

</jsdl:application>
</jsdl:jobDefinition>
DESCRIPTION "Defined using composer."
RECOVERY STOP

See also

From the Dynamic Workload Console you can perform the same task as described
in

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

Prerequisite steps to create Provisioning jobs
How to define a new Provisioning job definition using the Dynamic Workload
Console.

About this task

To create a Provisioning job definition, you must first complete the prerequisite
steps listed below.

Procedure
1. Install IBM SmartCloud® Provisioning. To find out the version supported by the

product, generate the Data Integration report from the IBM Software Product
Compatibility Reports web site, and select the Supported Software tab.

2. Obtain the SmartCloud HTTP server certificate and save it in a directory for
later use. The Provisioning administrator can provide the certificate, or you can
retrieve the certificate performing the following steps in your browser. The
following example is based on Mozilla Firefox:
a. Log in to Provisioning server providing Provisioning credentials.
b. To download the certificate, click:

Tools>Options>Advanced>Encryption>View Certificates

c. Select IBM> IBM WebSphere® Cloudburst Appliance and click Export. A
file, named IBMWebSphereCloudBurstAppliance.crt (X509 Certificate -
PEM) is created.

3. Browse to the directory where a JRE is installed, for example: C:\Program
Files\IBM\TWS\javaExt\JRE\JRE

546 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

|

|
|

|
|

|

|
|

|

|
|
|

|
|
|
|

|

|
|

|
|
|

|
|

http://www-969.ibm.com/software/reports/compatibility/clarity-reports/report/html/softwareReqsForProduct?deliverableId=196702D00EBC11E58BF1AF9D8B1D437A&osPlatforms=AIX|HP|IBM%20i|Linux|Solaris|Windows|z/OS&duComponentIds=S002|S001|A005|A003|A004&mandatoryCapIds=30|9|13|121|25|26&optionalCapIds=130|132

4. Create a new truststore by launching the following command: keytool
-genkeypair -alias certificatekey -keyalg RSA -validity 7 -keystore
keystore.jks,
where, keystore.jks is the file path to the keystore.

5. Add IBM SmartCloud certificate to the truststore by launching the following
command: keytool -import -file certificate_directory\
IBMWebSphereCloudBurstAppliance.crt -alias scp -keystore
trustore_directory\keystore.jks,

6. Open the TWA_HOME\TWS\ITA\cpa\config\JobManager.ini file, and locate
JavaJobLauncher section, JVMOptions row.

7. Add the following instructions to the row: "-Djavax.net.ssl.trustStore=
DIRECTORY_TRUSTSTORE/keystore.jks
-Djavax.net.ssl.trustStorePassword=TRUSTSTORE_PASSWORD" For example:
JVMOptions = -Djavax.net.ssl.trustStore=C:/myUtils/keystore.jks
-Djavax.net.ssl.trustStorePassword=passw0rd

8. To complete the procedure, stop and restart the agent.

IBM SmartCloud Provisioning jobs
A Provisioning job interacts with IBM SmartCloud Provisioning to manage
resources in a cloud computing environment; you can manage resources, build and
manage cloud configurations, and deploy virtual images with patterns and scripts.

To read a real-life scenario that demonstrates how IBM Workload Scheduler and
IBM SmartCloud Provisioning can help you achieve your business goals, see
Managing workloads in dynamic environments.

A description of the job properties and valid values are detailed in the
context-sensitive help in the Dynamic Workload Console by clicking the question
mark (?) icon in the top-right corner of the properties pane.

For more information about Provisioning, see IBM SmartCloud Provisioning
Information Center

This section describes the required and optional attributes for Provisioning jobs.
Each job definition has the following format and arguments:

Table 79. Required and optional attributes for the definition of a Provisioning job
Attribute Description and value Required

application name provisioning U

actionType Valid values:

deploy Deploy a virtual image in the cloud group and create a
new virtual system instance containing the number of
virtual image instances you specify.

manage Start, stop or delete virtual resources (such as virtual
machines or virtual images of complex environment).

U

cloudGroupId The unique identifier of the cloud group from which you are
choosing the virtual instance to be deployed.

U

instanceId The unique identifier of the existing virtual instance on which you are
acting. A virtual instance can be one or more virtual machines. If you
want to act only on a single virtual machine belonging to current
instance, specify its ID as the virtualMachineId attribute.

U

virtualMachineId The unique identifier of the existing virtual machine on which you
are acting.

VirtualImageId The unique identifier of the existing virtual image that is used as a
template for a new virtual image that you are deploying.

U

instanceNameDeploy The unique name of the virtual instance. U

Chapter 14. Extending IBM Workload Scheduler capabilities 547

|
|
|

|

|
|
|
|

|
|

|
|
|

|
|

|

|

|
|
|

|
|
|

|
|
|

|
|

|
|

||
|||
|||
||

||
|
|

||
|

|

||
|
|

||
|
|
|

|

||
|
|

||
|
|

|||

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/scen/src_cloud/awsbsscp_rc.htm
http://pic.dhe.ibm.com/infocenter/tivihelp/v48r1/topic/com.ibm.scp.doc_2.1.0/welcome.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v48r1/topic/com.ibm.scp.doc_2.1.0/welcome.html

Table 79. Required and optional attributes for the definition of a Provisioning job (continued)
Attribute Description and value Required

numberOfVirtualMachines The number of virtual machines you are deploying. U

description A text string describing the virtual system instance.

tags An array of tags defined by the user. These user data specified here
can be retrieved inside the virtual machine. It can be used to
configure a virtual machine at first boot or to run a boot script
registered in the virtual machine.

Size The size of the instance. This is the size of each single virtual machine
belonging to the instance. Valid values:

v xsmall: Extra small

v small: Small

v medium: Medium

v large: Large

v xlarge: Extra Large

U

winPassword The administrator password to access the deployed Windows
systems.

unixSSHPublicKey Applicable for UNIX only. The Secure Shell key must be provided by
the Provisioning administrator.

userName

password

The credentials associated with the Provisioning server. As an
alternative to hard-coding actual values, you can parametrize in one
of the following ways:

v Enter a username specified in the database with the user definition
(it is applicable to all operating systems on this job type) and key
the statement:

<jsdl:password>${password:username}</jsdl:password>

The password is retrieved from the username user definition in the
database and resolved at runtime. See “Using user definitions on
job types with advanced options” on page 188 for further details.

You can also specify the user of a different workstation and use the
following syntax for the password:

<jsdl:password>${password:workstation#username}
</jsdl:password>

v Enter a user and password defined with the param utility command
locally on the dynamic agent that will run the job (if the job is to
be submitted to a pool or to a dynamic pool, the definition must be
present on all the agents of the pool). Provided you defined the
user name with the variable user and a password, the
corresponding credential statements would be:

<jsdl:userName>${agent:user}</jsdl:userName>
<jsdl:password>${agent:password.user}</jsdl:password>

The user and password variables are resolved on the agent at
runtime. See “Defining variables and passwords for local resolution
on dynamic agents” on page 595 for further details.

U

hostname The host name of the Provisioning server. U

port The port number of the Provisioning server. The default value is 443. U

manageType Valid values:

v actionStart: Starts the virtual system instance.

v actionStop: Stops the virtual system instance.

v actionDelete: Deletes the virtual system instance.

U

The following example shows a job definition to be used to deploy a virtual
machine in the Provisioning environment:
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl" xmlns:

jsdlprovisioning="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdlprovisioning"
name="PROVISIONING">

<jsdl:application name="provisioning">
<jsdlprovisioning:provisioning>
<jsdlprovisioning:ProvisioningParameters>
<jsdlprovisioning:actions>

548 IBM Workload Scheduler: User’s Guide and Reference

|

|

||
|
|
|
|
|
|

|

||
|
|

||
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|||
|||
||
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|

<jsdlprovisioning:actionType>
<jsdlprovisioning:deploy>
<jsdlprovisioning:groupCloud>
<jsdlprovisioning:cloudGroupId>8</jsdlprovisioning:cloudGroupId>
</jsdlprovisioning:groupCloud>
<jsdlprovisioning:groupVirtualImage>
<jsdlprovisioning:virtualImageId>52</jsdlprovisioning:virtualImageId>
</jsdlprovisioning:groupVirtualImage>
<jsdlprovisioning:instanceNameDeploy>TESTPROP</jsdlprovisioning:instanceNameDeploy>
<jsdlprovisioning:numberOfVirtualMachines>1</jsdlprovisioning:numberOfVirtualMachines>
<jsdlprovisioning:description/>
<jsdlprovisioning:tags/>
<jsdlprovisioning:size>xsmall</jsdlprovisioning:size>
<jsdlprovisioning:winPassword/>
<jsdlprovisioning:unixSSHPublicKey/>
</jsdlprovisioning:deploy>
</jsdlprovisioning:actionType>
</jsdlprovisioning:actions>
<jsdlprovisioning:connectionInfo>
<jsdlprovisioning:credentials>
<jsdl:userName>cbadmin</jsdl:userName>
<jsdl:password>{aes}2WfJH/3aOxyX2f+QXeW+1YnrN2tM4z338QMYlYVgpOA=</jsdl:password>
</jsdlprovisioning:credentials>
<jsdlprovisioning:server>
<jsdlprovisioning:hostname>9.168.58.192</jsdlprovisioning:hostname>
<jsdlprovisioning:port>443</jsdlprovisioning:port>
</jsdlprovisioning:server>
</jsdlprovisioning:connectionInfo>
</jsdlprovisioning:ProvisioningParameters>
</jsdlprovisioning:provisioning>
</jsdl:application>

</jsdl:jobDefinition>

The following example shows a job definition to be used to stop a virtual machine:
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl" xmlns:

jsdlprovisioning="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdlprovisioning"
name="PROVISIONING">

<jsdl:application name="provisioning">
<jsdlprovisioning:provisioning>
<jsdlprovisioning:ProvisioningParameters>
<jsdlprovisioning:actions>
<jsdlprovisioning:actionType>
<jsdlprovisioning:manage>
<jsdlprovisioning:manageType>actionStop</jsdlprovisioning:manageType>
<jsdlprovisioning:instanceId>102</jsdlprovisioning:instanceId>
<jsdlprovisioning:virtualMachineId/>
</jsdlprovisioning:manage>
</jsdlprovisioning:actionType>
</jsdlprovisioning:actions>
<jsdlprovisioning:connectionInfo>
<jsdlprovisioning:credentials>
<jsdl:userName>cbadmin</jsdl:userName>
<jsdl:password>{aes}2WfJH/3aOxyX2f+QXeW+1YnrN2tM4z338QMYlYVgpOA=</jsdl:password>
</jsdlprovisioning:credentials>
<jsdlprovisioning:server>
<jsdlprovisioning:hostname>9.168.58.192</jsdlprovisioning:hostname>
<jsdlprovisioning:port>443</jsdlprovisioning:port>
</jsdlprovisioning:server>
</jsdlprovisioning:connectionInfo>
</jsdlprovisioning:ProvisioningParameters>
</jsdlprovisioning:provisioning>
</jsdl:application>

</jsdl:jobDefinition>

Scheduling and stopping a job in IBM Workload Scheduler

You schedule IBM SmartCloud Provisioning jobs by defining them in job streams.
Add the job to a job stream with all the necessary scheduling arguments and
submit it.

You can submit jobs using the Dynamic Workload Console, Application Lab, or the
conman command line.

Chapter 14. Extending IBM Workload Scheduler capabilities 549

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

After submission, when the job is running and is reported in EXEC status in IBM
Workload Scheduler, you can stop it if necessary, by using the kill command.
However, this action is effective only on the IBM Workload Scheduler job, and it
does not affect the process or processes running on the IBM SmartCloud
Provisioning workstation. When you stop the IBM Workload Scheduler job, IBM
Workload Scheduler assigns the Error or ABEND status to the IBM Workload
Scheduler job, regardless of the status of the IBM SmartCloud Provisioning job.

Monitoring the job

If the IBM Workload Scheduler stops when you submit the Provisioning job or
while the job is running, IBM Workload Scheduler begins monitoring the job from
where it stopped as soon as the agent restarts.

See also

From the Dynamic Workload Console you can perform the same task as described
in

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

Shadow jobs
A shadow job is a job defined on the local workstation which is used to map a job
running on a remote workstation, called a remote job. You can use shadow jobs to
integrate the workload running on different engines, which can be IBM Workload
Scheduler for z/OS engines or IBM Workload Scheduler engines.

Shadow jobs are defined using XML syntax. The key attributes to identify the
remote job instance and the related matching criteria depend on the type of remote
engine where the remote job instance is defined. Fields highlighted in bold are
those used to identify the remote job instance.

Because z/OS engines support only closest preceding matching criteria the XML
template to define a z/OS shadow job is the following:
$JOBS
WORKSTATION#ZSHADOW_CLOS_PRES
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition

xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:zshadow="http://www.ibm.com/xmlns/prod/scheduling/1.0/zshadow">

<jsdl:application name="zShadowJob">
<zshadow:ZShadowJob>
<zshadow:JobStream>JobStream</zshadow:JobStream>
<zshadow:JobNumber>JobNumber</zshadow:JobNumber>
<zshadow:matching>
<zshadow:previous/>
</zshadow:matching>
</zshadow:ZShadowJob>
</jsdl:application>
</jsdl:jobDefinition>

DESCRIPTION "Sample Job Definition"
RECOVERY STOP

550 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|
|
|
|

|

|
|
|

|

|
|

|

|

|

|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Note: Make sure that you enter valid settings in the JobStream and JobNumber
fields.

Distributed shadow jobs support the four matching criteria available for external
dependencies.

The following shows the XML templates you can use to define distributed shadow
jobs:

Matching criteria: Closest preceding
XML sample:
$JOBS
WORKSTATION#DSHADOW_CLOS_PRES
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition

xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:dshadow="http://www.ibm.com/xmlns/prod/scheduling/1.0/dshadow">

<jsdl:application name="distributedShadowJob">
<dshadow:DistributedShadowJob>
<dshadow:JobStream>JobStream</dshadow:JobStream>
<dshadow:Workstation>Workstation</dshadow:Workstation>
<dshadow:Job>Job</dshadow:Job>
<dshadow:matching>
<dshadow:previous/>
</dshadow:matching>
</dshadow:DistributedShadowJob>
</jsdl:application>
</jsdl:jobDefinition>

DESCRIPTION "Sample Job Definition"
RECOVERY STOP

Matching criteria: Within an absolute interval
XML sample:
$JOBS
WORKSTATION#DSHADOW_ABSOLUTE
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition

xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:dshadow="http://www.ibm.com/xmlns/prod/scheduling/1.0/dshadow">

<jsdl:application name="distributedShadowJob">
<dshadow:DistributedShadowJob>
<dshadow:JobStream>JobStream</dshadow:JobStream>
<dshadow:Workstation>Workstation</dshadow:Workstation>
<dshadow:Job>Job</dshadow:Job>
<dshadow:matching>
<dshadow:absolute from="0600 -4" to="1100 +3"/>
</dshadow:matching>
</dshadow:DistributedShadowJob>
</jsdl:application>
</jsdl:jobDefinition>

DESCRIPTION "Sample Job Definition"
RECOVERY STOP

Matching criteria: Within a relative interval
$JOBS
WORKSTATION#DSHADOW_RELATIVE
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition

xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:dshadow="http://www.ibm.com/xmlns/prod/scheduling/1.0/dshadow">

<jsdl:application name="distributedShadowJob">
<dshadow:DistributedShadowJob>
<dshadow:JobStream>JobStream</dshadow:JobStream>
<dshadow:Workstation>Workstation</dshadow:Workstation>
<dshadow:Job>Job</dshadow:Job>
<dshadow:matching>
<dshadow:relative from="-400" to="+500" />
</dshadow:matching>
</dshadow:DistributedShadowJob>

Chapter 14. Extending IBM Workload Scheduler capabilities 551

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

</jsdl:application>
</jsdl:jobDefinition>

DESCRIPTION "Sample Job Definition"
RECOVERY STOP

Matching criteria: Same scheduled date
XML sample:
$JOBS
WORKSTATION#DSHADOW_SAMEDAY
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition

xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:dshadow="http://www.ibm.com/xmlns/prod/scheduling/1.0/dshadow">

<jsdl:application name="distributedShadowJob">
<dshadow:DistributedShadowJob>
<dshadow:JobStream>JobStream</dshadow:JobStream>
<dshadow:Workstation>Workstation</dshadow:Workstation>
<dshadow:Job>Job</dshadow:Job>
<dshadow:matching>
<dshadow:sameDay/>
</dshadow:matching>
</dshadow:DistributedShadowJob>
</jsdl:application>
</jsdl:jobDefinition>

DESCRIPTION "Sample Job Definition"
RECOVERY STOP

For more information about the matching criteria, see “Managing external follows
dependencies for jobs and job streams” on page 67.

See also

From the Dynamic Workload Console you can perform the same task as described
in

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

File transfer jobs
A file transfer job runs programs to transfer files to and from a server reachable
using FTP, SSH, or other protocols

A description of the job properties and valid values are detailed in the
context-sensitive help in the Dynamic Workload Console by clicking the question
mark (?) icon in the top-right corner of the properties pane.

This section describes the required and optional attributes for file transfer jobs.
Only single file transfers are allowed. Each job definition has the following format
and arguments:

Table 80. Required and optional attributes for the definition of a file transfer job
Attribute Description and value Required

application name filetransfer U

File transfer type
(upload or
download)

Specifies whether the file transfer is an upload or a download.

Enclose all the file transfer attributes between jsdlfiletransfer:uploadInfo
or jsdlfiletransfer:downloadInfo tags as shown in the example.

U

Permissions (Octal
Notation)

If downloading, specify file permissions for the user on the local system.
File permissions are expressed as octal notation.

552 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

|

|

|

|
|

|
|

|
|
|

|
|
|

||
|||
|||
|
|
|

|

|
|

|

|
|
|
|
|

Table 80. Required and optional attributes for the definition of a file transfer job (continued)
Attribute Description and value Required

Delete source files
after transfer

If uploading, specify if source files must be deleted after transfer.

server The address of the file transfer server (and the port number, if other than
the standard port, when you choose FTP as protocol).

U

localfile and
remotefile

v If uploading, localfile is the fully qualified path and name of the file to
be uploaded, while remotefile is the fully qualified path and name of the
file to be created on the remote target.

You can use asterisks (*) or question marks (?) as wildcard characters in
localfile.

v If downloading, localfile is the fully qualified path and name of the file
to be created on the local target, while remotefile is the fully qualified
path and name of the file to be downloaded.

You can use asterisks (*) or question marks (?) as wildcard characters in
remotefile.

U

localCredentials
and
remoteCredentials

The names and passwords of the authorized users on the local and remote
systems. As an alternative to hard-coding actual values, you can parametrize
in one of the following ways:

v Enter a username specified in the database with the user definition (it is
applicable to all operating systems on this job type) and key the
statement:

<jsdl:password>${password:username}</jsdl:password>

The password is retrieved from the username user definition in the
database and resolved at runtime. See “Using user definitions on job
types with advanced options” on page 188 for further details.

You can also specify the user of a different workstation and use the
following syntax for the password:

<jsdl:password>${password:workstation#username}</jsdl:password>

v Enter a user and password defined with the param utility command
locally on the dynamic agent that will run the job (if the job is to be
submitted to a pool or to a dynamic pool, the definition must be present
on all the agents of the pool). Provided you defined the user name with
the variable user and a password, the corresponding credential statements
would be:

<jsdl:userName>${agent:user}</jsdl:userName>
<jsdl:password>${agent:password.user}</jsdl:password>

The user and password variables are resolved on the agent at runtime.
See “Defining variables and passwords for local resolution on dynamic
agents” on page 595 for further details.

Tip: The password of the remote user is not required if a keystore file path
and password are specified when using the SSH protocol.

U

keystore file path The fully qualified path of the keystore file containing the private key used
to make the connection. A keystore is a database of keys. Private keys in a
keystore have a certificate chain associated with them which authenticates
the corresponding public key on the remote server. A keystore also contains
certificates from trusted entities. Applicable to SSH protocol only.

keystore password The password that protects the private key and is required to make the
connection. This attribute is required only if you specify a keystore file path.
If the keystore file path and keystore password combination fail to make a
connection, then an attempt is made using the userName and password that
correspond to the user authorized to start a connection on the remote
computer.

U

Chapter 14. Extending IBM Workload Scheduler capabilities 553

|
|||
|
|
||

||
|
|

|
|||
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|

||
|
|
|
|

|

||
|
|
|
|
|

|

Table 80. Required and optional attributes for the definition of a file transfer job (continued)
Attribute Description and value Required

protocol Can be:

WINDOWS
The Microsoft file sharing protocol. If you do not specify a
protocol, WINDOWS is assumed. Specify the shared directory in
the remotefile keyword, without specifying any paths where the
shared directory is nested. Specify the address of the workstation
hosting the shared directory in the server keyword.

The default working directory is: C:\Program
Files\IBM\TWA\TWS\ITA.

SSH A network protocol that provides file access, file transfer, and file
management functions over any reliable data stream. If you do
not specify a protocol, SSH is assumed as default. To access
remote Windows workstations, install Cygwin or MKS on each
target Windows workstation.

FTP A standard network protocol used to exchange files over a
TCP/IP-based network, such as the Internet.

FTPS An extension to the File Transfer Protocol (FTP) that adds
support for the Tranport Layer Security (TLS) cryptographic
protocol. Specifically, the file transfer is performed using
implicitly the TLS security protocol for the FTP sessions,
providing a private security level for the data connection. TLS
protocol version 1 is supported. The SSL session reuse
configuration is not supported.

FTPES An extension to the File Transfer Protocol (FTP) that adds
support for the Tranport Layer Security (TLS) cryptographic
protocol. Specifically, the file transfer is performed using
explicitly the TLS security protocol for the FTP sessions,
providing a private security level for the data connection. TLS
protocol version 1 is supported. The SSL session reuse
configuration is not supported.

AUTO The protocol is selected automatically between the WINDOWS
and SSH protocols. The product tries using the WINDOWS
protocol first. If this protocol fails, the SSH protocol is used.
When using SSH, the path has to be in the SSH format. In this
case the Cygwin ssh server is mounted on /home/
Administrator.

transferMode Can be binary (the default) or ascii.

remoteCodepage The codepage used on the remote workstation.

If you want to use a custom code page, define the remoteCodepage
parameter as follows:

<jsdlfiletransfer:remoteCodepage>USER:CUSTOM_CP
</jsdlfiletransfer:remoteCodepage>

where CUSTOM_CP is the code page defined by the user.

For example, to use the tcpip.ftpd.ftpxlbin.frence3 custom code page,
define the remoteCodepage parameter as follows:

<jsdlfiletransfer:remoteCodepage>USER:tcpip.ftpd.ftpxlbin.frence3
</jsdlfiletransfer:remoteCodepage>

Required if you
specify
localCodepage

localCodepage The codepage used on the local workstation. Required if you
specify
remoteCodepage

Timeout Specifies the number of seconds to be used for the file transfer operation.
The default value is 60 seconds.

554 IBM Workload Scheduler: User’s Guide and Reference

|
|||
||

|
|
|
|
|
|

|
|

||
|
|
|
|

||
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|

|

|||
||

|
|
|
|

|

|
|
|
|

|
|
|

|||
|
|
||
|
|

Table 80. Required and optional attributes for the definition of a file transfer job (continued)
Attribute Description and value Required

portsRange When the active mode is enabled, the portsRange section restricts the port
numbers sent by the FTP PORT command. This option accommodates
highly restrictive firewall rules. The portsRange section defines the port
range to use on the client side of TCP data connections. If you do not
specify the portsRange section, the operating system determines the port
numbers to be used.

The portsRange parameter requires the following parameters:

min (min_port)
The minimum port value to use on the client side of TCP data
connections. The values allowed range from 0 to 65535. For
example, if you set this value to 1035, IBM Workload Scheduler
restricts the port numbers to be greater than or equal to port
1035

max (max_port)
The maximum port value to use on the client side of TCP data
connections. The values allowed range from 0 to 65535. For
example, if you set this value to 1038, IBM Workload Scheduler
restricts the port number to be less than or equal to port 1038.

For example, to limit the port range to use on the client side between port
1035 and port 1040, specify the following:

<jsdlfiletransfer:portsRange>
<jsdlfiletransfer:min>1035</jsdlfiletransfer:min>
<jsdlfiletransfer:max>1040</jsdlfiletransfer:max>
</jsdlfiletransfer:portsRange>

passiveMode Specifies whether the server is passive or active in establishing connections
for data transfers.

If you set this option to NO, the server establishes the data connection with
the client (active mode).

If you set this option to YES, the client establishes the data connection with
the server (passive mode). The default value is NO.

The following xml file shows the JSDL “application” section of a sample job
definition for a file transfer job type:
<jsdl:application name="filetransfer">
<jsdlfiletransfer:filetransfer>
<jsdlfiletransfer:downloadInfo>
<jsdlfiletransfer:server>FTP_SERVER</jsdlfiletransfer:server>
<jsdlfiletransfer:localfile>LOCAL_FILE</jsdlfiletransfer:localfile>
<jsdlfiletransfer:remotefile>REMOTE_FILE</jsdlfiletransfer:remotefile>
<jsdlfiletransfer:remoteCredentials>
<jsdl:userName>USERNAME</jsdl:userName>
<jsdl:password>PASSWORD</jsdl:password>
</jsdlfiletransfer:remoteCredentials>
<jsdlfiletransfer:protocol>PROTOCOL</jsdlfiletransfer:protocol>
<jsdlfiletransfer:transferMode>ASCII_BINARY</jsdlfiletransfer:transferMode>
<jsdlfiletransfer:codepageConversion>
<jsdlfiletransfer:remoteCodepage>RM_CP</jsdlfiletransfer:remoteCodepage>
<jsdlfiletransfer:localCodepage>LC_CP</jsdlfiletransfer:localCodepage>
</jsdlfiletransfer:codepageConversion>
<jsdlfiletransfer:timeout>CONNECTION_TIMEOUT</jsdlfiletransfer:timeout>
<jsdlfiletransfer:portsRange>
<jsdlfiletransfer:min>MIN_PORT</jsdlfiletransfer:min>
<jsdlfiletransfer:max>MAX_PORT</jsdlfiletransfer:max>
</jsdlfiletransfer:portsRange>
<jsdlfiletransfer:passiveMode>YES_NO</jsdlfiletransfer:passiveMode>
</jsdlfiletransfer:downloadInfo>
</jsdlfiletransfer:filetransfer>
</jsdl:application>

Chapter 14. Extending IBM Workload Scheduler capabilities 555

|
|||
||
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

||
|

|
|

|
|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The following example shows a generalized task that downloads a file from a
remote workstation with address 10.0.0.8:
$JOBS
AGENT#FILE_TRANSFER
TASK
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdlfiletransfer="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdlfiletransfer"
name="FILETRANSFER">
<jsdl:application name="filetransfer">
<jsdlfiletransfer:filetransfer>
<jsdlfiletransfer:downloadInfo>
<jsdlfiletransfer:server>10.0.0.8</jsdlfiletransfer:server>
<jsdlfiletransfer:localfile>c:\MyTextFile.txt</jsdlfiletransfer:localfile>
<jsdlfiletransfer:remotefile>./MyRemoteFile.txt</jsdlfiletransfer:remotefile>
<jsdlfiletransfer:localCredentials>
<jsdl:userName>${agent:locluser}</jsdl:userName>
<jsdl:password>${agent:password.${agent:locluser}}</jsdl:password>1

</jsdlfiletransfer:localCredentials>
<jsdlfiletransfer:remoteCredentials>
<jsdl:userName>remuser</jsdl:userName>
<jsdl:password>${password:remuser}</jsdl:password>2

</jsdlfiletransfer:remoteCredentials>
<jsdlfiletransfer:protocol>FTP</jsdlfiletransfer:protocol>
<jsdlfiletransfer:transferMode>ascii</jsdlfiletransfer:transferMode>
<jsdlfiletransfer:codepageConversion>
<jsdlfiletransfer:remoteCodepage>IBM-280</jsdlfiletransfer:remoteCodepage>
<jsdlfiletransfer:localCodepage>ISO8859-1</jsdlfiletransfer:localCodepage>
</jsdlfiletransfer:codepageConversion>
</jsdlfiletransfer:downloadInfo>
</jsdlfiletransfer:filetransfer>
</jsdl:application>
</jsdl:jobDefinition>

Note: in the credentials sections,
1. The local user name was defined on the agent that runs the job with a variable

named locluser through the param utility command. So, the value defined for
locluser will be retrieved at runtime from the variables file located in the
agent. Likewise, the password for the value represented by locluser was
defined on the agent with the param command and will be resolved at runtime
from the local variables file.

2. The remote user name was defined with the composer user command and is
stored in the database together with its password as user name remuser. The
password for remuser will be retrieved from the database at runtime.

The following example shows a job definition to be used to download a text file
using the FTPES protocol with an active mode, a timeout of 10 seconds and a port
range to use between 1035 and 1038:
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdlfiletransfer="http://www.ibm.com/xmlns/prod/scheduling/1.0/
jsdlfiletransfer" name="FTPES_DOWNLOAD_TEXT">
<jsdl:application name="filetransfer">
<jsdlfiletransfer:filetransfer>
<jsdlfiletransfer:downloadInfo>
<jsdlfiletransfer:server>myServerFtp</jsdlfiletransfer:server>
<jsdlfiletransfer:localfile>d:\MyLocalFile.txt</jsdlfiletransfer:localfile>
<jsdlfiletransfer:remotefile>/tmp/MyRemoteFile.txt</jsdlfiletransfer:remotefile>
<jsdlfiletransfer:remoteCredentials>
<jsdl:userName>myUser</jsdl:userName>
<jsdl:password>myPassword</jsdl:password>
</jsdlfiletransfer:remoteCredentials>
<jsdlfiletransfer:protocol>FTPES</jsdlfiletransfer:protocol>
<jsdlfiletransfer:transferMode>ascii</jsdlfiletransfer:transferMode>
<jsdlfiletransfer:timeout>10</jsdlfiletransfer:timeout>
<jsdlfiletransfer:portsRange>
<jsdlfiletransfer:min>1035</jsdlfiletransfer:min>
<jsdlfiletransfer:max>1038</jsdlfiletransfer:max>

556 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

</jsdlfiletransfer:portsRange>
</jsdlfiletransfer:downloadInfo>
</jsdlfiletransfer:filetransfer>
</jsdl:application>
</jsdl:jobDefinition>

The following example shows a job definition to be used to transfer a text file
using the SSH protocol:
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdlfiletransfer="http://www.ibm.com/xmlns/prod/scheduling/1.0/
jsdlfiletransfer" name="SSH_UPLOAD">
<jsdl:application name="filetransfer">
<jsdlfiletransfer:filetransfer>
<jsdlfiletransfer:uploadInfo>
<jsdlfiletransfer:server>myServer</jsdlfiletransfer:server>
<jsdlfiletransfer:localfile>d:\MyLocalFile.txt</jsdlfiletransfer:localfile>
<jsdlfiletransfer:remotefile>/tmp/MyRemoteFile.txt</jsdlfiletransfer:remotefile>
<jsdlfiletransfer:remoteCredentials>
<jsdl:userName>myUser</jsdl:userName>
<jsdl:password>myPassword</jsdl:password>
</jsdlfiletransfer:remoteCredentials>
<jsdlfiletransfer:protocol>SSH</jsdlfiletransfer:protocol>
<jsdlfiletransfer:transferMode>ascii</jsdlfiletransfer:transferMode>
</jsdlfiletransfer:uploadInfo>
</jsdlfiletransfer:filetransfer>
</jsdl:application>
</jsdl:jobDefinition>

The following example shows a job definition to be used to transfer a text file
using the WINDOWS protocol:
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdlfiletransfer="http://www.ibm.com/xmlns/prod/scheduling/1.0/
jsdlfiletransfer" name="WINDOWS_DOWNLOAD">
<jsdl:application name="filetransfer">
<jsdlfiletransfer:filetransfer>
<jsdlfiletransfer:downloadInfo>
<jsdlfiletransfer:server>myServer</jsdlfiletransfer:server>
<jsdlfiletransfer:localfile>d:\MyLocalFile.txt</jsdlfiletransfer:localfile>
<jsdlfiletransfer:remotefile>mySharedFolder\MyRemoteFile.txt
</jsdlfiletransfer:remotefile>
<jsdlfiletransfer:remoteCredentials>
<jsdl:userName>myUser</jsdl:userName>
<jsdl:password>myPassword</jsdl:password>
</jsdlfiletransfer:remoteCredentials>
<jsdlfiletransfer:protocol>WINDOWS</jsdlfiletransfer:protocol>
<jsdlfiletransfer:transferMode>ascii</jsdlfiletransfer:transferMode>
</jsdlfiletransfer: downloadInfo >
</jsdlfiletransfer:filetransfer>
</jsdl:application>
</jsdl:jobDefinition>

The file transfer job type provides the following return codes. Return codes are
available only for completed jobs.

RC=0 File transfer completed successfully.

RC=-1 File transfer not performed. The job failed with the following error code:
AWKFTE007E

Explanation: An error occurred during the file transfer operation.

Possible reasons: Remote file not found or permission denied.

Chapter 14. Extending IBM Workload Scheduler capabilities 557

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

||

||

|

|

|

RC=-2 File transfer not performed. The job failed with the following error code:
AWKFTE020E

Explanation: Only for SSH or WINDOWS protocols. An error was returned
while attempting to convert the code page.

Possible reasons: For SSH or WINDOWS protocols, the code page is
automatically detected and converted. In this case, there is an error in the
code page of the file to be transferred, which is not compliant with the
code page of the local system.

RC=-3 File transfer not performed. The job failed with the following error code:
WKFTE015E

Explanation: An error occurred during the file transfer operation.

Possible reasons: Local file not found.

RC=-4 File transfer performed with the default code page. The job failed with the
following error code:
AWKFTE023E

Explanation: The specified code page conversion was not performed. The
file transfer was performed with default code pages.

Possible reason: The specified code page is unavailable.

Scheduling and stopping a job in IBM Workload Scheduler

You schedule IBM Workload Scheduler file transfer jobs by defining them in job
streams. Add the job to a job stream with all the necessary scheduling arguments
and submit it.

You can submit jobs using the Dynamic Workload Console, Application Lab, or the
conman command line.

After the submission, if the job that is running contains more files to transfer and
the job is reported in EXEC status in IBM Workload Scheduler, you can stop it if
necessary by using the kill command.

Restarting the job

If the IBM Workload Scheduler agent stops when you submit the file transfer job,
or while the job is running, the job restarts automatically as soon as the agent
restarts.

Job properties

You can see the job properties by running conman sj <File
transfer_job_name>;props, where<File transfer_job_name> is the file transfer job
name.

For a file transfer job that, for instance, transfers four files, in the Extra
Information section of the output command, you see the following properties:
Extra Information
File.0.LocalFile = ./MyFile3.log
File.0.LocalUser = agtParis

558 IBM Workload Scheduler: User’s Guide and Reference

||

|

|
|

|
|
|
|

||

|

|

|

||
|

|

|
|

|

|

|
|
|

|
|

|
|
|

|

|
|
|

|

|
|
|

|
|

|
|
|

File.0.Protocol = FTP
File.0.RemoteFile = /export/home/FileTransferRep/MyFile3.log
File.0.RemoteUser = ftpuser
File.0.Size = 983
File.0.TotalTransferTime = 0
File.1.LocalFile = ./MyFile.log
File.1.LocalUser = agtParis
File.1.Protocol = FTP
File.1.RemoteFile = /export/home/FileTransferRep/MyFile.log
File.1.RemoteUser = ftpuser
File.1.Size = 983
File.1.TotalTransferTime = 0
File.2.LocalFile = ./MyFile2.log
File.2.LocalUser = agtParis
File.2.Protocol = FTP
File.2.RemoteFile = /export/home/FileTransferRep/MyFile2.log
File.2.RemoteUser = ftpuser
File.2.Size = 983
File.2.TotalTransferTime = 0
File.3.LocalFile = ./MyFile1.log
File.3.LocalUser = agtParis
File.3.Protocol = FTP
File.3.RemoteFile = /export/home/FileTransferRep/MyFile1.log
File.3.RemoteUser = ftpuser
File.3.Size = 983
File.3.TotalTransferTime = 0
Number of transferred files = 4

where, for each trasferred file, you have:

File.counter.LocalFile
For the file number #, the name of the local file that you want to transfer.

File.counter.LocalUser
For the file number #, the user name for accessing the local workstation.

File.counter.Protocol
For the file number #, the protocol to be used for the file transfer.

File.counter.RemoteFile
For the file number #, the name of the remote file that you want to
transfer.

File.counter.RemoteUser
For the file number #, the user name for accessing the remote workstation.

File.counter.Size
For the file number #, the size of the transferred file.

File.counter.TotalTransferTime
For the file number #, the total transfer time, in seconds.

Number of transferred files
The number of the files transferred with the job. You have only one value
of this property for each job.

You can export the file transfer job properties that you can see in the Extra
Information section, to a successive job in the same job stream instance.

For more information about the list of job properties that you can export, see
Table 103 on page 606.

Chapter 14. Extending IBM Workload Scheduler capabilities 559

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

See also

From the Dynamic Workload Console you can perform the same task as described
in

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

Prerequisite steps to create OSLC Automation and OSLC Provisioning
jobs

How to define a new OSLC Automation and OSLC Provisioning job definition by
using the Dynamic Workload Console.

About this task

To create an OSLC Automation or OSLC Provisioning job definition, you must first
complete the prerequisite steps listed hereafter.

Note: Before performing the following procedure, ensure that you installed the
Jazz for Service Management Registry Services from the Installation Manager.

Procedure
1. Obtain the Registry Services server certificate and save it in a directory that

you will later use. Registry Services administrator can provide the certificate,
or, with Firefox browser, for example, you can retrieve the certificate
performing the following steps:
a. Log in to a Registry Services (for example, https://hostname:16311/oslc/

pr)
b. Download the certificate by clicking in the browser toolbar:

Tools>Options>Advanced>Encryption>View Certificates

c. Select IBM>Registry_Services_hostname:port and click Export. A file is
created with the name that you specify, for example myserver:16311.

2. Browse to the directory where a JRE is installed, for example: C:\Program
Files\IBM\TWA_<TWS_user>\TWS\JavaExt\jre\jre\bin

3. Create a new truststore by launching the following command: keytool
-genkeypair -alias certificatekey -keyalg RSA -validity 7 -keystore
trustore_directory\keystore.jks

Note: Ensure that the trustore_directory is not created in the javaExt\JRE
path.

4. Add the IBM Registry Services certificate to the truststore by launching the
following command: keytool -import -file certificate_directory\
certificate_name -alias oslc -keystore trustore_directory\keystore.jks

5. Open the TWA_HOME\TWS\ITA\cpa\config\JobManager.ini file, and locate
JavaJobLauncher section, JVMOptions row.

6. Add the following instructions to the row:
"-Djavax.net.ssl.trustStore=DIRECTORY_TRUSTSTORE/keystore.jks
-Djavax.net.ssl.trustStorePassword=TRUSTSTORE_PASSWORD". For example:

560 IBM Workload Scheduler: User’s Guide and Reference

|

|
|

|

|

|

|
|

|

|
|

|

|
|

|
|

|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|

JVMOptions = -Djavax.net.ssl.trustStore=C:/myUtils/keystore.jks
-Djavax.net.ssl.trustStorePassword=passw0rd

7. Stop and restart the agent.
8. Create the OSLCAutomation.properties and OSLCProvisioning.properties

files, respectively for the OSLC Automation and OSLC Provisioning jobs, and
locate them in <TWA_Home>/TWS/JavaExt/cfg/.
Specify the service provider catalogs (or Registry Services) that you will later
use to create the job in the following format:
ServiceProviderCatalogName=RegistryServicesURI

9. On the master domain manager, extract the security certificate from the
keystore and add it to the Jazz for Service Management truststore. The file
paths and names are as follows:

Master domain manager keystore
<TWA_Home>/WAS/TWSProfile/etc/TWSServerKeyFile.jks

Jazz for Service Management truststore
<JazzSM_Home>/profile/config/cells/JazzSMNode01Cell/nodes/
JazzSMNode01Cell/trust.p12

10. On the workstation where you installed Jazz for Service Management, extract
the security certificate from the keystore and add it to the master domain
manager truststore. The file paths and names are as follows:

Jazz for Service Management keystore
<JazzSM_Home>/profile/config/cells/JazzSMNode01Cell/nodes/
JazzSMNode01Cell/key.p12

Master domain manager truststore
<TWA_Home>/WAS/TWSProfile/etc/TWSServerTrustFile.jks

11. Close and restart the WebSphere Application Server on the master domain
manager and on Jazz for Service Management.

Job definition - OSLC Automation
An OSLC Automation job invokes any OSLC provider that is implementing the
OSLC Automation Specification. Automation resources define automation plans,
automation requests and automation results of the software development, test and
deployment lifecycle. For detailed information, see http://open-services.net/wiki/
automation/OSLC-Automation-Specification-Version-2.0/.

This section describes the required and optional attributes for OSLC Automation
jobs. Each job definition has the following format and arguments:

Table 81. Required and optional attributes for the definition of an OSLC Automation job.

Attribute Description and value Required

Registry Services
URI

The address of the Registry Services (for example,
https://myhost.mydomain:16311/oslc/pr).

Registry Services
User name

The user connecting to the Registry Services.

Registry Services
Password

The password associated with the user connecting to
the Registry Services.

Service Provider
URI

The address of the Service Provider. U

Service Provider
User name

The user connecting to the Service Provider.

Chapter 14. Extending IBM Workload Scheduler capabilities 561

|
|

|

|
|
|

|
|

|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|

|
|
|
|
|

|
|

||

|||

|
|
|
|
|

|
|
||

|
|
|
|
|

|
|
||

|
|
||

http://open-services.net/wiki/automation/OSLC-Automation-Specification-Version-2.0/
http://open-services.net/wiki/automation/OSLC-Automation-Specification-Version-2.0/

Table 81. Required and optional attributes for the definition of an OSLC Automation
job. (continued)

Attribute Description and value Required

Service Provider
Password

The password associated with the user connecting to
the Service Provider.

Request The RDF representation of the automation request. U

The following example shows a job that schedules an IBM Workload Scheduler job
stream:
$JOBS
WKS#AUTOMATION
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"

xmlns:jsdloslcautomation="
http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdloslcautomation" name="OSLCAUTOMATION">
<jsdl:application name="oslcautomation">
<jsdloslcautomation:oslcautomation>

<jsdloslcautomation:OSLCAutomationParameters>
<jsdloslcautomation:AutomationRequest>

<jsdloslcautomation:automationRequestGroup>
<jsdloslcautomation:automationRequestBody>

<!-- add the rdf representation of the resource -->

</jsdloslcautomation:automationRequestBody>
</jsdloslcautomation:automationRequestGroup>

</jsdloslcautomation:AutomationRequest>
<jsdloslcautomation:ConnectionInfo>

<jsdloslcautomation:ServiceProviderCatalogGroup>
<jsdloslcautomation:catalogURI>
https://registryserviceshost.domain:16311/oslc/pr>
</jsdloslcautomation:catalogURI>
<jsdloslcautomation:username>registryUser</jsdloslcautomation:

username>
<jsdloslcautomation:password>registryPassword</jsdloslcautomation:

password>
</jsdloslcautomation:ServiceProviderCatalogGroup>
<jsdloslcautomation:ServiceProviderGroup>

<jsdloslcautomation:serviceProviderURI>
https://serviceprovideraddress.domain:16310/oslc/providers/1360665198982</jsdloslcautomation:

serviceProviderURI>
<jsdloslcautomation:usernameSP>
serviceProviderUser
</jsdloslcautomation:usernameSP>
<jsdloslcautomation:passwordSP>
serviceProviderPassword
</jsdloslcautomation:passwordSP>

</jsdloslcautomation:ServiceProviderGroup>
</jsdloslcautomation:ConnectionInfo>

</jsdloslcautomation:OSLCAutomationParameters>
</jsdloslcautomation:oslcautomation>

</jsdl:application>
</jsdl:jobDefinition>

Scheduling and stopping a job in IBM Workload Scheduler

You schedule IBM Workload Scheduler OSLC Automation jobs by defining them in
job streams. Add the job to a job stream with all the necessary scheduling
arguments and submit it.

You can submit jobs using the Dynamic Workload Console or the conman command
line.

After submission, when the job is running and is reported in EXEC status in IBM
Workload Scheduler, you can stop it if necessary, by using the kill command from
the command line or the Dynamic Workload Console. However, this action is

562 IBM Workload Scheduler: User’s Guide and Reference

|
|

|||

|
|
|
|
|

|||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|

effective only on the IBM Workload Scheduler job, and it does not affect any
processes running on the OSLC Automation workstation. When you stop the IBM
Workload Scheduler job, IBM Workload Scheduler assigns the Error or ABEND
status with return code 0 to the IBM Workload Scheduler job, regardless of the
status of the OSLC Automation job.

Monitoring the job

If the IBM Workload Scheduler agent stops when you submit the OSLC
Automation job or while the job is running, IBM Workload Scheduler begins
monitoring the job from where it stopped.

See also

From the Dynamic Workload Console you can perform the same task as described
in

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

Job definition - OSLC Provisioning
An OSLC Provisioning job invokes any OSLC provider, such as IBM Workload
Scheduler and IBM SmartCloud Orchestrator, that is implementing the OSLC
Provisioning Specification. Provisioning resources define provisioning plans,
provisioning requests and provisioning results of the software development, test
and deployment lifecycle.

This section describes the required and optional attributes for OSLC Provisioning
jobs. Each job definition has the following format and arguments:

Table 82. Required and optional attributes for the definition of an OSLC Provisioning job.

Attribute Description/value Required

Registry Services
URI

The address of the Registry Services (for example,
https://myhost.mydomain:16311/odlc/pr).

U

Registry Services
User name

The user connecting to the Registry Services. U

Registry Services
Password

The password associated with the user connecting to
the Registry Services.

U

Service Provider
URI

The address of the Service Provider. U

Service Provider
User name

The user connecting to the Service Provider. U

Service Provider
Password

The password associated with the user connecting to
the Service Provider.

U

Instance The RDF representation of the instance to be
deployed.

U

The following example shows a job that schedules the provisioning of a system
pattern:

Chapter 14. Extending IBM Workload Scheduler capabilities 563

|
|
|
|
|

|

|
|
|

|

|
|

|

|

|

|

|
|
|
|
|

|
|

||

|||

|
|
|
|
|

|
|
||

|
|
|
|
|

|
|
||

|
|
||

|
|
|
|
|

||
|
|

|

|
|

WKS#PROVSAMPLETASK
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdloslcprovisioning="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdloslcprovisioning"
name="OSLCPROVISIONING">
<jsdl:application name="oslcprovisioning">
<jsdloslcprovisioning:oslcprovisioning>
<jsdloslcprovisioning:OSLCProvisioningParameters>
<jsdloslcprovisioning:actionPanel>
<jsdloslcprovisioning:instanceFromTemplate>
<jsdloslcprovisioning:instance>
<!-- RDF definition of the instance>

<?ml version="1.0" encoding="UTF-8"?>
<rf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:oslc="http://open-services.net/ns/core#"
xmlns:sco="http://jazz.net/ns/ism/provisioning/sco#"
xmlns:oslc_auto="http://open-services.net/ns/auto#"
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" >
<rf:Description rdf:about="

http://myServiceProvider.domain:31115/CLIModelWeb/OSLC/BatchApplicationInstance/BatchApplication/
0f01af24-72e0-3c4b-b95c-18f908c76898">

<olc_auto:parameterDefinition rdf:nodeID="A1"/>
<olc_auto:parameterDefinition rdf:nodeID="A2"/>
<rf:type rdf:resource="http://jazz.net/ns/ism/provisioning/sco#Entity"/>
<olc_auto:parameterDefinition rdf:nodeID="A4"/>
<dcterms:identifier>0f01af24-72e0-3c4b-b95c-18f908c76898</dcterms:identifier>
<oslc_auto:parameterDefinition rdf:nodeID="A5"/>
<dcterms:title>InstanceName</dcterms:title>
<oslc_auto:parameterDefinition rdf:nodeID="A0"/>

</rdf:Description>
<rdf:Description rdf:nodeID="A5">
<oslc:name>XML</oslc:name>
<oslc:value><?xml version="1.0" encoding="UTF-8"?>

<model:TWSBatchApplicationInstance xmlns:model="
http://www.ibm.com/xmlns/prod/scheduling/1.0/Model">

<model:Name>InstanceName</model:Name>
<!--Here starts the definition of jobs, job streams, etc contained in this instance>
...
<!--Here starts the definition >

</model:TWSBatchApplicationInstance></slc:value>
<olc:defaultValue></slc:defaultValue>

<rdf:type rdf:resource="http://open-services.net/ns/core#Property"/>
</rdf:Description>
<!--Mapping of the instance>
<rdf:Description rdf:nodeID="A0">
<oslc:name>JOB_SAMPLE</oslc:name>

<oslc:value>JOB_TARGET</oslc:value>
<oslc:defaultValue>JOB_TARGET</oslc:defaultValue>
<rdf:type rdf:resource="http://open-services.net/ns/core#Property"/>

</rdf:Description>
<!--Here continues the definition of jobs, job streams, etc contained in this instance>
...
<!--Here ends the mapping>
<rdf:Description rdf:nodeID="A7">
<sco:node rdf:resource="

http://thinklinux:31115/CLIModelWeb/OSLC/BatchApplicationInstance/BatchApplication/
0f01af24-72e0-3c4b-b95c-18f908c76898"/>
<rdf:type rdf:resource="http://jazz.net/ns/ism/provisioning/sco#Template"/>
</rdf:Description>
<rdf:Description rdf:nodeID="A1">
<oslc:name>ICON</oslc:name>
<oslc:value>../js/images/default.png</oslc:value>
<oslc:defaultValue>../js/images/default.png</oslc:defaultValue>
<rdf:type rdf:resource="http://open-services.net/ns/core#Property"/>
</rdf:Description> </rdf:RDF></jsdloslcprovisioning:instance>

</jsdloslcprovisioning:instanceFromTemplate>
</jsdloslcprovisioning:actionPanel>
<jsdloslcprovisioning:connectionInfo>
<jsdloslcprovisioning:serviceProviderCatalog>
<jsdloslcprovisioning:catalogURI>

https://myregistry.domain:16311/oslc/pr</jsdloslcprovisioning:catalogURI>

<jsdloslcprovisioning:username>registryServicesUser</jsdloslcprovisioning:username>

<jsdloslcprovisioning:password>registryServicesPassword</jsdloslcprovisioning:password>
</jsdloslcprovisioning:serviceProviderCatalog>
<jsdloslcprovisioning:serviceProvider>
<jsdloslcprovisioning:serviceProviderURI>

564 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

https://myregistry.domain:16311/oslc/providers/1380617052297
</jsdloslcprovisioning:serviceProviderURI>

<jsdloslcprovisioning:usernameSP>myServiceProviderUser</jsdloslcprovisioning:usernameSP>
<jsdloslcprovisioning:passwordSP>myServiceProviderPassword</jsdloslcprovisioning:passwordSP>

</jsdloslcprovisioning:serviceProvider>
</jsdloslcprovisioning:connectionInfo>

</jsdloslcprovisioning:OSLCProvisioningParameters>
</jsdloslcprovisioning:oslcprovisioning>

</jsdl:application>
</jsdl:jobDefinition>

See also

From the Dynamic Workload Console you can perform the same task as described
in

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

Database jobs
A database job interfaces with a number of databases, including custom ones to
perform queries, SQL statements, and jobs. You can also create and run stored
procedures on DB2, Oracle, Microsoft SQL Server, and Netezza databases.

A description of the job properties and valid values are detailed in the
context-sensitive help in the Dynamic Workload Console by clicking the question
mark (?) icon in the top-right corner of the properties pane.

The following table lists the required and optional attributes for DB2, Oracle, and
Netezza jobs:

Table 83. Required and optional attributes for the definition of a database job
Attribute Description and value Required

application name database U

dbms The database type where you want the job to run. Supported values
are:

db2 For the DB2 databases

mssql For the Microsoft SQL Server databases

oracle For the Oracle databases

IBM Netezza
For the Netezza database

BigSQL For the InfoSphere BigInsights BigSQL database

Hive For the Apache Hive database

U

server The host name of the server where the database is located. U

port The port number for the database job. U

database The name of the database. Required for DB2
databases only.

driverClass The name of the JDBC driver class Required if you
specify a custom
database.

connectionUrl The string that is used to connect to the database, containing database
URL, username and password

Required if you
specify a custom
database.

Chapter 14. Extending IBM Workload Scheduler capabilities 565

|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

|

|
|

|
|
|

|
|
|

|
|

||
|||
|||
||
|

||

||

||

|
|

||

||

|

|||
|||
|||
|
|||
|
|
||
|
|
|
|

Table 83. Required and optional attributes for the definition of a database job (continued)
Attribute Description and value Required

driverPath Path to the database client jar files. This value overrides the value
specified in the DatabaseJobExecutor.properties configuration file, if any.
If you select the Microsoft SQL Server database, version 4 of the JDBC
drivers is required.

dbStatement The name of the database job to be run. Required if you
specify an SQL
statement

storedProcedure name The name of the procedure stored on DB2, Oracle, or MSSQL databases.

The procedure cannot be stored on DB2 if the database already contains
one or more stored procedures with the same name and schema. For
example, if the database has more than one stored procedure called
TEST.STORE_PROC1, with different parameters as in the following:

TEST.STORE_PROC1(VARCHAR,?)
TEST.STORE_PROC1(VARCHAR,VARCHAR,?)
TEST.STORE_PROC1(VARCHAR,?,?)
TEST.STORE_PROC1(VARCHAR,VARCHAR,?,?)

then the database job cannot be created and the following message is
returned: AWKDBE033E The stored procedure name provided matches
more then one stored procedure definition in the database, to
disambiguate specify also the schema.
Note: This attribute is not supported for BigSQL and Hive databases.

Required if you
specify a stored
procedure.

ParameterTableValue
key

The name and values of the procedure expressed complying with the
following syntax:

Stored procedure variable type
Supported values are:

v IN

v OUT

v INOUT

Variable name
The name of the variable as defined in the stored procedure.

Variable type
Type of variable. Supported SQL types are:

v DATE

v DECIMAL

v INTEGER

v VARCHAR

0...n Position of each variable as defined in the stored procedure.
For example:

Name Value
IN VARIN DATE 0 2012-01-01
OUT VAROUT DATE 1 ?

Required if you
specify a stored
procedure.

ParameterTableValue
content

Variable value. For output variables the value must be: ?. To enter a
date variable, use the following format: yyyy-mm-dd. If no value is
specified for a parameter, then the value is considered a NULL value in
the database.

Required if you
specify a stored
procedure.

Output file The fully qualified path where you want to save your SQL query
output.

566 IBM Workload Scheduler: User’s Guide and Reference

|
|||
||
|
|
|

|

|||
|
|
||

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|

||
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

||
|
|

Table 83. Required and optional attributes for the definition of a database job (continued)
Attribute Description and value Required

credentials The user name and the password for accessing the database (domain
users are supported in the form DOMAIN\USER). As an alternative to
hard-coding actual values, you can parametrize in one of the following
ways:

v Enter a username specified in the database with the user definition (it
is applicable to all operating systems on this job type) and key the
statement:

<jsdl:password>${password:username}</jsdl:password>

The password is retrieved from the username user definition in the
database and resolved at runtime. See “Using user definitions on job
types with advanced options” on page 188 for further details.

You can also specify the user of a different workstation and use the
following syntax for the password:

<jsdl:password>${password:workstation#username}</jsdl:password>

v Enter a user and password defined with the param utility command
locally on the dynamic agent that will run the job (if the job is to be
submitted to a pool or to a dynamic pool, the definition must be
present on all the agents of the pool). Provided you defined the user
name with the variable user and a password, the corresponding
credential statements would be:

<jsdl:userName>${agent:user}</jsdl:userName>
<jsdl:password>${agent:password.user}</jsdl:password>

The user and password variables are resolved on the agent at
runtime. See “Defining variables and passwords for local resolution
on dynamic agents” on page 595 for further details.

v When integrated security is used for Microsoft SQL server, the
sqljdbc_auth.dll library (that is part of the Microsoft JDBC Driver
4.0 for SQL Server package) must be placed in the same directory
where the JDBC driver is located, and this path must be added to the
PATH system environment variable.

The schema for DB2, Oracle, and Netezza databases is very similar, therefore the
following example shows a job that runs a query on a DB2 database:
$JOBS
AGENT#DATABASE
TASK
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdldatabase="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdldatabase" name="database">
<jsdl:application name="database">
<jsdldatabase:database>

<jsdldatabase:sqlActionInfo>
<jsdldatabase:dbms>db2</jsdldatabase:dbms>
<jsdldatabase:server>localhost</jsdldatabase:server>
<jsdldatabase:port>50000</jsdldatabase:port>
<jsdldatabase:database>TWS32</jsdldatabase:database>
<jsdldatabase:statements>

<jsdldatabase:dbStatement>SELECT * FROM DWB.ARE_ABSTRACT_
RESOURCES</jsdldatabase:dbStatement>

</jsdldatabase:statements>
<jsdldatabase:credentials>

<jsdl:userName>${agent:dbvars..dbtwouser}</jsdl:userName>
<jsdl:password>${agent:password.${agent:dbvars..dbtwouser}}</jsdl:password>1

</jsdldatabase:credentials>
</jsdldatabase:sqlActionInfo>

</jsdldatabase:database>
</jsdl:application>

</jsdl:jobDefinition>
DESCRIPTION "Defined using composer."
RECOVERY STOP

Note: (1) the user name was defined on the agent that runs the job with a variable
named dbtwouser through the param utility command. So, the value defined for
dbtwouser will be retrieved at runtime from the dbvars variables file located in the

Chapter 14. Extending IBM Workload Scheduler capabilities 567

|
|||
||
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

agent. Likewise, the password for the value represented by dbtwouser was defined
on the agent with the param command and will be resolved at runtime from the
same variables file.

Job definition - MSSQL jobs

This section describes the required and optional attributes for MSSQL jobs. Each
job definition has the following format and arguments:

Table 84. Required and optional attributes for the definition of an MSSQL job.
Attribute Description/value Required

application name database U

dbms The database type where you want the job to run. Because this job is
specific for the Microsoft SQL Server database, the only supported
value is mssql.

U

driverPath Path to the database client jar files. This value overrides the value
specified in the DatabaseJobExecutor.properties configuration file, if
any. Version 4 of the JDBC drivers is required.

server The host name of the server where the database is located. U

port The port number for the database job. U

database The name of the database. U

dbStatement The SQL statement. To separate instructions, use an empty line. U

credentials The user name and the password for accessing the database (domain
users are supported in the form DOMAIN\USER). As an alternative
to hard-coding actual values, you can parametrize in one of the
following ways:

v Enter a username specified in the database with the username user
definition (it is applicable to all operating systems on this job
type) and key the statement:

<jsdl:password>${password:username}</jsdl:password>

The password is retrieved from the username user definition in the
database and resolved at runtime. See “Using user definitions on
job types with advanced options” on page 188 for further details.

v Enter a user and password defined with the param utility
command locally on the dynamic agent that will run the job (if the
job is to be submitted to a pool or to a dynamic pool, the
definition must be present on all the agents of the pool). Provided
you defined the user name with the variable user and a password,
the corresponding credential statements would be:

<jsdl:userName>${agent:user}</jsdl:userName>
<jsdl:password>${agent:password.user}</jsdl:password>

The user and password variables are resolved on the agent at
runtime. See “Defining variables and passwords for local
resolution on dynamic agents” on page 595 for further details.

v When integrated security is used for Microsoft SQL server, the
sqljdbc_auth.dll library (that is part of the Microsoft JDBC
Driver 4.0 for SQL Server package) must be placed in the same
directory where the JDBC driver is located, and this path must be
added to the PATH system environment variable.

The following example shows a job that runs a job on an MSSQL database:
$JOBS
AGENT#MSSQLJOB
TASK
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdldatabase="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdldatabase" name="database">
<jsdl:application name="mssqljob">
<jsdldatabase:database>

<jsdldatabase:sqlActionInfo>
<jsdldatabase:dbms>mssql</jsdldatabase:dbms>
<jsdldatabase:server>localhost</jsdldatabase:server>
<jsdldatabase:port>111</jsdldatabase:port>

568 IBM Workload Scheduler: User’s Guide and Reference

|
|
|

|

|
|

||
|||
|||
||
|
|

|

||
|
|

|

|||
|||
|||
|||
||
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

<jsdldatabase:database>MYDATABASE</jsdldatabase:database>
<jsdldatabase:statements>

<jsdldatabase:dbStatement type="job">sada</jsdldatabase:dbStatement>
</jsdldatabase:statements>
<jsdldatabase:credentials>

<jsdl:userName>mssqluser</jsdl:userName>
<jsdl:password>${agent:password.mssqluser}</jsdl:password>1

</jsdldatabase:credentials>
</jsdldatabase:sqlActionInfo>

</jsdldatabase:database>
</jsdl:application>

</jsdl:jobDefinition>
DESCRIPTION "Defined using composer."
RECOVERY STOP

Note: (1) The password for user mssqluser was defined with the param utility
command in the variables file on the agent that is to run the job. It will be resolved
at run time with the defined value.

Scheduling and stopping a job in IBM Workload Scheduler

You schedule IBM Workload Scheduler database jobs by defining them in job
streams. Add the job to a job stream with all the necessary scheduling arguments
and submit it.

You can submit jobs using the Dynamic Workload Console or Application Lab.

After submission, when the job is running and is reported in EXEC status in IBM
Workload Scheduler , you can stop it if necessary, by using the kill command. The
database job is deleted and an automatic rollback is performed. When the rollback
operation completes, a new IBM Workload Scheduler database job is started
automatically.

Job properties

You can see the job properties by running conman sj <job_name>;props,
where<job_name> is the database job name.

You can export some of the database job properties that you see in the Extra
Information section of the output command, to a successive job in the same job
stream or in a different job stream. For more information about the list of job
properties that you can export, see Table 114 on page 610.

Job log content

You can see the job log content by running conman sj <job_name>;stdlist, where
<job_name> is the database job name.

See also

From the Dynamic Workload Console you can perform the same task as described
in

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

Chapter 14. Extending IBM Workload Scheduler capabilities 569

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|

|

|
|
|
|
|

|

|
|

=
=
=
=

|

|
|

|

|
|

|

|

|

Prerequisites to run branch jobs
To run the generic branch job, ensure that the following system prerequisites are
met.

On Windows operating systems:
v Because the Windows operating systems cannot natively interpret UNIX shell

scripts, you must install a shell interpreter to use the TWA_home\TWS\bin\
branch.sh shell script on the Windows master domain manager.

v The directory C:\cygwin\bin must point to the bin subdirectory of your Cygwin
installation directory. If you have installed Cygwin in a directory other than the
default, use the corresponding path.

On UNIX operating systems, only bash or korn shells are supported.

If your UNIX workstation uses a bourne shell, open the branch.sh file located in
TWA_home/TWS/bin on the master domain manager and change #!/bin/sh to
point to a bash (#!/bin/bash) or korn shell (#!/bin/ksh).

Web services jobs
A Web services job runs a Web service of your choice. Web services jobs work only
with input and output parameters that use simple data types.

A description of the job properties and valid values are detailed in the
context-sensitive help in the Dynamic Workload Console by clicking the question
mark (?) icon in the top-right corner of the properties pane.

This section describes the required and optional attributes for Web services jobs.
Each job definition has the following format and arguments:

Table 85. Required and optional attributes for the definition of a web services job

Attribute Description/value Required

application
name

ws U

operation The name of the web service command you are invoking. U

wsdlURL The name of the web service URL. U

arguments The parameters required by the web service command you are invoking
(the number of values depends on the command).

570 IBM Workload Scheduler: User’s Guide and Reference

|
|

|
|

|

|
|
|

|
|
|

|

|
|
|

|
|

|
|

|
|
|

|
|

||

|||

|
|
||

|||

|||

||
|
|

Table 85. Required and optional attributes for the definition of a web services
job (continued)

Attribute Description/value Required

credentials The name and password of the user running this job. As an alternative to
hard-coding actual values, you can parametrize in one of the following
ways:

v Enter a username specified in the database with the user definition (it is
applicable to all operating systems on this job type) and key the
statement:

<jsdl:password>${password:username}</jsdl:password>

The password is retrieved from the username user definition in the
database and resolved at runtime. See “Using user definitions on job
types with advanced options” on page 188 for further details.

You can also specify the user of a different workstation and use the
following syntax for the password:

<jsdl:password>${password:workstation#username}
</jsdl:password>

v Enter a user and password defined with the param utility command
locally on the dynamic agent that will run the job (if the job is to be
submitted to a pool or to a dynamic pool, the definition must be
present on all the agents of the pool). Provided you defined the user
name with the variable user and a password, the corresponding
credential statements would be:

<jsdl:userName>${agent:user}</jsdl:userName>
<jsdl:password>${agent:password.user}</jsdl:password>

The user and password variables are resolved on the agent at runtime.
See “Defining variables and passwords for local resolution on dynamic
agents” on page 595 for further details.

If you use an HTTPS connection, ensure that the security certificates are
configured for Job Manager on the workstation where the job is to run.

The command output is recorded in the job log.

The following example shows a task that runs the getSum Web services command.
The task definition provides in the arguments section the two values that must be
added.
$JOBS
AGENT#WEB_SERVICE
TASK
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdlws="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdlws" description=
"Calls a web
service to perform a sum of two numbers" name="SumNumber">
<jsdl:annotation>annotation</jsdl:annotation>
<jsdl:variables>
<jsdl:stringVariable description="URL of Web Service"
name="wsdlURL">http://np515516.cyber.com:9080/
Sum/services/Sum/wsdl/Sum.wsdl</jsdl:stringVariable>
<jsdl:stringVariable description="Operation to Invoke"
name="Operation">getSum</jsdl:stringVariable>
</jsdl:variables>
<jsdl:application name="ws">
<jsdlws:ws>
<jsdlws:wsToInvoke operation="${Operation}" wsdlURL="${wsdlURL}">
<jsdlws:arguments>
<jsdlws:value>1</jsdlws:value>
<jsdlws:value>2</jsdlws:value>
</jsdlws:arguments>
<jsdlws:credentials>

Chapter 14. Extending IBM Workload Scheduler capabilities 571

|
|

|||

||
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<jsdl:userName>administrator</jsdl:userName>
<jsdl:password>password</jsdl:password>
</jsdlws:credentials>
</jsdlws:wsToInvoke>
</jsdlws:ws>
</jsdl:application>
<jsdl:resources>
<jsdl:candidateHosts>
<jsdl:hostName>${host}</jsdl:hostName>
</jsdl:candidateHosts>
</jsdl:resources>
</jsdl:jobDefinition>

The following example applies if you use an HTTPS connection with the agent
running the web services task. It shows how you configure the JVMOptions key in
the jobManager.ini file of the agent to point to the security certificates.
JVMOptions=-Djavax.net.ssl.keyStore=/images/ITAuser/TWA/TWS/JavaExt/cfg/agentKeystore.jks
-Djavax.net.ssl.keyStorePassword=tdwb8nxt
-Djavax.net.ssl.trustStore=/images/ITAuser/TWA/TWS/JavaExt/cfg/agentKeystore.jks
-Djavax.net.ssl.trustStorePassword=tdwb8nxt
-Djavax.net.ssl.trustStoreType=JKS

By default, the timeout period for web services jobs is 90 seconds. If the web
service has not completed successfully within the timeout period, the IBM
Workload Scheduler job associated to it ends in error. To prevent jobs from failing
when web services take longer than 90 seconds to complete, you can customize the
timeout.

Timeout period is specified in the WSJobExecutor.properties file that is located in
TWA_HOME/TWS/JavaExt/cfg directory and is structured as follows:
Web Service timeout
Specify the timeout in seconds
Default Value is 90 seconds
TIMEOUT=90

For example, for a web service that takes 5 minutes to complete, customize the
configuration file specifying: TIMEOUT=300.

See also

From the Dynamic Workload Console you can perform the same task as described
in

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

RESTful Web Services jobs
A RESTful Web Services job sends requests to a Web resource via the following
HTTP methods:

DELETE
Deletes a resource

GET Retrieves the header and body of a resource

HEAD
Retrieves only the header of a resource without its body

572 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|

|

|
|

|

|

|

|
|

|
|

|
|

||

|
|

POST Creates a resource

PUT Changes the state of a resource or updates it

A description of the job properties and valid values are detailed in the
context-sensitive help in the Dynamic Workload Console by clicking the question
mark (?) icon in the top-right corner of the properties pane.

This section describes the required and optional attributes for RESTful Web
Services jobs. Each job definition has the following format and arguments:

Table 86. Required and optional attributes for the definition of a RESTful Web Services job
Attribute Description/value Required

Authentication

If the Web
service requires
authentication,
you can use
either credentials
or certificates to
authenticate.

credentials userName The user name needed to gain access to the URI of the Web service.

password The password with which userName gains access to the Web service.

CertificateGroup keyStoreFilePath The fully qualified path of the keystore file containing the private key used
to make the connection.

Only keystore files with the jks extension are supported.

password The password that protects the private key and is required to make the
connection.

HostnameVerifyCheckbox Verifies that the syntax of the Web server name, as featured in the keystore
file, matches the URI of the Web service exactly. If they do not match, no
authorization is granted to access the server.

This control is not enforced if this keyword is not used.

RESTAction URI The resource identifier of the Web service to which you are sending the
request.

U

method The HTTP method that defines the request. It can be: GET, DELETE, HEAD,
PUT, or POST.

U

outputFileName The full name of the file where the response from the Web resource is to be
returned.

QueryParametersValues

One or more query
parameters that tailor and
filter the response output.
Enter a keyword for every
parameter you need to
specify.

QueryParametersValue The name of the query parameter and its value. For example:

<jsdlrestful:QueryParametersValue
key="colour">blue</jsdlrestful:QueryParametersValue>

where colour is the parameter name and blue is its value.

Body contentType The media type of the entity-body sent to the recipient resource; for
example: json, xml, html. In the case of the HEAD method, enter the media
type that would have been sent had the request been a GET.

BodyGroup

Enter either the name of the
file that contains the body
of the request or the body
text directly.

Attention: DELETE
requests refuse a body in
the request. Do not enter
any body input or the
request will fail.

FileBody InputFileName The name of the file containing the body of the request.

TextBody InputTextBody The body of the request that you are sending with the HTTP method.

Advanced HeadersValues

One or more HTTP or
custom headers associated
with the HTTP request.
Enter a keyword for every
header you need to specify.

HeadersValue The name of the header and its value in the form:

<jsdlrestful:HeadersValue
key="Accept-Charset">utf-8</jsdlrestful:HeadersValue>

Accept The media type in which the response from the Web resource is to be
returned. The type is usually specified by the resource to which you are
sending the request.

JSONPropertiesGroup JsonObjectResultQuery A query that retrieves the value of a specific field in a JSON-type response.
This value can be located under the JSON Result item in the job properties
returned after the job completed and can be passed to other jobs. For
example:

query.results.quote.AskRealtime

Retry options NumberOfRetries The maximum number of retries, in case of connection failure. Default value
is 0.

RetryIntervalSeconds The wait time between retries, in case of connection failure. Default value is
30 seconds.

Chapter 14. Extending IBM Workload Scheduler capabilities 573

||

||

|
|
|

|
|

||
|||
|

|
|
|
|
|
|
|

||||
|||
|||
|

|

|

||
|
|

||
|
|

|

|

|||
|
|

||
|
|

||
|
|

|

|
|
|
|
|
|

||
|
|

|

|

|||
|
|

|

|

|
|
|
|

|
|
|
|
|

||||
||||

||

|
|
|
|
|

||
|
|

|

||
|
|

|

|||
|
|
|
|

|

|||
|
|

||
|
|

The following example shows the definition of a job that sends a GET request to
the Web service of LB AIRLINES to get the passengers list of a certain flight:
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdlrestful="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdlrestful" name="RESTFUL"
<jsdl:variables>
<jsdl:stringVariable name="tws.jobstream.name">JOBS</jsdl:stringVariable>
<jsdl:stringVariable name="tws.jobstream.id">JOBS</jsdl:stringVariable>
<jsdl:stringVariable name="tws.job.name">getflightpasslst</jsdl:stringVariable>
<jsdl:stringVariable name="tws.job.workstation">FNC050799</jsdl:stringVariable>
<jsdl:stringVariable name="tws.job.iawstz">201406290000</jsdl:stringVariable>
<jsdl:stringVariable name="tws.job.promoted">NO</jsdl:stringVariable>
<jsdl:stringVariable name="tws.job.resourcesForPromoted">10</jsdl:stringVariable>
<jsdl:stringVariable name="tws.job.num">612741339</jsdl:stringVariable>

</jsdl:variables>
<jsdl:application name="restful">
<jsdlrestful:restful>

<jsdlrestful:RestfulParameters>
<jsdlrestful:Authentication>

<jsdlrestful:credentials>
<jsdl:userName>aladmin</jsdl:userName>
<jsdl:password>{aes}t77HX7Zv9/NwG6DmFbePPdk6d

+JESD0AWRNO0XudYeM=</jsdl:password>
</jsdlrestful:credentials>

</jsdlrestful:Authentication>
<jsdlrestful:RESTAction>

<jsdlrestful:URI>https://query.lblines.com</jsdlrestful:URI>
<jsdlrestful:method>GET</jsdlrestful:method>

<jsdlrestful:outputFileName>passnames.xls</jsdlrestful:outputFileName>
<jsdlrestful:QueryParametersValues>

<jsdlrestful:QueryParametersValue
key="flight">lb915</jsdlrestful:QueryParametersValue>

<jsdlrestful:QueryParametersValue
key="day">thursday</jsdlrestful:QueryParametersValue>

<jsdlrestful:QueryParametersValue
key="time">8:45</jsdlrestful:QueryParametersValue>

</jsdlrestful:QueryParametersValues>
</jsdlrestful:RESTAction>
<jsdlrestful:Body>

<jsdlrestful:contentType>application/json</jsdlrestful:contentType>
<jsdlrestful:BodyGroup>

<jsdlrestful:FileBody>
<jsdlrestful:InputFileName/>

</jsdlrestful:FileBody>
</jsdlrestful:BodyGroup>

</jsdlrestful:Body>
<jsdlrestful:Advanced>

<jsdlrestful:HeadersValues>
<jsdlrestful:HeadersValue

key="Accept-Charset">utf-8</jsdlrestful:HeadersValue>
<jsdlrestful:HeadersValue

key="Accept-Language">en-CA</jsdlrestful:HeadersValue>
</jsdlrestful:HeadersValues>
<jsdlrestful:Accept>json</jsdlrestful:Accept>
<jsdlrestful:JSONPropertiesGroup>

<jsdlrestful:JsonObjectResultQuery>query.results.travellerlist</jsdlrestful:JsonObjectResultQuery>
</jsdlrestful:JSONPropertiesGroup>

</jsdlrestful:Advanced>
</jsdlrestful:RestfulParameters>

</jsdlrestful:restful>
</jsdl:application>
<jsdl:resources>
<jsdl:orderedCandidatedWorkstations>
<jsdl:workstation>71E6B2B225EF498E916BF57AD817A228</jsdl:workstation>

</jsdl:orderedCandidatedWorkstations>
</jsdl:resources>

</jsdl:jobDefinition>

Scheduling, stopping, and reconnecting to the job in IBM
Workload Scheduler

You schedule IBM Workload Scheduler RESTful Web services jobs by defining
them in job streams. Add the job to a job stream with all the necessary scheduling
arguments and submit it.

574 IBM Workload Scheduler: User’s Guide and Reference

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

You can submit jobs using the Dynamic Workload Console, Application Lab, or the
conman command line.

You can submit jobs in a z/OS environment using the Dynamic Workload Console
or the ISPF application.

After submission, when the job is running and is reported in EXEC status in IBM
Workload Scheduler, you can stop it if necessary, by using the kill command.
When you stop the job, IBM Workload Scheduler collects the job log when the
agent restarts and assigns the Error or ABEND status to the job.

If the IBM Workload Scheduler agent becomes unavailable when you submit the
job or while the job is running, as soon as the agent becomes available again IBM
Workload Scheduler begins monitoring the job from where it stopped.

Job properties

You can see the job properties by running conman sj <job_name>;props, where
<job_name> is the RESTful Web services job name.

The properties are listed in the Extra Information section of the output command.
The properties are all HTTP_HEADERs returned by the server to the client with an
exception for the Status Code and the JSON Result. The names of the header
properties depend on the RESTful service response that changes from server to
server. Some HTTP header names are standard, but most headers are optional or
custom.

Job log content

You can see the job log content by running conman sj <job_name>;stdlist, where
<job_name> is the RESTful Web services job name.

You can view the job log content from the Dynamic Workload Console and
Application Lab. See the section about analyzing the job log in Scheduling
Applications with IBM Workload Automation.

Business Scenario

NEIGHBOURHOOD BROKERS runs - on the hour - a job stream that retrieves the
current stock prices of three companies listed in the NY stock exchange and posts
them on their web site. The job stream runs every hour and consists of the
following jobs:
v A number of RESTful Web Services jobs that each GET a company's stock value.

The stock value is retrieved and saved together with the job properties in the job
log.

v A job that retrieves the value from the job properties of each job log and saves
them in a temporary file.

v A final job that takes these values from the temporary file and POSTs them on
the NEIGHBOURHOOD BROKERS Web site.

See also

From the Dynamic Workload Console you can perform the same task as described
in

Chapter 14. Extending IBM Workload Scheduler capabilities 575

|
|

|
|

|
|
|
|

|
|
|

|

|
|

|
|
|
|
|
|

|

|
|

|
|
|

|

|
|
|
|

|
|
|

|
|

|
|

|

|
|

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

Java jobs
A Java job runs a Java class of your choice.

A description of the job properties and valid values are detailed in the
context-sensitive help in the Dynamic Workload Console by clicking the question
mark (?) icon in the top-right corner of the properties pane.

This section describes the required and optional attributes for Java jobs. Each job
definition has the following format and arguments:

Table 87. Required and optional attributes for the definition of a Java job.

Attribute Description/value Required

application name java U

jarPath The directory where the jar files are stored. This
includes all jar files stored in the specified directory
and all sub directories.

className The name of the class that the job must run. U

parameter key The parameters to be used when running the Java
class.

For more information about developing a Java job, see IBM Workload Automation:
Developer's Guide: Extending IBM Workload Automation.

The following example shows a job that runs a class with name com.ibm.test.Test
and parameter failExecution:
$JOBS
AGENT#JAVA
TASK
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdljava="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdljava" name="java">
<jsdl:application name="java">
<jsdljava:java>

<jsdljava:javaParms>
<jsdljava:jarPath>C:\JavaExecutors</jsdljava:jarPath>
<jsdljava:className>com.ibm.test.Test</jsdljava:className>
<jsdljava:parameters>

<jsdljava:parameter key="input">failExecution</jsdljava:parameter>
</jsdljava:parameters>

</jsdljava:javaParms>
</jsdljava:java>

</jsdl:application>
</jsdl:jobDefinition> DESCRIPTION "Defined using composer."
RECOVERY STOP

See also

From the Dynamic Workload Console you can perform the same task as described
in

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

576 IBM Workload Scheduler: User’s Guide and Reference

|

|

|

|
|

|

|
|
|

|
|

||

|||

|||

||
|
|

|

|||

||
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|

the Dynamic Workload Console User's Guide, section about Designing your Workload.

J2EE jobs
A J2EE job allows Java applications in the same network to send and receive
messages from and to a JMS destination.

A description of the job properties and valid values are detailed in the
context-sensitive help in the Dynamic Workload Console by clicking the question
mark (?) icon in the top-right corner of the properties pane.

This section describes the required and optional attributes for J2EE jobs. Each job
definition has the following format and arguments:

Table 88. Required and optional attributes for the definition of a J2EE job.
Attribute Description/value Required

application name j2ee U

jms operation The operation to be performed. Supported values are:

v send. This is the default value.

v receive. If you specify receive, you can optionally define a value for
the timeout attribute.

timeout The timeout, expressed in seconds, within which the task must
complete. If you do not specify a timeout or set it to 0, the task
continues indefinitely.

connectionURL The URL of the WebSphere Application Server.

connFactory An administered object that a client uses to create a connection to the
JMS provider. To specify the connection factory, you can use a variable
expression that can contain one or more variable references, such as
${var}, any character, and any string.

U

destination An administered object that encapsulates the identity of a message
destination, which is where messages are delivered and consumed. To
specify the destination, you can use a variable expression that can
contain one or more variable references, such as ${var}, any character,
and any string.

U

message The message to be sent. U

Note: This
attribute is

required only for
the send task.

Chapter 14. Extending IBM Workload Scheduler capabilities 577

|

|
|

|
|

|
|
|

|
|

||
|||
|||
||
|
|
|

|

||
|
|

|

|||
||
|
|
|

|

||
|
|
|
|

|

|||
|
|
|
|

Table 88. Required and optional attributes for the definition of a J2EE job. (continued)
Attribute Description/value Required

Credentials Specify the user name and the password to be used when running the
J2EE application. Use this field if global security is enabled on
WebSphere Application Server. The user must be defined on WebSphere
Application Server. To specify these credentials, you can use variable
expressions that can contain one or more variable references such as
${var}, optionally in association with any character or with a simple
string. In addition, you can parametrize in one of the following ways:

v Enter a username specified in the database with the username user
definition (it is applicable to all operating systems on this job type)
and key the statement:

<jsdl:password>${password:username}</jsdl:password>

The password is retrieved from the username user definition in the
database and resolved at runtime. See “Using user definitions on job
types with advanced options” on page 188 for further details.

You can also specify the user of a different workstation and use the
following syntax for the password:

<jsdl:password>${password:workstation#username}</jsdl:password>

v Enter a user and password defined with the param utility command
locally on the dynamic agent that will run the job (if the job is to be
submitted to a pool or to a dynamic pool, the definition must be
present on all the agents of the pool). Provided you defined the user
name with the variable user and a password, the corresponding
credential statements would be:

<jsdl:userName>${agent:user}</jsdl:userName>
<jsdl:password>${agent:password.user}</jsdl:password>

The user and password variables are resolved on the agent at
runtime. See “Defining variables and passwords for local resolution
on dynamic agents” on page 595 for further details.

The following example shows a send task that sends a message to the queue
MyQueue:
$JOBS
AGENT#JOB_NAME_JMS_SEND
TASK
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdlj="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdlj" name="JMS_JOB_SEND">
<jsdl:application name="j2ee">
<jsdlj:j2ee>
<jsdlj:jms operation="send">
<jsdlj:connectionURL>corbaloc:iiop:washost.mydomain.com:2809</jsdlj:connectionURL>
<jsdlj:connFactory>jms/MyCF</jsdlj:connFactory>
<jsdlj:destination>jms/MyQueue</jsdlj:destination>
<jsdlj:message>Submission of jms job: SEND MESSAGE</jsdlj:message>
</jsdlj:jms>
<jsdlj:credentials>
<jsdlj:userName>jtwoeeuser</jsdlj:userName>
<jsdlj:password>${password:jtwoeeuser}</jsdlj:password>1

</jsdlj:credentials>
</jsdlj:j2ee>
</jsdl:application>
</jsdl:jobDefinition>

Note: (1) User jtwoeeuser was defined on the IBM Workload Scheduler database
using the username user definition command. The associated password, specified
by the ${password:jtwoeeuser} string in the task, will be retrieved from the
database at runtime.

The following example shows a task that reads messages from the queue
MyQueue:
$JOBS
AGENT#JOB_NAME_JMS_RECEIVE
TASK

578 IBM Workload Scheduler: User’s Guide and Reference

|
|||
||
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdlj="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdlj" name="JMS_JOB_RECEIVE">
<jsdl:application name="j2ee">
<jsdlj:j2ee>
<jsdlj:jms operation="receive" timeout="180">
<jsdlj:connFactory>jms/MyCF</jsdlj:connFactory>
<jsdlj:destination>jms/MyQueue</jsdlj:destination>
</jsdlj:jms>
<jsdlj:credentials>
<jsdlj:userName>userName</jsdlj:userName>
<jsdlj:password>password</jsdlj:password>
</jsdlj:credentials>
</jsdlj:j2ee>
</jsdl:application>
</jsdl:jobDefinition>

Scheduling and stopping the job in IBM Workload Scheduler

You schedule IBM Workload Scheduler J2EE jobs by defining them in job streams.
Add the job to a job stream with all the necessary scheduling arguments and
submit it.

You can submit jobs using the Dynamic Workload Console, Application Lab, or the
conman command line.

After submission, when the job is running and is reported in EXEC status in IBM
Workload Scheduler, you can stop it if necessary, by using the kill command from
the Dynamic Workload Console. This action is not effective on the send operation,
but it is supported on the receive operation, causing the Java application to stop
waiting for messages.

Restarting the job

If the IBM Workload Scheduler agent stops when you submit the J2EE job or while
the job is running, the job restarts automatically as soon as the agent restarts.

See also

From the Dynamic Workload Console you can perform the same task as described
in

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

JSR 352 Java Batch
Use the JSR 352 Java Batch job type to schedule the running of Java Batch
programs that implement the JSR 352 standard programming specification.

A description of the job properties and valid values are detailed in the
context-sensitive help in the Dynamic Workload Console by clicking the question
mark (?) icon in the top-right corner of the properties pane.

This section describes the required and optional attributes for JSR 352 Java Batch
jobs. Each job definition has the following format and attributes:

Chapter 14. Extending IBM Workload Scheduler capabilities 579

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|
|
|

|

|
|

|

|
|

|

|

|

|
|

|
|

|
|
|

|
|

Table 89. Required and optional attributes for the definition of a JSR 352 Java Batch job
Attribute Description and value Required

hostname The host name of the WebSphere Liberty application server where you want
to run your Java Batch application.

U

port The port number where the application server is listening. U

protocol The protocol for connecting to the application server. Supported values are
http and https.

U

user name The user to be used for accessing the application server. This attribute is
optional, depending on the settings on your server.

password The password to be used for accessing the application server. This attribute
is optional, depending on the settings on your server.

keystore file path The fully qualified path of the keystore file containing the private key that is
used to make the connection.

If you use an
HTTPS
connection,
ensure that the
security
certificates are
configured for
Job Manager on
the workstation
where the job is
to run.

keystore file
password

The password that protects the private key and is required to make the
connection.

Required only if
you specify a
keystore file
path.

number of retries The number of times that the program retries when connecting to the
application server. Default value is 0.

retry interval
(seconds)

The number of seconds that the program waits before retrying to connect to
the application server. Default value is 30 seconds.

application name The name of the JSR 352 Java Batch application to be started. U

module name The name of the WAR file in which the JSR 352 Java Batch application is
packaged.

EJB Component
name

The name of the EJB component within the batch application EJB module. If
specified, the job is submitted under the EJB component context.

Required only
when the
module is an EJB
module. When
the module is a
WAR module,
this attribute is
not required.

job XML name The name of the job specification language XML file that will be used to
submit this job.

job XML file The full path and file name of the job XML file that is used to submit the
JSR 352 Java Batch job. If you specify this parameter, the job XML
instructions that you specify in the Job XML field are ignored at run time.

job XML Enter the job XML instructions that you want to use at run time to submit
theJSR 352 Java Batch job. The job XML instructions are validated when you
save the IBM Workload Scheduler JSR 352 Java Batch job. The job XML
instructions are ignored if a job XML file path is provided with the Job XML
file parameter.

job parameters One or more parameters, and related value, that might be required by your
JSR 352 Java Batch application.

Scheduling and stopping a job in IBM Workload Scheduler

You schedule JSR 352 Java Batch jobs by defining them in job streams. Add the job
to a job stream with all the necessary scheduling arguments and submit it.

You can submit jobs using the Dynamic Workload Console, Application Lab, or the
conman command line.

After the submission, when the job is running and is reported in EXEC status in
IBM Workload Scheduler, you can stop it if necessary by using the kill command

580 IBM Workload Scheduler: User’s Guide and Reference

||
|||
||
|
|

|||
||
|
|

||
|
|

||
|
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|
|
|
|

|||
||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

||
|
|

|

||
|
|
|
|

|

||
|
|

|

|

|
|

|
|

|
|

fromr the Dynamic Workload Console. This action stops also the program
execution on the application server.

Restarting a JSR 352 Java Batch job

When the scheduled time to run a JSR 352 Java Batch job is reached, the job is run
by the agent. You can monitor and even interrupt the job by using the monitoring
features of IBM Workload Scheduler. You can monitor the job by using any of the
product interfaces.

During the job execution, when monitoring the job from the Dynamic Workload
Console, the Workflow Details panel displays information about the steps that are
already started on the JSR 352 Java Batch server. From the Monitor jobs view, in
the Job Type column, click the hyperlink Workflow Details . The Workflow
Details panel opens. If the JSR 352 Java Batch job fails, you can restart the
workflow from the first failed step, within the same job instance. This happens in
case of parallel steps also.

Job properties

You can see the job properties by running conman sj <job_name>;props,
where<job_name> is the JSR 352 Java Batch job name.

The following example shows the properties that you can find in the Extra
Information section of the output command:
Cache-Control= no-cache="set-cookie, set-cookie2"
Content-Lenght= 658
Content-Type= application/json; charset=UTF-8
Date = Thu, 04 Jun 2015 14:36:12 GMT
ExitStatus = COMPLETED
Espires= Thu, 01 Dec 2019 16:00:00 GMT
Job Batch Status= COMPLETED
Job Instance Id= 223
Job Name= sleepy-batchlet
Set-Cookie= LtpaToken2-=2xktDMTwg6MhU6Xm3MbmkGzLclxFSKwZHwOBM1XpTa+Qvs
Status Code= 200 OK
Step.1.BatchStatus= COMPLETED
Step.1.Name= step1
X-Powered-By= Servlet/3.1
Job Execution Id= 220
Job Execution = https://localhost:9443/ibm/api/batch/jobinstances
/223/jobexecutions/220
Job Logs= https://localhost:9443/ibm/api/batch/jobinstances/223/joblogs
Self= https://localhost:9443/ibm/api/batch/jobinstances/223

You can export some of the JSR 352 Java Batch job properties that you see in the
Extra Information section, to a successive job in the same job stream instance. For
more information about the list of job properties that you can export, see Table 107
on page 607.

Job log content

You can see the job log content by running conman sj <job_name>;stdlist, where
<job_name> is the JSR 352 Java Batch job name.

See also

From the Dynamic Workload Console you can perform the same task as described
in

Chapter 14. Extending IBM Workload Scheduler capabilities 581

|
|

*

*
*
*
*

*
*
*
*
*
*
*

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|

|

|
|

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

MQTT
Use the MQTT job type to schedule the running of publish and subscribe actions
on topics managed by an MQTT message broker.

A description of the job properties and valid values are detailed in the
context-sensitive help in the Dynamic Workload Console by clicking the question
mark (?) icon in the top-right corner of the properties pane.

This section describes the required and optional attributes for MQTT jobs. Each job
definition has the following format and attributes:

Table 90. Required and optional attributes for the definition of an MQTT job
Attribute Description and value Required

server The host name of the workstation where the MQTT server is installed. U

port number The TCP/IP port number of the workstation where the MQTT server is
listening.

U

use SSL The version of the SSL cryptographic protocols that you want to use.
Default value is None.

user name The user to be used for accessing the MQTT server. Required,
depending on
your MQTT
server.

password The password to be used for accessing the MQTT server. Required if you
specify a user
name.

keystore file path The fully qualified path of the keystore file containing the private key that is
used to make the connection.

Required,
depending on
your MQTT
server.

keystore file
password

The password that protects the private key and is required to make the
connection.

Required only if
you specify a
keystore file
path.

client id The unique identifier of the MQTT client that you use to communicate with
your MQTT server. The client id is used by the server to store data that is
related to the client.

Required,
depending on
your MQTT
server.

timeout The amount of time, in seconds, that the job waits for the connection to the
MQTT server. Default is 30 seconds.

topic The topic to subscribe to on the MQTT server. Special characters and
wildcard characters are supported that allow you to subscribe to multiple
topics at the same time. For the set of characters that are supported and the
specific instructions about topic subscription, see your MQTT server
documentation .

U

QoS The quality of service. Defines how hard the server or client tries to ensure
that a message is received. You can specify:

0 The server or client delivers the message once, with no
confirmation.

1 The server or client delivers the message at least once, with
confirmation required.

2 The server or client delivers the message exactly once by using a
four-way handshake.

Default is 0.

U

subscribe Select this option if you want to subscribe to a specified topic on the MQTT
server.

582 IBM Workload Scheduler: User’s Guide and Reference

|

|

|

|
|

|
|

|
|
|

|
|

||
|||
|||
||
|
|

||
|
|

|||
|
|
|
|||
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|
|
|
|
||
|
|

||
|
|
|
|

|

||
|

||
|

||
|

||
|
|

|

||
|
|

Table 90. Required and optional attributes for the definition of an MQTT job (continued)
Attribute Description and value Required

publish Select this option if you want to publish a message to a topic on the MQTT
server.

MQTT message The message that you want to publish to a topic on the MQTT server. Required if you
select the
publish option.

Scheduling and stopping a job in IBM Workload Scheduler

You schedule MQTT jobs by defining them in job streams. Add the job to a job
stream with all the necessary scheduling arguments and submit it.

You can submit jobs using the Dynamic Workload Console, Application Lab, or the
conman command line.

After submission, when the job is running and is reported in EXEC status in IBM
Workload Scheduler, you can stop it if necessary by using the kill command. This
action also stops the program execution on the MQTT server.

Restarting a job

If the IBM Workload Scheduler agent stops when you submit the MQTT job, or
while the job is running, if it is a subscribe action the job restarts automatically as
soon as the agent restarts, and tries again to receive a message.

Job properties

You can see the job properties by running conman sj <job_name>;props,
where<job_name> is the MQTT job name.

The only property that you can find in the Extra Information section of the output
command is the text of the message received by the subscribe action.

You can also export the text of the message received by the subscribe action to a
successive job, in the same job stream instance. For more information, see Table 108
on page 608.

Job log content

You can see the job log content by running conman sj <job_name>;stdlist, where
<job_name> is the MQTT job name.

See also

From the Dynamic Workload Console you can perform the same task as described
in

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

Chapter 14. Extending IBM Workload Scheduler capabilities 583

|
|||
||
|
|

|||
|
|
|

|

|
|

|
|

|
|
|

|

|
|
|

|

|
|

|
|

|
|
|

|

|
|

|

|
|

|

|

|

Variable Table jobs
A Variable Table job adds or modifies a variable in a specified variable table.

Use the Variable Table job type to add or modify a variable in a specified variable
table. The Variable Table job type enables variable passing from one job to
another, in the same job stream or in a different job stream.

A description of the job properties and valid values are detailed in the
context-sensitive help in the Dynamic Workload Console by clicking the question
mark (?) icon in the top-right corner of the properties pane.

This section describes the required and optional attributes for Variable Table jobs.
Required attributes can be specified either at job definition time, or in the job
plug-in properties file. Each job definition has the following format and attributes:

Table 91. Required and optional attributes for the definition of a Variable Table job
Attribute Description and value Required

hostname The host name of the workstation where the IBM Workload Scheduler
master server is installed, on which you want to add or modify a variable.

U

port The TCP/IP port number of the workstation where the IBM Workload
Scheduler master server is installed.

U

protocol The protocol for connecting the dynamic agent running the Variable Table
job and the IBM Workload Scheduler master server. Supported values are
http and https.

U

user name The user to be used for accessing the IBM Workload Scheduler master
server.

password The password to be used for accessing the IBM Workload Scheduler master
server.

Required if you
specify a user
name.

keystore file path The fully qualified path of the keystore file containing the private key that is
used to make the connection.

keystore file
password

The password that protects the private key and is required to make the
connection.

number of retries The number of times that the program retries when connecting to the IBM
Workload Scheduler master server. Default value is 0.

retry interval (in
seconds)

The number of seconds that the program waits before retrying to connect to
the IBM Workload Scheduler master server. Default value is 30 seconds.

variable table The name of the variable table on the IBM Workload Scheduler master
server where you want to add or modify a variable.

U

variable list The list of variables and related values, in the selected variable table, that
you want to add or modify. Specify at least one variable.

U

The following example shows the job definition for a Variable Table job:
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdlvariabletable="http://www.ibm.com/xmlns/prod/scheduling
/1.0/jsdlvariabletable"

name="VARIABLETABLE">
<jsdl:application name="variabletable">
<jsdlvariabletable:variabletable>
<jsdlvariabletable:VariableTableParameters>
<jsdlvariabletable:Connection>

<jsdlvariabletable:connectionInfo>
<jsdlvariabletable:hostname>nx000140.xxxxlab.yy.zzz.com
</jsdlvariabletable:hostname>

<jsdlvariabletable:port>35116</jsdlvariabletable:port>
<jsdlvariabletable:protocol>https</jsdlvariabletable:protocol>
<jsdlvariabletable:credentials>

<jsdl:userName>tws_user</jsdl:userName>
<jsdl:password>{aes}
/2GNMAY8Z2pSx6JXHqcbKwd2xxxxxkyKXD/WNgthhnw=
</jsdl:password>

584 IBM Workload Scheduler: User’s Guide and Reference

|
|

|

|
|
|

|
|
|

|
|
|

||
|||
||
|
|

||
|
|

||
|
|

|

||
|
|

||
|
|
|
|
||
|
|

|
|
|
|
|

||
|
|

|
|
|
|
|

||
|
|

||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

</jsdlvariabletable:credentials>
<jsdlvariabletable:CertificateGroup>

<jsdlvariabletable:keyStoreFilePath/>
<jsdlvariabletable:keyStorePassword/>

</jsdlvariabletable:CertificateGroup>
</jsdlvariabletable:connectionInfo>
<jsdlvariabletable:retryOptions>

<jsdlvariabletable:NumberOfRetries>0
</jsdlvariabletable:NumberOfRetries>
<jsdlvariabletable:RetryIntervalSeconds>30</jsdlvariabletable:
RetryIntervalSeconds>

</jsdlvariabletable:retryOptions>
</jsdlvariabletable:Connection>
<jsdlvariabletable:Action>

<jsdlvariabletable:actionInfo>
<jsdlvariabletable:varTable>TABLE1</jsdlvariabletable:varTable>
<jsdlvariabletable:varListValues>

<jsdlvariabletable:varListValue key="DB2Name">HCLDB
</jsdlvariabletable:varListValue>

</jsdlvariabletable:varListValues>
</jsdlvariabletable:actionInfo>

</jsdlvariabletable:Action>
</jsdlvariabletable:VariableTableParameters>
</jsdlvariabletable:variabletable>

</jsdl:application>
</jsdl:jobDefinition>

Scheduling a job in IBM Workload Scheduler

You schedule Variable Table jobs by defining them in job streams. Add the job to a
job stream with all the necessary scheduling arguments and submit it.

You can submit jobs by using the Dynamic Workload Console, Application Lab, or
the conman command line.

Stopping and restarting a job

Stopping and restarting a Variable Table job are not supported.

Variable TableJobExecutor.properties file

The properties file is automatically generated either when you run a "Test
Connection" from the Dynamic Workload Console in the job definition panels, or
when you submit the job to run the first time. Once the file has been created, you
can customize it. This is especially useful when you need to schedule several jobs
of the same type. You can specify the values in the properties file and avoid
having to provide information such as credentials and other information, for each
job. You can override the values in the properties files by defining different values
at job definition time.

The TWS_INST_DIR\TWS\JavaExt\cfg\VariableTableJobExecutor.properties file
contains the following properties:
#Variable Table properties
hostname=
port=
protocol=http
user=
password=
keyStoreFilePath=
keyStorePassword=
HostnameVerifyCheckbox=false
NumberOfRetries=0

Chapter 14. Extending IBM Workload Scheduler capabilities 585

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|

|

|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

RetryIntervalSeconds=30
varTable=
#add here the variables in the format
VARLISTPROPERTY.<variable_name>=<variable_value>
#For example VARLISTPROPERTY.queueName=default

Job properties

You can see the job properties by running conman sj <job_name>;props,
where<job_name> is the Variable Table job name.

Job log content

You can see the job log content by running conman sj <job_name>;stdlist, where
<job_name> is the Variable Table job name.

See also

From the Dynamic Workload Console you can perform the same task as described
in

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

Job Management jobs
A Job Management job runs actions on a job in a job stream.

Use the Job Management job type to run actions on a job in a job stream.

Actions that you can run on a job are:
v Rerun
v Rerun the job and all its successor jobs
v Rerun the job and its successor jobs in the same job stream
v Release
v Release Dependencies
v Cancel
v Cancel Pending
v Hold
v Kill
v Confirm ABEND
v Confirm SUCC

For more information about the actions that you can run on a job, by using the
Dynamic Workload Console, see

the Dynamic Workload Console User’s Guide, section about Controlling Jobs and
Job Streams Processing.

For more information about the actions that you can run on a job, by using conman
command line, see

586 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|
|

|

|
|

|

|
|

|

|
|

|

|

|

|
=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=
=

=
=

=
=

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

the IBM Workload Scheduler User's Guide and Reference, section about Managing
objects in the plan - conman.

A description of the job properties and valid values are detailed in the
context-sensitive help in the Dynamic Workload Console by clicking the question
mark (?) icon in the top-right corner of the properties pane.

This section describes the required and optional attributes for Job Management
jobs. Required attributes must be specified at job definition time. No properties file
is available for this plug-in. Each job definition has the following format and
attributes:

Table 92. Required and optional attributes for the definition of a Job Management job
Attribute Description and value Required

Url A variable that specifies the web address of IBM Workload Scheduler master server. You can
override this variable with the web address of the master server and any IBM Workload
Scheduler backup master (in case the master is not available). Use a comma or a semicolon to
separate the different addresses that you specify.

If you do not override this variable at job definition time, the variable is resolved automatically at
job execution time. In this case, if the connection to the master server is not available, the plug-in
tries to connect automatically to any of the backup masters.

U

userName The user to be used for accessing the IBM Workload Scheduler master server.

password The password to be used for accessing the IBM Workload Scheduler master server. Required if you
specify a user name.

keyStoreFilePath The fully qualified path of the keystore file containing the private key that is used to make the
connection.
Note: For Workload Automation on Cloud users, this attribute must be equal to:

${agent-config:keystore-file}

As an alternative, you can specify this attribute in the following format:

[<key-store-type>::]<key-store-path>

keyStorePassword The password that protects the private key and is required to make the connection.
Note: For Workload Automation on Cloud users, this attribute must be equal to:

${agent-config:keystore-file-password}

HostnameVerifyCheckbox Use this attribute to require that the syntax of the IBM Workload Scheduler master server name,
as featured in the keystore file, must match exactly the URL. If they do not match, no
authorization is granted to access the server. If this attribute is not specified, the control is not
enforced.
Note: For Workload Automation on Cloud users, this attribute cannot be specified.

NumberOfRetries The number of times that the program retries when connecting to the IBM Workload Scheduler
master server. Default value is 0.

RetryIntervalSeconds The number of seconds that the program waits before retrying to connect to the IBM Workload
Scheduler master server. Default value is 30 seconds.

jobname The name of the job on which you want to run the action. U

workstation A variable that specifies the name of the workstation on which the job runs. You can override this
variable with a workstation name. If you do not override this variable at job definition time, the
variable is resolved automatically at job execution time.

U

jobstreamid A variable that specifies the name of the job stream containing the job. You can override this
variable with a job stream name. If you do not override this variable at job definition time, the
variable is resolved automatically at job execution time.

U

Chapter 14. Extending IBM Workload Scheduler capabilities 587

=
=

=
=
=

=
=
=
=

==
===
==
=
=
=

=
=
=

=

===
===
=
==
=
=
=

=
=

=

==
=
=

=

==
=
=
=
=

=

||
|
|

||
|
|

===
==
=
=

=

==
=
=

=

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_ref/awsrgmst_welcome.html

Table 92. Required and optional attributes for the definition of a Job Management job (continued)
Attribute Description and value Required

method The action that you want to run on the job. Valid values are:

v rerun

v rerunsuccessors

v reruninternalsuccessors

v release

v releasedependencies

v cancel

v cancelpending

v hold

v kill

v confirm_abend

v confirm_succ

U

sameworkstation Specify this parameter only for the rerun action. Use this parameter if you want to rerun the job
on the same workstation where it ran previously. This parameter is applicable only to pool and
dynamic pool workstations.

condition The condition name to confirm the SUCC or ABEND status for the specified output conditions.
Any conditions not specified are set to not satisfied.

The following example shows the job definition for a Job Management job that
runs the rerun action:
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.abc.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdljobmanagement="http://www.abc.com/xmlns/prod/
scheduling/1.0/jsdljobmanagement"
name="JOBMANAGEMENT">
<jsdl:application name="jobmanagement">
<jsdljobmanagement:jobmanagement>

<jsdljobmanagement:JobManagementParameters>
<jsdljobmanagement:Connection>

<jsdljobmanagement:connectionInfo>
<jsdljobmanagement:Url>${agent-config:master-address}</jsdljobmanagement:Url>
<jsdljobmanagement:credentials>
<jsdl:userName>twsuser1</jsdl:userName>
<jsdl:password>{aes}ywIpc7ISIQSq9xb7xrzqxoYJn04rNj/d1IfLa20r7Rg=

</jsdl:password>
</jsdljobmanagement:credentials>
<jsdljobmanagement:CertificateGroup>
<jsdljobmanagement:keyStoreFilePath></jsdljobmanagement:keyStoreFilePath>
<jsdljobmanagement:keyStorePassword></jsdljobmanagement:keyStorePassword>

<jsdljobmanagement:HostnameVerifyCheckbox/>
</jsdljobmanagement:CertificateGroup>
</jsdljobmanagement:connectionInfo>
<jsdljobmanagement:retryOptions>
<jsdljobmanagement:NumberOfRetries>0</jsdljobmanagement:NumberOfRetries>
<jsdljobmanagement:RetryIntervalSeconds>30

</jsdljobmanagement:RetryIntervalSeconds>
</jsdljobmanagement:retryOptions>

</jsdljobmanagement:Connection>
<jsdljobmanagement:Action>

<jsdljobmanagement:informations>
<jsdljobmanagement:jobname>JOBDIR</jsdljobmanagement:jobname>
<jsdljobmanagement:workstation>LAPTOP-E0DIBP1_2 (type: Agent, version: 9.4.0.01)

</jsdljobmanagement:workstation>
<jsdljobmanagement:jobstreamid>${tws.jobstream.id}

</jsdljobmanagement:jobstreamid>
</jsdljobmanagement:informations>
<jsdljobmanagement:actions>
<jsdljobmanagement:method>rerun</jsdljobmanagement:method>
</jsdljobmanagement:actions>
<jsdljobmanagement:options>
<jsdljobmanagement:sameworkstation/>
<jsdljobmanagement:condition></jsdljobmanagement:condition>

588 IBM Workload Scheduler: User’s Guide and Reference

=
===
==
=
=
=
=
=
=
=
=
=
=
=

=

==
=
=

=

==
=
=

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

</jsdljobmanagement:options>
</jsdljobmanagement:Action>

</jsdljobmanagement:JobManagementParameters>
</jsdljobmanagement:jobmanagement>
</jsdl:application>
</jsdl:jobDefinition>

The following example shows the job definition for a Job Management job that
runs the rerunsuccessors action:
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.abc.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdljobmanagement="http://www.abc.com/xmlns/prod/
scheduling/1.0/jsdljobmanagement"
name="JOBMANAGEMENT">
<jsdl:application name="jobmanagement">
<jsdljobmanagement:jobmanagement>

<jsdljobmanagement:JobManagementParameters>
<jsdljobmanagement:Connection>

<jsdljobmanagement:connectionInfo>
<jsdljobmanagement:Url>https://localhost:31116</jsdljobmanagement:Url>
<jsdljobmanagement:credentials>
<jsdl:userName>twsuser1</jsdl:userName>
<jsdl:password>{aes}ywIpc7ISIQSq9xb7xrzqxoYJn04rNj/d1IfLa20r7Rg=

</jsdl:password>
</jsdljobmanagement:credentials>
<jsdljobmanagement:CertificateGroup>
<jsdljobmanagement:keyStoreFilePath></jsdljobmanagement:keyStoreFilePath>
<jsdljobmanagement:keyStorePassword></jsdljobmanagement:keyStorePassword>

<jsdljobmanagement:HostnameVerifyCheckbox/>
</jsdljobmanagement:CertificateGroup>
</jsdljobmanagement:connectionInfo>
<jsdljobmanagement:retryOptions>
<jsdljobmanagement:NumberOfRetries>0</jsdljobmanagement:NumberOfRetries>
<jsdljobmanagement:RetryIntervalSeconds>30

</jsdljobmanagement:RetryIntervalSeconds>
</jsdljobmanagement:retryOptions>

</jsdljobmanagement:Connection>
<jsdljobmanagement:Action>

<jsdljobmanagement:informations>
<jsdljobmanagement:jobname>JOBDIR</jsdljobmanagement:jobname>
<jsdljobmanagement:workstation>LAPTOP-E0DIBP1_2

(type: Agent, version: 9.4.0.01)
</jsdljobmanagement:workstation>

<jsdljobmanagement:jobstreamid>${tws.jobstream.id}
</jsdljobmanagement:jobstreamid>

</jsdljobmanagement:informations>
<jsdljobmanagement:actions>
<jsdljobmanagement:method>rerunsuccessors</jsdljobmanagement:method>
</jsdljobmanagement:actions>
<jsdljobmanagement:options>
<jsdljobmanagement:condition></jsdljobmanagement:condition>

</jsdljobmanagement:options>
</jsdljobmanagement:Action>
</jsdljobmanagement:JobManagementParameters>

</jsdljobmanagement:jobmanagement>
</jsdl:application>
</jsdl:jobDefinition>

The following example shows the job definition for a Job Management job that
runs the confirm_succ action:
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdljobmanagement="http://www.ibm.com/xmlns/prod/
scheduling/1.0/jsdljobmanagement"
name="JOBMANAGEMENT">

Chapter 14. Extending IBM Workload Scheduler capabilities 589

=
=
=
=
=
=

=
=

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

=
=

=
=
=
=
=

<jsdl:application name="jobmanagement">
<jsdljobmanagement:jobmanagement>

<jsdljobmanagement:JobManagementParameters>
<jsdljobmanagement:Connection>

<jsdljobmanagement:connectionInfo>
<jsdljobmanagement:Url>https://localhost:31116</jsdljobmanagement:Url>
<jsdljobmanagement:credentials>
<jsdl:userName>twsuser1</jsdl:userName>
<jsdl:password>{aes}ywIpc7ISIQSq9xb7xrzqxoYJn04rNj/d1IfLa20r7Rg=

</jsdl:password>
</jsdljobmanagement:credentials>
<jsdljobmanagement:CertificateGroup>
<jsdljobmanagement:keyStoreFilePath></jsdljobmanagement:keyStoreFilePath>
<jsdljobmanagement:keyStorePassword></jsdljobmanagement:keyStorePassword>

</jsdljobmanagement:CertificateGroup>
</jsdljobmanagement:connectionInfo>
<jsdljobmanagement:retryOptions>
<jsdljobmanagement:NumberOfRetries>0</jsdljobmanagement:NumberOfRetries>
<jsdljobmanagement:RetryIntervalSeconds>30

</jsdljobmanagement:RetryIntervalSeconds>
</jsdljobmanagement:retryOptions>

</jsdljobmanagement:Connection>
<jsdljobmanagement:Action>

<jsdljobmanagement:informations>
<jsdljobmanagement:jobname>JOBDIR</jsdljobmanagement:jobname>
<jsdljobmanagement:workstation>LAPTOP-E0DIBP1_2 (type: Agent, version: 9.4.0.01)

</jsdljobmanagement:workstation>
<jsdljobmanagement:jobstreamid>${tws.jobstream.id}

</jsdljobmanagement:jobstreamid>
</jsdljobmanagement:informations>
<jsdljobmanagement:actions>

<jsdljobmanagement:method>confirm_succ</jsdljobmanagement:method>
</jsdljobmanagement:actions>
<jsdljobmanagement:options>
<jsdljobmanagement:condition>CONF_SUCC_CONDITION</jsdljobmanagement:condition>
</jsdljobmanagement:options>

</jsdljobmanagement:Action>
</jsdljobmanagement:JobManagementParameters>

</jsdljobmanagement:jobmanagement>
</jsdl:application>
</jsdl:jobDefinition>

Scheduling a job in IBM Workload Scheduler

You schedule Job Management jobs by defining them in job streams. Add the job
to a job stream with all the necessary scheduling arguments and submit it.

You can submit jobs by using the Dynamic Workload Console, Application Lab, or
the conman command line.

Stopping and restarting a job

Stopping and restarting a Job Management job are not supported.

Job properties

You can see the job properties by running conman sj <job_name>;props,
where<job_name> is the Job Management job name.

You can export some of the Job Management job properties that you see in the
Extra Information section of the output command, to a successive job in the same
job stream or in a different job stream. For more information about the list of job
properties that you can export, see Table 112 on page 610.

590 IBM Workload Scheduler: User’s Guide and Reference

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

=

=
=

=
=

=

=

=

=
=

=
=
=
=

Job log content

You can see the job log content by running conman sj <job_name>;stdlist, where
<job_name> is the Job Management job name.

See also

From the Dynamic Workload Console you can perform the same task as described
in

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

Job Stream Submission jobs
A Job Stream Submission job submits a job stream for processing.

The Job Stream Submission job is one of the Automation Utilities that facilitate
specific IBM Workload Scheduler operations. Use the Job Stream Submission job
type to automate the submission of a job stream for processing.

A description of the job properties and valid values are detailed in the
context-sensitive help in the Dynamic Workload Console by clicking the question
mark (?) icon in the top-right corner of the properties pane.

This section describes the required and optional attributes for Job Stream
Submission jobs. Required attributes must be specified at job definition time. No
properties file is available for this plug-in. Each job definition has the following
format and attributes:

Table 93. Required and optional attributes for the definition of a Job Stream Submission job
Attribute Description and value Required

Url A variable that specifies the web address of IBM Workload Scheduler master server. You can
override this variable with the web address of the master server and any IBM Workload
Scheduler backup master (in case the master is not available). Use a comma or a semicolon to
separate the different addresses that you specify.

If you do not override this variable at job definition time, the variable is resolved automatically at
job execution time. In this case, if the connection to the master server is not available, the plug-in
tries to connect automatically to any of the backup masters.

U

userName The user to be used for accessing the IBM Workload Scheduler master server.

password The password to be used for accessing the IBM Workload Scheduler master server. Required if you
specify a user name.

keyStoreFilePath The fully qualified path of the keystore file containing the private key that is used to make the
connection.
Note: For Workload Automation on Cloud users, this attribute must be equal to:

${agent-config:keystore-file}

As an alternative, you can specify this attribute in the following format:

[<key-store-type>::]<key-store-path>

keyStorePassword The password that protects the private key and is required to make the connection.
Note: For Workload Automation on Cloud users, this attribute must be equal to:

${agent-config:keystore-file-password}

Chapter 14. Extending IBM Workload Scheduler capabilities 591

=

=
=

=

=
=

=

=

=

|
=

=

=
=
=

=
=
=

=
=
=
=

==
===
==
=
=
=

=
=
=

=

===
===
=
==
=
=
=

=
=

=

==
=
=

=

Table 93. Required and optional attributes for the definition of a Job Stream Submission job (continued)
Attribute Description and value Required

HostnameVerify
Checkbox

Use this attribute to require that the syntax of the IBM Workload Scheduler master server name,
as featured in the keystore file, must match exactly the URL. If they do not match, no
authorization is granted to access the server. If this attribute is not specified, the control is not
enforced.
Note: For Workload Automation on Cloud users, this attribute cannot be specified.

NumberOfRetries The number of times that the program retries when connecting to the IBM Workload Scheduler
master server. Default value is 0.

RetryIntervalSeconds The number of seconds that the program waits before retrying to connect to the IBM Workload
Scheduler master server. Default value is 30 seconds.

specifyjobstream To define the job stream that you want to submit for processing.

workstation The name of the workstation on which the job stream was defined. U

jobstreamname The name of the job stream. U

alias A unique name to be assigned to the job stream in place of jobstreamname.

resubcurrjobstream To resubmit the current job stream. This attribute is alternative to specifyjobstream.

startafter To define an offset in hours for the start time.

delayforhours The offset is calculated from the time of the submission of the Job Stream Submission job.
Possible values can range from 00:00 to 23:59. The default value is '00:00'.

startat To define the time of day before which the job stream must not start. This attribute is alternative
to startafter.

time The time of day before which the job stream must not start. Possible values can range from 00:00
to 23:59.

delayfordays You can specify an offset in days for the start time. The offset is calculated from the day of the
submission of the Job Stream Submission job. The default value is '0'.

variabletablename The name of the variable table to be used by the job stream.

variablelistValues The list of variables in the variable table, and related values.

The following example shows the job definition for a Job Stream Submission job:
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"

xmlns:jsdljobstreamsubmission="http://www.ibm.com/xmlns/prod/
scheduling/1.0/jsdljobstreamsubmission"

name="JOBSTREAMSUBMISSION">
<jsdl:application name="jobstreamsubmission">
<jsdljobstreamsubmission:jobstreamsubmission>
<jsdljobstreamsubmission:JobstreamSubmissionParameters>
<jsdljobstreamsubmission:Connection>

<jsdljobstreamsubmission:connectionInfo>
<jsdljobstreamsubmission:Url>${agent-config:master-address}

</jsdljobstreamsubmission:Url>
<jsdljobstreamsubmission:credentials>

<jsdl:userName>twsuser</jsdl:userName>
<jsdl:password>{aes}FKFBcQTNuxyPMye+hqRGdXC2Ya7chYe8rk2Ia8OJDNY=

</jsdl:password>
</jsdljobstreamsubmission:credentials>
<jsdljobstreamsubmission:CertificateGroup>

<jsdljobstreamsubmission:keyStoreFilePath>
</jsdljobstreamsubmission:keyStoreFilePath>

<jsdljobstreamsubmission:keyStorePassword>
</jsdljobstreamsubmission:keyStorePassword>

<jsdljobstreamsubmission:HostnameVerifyCheckbox/>
</jsdljobstreamsubmission:CertificateGroup>

</jsdljobstreamsubmission:connectionInfo>
<jsdljobstreamsubmission:retryOptions>

<jsdljobstreamsubmission:NumberOfRetries>0
</jsdljobstreamsubmission:NumberOfRetries>

<jsdljobstreamsubmission:RetryIntervalSeconds>30
</jsdljobstreamsubmission:RetryIntervalSeconds>

</jsdljobstreamsubmission:retryOptions>
</jsdljobstreamsubmission:Connection>
<jsdljobstreamsubmission:Action>
<jsdljobstreamsubmission:method>

<jsdljobstreamsubmission:specifyjobstream>

592 IBM Workload Scheduler: User’s Guide and Reference

=
===
=
=
=
=
=
=
=

=

||
|
|

||
|
|

===
===
===
===
===
===
==
=
=

==
=
=

==
=
=

==
=
=

===
===
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

<jsdljobstreamsubmission:workstation>LAPTOP-E0DIBP1_3
</jsdljobstreamsubmission:workstation>
<jsdljobstreamsubmission:jobstreamname>JS1

</jsdljobstreamsubmission:jobstreamname>
<jsdljobstreamsubmission:alias>JSalias
</jsdljobstreamsubmission:alias>

</jsdljobstreamsubmission:specifyjobstream>
</jsdljobstreamsubmission:method>
<jsdljobstreamsubmission:earlieststart>

<jsdljobstreamsubmission:timeoptions>
<jsdljobstreamsubmission:startafter>
<jsdljobstreamsubmission:delayforhours>00:10

</jsdljobstreamsubmission:delayforhours>
</jsdljobstreamsubmission:startafter>

</jsdljobstreamsubmission:timeoptions>
</jsdljobstreamsubmission:earlieststart>
<jsdljobstreamsubmission:managevariabletable>
<jsdljobstreamsubmission:variablename></jsdljobstreamsubmission:variablename>
</jsdljobstreamsubmission:managevariabletable>
</jsdljobstreamsubmission:Action>
</jsdljobstreamsubmission:JobstreamSubmissionParameters>
</jsdljobstreamsubmission:jobstreamsubmission>
</jsdl:application>
</jsdl:jobDefinition>

Scheduling a job in IBM Workload Scheduler

You schedule Job Stream Submission jobs by defining them in job streams. Add the
job to a job stream with all the necessary scheduling arguments and submit it.

You can submit jobs by using the Dynamic Workload Console, Application Lab, or
the conman command line.

Stopping and restarting a job

Stopping and restarting a Job Stream Submission job are not supported.

Job properties

For information about how to display the job properties from the various
supported interfaces, see the section about analyzing the job log in Scheduling
Applications with IBM Workload Automation. For example, you can see the job
properties by running conman sj <job_name>;props, where<job_name> is the Job
Stream Submission job name.

You can export some of the Job Stream Submission job properties that you see in
the Extra Information section of the output command, to a successive job in the
same job stream or in a different job stream. For more information about the list of
job properties that you can export, see Table 113 on page 610.

Job log content

You can see the job log content by running conman sj <job_name>;stdlist, where
<job_name> is the Job Stream Submission job name.

See also

From the Dynamic Workload Console you can perform the same task as described
in

Chapter 14. Extending IBM Workload Scheduler capabilities 593

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

=

=
=

=
=

=

=

=

=
=
=
=
=

=
=
=
=

=

=
=

=

=
=

the Dynamic Workload Console User's Guide, section about Creating job definitions.

For more information about how to create and edit scheduling objects, see

the Dynamic Workload Console User's Guide, section about Designing your Workload.

Return codes
The following is a list of the return codes for job types with advanced options
Database jobs:
RC = 0 -> Job completed successfully
RC = -1 -> SQL statement was run with an exit code different from 1
RC = -2 -> MSSQL Job error
RC = -3 -> SQL statement did not run because of an error in the statement

File transfer jobs:
RC = 0 -> The file transfer completed successfully

RC = -1 -> The file transfer is not performed. The job fails with the following
error code: AWKFTE007E

Explanation: An error occured during the file transfer operation

Possible reasons: Remote file not found or permission denied

RC = -2 -> The file transfer is not performed. The job fails with the following
error code: AWKFTE020E

Explanation: Only for SSH or Windows protocols. An error was returned
while attempting to convert the code page

Possible reasons: For SSH or Windows protocols, the code page is
automatically detected and converted. In this case, there is an error in the
code page of the file to be transferred, which is not compliant with the
code page of the local system

RC = -3 -> The file transfer is not performed.The job fails with the following
error code: AWKFTE015E

Explanation: An error occurred during the file transfer operation

Possible reasons: Local file is not found

RC = -4 -> The file transfer is performed with the default code page. The job
fails with the following error code: AWKFTE023E

Explanation: The specified codepage conversion has not been performed.
File transfer has been performed with default code pages

Possible reasons: The specified code page is not available

IBM i jobs:
Return code = user return code when retrieved
Return code = 0 -> job completed successfully
Return code > -1 -> job completed unsuccessfully

Java jobs:
RC = 0 -> Job completed successfully
RC = -1 -> The Java application launched by the job failed due to an exception

Web services jobs:
RC = 0 -> Job completed successfully
RC = -1 -> The server hostname contained in the Web Service URL is unknown
RC = -2 -> Web Service invocation error

When the user return code is retrieved, the IBM i Agent Monitor assigns a priority
to it.

594 IBM Workload Scheduler: User’s Guide and Reference

=

=

=

|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|

Automatically installing plug-ins by running job types with advanced
options on dynamic agents

Automatically installing plug-ins by running job types with advanced options on
dynamic agents

In IBM Workload Scheduler previous versions, when you define a job type with
advanced options on a dynamic agent workstation, if the plug-in that needs to run
the job is not installed on that agent, the job fails and you need manually install
the plug-in and then rerun the job. If the plug-in version is older than the version
installed in the master domain manager, you manually install the later plug-in
version.

From IBM Workload Scheduler V9.3, if you define a job type with advanced
options on a dynamic agent workstation, when the job runs, you have the
following scenarios:

Plug-in is not installed on that agent:
The dynamic agent automatically connects to the master domain manager
workstation, it downloads, installs, and configures on the dynamic agent
workstation the needed plug-in. After the installation, thejob type with
advanced options runs successfully.

Plug-in is installed on that agent, but the plug-in version is older:
The dynamic agent automatically connects to the master domain manager
workstation, downloads, and installs on the dynamic agent workstation the
later plug-in version. The dynamic agent workstation is not restarted even
if the plug-in is already started.

Defining variables and passwords for local resolution on dynamic
agents

For job types with advanced options you have the possibility to let variables and
passwords be defined and resolved locally on the dynamic agents (including pools
and dynamic pools).

This is particularly useful in the case of passwords because you are not required to
specify them in the job definition. The advantage is that, if the password has to
change, you do not modify the job definition, but you change it with the param
command locally on the agents (or on the pool agents) that run or may run the job.
If the job is to be submitted to a pool or dynamic pool, you can copy the file with
the variable definitions to all the agents participating in that pool, so that the
variables are resolved locally wherever the job will run.

This feature is not restricted to Windows workstations alone. You can use it also on
UNIX, as long as you apply it on job types with advanced options.

To define a variable or a password locally on a dynamic agent, use the param
utility command. This command has the power to create, delete, and list local
variables in dynamic agents. See the details on this command to learn how to use
it.

Chapter 14. Extending IBM Workload Scheduler capabilities 595

|
|

|

|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

Specifying local variables and passwords in the job
definitions

After defining a variable and its value with the param command, to add it within a
job definition so that it is resolved locally on the agent at runtime, use the
following syntax:
${agent:variable_name}

After defining a password with the param command, to add it within a job
definition so that it is resolved locally on the agent at runtime, use the following
syntax:
${agent:password.user_name}

You can nest variables within passwords. If you used a variable to define a user,
enter the password as follows within the job definition:
${agent:password.${agent:variable_name}}

where variable_name was previously defined as having value user_name with the
param command.

Example

An IBM Workload Scheduler administrator needs to define a file transfer job that
downloads a file from a remote server to one of the dynamic agents making up a
pool of agents. The administrator wants to parametrize in the job definition:
v The name with which the remote file will be saved locally
v The remote user name and its password

The administrator proceeds in the following way on one of the agents:
1. Defines a variable named localfile. The variable is given a value equal to

./npp.5.1.1.Installer.DW.exe and is created in a new variables file named
FTPvars (no section). The command to do this is:
E:\IBM\TWA\TWS\CLI\bin>param -c FTPvars..localfile ./npp.5.1.1.Installer.DW.exe

2. Defines a variable named remoteUser. The variable is given a value equal to
FTPuser and is created in the FTPvars file (no section). The command to do this
is:
E:\IBM\TWA\TWS\CLI\bin>param -c FTPvars..remoteUser FTPuser

3. Defines the password for FTPuser. The password value is tdwb8nxt and is
created in the password section of the FTPvars file. The command to do this is:
E:\IBM\TWA\TWS\CLI\bin>param -c FTPvars.password.FTPuser tdwb8nxt

4. With a text editor opens file
E:\IBM\TWA\TWS\ITA\cpa\config\jm_variables_files\FTPvars

and checks its contents:
localfile = ./npp.5.1.1.Installer.DW.exe
remoteuser = FTPuser

[password]
FTPuser = {aes}XMMYMY2zBHvDEDBo5DdZVmwOJao60pX1K6x2HhRcovA=

5. Copies file FTPvars in the agent_installation_path\TWA\TWS\ITA\cpa\config\
jm_variables_files> path of every other agent defined in the pool.

6. Starts defining the new file transfer job in the Workload Designer panel of
Dynamic Workload Console. In the FileTransfer window:

596 IBM Workload Scheduler: User’s Guide and Reference

|

|

|
|
|

|

|
|
|

|

|
|

|

|
|

|

|
|
|

|

|

|

|
|
|

|

|
|
|

|

|
|

|

|

|

|

|
|
|
|
|

|
|

|
|

a. Enters ${agent:FTPvars..localfile} in the Local file field.
b. Enters ${agent:FTPvars..remoteuser} in the Remote Credentials →User

Name field.
c. Clicks the ... button next to the Remote Credentials →Password field. The

Password type window pops up and the administrator selects Agent User.

d. After the administrator clicks the OK button for confirmation in the popup
window, the Remote Credentials →Password field is filled with the
${agent:password.${agent:FTPvars..remoteuser}} value.

7. Fills in all the other fields to complete the job definition.

When the job is run, the entities and the password entered as variables are
resolved with the values defined in the FTPvars file.

Chapter 14. Extending IBM Workload Scheduler capabilities 597

|

|
|

|
|

|

|
|
|

|

|
|

Defining variables in dynamic workload broker jobs
This section explains how to add variables to jobs you plan to run with dynamic
workload broker.

You can include variables in your job definition. The variables are resolved at
submission time.

The supported variables are as follows:

Table 94. Supported IBM Workload Scheduler variables in JSDL definitions.

Variables that can be inserted in the
dynamic workload broker job definition

Description

tws.host.workstation Name of the host workstation.

tws.job.date Date of the submitted job.

tws.job.fqname Fully qualified name of the job
(UNISON_JOB).

tws.job.ia Input arrival time of the job.

tws.job.interactive Job is interactive. Values can be true or
false. Applies only to jobs compatible with
earlier versions.

tws.job.logon Credentials of the user who runs the job
(LOGIN). Applies only to jobs compatible
with earlier versions.

tws.job.name Name of the submitted job.

tws.job.num UNISON_JOBNUM.

tws.job.priority Priority of the submitted job.

tws.job.promoted Job is promoted. Values can be YES or No.
For more information about promotion for
dynamic jobs, see “Promoting jobs
scheduled on dynamic pools” on page 623.

tws.job.recnum Record number of the job.

tws.job.resourcesForPromoted Quantity of the required logical resources
assigned on a dynamic pool to a promoted
job. Values can be 1 if the job is promoted or
10 if the job is not promoted. For more
information about promotion for dynamic
jobs, see “Promoting jobs scheduled on
dynamic pools” on page 623.

tws.job.taskstring Task string of the submitted job. Applies
only to jobs compatible with earlier versions.

tws.job.workstation Name of the workstation on which the job is
defined.

tws.jobstream.id ID of the job stream that includes the job
(UNISON_SCHED_ID).

tws.jobstream.name Name of the job stream that includes the job
(UNISON_SCHED).

tws.jobstream.workstation Name of the workstation on which the job
stream that includes the job is defined.

tws.master.workstation Name of the master domain manager
(UNISON_MASTER).

598 IBM Workload Scheduler: User’s Guide and Reference

|

|
|

|
|

|

||

|
||

||

||

||
|

||

||
|
|

||
|
|

||

||

||

||
|
|
|

||

||
|
|
|
|
|
|

||
|

||
|

||
|

||
|

||
|

||
|

Table 94. Supported IBM Workload Scheduler variables in JSDL definitions. (continued)

Variables that can be inserted in the
dynamic workload broker job definition

Description

tws.plan.date Start date of the production plan
(UNISON_SCHED_DATE).

tws.plan.date.epoch Start date of the production plan, in epoch
format (UNISON_SCHED_EPOCH).

tws.plan.runnumber Run number of the production plan
(UNISON_RUN).

Passing variables between jobs
In many scenarios, the job output or a job property of the first job in a job stream
can be the input for the execution of the successive jobs in the same job stream or
in a different job stream.

In the following scenario, you have JobA and JobB in the same job stream instance
and JobA is a predecessor of JobB. JobA passes some variables values to JobB at
execution time.

You can pass the following variables from JobA to JobB:
v JobA exports some properties and JobB references these properties in its

definition as variables in a predefined format. At execution time, the JobB
variables are automatically resolved. The job properties that you can export
depend on the job type you are defining. See “Passing job properties from one
job to another in the same job stream instance” on page 600.

v JobA exports its standard output value and JobB references this standard output
as a variable. At execution time the JobB variable is automatically resolved. See
“Passing job standard output from one job to another in the same job stream
instance” on page 611.

v Only for executable jobs. JobA exports its standard output value and the JobB
references this standard output as its standard input value. See “Passing job
standard output from one job to another as standard input in the same job
stream instance” on page 612.

v Only for native and executable jobs. JobA sets some variable values by using the
jobprop utility on UNIX operating systems and jobprop.exe utility on Windows
operating systems that are installed on dynamic agents. JobB references these
variable values in its definition. At execution time, the JobB variables are
automatically resolved. See “Passing variables set by using jobprop in one job to
another in the same job stream instance” on page 613.

In a different scenario, JobA exports variables in a variable table. The variable
table makes the exported variables available to JobB, where JobB is any successor
job, in the same job stream or in a different job stream. See “Passing variables from
one job to another in the same job stream or in a different job stream by using
variable tables” on page 614.

Note: The USERJOBS job stream that is created by IBM Workload Scheduler
processes, does not support the passing of variables among jobs that belong to it.

Chapter 14. Extending IBM Workload Scheduler capabilities 599

|

|
||

||
|

||
|

||
|
|

|
|

|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

Passing job properties from one job to another in the same
job stream instance

The job properties that you can export from one dynamic job to a successive job in
the same job stream instance depend on the job type you are defining. To add a job
property within another successor job definition, to have it resolved locally on the
agent at run time, use the following syntax:
${job:<JOB_NAME>.<property_name>}

where <JOB_NAME> is the name value or alias name value of the job from which
you are exporting the property values and <property_name> is the property that
you are referring to. The <property_name> value is case insensitive.

Only some job types can pass property values to other successor jobs. The
following types of job can export variables:

IBM InfoSphere DataStage jobs
Table 95 on page 603 shows the list of properties that you can pass from
one IBM InfoSphere DataStage job to another and indicates the mapping
between the Extra information properties of the job and the properties
that you can use. For more information about IBM InfoSphere DataStage
jobs, see Scheduling Applications with IBM Workload Automation.

Shadow jobs
Table 96 on page 604 shows the list of properties that you can pass from
one shadow job to another and indicates the mapping between the Extra
information properties of the job and the properties that you can use.

OSLC jobs
Table 97 on page 604 shows the list of properties that you can pass from
one OSLC job to another and indicates the mapping between the Extra
information properties of the job and the properties that you can use.

IBM WebSphere MQ jobs
Table 98 on page 604 shows the list of properties that you can pass from
one IBM WebSphere MQ job to another and indicates the mapping
between the Extra information properties of the job and the properties
that you can use.

IBM Sterling Connect:Direct jobs
Table 99 on page 604 shows the list of properties that you can pass from
one IBM Sterling Connect:Direct job to another and indicates the mapping
between the Extra information properties of the job and the properties
that you can use.

Salesforce jobs
Table 100 on page 605 shows the list of properties that you can pass from
one Salesforce job to another and indicates the mapping between the Extra
information properties of the job and the properties that you can use.

SAP BusinessObjects BI jobs
Table 101 on page 605 shows the list of properties that you can pass from
one SAP BusinessObjects BI job to another and indicates the mapping
between the Extra information properties of the job and the properties
that you can use.

Oracle E-Business Suite jobs
Table 102 on page 605 shows the list of properties that you can pass from

600 IBM Workload Scheduler: User’s Guide and Reference

|

|

|
|
|
|

|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

one Oracle E-Business Suite job to another and indicates the mapping
between the Extra information properties of the job and the properties
that you can use.

File transfer jobs
Table 103 on page 606 shows the list of properties that you can pass from
one file transfer job to another and indicates the mapping between the
Extra information properties of the job and the properties that you can
use.

Since you can use wildcards to specify a partial name condition, you can
transfer more than one file within the same job, and you have one full set
of properties for each transferred file.

Hadoop Map Reduce jobs
Table 104 on page 606 shows the list of properties that you can pass from
one Hadoop Map Reduce job to another and indicates the mapping
between the Extra information properties of the job and the properties
that you can use.

Hadoop Distributed File System jobs
Table 105 on page 607 shows the list of properties that you can pass from
one Hadoop Distributed File System job to another and indicates the
mapping between the Extra information properties of the job and the
properties that you can use.

IBM BigInsights jobs
Table 106 on page 607 shows the list of properties that you can pass from
one IBM BigInsights Application job to another and indicates the mapping
between the Extra information properties of the job and the properties
that you can use.

JSR 352 Java Batch jobs
Table 107 on page 607 shows the list of properties that you can pass from
one IBM BigInsights Application job to another and indicates the mapping
between the Extra information properties of the job and the properties
that you can use.

MQTT jobs
Table 108 on page 608 shows the list of properties that you can pass from
one MQTT job to another and indicates the mapping between the Extra
information properties of the job and the properties that you can use.

Apache Oozie jobs
Table 109 on page 608 shows the list of properties that you can pass from
one Apache Oozie job to another and indicates the mapping between the
Extra information properties of the job and the properties that you can
use.

Cloudant jobs
Table 110 on page 609 shows the list of properties that you can pass from
one Cloudant job to another and indicates the mapping between the Extra
information properties of the job and the properties that you can use.

OpenWhisk jobs
Table 111 on page 609 shows the list of properties that you can pass from
one OpenWhisk job to another and indicates the mapping between the
Extra information properties of the job and the properties that you can
use.

Chapter 14. Extending IBM Workload Scheduler capabilities 601

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

Job Management jobs
Table 112 on page 610 shows the list of properties that you can pass from
one Job Management job to another and indicates the mapping between
the Extra information properties of the job and the properties that you
can use.

Job Stream Submission jobs
Table 113 on page 610 shows the list of properties that you can pass from
one Job Stream Submission job to another and indicates the mapping
between the Extra information properties of the job and the properties
that you can use.

Database jobs
Table 114 on page 610 shows the list of properties that you can pass from
one database job to another and indicates the mapping between the Extra
information properties of the job and the properties that you can use.

Apache Spark jobs
Table 115 on page 610 shows the list of properties that you can pass from
one database job to another and indicates the mapping between the Extra
information properties of the job and the properties that you can use.

Amazon EC2 jobs
Table 116 on page 610 shows the list of properties that you can pass from
one database job to another and indicates the mapping between the Extra
information properties of the job and the properties that you can use.

IBM SoftLayer jobs
Table 117 on page 611 shows the list of properties that you can pass from
one database job to another and indicates the mapping between the Extra
information properties of the job and the properties that you can use.

Microsoft Azure jobs
Table 118 on page 611 shows the list of properties that you can pass from
one database job to another and indicates the mapping between the Extra
information properties of the job and the properties that you can use.

Example

The following example demonstrates how specifying variables in different formats
allows for variables to have different values because they are resolved at different
times. It also demonstrates how variables can be passed from job to job in a job
stream instance. The WIN92MAS_REW#VP_JS_141800058 job stream contains JOBA and
JOBB jobs. The JOBB executable job references the following properties of the JOBA
shadow job:
v ScheduledTime

v dJobNAme

v dJobStreamName

v dJobStreamWorkstation

The database definitions:
SCHEDULE WIN92MAS_REW#VP_JS_141800058
:
WIN92MAS_REW#JOBA
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:dshadow=
"http://www.ibm.com/xmlns/prod/scheduling/1.0/dshadow" xmlns:
jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl">
<jsdl:application name="distributedShadowJob">

602 IBM Workload Scheduler: User’s Guide and Reference

=
=
=
=
=

=
=
=
=
=

=
=
=
=

*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*

|

|
|
|
|
|
|

|

|

|

|

|

|
|
|
|
|
|
|
|
|

<dshadow:DistributedShadowJob>
<dshadow:JobStream>VPJS_141800058</dshadow:JobStream>
<dshadow:Workstation>nc125133</dshadow:Workstation>
<dshadow:Job>VP_JOBMON_141800058</dshadow:Job>
<dshadow:matching>
<dshadow:previous/>

</dshadow:matching>
</dshadow:DistributedShadowJob>

</jsdl:application>
</jsdl:jobDefinition>
DESCRIPTION "Sample Job Definition for DISTRIBUTED environment"
RECOVERY STOP
NC125133#JOBB
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:XMLSchema=
"http://www.w3.org/2001/XMLSchema" xmlns:jsdl="http://www.ibm.com/xmlns/

prod/scheduling/1.0/jsdl" xmlns:
jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
XMLSchema:text="resolveVariableTable" name="executable">
<jsdl:application name="executable">
<jsdle:executable>

<jsdle:script>
echo ScheduledTime:${job:JOBA.ScheduledTime}
echo JobName:${job:JOBA.dJobName}
echo JobStreamName:${job:JOBA.dJobStreamName}
echo JobStreamWorkstation:${job:JOBA.dJobStreamWorkstation}
</jsdle:script>

</jsdle:executable>
</jsdl:application>

</jsdl:jobDefinition>
DESCRIPTION "Added by composer."
RECOVERY STOP
FOLLOWS JOBA

END

IBM Workload Scheduler uses the IBM InfoSphere DataStage jobs properties as is.
The IBM InfoSphere DataStage jobs Extra Information property values depend on
the locale of the workstation where the IBM InfoSphere DataStage is installed.
Table 95 shows the IBM InfoSphere DataStage job Extra Information property
values for a workstation with the locale set to en_US.

Table 95. Properties for IBM InfoSphere DataStage jobs

IBM InfoSphere DataStage Job
properties that can be passed in
another job definition

IBM InfoSphere DataStage job Extra
Information properties

${job:<JOB_NAME>.Interim Status} Interim Status

${job:<JOB_NAME>.Invocation ID} Invocation ID

${job:<JOB_NAME>.Invocation List} Invocation List

${job:<JOB_NAME>.Job Control} Job Control

${job:<JOB_NAME>.Job Controller} Job Controller

${job:<JOB_NAME>.Job Process ID} Job Process ID

${job:<JOB_NAME>.Job Restartable} Job Restartable

${job:<JOB_NAME>.Job Start Time} Job Start Time

${job:<JOB_NAME>.Job Status} Job Status

${job:<JOB_NAME>.Job Wave Number} Job Wave Number

Chapter 14. Extending IBM Workload Scheduler capabilities 603

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

||

|
|
|

|
|

||

||

||

||

||

||

||

||

||

||

Table 95. Properties for IBM InfoSphere DataStage jobs (continued)

IBM InfoSphere DataStage Job
properties that can be passed in
another job definition

IBM InfoSphere DataStage job Extra
Information properties

${job:<JOB_NAME>.Last Run Time} Last Run Time

${job:<JOB_NAME>.User Status} User Status

Table 96. Properties for shadow jobs

Shadow job properties that can be
passed in another job definition

Shadow job Extra Information
properties

${job:<JOB_NAME>.ScheduledTime} Remote Job Scheduled Time

${job:<JOB_NAME>.dJobName} Remote Job

${job:<JOB_NAME>.dJobStreamName} Remote Job Stream

${job:<JOB_NAME>.dJobStreamWorkstation} Remote Job Stream Workstation

Table 97. Properties for OSLC jobs

OSLC job properties that can be
passed to another job

OSLC job Extra Information properties

${job:<JOB_NAME>.RESULT_URI} RESULT_URI

Table 98. Properties for IBM WebSphere MQ jobs

IBM WebSphere MQ properties that can
be passed in another job definition

IBM WebSphere MQ job Extra
Information properties

${job:<JOB_NAME>.CHANNEL_PROP} Channel

${job:<JOB_NAME>.SERVER_PROP} Server

${job:<JOB_NAME>.MANAGER_PROP} Manager

${job:<JOB_NAME>.PORT_PROP} Port

${job:<JOB_NAME>.MSG_ID_PROP} MessageID

${job:<JOB_NAME>.CORRELATION_ID_PROP} CorrelationID

${job:<JOB_NAME>.MESSAGE_SENT_PROP} MessageSent

${job:<JOB_NAME>.MESSAGE_RECEIVED_PROP} MessageReceived

${job:<JOB_NAME>.OPERATION_PROP} Operation

Table 99. Properties for IBM Sterling Connect:Direct jobs

IBM Sterling Connect:Direct properties
that can be passed in another job
definition

IBM Sterling Connect:Direct job
Extra Information properties

${job:<JOB_NAME>.PrimaryNodeAddress} Primary Node Address

${job:<JOB_NAME>.PrimaryNodeUserID} Primary Node User

${job:<JOB_NAME>.SecondaryNodeName} Secondary Node Name

${job:<JOB_NAME>.SecondaryNodeUserID} Secondary Node User

${job:<JOB_NAME>.ProcessName} Process Name

604 IBM Workload Scheduler: User’s Guide and Reference

|

|
|
|

|
|

||

||
|

||

|
|
|
|

||

||

||

||
|

||

|
|
|

||
|

||

|
|
|
|

||

||

||

||

||

||

||

||

||
|

||

|
|
|

|
|

||

||

||

||

||

Table 99. Properties for IBM Sterling Connect:Direct jobs (continued)

IBM Sterling Connect:Direct properties
that can be passed in another job
definition

IBM Sterling Connect:Direct job
Extra Information properties

${job:<JOB_NAME>.DestinationDisposition} Destination Disposition

${job:<JOB_NAME>.ProcessFileName} Process File Name

${job:<JOB_NAME>.ProcessFileLocation} Process File Location

${job:<JOB_NAME>.CompressType} Compression Type

${job:<JOB_NAME>.CheckPointRestart} Check Point Restart

${job:<JOB_NAME>.ActionSelected} Action Selected

${job:<JOB_NAME>.SourceFilePath} Source File Path

${job:<JOB_NAME>.DestinationFilePath} Destination File Path

${job:<JOB_NAME>.ProcessNumber} Process Number

Table 100. Properties for Salesforce jobs

Salesforce properties that can be passed
in another job definition

Salesforce job Extra Information
properties

${job:<JOB_NAME>.ApexJobID} Apex job ID

${job:<JOB_NAME>.TotalJobItems} Total Job items

${job:<JOB_NAME>.NumberOfErrors} Number of errors

${job:<JOB_NAME>.Status} Batch status

${job:<JOB_NAME>.ExtendedStatus} Extended status

Table 101. Properties for SAP BusinessObjects BI jobs

SAP BusinessObjects BI properties that can
be passed in another job definition

SAP BusinessObjects BI job Extra
Information properties

${job:<JOB_NAME>.AuthType} Authorization Type

${job:<JOB_NAME>.BOInstanceID} SAP BusinessObjects resource
instance ID

${job:<JOB_NAME>.BOInstanceStatus} SAP BusinessObjects resource
instance status

${job:<JOB_NAME>.BOObject} SAP BusinessObjects resource

${job:<JOB_NAME>.Server} Server address

${job:<JOB_NAME>.UserName} User name

Table 102. Properties for Oracle E-Business Suite jobs

Oracle E-Business Suite properties that can
be passed in another job definition

Oracle E-Business Suite job Extra
Information properties

${job:<JOB_NAME>.DevelopmentPhase} Development Phase
The request phase as a constant
string that can be used for program
logic comparisons.

Chapter 14. Extending IBM Workload Scheduler capabilities 605

|

|
|
|

|
|

||

||

||

||

||

||

||

||

||
|

||

|
|
|
|

||

||

||

||

||
|

||

|
|
|
|

||

||
|

||
|

||

||

||
|

||

|
|
|
|

||
|
|
|

Table 102. Properties for Oracle E-Business Suite jobs (continued)

Oracle E-Business Suite properties that can
be passed in another job definition

Oracle E-Business Suite job Extra
Information properties

${job:<JOB_NAME>.DevelopmentStatus} Development Status
The request status as a constant
string that can be used for program
logic comparison.

${job:<JOB_NAME>.JobId} Job Id
The ID of the request submitted and
managed by Oracle E-Business Suite.

${job:<JOB_NAME>.Message} Message
The completion message related to the
completed request.

${job:<JOB_NAME>.Phase} Phase
The user-friendly request phase.

${job:<JOB_NAME>.Status} Status
The user-friendly request status.

Table 103. Properties for file transfer jobs

For the file number counter, the
properties that can be passed in another
job definition (a set of properties for
each transferred file)

For the file number counter, the job
Extra Information properties (a set of
properties for each transferred file)

${job:<JOB_NAME>.File.counter.LocalFile} File.counter.LocalFile

${job:<JOB_NAME>.File.counter.LocalUser} File.counter.LocalUser

${job:<JOB_NAME>.File.counter.Protocol} File.counter.Protocol

${job:<JOB_NAME>.File.counter.RemoteFile} File.counter.RemoteFile

${job:<JOB_NAME>.File.counter.RemoteUser} File.counter.RemoteUser

${job:<JOB_NAME>.File.counter.Size} File.counter.Size

${job:<JOB_NAME>.File.counter.
TotalTransferTime}

File.counter.TotalTransferTime

${job:<JOB_NAME>.NumberOfTransferredFiles} Number of transferred files

Only one value for each job.

Table 104. Properties for Hadoop Map Reduce jobs

Hadoop Map Reduce job properties that
can be passed to another job

Label

${job::<JOB_NAME>.HadoopDir} Hadoop installation directory

${job::<JOB_NAME>.JarFile} Jar File

${job::<JOB_NAME>.MainClassName} Main Class

${job::<JOB_NAME>.Arguments} Arguments

${job::<JOB_NAME>.Job<INDEX>JobId Job ID

${job::<JOB_NAME>.Job<INDEX>JobStatus Job Status

${job::<JOB_NAME>.Application<INDEX>AppId Application ID

${job::<JOB_NAME>.Application<INDEX>.
AppTrackingUrl

Application Tracking URL

606 IBM Workload Scheduler: User’s Guide and Reference

|

|
|
|
|

||
|
|
|

||
|
|

||
|
|

||
|

||
|
|

||

|
|
|
|

|
|
|

||

||

||

||

||

||

|
|
|

||

|
|

||

|
|
|

||

||

||

||

||

||

||

|
|
|

Table 105. Properties for Hadoop Distributed File System jobs

Hadoop Distributed File System job
properties that can be passed to another
job

Label

${job:<JOB_NAME>.RemoteFile} RemoteFile

${job:<JOB_NAME>.LocalFile} LocalFile

${job:<JOB_NAME>.Permissions} Permissions

${job:<JOB_NAME>.NewRemoteFile} NewRemoteFile

${job:<JOB_NAME>.FileDeleted} FileDeleted

${job:<JOB_NAME>.AccessTime} AccessTime

${job:<JOB_NAME>.BlockSize} BlockSize

${job:<JOB_NAME>.Group} Group

${job:<JOB_NAME>.Length} Length

${job:<JOB_NAME>.ModificationTime} ModificationTime

${job:<JOB_NAME>.Owner} Owner

${job:<JOB_NAME>.PathSuffix} PathSuffix–

${job:<JOB_NAME>.Replication} Replication

${job:<JOB_NAME>.FileType} FileType

Note: The ${job:<JOB_NAME>.RemoteFile} and ${job:<JOB_NAME>.LocalFile}
properties apply to all actions in the Hadoop Distributed File System job. The
remaining properties apply to the Wait for a file action only.

Table 106. Properties for IBM BigInsights jobs, Application section

IBM BigInsights job properties that can
be passed to another job

Label

${job:<JOB_NAME>.Status} Status

${job:<JOB_NAME>.ElapsedTime} ElapsedTime

${job:<JOB_NAME>.StartTime} StartTime

${job:<JOB_NAME>.EndTime} EndTime

${job:<JOB_NAME>.Progress} Progress

${job:<JOB_NAME>.User} User

${job:<JOB_NAME>.Workflow} Workflow

Table 107. Properties for JSR 352 Java Batch jobs

JSR 352 Java Batch job properties that
can be passed to another job

Label

${job:<JOB_NAME>.ExitStatus} Job Exit Status

${job:<JOB_NAME>.JobInstanceId} Job Instance Id

${job:<JOB_NAME>.executionId} Job Execution Id

${job:<JOB_NAME>.JobName} Job Name

Chapter 14. Extending IBM Workload Scheduler capabilities 607

|

||

|
|
|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

|
|
|

||

|
|
|

||

||

||

||

||

||

||
|

||

|
|
|

||

||

||

||

Table 107. Properties for JSR 352 Java Batch jobs (continued)

JSR 352 Java Batch job properties that
can be passed to another job

Label

${job:<JOB_NAME>.JobBatchStatus} Job Batch Status

${job:<JOB_NAME>.self} Self

${job:<JOB_NAME>.joblogs} Job Logs

${job:<JOB_NAME>.Jobexecution} Job Execution

The following variables are exported for
each step of the job:

${job:<JOB_NAME>.<STEP_NAME>.Name} Step Name

${job:<JOB_NAME>.<STEP_NAME>.BatchStatus} Step Batch Status

Table 108. Properties for MQTT jobs

MQTT job properties that can be passed
to another job

Label

${job:<JOB_NAME>.Message} Message

Table 109. Properties for Apache Oozie jobs

Apache Oozie job properties that can be
passed to another job

Label

{job:<JOB_NAME>.id} id

{job:<JOB_NAME>.appName} appName

{job:<JOB_NAME>.appPath} appPath

{job:<JOB_NAME>.status} status

{job:<JOB_NAME>.externalId} externalId

{job:<JOB_NAME>.user} user

{job:<JOB_NAME>.conf} conf

{job:<JOB_NAME>.createdTime} createdTime

{job:<JOB_NAME>.startTime} startTime

{job:<JOB_NAME>.endTime} endTime

{job:<JOB_NAME>.run} run

${job:<JOB_NAME>.action.<INDEX>.name} action.<INDEX>.name

${job:<JOB_NAME>.action.<ACTION_NAME>.id} action.<ACTION_NAME>.id

${job:<JOB_NAME>.action.<ACTION_NAME>.
type}

action.<ACTION_NAME>.type

${job:<JOB_NAME>.action.<ACTION_NAME>.
status}

action.<ACTION_NAME>.status

${job:<JOB_NAME>.action.<ACTION_NAME>.
transition}

action.<ACTION_NAME>.transition

${job:<JOB_NAME>.action.<ACTION_NAME>.
startTime}

action.<ACTION_NAME>.startTime

${job:<JOB_NAME>.action.<ACTION_NAME>.
endTime}

action.<ACTION_NAME>.endTime

608 IBM Workload Scheduler: User’s Guide and Reference

|

|
|
|

||

||

||

||

|
|
|

||

||
|

||

|
|
|

||
|

||

|
|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

Table 109. Properties for Apache Oozie jobs (continued)

Apache Oozie job properties that can be
passed to another job

Label

${job:<JOB_NAME>.action.<ACTION_NAME>.
externalId}

action.<ACTION_NAME>.externalId

${job:<JOB_NAME>.action.<ACTION_NAME>.
externalStatus}

action.<ACTION_NAME>.externalStatus

${job:<JOB_NAME>.action.<ACTION_NAME>.
conf}

action.<ACTION_NAME>.conf

${job:<JOB_NAME>.action.<ACTION_NAME>.
retries}

action.<ACTION_NAME>.retries

${job:<JOB_NAME>.action.<ACTION_NAME>.
consoleUrl}

action.<ACTION_NAME>.consoleUrl

${job:<JOB_NAME>.action.<ACTION_NAME>.
trackerUri}

action.<ACTION_NAME>.trackerUri

${job:<JOB_NAME>.action.<ACTION_NAME>.
errorCode}

action.<ACTION_NAME>.errorCode

${job:<JOB_NAME>.action.<ACTION_NAME>.
errorMessage}

action.<ACTION_NAME>.errorMessage

Table 110. Properties for Cloudant jobs

Cloudant job properties that can be
passed to another job

Label

${job:<JOB_NAME>.size} Database Size

${job:<JOB_NAME>.document} Document ID

${job:<JOB_NAME>.rev} Document Revision

${job:<JOB_NAME>.source} Source Database

${job:<JOB_NAME>.target} Target Database

${job:<JOB_NAME>.replication_id} Replication ID

${job:<JOB_NAME>.attachName} Attachment Name

Table 111. Properties for OpenWhisk jobs

OpenWhisk job properties that can be
passed to another job

Label

${job:<JOB_NAME>.actionName} Action Name

${job:<JOB_NAME>.triggerName} trigger Name

${job:<JOB_NAME>.namespace} Namespace

${job:<JOB_NAME>.operationType} Operation Type

${job:<JOB_NAME>.parameters} Parameters

${job:<JOB_NAME>.success} Success

${job:<JOB_NAME>.status} Status

${job:<JOB_NAME>.activationId} Activation ID

Chapter 14. Extending IBM Workload Scheduler capabilities 609

|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|

||

|
|
|

||

||

||

||

||

||

||
|

||

|
|
|

||

||

||

||

||

||

||

||
|

Table 112. Properties for Job Management jobs

Job Management job properties that can
be passed to another job

Label

${job:<JOB_NAME>. jobName} jobname

${job:<JOB_NAME>. jobstreamId} jobstreamid

${job:<JOB_NAME>.workstation} workstation

${job:<JOB_NAME>.user} userName

${job:<JOB_NAME>.url} Url

Table 113. Properties for Job Stream Submission jobs

Job Stream Submission job properties
that can be passed to another job

Label

${job:<JOB_NAME>.Url} Url

${job:<JOB_NAME>.workstation} Workstation

${job:<JOB_NAME>. jobstreamname} Job Stream Name

${job:<JOB_NAME>.datetime} Earliest Start DateTime

${job:<JOB_NAME>.variabletablename} Variable Table Name

${job:<JOB_NAME>.variablelistValues} Variable Table Values
{"key1":value1,"key2":value2,...}

Table 114. Properties for database jobs

Database job properties that can be
passed to another job

Label

${job:<JOB_NAME>.NumberOfRows} Number of rows

Table 115. Properties for Apache Spark jobs

Apache Spark job properties that can be
passed to another job

Label

${job:<JOB_NAME>.sparkmaster} Master URL

Table 116. Properties for Amazon EC2 jobs

Amazon EC2 job properties that can be
passed to another job

Label

${job:<JOB_NAME>.instancename} Instance name

${job:<JOB_NAME>.action} Action

${job:<JOB_NAME>.region} Region

${job:<JOB_NAME>.imagename} AMI name

${job:<JOB_NAME>.instanceIp} Instance IP address

610 IBM Workload Scheduler: User’s Guide and Reference

||

|
|
|

||

||

||

||

||
|

||

|
|
|

||

||

||

||

||

||
|
|

||

|
|
|

||
|

||

|
|
|

||
|

||

|
|
|

||

||

||

||

||
|

Table 117. Properties for IBM SoftLayer jobs

IBM SoftLayer job properties that can be
passed to another job

Label

${job:<JOB_NAME>.action} Action

${job:<JOB_NAME>.username} User name

${job:<JOB_NAME>.virtualServerName} Virtual server name

${job:<JOB_NAME>.hostname} Virtual server hostname

${job:<JOB_NAME>.virtualServerId} Virtual server identifier

Table 118. Properties for Microsoft Azure jobs

Microsoft Azure job properties that can
be passed to another job

Label

${job:<JOB_NAME>.virtualmachinename} Virtual machine name

${job:<JOB_NAME>.action} Action

${job:<JOB_NAME>.client} Client

${job:<JOB_NAME>.imagename} Image name

Passing job standard output from one job to another in the
same job stream instance

You can export the job standard output from one dynamic job to a successive job
in the same job stream instance. The job standard output variable is used in the
script field of the job definition

To add a job standard output within another job definition, to have it resolved
locally on the agent at run time, use the following syntax:
${job:<JOB_NAME>.stdlist}

where <JOB_NAME> is the name or the alias name of the job from which you are
exporting the job standard output.

Example

In this example, the WIN92MAS_REW#VP_JS_141800058 job stream contains JOBA_ALIAS
that is the JOBA alias and JOBB jobs. The JOBB executable job references the
JOBA_ALIAS standard output.

The database definitions:
SCHEDULE WIN92MAS_REW#VP_JS_141800058
:
WIN92MAS_REW#JOBA as JOBA_ALIAS
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:dshadow=
"http://www.ibm.com/xmlns/prod/scheduling/1.0/dshadow" xmlns:
jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl">
<jsdl:application name="distributedShadowJob">
<dshadow:DistributedShadowJob>

<dshadow:JobStream>VPJS_141800058</dshadow:JobStream>
<dshadow:Workstation>nc125133</dshadow:Workstation>
<dshadow:Job>VP_JOBMON_141800058</dshadow:Job>

Chapter 14. Extending IBM Workload Scheduler capabilities 611

||

|
|
|

||

||

||

||

||
|

||

|
|
|

||

||

||

||
|

|

|

|
|
|

|
|

|

|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

<dshadow:matching>
<dshadow:previous/>

</dshadow:matching>
</dshadow:DistributedShadowJob>

</jsdl:application>
</jsdl:jobDefinition>
DESCRIPTION "Sample Job Definition for DISTRIBUTED environment"
RECOVERY STOP

NC125133#JOBB
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:XMLSchema="http://www.w3.org/2001/XMLSchema" xmlns:
jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl" xmlns:
jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
XMLSchema:text="resolveVariableTable" name="executable">

<jsdl:application name="executable">
<jsdle:executable>
<jsdle:script>echo "stdlist: ${job:JOBA_ALIAS.stdlist}"

</jsdle:script>
</jsdle:executable>

</jsdl:application>
</jsdl:jobDefinition>
DESCRIPTION "Added by composer."
RECOVERY STOP
FOLLOWS JOBA_ALIAS
END

Passing job standard output from one job to another as
standard input in the same job stream instance

You can export the job standard output from a dynamic job to a successive
executable job as standard input in the same job stream instance. The job standard
output variable is used in the input field of the executable job definition

To add a job standard output within another executable job definition, to have it
resolved locally on the agent at run time, use the following syntax:
${job:<JOB_NAME>.stduri}

where <JOB_NAME> is the name value or alias name value of the job from which
you are exporting the job standard output.

Note: The stduri variable passing is not supported for shadow jobs. Because
shadow jobs do not produce a job log, if you pass the job stdout variable as input
to another job in the same job stream, the output of the job is empty. A shadow job
can only print a status message.

Example

In this example, the NC112019#JS_PROP job stream contains the JOBALIAS_A that is
the NC112019#JOBA alias and NC112019#JOBB jobs. The NC112019#JOBB executable job
references the JOBALIAS_A standard output as standard input.

The database definitions:
SCHEDULE NC112019#JS_PROP
:
NC112019#JOBA AS JOBALIAS_A
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/

1.0/jsdl" xmlns:

612 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|

|
|

|

|
|

|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|

jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle" name="executable">
<jsdl:application name="executable">
<jsdle:executable interactive="false" path="ls"/>

</jsdl:application>
</jsdl:jobDefinition>
DESCRIPTION "Added by composer for job stream: NC112019#JS_PROP."
RECOVERY STOP

NC112019#JOBB
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:XMLSchema="http://www.w3.org/2001/XMLSchema"
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl" xmlns:
jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle" XMLSchema:text=

"resolveVariableTable"
name="executable">

<jsdl:application name="executable">
<jsdle:executable input="${job:JOBALIAS_A.stduri}"

interactive="false" path="cat"/>
</jsdl:application>

</jsdl:jobDefinition>
DESCRIPTION "Added by composer for job stream: WIN92MAS#JS_PROP."
RECOVERY STOP
FOLLOWS JOBALIAS_A
END

Passing variables set by using jobprop in one job to another
in the same job stream instance

You can use the jobprop utility installed on dynamic agents to set variable and its
value in a job and pass the variable to the successive job in the same job stream
instance.

To set variable and its value in the first job use the following syntax:
jobprop <VAR-NAME> <value>

where <VAR-NAME> is the variable that you can export into another job and
<value> is the value assigned to the <VAR-NAME>. For more information about
jobprop utility, see “jobprop” on page 682.

To define the variables in another job use the following syntax:
${job:<JOB_NAME>.<VAR-NAME>}

where <JOB_NAME> is the name value or alias name value of the job from which
you are exporting the <VAR-NAME> variable value.

Example

In this example, the WIN92MAS#JS_PROP job stream contains NC125133#JOBA and
NC125133#JOBB executable jobs. The NC125133#JOBB job references the following
NC125133#JOBA variable values set by using the jobprop utility:
v VAR1 variable set to value1 value.
v VAR2 variable set to value2 value.
v VAR3 variable set to value3 value.
v VAR4 variable set to value4 value.

The database definitions:

Chapter 14. Extending IBM Workload Scheduler capabilities 613

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|

|

|

|
|
|

|

|

|
|

|

|
|
|

|

|

|

|

|

SCHEDULE WIN92MAS#JS_PROP
:
NC125133#JOBA
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/
prod/scheduling/1.0/jsdl" xmlns:
jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle">

<jsdl:application name="executable">
<jsdle:executable interactive="false">
<jsdle:script>#!/bin/sh

. /home/ITAuser/TWA/TWS/tws_env.sh
jobprop VAR1 value1
jobprop VAR2 value2
jobprop VAR3 value3
jobprop VAR4 value4
</jsdle:script>

</jsdle:executable>
</jsdl:application>

</jsdl:jobDefinition>
DESCRIPTION "Sample Job Definition"
RCCONDSUCC "RC>=0"
RECOVERY STOP

NC125133#JOBB
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl=
"http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl" xmlns:
jsdle="http://www.ibm.com/xmlns/prod/
scheduling/1.0/jsdle">

<jsdl:application name="executable">
<jsdle:executable interactive="false">
<jsdle:script>

echo VAR1=${job:joba.VAR1}
echo VAR2=${job:joba.VAR2}
echo VAR3=${job:joba.VAR3}
echo VAR4=${job:joba.VAR4}
</jsdle:script>

</jsdle:executable>
</jsdl:application>

</jsdl:jobDefinition>
DESCRIPTION "Sample Job Definition"
RCCONDSUCC "RC>=0"
RECOVERY STOP
FOLLOWS JOBA
END

Passing variables from one job to another in the same job
stream or in a different job stream by using variable tables

You can use variable tables to set variables exported from a job, and pass the
variables to any successor job, in the same job stream or in a different job stream.

To export variables from a job into a variable table, an ad-hoc IBM Workload
Scheduler job type is available: the VariableTable job type. The VariableTable job
must be added to the job stream as a successor of the job that is exporting
variables. The VariableTable job sets the exported variables in a variable table
and makes them available to any other successor job, in the same job stream or in
a different job stream.

You can easily define a VariableTable job by using the Dynamic Workload Console
or composer command line. For more information about defining a VariableTable
job, see “Variable Table jobs” on page 584

614 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|
|
|
|
|
|

|
|
|

Running a script when a job completes
In many scenarios, when a job completes, you might want to run one or more
actions, by using the information related to the job completion. For this purpose,
you can write a script file and store it in a directory of the agent file system. The
script is run every time that a job completes, either successfully or unsuccessfully.
The script runs with the same credentials as the agent user that is running the job.

Note: The agent user must be authorized to access the script file and its directory.

To provide IBM Workload Scheduler with the path of the script file, you must
modify the JobManager.ini file as follows:
1. Locate the JobManager.ini file on the local agent instance where the script will

run. The file is located in the TWA_home/TWS/ITA/cpa/config directory on the
agent.

2. In the [NativeJobLauncher] section of the file, define the value of the
PostJobExecScriptPathName property, with the fully qualified path of the
script file that you want to run when a job completes.

3. Save the changes to the file.

If you do not specify any file path or the script file doesn't exist, no action is taken
when the job completes. For details about customizing the
PostJobExecScriptPathName property, see Administration Guide.

The following job variables can be used in the script:
v JOB_ID
v JOB_ALIAS
v JOB_SPOOL_DIR
v JOB_STATUS
v JOB_RETURN_CODE
v JOB_DURATION
v JOB_START_TIME
v JOB_END_TIME

The script is run for any of the following job final statuses:
v SUCCEEDED_ EXECUTION
v UNKNOWN
v CANCELLED
v FAILED_ EXECUTION

In the JobManager_message.log, you are notified via a message if the job started
successfully, or if any error prevented the job from starting. To analyze the output
of the script execution, you can check the out.log file in the post_script
subdirectory of the job SpoolDir.

Chapter 14. Extending IBM Workload Scheduler capabilities 615

|
|

|
|
|
|
|

|

|
|

|
|
|

|
|
|

|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|
|

|

616 IBM Workload Scheduler: User’s Guide and Reference

Chapter 15. Managing dynamic scheduling capabilities in your
environment

This section explains how you can manage dynamic scheduling capabilities in your
environment to schedule both existing IBM Workload Scheduler jobs and job types
with advanced options, both those supplied with the product and the additional
types implemented through the custom plug-ins.

Dynamic capabilities help you maintain business policies and ensure service level
agreements by:
v Automatically discovering scheduling environment resources
v Matching job requirements to available resources
v Controlling and optimizing use of resources
v Automatically following resource changes
v Requesting additional resources when needed

You can enable dynamic capabilities to your environment by defining a set of
workstation types:

Dynamic agent
A workstation that manages a wide variety of job types, for example,
specific database or FTP jobs, in addition to existing job types. This
workstation is automatically defined and registered in the IBM Workload
Scheduler database when you install the dynamic agent. You can group
dynamic agents in pools and dynamic pools.

In a simple network, dynamic agents connect directly to its master domain
manager or through a dynamic domain manager. In more complex
network topologies where the master domain manager or the dynamic
domain manager cannot directly communicate with the dynamic agent,
you can configure your dynamic agents to use a local or remote gateway.

Pool A workstation that groups a set of dynamic agents with similar hardware
or software characteristics to which to submit jobs. IBM Workload
Scheduler balances the jobs among the dynamic agents within the pool and
automatically reassigns jobs to available dynamic agents if a dynamic
agent is no longer available. To create a pool of dynamic agents in your
IBM Workload Scheduler environment, define a workstation of type pool
hosted by the workload broker workstation, then select the dynamic agents
you want to add to the pool. You can define the pool using the Dynamic
Workload Console or the composer command.

You can also register an agent with a pool by directly editing the
pools.properties file located in <TWS_home>/ITA/cpa/config. See the topic
about automatically registering agents to a pool in the Planning and
Installation.

Dynamic pool
A workstation that groups a set of dynamic agents, which is dynamically
defined based on the resource requirements you specify and hosted by the
workload broker workstation. For example, if you require a workstation
with low CPU usage and Windows installed to run your job, you specify
these requirements using the Dynamic Workload Console or the composer
command. When you save the set of requirements, a new workstation is

617

-
-
-
-

automatically created in the IBM Workload Scheduler database. This
workstation is hosted by the workload broker workstation. This
workstation maps all the dynamic agents in your environment that meet
the requirements you specified. The resulting pool is dynamically updated
whenever a new suitable dynamic agent becomes available. Jobs run on the
first workstation in the dynamic pool which marches all the requirements.
Jobs scheduled on this workstation automatically inherit the requirements
defined for the workstation.

For information about how to create pools and dynamic pools using the
Dynamic Workload Console, see

the section on creating a pool of agents in the IBM Dynamic Workload
Console User's Guide. For more information about how to create pools and
dynamic pools using the composer command, see the User's Guide and
Reference, SC32-1274.

The dynamic agents, pools, and dynamic pools leverage the dynamic functionality
built into IBM Workload Scheduler and provide the possibility at run time to
dynamically associate your submitted workload (or part of it) to the best available
resources. You can enable dynamic scheduling capabilities to workstations at
installation time. For more information about installing the dynamic agents, see the
section on installing a new agent in the Planning and Installation Guide, SC32-1273.

You can use dynamic agents, pools and dynamic pools to schedule job types with
advanced options. The job types with advanced options include both those
supplied with the product and the additional types implemented through the
custom plug-ins. Both job types run only on dynamic agents, pools, and dynamic
pools. For more information about how to schedule job types with advanced
options, see “Creating advanced job definitions” on page 536. For more
information about how to create custom plug-ins, see Extending IBM Workload
Automation.

You can also use dynamic agents, pools, and dynamic pools to run the jobs you
created for the existing IBM Workload Scheduler workstation types. To run these
jobs on the dynamic workstation types, you only have to change the specification
of the workstation where you want the job to run. For more information about
how to schedule existing IBM Workload Scheduler jobs, see “Adding dynamic
capabilities to existing IBM Workload Scheduler jobs” on page 624.

If you want to leverage the dynamic capability when scheduling job types with
advanced options, you schedule them on pools and dynamic pools, which assign
dynamically the job to the best available resource. If you are interested only in
defining job types with advanced options, without using the dynamic scheduling
capability, you schedule these jobs on a specific dynamic agent, on which the job
runs statically.

A business scenario on dynamic capability
This section demonstrates a sample business scenario which outlines the
advantages of job types with advanced options and dynamic capability.

An insurance company runs a number of jobs at night to save the data processed
during the day in the backup database. They also need to gather all data about the
transactions completed during the day from all the workstations in the company
branches. They use DB2 databases. Using the job types with advanced options
provided in the Workload Designer, they create a job to perform a DB backup and

618 IBM Workload Scheduler: User’s Guide and Reference

another job to extract the data for the daily transactions. To perform these
operations, they use the new database job type with advanced options.

After gathering data from all the company workstations, they copy the resulting
data on a single workstation and process it to generate a report. They choose
dynamically the best available workstation by defining the requirements necessary
to run the job: a workstation with large disk space, powerful CPU and the
program required to generate the report.

If the administrator does not want to modify the job stream he used before IBM
Workload Scheduler. version 8.6 to run a Java job, for example, he can modify the
name of the workstation where he wants the job to run, inserting the name of a
pool or dynamic pool of dynamic agents where the Java executable is installed.
IBM Workload Scheduler translates the syntax of the job so that it can be run by
the Java program and assigns the job to the best available resource in the pool.

The report highlights how many new contracts were signed and how many
customers are late with their payments. A mail is sent to the chief accountant,
listing the number of new contracts and late customers.

The company can reach this objective by:
v Using the new workstations with dynamic capabilities to run the jobs the

administrator created for the existing IBM Workload Scheduler workstations. To
run these jobs on the new workstations, the administrator changes only the
workstation where he wants the job to run. The major advantage is that he can
use the workflows he previously created without additional effort.

v Defining several job types with advanced options without having specific skills
on the applications where the job runs.

These job types with advanced options run on the following workstations:

dynamic agents
Workstations capable of running both existing jobs and job types with
advanced options.

Pools Groups to which you can add dynamic agents depending on your needs.
Jobs are assigned dynamically to the best available agent.

Dynamic pools
Groups of dynamic agents for which you specify your requirements and let
IBM Workload Scheduler select the dynamic agents which meet your
needs. Jobs are assigned dynamically to the best available dynamic agent.

Scenario: Creating a job definition and submitting to a dynamic pool
In this scenario, you define the requirements for running the job when creating the
dynamic pool, for example you can include in the dynamic pool all workstations
with Windows operating system and DB2 installed and maximum CPU utilization
at 50%. The dynamic pool is then populated with the workstations which match
your requirements and is ready for the job to be submitted.

About this task

To create a dynamic pool and submit a job to it, perform the following steps:

Procedure
1. Log in to the Dynamic Workload Console.

Chapter 15. Managing dynamic scheduling 619

2. From the navigation toolbar, click Administration > Workload Environment
Design > Create Workstations.

3. Select an engine and click OK.
4. The Workstation Properties page is displayed.
5. Select Dynamic Pool in the Workstation type menu.
6. Complete the required fields.
7. Click Edit Requirements. The Requirements page is displayed.
8. Specify the following requirements:
v Select the operating system in the Operating System pane.
v Select the CPU utilization in the CPU utilization pane.
v Select the required logical resource in the Logical Resources pane. To

include workstations with DB2 installed, click Add and specify your
requirement in the Requirements pane.

v Optionally, select the required optimization policy.
9. Click OK to save your requirements.

10. Click Save to save the dynamic pool.
11. From the navigation toolbar, click Administration > Workload Design >

Manage Workload Definitions

12. Specify an engine name, either distributed or z/OS. The Workload Designer
opens. Job types and characteristics vary depending on whether you select a
distributed or a z/OS engine.

13. Select New > Job Definition > Database and Integrations > Database.
14. Complete the required fields and specify the dynamic pool you previously

created in the Workstation field.
15. Type your SQL instructions in the SQL tab.
16. Click Save to save the job.
17. From the navigation toolbar, click Administration > Workload Submission >

Submit Predefined Jobs.

Scenario: Creating a job definition and submitting to a pool
In this scenario, you need to run an inventory update script, therefore you create a
pool, grouping workstations where the required program is installed, and a job to
run the script. You select the target system for the job from the invadmin pool.

About this task

To create a pool and submit a job to it, perform the following steps:

Procedure
1. Log in to the Dynamic Workload Console.
2. From the navigation toolbar, click Administration > Workload Environment

Design > Create Workstations.
3. Select an engine and click OK.
4. The Workstation Properties page is displayed.
5. Select Pool in the Workstation type menu.
6. Name the pool invadmin and complete the required fields.
7. Select the workstations you want to add to the pool. Select the workstations

where the required program is installed.

620 IBM Workload Scheduler: User’s Guide and Reference

8. Click Save to save the pool.
9. From the navigation toolbar, click Administration > Workload Design >

Manage Workload Definitions

10. Specify an engine name, either distributed or z/OS. The Workload Designer
opens. Job types and characteristics vary depending on whether you select a
distributed or a z/OS engine.

11. Select New > Job Definition > Native > Executable.
12. Specify a name for the job.
13. In the Workstation field, specify the invadmin pool you previously defined.
14. Browse to the Task tab and select Command.
15. Type the name and path to the executable file you want to run, located on

each workstation in the pool.
16. Click Save to save the job.
17. From the navigation toolbar, click Administration > Workload Submission >

Submit Predefined Jobs.

Defining affinity relationships
Affinity relationships cause jobs to run on the same workstation. The workstation
on which the first job runs is chosen dynamically by dynamic workload broker,
and the affine job or jobs run on the same workstation. This section applies to job
types with advanced options and workload broker jobs.

In dynamic workload broker, you can define affinity relationships between two or
more jobs when you want them to run on the same workstation. When submitting
the job from the IBM Workload Scheduler environment, you can define affinity that
will be resolved by dynamic workload broker by adding an affinity definition to
the Task String section of the IBM Workload Scheduler job using the IBM
Workload Scheduler job name as follows:
jobName [-var varName=varValue,...,]-twsaffinity jobname=twsJobName

where

twsJobName
Is the name of the instance of the IBM Workload Scheduler job with which
you want to establish an affinity relationship.

Note: The jobs must belong to the same job stream

Defining file dependencies in dynamic scheduling
You can manage file dependencies with dynamic agents, pools, and dynamic pools

File dependencies introduction

You use file dependencies in dynamic scheduling to control job and job stream
processing that is based on the existence of one or more files or directories. When
you specify a file dependency, IBM Workload Scheduler processes check if the
specified file or directory exists before job and job stream processing starts.

You can select one or more of the following conditions, which are associated to the
file, that must be true before the jobs or job stream processing starts:
v The file exists.

Chapter 15. Managing dynamic scheduling 621

v The file exists and is a directory.
v The file exists and is a regular file.
v The file exists and is readable.
v The file exists and its size is greater than zero.
v The file exists and is writable.

File dependencies behavior

The file dependencies have a different behaviour for dynamic agents, pools, and
dynamic pools.

Dynamic agents

IBM Workload Scheduler manages the file dependency resolution for
dynamic agents, in the same way as for the workstation that is defined in
the classic scheduling as fault-tolerant agent, master domain manager and
its backup, domain manager and its backup, and so on.

If you define the JOB_A job on DYN_A dynamic agent, which depends on the
FILE_A file, before JOB_A job runs, IBM Workload Scheduler processes
perform a file existence check on the DYN_A workstation. When the FILE_A
file is found, the dependency is resolved and the JOB_A job runs on the
DYN_A dynamic agent.

Pools and dynamic pools

A pool contains several dynamic agent workstations with similar hardware
or software characteristics. A dynamic pool contains several dynamic agent
workstations that are dynamically defined based on the resource
requirements you specify. If you define a file dependency for jobs or job
streams that are defined in a pool or a dynamic pool, IBM Workload
Scheduler processes perform a file existence check on each dynamic agent
workstation of the pool or dynamic pool. The file dependency is resolved
when the first file is found on a dynamic agent workstation. The job does
not necessarily run on the dynamic agent workstation where the file is
located, but runs on one of the active workstations in the pool or dynamic
pool when the file dependency is resolved.

In your environment, you have POOL_A that contains DYN_A1, DYN_A2, DYN_A3
dynamic agents. If you define the JOB_A job in POOL_A pool, which depends
on the FILE_A file, before JOB_A job runs, IBM Workload Scheduler
processes perform a file existence check on the DYN_A1, DYN_A2, and DYN_A3
workstations. If the FILE_A file is found on the DYN_A2 workstation, the file
dependency is resolved. The JOB_A job automatically runs on DYN_A3 which
is the active dynamic agent workstation in the POOL_A pool.

How to define file dependencies

You can define file dependencies for jobs and job streams on dynamic agents,
pools, or dynamic pool workstations, by setting the opens keyword in the job or
job stream scheduling definition. For more information about the opens keyword
syntax, see “opens” on page 254.

The following example shows that IBM Workload Scheduler processes check that
the /opt/SF1-DIR/myfileSF1.txt file exists and is readable on the DYN-AGT-SF1
dynamic agent workstation before the SF1-JOB-HOSTNAME-0001 job runs on the
DYN-AGT-SF1 workstation:

622 IBM Workload Scheduler: User’s Guide and Reference

SCHEDULE MDMWKSNY1#NY1-JS1
VARTABLE VARTABLENY
OPENS DYN-AGT-SF1#"/opt/SF1-DIR/myfileSF1.txt" (-r %p)
:
DYN-AGT-SF1#SF1-JOB-HOSTNAME-0001
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/
scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle" na
me="executable">

<jsdl:application name="executable">
<jsdle:executable interactive="false">

<jsdle:script suffix="">hostname >>/opt/SF1-DIR/myfileSF1.txt
</jsdle:script>

</jsdle:executable>
</jsdl:application>

</jsdl:jobDefinition>
RECOVERY STOP
END

See also

You can define the file dependencies for jobs and job streams also, by using the
Dynamic Workload Console.

For more information about how to define file dependencies by using Dynamic
Workload Console, see:

the Dynamic Workload Console User's Guide, section about Designing your Workload.

Promoting jobs scheduled on dynamic pools
This section explains how to promote a critical job scheduled on a dynamic pool. A
promoted job can run on a larger number of dynamic agents in the dynamic pool
than a non-promoted job. This ensures that an important job runs before other jobs
that are less important.

To ensure that a critical job obtains the necessary resources and is processed in a
timely manner, specify the following variables:

tws.job.promoted
This variable indicates if the job is promoted. Supported values are YES
and NO. The value of this variable applies to all jobs submitted in the
specified environment.

tws.job.resourcesForPromoted
This variable is defined in the dynamic pool definition and indicates the
quantity of the required logical resources assigned on a dynamic pool to a
promoted job. Values can be 1 if the job is promoted or 10 if the job is not
promoted. The quantity is indicated with this notation:
${tws.job.resourcesForPromoted}.

When a job is scheduled on the dynamic pool, the value of the tws.job.promoted
variable in the job determines the behavior of the dynamic pool:
v If the value of the tws.job.promoted variable is NO, the value of the

tws.job.resourcesForPromoted variable on the dynamic pool is 10, which means
that few resources match the requirement.

v If the value of the tws.job.promoted variable is YES, the value of the
tws.job.resourcesForPromoted variable on the dynamic pool is 1, which means

Chapter 15. Managing dynamic scheduling 623

that more resources match the requirement because the dynamic pool includes
workstations with resource quantity equal to or greater than 1 and not only
workstations with value equal or greater than 10.

For example, you can write a script that checks the value assigned to the
tws.job.promoted variable in the job and performs different actions based on
whether or not the job is promoted.

Adding dynamic capabilities to existing IBM Workload Scheduler jobs
This section explains how to modify an existing job to use the dynamic capabilities
provided with dynamic agents, pools, and dynamic pools.

About this task

You can modify your existing IBM Workload Scheduler jobs to use the dynamic
capabilities provided with dynamic agents, pools, and dynamic pools. To modify
an existing job, do the following:

Procedure
1. Install the required number of dynamic agents.
2. Optionally, assign the dynamic agents to pools or create dynamic pools based

on your requirements.
3. Analyze your existing IBM Workload Scheduler jobs and decide which ones

would obtain the best results when using the dynamic capability.
4. Log in to the Dynamic Workload Console.
5. From the navigation toolbar, click Administration > Workload Design >

Manage Workload Definitions

6. Specify an engine name, either distributed or z/OS. The Workload Designer
opens. Job types and characteristics vary depending on whether you select a
distributed or a z/OS engine.

7. In the Working List panel, select Search > Job Definition. The search panel is
displayed.

8. Enter your search criteria and click Search.
9. Select one or more jobs among the search results and click Edit. The selected

jobs are displayed in the right-hand panel for editing.
10. In the General tab, click the browse button of the Workstation field. The

search panel is displayed.
11. Enter your search criteria and click Search.
12. Select the appropriate dynamic agent, pool, or dynamic pool and click OK.

The job is now assigned to the specified workstation and will run on it when
scheduled.

Limitations in dynamic scheduling
Features and properties partially or not supported in dynamic scheduling

Dynamic scheduling supports most of the IBM Workload Scheduler features for
static scheduling. The Table 119 on page 625 lists some features or properties that
are partially or not supported.

624 IBM Workload Scheduler: User’s Guide and Reference

Table 119. Features partially or not supported for dynamic scheduling

Feature dynamic agent

Event-driven workload automation.
Note: For more details about the events
type, see IBM Workload Scheduler User's
Guide and Reference: Appendixes -
Event-driven workload automation event and
action definitions

TivoliWorkloadSchedulerObjectMonitor
events supported.

FileMonitor events supported, except for IBM
i systems.

TivoliWorkloadSchedulerApplicationMonitor
events not supported.

Utility commands (datecalc, jobinfo, and so
on).

Not supported.

Limitations for jobs in USERJOBS job stream in dynamic scheduling
Features and properties partially or not supported for USERJOBS job stream in
dynamic scheduling

Jobs in USERJOBS job stream supports most of the dynamic scheduling features or
properties. The Table 120 lists some features or properties that are partially or not
supported.

Table 120. Features partially or not supported for jobs in USERJOBS job stream

Feature\Property USERJOBS

Job types with advanced options might
lose some information when moved to the
USERJOBS job stream.

The job type might be missing or different
from the original one.

Display of the job types with advanced
options properties by using conman
comman line.

If you perform the sj <job_name>; props
where <job_name> is the job types with
advanced options name, you have the
following problems:

v The Task field value of the General
Information section is truncated.
Note: This problem affects only the display
of the job and does not affect the job itself.

v The Extra Information section displays the
internal name of the properties instead of
the translated external name.

Display of the job types with advanced
options by using the Dynamic Workload
Console.

If you use the graphical views of Dynamic
Workload Console, shadow jobs are not
displayed with the typical dots.

Variables passing between jobs in the same
job stream instance. For more information
about this feature, see “Passing variables
between jobs” on page 599.

This feature is not supported. The job variable
passing is not resolved when the jobs are
moved from the original job stream to
USERJOBS job stream.

Chapter 15. Managing dynamic scheduling 625

||

||

|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

|

|

626 IBM Workload Scheduler: User’s Guide and Reference

Chapter 16. Using utility commands

This chapter describes IBM Workload Scheduler utility commands. These
commands, with the exceptions listed below, are installed in the TWS_home/bin
directory. You run utility commands from the operating system command prompt.

The StartUp is installed in the TWS_home directory and version is installed in the
TWS_home/version directory.

Command descriptions
Table 121 contains the list of the utility commands, and for each command, its
description and the operating systems it supports.

Table 121. List of utility commands

Command Description
Operating
system

at Submits a job to be run at a specific time. UNIX

batch Submits a job to be run as soon as possible. UNIX

cpuinfo Returns information from a workstation
definition.

UNIX,
Windows

datecalc Converts date and time to a required format. UNIX,
Windows

delete Removes script files and standard list files by
name.

UNIX,
Windows

evtdef Imports/exports custom events definitions. UNIX,
Windows

evtsize Defines the maximum size of event message files. UNIX,
Windows

filemonitor Checks for changes in files (files that were either
created or modified)

UNIX,
Windows

exportservedata Downloads the list of dynamic workload broker
instances from the IBM Workload Scheduler
database and changes a port number or a host
name.

UNIX,
Windows

importservedata Uploads the list of dynamic workload broker
instances to the IBM Workload Scheduler
database after editing the temporary file to
change a port number or a host name.

UNIX,
Windows

jobinfo Returns information about a job. UNIX,
Windows

jobstdl Returns the pathnames of standard list files. UNIX,
Windows

listproc Lists processes. This command is not supported. Windows

killproc Kills processes. This command is not supported. Windows

maestro Returns the IBM Workload Scheduler home
directory.

UNIX,
Windows

627

Table 121. List of utility commands (continued)

Command Description
Operating
system

makecal Creates custom calendars. UNIX,
Windows

metronome.pl Is replaced by tws_inst_pull_info. UNIX,
Windows

morestdl Displays the contents of standard list files. UNIX,
Windows

movehistorydata Moves the data present in the IBM Workload
Scheduler database to the archive tables.

UNIX,
Windows

param Creates, displays, and deletes variables and user
passwords on dynamic agents.

UNIX,
Windows

parms Displays, changes, and adds parameters. UNIX,
Windows

release Releases units of a resource. UNIX,
Windows

rmstdlist Removes standard list files based on age. UNIX,
Windows

sendevent Sends generic events to the currently active event
processor server.

UNIX,
Windows

showexec Displays information about executing jobs. UNIX

shutdown Stops the netman process and, optionally,
WebSphere Application Server.

UNIX,
Windows

ShutDownLwa Stops the agent locally. UNIX,
Windows
Note: On
UNIX
systems, it
can be run
by TWS_user
or root user
only.

StartUp Starts the netman process and, optionally,
WebSphere Application Server.

UNIX,
Windows

StartUpLwa Starts the agent locally. UNIX,
Windows
Note: On
UNIX
systems, it
can be run
by TWS_user
or root user
only.

tws_inst_pull_info Collects data on the local IBM Workload
Scheduler instance and workstation, WebSphere
Application Server, and DB2 for diagnostic
purposes. It is documented in IBM Workload
Scheduler: Troubleshooting Guide.

UNIX,
Windows

version Displays version information. UNIX

628 IBM Workload Scheduler: User’s Guide and Reference

at and batch
Submit ad hoc commands and jobs to be launched by IBM Workload Scheduler.

These command runs on UNIX only.

See at.allow and at.deny below for information about the availability to users.

Syntax

at -V | -U

at {-s jstream | -q queue} time-spec

batch -V | -U

batch [-s jstream]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

-s jstream

Specifies the jobstream_id of the job stream instance into which the job is
submitted. If a job stream instance with that jobstream_id does not exist, it
is created a new job stream having jstream both as alias and as jobstream_id.
The name must start with a letter, and can contain alphanumeric characters
and dashes. It can contain up to 16 characters.

If the -s and -q arguments are omitted, a job stream name is selected based
on the value of the environment variable ATSCRIPT. If ATSCRIPT
contains the word maestro, the job stream alias will be the first eight
characters of the user's group name. If ATSCRIPT is not set, or is set to a
value other than maestro, the job stream alias will be at (for jobs
submitted with at), or batch (for jobs submitted with batch).

See “Other considerations” on page 631 for more information about job
streams.

The following keywords apply only to at jobs:

-qqueue
Specifies to submit the job into a job stream with the name queue, which
can be a single letter (a through z). See “Other considerations” on page 631
for more information about job streams.

time-spec
Specifies the time at which the job will be launched. The syntax is the
same as that used with the UNIX at command.

Comments

After entering at or batch, enter the commands that constitute the job. End each
line of input by pressing the Return key. The entire sequence is ended with
end-of-file (usually Control+d), or by entering a line with a period (.).
Alternatively, use an angle bracket (<) to read commands from a file. See
“Examples” on page 630.

Chapter 16. Using utility commands 629

Information about at and batch jobs is sent to the master domain manager, where
the jobs are added to job streams in the production plan, Symphony file. The jobs are
launched based on the dependencies included in the job streams.

The UNIX shell used for jobs submitted with the at and batch commands is
determined by the SHELL_TYPE variable in the jobmanrc configuration script. Do
not use the C shell. For more information, see “Customizing job processing on a
UNIX workstation - jobmanrc” on page 53.

Once submitted, jobs are launched in the same way as other scheduled jobs. Each
job runs in the submitting user's environment. To ensure that the environment is
complete, set commands are inserted into the script to match the variable settings
in the user's environment.

Examples

To submit a job into job stream with jobstream_id sched8 to be launched as soon as
possible, run the following command:
batch -s sched8
command <Return>
...
<Control d>

To submit a job to be launched two hours from the time when the command was
entered, run the following command:
at now + 2 hours
command <Return>
...
<Control d>

If the variable ATSCRIPT is null, the job is submitted into a job stream having the
same name as the user's group. Otherwise, it is submitted into a job stream named
at.

To submit a job into a job stream instance with jobstream_id sked-mis to be
launched at 5:30 p.m., run the following command:
at -s sked-mis 17h30
command <Return>
...
<Control d>

The following command is the same as the previous command, except that the
job's commands are read from a file:
at -s sked-mis 17h30 < ./myjob

The fact that the commands are read from a file does not change the way they are
processed. That is, the commands are copied from the ./myjob file into a script file.

Replacing the UNIX commands
The standard UNIX at and batch commands can be replaced by IBM Workload
Scheduler commands. The following commands show how to replace the UNIX at
and batch commands:
$ mv /usr/bin/at /usr/bin/uat
$ mv /usr/bin/batch /usr/bin/ubatch
$ ln -s TWShome/bin/at /usr/bin/at
$ ln -s TWShome/bin/batch /usr/bin/batch

630 IBM Workload Scheduler: User’s Guide and Reference

The at.allow and at.deny files
The at and batch commands use the files /usr/lib/cron/at.allow and
/usr/lib/cron/at.deny to restrict usage. If the at.allow file exists, only users listed
in the file are allowed to use at and batch. If the file does not exist, at.deny is
checked to see if the user is explicitly denied permission. If neither of the files
exists, only the root user is permitted to use the commands.

Script files
The commands entered with at or batch are stored in script files. The file are
created by IBM Workload Scheduler using the following naming convention:

TWS_home/atjobs/epoch.sss

where:

epoch The number of seconds since 00:00, 1/1/70.

sss The first three characters of the job stream name.

Note: IBM Workload Scheduler removes script files for jobs that are not carried
forward. However, you should monitor the disk space in the atjobs directory and
remove older files if necessary.

Job names
All at and batch jobs are given unique names by IBM Workload Scheduler when
they are submitted. The names consist of the user's process ID (PID) preceded by
the user's name truncated so as not to exceed eight characters. The resulting name
is upshifted.

Other considerations
v The job streams into which at and batch jobs are submitted should be created

beforehand with composer. The job streams can contain dependencies that
determine when the jobs will be launched. At a minimum, the job streams
should contain the carryforward keyword. This ensures that jobs that do not
complete, or are not launched, while the current production plan is in process
are carried forward to the next production plan.

v Include the expression on everyday to have the job streams selected every day.
v Use the limit keyword to limit the number of submitted jobs that can be run

concurrently.
v Use the priority keyword to set the priority of submitted jobs relative to other

jobs.

If the time value is less than the current time, the value is regarded as for the
following day. If the time value is greater than the current time, the value is
regarded as for the current day.

cpuinfo
Returns information from a workstation definition.

Syntax

cpuinfo -V | -U

cpuinfo workstation [infotype] [...]

Chapter 16. Using utility commands 631

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

workstation

The name of the workstation.

infotype
The type of information to display. Specify one or more of the following:

os_type
Returns the value of the os field: UNIX, WNT, ZOS, OTHER, and
IBM i. The value ZOS applies only to remote engine workstations
used to communicate to an IBM Workload Scheduler for z/OS
controller.

node Returns the value of the node field. For a workload broker server
it is the host name or the TCP/IP address of the workstation where
you installed the IBM Workload Scheduler Bridge. For a remote
engine workstation it is the host name of workstation where the
remote engine is installed. In any other case specify the host name
or the TCP/IP address of the workstation.

port Returns the value of the tcpaddr field. If you are defining a
workload broker workstation, specify the value of the
TWS.Agent.Port property of the TWSAgentConfig.properties file.
For remote engine workstations the value of this field is the HTTP
port number used by the remote engine. If HTTPS protocol is used
the value of this field is 31111.

sslport
Returns the value of the secureaddr field. It is the port used to
listen for incoming SSL connections. For remote engine
workstations the value of this field is the HTTPS port number used
by the remote engine. If HTTP protocol is used the value of this
field is 31113.

protocol
Returns the value of the protocol field: HTTP or HTTPS. When the
type of workstation is remote engine this value indicates the
protocol used to communicate between the broker server and the
remote engine.

sec_level
Returns the value of the securitylevel field: NONE, ENABLED,
ON, or FORCE.

autolink
Returns the value of the autolink field: ON or OFF.

fullstatus
Returns the value of the fullstatus field: ON or OFF.

resolvedep
Returns ON or OFF. No longer used in version 8.6.

behindfirewall
Returns the value of the behindfirewall field: ON or OFF.

host Returns the value of the host field. It is the name of the
workstation hosting the agent.

632 IBM Workload Scheduler: User’s Guide and Reference

domain
Returns the value of the domain field.

ID Returns the agent identifier used by the workstation when
connecting to the broker server. For workstation with type:
AGENT, REM-ENG, POOL, D-POOL.

method
For extended and network agents only. Returns the value of the
access field.

server Returns the value of the server field.

type Returns the value of type field. It shows the type of workstation:
MASTER, MANAGER, FTA, S-AGENT, REM-ENG, AGENT, POOL,
D-POOL and X-AGENT.

time_zone
Returns the value of timezone field. It shows the time zone of the
workstation. For an extended agent, the field is blank. For a remote
engine workstation, this is the time zone of the remote engine.

version
Returns the IBM Workload Scheduler version that is running on
the workstation. For an extended agent, the field is blank.

info Returns the operating system version and workstation model. For
extended agents the field is blank. For remote engine workstations
this field displays Remote Engine.

Comments

The values are returned, one on each line, in the same order that the arguments
were entered on the command line. If no arguments are specified, all applicable
information is returned with labels, one on each line.

Examples

The examples below are based on the following workstation definition:
Workstation Name Type Domain Updated On Locked By
---------------- ------- ---------------- ---------- ------------------
RE-ZOS REM-ENG - 09/06/2010 -

CPUNAME RE-ZOS
OS ZOS
NODE 9.168.119.189 TCPADDR 635
FOR MAESTRO HOST NC123162_DWB
TYPE REM-ENG
PROTOCOL HTTP

END

To print the type and protocol for workstation RE-ZOS, run the following
command:
>cpuinfo RE-ZOS type protocol
REM-ENG
HTTP

To print all information for workstation RE-ZOS, run the following command:
>cpuinfo RE-ZOS
OS_TYPE: ZOS
NODE: 9.168.119.189

Chapter 16. Using utility commands 633

PORT: 635
SSLPORT: 31113
ENGINEADDR: 0
PROTOCOL: HTTP
AUTOLINK: OFF
FULLSTATUS: OFF
RESOLVEDEP: OFF
BEHINDFIREWALL: OFF
HOST: NC123162_DWB
DOMAIN: MASTERDM
ID: D795263CBCD2365CA7B5C5BC0C3DD363
SERVER:
TYPE: REM-ENG
TIME_ZONE: Europe/Rome
VERSION: 8.6
INFO: Remote Engine

datecalc
Run the datecalc utility on a master domain manager or a fault-tolerant agent
workstation (not supported on dynamic agents) to resolve date expressions and
return dates in the format you choose.

Syntax

datecalc -V | -U

datecalc base-date
[offset]
[pic format]
[freedays Calendar_Name [-sa] [-su]]

datecalc -t time
[base-date]
[offset]
[pic format]

datecalc yyyymmddhhtt
[offset]
[pic format]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

base-date

Specify one of the following:

day | date | today | tomorrow | scheddate

where:

day Specifies a day of the week. Valid values are: su, mo, tu, we, th, fr,
or sa.

date Specifies a date, in the format element/element[/element], where
element is: d[d], m[m], and yy[yy]. Any different format of date is
not valid.

634 IBM Workload Scheduler: User’s Guide and Reference

If two digits are used for the year (yy), a number greater than 70 is
a 20th century date, and a number less than 70 is a 21st century
date.

The parameter refers to the actual date, not to the UNIX date
command. The following example shows an option to use the
output of the UNIX date as input for IBM Workload Scheduler date
parameter.
hdate=udate +"%m/%d/%y"u
echo $hdate
datecalc $hdate pic mm/dd/yyyy

Valid values for the month (m[m]) are jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, or dec.

The slashes (/) can be replaced by dashes (-), periods (.), commas
(,), or spaces. For example, any of the following can be entered for
March 28, 2005:

03/28/05
3-28-2005
28.mar.05
05,28,3
mar 28 2005
28 3 05

If numbers are used, it is possible to enter an ambiguous date, for
example, 2,7,04. In this case, datecalc uses the date format defined
in the IBM Workload Scheduler message catalog to interpret the
date. If the date does not match the format, datecalc generates an
error message.

today Specifies the current system date.

tomorrow
Specifies the current system date plus one day, or, in the case of
time calculations, plus 24 hours.

scheddate
Specifies the date of the production plan. This might not be the
same as the system date. When used inside jobs within a job
stream that is not a carried forward job stream, it returns the date
when the job should run, which could be different from the
production date of the job stream if the job has an at dependency
specified.

When used inside jobs within a carried forward job stream, it
returns the date when the job should have run, which could be
different from the production date of the carried forward job
stream if the job has an at dependency specified. If the at
dependency is used with the following syntax: at=hhmm + n days,
the n days are not added to the variable TIVOLI_JOB_DATE and
therefore, the datecalc command does not report these days.

For example, consider a plan for the day 15/01/2015 with a start
of day set at 0700, and this schedule

Chapter 16. Using utility commands 635

SCHEDULE NET92A#JS0200CF
ON RUNCYCLE RULE1 "FREQ=DAILY;"
AT 0200
:
NET92A#DATECALC
END

If the job runs at 0200, datecalc returns the time 0200 of the day
16/01/2015. If the schedule is carried forward, and the job runs at
1000, the reported result for datecalc is the time 1000 of the day
15/01/2015.

-t time [base-date]
Specify time in one of the following formats:

now | noon | midnight | [h[h][[:]mm] [am | pm] [zulu]

where:

now Specifies the current system date and time.

noon Specifies 12:00 p.m. (or 1200).

midnight
Specifies 12:00 a.m. (or 0000).

h[h][[:]mm]
Specifies the hour and minute in 12-hour time (if am or pm are
used), or 24-hour time. The optional colon (:) delimiter can be
replaced by a period (.), a comma (,), an apostrophe ('), the letter h,
or a space. For example, any of the following can be entered for
8:00 p.m.:

8:00pm
20:00
0800pm
2000
8pm
20
8,00pm
20.00
8\'00pm
20 00

zulu Specifies that the time you entered is Greenwich Mean Time
(Universal Coordinated Time). datecalc converts it to the local
time.

yyyymmddhhtt
Specifies the year, month, day, hour, and minute expressed in exactly
twelve digits. For example, for 2005, May 7, 9:15 a.m., enter the following:
200505070915

offset Specifies an offset from base-date in the following format:

{[+ | > | - | < number | nearest] | next} day[s] | weekday[s] |
workday[s] | week[s] | month[s] | year[s] | hour[s] | minute[s] |
day | calendar

where:

636 IBM Workload Scheduler: User’s Guide and Reference

+ | > Specifies an offset to a later date or time. Use + (Plus) in Windows;
use > (greater than) in UNIX. Be sure to add a backslash (\) before
the angle bracket (>).

- | < Specifies an offset to an earlier date or time. Use - (Minus) in
Windows; use < (less than) in UNIX. Be sure to add a backslash (\)
before the angle bracket (>).

number
The number of units of the specified type.

nearest
Specifies an offset to the nearest occurrence of the unit type (earlier
or later).

next Specifies the next occurrence of the unit type.

day[s] Specifies every day.

weekday[s]
Specifies every day except Saturday and Sunday.

workday[s]
Same as weekday[s], but also excludes the dates on the holidays
calendar.

week[s]
Specifies seven days.

month[s]
Specifies calendar months.

year[s]
Specifies calendar years.

hour[s]
Specifies clock hours.

minute[s]
Specifies clock minutes.

day Specifies a day of the week. Valid values are: su, mo, tu, we, th, fr,
or sa.

calendar
Specifies the entries in a calendar with this name.

pic format
Specifies the format in which the date and time are returned. The format
characters are as follows:

m Month number.

d Day number.

y Year number.

j Julian day number.

h Hour number.

t Minute number.

^|/ One space. Use / (slash) in Windows; use ^ (carat) in UNIX (add a
backslash (\) before the carat (^) if you are in the Bourne shell).

Chapter 16. Using utility commands 637

You can also include punctuation characters. These are the same as the
delimiters used in date and time.

If a format is not defined, datecalc returns the date and time in the format
defined by the Native Language Support (NLS) environment variables. If
the NLS variables are not defined, the native language defaults to C.

freedays
Specifies the name of a non-working days calendar Calendar_Name that is
to replace holidays in the evaluation of workdays.

In this case, workdays is evaluated as everyday excluding saturday, sunday,
and all the dates listed in Calendar_Name.

By default, saturday and sunday are not regarded as workdays, unless you
explicitly state the opposite by adding -sa and -su after Calendar_Name.

You can also specify holidays as the name of the non-working days
calendar.

Examples

To return the next date, from today, on the monthend calendar, run the following
command:
>datecalc today next monthend

In the following examples, the current system date is Friday, April 16, 2006.
>datecalc today +2 days pic mm/dd/yyyy
04/16/2006

>datecalc today next tu pic yyyy\^mm\^dd
2006 04 16

>LANG=american;export LANG
>datecalc -t 14:30 tomorrow
Sat, Apr 17, 2006 02:30:00 PM

>LANG=french;datecalc -t 14:30 tomorrow
Samedi 17 avril 2006 14:30:00

In the following example, the current system time is 10:24.
>datecalc -t now \> 4 hours pic hh:tt
14:24

datamigrate
Use the datamigrate utility on the master domain manager to import into the
database the data that is saved in the flat files created by using composer extract
command line in another IBM Workload Scheduler instance, version 8.3 or later.

Syntax

Use the following syntax and order to import data:

datamigrate -u | -v

datamigrate -<object_type> <object_type_file> [-tmppath <temporary_directory]

Arguments

-u Displays command usage information and exits.

-v Displays the command version and exits.

638 IBM Workload Scheduler: User’s Guide and Reference

|
|
|

-<object_type> <object_type_file>

-topology topology_filename
Imports all domain, workstation, and workstation class definitions
saved in the topology_filename file that is created by using composer
command line in the IBM Workload Scheduler instance.

-prompts prompts_filename
Imports all prompt definitions saved in the prompts_filename file
that is created by using composer command line in the IBM
Workload Scheduler instance.

-calendars calendars_filename
Imports all calendar definitions saved in the calendars_filename file
that is created by using composer command line in the IBM
Workload Scheduler instance.

-parms parms_filename
Imports all parameter definitions saved in the parms_filename file
that is created by using composer command line in the IBM
Workload Scheduler instance.

-resources resources_filename
Imports all resource definitions saved in the resources_filename file
that is created by using composer command line in the IBM
Workload Scheduler instance.

-rcgroups rcgroups_filename
Imports all run cycle group definitions saved in the
rcgroups_filename file that is created by using composer command
line in the IBM Workload Scheduler instance.

-users users_filename
Imports all user definitions saved in the users_filename file that is
created by using composer command line in the IBM Workload
Scheduler instance.

Note: Ensure that you substitute in the users file, all the
"*********" entries with the real password values before running
the datamigrate utility.

-jobs jobs_filename
Imports all job definitions saved in the jobs_filename file that is
created by using composer command line in the IBM Workload
Scheduler instance.

-scheds scheds_filename
Imports all job stream (schedule) definitions saved in the
scheds_filename file that is created by using composer command line
in the IBM Workload Scheduler instance.

-tmppath temp_path
temp_path is the temporary path where datamigrate can put its temporary
work files. The default is <TWS_installation_dir>\tmp on Windows
operating systems and <TWS_installation_dir>/tmp on UNIX systems.

Comments

If you prefer to use the datamigrate utility instead of the composer command with
add or replace options, ensure that you follow the correct order to import data.

Chapter 16. Using utility commands 639

Starting from version 9.4, Fix Pack 1, it is no longer possible to migrate a job
stream containing an external dependency that references a job stream that does
not exist. In this case, an error message is displayed.

Examples

To import into the IBM Workload Scheduler V9.2 database the data exported from
IBM Workload Scheduler V8.6, run in the following order:
datamigrate -topology topology86.txt

datamigrate -prompts prompt86.txt

datamigrate -calendars cals86.txt

datamigrate -parms parms86.txt

datamigrate -resources res86.txt

datamigrate -rcgroups rcs86.txt

datamigrate -users users86.txt

datamigrate -jobs jobs86.txt

datamigrate -scheds js86.txt

delete

Removes files. Even though this command is intended to remove standard list files
you are suggested to use the rmstdlist command instead. The users maestro and
root in UNIX, and Administrator in Windows can remove any file. Other users can
remove only files associated with their own jobs.

Syntax

delete -V | -U

delete filename

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

filename

Specifies the name of the file or group of files to be removed. The name
must be enclosed in quotes (") if it contains characters other than the
following: alphanumerics, dashes (-), slashes (/), backslashes (\), and
underscores (_). Wildcard characters are permitted.

Note: Use this command carefully. Improper use of wildcard characters can result
in removing files accidentally.

Examples

To remove all the standard list files for 4/11/04, run the following command:
delete d:\win32app\maestro\stdlist\2004.4.11\@

640 IBM Workload Scheduler: User’s Guide and Reference

The following script, included in a scheduled job in UNIX, removes the job's
standard list file if there are no errors:
...
#Remove the stdlist for this job:
if grep -i error $UNISON_STDLIST
then
exit 1
else
`maestro`/bin/delete $UNISON_STDLIST
fi
...

The standard configuration script, jobmanrc, sets the variable UNISON_STDLIST to
the name of the job standard list file. For more information about jobmanrc, see
“Customizing job processing on a UNIX workstation - jobmanrc” on page 53.

evtdef

Imports/exports a generic event provider XML definition file where you can add
and modify custom event types. You can then use the sendevent command to send
these events to the event processing server. See also “Defining custom events” on
page 149.

Syntax

evtdef -U | -V

evtdef [connection parameters] dumpdef file-path

evtdef [connection parameters] loaddef file-path

Arguments

-U Displays command usage information and exits.

-V Displays the command version and exits.

connection parameters
If you are using evtdef from the master domain manager, the connection
parameters were configured at installation and do not need to be supplied,
unless you do not want to use the default values.

If you are using evtdef from the command line client on another
workstation, the connection parameters might be supplied by one or more
of these methods:
v Stored in the localopts file
v Stored in the useropts file
v Supplied to the command in a parameter file
v Supplied to the command as part of the command string

For an overview of these options, see “Setting up options for using the
user interfaces” on page 60.

For full details of the configuration parameters see the topic on configuring
the command-line client access in the IBM Workload Scheduler:
Administration Guide.

Chapter 16. Using utility commands 641

dumpdef file-path
Downloads the generic event provider XML file. The file is downloaded
with the file name and path you provide in file-path. You can edit the file to
add your own custom event types.

The name of the generic event provider supplied with the product is
GenericEventPlugIn. You can change this name by acting on the name tag
of the eventPlugin keyword.

Important: You must use this name as the value of:
v The source keyword of the “sendevent” on page 667 command
v The eventProvider keyword in the definition of the event rules triggered

by these custom events.

loaddef file-path
Uploads the modified generic event provider XML file from the file and
path you provide in file-path.

Comments

The following rule language schemas are used to validate your custom event
definitions and, depending upon the XML editor you have, to provide syntactic
help:
v eventDefinitions.xsd
v common.xsd

The files are located in the schemas subdirectory of the IBM Workload Scheduler
installation directory.

When you download the generic event provider template file, it looks like this:
<?xml version="1.0" encoding="UTF-8"?>
<eventDefinitions
xmlns="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/plugins/events"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/
plugins/events/eventDefinitions.xsd">
<eventPlugin>
<complexName displayName="Custom event" name="GenericEventPlugIn"/>
<scopes>
<scope name="Generic">
<scopedef text="{Param1} on {Workstation}"/>
</scope>
</scopes>
<!-- Generic Event -->
<event baseAliasName="genericEvt" scope="Generic">
<complexName displayName="Generic event" name="Event1"/>
<displayDescription>The event is sent when the specified expression is
matched.</displayDescription>
<property type="string" required="true" wildcardAllowed="true"
multipleFilters="true" minlength="1">
<complexName displayName="Parameter 1" name="Param1"/>
<displayDescription>The value of parameter 1</displayDescription>
</property>
<property type="string" required="true" wildcardAllowed="false"
multipleFilters="false" minlength="1>
<complexName displayName="Workstation" name="Workstation"/>
<displayDescription>The workstation for which the event is
generated.</displayDescription>
</property>

642 IBM Workload Scheduler: User’s Guide and Reference

</property>
</event>
</eventPlugin>
</eventDefinitions>

You then edit this file to add the property types that you need to define a specific
event. You can add the following property types:

Table 122. Additional properties that can be used for defininig custom events.
Property type Add into XML event file as shown

boolean <property type="boolean" required="false" wildcardAllowed="false"
multipleFilters="true" minlength="1">
<complexName displayName="Boolean field" name="Boolean"/>
<displayDescription>Add a boolean field</displayDescription>
</property>

date <property type="date" required="false" wildcardAllowed="false"
multipleFilters="true" minlength="1">
<complexName displayName="Date field" name="Date"/>
<displayDescription>Add a date field</displayDescription>
</property>

datetime <property type="datetime" required="false" wildcardAllowed="false"
multipleFilters="true" minlength="1">
<complexName displayName="Date Time field" name="Datetime"/>
<displayDescription>Add a date time field</displayDescription>
</property>

datetimeutc <property type="datetimeutc" required="false" wildcardAllowed="false"
multipleFilters="true" minlength="1">
<complexName displayName="Date Time UTC field" name="Datetimeutc"/>
<displayDescription>Add a date time UTC field</displayDescription>
</property>

duration <property type="duration" required="false" wildcardAllowed="false"
multipleFilters="true" minlength="1">
<complexName displayName="Duration field" name="Duration"/>
<displayDescription>Add a duration field</displayDescription>
</property>

fileSize <property type="fileSize" required="false" wildcardAllowed="false"
multipleFilters="true" minlength="1">
<complexName displayName="File size field" name="filesize"/>
<displayDescription>Add a file size field</displayDescription>
</property>

nonnegativeinteger <property type="nonnegativeinteger" required="false" wildcardAllowed="false"
multipleFilters="true" minlength="1">
<complexName displayName="Non negativeinteger field" name="nonnegativeinteger"/>
<displayDescription>Add a non negativeinteger field</displayDescription>
</property>

numeric <property type="numeric" required="false" wildcardAllowed="false"
multipleFilters="true" minlength="1">
<property type="numeric" required="false" wildcardAllowed="false"
multipleFilters="true" minlength="1">
<displayDescription>Add a numeric field</displayDescription>
</property>

percentage <property type="percentage" required="false" wildcardAllowed="false"
multipleFilters="true" minlength="1">
<complexName displayName="Percentage field" name="percentage"/>
<displayDescription>Add a percentage field</displayDescription>
</property>

string <property type="string" required="true" wildcardAllowed="true"
multipleFilters="true" minlength="1">
<complexName displayName="String with wildcards" name="StringWithWildcards"/>
<displayDescription>Add a string with wildcards</displayDescription>
</property>

or

<property type="string" required="true" wildcardAllowed="false"
multipleFilters="true" minlength="1">
<complexName displayName="String without wildcards" name="StringWithoutWildcards"/>
<displayDescription>Add a string without wildcards</displayDescription>
</property>

You can change the values of all the property attributes, with the exception of
type, to fit your requirements.

Chapter 16. Using utility commands 643

The properties so defined are converted into input fields after the event definition
is uploaded and opened in the Dynamic Workload Console.

You can also define more than one event by repeating <eventPlugin>...</
eventPlugin> sections. For example:
<?xml version="1.0" encoding="UTF-8"?>
<eventDefinitions
xmlns="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/plugins/events"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/
plugins/events/eventDefinitions.xsd">
<eventPlugin>
<complexName displayName="Custom event" name="GenericEventPlugIn"/>
<scopes>
<scope name="Art042StockQuantity">
<scopedef text="{Art042pieces}"/>
</scope>
</scopes>
<!-- Generic Event -->
<event baseAliasName="genericEvt" scope="Generic">
<complexName displayName="Stock of article 042 reaches minimum level"
name="art042qty"/>
<displayDescription>The event is sent when the number of art.42
items on stock reaches
minimum level.</displayDescription>
<property type="numeric" required="true" wildcardAllowed="false"
multipleFilters="true" minlength="1">
<complexName displayName="Art042 items on stock" name="art042items"/>
<displayDescription>The number of art042 items left</displayDescription>
</property>
</event>
<!-- Generic Event 2-->
<event baseAliasName="Hard drive saturation" scope="Generic">
<complexName displayName="Hard drive saturation" name="HDSatEvent"/>
<displayDescription>displayDescription>The event is sent when the percentage field
reaches the warning level.</displayDescription>
<property type="percentage" required="true" wildcardAllowed="false"
multipleFilters="true" minlength="1>
<complexName displayName="Percentage Full" name="PercentFull"/>
<displayDescription>The percentage of total disk space used</displayDescription>
</property>
<property type="string" required="true" wildcardAllowed="false"
multipleFilters="false" minlength="1>
<complexName displayName="Workstation" name="Workstation"/>
<displayDescription>The workstation where the hard drive is installed
</displayDescription>
</property>
</event>
</eventPlugin>
</eventDefinitions>

Examples

In this example you:
1. Download the generic event provider XML file as file c:\custom\myevents.xml

evtdef dumpdef c:\custom\myevents.xml

2. Edit the file to add your own event type definitions.
3. When finished, you upload the generic event provider XML file from file

c:\custom\myevents.xml

evtdef loaddef c:\custom\myevents.xml

644 IBM Workload Scheduler: User’s Guide and Reference

evtsize

Defines the size of the IBM Workload Scheduler message files. This command is
used by the IBM Workload Scheduler administrator either to increase the size of a
message file after receiving the message, “End of file on events file.”, or to monitor
the size of the queue of messages contained in the message file. You must be
maestro or root in UNIX, or Administrator in Windows to run evtsize. Stop the
IBM Workload Scheduler engine before running this command.

Syntax

evtsize -V | -U

evtsize filename size

evtsize -compact filename [size]

evtsize -info filename

evtsize -show filename

evtsize -info | -show pobox

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

-compact filename [size]
Reduces the size of the specified message file to the size occupied by the
messages present at the time you run the command. You can optionally
use this keyword to also specify a new file size.

-info filename
Displays the percentage use of the queue of messages contained in the
message file.

-show filename
Displays the size of the queue of messages contained in the message file

filename
The name of the event file. Specify one of the following:

Courier.msg
Intercom.msg
Mailbox.msg
Planbox.msg
pobox/workstation.msg
mirrorbox.msg
mirrorbox<n>.msg

size The maximum size of the event file in bytes. It must be no less than
1048576 bytes (1 MB).

When first built by IBM Workload Scheduler, the maximum size is set to 60
MB.

Chapter 16. Using utility commands 645

|
|

Note: The size of the message file is equal to or bigger than the real size of
the queue of messages it contains and it progressively increases until the
queue of messages becomes empty; as this occurs the message file is
emptied.

-info | -show pobox
Displays the name of the message file, within the pobox directory, with the
largest queue size calculated as a percentage of the total file size. Both the
name of the file and the percentage used are returned. Either -info and
-show return the same results.

Examples

To set the maximum size of the Intercom.msg file to 20 MB, run the following
command:
evtsize Intercom.msg 20000000

To set the maximum size of the pobox file for workstation chicago to 15 MB, run
the following command:
evtsize pobox\chicago.msg 15000000

The following command:
evtsize -show Intercom.msg

returns the following output:
Tivoli Workload Scheduler (UNIX)/EVTSIZE 8.3 (1.2.2.4) Licensed Materials -
Property of IBM(R)
5698-WSH
(C) Copyright IBM Corp 1998, 2006 All rights reserved.
US Government User Restricted Rights
Use, duplication or disclosure restricted by
GSA ADP Schedule Contract with IBM Corp.
IBM is a registered trademark of International Business Machines
Corporation in the United States, other countries, or both.
AWSDEK703I Queue size current 240, maximum 10000000 bytes (read 48, write 288)

where:
880 Is the size of the current queue of the Intercom.msg file
10000000

Is the maximum size of the Intercom.msg file
read 48

Is the pointer position to read records
write 928

Is the pointer position to write records

If the following command:
evtsize -info Mailbox.msg

returns:
25

it means that 25 percent of the file has been used.

Filemonitor
Use the filemonitor utility to check for changes of files (files that were either
created or modified). This could be useful when, for example, you want to make

646 IBM Workload Scheduler: User’s Guide and Reference

=

=
=

sure that a file exists before running a job that processes that file. By defining a job
that runs the filemonitor utility, you can implement file dependency, that is, a
relationship between a file and an operation in which specific activity on the file
determines the starting of the operation.

You can use the filemonitor utility as a stand-alone command, or you can set the
filemonitor keywords as additional parameters for the start condition of a job
stream, either in the Workload Designer or from the composer command line. For
more information about the start condition, see Chapter 7, “Condition-based
workload automation,” on page 125.

Run the filemonitor utility to monitor whether the specified files have been
modified within a time interval. All product components must be at least at the
Version 9.4, Fix Pack 1 level.

Syntax

filemonitor -V | -U

filemonitor -path path_to_monitor [-exitOnPathToMonitorNotFound]
-event {fileCreated | fileModified} [-modificationCompletedTime seconds]
[-repositoryName repository_name]
[-repositoryPath repository_path]
[-recursive]
[-outputFile output_filename]
[-scanInterval scan_interval]
[-maxEventsThreshold max_events]
[-minFileSize min_file_size]
[-timeout seconds]
[-preserveEventsOnDelete]

filemonitor -reset
[-repositoryName repository_name]
[-repositoryPath repository_path - generateEventsOnFirstScan]

Arguments

Note: If you set the same argument more than once, the last value specified is
applied and no error message is reported.

-V Displays the command version and exits.

-U Displays command usage information and exits.

-path path_to_monitor

The path where the files to be processed are located. You can specify blank
or special characters within double quotation marks. Wildcard characters
are supported. To include more files in the monitoring process, store the
files in a specific directory and specify the directory in the -path option.
Paths containing spaces must be enclosed in double quotes. Universal
Naming Convention (UNC) paths are also supported with the following
syntax types:
v \\server_name\share_name\directory_name\...
v \\?\UNC\server_name\share_name\directory_name

v \\?\path_name

where the question mark (?) indicates extended-length paths.

Chapter 16. Using utility commands 647

=
=
=
=

=
=
=
=
=

=
=
=

=

=

=
=
=
=
=
=
=
=
=
=
=

=
=
=

=

=
=

==

==

=

/
/
/
/
/
/
/

/

/

/

/

[-exitOnPathToMonitorNotFound]
Optionally, specify this argument to have the command exit if the specified
path is not found.

-event {fileCreated | fileModified} [-modificationCompletedTime seconds]
The event type to be monitored. Supported types are fileCreated and
fileModified. This argument is required when you specify -path. If you
specify the fileCreated or the fileModified argument, you can optionally
specify the -modificationCompletedTime option which is a time interval,
in seconds that is used to determine when the event is sent.

-event fileCreated
As soon as the file is created , the event, FileCreated, is sent.

-event fileModified
As soon as the file is modified, the event, ModificationCompleted,
is sent.

-event fileCreated -modificationCompletedTime <seconds>
When a file is created, the event is not sent immediately, but only
after the interval of time specified by
-modificationCompletedTime <seconds> has elapsed, and during
which no subsequent changes were made to the file, which
includes the file being deleted and recreated with the same name.

-event fileModified -modificationCompletedTime <seconds>
When a file is modified, the event is not sent immediately, but only
after the interval of time specified by
-modificationCompletedTime <seconds> has elapsed and during
which no additional changes were made to the file.

-repositoryName repository_name

Optionally, specify a database where to log the status of the retrieved files..
By default, the name filemonitor.db is used if you do not specify any
names.

-repositoryPath repository_path
The path to the filemonitor database. By default, the TWA_Home/TWS/
stdlist/JM/filemonitor path is used, if you do not specify any paths.
Paths containing spaces must be enclosed in double quotes. Wildcards are
not supported.

-generateEventsOnFirstScan
All files retrieved during the first scan performed by filemonitor are
considered as created or modified and can generate events. This argument
is available only if you specify the repositoryPath argument.

-recursive
Include subfolders when monitoring files. This is an optional parameter.

-outputFile output_filename
An output file where to store the retrieved events. Ensure that the
directory where the output file is to be created is already existing. The
command output is also printed to standard output and stored in the job
properties, if you launch the filemonitor command from a job. Paths
containing spaces must be enclosed in double quotes. Wildcards are not
supported. This is an optional parameter.

-scanInterval scan_interval
A period of time in seconds between two consecutive checks on the files

648 IBM Workload Scheduler: User’s Guide and Reference

=
=
=

-
-
-
-
-
-

-
-

-
-
-

-
-
-
-
-
-

-
-
-
-
-

=

=
=
=

=
=
=
=
=

=
=
=
=

=
=

=
=
=
=
=
=
=

=
=

being created or modified. The default value is 300 seconds. The supported
range is 1-3600 seconds. This is an optional parameter.

-maxEventsThreshold max_events
The maximum number of events to be returned. The default value is 1. If
you specify all, all events are returned. This is an optional parameter.

-minFileSize min_file_size
The minimum size in bytes that files must reach to be included in the scan.
The default value is 0.

-timeout seconds
The maximum time, in seconds, that filemonitor waits for the event to
occur. If you do not specify this parameter, filemonitor waits indefinitely.
This is an optional parameter.

-preserveEventsOnDelete
Returns events on the specified file, also if the file was deleted in the
meantime. If you do not specify this argument, when a file is deleted all
events preceding the file deletion, if any, are discarded.

-reset Resets the information collected. With this argument, you can optionally
specify the -repositoryPath and -repositoryName arguments.

Configuring trace properties for filemonitor

To configure the trace properties for filemonitor, edit the [FileMonitor.Logging]
section in the <TWAHome>/TWS/ITA/cpa/config/FileMonitor.ini file, and restart the
filemonitor utility.

The section containing the trace properties is named:
[FileMonitor.Logging.cclog]

FileMonitor.trhd.fileName
The name of the trace file.

FileMonitor.trhd.maxFileBytes
The maximum size that the trace file can reach. The default is 1024000
bytes.

FileMonitor.trhd.maxFiles
The maximum number of trace files that can be stored. The default is 3.

FileMonitor.trfl.level
Determines the type of trace messages that are logged. Change this value
to trace more or fewer events, as appropriate, or on request from Software
Support. Valid values are:

DEBUG_MAX
Maximum tracing. Every trace message in the code is written to
the trace logs.

INFO All informational, warning, error and critical trace messages are
written to the trace. The default value.

WARNING
All warning, error and critical trace messages are written to the
trace.

ERROR
All error and critical trace messages are written to the trace.

Chapter 16. Using utility commands 649

=
=

=
=
=

=
=
=

=
=
=
=

=
=
=
=

==
=

=

=
=
=

=

=

=
=

=
=
=

=
=

=
=
=
=

=
=
=

==
=

=
=
=

=
=

CRITICAL
Only messages which cause the agent to stop are written to the
trace.

The output trace (by default, FileMonitor_trace.log) is provided in XML format,
and is located in <TWA_Home>/TWS/stdlist/JM.

Return Codes

0 The operation completed successfully.

4 Filemonitor stopped running, because timeout expired. No results were
returned.

-1 An error occurred. Search the trace log (by default, FileMonitor_trace.log)
for additional details.

Comments

Any parameters defined with this command override the default values internally
set by IBM Workload Scheduler.

If one or more files have been created or modified in between subsequent
invocations, the modifications are detected. However, files already detected in a
previous run are not listed again in subsequent invocations. Wildcards are
supported in both filenames and directories names.

Examples

In the following example, the filemonitor command checks every 2 minutes for all
files created in the C:\temp\logs path and having a minimum size greater than
1024 bytes. The check is performed on all sub folders and the results are stored in
C:\backup\logs\reports.txt:
filemonitor -path "C:\temp\logs" -event fileCreated -recursive
-outputFile "C:\backup\logs\reports.txt"
-scanInterval 120 -maxEventsThreshold all -minFileSize 1024

jobinfo
Used in a job script to return information about the job. This command is not
supported on dynamic agents, pools, dynamic pools, and job types with advanced
options.

Syntax

jobinfo -V | -U

jobinfo job-option [...]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

job-option

The job option. Specify one or more of the following:

confirm_job
Returns YES if the job requires confirmation.

650 IBM Workload Scheduler: User’s Guide and Reference

=
=
=

=
=

=

==

==
=

==
=

=

=
=

=
=
=
=

=

=
=
=
=

=
=
=

=

is_command
Returns YES if the job was scheduled or submitted using the
docommand construct.

job_name
Returns the job's name without the workstation and job stream
names.

job_pri
Returns the job's priority level.

programmatic_job
Returns YES if the job was submitted with using the at or batch
command. UNIX only.

re_job Returns YES if the job is being rerun as the result of a conman
rerun command, or the rerun recovery option.

re_type
Returns the job's recovery option (stop, continue, or rerun).

rstrt_flag
Returns YES if the job is being run as the recovery job.

rstrt_retcode
If the current job is a recovery job, returns the return code of the
parent job.

schedule
Returns the name of the job stream where the job is submitted.

schedule_ia
Returns the time and date the job stream is scheduled to start.

schedule_id
Returns the jobstream_ID of the job stream where the job is
submitted.

time_started
Returns the time the job started running.

Comments

Job option values are returned, one on each line, in the same order they were
requested.

Examples
1. The script file /jcl/backup is referenced twice, giving it the job names partback

and fullback. If the job runs as partback, it performs a partial backup. If it runs
as fullback, it performs a full backup. Within the script, commands like the
following are used to make the distinction:
#Determine partial (1) or full (2):
if ["`\`maestro\`/bin/jobinfo job_name`" = "PARTBACK"]
then
bkup=1
else
bkup=2
fi
...

2. To display the return code of the parent job, if the current job is a recovery job,
run the following command:
$ jobinfo rstrt_retcode

Chapter 16. Using utility commands 651

The first job (parent job) has been defined in the script recovery.sh while the
second job (recovery job) gets enabled only if the first job abends.
When combined with a return code condition, jobinfo rstrt_retcode can be
used to direct the recovery job to take different actions depending on the parent
job's return code. A recovery job is shown in the example below:
$JOBS
MASTER#DBSELOAD DOCOMMAND "/usr/local/tws/maestro/scripts/populate.sh"
STREAMLOGON "^TWSUSER^"
DESCRIPTION "populate database manual"
RECOVERY RERUN AFTER MASTER#RECOVERY
RCCONDSUCC "(RC = 0) OR ((RC > 4) AND (RC < 11))"

Note: The job is defined with the recovery action RERUN. This enables the
recovery job to take some corrective action, before the parent job attempts to
run again.
The recovery job itself is defined as shown in the example below:
$ JOBS
MASTER#RECOVERY DOCOMMAND "^TWSHOME^/scripts/recovery.sh"
STREAMLOGON "^TWSUSER^"
DESCRIPTION "populate database recovery manual"
RECOVERY STOP

jobstdl
Returns the names of standard list files. This command must be run by the user for
which IBM Workload Scheduler was installed. If you use this command without
any parameters, ensure that you are logged on as an IBM Workload Scheduler
user.

Syntax

jobstdl -V | -U

jobstdl
[-day num]
[{-first | -last | -num n | -all}]
[-twslog]
[{-name ["jobstreamname [(hhmm date),(jobstream_id)].]jobname"

| jobnum | -schedid jobstream_id.jobname}]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

-day num
Returns the names of standard list files that are the specified number of
days old (1 for yesterday, 2 for the day before yesterday, and so on). The
default is zero (today).

-first Returns the name of the first qualifying standard list file.

-last Returns the name of the last qualifying standard list file.

-num n
Returns the name of the standard list file for the specified run of a job.

-all Returns the name of all qualifying standard list files.

652 IBM Workload Scheduler: User’s Guide and Reference

-twslog
Returns the path of the current day stdlist file.

-name ["jobstreamname[(hhmm date), (jobstream_id)].]jobname" | jobnum
Specifies the instance of the job stream and name of the job for which
standard list file names are returned.

jobnum
Specifies the job number of the job for which standard list file names are
returned.

-schedid jobstream_id.jobname
Specifies the job stream ID and name of the job for which standard list file
names are returned.

Comments

File names are returned in a format suitable for input to other commands. Multiple
names are returned separated by a space.

When you use the full syntax of the -name argument, the square brackets in the
expression [(hhmm date), (jobstream_id)] are part of the command, not syntax
indicators. Also, the whole job identification string must be enclosed in double
quotation marks if the part identifying the job stream instance contains blanks. For
example, because the schedtime, represented by hhmm date, has a space in it, you
must enclose the whole job identification in double quotation marks.

You can also run abbreviated versions of the -name argument using a simpler
syntax. If you want less specific outputs from the command, you can specify just
the schedtime (the date is not required if it is for the same day) or the jobstream_id
together with the jobname. As long as there are no blanks in the arguments, you
can omit the double quotation marks. You can also omit the square brackets if you
do not specify both the schedtime and the jobstream_id.

The following examples show the syntax you must use with the -name argument
for the different types of information you expect in return, ranging from the more
specific to the more general. In the example, job_stream1 is the name of the job
stream, 0600 04/05/06 is the scheduled time, 0AAAAAAAAAAAAAB5 is the job stream
ID, and job1 is the job name. The job number of job1 is 310. You can run jobstdl
for job1 as follows:
jobstdl -name "job_stream1[(0600 04/05/10),(0AAAAAAAAAAAAAB5)].job1"

Returns the standard list file name of job1 for the specific instance of job_stream1
with the specified schedtime and jobstream_id.
jobstdl -name job_stream1(0AAAAAAAAAAAAAB5).job1

Returns the standard list file name for job1 for the instance of job_stream1 with ID
0AAAAAAAAAAAAAB5.
jobstdl -name "job_stream1(0600 04/05/10).job1"

Returns the standard list file names for job1 for all possible instances of
job_stream1 scheduled to run at 0600 of 04/05/10.
jobstdl -name job_stream1(0600).job1

Returns the standard list file names for job1 for all possible instances of
job_stream1 scheduled to run at 0600 of the current day.
jobstdl -name 310

Chapter 16. Using utility commands 653

Returns the standard list file names for job1 for all the instances it had job number
310.

Examples

To return the path names of all standard list files for the current day, run the
following command:
jobstdl

To return the path name of the standard list for the first run of job
MY_CPU#ELI[(1824 03/09/06),(0AAAAAAAAAAAAAEE)].DIR on the current day, run the
following command:
jobstdl -first -name "MY_CPU#ELI[(1824 03/09/06),(0AAAAAAAAAAAAAEE)].DIR"

To return the path name of the standard list for the first run of job
0AAAAAAAAAAAAAEE.DIR on the current day, run the following command:
jobstdl -first -schedid 0AAAAAAAAAAAAAEE.DIR

To return the path name of the standard list for the second run of job
MY_CPU#ELI[(1824 03/09/06),(0AAAAAAAAAAAAAEE)].DIR on the current day, run the
following command:
jobstdl -num 2 -name "MY_CPU#ELI[(1824 03/09/06),(0AAAAAAAAAAAAAEE)].DIR"

To return the path names of the standard list files for all runs of job
MY_CPU#ELI[(1824 03/09/06),(0AAAAAAAAAAAAAEE)].DIR from three days ago, run
the following command:
jobstdl -day 3 -name "MY_CPU#ELI[(1824 03/09/06),(0AAAAAAAAAAAAAEE)].DIR"

To return the path name of the standard list for the last run of job
MY_CPU#ELI[(1824 03/09/06),(0AAAAAAAAAAAAAEE)].DIR from four days ago, run
the following command:
jobstdl -day 4 -last -name "MY_CPU#ELI[(1824 03/09/06),(0AAAAAAAAAAAAAEE)].DIR"

To return the path name of the standard list for job number 455, run the following
command:
jobstdl 455

To print the contents of the standard list file for job number 455, run the following
command:
cd `maestro`/bin
lp -p 6 `jobstdl 455`

maestro
Returns the path name of the IBM Workload Scheduler home directory, referred to
as TWS_home.

Syntax

maestro [-V | -U]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

654 IBM Workload Scheduler: User’s Guide and Reference

Examples

To display the IBM Workload Scheduler home directory, run the following
command:
$ maestro
/usr/lib/maestro

To change the directory to the IBM Workload Scheduler home directory, run the
following command:
$ cd `maestro`

makecal
Creates a custom calendar. In UNIX, the Korn shell is required to run this
command.

Syntax

makecal [-V | -U]

makecal
[-c name]
-d n

| -e
| {-f 1 | 2 | 3 -s date}
| -l
| -m
| -p n
| {-r n -s date}
| -w n

[-i n]
[-x | -z]
[-freedays Calendar_Name [-sa] [-su]]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

-c name
Specifies a name for the calendar. IBM Workload Scheduler keywords (such
as Freedays or Schedule) cannot be used as calendar names. The name can
contain up to eight alphanumeric characters and must start with a letter.
Do not use the names of weekdays for the calendar names. The default
name is: Chhmm, where hhmm is the current hour and minute.

-d n Specifies the nth day of every month.

-e Specifies the last day of every month.

-f 1 | 2 | 3
Creates a fiscal month-end calendar containing the last day of the fiscal
month. Specify one of the following formats:

1 4-4-5 week format

2 4-5-4 week format

3 5-4-4 week format

Chapter 16. Using utility commands 655

This argument requires the -s argument.

-i n Specifies to insert n dates in the calendar.

-l Specifies the last workday of every month. For this argument to work
properly, the production plan (Symphony file) and the holidays calendar
must already exist.

Note: Using this argument results in the new calendar also including the
last workday of the month that precedes the date of creation of the
calendar.

-m Specifies the first and fifteenth days of every month.

-p n Specifies the workday before the nth day of every month. For this
argument to work properly, the production plan (Symphony file) and the
holidays calendar must already exist

-r n Specifies every nth day. This argument requires the -s argument.

-s date Specifies the starting date for the -f and -r arguments. The date must be
enclosed in quotation marks, and must be valid and unambiguous, for
example, use JAN 10 2005, not 1/10/05. See base-date for datecalc on page
“base-date” on page 634 for more information about date formats.

-w n Specifies the workday after the nth of the month. For this argument to
work properly, the production plan (Symphony file) and the holidays
calendar must already exist.

-x Sends the calendar output to stdout instead of adding it to the database.

-z Adds the calendar to the database and compiles the production plan
(Symphony file).

Note: This argument re-submits jobs and job streams from the current
day's production plan. It might be necessary to cancel job streams and jobs.

-freedays
Specifies the name of a non-working days calendar Calendar_Name that is
to replace holidays in the evaluation of workdays.

In this case, workdays is evaluated as everyday excluding saturday, sunday
and all the dates listed in Calendar_Name.

By default, saturday and sunday are not regarded as workdays, unless you
explicitly state the opposite by adding -sa and/or -su after Calendar_Name.

You can also specify holidays as the name of the non-working days
calendar.

This keyword affects the processing of makecal with options -l, -p, and -w.

Examples

To make a two-year calendar with the last day of every month selected, run the
following command:
makecal -e -i 24

To make a calendar with 30 days that starts on May 30, 2005, and has every third
day selected, run the following command:
makecal -r 3 -s "30 MAY 2005" -i 30

656 IBM Workload Scheduler: User’s Guide and Reference

metronome
Metronome is replaced by tws_inst_pull_info. For information about this
command, see IBM Workload Scheduler: Troubleshooting Guide.

morestdl
Displays the contents of standard list files. This command must be run by the user
for which IBM Workload Scheduler was installed. If you use this command
without any parameters, ensure that you are logged on as an IBM Workload
Scheduler user. This command is supported for fault-tolerant agents and standard
agents.

Syntax

morestdl -V | -U

morestdl
[-day num]
[-first | -last | -num n | -all]
[-twslog]
[{-name ["jobstreamname [(hhmm date),(jobstream_id)].]jobname"

| jobnum | -schedid jobstream_id.jobname}]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

-day num
Displays standard list files that are the specified number of days old (1 for
yesterday, 2 for the day before yesterday, and so on). The default is zero
(today).

-first Displays the first qualifying standard list file.

-last Displays the last qualifying standard list file.

-num n
Displays the standard list file for the specified run of a job.

-all Displays all qualifying standard list files.

-twslog
Displays the content of the current day stdlist file.

-name ["jobstreamname [(hhmm date),(jobstream_id)].]jobname"|jobnum
Specifies the instance of the job stream and the name of the job for which
the standard list file is displayed.

jobnum
Specifies the job number of the job for which the standard list file is
displayed.

-schedid jobstream_id.jobname
Specifies the job stream ID and name of the job for which standard list file
names are returned.

Chapter 16. Using utility commands 657

Comments

The square brackets in the expression [(hhmm date), (jobstream_id)] are part of
the command, not syntax indicators. This means that you can supply either of the
following for the -name argument:
morestdl -name ["jobstreamname[(hhmm date),(jobstream_id)].jobname"
morestdl -name jobnum

The whole job identification string must be enclosed in double quotation marks if
the part identifying the job stream instance contains blanks. For example, because
the schedtime, represented by hhmm date, has a space in it you must enclose the
whole job identification in double quotation marks.

If you just want to identify a job name, you do not need the double quotation
marks.

The following is an example of the syntax to use when identifying a job both with
and without its job stream. In the example, job_stream1 is the name of the job
stream, 0600 04/05/06 is the scheduled time, 0AAAAAAAAAAAAAB5 is the job stream
ID, and job1 is the job name. You can run the morestdl command against job1
using either of these two formats:
morestdl -name "job_stream1[(0600 04/05/06),(0AAAAAAAAAAAAAB5)].job1"
morestdl -name job1

Examples

To display the standard list file for the first run of job MY_CPU#ELI[(1824
03/09/06),(0AAAAAAAAAAAAAEE)].DIR on the current day, run the following
command:
morestdl -first -name "MY_CPU#ELI[(1824 03/09/06),(0AAAAAAAAAAAAAEE)].DIR"

To display the standard list file for the first run of job 0AAAAAAAAAAAAAEE.DIR on the
current day, run the following command:
morestdl -first -schedid 0AAAAAAAAAAAAAEE.DIR

To display the standard list file for the second run of job MY_CPU#ELI[(1824
03/09/06),(0AAAAAAAAAAAAAEE)].DIR on the current day, run the following
command:
morestdl -num 2 -name "MY_CPU#ELI[(1824 03/09/06),(0AAAAAAAAAAAAAEE)].DIR"

To display the standard list files for all runs of job MY_CPU#ELI[(1824
03/09/06),(0AAAAAAAAAAAAAEE)].DIR from three days ago, run the following
command:
morestdl -day 3 -name "MY_CPU#ELI[(1824 03/09/06),(0AAAAAAAAAAAAAEE)].DIR"

To display the standard list file for the last run of job MY_CPU#ELI[(1824
03/09/06),(0AAAAAAAAAAAAAEE)].DIR from four days ago, run the following
command:
morestdl -day 4 -last -name "MY_CPU#ELI[(1824 03/09/06),(0AAAAAAAAAAAAAEE)].DIR"

To print the standard list file for job number 455, run the following command:
morestdl 455 | lp -p 6

658 IBM Workload Scheduler: User’s Guide and Reference

parms
Run the parms utility on a master domain manager or a fault-tolerant agent
workstation (not supported on dynamic agents) to manage parameters defined
locally on workstations. Parameters managed by parms can only be used in job or
job stream definitions with the scriptname or opens keywords or in a job script
file.

These parameters are resolved at submission time on the workstation where the
job or job stream is submitted. If there is no match between the specified
parametername and the name of the parameters defined in the local database on the
workstation, then a null value is returned.

Authorization

You must have display access to the locally defined parameters database. In
addition you must be authorized with the following access:

build on object file
If you use the -b option to create or rebuild the local parameters database.

delete If you use the -d option to delete parameter definitions.

modify on object file
If you use the -replace option to add or modify parameter definitions.

Syntax

parms {[-V | -u] | -build}

parms {-replace | -extract} filename

parms [-d]parametername

parms -c parametername value

Arguments

-V Displays the command version and exits.

-u Displays command usage information and exits.

-build Creates the parameters database on the workstation if it does not exist.
Rebuilds the parameters database, removing unused records and avoiding
fragmentation from numerous additions and deletions, if it already exists.

-extract
Extracts all parameter definitions from the local database and stores them
in the file with name filename.

Use this option if you want to export local parameter definitions to import
them as global parameter definitions into the scheduling objects database
using the “add” on page 312 or the “replace” on page 352 commands.

-replace
Add in the local database new parameter definitions stored in a file named
filename or substitute the already existing ones.

Chapter 16. Using utility commands 659

Use this option if you want to import, as local parameter definitions, the
global parameter definitions contained in the file named filename and
extracted from the scheduling objects database using the “extract” on page
325 command.

-d Deletes the parameters with name parametername from the local database
on the workstation.

parametername
Specifies the name of the parameter whose value is displayed. When used
with the argument -d it represents the name of the parameter to be
deleted.

-c name value
Specifies the name and the value of a parameter. The name can contain up
to 16 alphanumeric characters, including dashes (-) and underscores (_),
and must start with a letter. The value can contain up to 72 characters.
Enclose the value in double quotation marks if it contains special
characters. If the parameter does not exist, it is added to the database. If
the parameter already exists, its value is changed.

Comments

When parms is run on the command line without arguments, it prompts for
parameter names and values.

The use of parms in either job definitions and job script files requires that the
parameter already exists locally in the parameters database on the workstation.

This is a sample usage of a local parameter, MYFILE, in a file dependency clause:
schedule test_js
on everyday
opens "/usr/home/tws_99/’/usr/home/tws_99/bin/parms MYFILE’"
:
test_job
end

The following example explains how the variable var enclosed by carets (^) is
replaced while the job is in process. If the job is submitted as an ad hoc job, the
parameter var is expanded, that means replaced by the value assigned to var in
the local database, at submission time and not when the job launches.

UNIX job definition example:
DATA#UX_P_TEST DOCOMMAND "ls ^var^"
STREAMLOGON "mae82"
DESCRIPTION "Test parms in job definition on UNIX."
RECOVERY STOP

Windows job definition example:
BORG#WIN_P_TEST DOCOMMAND "dir ^var^"
STREAMLOGON "mae82"
DESCRIPTION "Test parms in job definition on Windows."
RECOVERY STOP

When used in a job script file, the parameter is not expanded until the script
launches. It is not expanded when the job stream containing the job is processed
by JnextPlan. These are examples on how to use the var parameter in job script
files.

660 IBM Workload Scheduler: User’s Guide and Reference

UNIX script example:
#!/bin/sh
TWS_HOME="/opt./tws/mae82/maestro"
export TWS_HOME
MDIR=’$TWS_HOME/bin/parms var’
export MDIR
ls -l $MDIR

Windows script example:
set TWS_HOME=d:\win32app\TWS\mae82\maestro
echo %TWS_HOME%
FOR /F "Tokens=*" %%a in (%TWS_HOME%\bin\parms var) do set MDIR=%%a
echo %MDIR%
dir %MDIR%

Examples

To return the value of myparm, run the following command:
parms myparm

To change the value of myparm, run the following command:
parms -c myparm "item 123"

To create a new parameter named hisparm, run the following command:
parms -c hisparm "item 789"

To change the value of myparm and add herparm, run the following command:
parms
Name of parameter ? myparm < Return>
Value of parameter? "item 456" < Return>
Name of parameter ? herparm < Return>
Value of parameter? "item 123" < Return>
Name of parameter ? < Return>

For more information, see Chapter 6, “Customizing your workload using variable
tables,” on page 119.

release
Run the release utility on a master domain manager or a fault-tolerant agent
workstation (not supported on dynamic agents) to release jobs and job streams
from needs dependencies on a resource. This command must be issued only from
within the job script file. This command is effective only if the target jobs and job
streams are running when the command is issued. If you rerun the job or job
stream, the required resources are allocated again. All product components must be
at least at the Version 9.4 level.

Syntax

release -V | -U

release
[-s| -schedule]
[workstation#]
resourcename

[count]

Chapter 16. Using utility commands 661

|
|
|
|
|
|
|

|
|
|
|
|

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

-s | -schedule
Releases the needs dependency from the specified resource only at the job
stream level.

If -s is not used, the needs dependency from the specified resource is
released at the job level, or at the job stream level if the needs dependency
from that resource is not found at the job level.

workstation#
Specifies the name of the workstation or workstation class on which the
resource is defined. The default is the local workstation.

resourcename
Specifies the name of the resource involved in the needs dependency.

count Specifies the number of units of the resource to be released. If no number
is specified, all resources are released.

Comments

Units of a resource are acquired by a job or job stream at the time it is launched
and are released automatically when the job or job stream completes. The release
command can be used in a job script to release resources before job or job stream
completion or to release manually jobs and job streams from needs dependencies
in emergency situations.

Examples

In the following job stream, two units of the dbase resource are required by job
stream sked5:
schedule ux1#sked5 on tu
needs 2 dbase :
job1
jobrel follows job1
job2 follows jobrel
end

To release the dbase resource before job2 begins, the script file for jobrel contains
the following command:

On UNIX operating systems:
`maestro`/bin/release -s dbase

On Windows operating systems:
<TWS_home>\bin\release -s dbase

Note: The -s argument can be omitted, because no resources were reserved at the
job level.

The following example demonstrates how to partially release resources at the job
stream level.

In the following job stream, four units of the dbase resource are required by job
stream sked5:

662 IBM Workload Scheduler: User’s Guide and Reference

|

|
|

|
|

schedule ux1#sked5 on tu
needs 4 dbase :
job1
jobrel follows job1
job2 follows jobrel
end

To release the dbase resource before job2 begins, the script file for jobrel contains
the following command:

On UNIX operating systems:
`maestro`/bin/release -s dbase 3

On Windows operating systems:
<TWS_home>\bin\release -s dbase 3

In this case, while job job1 is running, the number of resources required by the
ux1#sked5 job stream is 4. When job jobrel starts, launching the release command,
the number of resources in use changes to one, because the release command has
released three resources.

The following is the output of the conman sr @#@ command launched while job1
is running:
%sr @#@
CPU#Resource Total Available Qty UsedBy
UX1#DBASE 10 6 4 UX1#SKED5[(1032 11/03/16),(0AAAAAAAAAAAAABM)]

The following is the output of the conman sr @#@ command launched after the
second job (jobrel) in the job stream has completed, and before the last job (job2)
in the job stream completes:
%sr @#@
CPU#Resource Total Available Qty UsedBy
UX1#DBASE 10 9 1 UX1#SKED5[(1032 11/03/16),(0AAAAAAAAAAAAABM)]

The following example demonstrates how to completely release resources at the job
stream level.

In the following job stream, four units of the dbase resource are required by job
stream sked5:
schedule ux1#sked5 on tu
needs 4 ux1#dbase :
job1
jobrel follows job1
job2 follows jobrel
end

To release the dbase resource before job2 begins, the script file for jobrel contains
the following command:

On UNIX operating systems:
`maestro`/bin/release -s dbase 4

On Windows operating systems:
<TWS_home>\bin\release -s dbase 4

In this case, while job job1 is running, the number of resources required by the
ux1#sked5 job stream is 4. When job jobrel starts, launching the release command,
the number of resources in use changes to zero, because the release command has
released all four resources. You can obtain the same result by specifying a higher

Chapter 16. Using utility commands 663

|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|

number of resources than are actually required by the job stream or by specifying
no number at all: in both cases, the command releases all resources required by the
job stream.

The following is the output of the conman sr @#@ command launched while job1
is running:
%sr @#@
CPU#Resource Total Available Qty UsedBy
UX1#DBASE 10 6 4 UX1#SKED5[(1040 11/03/16),(0AAAAAAAAAAAAABM)]

The following is the output of the conman sr @#@ command launched after the
second job (jobrel) in the job stream has completed, and before the last job (job2)
in the job stream completes:
%sr @#@
CPU#Resource Total Available Qty UsedBy
UX1#DBASE 10 10 No holders of this resource

The following example demonstrates how to partially release resources at the job
level.

In the following job stream, four units of the dbase resource are required by job
jobrel:
schedule ux1#sked5 on tu
:
job1
jobrel follows job1
needs 4 fta1#dbase
job2 follows jobrel
end

To release the dbase resource before job2 begins, the script file for jobrel contains
the following command:

On UNIX operating systems:
`maestro`/bin/release dbase 1

On Windows operating systems:
<TWS_home>\bin\release dbase 1

In this case, while job job1 is running, the number of required resources is zero. As
soon as job jobrel starts and before the release command it contains is launched,
the number of resources in use changes to four. When the release command in job
jobrel is launched, the number of resources in use changes to three because the
release command has released one resource.

The following example demonstrates how to partially release resources at the job
stream level.

In the following job stream, 34 units of the dbase resource are required by job
jobrel:
schedule ux1#sked5 on tu
needs 34 dbase
:
job1
jobrel follows job1
job2 follows jobrel
end

664 IBM Workload Scheduler: User’s Guide and Reference

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|

|
|

|
|

|
|
|
|
|
|
|

To release the dbase resource before job2 begins, the script file for jobrel contains
the following command:

On UNIX operating systems:
`maestro`/bin/release dbase

On Windows operating systems:
<TWS_home>\bin\release dbase

In this case, while job job1 is running, the number of resources required by job
stream ux1#sked5 is 34. When job jobrel starts, the number of resources in use
changes to two. This happens because the products divides the resources into
blocks formed by 32 units. The dependency from 34 resources is evaluated by
Workload Scheduler as a double dependency: the first dependency having 32 units,
and the second one having two units. When the release command in job jobrel is
launched, the number of resources in use changes to two because the release
command (for which no quantity has been defined) has completed released the
first dependency, containing 32 units.

The following is the output of the conman sr @#@ command launched while job1
is running:
%sr @#@
CPU#Resource Total Available Qty UsedBy
UX1#DBASE 34 0 34 UX1#SKED5[(1101 11/03/16),(0AAAAAAAAAAAAABR)]

The following is the output of the conman sr @#@ command launched after the
second job (jobrel) in the job stream has completed, and before the last job (job2)
in the job stream completes:
%sr @#@
CPU#Resource Total Available Qty UsedBy
UX1#DBASE 34 32 2 UX1#SKED5[(1101 11/03/16),(0AAAAAAAAAAAAABR)]

The following example demonstrates the internal working of the product and why
no resource release occurs in this case

In the following job stream, four units of the dbase resource are required by job
job1:
schedule ux1#sked5 on tu
:
job1
needs 4 dbase
jobrel
job2 follows jobrel
end

To release the dbase resource before job2 begins, the script file for jobrel contains
the following command:

On UNIX operating systems:
`maestro`/bin/release dbase 2

On Windows operating systems:
<TWS_home>\bin\release dbase 2

In this case, job job1 requires four resources. When job jobrel starts, the release
command it contains does not have any effect because no resource dependency is
present for job jobrel . This happens because the release command releases
resources only for the job instance which runs the command. In the case that other
jobs or job streams, or other instances of the same job which launches the release

Chapter 16. Using utility commands 665

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|

command, are using units of a specific resource, such units are not released, even
when the resource in use matches the resource name in the command.

rmstdlist
Removes or displays standard list files based on the age of the file. This utility
should be used by the IBM Workload Scheduler administrator to maintain the
scheduling environment.

Syntax

rmstdlist -V | -U

rmstdlist [-p] [daysold]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

-p Displays the names of qualifying standard list file directories. No
directories or files are removed. If you do not specify -p, the qualifying
standard list files are removed.

daysold
The minimum age, in days, of standard list file directories to be displayed
or removed. The default is 10 days.

Note: Because the list of directories and files shown or deleted using rmstdlist is
produced based on the last time they were accessed, the dates shown in the list of
directories could differ from the dates displayed in the list of files.

Syntax

As a rule, you should regularly remove standard list files somewhere between
every 10-20 days. Larger backlogs may be harder to manage and, if the number of
files becomes exceedingly large, you might be required to erase some of them
manually before you can use rmstdlist again.

This problem might occur on AIX systems, particularly, because of a currently
unresolved limitation with the rm -rf command. When rmstdlist fails because of
this limitation, it does not display any errors other than exit code 126. If you
would rather have the rm -rf error displayed, you can edit the rmstdlist script in
the following way:
1. Locate the script in the TWS_home/bin directory
2. Find the line:

rm -rf `cat /tmp/rm$$` 2> /dev/null

3. Remove the redirection to /dev/null so that the line becomes:
rm -rf `cat /tmp/rm$$`

Examples

To display the names of standard list file directories that are more than 14 days
old, run the following command:
rmstdlist -p 14

666 IBM Workload Scheduler: User’s Guide and Reference

|
|

|
|
|

To remove all standard list files (and their directories) that are more than seven
days old, run the following command:
rmstdlist 7

sendevent

The command sends the custom events defined with the evtdef command to the
event processor server currently active in the production plan. As the events are
received by the event processor, they trigger the event rules in which they were
specified.

Users can override the default destination server (defined by global options) by
specifying the host and the port of a new server.

Syntax

sendevent -V | ? | -help | -u | -usage

sendevent [-hostname hostname]
[{-port | -sslport} port]
eventType
source
[[attribute=value]...]

Arguments

-V Displays the command version and exits.

? | -help | -u | -usage
Displays command usage information and exits.

-hostname hostname
Specifies the host name of an alternate event processor server other than
the currently active one.

This parameter is required if the command is launched from a
command-line client.

-port | -sslport} port
Specifies the port number of an alternate event processor server other than
the currently active one. -sslport defines the port used to listen for
incoming SSL connections.

This parameter is required if the command is launched from a
command-line client.

eventType
One of the custom event types defined with the evtdef command in the
generic event provider and specified as the triggering event in an event
rule definition.

source The name of the event provider that you customized with evtdef. This is
also the name you must specify as the argument for the eventProvider
keyword in the definition of the event rules triggered by these custom
events.

The default name is GenericEventPlugIn.

Chapter 16. Using utility commands 667

attribute=value
One or more of the attributes qualifying the custom event type that are
specified as the triggering event attributes for the event rule.

Comments

This command can be run also on systems where only the IBM Workload
Scheduler remote command line client is installed.

Examples

In this example an application sends the BusProcCompleted custom event type to
an alternate event processor server named master3. The event is that file calcweek
finished processing.
sendevent -hostname master3 -port 4294 BusProcCompleted
GenericEventPlugIn TransacName=calcweek Workstation=ab5supp

The file name and the associated workstation are the two BusProcCompleted event
attributes that were specified as triggering event attributes in an associated event
rule.

showexec
Displays the status of running jobs. This command applies to UNIX only. This
command is for standard agents. On domain managers and fault-tolerant agents,
use the conman showjobs command instead.

Syntax

showexec [-V | -U | INFO]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

INFO Displays the name of the job file instead of the user, date, and time.

Results

The output of the command is available in two formats: standard and INFO.

Examples

To display running jobs in the standard format, run the following command:
showexec

To display running jobs in the INFO format, run the following command:
showexec INFO

Standard format
CPU The workstation on which the job runs.

Schedule
The name of the job stream in which the job runs.

Job The job name.

668 IBM Workload Scheduler: User’s Guide and Reference

Job# The job number.

User The user name of the job.

Start Date
The date the job started running.

Start Time
The time the job started running.

(Est) Elapse
The estimated time, in minutes, that the job will run.

Info format
CPU The workstation on which the job runs.

Schedule
The name of the job stream in which the job runs.

Job The job name.

Job# The job number.

JCL The file name of the job.

shutdown
Stops the IBM Workload Scheduler processes, and optionally also stops the
WebSphere Application Server. Applies to Windows workstations only. You must
have shutdown access to the workstation.

Syntax

shutdown [-V | -U] [-appsrv]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

-appsrv
Stops also WebSphere Application Server.

Comments

Make sure the TWS_user you are using belongs to the Admnistrators group defined
on the Windows workstation.

Examples

To display the command name and version, run the following command:
shutdown -V

To stop both the IBM Workload Scheduler processes and WebSphere Application
Server, run the following command:
shutdown -appsrv

Chapter 16. Using utility commands 669

ShutDownLwa - Stop the agent
Stops the agent. On Windows systems, no specific access to the workstation is
required. On UNIX systems, it can be run by TWS_user or root user only. Run this
command locally on the agent you want to stop.

Syntax

ShutDownLwa

Arguments

No arguments are necessary.

Examples

To stop the agent, run the following command:
ShutDownLwa

StartUp
Starts netman, the IBM Workload Scheduler network management process.

You must have start access to the workstation.

Syntax

StartUp [-V | -U]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

Comments

In Windows, the netman service is started automatically when a computer is
restarted. StartUp can be used to restart the service if it is stopped for any reason.

In UNIX, the StartUp command can be run automatically by invoking it from the
/etc/inittab file, so that WebSphere Application Server infrastructure and netman
is started each time a computer is rebooted. StartUp can be used to restart netman
if it is stopped for any reason.

The remainder of the process tree can be restarted with the
conman start
conman startmon

commands.

See conman “start” on page 492 for more information.

Examples

To display the command name and version, run the following command:
StartUp -V

670 IBM Workload Scheduler: User’s Guide and Reference

|
|
|

To start the netman process, run the following command:
StartUp

StartUpLwa - Start the agent
Starts the agent . On Windows systems, no specific access to the workstation is
required. On UNIX systems, it can be run by TWS_user or root user only. Run this
command locally on the agent you want to start.

Syntax

StartUpLwa

Arguments

No arguments are necessary.

Examples

To start the agent, run the following command:
StartUpLwa

tws_inst_pull_info
This is a script that produces information about your IBM Workload Scheduler
environment and your local workstation, and can take a snapshot of DB2 and
WebSphere Application Server data on the master domain manager, saving them as
a dated package.

It can also generate a report containing not only the results of the snapshot, but
also many configuration and environment parameters. The tool is useful when
describing a problem to IBM Software Support. For best results, it must be run as
soon as the problem is discovered.

Comments

For more information about this command, see IBM Workload Scheduler:
Troubleshooting Guide.

version
Displays information about the current release of IBM Workload Scheduler
installed on the system. This command applies to UNIX only. The information is
extracted from a version file.

Syntax

version -V | -u | -h

version [-a] [-f vfile] [file [...]]

Arguments

-V Displays the version of the command and exits.

-u Displays command usage information and exits.

-h Displays command help information and exits.

Chapter 16. Using utility commands 671

|
|
|

-a Displays information about all product files. The default is to display
information only about the specified files.

-f vfile Specifies the path and name of the version file if different from the default
setting. The default is a file named version.info in the current working
directory.

file Specifies the names of product files, separated by spaces, for which version
information is displayed. The default is to display no file information, or, if
-a is used, all file information.

Results

The output header contains the product name, version, operating system, patch
level, and installation date. The remaining display lists information about the file
or files specified. The files are listed in the following format:

File The name of the file.

Revision
The revision number of the file.

Patch The patch level of the file, if any.

Size (bytes)
The size of the file in bytes.

Checksum
The checksum for the file. Checksum is calculated using the UNIX sum
command. On AIX®, sum is used with the -o argument.

Comments

IBM Workload Scheduler file information is contained in the version.info file.
This file is placed in the TWS_home/version directory during installation. The
version.info file is in a specific format and is not altered.

You can move the version.info file to another directory. However, you must then
include the -f argument to locate the file.

Examples

To display information about the release of IBM Workload Scheduler installed, run
the following command:
./version

A sample output of this command is:
IBM Workload Scheduler/VERSION 9.21 (C) Copyright IBM Corp 1998, 2013

IBM Workload Scheduler 9.2 UNIX

To display information about all files, run the following command:
version/version -a -f version/version.info

To display information about the file customize, run the following command:
cd version
./version customize

672 IBM Workload Scheduler: User’s Guide and Reference

To display information about the file customize, when version.info is in
/apps/maestro, run the following command:
cd version
./version -f /apps/maestro/version.info customize

Unsupported commands
The following unsupported utility commands provide functions in Windows that
are similar to UNIX ps and kill commands. They can be used if similar Windows
utilities are not available.

Syntax

listproc

killproc pid

Comments

listproc
Displays a tabular listing of processes on the system.

killproc
Kills the process with the process ID pid.

Note: When run by the Administrator, killproc is capable of killing system
processes.

Chapter 16. Using utility commands 673

674 IBM Workload Scheduler: User’s Guide and Reference

Chapter 17. Using utility commands in the dynamic
environment

This chapter describes IBM Workload Scheduler utility commands for the dynamic
environment. While some commands run on the master domain manager or on a
dynamic domain manager, others run on the agents. They are installed in path
TWA_home/TDWB/bin, with the exceptions listed below, and run with the UNIX and
Windows operating systems. You run utility commands from the operating system
command prompt except the jobprop utility that you can use only in a job
definition as described in “Passing variables set by using jobprop in one job to
another in the same job stream instance” on page 613.

Table 123 contains the list of the utility commands, and for each command, its
description and the type of workstation where you can run it.

Table 123. List of utility commands for dynamic workstations

Command Description Workstation type

exportserverdata Downloads the list of dynamic
workload broker instances from the
IBM Workload Scheduler database
and changes a port number or a host
name.

master domain manager or
dynamic domain manager

importserverdata Uploads the list of dynamic workload
broker instances to the IBM Workload
Scheduler database after editing the
temporary file to change a port
number or a host name.

master domain manager or
dynamic domain manager

jobprop Sets variables values in a job that you
can pass to the successive job in the
same job stream instance. For more
information about how to use this
utility in a job definition, see
“Passing variables set by using
jobprop in one job to another in the
same job stream instance” on page
613. It is installed in
<TWS_INSTALLATION_DIR>/TWS/bin
directory and runs on UNIX and
Windows operating systems.

agents

movehistorydata Moves the data present in the IBM
Workload Scheduler database to the
archive tables

master domain manager or
dynamic domain manager

param Creates, displays, and deletes
variables and user passwords on
dynamic agents.

agents

This command is installed in
TWA_home/TWS/CLI/bin.

resource Creates, modifies, associates, queries,
or sets resources online or offline.

master domain manager,
dynamic domain manager, or
agents

675

|
|

Table 123. List of utility commands for dynamic workstations (continued)

Command Description Workstation type

sendevent Sends generic events to the currently
active event processor server.

dynamic domain managers,
and agents.

This command is installed in
TWA_home/TWS/CLI/bin.

twstrace Modifies at runtime the settings for
tracing on agents

agents

This command is installed in
TWA_home/TWS/CLI/bin.

Note: To remove the job logs files for dynamic agents workstations, set the value
of the MaxAge property in the JobManager.ini. For more details, see IBM Workload
Scheduler manuals: Administration guide - Configuring the agent - Configuring common
launchers properties [Launchers].

Command-line configuration file
The CLIConfig.properties file contains configuration information which is used
when typing commands. By default, arguments required when typing commands
are retrieved from this file, unless explicitly specified in the command syntax.

The CLIConfig.properties file is created at installation time and is located on the
master domain manager in the following path:
TWA_home/TDWB/config

The CLIConfig.properties file contains the following set of parameters:

Dynamic workload broker default properties

ITDWBServerHost
Specifies the IP address of dynamic workload broker.

ITDWBServerPort
Specifies the number of the dynamic workload broker port. The
default value is 9550.

ITDWBServerSecurePort
Specifies the number of the dynamic workload broker port when
security is enabled. The default value is 9551.

use_secure_connection
Specifies whether secure connection must be used. The default
value is false.

KeyStore and trustStore file name and path

keyStore
Specifies the name and path of the keyStore file containing private
keys. A keyStore file contains both public keys and private keys.
Public keys are stored as signer certificates while private keys are
stored in the personal certificates. The default value is
/Certs/TDWBClientKeyFile.jks.

trustStore
Specifies the name and path of the trustStore file containing public
keys. A trustStore file is a key database file that contains public
keys. The public key is stored as a signer certificate. The keys are

676 IBM Workload Scheduler: User’s Guide and Reference

|
|

|
|

used for a variety of purposes, including authentication and data
integrity. The default value is /Certs/TDWBClientTrustFile.jks.

Passwords for keyStore and trustStore files

keyStorepwd
Specifies the password for the keyStore file.

trustStorepwd
Specifies the password for the trustStore file.

File types for keyStore and trustStore files

keyStoreType
Specifies the file type for the keyStore file. The default value is JKS.

trustStoreType
Specifies the file type for the trustStore file. The default value is
JKS.

Default user ID and password for dynamic workload broker

tdwb_user
Specifies the user name for a user authorized to perform
operations on dynamic workload broker when security is enabled.
The default value is ibmschedcli. This password must be
previously defined on IBM WebSphere. For more information on
security considerations, see the IBM Workload Scheduler:
Administration Guide, SC23-9113.

tdwb_pwd
Specifies the password for a user authorized to perform operations
on dynamic workload broker when security is enabled. This
password must be previously defined on IBM WebSphere . For
more information on security considerations, refer to IBM Workload
Scheduler: Administration Guide.

Detail level for command-line log and trace information

logger.Level
Specifies the detail level for the command-line trace and log files.
The command-line trace and log files are created in the following
location:

log file
TWA_home/TDWB/logs/Msg_cli.log.log

trace file
TWA_home/TDWB/logs/Trace_cli.log

The default value is INFO.

logger.consoleLevel
Specifies the detail level for the log and trace information to be
returned to standard output. The default value is FINE. Supported
values for both the consoleLevel and loggerLevel parameters are
as follows:

ALL Indicates that all messages are logged.

SEVERE
Indicates that serious error messages are logged.

Chapter 17. Using utility commands in the dynamic environment 677

WARNING
Indicates that warning messages are logged.

INFO Indicates that informational messages are logged.

CONFIG
Indicates that static configuration messages are logged.

FINE Indicates that tracing information is logged.

FINER
Indicates that detailed tracing information is logged.

FINEST
Indicates that highly detailed tracing information is logged.

OFF Indicates that logging is turned off.

logger.limit
Specifies the maximum size of a log file in bytes. The default value
is 400000. When the maximum size is reached, a new file is
created, until the maximum number of files is reached. When all
files reach the maximum size and the maximum number of files is
exceeded, the oldest file is re-written.

logger.count
Specifies the maximum number of log files. The default value is 6.
When the maximum size is reached, a new file is created, until the
maximum number of files is reached. When all files reach the
maximum size and the maximum number of files is exceeded, the
oldest file is re-written. When a new file is created the 0 suffix is
appended after the file extension. The file with the 0 suffix is
always the current file. Any older files are renumbered accordingly.

java.util.logging.FileHandler.pattern
Specifies that the trace information for the Java Virtual Machine is
logged in the Trace_cli.log file. The default value is INFO.

java.util.logging.FileHandler.limit
Specifies the maximum size of a trace file in bytes. The default
value is 400000. When the maximum size is reached, a new file is
created, until the maximum number of files is reached. When all
files reach the maximum size and the maximum number of files is
exceeded, the oldest file is re-written.

java.util.logging.FileHandler.count
Specifies the maximum number of trace files. The default value is
6. When the maximum size is reached, a new file is created, until
the maximum number of files is reached. When all files reach the
maximum size and the maximum number of files is exceeded, the
oldest file is re-written. When a new file is created the 0 suffix is
appended after the file extension. The file with the 0 suffix is
always the current file. Any older files are renumbered accordingly.

java.util.logging.FileHandler.formatter
Specifies the formatter to be used for the Trace_cli.log file. The
default value is com.ibm.logging.icl.jsr47.CBEFormatter.

DAO common configuration
This section defines the RDBMS settings for the exportserverdata,
importserverdata, and movehistorydata commands. These commands use
the RDBMS installed on dynamic workload broker. These parameters are

678 IBM Workload Scheduler: User’s Guide and Reference

given values at installation time and should not be modified, except for
com.ibm.tdwb.dao.rdbms.useSSLConnections as noted below.

com.ibm.tdwb.dao.rdbms.rdbmsName
Specifies the RDBMS name.

com.ibm.tdwb.dao.rdbms.useDataSource
Specifies the data source to be used.

com.ibm.tdwb.dao.rdbms.jdbcPath
Specifies the path to the JDBC driver.

com.ibm.tdwb.dao.rdbms.jdbcDriver
Specifies the JDBC driver.

com.ibm.tdwb.dao.rdbms.userName
Specifies the name of the RDBMS user.

com.ibm.tdwb.dao.rdbms.password
Specifies the password of the RDBMS user.

com.ibm.tdwb.dao.rdbms.useSSLConnections
Specifies that access to the IBM Workload Scheduler DB2 database
by some of the CLI commands is over SSL. Is set to FALSE by
default. You must set to TRUE, if the database is DB2 and you use
FIPS security, for the following commands to work:
v exportserverdata

v importserverdata

v movehistorydata

exportserverdata
Use the exportserverdata command to download the list of dynamic workload
broker instances from the IBM Workload Scheduler database and change a port
number or a host name.

Syntax

exportserverdata ?

exportserverdata -dbUsr db_user_name -dbPwd db_user_password -exportFile
filename

Description

This command extracts a list of URIs (Uniform Resource Identifier) of all the
dynamic workload broker instances from the IBM Workload Scheduler database
and copies them to a temporary file so that, if either the hostname or the port
number of any of the instances listed are changed, the administrator can record
this information in the file and place it back in the database with the
importserverdata command. By default, the list of URIs is saved to the
server.properties file, located in the current directory.

This action is necessary because the list of dynamic workload broker instances
must be kept up-to-date at all times, since the Resource Advisor agents
periodically connect to the active instance to send their data about the resources
discovered in each computer. They are able to automatically switch between the
instances of this list and find the active one to copy these data in its Resource
Repository. Since the master domain manager and every backup master are

Chapter 17. Using utility commands in the dynamic environment 679

installed with a dynamic workload broker instance, the active dynamic workload
broker instance runs in the master domain manager, while an idle instance resides
in each backup master.

The URI pointing to each dynamic workload broker instance is the following:
https://hostname:port_number/JobManagerRESTWeb/JobScheduler

You can change only the hostname and the port number.

Important: The list is ordered. You can change the order of the instances as they
appear in this list, and the agents will follow this order. If you have several backup
masters and decide to follow a specific switching order when a master fails, you
can instruct the agents to switch to the right instance using this ordered list,
speeding up the transition time.

If your IBM Workload Scheduler database is DB2 and you use FIPS security, to run
this command successfully you need to have the
com.ibm.tdwb.dao.rdbms.useSSLConnections option set to TRUE in the
CLIConfig.properties file.

Options

? Displays help information.

-dbUsr db_user_name
The user name required to access the IBM Workload Scheduler database server.

-dbPwd db_user_password
The user password required to access the IBM Workload Scheduler database
server.

-exportFile filename
The name of the temporary file where the URIs extracted from the database are
copied for editing. This text file is created when you run the command and
you can open it with any editor to change the hostname or the port number. If
you do not specify a path, the file is created in the same directory where the
command is located, that is:
<TWA_home>/TDWB/bin

If you do specify a different path, make sure the path exists before you run
this command.

Example

To download the current list of all (active and backup) dynamic workload broker
instances and copy them in a file named c:\myservers\uris160709, run:
exportserverdata -dbUsr twsadm -dbPwd fprefect -exportFile c:\myservers\uris160709

The command returns file uris160709, that looks like this:
https://accrec015:42127/JobManagerRESTWeb/JobScheduler
https://prodop099:52529/JobManagerRESTWeb/JobScheduler
https://prodop111:31116/JobManagerRESTWeb/JobScheduler

prodop099 is the active dynamic workload broker instance because is hosted by the
currently active master domain manager, whereas accrec015 and prodop111 are
idle because they are hosted by backup masters.

680 IBM Workload Scheduler: User’s Guide and Reference

You can edit this file to apply your changes before using the importserverdata
command to upload the URIs back to the database.

See Also

“importserverdata”

importserverdata
Use the importserverdata command to upload the list of dynamic workload broker
instances to the IBM Workload Scheduler database after editing the temporary file
to change a port number or a host name.

Syntax

importserverdata ?

importserverdata -dbUsr db_user_name -dbPwd db_user_password -importFile
filename

Description

This command puts back the list of dynamic workload broker instances in the IBM
Workload Scheduler database from the temporary file where they were previously
downloaded with the exportserverdata command.

Use the exportserverdata and importserverdata commands if you have to record
any hostname or port number changes in the URIs of the instances. This is
necessary to keep the list of dynamic workload broker instances up-to-date at all
times, since the Resource Advisor agents periodically connect to the active instance
to send their data about the resources discovered in each computer. They are able
to automatically switch between the instances of this list and find the active one to
copy these data in its Resource Repository. Since the master domain manager and
every backup master are installed with a dynamic workload broker instance, the
active dynamic workload broker instance runs in the master domain manager,
while an idle instance resides in each backup master.

Important: The list is ordered. You can change the order of the instances as they
appear in this list, and the agents will follow this order. If you have several backup
masters and decide to follow a specific switching order when a master fails, you
can instruct the agents to switch to the right instance using this ordered list,
speeding up the transition time.

If your IBM Workload Scheduler database is DB2 and you use FIPS security, to run
this command successfully you need to have the
com.ibm.tdwb.dao.rdbms.useSSLConnections option set to TRUE in the
CLIConfig.properties file.

Options

? Displays help information.

-dbUsr db_user_name
The user name required to access the IBM Workload Scheduler database server.

Chapter 17. Using utility commands in the dynamic environment 681

-dbPwd db_user_password
The user password required to access the IBM Workload Scheduler database
server.

-importFile ffilename
The name of the temporary file you specified with the -exportFile keyword in
the exportserverdata command.

Example

To upload the edited list of dynamic workload broker instance URIs from file
c:\myservers\uris160709 to the IBM Workload Scheduler database, run:
importserverdata -dbUsr twsadm -dbPwd fprefect -importFile c:\myservers\uris160709

See Also

“exportserverdata” on page 679

jobprop
Use the jobprop command on a job definition to set variables locally for a job on
dynamic agents.

You can use this command on a native or executable job to set variable value that
you can pass in a successive job in the same job stream. The values are set at run
time.

Syntax

jobprop variable value

Arguments

variable
The variable name.

value The value for variable.

Comments

Variable names are case-sensitive. If variable names or values contain spaces, they
must be included in single quotes.

Examples

On UNIX operating systems the jobprop utility set the following variables in the
NC125133#JOBA executable job:
v VAR1 variable set to value1 value.
v VAR2 variable set to value2 value.
v VAR3 variable set to value3 value.
v VAR4 variable set to value4 value.
NC125133#JOBA
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/
scheduling/1.0/jsdl" xmlns:
jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle">

682 IBM Workload Scheduler: User’s Guide and Reference

<jsdl:application name="executable">
<jsdle:executable interactive="false">
<jsdle:script>#!/bin/sh

. /home/ITAuser/TWA/TWS/tws_env.sh
jobprop VAR1 value1
jobprop VAR2 value2
jobprop VAR3 value3
jobprop VAR4 value4
</jsdle:script>

</jsdle:executable>
</jsdl:application>

</jsdl:jobDefinition>
DESCRIPTION "Sample Job Definition"
RCCONDSUCC "RC>=0"
RECOVERY STOP

On Windows operating systems, the jobprop utility set the following variables in
the WIN1#JOB1 executable job:
v var1 variable set to value1 value.
v var2 variable set to value2 value.
v var3 variable set to value3 value.
v var4 variable set to value4 value.
WIN1#JOB1
TASK

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/
scheduling/1.0/jsdl" xmlns:
jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle">

<jsdl:application name="executable">
<jsdle:executable interactive="false">
<jsdle:script>

call C:\Progra~1\IBM\TWA\TWS\tws_env.cmd
jobprop var1 value1
jobprop var2 value2
jobprop var3 value3
jobprop var4 value4
</jsdle:script>

</jsdle:executable>
</jsdl:application>

</jsdl:jobDefinition>
DESCRIPTION "Sample Job Definition"
RCCONDSUCC "RC>=0"
RECOVERY STOP

Note: Before running the jobprop utility in the job definition, ensure you run the
tws_env.cmd command with the correct syntax call <TWS_INST_DIR>\TWS\
tws_env.cmd where <TWS_INST_DIR> is the IBM Workload Scheduler installation
directory.

movehistorydata
Use the movehistorydata when access to the database becomes too slow. This
command moves the data present in the Job Repository to the archive tables

Slow database access might be due to a huge number of records being present in
the database, for example when bulk job submissions are performed.

When you run this command, the jobs are moved to the following tables in the
database:

Chapter 17. Using utility commands in the dynamic environment 683

JOA_JOB_ARCHIVES
Contains archived job instances

JRA_JOB_RESOURCE_ARCHIVES
Contains resource information related to the jobs

MEA_METRIC_ARCHIVES
Contains metrics collected for the jobs

For more information on historical tables, refer to the IBM Workload Scheduler:
Administration Guide, SC23-9113.

Note: Depending on the number of jobs and accesses to the database, a cleanup
operation might cause some peaks in memory or CPU usage.

If your IBM Workload Scheduler database is DB2 and you use FIPS security, to run
this command successfully you need to have the
com.ibm.tdwb.dao.rdbms.useSSLConnections option set to TRUE in the
CLIConfig.properties file.

Syntax

movehistorydata ?

movehistorydata -dbUsr db_user_name-dbPwd db_user_password
[-successfulJobsMaxAge successfulJobsMaxAge [-notSuccessfulJobsMaxAge
notSuccessfulJobsMaxAge]

Description

This command performs a cleanup operation on the Job Repository database.
Based on the values you specify, information on submitted jobs is moved to the
archive database and the information in the archive database is deleted.

Use this command to temporarily override the settings defined in the
JobDispatcherConfig.properties file, when unexpected events require an
immediate database cleanup. The settings in the JobDispatcherConfig.properties
file remain unchanged. For more information on the
JobDispatcherConfig.properties file, refer to the IBM Workload Scheduler:
Administration Guide.

Options

? Displays help information.

-dbUsr db_user_name
Specifies the username for a user authorized to perform operations on the
database server.

-dbPwd db_user_password
Specifies the password for a user authorized to perform operations on the
database server.

-successfulJobsMaxAge successfulJobsMaxAge
Specifies how many hours jobs completed successfully or canceled must be
kept in the Job Repository database before being archived. The default value is
240 hours, that is ten days.

684 IBM Workload Scheduler: User’s Guide and Reference

-notSuccessfulJobsMaxAge notSuccessfulJobsMaxAge
Specifies how many hours jobs completed unsuccessfully or in unknown status
must be kept in the Job Repository database before being archived. The default
value is 720 hours, that is 30 days.

Return Values

The movehistorydata command returns one of the following values:
0 Indicates that movehistorydata completed successfully.
< > 0 Indicates that movehistorydata failed.

Examples
1. To move to the archive database all successful jobs completed in the last 40

hours, type the following command:
movehistorydata -dbUsr halmst -dbPwd dgordon -successfulJobsMaxAge 40

2. To move to the archive database all jobs in all supported statuses and remove
from the archive database all jobs older than 700 hours, type the following
command:
movehistorydata -dbUsr halmst -dbPwd dgordon -successfulJobsMaxAge 0

-notSuccessfulJobsMaxAge 0

param
Use the param command to define and manage user passwords and variables
locally on dynamic agents and IBM Workload Scheduler for z/OS Agents.

You can use this command on job types with advanced options. The values are
resolved at submission time on the agent where the job is submitted.

Note: On Windows 2012, the command is not supported on Windows PowerShell.

Authorization

To create, delete, or display variables or passwords, you must have Administrator
or root user rights on the workstation that runs the agent or TWS_user rights on
the agent.

Syntax

param -u | -V |
{-c | -ec} [file.section.|file..|section.] variable [value] |
[file.section.|file..|section.] variable |
{-d | -fd} [file.section.|file..|section.] variable

Arguments

-u Displays command usage information and exits.

-V Displays the command version and exits.

-c | -ec
Creates variable or password variable and defines its value value. The
variable or password is placed in a namespace file that you can organize in
one or more sections named section.

If you do not provide a file name file, the variable or password is placed in
default file jm_variables in path agent_installation_path\TWA\TWS\ITA\cpa\

Chapter 17. Using utility commands in the dynamic environment 685

config\jm_variables_files (/TWA/TWS/ITA/cpa/config/
jm_variables_files) on the dynamic agent.

If you do not provide a section name section, the variable or password is
placed in the main body of the file.

Important: If you are defining a password, you must specify a section
named password for variable. This specifies that variable is a password.

If you are creating a variable, variable is the variable name and value is its
value. If you are creating a password, variable is the user name and value is
its password. If you do not enter value within the arguments, the command
requests interactively to enter a value.

Argument -c creates the variable in clear form. Argument -ec creates the
variable in encrypted form. Passwords are encrypted by default also if you
use -c.

-d | -fd
Deletes (-d) or forces deletion (-fd) of a file, section, or variable (password).
You can use the following wildcards:

* Replaces one or more alphanumeric characters.

? Replaces one alphanumeric character.

With -d the command asks for confirmation before deleting. With -fd it
deletes without asking confirmation.

When you delete all the variables in a section, the section is removed from
the file. When you delete all the sections and all the variables from a file,
the file is removed.

file The name of the file used as a namespace for variable. If you do not specify
file, the command uses the default file jm_variables in path
agent_installation_path\TWA\TWS\ITA\cpa\config\jm_variables_files
(/TWA/TWS/ITA/cpa/config/jm_variables_files).

All the variable namespaces go in path agent_installation_path\TWA\TWS\ITA\
cpa\config\jm_variables_files (/TWA/TWS/ITA/cpa/config/
jm_variables_files).

section The name of the section within file where variable is defined. When variable
is used for a password, it must be placed in a section named password. No
section name is required to store variables.

value The value for variable.

variable
Can be a variable name or a user identification. If it is used for
identification, it must be placed in a section named password within the
namespace file.

Comments

To display a variable or password, a namespace file, or a section, use the command
as follows:
param [file.section.|file..|section.] variable

where you can use the * and ? wildcards described for the deletion command.

The namespace files, including default jm_variables, have no extension.

686 IBM Workload Scheduler: User’s Guide and Reference

Variable names are case sensitive.

On IBM i systems, if you use the QP2TERM and the QSH shells, passwords are
made visible during the creation process with param and are displayed clearly in
the shell logs. To guarantee the obfuscation of a password, you need to use the
AIXTERM or XTERM shells.

Examples

The command:
param -c compassets.hardware.platform1 unix

defines variable platform1 with value unix in section hardware of the new or
existing file named compassets. The value is not encrypted.

The command:
param -c compassets..platform1 unix

defines variable platform1 with value unix in the new or existing file named
compassets. The value is not encrypted.

The command:
param -ec hardware.platform1 unix

defines variable platform1 with value unix in section hardware in the default file
agent_installation_path\TWA\TWS\ITA\cpa\config\jm_variables_files\jm_variables.
The value is encrypted.

The command:
param -c compassets.password.jladams san07rew

defines variable jladams with value san07rew in section password of the new or
existing file named compassets. Since jladams is defined in section password, it is
interpreted as a username. The value san07rew is encrypted by default since it is
interpreted as a password.

The command:
param *.*.platform1

lists variable platform1 in all its defined locations. That is:
...\TWA\TWS\ITA\cpa\config\jm_variables_files\compassets.hardware.platform1=unix
...\TWA\TWS\ITA\cpa\config\jm_variables_files\compassets..platform1=unix
...\TWA\TWS\ITA\cpa\config\jm_variables_files\jm_variables.hardware.platform1=***

The command:
param password.*adam*

lists all variables including the string adam contained in the password section of all
files. In this case:
...\TWA\TWS\ITA\cpa\config\jm_variables_files\compassets.password.jladams=********

The command:
param -d compassets.password.jladams

deletes variable jladams.

Chapter 17. Using utility commands in the dynamic environment 687

The command:
param -d compassets.password.*

deletes all the variables found in section password and therefore removes this
section from file compassets.

The command:
param -d compassets.*.*

deletes all the contents (variables and sections containing variables) found in file
compassets and therefore removes the file.

resource
Use the resource command to create, modify, associate, query, or set resources
online or offline.

By correctly configuring the CLIConfig.properties file on the agent, you can run
this command also from any connected IBM Workload Scheduler agent. See “Using
the resource command from an agent” on page 696 for details.

Syntax

resource ?

resource [-usr user_name -pwd password]
{
[-create{ -logical name -type type[-quantity quantity][-offline] |
-group name[-offline]}]
|
[-delete{-logical name |
-group name }]
|
[-update{-computer name{[-setOnline | -setOffline]} |
-logical name
[-setName name]
[-setType type]
[-setQuantity quantity]
[-setOnline | -setOffline]
[-addComputer name |
-addComputerByID ID |
-removeComputer name |
-removeComputerByID ID]
|
-group name
[-setName name]
[-setOnline | -setOffline]
[-addComputer name |
-addComputerByID ID |
-removeComputer name |
-removeComputerByID ID |
-addLogical name |
-removeLogical name]}]
|
[-query{-computer name [-v] |
-logical name [-v] |

688 IBM Workload Scheduler: User’s Guide and Reference

-group name [-v]}
[-configFile configuration_file]
}

Description

Use this command to work with computers, logical resources, and resource groups.
In particular it is possible to:
v Create, update, list, and delete logical resources or groups
v Create logical resources, associate them to computers, define groups of logical

resources or computers, and set them online or offline
v Retrieve and update resource properties using the query and the update options
v Discover the list of computers associated to a logical resource performing a

detailed query on the logical resource
v Change the association between computers and logical resources
v Set resources online or offline and query computer properties

Options

? Displays help information.

-usr user_name
Specifies the user name for a user authorized to perform operations on the
command line. This option is required when security is enabled and the user
name is not defined in the CLIConfig.properties configuration file (with the
tdwb_user keyword).

-pwd password
Specifies the password for a user authorized to perform operations on the
command line. This option is required when security is enabled and the
password is not defined in the CLIConfig.properties configuration file (with
the tdwb_pwd keyword).

-create -logical name -type type
Creates the logical resource with the specified name and type. It is also
possible to set a specific quantity or set the resource offline by using optional
parameters in the following way:

-create -logical name -type type-quantity quantity -offline

-create -group name
Creates the resource group with the specified name. It is also possible to set it
offline by using the -offline optional parameter in the following way:

-create -group name -offline

-delete -logical name
Deletes the logical resource with the specified name.

-delete -group name
Deletes the resource group with the specified name.

-update -computer name
Updates the computer system with the specified name. You can set the
computer online or offline as follows:

-update -computer name -setOnline
Sets the specified computer online.

Chapter 17. Using utility commands in the dynamic environment 689

-update -computer name -setOffline
Sets the specified computer offline.

-update -logical name
Updates the specified logical resource. You can update the properties and
status of a resource in the following ways:

-update -logical name -setName name
Updates the name of the specified logical resource.

-update -logical name -setType type
Updates the type of the specified logical resource.

-update -logical name -setQuantity quantity
Updates the quantity of the specified logical resource.

-update -logical name -setOnline
Sets online the specified logical resource.

-update -logical name -setOffline
Sets offline the specified logical resource.

You can change the association between a logical resource and a computer in
the following ways:

-update -logical name -addComputer name
Associates the specified logical resource to the computer with the specified
name.

-update -logical name -addComputerByID ID
Associates the specified logical resource to the computer with the specified
ID.

-update -logical name -removeComputer name
Removes the association between the specified logical resource and the
computer with the specified name.

-update -logical name -removeComputerByID ID
Removes the association between the specified logical resource and the
computer with the specified ID.

-update -group name
Updates the specified resource group. You can update the properties and status
of a resource group in the following ways:

-update -group name -setName name
Updates the name of the specified resource group.

-update -group name -setOnline
Sets online the specified resource group.

-update -group name -setOffline
Sets offline the specified resource group.

You can add and remove logical resources or computers to and from a resource
group in the following ways:

-update -group name -addLogical name
Adds the logical resource with the specified name to the resource group.

-update -group name -removeLogical name
Removes the logical resource with the specified name from the resource
group.

690 IBM Workload Scheduler: User’s Guide and Reference

-update -group name -addComputer name
Adds the computer with the specified name to the resource group.

-update -group name -addComputerByID ID
Adds the computer with the specified ID to the resource group.

-update -group name -removeComputer name
Removes the computer with the specified name from the resource group.

-update -group name -removeComputerByID ID
Removes the computer with the specified ID from the resource group.

-query -computer name
Retrieves the following properties of the specified computer:
v Name
v Computer ID
v Operating system name
v Operating system type
v Operating system version
v Status
v Availability status

Retrieves the following additional properties if you add the -v option:
v Physical memory
v Virtual memory
v CPU utilization
v Free physical memory
v Free virtual memory
v Free swap space
v Allocated physical memory
v Allocated virtual memory
v Allocated swap space
v Processors number
v Allocated processors number
v Processor type
v Processor speed
v Manufacturer
v Model
v Serial number
v Network interfaces
v File systems

You can use the asterisk (*) as a wildcard character in the following ways:

As a single parameter
You must enclose it between double quotation marks, for example:
C:\IBM\TWA\TDWB\bin>resource –query –computer "*"

This command returns a list of all existing computers.

To complete a computer name
You must enclose the entire name between double quotation marks, for
example:

Chapter 17. Using utility commands in the dynamic environment 691

C:\IBM\TWA\TDWB\bin> resource –query –computer "lab123*"

This command returns a list of all existing computers with a name
starting with lab123.

-query -logical name
Retrieves the name and the type of the specified logical resource. Retrieves the
following additional properties if you add the -v option:
v Status
v Quantity
v Current allocation
v Computers list

You can use the asterisk (*) as a wildcard character in the following ways:

As a single parameter
You must enclose it between double quotation marks, for example:
C:\IBM\TWA\TDWB\bin>resource –query –logical "*"

This command returns a list of all existing logical resources.

To complete a resource name
You must enclose the entire name between double quotation marks, for
example:
C:\IBM\TWA\TDWB\bin> resource –query –logical "myRes*"

This command returns a list of all existing logical resources with a
name starting with myRes.

-query -group name
Retrieves the name and the status of the specified resource group. Retrieves the
list of computers and of logical resources contained in the resource group if
you use the –v option.

You can use the asterisk (*) as a wildcard character in the following ways:

As a single parameter
You must enclose it between double quotation marks, for example:
C:\IBM\TWA\TDWB\bin>resource –query –group "*"

This command returns a list of all existing resource groups.

To complete a resource group name
You must enclose the entire name between double quotation marks, for
example:
C:\IBM\TWA\TDWB\bin> resource –query –group "myResGrou*"

This command returns a list of all existing resource groups with a
name starting with myResGrou.

-configFile configuration_file
Specifies the name and the path of a custom configuration file. This keyword is
optional. If you do not specify it, the default configuration file is assumed. For
more information on the configuration file, see the section about the
CLIConfig.properties.

692 IBM Workload Scheduler: User’s Guide and Reference

Authorization

The user name and password for the command are defined in the
CLIConfig.properties file. To override the settings defined in this file, you can
enter the user name and the password when you type the command. For more
information on the CLIConfig.properties file, see the section about the
CLIConfig.properties.

Return Values

The resource command returns one of the following values:
0 Indicates that the command completed successfully.
< > 0 Indicates that the command failed.

Examples
v To create a logical resource named myApplication, of type Applications, type the

following command:
resource.bat -usr john -pwd BXVFDCGS -create -logical myApplication
-type Applications

The following output is displayed:
AWKCLI153I Logical resource "myApplication" created.

v To update the quantity of the logical resource named myApplication, type the
following command:
resource.bat -update -logical myApplication -setQuantity 5
-usr john -pwd BXVFDCGS

The following output is displayed:
AWKCLI165I Logical resource "myApplication" updated.

v To add the relationship between a logical resource and a computer, type the
following command:
resource.bat -update -logical myApplication -addComputer myComputer
-usr john -pwd BXVFDCGS

The following output is displayed:
AWKCLI165I Logical resource "myApplication" updated.

v To retrieve details of a logical resource named myApplication, type the following
command:
resource.bat -usr john -pwd BXVFDCGS -query -logical myApplication –v

The following output is displayed:
AWKCLI171I Calling the resource repository to perform a query on resources.

AWKCLI172I "1" logical resources were found for your query.
Details are as follows:

Resource Name:myApplication
Resource Type:Applications
Resource Status:Online
Resource Quantity:5
Resource Current Allocation:0
Computers List:

Computer Name:myComputer
Computer ID:D656470E8D76409F9F4FDEB9D764FF59
Computer Status:Online
Computer Availability Status:Unavailable

Chapter 17. Using utility commands in the dynamic environment 693

v To set the logical resource named myApplication offline, type the following
command:
resource.bat -usr john -pwd BXVFDCGS -update -logical myApplication
-setOffline

The following output is displayed:
AWKCLI165I Logical resource "myApplication" updated.

v To set the computer named myComputer offline, type the following command:
resource.bat -usr john -pwd BXVFDCGS -update -computer myComputer
-setOffline

The following output is displayed:
AWKCLI165I Computer "myComputer" updated.

v To retrieve basic properties of the computer named myComputer, type the
following command:
resource.bat -usr john -pwd BXVFDCGS -query -computer myComputer

The following output is displayed:
AWKCLI171I Calling the resource repository to perform a query on resources.
AWKCLI174I "1" computers were found for your query.
Details are as follows:

Computer Name: myComputer
Computer ID:D656470E8D76409F9F4FDEB9D764FF59
Computer OS Name: Microsoft Windows XP Professional English (United States) version
Computer OS Type:Windows XP
Computer OS Version:5
Computer Status:Offline
Computer Availability Status:Unavailable

v To retrieve detailed properties of the computer named myComputer, type the
following command:
resource.bat -usr john -pwd BXVFDCGS -query -computer myComputer -v

The following output is displayed:
AWKCLI171I Calling the resource repository to perform a query on resources.
AWKCLI174I "1" computers were found for your query.
Details are as follows:

Computer Name: myComputer
Computer ID:D656470E8D76409F9F4FDEB9D764FF59
Computer OS Name:Microsoft Windows XP Professional English (United States) version
Computer OS Type:Windows XP
Computer OS Version:5
Computer Status:Offline
Computer Availability Status:Unavailable
Computer details:

Physic memory = 2095536.0
Virtual memory = 3513788.0
Cpu utilization = 16.0
Free physic memory = 947972.0
Free virtual memory = 2333484.0
Free swap space = 52.0
Allocated physic memory = 0.0
Allocated virtual memory = 0.0
Allocated swap space = 0.0
Processors number = 1.0
Allocated processors number = 0.0
Processor type = x86

694 IBM Workload Scheduler: User’s Guide and Reference

Processor speed = 1995.00
Manufacturer = IBM
Model = 2668F8G
Serial number = L3WZYNC

v To retrieve detailed properties of the logical resource named geneva, including
the list of associated computers, type the following command:
resource.bat -usr john -pwd BXVFDCGS -query -logical geneva -v

The following output is displayed:
Setting CLI environment variables....
AWKCLI171I Calling the resource repository to perform a query on resources.
AWKCLI172I "1" logical resources were found for your query.
Details are as follows:

Resource Name:geneva
Resource Type:prod_wks
Resource Status:Online
Resource Quantity:1
Resource Current Allocation:0
Computers List:

Computer Name:bd_ff139_1
Computer ID:666AADE61CBA11E0ACBECD0E6F3527DE
Computer Status:Online
Computer Availability Status:Available
AWKCLI171I Calling the resource repository to perform a query on resources.

v To create a resource group named myGroup, type the following command:
resource.bat -usr john -pwd BXVFDCGS -create -group myGroup

The following output is displayed:
AWKCLI153I Resource group "myGroup" created.

v To retrieve basic properties of a resource group named myGroup, type the
following command:
resource.bat -query -group myGroup

The following output is displayed:
Setting CLI environment variables....

AWKCLI171I Calling the resource repository to perform a query on resources.
AWKCLI173I "1" groups were found for your query.
Details are as follows:

Group Name:myGroup
Group Status:Online

v To add the computer named myComputer to a resource group named myGroup,
type the following command:
resource.bat -update -group myGroup -addComputer myComputer

The following output is displayed:
Setting CLI environment variables....

AWKCLI165I Resource Group "myGroup" updated.

v To retrieve details of a resource group named myGroup, type the following
command:
resource.bat -query -group myGroup -v

The following output is displayed:

Chapter 17. Using utility commands in the dynamic environment 695

Setting CLI environment variables....
AWKCLI171I Calling the resource repository to perform a query on resources.
AWKCLI173I "1" groups were found for your query.
Details are as follows:

Group Name:myGroup
Group Status:Online
Computers List:
Computer Name:myComputer

Computer ID:D656470E8D76409F9F4FDEB9D764FF59
Computer Status:Online

Computer Availability Status:Unavailable

Resources List:

Using the resource command from an agent
You can create and manage resources and groups of resources and computers from
IBM Workload Scheduler agents other then on the master domain manager.

Enabling the resource command

To enable this feature you must:
1. Add the runtime for Java jobs when installing the agent. See information on

how to install the agent in the Planning and Installation manual.
2. Configure the CLIConfig.properties file. See the section about the

CLIConfig.properties.
3. Run the resource command. See “Running the resource command” on page

697.

For this purpose an additional instance of the CLIConfig.properties file is
installed on every agent. If you intend to run the resource command from an
agent, you must configure the CLIConfig.properties locally.

Configuring the local CLIConfig.properties file

When you install the agent, a local copy of CLIConfig.properties is automatically
installed and partially configured on your agent in the following path:
TWA_home/TWS/TDWB_CLI/config

To run the resource.bat or resource.sh command from the agent, customize the
following keywords of the local CLIConfig.properties file:

ITDWBServerHost
Specify the IP address or the hostname of the master domain manager.

ITDWBServerPort
Specify the number of the WebSphere Application Server HTTP port.

ITDWBServerSecurePort
Specify the number of the WebSphere Application Server HTTPS port.

tdwb_user
Specify the user name for a user authorized to perform operations on IBM
Workload Scheduler when security is enabled. This user must be
previously defined on IBM WebSphere. For more information on security
considerations, refer to IBM Workload Scheduler: Administration Guide,
SC23-9113.

696 IBM Workload Scheduler: User’s Guide and Reference

tdwb_pwd
Specify the password for a user authorized to perform operations on IBM
Workload Scheduler when security is enabled. This password must be
previously defined on IBM WebSphere. For more information on security
considerations, refer to IBM Workload Scheduler: Administration Guide.

Running the resource command

Depending on your operating system, to run the command enter:
On Windows

resource.bat
On UNIX

resource.sh

Switching managers

You can define in the CLIConfig.properties file the backup broker servers to be
contacted by the resource CLI if the current broker server does not respond. To
configure the resource CLI to contact the backup servers in case of failure, you
must specify in the CLIConfig.properties file the connection properties for each
backup broker server. List the same properties specified for the broker server
running on the primary master domain manager.

Specify the following connection properties:
ITDWBServerHost
ITDWBServerPort
ITDWBServerSecurePort
use_secure_connection
tdwb_user
tdwb_pwd

For backup servers, the same ordinal number must be appended to each property
name associated to the same backup server.

In the following example, in the CLIConfig.properties file is specified the broker
server running on the primary master domain manager and two backup broker
servers:
Properties of the Broker Server running on the primary master domain manager
ITDWBServerHost = BrokerServer.mycompany.com
ITDWBServerPort = 51117
ITDWBServerSecurePort = 51118
use_secure_connection = true
tdwb_user = tdwbUser
tdwb_pwd = xxxx

First (_1) Backup Broker Server Properties
ITDWBServerHost_1 = FirstBackupBrokerServer.mycompany.com
ITDWBServerPort_1 = 41117
ITDWBServerSecurePort_1 = 41118
use_secure_connection_1 = false
tdwb_user_1 = backup1TdwbUser
tdwb_pwd_1 = yyyy

Second (_2) Backup Broker Server Properties
ITDWBServerHost_2 = SecondBackupBrokerServer.mycompany.com
ITDWBServerPort_2 = 61117
ITDWBServerSecurePort_2 = 61118
use_secure_connection_2 = false
tdwb_user_2 = backup2TdwbUser
tdwb_pwd_2 = zzzz

Chapter 17. Using utility commands in the dynamic environment 697

You can define a maximum of 10 broker servers.

To prevent the resource CLI from contacting unavailable servers, the name of the
last successfully contacted broker server is saved in the ITDWBLastGoodServerHost
property of the CLIConfig.properties file.

sendevent

The command sends from a dynamic agent or domain manager the custom events
defined with the evtdef command to the event processor server currently active in
the production plan. As the events are received by the event processor, they trigger
the event rules in which they were specified.

Note: On Windows 2012, the command is not supported on Windows PowerShell.

Users can override the default destination server (defined by global options) by
specifying the hostname and the port of a new server.

Syntax

sendevent -V | ? | -help | -u | -usage

sendevent [-hostname hostname]
[-port port]
eventType
source
[[attribute=value]...]

Arguments

-V Displays the command version and exits.

? | -help | -u | -usage
Displays command usage information and exits.

-hostname hostname
Specifies the host name of an alternate event processor server other than
the currently active one.

-port port
Specifies the port number of an alternate event processor server other than
the currently active one.

eventType
One of the custom event types defined with the evtdef command in the
generic event provider and specified as the triggering event in an event
rule definition.

source The name of the event provider that you customized with evtdef. This is
also the name you must specify as the argument for the eventProvider
keyword in the definition of the event rules triggered by these custom
events.

The default name is GenericEventPlugIn.

attribute=value
One or more of the attributes qualifying the custom event type that are
specified as the triggering event attributes for the event rule.

698 IBM Workload Scheduler: User’s Guide and Reference

Comments

The command in this form applies to the dynamic environment only. To send
events from non-dynamic agents, see “sendevent” on page 667.

Examples

In this example an application running on a dynamic agent sends the
BusProcCompleted custom event type to the default event processor. The event is
that file calcweek finished processing.
sendevent BusProcCompleted GenericEventPlugIn TransacName=calcweek
Workstation=acagn002

The file name and the associated workstation are the two BusProcCompleted event
attributes that were specified as triggering event attributes in an associated event
rule.

twstrace
Changes the trace level on the dynamic agent and, at the same time, the same trace
level on the job manager gateway, without having to stop and restart the agent.

Note: On Windows 2012, the command is not supported on Windows PowerShell.

Authorization

You must login with the credentials of the user which installed the dynamic agent.
You can also use any authorization higher than the user which installed the
dynamic agent.

Syntax

twstrace -u | -V | -enable | -disable [-level value] [-maxFilesfiles_number]
[-maxFileBytes bytes_number] [-getLogs [-zipFile zip_file_name] [-hosthostname]
[-protocol {http|https}] [-port port number] [-inifile ini_filename]]

Arguments

enable
Enables tracing to the maximum level. The maximum level is 3000. By
default, traces are disabled.

disable
Disables tracing.

level value
The level of detail for the traces:

1000 Error, warning, and informational messages are traced.

2000 Error and warning messages are traced.

3000 Error messages are traced.

maxFiles files_number
The maximum number of the trace files you want to create.

maxFileBytes bytes_number
The maximum size in bytes that the trace file can reach. The default is
1024000 bytes.

Chapter 17. Using utility commands in the dynamic environment 699

getLogs
To collect the trace files, the message files and the configuration files in a
compressed file.

zipfile zip_file_name
The name of the compressed file that contains all the information,
that is logs, traces, and configuration files (ita.ini and
jobManager.ini) for the agent. The default is logs.zip.

host hostname
The host name or the IP address of the agent for which you want
to collect the traces. The default is localhost.

protocol http|https
The protocol of the agent for which you are collecting the traces.
The default is the protocol specified in the .ini file of the agent.

port port number
The port of the agent. The default is the port number of the agent
where you are running the command line.

inifile ini_filename
The name of the .ini file that contains the SSL configuration of the
agent for which you want to collect the traces. The default is the
.ini file of the local agent. If you are collecting the tracing for a
remote agent for which you customized the security certificates,
you must import the certificate on the local agent and specify the
name of the .ini file that contains the configuration. To do this,
perform the following actions:
1. Extract the certificate from the keystore of the remote agent.
2. Import the certificate in a local agent keystore. You can create

an ad hoc keystore whose name must be
TWSClientKeyStore.kdb.

3. Create a .ini file in which you specify:
v 0 in the tcp_port property as follows:

tcp_port=0

v The port of the remote agent in the ssl_port property as
follows:
ssl_port=<ssl_port>

v The path to the keystore you created in step 2. in the
key_repository_path property as follows:
key_repository_path=<local_agent_keystore_path>

u Displays the command usage.

V Displays the version of the product.

Examples

To set the trace level to record error and warning messages, run the following
command:
twstrace -enable -level 2000

To retrieve the information about the trace level, run the following command:
twstrace -level -maxFiles -maxFileBytes

AWSITA1761 The trace properties are: level="1000",
maxFiles="3", file size="1024000"

700 IBM Workload Scheduler: User’s Guide and Reference

Chapter 18. Getting reports and statistics

This chapter describes the report commands that you use to get summary or
detailed information about the previous or next production plan. These commands
are run from the operating system command prompt on the master domain
manager. The chapter is divided into the following sections:
v “Setup for using report commands”
v “Command descriptions” on page 702
v “Sample report outputs” on page 709
v “Report extract programs” on page 719
v “Running Dynamic Workload Console reports and batch reports” on page 730
v “Running batch reports from the command line interface” on page 735

Setup for using report commands
About this task

To configure the environment for using report commands set the PATH and
TWS_TISDIR variables by running one of the following scripts:
v . ./TWS_home/tws_env.sh for Bourne and Korn shells in UNIX
v . ./TWS_home/tws_env.csh for C shells in UNIX
v TWS_home\tws_env.cmd in Windows

The report commands must be run from the TWS_home directory.

The output of the report commands is controlled by the following environment
variables:

MAESTROLP
Specifies the destination of the output of a command. The default is
stdout. You can set it to any of the following:

filename
Writes the output to a file.

> filename
UNIX only. Redirects output to a file, overwriting the contents of
the file. If the file does not exist it is created.

>> filename
UNIX only. Redirects output to a file, appending to the end of the
file. If the file does not exist it is created.

| command
UNIX only. Pipes output to a system command or process. The
system command is always run.

|| command
UNIX only. Pipes output to a system command or process. The
system command is not run if there is no output.

MAESTRO_OUTPUT_STYLE
Specifies the output style for long object names. With value LONG, full
length (long) fields are used for object names.

701

If the variable is set to anything other than LONG, long names are
truncated to eight characters and a plus sign. For example: A1234567+.

You should use a fixed font size to obtain the correct format of the reports outputs.

Changing the date format
About this task

In IBM Workload Scheduler, the date format affects all commands that accept a
date as an input option (except the datecalc command), and the headers in all
reports. The default date format is mm/dd/yy. To select a different format, edit the
date format local option store in the localopts file. The values are:

Table 124. Date formats

date format value Corresponding date format output

0 yy/mm/dd

1 mm/dd/yy

2 dd/mm/yy

3 Native language support variables.

See the IBM Workload Scheduler Administration Guide for details on modifying local
variables in the localopts file.

Command descriptions
IBM Workload Scheduler report commands are listed in Table 125:

Table 125. List of report commands

Command Description

rep1 Report 01 - Job Details Listing

rep2 Report 02 - Prompt Listing

rep3 Report 03 - Calendar Listing

rep4a Report 04A - Parameter Listing

rep4b Report 04B - Resource Listing

rep7 Report 07 - Job History Listing

rep8 Report 08 - Job Histogram

rep11 Report 11 - Planned Production Schedule

reptr
Report 09A - Planned Production Summary
Report 09B - Planned Production Detail
Report 09D - Planned Production Detail (Long Names)
Report 10A - Actual Production Summary
Report 10B - Actual Production Detail

xref Report 12 - Cross Reference Report

rep1 - rep4b
These commands print the following reports:

702 IBM Workload Scheduler: User’s Guide and Reference

Report 01
Job Details Listing

Report 02
Prompt Listing

Report 03
Calendar Listing

Report 04A
Parameters Listing

Report 04B
Resource Listing

Syntax

rep[x] [-V|-U]

Run the command from the TWS_home directory.

For rep3, run the command from a directory to which you have write access.

When printing reports for job types with advanced options, the JCL file field
returns the application name.

Arguments

x A number corresponding to the report. The numbers are: 1, 2, 3, 4a, or 4b.

-U Displays the command usage information and exits.

-V Displays the command version and exits.

Comments

The Job Details Listing (report 01) cannot include jobs that were submitted using
an alias name.

The elapsed time displayed for a shadow job is the elapsed time of the remote job
to which it is bound.

Examples

Print Report 03, User Calendar Listing:
rep3

Display usage information for the rep2 command:
rep2 -U

In UNIX, print two copies of report 04A, User Parameters Listing, on printer lp2:
MAESTROLP="| lp -dlp2 -n2"
export MAESTROLP
rep4a

This is a sample report for job WAGES2_1:
Job: WAGES2_1 #FTP Description:
JCL File : filetransfer
Logon : Creator: tws86
Recovery Job :

Chapter 18. Getting reports and statistics 703

Recovery Type : STOP
Recovery Prompt :
Composer Autodoc : Yes
Total Runs : 0 - 0 Successful, 0 Aborted

Elapsed(mins) CPU(secs)
Total 0 0
Normal 0
Last Run 0 0 (On 0 at 0)
Maximum 0 0 (On 0)
Minimum 0 0 (On 0)>

rep7
This command prints Report 07-Job History Listing.

Syntax

rep7 -V|-U

rep7
[-c wkstat]
[-s jstream_name]
[-j job]
[-f date]
[-t date]
[-l]

Run the command from the TWS_home directory.

Arguments

-U Displays the command usage information and exits.

-V Displays the command version and exits.

-c wkstat
Specifies the name of the workstation on which the jobs run. The default is
all workstations.

-s jstream_name
Specifies the name of the job stream in which the jobs run. The default is
all job streams.

-j job Specifies the name of the job. The default is all jobs.

-f date Specifies to print job history from this date forward. Enter the date as
yyyymmdd. The default is the earliest available date.

-t date Specifies to print job history up to this date. Enter the date as yyyymmdd.
The default is the most recent date.

-l Limits the summary line information to the jobs which fall in the date
range specified by the -f or -t options. Using this option causes the order of
output to be reversed: the job summary line will be printed after the
individual job run lines. This option is valid only if you also specify at
least one of the -f or -t options.

Comments

The elapsed time displayed for a shadow job is the elapsed time of the remote job
to which it is bound.

704 IBM Workload Scheduler: User’s Guide and Reference

Any time you run rep7 the output of the command contains the information stored
until the last time you run JnextPlan, the information related to the run of the
current production plan will be contained in the rep7 output the next time you run
JnextPlan. For this reason if you run rep7 after having generated the production
plan for the first time or after a ResetPlan command, the output of the command
contains no statistic information.

Examples

Print all job history for workstation ux3:
rep7 -c ux3

Print all job history for all jobs in job stream sked25:
rep7 -s sked25

Print job history for all jobs in job stream mysked on workstation x15 between
1/21/2005 and 1/25/2005:
rep7 -c x15 -s mysked -f 20050121 -t 20050125

rep8
This command prints Report 08-Job Histogram.

Syntax

rep8 -V|-U

rep8
[-f date -b time -t date -e time]
[-i file]
[-p]

rep8
[-b time -e time]
[-i file]
[-p]

Run the command from the TWS_home directory.

Arguments

-U Displays the command usage information and exits.

-V Displays the command version and exits.

-f date Specifies to print job history from this date forward. Enter the date as
yyyymmdd. The default is today's date.

-b time
Specifies to print job history from this time forward. Enter the time as
hhmm. The default is the IBM Workload Scheduler startOfDay.

-t date Specifies to print job history up to this date. Enter the date as yyyymmdd.
The default is the most recent date.

-e time Specifies to print job history up to this time. Enter the time as hhmm. The
default is the IBM Workload Scheduler start of day time.

Chapter 18. Getting reports and statistics 705

-i file Specifies the name of the log file from which job history is extracted. Note
that log files are stored in the schedlog directory. The default is the current
Symphony file.

Note: Ensure that the time range specified by the [-f date -b time -t date -e
time] arguments is within the date and time range defined in the -i file log
file name.

-p Specifies to insert a page break after each run date.

Comments

Any time you run rep8 the output of the command contains the information stored
until the last time you run JnextPlan, the information related to the run of the
current production plan will be contained in the rep8 output the next time you run
JnextPlan. For this reason if you run rep8 after having generated the production
plan for the first time or after a ResetPlan command, the output of the command
contains no statistic information.

Examples

Print a job histogram which includes all information in the current plan (Symphony
file):
rep8

Print a job histogram beginning at 6:00 a.m. on 1/25/2005, and ending at 5:59 a.m.
on 1/26/2005:
rep8 -f 20050125 -b 0600 -t 20050126 -e 0559 -i schedlog/M199801260601

Print a job histogram, from the current plan (Symphony file), beginning at 6:00 am,
and ending at 10:00 pm:
rep8 -b 0600 -e 2200

rep11
This command prints Report 11-Planned Production Schedule.

Syntax

rep11 -V|-U

rep11
[-m mm[yy] [...]]
[-c wkstat [...]]
[-s jstream_name]
[-o output]

Run the command from the TWS_home directory.

Arguments

-U Displays the command usage information and exits.

-V Displays the command version and exits.

-m mm[yy]
Specifies the months to be reported. Enter the month number as mm. The
default is the current month.

706 IBM Workload Scheduler: User’s Guide and Reference

You can also enter a year as yy. The default is the current year or next year
if you specify a month earlier than the current month.

-c wkstat
Specifies the workstations to be reported. The default is all workstations.

-s jstream_name
Specifies the name of the job stream in which the jobs run. The default is
all job streams.

-o output
Specifies the output file. The default is the file defined by the
MAESTROLP variable. If MAESTROLP is not set, the default is stdout.

Examples

Report on June, July, and August of 2004 for workstations main, site1 and sagent1:
rep11 -m 0604 0704 0804 -c main site1 sagent1

Report on June, July, and August of this year for all workstations, and direct
output to the file r11out:
rep11 -m 06 07 08 -o r11out

Report on this month and year for workstation site2:
rep11 -c site2

reptr
This command prints the following reports:

Report 09A
Planned Production Summary

Report 09B
Planned Production Detail

Report 10A
Actual Production Summary

Report 10B
Actual Production Detail

Report 09A and Report 09B refer to future production processing while Report 10A
and Report 10B show processing results and status of each single job of already
processed production.

Syntax

reptr [-V|-U]

reptr -pre
[-{summary | detail}]
[symfile]

reptr -post
[-{summary | detail}]
[logfile]

Run the command from a directory to which you have write access.

Chapter 18. Getting reports and statistics 707

Arguments

-U Displays the command usage information and exits.

-V Displays the command version and exits.

-pre Specifies to print the preproduction reports (09A and 09B).

-post Specifies to print the post-production reports (10A and 10B).

-summary
Specifies to print the summary reports (09A and 10A). If -summary and
-detail are omitted, both sets of reports are printed.

-detail Specifies to print the detail reports (09B and 10B). If -summary and -detail
are omitted, both sets of reports are printed.

symfile Specifies the name of the plan file from which reports will be printed. The
default is Symnew in the current directory. If the file is not in the current
working directory, you must add the absolute path to the file name.

logfile Specifies the full name of the log file from which the reports will be
printed. Note that plan log files are stored in the schedlog directory. The
default is the current plan (Symphony file).

If the command is run with no options, the two pre reports (09A and 09B) are
printed and the information is extracted from the Symphony file.

Examples

Print the preproduction detail report from the Symnew file:
reptr -pre -detail

Print the preproduction summary report from the file mysym:
reptr -pre -summary mysym

Print the post-production summary report from the log file M199903170935:
reptr -post -summary schedlog/M199903170935

Print the preproduction reports reading from the Symphony file.
reptr

When the arguments are specified, the preproduction reports are based on
information read from the Symnew file while the post-production reports are based
on information read from the Symphony file.

xref
This command prints Report 12-Cross Reference Report.

Syntax

xref [-V|-U]

xref
[-cpu wkstat]
[-depends|-files|-jobs|-prompts|-resource|-schedules|-when[...]]

Run the command from the TWS_home directory.

708 IBM Workload Scheduler: User’s Guide and Reference

Arguments

-U Displays the command usage information and exits.

-V Displays the command version and exits.

-cpu wkstat
Specifies to print the report for the named workstation. The @ wildcard is
permitted, in which case, information from all qualified workstations is
included. The default is all workstations.

-depends
Specifies to print a report showing the job streams and jobs that are
successors of each job.

-files Specifies to print a report showing the job streams and jobs that are
dependent on each file.

-jobs Specifies to print a report showing the job streams in which each job is
run.

-prompts
Specifies to print a report showing the job streams and jobs that are
dependent on each prompt.

-resource
Specifies to print a report showing the job streams and jobs that are
dependent on each resource.

-schedules
Specifies to print a report showing the job streams and jobs that are
successors of each job stream.

-when Specifies to print a report showing job stream Include and Exclude dates.

If the command is run with no options, all workstations and all options are
selected.

Examples

Print a report for all workstations, showing all cross-reference information:
xref

Print a report for all workstations. Include cross-reference information about all
successor dependencies:
xref -cpu @ -depends -schedules

Sample report outputs

Report 01 - Job Details Listing:
TWS for UNIX (AIX)/REPORT1 8.3 (1.7) ibm Page 1
Report 01 Job Details Listing 03/06/06

Job : FTAWIN8+ #SCHEDDDD
Description :
JCL File : dir
Logon : maestro_adm
Creator : root
Recovery Job :
Recovery Type : STOP
Recovery Prompt :

Chapter 18. Getting reports and statistics 709

composer Autodoc : Yes
Total Runs : 0 - 0 Successful, 0 Aborted

Elapsed(mins) CPU(secs)
Total 00:00:00 0
Normal 00:00:00
Last Run 00:00:00 0 (On at 00:00)
Maximum 00:00:00 0 (On)
Minimum 00:00:00 0 (On)

Job : MASTER8+ #JnextPlan
Description : ADDED BY composer FOR SCHEDULE MASTER821#FINAL.
JCL File : /test/maestro_adm/tws/JnextPlan
Logon : maestro_adm
Creator : maestro_adm
Recovery Job :
Recovery Type : STOP
Recovery Prompt :
composer Autodoc : Yes
Total Runs : 11 - 11 Successful, 0 Aborted

Elapsed(mins) CPU(secs)
Total 00:00:14 44
Normal 00:00:01
Last Run 00:00:01 4 (On 03/05/06 at 23:16)
Maximum 00:00:02 4 (On 03/04/06)
Minimum 00:00:01 4 (On 03/04/06)

Job : MASTER8+ #JOB1
Description : ADDED BY composer.
JCL File : pwd
Logon : ^ACCLOGIN^
Creator : root
Recovery Job :
Recovery Type : STOP
Recovery Prompt :
composer Autodoc : Yes
Total Runs : 1 - 1 Successful, 0 Aborted

Elapsed(mins) CPU(secs)
Total 00:00:01 0
Normal 00:00:01
Last Run 00:00:01 0 (On 03/05/06 at 22:22)
Maximum 00:00:01 0 (On 03/05/06)
Minimum 00:00:01 0 (On 03/05/06)

* * * * E n d o f R e p o r t * * * *

In the output you see the values set in the “Job” on page 876 as follows::

composer Autodoc
Says if the job statement was described in the job stream definition using
the command line interface.

CPU (secs)
Is the actual time, expressed in seconds, the job made use of the CPU to
run.

Total Is the sum of CPU time recorded for the 'Total Runs'.

Normal
Is the average value of CPU time recorded during the 'Total Runs'.

Last Run
Is the CPU time recorded during the last run of the job.

710 IBM Workload Scheduler: User’s Guide and Reference

Maximum
Is the maximum among the values collected for CPU time during
the 'Total Runs' (calculated only for jobs ended successfully).

Minimum
Is the minimum among the values collected for CPU time during
the 'Total Runs' (calculated only for jobs ended successfully).

Creator
Is the name of the user who created the job definition.

Description
Is the textual description of the job set in the description field of the job
definition statement.

Elapsed
Is the amount of time, expressed in minutes, that includes both the time
during which the job made use of the CPU and the time the job had to
wait for other processes to release the CPU.

Total Is the sum of Elapsed time recorded for the 'Total Runs'.

Normal
Is the average value of Elapsed time recorded during the 'Total
Runs'.

Last Run
Is the Elapsed time recorded during the last run of the job.

Maximum
Is the maximum among the values collected for Elapsed time
during the 'Total Runs' (calculated only for jobs ended
successfully).

Minimum
Is the minimum among the values collected for Elapsed time
during the 'Total Runs' (calculated only for jobs ended
successfully).

Note: The elapsed time displayed for a shadow job is the elapsed time of
the remote job to which it is bound.

JCL File
Is the name of the file set in the scriptname field that contains the script to
run, or the command specified in the docommand field to invoke when
running the job.

Job Is the identifier of the job, [workstation#]jobname.

Logon Is the user name, specified in the streamlogon field, under which the job
runs.

Recovery Job
Is the job, specified as after [workstation#]jobname, that is run if the parent
job abends.

Recovery Prompt
Is the text of the prompt, specified in the abendprompt field, that is
displayed if this job abends.

Recovery Type
Is the recovery option set in the job definition. It can be set to stop,
continue, or rerun.

Chapter 18. Getting reports and statistics 711

Report 02 - Prompt Listing:
TWS for UNIX (AIX)/REPORT2 8.3 (1.7) ibm Page 1
Report 02 Prompt Message Listing 03/06/06

Prompt Message

PROMPT1 Reply YES when ready to run acc103 and acc104.
PROMPT2 Have all users logged out?
CALLNO 555-0911
CALLOPER Call ^PERSON2CALL^ at ^CALLNO^ to ensure all time cards have been processed.
PERSON2CALL Lou Armstrong

Total number of prompts on file: 5

* * * * E n d o f R e p o r t * * * *

The Report 02 output lists the name and the text of the prompts defined in the
environment.

Report 03 - Calendar Listing:
TWS for UNIX (AIX)/REPORT3 8.3 (1.7) ibm Page 1
Report 03 User Calendar List 03/06/06

Calendar Type: MONTHEND
Description: End of month until end of 2006.

Jan 2006 Feb 2006 Mar 2006
Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

.
. .
. .
. .
. 28 31
. 31

Apr 2006 May 2006 Jun 2006
Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

.
. .
. .
. .
. 30 . . 31 30

Jul 2006 Aug 2006 Sep 2006
Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

.
. .
. .
. .
. 31 30
31

Oct 2006 Nov 2006 Dec 2006
Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

.
. .
. .
. .
. 30 31
. 31

712 IBM Workload Scheduler: User’s Guide and Reference

* * * * E n d o f R e p o r t * * * *

In the output you see highlighted the end of month days selected in calendar
MONTHEND.

Report 04A - Parameter Listing:
TWS for UNIX (AIX)/REPORT4A 8.3 (1.7) ibm Page 1
Report 4A User Parameter Listing 03/06/06

Parameter Name Contents

ACCHOME /usr/local/Tivoli/maestro_adm
ACCLOGIN maestro_adm
BADEXIT 99
GOODEXIT 0
SCRPATH /usr/local/Tivoli/maestro_adm/scripts

Number of Parameters on file: 5

* * * * E n d o f R e p o r t * * * *

The Report 04A output lists the name and the content of the parameters defined in
the environment.

Report 04B - Resource Listing:
TWS for UNIX (AIX)/REPORT4B 8.3 (1.7) ibm Page 1
Report 4B TWS Resources Listing 03/06/06

Resource Number
CPU Name Avail Description

FTAHP #DATTAPES 1 DAT tape units

FTAWIN8+ #QUKTAPES 2 Quick tape units

MASTER8+ #TAPES 2 Tape units

MASTER8+ #JOBSLOTS 1024 Job slots

Number of Resources on file: 4

* * * * E n d o f R e p o r t * * * *

The Report 04B output lists the name, the number of available resources defined in
the environment and their description.

Report 07 - Job History Listing:
TWS for UNIX (AIX)/REPORT7 8.3 (1.13) ibm Page 1
Report 07 Job History Listing 03/08/06

Date Time Job Stream Name Elapsed CPU Status

Job:MASTER8+#MyJS Runs: Aborted 0 Successful 11 Elapsed Time: Normal 1 Min 1 Max 2

03/03/06 01:46 MASTER8+#JS1 1 4 SU
03/03/06 19:08 MASTER8+#JS2 1 4 SU
03/03/06 19:33 MASTER8+#JS3 1 4 SU

Chapter 18. Getting reports and statistics 713

03/03/06 19:37 MASTER8+#JS4 1 4 SU
03/03/06 23:08 MASTER8+#JS5 2 4 SU
03/03/06 05:59 MASTER8+#JS_A 1 4 SU
03/05/06 05:59 MASTER8+#JS_G 1 4 SU
03/06/06 05:59 MASTER8+#JS_H 1 4 SU
03/06/06 21:57 MASTER8+#TIMEJ 2 4 SU
03/06/06 23:16 MASTER8+#SLEEPJ 1 4 SU

Job:MASTER8+#JOB1 Runs: Aborted 0 Successful 1 Elapsed Time: Normal 1 Min 1 Max 1

03/06/06 22:22 MASTER8+#JOBS 1 0 SU

* * * * E n d o f R e p o r t * * * *

The Report 7 reads the information about job run stored in the database and
displays them. The possible states for a job are:

AB for failed jobs

SU for successfully completed jobs

DN for submitted jobs whose state is unknown because neither a successful or
a failure message has been received yet.

Report 08 - Job Histogram:
TWS for UNIX (AIX)/REPORT8 8.3 (1.7) ibm Page 1
Report 08 Job Histogram 03/05/06 14:05 - 03/06/06 14:04 03/06/05

Interval Per Column: 15 minutes

1 1 1 1 2 2 2 0 0 0 0 0 0 0 1 1 1
4 5 7 8 0 1 3 0 2 3 5 6 8 9 1 2 4
0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4

Job Name Stat
03/06/06

CF05066+.JnextPlan SU .*.

* * * * E n d o f R e p o r t * * * *

The output of Report 8 shows the time slots during which the jobs run. The
numbers at the top of the job histogram are times, written top-down, for example
the first column 1405 means 2:05PM. The time slots when the job run are marked
by asterisks when the position of the marker is aligned with a time written
top-down, and dots.

Report 9B - Planned Production Detail:
TWS for UNIX (AIX) REPORTER 8.3 (1.7) ibm Page 1
Report 09B Symnew Planned Production Detail For 03/06/06 03/06/06

Estimated
Job Name Run Time Pri Start Time Until Every Limit Dependencies

Schedule NETAG #EXTERNAL 0
E0000000 0

Total 00:00
Total 00:00

Schedule MYFTA #IWDSKE 10 NETAG#EXTERNAL.E0000000

714 IBM Workload Scheduler: User’s Guide and Reference

JOBIWD 10 23:00(03/06/06) 01:00
Total 00:00

Schedule MYMST #TESTSKE 00:29 10
TESTCRO+ 00:01 10
NEWTEST 00:29 10 08:30(03/06/06) TESTCROME

Total 00:29

Schedule MYMST #FINAL 00:00 10 05:59(03/07/06)
JnextPlan 00:01 10

Total 00:01
Total 00:34

* * * * E n d o f R e p o r t * * * *

The output of Report 9B shows what is in plan to run on the selected date in the
IBM Workload Scheduler environment. The information displayed is taken from
the definitions stored in the IBM Workload Scheduler database. The output shows
the job streams that are planned to run on the 6th of March 2006 with their
description, the list of jobs they contain, the time dependencies, repetition rate, and
job limit, if set, and the dependency on other jobs or job streams. For example, job
stream named iwdske that is planned to run on MYFTA has a follows dependency
on job NETAG#EXTERNAL.E0000000 that is planned to run on the network agent
named NETAG.

The Start Time field in the output of the reports generated by the reptr command
shows:

A time restriction set in the job stream definition using the at keyword.
If the date is enclosed in parenthesis (), for example:
Start Time
06:00(03/20/06)

The time the job stream is planned to run set in the job stream definition using
the schedtime keyword.

If the date is enclosed in braces {}, for example:
Start Time
06:00{03/20/06}

The time the job stream actually started to run.
If the date is not enclosed either in braces or in parenthesis, for example:
Start Time
06:00 03/20/06

Report 10B - Actual Production Detail:
TWS for UNIX (AIX) REPORTER 8.3 (1.7) ibm Page 1
Report 10B Symphony Actual Production Detail For 03/06/06 03/07/06

Estimated Actual CPU Job
Job Name Run Time Priority Start Time Run Time Seconds Number Status

Schedule NETAG #EXTERNAL 0 EXTRN
E0000000 0 ERROR
Total 00:00 00:00 0

Schedule MYMST #MONTHSKE 00:02 10 06:01(03/06/06) 00:03 SUCC
GETLOGS 00:02 10 06:01(03/06/06) 00:03 #J11612 SUCC
Total 00:02 00:03 0

Schedule MYFTA #IWSKE 10 HOLD
JOBIWD 10 HOLD

Chapter 18. Getting reports and statistics 715

Total 00:00 00:00 0

Schedule MYMST #TESTSKE 00:29 10 06:01(03/06/06) 00:02 STUCK
TESTCRO+ 00:01 10 06:01(03/06/06) 00:02 #J11613 ABEND
NEWTEST 00:29 10 HOLD
Total 00:30 00:02 0

Schedule MYMST #FINAL 00:01 10 05:59(03/07/06) HOLD
JnextPlan 00:01 10 HOLD
Total 00:01 00:00 0

Total 01:38 00:09 0

* * * * E n d o f R e p o r t * * * *

The output of Report 10B shows states of the scheduling activities currently
running across the IBM Workload Scheduler network. The information displayed is
taken from copy of the Symphony file that is currently used and updated across the
scheduling environment. This means that anytime this report command is run
during the processing the information displayed reflects the actual status of the
planned activity.

If you compare this output with the output of Report 9B you see that job stream
MONTHSKE has run during the current production day, the 6th of March, but is not in
plan to run the next day, the 7th of March. The job stream EXTERNAL instead failed
on the network agent NETAG and so the IWSKE job stream that has a follows
dependency from EXTERNAL job stream remains in the HOLD state.

The job stream TESTSKE, instead, is in state STUCK, that means that operator
intervention is needed, because within the job stream run time, job TESTCROME, after
having started with job ID J11613, failed in ABEND state causing the depending
job NEWTEST to turn into HOLD state.

Report 11 - Planned Production Schedule:
TWS for UNIX (AIX)/REPORT11 8.3 (1.7) Page 1
Report 11 Planned Production Schedule for FEB 2006 03/08/065

CPU: FTAWIN8+

Num Est Cpu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Schedule Jobs Time Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo
SCHED1 1 1 *

An * between Schedule name and Num Jobs indicates that the schedule has jobs running on other cpus.
--
Estimated Cpu Time Per Day in Seconds

Mon Tue Wed Thu Fri Sat Sun

1 2 3 4 5 6
0 0 0 0 0 0

7 8 9 10 11 12 13
0 0 0 0 1 0 0

14 15 16 17 18 19 20
0 0 0 0 0 0 0

21 22 23 24 25 26 27
0 0 0 0 0 0 0

28

716 IBM Workload Scheduler: User’s Guide and Reference

0

TWS for UNIX (AIX)/REPORT11 8.3 (1.7) Page 2
Report 11 Planned Production Schedule for FEB 2006 03/08/06

CPU: MASTER8+

Num Est Cpu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Schedule Jobs Time Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo
FINAL 1 4 *

An * between Schedule name and Num Jobs indicates that the schedule has jobs running on other cpus.
--
Estimated Cpu Time Per Day in Seconds

Mon Tue Wed Thu Fri Sat Sun

1 2 3 4 5 6
4 4 4 4 4 4

7 8 9 10 11 12 13
4 4 4 4 4 4 4

14 15 16 17 18 19 20
4 4 4 4 4 4 4

21 22 23 24 25 26 27
4 4 4 4 4 4 4

28
4

* * * * E n d o f R e p o r t * * * *

The output of Report 11 shows when the job streams are planned to run during the
selected month. In the first line it is displayed the number of jobs the job stream
contains, the estimated CPU time used by the job stream to run, and when the job
stream is planned to run. In the matrix it is displayed for each day of the selected
month the estimated CPU time used by that job stream to run.

Report 12 - Cross Reference Report:
The output of Report 12 shows different information according to the flag used
when issuing the xref command. In this section you find some samples of output.
For each of these sample the corresponding flag used with the xref command is
highlighted.

xref -when
TWS for UNIX (AIX)/CROSSREF 8.3 (1.7) ibm Page 1
Report 12 Cross Reference Report for the ON, EXCEPT(*) and FREEDAYS(f) options. 03/08/06

CPU: FTAHP

WHEN Used by the following schedules:
REQUEST TRFINAL

TWS for UNIX (AIX)/CROSSREF 8.3 (1.7) ibm Page 2
Report 12 Cross Reference Report for the ON, EXCEPT(*) and FREEDAYS(f) options. 03/08/06

CPU: FTAWIN8+

Chapter 18. Getting reports and statistics 717

WHEN Used by the following schedules:
MONTHEND SCHED1
REQUEST SCHED1 , SCHEDDAA

TWS for UNIX (AIX)/CROSSREF 8.3 (1.7) ibm Page 3
Report 12 Cross Reference Report for the ON, EXCEPT(*) and FREEDAYS(f) options. 03/08/06

CPU: MASTER8+

WHEN Used by the following schedules:
EVERYDAY FINAL
REQUEST TMP

* * * * E n d o f R e p o r t * * * *

xref -jobs
TWS for UNIX (AIX)/CROSSREF 8.3 (1.7) ibm Page 4
Report 12 Cross Reference Report for Job Names. 03/08/06

CPU: FTAWIN8+

Job Name Exists in Schedules
SCHEDDDD SCHED1

TWS for UNIX (AIX)/CROSSREF 8.3 (1.7) ibm Page 5
Report 12 Cross Reference Report for Job Names. 03/08/06

CPU: MASTER8+

Job Name Exists in Schedules
JnextPlan FINAL
JOB1 TMP

* * * * E n d o f R e p o r t * * * *

xref -resource
TWS for UNIX (AIX)/CROSSREF 8.3 (1.7) ibm Page 8
Report 12 Cross Reference Report for Resource Users. 03/08/06

CPU: FTAWIN8+

Resource Used by the following:
QUKTAPES(N/F) SCHED1

TWS for UNIX (AIX)/CROSSREF 8.3 (1.7) ibm Page 9
Report 12 Cross Reference Report for Resource Users. 03/08/06

CPU: MASTER8+

Resource Used by the following:
TAPES(N/F) TMP

* * * * E n d o f R e p o r t * * * *

xref -prompts

718 IBM Workload Scheduler: User’s Guide and Reference

TWS for UNIX (AIX)/CROSSREF 8.3 (1.7) ibm Page 6
Report 12 Cross Reference Report for Prompt Dependencies. 03/08/06
CPU: FTAWIN8+

Prompt Used by the following:

User defined text SCHED1

TWS for UNIX (AIX)/CROSSREF 8.3 (1.7) ibm Page 7
Report 12 Cross Reference Report for Prompt Dependencies. 03/08/06

CPU: MASTER8+

Prompt Used by the following:
BADEXIT FTAWIN8+#SCHED1
GOODEXIT FTAWIN8+#SCHED1 , TMP

User defined text TMP

* * * * E n d o f R e p o r t * * * *

xref -files
TWS for UNIX (AIX)/CROSSREF 8.3 (1.7) ibm Page 10
Report 12 Cross Reference Report for File Dependencies. 03/08/06

CPU: MASTER8+

File Name Used by the following:
/root/MY_FILE.sh FTAWIN8+#SCHED1 , TMP

* * * * E n d o f R e p o r t * * * *

Report extract programs
Data extraction programs are used to generate several of the IBM Workload
Scheduler reports. The programs are listed in Table 126:

Table 126. Report extract programs.

Report extract program Description

jbxtract Used to generate Report 01 - Job Details Listing and for Report
07 - Job History Listing

prxtract Used to generate Report 02 - Prompt Listing

caxtract Used to generate Report 03 - Calendar Listing

paxtract Used to generate Report 04A - Parameters Listing

rextract Used to generate Report 04B - Resource Listing

r11xtr Used to generate Report 11 - Planned Production Schedule

xrxtrct Used to generate Report 12 - Cross Reference Report

The output of the extract programs is controlled by the
MAESTRO_OUTPUT_STYLE variable, which defines how long object names are
handled. For more information on the MAESTRO_OUTPUT_STYLE variable, refer
to “Command descriptions” on page 702.

Chapter 18. Getting reports and statistics 719

jbxtract

Extracts information about jobs from the database.

Syntax

jbxtract [-V | -U]
[-j job]
[-c wkstat]
[-o output]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

-j job Specifies the job for which extraction is performed. The default is all jobs.

-c wkstat
Specifies the workstation of jobs for which extraction is performed. The
default is all workstations.

-o output
Specifies the output file. The default is stdout.

Results

The MAESTRO_OUTPUT_STYLE variable specifies the output style for long object
names. With value LONG, full length (long) fields are used for object names. If the
variable is set to anything other than LONG, long names are truncated to eight
characters and a plus sign. For example: A1234567+.

Each job record contains tab-delimited, variable length fields. The fields are
described Table 127.

Table 127. Jbxtract output fields

Field Description Max Length (bytes)

1 workstation name 16

2 job name 16

3 job script file name 4096

4 job description 65

5 recovery job name 16

6 recovery option (0=stop, 1=rerun, 2=continue) 5

7 recovery prompt text 64

8 auto-documentation flag (0=disabled, 1=enabled) 5

9 job login user name 36

10 job creator user name 36

11 number of successful runs 5

12 number of abended runs 5

13 total elapsed time of all job runs 8

14 total cpu time of all job runs 8

15 average elapsed time 8

720 IBM Workload Scheduler: User’s Guide and Reference

Table 127. Jbxtract output fields (continued)

Field Description Max Length (bytes)

16 last run date (yymmdd) 8

17 last run time (hhmm) 8

18 last cpu seconds 8

19 last elapsed time 8

20 maximum cpu seconds 8

21 maximum elapsed time 8

22 maximum run date (yymmdd) 8

23 minimum cpu seconds 8

24 minimum elapsed time 8

25 minimum run date (yymmdd) 8

Note: The elapsed time displayed for a shadow job is the elapsed time of the
remote job to which it is bound.

Examples

To extract information about job myjob on workstation main and direct the output
to the file jinfo, run the following command:
jbxtract -j myjob -c main -o jinfo

prxtract

Extracts information about prompts from the database.

Syntax

prxtract [-V | -U] [-o output]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

-o output
Specifies the output file. The default is stdout.

Results

Each prompt record contains tab-delimited, variable length fields. The fields are
described in Table 128.

Table 128. Prxtract output fields

Field Description Max Length (bytes)

1 prompt name 8

2 prompt value 200

Chapter 18. Getting reports and statistics 721

Examples

To extract information about all prompt definitions and direct the output to the file
prinfo, run the following command:
prxtract -o prinfo

caxtract

Extracts information about calendars from the database.

Syntax

caxtract [-V | -U] [-o output]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

-o output
Specifies the output file. The default is stdout.

Results

Each calendar record contains tab-delimited, variable length fields. The fields are
described in Table 129.

Table 129. Caxtract output fields

Field Description Max Length (bytes)

1 calendar name 8

2 calendar description 64

Examples

To extract information about all calendar definitions and direct the output to the
file cainfo, run the following command:
caxtract -o cainfo

paxtract

Extracts information about global parameters (variables) from the database.

Syntax

paxtract [-V | -U] [-o output] [-a]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

-o output
Specifies the output file. The default is stdout.

722 IBM Workload Scheduler: User’s Guide and Reference

-a Displays all the variables defined in all the variable tables. If not specified,
only the variables defined in the default variable table are displayed.

Results

Each variable record contains tab-delimited, variable length fields. The fields are
described in Table 130.

Table 130. Paxtract output fields

Field Description Max Length (bytes)

1 table name 80

2 variable name 16

3 variable value 72

Remember: If you do not specify the -a (all) option in the command, only fields 2
and 3 are displayed and the variables listed are the ones contained in the default
variable table only.

Examples

To extract information about all variable definitions and direct the output to the
file allvarinfo, run the following command:
paxtract -a -o allvarinfo

rextract

Extracts information about resources from the database.

Syntax

rextract [-V | -U] [-o output]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

-o output
Specifies the output file. The default is stdout.

Results

Each resource record contains tab-delimited, variable length fields. The fields are
described in Table 131.

Table 131. Rextract output fields

Field Description Max Length (bytes)

1 workstation name 8/16

2 resource name 8

3 total resource units 4

4 resource description 72

Chapter 18. Getting reports and statistics 723

Examples

To extract information about all resource definitions and direct the output to the
file reinfo, run the following command:
rextract -o reinfo

r11xtr

Extracts information about job streams from the database.

Syntax

r11xtr [-V | -U]
[-m mm[yy]]
[-c wkstat]
[-o output]
[-s jstream_name]

Arguments

-V Displays the program version and exits.

-U Displays program usage information and exits.

-m mm[yy]
Specifies the month (mm) and, optionally, the year (yy) of the job streams.
The default is the current month and year.

-c wkstat
Specifies the workstation to be reported. The default is all workstations.

-s jstream_name
Specifies the name of the job stream in which the jobs run. The default is
all job streams.

-o output
Specifies the output file. The default is stdout.

Results

The MAESTRO_OUTPUT_STYLE variable specifies the output style for long object
names. With value LONG, full length (long) fields are used for object names. If the
variable is set to anything other than LONG, long names are truncated to eight
characters and a plus sign. For example: A1234567+.

Each job stream record contains tab-delimited, variable length fields. The fields are
described in Table 132.

Table 132. R11xtr output fields

Field Description Max Length (bytes)

1 workstation name 16

2 job stream name 16

3 job stream date (yymmdd) 6

4 estimated cpu seconds 6

5 multiple workstation flag (* means some jobs run on
other workstations)

1

724 IBM Workload Scheduler: User’s Guide and Reference

Table 132. R11xtr output fields (continued)

Field Description Max Length (bytes)

6 number of jobs 4

7 day of week (Su, Mo, Tu, We, Th, Fr, Sa) 2

Examples

To extract information about job streams on June 2004 for workstation main, run
the following command:
r11xtr -m 0604 -c main

To extract information about job streams on June of this year for all workstations,
and direct the output to file r11out, run the following command:
r11xtr -m 06 -o r11out

xrxtrct

Extracts information about cross-references from the database.

Syntax

xrxtrct [-V | -U]

Arguments

-V Displays the command version and exits.

-U Displays command usage information and exits.

Results

The MAESTRO_OUTPUT_STYLE variable specifies the output style for long object
names. With value LONG, full length (long) fields are used for object names. If the
variable is set to anything other than LONG, long names are truncated to eight
characters and a plus sign. For example: A1234567+.

The command output is written to eight files, xdep_job, xdep_sched, xfile, xjob,
xprompt, xresources, xsched, and xwhen. These files are written in the current
working directory. You must have write and execution rights on this directory to
run the command.

Examples

To extract information about all cross-references, run the following command:
xrxtrct

xdep_job file
The xdep_job file contains two record types. The first contains information about
jobs and job streams that are dependent on a job. Each dependent job and job
stream record contains the fixed length fields, with no delimiters. The fields are
described in Table 133 on page 726.

Chapter 18. Getting reports and statistics 725

Table 133. Xdep_job output fields

Field Description Length (bytes)

1 03 2

2 workstation name 16

3 job name 40

4 job stream name 16

5 not used 240

6 dependent job stream workstation name 16

7 dependent job stream name 16

8 dependent job workstation name 16

9 dependent job name 40

10 not used 6

11 not used 6

12 not used 8

13 end-of-record (null) 1

The second record type contains information about jobs and job streams that are
dependent on an internetwork dependency. Each dependent job and job stream
record contains fixed length fields, with no delimiters. The fields are described in
Table 134.

Table 134. Xdep_job output fields (continued)

Field Description Length (bytes)

1 08 2

2 workstation name 16

3 job name 120

4 not used 128

5 dependent job stream workstation name 16

6 dependent job stream name 16

7 dependent job workstation name 16

8 dependent job name 40

9 not used 6

10 not used 6

11 not used 8

12 end-of-record (null) 1

xdep_sched file
The xdep_sched file contains information about jobs and job streams that are
dependent on a job stream. Each dependent job or job stream record contains fixed
length fields, with no delimiters. The fields are described in Table 135.

Table 135. Xdep_sched output fields

Field Description Length (bytes)

1 02 2

2 workstation name 16

726 IBM Workload Scheduler: User’s Guide and Reference

Table 135. Xdep_sched output fields (continued)

Field Description Length (bytes)

3 job stream name 16

4 not used 248

5 dependent job stream workstation name 16

6 dependent job stream name 16

7 dependent job workstation name 16

8 dependent job name 40

9 not used 6

10 not used 6

11 not used 8

12 end-of-record (null) 1

xfile file
The xfile file contains information about jobs and job streams that are dependent
on a file. Each record contains fixed length fields, with no delimiters. The fields are
described in Table 136.

Table 136. Xfile output fields

Field Description Length (bytes)

1 07 2

2 workstation name 16

3 file name 256

4 dependent job stream workstation name 16

5 dependent job stream name 16

6 dependent job workstation name 16

7 dependent job name 40

8 not used 6

9 not used 6

10 not used 8

11 end-of-record (null) 1

xjob file
The xjob file contains information about the job streams in which each job appears.
Each job record contains fixed length fields, with no delimiters. The fields are
described in Table 137.

Table 137. Xjob output fields

Field Description Length (bytes)

1 04 2

2 workstation name 16

3 job name 40

4 not used 248

5 job stream workstation name 16

6 job stream name 16

Chapter 18. Getting reports and statistics 727

Table 137. Xjob output fields (continued)

Field Description Length (bytes)

7 not used 8

8 not used 8

9 not used 6

10 not used 6

11 not used 8

12 end-of-record (null) 1

xprompt file
The xprompt file contains information about jobs and job streams that are
dependent on a prompt. Each prompt record contains fixed length fields, with no
delimiters. The fields are described in Table 138.

Table 138. Xprompts output fields

Field Description Length (bytes)

1 05 2

2 workstation name 16

3 prompt name or text 20

4 not used 236

5 dependent job stream workstation name 16

6 dependent job stream name 16

7 dependent job workstation name 16

8 dependent job name 40

9 not used 6

10 not used 6

11 not used 8

12 end-of-record (null) 1

xresource file
The xresource file contains information about jobs and job streams that are
dependent on a resource. Each resource record contains fixed length fields, with no
delimiters. The fields are described in Table 139.

Table 139. Xresource output fields

Field Description Length (bytes)

1 06 2

2 workstation name 16

3 resource name 8

4 not used 248

5 dependent job stream workstation name 16

6 dependent job stream name 16

7 dependent job workstation name 16

8 dependent job name 40

9 units allocated 6

728 IBM Workload Scheduler: User’s Guide and Reference

Table 139. Xresource output fields (continued)

Field Description Length (bytes)

10 not used 6

11 not used 8

12 end-of-record (null) 1

xsched file
The xsched file contains information about job streams. Each job stream record
contains fixed length fields, with no delimiters. The fields are described in
Table 140.

Table 140. Xsched output fields

Field Description Length (bytes)

1 00 2

2 workstation name 16

3 job stream name 16

4 not used 248

5 workstation name (same as 2 above) 16

6 job stream name (same as 3 above) 16

7 not used 8

8 not used 8

9 not used 6

10 not used 6

11 not used 8

12 end-of-record (null) 1

xwhen file
The xwhen file contains information about when job streams will run. Each job
stream record contains the following fixed length fields, with no delimiters. The
fields are described in Table 141.

Table 141. Xwhen output fields

Field Description Length (bytes)

1 01 2

2 workstation name 16

3 ON/EXCEPT name or date 8

4 except flag (*=EXCEPT) 1

5 not used 128

6 workstation name 16

7 job stream name 16

8 not used 8

9 not used 8

10 not used 6

11 offset num 6

12 offset unit 8

Chapter 18. Getting reports and statistics 729

Table 141. Xwhen output fields (continued)

Field Description Length (bytes)

13 end-of-record (null) 1

Running Dynamic Workload Console reports and batch reports
You can run the following reports from the Dynamic Workload Console:

Job Run History Report
A report collecting the historical job run data during a specified time
interval. It is useful to detect which jobs ended in error or were late, as
well as critical and promoted jobs and the latest time within which the job
can start without causing the critical job miss its deadline. It also shows
which jobs missed their deadline, long duration jobs, and rerun indicators
for reruns.

Job Run Statistics Report
A report collecting the job run statistics. It is useful to detect success, error
rates; minimum, maximum, and average duration; late and long duration
statistics.

Workstation Workload Summary Report
A report showing the workload on the specified workstations. The
workload is expressed in terms of number of jobs that ran on them. It is
useful for capacity planning adjustments (workload modelling and
workstation tuning).

Workstation Workload Runtimes Report
A report showing job run times and duration on the specified
workstations. It is useful for capacity planning adjustments (workload
modelling and workstation tuning).

Planned Production Details Report
A report based on the information stored either in a trial or in a forecast
plan. The information contained in these plans is retrieved from the IBM
Workload Scheduler database. A Planned Production Details Report can be
run on distributed engines (master domain manager and backup domain
manager). A real production report extracted from a fault-tolerant agent
might contain different information with respect to a plan extracted from a
master domain manager. For example, the number of jobs and job streams
is the same, but their status can change, because a job successful on the
master can be in hold or ready on the agent. The update status rate is the
same only on the full status agent that runs on the domain master.

Actual Production Details Report
A report based on the information stored either in the current or in an
archived plan. The information contained in these plans is retrieved from
the Symphony files. Actual Production Details Report can be run on
distributed engines (master domain manager, backup domain manager,
domain manager with connector, and fault-tolerant agent with connector).

Custom SQL Report
It enables you to create reports by running your own SQL queries. The
reports will display a table with the column name as specified in the
SELECT part of the SQL statement. The data for reporting is stored in a
DB2 relational database and resides on the distributed side. IBM Workload
Scheduler for z/OS connects to the database through the Java Database

730 IBM Workload Scheduler: User’s Guide and Reference

Connectivity (JDBC) interface. A JDBC driver type 4 is used to connect to
the remote DB2 for LUW version 8.2, or later.

For more information about defining and running reports from the Dynamic
Workload Console, see the Dynamic Workload Console User’s Guide, section about
Reporting.

Some of these reports are also available as batch reports and can be run from a
command line. For more information on how to run batch reports, see “Running
batch reports from the command line interface” on page 735.

Depending on the interface from where you run the report or the operating system
of the engine the following output formats are available:

Table 142. Supported report output formats

Name of the report Output formats supported
by the Dynamic Workload
Console

Output formats supported
by batch reports

Job Run History Report HTML, CSV
Only table format

HTML, CSV, PDF
Only table format

Job Run Statistics Report HTML, CSV
Table and chart formats

HTML, CSV, PDF
Table and chart formats

Workstation Workload
Summary Report

HTML, CSV
Table and chart formats

HTML, CSV, PDF
Table and chart formats

Workstation Workload
Runtimes Report

HTML, CSV
Table and chart formats

HTML, CSV, PDF
Table and chart formats

Planned Production Details
Report

XML, CSV
Only table format

N/A

Actual Production Details
Report

XML, CSV
Only table format

N/A

Custom SQL Report HTML, CSV
Only table format

HTML, CSV, PDF
Only table format

Auditing general report

(For more information, see
the information about
keeping track of database
changes using audit reports
in the Administration Guide)

N/A HTML, CSV, PDF
Only table format

Auditing details report

(For more information, see
the information about
keeping track of database
changes using audit reports
in the Administration Guide)

N/A HTML, CSV, PDF
Only table format

You must have the appropriate security file authorizations for report objects to run
these reports (granted by default to the tws_user on fresh installations). See the
Administration Guide for security file information.

See also the Administration Guide to learn how to configure the Dynamic Workload
Console to view reports.

Chapter 18. Getting reports and statistics 731

http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_tsweb/tswebmst_welcome.html

Historical reports
The following table summarizes the historical reports in terms of their:
v Functionality
v Selection criteria
v Output content options

Table 143. Summary of historical reports

Report name Description Selection criteria
Output content

options

Job run history
Corresponds to
Report 07.

Collects historical job
execution data
during a time
interval. Helps you
find:
v Jobs ended in error
v Late jobs
v Missed deadlines
v Long duration
v Rerun indicators

for reruns
v Other historical

information.

v Job name, job
stream name,
workstation name,
and workstation
name (job stream).
Each field can be
specified using a
wildcard.

v Status (Success,
Error, Unknown)

v Delay indicators
v Job execution

interval
v Include/Exclude

rerun iterations

You can select from
the following:
v Actual start time
v Estimated duration
v Actual duration
v Job number
v Started late (delay)
v Ended late (delay)
v Status
v Critical latest start
v Critical
v Promoted
v Long duration
v Job definition

name
v CPU consumption

(not available on
Windows
workstations)

v Logon user
v Rerun type
v Iteration number
v Return code

The output is in table
view.

732 IBM Workload Scheduler: User’s Guide and Reference

Table 143. Summary of historical reports (continued)

Report name Description Selection criteria
Output content

options

Job run statistics
Corresponds to
Report 01.

Collects job execution
statistics. Helps you
find:
v Success/error rates
v Minimum and

maximum elapsed
and CPU times

v Average duration
v Late and long

duration statistics

Note: The report
does not include jobs
that were submitted
using an alias name.

v Job name,
workstation name,
and user login.
Each field can be
specified using a
wildcard.

v Percentage of jobs
in Success, Error,
Started late, Ended
late, and Long
duration

v Total runs and
total reruns

You can select from
the following:
v Job details:

– Logon user
– Job creator
– Description
– Script
– Recovery

information
v Job statistics:

– Total runs
(divided in
Successful and
Error)

– Total of runtime
exceptions
(Started late,
Ended late,
Long duration)

– Minimum,
maximum and
average
duration and
CPU times (for
successful runs
only)

– CPU
consumption
(not available
on Windows
workstations)

v Report format:
– Charts view
– Table view
– Include table of

contents by job
or by
workstation

Chapter 18. Getting reports and statistics 733

Table 143. Summary of historical reports (continued)

Report name Description Selection criteria
Output content

options

Workstation
workload summary

Provides data on the
workload in terms of
the number of jobs
that have run on
each workstation.
Helps making the
necessary capacity
planning adjustments
(workload modeling,
and workstation
tuning).

v Workstation
names. Each field
can be specified
using a wildcard.

v Date ranges or
specific days for
workload filtering.

v Relative time
intervals (allows to
reuse the same
report task for
running each day
and getting the
report of the
production of the
day before)

You can select from
the following:
v Workstation

information
granularity
arranged by:
– Hour
– Day
– Production day

v Information
aggregation
options:
– Provide

cumulative and
aggregated
workstation
summary
information for
all or a subset
of workstations

v Report format:
– Charts view
– Table view
– Include table of

contents by date
or by
workstation

Workstation
workload runtimes Corresponds to

Report 08.

Provides data on the
job runs (time and
duration) on the
workstations. Helps
making the necessary
capacity planning
adjustments
(workload modeling,
and workstation
tuning).

v Job and
workstation names.
Each field can be
specified using a
wildcard.

v Workload
execution period

v Daily time
intervals

You can select from
the following:
v Information

grouped by:
– Workstation
– Run date

Can be ordered by
rerun iteration

v Production day
v Job information:

– Actual duration
– Status
– Rerun iteration
– Job definition

name
v Report format:

– Charts view
– Table view

Custom SQL A wizard helps you
define your custom
SQL query (only on
the database views
which you are
authorized to access).

The criteria specified
in the custom SQL
query.

The resulting report
has a table with the
column name as
specified in the
SELECT part of the
SQL statement.

734 IBM Workload Scheduler: User’s Guide and Reference

Production reports
The following table summarizes the production reports in terms of their:
v Functionality
v Selection criteria
v Output content options

Table 144. Summary of production reports

Report name Description Selection criteria
Output content

options

Actual production
details Corresponds to

Report 10B.

Provides data on
current and archived
plans.

v Job name
v Workstation name

(job)
v Job stream name
v Workstation name

(job stream)

You can select from
the following:
v Report format:

– Flat
– CSV
– Microsoft

Project
v Include:

– First level
predecessor

– Job log

Planned production
details Corresponds to

Report 9B.

Provides data on trial
and forecast plans.

v Job name
v Workstation name

(job)
v Job stream name
v Workstation name

(job stream)

You can select from
the following:
v Report format:

– Flat
– CSV
– Microsoft

Project
v Include:

– First level
predecessor

– Job log

Running batch reports from the command line interface
This section describes how you can run from the command line the reports listed
in “Historical reports” on page 732.

Using a command-line interface, you can schedule these reports to run on a timely
basis.

A sample business scenario
To avoid unexpected slowing down in the workload processing, the analyst of a
big company needs weekly reports collecting historical information about the
processed workload to determine and analyze any workload peaks that might
occur.

To satisfy this request, the TWSWEBUIDeveloper creates Workload Workstation
Summary Reports (WWS) and Workload Workstation Runtimes Reports (WWR).

To accomplish his task, he runs the following steps:
1. He customizes the property files related to the Workload Workstation Summary

and Workload Workstation Runtimes reports, specifying the format and content
of the report output.

2. He schedules jobs to obtain WWS and WWR reports:
v The first job generates a WWS report to be saved locally.

Chapter 18. Getting reports and statistics 735

v The second job runs a WWR report overnight on expected workload peaks
time frames. The report output is sent using an mail to the analyst. The
information collected are used to optimize the workload balance on the
systems.

3. He adds the two jobs to a job stream scheduled to run weekly and generates
the plan.

Setting up for command line batch reporting
About this task

Before running batch reports you must run a few setup steps:
1. The software needed to run batch reports is contained in a package named

TWSBatchReportCli, included in the IBM Workload Scheduler installation image,
in the TWSBatchReportCli directory. If you plan to run batch reports from
within a scheduled job, extract the package file on one of the operating systems
listed in the System Requirements Document at http://www-01.ibm.com/
support/docview.wss?rs=672&uid=swg27048859.
After you extract the package, you will have the following file structure:

Because the native UNIX tar utility does not support long file names, if you are
extracting the files on AIX, Solaris, or HP-UX systems, ensure that the latest
GNU version of tar (gtar) is installed to extract the files successfully.

Note:

a. Make sure you run the following commands in the directory where you
extracted the files:

736 IBM Workload Scheduler: User’s Guide and Reference

http://www-01.ibm.com/support/docview.wss?rs=672&uid=swg27048859
http://www-01.ibm.com/support/docview.wss?rs=672&uid=swg27048859

On UNIX
chmod -R +x *
chown -R username *

On Windows
Ensure IBM Workload Scheduler is installed.
setown -u username *

where username is the IBM Workload Scheduler user that will run the
reports.

b. If you plan to schedule jobs that run batch reports, the system where you
extract the package must be accessible as network file system from a
fault-tolerant agent defined in the local scheduling environment.

2. If you use an Oracle database, download the JDBC drivers required by your
Oracle server version.

3. Copy the JDBC drivers in the report_cli_installation_dir\jars directory and
in report_cli_installation_dir\ReportEngine\plugins\
org.eclipse.birt.report.data.oda.jdbc_4.2.1.v20120820\drivers directory.
The report cli automatically discovers the two jar files.

4. Configure the template file .\config\common.properties specifying the
following information:
a. If you use an Oracle database, connect to the database where the historical

data are stored as follows:
1) Retrieve the location of the Oracle JDBC drivers. This information is

stored in the com.ibm.tws.webui.oracleJdbcURL property in the
<TWA_home>/WAS/TWSprofile/properties/TWSConfig.properties file.
For more information about this file, see the section about configuring
for an Oracle database in IBM Workload Scheduler: Administration Guide.

2) Specify the location of the Oracle JDBC drivers in the
PARAM_DataSourceUrl property in the common.properties file.

No customization is required if you use DB2.
b. Set the date and time format, including the time zone. The file

.\config\timezone.txt contains a list of time zones supported by IBM
Workload Scheduler and the information on how to set them. The time zone
names are case sensitive.

c. Make available the report output on the URL specified in ContextRootUrl
field. This is an example of configuration settings:
##
HTTP Server information
##

#Specify the context root where the report will be available
#To leverage this possibility it needs to specify in the report output dir
#the directory that is referred by your HTTP Server with this contect root

ContextRootUrl=http://myserver/reportoutput

In this case make sure that the output_report_dir specified when running the
batch reports command points to the same directory specified in the
ContextRootUrl field.

d. Send the report output using a mail. This is an example of configuration
settings:
##
Email Server configuration
##

Chapter 18. Getting reports and statistics 737

|
|

|
|

|
|
|

|
|

|
|

|

PARAM_SendReportByEmail=true

#SMTP server
mail.smtp.host=myhost.mydomain.com
#IMAP provider
mail.imap.socketFactory.fallback=false
mail.imap.port=993
mail.imap.socketFactory.port=993
#POP3 provider
mail.pop3.socketFactory.fallback=false
mail.pop3.port=995
mail.pop3.socketFactory.port=995

##
Email properties
##
PARAM_EmailFrom=user1@your_company.com
PARAM_EmailTo=user2@your_company.com,user3@your_company.com
PARAM_EmailCC=user4@your_company.com
PARAM_EmailBCC=user5@your_company.com
PARAM_EmailSubject=Test send report by email
PARAM_EmailBody=This is the report attached

An explanation of all the customizable fields is contained in the template file.

Note: If you plan to run Workstation Workload Runtime reports ensure that the
file system where database is installed has enough free space. if a shortage of disk
space occurs an SQL exception like the following is triggered:
DB2 SQL error: SQLCODE: -968, SQLSTATE: 57011

Running batch reports
The \reports\templates directory contains a sample template file for each type of
report.

Before running any of these reports make sure you customize the corresponding
template file.

In that file, named report_name.properties, you can specify:
v The information to display in the report header.
v How to filter the information to display the expected result.
v The format and content of the report output.

For more information about the specific settings see the explanation provided in
the template file beside each field.

If you are using DBCS characters to specify the parameters in the template
.properties files, ensure you save the file in UTF-8 encoding.

After you set up the environment as it is described in “Setting up for command
line batch reporting” on page 736, and you configured the report template file, use
the following syntax to run the report:

reportcli -p report_name.property
[-o output_report_dir]
[-r report_output_name]
[-k key=value]
[-k key=value]
.......

where:

738 IBM Workload Scheduler: User’s Guide and Reference

-p report_name.property
Specifies the path name to the report template file.

-o output_report_dir
Specifies the output directory for the report output.

-r report_output_name
Specifies the name of the report output.

-k key=value
Specifies the value of a settings. This value override the corresponding
value, if defined, in the common.properties file or in the
report_name.properties file.

Examples
1. In this example the reportcli.cmd is run with the default parameter and

produces jrh1 report:
reportcli.cmd -p D:\ReportCLI\TWSReportCli\reports\templates\jrh.properties
-r jrh1

2. In this example the reportcli.cmd is run using the -k parameter to override the
values set for PARAM_DateFormat in the .\config\common.properties file
produces jrh1 report:
reportcli.cmd -p D:\ReportCLI\TWSReportCli\reports\templates\jrh.properties
-r jrh2 -k PARAM_DateFormat=short

3. In this example the reportcli.cmd is run using the -k parameter to override the
format specified for the report output in the PROPERTIES file produces jrh1
report:
./reportcli.sh -p /TWSReportCli/REPCLI/reports/templates/wwr.properties
-r wwr3 -k REPORT_OUTPUT_FORMAT=html -k OutputView=charts

4. Do the following if you want to run a Custom SQL report and make available
the output of the report at the following URL as http://myserver/
reportoutput/report1.html:
a. Configure the ContextRootUrl parameter in the common.properties files as

follows:
##
HTTP Server information
##

#Specify the context root where the report will be available
#To leverage this possibility it needs to specify in the report output dir
#the directory that is referred by your HTTP Server with this contect root

ContextRootUrl=http://myserver/reportoutput

b. When you run a batch reports command specify as output_report_dir a
directory that points to the same HTTP directory specified in the
ContextRootUrl. For example, if you mapped locally the http://myserver/
as R: driver, you can run the following command:
reportclibat

-p REPORT_CLI_DIR\reports\TWS\historical\templates\sql.properties
-r report1
-o R:\reportoutput

c. As a confirmation for the successful run of the report, the following
message is displayed:
AWSBRC0106I Report available on: http://myserver/reportoutput/report1.html

This URL shows where the report output is available.

Chapter 18. Getting reports and statistics 739

Note: If the report is run through an IBM Workload Scheduler job, the output of
the command is displayed in the job output.

Logs and traces for batch reports
The file ./common_logging.properties contains the parameters you can use to
configure tracing and logging.

The file contains the following settings:
logFileName=reportcli.log
traceFileName=trace.log
trace=off
birt_trace=off

where:

logFileName
Specifies the name of the file containing generic information, warning
about potential problems, and information about errors. This file is store
under ./log.

traceFileName
Specifies the name of the file containing traces. If you set trace=on the
trace file is store under ./log.

trace Specifies whether to enable or not traces. Enable the traces by setting
trace=on if you want to investigate further about an error,

birt_trace
Specifies whether to enable or not traces to diagnose errors in BIRT engine.
If you set birt_trace=on a file containing the trace and named
ReportEngine_aaaa_mm_dd_hh_mm_ss.log is stored in the
/ReportEngine/logs folder

740 IBM Workload Scheduler: User’s Guide and Reference

Chapter 19. Managing time zones

IBM Workload Scheduler supports different time zones. If you enable time zones
you can manage your workload across a multiple time zone environment.

Both the 3-character and the long time zone names are supported, but it is
suggested that you use the long names if they exist. If you are scheduling in MST
or EST time zones, you are required to use the long names, for example
"America/New_York” for EST. This is because those time zones no longer
observed daylight savings time (DST) rules and the product incorrectly schedules
jobs or job streams during the DST time frame with one hour offset for time
dependencies.

The 3-character notation is supported for compatibility with earlier versions of IBM
Workload Scheduler.

The variable length notation format is area/city, for example Europe/Paris as
equivalent to ECT (European Central Time).

The chapter is made up by the following sections:
v “Enabling time zone management”
v “How IBM Workload Scheduler manages time zones” on page 742
v “Moving to daylight saving time on” on page 744
v “Moving to daylight saving time off” on page 744
v “General rules” on page 744

Enabling time zone management
About this task

You can enable or disable the management of time zones by modifying the setting
assigned to the global option enTimeZone on the master domain manager using the
optman command line. The setting takes effect after the next JnextPlan is run.
These are the available settings:

no Disable time zone management. This means that the values assigned to all
timezone keywords in the definitions are ignored. All the at, until, and
deadline time restrictions are managed individually by each fault-tolerant
agent, including the master and the domain managers, thus ignoring the
time zone of the agent scheduling the job or job stream. As a consequence,
when different time zones are involved:
v For jobs, incorrect information is displayed about these time

dependencies when looked at from an agent other than the job owner.
This has no impact however on the scheduling process of the job.

v For job streams, the impact is that each agent processes the time
dependencies by its own time zone, and therefore at different times,
causing jobs of the same job stream, but defined on a different agent, to
run at a different time.

yes Enable time zone management. This means that the values assigned to the
timezone settings are used to calculate the time when the jobs and job
streams run on the target workstations.

741

By default the enTimeZone option is set to yes.

For more details on how to use the optman command line to manage global
options on the master domain manager, refer to the IBM Workload Scheduler
Administration Guide.

How IBM Workload Scheduler manages time zones
When the time zone is enabled, you can use time zone settings in workstation, job,
and job stream definitions.

While performing plan management activities, IBM Workload Scheduler converts
the value set for the time zones into object definitions. The conversions are applied
in this order:
1. When the job stream instances are added to the preproduction plan, the time

zone set in the job stream definitions is converted into the GMT time zone and
then the external follows dependencies are resolved.

2. When the production plan is created or extended, the job stream instances are
assigned to workstations where the instance is scheduled to run and the time
zone is converted from GMT into the time zone set in the target workstation
definition.

This is why if you use the conman showsched or conman showjobs commands to
see the information about scheduled jobs and job streams you see the time zone
values expressed using the time zone set on the workstation where the job or job
stream is planned to run. Based on the setup of the enLegacyStartOfDayEvaluation
global option, you can decide how the product manages time zones while
processing, and precisely:

If you set the value of enLegacyStartOfDayEvaluation to no
The value assigned to the startOfDay option on the master domain
manager is not converted into the local time zone set on each workstation
across the network. This means that if the startOfDay option is set to 0600
on the master domain manager, it is 0600 in the local time zone set on each
workstation in the network. This also means that the processing day begins
at the same hour, but not at the same moment, on all workstations.

Figure 30 on page 743 shows you how the start of day, set to 0600 on the
master domain manager, is applied to the different time zones on the two
fault-tolerant agents. The same time conversion is applied to the three
instances of job stream JS1 scheduled to run on the three machines and
containing an at time dependency at 0745 US/Central time zone. The time
frame that identifies the new processing day is greyed out in Figure 30 on
page 743.

742 IBM Workload Scheduler: User’s Guide and Reference

If you set the value of enLegacyStartOfDayEvaluation to yes
The value assigned to the startOfDay option on the master domain
manager is converted into the local time zone set on each workstation
across the network. This means that if the startOfDay option is set to 0600
on the master domain manager, it is converted on each workstation into
the corresponding time according to the local time zone set on that
workstation. This also means that the scheduling day begins at the same
moment, but not necessarily at the same hour, on all workstations in the
network.

Figure 31 shows you how the start of day, set to 0600 on the master
domain manager, is applied to the different time zones on the two
fault-tolerant agents. It also shows how the timing of the three instances of
job stream JS1 scheduled to run on the three machines and containing an
at time dependency at 0745 US/Central time zone is not modified because
of the startOfDay conversion. The time frame that identifies the new
processing day is greyed out in Figure 31.

Note: Starting from version 8.3 there is no linking between the time set for the
startOfDay and the moment when JnextPlan is run. JnextPlan can be run at any
time and the startOfDay indicates only the moment when the new processing day
starts.

Fault-tolerant agent 1

- 4h

+ 2h

Master Domain Manager

7:45 a.m.

Fault-tolerant agent 2

JS1

JS1

JS1

JS1

start of day
6 a.m. US/Central

US/Samoa TZ (GMT-11)

US/Central TZ(GMT-7)

US/Eastern TZ (GMT-5)

start of day
6 a.m. US/Samoa

start of day
6 a.m. US/Eastern

Figure 30. Example when start of day conversion is not applied

Fault-tolerant agent 1

- 4h

+ 2h

Master Domain Manager

7:45 a.m.

Fault-tolerant agent 2

JS1

JS1

JS1

JS1

start of day
6 a.m. US/Central

US/Samoa TZ (GMT-11)

US/Central TZ(GMT-7)

US/Eastern TZ (GMT-5)

start of day
2 a.m. US/Samoa

start of day
8 a.m. US/Eastern

Figure 31. Example when start of day conversion is applied

Chapter 19. Managing time zones 743

By default the enLegacyStartOfDayEvaluation global option is set to no.

For more details on how to use the optman command line to manage global
options on the master domain manager, refer to the IBM Workload Scheduler
Administration Guide.

Moving to daylight saving time on
IBM Workload Scheduler manages the moving to daylight saving time (DST) when
generating the production plan. This means that the date and time to run assigned
to jobs and job streams in the plan is already converted into the corresponding
date and time with DST on.

The following example explains how IBM Workload Scheduler applies the time
conversion when JnextPlan is run to generate or extend the production plan while
the time moves to DST.

If DST is turned on at 3:00 p.m., all job streams scheduled to start between 2:00
and 2:59 are set to start one hour later. For example a job defined to run AT 0230
in the morning, will be scheduled to run at 03:30 a.m.

On the day when DST starts, if the start of day happens in coincidence with the
missing hour (for example from 00:00 to 00:59 for America/Sao_Paulo or from
02:00 to 02:59 for America/Chicago) both the day before DST starts and the day
after DST starts, the plan is extended for 24 hours, postponing the production plan
start time one hour later than the expected one. To prevent this problem, manually
modify the first plan extension after the DST entering to extend for 23 hours
instead of 24. This correction does not apply to forecast plan, trial plan, and plans
generated using the JnextPlan script with the -to option.

Moving to daylight saving time off
Moving to daylight saving time (DST) off, the clock time is set to one hour earlier
with respect to the DST time. To maintain consistency with production planning
criteria, IBM Workload Scheduler ensures that the job stream instances planned to
run during the hour before the time shift backward are run only one time. Because
the time conversion is applied when generating or extending the production plan,
the date and time to run assigned to jobs and job streams in the plan is already
converted into the corresponding date and time with DST off.

If a job stream or a job run on a timezone where the DST time turns off, that is the
clock is put one hour back, and if you define a time dependency for such job
streams or jobs in relation to another timezone, it might happen that this time
dependency occurs during the second, repeated time interval. In this case the time
dependency would be resolved during the first time interval.

IBM Workload Scheduler recognizes that the time dependency occurs on the
second, repeated time interval and resolves it accordingly.

General rules
When the time zone is enabled in the IBM Workload Scheduler environment,
regardless of which value is set for the enLegacyStartOfDayEvaluation option, some
general rules are applied. These rules are now described divided by topic:

744 IBM Workload Scheduler: User’s Guide and Reference

Identifying default time zone settings for jobs and job streams:
Within a job stream definition you can set a time zone for the entire job
stream and for the jobs contained in the job stream. These time zones can
differ from each other. To manage all possible time zone settings the time
zone conversion is made respecting the following criteria:
v If a time zone is not set for a job within a job stream, then that job

inherits the time zone set on the workstation where the job is planned to
run.

v If a time zone is not set for a job stream, then the time zone set is the
one set on the workstation where the job stream is planned to run.

v If none of the mentioned time zones is set, then the time zone used is
the one set on the master domain manager.

Choosing the correct time zone for the workstations:
To avoid inconsistencies, before enabling the time zone management
feature across the IBM Workload Scheduler network, make sure that, if a
time zone is set in the workstation definition, it is the same as the time
zone set on the system where the workstation is installed.

Default time zone setting for the master domain manager:
If a time zone is not set in the master domain manager definition, it
inherits the time zone set on the system where the master domain manager
is installed. To see which time zone is set on the master domain manager
you can run the following command:
conman showcpu;info

Using the time zone on extended agents:

Extended agents inherit the time zone of the master domain manager.

Displaying time zone setting in production for an AT time dependency:
If you use conman commands sj or ss to display a job or a job stream
having an at time dependency with a time zone set, the time specified for
the at dependency is displayed applying the time zone defined on the
workstation where the job or job stream is defined to run.

Applying an offset to a time zone when scheduling a job stream:
If you submit in production a job stream specifying an at dependency with
an offset of +n days, then IBM Workload Scheduler first adds the offset to
the date and then converts the time zone set in the at dependency. This is
important especially when referring to the time when daylight saving time
moving occurs.

As a best practice, if you enable time zone management, set a time zone on each
workstation of your IBM Workload Scheduler network.

Chapter 19. Managing time zones 745

746 IBM Workload Scheduler: User’s Guide and Reference

Chapter 20. Defining access methods for agents

Access methods are used to extend the job scheduling functions of IBM Workload
Scheduler to other systems and applications. They run on:

Extended agents
They are logical workstation related to an access method hosted by a
physical IBM Workload Scheduler workstation (not another extended
agent). More than one extended agent workstation can be hosted by the
same IBM Workload Scheduler workstation and use the same access
method. The extended agent runs on fault-tolerant agents defined using a
standard IBM Workload Scheduler workstation definition, which gives the
extended agent a name and identifies the access method. The access
method is a program that is run by the hosting workstation whenever IBM
Workload Scheduler submits a job to an external system.

Jobs are defined for an extended agent in the same manner as for other
IBM Workload Scheduler workstations, except that job attributes are
dictated by the external system or application.

Information about job running execution is sent to IBM Workload
Scheduler from an extended agent using the job stdlist file. A method
options file can specify alternate logins to launch jobs and check opens file
dependencies. For more information, see the User's Guide and Reference.

A physical workstation can host a maximum of 255 extended agents.

dynamic agents and IBM Workload Scheduler for z/OS agents
They communicate with external systems to start the job and return the
status of the job. To run access methods on external applications using
dynamic agents, you define a job of type access method.

Access methods are available on the following systems and applications.
v SAP R/3
v z/OS
v Custom methods
v unixssh
v unixrsh
v Local UNIX (fault-tolerant agents only)

The UNIX access methods included with IBM Workload Scheduler, are described
in the related section in Administration Guide.

If you are working with dynamic agents, for information about defining IBM
Workload Scheduler workstations, see the section that explains how to define
workstations in the database in User's Guide and Reference. For information about
writing access methods, see the section about the access method interface in User's
Guide and Reference.

More information about access methods is found in Scheduling Applications with
IBM Workload Automation.

747

Access method interface
The interface between IBM Workload Scheduler and an access method consists of
information passed to the method on the command line, and of messages returned
to IBM Workload Scheduler in stdout.

Method command line syntax
The IBM Workload Scheduler host runs an access method using the following
command line syntax:

methodname -t task options -- taskstring

where:

methodname
Specifies the file name of the access method. All access methods must be
stored in the directory: TWS_home/methods

-t task Specifies the task to be performed, where task is one of the following:

LJ Launches a job.

MJ Manages a previously launched job. Use this option to
resynchronize if a prior LJ task ended unexpectedly.

CF Extended agents only. Checks the availability of a file. Use this
option to check file opens dependencies.

GS Extended agents only. Gets the status of a job. Use this option to
check job follows dependencies.

options Specifies the options associated with the task. See “Task options” for more
information.

taskstring
A string of up to 255 characters associated with the task. See “Task
options.”

Task options
The task options are listed in Table 145. An X means that the option is valid for the
task.

Table 145. Method command task options

Task -c -n -p -r -s -d -l -o -j -q -w -S
Task
String

LJ X X X X X X X X X X ljstring

MJ X X X X X X X X X mjstring

CF X X X X cfstring

GS X X X X X X gsstring

-c xagent,host,master
Specifies the names of the agent, the host, and the master domain manager
separated by commas.

-n nodename
Specifies the node name of the computer associated with the agent, if any.
This is defined in the extended agent's workstation definition Node field.

748 IBM Workload Scheduler: User’s Guide and Reference

-p portnumber
Specifies the TCP/IP port number associated with the agent, if any. This is
defined in the agent workstation definition TCP Address field.

-r currentrun,specificrun
Specifies the current run number of IBM Workload Scheduler and the
specific run number associated with the job separated by a comma. The
current and specific run numbers might be different if the job was carried
forward from an earlier run.

-s jstream
Specifies the name of the job's job stream.

-d scheddate,epoch
Specifies the job stream date (yymmdd) and the epoch equivalent, separated
by a comma.

-l user Specifies the job's user name. This is defined in the job definition Logon
field.

-o stdlist
Specifies the full path name of the job's standard list file. Any output from
the job must be written to this file.

-j jobname,id
Specifies the job's name and the unique identifier assigned by IBM
Workload Scheduler, separated by a comma. The name is defined in the job
definition Job Name field.

-q qualifier
Specifies the qualifier to be used in a test command issued by the method
against the file.

-w timeout
Specifies the amount of time, in seconds, that IBM Workload Scheduler
waits to get a reply on an external job before sending a SIGTERM signal to
the access method. The default is 300.

-S new name
Specifies that the job is rerun using this name in place of the original job
name. Within a job script, you can use the jobinfo command to return the
job name and run the script differently for each iteration.

-- ljstring
Used with the LJ task. The string from the Script File or Command field
of the job definition.

-- mjstring
Used with the MJ task. The information provided to the IBM Workload
Scheduler by the method in a message indicating a job state change %CJ
(for additional details on messages indicating job state change, see
“Method response messages” on page 750) following to an LJ task.
Usually, this identifies the job that was launched. For example, a UNIX
method can provide the process identification (PID) of the job it launched,
which is then sent by the IBM Workload Scheduler as part of an MJ task.

-- cfstring
Used with the CF task. For a file opens dependency, the string from the
Opens Files field of the job stream definition.

Chapter 20. Defining access methods for agents 749

-- gsstring
Used with the GS task. Specifies the job whose status is checked. The
format is as follows:

followsjob[,jobid]

where:

followsjob
The string from the Follows Sched/Job list of the job stream
definition.

jobid An optional job identifier received by IBM Workload Scheduler in
a %CJ response to a previous GS task.

Method response messages
Methods return information to IBM Workload Scheduler in messages written to
stdout. Each line starting with a percent sign (%) and ending with a new line is
interpreted as a message. The messages have the following format:

%CJ state [mjstring | jobid]

%JS [cputime]

%RC rc

%UT [errormessage]

where:

CJ Changes the job state.

state The state to which the job is changed. All IBM Workload Scheduler
job states are valid except HOLD and READY. For the GS task, the
following states are also valid:

ERROR
An error occurred.

EXTRN
Status is unknown.

mjstring
A string of up to 255 characters that IBM Workload Scheduler will
include in any MJ task associated with the job.

jobid A string of up to 64 characters that IBM Workload Scheduler will
include in any GS task associated with the job.

JS [cputime]
Indicates successful completion of a job and provides its elapsed run time
in seconds.

RC rc rc is a number that is interpreted by IBM Workload Scheduler as the return
code of the extended agent job. The return code is taken into account only
if a return code condition was specified in the definition of the extended
agent job. Otherwise, it is ignored and the successful completion of the
extended agent job is indicated by the presence of message %JS [cputime].

750 IBM Workload Scheduler: User’s Guide and Reference

Likewise, if the method does not send the %RC message, then the
successful completion of the extended agent job is indicated by the
presence of message %JS [cputime].

UT [errormessage]
Indicates that the requested task is not supported by the method. Displays
a string of up to 255 characters that IBM Workload Scheduler will include
in its error message.

Method options file
For extended, agents, and IBM Workload Scheduler for z/OS Agent you can use a
method options file to specify login information and other options.

An options file is a text file located in the methods directory of the IBM Workload
Scheduler installation, containing a set of options to customize the behavior of the
access method. The options must be written one per line and have the following
format (with no spaces included):
option=value

All access methods use two types of options files:

Extended agents

Global options file
A common configuration file created by default for each access
method installed, whose settings apply to all the extended agent
workstations defined for that method. When the global options file
is created, it contains only the LJuser option, which represents the
operating system user ID used to launch the access method. You
can customize the global options file by adding the options
appropriate to the access method.

Local options file
A configuration file that is specific to each extended agent
workstation within a particular installation of an access method.
The name of this file is XANAME_accessmethod.opts, where:

XANAME
Is the name of the extended agent workstation. The value
for XANAME must be written in uppercase alphanumeric
characters. Double-byte character set (DBCS), Single-byte
character set (SBCS), and Bidirectional text are not
supported.

accessmethod
Is the name of the access method.

If you do not create a local options file, the global options file is
used. Every extended agent workstation, except for z/OS, must
have a local options file with its own configuration options.

For example, if the installation of the access method includes two
extended agent workstations, CPU1 and CPU2, the names of the local
options files are respectively CPU1_accessmethod.opts and
CPU2_accessmethod.opts.

Chapter 20. Defining access methods for agents 751

IBM Workload Scheduler reads the options file, if it exists, before running
an access method. For extended agents, if the options file is modified after
IBM Workload Scheduler is started, the changes take effect only when it is
stopped and restarted.

IBM Workload Scheduler for z/OS Agents and agents

Global options file
A common configuration file created by default for each access
method installed, whose settings apply to all the agent
workstations defined for that method. When the global options file
is created, it contains only the LJuser option, which represents the
operating system user ID used to run the access method. You can
customize the global options file by adding the options appropriate
to the access method.

The name of the global options file is accessmethod.opts, where
access method is the name of the method you are creating.

Local options file
A configuration file that is specific to each access method. The
name of this file is optionsfile_accessmethod.opts,

In a distributed environment:

v If you are defining a job to run the access method by
using the Dynamic Workload Console it is the options
file you specified in the New > Job definition > ERP >
Access Method XA Task tab.

v If you are defining the access method by using
composer it is the options file you specified in the target
attribute of the job definition.

If you do not create a local options file, the global options
file is used.

In a z/OS environment:

v If you are defining a job to run the access method by
using the Dynamic Workload Console it is the options
file you specified in the New > ERP > Access Method
XA Task tab.

v If you are defining the access method by using the
JOBREC statement it is the name of the workstation
where the access method runs.

If you do not create a local options file, the global options
file is used.

If you do not specify an option in the options_file_accessmethod.opts file the
product uses the value specified for that option in the global option file. If
you do not specify them neither in the options_file_accessmethod.opts file nor
in the global option file the product issues an error message.

The options file must have the same path name as its access method, with
an .opts file extension. For example, the Windows path name of an
options file for a method named netmeth is
TWS_home\methods\netmeth.opts

IBM Workload Scheduler reads the options file, if it exists, before running an
access method.

752 IBM Workload Scheduler: User’s Guide and Reference

The options recognized by IBM Workload Scheduler are as follows:

LJuser=username
Specifies the login to use for the LJ and MJ tasks. The default is the login
from the job definition. See “Launch job task (LJ)” and “Manage job task
(MJ)” on page 754.

CFuser=username
Extended agents only. Specifies the login to use for the CF task. The
default for UNIX is root, and for Windows is the user name of the account
in which the product was installed. See awsrgcheckfiletask.dita.

GSuser=username
Specifies the login to use for the GS tasks. The default for UNIX is root,
and for Windows is the user name of the account with which IBM
Workload Scheduler was installed. See Get status task (GS) extended
agents only.

GStimeout=seconds
Specifies the amount of time, in seconds, IBM Workload Scheduler waits
for a response before killing the access method. The default is 300 seconds.

nodename=node_name
Specifies the host name or IP address if required by the method you are
defining. For the unixssh access method, the host name or IP address to
connect to the remote engine.

PortNumber=port_number
Specifies the port number if required by the method you are defining. For
the unixssh access method, the port to connect to the remote engine.

For IBM Workload Scheduler for z/OS Agents and agents, you can specify the
node name and port number also in the JobManager.ini file.

If you do not specify them in the options_file_accessmethod.opts file the product uses
the value specified in the global option file. If you do not specify them neither in
the options_file_accessmethod.opts file nor in the global option file the product uses
the value specified in the option_file stanza of the JobManager.ini file.

Note: If the extended agent host is a Windows computer, these users must be
defined as IBM Workload Scheduler user objects.

Running methods
The following subsections describe the interchange between IBM Workload
Scheduler and an access method.

Launch job task (LJ)
About this task

The LJ task instructs the extended agent method to launch a job on an external
system or application. Before running the method, IBM Workload Scheduler
establishes a run environment. The LJuser parameter is read from the method
options file to determine the user account with which to run the method. If the
parameter is not present or the options file does not exist, the user account
specified in the Logon field of the job's definition is used. In addition, the
following environment variables are set:

Chapter 20. Defining access methods for agents 753

awsrgcheckfiletask.dita
awsrggetstatustask.htm
awsrggetstatustask.htm

HOME
The login user's home directory.

LOGNAME
The login user's name.

PATH For UNIX, it is set to/bin:/usr/bin. For Windows, it is set
to%SYSTEM%\SYSTEM32.

TWS_PROMOTED_JOB
Set to YES, when the job (a mission-critical job or one of its predecessors) is
promoted.

TZ The time zone.

If the method cannot be run, the job is placed in the FAIL state.

Once a method is running, it writes messages to its stdout that indicate the state of
the job on the external system. The messages are summarized in Table 146.

Table 146. Launch job task (LJ) messages

Task Method Response IBM Workload Scheduler Action

LJ and MJ %CJ state [mjstring] Sets job state to state. Includes mjstring in
any subsequent MJ task.

%JS [cputime] Sets job state to SUCC.

Exit code=non-zero Sets job state to ABEND.

%UT [errormessage] and Exit
code=2

Sets job state to ABEND and displays
errormessage.

A typical sequence consists of one or more %CJ messages indicating changes to the
job state and then a %JS message before the method exits to indicate that the job
ended successfully. If the job is unsuccessful, the method must exit without writing
the %JS message. A method that does not support the LJ task, writes a %UT
message to stdout and exits with an exit code of 2.

Manage job task (MJ)
About this task

The MJ task is used to synchronize with a previously launched job if IBM
Workload Scheduler determines that the LJ task ended unexpectedly. IBM
Workload Scheduler sets up the environment in the same manner as for the LJ task
and passes it the mjstring. See “Launch job task (LJ)” on page 753 for more
information.

If the method locates the specified job, it responds with the same messages as an
LJ task. If the method is unable to locate the job, it exits with a nonzero exit code,
causing IBM Workload Scheduler to place the job in the ABEND state.

Killing a job
About this task

While an LJ or MJ task is running, the method must trap a SIGTERM signal
(signal 15). The signal is sent when an operator issues a kill command from IBM
Workload Scheduler console manager. Upon receiving the signal, the method must
attempt to stop (kill) the job and then exit without writing a %JS message.

754 IBM Workload Scheduler: User’s Guide and Reference

Check file task (CF) extended agents only
About this task

The CF task requests the extended agent method to check the availability of a file
on the external system. Before running the method, IBM Workload Scheduler
establishes a run environment. The CFuser parameter is read from the method
options file to determine the user account with which to run the method. If the
parameter is not present or the options file does not exist, on UNIX the root user is
used and, on Windows, the user name of the account in which IBM Workload
Scheduler was installed is used. If the method cannot be run, the file opens
dependency is marked as failed, that is, the file status is set to NO and any
dependent job or job stream is not allowed to run.

Once it is running, the method runs a test command, or the equivalent, against the
file using the qualifier passed to it in the -q command line option. If the file test is
true, the method exits with an exit code of zero. If the file test is false, the method
exits with a nonzero exit code. This is summarized in Table 147.

Table 147. Check file task (CF) messages

Task Method Response IBM Workload Scheduler Action

CF Exit code=0 Set file state to YES.

Exit code=nonzero Set file state to NO.

%UT [errormessage] and Exit
code=2

Set file state to NO.

A method that does not support the CF task writes a %UT message to stdout and
exits with an exit code of 2.

Get status task (GS) extended agents only
About this task

The GS task tells the extended agent's method to check the status of a job. This is
necessary when another job is dependent on the successful completion of an
external job. Before running the method, the GSuser parameter is read from the
method options file to determine the user account with which to run the method.
If the parameter is not present or the options file does not exist, on UNIX the root
user is used, and, on Windows, the user name of the account in which IBM
Workload Scheduler was installed is used. If the method cannot be run, the
dependent job or job stream is not allowed to run. If a jobid is available from a
prior GS task, it is passed to the method.

The method checks the state of the specified job, and returns it in a %CJ message
written to stdout. It then exits with an exit code of zero. At a rate set by the bm
check status local option, the method is re-run with a GS task until one of the
following job states is returned:

abend The job ended abnormally.

succ The job completed successfully.

cancl The job was cancelled.

done The job is ended, but its success or failure is not known.

fail The job could not be run.

Chapter 20. Defining access methods for agents 755

error An error occurred in the method while checking job status.

extrn The job check failed or the job status could not be determined.

Note that GStimeout in the method options file specifies how long IBM Workload
Scheduler will wait for a response before killing the method. See “Method options
file” on page 751 for more information.

Method responses are summarized in Table 148:

Table 148. Get status task (GS) messages

Task Method Response IBM Workload Scheduler Action

GS %CJ state [jobid] Sets job state to state and includes jobid in
any subsequent GS task.

%UT [errormessage] and Exit
code=2

Job state is unchanged.

A method that does not support the GS task writes a %UT message to stdout and
exits with an exit code of 2.

Cpuinfo command for extended agents only
The cpuinfo command can be used in an access method to return information
from a workstation definition. See “Cpuinfo command for extended agents only”
for complete command information.

Troubleshooting
About this task

The following topics are provided to help troubleshoot and debug extended agent
and access method problems.

Job standard list error messages
All output messages from an access method, except those that start with a percent
sign (%), are written to the job's standard list (stdlist) file. For GS and CF tasks
that are not associated IBM Workload Scheduler jobs, messages are written to IBM
Workload Scheduler standard list file. For information about a problem of any
kind, check these files.

Method not executable
If an access method cannot be run, the following occurs:
v For LJ and MJ tasks, the job is placed in the FAIL state.
v For the CF task, the file dependency is unresolved and the dependent job

remains in the HOLD state.
v For the GS task, the job dependency is unresolved and the dependent job

remains in the HOLD state.

To get more information, review the standard list files (stdlist) for the job and for
IBM Workload Scheduler.

756 IBM Workload Scheduler: User’s Guide and Reference

Console Manager messages for extended agents only
This error message is displayed if you issue a start, stop, link, or unlink command
for an extended agent:
AWSBHU058E The command issued for workstation: workstation_name,

cannot be performed, because the workstation is an extended agent,
where the command is not supported.

Composer and compiler messages for extended agents only
The following error messages are generated when composer encounters invalid
syntax in a workstation definition:
AWSDEM045E There is an error in the workstation definition. The ACCESS keyword

was not followed by a valid method. Valid methods correspond with
the name of a file in the TWS_home/methods directory
(the file need not be present when the access method is defined).

AWSDEM046E There is an error in the workstation definition. The ACCESS keyword
has been specified more than once.

AWSDEM047E There is an error in the workstation definition. The ACCESS keyword
was not followed by a valid method. Valid methods correspond with
the name of a file in the TWS_home/methods directory
(the file need not be present when the access method is defined).

If an extended agent is defined with an access method but without a host, the
following message is displayed:
AWSBIA140E For an extended agent you must specify the host and the access method.

Jobman messages for extended agents only
For extended agents, error, warning, and information messages are written to
jobmans stdlist file.

A successful job launch generates the following message:
AWSBDW019I Launched job job_name, #Jrun_number for user user_ID.

Failure to launch a job generates the following message:
AWSBDW057E The job job_name was not launched for this reason:

error_message

Failure of a check file task generates the following message:
AWSBDW062E Jobman was unable to invoke the following method file method_name

for the extended agent. The operating system error is:
system_error

Failure of a manage job task generates the following message:
AWSBDW066E Planman has asked jobman to run a task that is not supported on the

targeted agent. The following method options file was used:
method_options_file. The job identifier and monitor PID are as
follows: job, #Jmonitor_pid

When a method sends a message to jobman that is not recognized, the following
message is generated:
AWSBDW064E A job that jobman is monitoring has returned the following

unrecognizable message: incorrect_message. The job identifier,
monitor PID and method file are as follows: job_name, #Jmonitor_pid
using method file.

Chapter 20. Defining access methods for agents 757

758 IBM Workload Scheduler: User’s Guide and Reference

Chapter 21. Managing internetwork dependencies

IBM Workload Scheduler internetwork dependencies allow jobs and job streams in
the local network to use jobs and job streams in a remote network as follows
dependencies. This chapter describes how to customize your environment to be
able to define internetwork dependencies and how to manage the internetwork
dependencies.

The chapter is divided into the following sections:
v “Internetwork dependencies overview”
v “Configuring a network agent” on page 761
v “Defining an internetwork dependency” on page 763
v “Managing internetwork dependencies in the plan” on page 763
v “Internetwork dependencies in a mixed environment” on page 766

Note: Depending on your needs and requirements, you can choose between
internetwork dependencies and cross dependencies to establish a dependency
between a job running on the local engine and a job running on a remote IBM
Workload Scheduler engine. See “Defining dependencies” on page 20 for a
description about the differences between these two types of dependencies.

Internetwork dependencies overview
Before you specify an internetwork dependency, you must create a workstation
definition for the network agent. A network agent is an IBM Workload Scheduler
workstation that handles follows dependencies between its local network and a
remote IBM Workload Scheduler network.

In the local IBM Workload Scheduler network there can be more than one network
agent, each representing a specific IBM Workload Scheduler remote network where
jobs and job streams referring to locally defined internetwork dependencies are
defined. Internetwork dependencies are assigned to jobs and job streams in the
same way as local follows dependencies, with the exception that the network
agent's name is included to identify the followed job or job stream.

A special job stream named EXTERNAL is automatically created by IBM Workload
Scheduler for each network agent in the local network. It contains placeholder jobs
to represent each internetwork dependency.

An EXTERNAL job is created for each internetwork dependency belonging to job
streams planned to start in different days with different schedule dates. This means
that an EXTERNAL job differs from another one by:
v The script file name, which identifies the remote job or job stream the local job

or job stream is dependent on.
v The date the local job stream containing the internetwork dependency is planned

to start. If the dependency is defined in a job within the job stream the date the
job stream is planned to start is taken into account.

The check of the internetwork dependency check does not start until the job stream
matches its time dependency or it is released.

759

In case of two jobs belonging to different job streams and referring to the same
internetwork dependency, as one of their job streams is released and the job starts
the internetwork dependency is checked and possibly released. In this case when
the second job starts to check its internetwork dependency it finds the dependency
already solved but not necessarily on the expected day. If you want to prevent this
situation from occurring you must rerun the job representing the internetwork
dependency after it is solved the first time.

IBM Workload Scheduler checks the status of the referred jobs and job streams in
the remote network and maps their status in the jobs representing the internetwork
dependencies in the EXTERNAL job stream. The status of these jobs and job streams
is checked over a fixed time interval until the remote job or job stream reaches the
SUCC, CANCL, or ERROR state.

Understanding how an internetwork dependency is shown
About this task

This section describes a sample scenario about internetwork dependencies and how
to link the job representing the internetwork dependency to the job stream where
the dependency is defined. Assume that:
v You defined a job stream named ELISCHED running on workstation TWS206

containing a job named ELI with an internetwork dependency from a job stream
TWS207#FINAL.MAKEPLAN running in a different IBM Workload Scheduler network.

v XA_MAST is the network agent defined in the local network to manage
internetwork dependencies from jobs and job streams defined in that remote
network.

Use the conman sj command to see the internetwork dependency set:
(Est) (Est)

CPU Schedule SchedTime Job State Pr Start Elapse RetCode Deps

TWS206#ELISCHE 0600 03/31 **** HOLD 10 (03/31)
ELI HOLD 10 XA-MAST::"TWS207#MYJS.JOB1"

where (03/31) represents the at time restriction set in TWS206#ELISCHE. Starting
from (03/31) the status of TWS207#MYJS.JOB1 is checked in the remote network to
see if the internetwork dependency XA-MAST::"TWS207#MYJS.JOB1" is satisfied.

If you run the command:
%sj XA-MAST#EXTERNAL;info

you see the list of jobs representing internetwork dependencies defined in jobs and
job streams running in the local network from jobs and job streams defined in the
remote network reachable through the network agent XA-MAST:

CPU Schedule SchedTime Job JobFile Opt Job
Prompt
XA-MAST #EXTERNAL

E8802332 TWS207#MYJS.JOB1

You can see the details about the job or job stream depending on TWS207#MYJS.JOB1
in the internetwork dependency represented by job E8802332 in the EXTERNAL job
stream, by running the following command:
%sj @#EXTERNAL.E8802332;deps

The output shows the link between the dependent job and the internetwork
dependency:

760 IBM Workload Scheduler: User’s Guide and Reference

(Est) (Est)
CPU Schedule SchedTime Job State Pr Start Elapse RetCode Deps

XA-MAST#EXTERNAL.E8802332 Dependencies are:

TWS206#ELISCHE 0600 03/31 **** HOLD 10 (03/31)
ELI HOLD 10 XA-MAST::"TWS207#MYJS.JOB1"

The internetwork dependency check does not start until the job stream
TWS206#ELISCHE matches its time dependency, (03/31), or is released.

If there is another job defined within another job stream in the local network that
has a dependency on TWS2007#MYJS.JOB1 and the local job stream is planned to
start on the same day, 03/31/06, then also the dependency of this other job on
TWS2007#MYJS.JOB1 will be listed in the job E8802332 within the XA-MAST#EXTERNAL
job stream.

Configuring a network agent
About this task

Network agent workstations are defined as extended agents and require a hosting
physical workstation and an access method. The access method for network agents
is named netmth.

The batchman process on the master domain manager queries the netmth on the
network agent at fixed time intervals to get the status of the remote predecessor
job or job stream. You can customize the time interval between two consecutive
checks by setting the global option bm check status in the localopts file on the
master domain manager. The IBM Workload Scheduler continues checking until
the remote job or job stream reaches the SUCC, CANCL, or ERROR state.

You must create an options file named netmth.opts on the workstation where the
network agent runs. In this file are defined the user under which the access
method runs and the time to wait to get a response from the access method before
shutting it down. This options file must have the same path as the access method:
TWS_home/methods/netmth.opts

The content of the netmth.opts file has the following structure:
GSuser=login_name
GStimeout=seconds

where:

login_name
Is the login used to run the method. If the network agent's host is a
Windows computer, this user must be defined in IBM Workload Scheduler.

seconds
Is the number of seconds, IBM Workload Scheduler waits for a response
before shutting down the access method. The default setting is 300
seconds. The next time batchman needs to check the status of the remote
predecessor job or job stream, the access method starts automatically.

Changes to this file do not take effect until you stop and restart IBM Workload
Scheduler.

Chapter 21. Managing internetwork dependencies 761

A sample network agent definition
The following example shows how to define a network agent workstation for a
remote network, Network A, that allows local network, Network B, to use jobs and
job streams in the remote network as internetwork dependencies.

Assuming that:
v MasterA is the master domain manager of the remote network, Network A, and

that:
– tws_masterA is the TWS_user defined on MasterA.
– The TCP port number for MasterA as 12345.
– The node where MasterA is defined is MasterA.rome.tivoli.com.

v MasterB is the master domain manager of the local network, Network B, and that:
– tws_masterB is the TWS_user defined on MasterB.
– The node where MasterB is defined is MasterB.rome.tivoli.com.

A network agent workstation named NetAgt, defined on MasterB to manage
internetwork dependencies on jobs or job streams defined in Network A can be the
following:
CPUNAME NETAGT

DESCRIPTION "NETWORK AGENT"
OS OTHER
NODE MASTERA.ROME.TIVOLI.COM
TCPADDR 12345
FOR maestro
HOST MASTERB
ACCESS netmth

END

Important: Write the network access name netmth in lowercase on case-sensitive
operating systems.

The options file, netmth.opts defined on MasterB can be:
GSuser=tws_masterB
GStimeout=600

Remote

Network A
Local

Network B

Network Agent

MasterA MasterB

Figure 32. Local and remote networks

762 IBM Workload Scheduler: User’s Guide and Reference

Note: The network agent can be defined on either the master domain manager or
a fault-tolerant agent.

Defining an internetwork dependency
About this task

The syntax used to specify an internetwork dependency within a job stream
definition is the following:
follows Network_agent_name::remote_workstation#jobstreamname(time [date]).jobname

where the (time [date]) are specific to the time zone used on the workstation of
the remote network the network agent is connected to; in our sample the time zone
of MasterA. If (time [date]) is not specified in this syntax or if there is more than
one job stream with the same (time [date]), the first job stream found is taken
into account.

Assuming that:
v schedA is a job stream defined in the MasterA database.
v jobA is a job defined in the MasterA database.
v schedB is a job stream defined in the MasterB database.
v jobB is a job defined in the MasterB database.

you can define internetwork dependencies using the following follows statements:

To define an internetwork dependency of schedB from the job stream instance
schedA(1100)

Use the following statement:
schedule schedB

on everyday
follows NetAgt::MasterA#schedA(1100)
:

end

To define an internetwork dependency of jobB from jobA contained in the job
stream instance schedA(1100)

Use the following statement:
schedule schedB

on everyday
:
jobB

follows NetAgt::MasterA#schedA(1100).jobA
end

You can also define internetwork dependencies of a job on a job stream or a job
stream on a job.

Managing internetwork dependencies in the plan
About this task

Internetwork dependencies are managed in the plan from the conman command
line by managing the EXTERNAL job stream. Within the EXTERNAL job stream the
internetwork dependencies are listed as jobs regardless of whether they are defined
for jobs or job streams. There is an EXTERNAL job stream for every network agent in
the plan.

Chapter 21. Managing internetwork dependencies 763

Within the EXTERNAL job stream, unique job names representing internetwork
dependencies are generated as follows:
Ennnmmss

where:

nnn Is a random number.

mm Is the current minutes.

ss Is the current seconds.

The actual name of the job or job stream is stored in the script files specification of
the job record.

Note: Remote jobs and job streams are defined and run on their local network in
the standard manner. Their use as internetwork dependencies has no effect on their
local behavior.

States of jobs defined in the EXTERNAL job stream
The status of the jobs defined in the EXTERNAL job stream is determined by the
access method and listed in the Release Status field of the EXTERNAL job stream. The
reported status refers to the last time the remote network was checked. Jobs might
appear to skip states when states change in between two different checks.

All states for jobs and job streams, except FENCE, are listed. In addition to these
there are three states that are specific to the EXTERNAL jobs, they are:

CANCL
The corresponding job or job stream in the remote network has been
cancelled.

ERROR
An error occurred while checking for the remote status.

EXTRN
This is the initial state. If the job is not found in the remote network, it
remains in EXTRN state.

Note: If you cancel in the local network the instances of jobs or job streams
dependent on the same instance of a job or job stream defined in a remote
network, make sure you manually cancel also the job, representing that
internetwork dependency in the EXTERNAL job stream, to prevent the EXTERNAL job
stream from being continuously carried forward.The same consideration applies
when the local job stream dependent on the job or job stream defined in the
remote network is not carried forward to the new plan.

Working with jobs defined in the EXTERNAL job stream
About this task

These are the available actions you can perform against jobs in an EXTERNAL job
stream:

Cancel
Cancels the EXTERNAL job, releasing the internetwork dependency for all
local jobs and job streams. The status of the dependency is no longer
checked.

764 IBM Workload Scheduler: User’s Guide and Reference

Rerun Instructs conman to restart checking the state of the EXTERNAL job. The job
state is set to EXTRN immediately after a rerun is performed.

Rerun is useful for EXTERNAL jobs in the ERROR state. For example, if an
EXTERNAL job cannot be launched because the network access method does
not grant execute permission, the job enters the ERROR state and its status
ceases to be checked. After you correct the permissions, the method can
start but conman will not start checking the EXTERNAL job state until you
perform a rerun.

Confirm SUCC / ABEND
Sets the status of the EXTERNAL job to SUCC or ABEND, releasing the
dependency for all depending local jobs and job streams. The status of the
dependency in no longer checked.

Note: None of these commands has any effect on the remote job or job stream in
the remote network. They simply manipulate the dependency for the local
network.

Sample internetwork dependency management scenarios
About this task

This section provides sample scenarios describing how you can manage
internetwork dependency in production using the conman command line
commands.

Assuming that you have already defined the following:
v A local workstation called local1
v A job stream defined for the local workstation local1 called sched1
v A job defined in local1#sched1 called job1
v A network agent called netagt defined in the local network to manage

internetwork dependency from jobs and job streams defined in the remote
network.

v A workstation in the remote network called remote1
v A job stream defined for the remote workstation remote1 called rcshed
v A job in defined in remote1#rsched called rjob

You can perform several actions from the conman command line in the local
network. The following list contains some examples:

Adding an internetwork dependency from a remote job to a local job.
For example, to add the remote job rjob as an internetwork dependency
for job1, run the following command:
adj local1#sched1.job1;follows=netagt::remote1#rsched.rjob

Adding an internetwork dependency from a remote job stream to a local job
stream.

For example, to add the remote job stream rsched as an internetwork
dependency for job stream sched1, run the following command:
ads local1#sched1;follows=netagt::remote1#rsched

Cancelling internetwork dependencies managed by a network agent.
For example, to cancel all EXTERNAL jobs for a network agent netagt, run
one of the following two commands:
cj netagt#EXTERNAL.@

cj netagt::@

Chapter 21. Managing internetwork dependencies 765

Confirming the successful completion of an internetwork dependency.
For example, to confirm that the remote job remote1#rsched.rjob
completed successfully and so release the corresponding internetwork
dependency, run the following command:
confirm netagt::remote1#rsched.rjob;succ

Deleting an internetwork dependency from a job for a job.
For example, to delete the internetwork dependency from the remote job
remote1#rsched.rjob for the local job local1#sched1.job1, run the
following command:
ddj local1#sched1.job1;follows=netagt::remote1#rsched.rjob

Deleting an internetwork dependency from a job for a job stream.
For example, to delete the internetwork dependency from the remote job
remote1#rsched.rjob for the local job stream local1#sched1, run the
following command:
dds local1#sched1;follows=netagt::remote1#rsched.rjob

Releasing a local job from an internetwork dependency from a remote job.
For example, to release a job from an internetwork dependency from a
remote job, run the following command:
rj local1#sched1.job1;follows=netagt::remote1#rsched.rjob

Releasing a local job stream from an internetwork dependency from a remote
job. For example, to release a job stream from an internetwork dependency

from a remote job, run the following command:
rs local1#sched1;follows=netagt::remote1#rsched.rjob

Rerunning a job in the EXTERNAL job stream to restart checking a dependency.
For example, to rerun a job belonging to the EXTERNAL job stream to restart
checking the internetwork dependency from the remote job
remote1#rsched.rjob, run one of the following two commands:
rr netagt#EXTERNAL.rjob

rr netagt::remote1#rsched.rjob

Displaying internetwork dependencies from jobs and job streams defined in a
remote network.

For example, to display all the internetwork dependencies defined for a
network agent with their original names and their generated job names,
run the following command:
sj netagt#EXTERNAL.@;info

Submitting a job with an internetwork dependency from a job stream defined in
a remote network

For example, to submit a rm command into the JOBS job stream with an
internetwork dependency on a remote job stream, run the following
command:
sbd "rm apfile";follows=netagt::remote1#rsched

Internetwork dependencies in a mixed environment
Table 149 on page 767 shows the supported configuration for internetwork
dependencies defined in a mixed version 8.3 environment. The key to the table is
as follows:

Net_A The network agent defined in the local network.

766 IBM Workload Scheduler: User’s Guide and Reference

Wks_B
The workstation in the remote network that the network agent Net_A is
connected to. Wks_B is the workstation that identifies and checks the state
of the remote job or job stream specified in the internetwork dependency.

Sym_A
The Symphony file processed in the local network.

Sym_B
The Symphony file processed in the remote network.

back-level
Version 8.1, 8.2, or 8.2.1

Table 149. Internetwork dependencies in a mixed environment

Net_A back-level
Sym_A back-level

Net_A 8.3
Sym_A back-level

Net_A back-level
Sym_A 8.3

Net_A 8.3
Sym_A 8.3

Wks_B back-level
Sym_B back-level

This is not a mixed
version 8.3
environment.

Net_A sends the
information to Wks_B
as if it had the same
version as Wks_B.

Net_A sends the
information to Wks_B
in 8.1, 8.2, or 8.2.1
format. The use of
the schedtime
keyword in the job
definition is not
supported.

Net_A sends the
information to Wks_B as
if it had the same
version as Wks_B. If
defined, the schedtime
keyword in the job
definition is
automatically removed
by Net_A.

Wks_B 8.3
Sym_B back-level

Wks_B works as if it
had the same version
as Net_A.

Net_A sends the
information to Wks_B.
If defined, the
schedtime keyword in
the job definition is
automatically
removed by Wks_B.

Net_A sends the
information to Wks_B.
If defined, the
schedtime keyword in
the job definition is
automatically
removed by Wks_B.

Net_A sends the
information to Wks_B. If
defined, the schedtime
keyword in the job
definition is
automatically removed
by Wks_B.

Wks_B back-level
Sym_B 8.3

Not supported. Not supported. Not supported. Not supported.

Wks_B 8.3
Sym_B 8.3

Not supported. Not supported. Net_A sends the
information to Wks_B.
If defined, the
schedtime keyword is
parsed by Wks_B.

This is a version 8.3
environment.

Chapter 21. Managing internetwork dependencies 767

768 IBM Workload Scheduler: User’s Guide and Reference

Chapter 22. Applying conditional branching logic

With IBM Workload Scheduler you can define jobs to run when and as often as
necessary. Sometimes some jobs might have to wait for other jobs to finish
successfully before they start. Add even more flexibility to your job flows by
choosing which job to run depending on the result of the job status or output of a
previous job. Whenever you have conditions that specify whether or not a segment
of your job flow should run, then that is a conditional dependency.

When specifying dependencies, you can define job flows with alternative branches
based on conditions, specifically to achieve the same results as using
IF/THEN/ELSE statements. You can use return codes, job status, output variables,
and job log content as conditional logic elements to determine the start of a
successor job. In addition to providing flexibility to your job flows, the Graphical
View provides a graphical representation of the relationships between the jobs and
job streams, including the dependencies and conditions. This at-a-glance view of
your job flow is easy to read and you can also edit your job flow from this view.

The following example shows the PAYROLL job stream that starts with the
ABSENCES job, which is a predecessor job and is then followed by two possible
branches of jobs that can run. The branch that runs depends on the outcome of the
initial job, the predecessor ABSENCES job. Possible outcomes of the ABSENCES
job are defined in output conditions. Any jobs in the flow that do not run, because
the output conditions were not satisfied, are put in SUPPRESSED state, which is
different from regular dependencies where jobs are put in Hold until the
predecessor is in successful (SUCC) state. Predecessors can be either jobs or job
streams.

Conditions can be status conditions, based on job status, or other output
conditions, based on a mapping expression such as a return code, output
variables, or output in a job log. When the predecessor is a job stream, the
conditional dependency can only be a status condition.

Status conditions
These are conditions based on job status, such as if the job started, or if the

769

job completes in FAIL, ABEND, SUCC, or SUPPR state. For job streams,
the valid statuses are SUCC, SUPPR, and ABEND.

Other output conditions
Other types of conditions, including successful output conditions, can be
specified using a mapping expression, which can be:
v A return code (fault-tolerant and dynamic agents)
v Output variables (dynamic agents)
v Job log content (dynamic agents)

A condition dependency relationship is set up by using a condition. You specify the
output conditions in the job definition. You can define an unlimited number of
conditional dependencies. When you choose to add a conditional dependency on
this job, you select the status and output conditions that you want to be considered
during the job processing. The following example shows other output conditions
defined in the job definition.

You can define both successful output conditions, conditions that when satisfied
signify that the job completed successfully, and other output conditions, which
when satisfied determine which successor job to run. The output conditions are
evaluated in "OR".

When this job is added to a job stream as a successor job, and a conditional
dependency is added to the job preceding this job (predecessor job), then a
selection of the conditions is made. The properties panel for the internal or external
dependency is dynamically updated to include the conditions originally specified
in the job definition. In addition to the conditions originating from the job
definition, you can select conditions based on job status. If the selected conditions
are satisfied during job processing, then the corresponding successor job runs.

770 IBM Workload Scheduler: User’s Guide and Reference

You can also join or aggregate conditional dependencies related to different
predecessors. A join contains multiple dependencies, but you decide how many of
those dependencies must be satisfied for the join to be considered satisfied. You
can define an unlimited number of conditional dependencies, standard
dependencies, or both in a join.

Conditional dependencies are supported only for dependencies where the
predecessor is a job or a job stream in the same network and where all the
components are at least at the Version 9.3 Fix Pack 2 level. They are not supported
on internetwork dependencies, nor on Limited Fault-Tolerant Agents for IBM i.

Setting up conditional dependencies
You can set up conditional dependencies to define workflows with alternative
branches based on conditions.

About this task

Using conditional dependencies you can control when a successor job starts
depending on the combination of one or more mapping expressions (for example,
return codes) or statuses of a predecessor job.

Ensure that all the components in the IBM Workload Scheduler environment are at
version 9.3, Fix Pack 1, or later.

In the following example, the DB_BACKUP job runs if the ABSENCES job satisfies
the condition associated with the STATUS_OK , and the
OPERATOR_INTERVENTION job runs if the ABSENCES job satisfies the condition
defined for STATUS_ERR1.

Chapter 22. Applying conditional branching logic 771

To set up this type of job processing, complete the following steps:
1. Create the job definition and define the output conditions.
2. Define the conditional dependency.

To create the PAYROLL job stream, complete the following steps:

Procedure
1. Add the ABSENCES, DB_BACKUP, and OPERATOR_INTERVENTION jobs to

the job stream named PAYROLL.
2. Add a dependency, in this case an internal dependency, to the DB_BACKUP

job. In the properties of the internal job dependency, choose to make this a
conditional dependency by selecting the Conditional Dependency check box.

3. In Conditional Dependency Resolution Criteria, select Successor job runs if
any of these conditions are satisfied and then select STATUS_OK.

4. Add a dependency to the OPERATOR_INTERVENTION job. In the properties
of the internal job dependency, choose to make this a conditional dependency
by selecting the Conditional Dependency check box.

5. In Conditional Dependency Resolution Criteria, select Successor job runs if
any of these conditions are satisfied and then select STATUS_ERR1.

6. Save the job stream.

Example

You can define the same scenario by using the composer command line as follows:

Job definition
WK1#ABSENCES

SCRIPTNAME "myscript.sh"
STREAMLOGON root
DESCRIPTION "Sample Job Definition"
TASKTYPE UNIX
SUCCOUTPUTCOND STATUS_OK "RC=0”
OUTPUTCOND STATUS_ERR1 “RC =2”
RECOVERY CONTINUE

END

Job stream
SCHEDULE WK1#PAYROLL
ON RUNCYCLE RULE1 "FREQ=DAILY;"
AT 1800
CARRYFORWARD
:
WK1#DB_BACKUP

772 IBM Workload Scheduler: User’s Guide and Reference

FOLLOWS WK1#ABSENCES IF STATUS_OK
WK1#OPERATOR_INTERVENTION

FOLLOWS WK1#ABSENCES IF STATUS_ERR1
END

For more information about defining conditional dependencies using the composer
command line see “Job definition” on page 173, “Job stream definition” on page
209, and “follows” on page 230.

Joining or combining conditional dependencies
You can choose to combine a set of dependencies into a joined dependency.

About this task

You can add multiple dependencies related to different predecessors to a join
dependency and then specify how many of those dependencies must be satisfied
to consider the join satisfied. When the join is satisfied, then the successor job runs.

In the following example, a join dependency, PROBLEM_SOLVING was inserted
into the job stream and aggregates three conditional dependencies, each related to
different predecessor jobs. Only one conditional dependency must be satisfied to
consider the PROBLEM_SOLVING join satisfied. The ABSENCES_RETRY job
follows the PROBLEM_SOLVING join and runs when at least one of the three
predecessor jobs completes successfully, thereby satisfying the rule established on
the join. If the join is not satisfied then the ABSENCES_RETRY job is suppressed.

To set up the join in this example, complete the following steps:

Procedure
1. Add the RESTART_DB, RESTART_WAS, TEMP_CLEANUP, and

ABSENCES_RETRY jobs to a job stream.
2. Right-click the ABSENCES_RETRY job and select Add Dependencies > Join

Dependencies.
3. In the properties for the join dependency, assign a name, PROBLEM_SOLVING.
4. The rule to be applied to the PROBLEM_SOLVING join is at least one of the

dependencies must be satisfied. Leave the default selection, At least 1.

Chapter 22. Applying conditional branching logic 773

5. Right-click the PROBLEM_SOLVING join dependency in the Details view and
select Add Dependencies > Job in the same Job Stream.

6. Click Search to display all the jobs in the job stream.
7. Select the RESTART_DB, RESTART_WAS, and TEMP_CLEANUP jobs and click

Add.
8. For each internal job dependency, edit the properties to make it a conditional

dependency.
a. Select the Conditional Dependency check box.
b. In Conditional Dependency Resolution Criteria, select Successor job runs

if the predecessor job or job stream completes with any of these statuses.
c. Select the SUCC check box.
d. Save the changes.

Results

The three conditional dependencies on the ABSENCES_RETRY job have been
joined together in the PROBLEM_SOLVING join dependency where at least one of
the conditions (predecessor job completes in SUCC), must be satisfied for the
ABSENCES_RETRY job to run.

Example

You can define the same scenario by using the composer command line as follows:
SCHEDULE WK1#PROCESSINFO
ON RUNCYCLE RULE1 "FREQ=DAILY;"
AT 1800
:
WK1#ABSENCES_RETRY
JOIN PROBLEM_SOLVING 1 OF
[DESCRIPTION “....”]
FOLLOWS WK2#RESTART_DB IF SUCC
FOLLOWS W32#RESTART_WAS IF SUCC
FOLLOWS W32#TEMP_CLEANUP IF SUCC

ENDJOIN
END

For more information about defining a join from the composer command line, see
“join” on page 236.

Scheduling and submitting conditional dependencies
You schedule IBM Workload Scheduler jobs by defining them in job streams.

You can use the Dynamic Workload Console or the conman command line to
schedule and submit jobs.

After you define an IBM Workload Scheduler job, add it to a job stream with all
the necessary scheduling arguments and submit it to run.

How to schedule a job or job stream using the Dynamic Workload Console
To schedule a job or job stream based on specific criteria, see the section
about designing your workload in Dynamic Workload Console User's Guide.

How to schedule a job or job stream using the command line
To schedule a job or job stream based on specific criteria, see the section
about controlling job and job stream processing in User's Guide and
Reference.

774 IBM Workload Scheduler: User’s Guide and Reference

How to submit a job or job stream using the Dynamic Workload Console
To submit a job or job stream to run according to a defined schedule, see
the section about submitting workload on request in production in
Dynamic Workload Console User's Guide.

How to submit a job or job stream from the conman command line
To submit a job for processing, see the section about the submit sched
command in User's Guide and Reference. To submit a job to be launched, see
the section about the submit job command in User's Guide and Reference.

Evaluating and processing a conditional dependency flow
After you submit your jobs or job streams, IBM Workload Scheduler adds them to
the production plan and evaluates them.

Conditional dependencies increase the flexibility of your workload by choosing
which job to run as a result of the job status or of the output of a previous job.

Conditional dependencies are evaluated after any standard dependencies in the job
or job stream are satisfied.

If you rerun a job or job stream, the evaluation of the conditional dependency flow
is cleared and all dependencies are evaluated again.

If a predecessor job or job stream is cancelled, and the predecessor is in a final
state, then the output condition or status condition is evaluated and may or may
not be satisfied, or may not be assessable. If the predecessor is not in a final state
and has not evaluated any conditions, then the successor remains in HOLD and
the job or job stream remains in STUCK.

Follows dependency

A follows dependency is satisfied when the job on which the dependency is
defined completes successfully.

In this example, the DB_BACKUP job can start only after the ABSENCES job
completes successfully. If the ABSENCES job does not complete successfully, the
DB_BACKUP job remains in HOLD status.

Conditional dependencies on job status

You can use conditional dependencies to make your workload more flexible and
automate some recurring tasks. For example, you can decide that a certain job
must run when a predecessor completes successfully and a different job must run

Figure 33. A follows dependency on the ABSENCES job

Chapter 22. Applying conditional branching logic 775

when the predecessor fails.

In this example, if the ABSENCES job completes successfully, the DB_BACKUP job
runs and the OPERATOR_INTERVENTION job is suppressed. On the contrary, if
the ABSENCES job ends in ABEND status, the OPERATOR_INTERVENTION job
runs and the DB_BACKUP job is suppressed. If you have a standard follows
dependency on the DB_BACKUP job, for example, and the job is suppressed, the
follows dependency is released and the successor job can run. If you want to
propagate the SUPPR status from the DB_BACKUP job, for example, to a successor
job, you define a conditional dependency on the SUPPR status on the
DB_BACKUP job. This dependency causes the successor of the DB_BACKUP job to
go into SUPPR status when the DB_BACKUP job ends in SUPPR status

If all the conditional dependencies defined in the job stream are satisfied, the job or
job stream goes into READY status. If a conditional dependency is not satisfied,
the related successor job or job stream goes into SUPPR status.

Conditional dependencies on job output conditions

You can also condition the behavior of your workload based on the job return code
and automate a set of responses based on the problems encountered by the
predecessor job. There are a number of reasons why the ABSENCES job might fail
and some of them can be easily anticipated and solved. The job might fail because
the database is down, because the WebSphere Application Server is down, and so
on, or an unexpected problem might arise, which requires the intervention of an
operator.

Figure 34. Two different conditional dependencies on SUCC and ABEND statuses on the ABSENCES job

776 IBM Workload Scheduler: User’s Guide and Reference

When defining the ABSENCES job, you associate a specific return code to the
problems that might arise, so that a specific job is started to try and solve the
problem. For example, a return code of 1 indicates that the database cannot be
reached and causes the DB_RESTART job to start, which starts the database; a
return code of 2 indicates that the WebSphere Application Server cannot be reached
and causes the WAS_RESTART job to start, which starts the WebSphere
Application Server, and so on. Any return code greater than 3 indicates that an
unexpected error has occurred and starts the OPERATOR_INTERVENTION job,
which alerts the operator.

If the ABSENCES job fails with one of the return codes defined in the output
conditions, the corresponding job is started, while the remaining jobs are
suppressed.

When no output conditions are satisfied, the job or job stream remains in HOLD
status.

Join conditional dependencies

You can also combine a set of dependencies into a join dependency and specify
how many of them must be met for the join dependency to be satisfied.

For example, consider this portion of the PAYROLL job stream:

Figure 35. Conditional dependencies on output conditions on the ABSENCES job

Chapter 22. Applying conditional branching logic 777

In this case, the PROBLEM_SOLVING join dependency contains three
dependencies on SUCC status on three different jobs. This means that when at
least one of the RESTART_DB, RESTART_WAS or TEMP_CLEANUP jobs
completes successfully, the join dependency is satisfied and the ABSENCES_RETRY
job can start.

If none of the predecessor jobs completed successfully, the PROBLEM_SOLVING
join dependency is not satisfied and the ABSENCES_RETRY job is suppressed.

If the number of conditional dependencies defined in the join dependency is
satisfied, the job or job stream goes into READY status. If the specified number of
conditional dependencies in a join dependency is not satisfied, the job or job
stream goes into SUPPR status.

Evaluating conditional dependencies in job streams

The evaluation of conditional dependencies in job streams depends on several
factors, as described in the following examples.

When a job within the job stream is in SUPPR status, its status is evaluated as
CANCELLED. If all jobs within the job stream are in SUPPR status, the job stream
goes into SUCC status. This is the same behavior that causes a job stream
containing only CANCELLED jobs to go into SUCC status.

When you change a job stream status to SUPPR, all the jobs in the job stream that
have not reached a final status are changed into SUPPR status. This applies, for
example, to jobs that are in READY or HOLD status.

NON-SATISFIED STATUS CONDITION AND RECOVERY STOP SETTING
CAUSING THE JOB STREAM TO COMPLETE IN ABEND STATUS

The PERFORMANCE job has a conditional dependency on the SALES job
completing in SUCC status. However, the SALES job completes in ABEND status.
The conditional dependency on the SALES job is evaluated as unsatisfied and the
PERFORMANCE job is suppressed. The job stream completes in ABEND status
because the abended SALES job is set to recovery stop, and the suppressed status

Figure 36. A join dependency containing three dependencies on SUCC status

778 IBM Workload Scheduler: User’s Guide and Reference

of the PERFORMANCE job is considered as a CANCELLED status.

For more information about the recovery stop setting, see the section about
defining job recovery actions in User's Guide and Reference.

NON-SATISFIED STATUS DEPENDENCY CAUSING THE JOB STREAM TO
COMPLETE IN SUCC STATUS

The OPERATOR_CALL job has a conditional dependency on the DB2_BACKUP job
completing in ABEND status. However, the DB2_BACKUP job completes in SUCC
status. The conditional dependency on the DB2_BACKUP job is evaluated as not
being satisfied and the OPERATOR_CALL job is suppressed. The job stream status
is evaluated in SUCC status because the suppressed status of the
OPERATOR_CALL job is considered as a cancelled status.

UNSATISFIED STATUS DEPENDENCY CAUSING THE JOB STREAM TO
COMPLETE IN STUCK STATUS

The PERFORMANCE job has a conditional dependency on the SALES job
completing with the STATUS_OK output condition. However, the SALES job ends
in ABEND status and no output condition is satisfied. As a result, the conditional
dependency on the SALES job is not evaluated and the job stream completes in
STUCK status.

Figure 37. Status conditional dependency on a job with recovery stop setting

Figure 38. ABEND status conditional dependency

Chapter 22. Applying conditional branching logic 779

SATISFIED OUTPUT CONDITION AND RECOVERY STOP SETTING
CAUSING THE JOB STREAM TO COMPLETE IN ABEND STATUS

The OPERATOR_CALL job has a conditional dependency on the DB2_BACKUP job
completing with the ERROR output condition. The DB2_BACKUP ends in ABEND
and the ERROR output condition is satisfied. As a result, the conditional
dependency on the DB2_BACKUP job is evaluated as satisfied. The
OPERATOR_CALL job completes in SUCC status. However, the job stream
completes in ABEND status because it contains at least one job in ABEND status
set to recovery stop. To have the job stream complete in SUCC status, set the
DB2_BACKUP job to recovery continue.

NON-SATISFIED OUTPUT CONDITION AND RECOVERY STOP SETTING
CAUSING THE JOB STREAM TO COMPLETE IN ABEND STATUS

The PERFORMANCE job has a conditional dependency on the SALES job
completing with the STATUS_OK output condition. However, the SALES job
completes in ABEND status and the STATUS_OK output condition is not satisfied.
As a result, the conditional dependency on the SALES job is evaluated as not
satisfied and the PERFORMANCE job is suppressed. The job stream completes in
ABEND status because the abended SALES job is set to recovery stop and the
suppressed status of the PERFORMANCE job is considered as a CANCELLED
status.

Figure 39. STATUS_OK output condition

Figure 40. ERROR output condition

780 IBM Workload Scheduler: User’s Guide and Reference

Monitoring conditional dependencies
Monitor IBM Workload Scheduler jobs by using the Dynamic Workload Console or
the conman command line.

The Dynamic Workload Console displays the following sample information:

You can monitor output conditions using the conman showjobs and
showschedules command line.

In this example, you can see the status of the PAYROLL job stream after
submission and before it is run:
%ss @#PAYROLL

(Est) (Est) Jobs Sch
Workstation Job Stream SchedTime State Pr Start Elapse # OK Lim
NC050024 #PAYROLL 0958 11/19 HOLD 10 7 0

Figure 41. STATUS_OK output condition

Chapter 22. Applying conditional branching logic 781

This example shows the details about the jobs in the PAYROLL job stream:
%sj @#PAYROLL

(Est) (Est)
Workstation Job Stream SchedTime Job State Pr Start Elapse ReturnCode Dependencies

NC050024 #PAYROLL 0958 11/19 ************************** READY 10
(NC050024_1_1#)OPERATOR_INTERVENTION HOLD 10 ABSENCES IF UNKNOWN_ERR
(NC050024_1_1#)DB_BACKUP HOLD 10 JOIN SUCCESS 1 OF

ABSENCES IF SUCC
ABSENCES_RETRY IF SUCC

(NC050024_1_1#)ABSENCES READY 10
(NC050024_1_1#)RESTART_DB HOLD 10 ABSENCES IF DB_FAIL
(NC050024_1_1#)RESTART_WAS HOLD 10 ABSENCES IF WAS_FAIL
(NC050024_1_1#)TEMP_CLEANUP HOLD 10 ABSENCES IF TEMP_FULL
(NC050024_1_1#)ABSENCES_RETRY HOLD 10 JOIN PROBLEM_SOLVING 1 OF

RESTART_DB
RESTART_WAS
TEMP_CLEANUP

If you run the showjob;info command on one of the jobs, you can obtain some
details about the job:

%sj NC050024#PAYROLL.ABSENCES;info
-------- Restart ---------
Workstation Job Stream SchedTime Job JobFile Opt Job Prompt
NC050024 #PAYROLL 0958 11/19

(NC050024_1_1#)ABSENCES
....... oc: DB_FAIL n/a "RC=1"

oc: TEMP_FULL n/a "RC=3"
oc: UNKNOWN_ERR n/a "RC>3"
oc: WAS_FAIL n/a "RC=2"

To obtain more details, run the showjob;props command. The following sample
output is a subset of the information you obtain by running this command:
%sj NC050024#PAYROLL.ABSENCES;props
General Information

Job = ABSENCES
Workstation = NC050024_1_1
.....
Other Output Conditions
DB_FAIL = n/a "RC=1"
TEMP_FULL = n/a "RC=3"
UNKNOWN_ERR = n/a "RC>3"
WAS_FAIL = n/a "RC=2"

........

Monitoring join conditional dependencies

The Dynamic Workload Console displays the following sample information:

Note: From the Dynamic Workload Console, you can retrieve information about
dependencies in the join, whether or not they are satisfied, while this is not
possible from the command line.

782 IBM Workload Scheduler: User’s Guide and Reference

Join dependencies are represented using composer-like syntax. Only unresolved
and undecided join dependencies are displayed. If the join dependency is satisfied,
no dependencies are displayed.

Here is an example of how the join conditional dependencies are displayed using
conman. You can see that the PROBLEM_SOLVING join dependency has been
satisfied and is no longer displayed. The SUCCESS join dependency will be
evaluated next:

%sj @#PAYROLL
(Est) (Est)

Workstation Job Stream SchedTime Job State Pr Start Elapse ReturnCode Dependencies

NC050024 #PAYROLL 1007 11/19 ** READY 10 10:08 (00:01)
(NC050024_1_1#)OPERATOR_INTERVENTION SUPPR 10 ABSENCES IF UNKNOWN_ERR
(NC050024_1_1#)DB_BACKUP HOLD 10 (00:01) JOIN SUCCESS 1 OF

ABSENCES IF SUCC
ABSENCES_RETRY IF SUCC

(NC050024_1_1#)ABSENCES ABEND 10 10:08 00:01 1 #J355305499
(NC050024_1_1#)RESTART_DB SUCC 10 10:08 00:01 0 #J355305500
(NC050024_1_1#)RESTART_WAS SUPPR 10 ABSENCES IF WAS_FAIL
(NC050024_1_1#)TEMP_CLEANUP SUPPR 10 ABSENCES IF TEMP_FULL
(NC050024_1_1#)ABSENCES_RETRY SUCC 10 10:09 00:01 0 #J355305501

When the job stream completes, the ABSENCES job completed in ABEND status,
which caused the RESTART_DB job to start and recover the problem. The
REATART_WAS and TEMP_CLEANUP jobs have been suppressed, because they
are no longer necessary. The PROBLEM_SOLVING join dependency is now
satisfied. The ABSENCES_RETRY job also completes successfully, causing the
SUCCESS join dependency to be satisfied, which in turn causes the DB_BACKUP
job to start. You can retrieve the following information from the showjobs
command:

%sj @#PAYROLL
(Est) (Est)

Workstation Job Stream SchedTime Job State Pr Start Elapse ReturnCode Dependencies

NC050024 #PAYROLL 1007 11/19 ** ABEND 10 10:08 00:02
(NC050024_1_1#)OPERATOR_INTERVENTION SUPPR 10 ABSENCES IF UNKNOWN_ERR
(NC050024_1_1#)DB_BACKUP SUCC 10 10:09 00:01 0 #J355305502
(NC050024_1_1#)ABSENCES ABEND 10 10:08 00:01 1 #J355305499
(NC050024_1_1#)RESTART_DB SUCC 10 10:08 00:01 0 #J355305500
(NC050024_1_1#)RESTART_WAS SUPPR 10 ABSENCES IF WAS_FAIL
(NC050024_1_1#)TEMP_CLEANUP SUPPR 10 ABSENCES IF TEMP_FULL
(NC050024_1_1#)ABSENCES_RETRY SUCC 10 10:09 00:01 0 #J355305501

Note: There are some differences in the way dependencies are evaluated and
resolved when plan replication is enabled. When it is enabled (the default setting),
then dependencies are resolved as soon as the conditions necessary to satisfy the
dependencies are present. When plan replication is not enabled, then a specific
order of evaluation is followed where job streams with dependencies on external
job streams or jobs are resolved first, and then dependencies between jobs within
the job stream are resolved second.

Similarly, when plan replication is enabled, all dependencies of a job or job stream
in suppress state are evaluated. When plan replication is not enabled, the
evaluation of dependencies stops as soon as a job or job stream is put in suppress
state because of a conditional dependency that was not satisfied. In both of these
cases, the end result is the same, however, when monitoring the progress of the
jobs and job streams in these two situations, you might see differing results.

Plan handling of conditional dependencies
Conditional dependencies are managed in the plan from either the conman
command line or from the Dynamic Workload Console web user interface.

You can complete the following available actions against jobs where a conditional
dependency is defined between the predecessor job and the successor job:

Chapter 22. Applying conditional branching logic 783

Add a dependency

v Add a dependency to a job: “adddep job” on page 405
v Add a dependency to a job stream: “adddep sched” on page 407

Delete a dependency

v Delete a dependency from a job: “deldep job” on page 420
v Delete a dependency from a job stream: “deldep sched” on page 422

Release a dependency

v Release a job from its dependencies: “release job” on page 440
v Release a job stream from its dependencies: “release sched” on page 441

Confirm the completion
Confirm the completion of job in various status: “confirm” on page 416

784 IBM Workload Scheduler: User’s Guide and Reference

Chapter 23. Defining and managing cross dependencies

IBM Workload Scheduler cross dependencies help you to integrate and automate
job processing when:
v The workload is spread across different scheduling environments, because some

of the activities run at different sites or involve different organizational units or
require different skills to be run.

v Even if most of the batch workload is managed locally, none of these
environments is completely isolated from the others because they frequently
interoperate to exchange or synchronize data and activities.

More specifically, the cross dependency feature is key when you need to
synchronize activities between different scheduling environments in an easy way
so that you can:
v Define in one scheduling environment dependencies on batch activities that are

managed by another scheduling environment.
v Monitor the status of the remote predecessor jobs as if they were running in

your local environment.

Additionally, you can control the status of these dependencies by navigating from
a unique user interface across the different scheduling environments.

This chapter describes how you define and use cross dependencies.

It contains the following sections:
v “An introduction to cross dependencies”
v “Processing flow across the distributed scheduling environment” on page 787
v “Defining a cross dependency” on page 789
v “How the shadow job status changes until a bind is established” on page 791
v “How a z/OS shadow job is bound” on page 794
v “How the shadow job status changes after the bind is established” on page 797

Note: Depending on your needs and requirements, you can choose between
internetwork dependencies and cross dependencies to establish a dependency
between a job running on the local engine and a job running on a remote IBM
Workload Scheduler engine. See “Defining dependencies” on page 20 for a
description of the differences between these two types of dependencies.

An introduction to cross dependencies
A cross dependency is, from a logical point of view, a dependency that a local job
has on a job instance that is scheduled to run on a remote engine.

Use cross dependencies to integrate the workload running on different engines,
which can be IBM Workload Scheduler for z/OS engines (controller) or IBM
Workload Scheduler engines (master domain manager and backup master domain
manager).

The following objects and terms are used to describe and implement cross
dependencies:

785

Remote engine workstation
A new type of workstation that represents locally a remote IBM Workload
Scheduler engine, either distributed or z/OS. This type of workstation uses
a connection based on HTTP or HTTPS protocol to allow the local
environment to communicate with the remote environment.

Remote job
A job scheduled to run on a remote IBM Workload Scheduler engine.

Shadow job
A job defined locally, on a remote engine workstation, which is used to
map a remote job. The shadow job definition contains all the information
necessary to correctly match, in the remote engine plan, the remote job
instance.

Bind The process to associate a shadow job with a remote job instance
scheduled in the remote IBM Workload Scheduler engine plan.

From a logical point of view in the local environment:
v The remote engine workstation is used to map the remote IBM Workload

Scheduler engine.
v The shadow job, defined on that remote engine workstation, is used to map a

remote job instance scheduled to run on that remote IBM Workload Scheduler
engine.

You define a cross dependency when you want that a local job (running on your
local engine) depends on a remote job (running on a remote engine).

To do it, you must do as follows:
1. Create a shadow job that runs on your local engine.
2. Define a normal dependency that makes your local job dependent on the shadow

job.

When you create the shadow, consider that
v It must be defined on a workstation of remote engine type, which points to the

remote engine (that is the engine where the remote job is scheduled to run).
v You must make it point to the remote job with which you are creating the cross

dependency.

Figure 42 on page 787 shows the logical flow implementing cross dependencies:
1. In the bind process, the shadow job is associated to the remote job instance.
2. After the bind is established, the shadow job status is updated according to the

remote job status transition.
3. When the shadow job status becomes SUCC the normal dependency of the

local job is released, and so also the cross dependency of that local job on the
remote job is also released.

786 IBM Workload Scheduler: User’s Guide and Reference

Processing flow across the distributed scheduling environment
Depending on whether the local engine emits or receives a bind request, the
processing flow and the components involved change. In both cases, the broker
workstation in the local environment must be up and running to allow the bind
requests management.

Processing flow when the local engine sends a bind request to a remote engine

When you define a shadow job, you specify the information needed to
establish a bind with a job in the remote engine plan.

When the shadow job scheduled time arrives, if the shadow job is free
from dependencies, it is selected by the local batchman for submission and
its status is set to INTRO.

The bind request is sent to the remote engine. The shadow job status is set
to WAIT.

As soon as the bind processing completes, the remote engine sends back to
the local engine a notification with the bind result.

Table 150 shows how the shadow job status changes based on:
v Whether the instance to bind exists or not in the remote engine plan.
v The status of the remote job bound.

Table 150. Shadow job status transition

Status of the shadow job in the production
plan:

When on the remote engine:

BOUND
z/OS The remote job stream instance for

the bind was found in the long
term plan or in the current plan.

Distributed
The remote job stream instance for
the bind was found in the
preproduction plan.

Remote IBM Workload Scheduler engineLocal IBM Workload Scheduler engine

local job

remote job

shadow job

release normal
dependency

(3)

bind (1)

notifications about remote
job status transition

(2)
local predecessor

successor

remote
predecessor

Figure 42. Cross dependency logic

Chapter 23. Defining and managing cross dependencies 787

Table 150. Shadow job status transition (continued)

Status of the shadow job in the production
plan:

When on the remote engine:

ERROR
z/OS One of the following situations

occurred:

v The remote job stream instance
for the bind exists neither in the
long term plan nor in the current
plan.

v The remote job stream instance
for the bind was found in the
long term plan but, when it is
included in the current plan, it
does not contain the requested
job instance.

Distributed
One of the following situations
occurred:

v The remote job stream instance to
bind does not exist in the
preproduction plan.

v The remote job stream instance
for the bind was found in the
preproduction plan but, when it
is included in the production
plan, it does not contain the
requested job instance.

v The remote bind user is not
authorized to access the
requested job instance in the
production plan.

EXEC The status of the remote job is EXEC.

SUCC The status of the remote job is SUCC.

FAIL The status of the remote job is FAIL.

ABEND The status of the remote job is ABEND.

SUCC The status of the remote job is CANCELED.

Note: The status of the shadow job is FAIL also when its submission
failed.
For more details about the shadow job status transition, see “How the
shadow job status changes until a bind is established” on page 791 and
“How the shadow job status changes after the bind is established” on page
797.

Processing flow when the remote engine receives a bind request from the local
engine

When the remote engine receives a bind request from the local engine, the
information contained in the request is used to run the bind in the remote
preproduction plan.

The bind request also contains an ordered list of URLs that the remote
engine uses to send notifications to the local engine. If the local engine is

788 IBM Workload Scheduler: User’s Guide and Reference

distributed, the list is made up of the URL specified in the JDURL property
of the file named TDWB_HOME/config/JobDispatcherConfig.properties.

Note: By default the IBM Workload Scheduler uses the TWSUser to run
the bind in the production plan. If you want to limit and control which
jobs can be bound, you can specify a different user using the global option
bindUser. The user specified does not need to be defined as a user on the
operating system, or even have a password, but it must exist as entry in
the security file with the following access privileges:
v DISPLAY access to the job and schedule objects that can be bound
v LIST access to the job objects that can be bound. This access is required

only if the global option enListSecChk is set to yes.

If the required access privileges are not specified, a notification with an
error is sent back to the engine that requested the bind.
The remote engine sends back to the local engine:

A notification with the status BOUND
If the preproduction plan contains at least one instance of the job
stream specified in the bind request and the definition of that job
stream contains the job to bind.

A notification with the status of the job instance bound
If the instance of the job to bind is found in the production plan
and whenever its status changes.

A notification with an error
If the job instance to bind is not found or if the bind user is not
authorized.

The remote batchman process writes an entry in the PlanBox.msg queue
whenever the status of a remote job changes.

Every 30 seconds, the PlanBox.msg queue is scanned for new entries that
document a change in the status of remote jobs that were bound.
Whenever a status change is found, a notification containing the status of
the remote job bound is sent back to the engine that requested the bind.

Note: To change the polling interval, specify a value, in seconds, for
com.ibm.tws.planner.monitor.checkPlanboxInterval in the file
WAS_HOME/profiles/profile_name/properties/TWSConfig.properties and
then restart the WebSphere Application Server.

Defining a cross dependency
About this task

Perform these steps to define a cross dependency between a job running in your
environment and another job running on a different IBM Workload Scheduler
engine:

Procedure
1. Create a remote engine workstation

Create a remote engine workstation for a specific remote engine when you need
to define dependencies on job instances running on that remote engine. On a
remote engine workstation you can run only shadow jobs.
As a best practice, if the remote IBM Workload Scheduler engine is distributed,
you can define a dynamic pool containing an ordered list of remote engine

Chapter 23. Defining and managing cross dependencies 789

workstations pointing to the remote master and to its backup masters, to
ensure that failover and switch manager capabilities are applied. For more
information about workstations pool, see “Workstation” on page 10.

Note: It is recommended that:
v All the distributed environments involved have the timezone feature enabled.

For more information, see “Enabling time zone management” on page 741.
v You specify as TIMEZONE property of the remote engine workstations the

timezone set on the operating system of the remote Master Domain
Managers or Backup Master Domain Managers they point to.

For more information about the specific settings to use when defining a remote
engine workstation, see “Workstation definition” on page 154.

2. Define a shadow job running on the remote engine workstation
Create a shadow job pointing to a specific job instance defined on a remote
engine when you want to track in your local environment the status of that
remote job and define cross dependencies on that remote job.
On IBM Workload Scheduler distributed environments, you can use alias for
job stream names and job names. If you are defining a distributed shadow job,
make sure that:
v The remote job stream name specified, contains the job stream name as it is

defined in the database.
v The remote job name specified, contains the alias, if defined, of the remote

job to bind.

If you do not follow these guidelines, the bind fails and the status of the
shadow job becomes ERROR.
In the shadow job definition set COMPLETE_IF_BIND_FAILS in the rccondsucc
field to specify if the shadow job status must be forced to SUCC or ERROR if
the bind in the remote engine plan fails.
For more information about the specific settings to use when defining a
shadow job, see “Job definition” on page 173.
Depending on whether the remote engine is z/OS or distributed, you can use
different matching criteria:

If the remote engine is distributed
You can choose any of the these matching criteria:

Table 151. Matching criteria for distributed shadow jobs

On the Dynamic Workload Console Corresponding keyword used in composer

Closest preceding previous

Within a relative interval relative from=time_before_scheduled_time
to=time_after_scheduled_time

Within an absolute interval absolute from=interval_start to=interval_end

Same scheduling date sameDay

For more information about these matching criteria, see “Managing
external follows dependencies for jobs and job streams” on page 67.

If the remote engine is z/OS based
Closest preceding is the only matching criteria supported by IBM
Workload Scheduler for z/OS.

The scheduled time of the job stream instance containing the shadow job is
used for the matching in the remote engine plan.

790 IBM Workload Scheduler: User’s Guide and Reference

The shadow job status transition is mapped to the remote job instance status
transition.

3. Add a dependency on the shadow job
You add the cross dependency for a local job on the remote job by defining a
dependency for the local job on a shadow job that:
v Points to the remote job instance.
v Is defined on a local workstation that points to the remote engine where the

remote job is defined.
The cross dependency on the remote job instance is released when the local
dependency on the shadow job is released.

Monitoring a cross dependency resolution in the production plan
Shadow jobs are added to the plan as follows:
v At run time if either of the following situations occurs:

– A shadow job definition is submitted using the sbj command.
– A job stream containing a shadow job definition is submitted using the sbs

command.

Note: When submitting a shadow job, specify a destination job stream with a
known scheduled time to better control the remote job instance that will be
bound.

v When the preproduction plan is extended or created and its time frame includes
the shadow job scheduled time.

When a shadow job instance is added to the plan, you can start monitoring its
status.

How the shadow job status changes until a bind is
established

Figure 43 on page 792 summarizes how a shadow job status changes until the bind
is established.

Chapter 23. Defining and managing cross dependencies 791

As for any other job, the initial status of the shadow job is HOLD and it turns to
READY when the job becomes free from dependencies and is ready to start.

The scheduler then sends an HTTP request to the remote engine containing both
the information to identify the shadow job in the local production plan and the
information to uniquely identify the remote job instance to bind in the remote
engine plan, including the matching criteria. The scheduler must also be notified
about the status of the remote job instance bound.

The scheduler tries to contact the remote engine, at regular intervals, until a
specific timeout expires. If, by then, the remote engine could not be reached, the
shadow job status is set to FAIL. To change the timeout and the interval, specify a
value, in seconds, for both MaxWaitingTime and StatusCheckInterval in the file
TDWB_HOME/config/ResourceAdvisorConfig.properties and then restart the broker.

If the preproduction plan does not exist on the remote engine when the bind
request is received, the distributed shadow job status remains WAIT until the
preproduction plan generation is completed and the bind request is processed. This
might happen, for example, when the preproduction plan is created again from
scratch on the remote engine.

For more information on the reason why the shadow job status is FAIL , see “How
to see why the shadow job status is FAIL” on page 798.

When the remote engine receives the HTTP request, it tries to identify the job
stream instance to use for the bind in its plan; the preproduction plan if the remote

HOLD

READY

The shadow job is included
in the production plan, but it
is not free from dependencies.

The shadow job is free from
dependencies and is ready
to start.

The shadow job is sumbitted
to the broker.

The broker processes the
shadow job and sends an
HTTP request to bind it to
the remote engine. The bind failed because:

- a match with the job stream instance was not found
in the remote engine long term plan or preproduction plan.
- a match with the job stream instance was not found in
the preproduction plan, or the user specified in binduser
is not authorized to access the requested job instance in
the production plan.

A match with a job stream
instance is found in the
remote engine longterm
plan or preproduction plan.

SUCC

ERROR

The status of the shadow job becomes:
If you set the shadow job to
Complete if bind fails=N.

If you set the shadow job to
Y.Complete if bind fails=

INTRO

WAIT

BOUND

FAIL

The bind failed because the broker
cannot contact the remote engine
(or backup remote engines), or the
remote engine database cannot be
contacted.

The shadow job remains in ready
if the remote engine workstation
is not started.

Figure 43. Shadow job status transition until the bind is established

792 IBM Workload Scheduler: User’s Guide and Reference

engine is distributed or the long term plan if the remote engine is z/OS. The
definition of the job stream must contain the definition of the remote job to bind.

For more information about how the match is made in a distributed remote engine
plan, see “How a distributed shadow job is bound.”

For more information about how the match is made in a z/OS remote engine plan,
see “How a z/OS shadow job is bound” on page 794.

How a distributed shadow job is bound
If the remote engine is an IBM Workload Scheduler master domain manager or
backup master domain manager, the search for the remote job instance to bind is
done in the preproduction plan. Distributed remote job instances, belonging to the
JOBS or USERJOBS job streams, are not involved in the bind process. However,
remote jobs that are moved to USERJOBS after binding continue to send status
change notifications.

The matching interval, except for the closest preceding matching criteria that does
not require interval calculation, is calculated on the remote engine using the
settings specified in the distributed shadow job definition.

For example, when the sameDay matching criteria is specified, the day that is
referred to is the day specified on the remote engine in terms of [startOfDay,
startOfDay+23:59].

When using an interval-based matching criteria, the HTTP request sent to the
remote engine contains the following information to allow the remote engine to
calculate the matching interval:

For absolute interval matching criteria:
The values hhmm, HHMM and, optionally, d and D, specified in the clause:
<dshadow:matching>
<dshadow:absolute from="hhmm [+/-d day[s]]" to="HHMM [+/-D day[s]]"/>
</dshadow:matching>

Boundary values are hhmm -6 days and HHMM +6 days.

The time zone used for the matching criteria is the time zone of the
shadow job.

For relative matching criteria:
The shadow job scheduled time and the values [hh]hmm and [HH]HMM
specified in the clause:
<dshadow:matching>
<dshadow:relative from="+/-[hh]hmm" to="+/-[HH]HMM"/>
</dshadow:matching>

Boundary values are +/-167:59 hours.

For example, to create a shadow job that matches a remote job instance whose
Earliest start is November, 17 at 2:00 AM, you can specify either of the following
matching criteria:
v Same scheduled date

v Within an absolute interval specifying as an offset: 1 day Before earliest start
time.

Chapter 23. Defining and managing cross dependencies 793

Nov. 17

Nov. 17

00:00

06:00

00:00

06:00

Remote plan processing day: from 00:00 to 00:00

Local plan processing day: from 06:00AM to 06:00 AM

Remote Job
Earliest start
Nov. 17 at 2:00 AM

Shadow Job runs
Earliest start
Nov 17 at 3:00 AM

3:00

2:00

Local engine

Remote engine

The remote job instance to match is identified on the remote engine according to
the rules stated for the external follows dependencies. For more details about
external follows dependencies resolution criteria, see “Managing external follows
dependencies for jobs and job streams” on page 67.

For more information about defining shadow jobs, see “Job definition” on page
173.

How a z/OS shadow job is bound
If the remote engine is an IBM Workload Scheduler for z/OS controller, the search
for the remote instance to bind is done as follows:
v First, the instance is searched in the Long Term Plan (LTP) in the part of the

bind interval that follows the Current Plan (CP) end time and precedes the
shadow job scheduled time.

v If no instance is found, the instance is searched in the CP in the part of the bind
interval that precedes the current plan end.

Note: If the remote controller receives a bind request with a client notify URI that
is not defined among the HTTP destinations, the bind request is discarded and the
message EQQHT62W is logged in the MLOG.

The following sections describe the scenarios that can occur when binding a z/OS
shadow job having:
v Scheduled time: 18:00
v Remote job information:

– Application ID: JS2

– Operation number: OP2

In the figures:
v The white box indicates the time interval covered by the LTP.
v The light grey box indicates the time interval covered by the CP.
v The dark grey box indicates the interval in the remote engine plan during which

the job instance to bind must be searched.
v The JS2 occurrence highlighted in bold is the instance selected for the bind.

Scenario 1: The CP interval contains the shadow job scheduled time and JS2
occurrences exist.

794 IBM Workload Scheduler: User’s Guide and Reference

Figure 44shows, highlighted in bold, the JS2 instance that more closely
precedes the shadow job scheduled time. This instance is selected for the
bind because the scheduled time is contained in the CP. The shadow job
and the remote job instance are associated. If, at a later time, a new
instance of JS2 that closest precedes the shadow job scheduled time is
submitted ad hoc in the remote engine plan, the match with the JS2
instance selected for the bind is not modified.

At this point, one of the following situations can occur:

The selected JS2 instance contains OP2.
The bind with OP2 belonging to JS2 is established and a
notification containing:
v The remote job information identifying OP2 instance in the

remote engine plan
v The current status of that OP2 instance

is sent back, the shadow job instance is updated with the remote
job information, and its status is updated accordingly.

The selected JS2 instance no longer contains OP2 because either it was
deleted and a daily plan removed it from the CP, or it was never
contained in JS2.

The bind fails. A notification informing that the bind failed is sent
back, and the shadow job status is updated according to what you
set in the Complete if bind fails field.

The selected JS2 instance contains OP2 that was deleted but not yet
removed from the CP.

The bind is established and a notification informing about the
successful execution status is sent back. The shadow job instance is
marked as SUCC. Its successors can start.

Scenario 2: The current plan interval contains the shadow job scheduled time,
the JS2 instance that most closely precedes the shadow job scheduled time exists
in the LTP but was canceled from the CP.

18:00

JS2

17:00

JS2
16:00

JS2
19:00

Bind interval

Current plan interval

Long term plan interval

Figure 44. Instance to be bound if the shadow job scheduled time is included in the CP
interval

Chapter 23. Defining and managing cross dependencies 795

Figure 45 shows, highlighted in bold, the JS2 instance that is selected for
the bind, because the occurrence that better matched was deleted.

The bind with OP2 belonging to JS2 is established and a notification
containing:
v The remote job information identifying the OP2 instance in the remote

engine plan
v The current status of that OP2 instance

is sent back, the shadow job instance is updated with the remote job
information, and its status is updated accordingly.

Scenario 3: The CP interval contains the shadow job scheduled time but no JS2
occurrence exist.

Figure 46 shows that a JS2 instance that closely precedes the shadow job

scheduled time does not exist.

The bind fails. A notification informing that the bind failed is sent back,
and the shadow job status is updated according to what you set in the
Complete if bind fails field.

Scenario 4: The LTP interval contains the shadow job scheduled time and the CP
does not yet include the closest preceding JS2 instance.

18:00

JS2
17:00

JS2

16:00

JS2
19:00

Bind interval

Current plan interval

Long term plan interval

Figure 45. Instance to be bound if the instance that most closely precedes the shadow job
scheduled time exists in the LTP but was canceled from the CP

18:00

JS2
19:00

Bind interval

Current plan interval

Long term plan interval

Figure 46. The scheduled time of the shadow job is included in the CP but no instance to
bind exists

796 IBM Workload Scheduler: User’s Guide and Reference

Figure 47 shows the JS2 instance that can be associated with the shadow
job, even though the job JOB2 is not yet in the CP.

A notification informing that the bind is established is sent back and the
status of the shadow job is set to BOUND.

Scenario 5: The LTP interval still does not contain the shadow job scheduled
time. Figure 48 shows that no JS2 instance can be associated with the shadow

job because, until the LTP includes the shadow job scheduled time, closer
preceding JS2 instances can still be added.

In this case, the bind request is put in hold until the LTP is extended to
include the shadow job scheduled time. Until then the status of the
shadow job remains WAIT.

How the shadow job status changes after the bind is
established

When a bind is established, the remote engine sends back an HTTP notification
containing the status of the bind and, if the bind was successful, the information to
identify the remote job instance bound. This information is shown in the shadow
job instance details.

Depending on the type of a remote engine, the following information about the
remote job instance is shown in the shadow job properties:

The remote engine type is distributed

v Job stream name
v Scheduled time
v Job stream workstation

18:00

JS2
17:00

JS2
16:00

JS2
19:00

Bind interval

Current plan
interval

Long term plan interval

Figure 47. The instance to be bound exists but it is not yet included in the CP

18:00

JS2
17:00

JS2
16:00

Bind interval

Current plan interval

Long term plan interval

Figure 48. The LTP interval still does not contain the shadow job scheduled time

Chapter 23. Defining and managing cross dependencies 797

v Job name

The remote engine type is z/OS

v Application ID
v Scheduled time
v Operation number
v Workstation
v Job name, if it was defined on the remote engine.

When the shadow job instance is mapped to an existing remote job instance,
notifications about job status changes are sent asynchronously from the remote
engine. These notifications are used to map remote job status transition to shadow
job status transition. The store and forward mechanism ensures the delivery of the
messages and the recovery in case of failures. Figure 49 shows how the status of a
distributed shadow job changes, from when a bind is established until the shadow
job status becomes SUCC or ERROR. Only status SUCC and ERROR are
considered as the final status for a shadow job.

If the remote job instance is already completed when the match is done, the
shadow job status becomes SUCC immediately.

For more information on the reason why the shadow job status is FAIL , see “How
to see why the shadow job status is FAIL.”

When the shadow job status satisfies the dependency rule, the dependency of the
local job on the shadow job is resolved, and the cross dependency for the local job
on the remote job is also resolved.

How to see why the shadow job status is FAIL
The shadow job status can be FAIL in one of the following situations:
v The shadow job submission failed.
v The submission of the remote job failed.

Exec

Bound

Submission of
the remote job
failed.

A match with a job stream instance is found in
the remote engine plan.

Error

The bind failed because one
of the following situations
occurred:
-the remote job instance to bind
does not exist in the current plan.
-the remote job instance to bind
does not exist in the production
plan or the user specified in
bindUser is not authorized to
access the requested job
instance in the production plan.

If you set the shadow job to
Complete if bind fails=Y

If you set ithe shadow job to
Complete if bind fails=N

Fail

The remote job is rerun.

The remote job failed.

The remote job is rerun.

Submission of the
remote job rerun
failed.

The remote job
completed
successfully or
was cancelled.

Abend

Succ

If the remote job is
already completed
successfully or cancelled.

The remote job was cancelled.

The remote
job failed.

Figure 49. Shadow job status transition chain after the bind was established

798 IBM Workload Scheduler: User’s Guide and Reference

To determine why the shadow job status is FAIL, see the log of the shadow job
either by running the showjobs command with the ;stdlist option, or by clicking
Job Log... for the shadow job instance in the Monitor jobs view on the Dynamic
Workload Console.

Shadow job status during the remote job recovery or rerun
After the bind is established it might happen that the remote job bound is rerun, in
this case the status of the shadow job reflects the status of the rerun job. The
shadow job status remains EXEC while the remote job recovery is in progress.

The shadow job status is updated only when the remote job reaches one of the
following states:

ABEND
When the remote job fails to run.

SUCC When the remote job succeeds.

FAIL When the remote job submission fails.

You can see more details about the remote job in the shadow job properties. To see
these details:
v Run the conman command showjobs with the props option against the shadow

job.
v Access the shadow job properties panel in the Dynamic Workload Console.

How carry forward applies to cross dependencies
Carry forward works the same way with shadow jobs as it does with other types
of jobs. Shadow jobs in WAIT and BOUND status are treated just like jobs in
EXEC status. Shadow jobs in ERROR status are treated like jobs in FAIL or
ABEND status.

The status of a shadow job, bound to a remote job that is not carried forward, is
set to ERROR when the remote production plan is extended.

Note: As a best practice, use cross dependencies with carry forward job streams on
both local and remote distributed scheduling environments.

For more information about the carryStates global option, see the Administration
Guide.

Managing shadow jobs in the production plan
Depending on the status of the shadow job, you can run the following commands:

Kill You can kill a shadow job with status BOUND, EXEC, or WAIT. The
association established through the bind with the remote job is
automatically canceled and the status of the shadow job is set to ABEND
with return code 0.

Rerun You can rerun a shadow job with status ABEND, ERROR, SUCC, or FAIL.
When you rerun a shadow job a new bind request is triggered.

Chapter 23. Defining and managing cross dependencies 799

800 IBM Workload Scheduler: User’s Guide and Reference

Chapter 24. Managing an IBM i dynamic environment

About this task

Managing IBM i agents in a dynamic environment and scheduling jobs with
advanced options on IBM i agents.

Defining agents on IBM i systems
About this task

To begin scheduling jobs on IBM i agents, the agent must be in the IBM Workload
Scheduler network. At the end of the installation process, the agent is
automatically registered in the IBM Workload Scheduler database.

You can check the existence of the workstation definition of the agent installed on
an IBM i system either by using the Dynamic Workload Console or by using the
composer command line.

For information about using the console to see the workstation definitions, see the
Dynamic Workload Console User’s Guide, section about Editing workstation
definitions.

For information about using the command line interface to see the workstation
definitions, see “Workstation definition” on page 154.

To include the IBM i agent in the plan, see IBM Workload Scheduler Planning and
Installation: Part 3. IBM Workload Scheduler on IBM i - Configuring a dynamic agent.

Defining jobs on IBM i systems
About this task

On IBM i agents you can define the following types of jobs with advanced options:

Web services jobs
To define web services jobs, see “Web services jobs” on page 570.

File transfer jobs
To define file transfer jobs, see “File transfer jobs” on page 552.

J2EE jobs
To define J2EE jobs, see “J2EE jobs” on page 577.

Database jobs
To define database jobs, see “Database jobs” on page 565.

Java jobs
To define Java jobs, see “Java jobs” on page 576.

Executable jobs
To define executable jobs, see “Executable jobs” on page 543.

IBM i jobs
To define IBM i jobs that run IBM i operating systems native commands,
see “IBM i jobs” on page 540.

801

|

|

|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

remote command jobs
To define remote command jobs, see “Remote command jobs” on page 538.

Provisioning jobs
To define Provisioning jobs, see “IBM SmartCloud Provisioning jobs” on
page 547.

IBM WebSphere MQ jobs
To define IBM WebSphere MQ jobs, see the section about the job plug-in
for IBM WebSphere MQ in Scheduling Applications with IBM Workload
Automation.

IBM Sterling Connect:Direct jobs
To define IBM Sterling Connect:Direct jobs, see the section about the job
plug-in forIBM Sterling Connect:Direct in Scheduling Applications with IBM
Workload Automation.

You can define jobs with advanced options on an IBM i agent either by using the
Dynamic Workload Console or by using the composer command line.

For more information about the procedure for defining IBM i job definitions, see
the sections about the prerequisite steps to create job types with advanced options
and about creating job definitions in IBM Dynamic Workload Console User's Guide.

For information about using the command line interface to create job definitions,
see “Job definition” on page 173.

Managing agents on IBM i systems
About this task

You can use IBM Workload Scheduler on IBM i agents only to start and stop the
agent processes. For more information about starting and stopping IBM i agents,
see “Starting and stopping agents on IBM i systems.”

To manage the IBM i agent, use the utilities described in “Using utility commands
for agents on IBM i systems” on page 803.

Starting and stopping agents on IBM i systems
About this task

You can use IBM Workload Scheduler on IBM i agents only to start and stop the
agent processes.

Starting agents on IBM i systems:
Use the utility StartUpLwa.

For information about the utility to start agents on IBM i, see “StartUpLwa
- Start the agent” on page 671.

Stopping agents on IBM i systems:
Use the utility ShutDownLwa.

For information about the utility to stop agents on IBM i, see
“ShutDownLwa - Stop the agent” on page 670.

802 IBM Workload Scheduler: User’s Guide and Reference

|
|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|

|
|

Using utility commands for agents on IBM i systems
About this task

For agents on IBM i systems, you can use the following utilities:

param To use param utility, see “param” on page 685.

twstrace
To use twstrace utility, see “twstrace” on page 699.

resource
To use resource utility, see “resource” on page 688.

cpuinfo
To use cpuinfo utility, see “cpuinfo” on page 631.

version
To use version utility, see “version” on page 671.

Scheduling and monitoring jobs on IBM i systems
About this task

When scheduling a job on IBM i systems, the job launches a native command that
can be either a system or a user command. For example, the native command
might consist of SBMJOB system command, which launches a batch job. The native
command can starts one or more IBM i programs. The IBM i programs can be
monitored only if they are started by the native command.

You can specify the name of the queue where the monitoring agent component
runs by using the MonitorQueueName property in the native job launcher section of
the JobManager.ini file. If you do not specify this property, the default queue
(QBATCH) is used.

For more information, see the section about configuring properties of the native job
launcher [NativeJobLauncher] in Administration Guide.

IBM i programs might generate runtime inquiry messages that require a reply
before the program can continue to run. While monitoring IBM i jobs, IBM
Workload Scheduler operators have to check the IBM i console to find inquiry
messages waiting for a reply. IBM Workload Scheduler provides a set of useful
features that help operators detecting and replying to inquiry messages.

Check of inquiry messages waiting for a reply

You can use the Dynamic Workload Console and conman showjobs
command line to check whether an IBM i job is waiting for a reply to a
message. An IBM i job that is waiting for a message reply is in the SUSP
(suspended) status. This status indicates that the job is waiting for input
while running. When the input is received, the job status changes to EXEC
(executing).

For more information about job statuses, see the section about status
description and mapping for distributed jobs in Dynamic Workload Console
User's Guide.

Direct reply to inquiry messages from the Dynamic Workload Console

When an IBM i job is waiting for a reply to a message, you can reply to
the message directly from the Monitor Workload of the Dynamic

Chapter 24. Managing an IBM i dynamic environment 803

*
*
*
*
*

Workload Console. The job in SUSP (suspended) status requires your
attention on additional information to be displayed. Click on the hyperlink.
A pop-up window shows the message that is waiting for your reply. Reply
to the message in the pop-up window, then select one of the following
actions:

Forward action
To forward your reply. A message in the pop-up window confirms
that your reply was sent successfully.

Cancel action
To cancel your reply. The pop-up window is closed.

Note: For a correct display of the pop-up window that shows the message
waiting for your reply, your master domain manager must be at version
9.3.0.2.

Monitoring and reply to messages for IBM i child jobs

While you are monitoring a parent job from the Dynamic Workload
Console, you can monitor also the child jobs for that parent job. When the
parent job is in SUSP (suspended) status, you can reply to messages for
the parent job and also for the child jobs.

Automated reply to inquiry messages

For the most frequent inquiry messages, you can even define standard
rules to automate the reply to the waiting messages. When defining an
IBM i job, by using the Workload Designer of the Dynamic Workload
Console or the composer command line, specify the list of messages for
which you want to set up an automated reply. For each message, specify:

Message Id
The message identifier.

Message Text
The message text.

Message Reply
The automated reply that you want to define.

Message Max Replies
The maximum number of automated replies accepted for this
specific message. Valid range is from 0 to 100. Default value is 10.
If 0 is specified, the automated reply to the message is disabled.

This parameter optimizes the management of IBM i inquiry
messages. For example, when you set a wrong reply to a message
in the job definition, IBM i system keeps on sending out the same
inquiry message repeatedly while waiting for the a correct reply. To
avoid this issue, IBM Workload Scheduler has the capability to
intercept and disable the wrong automatic reply and require, with
a prompt, a direct reply from the Dynamic Workload Console. The
job remains in SUSP (suspended) status until the correct reply is
provided.

For more information, see the section about job definition for IBM i jobs in
User's Guide and Reference.

Logging of inquiry messages

804 IBM Workload Scheduler: User’s Guide and Reference

/

/
/
/
/

*
*
*
*

*
*
*
*
*
*
*
*
*

If an IBM i job generates inquiry messages, the messages and the related
replies are written into the correspondent IBM Workload Scheduler output
job log so that the IBM Workload Scheduler operator can keep track of
them.

Reliable monitoring of IBM i job status changes

As an inquiry message receives an automated reply, the IBM i job status
changes from SUSP (suspended) to EXEC (executing) and vice versa. All
the job status changes are monitored and tracked. This is useful, for
example, when you want to create an event rule definition to send an
email every time a job status change occurs.

Improved trace facilities

To track an IBM i job, run the following steps:
1. Activate the trace facilities on the IBM i system, by running the

following commands:
ADDENVVAR ENVVAR(DMON_TRACE_ENABLED) VALUE(’true’) LEVEL(*SYS)
ADDENVVAR ENVVAR(DMON_TRACE_LEVEL) VALUE(’trace_level’) LEVEL(*SYS)

where trace_level indicates the tracking level and can have one of the
following values:
v 1: DEBUG MIN
v 2: DEBUD MID
v 3: DEBUG MAX

2. Customize your IBM i agent, by properly setting the following
configuration parameters in the ITA section of JobManager.ini file, for
example:
DMON_TRACE_ENABLED = true
DMON_TRACE_LEVEL = trace_level

where trace_level indicates the tracking level and must have the same
value already set on the IBM i system.

3. Analyze the trace file native.outTR that you can find in the compressed
file named with the job ID in the following path:
TWA_home/TWS/stdlist/JM/yyyy.mm.dd/archive

The agent joblog and TWSASPOOLS environment variable
About this task

By default, all information about the running of jobs is stored in the agent joblog.
Most of this information usually consists of spool files. To select the spool file
types that you want included in the agent joblog, use the TWSASPOOLS system
variable, which works at IBM i agent level for any job to be submitted.

The TWSASPOOLS system variable forces the IBM i agent to either ignore all
spool files or include one or more of them.

On the IBM i agent, create a new system level environment variable named
TWSASPOOLS and set it to a list of the spool file types that are to be included.
The list must begin with the SPOOLS: token.

For example, to force the IBM i agent to ignore all spool files, create the
TWSASPOOLS variable as follows.
ADDENVVAR ENVVAR(TWSASPOOLS) VALUE(SPOOLS:) LEVEL(*SYS)

Chapter 24. Managing an IBM i dynamic environment 805

*

*
*
*
*
*

*

*

*
*

*
*

*
*

*

*

*

*
*
*

*
*

*
*

*
*

*

where the list after the SPOOL: token is empty. In this case, any agent joblog report
for the IBM i agent is limited to the activity report that the Agent Monitor
produces to trace its submission and monitoring action, and to the IBM i joblog of
the Agent Monitor, which is always added at the end of the agent joblog.

To allow the IBM i agent to include only the QPRINT and the QPJOBLOG spool
file types, that is, any spool files produced by printf instructions inside any ILE-C
program and any produced joblog, create the TWSASPOOLS as follows:
ADDENVVAR ENVVAR(TWSASPOOLS) VALUE('SPOOLS: QPRINT QPJOBLOG') LEVEL(*SYS)

If the TWSASPOOLS variable already exists, change it as follows:
CHGENVVAR ENVVAR(TWSASPOOLS) VALUE('SPOOLS: QPRINT QPJOBLOG') LEVEL(*SYS)

If any VALUE parameter is set to an incorrect string, the IBM i agent ignores the
TWSASPOOLS environment variable option. You can create and change the
TWSASPOOLS environment variable while with the IBM i agent active, but no
workload activity must be running.

Child job monitoring on IBM i agents
About this task

When you submit a command on an IBM i agent, the command might start one or
more batch jobs. The IBM i agent monitors these batch jobs, which are referred to
as child jobs.

When searching and monitoring any child jobs that are started, the IBM i agent
uses a high percentage of its processing time.

If you know that your job scheduling does not start any child jobs or you have no
interest in monitoring child jobs, you can instruct the IBM i agent to not search
and monitor child jobs, and hence improve the performance of the agent.

You can exclude child job monitoring either at the agent level for all the
commands or at the job definition level for a single command. If you want child
job monitoring only for some specific submitted commands, you can set this option
at the job definition level for a single command.

You can perform one or both of the following procedures to exclude or include
child job monitoring:

Exclude child jobs from job monitoring at the agent level
By default child jobs are monitored. You can exclude child jobs from job
monitoring for all submitted commands by creating the TWS_NOCHILDS
system environment variable using the following IBM i system command:
ADDENVVAR ENVVAR(TWS_NOCHILDS) LEVEL(*SYS)

If the IBM i agent finds the TWS_NOCHILDS on the IBM i system, it does not
monitor child jobs for any submitted command.

Exclude or include child jobs from job monitoring at the job definition level
You can exclude or include child jobs from job monitoring for a specific job
by using :NOCHILDS or :CHILDS as ending tokens of the command string for
the specific command.
v If you add the :NOCHILDS end token at the end of the native command

you are submitting, the IBM i agent ignores any child jobs that are
started by the command.

806 IBM Workload Scheduler: User’s Guide and Reference

v If you add the :CHILDS end token at the end of the command you are
submitting, the IBM i agent finds and monitors all the child jobs that are
started by the command.

Note: The setting at job definition level overrides the setting at agent level.

The SBMJOB system command, when submitted, always starts a batch job. Do not
try to exclude the job monitoring, because if the IBM i agent finds the SBMJOB
command in the job definition , it removes and ignores the :CHILDS or :NOCHILDS
ending token in the job definition and also ignores the setting of the TWS_NOCHILDS
system variable.

Examples

To monitor any child jobs that are started when the PAYROLL program is run, define
the following command in the job definition:
v If the TWS_NOCHILDS system variable is defined on the IBM i system:

CALL PGM(MYLIB/PAYROLL) :CHILDS

v If the TWS_NOCHILDS system variable is not defined on the IBM i system:
CALL PGM(MYLIB/PAYROLL)

To not monitor any child jobs that are started when MYSCHEDULE program is run,
define the following command in the job definition:
v If the TWS_NOCHILDS system variable is not defined on the IBM i system:

CALL PGM(MYLIB/MYSCHEDULE) :NOCHILDS

v If the TWS_NOCHILDS system variable is defined on the IBM i system:
CALL PGM(MYLIB/MYSCHEDULE)

Note: The SBMJOB command always starts a child jobs. The IBM i agent monitors
the child job even if you define a SBMJOB command as in the following job
definition:
SBMJOB CMD(CALL PGM(MYLIB/USERPGM)) :NOCHILDS

Information about child job monitoring in IBM i agent joblogs
About this task

If you include child job monitoring on IBM i agents as described in “Child job
monitoring on IBM i agents” on page 806, you can see information related to child
job monitoring in the IBM i agent joblog.

Examples

This example shows the information related to child job monitoring included at job
level for the CHILDLONG_CHILD job on the NC117025 agent:
Job CHILDLONG_CHILD

Workstation (Job) NC117025

Job Stream AS400ENVSET

Workstation (Job Stream) NC117025

===
= JOB : NC117025#AS400ENVSET[(1417 10/30/12),(AS400ENVSET)].CHILDLONG_CHILD
= TASK : <?xml version="1.0" encoding="UTF-8"?>

Chapter 24. Managing an IBM i dynamic environment 807

<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdlibmi="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdlibmi" name="ibmi">

<jsdl:variables>
<jsdl:stringVariable name="tws.jobstream.id">AS400ENVSET</jsdl:stringVariable>
<jsdl:stringVariable name="tws.job.workstation">NC117025</jsdl:stringVariable>
<jsdl:stringVariable name="tws.job.iawstz">201210301417</jsdl:stringVariable>

</jsdl:variables>
<jsdl:application name="ibmi">
<jsdlibmi:ibmi>

<jsdlibmi:IBMIParameters>
<jsdlibmi:Task>
<jsdlibmi:command>CALL PGM(MINERMA/SBM5JOBS) :CHILDS</jsdlibmi:command>
</jsdlibmi:Task>

</jsdlibmi:IBMIParameters>
</jsdlibmi:ibmi>

</jsdl:application>
<jsdl:resources>
<jsdl:orderedCandidatedWorkstations>

<jsdl:workstation>805E5EAC1F5911E2B9DB6F8202778C47</jsdl:workstation>
</jsdl:orderedCandidatedWorkstations>

</jsdl:resources>
</jsdl:jobDefinition>
= TWSRCMAP :
= AGENT : NC117025
= Job Number: 760232858
= Tue Oct 30 14:16:31 CET 2012
===
The Dynamic Agent submitter-monitor job is qualified as:

JobName=DYNAMICMON JobUser=CLAUDIO JobNumber=361743
Here follows the user command string

<CALL PGM(MINERMA/SBM5JOBS) :CHILDS>
2012/10/30 14:16:28.844 - Dynamic Agent job submitted the User Command

CALL PGM(MINERMA/SBM5JOBS)
The FOLLOWING 5 JOBS STARTED under the submitted User Command

JobName=CLAUDIO JobUser=CLAUDIO JobNumber=361765
JobName=CLAUDIO JobUser=CLAUDIO JobNumber=361756
JobName=CLAUDIO JobUser=CLAUDIO JobNumber=361762
JobName=CLAUDIO JobUser=CLAUDIO JobNumber=361775
JobName=CLAUDIO JobUser=CLAUDIO JobNumber=361774

Message CPF1241 (Success) received on MsgQueue CLAUDIO QUSRSYS
for the job CLAUDIO CLAUDIO 361765

Message CPF1241 (Success) received on MsgQueue CLAUDIO QUSRSYS
for the job CLAUDIO CLAUDIO 361756

Message CPF1241 (Success) received on MsgQueue CLAUDIO QUSRSYS
for the job CLAUDIO CLAUDIO 361762

Message CPF1241 (Success) received on MsgQueue CLAUDIO QUSRSYS
for the job CLAUDIO CLAUDIO 361775

Message CPF1241 (Success) received on MsgQueue CLAUDIO QUSRSYS
for the job CLAUDIO CLAUDIO 361774

*** END codes gathered by the Monitor job ***
> END Status Code (Status): 0
> PROGRAM Return Code (Prc): 0
> USER Return Code (Urc): 0
Urc was retrieved through SYSAPI

2012/10/30 14:21:37.890 - Dynamic Agent job ended monitoring the User Command
*** Return Code for submitted Command is 0 ***
*** User Command ended successfully ***

This example shows the joblog for the CHILDLING_NC job on the NC117025 agent
when child job monitoring is excluded at job level:
Job CHILDLING_NC

Workstation (Job) NC117025

Job Stream AS400ENVSET

808 IBM Workload Scheduler: User’s Guide and Reference

Workstation (Job Stream) NC117025

===
= JOB : NC117025#AS400ENVSET[(1417 10/30/12),(AS400ENVSET)].CHILDLING_NC
= TASK : <?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdlibmi="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdlibmi" name="ibmi">

<jsdl:variables>
<jsdl:stringVariable name="tws.jobstream.id">AS400ENVSET</jsdl:stringVariable>
<jsdl:stringVariable name="tws.job.workstation">NC117025</jsdl:stringVariable>
<jsdl:stringVariable name="tws.job.iawstz">201210301417</jsdl:stringVariable>

</jsdl:variables>
<jsdl:application name="ibmi">
<jsdlibmi:ibmi>

<jsdlibmi:IBMIParameters>
<jsdlibmi:Task>
<jsdlibmi:command>CALL PGM(MINERMA/SBM5JOBS) :NOCHILDS</jsdlibmi:command>

</jsdlibmi:Task>
</jsdlibmi:IBMIParameters>
</jsdlibmi:ibmi>

</jsdl:application>
<jsdl:resources>
<jsdl:orderedCandidatedWorkstations>

<jsdl:workstation>805E5EAC1F5911E2B9DB6F8202778C47</jsdl:workstation>
</jsdl:orderedCandidatedWorkstations>

</jsdl:resources>
</jsdl:jobDefinition>
= TWSRCMAP :
= AGENT : NC117025
= Job Number: 760232857
= Tue Oct 30 14:17:01 CET 2012
===
The Dynamic Agent submitter-monitor job is qualified as:

JobName=DYNAMICMON JobUser=CLAUDIO JobNumber=361817
Here follows the user command string

<CALL PGM(MINERMA/SBM5JOBS) :NOCHILDS>
2012/10/30 14:16:58.330 - Dynamic Agent job submitted the User Command

CALL PGM(MINERMA/SBM5JOBS)
As per user choice, NO job started under the submitted command will be monitored
*** END codes gathered by the Monitor job ***
> END Status Code (Status): 0
> PROGRAM Return Code (Prc): 0
> USER Return Code (Urc): 0
Urc was retrieved through SYSAPI

2012/10/30 14:17:10.220 - Dynamic Agent job ended monitoring the User Command
*** Return Code for submitted Command is 0 ***
*** User Command ended successfully ***

The agent return code retrieval
About this task

The IBM i programming model was originally based on an early object orientation
model in which programs communicated through message passing, rather than
using return codes. The introduction of the Integrated Language Programming
(ILE) model lead to the definitions of common areas to exchange data as return
codes in the same job environment: the user return codes and the system end
codes.

For information about user return codes, see “Controlling the job environment with
the user return code” on page 810.

Chapter 24. Managing an IBM i dynamic environment 809

When the IBM i agent verifies that a submitted command or job is completed, it
assigns a return code to the job based on the job status of the completed job. The
return code is set depending on the completion message of the command or job. If
the command or job completes successfully, the return code is set to 0. If the
command or job does not complete successfully, the return code is set to the value
of the severity of the message related to the exception that caused the abnormal
end of the job. The IBM i agent can also set the return code to the value of the user
return code when it is returned by the submitted command. If retrieved, the user
return code is used as the value to set the return code.

The return code value assigned to the job is included in the IBM i agent joblog for
the job and sent back to the scheduler user interface (WEB UI or z/OS ISPF
panels) as return code, for compatibility reasons with agents on other operating
systems.

Controlling the job environment with the user return code
About this task

With the introduction of the IBM i ILE model, it is possible to retrieve a value
returned by a called program inside the same job.

When the Agent Monitor verifies that a submitted command is completed, it
retrieves the following end of job codes using an IBM i System API:

End status code or <Status> (0 if successful)
It indicates if the system issued a controlled cancellation of the job.
Possible values are:

1 the subsystem or the job itself is canceled.

0 the subsystem or the job itself is not canceled.

blank the job is not running.

Program return code or <Prc> (0000 if successful)

It specifies the completion code of the last program (such as a data file
utility program, or an RPG or COBOL program, invoked by the job).

If the job includes no program, the program return code is 0.

User return code or <Urc> (0000 if successful)

It specifies the user-defined return code set by ILE high-level language
constructs. For example, the return code of a program written in C
language.

It represents the most recent return code set by any thread within the job.

If the submitted command is a call to a user ILE program returning a value on
exiting, this value is found in the Urc end of job code.

You can decide how to control the job environment of your submitted jobs by
preparing the commands to be submitted as CALLs to your ILE programs, where
the internal flow is controlled and the end status is decided through proper exit
values. If a user program ends in error for an incorrect flow control, without
returning a value, the Agent Monitor does not set the Return Code as user return
code (Urc), but follows the criteria described in “The agent return code retrieval”
on page 809.

810 IBM Workload Scheduler: User’s Guide and Reference

The following example shows an ILE C user program where two batch jobs are
launched and a value of 10 is returned to the caller, regardless of the completion
status of the batch jobs.
===
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void main(int argc, char *argv[])
{

int EnvVarRC=0;
printf("issuing SBMJOB CMD(CALL MYLIB/DIVBY0)...\n");
system("SBMJOB CMD(CALL MYLIB/DIVBY0)");
printf("issuing SBMJOB CMD(WRKACTJOB OUTPUT(*PRINT))...\n");
system("SBMJOB CMD(WRKACTJOB OUTPUT(*PRINT)) LOG(4 0 *SECLVL)");
exit(10);
return;

}
===

Alternative method to set the user return code
About this task

In some IBM i environments, the system API retrieving the user return code (Urc)
from the Agent Monitor code does not retrieve the correct value for Urc. It is
therefore not recommended that you use any IBM i system APIs to retrieve the
user return code. To receive a value returned by a called program, it is better to
provide, instead, a parameter to receive the value.

Even if the Agent Monitor can retrieve the user return code using system API, an
alternative user return code retrieval method was implemented in the Agent
Monitor code. The alternative retrieval method has the following logic. The USERRC
job environment variable is created and set to the INI value before submitting the
user command. When the command ends, the Agent Monitor retrieves its user
return code using the system APIs, but it also verifies if the USERRC job
environment variable was updated at user program level. If a value different from
INI is found, this is considered as the user return code and the value retrieved
using the system APIs is ignored because the user program modified the value of
USERRC job environment variable.

The change of the USERRC variable at user program level requires the USERRC value
change before exiting from the application user code. In the ILE C case, you can do
this using the putenv statement, where the user return code is set to be returned.

The following example shows how the user code returns the user return code
using the IBM i agent reserved job environment variable USERRC. This code was
obtained from the code of the example in “Controlling the job environment with
the user return code” on page 810 by replacing the exit with the putenv statement.
===
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
void main(int argc, char *argv[])
{

int EnvVarRC=0;
printf("issuing SBMJOB CMD(CALL MYLIB/DIVBY0)...\n");
system("SBMJOB CMD(CALL MYLIB/DIVBY0)");
printf("issuing SBMJOB CMD(WRKACTJOB OUTPUT(*PRINT))...\n");
system("SBMJOB CMD(WRKACTJOB OUTPUT(*PRINT)) LOG(4 0 *SECLVL)");
EnvVarRC = putenv("USERRC=10");

Chapter 24. Managing an IBM i dynamic environment 811

return;
}
===

812 IBM Workload Scheduler: User’s Guide and Reference

Appendix A. Event-driven workload automation event and
action definitions

This appendix documents the event and action providers you can use for
event-driven workload automation and gives details on event and action
definitions.

Event providers and definitions
This section gives details on the event types of the following event providers:
v TWSObjectsMonitor
v FileMonitor
v TWSApplicationMonitor
v DatasetMonitor

Datetime
Contains both date and time. You can specify either one or both values in
the filter.

Multiple filter predicates allowed
You can specify multiple filter predicates for this property. The event will
match the event condition if all the predicates are satisfied.

Multiple values allowed
You can specify multiple values for this property within a single filter
predicate. The filter will be satisfied when one of the values is matched.

Wildcard allowed
Supported wildcards are asterisk (*) and question mark (?).

TWSObjectsMonitor events
TWSObjectsMonitor events are:
v Job Status Changed
v Job Until
v Job Submitted
v Job Cancelled
v Job Restarted
v Job Late
v Job Promoted
v Job Risk Level Changed
v Job Exceeded Maximum Duration
v Job Did not Reach Minimum Duration
v Job Stream Status Changed
v Job Stream Completed
v Job Stream Until
v Job Stream Submitted
v Job Stream Cancelled
v Job Stream Late
v Workstation Status Changed
v Application Server Status Changed
v Child Workstation Link Changed
v Parent Workstation Link Changed
v Prompt Status Changed
v ProductAlert

813

These events are generated by batchman (or mailman for the workstations) and
written in a mailbox file named monbox.msg. The scheduling objects are monitored
as follows:
v Jobs are monitored by the workstation where they run
v Job streams are monitored by the master domain manager
v Workstations monitor themselves
v Local prompts are monitored by the workstation running the job or job stream

that have a dependency on the prompt
v Global prompts are monitored by the master domain manager

Click here to see the Dynamic Workload Console fields of each event type.

Note: PDF users, the above parameter tables are an html file referenced by the
PDF. It is not saved locally with the PDF from the infocenter. You must first view it
on the infocenter before saving or printing.

Working with WorkstationStatusChanged events

The event is sent when a workstation is started or stopped. But the following
operational differences exist depending on the type of workstation that is
monitored:
v For a fault-tolerant agent the event is sent when the workstation is started or

stopped.
v For a dynamic workload broker workstation the event is sent also when it is

linked or unlinked (as these commands also start or stop the workstation).
v For a dynamic pool workstation the event is never sent (even if the hosting

dynamic workload broker is stopped) because there is no monitoring on this
type of workstations.

Examples

The rule in the following example submits job stream RJS_102739750 on
workstation NC125102 as soon as all the jobs of job stream RCF_307577430 of
workstation NA022502 are in the RUNNING or SUCCESSFUL status.
<?xml version="1.0"?>
<eventRuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/rules"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/tws/1.0/

event-management/rules/EventRules.xsd">
<eventRule name="TWS_PLAN_EVENTS_JOB_STATUS_CHANGED" ruleType="filter" isDraft="no">

<description>Event: Job Status Changed; Action: Submit job stream</description>
<timeZone>Europe/Rome</timeZone>
<validity from="2011-04-24" to="2012-04-24" />
<activeTime start="00:00:00" end="12:00:00" />
<eventCondition name="jobStatChgEvt1"

eventProvider="TWSObjectsMonitor"
eventType="JobStatusChanged">

<scope>* # JOBSTREAMVALUE . * [RUNNING, SUCCESSFUL]</scope>
<filteringPredicate>
<attributeFilter name="JobStreamWorkstation" operator="eq">

<value>NA022502</value>
</attributeFilter>

<attributeFilter name="JobStreamName" operator="eq">
<value>RCF_307577430</value>
</attributeFilter>
<attributeFilter name="JobName" operator="eq">
<value>*</value>
</attributeFilter>
<attributeFilter name="Priority" operator="ge">
<value>10</value>
</attributeFilter>

814 IBM Workload Scheduler: User’s Guide and Reference

<attributeFilter name="Monitored" operator="eq">
<value>true</value>
</attributeFilter>
<attributeFilter name="Status" operator="eq">
<value>Running</value>
<value>Successful</value>
</attributeFilter>
<attributeFilter name="Login" operator="eq">
<value>TWS_user</value>
</attributeFilter>
</filteringPredicate>

</eventCondition>
<action actionProvider="TWSAction" actionType="sbs" responseType="onDetection">

<description>Launch an existing TWS job stream</description>
<scope>SBS NC125102#RJS_102739750</scope>
<parameter name="JobStreamWorkstationName">

<value>NC125102</value>
</parameter>
<parameter name="JobStreamName">

<value>RJS_102739750</value>
</parameter>

</action>
</eventRule>

</eventRuleSet>

The rule in the following example submits job RJR_30411 on workstation NC122160
as soon as job stream RJS_102739750 of workstation NC125102 is submitted.
<?xml version="1.0"?>
<eventRuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/rules"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/tws/1.0/

event-management/rules/EventRules.xsd">
<eventRule name="TWS_PLAN_EVENTS_JOB_STREAM_SUBMITTED" ruleType="filter" isDraft="no">

<description>Event: Job Stream Submitted; Action: Submit job</description>
<eventCondition name="jsSubEvt1"

eventProvider="TWSObjectsMonitor"
eventType="JobStreamSubmit">

<scope>WORKSTATIONVALUE # JOBSTREAMVALUE</scope>
<filteringPredicate>
<attributeFilter name="JobStreamWorkstation" operator="eq">

<value>NC125102</value>
</attributeFilter>

<attributeFilter name="JobStreamName" operator="eq">
<value>RJS_102739750</value>
</attributeFilter>
<attributeFilter name="Priority" operator="range">
<value>15</value>
<value>30</value>
</attributeFilter>
<attributeFilter name="LatestStart" operator="le">
<value>2011-04-26</value>
</attributeFilter>
</filteringPredicate>

</eventCondition>
<action actionProvider="TWSAction" actionType="sbj" responseType="onDetection">

<description>Launch an existing TWS job stream</description>
<scope>SBJ NC122160#RJR_30411 INTO NC122160#JOBS</scope>
<parameter name="JobUseUniqueAlias">

<value>true</value>
</parameter>
<parameter name="JobDefinitionName">

<value>RJR_30411</value>
</parameter>
<parameter name="JobDefinitionWorkstationName">

<value>NC122160</value>
</parameter>

</action>
</eventRule>

</eventRuleSet>

Appendix A. Event-driven workload automation event and action definitions 815

FileMonitor events
FileMonitor events are:
v FileCreated
v FileDeleted
v ModificationCompleted
v LogMessageWritten

When you monitor files by using the FileCreated, FileDeleted, and
LogMessageWritten events, the memory consumed by the ssmagent.bin and
ssmagent.exe processes increases linearly with the number of files monitored and
with the number of events created. Therefore, keep in mind that the heavier use of
wildcards you make within these event types, and the consequent higher number
of files monitored, will result in a heavier memory consumption by the
ssmagent.bin and ssmagent.exe processes.

FileMonitor events are not supported on:
v Pools, dynamic pools, and remote engine workstations.
v IBM i systems.

Click here to see the Dynamic Workload Console fields for each event type.

Note: PDF users, the above parameter tables are an html file referenced by the
PDF. It is not saved locally with the PDF from the infocenter. You must first view it
on the infocenter before saving or printing.

Using the MatchExpression property of the LogMessageWritten
event rule

The LogMessageWritten event plug-in uses the regular expression specified in the
MatchExpression property to perform substring matches on entries in the log files
being monitored. The value of MatchExpression must be a valid regular expression
in accordance with the regular expression syntax rules of the Netcool/SSM agent
that the event plug-in uses.

The following table describes the syntax of the regular expression tokens
supported by Netcool/SSM. Note that to write a valid regular expression for the
MatchExpression property, you must write the \ (backslash) escape character before
each token used in the regular expression syntax (for example, \^ or \$). When
the token already specifies a backslash character, you must write two backslash
characters (for example, \\< or \\b).

Table 152. Regular expression syntax.

Token Matches

. Any character.

^ The start of a line (a zero-length string).

$ The end of a line; a new line or the end of the search buffer.

\< The start of a word (where a word is a string of alphanumeric
characters).

\> The end of a word (the zero length string between an alphanumeric
character and a non-alphanumeric character).

\b Any word boundary (this is equivalent to (\<¦\>)).

\d A digit character.

816 IBM Workload Scheduler: User’s Guide and Reference

Table 152. Regular expression syntax. (continued)

Token Matches

\D Any non-digit character.

\w A word character (alphanumeric or underscore).

\W Any character that is not a word character (alphanumeric or
underscore).

\s A whitespace character.

\S Any non-whitespace character.

\c Special characters and escaping. The following characters are
interpreted according to the C language conventions: \0, \a, \f, \n,
\r, \t, \v. To specify a character in hexadecimal, use the \xNN
syntax. For example, \x41 is the ASCII character A.

\ All characters apart from those described above may be escaped
using the backslash prefix. For example, to specify a plain left-bracket
use \[.

[] Any one of the specified characters in a set. An explicit set of
characters may be specified as in [aeiou] as well as character ranges,
such as [0-9A-Fa-f], which match any hexadecimal digit. The dash (-)
loses its special meaning when escaped, such as in [A\-Z] or when it
is the first or last character in a set, such as in [-xyz0-9].

All of the above backslash-escaping rules may be used within []. For
example, the expression [\x41-\x45] is equivalent to [A-D] in ASCII.
To use a closing bracket in a set, either escape it using [\]] or use it
as the first character in the set, such as []xyz].

POSIX-style character classes are also allowed inside a character set.
The syntax for character classes is [:class:]. The supported character
classes are:

v [:alnum:] - alphanumeric characters.

v [:alpha:] - alphabetic characters.

v [:blank:] - space and TAB characters.

v [:cntrl:] - control characters.

v [:digit:] - numeric characters.

v [:graph:] - characters that are both printable and visible.

v [:lower:] - lowercase alphabetic characters.

v [:print:] - printable characters (characters that are not control
characters).

v [:punct:] - punctuation characters (characters that are not letters,
digits, control characters, or spaces).

v [:space:] - space characters (such as space, TAB and form feed).

v [:upper:] - uppercase alphabetic characters.

v [:xdigit:] - characters that are hexadecimal digits.

Brackets are permitted within the set's brackets. For example, [a-z0-9!]
is equivalent to [[:lower:][:digit:]!] in the C locale.

[^] Inverts the behavior of a character set [] as described above. For
example, [^[:alpha:]] matches any character that is not alphabetical.
The ^ caret symbol only has this special meaning when it is the first
character in a bracket set.

{n} Exactly n occurrences of the previous expression, where 0 <= n <=
255. For example, a{3} matches aaa.

Appendix A. Event-driven workload automation event and action definitions 817

Table 152. Regular expression syntax. (continued)

Token Matches

{n,m} Between n and m occurrences of the previous expression, where 0 <=
n <= m <= 255. For example, a 32-bit hexadecimal number can be
described as 0x[[:xdigit:]]{1,8}.

{n,} At least n or more (up to infinity) occurrences of the previous
expression.

* Zero or more of the previous expression.

+ One or more of the previous expression.

? Zero or one of the previous expression.

(exp) Grouping; any series of expressions may be grouped in parentheses
so as to apply a postfix or bar (¦) operator to a group of successive
expressions. For example:

v ab+ matches all of abbb

v (ab)+ matches all of ababab

¦ Alternate expressions (logical OR). The vertical bar (¦) has the lowest
precedence of all tokens in the regular expression language. This
means that ab¦cd matches all of cd but does not match abd (in this
case use a(b¦c)d).

Tip: When defining regular expressions to match multi-byte characters, enclose
each multi-byte character in parentheses ().

Table 153 provides a set of regular expression examples, together with sample
strings as well as the results of applying the regular expression to those strings.

There are two important cases in matching regular expressions with strings. A
regular expression may match an entire string (a case known as a string match) or
only a part of that string (a case known as a sub-string match). For example, the
regular expression \<int\> will generate a sub-string match for the string int x
but will not generate a string match. This distinction is important because some
subagents do not support sub-string matching. Where applicable, the results listed
in the examples differentiate between string and sub-string matches.

Table 153. Regular expression examples.

This expression... Applied to this string... Results in...

. a String match

! String match

abcdef Sub-string match on a

empty string No match

M..COUNT MINCOUNT String match

MXXCOUNTY Sub-string match on MXXCOUNT

NONCOUNT No match

.* empty string String match

Animal String match

.+ Any non-empty string String match

empty string No match

818 IBM Workload Scheduler: User’s Guide and Reference

Table 153. Regular expression examples. (continued)

This expression... Applied to this string... Results in...

^ empty string String match

hello Sub-string match of length 0 at position 0
(position 0 = first character in string)

$ empty string String match

hello Sub-string match of length 0 at position 5
(position 0 = first character in string)

^$ empty string String match

hello No match

\bee tee No match

Paid fee No match

feel No match

eel Sub-string match on ee

.*thing.* The thing is in here String match

there is a thing String match

it isn’t here No match

thinxxx No match

a* empty string String match

aaaaaaaaa String match

a String match

aardvark Sub-string match on aa

this string Sub-string match

((ab)*c)* empty string String match

ccccccccc String match

ccccabcccabc String match

a+ empty string No match

aaaaaaaaa String match

a String match

aardvark Sub-string match on aa

this string No match

(ab)+c)* empty string String match

ababababcabc String match

(ab){2} abab String match

cdabababab Sub-string match on abab

[0-9]{4,} 123 No match

a1234 Sub-string match on 1234

a{0} empty string String match

a No match

hello Sub-string match of length 0 at position 0
(position 0 = first character in string)

[0-9]{1,8} this is not a number No match

a=4238, b=4392876 Sub-string match on 4238

Appendix A. Event-driven workload automation event and action definitions 819

Table 153. Regular expression examples. (continued)

This expression... Applied to this string... Results in...

([aeiou][^aeiou])+ Hello Sub-string match on el

!!! Supacalafraglistic Sub-string match on upacalaf

[+-]?1 1 String match

+1 String match

-1 String match

.1 Sub-string match on 1

value+1 Sub-string match on +1

a¦b a String match

b String match

c No match

Daniel Sub-string match on a

abcd¦efgh abcd String match

efgh String match

abcdfgh Sub-string match on abcd

[0-9A-F]+ BAADF00D String match

C String match

baadF00D Sub-string match on F00D

c No match

G No match

g No match

x = \d+ x = 1234 String match

x = 0 String match

x = 1234a Sub-string match on x = 1234

x = y No match

x^=^ where ^ represents a
space character

No match

\D\d a1 String match

a11 Sub-string match on a1

-9 String match

a No match

8 No match

aa No match

4t No match

\s+ Hello_w0rld No match

Hello^^^world where ^
represents a space

character

Sub-string match on ^^^ where ^ represents
a space character

Widget^ where ^
represents a space

character

Sub-string match on ^ where ^ represents a
space character

^^^^^ where ^ represents
a space character

String match

820 IBM Workload Scheduler: User’s Guide and Reference

Table 153. Regular expression examples. (continued)

This expression... Applied to this string... Results in...

\S+ Hello_w0rld Sub-string match of length 11 on
Hello_w0rld

Hello^^^world where ^
represents a space

character

Sub-string match on Hello

Widget^ where ^
represents a space

character

Sub-string match on Widget

^^^^^ where ^ represents
a space character

No match

\w+ D4n_v4n Vugt Sub-string match on D4n_v4n

^^^hello where ^
represents a space

character

Sub-string match on hello

blah String match

x#1 No match

foo bar No match

\W Hello there Sub-string match of length 1 on separating
space character

~ String match

aa No match

a No match

- No match

^^^^444 == 5 where ^
represents a space

character

Sub-string match of length 1 on first ^
where ^ represents a space character

\w+\s*=\s*\d+ x = 123 String match

count0=555 String match

my_var=66 String match

0101010=0 String match

xyz = e No match

delta= No match

==8 No match

[[:alnum:]]+ 1234 String match

...D4N13L Sub-string match on D4N13L

[[:alpha:]]+ Bubble String match

...DANI3L Sub-string match on DANI

69 No match

[:blank:]]+ alpha^^^^and beta where
^ represents a space

character

Sub-string match on ^^^^ where ^
represents a space character

Animal No match

empty string No match

Appendix A. Event-driven workload automation event and action definitions 821

Table 153. Regular expression examples. (continued)

This expression... Applied to this string... Results in...

[[:space:]]+ alpha^^^^and beta where
^ represents a space

character

Sub-string match on ^^^^ where ^
represents a space character

Animal No match

empty string No match

[[:cntrl:]]+ ...Hello W0rld! No match

empty string No match

[[:graph:]]+ hello world Sub-string match on hello

^^^^^ where ^ represents
a space character

No match

^^^!? where ^ represents
a space character

Sub-string match on !?

[:lower:]]+ Animal Sub-string match on nimal

ABC No match

0123 No match

foobar String match

^^^0blaH! where ^
represents a space

character

Sub-string match on bla

[_[:lower:]]+ foo_bar String match

this_thinG!!! Sub-string match on _thin

[[:upper:]]+ YES String match

#define MAX 100 Sub-string match on MAX

f00 b4r No match

[[:print:]]+ hello world String match

^^^^^ where ^ represents
a space character

String match

[[:punct:]]+ didn’t Sub-string match on ’

Animal No match

[[:xdigit:]]+ 43298742432392187ffe String match

x = bAAdF00d Sub-string match on bAAdF00d

4327afeffegokpoj Sub-string match on 4327afeffe

c:\\temp c:\temp String match

Example

The rule in the following example sends an email to a list of recipients as soon as
file /home/book.txt is created on workstation editor_wrkstn.
<?xml version="1.0"?>
<eventRuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/rules"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/tws/1.0/

event-management/rules/EventRules.xsd">
<eventRule name="FILE_MONITOR_FILE_CREATED" ruleType="filter" isDraft="no">

<description>Event: File Created; Action: Send mail</description>
<validity to="2012-04-22" />
<eventCondition name="fileCrtEvt1" eventProvider="FileMonitor" eventType="FileCreated">

822 IBM Workload Scheduler: User’s Guide and Reference

<scope>/HOME/BOOK.TXT ON EDITOR_WRKSTN</scope>
<filteringPredicate>
<attributeFilter name="FileName" operator="eq">
<value>/home/book.txt</value>
</attributeFilter>
<attributeFilter name="SampleInterval" operator="eq">
<value>60</value>
</attributeFilter>
<attributeFilter name="Workstation" operator="eq">
<value>editor_wrkstn</value>
</attributeFilter>
<attributeFilter name="Hostname" operator="eq">
<value>ceditor</value>
</attributeFilter>

</filteringPredicate>
</eventCondition>
<action actionProvider="MailSender" actionType="SendMail" responseType="onDetection">

<description>Send an eMail</description>
<scope>SAUL.FELLOW@US.IBM.COM, ISAAC.LINGER@US.IBM.COM : THE EXPECTED FILE

HAS BEEN CREATED!</scope>
<parameter name="Cc">

<value>william.waulkner@us.ibm.com</value>
</parameter>
<parameter name="Bcc">

<value>ernest.demingway@us.ibm.com</value>
</parameter>
<parameter name="Body">

<value>The expected file was created!
The book is ready to be published.</value>

</parameter>
<parameter name="To">

<value>saul.fellow@us.ibm.com, isaac.linger@us.ibm.com</value>
</parameter>
<parameter name="Subject">

<value>The expected file was created!</value>
</parameter>

</action>
</eventRule>

</eventRuleSet>

TWSApplicationMonitor events
TWSApplicationMonitor events concern IBM Workload Scheduler processes, file
system, and message box. They are:
v MessageQueuesFilling

v TivoliWorkloadSchedulerFileSystemFilling

v TivoliWorkloadSchedulerProcessNotRunning

TWSApplicationMonitor events are not supported on IBM i systems.

Click here to see the Dynamic Workload Console fields for each event type.

Note: PDF users, the above parameter tables are an html file referenced by the
PDF. It is not saved locally with the PDF from the infocenter. You must first view it
on the infocenter before saving or printing.

Example

The rule in the following example logs warning message LOGMSG01W as soon as
either intercom or mailbox message queue files on workstation NC122160 reach 70
percent of their size.
<?xml version="1.0"?>
<eventRuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/rules"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/tws/1.0/

event-management/rules/EventRules.xsd">
<eventRule name="TWS_APPL_MONITOR_MESSAGE_QUEUES_FILLING" ruleType="filter" isDraft="no">

<description>Event: Message queues filling; Action: Message logger</description>
<timeZone>America/Los_Angeles</timeZone>
<validity from="2011-04-25"/>

Appendix A. Event-driven workload automation event and action definitions 823

<activeTime end="17:00:00"/>
<eventCondition name="twsMesQueEvt1" eventProvider="TWSApplicationMonitor"

eventType="TWSMessageQueues">
<scope>INTERCOM, MAILBOX FILLED UP 70% ON NC122160</scope>

<filteringPredicate>
<attributeFilter name="MailboxName" operator="eq">
<value>intercom</value>
<value>mailbox</value>
</attributeFilter>
<attributeFilter name="FillingPercentage" operator="ge">
<value>70</value>
</attributeFilter>
<attributeFilter name="Workstation" operator="eq">
<value>NC122160</value>
</attributeFilter>
<attributeFilter name="SampleInterval" operator="eq">
<value>60</value>
</attributeFilter>

</filteringPredicate>
</eventCondition>
<action actionProvider="MessageLogger" actionType="MSGLOG" responseType="onDetection">

<description>Write a warning message log</description>
<scope>OBJECT=LOGMSG01W MESSAGE=MAILBOX AND/OR INTERCOM QUEUE

HAS REACHED 70% OF FILLING</scope>
<parameter name="ObjectKey">

<value>LOGMSG01W</value>
</parameter>
<parameter name="Message">

<value>Mailbox and/or Intercom queue has reached 70% of filling</value>
<parameter name="Severity">

<value>Warning</value>
</action>

</eventRule>
</eventRuleSet>

DatasetMonitor events
Use this function to create event rules and trigger events

DatasetMonitor events are:
v ReadCompleted
v ModificationCompleted

Table 154. SMF events

Event type Event trigger

ReadCompleted A data set is closed after it was opened in read mode.

ModifcationCompleted A data set is closed after it was opened in write mode.
This event is sent also when you create an empty data
set.

Table 155. Parameters of ReadCompleted and ModificationCompleted event types

attributeFilter
name

Type Required
Wilcard
allowed

Length (min-max)
Default
value

FileName string U U 1 44

Note: For parameters with wildcard allowed, you can use the following wildcards:

* To match any sequence of characters.

? To match any single character. For example, if you specify AB?, ABC is a
match, AB or ABCD are not a match.

% For compatibility with earlier versions, it is supported for the same
function as ?.

The following list provides a detailed description of the parameters:

824 IBM Workload Scheduler: User’s Guide and Reference

FileName
Specifies the data set name to be monitored for actions on special
resources. For details about how the Agent requests to change the resource
availability, based on the specified FileName value.

Examples

The following examples show how to combine language elements and use
wildcards:
<?xml version="1.0"?>
<eventRuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/rules"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/tws/1.0/

event-management/rules/EventRules.xsd">
<eventRule name="FILE_MONITOR_FILE_CREATED" ruleType="filter" isDraft="no">

<description>Event: File Created; Action: Send mail</description>
<validity to="2012-04-22" />
<eventCondition name="fileCrtEvt1" eventProvider="FileMonitor" eventType="FileCreated">
<scope>/HOME/BOOK.TXT ON EDITOR_WRKSTN</scope>

<filteringPredicate>
<attributeFilter name="FileName" operator="eq">
<value>/home/book.txt</value>
</attributeFilter>
<attributeFilter name="SampleInterval" operator="eq">
<value>60</value>
</attributeFilter>
<attributeFilter name="Workstation" operator="eq">
<value>editor_wrkstn</value>
</attributeFilter>
<attributeFilter name="Hostname" operator="eq">
<value>ceditor</value>
</attributeFilter>

</filteringPredicate>
</eventCondition>
<action actionProvider="MailSender" actionType="SendMail" responseType="onDetection">

<description>Send an eMail</description>
<scope>SAUL.FELLOW@US.IBM.COM, ISAAC.LINGER@US.IBM.COM : THE EXPECTED FILE

HAS BEEN CREATED!</scope>
<parameter name="Cc">

<value>william.waulkner@us.ibm.com</value>
</parameter>
<parameter name="Bcc">

<value>ernest.demingway@us.ibm.com</value>
</parameter>
<parameter name="Body">

<value>The expected file was created!
The book is ready to be published.</value>

</parameter>
<parameter name="To">

<value>saul.fellow@us.ibm.com, isaac.linger@us.ibm.com</value>
</parameter>
<parameter name="Subject">

<value>The expected file was created!</value>
</parameter>

</action>
</eventRule>

</eventRuleSet>

Action providers and definitions
This section gives details on the action types of the following action providers:
v GenericAction
v MailSender
v MessageLogger
v SmartCloud Control Desk
v TBSMEventForwarder
v TECEventForwarder
v TWSAction
v “TWSForZosAction” on page 829

Appendix A. Event-driven workload automation event and action definitions 825

GenericAction actions
This provider implements a single action named RunCommand that runs non-IBM
Workload Scheduler commands. Commands are run on the same computer where
the event processor runs.

Only TWS_user is authorized to run the command.

Important: When the command includes output redirection (through the use of
one or two > signs), insert the command in an executable file, and set the file name
as the argument of the Command property.

Click here to see the Dynamic Workload Console fields for RunCommand.

Note: PDF users, the above parameter tables are an html file referenced by the
PDF. It is not saved locally with the PDF from the infocenter. You must first view it
on the infocenter before saving or printing.

Example

The rule in the following example runs the ps -ef command to list all the
currently running processes on a UNIX workstation when an invalid parameter is
found on that workstation. Note that the rule is based on a custom event
developed using the GenericEventPlugIn event provider. For more information on
developing custom event types, see “Defining custom events” on page 149.
<?xml version="1.0"?>
<eventRuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/rules"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/tws/1.0/

event-management/rules/EventRules.xsd">
<eventRule name="CUSTOM_EVENT_GENERIC_EVENT" ruleType="filter" isDraft="yes">

<description>Event: Generic Event; Action: Run Command</description>
<activeTime start="08:30:00" end="17:30:00"/>
<eventCondition name="genericEvt3" eventProvider="GenericEventPlugIn"
eventType="Event1">
<scope>INVALID PARAMETER ON WORKSTATIONVALUE</scope>

<filteringPredicate>
<attributeFilter name="Param1" operator="ne">
<value>Invalid Parameter</value>

</attributeFilter>
<attributeFilter name="Workstation" operator="eq">
<value>WorkstationValue</value>

</attributeFilter>
</filteringPredicate>

</eventCondition>
<action actionProvider="GenericActionPlugin" actionType="RunCommand"
responseType="onDetection">

<description>Run a command</description>
<scope>PS -EF</scope>
<parameter name="Command">

<value>ps -ef</value>
</parameter>
<parameter name="WorkingDir">

<value>/home</value>
</parameter>

</action>
</eventRule>

</eventRuleSet>

MailSender actions
This provider implements a single action named SendMail that connects to an
SMTP server to send an email. Use optman to customize the following related
attributes (for detailed information about optman, see the Administration Guide):

826 IBM Workload Scheduler: User’s Guide and Reference

v Mail sender
v SMTP server
v SMTP port number
v Mail user name
v Mail user password
v SSL

Click here to see the Dynamic Workload Console fields for SendMail.

Note: PDF users, the above parameter table is an html file referenced by the PDF.
It is not saved locally with the PDF from the infocenter. You must first view it on
the infocenter before saving or printing.

MessageLogger actions
This provider implements a single action named MSGLOG that logs the occurrence of
a situation in an internal auditing database. The number of entries within the
auditing database is configurable. There is an automatic cleanup based on a FIFO
policy.

Click here to see the Dynamic Workload Console fields for MSGLOG.

Note: PDF users, the above parameter table is an html file referenced by the PDF.
It is not saved locally with the PDF from the infocenter. You must first view it on
the infocenter before saving or printing.

SmartCloud Control Desk actions
This provider implements a single action named OpenTicket that opens a ticket on
a default SmartCloud Control Desk. Use optman to specify the SmartCloud Control
Desk server by setting the sccdUrl, sccdName, and sccdUserPassword global options.
For detailed information about optman, see the Administration Guide.

Click here to see the Dynamic Workload Console fields for OpenTicket.

Note: PDF users, the above parameter table is an html file referenced by the PDF.
It is not saved locally with the PDF from the infocenter. You must first view it on
the infocenter before saving or printing.

ServiceNow actions
This provider implements a single action named Open Incident that opens an
incident in ServiceNow when a job that matches a defined policy ends in error.
Use optman to specify the ServiceNow server by setting the servicenowUrl,
servicenowUserName, and servicenowUserPassword global options.

For detailed information about optman and these global options, see the topic with
a detailed description of all global options in the Administration Guide.

Click here to see the Dynamic Workload Console fields for the ServiceNow Open
Incident.

Note: PDF users, the above parameter table is an html file referenced by the PDF.
It is not saved locally with the PDF from the IBM Workload Scheduler Knowledge
Center. You must first view it in the product Knowledge Center before saving or
printing.

Appendix A. Event-driven workload automation event and action definitions 827

|

|
|
|
|

|
|

|
|

|
|
|
|

TBSMEventForwarder actions
This provider implements a single action named TBSMFWD that forwards the event
to an external Tivoli Business Service Manager server (or any other application
capable of listening to events in TBSM format, for example Netcool/OMNIbus).
The provider uses a default EIF Probe server whose host name and port you define
by setting the TECServerName and TECServerPort global options with optman.

Note: TECServerName and TECServerPort are used both for applications that
process events in TEC or TBSM format. For detailed information about optman, see
the Administration Guide.

The IEF Probe used as recipient can be overridden by action settings.

Click here to see the Dynamic Workload Console fields for TBSMFWD.

Note: PDF users, the above parameter table is an html file referenced by the PDF.
It is not saved locally with the PDF from the infocenter. You must first view it on
the infocenter before saving or printing.

Configuring the Tivoli Business Services Manager to receive
events

To configure Tivoli Business Service Manager to receive events from IBM Workload
Scheduler, on the EIF Probe you must copy the utilities/tivoli_eif_tws.rules
file that is provided with the IBM Workload Scheduler DVD. Then you must edit
the tivoli_eif.rules file by adding the following line:
include "tivoli_eif_tws.rules"

TECEventForwarder actions
This provider implements a single action named TECFWD that forwards the event to
an external Tivoli Enterprise Console server (or any other application capable of
listening to events in TEC format). The provider uses a default EIF Probe server
whose host name and port you define by setting the TECServerName and
TECServerPort global options with optman. For detailed information about optman,
see the Administration Guide.

The TEC used as recipient can be overridden by action settings.

Click here to see the Dynamic Workload Console fields for TECFWD.

Note: PDF users, the above parameter table is an html file referenced by the PDF.
It is not saved locally with the PDF from the infocenter. You must first view it on
the infocenter before saving or printing.

TWSAction actions
TWSAction actions are:
v SubmitJobStream
v SubmitJob
v SubmitAdHocJob
v ReplyPrompt

Click here to see the Dynamic Workload Console fields of each action type.

828 IBM Workload Scheduler: User’s Guide and Reference

|

Note: PDF users, the above parameter tables are an html file referenced by the
PDF. It is not saved locally with the PDF from the infocenter. You must first view it
on the infocenter before saving or printing.

Using the SchedTimeResolutionCriteria property of the SubmitJob
action

You use this property to match the job in question with a specific instance of the
job stream that contains it (defined with the JobStreamName property) based on the
job stream scheduled time. The possible values that you can set are:

Previous
The job is submitted with the closest previous job stream instance in plan.

Next The job is submitted with the closest next job stream instance in plan.

Any The job is submitted with any of the closest previous or closest next job
stream instance in plan.

TWSForZosAction
This provider implements a single action named AddJobStream that adds an
application occurrence (job stream) to the current plan on IBM Workload Scheduler
for z/OS. This provider is for use in IBM Workload Scheduler end-to-end
scheduling configurations.

The application description of the occurrence to be added must exist in the AD
database of IBM Workload Scheduler for z/OS.

Click here to see the Dynamic Workload Console fields for AddJobStream.

Note: PDF users, the above parameter table is an html file referenced by the PDF.
It is not saved locally with the PDF from the infocenter. You must first view it on
the infocenter before saving or printing.

Example

In this example, a pharmaceutical company uses rule ZOSRULE031 to produce a
distribution schedule of the merchandise under the control of department DISTR07.
As soon as the list of ordered merchandise that is up for delivery in the upcoming
month is ready and placed in file MONTHLYORDERS.TXT on agent RU192298 in a
branch office, the centralized system adds application (job stream) ADFIRST to the
current plan. ADFIRST contains the operations (jobs) that produce an optimized
delivery schedule for the next month.
<?xml version="1.0"?>
<eventRuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.ibm.com/xmlns/prod/tws/1.0/event-management/rules"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/tws/1.0/

event-management/rules/EventRules.xsd">
<eventRule name="ZOSRULE031" ruleType="filter" isDraft="no">

<eventCondition name="fileCrtEvt19" eventProvider="FileMonitor"
eventType="FileCreated">
<scope>/PRODORDER/MONTHLYORDERS.TXT ON RU192298</scope>

<filteringPredicate>
<attributeFilter name="Param1" operator="ne">
<value>/prodorder/monthlyorders.txt</value>

</attributeFilter>
<attributeFilter name="SampleInterval" operator="eq">
<value>60</value>

</attributeFilter>
<attributeFilter name="Workstation" operator="eq">

Appendix A. Event-driven workload automation event and action definitions 829

<value>RU192298</value>
</attributeFilter>

</filteringPredicate>
</eventCondition>
<action actionProvider="TWSForZosAction" actionType="AddJobStream"
responseType="onDetection">
<scope>
ADD JOBSTREAM ADFIRST[DEADLINE OFFSET: 0001] WITH OWNER DISTR07 IN PLAN

</scope>
<parameter name="HoldAll">

<value>false</value>
</parameter>
<parameter name="Priority">

<value>5</value>
</parameter>
<parameter name="JobStreamDeadlineOffset">

<value>0001</value>
</parameter>
<parameter name="JobStreamName">

<value>ADFIRST</value>
</parameter>
<parameter name="OwnerDescription">

<value>Owner description</value>
</parameter>
<parameter name="Owner">

<value>distr07</value>
</parameter>
<parameter name="DependenciesResolution">

<value>All</value>
</parameter>
<parameter name="AuthorityGroup">

<value>AuthGrpBase</value>
</parameter>
<parameter name="Parm_1">

<value>var1=value1</value>
</parameter>
<parameter name="Parm_2">

<value>var2=value2</value>
</parameter>
<parameter name="JCLVariableTable">

<value>VarTableZos01</value>
</parameter>
<parameter name="JobStreamDescription">

<value>This job stream contains jobs that process orders for
owner DISTR07.</value>

</parameter>
<parameter name="Group">

<value>GroupBase</value>
</parameter>

</action>
</eventRule>

</eventRuleSet>

830 IBM Workload Scheduler: User’s Guide and Reference

Appendix B. Job Submission Description Language schema
reference

This reference section specifies the semantics and structure of the Job Submission
Description Language (JSDL) that apply specifically for use with dynamic
workload broker. The JSDL schema is used to describe the job requirements for
submission to resources. dynamic workload broker analyzes the IT environment
and assigns the best available resource to run the job, based on the requirements
you specify.

Introduction

The Job Submission Description Language (JSDL) is a language for describing the
job requirements for submission to resources. The JSDL language contains a
vocabulary and normative XML schema that facilitate the expression of those
requirements as a set of XML elements.

JSDL files adhere to the XML syntax and semantics as defined in the JSDL schema.

Job Submission Description Language document structure

A JSDL file is described using the XML syntax and adheres to the XML syntax and
semantics. The XML syntax is an industry standard and is not explained in this
manual. The JSDL file also adheres to specific JSDL syntax rules, as explained in
“Job Submission Description Language element types” on page 834 and in “JSDL
elements” on page 837.

The JSDL file consists of elements (either complex or simple) and types. Complex
elements contain other elements while simple elements do not contain any other
elements. A type specification performs a syntax check on the value specified for
the element it refers to. For example, the physicalMemory element adheres to the
jsdl:NumericRangeType type. The jsdl:NumericRangeType type specifies that you
can assign to this element either a specific numeric value or a numeric range value.
No other value types are supported for the physicalMemory element.

The JSDL file is arranged in a hierarchical structure where the jobDefinition
element is the root element. The jobDefinition element contains all the elements
that describe the job and their attributes.

The pseudo schema definition looks like this:
< jobDefinition >
<annotation ... />?
<category>... />*
<variables ... />?
<application ... />
<resources ... />?
<relatedResources ... />*
<optimization ... >?
<scheduling ...>?

</jobDefinition>

Table 156 on page 832 provides a table view of the JSDL file indicating the
hierarchical relationships between the elements contained in the jobDefinition
element.

831

Table 156. Hierarchical structure of the JSDL file

First level Second level Third level Fourth level

annotation

category

variables stringVariable

uintVariable

doubleVariable

application script

arguments value

environment variable name

credential username

groupname

password

j2ee invoker type

jms connFactory

destination

message

ejb jndiHome

credential userName

password

JAASalias

832 IBM Workload Scheduler: User’s Guide and Reference

Table 156. Hierarchical structure of the JSDL file (continued)

First level Second level Third level Fourth level

resources candidateHosts hostName

candidateCPUs cpu speed

physicalMemory

virtualMemory

candidateOperating
Systems

operatingsystems

fileSystem

logicalResource

group

properties and and

or

requirement

or and

or

requirement

requirement and

or

requirement

allocation

relationship

candidateResources
(reserved for internal
use)

endpointReference
(reserved for internal
use)

relatedResources logicalResource

group

properties and and

or

requirement

or and

or

requirement

requirement and

or

requirement

allocation

relationship

candidateResources
(reserved for internal
use)

endpointReference
(reserved for internal
use)

optimization objective

ewlm

Appendix B. Job Submission Description Language schema reference 833

Table 156. Hierarchical structure of the JSDL file (continued)

First level Second level Third level Fourth level

scheduling maximumResource
WaitingTime

estimatedDuration

priority

recoveryActions action parameters

credential

tpmaddress

workflow

The JSDL syntax uses the BNF-style conventions for elements and attributes:

? Indicates that the element or attribute is optional and can be specified
once.

* Indicates that the element or attribute is optional and can be specified zero
or more times.

+ Indicates that the element or attribute is required and can be specified one
or more times.

[...] Indicate that the elements or attributes contained within the brackets form
a group.

| Indicates that two or more elements or attributes are mutually exclusive.

Job Submission Description Language element types

The JSDL specification uses a number of standard XML Schema types. It also uses
a number of types specific to the description of job requirements.

Both types perform a syntax check on the value that can be assigned to each
element in the JSDL file. For example, the physicalMemory element adheres to the
jsdl:NumericRangeType type. The jsdl:NumericRangeType type specifies that you
can assign to this element either a specific numeric value or a numeric range value.
No other value types are supported for the physicalMemory element.

Normative XML schema types

The JSDL specification adopts the normative XML schema (xsd) types listed below.
The XML syntax is an industry standard and is not explained in this manual.
v xsd:any
v xsd:anyURI
v xsd:boolean
v xsd:double
v xsd:DoubleVariableType
v xsd:duration
v xsd:IDREF
v xsd:NCName
v xsd:PriorityType
v xsd:QName

834 IBM Workload Scheduler: User’s Guide and Reference

v xsd:string
v xsd:unsignedInt
v xsd:UnsignedIntVariableType

JSDL types

The following types are specific to the JSDL syntax:

StringVariableExpressionType
A string variable expression type is a simple type in which you can specify
a variable expression that might contain one or more variable references,
such as ${var}, any character, and any string. The following is the syntax
schema for this type:
<...>
<xsd:simpleType name="StringVariableExpressionType">

<xsd:union>
<xsd:simpleType>
<xsd:restriction base=’xsd:string’ />
</xsd:simpleType>
<xsd:simpleType>
<xsd:restriction base=’xsd:string’>
<xsd:pattern
value=".*\t*\r*\n*((\$\{[a-zA-Z_]+

[0-9a-zA-Z_\.\-]*\})+[^\{]*[.\n]*)+" />
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>
</...>

DoubleVariableExpressionType
A double variable expression type is a simple type in which you can
specify a variable expression that might contain one variable reference,
such as ${var}, or a double value. The following is the syntax schema for
this type:
<...>
<xsd:simpleType name="DoubleVariableExpressionType">
<xsd:union>
<xsd:simpleType>
<xsd:restriction base=’xsd:double’ />
</xsd:simpleType>
<xsd:simpleType>
<xsd:restriction base=’xsd:string’>
<xsd:pattern value="[\n\r\t]*($\{[a-zA-Z_]+

[0-9a-zA-Z_\.\-]*\})[\n\r\t]*" />
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

</...>

UnsignedIntVariableExpressionType
An unsigned variable expression type is a simple type in which you can
specify a variable expression that might contain one variable reference,
such as ${var}, or an unsigned integer value. The following is the syntax
schema for this type:
<...>
<xsd:simpleType name="UnsignedIntVariableExpressionType">

<xsd:union>
<xsd:simpleType>
<xsd:restriction base=’xsd:unsignedInt’ />

Appendix B. Job Submission Description Language schema reference 835

</xsd:simpleType>
<xsd:simpleType>
<xsd:restriction base=’xsd:string’>
<xsd:pattern value="[\n\r\t]*($\{[a-zA-Z_]+

[0-9a-zA-Z_\.\-]*\})[\n\r\t]*" />
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

</...>

NotEmptyStringVariableExpressionType
A string variable expression type is a simple type that allows the
specification of a variable expression that might contain one or more
variable references such as ${var}, optionally in association with any
character or with a simple string. This variable expression cannot be empty.
The following is the syntax schema for this type:
<xsd:simpleType name="NotEmptyStringVariableExpressionType">

<xsd:union>
<xsd:simpleType>
<xsd:restriction base=’xsd:string’>
<xsd:minLength value="1"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType>
<xsd:restriction base=’xsd:string’>
<xsd:pattern
value=".*\t*\r*\n*((\$\{[a-zA-Z_]+

[0-9a-zA-Z_\.\-]*\})+[^\{]*[.\n]*)+" />
</xsd:restriction>
</xsd:simpleType>
</xsd:union>
</xsd:simpleType>

NumericRangeOnlyType
A numeric range value is a complex type that allows the definition of
intervals and ranges higher than, smaller than, or contained within the
specified value. All numbers given are double variable expressions. The
following is the syntax schema for this type:
<...>
<minimum>jsdl:DoubleVariableExpressionType</minimum> ?
<maximum> jsdl:DoubleVariableExpressionType</maximum> ?
</...>

NumericRangeType
A numeric range value is a complex type that allows the definition of exact
values or ranges. All numbers given are double variable expressions. The
following is the syntax schema for this type:
<...>
<exact>jsdl:DoubleVariableExpressionType</exact> |
<range>jsdl:NumericRangeOnlyType</range>
</...>

StringRangeOnlyType
A string range value is a complex type that allows the definition of
intervals and ranges higher than, smaller than, or contained within the
specified value. All numbers and strings given are string variable
expressions. The following is the syntax schema for this type:
<...>
<minimum>jsdl:StringVariableExpressionType</minimum> ?
<maximum>jsdl:StringVariableExpressionType</maximum> ?
</...>

836 IBM Workload Scheduler: User’s Guide and Reference

StringRangeType
A string range value is a complex type that allows the definition of exact
values as string variable expressions or ranges that can be applied to
integer or string types. The following is the syntax schema for this type:
<...>
<exact>jsdl:StringVariableExpressionType</exact> |
<range>jsdl:StringRangeOnlyType</range>
</...>

JSDL elements
The JSDL core element set contains the semantics for elements that are defined by
JSDL.

The JSDL file consists of elements (either complex or simple) and types. Complex
elements contain other elements while simple elements do not contain any other
elements. A type specification performs a syntax check on the value specified for
the element it refers to.

The following is a list of the elements contained in the JSDL syntax:

jobDefinition element

Definition
This element describes the job and its requirements. It is the root element
of the JSDL document. This attribute is required.

Type The type of this element is jsdl:JobDefinitionType. It can contain the
following elements:
v annotation
v category
v variables
v application
v resources
v relatedResources
v optimization
v scheduling

Attributes

name The name of the job specified by the user. The type of this attribute
is xsd:NCName. The name must start with an alphabetical
character, and can contain underscore symbols (_), minus symbols
(-), and periods (.). Spaces, special characters, accented characters,
and numbers are not supported. This attribute is required. The
name you define for this field uniquely identifies the job definition
when it is saved in the Job Repository database. After saving the
job definition in the database, you can submit the job definition
using the Dynamic Workload Console or the command line.

description
A string specifying a short description of the job definition. The
type of this attribute is xsd:string. This attribute is optional.

targetNamespace
A URI specifying the target namespace of the job definition. The
type of this attribute is xsd:anyURI. This attribute is required.

Appendix B. Job Submission Description Language schema reference 837

Pseudo Schema
<jobDefinition
name="xsd:NCName"
description="xsd:string"?
xsd:anyAttribute##other>
<annotation ... />?
<category>.../>*
<variables ... />?
<application ... />
<resources ... />?
<relatedResources .../>*
<optimization ...>?
<scheduling ...>?
<xsd:any##other/>*
</jobDefinition>

annotation element

Definition
This element provides descriptive, human-readable information about the
job definition. This element is optional and can be specified once.

Type The type of this element is xsd:string.

Attributes
No attributes are defined.

Pseudo Schema
<annotation
xsd:anyAttribute##other>
xsd:string
<xsd:any##other/>*
</application>

category element

Definition
This element describes job category that help you categorize the job. One
job may have multiple categories, for example: Education_DB,
Financial_Dept, Asset_Management. The value can be any string value.
This element is optional and can be specified zero or more times.

Type The type of this element is xsd:string.

Attributes
No attributes are defined.

Pseudo Schema
<category>
xsd:string
</category>

variables element

Definition
This element describes the list of variables that are defined in the JSDL file.
The following three variable types are supported:
v String
v Double
v Integer

The variable value can be referred in other parts of the JSDL document
specifying: ${variable name} A referred variable can be one defined in the
JSDL file with the variable element or it can be defined while submitting

838 IBM Workload Scheduler: User’s Guide and Reference

the job. The substitution can be performed by the dynamic workload
broker server in different phases of the job processing. In every phase, the
dynamic workload broker server tries to match all the variable references
still not substituted with defined variables. This element is optional and
can be specified once.

Type The type of this element is jsdl:VariablesType. It can contain the following
elements:
v stringVariable
v uintVariable
v doubleVariable

Attributes
No attributes are defined.

Pseudo Schema
<variables
xsd:anyAttribute##other>
<stringVariable ...>*
<uintVariable ...>*
<doubleVariable ...>*
<xsd:any##other/>*
</variables>?

stringVariable element

Definition
This element describes a variable specifying the variable name and the
assigned default string value. This element is optional and can be specified
zero or more times.

Type The type of this element is jsdl:StringVariableType.

Attributes
The following attributes are defined:

name This attribute specifies the name of the variable. The type of this
attribute is xsd:NCName. This attribute is required.

description
This attribute specifies the description of the variable. The type of
this attribute is xsd:string. This attribute is optional.

Pseudo Schema
<stringVariable
name="xsd:NCName"
description="xsd:string"?
xsd:anyAttribute##other>
xsd:string
<xsd:any##other/>*
</stringVariable>

doubleVariable element

Definition
This element describes a variable specifying the variable name and the
assigned default double value. This element is optional and can be
specified zero or more times.

Type The type of this element is xsd:DoubleVariableType.

Attributes
The following attributes are defined:

Appendix B. Job Submission Description Language schema reference 839

name This attribute specifies the name of the variable. The type of this
attribute is xsd:NCName. This attribute is required.

description
This attribute specifies the description of the variable. The type of
this attribute is xsd:string. This attribute is optional.

Pseudo Schema
<doubleVariable
name="xsd:NCName"
description="xsd:string"?
xsd:anyAttribute##other>
xsd:double
<xsd:any##other/>*
</doubleVariable>

uintVariable element

Definition
This element describes a variable specifying the variable name and the
assigned default unsigned integer value. This element is optional and can
be specified zero or more times.

Type The type of this element is xsd:UnsignedIntVariableType.

Attributes
The following attributes are defined:

name This attribute specifies the name of the variable. The type of this
attribute is xsd:NCName. This attribute is required.

description
This attribute specifies the name of the variable. The type of this
attribute is xsd:string. This attribute is optional.

Pseudo Schema
<uintVariable
name="xsd:NCName"
description="xsd:string"?
xsd:anyAttribute##other>
xsd:unsignedInt
<xsd:any##other/>*
</uintVariable>

application element

Definition
This element describes the application to be run the related parameters.
This element is required and can be specified once.

Type The type of this element is jsdl:ApplicationType.

Attributes
The following attributes are defined:

name Specifies the type of the application. Supported values are as
follows:

Executable
A file which is used to perform various functions or
operations on a computer.

J2EE An application based on Java 2 Platform Enterprise Edition
(J2EE).

840 IBM Workload Scheduler: User’s Guide and Reference

This attribute is mandatory and can be specified once.

description
Specifies the name of the application. The type of this attribute is
xsd:string. This attribute is optional.

version
Specifies the version of the application. The type of this attribute is
xsd:string. This attribute is optional.

Pseudo Schema
<application
name="xsd:NCName"
description="xsd:string"?
version="xsd:string"?
xsd:anyAttribute##other>
<xsd:any##other/>*
</application>

resources element

Definition
This element contains the resource requirements of the job that must be
matched on target computer system in order for a job to be assigned to
that system. The contained resource requirement elements are combined in
an AND relationship. This means that each requirement adds to the other
ones to refine the matching resource requirement and all requirements
must be met for the allocation to succeed. This element is optional and can
be specified once. If this element is not present, the dynamic workload
broker server can choose any set of resources to run the job.

Type The type of this element is jsdl:ResourceType. The supported types for this
element are listed in Table 157 on page 871. It can contain the following
elements:
v candidateHosts
v candidateCPUs
v physicalMemory
v virtualMemory
v candidateOperatingSystems
v fileSystem
v logicalResource
v group
v properties
v allocation
v relationship
v candidateResources

Attributes
No attributes are defined.

Pseudo Schema
<resources
xsd:anyAttribute##other>
<candidateHosts .../>?
<candidateCPUs .../>?
<physicalMemory .../>?
<virtualMemory .../>?
<candidateOperatingSystems .../>?
<fileSystem .../>*

Appendix B. Job Submission Description Language schema reference 841

<logicalResource ...>*
<group ...>*
<properties ...>
<allocation ...>*
<relationship ...>*
<candidateResources ...>?
<xsd:any##other>*
</resources>

relatedResources element

Definition
This element is a unique identifier for the resource requirement that must
be unique in the document. The requirements defined in this element
apply to both logical resources and computer systems. It can be referred to
by relationship elements. The contained resource requirement elements are
combined in an AND relationship. This means that each requirement adds
to the other ones to refine the matching resource requirement and all
requirements must be met for the allocation to succeed. This element is
optional and can be specified zero or more times.

Type The type of this element is jsdl:RelatedResourceType. It can contain the
following elements:
v logicalResource
v group
v properties
v allocation
v relationship
v candidateResources

Attributes
The following attributes are defined:

id Specifies the internal ID of the resource you want to associate to
the resources element. This ID is used only for internal reference
within the JSDL file. The type for this attribute is xsd:ID. This
attribute is required.

type Specifies the type of the required resource. Supported types are
ComputerSystem and Logical Resource. If this attribute is not
present, the resource type ComputerSystem is assumed. A resource
type is identified by a unique type name and describes the
properties that each resource instance provides. For more
information on the available resource properties, see Table 157 on
page 871. The type of this attribute is xsd:NCName. This attribute
is optional.

Pseudo Schema
<relatedResources
id="xsd:ID"
type="xsd:NCName"?
xsd:anyAttribute##other>
<logicalResource ...>*
<group ...>*
<properties ...>
<allocation ...>*
<relationship ...>*
<candidateResources ...>?
<xsd:any##other>*
</relatedResources>

842 IBM Workload Scheduler: User’s Guide and Reference

candidateHosts element

Definition
This element specifies the set of named hosts which must be selected for
running the job. dynamic workload broker assigns the job to one of the
hosts in this list. The hosts specified are in OR, that is at least one of them
must be matched by the Operating System resource contained in the target
resource. If none of the hosts you specify is available when the job is
submitted, the job waits for one of them to become available. If no host
becomes available before the timeout expires, the job fails. This attribute is
optional.

Type The type of this element is jsdl:CandidateHostsRequirementType. It can
contain the following element:
v hostName

Attributes
No attributes are defined.

Pseudo Schema
<candidateHosts
xsd:anyAttribute##other>
<hostName>jsdl:StringVariableExpressionType<hostName/>+
<xsd:any##other>*
</candidateHosts>

orderedCandidatedWorkstations element

Definition
This element specifies the ordered list of workstations that are candidate
for being selected based on the information specified in the requirements
field of the dynamic pool definition. The first workstation that matches the
requirements is selected for processing.

Type The type of this element is jsdl:OrderedCandidatedWorkstationsType. It
can contain the following element:
v workstation

Attributes
No attributes are defined.

Pseudo Schema
<orderedCandidatedWorkstations
xsd:anyAttribute##other>
<workstation>jsdl:StringVariableExpressionType<workstation/>+
<xsd:any##other>*
</orderedCandidatedWorkstations>

hostName element

Definition
This element specifies a string variable expression containing the name of a
single host which may be selected for running the job. If none of hosts you
specify is available when the job is submitted, the job waits for one of
them to become available. If no host becomes available before the timeout
expires, the job fails. To specify the host name, you can use a variable
expression that can contain one or more variable references, such as ${var},
any character, and any string. Wildcards are supported. This attribute is
required and can be specified one or more times.

Type The type of this attribute is jsdl:StringVariableExpressionType.

Appendix B. Job Submission Description Language schema reference 843

Attributes
No attributes are defined.

Pseudo Schema
<hostName>jsdl:StringVariableExpressionType<hostName/>

<hostName>lab145674.example.com<hostName/>

<hostName>${my_preferred_host}<hostName/>

candidateCPUs element

Definition
This element specifies the set of CPU characteristics that must be satisfied
by hosts which may be selected for running the job. The characteristics
combinations specified are in OR, that is at least one of them must be
matched by the target resource. If none of the CPU characteristics you
specify is available when the job is submitted, the job waits for one of
them to become available. If no CPU becomes available before the timeout
expires, the job fails. This element is optional and can be specified zero or
more times.

Type The type of this element is jsdl:CandidateCPUsRequirementType. It can
contain the following element:
v cpu

Attributes
No attributes are defined.

Pseudo Schema
<candidateCPUs
xsd:anyAttribute##other>
<cpu ...>*
<xsd:any##other/>*
</candidateCPUs >?

cpu element

Definition
This element specifies the CPU characteristics that must be satisfied by
hosts which may be selected for running the job. The characteristics
combinations specified are in OR, that is at least one of them must be
matched by the target resource. At least one of the CPUs with the specified
characteristics must be available for the job to run. If none of the CPUs you
specify is available when the job is submitted, the job waits for one of
them to become available. If no CPU becomes available before the timeout
expires, the job fails. This element is required and can be specified one or
more times.

Type The type of this element is CPURequirementType.

Attributes
The following attributes are defined:

architecture
Specifies the CPU architecture required for running the job. This
attribute is optional. Supported values are as follows:
v parisc
v powerpc
v powerpc_64

844 IBM Workload Scheduler: User’s Guide and Reference

v s390
v s390x
v sparc
v x86
v x86_64

quantity
Specify the number of processors that must be available on the
computer. Setting the Quantity to 0 indicates that the requirement
is met by computers with any number of processors. The type of
this attribute is xsd:unsignedInt. This attribute is optional.

Pseudo Schema
<cpu>
architecture="xsd:string"?
speed="jsdl:NumericRangeType"?
quantity="xsd:unsignedInt"?
xsd:anyAttribute##other>
<xsd:any##other>*
</cpu>

speed element

Definition
This element specifies the CPU speed range in MHz required for running
the job The unit of measure is megahertz. This element is optional and can
be specified once.

Type The type of this element is jsdl:NumericRangeType.

Attributes
No attributes are defined.

Pseudo Schema
<speed>
xsd:anyAttribute##other>
<jsdl:NumericRangeType>*
<speed>

physicalMemory element

Definition
This element specifies a range or exact value indicating the amount of free
physical memory required for the job. The amount is expressed in bytes.
This attribute is optional.

Type The type of this element is jsdl:NumericRangeType.

Attributes
No attributes are defined.

Pseudo Schema
<physicalMemory
xsd:anyAttribute##other>
jsdl:NumericRangeType
<xsd:any##other>*
</physicalMemory>

Appendix B. Job Submission Description Language schema reference 845

virtualMemory element

Definition
This element specifies a range or exact value indicating the amount of free
virtual memory required for the job. The amount is expressed in bytes.
This attribute is optional.

Type The type of this element is jsdl:NumericRangeType.

Attributes
No attributes are defined.

Pseudo Schema
<virtualMemory
xsd:anyAttribute##other>
jsdl:NumericRangeType
<xsd:any##other>*
</virtualMemory>

candidateOperatingSystems element

Definition
This element specifies the set of operating system characteristics that must
be satisfied by hosts which may be selected for running the job. The
characteristics combinations are matched in OR, that is at least one of them
must be matched by the Operating System resource contained in the target
resource. At least one of the operating systems listed must be available for
the job to run. If none of the operating systems you specify is available
when the job is submitted, the job waits for one of them to become
available. If no operating system becomes available before the timeout
expires, the job fails. This attribute is optional.

Type The type of this element is jsdl:OperatingSystemsRequirementType. It can
contain the following element:
v operatingSystem

Attributes
No attributes are defined.

Pseudo Schema
<candidateOperatingSystems
<xsd:anyAttribute##other>
<operatingSystem...>*
<xsd:any##other/>*
</ candidatOperatingSystems>?

operatingSystem element

Definition
This element specifies the operating system characteristics that are required
for running the job. This attribute is required and can be specified one or
more times.

Type The type for this element is OperatingSystemRequirementType

Attributes
The following attributes are defined:

type This attribute defines the name of operating system required for
running the job. The type of this attribute is xsd:string. This
attribute is required. Supported values are as follows:
v AIX
v Linux

846 IBM Workload Scheduler: User’s Guide and Reference

v Windows 2000
v Windows 2003
v Windows XP
v Windows Vista
v HPUX
v Solaris

version
Specify the operating system version. You can specify the exact
operating system version or sub version, for example 5.2 or
5.2.3.30, or you can specify a part of the version, for example 5.2.3.
In this case, the requirement applies to all operating systems
having the 5.2.3 version and any sub versions, such as fix packs
and maintenance levels. The type of this attribute is xsd:string.
This attribute is optional.

Pseudo Schema
<operatingSystem
type="xsd:string"
version="xsd:string"?
xsd:anyAttribute##other>
<xsd:any##other>*
</operatingSystem>

fileSystem element

Definition
This element describes the set of file system characteristics which may be
selected for running the job. Each set of characteristics specifies the
location where the file system is available, the required amount of disk
space and the type of the file system. The file system may be local to the
resource, for example on a local disk, or may be remote, for example on an
NFS mount. The requirement is satisfied if for a given target all listed file
system characteristics are satisfied. The characteristics combinations are
matched in AND, that is all must be matched by the File System resources
contained in the target resource. All of the file systems listed must be
present for the job to run. If any of the file systems you specify is not
available when the job is submitted, the job waits for it to become
available. If it does not become available before the timeout expires, the job
fails. This element is optional and can be specified zero or more times.

Type The type for this element is jsdl:FileSystemRequirementType. It contains
the diskSpace element.

Attributes
The following attributes are defined:

type Is a token specifying the type of file system of the containing
fileSystem element. The type of this attribute is
jsdl:FileSystemTypeEnumeration. This attribute is optional.
Supported values are as follows:

Unkonwn
The file system is not specified.

No Root Directory
Is a local file system that is not the root directory.

Removable Disk
Is a file system mounted on a removable hard disk.

Appendix B. Job Submission Description Language schema reference 847

Local Disk
Is a file system mounted on a local disk.

Remote Drive
Is a file system mounted on a remote drive.

CD-ROM
Is a file system mounted on a CD ROM drive.

RAM Disk
Is a file system mounted on a RAM disk.

mountPoint
Is a string variable expression specifying the local mapping where
the file system is available for the job. The type of this attribute is
jsdl:StringVariableExpressionType. To specify the mount point, you
can use a variable expression that can contain one or more variable
references, such as ${var}, any character, and any string. Wildcards
are supported. This attribute is optional.

Pseudo Schema
<fileSystem
type="jsdl:FileSystemTypeEnumeration"?
mountPoint="jsdl:StringVariableExpressionType"?
xsd:anyAttribute##other>
<diskSpace>jsdl:NumericRangeType</diskSpace>?
<xsd:any##other/>*
</fileSystem>

diskSpace element

Definition
This element specifies the amount of disk space required on the containing
file system element for running the job. The amount of disk space is given
in kilobytes. This element is optional and can be specified once.

Type The type of this element is jsdl:NumericRangeType.

Attributes
No attributes are defined.

Pseudo Schema
<fileSystem
type="jsdl:FileSystemTypeEnumeration"?
mountPoint="jsdl:StringVariableExpressionType"?
xsd:anyAttribute##other>
<diskSpace>jsdl:NumericRangeType</diskSpace>?
<xsd:any##other/>*
</fileSystem>

logicalResource element

Definition
This element specifies one or more logical resources are required for
running the job. The characteristics combinations are matched in AND, that
is all must be matched by the Logical Resources associated with the target
resource. All of the logical resources listed must be available for the job to
run. If one of the logical resources you specify is unavailable when the job
is submitted, the job waits for it to become available. If it does not become
available before the timeout expires, the job fails. This element is optional
and can be specified zero or more times.

Type The type of this element is LogicalResourceRequirementType.

848 IBM Workload Scheduler: User’s Guide and Reference

Attributes
The following attributes are defined:

name Is a string variable expression specifying the name of the requested
logical resource. To specify the logical resource name, you can use
a variable expression that can contain one or more variable
references, such as ${var}, any character, and any string. The name
must start with an alphabetical character, and can contain
underscore symbols (_), minus symbols (-), and periods (.).
Spaces, special characters, accented characters are not supported.
This attribute is optional.

subType
Is a string variable expression specifying the type of the requested
logical resource. To specify the logical resource type, you can use a
variable expression that can contain one or more variable
references, such as ${var}, any character, and any string. This
attribute is optional.

quantity
The integer value specifying the required quantity of the logical
resource. The specified quantity is allocated exclusively to the job
while it runs. To specify the amount of the resource, you can use a
variable expression that can contain one variable reference, such as
${var}, or an unsigned integer value. This attribute is optional.

Pseudo Schema
<logicalResource
name="jsdl:StringVariableExpressionType"?
subType="jsdl:StringVariableExpressionType"?
quantity="jsdl:UnsignedIntVariableExpressionType"?
xsd:anyAttribute##other>
<xsd:any##other/>*
</logicalResource>

group element

Definition
This element specifies that the resources required for running the job have
to belong to the specified group of resources. The groups are matched in
AND, that is the target resource must be in all the groups specified. This
element is optional and can be specified zero or more times.

Type The type of this element is jsdl:GroupRequirementType.

Attributes
The following attribute is defined:

name Specifies the name of the group as a string variable expression. To
specify the resource group, you can use a variable expression that
can contain one or more variable references, such as ${var}, any
character, and any string. This attribute is required and can be
specified once.

Pseudo Schema
<group
name="jsdl:StringVariableExpressionType"
xsd:anyAttribute##other>
<xsd:any##other/>*
</group>

Appendix B. Job Submission Description Language schema reference 849

properties element

Definition
This element specifies the properties of the resource required for running
the job. The requirement is expressed as a set of conditions on resource
properties combined with AND/OR operators. This is based on the
resource model that describes the resources available in the environment as
instances of resource types. A resource type is identified by a unique type
name and describes the properties that each resource instance provides.
Use this element to specify advanced requirements. For more information
on available resource types and properties, see Table 157 on page 871. This
element is optional and can be specified once.

Type The type of this element is jsdl:RequirementCompositorType. It can contain
the following elements:
v and
v or
v requirement

Attributes
No attributes are defined.

Pseudo Schema
<properties
xsd:anyAttribute##other>
<and .../>?
<or .../>?
<requirement .../>?
<xsd:any##other/>*
</properties>

and element

Definition
This element specifies an AND condition on the containing requirement
specifications. This element is optional and can be specified once.

Type The type of this element is jsdl:RequirementCompositorType. It can contain
the following elements:
v and
v or
v requirement

Attributes
No attributes are defined.

Pseudo Schema
<and
xsd:anyAttribute##other>
<and .../>?
<or .../>?
<requirement .../>?
<xsd:any##other/>*
</and>

or element

Definition
This element specifies an OR condition on the containing requirement
specifications. This element is optional and can be specified once.

850 IBM Workload Scheduler: User’s Guide and Reference

Type The type of this element is jsdl:RequirementCompositorType. It can contain
the following elements:
v and
v or
v requirement

Attributes
No attributes are defined.

Pseudo Schema
<or
xsd:anyAttribute##other>
<and .../>?
<or .../>?
<requirement .../>?
<xsd:any##other/>*
</or>

requirement element

Definition
This element is a range value specifying a requirement on the capabilities
of a resource for running the job. This element is optional and can be
specified once.

Type The type of this element is jsdl:RequirementType.

Attributes
The following attribute is defined:

propertyName
Is a string specifying the resource property that the requirement
applies to. The available properties vary depending on resources
you selected in the resources element. For more information on
resource types and properties, see Table 157 on page 871. The type
of this attribute is xsd:NCName. This attribute is required.

Pseudo Schema
<requirement
propertyName="xsd:NCName"
xsd:anyAttribute##other>
jsdl.StringRangeType
<xsd:any##other/>*
</and>

allocation element

Definition
This element specifies an exclusive allocation requirement on a given
property of a resource. You can define an allocation requirement on the
resource consumable attributes. For more information on consumable
attributes, see Table 157 on page 871. The job can be run on the resource if
the required value is available. While the job runs, it uses exclusively the
required value of the resource property. When the job completes, it releases
the property value. This element is optional and can be specified once.

Type The type of this element is jsdl:AllocationRequirementType.

Attributes
The following attribute is defined:

Appendix B. Job Submission Description Language schema reference 851

propertyName
Is a string specifying the resource property that the requirement
applies to. The type of this attribute is xsd:QName. This attribute is
required.

Quantity
Specify the quantity of the property which is to be allocated
exclusively to the job. To specify the quantity of the property
which is to be allocated, you can use a variable expression that can
contain one variable reference, such as ${var}, or a double value.

Pseudo Schema
<allocation
propertyName="xsd:QName"
xsd:anyAttribute##other>
jsdl:DoubleVariableExpressionType
<xsd:any##other/>*
</and>

relationship element

Definition
This element specifies a requirement that the resource selected for running
the job has a relationship with other resources that match certain
additional criteria. A relationship is a direct association between a source
and a target resource. This element is optional and can be specified once.

Type The type of this element is jsdl:RelationshipRequirementType.

Attributes
The following attributes are defined:

type Is a string specifying the required relationship type. The type of
this attribute is xsd:NCName. This attribute is optional.

source Is a string specifying the ID of a relatedResources element. If this
attribute is specified, the relationship requirement specifies that the
resource must have at least one relationship directed from one or
more resources matched by the relatedResources element to itself.
If this attribute is not specified, then a target attribute must be
present. The type of this attribute is xsd:IDREF. This attribute is
optional.

target Is a string specifying the ID of a relatedResources element. If this
attribute is specified, the relationship requirement specifies that the
resource must have at least one relationship directed from itself to
one or more resources matched by the relatedResources element. If
this attribute is not specified, then a source attribute must be
present. The type of this attribute is xsd:IDREF. This attribute is
optional.

Pseudo Schema
<relationship
type="xsd:NCName"
source="xsd:IDREF"?
target="xsd:IDREF"?
xsd:anyAttribute##other>
<xsd:any##other/>*
</relationship>

852 IBM Workload Scheduler: User’s Guide and Reference

candidateResources element

This element is reserved for internal use.

Definition
This element specifies the set of resources, which may be selected from for
running the job. If this element is specified, one or more resources from the
set must be chosen to run the job. The resources are identified using the
Endpoint Reference address (WS-Addressing EPR) of the Job Factory
service managing the resource. The requirement combinations are matched
in OR, that is at least one of them must be matched by the resource
contained in the target resource. At least one of the resources listed must
be available for the job to run. If none of the resources you specify is
available when the job is submitted, the job waits for one of them to
become available. If no resource becomes available before the timeout
expires, the job fails. This element is optional and can be specified once.

Type The type of this element is jsdl:CandidateResourcesRequirementType. It
contains the endpointReference element.

Attributes
No attributes are defined.

Pseudo Schema
<candidateResources
xsd:anyAttribute##other>
<endpointReference>wsa:EndpointReferenceType<endpointReference/>+
<xsd:any##other>*
</candidateResources>

endpointReference element

This element is reserved for internal use.

Definition
This element specifies the Web Services Addressing endpoint reference of
the Job Factory service managing the resource. This element is required
and can be specified one or more times. This element is reserved for
internal use.

Type The type of this element is wsa:EndpointReferenceType.

Attributes
No attributes are defined.

Pseudo Schema
<candidateResources
xsd:anyAttribute##other>
<endpointReference>wsa:EndpointReferenceType<endpointReference/>+
<xsd:any##other>*
</candidateResources>

optimization element

Definition
This element specifies the optimization policies to be applied to the job.
Depending on whether you select the objective or ewlm element, the
resource selection policy changes. This element is optional and can be
specified once. If no value is specified then the default load balancing
policy to equalize the number jobs running on each resource is applied.

Appendix B. Job Submission Description Language schema reference 853

Type The type for this element is jsdl:OptimizationType. It can contain only one
the following elements:
v objective
v ewlm

Attributes
The following attribute is defined:

name Specifies the name of the optimization policy. Supported values are
as follows:

JPT_JSDLOptimizationPolicyType
If you use this option, you must specify the objective
element. Using the objective element, you can specify
resource properties to be maximized or minimized. When
you define the objective element, dynamic workload
broker runs the job on the resource matching the
optimization requirement. This is the default value. See
“Resources in the job definition” on page 870 for more
information.

JPT_BestResource
Use this option so that the resource pool for the job is
made up of only the best resources among the pool of
resources that meet the specified policy. If you use this
option, you must specify the objective element. Using the
objective element, you can specify resource properties to
be maximized or minimized. When you define the
objective element, dynamic workload broker runs the job
on the resource matching the optimization requirement.
This is the default value. See “Resources in the job
definition” on page 870 for more information.

JPT_EWLM
If you use this option, the ewlm element is automatically
inserted.

Pseudo Schema
<optimization
name="xsd:NCName"
xsd:anyAttribute##other>
<objective .../> |
<ewlm .../>
<xsd:any##other>*
</optimization>

objective element

Definition
This element specifies the objective to reach when performing optimization
for the job. For example, if you select the resourcePropertyName CPU
Utilization for resourceType Computer System with propertyObjective
minimize, dynamic workload broker will try to run the job on the resource
where the CPU usage is lowest. This element is mutually exclusive with
the ewlm element.

Type The type of this element is PropertyObjectiveType.

Attributes
The following attributes are defined:

854 IBM Workload Scheduler: User’s Guide and Reference

propertyObjective
Is a string specifying the objective type. This attribute is required.
Supported values are as follows:

minimize
Resources are assigned to the job with the objective to
minimize the value of the specified resource type property.
For example, you can choose this objective to assign the job
to the resource where the CPU usage is lowest.

maximize
Resources are assigned to the job with the objective to
maximize the value of the specified resource type property.
For example, you can choose this objective to assign the job
to the resource where the processing speed is highest.

minimize.utilization
Resources are assigned to the job with the objective to
minimize the usage of the specified resource type property.
This attribute is available only for consumable properties.
For a list of all consumable properties, see Table 157 on
page 871. If you choose to minimize the usage of the
property consumption, the job is assigned to a resource
where a lower quantity of the property is used.

maximize.utilization
Resources are assigned to the job with the objective to
maximize the usage of the specified resource type property.
This attribute is available only for consumable properties.
For a list of all consumable properties, see Table 157 on
page 871. For example, you might want to perform a stress
test on a workstation by creating jobs where the CPU
Utilization resource property for the Computer System
resource type is set to Maximize Utilization. This would
cause all jobs with this setting to be assigned to the
workstation where the CPU usage is higher, generating a
loop.

resourceType
Is a string specifying the type of the resource that the policy
applies to. If this element is not specified, the resource type
ComputerSystem is assumed. The type of this attribute is
xsd:QName. This attribute is optional.

resourcePropertyName
Is a string specifying the resource property that the policy applies
to. The type of this attribute is xsd:QName. This attribute is
required.

Note: When specifying an optimization requirement on any property of a
resource type, you must have previously defined a requirement on that
resource type. For example, if you want to optimize the total physical
memory on an operating system, you must previously define a
requirement on the Operating System resource type. This procedure does
not apply to the Computer System resource type, because Computer
System is the default resource type.

Appendix B. Job Submission Description Language schema reference 855

Pseudo Schema
<objective
propertyObjective="minimize" | "maximize"
resourceType="xsd:QName"?
resourcePropertyName="xsd:QName"
xsd:anyAttribute##other>
<xsd:any##other>*
</objective>

ewlm element

Definition
This element specifies the optimization based on Enterprise Workload
Manager resource weight calculation. dynamic workload broker will run
the job on the best available resources as indicated by Enterprise Workload
Manager. This element is optional and can be specified once. This element
is mutually exclusive with the objective element.

Type The type of this element is jsdl:PropertyObjectiveType

Attributes
No attributes are defined.

Pseudo Schema
<ewlm>
xsd:anyAttribute##other>
<xsd:any##other>*
</ewlm>

scheduling element

Definition
This element specifies the scheduling parameters to be applied in running
the job. This element is optional and can be specified once.

In the dynamic workload broker, this element corresponds to the
Scheduling page. For more information on the Scheduling page, see the
online help documentation.

Type The type of this element is jsdl:SchedulingType. It can contain the
following elements:
v maximumResourceWaitingTime
v estimatedDuration
v priority

Attributes
No attributes are defined.

Pseudo Schema
<scheduling
xsd:anyAttribute##other>
<maximumResourceWaitingTime>xsd:duration<maximumResourceWaitingTime>?
<estimatedDuration>xsd:duration<estimatedDuration>?
<priority>xsd:unsignedint<priority>?
<xsd:any##other>*
</objective>

maximumResourceWaitingTime element

Definition
This element specifies how long the dynamic workload broker server must

856 IBM Workload Scheduler: User’s Guide and Reference

wait since the job submission before deciding there are no resources
matching the requirements. This element is optional and can be specified
once.

Type The type of this element is xsd:duration.

Attributes
No attributes are defined.

Pseudo Schema
<maximumResourceWaitingTime>?
xsd:anyAttribute##other>
<xsd:duration>*
<maximumResourceWaitingTime>

estimatedDuration element

Definition
This element specifies the job run estimated duration. This can be used by
the dynamic workload broker server to plan the resource assignment. This
element is optional and can be specified once.

Type The type of this element is xsd:duration.

Attributes
No attributes are defined.

Pseudo Schema
<estimatedDuration>?
<xsd:anyAttribute##other>
<xsd:duration>*
<estimatedDuration>

priority element

Definition
This element specifies the job priority as an integer between 0 and 100.
Higher values mean higher priority. This element is optional and can be
specified once.

Type The type of this element is xsd:PriorityType. It can contain the following
elements:
v maximumResourceWaitingTime
v estimatedDuration
v priority

Attributes
No attributes are defined.

Pseudo Schema
<scheduling
xsd:anyAttribute##other>
<maximumResourceWaitingTime>xsd:duration<maximumResourceWaitingTime>?
<estimatedDuration>xsd:duration<estimatedDuration>?
<priority>xsd:unsignedint<priority>?
<xsd:any##other>*
</objective>

recoveryActions

Definition
This element describes the list of recovery actions that dynamic workload
broker must perform if the time interval specified in the

Appendix B. Job Submission Description Language schema reference 857

maximumResourceWaitingTime element expires and no resources matching
the requirements have been found. This element is optional and can be
specified once. The recovery actions defined in the this element are
performed by starting a Tivoli Provisioning Manager workflow.

Type The type of this element is jsdl:RecoveryActionList. It can contain the
action element.

Attributes
No attributes are defined.

Pseudo Schema
<recoveryActions
xsd:anyAttribute##other>
<action...>+
<xsd:any##other/>*
</recoveryActions >

action

Definition
This element specifies the recovery action(s) to be performed. dynamic
workload broker performs the actions listed sequentially based on the
order in which they have been specified. Any subsequent recovery action is
run only if the previous action completed successfully. If the
recoveryActions element is specified, at least one action element must be
specified.

Type The type of this element is jsdl:RecoveryActionType.

Attributes
The following attributes are defined:

name Specifies the name of the recovery action to be performed. This
attribute is optional.

additionalTimeOnCompletion
Specifies the time interval dynamic workload broker must wait for
the recovery action to become effective after completing. If this
attribute is specified for a recovery action, the subsequent recovery
action is performed only after the specified time interval expires. If
the required resource becomes available before the interval expires,
dynamic workload broker might decide to run the job before the
action completes.

maximumExecutionTime
Specifies the expected time period dynamic workload broker waits
for the recovery action to complete. If the recovery action is not
completed when this timeout expires, the recovery procedure fails
and the recovery sequence is stopped.

Pseudo Schema
< action>
name="xsd:NCName"
additionalTimeOnCompletion ="xsd:duration"?
maximumExecutionTime ="xsd:duration"?
xsd:anyAttribute##other>
<xsd:any##other/>*
</ action >

858 IBM Workload Scheduler: User’s Guide and Reference

tpmaction element

Definition
This element specifies the parameters required for running a Tivoli
Provisioning Manager recovery action. This attribute is optional and can be
specified once.

Type The type of this attribute is jsdltpm:TPMActionType. It can contain the
following elements:
v parameters
v credential
v tpmaddress
v workFlow

Attributes
No attributes are defined.

Pseudo Schema
<tpmaction
<parameters... />?
<credential.../>?
<tpmaddress.../>?
workFlow="jsdl:StringVariableExpressionType"
</tpmaction>

parameters element

Definition
This element specifies the arguments to be used when running the Tivoli
Provisioning Manager workflow. This element is optional and can be
specified once.

Type The type of this attribute is jsdltpm:ParametersType.

Attributes
The following attributes is supported:

name Specifies the name of the attribute to be used when running the
Tivoli Provisioning Manager workflow. This attribute is required
and can be specified one or more times.

Pseudo Schema
<parameters
<parameter... />+
</parameters>

credential element

Definition
This element specifies the credentials required for running the Tivoli
Provisioning Manager workflow. This element is optional and can be
specified once.

Type The type of this element is jsdl:CredentialType. It can contain the following
elements:
v userName
v password

Attributes
No attributes are defined.

Appendix B. Job Submission Description Language schema reference 859

Pseudo Schema
<credential
<userName> jsdl:NotEmptyStringVariableExpressionType</userName>
<password> jsdl:StringVariableExpressionType </password>
</credential>

userName element

Definition
This element specifies a user name defined on the target system, that is
used to run the Tivoli Provisioning Manager workflow. This element is
required if you use the credential element and can be specified once.

Type The type of this element is jsdl:NotEmptyStringVariableExpressionType.

Attributes
No attributes are defined.

Pseudo Schema
<userName>
xsd:anyAttribute##other>
<jsdl:NotEmptyStringVariableExpressionType*
<userName>

password element

Definition
This element specifies the password of the specified user that is used to
run the Tivoli Provisioning Manager workflow on the target system. This
element is required if you use the credential element and can be specified
once.

Type The type of this element is jsdl:StringVariableExpressionType.

Attributes
No attributes are defined.

Pseudo Schema
<password>?
xsd:anyAttribute##other>
<jsdl:StringVariableExpressionType
<password>

tpmaddress element

Definition
This element specifies the Tivoli Provisioning Manager address that must
be used to call the Tivoli Provisioning Manager web service necessary for
running the workflow. This element is optional and can be specified once.

Type The type of this element is jsdltpm:TPMAddressType.

Attributes
The following attributes are defined:

host Specifies the host name of the Tivoli Provisioning Manager server
to be used when running the recovery action.

port Specifies the port number of the Tivoli Provisioning Manager
server to be used when running the recovery action.

860 IBM Workload Scheduler: User’s Guide and Reference

Pseudo Schema
< tpmaddress
<host... />
<port... />
</ tpmaddress >

workflow element

Definition
This element specifies the name of the Tivoli Provisioning Manager
workflow to be run. To specify the workflow name, you can use a variable
expression that can contain one or more variable references, such as ${var},
any character, and any string. This element is required.

Type The type of this element is jsdl:StringVariableExpressionType.

Attributes
No attributes are defined.

Pseudo Schema
<workflow>?
xsd:anyAttribute##other>
<jsdl:StringVariableExpressionType
<workflow>

executable element

Definition
This element specifies the parameters for running a native system
command, that is executable files and scripts. You can also embed scripts
in this element. This element is required.

Note: The following restrictions apply:
v On Windows systems, you can run scripts containing batch commands.

Supported formats for scripts are:
– .cmd
– .bat

v On UNIX and Linux systems, only shell scripts are supported. At the
beginning of the shell script, you must specify the command interpreter.

v On UNIX and Linux systems, commands contained in scripts must run
in foreground. This means that you cannot use the "&" parameter in
association with the command.

v On all supported platforms, you cannot include in jobs any commands
starting a program with a graphic interface.

Type The type of this element is jsdle:ExecutableType. It can contain the
following elements:
v script
v arguments
v environment
v credential

Attributes
The following attributes are defined:

path Is a string variable expression specifying the path name of the
executable file to run. If the script element is not present, the path
attribute must be specified. If the script element is present, the
path attribute cannot be specified. To specify the path, you can use

Appendix B. Job Submission Description Language schema reference 861

a variable expression that can contain one or more variable
references, such as ${var}, any character, and any string.

You must specify the file extension. If you want to run an
executable file without specifying its extension, you can specify the
executable file name in the script element, so that the file is run
within the shell.

input Is a string variable expression specifying the standard input for the
command. This attribute is an absolute path name or a path name
relative to the working directory. To specify the path, you can use a
variable expression that can contain one or more variable
references, such as ${var}, any character, and any string. This
attribute is optional.

output
Is a string variable expression specifying the standard output for
the command. This attribute is an absolute path name or a path
name relative to the working directory. To specify the path, you
can use a variable expression that can contain one or more variable
references, such as ${var}, any character, and any string. This
attribute is optional.

error Is a string variable expression specifying the standard error for the
command. This attribute is an absolute path name or a path name
relative to the working directory. To specify the path, you can use a
variable expression that can contain one or more variable
references, such as ${var}, any character, and any string. This
attribute is optional.

workingDirectory
Is a string variable expression specifying the working directory
required by the job to run. To specify the directory, you can use a
variable expression that can contain one or more variable
references, such as ${var}, any character, and any string. This
attribute is optional. If you do not specify this attribute, the job
runs in the following directories, depending on the operating
system:

On UNIX systems
The following cases apply:
v The job runs in the $HOME_DIRECTORY of the user

who submits the job, if existing.
v If this directory does not exist, it runs on /root, if the

user who submits the job has the required rights.
v If the user does not have the required rights, the job

runs in the IBM Workload Scheduler agent working
directory.

On Windows systems
The job runs in the IBM Workload Scheduler agent
working directory.

script Specifies the script code to be run. To specify special characters
required by scripting languages, the content of the script element
can be specified with a CDATA section

862 IBM Workload Scheduler: User’s Guide and Reference

Pseudo Schema
<executable
path="jsdl:StringVariableExpressionType"
input="jsdl:StringVariableExpressionType"?
output="jsdl:StringVariableExpressionType"?
error="jsdl:StringVariableExpressionType"?
workingDirectory="jsdl:StringVariableExpressionType"?
xsd:anyAttribute##other>
<script ... />?
<arguments .../>?
<environment .../>?
<credential .../>?
<xsd:any##other>*
</executable>

script element

Definition
This element specifies the script code to be run. This element is optional
and can be specified once.

Type The type of this element is xsd:string.

Attributes
No attributes are defined.

Pseudo Schema
<script>?
xsd:anyAttribute##other>
<xsd:string
<script>

arguments element

Definition
This element specifies the list of arguments as string variable expressions
that are concatenated to produce the argument string to be passed to the
command. This element is optional and can be specified once.

Type The type of this element is jsdle:ArgumentsType. It can contain the
following element:
v value

Attributes
No attributes are defined.

Pseudo Schema
<arguments
xsd:anyAttribute##other>
<value>jsdl:StringVariableExpressionType</value>+
<xsd:any##other>*
</arguments>

value element

Definition
This element specifies the value of the arguments element. To specify the
value, you can use a variable expression that can contain one or more
variable references, such as ${var}, any character, and any string. This
element is required and can be specified one or more times.

Type The type of this element is jsdl:StringVariableExpressionType.

Attributes
No attributes are defined.

Appendix B. Job Submission Description Language schema reference 863

Pseudo Schema
<arguments
xsd:anyAttribute##other>
<value>jsdl:StringVariableExpressionType</value>+
<xsd:any##other>*
</arguments>

Note: If you need to specify that a value consists of a blank space, you must
enclose it within double quotation marks.

environment element

Definition
This element specifies a string variable expression of environment variables
that will be defined for the job in the running environment. This element is
optional and can be specified once.

Type The type of this element is jsdl:jsdle:EnvironmentType. It can contain the
following element:
v variable

Attributes
No attributes are defined

Pseudo Schema
<environment
xsd:anyAttribute##other>
<variable name="xsd:string">jsdl:StringVariableExpressionType</variable>+
<xsd:any##other>*
</environment>

Note: If you need to specify that a value consists of a blank space, you must
enclose it within double quotation marks.

variable element

Definition
This element specifies a string variable expression of environment variables
that will be defined for the job in the running environment. This element is
optional and can be specified once.

Type The type of this element is jsdl:StringVariableExpressionType.

Attributes
The following attributes are defined:

name Specifies the name of the variable.

value Specifies the value of the variable. To specify the variable value,
you can use a variable expression that can contain one or more
variable references, such as ${var}, any character, and any string.

credential element

Definition
This element specifies the security credential for running the command.
Include this element when you want to specify a user or group name
under which the executable or script runs on the target system that is
different from the user or group name under which the workload agent
runs. This element is optional and can be specified once.

Type The type of this element is jsdle:CredentialType. It can contain the
following elements:

864 IBM Workload Scheduler: User’s Guide and Reference

v userName
v groupName
v password

Attributes
No attributes are defined.

Pseudo Schema
<credential
xsd:anyAttribute##other>
<userName> jsdl:StringVariableExpressionType </userName>
<groupName> jsdl:StringVariableExpressionType </groupName>
<password> jsdl:StringVariableExpressionType </password>
<xsd:any##other>*
</credential>

userName element

Definition
Is a string variable expression that specifies the user name of a user
defined on the target system. The command runs using this user name.
This element is required if you use the credential element and can be
specified once. This might be either a UNIX or Windows user ID. To
specify the user name, you can use a variable expression that can contain
one or more variable references such as ${var}, optionally, in association
with any character or with a simple string. If the application runs on a
Windows system as a Windows domain user, specify the user name as
follows:
domain_name\user_name

If the application runs as a local user, you can use the following format:
user_name

Type The type of this element is jsdl:NotEmptyStringVariableExpressionType.

Attributes
No attributes are defined.

Pseudo Schema
<credential
xsd:anyAttribute##other>
<userName> jsdl:StringVariableExpressionType </userName>
<groupName> jsdl:StringVariableExpressionType </groupName>
<password> jsdl:StringVariableExpressionType </password>
<xsd:any##other>*
</credential>

groupName element

Definition
Is a string variable expression that specifies the name of the group to
which the user belongs that is defined on the target system where the
command runs. This element is optional and can be specified once. This
element is ignored on Windows target systems. To specify the group name,
you can use a variable expression that can contain one or more variable
references, such as ${var}, any character, and any string.

Type The type of this element is jsdl:StringVariableExpressionType.

Attributes
No attributes are defined.

Appendix B. Job Submission Description Language schema reference 865

Pseudo Schema
<credential
xsd:anyAttribute##other>
<userName> jsdl:StringVariableExpressionType </userName>
<groupName> jsdl:StringVariableExpressionType </groupName>
<password> jsdl:StringVariableExpressionType </password>
<xsd:any##other>*
</credential>

password element

Definition
Is a string variable expression that defines the password of the specified
user name that is used to run the command on the target system. This
element is optional and can be specified once. This element is ignored on
UNIX target systems. To specify the password, you can use a variable
expression that can contain one or more variable references, such as ${var},
any character, and any string.

Type The type of this element is jsdl:StringVariableExpressionType.

Attributes
No attributes are defined.

Pseudo Schema
<credential
xsd:anyAttribute##other>
<userName> jsdl:StringVariableExpressionType </userName>
<groupName> jsdl:StringVariableExpressionType </groupName>
<password> jsdl:StringVariableExpressionType </password>
<xsd:any##other>*
</credential>

j2ee element

Definition
This element specifies the J2EE application information needed for the job.
This element is optional and can be specified once. The J2EE operations
you can perform vary depending on the scheduler type (direct or indirect)
you select, and on whether or not you enable WebSphere Application
Server or J2EE security.

Type The type of this element is jsdlj:J2EEType. It can contain the following
elements:
v invoker
v jsm
v ejb
v credential

Attributes
No attributes are defined.

Pseudo Schema
<j2ee>?
xsd:anyAttribute##other>
<jsdlj:J2EEType
<j2ee>

invoker element

Definition
This element specifies whether indirect or direct invoker is to be used for

866 IBM Workload Scheduler: User’s Guide and Reference

the J2EE application. This element is required and can be specified once.
Selecting a direct invoker means that the IBM Workload Scheduler agent
immediately forwards the job to the WebSphere Application Server
instance components (EJB or JMS). Selecting an indirect invoker means that
the IBM Workload Scheduler agent leverages an existing WebSphere
scheduling infrastructure already configured on the target WebSphere
Application Server.

Type The type of this element is jsdlj:InvokerType.

Attributes
No attributes are defined.

Pseudo Schema
<invoker>?
xsd:anyAttribute##other>
<jsdlj:InvokerType
<invoker>

jms element

Definition
This element specifies the target Java Message System (JMS) queue and the
message to be sent. This element is optional and can be specified once. It is
mutually exclusive with the ejb element.

Type The type of this element is jsdlj:JMSActionType.

Attributes
No attributes are defined.

Pseudo Schema
<jms>?
xsd:anyAttribute##other>
<jsdlj:JMSActionType
<jms>

ejb element

Definition
This element specifies the characteristics of the JNDI home of the EJB to be
called. It is mutually exclusive with the jms element. The EJB must be
already installed in the target WAS and must implement the TaskHandler
interface.

Type The type of this element is jsdlj:EJBActionType. It can contain the following
elements:
v jndiHome
v credential

Attributes
No attributes are defined.

Pseudo Schema
<ejb>?
xsd:anyAttribute##other>
<jsdlj:EJBActionType
<ejb>

Appendix B. Job Submission Description Language schema reference 867

jndiHome element

Definition
This element specifies the home directory of the Java Naming and
Directory Interface (JNDI) application programming interface. This element
is required and can be specified once.

Type The type of this element is jsdl:StringVariableExpressionType.

Attributes
No attributes are defined.

Pseudo Schema
<jndiHome>?
xsd:anyAttribute##other>
<jsdl:StringVariableExpressionType
<jndiHome>

JMS action element

Definition
This element specifies the characteristics of the JMS action.

Type The type of this element is jsdlj:JMSActionType. It can contain the
following elements:
v connFactory
v destination
v message
v credential

Attributes
No attributes are defined.

Pseudo Schema
<jms>?
xsd:anyAttribute##other>
<jsdl:JMSActionType
<jms>

connFactory element

Definition
This element specifies an administered object that a client uses to create a
connection to the JMS provider. This element is required and can be
specified once.

Type The type of this element is jsdl:StringVariableExpressionType.

Attributes
No attributes are defined.

Pseudo Schema
<connFactory>
xsd:anyAttribute##other>
<jsdl:StringVariableExpressionType
<connFactory>

destination element

Definition
This element specifies an administered object that encapsulates the identity
of a message destination, which is where messages are delivered and
consumed. This element is required and can be specified once.

868 IBM Workload Scheduler: User’s Guide and Reference

Type The type of this element is jsdl:StringVariableExpressionType.

Attributes
No attributes are defined.

Pseudo Schema

message element

Definition
This element specifies an object that is sent from one application to
another. This element is required and can be specified once.

Type The type of this element is jsdl:StringVariableExpressionType.

Attributes
No attributes are defined.

Pseudo Schema
<message>
xsd:anyAttribute##other>
<jsdl:StringVariableExpressionType
<message>

credential element

Definition
This element specifies the credentials required for running the J2EE
application. Include this element when you want to specify a user name
under which the application runs on the target system that is different
from the user name under which the workload agent runs. This element is
optional and can be specified once.

Type The type of this element is jsdl:CredentialType. It can contain the following
elements:
v userName
v password
v JAASAuthenticationAlias

Attributes
No attributes are defined.

Pseudo Schema
<credential>?
xsd:anyAttribute##other>
<jsdl:CredentialType
<credential>

userName element

Definition
This element specifies the user name of a user defined on the target
system. The J2EE application runs using this user name. This element is
required if you use the credential element and can be specified once. To
specify the user name, you can use a variable expression that can contain
one or more variable references such as ${var}, optionally in association
with any character or with a simple string. If you choose an indirect
invoker, use this element to specify the user name required to connect to
the WebSphere Application Server scheduler.

Type The type of this element is jsdl:NotEmptyStringVariableExpressionType.

Appendix B. Job Submission Description Language schema reference 869

Attributes
No attributes are defined.

Pseudo Schema
<userName>
xsd:anyAttribute##other>
<jsdl:NotEmptyStringVariableExpressionType
<userName>

password element

Definition
This element specifies the password of the specified user name that is used
to run the J2EE application on the target system. This element is optional
and can be specified once. To specify the password, you can use a variable
expression that can contain one or more variable references, such as ${var},
any character, and any string. If you choose an indirect invoker, use this
element to specify the password required to connect to the WebSphere
Application Server scheduler.

Type The type of this element is jsdl:StringVariableExpressionType.

Attributes
No attributes are defined.

Pseudo Schema
<password>
xsd:anyAttribute##other>
<jsdl:StringVariableExpressionType
<password>

JAASAuthenticationAlias element

Definition
This element specifies the JAAS authentication alias. This element is
optional and can be specified once. It is required only when using an
indirect invoker. To specify the alias, you can use a variable expression that
can contain one or more variable references such as ${var}, optionally in
association with any character or with a simple string.

Type The type of this element is jsdl:StringVariableExpressionType.

Attributes
No attributes are defined.

Pseudo Schema
<JAASAuthenticationAlias>
xsd:anyAttribute##other>
<jsdl:NotEmptyStringVariableExpressionType
<JAASAuthenticationAlias>

Resources in the job definition
This topic provides an overview of how resources and their properties are used in
the job definition to identify possible targets, to reserve allocations of consumable
resources, and to optimize load balancing between available resources.

An understanding of physical and logical resources and their properties is the key
to creating a job definition that accurately targets suitable resources for running the
job, determines the resource allocation requirement, and contributes to balancing
the load between available resources. Each resource has one or more properties
associated with it. Properties can have the following characteristics:

870 IBM Workload Scheduler: User’s Guide and Reference

Is consumable
Properties of resources that are consumable have finite amount associated
with them which can be consumed by the jobs that are allocated to the
resource. For example, a computer system has a finite number of
processors.

Can be optimized
Some properties can be used to define optimization objectives, which
determine how load is to be balanced when jobs are allocated to a group of
resources. For example, you could choose to allocate a job to the matching
resource that has the lowest CPU usage.

Supports wildcards
Some properties can be specified in the job definition using wildcards. For
example, a requirement for a particular series of computer models could be
defined by specifying the model using wildcards.

Table 157 shows the different resource types that can be included in a job definition
and their available properties.

Table 157. Resource types and properties

Resource Type Available properties Is consumable Can be optimized Supports wildcards

ComputerSystem CPUUtilization No Yes No

HostName No No Yes

Manufacturer No No Yes

Model No No Yes

NumOfProcessors Yes Yes No

ProcessingSpeed No Yes No

ProcessorType No No No

LogicalResource DisplayName No No Yes

SubType No No Yes

Quantity Yes Yes No

OperatingSystem DisplayName No No Yes

FreePhysicalMemory No Yes No

FreeSwapSpace No Yes No

FreeVirtualMemory No Yes No

OperatingSystemType No No No

OperatingSystem
Version

No No No

TotalPhysicalMemory Yes Yes No

TotalSwapSpace Yes Yes No

TotalVirtualMemory Yes Yes No

FileSystem DisplayName No No Yes

FileSystemRoot No No Yes

FileSystemType No No No

FreeStorageCapacity No Yes No

TotalStorageCapacity Yes Yes No

Appendix B. Job Submission Description Language schema reference 871

Table 157. Resource types and properties (continued)

Resource Type Available properties Is consumable Can be optimized Supports wildcards

NetworkSystem NetworkAddress No No No

NetworkSystem
HostName

No No Yes

872 IBM Workload Scheduler: User’s Guide and Reference

Appendix C. Quick reference for commands

This appendix is divided into four sections:
v “Managing the plan”
v “Managing objects in the database” on page 874
v “Managing objects in the plan” on page 884
v “Utility commands” on page 889
v “Report commands” on page 892

Managing the plan
This section describes the operations you can perform against the plan using the
JnextPlan script and the planman command line:

Table 158. Commands used against the plan

Command or script syntax Action performed

JnextPlan [-from mm/dd/[yy]yy[hh[:]mm[tz | timezone
tzname]]]

{-to mm/dd/[yy]yy[hh[:]mm[tz | timezone tzname]] |

-for [h]hh[:]mm [-days n] | -days n}

Creates or extends the
production plan.

planman [connection_parameters] crt

[-from mm/dd/[yy]yy [hh[:]mm [tz | timezone tzname]]]

{-to mm/dd/[yy]yy[hh[:]mm[tz | timezone tzname]] |

-for [h]hh[:]mm [-days n] | -days n}

Creates an intermediate
production plan.

planman [connection_parameters] deploy [-scratch]
Deploys all rules that are
not in draft state.

planman [connection_parameters] ext

{-to mm/dd/[yy]yy[hh[:]mm[tz | timezone tzname]] |

-for [h]hh[:]mm [-days n] | -days n}

Creates an intermediate
plan for a plan extension.

planman [connection_parameters] showinfo
Retrieves the production
plan information.

planman [connection_parameters] crttrial file_name

[-from mm/dd/[yy]yy [hh[:]mm [tz | timezone tzname]]]

{-to mm/dd/[yy]yy[hh[:]mm[tz | timezone tzname]] |

-for [h]hh[:]mm [-days n] | -days n}

Creates a trial plan.

873

Table 158. Commands used against the plan (continued)

Command or script syntax Action performed

planman [connection_parameters] exttrial file_name

{-to mm/dd/[yy]yy[hh[:]mm[tz | timezone tzname]] |

-for [h]hh[:]mm [-days n] | -days n}

Creates a trial plan of a
production plan extension.

planman [connection_parameters] crtfc file_name

[-from mm/dd/[yy]yy [hhmm [tz | timezone tzname]]]

{-to mm/dd/[yy]yy[hh[:]mm[tz | timezone tzname]] |

-for [h]hh[:]mm [-days n] | -days n}

Creates a forecast plan.

planman [connection_parameters] unlock
Unlocks the production
plan.

ResetPlan [connection_parameters] [-scratch]
Resets the production plan.

planman reset -scratch Removes the preproduction
plan while maintaining the
Symphony file.

planman [connection_parameters] resync Replicates plan data from
the Symphony file to the
database.

planman [connection_parameters] checksync Monitors the progress and
outcome of the process of
replicating plan data in the
database.

where connection_parameters are the following:
[-file filename]
[-host hostname]
[-port port_name]
[-protocol protocol_name][-proxy proxy_name]
[-proxyport proxy_port_number]
[-password user_password]
[-timeout seconds]
[-username user_name]

For more information, see “Creating and extending the production plan” on page
85.

Managing objects in the database
The section is divided into the following subsections:
v “General purpose commands”
v “Scheduling objects” on page 875
v “Composer commands” on page 880

General purpose commands
This section describes the names, the syntax of general purpose commands that are
run from the composer program, and the user authorization, when needed, that is
necessary to run them.

874 IBM Workload Scheduler: User’s Guide and Reference

Table 159. General purpose commands

Command Syntax User
Authorization

continue continue&command argument&command argument Authorization for
using composer

edit edit filename Authorization for
using composer

exit exit Authorization for
using composer

help help commandname Authorization for
using composer

redo redo directives Authorization for
using composer

validate validate filename [;syntax] Authorization for
using composer

version version Authorization for
using composer

Scheduling objects
This section contains all scheduling objects definition syntax.

In the table displaying the list of commands that can be used against the
scheduling object, filename indicates an existing file when used in the syntax for the
add and replace commands, it indicates a not existing file when used in the syntax
for the create/extract command.

Calendar
File definition syntax:

$calendar
calendarname [“description”]

date [...]

Domain
File definition syntax:

domain domainname[description “description”]
* manager workstation
[parent domainname | ismaster]

end

Event rule
XML definition syntax:

v eventRule name=" " ruleType=" " isDraft=" " (1, 1)
– description (0, 1)
– timeZone (0, 1)
– validity from=" " to=" " (0, 1)
– activeTime start=" " end=" " (0, 1)
– timeInterval amount=" " unit=" " (0, 1)
– eventCondition eventProvider=" " eventType=" " (1, n)

- scope (0, 1)
- filteringPredicate (0, 1)

Appendix C. Quick reference for commands 875

/

/

/
/
/
/

/

/

/
/
/

/

/

/
/
/
/

/

/
/
/
/
/
/
/
/
/
/

v attributeFilter name=" " operator="eq" (0, n)
– value (1, n)

v attributeFilter name=" " operator="ne" (0, n)
– value (1, n)

v attributeFilter name=" " operator="le" (0, n)
– value (1, 1)

v attributeFilter name=" " operator="ge" (0, n)
– value (1, 1)

v attributeFilter name=" " operator="range" (0, 1)
– value (1, 2)

– correlationAttributes (0, 1)
- attribute name=" " (1, n)

– action actionProvider=" " actionType=" " responseType=" " (0, n)
- description (0, 1)
- scope (0, 1)
- parameter name=" "(1, n)
- value (1, 1)

Job
File definition syntax:

$jobs
[workstation#]jobname

{scriptname filename streamlogon username |
docommand "command" streamlogon username |
task job_definition }

[description "description"]
[tasktype tasktype]
[interactive]

[succoutputcond Condition_Name "Condition_Value"]
[outputcond Condition_Name "Condition_Value"]

[recovery
{stop
[after [workstation#]jobname]
[abendprompt "text"]]

|continue
[after [workstation#]jobname]
[abendprompt "text"]] |rerun [same_workstation]

[[repeatevery hhmm] [for number attempts]]
[after [workstation#]jobname]
|[after [workstation#]jobname]
[abendprompt "text"]}

Note:

1. This keyword is available on Windows platforms only.

Job stream
File definition syntax:

schedule [workstation#][folder/]jobstreamname
comment
[validfrom date]
[timezone|tz tzname]
[description ”text”]
[draft]

876 IBM Workload Scheduler: User’s Guide and Reference

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

/

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
=
=
/
/
/

/

/

/
/

/
/
/
/
/
/

[vartable table_name]
[freedays calendarname [-sa] [-su]]
[on [runcycle name

[validfrom date] [validto date]
[description ”text”]
[vartable table_name]]

{date|day|calendar|request|”icalendar”|runcyclegroup} [,...]
[fdignore|fdnext|fdprev]
[({at time [+n day[s]] |
schedtime time [+n day[s]]}
[until | jsuntil time [+n day[s]] [onuntil action]]
[every rate {everyendtime time[+n day[s]]}
[deadline time [+n day[s]]])]]

[,...]]
startcond filecreated | filemodified workstation_name#file_name user username
interval
seconds [(alias startcond_jobname rerun batch outfile outputfilename

params "filemonitor additional parameters")] |
startcond job workstation_name#job_name outcond joboutputcondition interval
seconds [(alias startcond_jobname rerun)]
:

[except [runcycle name]
[validfrom date] [validto date]
[description ”text”]
{date|day|calendar|request|”icalendar”|runcyclegroup} [,...]
[fdignore|fdnext|fdprev]
[{(at time [+n day[s]])] |
(schedtime time [+n day[s]])}]

[,...]
[{at time [timezone|tz tzname] [+n day[s]] |
schedtime time [timezone|tz tzname] [+n day[s]]}]
[until | jsuntil time [timezone|tz tzname] [+n day[s]] [onuntil action]]
[deadline time [timezone|tz tzname] [+n day[s]]]
[carryforward]
[matching {previous|sameday|relative from [+ | -] time to [+ | -] time|

from time [+ | -n day[s]] to time [+ n day[s]] [,...]}]
[follows {[netagent::][workstation#][folder/]jobstreamname[.jobname |

@] [previous|
sameday|relative from [+|-] time to [+|-] time|
from time [+|-n day[s]] to time [+|-n day[s]]

][if <condition> [| <condition>...]]
}] [,...]] [...]

[join condition_name [number | numconditions | all] of
description "..."]
.....
endjoin

[keysched]
[limit joblimit]
[needs { [n] [workstation#]resourcename } [,...]] [...]
[opens { [workstation#]"filename" [(qualifier)] [,...] }] [...]
[priority number | hi | go]
[prompt {promptname|"[:|!]text"} [,...]] [...]
[onoverlap {parallel|enqueue|donotstart}]

:
job-statement

comment

Appendix C. Quick reference for commands 877

/
/
/
/
/
/
/
/
/
/
=
|
/
/
/
/
/
/
=
=
/
/
/
/
/
/
/
/
/
/
/
=
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
|
/
/
/

job_name [job_alias]
[outcond joboutputcondition interval seconds]

[{at time [timezone|tz tzname] [+n day[s]] |
schedtime time [timezone|tz tzname] [+n day[s]]}][,...]
[until time [timezone|tz tzname] [+n day[s]] [onuntil action]
[deadline time [timezone|tz tzname] [+n day[s]] [onlate action]]
[maxdur time | percentage % onmaxdur action]
[mindur time | percentage % onmindur action]
[every rate]
[follows {[netagent::][workstation#]jobstreamname{.jobname @} [previous|

sameday|relative from [+|-] time to [+|-] time |
from time [+|-n day[s]] to time [+|-n day[s]]
]}][if <condition> [| <condition>...]] [,...]] [...]

[join condition_name [number | numconditions | all] of
description "..."]
.....

endjoin
[confirmed]

[critical]
[keyjob]
[needs { [n] [workstation#]resourcename } [,...]] [...]
[opens { [workstation#]"filename" [(qualifier)] [,...] }] [...]
[priority number | hi | go]
[prompt {promptname|"[:|!]text"} [,...]] [...]
[nop]
[statistictype custom]

[job-statement...]
end

Parameter
File definition syntax:

$parm
[tablename.]variablename “variablevalue”

Prompt
File definition syntax:

$prompt
promptname “[: | !]text”

Resource
File definition syntax:

$resource
workstation#resourcename units [“description”]

Run cycle group
File definition syntax:

$runcyclegroup
runcyclegroupname [“description”]

vartable tablename
[freedays calendarname [-sa] [-su]]

878 IBM Workload Scheduler: User’s Guide and Reference

/
/
/
/
/
=
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
|
|
/
/
/

/

/

/
/

/

/

/
/

/

/

/
/

/

/

/
/
/
/

[on [runcycle name
[validfrom date] [validto date]
[description ”text”]
[vartable table_name]]

{date|day|calendar|request|”icalendar”} [,...]
[fdignore|fdnext|fdprev][subset subsetname AND|OR]
[({at time [+n day[s]] |
schedtime time [+n day[s]]}
[until | jsuntil time [timezone|tz tzname][+n day[s]]

[onuntilaction]]
[every rate {everyendtime time[+n day[s]]}
[deadline time [+n day[s]]])]]

[,...]]
[except [runcycle name]

[validfrom date] [validto date]
[description ”text”]
{date|day|calendar|request|”icalendar”} [,...]
[fdignore|fdnext|fdprev][subset subsetname AND|OR]
[{(at time [+n day[s]])] |
(schedtime time [+n day[s]])}]

[,...]
[{at time [timezone|tz tzname] [+n day[s]] |
schedtime time [timezone|tz tzname] [+n day[s]]}]

[until | jsuntil time [timezone|tz tzname][+n day[s]] [onuntilaction]]
[every rate {everyendtime time[+n day[s]]}]
[deadline time [timezone|tz tzname] [+n day[s]]]

end

Variable table
File definition syntax:

vartable tablename
[description “description”]
[isdefault]
members
[variablename “variablevalue”]
...
[variablename “variablevalue”]
end

For more information, see Chapter 6, “Customizing your workload using variable
tables,” on page 119.

Workstation
File definition syntax:

cpuname workstation [description "description"]
[vartable table_name]
os os-type
[node hostname] [tcpaddr port]
[secureaddr port] [timezone|tz tzname]
[domain domainname]
[for maestro [host host-workstation [access method]]

[type fta | s-agent | x-agent | manager | broker | agent |
pool | d-pool | rem-engine]

[ignore]

Appendix C. Quick reference for commands 879

/
/
/
/
/
/
/
/
=
/
|
/
/
/
/
/
/
/
/
/
/
/
/
=
|
/
/

/

/
/
/
/
/
/
/
/
/

/
/

/

/

/
/
/
/
/
/
/
/
/
/

[autolink on | off]
[behindfirewall on | off]
[securitylevel enabled | on | force]
[fullstatus on | off]
[server serverid]]
[protocol http | htpps]
[members [workstation] [...]]

[requirements jsdl_definition]]
end

cpuname workstation [description description]
[vartable table_name]
os os-type
node hostname [tcpaddr port]
[secureaddr port] [timezone|tz tzname]
[domain domainname]
[for maestro [host host-workstation [access method]]

[type fta | s-agent | x-agent | manager]
[ignore]
[autolink on | off]
[behindfirewall on | off]
[securitylevel enabled | on | force]
[fullstatus on | off]
[server serverid]]

end

Workstation class
File definition syntax:

cpuclass workstationclass [description "description"]
[ignore]

members [workstation | @] [...]
end

User definition
File definition syntax:

username[workstation#][domain\]username
password “password”end

Composer commands
This section describes the operations you can perform in the database using the
composer command line interface program with syntax:
composer [connection_parameters] [-defaultws twscpu]

["command[&[command]][...]"]

where connection_parameters, if they are not supplied in the localopts or useropts
files, are the following:
[-file filename]|
[-host hostname]
[-port port_name]
[-protocol protocol_name]
[-proxy proxy_name]

880 IBM Workload Scheduler: User’s Guide and Reference

/
/
/
/
/
/
/
/
/

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

/

/

/
/
/
/

/

/

/
/

/

/
/

/
/

/
/

/
/
/
/
/

[-proxyport proxy_port_number]
[-password user_password]
[-timeout seconds]
[-username user_name]

See “Setting up options for using the user interfaces” on page 60 for more details.

These operations can only be run from any composer client command line
installed.

In Table 160 displaying the list of commands that can be used against the
scheduling object, filename indicates an existing file when used in the syntax for the
add and replace commands, it indicates a not existing file when used in the syntax
for the create/extract command.

Table 160. Composer commands

Command Syntax
User
Authorization

add {add | a} filename [;unlock] add or modify

authenticate {authenticate | au} [username=username password=password]

continue {continue | co}

create extract {create | cr | extract | ext} filename from
{[calendars | calendar | cal=calname] |
[eventrule | erule | er=eventrulename] |
[parms | parm | vb=[tablename.]variablename] |
[vartable | vt=tablename] |
[prompts | prom=promptname] |
[resources | resource | res=[workstationame#]resourcename] |
[runcyclegroup | rcg=runcyclegroupname] |
[cpu={workstationame | workstationclassname | domainame}] |
[workstation | ws=workstationame] |
[workstationclass | wscl=workstationclassname] |
[domain | dom=domainame] |
[jobs | jobdefinition | jd=[workstationame#]jobname] |
[sched | jobstream | js= [workstationame#]jstreamname

[valid from date|valid to date |valid in date date]
[;full]] |

[users | user=[workstationame#]username [;password]] |
[accesscontrollist | acl for securitydomainname] |
[securitydomain | sdom=securitydomainname] |
[securityrole | srol=securityrolename]}
[;lock]

display

delete {delete | de}
{[calendars | calendar | cal=calname] |
[domain | dom=domainame] |
[eventrule | erule | er=eventrulename] |
[parms | parm | vb=[tablename.]variablename] |
[prompts | prom=promptname] |
[resources | resource | res=[workstationame#]resourcename] |
[runcyclegroup | rcg=runcyclegroupname] |
[vartable | vt=tablename] |
[wat=workloadapplicationtemplatename]
[cpu={workstationame [;force] | workstationclassname [;force]| domainame}]
[workstation | ws=workstationame] [;force] |
[workstationclass | wscl=workstationclassname] [;force] |
[jobs | jobdefinition | jd=[workstationame#]jobname] |
[sched | jobstream | js= [workstationame#]jstreamname
[valid from date|valid to date |valid in date date]] |
[users | user=[workstationame#]username] |
[accesscontrollist | acl for securitydomainname] |
[securitydomain | sdom=securitydomainname] |
[securityrole | srol=securityrolename]}
[;noask]

delete

Appendix C. Quick reference for commands 881

/
/
/
/

/

/
/

/
/
/
/

//

//
/
/
///
///
///
//
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

/

//
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

/

Table 160. Composer commands (continued)

Command Syntax
User
Authorization

display {display | di}
{[calendars | calendar | cal=calname] |
[eventrule | erule | er=eventrulename] |
[parms | parm | vb=variablename.]variablename] |
[vartable | vt=tablename] |
[prompts | prom=promptname] |
[resources | resource | res=[workstationame#]resourcename] |
[runcyclegroup | rcg=runcyclegroupname] |
[cpu={workstationame | workstationclassname | domainame}]
[wat=workloadapplicationtemplatename]
[workstation | ws=workstationame] |
[workstationclass | wscl=workstationclassname] |
[domain | dom=domainame] |
[jobs | jobdefinition | jd=[workstationame#]jobname] |
[sched | jobstream | js= [workstationame#]jstreamname

[valid from date|valid to date |valid in date date]
[;full]] |

[users | user=[workstationame#]username] |
[accesscontrollist | acl for securitydomainname] |
[securitydomain | sdom=securitydomainname] |
[securityrole | srol=securityrolename]}
[;offline]

display

edit {edit | ed} filename

exit {exit | e}

list print {list | l}
{[calendars | calendar | cal=calname] |
[eventrule | erule | er=eventrulename] |
[parms | parm | vb=[tablename.]variablename] |
[vartable | vt=tablename] |
[prompts | prom=promptname] |
[resources | resource | res=[workstationame#]resourcename] |
[runcyclegroup | rcg=runcyclegroupname] |
[cpu={workstationame | workstationclassname | domainame}]
[wat=workloadapplicationtemplatename]
[workstation | ws=workstationame] |
[workstationclass | wscl=workstationclassname] |
[domain | dom=domainame] |
[jobs | jobdefinition | jd=[workstationame#]jobname] |
[sched |jobstream | js= [workstationame#]jstreamname

[valid from date|
valid to date |valid in date date] |

[users | user=[workstationame#]username] |
[accesscontrollist | acl for securitydomainname] |
[securitydomain | sdom=securitydomainname] |
[securityrole | srol=securityrolename]}
[;offline]

display

lock {lock | lo}
{[calendars | calendar | cal=calname] |
[eventrule | erule | er=eventrulename] |
[parms | parm | vb=[tablename.]variablename] |
[vartable | vt=tablename] |
[prompts | prom=promptname] |
[resources | resource | res=[workstationame#]resourcename] |
[runcyclegroup | rcg=runcyclegroupname] |
[cpu={workstationame | workstationclassname | domainame}]
[workstation | ws=workstationame] |
[workstationclass | wscl=workstationclassname] |
[domain | dom=domainame] |
[jobs | jobdefinition | jd=[workstationame#]jobname] |
[sched|jobstream|js= [workstationame#]jstreamname

[valid from date|valid to date |valid in date date]] |
[users | user=[workstationame#]username] |
[accesscontrollist | acl for securitydomainname] |
[securitydomain | sdom=securitydomainname] |
[securityrole | srol=securityrolename]}

modify

882 IBM Workload Scheduler: User’s Guide and Reference

/

//
/
/
//
/
/
/
/
/
/
/
/
|

Table 160. Composer commands (continued)

Command Syntax
User
Authorization

modify {modify | m}
{[calendars | calendar | cal=calname] |
[eventrule | erule | er=eventrulename] |
[parms | parm | vb=[tablename.]variablename] |
[vartable | vt=tablename] |
[prompts | prom=promptname] |
[resources | resource | res=[workstationame#]resourcename] |
[runcyclegroup | rcg=runcyclegroupname] |
[cpu={workstationame | workstationclassname | domainame}]
[wat=workloadapplicationtemplatename]
[workstation | ws=workstationame] |
[workstationclass | wscl=workstationclassname] |
[domain | dom=domainame] |
[jobs | jobdefinition | jd=[workstationame#]jobname] |
[sched|jobstream|js= [workstationame#]jstreamname

[valid from date|valid to date |valid in date date]
[;full]] |

[users | user=[workstationame#]username] |
[accesscontrollist | acl for securitydomainname] |
[securitydomain | sdom=securitydomainname] |
[securityrole | srol=securityrolename]}

modify or add

new new
[calendar |
domain |
eventrule |
job |
jobstream |
parameter |
prompt |
resource |
runcyclegroup |
user |
vartable |
wat |
workstation |
workstationclass |
accesscontrollist |
securitydomain |
securityrole]

add or modify

rename {rename | rn}
{calendars|calendar|cal |
parms|parm|vb |

vartable|vt |
prompts|prom |
resorces|resource|res |
runcyclegroup|rcg |
workstation|ws |
workstationclass|wscl |
domain|dom |
jobs|jobdefinition|jd |
jobsched|jb |
eventrule|erule|er
sched|jobstream|js |
users|user }
old_object_identifier new_object_identifier

add and delete

replace {replace | rep} filename [;unlock] modify or add

Appendix C. Quick reference for commands 883

|

|

Table 160. Composer commands (continued)

Command Syntax
User
Authorization

unlock {unlock | u}
{[calendars | calendar | cal=calname] |
[eventrule | erule | er=eventrulename] |
[parms | parm | vb=[tablename.]variablename] |
[vartable | vt=tablename] |
[prompts | prom=promptname] |
[resources | resource | res=[workstationame#]resourcename] |
[runcyclegroup | rcg=runcyclegroupname] |
[cpu={workstationame | workstationclassname | domainame}]
[workstation | ws=workstationame] |
[workstationclass | wscl=workstationclassname] |
[domain | dom=domainame] |
[jobs | jobdefinition | jd=[workstationame#]jobname] |
[sched|jobstream|js= [workstationame#]jstreamname

[valid from date|valid to date |valid in date date]] |
[users | user=[workstationame#]username] |
[accesscontrollist | acl for securitydomainname] |
[securitydomain | sdom=securitydomainname] |
[securityrole | srol=securityrolename]}
[;forced]

modify and unlock

validate {validate | val} filename [;syntax]

Managing objects in the plan
This section describes the operations you can perform against the plan using the
conman command line interface program with syntax:
conman ["command[&[command]...] [&]"]

Conman commands
This section lists the commands you can run from the conman program.

This is how you access to the conman command line:
conman [connection_parameters] ["command[&[command]...] [&]"]

where connection_parameters, if they are not supplied in the localopts or useropts
files, are the following:
[-file filename]
[-host hostname]
[-port port_name]
[-protocol protocol_name]
[-proxy proxy_name]
[-proxyport proxy_port_number]
[-password user_password]
[-timeout seconds]
[-username user_name]

For more details, see “Setting up options for using the user interfaces” on page 60.

This is how you select jobs in commands:
[workstation#]
{jobstreamname(hhmm[date]) job|jobnumber}
[{+|~}jobqualifier[...]]

or:
[workstation#]
jobstream_id.
job
[{+|~]jobqualifier[...]]
;schedid

884 IBM Workload Scheduler: User’s Guide and Reference

This is how you select job streams in commands:
[workstation#]
jobstreamname(hhmm[date])
[{+|~}jobstreamqualifier[...]]

or:
[workstation#]
jobstream_id
;schedid

You can run these commands from different types of workstations. In this table:

F stands for domain managers and fault-tolerant agents.

S stands for standard agents.

For each command you find the name, the syntax, the type of workstations from
where you can issue the command, and the needed authorization, if any.

Table 161. Commands that can be run from conman

Command Syntax Workstation
types

User Authorization

adddep job {adddep job | adj} jobselect
;dependency[;...]
[;noask]

F adddep - (use when
using prompts and
needs)

adddep sched {adddep sched | ads} jstreamselect
;dependency[;...]
[;noask]

F adddep - (use when
using prompts and
needs)

altpass altpass
[workstation#]
username
[;"password"]

F altpass

altpri {altpri | ap} jobselect | jstreamselect
[;pri]
[;noask]

F altpri

bulk_discovery {bulk_discovery | bulk} F display

cancel job {cancel job | cj} jobselect
[;pend]
[;noask]

F cancel

cancel sched {cancel sched | cs} jstreamselect
[;pend]
[;noask]

F cancel

checkhealthstatus {checkhealthstatus | chs} [workstation] M,F,S

confirm {confirm | conf} jobselect
;{succ | abend}
[;IF 'output_condition_name[, output_condition_name]

[, ...]'] [;noask]

F confirm

console {console | cons}
[sess | sys]
[;level=msglevel]

F-S console

continue {continue | cont} F-S

deldep job {deldep job | ddj} jobselect
;dependency[;...]
[;noask]

F deldep

Appendix C. Quick reference for commands 885

Table 161. Commands that can be run from conman (continued)

Command Syntax Workstation
types

User Authorization

deldep sched {deldep sched | dds} jstreamselect
;dependency[;...]
[;noask]

F deldep

deployconf {deployconf | deploy} [domain!]workstation F,S Permission to start
actions on cpu
objects

display {display file | df} filename [;offline]

{display job | dj} jobselect [;offline]

{display sched | ds} jstreamselect
[valid {at date | in date date}
[;offline]

F-S1 display

exit {exit | e} F-S

fence {fence | f} workstation
;pri
[;noask]

F fence

help (UNIX only) {help | h} {command|keyword} F-S

kill {kill | k} jobselect
[;noask]

F kill

limit cpu {limit cpu | lc } workstation
;limit
[;noask]

F limit

limit sched {limit sched | ls } jstreamselect
;limit
[;noask]

F limit

link {link | lk} [domain!]workstation
[;noask]

F-S link

listsym {listsym | lis} [trial | forecast]
[;offline]

F

recall {recall | rc} [workstation]
[;offline]

F display

redo {redo | red} F-S

release job {release job | rj} jobselect
[;dependency[;...]]
[;noask]

F release

release sched {release sched | rs} jstreamselect
[;dependency[;...]]
[;noask]

F release

reply {reply | rep}
{ promptname | [workstation#]msgnum}
;reply
[;noask]

F reply

886 IBM Workload Scheduler: User’s Guide and Reference

Table 161. Commands that can be run from conman (continued)

Command Syntax Workstation
types

User Authorization

rerun {rerun | rr} jobselect
[;from=[wkstat#]job
[;at=time]
[;pri=pri]]
[;sameworkstation=]
[;step=step]
[;streamlogon|logon=new_logon]
[;docommand="new_command"|;script="new_script"]
[;noask]

F rerun

resource {resource | reso} [workstation#]
resource;num
[;noask]

F resource

setsym {setsym | set} [trial | forecast] [filenum] F

showcpus {showcpus | sc} [[domain!]workstation]
[;info|;link]
[;offline]

F-S list2

showdomain {showdomain | showdom | sd} [domain]
[;info]
[;offline]

F-S list2

showfiles {showfiles | sf} [[workstation#]file]
[;state[;...]]
[;keys]
[;offline]

{showfiles | sf} [[workstation#]file]
[;state[;...]]
[;deps[;keys | info | logon]]
[;offline]

F

showjobs {showjobs | sj} [jobselect]
[;deps[;keys | info | logon]]
[;short | single]
[;offline]
[;showid]
[;props]

{showjobs | sj} [jobselect |
[workstation#]jobnumber.hhmm]

[;stdlist[;keys]]
[;short | single]
[;offline]
[;showid]
[;props]

F list2

showprompts {showprompts | sp} [promptselect]
[;keys]
[;offline]

{showprompts | sp} [promptselect]
[;deps[;keys | info | logon]][;offline]

F list2

showresources {showresources | sr} [[workstation#]resourcename]
[;keys]
[;offline]

{showresources | sr} [[workstation#]resourcename]
[;deps[;keys | info | logon]]
[;offline]

F list2

Appendix C. Quick reference for commands 887

*
*
*
*
*
*
*
*
*

Table 161. Commands that can be run from conman (continued)

Command Syntax Workstation
types

User Authorization

showschedules {showscheds | ss} [jstreamselect]
[;keys]
[;offline]
[;showid]

{showscheds | ss} [jstreamselect]
[;deps[;keys | info | logon]]
[;offline]
[;showid]

F list2

shutdown {shutdown | shut} [;wait] F-S shutdown

start start [domain!]workstation
[;mgr]
[;noask]
[;demgr]

F-S start

startappserver startappserver [domain!]workstation
[;wait]

F-S Permission to start
actions on cpu
objects

startevtp {starteventprocessor | startevtp} [domain!]workstation M4 Permission to start
actions on cpu
objects

startmon {startmon | startm} [domain!]workstation
[;noask]

F-S Permission to start
actions on cpu
objects

status {status | stat} F-S appserver

stop stop [domain!]workstation
[;wait]
[;noask]

F-S stop

stop ;progressive stop ;progressive stop

stopappserver {stopappserver | stopapps} [domain!]workstation
[;wait]

F-S Permission to stop
actions on cpu
objects

stopevtp {stopeventprocessor | stopevtp} [domain!][workstation] M4 Permission to stop
actions on cpu
objects

stopmon {stopmon | stopm} [domain!]workstation
[;wait]
[;noask]

F-S Permission to stop
actions on cpu
objects

submit
docommand

{submit docommand | sbd} [workstation#]"cmd"
[;alias[=name]]
[;into=[workstation#]
{jobstream_id;schedid |jobstreamname ([hhmm[date]])}]
[;joboption[;...]]

F-S submit - (use when
using prompts and
needs)

submit file {submit file | sbf} "filename"
[;alias[=name]]
[;into=[workstation#]{jobstream_id

;schedid |jobstreamname([hhmm[date]])}]
[;joboption[;...]]
[;noask]

F-S submit - (use when
using prompts and
needs)

888 IBM Workload Scheduler: User’s Guide and Reference

Table 161. Commands that can be run from conman (continued)

Command Syntax Workstation
types

User Authorization

submit job {submit job | sbj} [workstation#]jobname
[;alias[=name]]
[;into=[workstation#]{jobstream_id

;schedid | jobstreamname([hhmm[date]])}]
[;joboption[;...]]
[;vartable=tablename]
[;noask]

F-S3 submit - (use when
using prompts and
needs)

submit sched {submit sched | sbs} [workstation#]jstreamname
[;alias[=name]]
[;jstreamoption[;...]]
[;vartable=tablename]
[;noask]

F-S3 submit - (use when
using prompts and
needs)

switchevtp {switcheventprocessor | switchevtp} workstation M4 Permission to start
and stop actions on
cpu objects

switchmgr {switchmgr | switchm} domain;newmgr F start stop

system [: | !] system-command F-S

tellop {tellop | to} [text] F-S

unlink unlink [domain!]workstation
[;noask]

F-S unlink

version {version | v} F-S

where:

(1) Indicates that you can only display files on a standard agent.

(2) You must have list access to the object being shown if the enListSecChk
option was set to yes on the master domain manager when the production
plan was created or extended.

(3) Indicates that you can use submit job (sbj) and submit sched (sbs) on a
standard agent by using the connection parameters or specifying the
settings in the useropts file when invoking the conman command line.

(4) You can use this command on master domain managers and backup
masters as well as on workstations installed as backup masters but used as
ordinary fault-tolerant agents.

Utility commands
This section contains the list of the utility commands that you can run from the
operating system command prompt. The utility commands are divided into three
groups, those you can run on both UNIX and Windows operating systems, those
you can run only on UNIX, and those you can run only on Windows.

Utility commands available for both UNIX and Windows operating systems

Table 162. Utility commands available for both UNIX and Windows

Command Syntax

cpuinfo
cpuinfo -V | -U

cpuinfo workstation [infotype] [...]

Appendix C. Quick reference for commands 889

Table 162. Utility commands available for both UNIX and Windows (continued)

Command Syntax

datecalc
datecalc -V | -U

datecalc base-date [offset] [pic format][freedays Calendar_Name [-sa]
[-su]]

datecalc -t time [base-date] [offset] [pic format]

datecalc yyyymmddhhtt [offset] [pic format]

delete
delete -V | -U

delete filename

evtdef
evtdef -U | -V

evtdef [connection parameters] dumpdef file-path

evtdef [connection parameters] loaddef file-path

evtsize
evtsize -V | -U

evtsize filename size

evtsize -compact filename [size]

evtsize -info filename

evtsize -show filename

evtsize -info | -show pobox

filemonitor filemonitor -V | -U

filemonitor -path path_to_monitor
-event event_to_monitor
{fileCreated | fileModified [-modificationCompletedTime seconds]}
[-repositoryName repository_name]
[-repositoryPath repository_path]
[-recursive] [-outputFile output_filename]
[-scanInterval scan_interval]
[-maxEventsThreshold max_events]
[-minFileSize min_file_size]
[-timeout seconds

filemonitor -reset

jobinfo
jobinfo -V | -U

jobinfo job-option [...]

jobstdl
jobstdl -V | -U

jobstdl [-day num] [{-first | -last | -num n | -all}] [-twslog]
[{-name ["jobstreamname [(hhmm date),(jobstream_id)].]jobname"|jobnum
| -schedid jobstream_id.jobname}]

maestro
maestro [-V | -U]

890 IBM Workload Scheduler: User’s Guide and Reference

Table 162. Utility commands available for both UNIX and Windows (continued)

Command Syntax

makecal
makecal [-c name] -d n | -e | {-f 1 | 2 | 3 -s date} | -l | -m | -p n |

{-r n -s date} | -w n [-i n] [-x | -z][-freedays Calendar_Name [-sa] [-su]]

morestdl
morestdl -V | -U

morestdl [-day num] [-first | -last | -num n | -all] [-twslog]
[{-name ["jobstreamname [(hhmm date),(jobstream_id)].]jobname"|jobnum
| -schedid jobstream_id.jobname}]

param param -u | -V

param {-c | -ec} [file.section.|file.|section.] variable [value]
param [file.section.|file.|section.] variable
param {-d | -fd} [file.section.|file.|section.] variable

parms
parms {[-V | -U] | -build}

parms {-replace | -extract} filename
parms [-d]parameternameparms -c parametername value

release
release -V | -U

release [-s] [workstation#]resourcename [count]

rmstdlist
rmstdlist -V | -U

rmstdlist [-p] [age]

sendevent
sendevent -V | ? | -help | -U | -usage

sendevent [-hostname hostname]
[{-port | -sslport} port]
eventType
source
[[attribute=value]...]

In dynamic environments:

sendevent [-hostname hostname]
[-port port]
eventType
source
[[attribute=value]...]

showexec showexec [-V | -U | INFO]

ShutDownLwa ShutDownLwa

StartUp
StartUp [-V | -U]

StartUpLwa StartUpLwa

tws_inst_pull_info tws_inst_pull_info -twsuser userid -log_dir_base path [-u |
[-run_db2_module [y|n] | -extract_db_defs [y|n] | -date yyyymmdd]

Utility commands available for UNIX operating system only

Appendix C. Quick reference for commands 891

Table 163. Utility commands available for UNIX only

Command Syntax

at
at -V | -U

at -sjstream | -qqueuetime-spec

batch
batch -V | -U

batch [-s jstream]

showexec
showexec [-V | -U | -info]

version
version -V | -U | -h

version [-a] [-f vfile] [file [...]]

Utility commands available for Windows operating system only

Table 164. Utility commands available for Windows only

Command Syntax

listproc

(UNSUPPORTED)

listproc

killproc

(UNSUPPORTED)

killproc pid

shutdown shutdown [-V | -U] [-appsrv]

Report commands
This section contains a list and syntax of report commands and report extract
programs. These commands are run from the operating system command prompt.

Report commands

Table 165. Report commands

Name Output produced Syntax

rep1
Reports 01 - Job Details
Listing

rep[x] [-V|-U]

rep2
Report 02 - Prompt
Listing

rep[x] [-V|-U]

rep3
Report 03 - Calendar
Listing

rep[x] [-V|-U]

rep4a
Report 04A - Parameter
Listing

rep[x] [-V|-U]

rep4b
Report 04B - Resource
Listing

rep[x] [-V|-U]

892 IBM Workload Scheduler: User’s Guide and Reference

Table 165. Report commands (continued)

Name Output produced Syntax

rep7
Report 07 - Job History
Listing

rep7 -V|-U

rep7 [-c wkstat] [-s jstream_name] [-j job] [-f date -t date]
[-l]

rep8
Report 08 - Job
Histogram

rep8 -V|-U

rep8 [-f date -b time -t date -e time] [-i file] [-p]

rep8 [-b time -e time] [-i file] [-p]

rep11
Report 11 - Planned
Production Schedule

rep11 -V|-U

rep11 [-m mm[yy] [...]] [-c wkstat [...]] [-s jstream_name] [-o
output]

reptr
Report 09A - Planned
Production Summary

Report 09B - Planned
Production Detail

Report 10A - Actual
Production Summary

Report 10B - Actual
Production Detail

reptr [-V|-U]

reptr -pre [-{summary | detail}] [symfile]

reptr -post [-{summary | detail}] [logfile]

xref
Report 12 - Cross
Reference Report

xref [-V|-U]

xref [-cpu wkstat] [-s jstream_name] [-depends|-files|-
jobs|-prompts|-resource|-schedules|-when [...]]

Report extract programs

Table 166. Report extract programs

Extract
Program

Used to
generate

Syntax

jbxtract
Report 01

Report 07

jbxtract [-V | -U] [-j job] [-c wkstat] [-o output]

prxtract Report 02
prxtract [-V | -U] [-o output]

prxtract [-V | -U] [-m mm[yyyy]] [-c wkstat] [-o output]

caxtract Report 03
caxtract [-V | -U] [-o output]

paxtract Report
04A paxtract [-V | -U] [-o output]

rextract Report 04B
rextract [-V | -U] [-o output]

r11xtr Report 11
r11xtr [-V | -U] [-m mm[yyyy]] [-c wkstat] [-o output] [-s
jstream_name]

Appendix C. Quick reference for commands 893

Table 166. Report extract programs (continued)

Extract
Program

Used to
generate

Syntax

xrxtrct Report 12
xrxtrct [-V | -U]

894 IBM Workload Scheduler: User’s Guide and Reference

Appendix D. Defining and managing generic branch jobs

IBM Workload Scheduler provides you with a broad range of scheduling functions.
You can extend these functions for specific needs by using an additional
custom-made solution, named generic branch job.

For information about how to use this solution, see the following sections:
v “Introduction”
v “Sample scenarios” on page 900
v “Working with the branch job” on page 937
v “Specifying the branch job parameters” on page 941
v “Important notes about the branch job” on page 952

Note: The generic branch job is not a native part of IBM Workload Scheduler but
is supported by IBM Software Support. It is provided with messages only in
English and has specific naming convention rules (for detailed information, see
“Placing the branch job into the job stream” on page 940.

You are strongly recommended to use the branch job in your testing environment
first. The same recommendation is valid also for the sample scenarios. Only after
you produce an error-free run of the branch job or sample scenario should you
move to the production environment.

Alternatively, if you have the necessity to define alternative flows based on
different outcomes of a predecessor job or job stream, you can take advantage of
conditional dependencies. For more information see Chapter 22, “Applying
conditional branching logic,” on page 769.

Introduction
Define a generic branch job to evaluate a particular job status or output and, based
on the specified conditions, decide which jobs to run within the job stream.

IBM Workload Scheduler offers reporting capabilities, event driven scheduling, and
many other features. However, some tasks can be performed only with additional
programming, such as the logical evaluation of a process flow within a job stream.

Use a generic branch job to evaluate a particular job status or output and decide
which jobs to run within a job stream. The conditions that determine which jobs
are run can be very simple (for example, the predecessor ended with the SUCC or
ABEND state) or result from a complex Boolean or arithmetical operation.

Figure 50 on page 896 shows the essential concepts of a generic branch job.

895

The generic branch job function is not included in IBM Workload Scheduler, but
was developed by IBM specialists during various customer IBM Workload
Scheduler implementations. The generic branch job uses the open interface of IBM
Workload Scheduler.

You can implement simple branching, based on predecessor job status (SUCC or
ABEND), in a very short time. However, for more complex scenarios, for example
searching for a pattern and making numeric comparisons, you must specify some
input parameters.

Terminology

The following terms are used to describe branch jobs:

Parent (sometimes referred also to as evaluated job)
The job whose status or other properties you want to evaluate.

Condition
The condition that you are running against the parent job. The condition
can be as simple as look at parent status or more complex.

Good child
The closest successor to the branch job that is to be run if the condition is
evaluated as TRUE.

Bad child
The closest successor to the branch job that is to be stopped if the
condition is evaluated as FALSE.

This branch job
performs the
branching logic
which direction in
the job stream will
be selected to run

Job stream will continue in this
branch, if the evaluation of the
“important” job was “TRUE”

Based on this “important” job
we want to decide “what to do

Job stream will
continue in this branch
if the evaluation of the
“important” job was

“FALSE”

Figure 50. Purpose of the branch job

896 IBM Workload Scheduler: User’s Guide and Reference

Branch
A sequence of jobs that are ordered by using the FOLLOWS dependency.

Run branch
The branch selected to run, based on the condition result. The run branch
starts with the good child if the condition is evaluated as TRUE or with
the bad child if the condition is evaluated as FALSE.

Stop branch
The branch selected to stop, based on the condition result. The stop branch
starts with the bad child if the condition is evaluated as TRUE or with the
good child if the condition is evaluated as FALSE

Input parameter
Argument that is passed to the specific branch job. For some parameters, if
you do not specify any value the default is used.

Branch job suffix
Differentiates multiple occurrences of branch jobs within the same job
stream.

Figure 51 illustrates the following terms, which are used to define a job stream
managed by one or more branch jobs:
v Parent
v Good child and good branch
v Bad child and bad branch
v Evaluation of job status against condition

BRANCH JOB Gets
parent’s properties (status or
joblog). Then evaluates these

properties against
CONDITION. Then
determines “which
direction in the job

stream will be selected
to run”

GOOD BRANCH Job stream will
continue in this branch, if the
“important” job was “TRUE”

PARENT JOB Based on this
“important” job we want to

decide “what to do”

BAD BRANCH Job stream
will continue in this branch,

if the evaluation of the
“important” job was FALSE

BAD CHILD
First Job of the
“bad branch”

GOOD CHILD
First job of the
“good branch”

Figure 51. Terms related to job stream definition

Appendix D. Defining and managing generic branch jobs 897

Figure 52 illustrates additional terms that are used during the job stream run:
v Run branch
v Stop branch

It also shows the difference between the terms good and bad, and run and stop.
These terms are the same only when CONDITION=TRUE. If CONDITION=FALSE,
then the run branch corresponds to the bad branch and the stop branch
corresponds to the good branch. This is the concept of the branch job evaluating
logic.

Branch job capabilities

To describe the generic branch job capabilities, the branching process can be
divided into two processes:
v Evaluation: The branch job always takes its parent as the input. Then, based on

the specified parameters, it creates one of the following subconditions:
– Checks to see if the parent ended with the SUCC or ABEND state.
– Creates a complex condition from one or more of the following subconditions:

- Gets the parent job log and search for a row with a specified text pattern
(which is passed to the branch job as input parameter).

- (optional) Searches for another pattern in the same row.
- (optional) Searches for a numeric value in the same row. This numeric

value is compared against a specified number by using a specified
arithmetical operator (the number and arithmetical operator are passed to
the branch job as input parameters).

BRANCH JOB
The condition would be set to

TRUE-if parent’s status was SUCC
The condition result is FALSE,

because parents status
is ABEND. Because of
that Run branch=Bad

branch Stop
branch =Good branch

GOOD BRANCH
We have specified that this

branch should run,if the
condition has been

evaluated as “TRUE”

PARENT JOB Based
We have evaluated the

properties (status or joblog)
of this job.

BAD BRANCH
we have specified, that this

branch should run, if the
condition has been evaluated

as “FALSE”

RUN BRANCH
because the

CONDITION=FALSE

STOP BRANCH
because the

CONDITION=FALSE

Figure 52. Terms related to job stream run (concrete job stream instance)

898 IBM Workload Scheduler: User’s Guide and Reference

These subconditions are joined together using the Boolean operators AND or
OR. Then the complex condition is evaluated immediately.

The result of the evaluation (even if the condition is simple or complex) is either
TRUE or FALSE.

v Action: Based on the condition result, the branch job decides which branch to
run and which to stop. It then performs different actions on the run branch and
stop branch, as follows.
– The possible actions on the run branch are:

DO NOTHING
The run branch is run.

RELEASE
If the first job of the run branch is held, it is released.

– The possible actions on the stop branch are:

CANCEL
All the jobs within the stop branch are canceled.

PAUSE
The stop branch is suspended. The jobs in the stop branch cannot run
because their predecessor is held.

– In addition, there is a special action called SIGNAL. This action only writes a
recommendation for you to confirm the branch job in the job log. You create a
SIGNAL branch job by setting the flag Requires confirmation.
For detailed information about the SIGNAL branch job, see Signal action
scenario

You can combine evaluation criteria and consecutive actions in any way.

Branch job advantages

The main advantages of using the generic branch job are:
v Only one branch job is defined in the IBM Workload Scheduler database.

The generic branch job is represented by one job definition that points to one
shell script. The script does not take any command-line argument that points to
the branch job's parent and children. Information about parent (predecessor) and
children (successors) is evaluated automatically.

v You are not required to specify any input parameters if you use the most
common branch job scenarios.
You do not need to specify parameters when evaluating the parent job result
state (SUCC or ABEND). You put the branch job into the job stream, link the
FOLLOWS dependencies, and assign to the child jobs the specific names that
identify the good child and the bad child.

v The branch job returns a structured job log that contains detailed information
about the branch job's environment, input parameters, evaluated condition,
performed actions. By reading the job log, you can easily check which activities
the branch job performed.

v The branch job uses the representation of IBM Workload Scheduler objects
within the Current Plan. This means that all the objects within the Plan (for
example, jobs and job streams) are referenced by using the keyword schedid.
You ensure that all the actions launched against the Plan objects point to the
unique object.

This functionality is leveraged in all job stream occurrences in the Current Plan:

Appendix D. Defining and managing generic branch jobs 899

v Any occurrence of the job stream submitted without specifying the alias.
v Any occurrence of the job stream submitted by specifying the alias.
v The generic branch job runs on both UNIX and Windows master domain

managers. Because the branch job is written in the shell script (therefore it runs
natively on UNIX) on Windows operating systems you must use a UNIX shell
interpreter.

v The generic branch job runs even if the job stream is defined on the workstation
class. The branch job itself must be defined on the master domain manager.

Sample scenarios
The sample scenarios describe various branch jobs, introducing the main concepts
and explaining the branch job usage.

Each scenario is described according to the following structure:
v Scenario usage.
v Sample job stream definition.
v Log of the generic branch job.
v Parameters required to perform the branching.
v How to place the job stream in the job stream and rename the child job names, if

required.

A generic branch job based on the condition type differs from a generic branch job
based on the action type as follows:

Condition
Specifies the criteria to determine the run branch (the jobs that must
continue) and the stop branch (the jobs that must stop).

Action
Specifies what to do on the run branch and stop branch. You can perform
two types of actions on the stop branch and two types of actions on the
run branch. In addition, there is one special signaling action.

Scenarios based on condition type
Use a generic branch job based on the condition type to specify the criteria that
determines the run branch and stop branch.

For scenarios based on the action type, see Scenarios based on action type.

Simple branch scenario
Use simple branching to evaluate the status of a job.

Simple branch usage

Based on the status returned by the job you are evaluating, a specific branch runs:
if the job ends in SUCC status, the good branch runs; if the job ABENDs, the bad
branch runs.

Simple branch ending in the SUCC state

Figure 53 on page 901 shows the job stream definition.

900 IBM Workload Scheduler: User’s Guide and Reference

If the parent job ends in SUCC status, the bad child is canceled and the good child
runs. Figure 54 shows the final state of the job stream within the current plan.

Simple branch ending in the ABEND state

Figure 55 on page 902 shows the job stream definition.

Figure 53. Simple branch (SUCC) definition

Figure 54. Simple branch (SUCC) final status

Appendix D. Defining and managing generic branch jobs 901

The evaluated job (that is, the parent) must have the Recovery option set to
Continue, otherwise the ABENDed job does not release the branch job from the
FOLLOWS dependency and the whole job stream ends in STUCK state. This is
valid for all parent jobs for which you evaluate the result state, because you must
consider that any job might abend.

The following example shows the log of the generic branch job instance.
============ START of branch job ===================
=============== Job environment ====================
MASTER_PLATFORM=UNIX
STREAM_NAME=SIMPLE_BRANCH_B
PARAMETER_PREFIX=
JOB_NAME=BRANCH_1
BRANCH_SUFFIX=1
PARENT=IMPORTANT_JOB_ABEND
==
============= Input parameters =============
INPUT_SWITCH=PARENT_SUCCESS
ACTION_SWITCH=CANCEL
CONDITION_COUNT=0
==
============= MAIN DECISION MAKING =================
Evaluation dependent on PARENT_SUCCESS
FALSE: Searched for SUCC parent.
Status of PARENT JOB(IMPORTANT_JOB_ABEND) is ABEND.
===
============= Action on STOP Branch ===============
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAEC4.G_DO_THE_GOOD_THING
%cj SYDNEY#0AAAAAAAAAAAAEC4.G_DO_THE_GOOD_THING;schedid;noask
Command forwarded to batchman for SYDNEY#GBJ_LONG_ABEND[(2159 12/16/07),

(0AAAAAAAAAAAAEC4)].G_DO_THE_GOOD_THING
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAEC4.SOME_GOOD_1
%cj SYDNEY#0AAAAAAAAAAAAEC4.SOME_GOOD_1;schedid;noask
Command forwarded to batchman for SYDNEY#GBJ_LONG_ABEND[(2159 12/16/07),

(0AAAAAAAAAAAAEC4)].SOME_GOOD_1
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAEC4.SOME_GOOD_2
%cj SYDNEY#0AAAAAAAAAAAAEC4.SOME_GOOD_2;schedid;noask
Command forwarded to batchman for SYDNEY#GBJ_LONG_ABEND[(2159 12/16/07),

(0AAAAAAAAAAAAEC4)].SOME_GOOD_2
==
============= Action on RUN Branch =================

Figure 55. Simple branch (ABEND) definition

902 IBM Workload Scheduler: User’s Guide and Reference

Performing action RELEASE on job SYDNEY#0AAAAAAAAAAAAEC4.B_DO_THE_BAD_THING
Releasing of job SYDNEY#0AAAAAAAAAAAAEC4.B_DO_THE_BAD_THING is NOT NECESSARY,

because priority=10
==
============= Statistics of branch job BRANCH_1 =============
FALSE: Searched for SUCC parent. Status of PARENT JOB(IMPORTANT_JOB_ABEND)
is ABEND.
For action CANCEL-RUN_BRANCH=B_DO_THE_BAD_THING and STOP_BRANCH=G_DO_
THE_GOOD_THING
BRANCH selected to STOP: G_DO_THE_GOOD_THING
BRANCH selected to CONTINUE: B_DO_THE_BAD_THING
CANCELED_JOBS: G_DO_THE_GOOD_THING, SOME_GOOD_1, SOME_GOOD_2
PAUSED_JOB:
RELEASED_JOB:
============ END of branch job BRANCH_1 ==========

Required input parameters

Branching based on evaluating the status of the parent job is the most common
usage of the generic branch job; it does not require any input parameters.

Placing the branch job into the job stream

Put the generic branch job into the job stream after the parent job and rename the
good child with the "G_" prefix and the bad child with the "B_" prefix.

Also, follow the best practice and rename the branch job with a suffix consisting of
the underscore character and a numeric value. A typical name for the first branch
job within a job stream is BRANCH_1.

Long branch scenario
Long branching is the recursive usage of simple branching.

Long branch usage

The main purpose of the long branch scenario is to show that the generic branch
job can cancel all the jobs in the stop branch, even if there is a whole tree of jobs to
cancel.

This function is needed because, in IBM Workload Scheduler, if a job is canceled,
all of the job's successors are released from the FOLLOWS dependency, with the
result that the jobs that are dependent on the canceled job start immediately. Because
this behavior might be unwanted in some cases, the generic branch job cancels the
first stop job and all of its successors.

Note: From a programming point of view, the generic branch job uses recursive
function calls to go through all the successors of the first stop child of the generic
branch job.

Long branch ending in the SUCC state

Figure 56 on page 904 shows the job stream containing the complex structure of
possible successors, either in the good or bad branch.

Appendix D. Defining and managing generic branch jobs 903

If the parent ended in SUCC state, the job log shows the following output:
============ START of branch job BRANCH_1 ==========
====================== Job environment =============
MASTER_PLATFORM=UNIX
STREAM_NAME=GBJ_LONG_SUCC
STREAM_CPU=SYDNEY
BRANCH_JOB_NAME=BRANCH_1
PARENT=IMPORTANT_JOB_SUCC
==
============= Input parameters =============
CONDITION_SWITCH=PARENT_SUCCESS
ACTION_SWITCH=CANCEL
==
============= MAIN DECISION MAKING =============
Evaluation dependent on PARENT_SUCCESS
TRUE: Searched for SUCC parent. Status of PARENT JOB(IMPORTANT_JOB_SUCC) is SUCC
==
============= Action on STOP Branch =============
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAEC3.B_DO_THE_BAD_THING
%cj SYDNEY#0AAAAAAAAAAAAEC3.B_DO_THE_BAD_THING;schedid;noask
Command forwarded to batchman for SYDNEY#GBJ_LONG_SUCC[(2154 12/16/07),

(0AAAAAAAAAAAAEC3)].B_DO_THE_BAD_THING
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAEC3.SOME_BAD_JOB
%cj SYDNEY#0AAAAAAAAAAAAEC3.SOME_BAD_JOB;schedid;noask
Command forwarded to batchman for SYDNEY#GBJ_LONG_SUCC[(2154 12/16/07),

(0AAAAAAAAAAAAEC3)].SOME_BAD_JOB
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAEC3.ABEND_JOB
%cj SYDNEY#0AAAAAAAAAAAAEC3.ABEND_JOB;schedid;noask
Command forwarded to batchman for SYDNEY#GBJ_LONG_SUCC[(2154 12/16/07),

(0AAAAAAAAAAAAEC3)].ABEND_JOB
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAEC3.ANOTHER_JOB_IN_BAD_BRANCH
%cj SYDNEY#0AAAAAAAAAAAAEC3.ANOTHER_JOB_IN_BAD_BRANCH;schedid;noask

Figure 56. Long branch (SUCC) definition

904 IBM Workload Scheduler: User’s Guide and Reference

Command forwarded to batchman for SYDNEY#GBJ_LONG_SUCC[(2154 12/16/07),
(0AAAAAAAAAAAAEC3)].ANOTHER_JOB_IN_BAD_BRANCH

==
============= Action on RUN Branch =============
Performing action RELEASE on job
SYDNEY#0AAAAAAAAAAAAEC3.G_DO_THE_GOOD_THING
Releasing of job SYDNEY#0AAAAAAAAAAAAEC3.G_DO_THE_GOOD_THING
is NOT NECESSARY,

because priority=10
==
============= Statistics of branch job BRANCH_1 =============
TRUE: Searched for SUCC parent. Status of PARENT JOB(
IMPORTANT_JOB_SUCC) is SUCC.
For action CANCEL-RUN_BRANCH=G_DO_THE_GOOD_THING and
STOP_BRANCH=B_DO_THE_BAD_THING
BRANCH selected to STOP: B_DO_THE_BAD_THING
BRANCH selected to CONTINUE: G_DO_THE_GOOD_THING
CANCELED_JOBS: B_DO_THE_BAD_THING, SOME_BAD_JOB, ABEND_JOB,
ANOTHER_JOB_IN_BAD_BRANCH
PAUSED_JOB:
RELEASED_JOB:
============ END of branch job BRANCH_1 ==========

Long branch ending in the ABEND state

Figure 57 on page 906 shows how the job stream runs if the evaluated job abended.

Note: To release the successors from the FOLLOWS dependency, the evaluated job
(parent job) must have the recovery option set to Continue. You can set this
parameter only within the job definition, not in the job stream definition.

Appendix D. Defining and managing generic branch jobs 905

The job log shows the output of the generic branch job instance:
============ START of branch job BRANCH_1 ==========
====================== Job environment =============
MASTER_PLATFORM=UNIX
STREAM_NAME=GBJ_LONG_ABEND
STREAM_CPU=SYDNEY
BRANCH_JOB_NAME=BRANCH_1
PARENT=IMPORTANT_JOB_ABEND
==
============= Input parameters =============
CONDITION_SWITCH=PARENT_SUCCESS
ACTION_SWITCH=CANCEL
==
============= MAIN DECISION MAKING =============
Evaluation dependent on PARENT_SUCCESS
FALSE: Searched for SUCC parent.
Status of PARENT JOB(IMPORTANT_JOB_ABEND) is ABEND.
==
============= Action on STOP Branch =============
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAEC4.G_DO_THE_GOOD_THING
%cj SYDNEY#0AAAAAAAAAAAAEC4.G_DO_THE_GOOD_THING;schedid;noask
Command forwarded to batchman for SYDNEY#GBJ_LONG_ABEND[(2159 12/16/07),

(0AAAAAAAAAAAAEC4)].G_DO_THE_GOOD_THING
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAEC4.SOME_GOOD_1
%cj SYDNEY#0AAAAAAAAAAAAEC4.SOME_GOOD_1;schedid;noask
Command forwarded to batchman for SYDNEY#GBJ_LONG_ABEND[(2159 12/16/07),

(0AAAAAAAAAAAAEC4)].SOME_GOOD_1
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAEC4.SOME_GOOD_2
%cj SYDNEY#0AAAAAAAAAAAAEC4.SOME_GOOD_2;schedid;noask
Command forwarded to batchman for SYDNEY#GBJ_LONG_ABEND[(2159 12/16/07),

(0AAAAAAAAAAAAEC4)].SOME_GOOD_2

Figure 57. Long branch(ABEND) final status

906 IBM Workload Scheduler: User’s Guide and Reference

==
============= Action on RUN Branch =============
Performing action RELEASE on job SYDNEY#0AAAAAAAAAAAAEC4.B_DO_THE_BAD_THING
Releasing of job SYDNEY#0AAAAAAAAAAAAEC4.B_DO_THE_BAD_THING is NOT NECESSARY,

because priority=10
==
============= Statistics of branch job BRANCH_1 =============
FALSE: Searched for SUCC parent. Status of PARENT JOB(IMPORTANT_JOB_ABEND) is ABEND.
For action CANCEL-RUN_BRANCH=B_DO_THE_BAD_THING and STOP_BRANCH=G_DO_THE_GOOD_THING
BRANCH selected to STOP: G_DO_THE_GOOD_THING
BRANCH selected to CONTINUE: B_DO_THE_BAD_THING
CANCELED_JOBS: G_DO_THE_GOOD_THING, SOME_GOOD_1, SOME_GOOD_2
PAUSED_JOB:
RELEASED_JOB:
============ END of branch job BRANCH_1 ==========

Required input parameters

This branching type does not require any input parameters.

Placing the branch job into the job stream

Put the generic branch job in the job stream after the parent job and rename the
good child with the "G_" prefix and the bad child with the "B_" prefix.

Also, follow the best practice and rename the branch job with a suffix consisting of
the underscore character and a numeric value. A typical name for the first branch
job within a job stream is BRANCH_1.

Multiple branch
Use multiple branch to have multiple different branch jobs within one single job
stream.

Multiple branch usage

The purpose of having more then one branch job in a single job stream is to
perform branching multiple times. Figure 58 on page 908 shows an example of a
job stream managed by multiple branch jobs.

Appendix D. Defining and managing generic branch jobs 907

Required input parameters

You might need to specify input parameters depending on the branch jobs used.
You are not required to specify any parameters for jobs based on the following
scenarios:
v Simple branch
v Long branch

Specify input parameters for jobs based on the following scenarios:
v Complex branch - Pattern
v Complex branch - Pattern within pattern row
v Complex branch - Numeric value comparison
v Complex scenario - multiple conditions
v Pause/Release actions scenario
v Signal action scenario

Figure 58. Multiple branch jobs within one job stream

908 IBM Workload Scheduler: User’s Guide and Reference

Placing the branch jobs into the job stream

For each branch job, put the generic branch job in the job stream after the parent
job and rename the good child with the "G_" prefix and the bad child with the "B_"
prefix. Distinguish the different branch jobs by branch suffix, which must comprise
an underscore character and a number.

The best practice is to create the branch suffix by using numbers in ascending
order, so that multiple branch jobs within one job stream are named, for example,
BRANCH_1, BRANCH_2, and so on.

Parent abend
The parent abend scenario represents the inverted case of the simple branch
scenario.

Parent abend usage

The parent abend scenario describes the following functional requirements:
v Getting the parent job status.
v If the parent job status is SUCC, this is considered as BAD.
v If the parent job status is ABEND, this is considered as GOOD.

This section describes only the case when the parent job ends in the SUCC state.

Parent abend ending in SUCC state

Figure 59 shows the job stream with the PARENT_ABEND function.

The job stream looks like the simple branch, the only difference is that you
specified the parameter CONDITION_SWITCH=PARENT_ABEND for the branch
job.

The job log shows the output of the generic branch job instance:
============ START of branch job BRANCH_1 ==========
================ Job environment ===================
MASTER_PLATFORM=UNIX

Figure 59. Parent abend (SUCC) definition

Appendix D. Defining and managing generic branch jobs 909

STREAM_NAME=GBJ_PARENT_ABEND
STREAM_CPU=SYDNEY
BRANCH_JOB_NAME=BRANCH_1
PARENT=IMPORTANT_JOB_SUCC
==
============= Input parameters =============
CONDITION_SWITCH=PARENT_ABEND
ACTION_SWITCH=CANCEL
==
============= MAIN DECISION MAKING =============
Evaluation dependent on PARENT_ABEND
FALSE: Searched for ABEND parent.
Status of PARENT JOB(IMPORTANT_JOB_SUCC) is SUCC.
==
============= Action on STOP Branch =============
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAEDA.G_DO_THE_GOOD_THING
%cj SYDNEY#0AAAAAAAAAAAAEDA.G_DO_THE_GOOD_THING;schedid;noask
Command forwarded to batchman for SYDNEY#GBJ_PARENT_ABEND[(2314 12/16/07),

(0AAAAAAAAAAAAEDA)].G_DO_THE_GOOD_THING
==
============= Action on RUN Branch =============
Performing action RELEASE on job SYDNEY#0AAAAAAAAAAAAEDA.B_DO_THE_BAD_THING
Releasing of job SYDNEY#0AAAAAAAAAAAAEDA.B_DO_THE_BAD_THING is NOT NECESSARY,
because priority=10
==
============= Statistics of branch job BRANCH_1 =============
FALSE: Searched for ABEND parent. Status of PARENT JOB(IMPORTANT_JOB_SUCC) is SUCC
For action CANCEL - RUN_BRANCH=B_DO_THE_BAD_THING and

STOP_BRANCH=G_DO_THE_GOOD_THING
BRANCH selected to STOP: G_DO_THE_GOOD_THING
BRANCH selected to CONTINUE: B_DO_THE_BAD_THING
CANCELED_JOBS: G_DO_THE_GOOD_THING
PAUSED_JOB:
RELEASED_JOB:
============ END of branch job BRANCH_1 ==========

Required input parameters

Table 167 shows the parameters required for the negative branch scenario.

Table 167. Input parameters for the negative branch job scenario

Parameter name Parameter value

CONDITION_SWITCH PARENT_ABEND

The following example shows the parameter definition. The text is entered into the
Comments field of the job stream definition.
BRANCH_1-BEGIN
CONDITION_SWITCH=PARENT_ABEND
BRANCH_1-END

For details about how to specify the branch job parameters, see “Specifying the
branch job parameters” on page 941.

Placing the branch job into the job stream

Put the generic branch job into the job stream after the parent job and rename the
good child with the "G_" prefix and the bad child with the "B_" prefix.

Also, follow the best practice and rename the branch job with a suffix consisting of
the underscore character and a numeric value. A typical name for the first branch
job within a job stream is BRANCH_1.

910 IBM Workload Scheduler: User’s Guide and Reference

Complex branch scenarios
The complex branch scenarios show the flexibility of the generic branch job.

The previous scenarios were based on the evaluation of the status of the parent job.
Complex branch job scenarios are based on the evaluation of the job log of the
parent job. For a list of the complex conditions, see Terminology.

A complex condition can include multiple subconditions. For example:
1. subcondition 1
v Search for the text pattern (supplied as a parameter) within the parent job

log.
v In the row where the pattern is found, isolate the numeric value.
v Compare the numeric value with a specified number. For this comparison,

use the specified arithmetical operator (supplied as a parameter). If the
arithmetical comparison is successful, it returns TRUE.

For example, search for the row that contains the pattern Disk free. If you find
it, search for a number within the row. If the number is greater than 90, return
TRUE.

2. subcondition 2
a. Search for another text pattern within the parent's job log.
b. If the pattern is found, negate the result and return FALSE (for example,

return FALSE if the parent job log contains the pattern Error).
3. Connect the first and second subcondition results with a Boolean operator (the

Boolean operator is supplied as a parameter, and the possible values are AND
and OR).

4. Evaluate the final result of the whole condition (TRUE or FALSE).

The defined condition can be very flexible and can cover many typical situations.

The following sections describe several complex branch scenarios to explain how
to:
v Search for a specific text pattern within the parent's job log.
v Search for a specific text pattern within the parent's job log. If the pattern is

found, search for an additional text pattern within the same row.
v Search for a specific text pattern within the parent's job log. If the pattern is

found, search for a numeric value within the same row. If the value is found,
compare it against the supplied number using the supplied arithmetical
operator.

v Join several conditions into one by using the Boolean AND and OR operators.

Complex branch - Pattern
Use the complex branch pattern scenario to search for a specific text pattern within
the parent job log.

Pattern scenario usage

You can search for any string, for example ended successfully or mounted ALL
tape drives. In general, the text must represent the positive message included in
the parent job log.

Note: Pattern search usually looks for the positive message from the parent job
log. In some cases, you might want to implement reversed logic, for example

Appendix D. Defining and managing generic branch jobs 911

search for the pattern Error , Unsuccessfully, or Not Enough Space, which
represent negative messages from the log. To use this approach, see “Complex
branch - Negated pattern” on page 914.

Using the pattern branch, if the text pattern is found, then CONDITION=TRUE
otherwise CONDITION=FALSE.

Figure 60 shows the job stream definition for the pattern branch scenario. The job
stream seems similar to the simple branch scenario, but additional parameters are
defined:
v CONDITION_SWITCH=COMPLEX
v PATTERN_1=completed successfully

The pattern scenario job log shows the output of the generic branch job instance:
============ START of branch job BRANCH_1 ==========
================== Job environment =================
MASTER_PLATFORM=UNIX
STREAM_NAME=GBJ_PATTERN
STREAM_CPU=SYDNEY
BRANCH_JOB_NAME=BRANCH_1
PARENT=PATTERN_JOB
==
============= Input parameters =============
CONDITION_SWITCH=COMPLEX
ACTION_SWITCH=CANCEL
CONDITION_COUNT=1
PATTERN[1]=completed successfully
IS_CASE_SENSITIVE[1]=YES
IS_REGULAR_EXPRESSION[1]=NO
NEGATE_CONDITION_RESULT[1]=NO
==
============= MAIN DECISION MAKING =============
COMPLEX condition evaluation
----------ATOMIC CONDITION 1------------
Searching for "completed successfully" in JOBLOG of PATTERN_JOB

Condition:
CONDITION_SWITCH=COMPLEX
Pattern_1=completed successfully

Extract from the parent’s joblog

Figure 60. Pattern scenario - definition

912 IBM Workload Scheduler: User’s Guide and Reference

Pattern FOUND, performing further tests.
No additional value defined for specified pattern.
Condition evaluated as TRUE.
ATOMIC CONDITION RESULT [1]= TRUE

-------- COMPLEX CONDITION ----------
[TRUE]
CONDITION_RESULT=TRUE
TRUE: The result of complex condition is TRUE.
==
============= Action on STOP Branch =============
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAED4.B_DO_THE_BAD_THING
%cj SYDNEY#0AAAAAAAAAAAAED4.B_DO_THE_BAD_THING;schedid;noask
Command forwarded to batchman for SYDNEY#GBJ_PATTERN[(1733 12/17/07),

(0AAAAAAAAAAAAED4)].B_DO_THE_BAD_THING
==
============= Action on RUN Branch =============
Performing action RELEASE on job SYDNEY#0AAAAAAAAAAAAED4.G_DO_THE_GOOD_THING
Releasing of job SYDNEY#0AAAAAAAAAAAAED4.G_DO_THE_GOOD_THING is NOT NECESSARY,

because priority=10
==
============= Statistics of branch job BRANCH_1 =============
TRUE: The result of complex condition is TRUE.
For action CANCEL - RUN_BRANCH=G_DO_THE_GOOD_THING and

STOP_BRANCH=B_DO_THE_BAD_THING
BRANCH selected to STOP: B_DO_THE_BAD_THING
BRANCH selected to CONTINUE: G_DO_THE_GOOD_THING
CANCELED_JOBS: B_DO_THE_BAD_THING
PAUSED_JOB:
RELEASED_JOB:
============ END of branch job BRANCH_1 ==========

Required input parameters

Table 168 shows the parameters required for the pattern scenario.

Table 168. Input parameters for the pattern job scenario

Parameter name Parameter value

CONDITION_SWITCH COMPLEX

PATTERN_1 Completed successfully

The following example shows the parameter definition. The text is entered into the
Comments field of the job stream definition.
BRANCH_1-BEGIN
CONDITION_SWITCH=COMPLEX
PATTERN_1=completed successfully
BRANCH_1-END

For a description about how to specify the parameters for the branch job, see
Working with the branch job parameters.

Placing the branch job into the job stream

Put the generic branch job into the job stream after the parent job and rename the
good child with the "G_" prefix and the bad child with the "B_" prefix.

Also, follow the best practice and rename the branch job with a suffix consisting of
the underscore character and a numeric value. A typical name for the first branch
job within a job stream is BRANCH_1.

Appendix D. Defining and managing generic branch jobs 913

Complex branch - Negated pattern
This is the inverted case of the pattern branch scenario.

Negated pattern scenario usage

With the pattern branch scenario you search the parent job log for a pattern
considered as a positive message (for example, completed successfully). If,
instead, you want to search for a negative message (for example, Error) use the
generic branch job to negate each defined subcondition of the complex condition.
In this scenario, finding the pattern results as CONDITION=FALSE. Not finding
the pattern results as CONDITION=TRUE.

Figure 61 shows the job stream definition for the pattern branch scenario, with the
following parameters:
v CONDITION_SWITCH=COMPLEX
v PATTERN_1=Error
v NEGATE CONDITION_RESULT_1=YES

The job log shows the output of the generic branch job instance:
============ START of branch job BRANCH_1 ==========
=================== Job environment ================
MASTER_PLATFORM=UNIX
STREAM_NAME=GBJ_PATTERN_NEG
STREAM_CPU=SYDNEY
BRANCH_JOB_NAME=BRANCH_1
PARENT=PATTERN_JOB_ERROR
==
============= Input parameters =============
CONDITION_SWITCH=COMPLEX
ACTION_SWITCH=CANCEL
CONDITION_COUNT=1
PATTERN[1]=Error
IS_CASE_SENSITIVE[1]=YES
IS_REGULAR_EXPRESSION[1]=NO
NEGATE_CONDITION_RESULT[1]=YES
==
============= MAIN DECISION MAKING =============

Condition:
CONDITION_SWITCH=COMPLEX

Pattern_1=Error
NEGATE_CONDITION_RESULT_1=YES

Extract from the parent’s joblog

Figure 61. Negated Pattern scenario definition

914 IBM Workload Scheduler: User’s Guide and Reference

COMPLEX condition evaluation
----------ATOMIC CONDITION 1------------
Searching for "Error" in JOBLOG of PATTERN_JOB_ERROR
Pattern FOUND, performing further tests.
No additional value defined for specified pattern.
Condition evaluated as TRUE.
==NEGATED== ATOMIC CONDITION RESULT [1]= FALSE

-------- COMPLEX CONDITION ----------
[FALSE]
CONDITION_RESULT=FALSE
FALSE: The result of complex condition is FALSE.
==
============= Action on STOP Branch =============
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAED3.G_DO_THE_GOOD_THING
%cj SYDNEY#0AAAAAAAAAAAAED3.G_DO_THE_GOOD_THING;schedid;noask
Command forwarded to batchman for SYDNEY#GBJ_PATTERN_NEG[(1730 12/17/07),

(0AAAAAAAAAAAAED3)].G_DO_THE_GOOD_THING
==
============= Action on RUN Branch =============
Performing action RELEASE on job SYDNEY#0AAAAAAAAAAAAED3.B_DO_THE_BAD_THING
Releasing of job SYDNEY#0AAAAAAAAAAAAED3.B_DO_THE_BAD_THING is NOT NECESSARY,

because priority=10
==
============= Statistics of branch job BRANCH_1 =============
FALSE: The result of complex condition is FALSE.
For action CANCEL - RUN_BRANCH=B_DO_THE_BAD_THING and

STOP_BRANCH=G_DO_THE_GOOD_THING
BRANCH selected to STOP: G_DO_THE_GOOD_THING
BRANCH selected to CONTINUE: B_DO_THE_BAD_THING
CANCELED_JOBS: G_DO_THE_GOOD_THING
PAUSED_JOB:
RELEASED_JOB:
============ END of branch job BRANCH_1 ==========

Required input parameters

Table 169 shows the parameters required for the negated branch scenario.

Table 169. Input parameters for the negated pattern job scenario

Parameter name Parameter value

CONDITION_SWITCH COMPLEX

PATTERN_1 Error

NEGATE_CONDITION_RESULT_1 YES

The following example shows the parameter definition. The text is entered into the
Comments field of the job stream definition.
BRANCH_1-BEGIN
CONDITION_SWITCH=COMPLEX
PATTERN_1=Error
NEGATE_CONDITION_1=YES
BRANCH_1-END

For a description about how to specify the parameters for the branch job, see
“Specifying the branch job parameters” on page 941.

Placing the branch job into the job stream

Put the generic branch job into the job stream after the parent job and rename the
good child with the "G_" prefix and the bad child with the "B_" prefix.

Appendix D. Defining and managing generic branch jobs 915

Also, follow the best practice and rename the branch job with a suffix consisting of
the underscore character and a numeric value. A typical name for the first branch
job within a job stream is BRANCH_1.

Complex branch - Pattern within pattern row
This scenario extends the function of the pattern searching.

Pattern within pattern row scenario usage

The purpose of this scenario is to:
1. Get the parent job log.
2. In the job log, identify a row containing a specific pattern.
3. If the row is found, search for another pattern within the row.
4. If the second pattern is found, return the condition as TRUE.

The following example extracted from a parent job log shows what a typical usage
scenario looks like:
Sending STOP signal to component XYZ: SUCCESS
Stopping component XYZ: SUCCESS

Based on this example, a simple search for the text pattern SUCCESS would not
show that the component had really stopped. There are multiple occurrences of
pattern SUCCESS and by using the simple pattern search you would not determine
the correct result.

Another example might be the following job log extract:
About to stop component XYZ...
Sending STOP signal to component XYZ: SUCCESS
Stopping component XYZ: FAILED

Based on this example, if you used the simple pattern search the result is
CONDITION=TRUE, because the pattern SUCCESS is found. But in this case, the
parent job log is not evaluated correctly.

To correctly evaluate the parent job log, you must use the pattern within pattern
row scenario, as follows:
1. Search for the pattern Stopping component.
2. If the row is found, search for the pattern SUCCESS.
3. If both searches are successful, then return the condition as TRUE.

Figure 62 on page 917 shows the definition for the pattern branch scenario.

916 IBM Workload Scheduler: User’s Guide and Reference

The job log shows the output of the generic branch job instance:
============ START of branch job BRANCH_1 ==========
================== Job environment =================
MASTER_PLATFORM=UNIX
STREAM_NAME=GBJ_PATTERN_PATT
STREAM_CPU=SYDNEY
BRANCH_JOB_NAME=BRANCH_1
PARENT=PATTERN_PATTERN_JOB
==
============= Input parameters =============
CONDITION_SWITCH=COMPLEX
ACTION_SWITCH=CANCEL
CONDITION_COUNT=1
PATTERN[1]=Stopping component
VALUE[1]=SUCCESS
IS_CASE_SENSITIVE[1]=YES
IS_REGULAR_EXPRESSION[1]=NO
NEGATE_CONDITION_RESULT[1]=NO
==
============= MAIN DECISION MAKING =============
COMPLEX condition evaluation
----------ATOMIC CONDITION 1------------
Searching for "Stopping component" in JOBLOG of PATTERN_PATTERN_JOB
Pattern FOUND, performing further tests.
Searching for STRING=SUCCESS within the

row "Stopping component XYZ: FAILED".
String "SUCCESS" NOT found within the

row "Stopping component XYZ: FAILED".
ATOMIC CONDITION RESULT [1]= FALSE

-------- COMPLEX CONDITION ----------
[FALSE]
CONDITION_RESULT=FALSE
FALSE: The result of complex condition is FALSE.
==
============= Action on STOP Branch =============
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAED2.G_DO_THE_GOOD_THING
%cj SYDNEY#0AAAAAAAAAAAAED2.G_DO_THE_GOOD_THING;schedid;noask

Condition:
CONDITION_SWITCH=COMPLEX

Pattern_1=Stopping component
VALUE_1=SUCCESS

Extract from the parent’s joblog

Figure 62. Pattern within pattern row definition

Appendix D. Defining and managing generic branch jobs 917

Command forwarded to batchman for SYDNEY#GBJ_PATTERN_PATT[(1634 12/17/07),
(0AAAAAAAAAAAAED2)].G_DO_THE_GOOD_THING

==
============= Action on RUN Branch =============
Performing action RELEASE on job SYDNEY#0AAAAAAAAAAAAED2.B_DO_THE_BAD_THING
Releasing of job SYDNEY#0AAAAAAAAAAAAED2.B_DO_THE_BAD_THING is NOT NECESSARY,

because priority=10
==
============= Statistics of branch job BRANCH_1 =============
FALSE: The result of complex condition is FALSE.
For action CANCEL - RUN_BRANCH=B_DO_THE_BAD_THING and

STOP_BRANCH=G_DO_THE_GOOD_THING
BRANCH selected to STOP: G_DO_THE_GOOD_THING
BRANCH selected to CONTINUE: B_DO_THE_BAD_THING
CANCELED_JOBS: G_DO_THE_GOOD_THING
PAUSED_JOB:
RELEASED_JOB:
============ END of branch job BRANCH_1 ==========

Required input parameters

Table 170 shows the parameters required for the pattern within pattern row
scenario.

Table 170. Input parameters for the pattern within pattern row scenario

Parameter name Parameter value

CONDITION_SWITCH COMPLEX

PATTERN_1 Stopping component

VALUE_1 SUCCESS

The parameter definition looks like the following example. The text is entered into
the Comments field of the job stream definition.
BRANCH_1-BEGIN
CONDITION_SWITCH=COMPLEX
PATTERN_1=Stopping component
VALUE_1=SUCCESS
BRANCH_1-END

For details about how to specify the branch job parameters, see “Specifying the
branch job parameters” on page 941.

Placing the branch job into the job stream

Put the generic branch job into the job stream just after the parent job and rename
the good child with the "G_" prefix and the bad child with the "B_" prefix.

Also, follow the best practice and rename the branch job with a suffix consisting of
the underscore character and a numeric value. A typical name for the first branch
job within a job stream is BRANCH_1.

Pattern within pattern row - Negated
While in the negated pattern scenario you negate the result of a simple pattern
search, in the negated pattern within pattern row scenario you use the negated
approach for any complex scenario. It is the reversed case of the pattern within
pattern row scenario.

918 IBM Workload Scheduler: User’s Guide and Reference

Negated pattern within pattern row scenario usage

Whether you are performing a simple pattern search, for example searching for the
occurrence ERROR in the parent job log, or a complex condition, you can use the
approach that negates the result.

Decide how to parse the parent job log. Based on your understanding of the job
log content, choose whether the output of rows contains a positive or negative
message. Based on this knowledge, decide whether to negate the particular
subcondition result or leave it as it is.

The evaluation logic for the negated pattern within pattern row scenario is the
following:
1. Search for the pattern row.
2. Search for the main identifier, such as Backup on Primary device.
3. If the row is found, search for the negative message ERROR within it.
4. Negate the result.

This approach covers the scenario where you use outputs like SUCCESS, OK, and
COMPLETED as positive messages, and outputs like FAILED and ERROR as negative
messages.

Figure 63 shows the definition for the pattern branch scenario.

Note: In any scenario where you use a complex condition, you can also negate the
result of each particular subcondition. You can also set multiple atomic subconditions
and negate only some of them. For detailed information, see “Complex scenario -
Multiple conditions” on page 924.

The job log shows the output of the generic branch job instance:

Condition:
CONDITION_SWITCH=COMPLEX

PATTERN_1=Backup of Primary
device VALUE_1=ERROR

NEGATE_CONDITION_RESULT_1=YES

Extract from the parent’s joblog

Figure 63. Pattern within pattern row negated definition

Appendix D. Defining and managing generic branch jobs 919

============ START of branch job BRANCH_1 ==========
================== Job environment =================
MASTER_PLATFORM=UNIX
STREAM_NAME=GBJ_PAT_PAT_NEG
STREAM_CPU=SYDNEY
BRANCH_JOB_NAME=BRANCH_1
PARENT=PATTERN_PATTERN_ERROR_JOB
==
============= Input parameters =============
CONDITION_SWITCH=COMPLEX
ACTION_SWITCH=CANCEL
CONDITION_COUNT=1
PATTERN[1]=Backup of Primary device
VALUE[1]=ERROR
IS_CASE_SENSITIVE[1]=YES
IS_REGULAR_EXPRESSION[1]=NO
NEGATE_CONDITION_RESULT[1]=YES
==
============= MAIN DECISION MAKING =============
COMPLEX condition evaluation
----------ATOMIC CONDITION 1------------
Searching for "Backup of Primary device" in JOBLOG of

PATTERN_PATTERN_ERROR_JOB
Pattern FOUND, performing further tests.
Searching for STRING=ERROR within the

row "Backup of Primary device: ERROR".
String "ERROR" found within the

row "Backup of Primary device: ERROR".
==NEGATED== ATOMIC CONDITION RESULT [1]= FALSE

-------- COMPLEX CONDITION ----------
[FALSE]
CONDITION_RESULT=FALSE
FALSE: The result of complex condition is FALSE.
==
============= Action on STOP Branch =============
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAEEA.G_DO_THE_GOOD_THING
%cj SYDNEY#0AAAAAAAAAAAAEEA.G_DO_THE_GOOD_THING;schedid;noask
Command forwarded to batchman for SYDNEY#GBJ_PAT_PAT_NEG[(1941 12/17/07),

(0AAAAAAAAAAAAEEA)].G_DO_THE_GOOD_THING
==
============= Action on RUN Branch =============
Performing action RELEASE on job SYDNEY#0AAAAAAAAAAAAEEA.B_DO_THE_BAD_THING
Releasing of job SYDNEY#0AAAAAAAAAAAAEEA.B_DO_THE_BAD_THING is NOT NECESSARY,

because priority=10
==
============= Statistics of branch job BRANCH_1 =============
FALSE: The result of complex condition is FALSE.
For action CANCEL - RUN_BRANCH=B_DO_THE_BAD_THING and

STOP_BRANCH=G_DO_THE_GOOD_THING
BRANCH selected to STOP: G_DO_THE_GOOD_THING
BRANCH selected to CONTINUE: B_DO_THE_BAD_THING
CANCELED_JOBS: G_DO_THE_GOOD_THING
PAUSED_JOB:
RELEASED_JOB:
============ END of branch job BRANCH_1 ==========

Required input parameters

Table 171 shows the parameters required for the negated pattern within the pattern
row scenario.

Table 171. Input parameters for negated pattern within pattern row scenario

Parameter name Parameter value

CONDITION_SWITCH COMPLEX

920 IBM Workload Scheduler: User’s Guide and Reference

Table 171. Input parameters for negated pattern within pattern row scenario (continued)

Parameter name Parameter value

PATTERN_1 Backup of Primary device

VALUE_1 ERROR

NEGATE_CONDITION_RESULT_1 YES

The parameter definition looks like the following example. The text is entered into
the Comments field of the job stream definition.
BRANCH_1-BEGIN
CONDITION_SWITCH=COMPLEX
PATTERN_1=Backup of Primary device
VALUE_1=ERROR
NEGATE_CONDITION_RESULT_1=YES
BRANCH_1-END

For a description about how to specify the parameters to the branch job, see
“Specifying the branch job parameters” on page 941.

Placing the branch job into the job stream

Put the generic branch job in the job stream after the parent job and rename the
good child with the "G_" prefix and the bad child with the "B_" prefix.

Also, follow the best practice and rename the branch job with a suffix consisting of
the underscore character and a numeric value. A typical name for the first branch
job within a job stream is BRANCH_1.

Complex branch - Numeric value comparison
To combine pattern searching with the numeric value comparison.

Pattern within pattern row branch usage

This scenario extends the function of the pattern scenario described in Complex
branch - Pattern. The purpose of this scenario is to:
1. Get the parent job log.
2. Within the job log, identify the row containing a specific pattern.
3. If the row is found, search for a numeric value within it.
4. Compare the number against the number that is supplied as input parameter,

by using the arithmetical operator that is also supplied as a parameter.

The following extract from the parent job log shows a typical usage scenario:
Checking free space...
Free space on volume ABC is 50 %.

You want to perform the following evaluation:
1. Search for the pattern Free space on volume.
2. If the text is found, try to extract a numeric value.
3. Compare the numeric value as follows:

If (numeric_value > 30)
Then CONDITION=TRUE
Else CONDITION=FALSE

Appendix D. Defining and managing generic branch jobs 921

The number 30 and operator > are parameters passed to the branch job. You can
use any arithmetical operators (for example, <, <=, >). For a description about how
to specify the parameters for the branch job, see “Specifying the branch job
parameters” on page 941.

Figure 64 shows the definition for the numeric value comparison scenario. You can
also invert the evaluation logic, although normally this is not required because you
can reach the negated condition result by using the opposite operator.

The job log shows the output of the generic branch job instance:
============ START of branch job BRANCH_1 ==========
================= Job environment ==================
MASTER_PLATFORM=UNIX
STREAM_NAME=GBJ_PATTERN_NUM
STREAM_CPU=SYDNEY
BRANCH_JOB_NAME=BRANCH_1
PARENT=PATTERN_NUMBER_JOB
==
============= Input parameters =============
CONDITION_SWITCH=COMPLEX
ACTION_SWITCH=CANCEL
CONDITION_COUNT=1
PATTERN[1]=Free space on volume
IS_CASE_SENSITIVE[1]=YES
IS_REGULAR_EXPRESSION[1]=NO
VALUE[1]=30
ARITHMETICAL_OPERATOR[1]=-gt

Condition:
CONDITION_SWITCH=COMPLEX

PATTERN_1=Free space on
volume VALUE_1=30

ARITHMETICAL_OPERATOR_1=gt

Extract from the parent’s joblog

Figure 64. Numeric comparison branch definition

922 IBM Workload Scheduler: User’s Guide and Reference

NEGATE_CONDITION_RESULT[1]=NO
==
============= MAIN DECISION MAKING =============
COMPLEX condition evaluation
----------ATOMIC CONDITION 1------------
Searching for "Free space on volume" in JOBLOG of PATTERN_NUMBER_JOB
Pattern FOUND, performing further tests.
Searching for NUMBER withing row...
Number found=50. Evaluating arithmetical expression [50 -gt 30]
Arithmetical expression [50 -gt 30] evaluated as TRUE.
ATOMIC CONDITION RESULT [1]= TRUE

-------- COMPLEX CONDITION ----------
[TRUE]
CONDITION_RESULT=TRUE
TRUE: The result of complex condition is TRUE.
==
============= Action on STOP Branch =============
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAEET.B_DO_THE_BAD_THING
%cj SYDNEY#0AAAAAAAAAAAAEET.B_DO_THE_BAD_THING;schedid;noask
Command forwarded to batchman for SYDNEY#GBJ_PATTERN_NUM[(2113 12/17/07),
(0AAAAAAAAAAAAEET)].B_DO_THE_BAD_THING
==
============= Action on RUN Branch =============
Performing action RELEASE on job SYDNEY#0AAAAAAAAAAAAEET.G_DO_THE_GOOD_THING
Releasing of job SYDNEY#0AAAAAAAAAAAAEET.G_DO_THE_GOOD_THING is NOT NECESSARY,
because priority=10
==
============= Statistics of branch job BRANCH_1 =============
TRUE: The result of complex condition is TRUE.
For action CANCEL - RUN_BRANCH=G_DO_THE_GOOD_THING and
STOP_BRANCH=B_DO_THE_BAD_THING
BRANCH selected to STOP: B_DO_THE_BAD_THING
BRANCH selected to CONTINUE: G_DO_THE_GOOD_THING
CANCELED_JOBS: B_DO_THE_BAD_THING
PAUSED_JOB:
RELEASED_JOB:
============ END of branch job BRANCH_1 ==========

Required input parameters

Table 172 shows the parameters required for the pattern within pattern row
scenario.

Table 172. Input parameters for the Numeric comparison scenario

Parameter name Parameter value

CONDITION_SWITCH COMPLEX

PATTERN_1 Free space on volume

VALUE_1 30

ARITHMETICAL_OPERATOR -gt

It is important to understand the order used to pass the numbers to the
arithmetical expression:
number_from_the_joblog compared_against number_supplied_as_parameter

compared_against is the arithmetical operator specified as parameter. If you do not
specify an operator, the default value -eq (equals) is used.

The following example shows the parameter definition. The text is entered into the
Comments field of the job stream definition.

Appendix D. Defining and managing generic branch jobs 923

BRANCH_1-BEGIN
CONDITION_SWITCH=COMPLEX
PATTERN_1=Free space on volume
VALUE_1=30
ARITHMETICAL_OPERATOR_1=-gt
BRANCH_1-END

For a description about how to specify the parameters to the branch job, see
“Specifying the branch job parameters” on page 941.

Placing the branch job into the job stream

Put the generic branch job into the job stream after the parent job and rename the
good child with the "G_" prefix and the bad child with the "B_" prefix.

Also, follow the best practice and rename the branch job so with a suffix consisting
of the underscore character and a numeric value. A typical name for the first
branch job within a job stream is BRANCH_1.

Complex scenario - Multiple conditions
Use the multiple conditions scenario to set multiple sub -conditions at the same
time.

Complex condition usage

This section describes how you put all the atomic elements of a complex condition
together. The generic branch job gets the parent job log and run a complex
condition against it:
v The job log must not include the pattern Error.

and

v One of the following atomic conditions must be satisfied:
– The free space on the Primary device is known, and its value is greater than

50.
– The free space on the Secondary device is known, and its value is greater

than 60.

Figure 65 on page 925 shows the definition for the complex branch scenario.

924 IBM Workload Scheduler: User’s Guide and Reference

The job log shows the output of the generic branch job instance:
============ START of branch job BRANCH_1 ==========
================ Job environment ===================
MASTER_PLATFORM=UNIX
STREAM_NAME=GBJ_COMPLEX
STREAM_CPU=SYDNEY
BRANCH_JOB_NAME=BRANCH_1
PARENT=COMPLEX_JOB
==
============= Input parameters =============
CONDITION_SWITCH=COMPLEX
ACTION_SWITCH=CANCEL
CONDITION_COUNT=3
PATTERN[1]=Error
IS_CASE_SENSITIVE[1]=YES
IS_REGULAR_EXPRESSION[1]=NO
NEGATE_CONDITION_RESULT[1]=YES
PATTERN[2]=Free space on Primary device
IS_CASE_SENSITIVE[1]=YES
IS_REGULAR_EXPRESSION[1]=NO
VALUE[2]=50
ARITHMETICAL_OPERATOR[2]=-gt
BOOLEAN OPERATOR[2]=&&
NEGATE_CONDITION_RESULT[2]=NO
PATTERN[3]=Free space on Secondary device
IS_CASE_SENSITIVE[1]=YES
IS_REGULAR_EXPRESSION[1]=NO
VALUE[3]=60
ARITHMETICAL_OPERATOR[3]=-gt
BOOLEAN OPERATOR[3]=||
NEGATE_CONDITION_RESULT[3]=NO
==
============= MAIN DECISION MAKING =============
COMPLEX condition evaluation
----------ATOMIC CONDITION 1------------
Searching for "Error" in JOBLOG of COMPLEX_JOB

CONDITION
CONDITION_SWITCH=COMPLEX

PATTERN_1=Error
NEGATE_CONDITION_RESULT_1
=YES PATTERN_2=Free space on

Primary device VALUE_2=50
ARITHMETICAL_OPERATOR_2=gt

BOOLEAN_OPERATOR_2=&&
PATTERN_3=Free space on

Secondary device VALUE_3=60
ARITHMETICAL_OPERATOR_3=II

Figure 65. Complex condition definition

Appendix D. Defining and managing generic branch jobs 925

Pattern NOT FOUND, condition evaluated as FALSE.
==NEGATED== ATOMIC CONDITION RESULT [1]= TRUE
----------ATOMIC CONDITION 2------------
Searching for "Free space on Primary device" in JOBLOG of COMPLEX_JOB
Pattern FOUND, performing further tests.
Searching for NUMBER withing row...
Number found=55. Evaluating arithmetical expression [55 -gt 50]
Arithmetical expression [55 -gt 50] evaluated as TRUE.
ATOMIC CONDITION RESULT [2]= TRUE
----------ATOMIC CONDITION 3------------
Searching for "Free space on Secondary device" in JOBLOG of COMPLEX_JOB
Pattern FOUND, performing further tests.
Searching for NUMBER withing row...
Number found=10. Evaluating arithmetical expression [10 -gt 60]
Arithmetical expression [10 -gt 60] evaluated as FALSE.
ATOMIC CONDITION RESULT [3]= FALSE

-------- COMPLEX CONDITION ----------
[TRUE] && [TRUE] || [FALSE]
CONDITION_RESULT=TRUE
TRUE: The result of complex condition is TRUE.
==
============= Action on STOP Branch =============
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAEEW.B_DO_THE_BAD_THING
%cj SYDNEY#0AAAAAAAAAAAAEEW.B_DO_THE_BAD_THING;schedid;noask
Command forwarded to batchman for SYDNEY#GBJ_COMPLEX[(2219 12/17/07)
(0AAAAAAAAAAAAEEW)].B_DO_THE_BAD_THING
==
============= Action on RUN Branch =============
Performing action RELEASE on job SYDNEY#0AAAAAAAAAAAAEEW.G_DO_THE_GOOD_THING
Releasing of job SYDNEY#0AAAAAAAAAAAAEEW.G_DO_THE_GOOD_THING is NOT NECESSARY,
because priority=10
==
============= Statistics of branch job BRANCH_1 =============
TRUE: The result of complex condition is TRUE.
For action CANCEL - RUN_BRANCH=G_DO_THE_GOOD_THING and
STOP_BRANCH=B_DO_THE_BAD_THING
BRANCH selected to STOP: B_DO_THE_BAD_THING
BRANCH selected to CONTINUE: G_DO_THE_GOOD_THING
CANCELED_JOBS: B_DO_THE_BAD_THING
PAUSED_JOB:
RELEASED_JOB:
============ END of branch job BRANCH_1 ==========

Required input parameters

Table 173 shows the parameters required for the complex condition scenario.

Table 173. Input parameters for the complex condition scenario

Parameter name Parameter value

CONDITION_SWITCH COMPLEX

PATTERN_1 Error

NEGATE_CONDITION_RESULT_1 YES

PATTERN_2 Free space on Primary device

VALUE_2 50

ARITHMETICAL_OPERATOR_2 -gt

BOOLEAN OPERATOR_2 &&

PATTERN_3 Free space on Secondary device

VALUE_3 60

926 IBM Workload Scheduler: User’s Guide and Reference

Table 173. Input parameters for the complex condition scenario (continued)

Parameter name Parameter value

ARITHMETICAL_OPERATOR_3 -gt

BOOLEAN OPERATOR_3 ||

The following example shows the parameter definition. The text is entered into the
Comments field of the job stream definition.
BRANCH_1-BEGIN
CONDITION_SWITCH=COMPLEX
PATTERN_1=Error
NEGATE_CONDITION_RESULT_1=YES
PATTERN_2=Free space on Primary device
VALUE_2=50
ARITHMETICAL_OPERATOR_2=-gt
BOOLEAN_OPERATOR_2=&&
PATTERN_3=Free space on Secondary device
VALUE_3=60
ARITHMETICAL_OPERATOR_3=-gt
BOOLEAN_OPERATOR_3=||
BRANCH_1-END

For a description about how to specify the parameters to the branch job, see
“Specifying the branch job parameters” on page 941.

Placing the branch job into the job stream

Put the generic branch job into the job stream after the parent job and rename the
good child with the "G_" prefix and the bad child with the "B_" prefix.

Also, follow the best practice and rename the branch job with a suffix consisting of
the underscore character and a numeric value. A typical name of the first branch
job within a job stream is BRANCH_1.

Additional string parameters

The generic branch job performs the pattern search by using the grep command,
which accepts several input parameters. To refine the pattern search for the generic
branch job, you can use IS_CASE_SENSITIVE_i and IS_REGULAR_EXPRESSION_i.

Use the parameters as follows:

IS_CASE_SENSITIVE_i
To switch on or off a case sensitive search. The default is YES.

IS_REGULAR_EXPRESSION_i
To switch on or off a search based on regular expressions. The default is
NO.

Note: The suffix _i, is the index of the particular subcondition.

For a description about how to specify the parameters to the branch job, see
“Specifying the branch job parameters” on page 941.

Scenarios based on action type
Use a generic branch job based on the action type to specify the action to perform
on the run branch and stop branch.

Appendix D. Defining and managing generic branch jobs 927

You can complete the following actions:
v Stop branch

– CANCEL: The whole stop branch is canceled. This is the most frequent action
on the stop branch.

– PAUSE: The first job of the stop branch is paused (HOLD). For more detailed
information, see Pause/Release actions scenario

v Run branch
– No action: The run branch runs. This is the most frequent action on the run

branch.
– Release: If the first job of the run branch is paused (HOLD), raise its priority

(RELEASE). For more detailed information, see Pause/Release actions
scenario

v Special action
– SIGNAL: This action does not do anything with any of the branches. It

recommends which confirmation the IBM Workload Scheduler operator is to
perform. For more detailed information, see Signal action scenario.

Pause and Release actions scenario
Use this branch job to manage a job stream that is sensitive to some important job
results, for example, to consider when the action performed by an important job
did not complete successfully.

Pause and Release actions usage

Use the pause and release scenario when, even if the branch job identified an error
state, you do not want to cancel the branches. Instead of immediate canceling, you
make the job run a sequence of corrective actions. If the actions succeed, the job
continues as if the error did not occur.

The process flow looks like the following example:
1. You have an important job that is followed by the first branch job.
2. The branch job is followed by a good branch and a bad branch: the good

branch (named OKbranch) includes the jobs to run if everything is successful
and the bad branch (named Correctivebranch) includes a sequence of jobs to
perform corrective actions.

3. The first branch job evaluates the condition run against the parent job (your
important job): if CONDITION=TRUE, everything is successful and the stop
branch is canceled. All the jobs in the corrective branch are also canceled,
because no corrective action is needed.
If CONDITION=FALSE, the stop branch is not canceled but is paused, meaning
that the good child (the first job of the stop branch) is paused. By pausing the
good child, the OKbranch is being HELD.

4. While the OKbranch is being paused, the corrective branch starts corrective
actions.

5. After the sequence of corrective actions completes, the second branch job
(placed within the corrective branch) is submitted to evaluate the result of the
corrective actions.
If the corrective actions succeed, the OKbranch is released; if the corrective
actions fail, the OKbranch is canceled and the job stream continues to run the
bad branch of the second branch job.

928 IBM Workload Scheduler: User’s Guide and Reference

Usually, the bad branch of the second branch job contains only one ABEND job (a
job that performs an exit 1 command). It is a good practice to end the bad branch
of the corrective branch with the ABEND job, because it ensures that the whole job
stream abends (the previous abended jobs had Recovery Option=CONTINUE, so
they did not propagate the ABEND status to the final job stream status).

Note: Both branch jobs must point to the same good child. This is absolutely
crucial for the process to work.

Figure 66 shows the job stream definition for the pause/release scenario. The
ACTION_SWITCH=PAUSE parameter is defined for the first branch job. No
parameters are defined for the second branch job.

This job ABENDS
(command “exit 1”)

Recovery option
of this job MUST be set

to “Continue”

ACTION_SWITCH
=PAUSE

This “OK” branch should
run if the “important” job
ended OK Otherwise we
PAUSE this branch by

pausing the first child of the
branch job. The Second

branch will launch and try
to perform set of corrective
actions. The paused child

will be later either
released or cancelled

by the second brach job

This branch job within the
“corrective branch” will release
the job paused by the first
branch, if the corrective actions
were successful. If they were
not, the paused job and it’s
children are all cancelled. In
this case we often want the job
stream to ABEND. We use the
ABEND job for this task (the
ABEND job just “exit 1”).

Branch dedicated for
corrective actions. If the
corrective action succeeded,
then the “OK” branch will be
released again (by the 2nd
branch job)

Figure 66. Pause and Release actions definition

Appendix D. Defining and managing generic branch jobs 929

The following job log shows the output of the first branch job instance:
============ START of branch job BRANCH_1 ==========
================= Job environment ==================
MASTER_PLATFORM=UNIX
STREAM_NAME=GBJ_PAUSE
STREAM_CPU=SYDNEY
BRANCH_JOB_NAME=BRANCH_1
PARENT=IMPORTANT_JOB_ABEND
==
============= Input parameters =============
CONDITION_SWITCH=PARENT_SUCCESS
ACTION_SWITCH=PAUSE
==
============= MAIN DECISION MAKING =============
Evaluation dependent on PARENT_SUCCESS
FALSE: Searched for SUCC parent.
Status of PARENT JOB(IMPORTANT_JOB_ABEND) is ABEND.
==
============= Action on STOP Branch =============
Performing action PAUSE on job SYDNEY#0AAAAAAAAAAAAEEX.G_DO_THE_GOOD_THING
%altpri SYDNEY#0AAAAAAAAAAAAEEX.G_DO_THE_GOOD_THING;schedid;0;noask
Command forwarded to batchman for SYDNEY#GBJ_PAUSE[(2300 12/17/07),

(0AAAAAAAAAAAAEEX)].G_DO_THE_GOOD_THING
==
============= Action on RUN Branch =============
Performing action RELEASE on job
SYDNEY#0AAAAAAAAAAAAEEX.B_PERFORM_CORRECTIVE_ACTIONS
Releasing of job SYDNEY#0AAAAAAAAAAAAEEX.B_PERFORM_CORRECTIVE_ACTIONS
is NOT NECESSARY,
because priority=10
==
============= Statistics of branch job BRANCH_1 =============
FALSE: Searched for SUCC parent.
Status of PARENT JOB(IMPORTANT_JOB_ABEND) is ABEND.
For action PAUSE - RUN_BRANCH=B_PERFORM_CORRECTIVE_ACTIONS
and STOP_BRANCH=G_DO_THE_GOOD_THING
BRANCH selected to STOP: G_DO_THE_GOOD_THING
BRANCH selected to CONTINUE: B_PERFORM_CORRECTIVE_ACTIONS
CANCELED_JOBS:
PAUSED_JOB: G_DO_THE_GOOD_THING
RELEASED_JOB:
============ END of branch job BRANCH_1 ==========

The following job log shows the output of the second branch job instance:
============ START of branch job BRANCH_2 ==========
==
============= Job environment =============
MASTER_PLATFORM=UNIX
STREAM_NAME=GBJ_PAUSE
STREAM_CPU=SYDNEY
BRANCH_JOB_NAME=BRANCH_2
PARENT=SOME_CORRECTIVE_JOB_2
==
============= Input parameters =============
CONDITION_SWITCH=PARENT_SUCCESS
ACTION_SWITCH=CANCEL
==
============= MAIN DECISION MAKING =============
Evaluation dependent on PARENT_SUCCESS
TRUE: Searched for SUCC parent. Status of
PARENT JOB(SOME_CORRECTIVE_JOB_2) is SUCC.
==
============= Action on STOP Branch =============
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAEEX.B_ABEND_JOB
%cj SYDNEY#0AAAAAAAAAAAAEEX.B_ABEND_JOB;schedid;noask
Command forwarded to batchman for SYDNEY#GBJ_PAUSE[(2300 12/17/07),

930 IBM Workload Scheduler: User’s Guide and Reference

(0AAAAAAAAAAAAEEX)].B_ABEND_JOB
==
============= Action on RUN Branch =============
Performing action RELEASE on job
SYDNEY#0AAAAAAAAAAAAEEX.G_DO_THE_GOOD_THING
Releasing SYDNEY#0AAAAAAAAAAAAEEX.G_DO_THE_GOOD_THING, because priority=0
%altpri SYDNEY#0AAAAAAAAAAAAEEX.G_DO_THE_GOOD_THING;schedid;10;noask
Command forwarded to batchman for SYDNEY#GBJ_PAUSE[(2300 12/17/07),

(0AAAAAAAAAAAAEEX)].G_DO_THE_GOOD_THING
==
============= Statistics of branch job BRANCH_2 =============
TRUE: Searched for SUCC parent. Status of
PARENT JOB(SOME_CORRECTIVE_JOB_2) is SUCC.
For action CANCEL - RUN_BRANCH=G_DO_THE_GOOD_THING and
STOP_BRANCH=B_ABEND_JOB
BRANCH selected to STOP: B_ABEND_JOB
BRANCH selected to CONTINUE: G_DO_THE_GOOD_THING
CANCELED_JOBS: B_ABEND_JOB
PAUSED_JOB:
RELEASED_JOB:G_DO_THE_GOOD_THING
============ END of branch job BRANCH_2 ==========

Required input parameters

Table 174 shows the parameters required for the first branch job of the
pause/release scenario. The second branch job does not require any parameters.

Table 174. Input parameters for the pause and release scenario

Parameter name Parameter value

ACTION_SWITCH PAUSE

Note:

v The parameter ACTION_SWITCH=PAUSE is required only for the first branch
job within the job stream. The second branch job must have ACTION
SWITCH=CANCEL (this the default value).

v Both branch jobs must point to the same good child.
v Each branch job must have a different suffix. For example, in this simple pause

and release scenario, two branch job names are used: BRANCH_1 and
BRANCH_2.

The parameter definition looks like the following example. The text is entered into
the Comments field of the job stream definition.
BRANCH_1-BEGIN
ACTION_SWITCH=PAUSE
BRANCH_1-END

For a description about how to specify the parameters to the branch job, see
“Specifying the branch job parameters” on page 941.

Placing the branch job into the job stream

Put the generic branch job into the job stream after the parent job and rename the
good child with the "G_" prefix and the bad child with the "B_" prefix.

The first branch job determines the OKbranch (followed by the good child) and the
CorrectiveBranch (followed by the bad child). The job representing the good child
must have the "G_" prefix, while the job representing the bad child must have the
"B_" prefix."

Appendix D. Defining and managing generic branch jobs 931

Both branch jobs must point to the same good child. This means that the good
child of the first branch job must be identical to the good child of the second
branch job.

The best practice is to place the ABEND job as the bad child of the second branch
job. The ABEND job just calls system command exit 1 , which causes the job to
ABEND.

Having an ABEND job in the bad branch ensures that the ABEND status is
propagated also to the job stream level. Any previously ABENDed jobs would not
propagate the ABEND state to the job stream level if the job has the Recovery
Option set to Continue. To allow the branch job to run, you must set the Recovery
Option to Continue for all the branch job parents.

Multiple pause and release actions scenario
Use the multiple pause and release actions scenario to run a sequence of corrective
actions and exit the corrective branch when any of them is successful. When a
correction completes successfully, the branch job cancels the remaining corrective
actions and releases the OKbranch.

Multiple pause and release actions usage

Figure 67 on page 933 shows the job stream definition.

932 IBM Workload Scheduler: User’s Guide and Reference

You must set the parameter ACTION_SWITCH=PAUSE for all the branch jobs
except the last one. Therefore, in this scenario, branch jobs BRANCH_1,

If no corrective
action has

been
successful,
let run the

ABEND job

OK Branch

1st attempt
to RELEASE

2nd attempt
to RELEASE

3rd attempt
to RELEASE

Corrective Branch

Figure 67. Multiple pause and release scenario definition

Appendix D. Defining and managing generic branch jobs 933

BRANCH_2, and BRANCH_3 must have ACTION_SWITCH=PAUSE. If you do not
specify this parameter, the good child is canceled by one middle branch job.

All branch jobs must point to the same good child.

Ensure that each branch job has a different suffix. For example, in this scenario the
names BRANCH_1, BRANCH_2, BRANCH_3, and BRANCH_4 are used.

The best practise is to set the ABEND job as the bad child of the last branch job.
The ABEND job calls the system command exit 1. This causes the job to ABEND
and its status is propagated to the job stream level.

Signal action scenario
Use this scenario to have a signal job that processes and stores information that is
useful for you to make a decision in the job log.

Signal action scenario usage

From a logical perspective, the signal job and branch job are different in their last
step (the performed action). While the branch job always cancels, pauses, or
releases its child jobs, the signal job only records a recommendation for you to
make a decision. Instead of blocking the process, the signal scenario selects the run
branch and allows the job stream to continue. This scenario extends the approach
already available with the IBM Workload Scheduler prompts; it represents the
combination of prompts with the capabilities of the branch job.

In this scenario there are two jobs in the following sequential order:
1. Signal job
2. Branch job

For the signal job:
1. Specify the parameter ACTION_SWITCH=SIGNAL and set the Recovery

Option to CONTINUE. In the job stream definition, set the flag Requires
Confirmation.
The signal job performs the evaluation logic, meaning that it evaluates the
condition against the parent's properties, but does not cancel or pause any of its
child jobs.
The Requires Confirmation flag causes the signal job to stop processing the job
stream. After the signal job completes, it remains in the PEND status. The
signal job log shows the complete condition evaluation process, included the
confirmation recommendation. This means that the signal job evaluates the
condition and writes the recommendation (either Confirm SUCC or Confirm
ABEND) in its job log.

2. Look at the signal job log and decide whether to confirm the job with either a
SUCC or ABEND status.
The following branch job starts only after you confirm the signal job. The
branch job evaluates the status you set for the signal job and determines the
run branch and stop branch.

This last step represents the simple branching, which is described in “Simple
branch scenario” on page 900.

Figure 68 on page 935 shows the job stream definition for the signal scenario.

934 IBM Workload Scheduler: User’s Guide and Reference

The log of the first branch job shows that the job is being HELD, because it is in
PEND status. This status requires your confirmation, otherwise the job's successors
do not run.
============ START of branch job SIGNAL_1 ==========
================= Job environment ==================
MASTER_PLATFORM=UNIX
STREAM_NAME=GBJ_SIGNAL
STREAM_CPU=SYDNEY
BRANCH_JOB_NAME=SIGNAL_1
PARENT=PATTERN_JOB
==
============= Input parameters =============
CONDITION_SWITCH=COMPLEX
ACTION_SWITCH=SIGNAL
CONDITION_COUNT=1
PATTERN[1]=completed successfully
IS_CASE_SENSITIVE[1]=YES
IS_REGULAR_EXPRESSION[1]=NO
NEGATE_CONDITION_RESULT[1]=NO
==
============= MAIN DECISION MAKING =============
COMPLEX condition evaluation
----------ATOMIC CONDITION 1------------
Searching for "completed successfully" in JOBLOG of PATTERN_JOB
Pattern FOUND, performing further tests.
No additional value defined for specified pattern. Condition evaluated as TRUE.
ATOMIC CONDITION RESULT [1]= TRUE

-------- COMPLEX CONDITION ----------
[TRUE]
CONDITION_RESULT=TRUE
TRUE: The result of complex condition is TRUE.
==

ACTION_SWITICH=SIGNAL

NO parameters for
this branch job. It performs

just “simple branching”

Recovery option
of this job

MUST be set
to “Continue”

Options

(Requires Confirmation
MUST be set for this

job within the job stream
definition)

Figure 68. Signal action definition

Appendix D. Defining and managing generic branch jobs 935

============= Statistics of branch job SIGNAL_1 =============
******Recommended confirmation for this job is SUCC.******
============ END of branch job SIGNAL_1 ==========

The log of the second branch job shows the processing of the following branch job
instance.
============ START of branch job BRANCH_1 ==========
==
============= Job environment =============
MASTER_PLATFORM=UNIX
STREAM_NAME=GBJ_SIGNAL
STREAM_CPU=SYDNEY
BRANCH_JOB_NAME=BRANCH_1
PARENT=SIGNAL_1
==
============= Input parameters =============
CONDITION_SWITCH=PARENT_SUCCESS
ACTION_SWITCH=CANCEL
==
============= MAIN DECISION MAKING =============
Evaluation dependent on PARENT_SUCCESS
TRUE: Searched for SUCC parent. Status of PARENT JOB(SIGNAL_1) is SUCC.
==
============= Action on STOP Branch =============
Performing action CANCEL on job SYDNEY#0AAAAAAAAAAAAEI6.B_DO_THE_BAD_THING
%cj SYDNEY#0AAAAAAAAAAAAEI6.B_DO_THE_BAD_THING;schedid;noask
Command forwarded to batchman for SYDNEY#GBJ_SIGNAL[(0012 12/21/07),

(0AAAAAAAAAAAAEI6)].B_DO_THE_BAD_THING
==
============= Action on RUN Branch =============
Performing action RELEASE on job SYDNEY#0AAAAAAAAAAAAEI6.G_DO_THE_GOOD_THING
Releasing of job SYDNEY#0AAAAAAAAAAAAEI6.G_DO_THE_GOOD_THING is NOT NECESSARY,

because priority=10
==
============= Statistics of branch job BRANCH_1 =============
TRUE: Searched for SUCC parent. Status of PARENT JOB(SIGNAL_1) is SUCC.
For action CANCEL - RUN_BRANCH=G_DO_THE_GOOD_THING and

STOP_BRANCH=B_DO_THE_BAD_THING
BRANCH selected to STOP: B_DO_THE_BAD_THING
BRANCH selected to CONTINUE: G_DO_THE_GOOD_THING
CANCELED_JOBS: B_DO_THE_BAD_THING
PAUSED_JOB:
RELEASED_JOB:
============ END of branch job BRANCH_1 ==========

Required input parameters

Table 175 shows the parameters required for the signal job. The following branch
job does not take any parameters.

Table 175. Input parameters for the signal action scenario

Parameter name Parameter value

ACTION_SWITCH SIGNAL

The parameter definition looks like the following example. The text is entered into
the Comments field of the job stream definition.

Note: This definition lists also some parameters that are required only when you
use the signal job for a pattern search within the parent job log, which is the main

936 IBM Workload Scheduler: User’s Guide and Reference

advantage of the signal scenario. You use it to perform the complex parsing of a
job's output, saving time and making the final decision according to the collected
information.
SIGNAL_1-BEGIN
CONDITION_SWITCH=COMPLEX
PATTERN_1=completed successfully
ACTION_SWITCH=SIGNAL
SIGNAL_1-END

For a description about how to specify the parameters to the branch job, see
“Specifying the branch job parameters” on page 941.

Placing the branch jobs into the job stream

Put the signal job after the job to be evaluated. Assign to the signal job a name
consisting of the string SIGNAL and a numeric value (in this scenario, SIGNAL_1 is
used).

The following branch job is the immediate successor of the signal job. Assign it a
name with the appropriate suffix: if it is the first branch job within the job stream,
the name might be BRANCH_1.

The child jobs of the branch job must be named according to the common
guidelines:
v The good child's name must begin with the "G_" prefix.
v The bad child's name must begin with the "B_" prefix.

Working with the branch job
You can use the generic branch job in your IBM Workload Scheduler environment.

To understand how to use the generic branch jobs, see:
v “Prerequisites to run branch jobs” on page 570
v “Defining the branch job and signal job in the database” on page 938
v “Placing the branch job into the job stream” on page 940
v “Using the ABEND job” on page 941

Prerequisites to run branch jobs
To run the generic branch job, ensure that the following system prerequisites are
met.

On Windows operating systems:
v Because the Windows operating systems cannot natively interpret UNIX shell

scripts, you must install a shell interpreter to use the TWA_home\TWS\bin\
branch.sh shell script on the Windows master domain manager.

v The directory C:\cygwin\bin must point to the bin subdirectory of your Cygwin
installation directory. If you have installed Cygwin in a directory other than the
default, use the corresponding path.

On UNIX operating systems, only bash or korn shells are supported.

If your UNIX workstation uses a bourne shell, open the branch.sh file located in
TWA_home/TWS/bin on the master domain manager and change #!/bin/sh to
point to a bash (#!/bin/bash) or korn shell (#!/bin/ksh).

Appendix D. Defining and managing generic branch jobs 937

|

|
|

|

|
|
|

|
|
|

|

|
|
|

Defining the branch job and signal job in the database
To define the branch and signal jobs in the IBM Workload Scheduler database you
can use either the Dynamic Workload Console or composer.

Defining two jobs pointing to one shell script

To run any branch job scenario, you must define a branch job. To run a signal
scenario, you must define also a signal job. Both jobs point to the same shell script
file with the difference that:
v For the branch job, you set the Recovery Option to STOP.
v For the signal job, you set the Recovery Option to CONTINUE.

You have two different jobs pointing to the same shell script file to protect against
incorrect placement of the branch job or signal job into the job stream. The branch
job checks if it is correctly placed into the job stream; if not, it ABENDs. To prevent
the successors from running, the branch job has the Recovery Option set to STOP.

The signal job performs the same check; if it is misplaced within the job stream the
job prints an error message and exits with a nonzero return code. Even if the
Recovery Option is set to Continue, the job does not release its successors from the
dependency because it has the flag Requires Confirmation set within the job
stream definition. The signal job, therefore, remains in the PEND status waiting for
you to check its job log.

For more detailed information, see “Signal action scenario” on page 934.

Defining the branch job using the Dynamic Workload Console

To define a branch job in the IBM Workload Scheduler database using the Dynamic
Workload Console, perform the following steps:
1. Open the Workload Designer.
2. Click New -> Job Definition -> Native and, according to your operating

system, either UNIX or Windows.
3. In the General pane, specify the following fields:
v Name: BRANCH

v Workstation: your master domain manager
v Login: name of the user that submits and runs the job on the master domain

manager
4. In the Task pane:
v Select the Script radio button.
v According to your operating system:

UNIX In the Task field, specify the complete path to the branch.sh shell
script. Use forward slashes (/).

Windows
In the Task field, specify two paths:
– The first path points to Cygwin: provide the complete path to the

Cygwin bash executable. Use standard Windows notation, that is,
backslashes (\) as directory separators.

– The second path points to the shell script: provide the complete
path to the branch.sh shell script. Use forward slashes (/). If the
path contains spaces, insert it within double quotation marks.

938 IBM Workload Scheduler: User’s Guide and Reference

For example, the value for the Task field might be:
c:\cygwin\bin\bash\ "TWA_home\TWS\bin\branch.sh"

5. On the Recovery Options pane, set Action to Stop.

Note: You can use the IBM Workload Scheduler parameters as you would in any
other job definition.

Defining the signal job using the Dynamic Workload Console

To define a signal job in the IBM Workload Scheduler database using the Dynamic
Workload Console , perform the following steps:
1. Open the Workload Designer.
2. Click New -> Job Definition -> Native and, according to your operating

system, either UNIX or Windows.
3. In the General pane, specify the following fields:
v Name: SIGNAL

v Workstation: your master domain manager
v Login: name of the user that submits and runs the job on the master domain

manager
4. In the Task pane:
v Select the Script radio button.
v According to your operating system:

UNIX In the Task field, specify the complete path to the branch.sh shell
script. Use forward slashes (/).

Windows
In the Task field, specify two paths:
– The first path points to Cygwin: provide the complete path to the

Cygwin bash executable. Use standard Windows notation, that is,
backslashes (\) as directory separators.

– The second path points to the shell script: provide the complete
path to the branch.sh shell script. Use forward slashes (/). If the
path contains spaces, insert it within double quotation marks.

For example, the value for the Task field might be:
c:\cygwin\bin\bash\ "TWA_home\TWS\bin\branch.sh"

5. On the Recovery Options pane, set Action to Continue.

Defining the branch job and signal job using composer

To define a branch job and signal job in the IBM Workload Scheduler database
from the composer, perform the following steps:
1. Log on to the master domain manager as the user who has the permissions to

ADD jobs.
2. According to your operating system, create a new job definition similar to the

following examples:

UNIX
$JOBS
SYDNEY#BRANCH
SCRIPTNAME "TWA_home/TWS/bin/branch.sh"
STREAMLOGON tws
TASKTYPE UNIX
RECOVERY STOP

Appendix D. Defining and managing generic branch jobs 939

|

|

|
|
|
|
|
|

SYDNEY#SIGNAL
SCRIPTNAME "TWA_home/TWS/bin/branch.sh"
STREAMLOGON tws
TASKTYPE UNIX
RECOVERY CONTINUE

Windows
$JOBS
HELSINKI#BRANCH
SCRIPTNAME "c:\cygwin\bin\bash\ "TWA_home\TWS\

bin\branch.sh""
STREAMLOGON tws
TASKTYPE WINDOWS
RECOVERY STOP

$JOBS
HELSINKI#BRANCH
SCRIPTNAME "c:\cygwin\bin\bash\ "TWA_home\TWS\

bin\branch.sh""
STREAMLOGON tws
TASKTYPE WINDOWS
RECOVERY CONTINUE

Placing the branch job into the job stream
You can place the generic branch job into the job stream by using the Workload
Dynamic Console.

General rules

To place the branch job into the job stream correctly, ensure that:
v You have only one branch job definition in the IBM Workload Scheduler

database, as described in “Defining the branch job and signal job in the
database” on page 938.

v When you are inserting the branch job into the job stream, you assign it an alias
that describes the branch job's positioning within the job stream.

v Name the first branch job BRANCH_1, the second BRANCH_2, and so on.

Rules valid for all scenarios except the Signal action

The following rules apply to all the scenarios of branch job usage, except for the
SIGNAL action:
v The branch job must have only one predecessor.
v The branch job must have exactly two child jobs, named as follows:

– The good child name must start with G_.
– The bad child name must start with B_.

Rules valid for the SIGNAL action scenario

The following rules apply to the SIGNAL action:
v You must use two jobs sequentially ordered, as follows:

– Signal job
– Branch job

v The signal job must have only one child, which represents the following branch
job.

v For the signal job, you must set the input parameter ACTION_SWITCH=SIGNAL.

940 IBM Workload Scheduler: User’s Guide and Reference

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

v For the signal job, you must set the flag Requires Confirmation by editing the
branch job's properties.

v The signal job must have only one predecessor.
v The branch job must comply with the rules described in “Rules valid for all

scenarios except the Signal action ” on page 940.

Using the ABEND job
Use the ABEND job when you want to propagate the ABEND state to the job
stream status.

If something bad occurs in your job stream and it is detected by the branch job,
you can propagate this bad status at the job stream level by putting the ABEND job
in the bad branch that follows the branch job.

The ABEND job issues only the command exit 1, which causes the job to ABEND,
and ensures that the ABEND status is propagated to the job stream. Any
previously ABENDed jobs do not propagate the ABEND status to the job stream
because they have the recovery option set to Continue (this is required to allow the
branch job to run).

For an example of an ABEND job, see “Placing the branch job into the job stream”
on page 940.

Specifying the branch job parameters
Specify the parameters for the branch job in the Comments field of the job stream
that contains the affected branch job.

Note: Ensure that you specify the parameters in the Comments field, not the
Description field of the job stream editor.

Each parameter must be enclosed between a begin separator and an end separator,
even if you are specifying parameters for only one branch job. Separators are
constructed as follows:

Begin separator
The name of the branch job, followed by the string -BEGIN. for example
BRANCH_1-BEGIN.

End separator
The name of the branch job, followed by the string -END, for example
BRANCH_1-END.

The following example shows a parameter definition for one job branch:
BRANCH_1-BEGIN
CONDITION_SWITCH=COMPLEX
PATTERN_1=Error
NEGATE_CONDITION_RESULT_1=YES
PATTERN_2=Free space on Primary device
VALUE_2=50
ARITHMETICAL_OPERATOR_2=-gt
BOOLEAN_OPERATOR_2=&&
PATTERN_3=Free space on Secondary device
VALUE_3=60
ARITHMETICAL_OPERATOR_3=-gt
BOOLEAN_OPERATOR_3=||
BRANCH_1-END

Appendix D. Defining and managing generic branch jobs 941

The following example shows a parameter definition for a job stream with two
branch jobs:
BRANCH_1-BEGIN
CONDITION_SWITCH=COMPLEX
PATTERN_1=Error
NEGATE_CONDITION_RESULT_1=YES
PATTERN_2=Free space on Primary device
VALUE_2=50
ARITHMETICAL_OPERATOR_2=-gt
BOOLEAN_OPERATOR_2=&&
PATTERN_3=Free space on Secondary device
VALUE_3=60
ARITHMETICAL_OPERATOR_3=-gt
BOOLEAN_OPERATOR_3=||
BRANCH_1-END
BRANCH_2-BEGIN
CONDITION_SWITCH=COMPLEX
PATTERN_1=Backup of Primary device
VALUE_1=ERROR
NEGATE_CONDITION_RESULT_1=YES
BRANCH_2-END

The name of signal jobs must start with the string SIGNAL. Parameter separators are
also required:
SIGNAL_1-BEGIN
ACTION_SWITCH=SIGNAL
SIGNAL_1-END

Parameters reference
The syntax and meaning of the branch job parameters.

Parameter types

There are two types of parameters:

Fixed You can specify fixed parameters only once in one job.

Indexed
You can specify indexed parameters multiple times in one job, or not
specify them at all.

Fixed parameters

You can specify the following fixed parameters:

CONDITION_SWITCH
The type of condition that is run against the parent job. It can have the
following values:

PARENT_SUCCESS
The condition is TRUE when the parent ends in the SUCC state.
This is the default value. For a description of this condition, see
“Scenarios based on condition type” on page 900.

PARENT_ABEND
The condition is TRUE when the parent ends with the ABEND
state. For a description of this condition, see “Parent abend” on
page 909.

COMPLEX
The condition is built from one or multiple subconditions

942 IBM Workload Scheduler: User’s Guide and Reference

connected with Boolean operators (AND or OR) and is evaluated
with Boolean logic. For a description of this condition, see
“Complex scenario - Multiple conditions” on page 924.

ACTION_SWITCH
The action to perform on the stop branch. It can have the following values:

CANCEL
The stop branch is canceled. This is the default value.

PAUSE
The stop branch is paused. For a description of this condition, see
“Pause and Release actions scenario” on page 928.

SIGNAL
No branch is canceled. A recommendation requiring your
confirmation is stored in the job log. For a description of this
condition, see “Signal action scenario” on page 934.

Indexed parameters

Use indexed parameters only with the parameter
CONDITION_SWITCH=COMPLEX specified (otherwise, they are ignored during
branching process).

When you specify CONDITION_SWITCH=COMPLEX, the branch job evaluates a
complex condition (a condition with one or more subconditions). Each
subcondition has its own index, which starts with number 1 and is incremental.

For each subcondition you must define at least one Pattern_i parameter, where i
represents the relationship between the subcondition and the corresponding
parameter. The suffix looks like indexed_parameter_i, where _i is the suffix. For
example, the following three parameters belong to the same subcondition, which is
the second within the complex condition; their affinity is expressed by the suffix
_2, which represents the index of the subcondition:
PATTERN_2=find this row and number in this row
VALUE_2=50
ARITHMETICAL_OPERATOR_2=-lt

Group the parameters relating to one subcondition by using the same index.
subconditions are evaluated separately and then connected together by Boolean
operators. The complex condition is then evaluated.

Index usage examples

The following example shows the parameters to specify if you want to search for
three patterns in the parent job log. The index acts as the incremental counter. The
parameters belong to three separate subconditions:
PATTERN_1=first pattern to find
PATTERN_2=second pattern to find
PATTERN_3=third pattern to find

Use the following syntax to specify the parameters related to the same
subcondition (for example, searching for a pattern, then for a number in the same
row and the subsequent arithmetical comparison). You supply the number and
arithmetical operator as input parameters.

Appendix D. Defining and managing generic branch jobs 943

PATTERN_1=Free space on Primary device
VALUE_1=50
ARITHMETICAL_OPERATOR_1=-gt

Indexed parameters meaning

The following list describes the indexed parameters and their possible values. You
can use all these parameters to create a single subcondition.

PATTERN_i
Search for a text pattern (for example, ended successfully). If the pattern
is found, the condition result is TRUE.

For the PATTERN_i parameter, you can specify the following additional
parameters. If PATTERN_i is not specified, they are ignored.

VALUE_i
Can be either STRING or NUMERIC. This is determined
automatically when reading the particular value parameter during
the branch job startup.

The value specified by VALUE_i is searched for in the same row
identified by the search for the string indicated by PATTERN_i.

Two types of value are possible and they are determined
automatically by parsing the content of the VALUE_i parameter:

String value
Searches for another text pattern within the same row.

If both patterns are found within the same row, the
condition result is TRUE.

For a description of this function, see “Complex branch -
Pattern within pattern row” on page 916.

Numeric value
Searches for the numeric value within the same row.

The arithmetical operator you specified is then used to
perform the arithmetical comparison. If the arithmetical
comparison succeeded, the condition is TRUE. A specific
arithmetical operator is defined for each numeric value.

For a description of this function, see “Complex branch -
Numeric value comparison” on page 921.

ARITHMETICAL_OPERATOR_i
The operator used for the arithmetical comparison.

NEGATE_CONDITION_RESULT_i
This argument negates the result of the particular subcondition,
meaning that it swaps the TRUE or FALSE result of the
subcondition.

BOOLEAN_OPERATOR_i
The defined subconditions are joined together by the Boolean operator
AND or OR. You can use the Boolean operator because i=2. This means
that the index of the Boolean operator must be at least 2.

For example, you have two parameters in the list. Each of them represents
one subcondition. Each subcondition is evaluated separately and their
result is returned as either TRUE or FALSE. To evaluate the whole
condition, you must join the particular results together.

944 IBM Workload Scheduler: User’s Guide and Reference

The meaning of BOOLEAN_OPERATOR_i is that the connect result of this
subcondition with the result of the preceding subcondition uses the Boolean
operator AND or OR.

Reference tables

Table 176 describes the parameters, their possible values, and default.

Table 176. Parameters and values

Parameter name Possible values Default value

CONDITION_SWITCH PARENT_SUCCESS

PARENT_ABEND

COMPLEX

PARENT_SUCCESS

ACTION_SWITCH CANCEL

PAUSE

SIGNAL

CANCEL (for branch
jobs)

SIGNAL(for signal jobs)

PATTERN_i, where i is the
incremental index

Any string

VALUE_i, where i is the
incremental index

Any string

Any numeric value

(integer or real)

ARITHMETICAL_OPERATOR_i,
where i is the incremental index

-lt

-le

-eq

-ne

-ge

-gt

-eq

IS_CASE_SENSITIVE_i, where i is
the incremental index

YES

NO

YES

IS_REGULAR_EXPRESSION_i,
where i is the incremental index

YES

NO

NO

NEGATE_CONDITION_RESULT_i,
where i is the incremental index

YES

NO

NO

BOOLEAN OPERATOR_i, where i
is the incremental index

&&

||

&&

The values for arithmetical and Boolean operators use UNIX syntax. Their
meanings are shown in Table 177 on page 946.

Appendix D. Defining and managing generic branch jobs 945

Table 177. Arithmetical operators description

Parameter UNIX value
Parameter value
interpretation Parameter value meaning

-lt < Less than

-le <= Less or equal

-eq = Equal

-ne != Not equal

-ge >= Greater or equal

-gt > Greater than

&& AND Logical AND

|| OR Logical OR

Case sensitivity
The following rules apply when you specify a parameter:
v Parameter names are not case sensitive.
v The values of fixed parameters are not case sensitive.
v The patterns to be searched for in the parent job log are case sensitive. To

override this behavior, specify IS_CASE_SENSITIVE_i=NO, where i represents
the current subcondition index. For example, for the following parameter:
PATTERN_2=some text

you switch the case sensitive pattern search by specifying this additional
parameter:
IS_CASE_SENSITIVE_2=NO

If you are searching for two patterns within the same row, this parameter affects
both of them.

v The parameter separators required to define the branch job are case sensitive.
You must specify the separators in uppercase letters, otherwise they are not read
and the default values are used.

Sample condition examples
The following sections summarize how to construct simple or more complex
parameter sets.

Simple branch, long branch scenarios

This function uses the default values:
v CONDITION_SWITCH=PARENT_SUCCESS
v ACTION_SWITCH=CANCEL

You do not need to specify any input parameters for these scenarios. The default
values are supplied automatically by the branch job.

Pause action

This function needs at least one fixed parameter. You must use at least two branch
jobs to implement the pause and release scenario.

946 IBM Workload Scheduler: User’s Guide and Reference

To use the pause and release function, you must override the default behavior for
the first branch job. The name of the branch job in this example is BRANCH_1. If
the name of your branch job has a different suffix (for example, BRANCH_5), you
must adjust the separator names.

The second branch job in the pause and release approach does not need any input
parameters if it dependents only on its parent's status (SUCC).

The following is the complete syntax together with the parameter separators:
BRANCH_1-BEGIN
ACTION_SWITCH=PAUSE
BRANCH_1-END

No indexed parameters are supplied. Indexed parameters can be used only in
combination with the fixed parameter CONDITION_SWITCH=COMPLEX. Because
the parameter CONDITON_SWITCH is not included, the default value
CONDITION_SWITCH=PARENT_SUCCESS was used.

For information about the combination of the pause action together with the
complex condition, see “Complex condition with pause action” on page 950.

Single pattern search

This function is represented by one subcondition and needs one fixed and one
indexed parameter.

The following example shows the complete syntax together with the parameter
separators. The name of the branch job is BRANCH_1. If the name of your branch
job has a different suffix (for example, BRANCH_5), you must adjust the separator
names.
BRANCH_1-BEGIN
CONDITION_SWITCH=COMPLEX
PATTERN_1=find this text
BRANCH_1-END

There is only one indexed parameter representing the only subcondition.

Negated pattern search

This function is represented by one subcondition and requires one fixed and two
indexed parameters.

The following example shows the complete syntax together with the parameter
separators. The name of the branch job is BRANCH_1. If the name of your branch
job has a different suffix (for instance BRANCH_5), you must adjust the separator
names.
BRANCH_1-BEGIN
CONDITION_SWITCH=COMPLEX
PATTERN_1=do not find this text
NEGATE_CONDITION_RESULT_1=YES
BRANCH_1-END

Both indexed parameters have the same suffix because they belong to the same
subcondition.

Appendix D. Defining and managing generic branch jobs 947

Multiple pattern search

This function is represented by several subconditions and needs one fixed and
several indexed parameters.

In this example, you search for two independent patterns within the parent job log.
You create two separate subconditions, each with its own index (1 and 2). You
must also specify if both patterns must be found (using the Boolean operator AND)
or if finding at least one pattern is sufficient (Boolean operator OR).

The following example shows the complete syntax, together with the parameter
separators. The name of the branch job is BRANCH_1. If the name of your branch
job has a different suffix (for example, BRANCH_5), you must adjust the separator
names.
BRANCH_1-BEGIN
CONDITION_SWITCH=COMPLEX
PATTERN_1=find this text
PATTERN_2=find also this text
BOOLEAN_OPERATOR_2=&&
BRANCH_1-END

The indexed parameters have different suffixes.

The parameter PATTERN_1 belongs to first subcondition and the parameter
PATTERN_2 belongs to the second subcondition. The parameter
BOOLEAN_OPERATOR_2 specifies how the second subcondition is joined to the
first subcondition.

Pattern within pattern search

This function is represented by one subcondition and needs one fixed and two
indexed parameters.

In this example, you search for the text pattern within the parent job log. Then you
search for another pattern within the same row. All the indexed parameters belong
to one subcondition.

The following example shows the complete syntax, together with the parameter
separators. The name of the branch job is BRANCH_1. If the name of your branch
job has a different suffix (for example, BRANCH_5), you must adjust the separator
names.
BRANCH_1-BEGIN
CONDITION_SWITCH=COMPLEX
PATTERN_1=find this text
VALUE_1=and also this text on the same row
BRANCH_1-END

Both indexed parameters have the same suffix because they belong to the same
subcondition.

Pattern search with numeric comparison

This function is represented by one subcondition and requires one fixed and three
indexed parameters.

You search for a text pattern within the parent job log. Then you search for a
number within the same row. You want to compare this number against another

948 IBM Workload Scheduler: User’s Guide and Reference

number that we supply as the input parameter. For the arithmetical comparison,
you use the arithmetical operator that you supply as the input parameter.

All the indexed parameters belong to one subcondition.

The following example shows the complete syntax, together with the parameter
separators. The name of the branch job is BRANCH_1. If the name of your branch
job has a different suffix (for example, BRANCH_5) you must adjust the separator
names.
BRANCH_1-BEGIN
CONDITION_SWITCH=COMPLEX
PATTERN_1=Total backup size
VALUE_1=500
ARITHMETICAL_OPERATOR_1=-lt
BRANCH_1-END

All three indexed parameters have the same suffix because they belong to the same
subcondition.

The meaning of the functions invoked by the parameters specified can be
represented as follows:
1. Get the parent job log.
2. Extract the row containing the string Total backup size.
3. If (row found):
4. Then continue with the next step
5. Else return FALSE
6. Try to extract numeric value from the row.
7. If (number found):
8. Then continue with the next step
9. Else return FALSE

10. If (number_from_joblog < 50):
11. Then return TRUE
12. Else return FALSE

Combination of pattern search and pause action

A non-default condition can be combined with a non-default action. This means
that we use entries for both CONDITION_SWITCH and ACTION_SWITCH in this
scenario.

We demonstrate how to combine single pattern searching together with the pause
action.

This function is represented by one subcondition and needs two fixed parameters
and one indexed parameter.

The following example shows the complete syntax, together with the parameter
separators. The name of the branch job is BRANCH_1. If the name of your branch
job has a different suffix (for example, BRANCH_5), you must adjust the separator
names.

Appendix D. Defining and managing generic branch jobs 949

BRANCH_1-BEGIN
CONDITION_SWITCH=COMPLEX
ACTION_SWITCH=PAUSE
PATTERN_1=find this text
BRANCH_1-END

Both fixed parameters are overridden. The one indexed parameter belongs to the
one subcondition.

Signal action

Different separators are required for the signal scenario.

Two jobs are managing the job stream's workflow:
v The signal job
v The branch job

Only the signal job uses the input parameters.

The name of the signal job consists of the string SIGNAL and the suffix, therefore
the parameter separators look different. Also, for the signal job, the common rules
are valid. The parameter separators must look exactly like the related job name.

This scenario shows the difference together with the parameters for the signal
action. The signal action is combined with the condition based on the pattern
search within the parent job log.

The signal function is represented by one fixed parameter. The pattern search
requires one fixed parameter for the condition type and one indexed parameter
specifying the pattern search.

The following example shows the complete syntax, together with the parameter
separators. The name of the branch job is BRANCH_1. If the name of your branch
job has a different suffix (for example, BRANCH_5), you must adjust the separator
names.
SIGNAL_1-BEGIN
CONDITION_SWITCH=COMPLEX
ACTION_SWITCH=SIGNAL
PATTERN_1=find this text
SIGNAL_1-END

Complex condition with pause action

The complex condition can be combined with the non-default action.

The complex condition is described in “Complex scenario - Multiple conditions”
on page 924. In this scenario, the complex condition is combined with the pause
action.

The following example shows the complete syntax, together with the parameter
separators. The name of the branch job is BRANCH_1. If the name of your branch
job has a different suffix (for example, BRANCH_5), you must adjust the separator
names.
BRANCH_1-BEGIN
CONDITION_SWITCH=COMPLEX
ACTION_SWITCH=PAUSE
PATTERN_1=Error

950 IBM Workload Scheduler: User’s Guide and Reference

NEGATE_CONDITION_RESULT_1=YES
PATTERN_2=Free space on Primary device
VALUE_2=50
ARITHMETICAL_OPERATOR_2=-gt
BOOLEAN_OPERATOR_2=&&
PATTERN_3=Free space on Secondary device
VALUE_3=60
ARITHMETICAL_OPERATOR_3=-gt
BOOLEAN_OPERATOR_3=||
BRANCH_1-END

The meaning of the definition is as follows:
v Subcondition_1: If you find pattern Error, return FALSE, else return TRUE. The

inverted result is accomplished by the NEGATE_CONDITION_RESULT_1
parameter.

v Subcondition_2: Search for the row containing Free space on Primary device.
Extract the number from the row. If the number is greater than 50, return TRUE,
else return FALSE.

v Subcondition_3: Search for the row containing Free space on Secondary device.
Extract the number from this row. If the number is greater than 60, return TRUE,
else return FALSE.

v Join these three subconditions by using Boolean operators so that the complex
condition is constructed as follows:
1. If (subcondition_1 = TRUE) AND (subcondition_2=TRUE) OR

(subcondition_3=FALSE)
2. Then return TRUE
3. Else return FALSE
4. If (complex_condition_result=TRUE)
5. Then CANCEL bad_branch
6. Else PAUSE the good_branch

For more information about the pause and release concepts, see “Pause and
Release actions scenario” on page 928.

Multiple branch jobs within one job stream

You can define parameters for several branch jobs that are defined in the same job
stream. Having more than one branch job within a job stream means that the
different parameter sets are enclosed by different separators .

The following example shows the complete syntax, together with the parameter
separators. The names of the branch jobs are BRANCH_1 and BRANCH_2. If the
name of your branch jobs have different suffixes (for example, BRANCH_5 and
BRANCH_6), you must adjust the separator names.
BRANCH_1-BEGIN
CONDITION_SWITCH=COMPLEX
PATTERN_1=Error
NEGATE_CONDITION_RESULT_1=YES
PATTERN_2=Free space on Primary device
VALUE_2=50
ARITHMETICAL_OPERATOR_2=-gt
BOOLEAN_OPERATOR_2=&&
PATTERN_3=Free space on Secondary device
VALUE_3=60
ARITHMETICAL_OPERATOR_3=-gt
BOOLEAN_OPERATOR_3=||
BRANCH_1-END

Appendix D. Defining and managing generic branch jobs 951

BRANCH_2-BEGIN
CONDITION_SWITCH=COMPLEX
PATTERN_1=Backup of Primary device
VALUE_1=ERROR
NEGATE_CONDITION_RESULT_1=YES
BRANCH_2-END

Important notes about the branch job
This section highlights some considerations and assumptions for the generic
branch job design.
v The name of the branch job within the database is BRANCH. The job must have

set the property Recovery options=STOP.
v The name of the signal job within the database is SIGNAL. The job must have

set the property Recovery options=CONTINUE.
v The name of the branch job put into the job stream must consist of the branch

job name (BRANCH) and the suffix. The suffix reflects the branch job position in
the job stream. For example, BRANCH_3 is the third branch job within the job
stream.

v The name of the signal job put into the job stream must consist of the signal job
name (SIGNAL) and the suffix. The suffix reflects the signal job position in the
job stream. For example, SIGNAL_3 is the third signal job within the job stream.
The suffix counter for signal jobs is different from the suffix counter of branch
jobs, therefore jobs BRANCH_3 and SIGNAL_3 can exist within one job stream
at the same time, even if their suffix is identical.

v The branch job has only one parent. This means that the branch job must have
the FOLLOWS dependency exactly set on one job in the same job stream. This is
checked during the branch job startup. If this condition is not met, the branch
job ABENDS.
Connecting the branch job to more than one parent is stopped by the branch job
and causes the branch job to ABEND.

v For the parent that is evaluated against the result status (SUCC or ABEND) you
must set the following property in the job definition, not in the job stream
definition:
Recovery options=Continue

v For the following branch job usage scenarios, the branch job must have exactly
two child jobs:
– ACTION_SWITCH=CANCEL (default value)
– ACTION_SWITCH=PAUSE
– The child jobs must be identified as the good child and the bad child. The

child jobs must be named as follows:
- The job that represents the good child must have a name beginning with

"G_". It is not necessary to rename the job definition, rename the job's alias
within the job stream.
For example, the job name in the database is START_BACKUP. To use this
job as the good child of the branch job, put this job in the job stream and
within the job stream assign the job the alias G_START_BACKUP.

- The job that represents the bad child must have a name beginning with
"B_". It is not necessary to rename the job definition, rename the job's alias
within the job stream.

952 IBM Workload Scheduler: User’s Guide and Reference

For example, the job name in the database is RESUME_DATABASE. To use
this job as the bad child of the branch job, put this job into the job stream
and within the job stream assign the job the alias of
B_RESUME_DATABASE.
The count of the child jobs and their correct prefixes are checked during
the branch job startup. If these conditions are not met, the branch job
ABENDS.

v The use of quote characters is not implemented in the current version of the
branch job. If you specify quote characters in either the PATTERN_i or VALUE_i
parameters, the quote characters are automatically removed.

v When evaluating the complex condition, the initial search parameter is a text
pattern. This text pattern is searched for in the parent job log. If there are more
than one line that include the searched pattern, only the first matched line is
identified. The other matched lines are ignored.
The content of the first identified line is evaluated by another subcondition, as
shown in the pattern within pattern row and numeric value comparison
scenarios.

v When extracting the numeric value from the pattern row, there can be only one
numeric value in the row. The numeric values of integer and real type are
accepted.
More than one number in the identified pattern row will result in incorrect
numeric value extraction; all numbers from the row will be joined together and
will not represent a meaningful value.

v When you use the signal scenario, the signal job must have exactly one child.
The child must have a subsequent branch job and its name must comply with
the naming conventions for the generic branch job.

v When using the PAUSE and RELEASE action pair, the process is as follows:
– The first branch job sets the priority of the job that is about to be paused to 0.
– The second branch job sets the priority of job that is about to be released to

10.
This function is hardcoded. There is no implemented mechanism that would
allow you to "remember" the original job's priority.

v All the information about the job stream, in which the branch job runs, is
extracted from the database using the composer command when the branch job
starts. This means that the branch job does not reflect any job instances that have
been submitted into the job stream but do not exist in the job stream definition.

Appendix D. Defining and managing generic branch jobs 953

954 IBM Workload Scheduler: User’s Guide and Reference

Appendix E. Accessibility

Accessibility features help users with physical disabilities, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in this product enable users to do the following:
v Use assistive technologies, such as screen-reader software and digital speech

synthesizer, to hear what is displayed on the screen. Consult the product
documentation of the assistive technology for details on using those technologies
with this product.

v Operate specific or equivalent features using only the keyboard.
v Magnify what is displayed on the screen.

In addition, the product documentation was modified to include features to aid
accessibility:
v All documentation is available in both HTML and convertible PDF formats to

give the maximum opportunity for users to apply screen-reader software.
v All images in the documentation are provided with alternative text so that users

with vision impairments can understand the contents of the images.

Navigating the interface using the keyboard

Standard shortcut and accelerator keys are used by the product and are
documented by the operating system. Refer to the documentation provided by
your operating system for more information.

The Event Rule Editor panel is the only one that does not allow keyboard-only
operations and CSS cannot be disabled. However, as an alternative, you can
perform all the operations available in this panel by launching the composer
command from the command line interface.

Magnifying what is displayed on the screen

You can enlarge information on the product windows using facilities provided by
the operating systems on which the product is run. For example, in a Microsoft
Windows environment, you can lower the resolution of the screen to enlarge the
font sizes of the text on the screen. Refer to the documentation provided by your
operating system for more information.

955

956 IBM Workload Scheduler: User’s Guide and Reference

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

957

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data discussed herein is presented as derived under specific
operating conditions. Actual results may vary.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

958 IBM Workload Scheduler: User’s Guide and Reference

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a Registered Trade Mark of AXELOS Limited.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

ITIL is a Registered Trade Mark of AXELOS Limited.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Notices 959

http://www.ibm.com/legal/us/en/copytrade.shtml

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

960 IBM Workload Scheduler: User’s Guide and Reference

Index

Special characters
.jobmanrc configuration script 55
$MANAGER keyword 161
$MASTER keyword 161

A
abend

job state 393
job stream state 400

abend prompt 9
abenp

job state 393
access

extended and network agents 162
workstation definition 162

access control list definition
security access control list 284

access method 748
agent

syntax 748
dynamic agent

option file 751
extended agent

option file 751
IBM Workload Scheduler for z/OS

Agent
option file 751

interface 748
task options 748

access method for dynamic agent
overview 747

access method for extended agent
overview 747

access method jobs 535
accessibility xv, 955
action

element 858
actions on security objects

specifying actions on security
objects 288

ad-hoc prompt 9
add

job state 393
job stream state 400

add command 312
adddep job command 405
adddep sched command 407
advanced rerun options 24
advanced statistics 525

ELAB_JOB_STAT_JS 527, 529
flagging jobs 527
use to forecast job duration 525

affinity
defining 621
syntax 621

affinity relationship
defining 621

affinity with job alias 621
affinity with job ID 621

affinity with job name 621
agent 10, 12

access method
syntax 748

defining Windows user 187
starting 40
stopping 40
workstation definition 163

aggregate
dependencies 773

allocation
element 851

altjob command 409
altpass command 410
altpri command 411
and

element 850
annotation

element 838
application

element 840
application job plug-ins 176

scheduling 12, 531, 617
application server

stopping 500
Appserverbox.msg 42
appservman

stopping 491
architecture 35
archiving

job instances 683
arguments

element 863
at command 629

ATSCRIPT variable 629
at keyword 211, 216
auditbox.msg 42
authenticate command 314
autolink

workstation definition 164
automating plan processing

final job stream 106
automating processing

production plan 106
autostart monman 504
average run time 104

B
backup master domain manager 10
batch command 629
batch reports

logs 740
sample scenario 735
traces 740

batchman process 36
behindfirewall

workstation definition 165
bind

definition 785

bind process
for distributed shadow job 793

branch job
action process 899
adding branch job to database 938
adding signal job to database 938
advantages 899
based on action, definition 928
based on condition, definition 900
branch job

shell script 938
complex conditions 911
corrective actions 928
corrective actions in sequence 932
evaluating job log 911
evaluation process 898
extended pattern searching 916, 919,

921
fixed parameters 942
grep command 927
indexed parameters 942
IS_CASE_SENSITIVE_i

parameter 946
long branching 903
main concepts 895
multiple branching 907
multiple subconditions 924
parameters types 942
parent abend 909
pausing branching 928
prerequisites on UNIX 570, 937
prerequisites on Windows 570, 937
propagating ABEND status to job

stream 941
putting in job stream 940
refining pattern searching 927
releasing branching 928
requesting for confirmation 934
searching for negative pattern 914
searching for pattern 911
signalling an action 934
simple branching 900
specifying in job stream 940
subconditions 911
terms 896
UNIX prerequisites 570, 937
Windows prerequisites 570, 937

broker
workstation definition 163

broker jobs promotion 623
broker promotion variables 623
bulk_discovery command 412

C
calendar

freedays 9
holidays 9
run cycle 9, 202, 226, 247

calendar definition 190
call to a Web service 618

961

call to a Web service (continued)
sample JSDL files 535

cancel command 412
cancel sched command 414
candidateCPUs

element 844
candidateHosts

element 843
candidateOperatingSystems

element 846
candidateResources

element 853
carry forward

remote job 799
shadow job 799

carryforward
customizing 77
job stream keywords 77
stageman 77
variable 101

carryforward keyword 217
carryStates

variable 77, 81
category

element 838
caxtract command 722
check file task

extended agent
syntax 755

checkhealthstatus command 415
checking mailbox health 415
child job on i5/OS 806
child job on IBM i 806
child job settings on AS/400 for

performances 806
child job settings on i5/OS for

performance 806
child job settings on IBM i for

performances 806
child jobs settings for performances on

AS/400 806
class

workstation 13
CLIConfig.properties file

command-line configuration 676
closest preceding

follows 230
follows previous 67
join 236
matching criteria 67

cloud
RESTful Web Services jobs 572
SmartCloud Provisioning jobs 547

Cloud & Smarter Infrastructure technical
training xvi

combine
dependencies 773

command
Cpuinfo 756
logman 102
stageman 100

command line
composer 28
conman 28
optman 28

command line interface
setting 60

command line reporting
setting up 736

command-line configuration
CLIConfig.properties file 676

commands
adddep job 405
adddep sched 407
altjob 409
altpass 410
altpri 411
at 629
batch 629
bulk_discovery 412
cancel job 412
cancel sched 414
caxtract 722
checkhealthstatus 415
confirm 416
console 418
continue (composer) 314
continue (conman) 420
cpuinfo 631
datamigrate 638
datecalc 634
deldep job 420
deldep sched 422
delete 640
deployconf 423
display 424
evtdef 641
evtsize 645
exit 426
exportserverdata 679
fence 427
filemonitor 646
getmon 453
help 428
importserverdata 681
jbxtract 720
jobinfo 650
jobprop 682
jobstdl 652
kill 429
limit cpu 430
limit sched 431
link 432
listsucc 436
listsym 434
maestro 654
makecal 655
metronome 657, 671
morestdl 657
movehistorydata 683
param 685
parms 659
paxtract 722
prxtract 721
r11xtr 724
recall 437
redo 438
release 661
release job 440
release sched 441
rep1 702
rep11 706
rep2 702
rep3 702

commands (continued)
rep4a 702
rep4b1 702
rep7 704
rep8 705
reply 443
reptr 707
rerun 444
rerunsucc 448
resource 451, 688
rextract 723
rmstdlist 666
sendevent 667, 698
setsym 452
showcpus 453
showdomain 459
showexec 668
showfiles 461
showjobs 463
showprompts 481
showresources 484
showschedules 486
shutdown 491
start 492
startappserver 494
startbrokerapp 495
starteventprocessor 496
startmon 496
StartUp 670
StartUpLwa 671
status 497
stop 498
stop ;progressive 499
stopappserver 500
stopbrokerapp 502
stopeventprocessor 502
stopmon 503
submit docommand 504
submit file 507
submit job 511
submit sched 514
switcheventprocessor 518
switchmgr 520
tellop 521
unlink 522
version 524
version utility command 671
xref 708
xrxtrct 725

comment keyword 217
compiler

messages 757
composer

command line 28
messages 757

composer program 297
command line return codes 306
connection parameters 300
control characters 302
delimiters 306
editor 299
filters 303
list of commands 307
offline output 298
prompt 299
running commands 300
setup 298

962 IBM Workload Scheduler: User’s Guide and Reference

composer program (continued)
variables 701
variables on UNIX 298
variables on Windows 298

special characters 306
terminal output 298
wildcards 303
XML editor 299

composer reference 151
computer

resource 870
computer association

retrieving 688
COMPUTERNAME variable 50
computers associated to a resource

retrieving 688
condition-based automation 125
condition-based workload automation

defining 128
conditional automation 125
conditional dependencies

defining 771
definition 769
join 773
plan replication 783

conditional logic 769
confidence factor 104
confidence interval 104, 525
configuration scripts

.jobmanrc 55
djobmanrc.cmd 58
jobmanrc 53
jobmanrc.cmd 57

configuring
local properties 49

confirm command 416
confirmed keyword 218
conman

command line 28
conman program 379

control characters 383
delimiters 385
list of commands 402
offline output 380
processing 386
prompt 381
running commands 381, 384
selecting job 386

arguments 387
jobstream_ID 387
jobstreamname 387
schedid 387
using at 388
using confirm 389
using critical 389
using critnet 389
using deadline 389
using every 389
using finished 390
using follows 390
using logon 391
using needs 391
using opens 392
using priority 392
using prompt 392
using recovery 392
using scriptname 392

conman program (continued)
selecting job (continued)

using started 393
using state 393
using until 394

selecting job streams 395
arguments 395
jobstream_id 395
jobstreamname 395
schedid 396
using at 396
using carriedforward 397
using carryforward 397
using finished 397
using follows 397
using limit 398
using needs 398
using opens 399
using priority 399
using prompt 399
using started 400
using state 400
using until 401

setup 380
set variables 380

special characters 385
terminal output 380
user prompting 383
wildcards 384

Conman program
Conman command line return

codes 402
conman reference 379
conman startappserver

JnextPlan 85
connection parameters

setting 60
connFactory

element 868
console command 418
Console Manager

messages 757
continue command (composer) 314
continue command (conman) 420
controlling

job processing
edit job definition 26

conventions, typeface xvi
Courier.msg 42
cpu

element 844
cpuclass

workstation class definition 171
Cpuinfo

command 756
cpuinfo command 631
cpuname

workstation definition 159
create command 325
CreatePostReports

JnextPlan 86
creating

workload application 362
creating forecast

planman command line 94

creating job definition
oslc automation, prerequisite

steps 560
oslc provisioning, prerequisite

steps 560
scp, prerequisite steps 546

creating trial
planman command line 92

credential
element 859, 864, 869

critical dynamic job promotion 623
critical jobs

global options 110
local options 112
security file 113

critical keyword 218
cross dependencies

defining 785
managing 785

cross dependency
as dependency on a shadow job 789
definition 789
how to add to the plan 791
information flow 787, 794
introduction 785
logic 785
monitoring resolution in plan 791
production plan 791
remote engine workstation 785
remote job 785
shadow job 785
steps to define 789

crucial dynamic jobs 623
custom events

defining 149, 641
sending 149, 667
sending from dynamic agents 698

customizing the workload
using variable table 119

D
d-pool

workstation 164
daily run cycle 3
data integrity

variable table 121
database

replicating plan 26
database data extract 535, 618
database data validation 535, 618
database objects 360

access method jobs 545
add command 312
authenticate command 314
calendars 190
continue command 314
create command 325
database jobs 565
delete command 315
display command 319
displaying composer banner 360
domains 171
edit command 324
event rules 269
executable jobs 543
exit command 325

Index 963

database objects (continued)
extract command 325
file transfer 552
help command 330
IBM i jobs 540
J2EE jobs 577
Java jobs 576
JCL jobs 537
job stream 209
Job Stream submission jobs 591
JobManagement 586
jobs 173
JSR 352 Java Batch 579
list command 330
lock command 337
modify command 341
MQTT 582
MSSQL jobs 568
new command 346
OSLC Automation jobs 561
OSLC Provisioning jobs 563
print command 330
prompts 9, 197
redo command 348
rename command 349
replace command 352
resources 199
run cycle group 200
Security access control list

definition 283
Security domain definition 284
Security role definition 286
shadow jobs 550
twstrace command 699
unlock command 353
update command 357
users 185
validate command 359
variable table 195
variables 191
VariableTable 584
wappman command 374
web services 570
workstation classes 170
workstations 154

database operations 618
sample JSDL files 535

database performance
improving 683

database stored procedure
database jobs 618

sample JSDL files 535
sample JSDL files 535

datamigrate command 638
date

run cycle 202, 226, 247
datecalc command 634
day

run cycle 202, 226, 247
DB tables maintenance

movehistorydata command 683
DB2 database jobs 565
deadline keyword 219
default variable table

using 120

defining
condition-based workload

automation 128
conditional dependencies 771
database objects

access method jobs 545
AS/400 jobs 540
calendars 190
database jobs 565
domains 171
event rules 269
executable jobs 543
file transfer 552
i5/OS jobs 540
IBM i jobs 540
J2EE jobs 577
Java jobs 576
JCL jobs 537
job stream 209
Job Stream Submission job 591
JobManagement 586
jobs 173
JSR 352 Java Batch 579
MQTT 582
MSSQL jobs 568
OSLC Automation jobs 561
OSLC Provisioning jobs 563
prompts 9, 197
resources 199
run cycle group 200
Security access control list 283
Security domain 284
Security role 286
shadow jobs 550
variables 191
VariableTable 584
web services 570
windows users 185
workstation classes 170
workstations 154

defining security objects in the
database 283

dependencies
follows 230
join 236
needs 245
opens 254
prompts 257

remote command jobs 538
RESTful Web Services jobs 572
security objects in the database 283
SmartCloud Provisioning jobs 547

Defining agents on AS/400 systems 801
Defining agents on i5/OS systems 801
Defining agents on IBM i systems 801
Defining IBMi jobs 801
Defining jobs on AS/400 801
Defining jobs on i5/OS 801
Defining jobs on IBM i 801
defining non-operational jobs in job

streams 246
Defining objects

in the database 151
definingworkload application 362
definition

variable table 195
deldep job command 420

deldep sched command 422
delete command 315, 640
dependencies

conditional 769
join, combine 773
orphaned 70

dependency
cross 794
internetwork 759, 763

deployconf command 423
Deploying rules

planman command line 95
description keyword 220
destination

element 868
directory names, notation xvii
diskSpace

element 848
display command 319, 424
djobmanrc configuration script 58
docommand

job definition 176
domain 14

workstation definition 161
domain definition 171

ismaster 172
manager 172
parent 172

domain manager 10
done

job state 393
doubleVariable

element 839
draft keyword 220
dynamic agent

access method
option file 751

gateway 12
overview 747
workstation definition 163

dynamic agent instances
creating

no installing 595
Installing plu-ins 595
Installing plug-ins 595

dynamic agents 531, 617
dynamic capabilities 531, 617
dynamic database jobs 173, 536
dynamic file transfer jobs 173, 536
dynamic java jobs 173, 536
dynamic job creation 173, 536
dynamic job promotion 623
dynamic jobs 154, 173, 176, 536

access method jobs 545
AS/400 jobs 540
database jobs 565
executable jobs 543
file transfer job 552
i5/OS jobs 540
IBM i jobs 540
J2EE jobs 577
Java jobs 576
JCL jobs 537
Job Stream Submission job 591
JobManagement job 586
JSR 352 Java Batch job 579
MQTT job 582

964 IBM Workload Scheduler: User’s Guide and Reference

dynamic jobs (continued)
MSSQL job 568
OSLC Automation jobs 561
OSLC Provisioning jobs 563
remote command job 538
RESTful Web Services job 572
SmartCloud Provisioning job 547
VariableTable job 584
web services job 570

dynamic pool 10, 13, 617
defining 154
defining Windows user 187
workstation 164

dynamic pools
scheduling job types with advanced

options 531, 617
dynamic scheduling 10, 12, 13, 531, 617

job definition 173, 536
job types with advanced options 531,

617
task job definition 176
workstation definition 154

dynamic web service jobs 173, 536
dynamic workload broker instance

URI 679, 681
Dynamic Workload Console

accessibility xv
dynamic workstations 10, 154

E
edit command 324
editing job definitions 619, 620
education xvi
ejb

element 867, 868
ELAB_JOB_STAT_JS 527, 529
elements

action 858
allocation 851
and 850
annotation 838
application 840
arguments 863
candidateCPUs 844
candidateHosts 843
candidateOperatingSystems 846
candidateResources 853
category 838
connFactory 868
cpu 844
credential 859, 864, 869
destination 868
diskSpace 848
doubleVariable 839
ejb 867, 868
endpointReference 853
environment 864
estimatedDuration 857
ewlm 856
executable 861
fileSystem 847
group 849
groupName 865
hostName 843
invoker 866
j2ee 866

elements (continued)
JAASAuthenticationAlias 870
jms 867
jndiHome 868
jobDefinition 837
logicalResource 848
maximumResourceWaitingTime 856
message 869
objective 854
operatingSystem 846
optimization 853
or 850
orderedCandidatedWorkstations 843
parameters 859
password 860, 866, 870
physicalMemory 845
priority 857
properties 850
recoveryActions 857
relatedResources 842
relationship 852
requirement 851
resources 841
scheduling 856
script 863
speed 845
stringVariable 839
tpmaction 859
tpmaddress 860
uintVariable 840
userName 860, 865, 869
value 863
variable 864
variables 838
virtualMemory 846
workflow 861

enabling
SSL communication 165
time zone 741

enCarryForward
variable 77, 81

enCFInterNetworkDeps
variable 82

enCFResourceQuantity
variable 82

end keyword 221
endpointReference

element 853
enLegacyId

variable 83
enLegacyStartOfDayEvaluation

variable 84, 742
enPreventStart

variable 82
enTimeZone

variable 84, 741
environment

element 864
environment variables

job promotion 623
environment variables, notation xvii
error

job state 393
estimated duration 104, 525
estimated run time 104, 525
estimatedDuration

element 857

event rule 17
event rule definition 269

eventRules.xsd 270
keywords

actionProvider 276
actionType 277
activeTime 272
correlationAttributes 276
daylight saving time 272
description 271, 278
eventCondition 273
eventProvider 273
eventRule 271
eventType 273
filteringPredicate 275
isDraft 271
name 271
onDetection 277
onTimeOut 277
operator 276
responseType 277
ruleType 271
scope 275, 278
timeInterval 272
timeZone 272
validity 272

event rules
instances 149
sample scenarios 132, 140
timeout option 140
variable substitution 140

every keyword 221
used in job definitions 222
used in job stream definitions 221

evtdef command 641
evtsize command 645
ewlm

element 856
EWLM integration

enabling in jobs 853
optimization capability 853

EWLM optimization
enabling in jobs 853

except keyword 225
exclusive run cycle 3
exec

job state 393
job stream state 400

executable
element 861

executable jobs 535
existing job types

definition 1
existing jobs

improving 624
existing jobs with dynamic

capabilities 624
exit command 325, 426
exporting

job stream definition 365
exportserverdata command 679
extended agent

access method
option file 751
response messages 750
running 753
troubleshooting 756

Index 965

extended agent (continued)
check file task

syntax 755
get status task

syntax 755
overview 747
workstation definition 162

EXTERNAL
job stream 763
jobs 764

extract command 325
extrn

job state 394

F
fail

job state 394
fault-tolerant agent 10
fdignore

except 229
on 205, 250

fdnext
except 229
on 205, 250

fdprev
except 229
on 205, 250

fence
job state 394

fence command 427
file dependencie

defining 621
file dependencies 621

defining 621
file dependencies 621

file system
related resource 870

file transfer jobs 618
sample JSDL files 535

file transfer operations 618
sample JSDL files 535

filemonitor command 646
files

Appserverbox.msg 42
at.allow 631
at.deny 631
auditbox.msg 42
Courier.msg 42
Intercom.msg 42
Mailbox.msg 42
mirrorbox.msg 42
Monbox.msg 43
Moncmd.msg 43
NetReq.msg 43
PlanBox.msg 43
Server.msg 43

fileSystem
element 847

filters
composer 303

final job stream
automating plan processing 106

FNCJSI
preproduction plan 65

follows
matching criteria 230

follows absolute to
matching criteria 68
within an absolute interval 68

follows keyword 230
follows previous

closest preceding 67
matching criteria 67

follows relative to
matching criteria 68
within a relative interval 68

follows sameday
matching criteria 67
same day 67

forecast plan
creating 94
description 80
earliest start time calculation 80

forecast start time enablement 80
freedays keyword 233
freedays run cycle 3
fta

workstation definition 162
fullstatus

workstation definition 165

G
generic Java job 618

template 535
generic Web service call 618

template 535
get status task

extended agent
syntax 755

global options
carryforward variable 101
carryStates 77
carryStates variable 81
enCarryForward variable 77, 81
enCFInterNetworkDeps variable 82
enCFResourceQuantity variable 82
enLegacyId variable 83
enLegacyStartOfDayEvaluation

variable 84, 742
enPreventStart variable 82
enTimeZone variable 84, 741
logmanMinMaxPolicy variable 83
logmanSmoothPolicy variable 83
maxLen variable 81
minLen variable 81
startOfDay variable 81, 742
untilDays 81

global options file
name 751

global parameter 119
definition 191
variable table 119

global parameters 119
global prompt 9
group

element 849
groupName

element 865

H
help command 330, 428
hold

job state 394
job stream state 400

hold status 440
HOME variable 50, 51, 57
HOMEDRIVE variable 50
HOMEPATH variable 50
host

extended agents 161
workstation definition 161

hostName
element 843

I
IBM i jobs 535

AS400 jobs 535
IBM Workload Scheduler

architecture 35
basic concepts 1
controlling job processing 20
defining activities 20
issuing commands on Windows 35
managing production 26
network 18
object 1
overview 1
processes 35
quick start 30
running event management 27
runtime environment 19
user interfaces 28

IBM Workload Scheduler for z/OS Agent
access method

option file 751
icalendar

run cycle 202, 226, 248
identifying job stream instances

in the plan 66
at 66
scheddateandtime 66

preproduction plan 66
ignore

workstation class definition 171
important dynamic jobs 623
importing

workload application 366
importingworkload application 366
importserverdata command 681
improving database performance 683
inclusive run cycle 3
Installing plug-in

dynamic agent instances 595
Installing plug-ins

agent instances 595
Integration with IBM Tivoli Monitoring

6.1
bulk_discovery 412

integrity of data
variable table 121

interactive
job definition 177

Intercom.msg 42
interface 748

966 IBM Workload Scheduler: User’s Guide and Reference

intermediate plan
extending with 90
generating 89

internetwork dependency
creating 763
managing using conman 763

intro
job state 394

invoker
element 866

ismaster
domain definition 172

J
j2ee

element 866
J2EE jobs 535
JAASAuthenticationAlias

element 870
Java API 30
Java jobs 618

sample JSDL files 535
Java operations 618

sample JSDL files 535
jbxtract command 720
jms

element 867
jndiHome

element 868
JnextPlan

conman startappserver 85
CreatePostReports 86
MakePlan 85
SwitchPlan 86
UpdateStats 86

job 1
calculating run time 104
controlling process

edit job definition 26
forecasting run time 525

job association
defining 621

Job Brokering Definition Console
editing job definitions 619, 620

job creation 173, 536
job definition 173

access method jobs 545
creating 535, 619, 620
database jobs 565
docommand 176
executable jobs 543
file transfer jobs 552
IBM i jobs 540
interactive 177
J2EE jobs 577
Java jobs 576
JCL jobs 537
JobManagement jobs 586
JSR 352 Java Batch jobs 579
MQTT jobs 582
MSSQL jobs 568
OSLC Automation jobs 561
OSLC Provisioning jobs 563
recovery option 180
remote command jobs 538
RESTful Web Services jobs 572

job definition (continued)
scriptname 175
shadow jobs 550
SmartCloud Provisioning jobs 547
streamlogon 177
task 176
tasktype 177
using variables and parameters 184
VariableTable jobs 584
web services jobs 570

job dependency
defining 621

job environment on AS/400 810
job environment on i5/OS 810
job environment on IBM i 810
job in job stream

onlate 252
job instances

archiving 683
job optimization

EWLM integration 853
job processing

configuring 58
job promotion 110

environment variables 623
job promotion on dynamic pools 623
job statement

in job streams 235
job states

abend 393
abenp 393
add 393
done 393
error 393
exec 393
extrn 394
fail 394
fence 394
hold 394
intro 394
pend 394
ready 394
sched 394
succ 394
succp 394
wait 394

job stream 2
calculating run time 104
EXTERNAL 763

job stream definition 209
exporting 365

job stream keywords
at 216
carryforward 77, 217
comment 217
confirmed 218
critical 218
deadline 219
description 220
draft 220
end 221
every 221

used in job definitions 222
used in job stream definitions 221

except 225
follows 230
freedays 233

job stream keywords (continued)
job statement 235
join 236
jsuntil 238
keyjob 240
keysched 240
limit 240
matching 241
maxdur 242
mindur 244
needs 245
nop 246
on 246, 252
onoverlap 253
opens 254
priority 256
prompt 257
schedtime 258
schedule 259
startcond 261
statisticstype custom 261
timezone 265
until 265
validfrom 268
vartable 269

job stream states
abend 400
add 400
exec 400
hold 400
ready 400
stuck 400
succ 400

job stream submission
Job Stream Submission jobs 591

job streams keywords
at 211
jsuntil 238
onmaxdur 242
onmindur 244
onuntil 206, 207, 238, 265, 266
startcond 261

Job Submission Description Language
(JSDL) 831

job targets
defining 870

job types 618
template 535

job types with advanced options 531,
617, 618, 624

definition 1
dynamic scheduling 1
sample JSDL files 535
scheduling 12, 176
scheduling dynamically 531, 617
scheduling statically 531, 617
static scheduling 1
template 535

jobDefinition
element 837

jobinfo command 650
jobman

environment variables 50
Jobman

messages 757
jobman process 37

limit cpu 37

Index 967

jobmanrc configuration script 53, 57
jobprop command 682
jobs

allocation 870
creating 870
defining 870
jobs

consumable properties 870
optimizable properties 870

optimization 870
jobstdl command 652, 657
join

dependencies 773
matching criteria 236

join keyword 236
JSDL (Job Submission Description

Language) 831
JSDL statements 831
jsuntil keyword 238

K
keyjob keyword 240
keysched keyword 240
keywords

at 211, 216
carryforward 217
comment 217
confirmed 218
critical 218
deadline 219
description 220
draft 220
end 221
every 221

used in job definitions 222
used in job stream definitions 221

except 225
follows 230
freedays 233
join 236
jsuntil 238
keyjob 240
keysched 240
limit 240
matching 241
maxdur 242
mindur 244
needs 245
nop job in job stream 246
on 246
onlate 252
onoverlap 253
opens 254
priority 256
prompt 257
schedtime 258
schedule 259
startcond 261
statisticstype custom 261
timezone 265
until 265
validfrom 268
vartable 269

kill command 429

L
LANG variable 50, 51
late status 219
LD_LIBRARY_PATH variable 51
LD_RUN_PATH variable 51
licensetype

licensing 159
licensing

licensetype 159
licensing model

actual workstation 476
pricing model 476

limit cpu
jobman process 37

limit cpu command 430
limit keyword 240
limit sched command 431
link command 432
list command 330
listsucc command 436
listsym command 434
local option

mm retry link variable 106
local options file

name 751
local parameter

database 659
definition 191
exporting 659
importing 659
managing 659

local password
managing on dynamic agents 685

local prompt 9
local properties 49
local variable

managing on dynamic agents 685
LOCAL_RC_OK variable 53, 57
lock command 337
lock mechanism

variable table 121
log level on AS/400 803, 805
log level on i5/OS 803, 805
log level on IBM i 803, 805
log settings on AS/400 803, 805
log settings on i5/OS 803, 805
log settings on IBM i 803, 805
logging job statistics 102
logical resource 17

related resource 870
logical resource association

retrieving 688
logical resource information

retrieving 688
logicalResource

element 848
logmanMinMaxPolicy

variable 83
logmanSmoothPolicy

variable 83
LOGNAME variable 50, 51
long term plan

preproduction plan 65

M
maestro command 654
MAESTRO_OUTPUT_STYLE

variable 50, 51
MAIL_ON_ABEND variable 54, 55, 57

on a Windows workstation 57
mailbox files

Appserverbox.msg 42
auditbox.msg 42
Courier.msg 42
Intercom.msg 42
Mailbox.msg 42
mirrorbox.msg 42
Monbox.msg 43
Moncmd.msg 43
NetReq.msg 43
PlanBox.msg 43
Server.msg 43
setting size 645

Mailbox.msg 42
mailman process 36

ServerID 36
makecal command 655
MakePlan

JnextPlan 85
manager

workstation definition 163
managing

external follows dependencies 67
matching criteria 67
objects in the database 151
production cycle 63
shadow job in the plan 799
workload applications 281, 361

Managing agents on AS/400
systems 802

Managing agents on i5/OS systems 802
Managing agents on IBM i systems 802
managing events

starting the event processing
server 496

starting the monitoring engine 496
stopping the event processing

server 502
stopping the monitoring engine 503
switching the event processing

server 518
managing jobs and agents on

AS/400 801
managing jobs and agents on i5/OS 801
managing jobs and agents on IBM i 801
managing jobs and agents on IBM i

dynamic environment 801
managing objects

command line 297
in plan 379

managing plan
adding dependency to job

streams 407
adding dependency to jobs 405
altering priority 411
altering user password 410
assigning console 418
cancelling job streams 414
cancelling jobs 412
confirming job completion 416

968 IBM Workload Scheduler: User’s Guide and Reference

managing plan (continued)
deleting dependency to job

streams 422
deleting dependency to jobs 420
displaying conman banner 524
displaying help information 428
displaying jobs or job streams 424
displaying production plan

status 497
displaying workstation

information 453
exiting conman 426
get active monitors 453
ignoring command 420
limiting jobs running in job

stream 431
linking workstations 432
listing job successors 436
listing processed plans 434
listing unresolved prompts 437
modifying job fence 427
modifying jobs 409
modifying jobs running on

workstation 430
modifying resource units 451
releasing job streams from

dependency 441
releasing jobs from dependency 440
replying to prompts 443
requesting a bulk_discovery 412
rerunning commands 438
rerunning job successors 448
rerunning jobs 444
selecting processed plan 452
sending messages to operator 521
setting message level 418
showing domain information 459
showing file dependencies 461
showing job information 463
showing job streams information 486
showing prompts information 481
showing resource information 484
shutting down workstation

processes 491
starting the application server 494
starting the dynamic workload broker

application 495
starting workstation processes 492
stopping behindfirewall workstation

processes 499
stopping jobs 429
stopping the application server 500
stopping the dynamic workload

broker application 502
stopping workstation processes 498
submitting commands as jobs 504
submitting file as jobs 507
submitting job streams 514
submitting jobs 511
switching domain management 520
unlinking workstations 522
updating the monitoring configuration

file 423
managing time zone 741

time zone name
with variable length 741

mapping file, regular expressions 371

mapping file, workload applications 367
master domain manager 10
matching criteria

closest preceding 67, 241
follows 230
follows absolute to 68
follows previous 67
follows relative to 68
follows sameday 67
join 236
pending predecessor 70
predecessor 69
same day 67, 241
successor 69
within a relative interval 68, 241
within an absolute interval 68, 241

matching keyword 241
maxdur keyword 242
maximumResourceWaitingTime

element 856
maxLen

variable 81
mechanism of lock

variable table 121
members

workstation class definition 171, 285,
286

workstation definition 167
message

element 869
messages

compiler 757
composer 757
Console Manager 757
Jobman 757

metronome command 657, 671
migrating 119
mindur keyword 244
minLen

variable 81
mirrorbox.msg 42
mirroring 26
modify command 341
Monbox.msg 43
Moncmd.msg 43
monman process 36
movehistorydata command 683
MSSQL database jobs 565
MSSQL jobs 535

N
name

global options file 751
local options file 751

named prompt 9
needs keyword 245
Netezza database jobs 565
netman process 36
netmth access method 761
NetReq.msg 43
network agent

access method
options file 761

access method netmth 761
definition 761
EXTERNAL 763

network agent (continued)
EXTERNAL state

ERROR 764
EXTRN 764

internetwork dependency 759
creating 763
managing using conman 763

overview 759
reference 759
sample scenario 762

network communication 45
job processing 45
start of day 45

network system
related resource 870

new command 346
new executor 618
new executors 176

access method jobs 545
AS/400 jobs 540
database jobs 565
executable jobs 543
file transfer job 552
i5/OS jobs 540
IBM i jobs 540
J2EE jobs 577
Java jobs 576
JCL jobs 537
Job Stream Submission job 591
JobManagement job 586
JSR 352 Java Batch job 579
MQTT job 582
MSSQL jobs 568
OSLC Automation jobs 561
OSLC Provisioning jobs 563
remote command job 538
RESTful Web Services job 572
scheduling 12, 531, 617
SmartCloud Provisioning job 547
template 535
VariableTable job 584
web services job 570

new plug-ins 535, 618
access method jobs 545
AS/400 jobs 540
database jobs 565
executable jobs 543
file transfer job 552
i5/OS jobs 540
IBM i jobs 540
J2EE jobs 577
Java jobs 576
JCL jobs 537
Job Stream Submission job 591
JobManagement job 586
JSR 352 Java Batch job 579
MQTT job 582
MSSQL jobs 568
OSLC Automation jobs 561
OSLC Provisioning jobs 563
remote command job 538
RESTful Web Services 572
SmartCloud Provisioning 547
template 535
VariableTable job 584
web services job 570

Index 969

no installing
dynamic agent instances 595

nop keyword 246
notation

environment variables xvii
path names xvii
typeface xvii

O
object attribute values

specifying object attribute values 294
object attributes

attributes for object types 293
objective

element 854
offset-based run cycle 3
old jobs

improving 624
old jobs with dynamic capabilities 624
on

run cycle 246
on keyword 246

run cycle 246
onlate

job in job stream 252
onlate keyword 252

run cycle 252
onmaxdur keyword 242
onmindur keyword 244
onoverlap keyword 253
onuntil keyword 206, 207, 238, 265, 266
opens keyword 254
operating system

related resource 870
operatingSystem

element 846
optimization

element 853
option file

dynamic agent
access method 751

extended agent
access method 751

IBM Workload Scheduler for z/OS
Agent

access method 751
options

untilDays 81
optman

command line 28
or

element 850
Oracle database jobs 565
orderedCandidatedWorkstations

element 843
orphaned

dependencies 70
os type

workstation definition 160
oslc automation job definition

prerequisite steps 560
oslc provisioning job definition

prerequisite steps 560
overview

access method for dynamic
agent 747

overview (continued)
access method for extended

agent 747
dynamic agent 747
extended agent 747

P
param command 685
parameter 17
parameter definition 191
parameters

element 859
in job definitions 184

parent
domain definition 172

parms command 659
password

defining on dynamic agent 595
element 860, 866, 870
job types with advanced options 595
resolving on dynamic agent 595

path names, notation xvii
PATH variable 51
paxtract command 722
pend

job state 394
pending predecessor

matching criteria 70
orphaned dependencies 70
successor 70

physical resource 17
physicalMemory

element 845
plan

quick start 30
plan data 26
plan management

basic concepts 63
customizing 77, 81
logman 102
stageman 100

plan replication
conditional dependencies 783

PlanBox.msg 43
planman command line

connection parameters 88
creating forecast 94
creating trial 92
Deploying rules 95
intermediate plan 89, 90
monitor replication 99
removing plan 97
replicating plan data 98
resetting plan 97
retrieving plan info 91
trial extension 93
unlocking plan 96

planman deploy 139
plug-ins 30
pool 10, 12, 617

defining 154
defining Windows user 187
workstation 164

pools
scheduling job types with advanced

options 531, 617

POSIXHOME variable 57
predecessor

matching criteria 69
successor 65, 69

preproduction plan
description 65
FNCJSI 65
long term plan 65
removing plan 97

print command 330
priority

element 857
priority keyword 256
processes

batchman 36
jobman 37
mailman 36
monman 36
netman 36
ssmagent 36
writer 36

production cycle 63
identifying job stream instances 66
managing 63
planman command line 88

production plan
automating processing 106
description 77
generating 85, 86
JnextPlan 63, 85, 86
monitor replication 99
replicating data 98
resetting plan 97
retrieving info 91
starting processing 106
Symphony file 63, 85, 86
unlocking plan 96

promoting a job 110
prompt

abend 9
ad-hoc 9
global 9
local 9
named 9
recovery 9

prompt definition 9, 197
prompt keyword 257
properties

element 850
protocol

workstation definition 167
Provisioning job definition

prerequisite steps 546
prxtract command 721

R
r11xtract command 724
ready

job state 394
job stream state 400

recall command 437
recovery

job definition 180
recovery options

continue 24
recovery jobs 24

970 IBM Workload Scheduler: User’s Guide and Reference

recovery options (continued)
rerun 24
stop 24

recovery prompt 9
recoveryActions

element 857
redo command 348, 438
referential integrity check 308
related resource

file system 870
logical resource 870
network system 870
operating system 870

relatedResources
element 842

relationship
element 852

release command 661
release job command 440, 443
release sched command 441
rem-eng

workstation 163
remote engine

cross dependency 794
how it is bound 793
workstation 154, 163

remote engine workstation 10, 13, 18
defining 785, 789

remote job
carry forward 799
defining 785
failed 798
status transition during recovery 799

removing plan
planman command line 97

rename command 349
rep1 command 702
rep11 command 706
rep2 command 702
rep3 command 702
rep4a command 702
rep4b command 702
rep7 command 704
rep8 command 705
replace command 352
replicate plan 26
report commands 701

Actual Production Detail
sample output 715

Actual Production Details 707
Actual Production Summary 707
Calendar Listing 702

sample output 712
changing date format 702
Cross Reference 708

sample output 717
extract programs 719

caxtract 722
jbxtract 720
paxtract 722
prxtract 721
r11xtr 724
rextract 723
xrxtract 725

Job Details Listing 702
sample output 709

Job Histogram 705

report commands (continued)
sample output 714

Job History Listing
sample output 713

Parameter Listing
sample output 713

Parameters Listing 702
Planned Production Detail

sample output 714
Planned Production Details 707
Planned Production Schedule 706

sample output 716
Planned Production Summary 707
Prompt Listing 702

sample output 712
Resource Listing 702

sample output 713
sample outputs 709
setup 701

reports commands
Job History Listing 704
list of commands 702

reptr command 707
requirement

element 851
requirements

workstation definition 167
rerun command 444
rerun with successors 24
rerunsucc command 448
reserved keywords

for job streams 152
for user definitions 153
for workstations 153

reserved words
for job streams 152
for user definitions 153
for workstations 153

resetFTA command 450
resetting plan

planman command line 97
resolution

variable 122
resource

computer 870
logical 17
physical 17
scheduling 17

resource command 451, 688
running from agent

CLIConfig.properties setup 696
requirement 696

resource definition 199
resource optimization

enabling in jobs 853
EWLM integration 853

resource types
consumable 871

resources
element 841
optimizable 871

return code on AS/400 809
return code on i5/OS 809
return code on IBM i 809
return codes

database job 594
file transfer job 594

return codes (continued)
Java job 594
job executor 594
job with advanced options 594
web services job 594

rextract command 723
rmstdlist command 666
rule 17
rule-based run cycle 3
run cycle

calendar 202, 226, 247
daily 3
date 202, 226, 247
day 202, 226, 247
exclusive 3, 9
freedays 3
icalendar 202, 226, 248
inclusive 3, 9
offset-based 3
on 246
rule-based 3
simple 3
weekly 3
yearly 3

run cycle group 200
file definition syntax 878

run cycle group definition 200
running system commands

from composer 353
from conman 383, 521

S
same day

follows 230
follows sameday 67
join 236
matching criteria 67

sched
job state 394

schedtime keyword 258
schedule keyword 259
scheduling

element 856
scheduling job types with advanced

options 531, 617
scheduling language 209
scheduling resource 17
script

element 863
scriptname

job definition 175
secureaddr

workstation definition 161
security

variable tables 121
security access control list

security access control list
definition 284

Security access control list definition 283
security domain

security domain definition 285
security domain definition

security domain 285
Security domain definition 284
security role

security role definition 286

Index 971

security role definition
security role 286

Security role definition 286
securitylevel 165

workstation definition 165
sendevent command 667, 698
Server.msg 43
ServerID

mailman process 36
workstation definition 166

ServiceNow
event actions 827

setsym command 452
setting

connection parameters 60
setup

command line reporting 736
shadow job 2

carry forward 799
defining 785, 789
definition 550
during remote job recovery 799
failed 798
managing in the current plan 799
status fail 798
status transition after bind 797

SHELL_TYPE variable 54
showcpus command 453
showdomain command 459
showexec command 668
showfiles command 461
showjobs command 463
showprompts command 481
showresources command 484
showschedules command 486
shutdown

utility command 669
shutdown command 491
ShutDownLwa

utility command 670
simple run cycle 3
slow database access 683
specific job types 618

sample JSDL files 535
speed

element 845
SPSS

ELAB_JOB_STAT_JS
importing and configuring 527
running 529
troubleshooting 529

flagging jobs 527
installing 525
use to forecast job duration 525

SSL communication
enabling 165

stageman
carryforward 77
SwitchPlan 100

standard agent
workstation definition 162

standard jobs
improving 624

standard jobs with dynamic
capabilities 624

start command 492
start condition 125

start of day
establishing communication 46

startappserver command 494
startbrokerapp command 495
startcond keyword 261
starteventprocessor command 496
starting

WebSphere Application Server 40
workstation processes 40

Starting and stopping agents on AS/400
systems 802

Starting and stopping agents on i5/OS
systems 802

Starting and stopping agents on IBM
i 802

Starting and stopping agents on IBM i
systems 802

starting processing
production plan 106

startmon command 496
startOfDay

variable 81, 742
StartUp command 670
StartUpLwa command 671
statisticstype custom, keyword 261
status

late 219
status command 497
stop command 498
stop; progressive command 499
stopappserver command 500
stopbrokerapp command 502
stopeventprocessor command 502
stopmon command 503
stopping

WebSphere Application Server 40
workstation processes 40

streamlogon
job definition 177
windows user definition 185

stringVariable
element 839

stuck
job stream state 400

submit docommand command 504
submit file command 507
submit job

return code 402
submit job command 511
submit sched command 514
succ

job state 394
job stream state 400

successor
matching criteria 69
pending predecessor 70
predecessor 65, 69

succp
job state 394

switcheventprocessor command 518
switching extended agents

$MANAGER keyword 161
$MASTER keyword 161

switchmgr command 520
SwitchPlan

JnextPlan 86

Symphony corruption
resetFTA command 450

Symphony file
JnextPlan 85, 86
production plan 77, 85, 86

syntax
agent

access method 748
extended agent

check file task 755
get status task 755

SystemDrive variable 50
SystemRoot variable 50

T
table of variables

using 119
task

job definition 176
task options

access method 748
tasktype

job definition 177
tcpaddr

workstation definition 160
technical training xvi
tellop command 521
TEMP variable 50
templates

for scheduling object definitions 154
time zone

enabling 741
timezone

in job streams 265
workstation definition 161

timezone keyword 265
TIVOLI_JOB_DATE variable 50, 51
TMPDIR variable 50
TMPTEMP variable 50
tpmaction

element 859
tpmaddress

element 860
training

technical xvi
trial extension

planman command line 93
trial plan

creating 92
description 79
extension 93

trialsked
forecast plan 80
trial plan 79

trigger action 17
TWS_PROMOTED_JOB 754
TWS_PROMOTED_JOB variable 50, 51
TWS_TISDIR variable 51
twstrace command 699
type

workstation definition 162
typeface conventions xvi
TZ variable 50, 52

972 IBM Workload Scheduler: User’s Guide and Reference

U
uintVariable

element 840
UNISON_CPU variable 50, 52
UNISON_DATE variable 51
UNISON_DATE_FORMAT variable 52
UNISON_DIR variable 50, 52
UNISON_EXEC_PATH variable 50, 52
UNISON_EXIT variable 53
UNISON_HOST variable 50, 52
UNISON_JCL variable 53
UNISON_JOB variable 50, 52
UNISON_JOBNUM variable 50, 52
UNISON_MASTER variable 51, 52
UNISON_RUN variable 51, 52
UNISON_SCHED variable 51, 52
UNISON_SCHED_DATE variable 52
UNISON_SCHED_EPOCH variable 51,

52
UNISON_SCHED_IA variable 51, 52
UNISON_SCHED_ID variable 51, 52
UNISON_SHELL variable 51, 52
UNISON_STDLIST variable 51, 52, 53
UNISON_SYM variable 51, 52
UNISONHOME variable 50, 52
UNIXTASK 177
UNKNOWN 177
unlink command 522
unlock command 353
unlocking plan

planman command line 96
until keyword 265
untilDays

option 81
update command 357
UpdateStats

JnextPlan 86
upgrading 119
USE_EXEC variable 54
user 17
user definition 185

trusted domain 188
using on job types with advanced

options 188
user interfaces

Application Lab 29
composer 29
conman 30
Dynamic Workload Console 28
Java API 30
optman 30
planman 30
plug-ins 30
Web Services Interface 30

user return code on AS/400 809, 811
user return code on i5/OS 809, 811
user return code on IBM i 809, 811
USERDOMAIN variable 51
userName

element 860, 865, 869
USERNAME variable 51
USERPROFILE variable 51
using

default variable table 120
variable table 119

Using utility commands on agents on
AS/400 systems 803

Using utility commands on agents on
i5/OS systems 803

Using utility commands on agents on
IBM i systems 803

utility commands 627
agents 675
at 629

at.allow file 631
at.deny file 631
ATSCRIPT variable 629

batch 629
changing date format 634
creating and managing variables and

passwords locally on dynamic
agents 685

creating calendars 655
datamigrate information 638
defining custom events 641
deleting files 640
displaying content of standard list

files 657
displaying product version 671
displaying running jobs 668
displaying standard list files 666
dynamic 675
dynamic domain manager 675
filemonitor 646
getting HTML reports 657, 671
getting job information 650
getting TWS_home path 654
getting workstation information 631
list of commands 627
listing standard list files 652
managing parameters locally 659
releasing resource units 661
removing standard list files 666
sending custom events 667
setting mailbox file size 645
setting variables locally on dynamic

agents 682
shutdown 669
ShutDownLwa 670
starting up netman 670, 671

utility commands for dynamic agents
sending custom events 698

V
validate command 359
validfrom keyword 268
value

element 863
variable 18

defining on dynamic agent 595
definition 191
element 864
in job definitions 184
job types with advanced options 595
resolution 122
resolving on dynamic agent 595

variable table 18
data integrity 121
default 120
definition 195
lock mechanism 121
using 119

variable table definition
vartable 160

variable tables
security 121
security file migration 120

variables
ATSCRIPT 629
carryforward 101
carryStates 77, 81
COMPUTERNAME 50
element 838
enCarryForward 77, 81
enCFInterNetworkDeps 82
enCFResourceQuantity 82
enLegacyId 83
enLegacyStartOfDayEvaluation 84,

742
enPreventStart 82
enTimeZone 84, 741
exported locally by .jobmanrc 53, 55,

57, 58
exported on UNIX 51
HOME 50, 51, 57
HOMEDRIVE 50
HOMEPATH 50
LANG 50, 51
LD_LIBRARY_PATH 51
LD_RUN_PATH 51
local variables 57, 58, 298
LOCAL_RC_OK 53, 57
logmanMinMaxPolicy 83
logmanSmoothPolicy 83
LOGNAME 50, 51
MAESTRO_OUTPUT_STYLE 50, 51
MAIL_ON_ABEND 54, 55, 57
maxLen 81
minLen 81
PATH 51
POSIXHOME 57
SHELL_TYPE 54
startOfDay 81, 742
SystemDrive 50
SystemRoot 50
TEMP 50
TIVOLI_JOB_DATE 50, 51
TMPDIR 50
TMPTEMP 50
TWS_PROMOTED_JOB 50, 51
TWS_TISDIR 51
TZ 50, 52
UNISON_CPU 50, 52
UNISON_DATE 51
UNISON_DATE_FORMAT 52
UNISON_DIR 50, 52
UNISON_EXEC_PATH 50, 52
UNISON_EXIT 53
UNISON_HOST 50, 52
UNISON_JCL 53
UNISON_JOB 50, 52
UNISON_JOBNUM 50, 52
UNISON_MASTER 51, 52
UNISON_RUN 51, 52
UNISON_SCHED 51, 52
UNISON_SCHED_DATE 52
UNISON_SCHED_EPOCH 51, 52
UNISON_SCHED_IA 51, 52
UNISON_SCHED_ID 51, 52

Index 973

variables (continued)
UNISON_SHELL 51, 52
UNISON_STDLIST 51, 52, 53
UNISON_SYM 51, 52
UNISONHOME 50, 52
untilDays 81
USE_EXEC 54
USERDOMAIN 51
USERNAME 51
USERPROFILE 51

variables, environment, notation xvii
vartable

variable table definition 160
vartable keyword 269
version

utility command 671
version command 360, 524

displaying composer banner 360
virtualMemory

element 846

W
wait

job state 394
wappman command 374

logs and traces 374
WAS

stopping 500
Web service jobs 618

sample JSDL files 535
WebSphere Application Server

infrastructure 35
starting 40
stopping 40, 500

weekly run cycle 3
wildcards

composer 303
Windows command prompt

privilege level to issue IBM Workload
Scheduler commands 35

Windows operating systems
privilege level to issue IBM Workload

Scheduler commands 35
Windows OS

special characters, handling 103
Windows user

defining 187
definition 187
running jobs on a dynamic pool 187
running jobs on a pool 187
running jobs on an agent 187
scheduling on a dynamic pool 187
scheduling on a pool 187
scheduling on an agent 187

WINDOWSTASK 177
within a relative interval

follows 230
follows relative to 68
join 236
matching criteria 68

within an absolute interval
follows 230
follows absolute to 68
join 236
matching criteria 68

workflow
element 861

workload application 362, 366
command line 374
definition 3

workload applications
defining 281
importing 372
logs and traces 374
managing 361
mapping 372
mapping file 367
regular expressions 371

workload automation 125
workload customizing

using variable table 119
workload service assurance

calculating job start times 80
forecast plan 80

workstation
backup master domain manager 10
class 13
creating 154
d-pool type 164
defining 154
domain manager 10
dynamic pool 10
dynamic pool type 164
fault-tolerant agent 10
mailbox files

NetReq.msg 42
master domain manager 10
pool 10
pool type 164
processes 35
remote engine type 154, 163
remote engine workstation 10

workstation class 13
workstation class definition 170

cpuclass 171
ignore 171
members 171, 285, 286

workstation definition 154, 165
access 162
agent 163
autolink 164
behinfirewall 165
broker 163
cpuname 159
domain 161
dynamic agent 163
extended agent 162
fta 162
fullstatus 165
host 161
manager 163
members 167
os type 160
protocol 167
requirements 167
secureaddr 161
ServerID 166
standard agent 162
tcpaddr 160
timezone 161
type 162

workstation links status 456

workstation process status 456
workstation processes 36

batchman 36
inter-process communication 42
jobman 37
mailman 36

ServerID 36
managing change of job states 47
monman 36
netman 36
processes tree on UNIX 37
processes tree on Windows 38
start of day

establishing communication 46
starting 40
stopping 40
writer 36

workstation properties 459
workstation status 456, 459
writer process 36

X
XATASK 177
xref command 708
xrxtrct command 725

Y
yearly run cycle 3

974 IBM Workload Scheduler: User’s Guide and Reference

IBM®

Product Number: 5698-WSH

Printed in USA

	Contents
	Figures
	Tables
	About this publication
	What is new in this release
	What is new in this publication
	Who should read this publication
	Accessibility
	Technical training
	Support information
	Conventions used in this publication
	Typeface conventions
	Operating system-dependent variables and paths
	Command syntax

	Chapter 1. IBM Workload Scheduler overview
	Understanding basic concepts
	IBM Workload Scheduler database objects
	Job
	Job stream
	Workload application
	Run cycle
	Run cycle group
	Calendar
	Prompt
	Workstation
	Workstation class
	Domain
	Event rule
	Resource
	Parameter
	User
	Variable table

	The IBM Workload Scheduler network
	Configuring your IBM Workload Scheduler runtime environment
	Configuring properties
	Configuring security

	Defining scheduling activities using IBM Workload Scheduler
	Controlling job and job stream processing
	Defining dependencies
	Setting time constraints
	Setting job priority and workstation fence
	Setting limits
	Defining resources
	Asking for job confirmation
	Defining job rerun and recovery actions
	Modifying job instances in the plan to control job processing

	Managing production scheduling activities with IBM Workload Scheduler
	Automating workload using event rules

	IBM Workload Scheduler user interfaces
	Starting production

	Chapter 2. Understanding basic processes and commands
	Issuing commands on Windows operating systems
	IBM Workload Scheduler workstation processes
	Starting and stopping processes on a workstation
	Starting and stopping the agent

	Workstation inter-process communication
	IBM Workload Scheduler network communication
	Support for Internet Protocol version 6

	Chapter 3. Configuring the job environment
	Job environment overview
	Environment variables exported by jobman
	Customizing date formatting in the stdlist

	Customizing job processing on a UNIX workstation - jobmanrc
	Customizing the MAIL_ON_ABEND section of jobmanrc

	Customizing job processing for a user on UNIX workstations - .jobmanrc
	Customizing job processing on a Windows workstation - jobmanrc.cmd
	Customizing the MAIL_ON_ABEND section of jobmanrc.cmd

	Customizing job processing on a Windows workstation - djobmanrc.cmd
	Setting up options for using the user interfaces

	Chapter 4. Managing the production cycle
	Plan management basic concepts
	Preproduction plan
	Identifying job stream instances in the plan
	Managing external follows dependencies for jobs and job streams

	Production plan
	Understanding carry forward options

	Trial plan
	Forecast plan
	Customizing plan management using global options
	Creating and extending the production plan
	JnextPlan

	Planman command line
	Creating an intermediate production plan
	Creating an intermediate plan for a plan extension
	Retrieving the production plan information
	Creating a trial plan
	Creating a trial plan of a production plan extension
	Creating a forecast plan
	Deploying rules
	Unlocking the production plan
	Resetting the production plan
	Removing the preproduction plan
	Replicating plan data in the database
	Monitoring the replication of plan data in the database

	The stageman command
	Managing concurrent accesses to the Symphony file
	Scenario 1: Access to Symphony file locked by other IBM Workload Scheduler processes
	Scenario 2: Access to Symphony file locked by stageman

	Managing follows dependencies using carry forward prompt
	The logman command
	Estimated duration of a job and related confidence factor

	Starting production plan processing
	Automating production plan processing

	Chapter 5. Using workload service assurance
	Enabling and configuring workload service assurance
	Planning critical jobs
	Processing and monitoring critical jobs
	Workload service assurance scenario

	Chapter 6. Customizing your workload using variable tables
	Migrating global parameters from previous versions
	The default variable table
	Data integrity for variable tables
	Locking mechanism for variable tables
	Variable table security
	Variable resolution

	Chapter 7. Condition-based workload automation
	A business scenario

	Chapter 8. Running event-driven workload automation
	The event rule management process
	Using the involved interfaces and commands

	Defining event rules
	Event rule examples
	Rule operation notes

	Triggered rule elements
	Defining custom events

	Chapter 9. Defining objects in the database
	Defining scheduling objects
	Workstation definition
	Workstation class definition
	Domain definition
	Job definition
	Using variables and parameters in job definitions

	User definition
	Using the IBM Workload Scheduler user and streamlogon definitions
	Trusted domain user
	Using user definitions on job types with advanced options

	Calendar definition
	Variable and parameter definition
	Variable table definition
	Prompt definition
	Resource definition
	Run cycle group definition
	Job stream definition
	Job stream definition keyword details
	at
	carryforward
	comment
	confirmed
	critical
	deadline
	description
	draft
	end
	every
	every (used for job streams)
	every (used for jobs)
	except
	follows
	freedays
	job statement
	join
	jsuntil
	keyjob
	keysched
	limit
	matching
	maxdur
	mindur
	needs
	nop
	on
	onlate
	onoverlap
	opens
	priority
	prompt
	schedtime
	schedule
	statisticstype custom
	startcond
	timezone
	until
	validfrom/validto

	vartable
	Event rule definition
	Workload application definition
	Security object definition
	Security access control list definition
	Security domain definition
	Security role definition
	Actions on security objects
	Attributes for security object types
	Specifying object attribute values

	Chapter 10. Managing objects in the database - composer
	Setting up the composer command-line program
	Setting up the composer environment
	Terminal output
	Offline output
	The composer editor
	Selecting the composer prompt on UNIX

	Running the composer program
	Control characters

	Running commands from composer
	Filters and wildcards
	Delimeters and special characters
	Composer return codes

	Composer commands
	Referential integrity check
	add
	authenticate
	continue
	delete
	display
	edit
	exit
	extract
	help
	list
	lock
	modify
	new
	print
	redo
	rename
	replace
	system command
	unlock
	update
	validate
	version

	Chapter 11. Managing workload applications
	Creating a workload application template
	Exporting a job stream definition as a workload application template
	Importing a workload application template
	Resolving the mapping file
	Using regular expressions to modify the mapping file
	Deploying a workload application
	wappman

	Chapter 12. Managing objects in the plan - conman
	Setting up the conman command-line program
	Setting up the conman environment
	Terminal output
	Offline output
	Selecting the conman prompt on UNIX

	Running conman
	Control characters
	Running system commands
	User prompting

	Running commands from conman
	Wildcards
	Delimiters and special characters
	Conman commands processing

	Selecting jobs in commands
	Syntax
	Arguments
	Job qualifiers

	Selecting job streams in commands
	Syntax
	Arguments
	Job stream qualifiers

	Managing jobs and job streams from back-level agents
	Conman return codes
	Conman commands
	adddep job
	adddep sched
	altjob
	altpass
	altpri
	bulk_discovery
	cancel job
	cancel sched
	checkhealthstatus
	confirm
	console
	continue
	deldep job
	deldep sched
	deployconf
	display
	exit
	fence
	help
	kill
	limit cpu
	limit sched
	link
	listsym
	Listsucc
	recall
	redo
	release job
	release sched
	reply
	rerun
	Rerunsucc
	resetFTA
	resource
	setsym
	showcpus
	Standard format
	Info format
	Link format

	showdomain
	Standard format
	Info format

	showfiles
	Standard format
	Keys format
	Deps format
	Deps;keys format
	Deps;info format
	Deps;logon format

	showjobs
	Standard format
	Keys format
	Info format
	Step format
	Logon format
	Stdlist format
	Stdlist;keys format
	Crit format
	Deps format
	Deps;keys format
	Deps;info format
	Deps;logon format

	showprompts
	Standard format
	Keys format
	Deps format
	Deps;keys format
	Deps;info format
	Deps;logon format

	showresources
	Standard format
	Keys format
	Deps format
	Deps;keys format
	Deps;info format
	Deps;logon format

	showschedules
	Standard format
	Keys format
	Deps format
	Deps;keys format
	Deps;info format
	Deps;logon format

	shutdown
	start
	startappserver
	startbrokerapp
	starteventprocessor
	startmon
	status
	stop
	stop ;progressive
	stopappserver
	stopbrokerapp
	stopeventprocessor
	stopmon
	submit docommand
	submit file
	submit job
	submit sched
	switcheventprocessor
	switchmgr
	system command
	tellop
	unlink
	version

	Chapter 13. Using advanced statistics to forecast the estimated duration of a job
	Installing the SPSS statistics subset
	Selecting the jobs to be measured by the advanced statistical tool
	Importing and configuring the ELAB_JOB_STAT_JS job stream
	Running the ELAB_JOB_STAT_JS job stream and viewing results
	Troubleshooting the ELAB_JOB_STAT_JS job stream

	Chapter 14. Extending IBM Workload Scheduler capabilities
	Prerequisite steps to create job types with advanced options
	Creating advanced job definitions
	Job definition - z/OS jobs
	Remote command jobs
	IBM i jobs
	Executable jobs
	Access method jobs
	Prerequisite steps to create Provisioning jobs
	IBM SmartCloud Provisioning jobs

	Shadow jobs
	File transfer jobs
	Prerequisite steps to create OSLC Automation and OSLC Provisioning jobs
	Job definition - OSLC Automation
	Job definition - OSLC Provisioning

	Database jobs
	Prerequisites to run branch jobs
	Web services jobs
	RESTful Web Services jobs
	Java jobs
	J2EE jobs
	JSR 352 Java Batch
	MQTT
	Variable Table jobs
	Job Management jobs
	Job Stream Submission jobs
	Return codes
	Automatically installing plug-ins by running job types with advanced options on dynamic agents
	Defining variables and passwords for local resolution on dynamic agents
	Specifying local variables and passwords in the job definitions
	Defining variables in dynamic workload broker jobs

	Passing variables between jobs
	Passing job properties from one job to another in the same job stream instance
	Passing job standard output from one job to another in the same job stream instance
	Passing job standard output from one job to another as standard input in the same job stream instance
	Passing variables set by using jobprop in one job to another in the same job stream instance
	Passing variables from one job to another in the same job stream or in a different job stream by using variable tables

	Running a script when a job completes

	Chapter 15. Managing dynamic scheduling capabilities in your environment
	A business scenario on dynamic capability
	Scenario: Creating a job definition and submitting to a dynamic pool
	Scenario: Creating a job definition and submitting to a pool
	Defining affinity relationships
	Defining file dependencies in dynamic scheduling
	Promoting jobs scheduled on dynamic pools
	Adding dynamic capabilities to existing IBM Workload Scheduler jobs
	Limitations in dynamic scheduling
	Limitations for jobs in USERJOBS job stream in dynamic scheduling

	Chapter 16. Using utility commands
	Command descriptions
	at and batch
	Replacing the UNIX commands
	The at.allow and at.deny files
	Script files
	Job names
	Other considerations

	cpuinfo
	datecalc
	datamigrate
	delete
	evtdef
	evtsize
	Filemonitor
	jobinfo
	jobstdl
	maestro
	makecal
	metronome
	morestdl
	parms
	release
	rmstdlist
	sendevent
	showexec
	Standard format
	Info format

	shutdown
	ShutDownLwa - Stop the agent
	StartUp
	StartUpLwa - Start the agent
	tws_inst_pull_info
	version
	Unsupported commands

	Chapter 17. Using utility commands in the dynamic environment
	Command-line configuration file
	exportserverdata
	importserverdata
	jobprop
	movehistorydata
	param
	resource
	Using the resource command from an agent

	sendevent
	twstrace

	Chapter 18. Getting reports and statistics
	Setup for using report commands
	Changing the date format

	Command descriptions
	rep1 - rep4b
	rep7
	rep8
	rep11
	reptr
	xref

	Sample report outputs
	Report 01 - Job Details Listing:
	Report 02 - Prompt Listing:
	Report 03 - Calendar Listing:
	Report 04A - Parameter Listing:
	Report 04B - Resource Listing:
	Report 07 - Job History Listing:
	Report 08 - Job Histogram:
	Report 9B - Planned Production Detail:
	Report 10B - Actual Production Detail:
	Report 11 - Planned Production Schedule:
	Report 12 - Cross Reference Report:

	Report extract programs
	jbxtract
	prxtract
	caxtract
	paxtract
	rextract
	r11xtr
	xrxtrct
	xdep_job file
	xdep_sched file
	xfile file
	xjob file
	xprompt file
	xresource file
	xsched file
	xwhen file

	Running Dynamic Workload Console reports and batch reports
	Historical reports
	Production reports
	Running batch reports from the command line interface
	A sample business scenario
	Setting up for command line batch reporting
	Running batch reports
	Logs and traces for batch reports

	Chapter 19. Managing time zones
	Enabling time zone management
	How IBM Workload Scheduler manages time zones
	Moving to daylight saving time on
	Moving to daylight saving time off
	General rules

	Chapter 20. Defining access methods for agents
	Access method interface
	Method command line syntax
	Task options

	Method response messages
	Method options file

	Running methods
	Launch job task (LJ)
	Manage job task (MJ)
	Killing a job

	Check file task (CF) extended agents only
	Get status task (GS) extended agents only
	Cpuinfo command for extended agents only

	Troubleshooting
	Job standard list error messages
	Method not executable
	Console Manager messages for extended agents only
	Composer and compiler messages for extended agents only
	Jobman messages for extended agents only

	Chapter 21. Managing internetwork dependencies
	Internetwork dependencies overview
	Understanding how an internetwork dependency is shown

	Configuring a network agent
	A sample network agent definition

	Defining an internetwork dependency
	Managing internetwork dependencies in the plan
	States of jobs defined in the EXTERNAL job stream
	Working with jobs defined in the EXTERNAL job stream
	Sample internetwork dependency management scenarios

	Internetwork dependencies in a mixed environment

	Chapter 22. Applying conditional branching logic
	Setting up conditional dependencies
	Joining or combining conditional dependencies
	Scheduling and submitting conditional dependencies
	Evaluating and processing a conditional dependency flow
	Monitoring conditional dependencies
	Plan handling of conditional dependencies

	Chapter 23. Defining and managing cross dependencies
	An introduction to cross dependencies
	Processing flow across the distributed scheduling environment
	Defining a cross dependency
	Monitoring a cross dependency resolution in the production plan
	How the shadow job status changes until a bind is established
	How a distributed shadow job is bound
	How a z/OS shadow job is bound

	How the shadow job status changes after the bind is established
	How to see why the shadow job status is FAIL
	Shadow job status during the remote job recovery or rerun
	How carry forward applies to cross dependencies

	Managing shadow jobs in the production plan

	Chapter 24. Managing an IBM i dynamic environment
	Defining agents on IBM i systems
	Defining jobs on IBM i systems
	Managing agents on IBM i systems
	Starting and stopping agents on IBM i systems
	Using utility commands for agents on IBM i systems

	Scheduling and monitoring jobs on IBM i systems
	The agent joblog and TWSASPOOLS environment variable
	Child job monitoring on IBM i agents
	Information about child job monitoring in IBM i agent joblogs

	The agent return code retrieval
	Controlling the job environment with the user return code
	Alternative method to set the user return code

	Appendix A. Event-driven workload automation event and action definitions
	Event providers and definitions
	TWSObjectsMonitor events
	FileMonitor events
	TWSApplicationMonitor events
	DatasetMonitor events

	Action providers and definitions
	GenericAction actions
	MailSender actions
	MessageLogger actions
	SmartCloud Control Desk actions
	ServiceNow actions
	TBSMEventForwarder actions
	TECEventForwarder actions
	TWSAction actions
	TWSForZosAction

	Appendix B. Job Submission Description Language schema reference
	JSDL elements
	Resources in the job definition

	Appendix C. Quick reference for commands
	Managing the plan
	Managing objects in the database
	General purpose commands
	Scheduling objects
	Calendar
	Domain
	Event rule
	Job
	Job stream
	Parameter
	Prompt
	Resource
	Run cycle group
	Variable table
	Workstation
	Workstation class
	User definition

	Composer commands

	Managing objects in the plan
	Conman commands

	Utility commands
	Report commands

	Appendix D. Defining and managing generic branch jobs
	Introduction
	Terminology
	Branch job capabilities
	Branch job advantages

	Sample scenarios
	Scenarios based on condition type
	Simple branch scenario
	Long branch scenario
	Multiple branch
	Parent abend
	Complex branch scenarios
	Complex branch - Pattern
	Complex branch - Negated pattern
	Complex branch - Pattern within pattern row
	Pattern within pattern row - Negated
	Complex branch - Numeric value comparison
	Complex scenario - Multiple conditions
	Additional string parameters

	Scenarios based on action type
	Pause and Release actions scenario
	Multiple pause and release actions scenario

	Signal action scenario

	Working with the branch job
	Prerequisites to run branch jobs
	Defining the branch job and signal job in the database
	Placing the branch job into the job stream
	Using the ABEND job

	Specifying the branch job parameters
	Parameters reference
	Case sensitivity
	Sample condition examples

	Important notes about the branch job

	Appendix E. Accessibility
	Notices
	Trademarks
	Terms and conditions for product documentation

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

