
IBM Workload Automation

Developer's Guide: Driving IBM Workload
Automation
Version 9 Release 4

IBM

IBM Workload Automation

Developer's Guide: Driving IBM Workload
Automation
Version 9 Release 4

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 83.

This edition applies to version 9, release 4, modification level 0 of IBM Workload Scheduler (program number
5698-WSH) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1991, 2016. © Copyright HCL Technologies Limited 2016, 2018

Contents

Figures v

Tables vii

About this guide ix
What is new in this release ix
Who should read this publication ix
Accessibility x
Technical training. x
Support information x

Chapter 1. Introduction to driving IBM
Workload Automation 1

Chapter 2. Integration Workbench . . . 3
Installing the Integration Workbench 3
Using the Integration Workbench help 3

Chapter 3. Driving IBM Workload
Automation with the Java API 5
Naming conventions. 5
API detailed specification 5
IBM Workload Scheduler API projects 5

Java source tree (src). 6
Java libraries 7
Other project folders. 7
build.xml 7
Creating a project from scratch 7
Creating a project from an API example 8
Example IBM Workload Scheduler API project . . 9

Connecting to the products 10
Examples for IBM Workload Scheduler 11

Working with objects in the database 11
Working with objects in the plan 13
Working with event rules in the database . . . 15

Examples for IBM Workload Scheduler for z/OS . . 17
Example 5: Adding a job stream to the plan after
modifying its contents 20

Using the API to work with z/OS JCL 28
Reference material 30
Further information 30

Chapter 4. Driving IBM Workload
Scheduler with REST API. 33

Chapter 5. Driving IBM Workload
Automation with the Web services
interface 35
Web services for IBM Workload Scheduler 36
Web services for IBM Workload Scheduler for z/OS 37
Web services management 37

Accessing the services 38
Identifying the correct master domain manager 39
Managing errors 39

SchedulingFactory Web services 40
SchedulingFactory web services for IBM
Workload Scheduler 40
SchedulingFactory web services for IBM
Workload Scheduler for z/OS 48

JobService details 64
JobService web services for IBM Workload
Scheduler 65
JobService web services for IBM Workload
Scheduler for z/OS 69

JobStreamService details 72
JobStreamService web services for IBM Workload
Scheduler 72
JobStreamService web services for IBM Workload
Scheduler for z/OS 79

Further information 82

Notices 83
Trademarks 85
Terms and conditions for product documentation. . 85

Index 87

iii

iv IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Figures

v

vi IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Tables

1. Available services in the SchedulingFactory
Web services interface for IBM Workload
Scheduler 36

2. Available services in the JobService Web
services interface for IBM Workload Scheduler . 36

3. Available services in the JobStreamService Web
services interface for IBM Workload Scheduler . 36

4. Available services in the SchedulingFactory
Web services interface for IBM Workload
Scheduler for z/OS 37

5. Available services in the JobService Web
services interface for IBM Workload Scheduler
for z/OS 37

6. Available services in the JobStreamService Web
services interface for IBM Workload Scheduler
for z/OS 37

7. Properties to set for added, modified, and
deleted jobs in the ZOSJob elements. 60

vii

viii IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

About this guide

Provides an overview of the guide, with information about changes made to it
since the last release, and who should read it. It also supplies information about
obtaining resources and support from IBM.

Developer's Guide: Driving IBM Workload Automation introduces you to the
application programming interfaces available to drive IBM Workload Automation
products from your own applications.

It also describes how to use the Integration Workbench provided with the product
to develop and implement these application programming interfaces.

For example, with the information in this publication, and the associated help in
the Integration Workbench, you can have your application generate one or more
jobs and a job stream, submit the job stream to the plan, monitor its progress, and
delete the created objects on successful completion; all without manually running
composer, conman or the Dynamic Workload Console.

What is new in this release
Learn what is new in this release.

For information about the new or changed functions in this release, see IBM
Workload Automation: Overview, section Summary of enhancements.

For information about the APARs that this release addresses, see the IBM Workload
Scheduler Release Notes at http://www-01.ibm.com/support/docview.wss?rs=672
&uid=swg27048863 and the Dynamic Workload Console Release Notes at
http://www-01.ibm.com/support/docview.wss?rs=672&uid=swg27048864.

New or changed content is marked with revision bars. For the PDF format, new or
changed V9.4 content is marked in the left margin with a pipe (|) character and
new or changed V9.4FP1 content is marked with an equal sign (=).

Who should read this publication
Describes the type of user who should read the documentation.

This publication provides information about how to create alternative interfaces to
IBM Workload Scheduler and IBM Workload Scheduler for z/OS than those
provided with the product.

The reader of this book should be an application programmer expert in Java™ or web
services (as appropriate), who has a reasonable understanding of the IBM
Workload Automation infrastructure and its inter-component interactions, or the
manager of such a person, who wants to better understand what you can achieve
using the application programming interfaces.

The publication assumes that the application programmer is experienced at
creating these types of interface. It also assumes that any product knowledge
required to program the API or the web services interface is obtained from the

ix

=
=
=

http://www-01.ibm.com/support/docview.wss?rs=672&uid=swg27048863
http://www-01.ibm.com/support/docview.wss?rs=672&uid=swg27048863
http://www-01.ibm.com/support/docview.wss?rs=672&uid=swg27048864

product documentation. This publication does not attempt to explain any of the
IBM Workload Automation concepts, procedures, and practices to which it refers.

This book also contains information useful to the IT administrator and the IBM
Workload Automation IT administrator, for planning purposes.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully.

With this product, you can use assistive technologies to hear and navigate the
interface. You can also use the keyboard instead of the mouse to operate all
features of the graphical user interface.

For full information, see the Accessibility Appendix in the IBM Workload Scheduler
User's Guide and Reference.

Technical training
Cloud & Smarter Infrastructure provides technical training.

For Cloud & Smarter Infrastructure technical training information, see:
http://www.ibm.com/software/tivoli/education

Support information
IBM provides several ways for you to obtain support when you encounter a
problem.

If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:
v Searching knowledge bases: You can search across a large collection of known

problems and workarounds, Technotes, and other information.
v Obtaining fixes: You can locate the latest fixes that are already available for your

product.
v Contacting IBM Software Support: If you still cannot solve your problem, and

you need to work with someone from IBM, you can use a variety of ways to
contact IBM Software Support.

For more information about these three ways of resolving problems, see the
appendix about support information in IBM Workload Scheduler: Troubleshooting
Guide.

x IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

http://www.ibm.com/software/tivoli/education

Chapter 1. Introduction to driving IBM Workload Automation

Provides an overview of the entire publication.

IBM Workload Scheduler Developer's Guide: Driving IBM Workload Automation
describes two application programming interfaces which you can use to drive IBM
Workload Automation products from your own applications:
v Use the Java application programming interface to create your own GUI or

command-line interface to perform all the functions of the command-line
programs composer, conman, and planman and the Dynamic Workload Console.
This includes performing the following tasks in IBM Workload Scheduler and
IBM Workload Scheduler for z/OS:
– Modifying objects in the database
– Submitting workload
– Monitoring the plan
– Performing actions on the plan, such as remedial actions in the event that a

job fails
v Use the web services interface to create your own web client application to

perform a subset of IBM Workload Scheduler and IBM Workload Scheduler for
z/OS functions to manage jobs and job streams in the plan. Neither database
actions nor other plan actions can be implemented and invoked using this
interface.

You can use the IBM Workload Automation Software Development Kit's
Integration Workbench provided with the product to develop and implement these
application programming interfaces.

The information about the application programming interfaces is organized as
follows:
v Chapter 2, “Integration Workbench,” on page 3
v Chapter 3, “Driving IBM Workload Automation with the Java API,” on page 5
v Chapter 5, “Driving IBM Workload Automation with the Web services interface,”

on page 35

1

2 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Chapter 2. Integration Workbench

Describes the Integration Workbench of the Software Development Kit.

IBM Workload Automation: Software Development Kit comes with an Integration
Workbench which you can use to work with the Java application programming
interface and the web services interface to develop your own applications.

This section tells you how to install and use the Integration Workbench help. The
help contains detailed information on the tasks you can perform with the
Integration Workbench, and the detailed reference information on the methods and
classes available:

Installing the Integration Workbench
Gives an overview of the Integration Workbench installation.

The Integration Workbench (part of the Software Development Kit - SDK) runs
under Eclipse. The installation, which is fully described in the IBM Workload
Scheduler: Planning and Installation, SC32-1273, gives you the opportunity to install
the Integration Workbench and a bundled, supported version of Eclipse in one
action, or to install the Integration Workbench as an Eclipse site using an existing
supported version of Eclipse available in your network.

For information about the workbench and how to run it, see “Using the Integration
Workbench help.”

For more information about Eclipse, go to http://www.eclipse.org/.

Using the Integration Workbench help
Describes how to access the Integration Workbench help facility for the IBM
Workload Scheduler API and plug-in projects.

About this task

To use the Integration Workbench help, do the following:
1. Launch the workbench, as follows:

Integration Workbench installed with Eclipse

UNIX Launch the following file: <TWS_home>/IntegrationWorkbench/
eclipse/eclipse

Windows
Go to Start → IBM Workload Scheduler →IBM Workload
Scheduler Integration → Integration Workbench

Integration Workbench installed as Eclipse site
Open your version of Eclipse, as you normally do.

2. Select the location to save your Eclipse workspace. Eclipse requests this every
time you run it or the workbench within it, unless you check the option to save
a particular location as the default.

3. When the Eclipse window opens, select Help → Help Contents

3

http://www.eclipse.org/

4. Expand IBM Workload Scheduler Integration Workbench

5. The options displayed provide a variety of information about the IBM
Workload Scheduler Integration Workbench. For example, to see details of all
the classes and methods employed in the API, expand Reference and select
API reference.

Note: The above information can also be read by opening the following document
in a Web browser: <TWS_home>/TWS/IntegrationWorkbench/readmefirst.html

4 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Chapter 3. Driving IBM Workload Automation with the Java
API

This chapter describes the J2EE Application Programming Interface (API), which
uses Enterprise Java Beans to drive IBM Workload Scheduler and IBM Workload
Scheduler for z/OS.

You can use the Java API to run all the tasks available in:
v the Dynamic Workload Console
v composer
v conman
v planman

Naming conventions
The naming conventions for the Java objects are quite straightforward. For
example, to determine if a specific job definition in the database uses a command
or a script, you use a method called isCommand in a class called JobDefinition.

The most important convention to remember is that an object in the database is
differentiated from an object in the plan by the suffix "InPlan" to the object class
name.

API detailed specification
Gives information on how the Javadoc API reference help can be accessed.

The full specification for the Java beans can be found in the Javadoc API reference
online help. This is where all classes and methods are specified in detail. The full
specification for the Java beans can be consulted in one of these ways:
v From the help of the IBM Workload Scheduler Integration Workbench, expand

Reference and select API reference

v Open the following HTML file: <TWA_home>/TWS/APIs/doc/Javadoc/index.html

To obtain a description of the use of the different panes of the Javadoc API panel,
click Help.

Classes in the Deprecated category should not be used.

IBM Workload Scheduler API projects
Describes API projects.

API projects

The projects here described are intended to connect to an instance of the
corresponding version of IBM Workload Scheduler and interact with it using
methods provided by Java API.

5

Structure of an API project

API project Wizards provide a structure containing everything you must need to
connect to the required IBM Workload Scheduler instance:

“Java source tree (src)”
Separate directories for the source and class files.

“Java libraries” on page 7
A JRE System library and separate libraries are available for the IBM
Workload Scheduler object and runtime jars.

A keys directory
A directory containing *.jks file needed to access through the IBM
Workload Scheduler secure login.

A config directory
A directory containing all the configuration files you need to specify to
connect to IBM Workload Scheduler.

One or more Java compilation units
A compilation unit includes a class that implements the Java interface for
the connection to IBM Workload Scheduler. Another is an empty
compilation unit with the classpath already configured and ready to be
completed with the program logics you need.

“build.xml” on page 7
A standard ANT build file that you modify to suit your requirements.

Creating API projects

You create API projects in one of two ways:

“Creating a project from scratch” on page 7
You run a wizard, supplying information about what sort of project you
want to create.

“Creating a project from an API example” on page 8
From a list of examples you select an API project similar to the project you
want to create.

You then edit the new project so that it carries out the required task.

Java source tree (src)
Describes the Java source tree.

When you create an API project, it is set up as a Java project with separate folders
for source and class files. The source folder is named src. It contains the Java code
of the application.

A few Java classes are also created together with the new project.

Follow the IBM Workload Scheduler Java API reference to understand which
method you need to implement. For logging and tracing in your code, use
standard JSR-047 Java Logging APIs.

6 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Java libraries
Describes the Java libraries.

IBM Workload Scheduler API projects are created with the following libraries:

Default JRE System library
Even if the default JRE is set by default, remember that the IBM Workload
Scheduler event processor runs using IBM JDK version 1.5.

Use of IBM JDK version 1.5 is recommended for IBM Workload Scheduler
API projects.

IBM Workload Scheduler library
This library contains all the IBM Workload Scheduler jars needed to
implement IBM Workload Scheduler plug-ins or to use IBM Workload
Scheduler APIs.

The library also defines the access rules for the classes in the jars: public
APIs are defined as Accessible, while internal classes are defined as
Discouraged.

IBM Workload Scheduler Runtime library

This library contains all the IBM Workload Scheduler jars needed at
runtime by API based applications

Use of discouraged classes will be marked with compiler warnings by
default. In any case the use of these classes is not supported.

Additional libraries needed for the plug-in Java code can be copied into the lib
folder and added to the Java build path.

More details of these libraries are given in the Integration Workbench help.
Related links

Other project folders

Other project folders
Describes the other project folders.

config Use this folder to store additional configuration files (such as property
files) that the IBM Workload Scheduler administrator will need to edit for
operation.

keys This folder is used to store the *.jks key files needed to connect using the
IBM Workload Scheduler secure login.

Java build path

build.xml
Describes the build.xml file created for an API project.

This is a standard ANT build file. You can modify it according to your needs.
Collected links

“Other project folders”
Describes the other project folders.

Creating a project from scratch
Describes how to create an API project from scratch.

Chapter 3. Java API 7

With the Integration Workbench follow these steps to create API projects from
scratch:
1. From the Integration Workbench select Help → Help Contents

2. Expand IBM Workload Scheduler Integration Workbench and then
Integration workbench

3. Expand Driving IBM Workload Automation

4. Select Generating an API project

5. The steps required to create the project are listed. Read them to understand
what to do.

6. Follow the instructions to create the project. Integration Workbench creates a
library containing all the product jars. Use your knowledge of Java products to
create all the necessary coding and infrastructure to run the API.

Creating a project from an API example
Describes how to create an API project from an example.

Using the Integration Workbench you can create projects based on provided
examples. Using this method you avoid the need to create the full API project
structure from scratch. You choose an example which most approximates your
requirements and then modify it accordingly.

To read how to use this facility, follow these steps:
1. From the Integration Workbench select Help → Help Contents

2. Expand IBM Workload Scheduler Integration Workbench and then
Integration workbench

3. Expand Driving IBM Workload Automation

4. Select Creating a API project by example

5. Create the project, following the instructions. Integration Workbench creates a
project containing the full infrastructure and code for the chosen API.

6. To understand more about the API, open the project, select Doc and
double-click index.htm

The examples you can choose from
Details the API example projects you can use as a template.

The examples you can select from are as follows:

AddEventRule
Work with event rules in the database.

MakeQueryJobsOnPlan
Work with dynamic scheduling job instances in the plan.

MakeQueryOnPlan
Work with objects in the plan.

MakeZOSQueryOnPlan
Work with objects in the plan for z/OS®.

RerunJobInPlan
Submit a job stream instance into the current plan rerun.

SubmitJobInPlan
Submit a job stream instance into the current plan.

8 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Example IBM Workload Scheduler API project
Provides an example of an IBM Workload Scheduler API project.

The following figure shows the typical structure of a new IBM Workload Scheduler

Java API project:

The structure shown is for a Java API project named AddEventRule.

The Java classes contained in the src folder are described in Java source tree (src).

The Java Build Path of the plug-in project is described in Java build path.

The role and contents of other project folders are described in Other project
folders.

The ANT build.xml file is described in build.xml.
v Java source tree (src)

v Java build path

v Other project folders

Chapter 3. Java API 9

v build.xml

Connecting to the products
Describes how to implement a connection to the IBM Workload Automation
products using the API.

To connect to the products, you need to set the Connection Parameters to connect
either to the IBM Workload Scheduler master domain manager (where there is a
Connector installed) or to the IBM Workload Scheduler for z/OS connector.

If you have created your project from an example, take the following steps,
depending on which engine you are connecting to:

Connecting to the IBM Workload Scheduler master domain manager

1. From the Integration Workbench select your project
2. Expand Config

3. Edit the TWSConfig.properties file to obtain the correct parameters for
your environment. The parameters are as follows:
TWSConfig.serverName=
TWSConfig.serverPort=
TWSConfig.userID=
TWSConfig.password=
TWSConfig.useSecureConnection=
TWSConfig.serverSecurePort=

where the parameters are as follows:

TWSConfig.serverName
The network name of IP address of the system where the IBM
Workload Scheduler master domain manager is running (where
there is a Connector installed). The default is "localhost".

TWSConfig.serverPort
The port used by the Connector on the master domain
manager. The default is 31115.

TWSConfig.userID
The user ID with which the plug-in must authenticate. The
default is "twsuser".

TWSConfig.password
The password of that user ID.

TWSConfig.useSecureConnection
Enter "true" to use a secure connection.

TWSConfig.serverSecurePort
If TWSConfig.useSecureConnection is set to "true", the secure
port used by the Connector on the master domain manager.

Connecting to the IBM Workload Scheduler for z/OS connector

1. From the Integration Workbench select your project
2. Expand Config

3. Edit the TWSConn.properties file to obtain the correct parameters for
your environment. The parameters are as follows:

10 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

TWSConn.serverName=
TWSConn.serverPort=
TWSConn.userID=
TWSConn.password=
TWSConn.remoteServerName=

where the parameters are as follows:

TWSConn.serverName
The network name of IP address of the system where the z/OS
connector is installed. The default is "localhost".

TWSConn.serverPort
The port used by the z/OS connector. The default is 31115.

TWSConn.userID
The user ID with which the plug-in must authenticate. The
default is "twsuser".

TWSConn.password
The password of that user ID.

TWSConn.remoteServerName
The name of the z/OS engine that you want to connect to.

If you have created a project from scratch, create an analogous structure of
connection parameters.

Examples for IBM Workload Scheduler
Provides an overview of the examples available of using the Java API for IBM
Workload Scheduler.

The following examples help you understand how Java beans are used. The
examples are annotated with explanatory comments. In the javadoc reference (see
“API detailed specification” on page 5), look up the objects used in the examples
to see full details.

The examples are available in these groupings:

Working with objects in the database
Provides examples of using the Java API to work with objects in the database.

The following examples indicate how you use the classes to work with objects in
the database:

Example 1: Adding a workstation to the database
//Object definition
String wksName = "MYWS";
Workstation wks = new Workstation();
wks.setName(wksName);
wks.setType(WorkstationType.FTA);
wks.setOs(OperatingSystem.UNIX);
wks.setAutoLink(true);
wks.setNodeName("node.abc.com");
wks.setSecurityLevel(SecurityLevel.NONE);

ConnModel myModel;
//Get an instance of ConnModel interface...
...

Chapter 3. Java API 11

//Add the object
try
{

myModel.addTWSObject(wks, null);
}
catch (ConnException e)
{

//Do something to recover...
}

Example 2: Retrieving a workstation from the database
Workstation wksRead = new Workstation();
//Get the same workstation from the DB
try
{
wksRead = (Workstation) myModel.getTWSObject(Workstation.class,

new FlowTargetKey(wksName), false, null);
}
catch (ConnException e)
{

//Do something to recover...
}

Example 3: Removing a workstation from the database
//Remove a workstation from the DB
try
{

myModel.removeTWSObject(Workstation.class, wksRead.getId(), null);
}
catch (ConnException exc)
{

//Do something to recover...
}

Example 4: Defining a native job definition
//Job Definition creation

jobOk = new DistJobDefinition();
jobOk.setDescription("All values provided");
jobOk.setFlowTargetKey(wks);
jobOk.setName("JOB1");
jobOk.setTaskType("UNIX");
jobOk.setTaskString("ls");
jobOk.setUserLogin("tws_user");
jobOk.setRecoveryOption(RecoveryOption.STOP);

Example 5: Defining a job definition by using Jsdl
//Job Definition creation with Jsdl

jobPred4 = new DistJobDefinition();
jobPred4.setDescription("All values provided");
jobPred4.setFlowTargetKey(wksAgt);
jobPred4.setName("JSDLJOB");
jobPred4.setDefinedByJsdl(true);
jobPred4.setTaskString("<?xml version=\"1.0\" encoding=\"UTF-8\"?>" + "

<jsdl:jobDefinition xmlns:jsdl=\"http://www.abc.com/xmlns/prod/scheduling
/1.0/jsdl\" " + "xmlns:jsdle=\"http://www.abc.com/xmlns/prod/scheduling/1.0/
jsdle\">" + "<jsdl:application name=\"executable\">" +

"<jsdle:executable interactive=
\"false\">" + "<jsdle:script>hostname</jsdle:script>" + "</jsdle:executable>"
+ "</jsdl:application>" + "</jsdl:jobDefinition>");

jobPred4.setRecoveryOption(RecoveryOption.STOP);

12 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Example 6: Adding a job stream definition with dependencies,
jobs, and runcycle:
//Job Stream creation

JobStream js = null;
String jsName = "SBSCDBF1_1S";
String alias = "SBSCDBF1_1S";
js = new JobStream();
js.setName(jsName);
js.setFlowTargetKey(wks);
List<Job> joblist = js.getJobs();

//Jobs creation

Job jobPredecessor = new Job();
jobPredecessor.setName(jobPredName);
jobPredecessor.setJobDefinition(jobPred4);
jobPredecessor.setJobStreamKey((JobStreamKey) js.getKey());
Job jobSuccessor1 = new Job();
jobSuccessor1.setName(jobSucc1Name);
jobSuccessor1.setJobDefinition(jobOk);
jobSuccessor1.setJobStreamKey((JobStreamKey) js.getKey());

//Add Jobs into Job Stream

joblist.add(jobPredecessor);
joblist.add(jobSuccessor1);

//Add Dependencies to jobSuccessor1 from jobPredecessor

InternalDependency depend = new InternalDependency();
depend.setJobKey(new JobKey(jobOkName,(JobStreamKey) js.getKey()));
jobSuccessor1.getInternalDependencies().add(depend);

//Add a run cycle

RunCycle rcy = new RunCycle();
rcy.setCalendarKey(null);
rcy.setDescription("runCycleDescription");
rcy.setFreeDaysRule(FreeDaysRule.NEAREST_AFTER);
rcy.setICalendar("iCalendar");
rcy.setInclusive(false);
rcy.setName("runCycleName");
rcy.setOffsetType(null);
rcy.setOffsetValue(0);
rcy.getTimeRestrictions().setTimeDependent(true);
rcy.getTimeRestrictions().setStartOffset(43200000L);
rcy.getTimeRestrictions().setDeadlineOffset(14400000L);
rcy.getTimeRestrictions().setLatestStartOffset(3600000L);
rcy.getTimeRestrictions().setLatestStartAction(LateAction.CONTINUE);
rcy.setType(RunCycleType.SIMPLE);
rcy.setValidFrom(new Date(time - 86400000L));
rcy.setValidTo(new Date(time + 86400000L));
js.getRunCycles().add(rcy);

Working with objects in the plan
Provides examples of using the Java API to work with objects in the plan.

The following examples indicate how you use the classes to work with objects in
the plan:

Chapter 3. Java API 13

Example 4: Submitting a job stream instance into the current
plan

This procedure requires the following main steps:
1. Obtain the required job stream definition from the database

ConnPlan myPlan;
//Get an instance of ConnPlan interface...
...

String alias = "SBJBF1_1";
JobStream js = null;
JobStreamInPlan jsip = null;
//If you already have a JobStream in the DB with Identifier jsDbID...
try
{

//get it from the DB
js = (JobStream)(myPlan.getTWSObject(JobStream.class,jsDbID,false,null));

2. Transform it into a JobStreamInPlan:
//Transform it in a JobStreamInPlan.
//TODAY is a variable representing the scheduled time

jsip = myPlan.makeJobStreamInPlan(jsDbID, TODAY, alias, null);
}
catch (ConnException e)
{

//Something went wrong...
}
catch (ConnEngineNotMasterException e)
{

//Since the makeJobStreamInPlan is available also on FTAs
//(it’s on the Plan interface), an exception must be thrown
//if it is called on an engine that is not the master

}

3. Add the JobStreamInPlan to the plan:
List idList = new ArrayList();
try
{

//Add the job stream to the plan.
//This method returns a list of Identifiers because the job stream can be
//defined on a Workstation class, so you have an ID for each workstation
//of the class
idList = (ArrayList)myPlan.addJobStreamInstance(jsip, null);

}
catch (ConnException e)
{

//...
}
catch (ConnEngineNotMasterException e)
{

//...
}

Example 5: Making a query on the plan

The following example lists the first five jobs that begin with the letter "A":
String nameFilter = "A*";
int howMany = 5;

QueryFilter qf = new QueryFilter();
qf.setFilter(JobInPlanFilters.JOB_NAME, nameFilter);

QueryResult qr = null;
try
{

14 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

qr = myPlan.queryPlanObject(JobInPlan.class, qf, howMany, null);
}
catch (ConnException e)
{

//...
}

Working with event rules in the database
Provides examples of using the Java API to work with event rules in the database.

The following examples indicate how you use the classes to work with event rules
in the database:

Example 6: Adding an event rule to the database

Follow these steps:
1. Define the event rule:

String eventRuleName = "SampleEventRule";
String eventRuleDescription =

"Define Event Rule; test MessageLoggerPlugIn and TWSObjectsMonitorPlugIn";
Date today = new Date(System.currentTimeMillis());
Date tomorrow = new Date(System.currentTimeMillis() + 86400000L);

//EventRule definition

EventRule er = new EventRule();
er.setName(eventRuleName);
er.setDescription(eventRuleDescription);
er.setRuleType(EventRuleType.FILTER);
er.setDraft(false);
er.setValidFrom(today);
er.setValidTo(tomorrow);

2. Define the event condition. In this case the condition is a job submission:
EventCondition evCond = new EventCondition();
evCond.setPluginName(TWSObjectsMonitorPlugIn.PLUGIN_NAME);
evCond.setEventType(JobUtil.EVENT_JOB_SUBMIT);

3. Define the conditions that the event condition has to satisfy to trigger the rule
action (the filtering predicate):
String filterPred = "<attributeFilter name=\"JobStreamWorkstation\"

operator=\"eq\">"
+ "<value>MYWS</value>"
+ "</attributeFilter>"

+ "<attributeFilter name=\"JobStreamName\" operator=\"eq\">"
+ "<value>JS1</value>"
+ "</attributeFilter>"

+ "<attributeFilter name=\"JobName\" operator=\"eq\">"
+ "<value>JOB1</value>"
+ "</attributeFilter>"

+ "<attributeFilter name=\"Workstation\" operator=\"eq\">"
+ "<value>MYHOST</value>"
+ "</attributeFilter>"

+ "<attributeFilter name=\"Priority\" operator=\"range\">"
+ "<value>10</value>"
+ "<value>30</value>"
+ "</attributeFilter>"

+ "<attributeFilter name=\"Monitored\" operator=\"eq\">"
+ "<value>TRUE</value>"

Chapter 3. Java API 15

+ "</attributeFilter>"

+ "<attributeFilter name=\"EstimatedDuration\" operator=\"ge\">"
+ "<value>400</value>"
+ "</attributeFilter>"

+ "<attributeFilter name=\"Login\" operator=\"eq\">"
+ "<value>TWSUser</value>"
+ "</attributeFilter>"

+ "<attributeFilter name=\"EveryFrequency\" operator=\"ge\">"
+ "<value>400</value>"
+ "</attributeFilter>";

4. Complete the event condition:
evCond.setFilteringPredicate(filterPred);

5. Add the event condition to the event rule:
er.getTriggerEvents().add(evCond);

6. Define the rule action. In this example, the rule action logs a message in the
database:
RuleAction action = new RuleAction();
action.setPluginName(MessageLoggerPlugIn.PLUGIN_NAME);
action.setActionType(MessageLoggerPlugInConstants.ACTION_TYPE_MESSAGE_LOG);
action.setDescription("Adding the Message logger Plugin");
action.setResponseType(RuleResponseType.ON_DETECTION);

7. Define the value for the rule action parameter:
Map parameterMap = new HashMap();
parameterMap.put(MessageLoggerPlugInConstants.MESSAGE, "message");
parameterMap.put(MessageLoggerPlugInConstants.OBJECT_KEY, "object key");

8. Complete the rule action:
action.getParameterMap().putAll(parameterMap);

9. Add the rule action to the event rule:
er.getActions().add(action);

10. Add the event rule to the ConnModel interface:
ConnModel myModel = null;
//Get an instance of ConnModel interface...
//...

//Add the object

Identifier erId = null;
try
{
erId = myModel.addTWSObject(er, null);
}
catch (ConnException e)
{
//Do something to recover...
}

Example 7: Retrieve an event rule from the database by ID

Follow these steps:
1. Obtain the event rule ID to be retrieved by any means appropriate to your

interface
2. Retrieve the event rule:

EventRule eRuleRead = new EventRule();
try
{

16 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

eRuleRead =
(EventRule) myModel.getTWSObject(EventRule.class, erId, false, null);

}
catch (ConnException e)
{
//Do something to recover...

}

Example 8: Retrieve an event rule from the database by key
(name)

Follow these steps:
1. Obtain the event rule key (name) to be retrieved by any means appropriate to

your interface
2. Retrieve the event rule:

EventRule eRuleRead = new EventRule();
try
{
eRuleRead =

(EventRule) myModel.getTWSObject(EventRule.class,
new EventRuleKey(eventRuleName), false, null);

}
catch (ConnException e)
{
//Do something to recover...

}

Example 9: Delete an event rule from the database by ID

Follow these steps:
1. Retrieve by ID the event rule to be deleted, as shown in example 7.1
2. If the event rule has been successfully retrieved, delete it:

{
myModel.removeTWSObject(EventRule.class, eRuleRead.getId(), null);

}
catch (ConnException exc)
{
//Do something to recover...

}

Example 10: Delete an event rule from the database by key
(name)

Follow these steps:
1. Retrieve by key, the event rule to be deleted, as shown in example 7.2
2. If the event rule has been successfully retrieved, delete it:

{
myModel.removeTWSObject(EventRule.class,

new EventRuleKey(eventRuleName), null);
}
catch (ConnException exc)
{
//Do something to recover...

}

Examples for IBM Workload Scheduler for z/OS
Provides an overview of the examples available of using the Java API for IBM
Workload Scheduler for z/OS.

Chapter 3. Java API 17

The following examples help you to understand how the beans are used in the
IBM Workload Scheduler for z/OS environment:

Example 1: Adding a workstation to the database
// Create the connection to the server
TWSZConn connection = new TWSZConn();
// Get an instance of the interface ZConnModel
final ZConnModel model = connection.getModelBean();

// Define the workstation properties
String wksName = "CPU1";
String wksDescription = "Added by API";
String wksPrintoutRouting = "SYSOUT";
Workstation wks = new Workstation();
wks.setName(wksName);
wks.setDescription(wksDescription);
wks.setType(WorkstationType.COMPUTER);
wks.setReportingAttribute(WorkstationReportingAttribute.AUTOMATIC);
WorkstationZOSAttributes wksAttr = new WorkstationZOSAttributes();
wksAttr.setDefaultTransportTime(3600);
wksAttr.setDefaultJobDuration(60);
wksAttr.setPrintoutRouting(wksPrintoutRouting);
wksAttr.setStartedTaskSupported(true);
wks.setZosAttributes(wksAttr);

try {
Context context = new Context();
// Add the workstation to the database
model.addTWSObject(wks, context);
}
catch (ConnException e) {
// Do something to recover
}

Example 2: Adding a job stream (application) to the database
// Create the connection to the server
TWSZConn connection = new TWSZConn();
// Get an instance of the interface ZConnModel
final ZConnModel model = connection.getModelBean();

final static Date TODAY =
new Date((System.currentTimeMillis()/86400000L) * 86400000L);

// Define the job stream properties
String jsName = "APPL";
String jsOwnerName = "API";
JobStream js = new JobStream();
js.setName(jsName);
js.setOwnerName(jsOwnerName);
js.setValidFrom(TODAY);
js.setPriority(5);
// Define a JCL job to add to the job stream
String jobName = "1";
String wksName = "CPU1";
String jclName = "MYJCL";
Job jclJob = new Job();
jclJob.setName(jobName);
jclJob.setEstimatedDuration(1000);
jclJob.setPriority(-1);
ZOSJobDefinition jobDef = new ZOSJobDefinition();
jobDef.setFlowTargetKey(new FlowTargetKey(wksName));
jobDef.setTaskType(TaskTypes.ZOS_JOB_TASK);
jobDef.setJclName(jclName);
jclJob.setJobDefinition(jobDef);
// Add the JCL job to the job stream

18 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

js.getJobs().add(jclJob);
// Define a Printer job to add to the job stream
jobName = "2";
wksName = "PRNT";
Job printerJob = new Job();
printerJob.setName(jobName);
printerJob.setEstimatedDuration(1000);
printerJob.setPriority(-1);
jobDef = new ZOSJobDefinition();
jobDef.setFlowTargetKey(new FlowTargetKey(wksName));
jobDef.setTaskType(TaskTypes.ZOS_ PRINTER_TASK);
jobDef.setJclName(jclName);
jobDef.setLimitForFeedback(102);
printerJob.setJobDefinition(jobDef);
// Add to the Printer job the dependency from the JCL job
List printerJobDeps = printerJob.getInternalDependencies();
InternalDependency depFromJclJob =
new InternalDependency(null, (JobKey)jclJob.getKey());
printerJobDeps.add(depFromJclJob);
// Add the Printer job to the job stream
js.getJobs().add(printerJob);

try {
Context context = new Context();
// Add the job stream to the database

Example 3: Modifying a job stream (application) in the database
// Create the connection to the server
TWSZConn connection = new TWSZConn();
// Get an instance of the interface ZConnModel
final ZConnModel model = connection.getModelBean();

final static Date TODAY =
new Date((System.currentTimeMillis()/86400000L) * 86400000L);

final static Date TOMORROW =
new Date(((System.currentTimeMillis()/86400000L) * 86400000L) + 86400000L);

final static long HOUR = 3600000;

// Make the job stream key
String jsName = "APPL";
JobStreamKey jsKey = new JobStreamKey(jsName, TODAY, false, false);

try {
Context context = new Context();
// Get the job stream by its key
JobStream js =

(JobStream)model.getTWSObject(JobStream.class, jsKey, false, context);

// Define a run cycle to add to the job stream
String rcName = "RCRULE";
String rcDescription = "Added by API";
RunCycle rcRule = new RunCycle();
rcRule.setName(rcName);
rcRule.setDescription(rcDescription);
rcRule.setType(RunCycleType.RULE);
rcRule.setValidFrom(TODAY);
rcRule.setValidTo(TOMORROW);
rcRule.getTimeRestrictions().setStartOffset(10*HOUR);
rcRule.getTimeRestrictions().setDeadlineOffset(12*HOUR + 24* HOUR);
rcRule.setFreeDaysRule(FreeDaysRule.DO_NOT_SELECT);
rcRule.setICalendar("ADRULE ONLY(001 003) LAST(001 002) DAY(DAY

MONDAY THURSDAY) MONTH(FEBRUARY APRIL JUNE SEPTEMBER NOVEMBER) YEAR ");

// Add the run cycle to the job stream

Chapter 3. Java API 19

js.getRunCycles().add(rcRule);
// Modify the job stream in the database
Identifier jsId = model.setTWSObject(js, true, true, context);

}
catch (ConnException e) {
// Do something to recover
}

Example 4: Adding a special resource in the database
// Create the connection to the server
TWSZConn connection = new TWSZConn();
// Get an instance of the interface ZConnModel
final ZConnModel model = connection.getModelBean();

final static long HOUR = 3600000;

// Define the resource properties
String resName = "RES";
String resDescription = "Added by API";
String wksName1 = "CPU1";
String wksName2 = "CPU2";
Resource res = new Resource();
res.setName(resName);
res.setDescription(resDescription);
FlowTargetKey wksKey1 = new FlowTargetKey(wksName1);
FlowTargetKey wksKey2 = new FlowTargetKey(wksName2);
res.getConnectedWorkstationLinks().add(new WorkstationLink(wksKey1));
res.getConnectedWorkstationLinks().add(new WorkstationLink(wksKey2));
ResourceBaseConstraints resCon = new ResourceBaseConstraints();
resCon.setQuantity(30);
resCon.setUsedFor(ResourceUsage.CONTROL);
resCon.setActionOnError(ResourceActionOnError.KEEP);
resCon.setAvailable(YesNoDefaultOption.NO);
res.setDefaultConstraints(resCon);
ResourceAvailabilityInterval resInt =
new ResourceAvailabilityInterval();
resInt.setIntervalValidityDayOfWeek(Calendar.MONDAY);
resInt.setIntervalStartTime(10*HOUR);
resInt.setIntervalEndTime(21*HOUR);
resInt.setQuantity(20);
resInt.setAvailable(YesNoDefaultOption.YES);
res.getResourceAvailabilityIntervals().add(resInt);

try {
Context context = new Context();
// Add the resource to the database
model.addTWSObject(res, context);
}
catch (ConnException e) {
// Do something to recover
}

Example 5: Adding a job stream to the plan after modifying its
contents

The program uses Java APIs to modify an existing job stream and to apply variable
substitution before submitting it to the plan.

The following program adds job stream STREAM1 to the plan. Before doing this, the
program also:
1. Adds two jobs to STREAM1 after getting their attributes from two jobs extracted

from job streams STREAM2 and STREAM3.

20 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

2. Sets up a number of JCL promptable variables before submitting job stream
STREAM1.

3. Further adds/modifies specific job attributes before releasing the jobs in the
plan.

After importing all the necessary classes and objects, connecting to the scheduler,
and declaring the required variables, the program:
v Fetches a job from job stream STREAM2 in the data base, gets its properties and

stores them in a ZosJobInfo container called jZos1, and sets other information
such as the input arrival time and the associated workstation and resources.

v Repeats these actions for job with job number 10 of job stream STREAM3,
storing the job properties in a ZosJobInfo container called jZos2.

v Adds the two jobs to job stream STREAM1, and modifies their properties to
define their numbers (which constitute their IDs within the job stream) and
names.

v Defines first general JCL variables for all four jobs in job stream STREAM1
(using the variablesToBeSubstituted API) and then particular variables for each
job (using the jobVariablesToBeSubstituted API).

v Adds job stream STREAM1 to the plan.
v Makes final changes in the job stream to add more properties, such as the

extended job name and a special resource, to one of the jobs and then releases
the job.

package com.ibm;

import java.rmi.RemoteException;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.Date;
import java.util.HashMap;
import java.util.List;

import com.ibm.tws.conn.exception.ConnEngineNotMasterException;
import com.ibm.tws.conn.exception.ConnException;
import com.ibm.tws.conn.exception.ConnLockingException;
import com.ibm.tws.conn.exception.ConnNotFoundException;
import com.ibm.tws.conn.exception.ConnSecurityException;
import com.ibm.tws.conn.exception.ConnTransportException;
import com.ibm.tws.conn.exception.ConnValidationException;
import com.ibm.tws.conn.util.Context;
import com.ibm.tws.conn.util.QueryResult;
import com.ibm.tws.objects.filter.JobStreamFilters;
import com.ibm.tws.objects.filter.QueryFilter;
import com.ibm.tws.objects.filter.WorkstationFilters;
import com.ibm.tws.objects.model.Job;
import com.ibm.tws.objects.model.JobStream;
import com.ibm.tws.objects.model.JobStreamHeader;
import com.ibm.tws.objects.model.ResourceDependency;
import com.ibm.tws.objects.model.Workstation;
import com.ibm.tws.objects.model.WorkstationHeader;
import com.ibm.tws.objects.model.ZOSJobDefinition;
import com.ibm.tws.objects.plan.JobInPlan;
import com.ibm.tws.objects.plan.JobStreamInPlan;
import com.ibm.tws.objects.plan.ResourceDependencyInPlan;
import com.ibm.tws.objects.plan.ResourceInPlanKey;
import com.ibm.tws.objects.plan.WorkstationInPlanKey;
import com.ibm.tws.objects.plan.ZOSJobDefinitionInPlan;
import com.ibm.tws.objects.plan.types.DependenciesResolutionOption;
import com.ibm.tws.objects.plan.types.JobInPlanZOSAttributes;
import com.ibm.tws.objects.plan.utils.ZosJobInfo;
import com.ibm.tws.objects.types.Identifier;
import com.ibm.tws.zconn.model.ZConnModel;
import com.ibm.tws.zconn.plan.ZConnPlan;
import com.ibm.tws.zconn.plan.dao.impl.util.ResourceInPlanHelper;
import com.ibm.tws.zconn.plan.dao.impl.util.WorkstationInPlanHelper;

@SuppressWarnings("restriction")

Chapter 3. Java API 21

public class MainWitRes {

public static void main(String[] args) {
//Create a connection to the server
TWSZConn connection=new TWSZConn();

//Get Model or Plan Bean
final ZConnModel model=connection.getModelBean();
final ZConnPlan plan=connection.getPlanBean();
final Context context=new Context();

com.ibm.websphere.security.auth.WSSubject.doAs
(connection.getSubject(), new java.security.PrivilegedAction<Object>() {
/* (non-Javadoc)
* @see java.security.PrivilegedAction#run()
*/
@SuppressWarnings("unchecked")
public Object run() {
//Variable Declaration
HashMap<String, List<Integer>> dependencyToDelete=new HashMap<String, List<Integer>>();
HashMap<String, List<Integer>> dependencyToAdd=new HashMap<String, List<Integer>>();
HashMap<Integer, String[][]> jobVariablesToBeSubstituted=new HashMap<Integer, String[][]>();
List<ZosJobInfo> jobsToDelete=new ArrayList<ZosJobInfo>();
List<ZosJobInfo> jobsToAdd=new ArrayList<ZosJobInfo>();
List<Identifier> identifierList=null;
List<Integer> successorList=new ArrayList<>();
List<JobStreamHeader> jobStreamHeaderList;
List<WorkstationHeader> workstationHeaderList;
List<ZosJobInfo> jobsToModify=new ArrayList<ZosJobInfo>();
List<ResourceDependencyInPlan> resourceDependencyInPlanList;
Date startTime=new Date();
Date deadlineTime=new Date();
Long time1,time2;
int seconds,minutes,hours;
int priority=5;
int jobNum=0;
Integer succ;
String [][] variablesMap1=new String [3][2];
String[][] variablesToBeSubstituted=new String [1][2];
String [][] variablesMap2=new String [2][2];
String resourceName;
String authorityGroup=null;
String JSName="STREAM1";
String description="";
String group=null;
String owner=null;
String ownerDescription=null;
String variableTable="STREAM1";
String jobStreamName1="STREAM2";
String jobStreamName2="STREAM3";
boolean holdAll=true;
JobStream jobStream1=null;
JobStream jobStream2=null;
Job jobFM1=null;
Job jobFM2=null;
JobStreamInPlan jobStreamInPlan=null;
ZOSJobDefinition zosJobDefinition1=null;
ZOSJobDefinition zosJobDefinition2=null;
ZosJobInfo zosJobInfo1=new ZosJobInfo();
ZosJobInfo zosJobInfo2=new ZosJobInfo();
ZosJobInfo zosJobInfo3=new ZosJobInfo();
ZosJobInfo zosJobInfo4=new ZosJobInfo();
QueryFilter queryFilter;
QueryResult queryResult;
Calendar calendar1,calendar2;
Workstation workstation = null;
ZOSJobDefinitionInPlan jobDefinitionInPlan;
ResourceDependencyInPlan resourceDependencyInPlan;
ResourceInPlanKey resourceInPlanKey;
WorkstationInPlanKey workstationInPlanKey;
JobInPlanZOSAttributes jobInPlanZosAtt;

//Getting jobStream="Stream2" from the DB, first the header then the full jobStream
queryFilter=new QueryFilter();
queryFilter.setFilter(JobStreamFilters.JOB_STREAM_NAME, jobStreamName1);
try {

queryResult=model.queryTWSObject(JobStream.class, queryFilter, 1, context);
jobStreamHeaderList=(List<JobStreamHeader>) queryResult.getList();
if(jobStreamHeaderList.size()>0){
jobStream1=(JobStream) model.getTWSObject(JobStream.class,jobStreamHeaderList.get(0).getKey() , false, context);

22 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

}
} catch (ConnTransportException e) {

//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnValidationException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnSecurityException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (RemoteException e) {
//TODO Auto-generated catch block
e.printStackTrace();
}

//Getting the first job from Stream2 to add to STREAM1
if(jobStream1.getJobs().size()>0){
jobFM1=(Job) jobStream1.getJobs().get(0);
zosJobDefinition1=(ZOSJobDefinition) jobFM1.getJobDefinition();
}

//Creation of ZosJobInfo for the first job
ZosJobInfo jZos1=new ZosJobInfo();

//Setting the inputArrivalTime
calendar1=Calendar.getInstance();
time1=jobFM1.getTimeRestrictions().getStartOffset();
if(time1!=null && time1>0){
seconds=(int) (time1 / 1000) % 60 ;
minutes=(int) ((time1 / (1000*60)) % 60);
hours=(int) ((time1 / (1000*60*60)) % 24);
calendar1.set(Calendar.HOUR,hours);
calendar1.set(Calendar.MINUTE, minutes);
calendar1.set(Calendar.SECOND, seconds);
jZos1.setInputArrivalTime(calendar1);
}
//Setting the zosJobInfo with data in zosJobDefinition and job (&timeRestriction)

String workstationN=zosJobDefinition1.getFlowTargetKey().getName();
jZos1.setJobName(zosJobDefinition1.getJclName());
jZos1.setTextDescription(jobFM1.getDescription());
jZos1.setWorkstationName(workstationN);
jZos1.setDuration(jobFM1.getEstimatedDuration());
jZos1.setJobNumber(44);
jZos1.setAutoSubmit(zosJobDefinition1.getAutoSubmit());
jZos1.setTaskType(zosJobDefinition1.getTaskType());
jZos1.setTimeDependent(jobFM1.getTimeRestrictions().isTimeDependent());
jZos1.setCentralizedScript(zosJobDefinition1.getHasCentralizedScript());

//Getting the workstation from the DB -> to get the type associated, first get the header and then the full
workstation.

queryFilter.setFilter(WorkstationFilters.WORKSTATION_NAME, workstationN);
try {

queryResult=model.queryTWSObject(Workstation.class, queryFilter, 1, context);
workstationHeaderList=(List<WorkstationHeader>) queryResult.getList();
if(workstationHeaderList.size()>0){
workstation=(Workstation) model.getTWSObject(Workstation.class,workstationHeaderList.get(0).getKey() ,
false, context);

}
} catch (ConnTransportException e) {

//TODO Auto-generated catch block
e.printStackTrace();

} catch (ConnValidationException e) {
//TODO Auto-generated catch block
e.printStackTrace();

} catch (ConnSecurityException e) {
//TODO Auto-generated catch block
e.printStackTrace();

} catch (ConnException e) {
//TODO Auto-generated catch block
e.printStackTrace();

} catch (RemoteException e) {
//TODO Auto-generated catch block
e.printStackTrace();

}

jZos1.setWorkstationType(workstation.getType());

Chapter 3. Java API 23

//Setting the Resource value
for(ResourceDependency resourceD:(List<ResourceDependency>) jobFM1.getResourceDependencies()){
String rName=resourceD.getResourceKey().getName();
if(rName!=null && rName.compareToIgnoreCase("Resource1")==0){
jZos1.setR1(resourceD.getQuantity());
}
if(rName!=null && rName.compareToIgnoreCase("Resource2")==0){
jZos1.setR2(resourceD.getQuantity());
}
if(rName!=null && rName.compareToIgnoreCase("ParallelServers")==0){
jZos1.setParallelServer(resourceD.getQuantity());
}
}

//Getting jobStream="STREAM3" from the Db, first the header then the full jobStream
queryFilter.setFilter(JobStreamFilters.JOB_STREAM_NAME, jobStreamName2);

try {
queryResult=model.queryTWSObject(JobStream.class, queryFilter, 1, context);
jobStreamHeaderList=(List<JobStreamHeader>) queryResult.getList();
if(jobStreamHeaderList.size()>0){
jobStream2=(JobStream) model.getTWSObject(JobStream.class,jobStreamHeaderList.get(0).getKey() ,

false, context);
}
} catch (ConnTransportException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnValidationException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnSecurityException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (RemoteException e) {
//TODO Auto-generated catch block
e.printStackTrace();
}

//Starting with second job to add to STREAM1
//Getting the job with number=10 from STREAM3
for(Job job:(List<Job>)jobStream2.getJobs()){
if(job.getName().compareTo("10")==0){
jobFM2=job;
zosJobDefinition2=(ZOSJobDefinition) jobFM2.getJobDefinition();
}
}
//Creation of ZosJobInfo for the second job
ZosJobInfo jZos2=new ZosJobInfo();

//Setting the inputArrivalTime
calendar2=Calendar.getInstance();
time2=jobFM2.getTimeRestrictions().getStartOffset();
if(time2!=null && time2>0){
seconds=(int) (time2 / 1000) % 60 ;
minutes=(int) ((time2 / (1000*60)) % 60);
hours=(int) ((time2 / (1000*60*60)) % 24);
calendar2.set(Calendar.HOUR,hours);
calendar2.set(Calendar.MINUTE, minutes);
calendar2.set(Calendar.SECOND, seconds);
jZos2.setInputArrivalTime(calendar2);
}

//Setting the zosJobInfo for the second job
//with data in zosJobDefinition and job (@timeRestriction)
workstationN=zosJobDefinition2.getFlowTargetKey().getName();
jZos2.setJobName(zosJobDefinition2.getJclName());
jZos2.setTextDescription(jobFM2.getDescription());
jZos2.setWorkstationName(workstationN);
jZos2.setDuration(jobFM2.getEstimatedDuration());
jZos2.setJobNumber(45);
jZos2.setAutoSubmit(zosJobDefinition2.getAutoSubmit());
jZos2.setTaskType(zosJobDefinition2.getTaskType());
jZos2.setTimeDependent(jobFM2.getTimeRestrictions().isTimeDependent());
jZos2.setCentralizedScript(zosJobDefinition2.getHasCentralizedScript());

//Getting the workstation -> for the type associated. Header then full workstation.
queryFilter.setFilter(WorkstationFilters.WORKSTATION_NAME, workstationN);

24 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

try {
queryResult=model.queryTWSObject(Workstation.class, queryFilter, 1, context);
workstationHeaderList=(List<WorkstationHeader>) queryResult.getList();
if(workstationHeaderList.size()>0){
workstation=(Workstation) model.getTWSObject(Workstation.class,workstationHeaderList.get(0).getKey() ,

false, context);
}
} catch (ConnTransportException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnValidationException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnSecurityException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (RemoteException e) {
//TODO Auto-generated catch block
e.printStackTrace();
}

jZos2.setWorkstationType(workstation.getType());

//Setting the Resource value
for(ResourceDependency resourceD:(List<ResourceDependency>) jobFM2.getResourceDependencies()){
String rName=resourceD.getResourceKey().getName();
if(rName!=null && rName.compareToIgnoreCase("Resource1")==0){
jZos2.setR1(resourceD.getQuantity());
}
if(rName!=null && rName.compareToIgnoreCase("Resource2")==0){
jZos2.setR2(resourceD.getQuantity());
}
if(rName!=null && rName.compareToIgnoreCase("ParallelServers")==0){
jZos2.setParallelServer(resourceD.getQuantity());
}
}

//Setting predecessor and successor for the jobs.
//Otherwise we cannot add them to STREAM1

succ= new Integer(jZos1.getJobNumber());
successorList.add(succ);
succ=new Integer(jZos2.getJobNumber());
successorList.add(succ);
dependencyToAdd.put(String.valueOf(1),successorList);

//Adding the zosJobInfo to STREAM1
jobsToAdd.add(jZos1);
jobsToAdd.add(jZos2);

//Example of how to modify a job in STREAM1

zosJobInfo1.setJobNumber(5);
zosJobInfo1.setJobName("EXEC1");
jobsToModify.add(zosJobInfo1);

zosJobInfo2.setJobNumber(10);
zosJobInfo2.setJobName("EXEC2");
jobsToModify.add(zosJobInfo2);

zosJobInfo4.setJobNumber(15);
zosJobInfo4.setJobName("EXEC3");
jobsToModify.add(zosJobInfo4);

zosJobInfo3.setJobNumber(20);
zosJobInfo3.setJobName("EXEC4");
jobsToModify.add(zosJobInfo3);

//Default JCL variables values (for all jobs)

variablesToBeSubstituted [0][0] = "VAR1";
variablesToBeSubstituted [0][1] = "ValVar1ForExec2And3";

DependenciesResolutionOption resolutionOption = DependenciesResolutionOption.RESOLUTION_ALL;

Chapter 3. Java API 25

//Job level JCL variables values

variablesMap1 [0][0] = "VAR1";
variablesMap1 [0][1] = "ValVar1ForExec1";
variablesMap1 [1][0] = "VAR2";
variablesMap1 [1][1] = "ValVar2ForExec1";
variablesMap1 [2][0] = "VAR3";
variablesMap1 [2][1] = "ValVar3ForExec1";
jobNum = 5;

jobVariablesToBeSubstituted.put(jobNum, variablesMap1);

variablesMap2 [0][0] = "VAR2";
variablesMap2 [0][1] = "ValVar2ForExec2";
variablesMap2 [1][0] = "VAR4";
variablesMap2 [1][1] = "ValVar4ForExec2";
jobNum = 10;

jobVariablesToBeSubstituted.put(jobNum, variablesMap2);

String [][] variablesMap3 = new String [2][2];
variablesMap3 [0][0] = "VAR2";
variablesMap3 [0][1] = "ValVar2ForExec3";
variablesMap3 [1][0] = "VAR4";
variablesMap3 [1][1] = "ValVar4ForExec3";
jobNum = 15;

jobVariablesToBeSubstituted.put(jobNum, variablesMap3);

String [][] variablesMap4 = new String [4][2];
variablesMap4 [0][0] = "VAR3";
variablesMap4 [0][1] = "ValVar3ForExec4";
variablesMap4 [1][0] = "VAR4";
variablesMap4 [1][1] = "ValVar4ForExec4";
variablesMap4 [2][0] = "VAR5";
variablesMap4 [2][1] = "ValVar5ForExec4";
variablesMap4 [3][0] = "VAR6";
variablesMap4 [3][1] = "ValVar6ForExec4";
jobNum = 20;

jobVariablesToBeSubstituted.put(jobNum, variablesMap4);

//Add STREAM1 in the plan with all the modified and new jobs (zosJobInfo)

try {
identifierList = plan.editAddJobStreamInstanceWithVariableSubstitution(
JSName, startTime, deadlineTime, priority, description, group, owner,
ownerDescription, variableTable, jobsToDelete, jobsToAdd, jobsToModify,
dependencyToDelete, dependencyToAdd, variablesToBeSubstituted, authorityGroup,
holdAll, resolutionOption, jobVariablesToBeSubstituted, context);

Identifier jsid = identifierList.get(0);

// get the jobStream (STREAM1) from the plan
jobStreamInPlan = (JobStreamInPlan) plan.getPlanObject(JobStreamInPlan.class, jsid, context);
} catch (ConnLockingException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnNotFoundException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnSecurityException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnTransportException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnValidationException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnEngineNotMasterException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (RemoteException e) {
//TODO Auto-generated catch block

26 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

e.printStackTrace();
}

//Modify the job in JobStreamInPlan to add data missing in ZosJobInfo
//Like extendedName(job 44) and specialResource(job=45)
for(JobInPlan jobInPlan:(List<JobInPlan>) jobStreamInPlan.getJobs()){
jobDefinitionInPlan=(ZOSJobDefinitionInPlan) jobInPlan.getJobDefinition();

if(jobInPlan.getName().compareTo("44")==0){
//Setting of some extended name and HORC
jobDefinitionInPlan.setHighestOkReturnCode(0);
jobDefinitionInPlan.setExtendedName(zosJobDefinition1.getExtendedName());
try {
plan.setJobInstance(jobInPlan, context);
} catch (ConnLockingException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnNotFoundException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnSecurityException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnTransportException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnValidationException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (RemoteException e) {
//TODO Auto-generated catch block
e.printStackTrace();
}
}

if(jobInPlan.getName().compareTo("45")==0){
jobDefinitionInPlan.setHighestOkReturnCode(0);

jobInPlanZosAtt=jobInPlan.getZosSpecificAttributes();
resourceDependencyInPlanList=jobInPlan.getResourceDependencies();
//Adding a special Resource to the job in a jobStreamInPlan
for(ResourceDependency rD:(List<ResourceDependency>)jobFM2.getResourceDependencies()){
resourceName=rD.getResourceKey().getName();
if(resourceName!=null && !resourceName.isEmpty() && resourceName.compareToIgnoreCase("Resource1")!=0 &&
resourceName.compareToIgnoreCase("Resource2")!=0 && resourceName.compareToIgnoreCase("ParallelServers")!=0){
//Creation and setting of a ResourceDepInPlan
resourceDependencyInPlan=new ResourceDependencyInPlan();
resourceDependencyInPlan.setActionOnComplete(rD.getActionOnComplete());
resourceDependencyInPlan.setAllocationType(rD.getAllocationType());
resourceDependencyInPlan.setQuantity(rD.getQuantity());
workstationInPlanKey=new WorkstationInPlanKey();
workstationInPlanKey.setName(zosJobDefinition2.getFlowTargetKey().getName());
resourceInPlanKey=new ResourceInPlanKey(resourceName,workstationInPlanKey);
resourceDependencyInPlan.setId(ResourceInPlanHelper.keyToId(resourceInPlanKey));
resourceDependencyInPlan.setWorkstationId(WorkstationInPlanHelper.keyToId(workstationInPlanKey));
resourceDependencyInPlan.setKey(resourceInPlanKey);
resourceDependencyInPlanList.add(resourceDependencyInPlan);
jobInPlanZosAtt.setNumberOfSpecialResources(1);
break;

}

}

try {
plan.setWholeJobInstance(jobInPlan, false, null, null, null, null, null, jobInPlan.getResourceDependencies(),

null, null, null, null, context);
} catch (ConnLockingException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnNotFoundException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnSecurityException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnTransportException e) {

Chapter 3. Java API 27

//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnValidationException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (RemoteException e) {
//TODO Auto-generated catch block
e.printStackTrace();
}

}
}

try {
plan.holdJobStreamInstanceJobs((Identifier)identifierList.get(0), false, context);
} catch (ConnLockingException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnNotFoundException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnSecurityException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnTransportException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnValidationException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (ConnException e) {
//TODO Auto-generated catch block
e.printStackTrace();
} catch (RemoteException e) {
//TODO Auto-generated catch block
e.printStackTrace();
}

return null;
}
}); // end doAs
;
}

}

Using the API to work with z/OS JCL
Describes how to use the API to work with z/OS JCL.

You normally define JCL jobs in IBM Workload Scheduler for z/OS using the z/OS
Program Interface panels. This section tells you how to create a Java interface to
maintain the JCL in the appropriate library. You can add, read, modify, and remove
a JCL job, and for each such activity you need to be able to connect to the IBM
Workload Scheduler for z/OS connector which implements the API.

Defining the connection with the IBM Workload Scheduler for
z/OS connector
Describes how to define a connection with the IBM Workload Scheduler for z/OS
connector to work with z/OS JCL.

To define the connection with the IBM Workload Scheduler for z/OS connector use
a syntax similar to the following:
final ZConnModel model = connection.getModelBean();

28 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Add JCL Job
Describes how to add a JCL job using the API.

The parameters to add a JCL job are:
v The job itself
v The job key, which consists of the library name and the JCL job name.

The command returns the ID of the created job.

The following example code creates a JCL job and adds it to a specific job library:
JCL jcl = new JCL();
JCLKey jobk1 = new JCLKey("TWSSD.CWSD64.JOBLIB","MYJCL");
jcl.setKey(jobk1);
jcl.getTextLines().add("//"+name+" JOB (876903,D07),’AAAAAAA’,MSGLEVEL=(1,1), 00010000");
jcl.getTextLines().add("// MSGCLASS=A,CLASS=A,NOTIFY=CARDELL 00020000");
jcl.getTextLines().add("//STEP1 EXEC PGM=IEFBR14 00030001");
jcl.getTextLines().add("//SYSPRINT DD SYSOUT=* 00060000");

id = model.addTWSObject(jcl,null);

Read JCL Job
Describes how to read a JCL job with the API.

The parameters to read a JCL job are:
v The job key, which consists of the library name and the JCL job name
v A boolean value to determine whether to lock the job after reading it

The command returns the JCL job identified by the job key.

The following example code reads a specific JCL job in a specific job library:
JCLKey jobk1 = new JCLKey("TWSSD.CWSD64.JOBLIB","MYJCL1");

JCL jobJCL = (JCL)model.getTWSObject(JCL.class, jobk1, false, null);

Modify JCL Job
Describes how to modify a JCL job using the API.

First read the JCL job and lock it:
JCLKey jobk1 = new JCLKey("TWSSD.CWSD64.JOBLIB","MYJCL1");

JCL jobJCL = (JCL)model.getTWSObject(JCL.class, jobk1, true, null);

The parameters to modify a JCL job are:
v The job key, which consists of the library name and the JCL job name
v The modified JCL.

The command returns the ID of the modified job.

The following example code modifies a JCL job that has already been read and
locked:

jcl.getTextLines().add("//"+name+" JOB (876903,D07),’AAAAAAA’,MSGLEVEL=(1,1), 00010000");
jcl.getTextLines().add("// MSGCLASS=A,CLASS=A,NOTIFY=PIPPO 00020000");

id = model.setTWSObject(jcl, true, true, null);

Chapter 3. Java API 29

Remove JCL Job
Describes how to remove a JCL job with the API.

First read the JCL job and lock it:
JCLKey jobk1 = new JCLKey("TWSSD.CWSD64.JOBLIB","MYJCL1");

JCL jobJCL = (JCL)model.getTWSObject(JCL.class, jobk1, true, null);

The parameters to remove a JCL job are:
v The job key, which consists of the library name and the JCL job name

The following example code removes a JCL job that has already been read and
locked:

model.removeTWSObject(JCL.class, jobk1, null);

Reference material
Describes how to access the reference material on the API.

The Integration Workbench help contains all the reference material you require.

To access this material, take the following steps:
1. From the Integration Workbench select Help > Help Contents

2. Expand IBM Workload Scheduler Integration Workbench and then Reference

3. Obtain reference material for any of the following:
v What information is needed to run the wizards that create API projects,

either from scratch or from an example
v Information about the libraries of object and runtime jars
v Description of the XML schemas
v A link to information about the IBM Event Integration Facility
v Full reference for every Java class and method

Further information
Gives links to further information about using Java APIs.

Redbooks®

To find out more about how to program this type of API, see the following IBM®

Redbooks:

IBM Redbooks: EJB 2.0 Development with WebSphere Studio Application Developer,
SG24-6819

This IBM Redbook provides detailed information on how to effectively use
WebSphere® Studio Application Developer for the development of
applications based on the Enterprise JavaBeans (EJB) architecture, and
deployment of such applications to a WebSphere Application Server.

To access this publication, follow this link: http://www.redbooks.ibm.com/
abstracts/sg246819.html.

IBM Redbooks: Programming J2EE APIs with WebSphere Advanced, SG24-6124
This IBM Redbook has examples of programming the new J2EE APIs using
VisualAge® for Java and deployment on WebSphere Advanced.

30 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

http://www.redbooks.ibm.com/abstracts/sg246819.html
http://www.redbooks.ibm.com/abstracts/sg246819.html

To access this publication, follow this link: http://www.redbooks.ibm.com/
abstracts/sg246819.html.

Chapter 3. Java API 31

http://www.redbooks.ibm.com/abstracts/sg246124.html
http://www.redbooks.ibm.com/abstracts/sg246124.html

32 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Chapter 4. Driving IBM Workload Scheduler with REST API

IBM Workload Scheduler provides a set of fully functional APIs that are
implemented based on Representational State Transfer (REST) services. The REST
API helps you easily integrate workload scheduling capabilities with external
products and solutions. The same product functionality covered by the existing
J2EE API is available with the REST API. The REST API is programming language
independent and favors easier network configuration and firewall traversal. With
the APIs, you can exploit heterogeneous environments and provide new
automation opportunities with direct impact on productivity. The following are
some examples or scenarios where the APIs can be implemented:
v Create your own graphical interface to create and modify scheduling definitions

and update objects in the plan.
v Update definitions or plan objects within a script for integration or automation.
v When a specific event occurs within an external product, you can automatically

submit a batch workload through IBM Workload Scheduler.
v In a managed file transfer solution, when a specific file arrives, you can submit

one or more job flows that elaborate the file, closing the loop on your business
process, whether it be bank transactions, a payroll process, or report generation.
Your external managed file transfer product starts the business process and IBM
Workload Scheduler takes care of the processing, assuring that it be monitored
with the rest of the processes from a single point of control and eventually
linked with other processes.

The IBM Workload Scheduler REST API provides several services to administer
engines, event rules, workload modelling, plans, and security.

After installing your master domain manager or backup master domain manager,
you can access the available REST API services by connecting to the following
URL:
https://hostname:port_number/twsd

where,

hostname
The hostname of the master domain manager or the backup master
domain manager.

port_number
The HTTPS port number of the master domain manager or backup domain
manager WebSphere Application Server. The default is 31116.

You can try out the REST API services and the operations available for each on
Swagger Docs by connecting to: https://start.wa.ibmserviceengage.com/twsd/.
Click List Operations to view the operations available with the service, and then
click Expand Operations to view details such as, the implementation notes,
parameters, and response messages for each method. At the end of the details you
can find a Try it out! button to see the operation in action.

33

https://start.wa.ibmserviceengage.com/twsd/

34 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Chapter 5. Driving IBM Workload Automation with the Web
services interface

Use the Web Services interface to perform a subset of IBM Workload Scheduler
and IBM Workload Scheduler for z/OS functions to manage jobs and job streams
in the plan, from your own web client application. Neither database actions nor
other plan actions can be implemented and invoked using this interface.

Whenever you install an IBM Workload Scheduler component that includes the
WebSphere Application Server, the following WSDL files are automatically
installed:

SchedulingFactory.wsdl
Use these services to submit jobs or job streams to the plan and identify
jobs and job streams in the plan that match defined criteria.

JobService.wsdl
Use these services to view the properties of jobs in the plan, view the job
output, set selected properties, release all dependencies, cancel, and kill
jobs in the plan.

JobStreamService.wsdl
Use these services to view the properties of job streams in the plan, view
the job stream output, set selected properties, release all dependencies, and
cancel job streams in the plan.

They are installed in the following path:
<WAS_profile_path>/installedApps/DefaultNode/<component_path>

where the default value of <WAS_profile_path> is <TWA_home>/WAS/TWSprofile and
<component_path> depends on which components are installed:

z/OS connector
ZConnector.ear/PlanServicesWeb.war/WEB-INF/wsdl

Other IBM Workload Scheduler components
TWSEngineModel.ear/PlanServicesWeb.war/WEB-INF/wsdl

If you have both the z/OS Connector and a IBM Workload Scheduler component
installed, the files will be present twice (but have the same content).

Open these WSDL files with a Web Services development tool. They provide you
with:
v The server part interfacing the master domain manager to perform the

supported subset of scheduling operations against jobs and job streams in
production.

v A means of creating your own client interface from where service requesters can
request to perform a subset of operations from any system in your environment

The same set of services is delivered for both IBM Workload Scheduler and IBM
Workload Scheduler for z/OS environments. However, some can be used in only
one environment, and many of them have different parameters in the different
environments, so they are documented separately for the two environments.

35

The Web Services interface is described in the following topics:

Web services for IBM Workload Scheduler
Provides an overview, and links to detailed descriptions of, the web services
provided for IBM Workload Scheduler.

Full details are as follows (click the links in these tables to go to the description of
the service):

SchedulingFactory.wsdl

Table 1. Available services in the SchedulingFactory Web services interface for IBM
Workload Scheduler

Service name Actions performed

submitJob Submits jobs defined in the database into the
production plan (distributed environment
only).

submitAdHocJob Submits ad-hoc jobs into the production plan
(distributed environment only).

queryJobs Returns all job instances matching the filtering
criteria.

submitJobStream Submits job streams into the production plan.

queryJobStreams Returns all job stream instances matching the
filtering criteria.

JobService.wsdl

Table 2. Available services in the JobService Web services interface for IBM Workload
Scheduler

Service name Actions performed

getProperties Displays job properties.

setProperties Sets specified properties for a job instance.

getOutput Gets a job instance output.

kill Kills a job instance.

cancel Cancels a job instance.

releaseAllDependencies Releases all dependencies for a job instance.

JobstreamService.wsdl

Table 3. Available services in the JobStreamService Web services interface for IBM
Workload Scheduler

Service name Actions performed

getProperties Displays job stream properties.

setProperties Sets specified properties for a job stream
instance.

getJobsList Lists all jobs contained in a job stream.

cancel Cancels a job stream instance.

releaseAllDependencies Releases all dependencies for a job stream
instance.

36 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Web services for IBM Workload Scheduler for z/OS
Provides an overview, and links to detailed descriptions of, the web services
provided for IBM Workload Scheduler for z/OS.

Full details are as follows (click the links in these tables to go to the description of
the service):

SchedulingFactory.wsdl

Table 4. Available services in the SchedulingFactory Web services interface for IBM
Workload Scheduler for z/OS

Service name Actions performed

queryJobs (z/OS) Returns all job instances matching the filtering
criteria.

submitJobStream (z/OS) Submits job streams into the production plan.

submitJobStreamWithVarSub (z/OS) Submits job streams with variable substitution
into the production plan.

editSubmitJobStreamWithVarSub (z/OS) Edits and submits job streams with variable
substitution into the production plan.

queryJobStreams (z/OS) Returns all job stream instances matching the
filtering criteria.

JobService.wsdl

Table 5. Available services in the JobService Web services interface for IBM Workload
Scheduler for z/OS

Service name Actions performed

getProperties (z/OS) Displays job properties.

setProperties (z/OS) Sets specified properties for a job instance.

getOutput (z/OS) Gets a job instance output.

cancel (z/OS) Cancels a job instance.

JobstreamService.wsdl

Table 6. Available services in the JobStreamService Web services interface for IBM
Workload Scheduler for z/OS

Service name Actions performed

getProperties (z/OS) Displays job stream properties.

setProperties (z/OS) Sets specified properties for a job stream
instance.

getJobsList (z/OS) Lists all jobs contained in a job stream.

cancel (z/OS) Cancels a job stream instance.

Web services management
Describes how to manage your Web service environment.

This section describes how to manage the web services from your application. It
has the following topics:
v “Accessing the services” on page 38

Chapter 5. Web services interface 37

v “Managing errors” on page 39

Accessing the services
Access the web services by invoking a proxy.

About this task

The web services are accessed by invoking a proxy which contains the path that
your application will use to access the web services wsdl files at the following
location:

Distributed (not z/OS) environment
http(s)://<localhost>:port_number/PlanServicesWeb/services/<service_name>

z/OS environment
http(s)://<localhost>:port_number/zPlanServicesWeb/services/<service_name>

where:

localhost
The hostname of the master domain manager

port_number
The port numbers for http or https are defined in your WebSphere
Application Server installation in:

IBM Workload Scheduler
<WAS_profile_path>/config/cells/ TWSNodeCell/nodes/TWSNode/servers/
server1/server.xml

where the default value of <WAS_profile_path> is
<TWA_home>/WAS/TWSprofile

Dynamic Workload Console
<JazzSM_profile_dir>/config/cells/JazzSMNode01Cell/nodes/
JazzSMNode01/servers/server1/

where, the default value of < JazzSM_profile_dir> is:

On Windows operating systems
C:\Program Files\IBM\JazzSM\profile

On UNIX operating systems
/opt/IBM/JazzSM/profile

under:
v WC_defaulthost for http
v WC_defaulthost_secure for https

service_name
The name of the service you invoke: SchedulingFactory, JobService, or
JobStreamService.

An example of accessing the web services in the z/OS environment is as follows:
SchedulingFactoryProxy proxy = new SchedulingFactoryProxy("http://111.222.333.444:

31126/zPlanServicesWeb/services/SchedulingFactory");

String[] jstreams = proxy.submitJobStreamWithVarSub(
ENGINE_NAME,
JOB_STREAM_KEY,

38 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

schedTime,
deadlineTime,
null,
null,
null,
null,
null,
null,
null,
variablesToBeSubstituted);

Identifying the correct master domain manager
Describes how to identify the correct master domain manager when invoking Web
services.

About this task

To ensure that your web service is performed on the correct master domain
manager, do the following:

Distributed (not z/OS) environment

1. When you create the access proxy to the wsdl where the service you
require is located, access the wsdl on the same master domain manager
(engine) where you want it to be performed.

2. When invoking the service, set the engineName element in the service
method to null.

The service is performed on the master domain manager which is local to
the wsdl you access.

z/OS environment

1. When you create the access proxy to the wsdl where the service you
require is located, access the wsdl on the system where the z/OS connector
is installed

2. When invoking the service, set the engineName element in the service
method to the z/OS engine name where you want to perform the
service.

The service is performed on the master domain manager identified by the
z/OS engine name.

Managing errors
Describes how to manage errors when using Web services.

About this task

This section indicates the errors which could occur, depending on the individual
service being used. In normal circumstances, each error is accompanied by another
error message explaining the problem in more detail. The errors are as follows:

InvalidArguments
The syntax of the service request is not correct. Correct the syntax and
retry the operation.

Locking
An error occurred when the service tried to lock an object before using it.
This is normally caused because another user has an object involved in the
operation locked for editing. It is normally sufficient to wait and retry the

Chapter 5. Web services interface 39

action. A repeated failure of this type might indicate a more serious
problem that should be brought to the attention of the IBM Workload
Scheduler administrator.

ObjectNotFound
The object identified in the request could not be found and thus cannot be
submitted. Before submitting a request which modifies or deletes an
existing object you might decide to query the object first and only perform
the modification or deletion on the object or objects returned by the query.
Note that it is possible that an object is deleted by another user between
retrieving a list of objects with a query and implementing a modification or
deletion.

EngineNotMaster
This message is only returned by the z/OS Connector and indicates that
the engine identified in the request is not the master domain manager. This
might represent an error in the supply of the engine name.

Transport
A communications error occurred. See the accompanying message to
determine how to resolve the problem.

OperationFailed
The operation failed. See the accompanying message to determine the
reason and how to resolve the problem.

Security
The operation could not be completed because the user running the
request does not have the appropriate security access to the one or more of
the objects which were the subject of the request. Either change the
security access rights of the user in the Security file or submit the
operations as a user with the appropriate rights

SchedulingFactory Web services
Describes the Web services available in the SchedulingFactory.wsdl file.

This section describes the web services you can use from the
SchedulingFactory.wsdl file. Examples are given of the use of some of the web
services in the list.

Web services are described separately for IBM Workload Scheduler and IBM
Workload Scheduler for z/OS.

SchedulingFactory web services for IBM Workload Scheduler
Describes the Web services available in SchedulingFactory.wsdl for IBM Workload
Scheduler.

The following Web services can be used to interface with the plan in IBM
Workload Scheduler.

submitJob
Describes the submitJob Web service for IBM Workload Scheduler.

Description
Use this service to submit a job in the IBM Workload Scheduler plan.

Input parameters

40 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

engineName
Not used; set to null.

jobKey
The key identifying the job in the IBM Workload Scheduler
database: workstationName#jobName.

alias The alias name of the job. Also accepts null value.

Output
The response submitJobResponse returns a string submitJobReturn
containing the identifier of the job that was actually submitted in the plan.

submitAdHocJob
Describes the submitAdHocJob Web service for IBM Workload Scheduler.

Description
Use this service to submit a job in the IBM Workload Scheduler plan. The
job is not defined in the database.

Input parameters

engineName
Not used; set to null.

job A jobToSubmit statement which describes the job. The jobToSubmit
statement is defined and documented in the TWS-Types.xsd file,
and in “Defining the ad hoc job.”

Output
The response submitAdHocJobResponse returns a string
submitAdHocJobReturn containing the identifier of the job that was actually
submitted in the plan.

Defining the ad hoc job:
To submit an ad hoc job, you must supply a jobToSubmit statement that describes
the job. The statement has the following format:

jobName
The name of the job. Wildcard characters are permitted, in which case, all
qualifying jobs are submitted.

workstationName
The name of the workstation where the job is to run. If you leave blank,
the workstation where the command is run becomes the default.

userLogin
The login of the user who runs the job.

taskType
The task type. It can be one of the following:
v UNIX
v Windows
v Broker
v Other

taskString
A string containing the parameters that control the execution of the job.

priority
The execution priority for the job. Must be one of the following:
v A number ranging from 0 to 99
v hi

Chapter 5. Web services interface 41

v go

command
Specifies if the job is a command. Can be yes or no.

monitored
Specifies if the job is to be monitored by event rules. Can be yes or no.

requiredConfirmation
Specifies if the completion (failed or successful) of this job requires user
confirmation. Can be yes or no.

recoveryJobName
The name of a recovery job that is to run if this job ends abnormally.

recoveryJobWorkstationName
The name of the workstation where the recovery job is to run. The default
is workstationName.

recoveryOption
Recovery options for the job. Values can be:
v Stop
v Continue
v Rerun

The default is stop with no recovery job and no recovery prompt.

recoveryPromptText
Specifies the text of a recovery prompt, enclosed in double quotes, to be
displayed if the job ends abnormally. The rules are:
v The text can contain up to 64 characters
v If the text begins with a colon (:), the prompt is displayed, but no reply

is required to continue processing
v If the text begins with an exclamation mark (!), the prompt is displayed,

but it is not recorded in the log file

returnCodeMapping
An expression which defines a job final status (successful or failed) based
on a condition on the return code of the execution of the program or script
of the job.

The return code can be provided also to the recovery job that is associated
with it in the job definition. This causes the recovery job to perform
different processing based on the return code.

estimatedDuration
The estimated duration of a job. This value is based on the statistics
collected from previous runs of the job. If the job has never run before, a
default value of one minute is used.

This parameter is relevant if the job is a predecessor of a critical job.

startTime
The date and time at which the job must start.

latestStartTime
The latest date and time at which the job can start.

latestStartAction
The action to take on the job if the latest start time has elapsed. Values can
be:
v Cancel
v Continue

42 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

v Suppress

deadlineTime
The date and time within which the job must have completed. After this
time the job is considered late.

repeatInterval
The repetition rate for the job in hours and minutes, in the hhmm format.
The job is launched again every time the end of the interval is reached.
The interval can be longer than 24 hours.

For more information see the description of the submit job (sbj) command in the
User's Guide and Reference.

queryJobs
Describes the queryJobs Web service for IBM Workload Scheduler.

Description
Use this service to run queries on IBM Workload Scheduler job instances.

Input parameters

engineName
Not used; set to null.

filter A list of filtering criteria represented by an array of filterCriteria
statements. The filterCriteria statements are defined and
documented in the TWS-Types.xsd file and in “Defining the filtering
criteria to query jobs.”

Output
The response queryJobsResponse returns an array queryJobsReturn of the
identifiers of the jobs that matched the query.

Defining the filtering criteria to query jobs:
Each filterCriteria statement has the following form:

details
Not used; set to null.

value An array of values for the dataType.

minimum
A single value representing the minimum of a range.

maximum
A single value representing the maximum of a range.

dataType
A string identifying the field for which you have supplied a value, several
values, or a range. The fields are defined and documented in the
SchedulingFactory.wsdl file and also as follows:

JOB_ID
The job identifier.

JOB_NAME
The name of the job.

JOB_STREAM_NAME
The name of the job stream in which the job ran.

WORKSTATION_NAME
The name of the workstation that ran the job.

Chapter 5. Web services interface 43

STATUS_LIST
Can be one of the following:
v BLOCKED
v CANCELLED
v COMPLETED
v ERROR
v HELD
v READY
v STARTED
v WAITING
v UNDECIDED

INTERNAL_STATUS_LIST
Can be one of the following:
v ABEND
v ABEND_P
v ADDING
v CANCEL
v CANT_STREAM
v CNPEND
v END_P
v ERROR_STAT
v EXEC
v EXEC_BM
v EXTRN
v FENCE
v HOLD
v MPE_INTRO
v MPE_INTRO_BM
v MPE_SCHED
v MPE_SUSP
v MPE_WAIT
v MPE_WAITD
v READY
v RESTART_JOB
v SUCC
v SUCC_P
v UNKNOWN
v USER_HELD
v USER_STREAM

PRIORITY
The execution priority with which the job ran. Can be one (or a
range of values) of the following:
v A number ranging from 0 to 99
v hi
v go

PRIORITY_RANGE
Used if you want to query jobs within a range of priority values.
In this case, minimum and maximum must also be supplied.

CONFIRMED
Determines if only confirmed jobs are to be selected. Can be true
or false.

44 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

RERUN
Determines if only rerun jobs are to be selected. Can be true or
false.

START_TIME
The start time defined for the job in YYYYMMDD HHMM format or
milliseconds.

START_TIME_RANGE
Used if you want to query jobs within a range of start times in
YYYYMMDD HHMM format or milliseconds. In this case, minimum and
maximum must also be supplied.

UNTIL_TIME
The until time defined for the job in YYYYMMDD HHMM format or
milliseconds.

UNTIL_TIME_RANGE
Used if you want to query jobs within a range of until times in
YYYYMMDD HHMM format or milliseconds. In this case, minimum and
maximum must also be supplied.

FINISH_TIME
The finish time defined for the job in YYYYMMDD HHMM format or
milliseconds.

FINISH_TIME_RANGE
Used if you want to query jobs within a range of finish times in
YYYYMMDD HHMM format or milliseconds. In this case, minimum and
maximum must also be supplied.

RECOVERY_OPTION_LIST
Can be one of the following:
v STOP
v CONTINUE
v RERUN

MONITORED_JOB
Not used; set to null.

TASK The name of the task.

USER_LOGIN
The login of the user who ran the job.

ERROR_CODE
Not used; set to null.

submitJobStream
Describes the submitJobStream Web service for IBM Workload Scheduler.

Description
Use this service to submit a job stream (application) in the IBM Workload
Scheduler plan.

Input parameters

engineName
Not used; set to null.

jsKey The key identifying the job stream in the scheduler database:
workstationName#jobStreamName

Chapter 5. Web services interface 45

schedTime
The scheduled submission time for the job stream.

alias The alias name of the job stream.

Output
The response submitJobStreamResponse returns an array
submitJobStreamReturn of the identifiers of the job streams that were
actually submitted in the plan.

queryJobStreams
Describes the queryJobStreams Web service for IBM Workload Scheduler.

Description
Use this service to run queries on IBM Workload Scheduler job stream
instances.

Input parameters

engineName
Not used; set to null.

filter A list of filtering criteria represented by an array of filterCriteria
statements. The filterCriteria statements are defined and
documented in the TWS-Types.xsd file and in “Defining the filtering
criteria to query job streams.”

Output
The response queryJobStreamsResponse returns an array
queryJobStreamsReturn of the identifiers of the job streams that matched
the query.

Defining the filtering criteria to query job streams:
Each filterCriteria statement has the following form:

details
Not used; set to null.

value An array of values for the dataType.

minimum
A single value representing the minimum of a range.

maximum
A single value representing the maximum of a range.

dataType
A string identifying the field for which you have supplied a value, several
values, or a range. The fields are defined and documented in the
SchedulingFactory.wsdl file and also as follows:

JOB_STREAM_ID
The job stream identifier.

JOB_STREAM_NAME
The name of the job stream.

WORKSTATION_NAME
The name of the workstation that ran the job stream.

STATUS_LIST
Can be one of the following:
v BLOCKED
v CANCELLED

46 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

v COMPLETED
v ERROR
v HELD
v READY
v STARTED
v WAITING
v UNDECIDED

INTERNAL_STATUS_LIST
Can be one of the following:
v ABEND
v ADDING
v CANCEL
v CNPEND
v EXEC
v HOLD
v READY
v SUCC
v SUSP
v USER_HELD

LIMIT
The limit value with which the job stream ran. Can be one of the
following:
v A number ranging from 0 to 1024
v hi
v go

LIMIT_RANGE
Used if you want to query job streams within a range of limit
values. In this case, minimum and maximum must also be supplied.

PRIORITY
The execution priority with which the job stream ran. Can be one
of the following:
v A number ranging from 0 to 99
v hi
v go

PRIORITY_RANGE
Used if you want to query job streams within a range of priority
values. In this case, minimum and maximum must also be supplied.

CARRIED_FORWARD
Determines if only carried-forward job streams are to be selected.
Can be true or false.

CARRIED_FORWARD
Determines if only carry-forward job streams are to be selected.
Can be true or false.

START_TIME
The start time defined for the job stream in YYYYMMDD HHMM format
or milliseconds.

START_TIME_RANGE
Used if you want to query job streams within a range of start times
in YYYYMMDD HHMM format or milliseconds. In this case, minimum and
maximum must also be supplied.

Chapter 5. Web services interface 47

UNTIL_TIME
The until time defined for the job stream in YYYYMMDD HHMM format
or milliseconds.

UNTIL_TIME_RANGE
Used if you want to query job streams within a range of until
times in YYYYMMDD HHMM format or milliseconds. In this case,
minimum and maximum must also be supplied.

DEADLINE_TIME
The deadline time defined for the job in YYYYMMDD HHMM format or
milliseconds.

DEADLINE_TIME_RANGE
Used if you want to query job streams within a range of deadline
times in YYYYMMDD HHMM format or milliseconds. In this case,
minimum and maximum must also be supplied.

SchedulingFactory web services for IBM Workload Scheduler
for z/OS

Describes the Web services available in SchedulingFactory.wsdl for IBM Workload
Scheduler for z/OS.

The following Web services can be used to interface with the plan in IBM
Workload Scheduler for z/OS.

queryJobs (z/OS)
Describes the queryJobs Web service for IBM Workload Scheduler for z/OS.

Description
Use this service to run queries on IBM Workload Scheduler for z/OS job
instances.

Input parameters

engineName
The IBM Workload Scheduler for z/OS engine name.

filter A list of filtering criteria represented by an array of filterCriteria
statements. The filterCriteria statements are defined and
documented in the TWS-Types.xsd file and in “Defining the filtering
criteria to query z/OS jobs” on page 49.

Output
The response queryJobsResponse returns an array queryJobsReturn of the
identifiers of the jobs that matched the query. The fields in the array are:

occurrenceToken
The identifier of the occurrence that includes the operation.

extendedStatus
The extended status code assigned to the operation.

errorCode
The error code that terminated the operation.

operationCommand
Can be one of the following: BD = Bind shadow; job EX = Execute
operation; KJ = Kill operation; KR = Kill recovery job; MH = Hold
operation; MR = Release operation; NP = NOP operation; PN =
Prompt reply no; PY = Prompt reply yes; UN = Un-NOP operation.

48 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

authorityGroup
The name of the authority group that the operation belongs to.

cleanUpStatus
Can be one of the following: Blank=none C=Completed E=Ended
in error I=Initiated O=Avail opinfo R=Request opinfo S=Started
W=Waiting opinfo

latestOutPassed
The operation exceeded its latest starting time and is late. Can be
true or false.

latestOut
The latest possible time, calculated at plan-creation-time, that the
operation can start to meet the deadline time (HHMM).

actualArrival
The actual run time of the operation (HHMM).

actualEnd
The time the operation is reported as complete or ended-in-error
(HHMM).

Defining the filtering criteria to query z/OS jobs:
Each filterCriteria statement has the following form:

details
Not used. Set to null.

value An array of values for the dataType.

minimum
A single value representing the minimum of a range.

maximum
A single value representing the maximum of a range.

dataType
A string identifying the field for which you have supplied a value, several
values, or a range. The fields are defined and documented in the
SchedulingFactory.wsdl file and also as follows:

JOB_ID
Not used; set to null.

JOB_NAME
The name of the job. Must be numeric.

JOB_STREAM_NAME
The name of the job stream in which the job ran.

WORKSTATION_NAME
The name of the workstation that ran the job.

STATUS_LIST
Can be one of the following:
v BLOCKED
v CANCELLED
v COMPLETED
v ERROR
v HELD
v READY
v STARTED
v WAITING

Chapter 5. Web services interface 49

v UNDECIDED

INTERNAL_STATUS_LIST
Can be one of the following:
v COMPLETE
v DELETED
v ERROR
v WAITING
v STARTED
v UNDECIDED
v READY
v PENDINGPRED
v WAITINGFORINPUT
v INTERRUPTED
v NOREPORTINGPRED

PRIORITY
The execution priority with which the job ran. Can be one (or a
range of values) of the following:
v A number ranging from 0 to 99
v hi
v go

PRIORITY_RANGE
Used if you want to query jobs within a range of priority values.
In this case, minimum and maximum must also be supplied.

CONFIRMED
Not used; set to null.

RERUN
Not used; set to null.

START_TIME
The start time defined for the job in YYYYMMDD HHMM format or
milliseconds.

START_TIME_RANGE
Used if you want to query jobs within a range of start times in
YYYYMMDD HHMM format or milliseconds. In this case, minimum and
maximum must also be supplied.

UNTIL_TIME
Not used; set to null.

UNTIL_TIME_RANGE
Not used; set to null.

FINISH_TIME
The finish time defined for the job in YYYYMMDD HHMM format or
milliseconds.

FINISH_TIME_RANGE
Used if you want to query jobs within a range of finish times in
YYYYMMDD HHMM format or milliseconds. In this case, minimum and
maximum must also be supplied.

RECOVERY_OPTION_LIST
Not used; set to null.

50 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

MONITORED_JOB
Determines if only monitored jobs are to be selected. Can be true
or false.

TASK The name of the task.

USER_LOGIN
Not used; set to null.

ERROR_CODE
Job error code.

submitJobStream (z/OS)
Describes the submitJobStream Web service for IBM Workload Scheduler for z/OS.

Description
Use this service to submit a job stream (application) in the IBM Workload
Scheduler for z/OS plan.

Input parameters

engineName
The IBM Workload Scheduler for z/OS engine name.

jsKey The key identifying the job stream in the scheduler database:
jobStreamName

schedTime
Not used; set to null.

alias Not used; set to null.

Output
The response submitJobStreamResponse returns an array
submitJobStreamReturn of the identifiers of the job streams that were
actually submitted in the plan. Note that the plan object identifiers
returned contain the ’\0’ character. This is a not valid character and it
must be replaced by a blank.

submitJobStreamWithVarSub
Describes the submitJobStreamWithVarSub Web service for IBM Workload
Scheduler for z/OS.

Description
Use this service to submit a job stream (application) in the IBM Workload
Scheduler for z/OS plan and to assign values to any variables present in
the included jobs. The variable substitution is performed only on
promptable variables that are substituted at job set up phase. The other
variables are substituted at submission time.

Note: The job stream must include no setup jobs. If it does, the following
message is displayed:
EQQM229E

JCL BROWSE/EDIT CAN ONLY BE SELECTED FOR PROCESSOR WORKSTATIONS.

Input parameters

engineName
The name of the IBM Workload Scheduler for z/OS engine.

jsKey The key identifying the job stream in the IBM Workload Scheduler
for z/OS database. The valid format is jobStreamName.

Chapter 5. Web services interface 51

schedTime
The input arrival time for the job stream.

deadlineTime
The completion dead line time for the job stream.

priority
The job stream priority value.

description
The job stream description. Maximum 24 characters.

groupName
The job stream group name. Maximum 16 characters.

ownerName
The job stream owner name. Maximum 16 characters.

ownerDescription
The job stream owner description. Maximum 24 characters.

authorityGroup
The job stream authority group. Maximum 8 characters.

dependenciesResolution
Specifies which type of dependencies are to be resolved. The value
can be:

Y Resolve both predecessor and successor dependencies.

N Ignore all dependencies.

P Resolve only predecessor dependencies.

S Resolve only successor dependencies.

If no value is entered, the default is N.

variableTable
The name of the variable table associated with the job stream.
Maximum 16 characters.

variableToBeSubstituted
An array of Property statements specifying the variables that will
be substituted in the job stream. The Property statement is defined
and documented in the TWS-Types.xsd file, and has the following
form:

value An array of values for the dataType.

dataType
A string identifying the variable for which you are
supplying the value or values, and which can be found in
the defined variable table.

Output
The service returns an array of the identifiers of the job streams that were
actually submitted in the plan. Note that the plan object identifiers
returned contain the ’\0’ character. This is not a valid character and must
be replaced by a blank.

Example:
The following is a coding example of submitJobStreamWithVarSub, where the
variables to be substituted are called SURNAME and NAME and are in the default
variable table for the job stream:

52 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

long now = System.currentTimeMillis();

/**
* inputArrivalTime
*/
Calendar schedTime = new GregorianCalendar();
Date schedDate = new Date(now);
schedTime.setTime(schedDate);

/**
* deadlineTime
*/
Calendar deadlineTime = new GregorianCalendar();
Date deadlineDate = new Date(now + HOUR_8);
deadlineTime.setTime(deadlineDate);

/**
* variablesToBeSubstituted
*/
Property prop1 = new Property();
prop1.setDataType("SURNAME");
String[] valueSurname = {"Robinson"};
prop1.setValue(valueSurname);

Property prop2 = new Property();
prop2.setDataType("NAME");
String[] valueName = {"John"};
prop2.setValue(valueName);

Property[] variablesToBeSubstituted = new Property[2];
variablesToBeSubstituted[0] = prop1;
variablesToBeSubstituted[1] = prop2;

SchedulingFactoryProxy proxy = new SchedulingFactoryProxy("http://111.222.333.444:
55555/zPlanServicesWeb/services/SchedulingFactory");

String[] jstreams = proxy.submitJobStreamWithVarSub(
ENGINE_NAME,
JOB_STREAM_KEY,
schedTime,
deadlineTime,
null,
null,
null,
null,
null,
null,
null,
variablesToBeSubstituted);

editSubmitJobStreamWithVarSub
Describes the editSubmitJobStreamWithVarSub Web service for IBM Workload
Scheduler for z/OS.

Description
Use this service to submit a job stream (application) in the IBM Workload
Scheduler for z/OS plan and to perform some or all of the following
actions:
v Assign values to any variables present in the jobs included in the job

stream
v Add, modify, or delete jobs, and their internal dependencies, in the job

stream

Chapter 5. Web services interface 53

The variable substitution is performed only on promptable variables that
are substituted at job set up phase. The other variables are substituted at
submission time.

Note: The job stream must include no setup jobs. If it does, the following
message is displayed:
EQQM229E

JCL BROWSE/EDIT CAN ONLY BE SELECTED FOR PROCESSOR WORKSTATIONS.

Input parameters

engineName
The name of the IBM Workload Scheduler for z/OS engine.

jsKey The key identifying the job stream in the IBM Workload Scheduler
for z/OS database. The valid format is jobStreamName.

schedTime
The input arrival time for the job stream.

deadlineTime
The completion dead line time for the job stream.

priority
The job stream priority value.

description
The job stream description. Maximum 24 characters.

groupName
The job stream group name. Maximum 16 characters.

ownerName
The job stream owner name. Maximum 16 characters.

ownerDescription
The job stream owner description. Maximum 24 characters.

authorityGroup
The job stream authority group. Maximum 8 characters.

dependenciesResolution
Specifies which type of dependencies are to be resolved. The value
can be:

Y Resolve both predecessor and successor dependencies.

N Ignore all dependencies.

P Resolve only predecessor dependencies.

S Resolve only successor dependencies.

If no value is entered, the default is N.

variableTable
The name of the variable table associated with the job stream.
Maximum 16 characters.

jobsList
An array of ZOSJob statements specifying the jobs that will be
added, edited, and deleted in the job stream. The ZOSJob type is
defined and documented in the TWS-Types.xsd file and in “Add,
modify, or delete jobs in the job stream you are submitting” on
page 60

54 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

dependencyList
An array of Dependency statements specifying the dependencies
that will be added and deleted in the job stream. The Dependency
type is defined and documented in the TWS-Types.xsd file and in
“Add or delete internal dependencies in the plan” on page 62

variablesToBeSubstituted
An array of Property statements specifying the variables that will
be substituted in the job stream. The Property statement is defined
and documented in the TWS-Types.xsd file, and has the following
form:

value An array of values for the dataType.

dataType
A string identifying the variable for which you are
supplying the value or values, and which can be found in
the defined variable table.

Output
The service returns an array of the identifiers of the job streams that were
actually submitted in the plan. Note that the plan object identifiers
returned contain the ’\0’ character. This is not a valid character and must
be replaced by a blank.

Example:
The following is a coding example of editSubmitJobStreamWithVarSub:
long now = System.currentTimeMillis();

/**
* inputArrivalTime
*/
Calendar schedTime = new GregorianCalendar();
Date schedDate = new Date(now);
schedTime.setTime(schedDate);

/**
* deadlineTime
*/
Calendar deadlineTime = new GregorianCalendar();
Date deadlineDate = new Date(now + HOUR_8);
deadlineTime.setTime(deadlineDate);

/**
* variablesToBeSubstituted
*/
Property prop1 = new Property();
prop1.setDataType("SURNAME");
String[] valueSurname = {"Robinson"};
prop1.setValue(valueSurname);

Property prop2 = new Property();
prop2.setDataType("NAME");
String[] valueName = {"John"};
prop2.setValue(valueName);

Property[] variablesToBeSubstituted = new Property[2];
variablesToBeSubstituted[0] = prop1;
variablesToBeSubstituted[1] = prop2;

ZOSJob[] zj = new ZOSJob[1];
zj[0] = new ZOSJob();
zj[1] = new ZOSJob();
zj[2] = new ZOSJob();

Chapter 5. Web services interface 55

zj[0].setAction("ADD");
zj[0].setJobNumber(50);
zj[0].setWorkstationName("VALL");
zj[0].setDuration(10000);
zj[0].setParallelServer(1);
zj[0].setAutoSubmit("true");
zj[0].setJobName("VPCEN1");
zj[0].setInternalStatus("W");

zj[1].setAction("MODIFY");
zj[1].setJobNumber(10);
zj[1].setWorkstationName("VAL1");
zj[1].setJobName("VPCEN2");
zj[1].setInternalStatus("R");

zj[2].setAction("DELETE");
zj[2].setJobNumber(50);

Dependency[] dj = new Dependency[2];

dj[0] = new Dependency();
dj[0].setAction("ADD");
dj[0].setType("PREDECESSOR");
dj[0].setJobNumber(50);
dj[0].setDependencyNumber(40);

dj[0] = new Dependency();
dj[0].setAction("DELETE");
dj[0].setType("PREDECESSOR");
dj[0].setJobNumber(40);
dj[0].setDependencyNumber(20);

String[] jstreams = proxy.editSubmitJobStreamWithVarSub(ENGINE_NAME,
JOB_STREAM_KEY,
schedTime,
deadlineTime,
null,
null,

null, null, null, null, null, zj, dj, variablesToBeSubstituted);

editSubmitJobStreamWithJobVarSub
Describes the editSubmitJobStreamWithJobVarSub Web service for IBM Workload
Scheduler for z/OS.

Description
Use this service to submit a job stream (application) in the IBM Workload
Scheduler for z/OS plan and to perform some or all of the following
actions:
v Assign values to any variables present in the jobs included in the job

stream with the option of specifying a different set of variables for the
individual jobs.

v Add, modify, or delete jobs, and their internal dependencies, in the job
stream.

The variable substitution is performed only on promptable variables that
are substituted at job set up phase. The other variables are substituted at
submission time.

Note: The job stream must include no setup jobs. If it does, the following
message is displayed:
EQQM229E

JCL BROWSE/EDIT CAN ONLY BE SELECTED FOR PROCESSOR WORKSTATIONS.

56 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Input parameters

engineName
The name of the IBM Workload Scheduler for z/OS engine.

jsKey The key identifying the job stream in the IBM Workload Scheduler
for z/OS database. The valid format is jobStreamName.

schedTime
The input arrival time for the job stream.

deadlineTime
The completion dead line time for the job stream.

priority
The job stream priority value.

description
The job stream description. Maximum 24 characters.

groupName
The job stream group name. Maximum 16 characters.

ownerName
The job stream owner name. Maximum 16 characters.

ownerDescription
The job stream owner description. Maximum 24 characters.

authorityGroup
The job stream authority group. Maximum 8 characters.

dependenciesResolution
Specifies which type of dependencies are to be resolved. The value
can be:

Y Resolve both predecessor and successor dependencies.

N Ignore all dependencies.

P Resolve only predecessor dependencies.

S Resolve only successor dependencies.

If no value is entered, the default is N.

variableTable
The name of the variable table associated with the job stream.
Maximum 16 characters.

jobsList
An array of ZOSJob statements specifying the jobs that will be
added, edited, and deleted in the job stream. The ZOSJob type is
defined and documented in the TWS-Types.xsd file and in “Add,
modify, or delete jobs in the job stream you are submitting” on
page 60

dependencyList
An array of Dependency statements specifying the dependencies
that will be added and deleted in the job stream. The Dependency
type is defined and documented in the TWS-Types.xsd file and in
“Add or delete internal dependencies in the plan” on page 62

variablesToBeSubstituted
An array of Property statements specifying the variables that will

Chapter 5. Web services interface 57

be substituted in the job stream. The Property statement is defined
and documented in the TWS-Types.xsd file, and has the following
form:

value An array of values for the dataType.

dataType
A string identifying the variable for which you are
supplying the value or values, and which can be found in
the defined variable table.

jobVariablesToBeSubstituted
An iteration of the following items:

An array of Property statements specifying the variables
that will be substituted in the job stream. The Property
statement is defined and documented in the TWS-Types.xsd
file, and has the following form:

value An array of values for the dataType.

dataType
A string identifying the variable for which you are
supplying the value or values, and which can be
found in the defined variable table.

jobNumber
The integer (from 1 to 255) that identifies the job that will
use the variables specified below and that must have been
previously defined with the .setJobNumber(number)

For example:
String [][] variablesMap1 = new String [3][2];
variablesMap1 [0][0] = "VAR1";
variablesMap1 [0][1] = "ValVar1ForExec1";
variablesMap1 [1][0] = "VAR2";
variablesMap1 [1][1] = "ValVar2ForExec1";
variablesMap1 [2][0] = "VAR3";
variablesMap1 [2][1] = "ValVar3ForExec1";
int jobNum = 5;

jobVariablesToBeSubstituted.put(jobNum, variablesMap1);

String [][] variablesMap2 = new String [2][2];
variablesMap2 [0][0] = "VAR2";
variablesMap2 [0][1] = "ValVar2ForExec2";
variablesMap2 [1][0] = "VAR4";
variablesMap2 [1][1] = "ValVar4ForExec2";
jobNum = 10;

jobVariablesToBeSubstituted.put(jobNum, variablesMap2);

...

String [][] variablesMap4 = new String [4][2];
variablesMap4 [0][0] = "VAR3";
variablesMap4 [0][1] = "ValVar3ForExec4";
variablesMap4 [1][0] = "VAR4";
variablesMap4 [1][1] = "ValVar4ForExec4";
variablesMap4 [2][0] = "VAR5";
variablesMap4 [2][1] = "ValVar5ForExec4";
variablesMap4 [3][0] = "VAR6";
variablesMap4 [3][1] = "ValVar6ForExec4";

58 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

jobNum = 20;

jobVariablesToBeSubstituted.put(jobNum, variablesMap4);

The sequence repeats for all the jobs that use their own particular
variables or variable values rather than those specified for the
whole job stream. Any jobs that are not in the iteration use either
the variables or variable values specified with the
variablesToBeSubstituted parameter for the job stream or no
variables at all.

Output
The service returns an array of the identifiers of the job streams that were
actually submitted in the plan. Note that the plan object identifiers
returned contain the ’\0’ character. This is not a valid character and must
be replaced by a blank.

Example:
The following is a coding example of editSubmitJobStreamWithJobVarSub:
String description = "";
String group = null;
String owner = null;
String ownerDescription = null;
String variableTable = "STREAM1";

List<ZosJobInfo>jobsToDelete = new ArrayList<ZosJobInfo>();
List<ZosJobInfo>jobsToAdd = new ArrayList<ZosJobInfo>();

List<ZosJobInfo>jobsToModify = new ArrayList<ZosJobInfo>();
ZosJobInfo job1 = new ZosJobInfo();
job1.setJobNumber(5);
job1.setJobName("EXEC1");
jobsToModify.add(job1);
ZosJobInfo job2 = new ZosJobInfo();
job2.setJobNumber(10);
job2.setJobName("EXEC2");
jobsToModify.add(job2);
ZosJobInfo job21 = new ZosJobInfo();
job21.setJobNumber(15);
job21.setJobName("EXEC3");
jobsToModify.add(job21);
ZosJobInfo job3 = new ZosJobInfo();
job3.setJobNumber(20);
job3.setJobName("EXEC4");
jobsToModify.add(job3);

HashMap<String, List<Integer>> dependencyToDelete = new HashMap<String, List<Integer>>();
HashMap<String, List<Integer>> dependencyToAdd = new HashMap<String, List<Integer>>();

// default (for all jobs) JCL variables values
String[][] variablesToBeSubstituted = new String [1][2];
variablesToBeSubstituted [0][0] = "VAR1";
variablesToBeSubstituted [0][1] = "ValVar1ForExec2And3";

String authorityGroup = null;
boolean holdAll = true;
DependenciesResolutionOption resolutionOption = DependenciesResolutionOption.RESOLUTION_ALL;

// job level JCL variables values
HashMap<Integer, String[][]> jobVariablesToBeSubstituted = new HashMap<Integer, String[][]>();
String [][] variablesMap1 = new String [3][2];
variablesMap1 [0][0] = "VAR1";
variablesMap1 [0][1] = "ValVar1ForExec1";
variablesMap1 [1][0] = "VAR2";
variablesMap1 [1][1] = "ValVar2ForExec1";
variablesMap1 [2][0] = "VAR3";
variablesMap1 [2][1] = "ValVar3ForExec1";
int jobNum = 5;

jobVariablesToBeSubstituted.put(jobNum, variablesMap1);

String [][] variablesMap2 = new String [2][2];
variablesMap2 [0][0] = "VAR2";

Chapter 5. Web services interface 59

variablesMap2 [0][1] = "ValVar2ForExec2";
variablesMap2 [1][0] = "VAR4";
variablesMap2 [1][1] = "ValVar4ForExec2";
jobNum = 10;

jobVariablesToBeSubstituted.put(jobNum, variablesMap2);

String [][] variablesMap3 = new String [2][2];
variablesMap3 [0][0] = "VAR2";
variablesMap3 [0][1] = "ValVar2ForExec3";
variablesMap3 [1][0] = "VAR4";
variablesMap3 [1][1] = "ValVar4ForExec3";
jobNum = 15;

jobVariablesToBeSubstituted.put(jobNum, variablesMap3);

String [][] variablesMap4 = new String [4][2];
variablesMap4 [0][0] = "VAR3";
variablesMap4 [0][1] = "ValVar3ForExec4";
variablesMap4 [1][0] = "VAR4";
variablesMap4 [1][1] = "ValVar4ForExec4";
variablesMap4 [2][0] = "VAR5";
variablesMap4 [2][1] = "ValVar5ForExec4";
variablesMap4 [3][0] = "VAR6";
variablesMap4 [3][1] = "ValVar6ForExec4";
jobNum = 20;

jobVariablesToBeSubstituted.put(jobNum, variablesMap4);

Context context = null;

@SuppressWarnings("unchecked")
List<Identifier> list = plan.editAddJobStreamInstanceWithVariableSubstitution(

JSName, startTime, deadlineTime, priority, description,
group, owner, ownerDescription, variableTable, jobsToDelete,
jobsToAdd, jobsToModify, dependencyToDelete, dependencyToAdd,
variablesToBeSubstituted, authorityGroup, holdAll,
resolutionOption, jobVariablesToBeSubstituted, context);

Add, modify, or delete jobs in the job stream you are submitting
To carry out any of these actions, you must write an array of ZOSJob statements
containing the specifications for these actions. If the jobsList array is empty, or if
it contains null values (except where allowed), no action is taken.

Table 7 describes the parameters you need to specify in each ZOSJob statement to
specify a job you want to add, modify, or delete in the job stream you are
submitting to the plan.

Table 7. Properties to set for added, modified, and deleted jobs in the ZOSJob elements.

Element

Action to perform on job in job stream

Add Modify Delete

action Set to ADD. If left void or
with an unauthorized
value, an error message is
returned.

Set to MODIFY. If left void
or with an unauthorized
value, an error message
is returned.

Set to DELETE. If
left void or with
an unauthorized
value, an error
message is
returned.

jobNumber Set to a value between 1
and 255. If left void, an
error message is returned.

Set to a value between 1
and 255 corresponding
to the job number in the
plan. If left void, an
error message is
returned.

Set to a value
between 1 and
255
corresponding to
the job number
in the plan. If
left void, an
error message is
returned.

60 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Table 7. Properties to set for added, modified, and deleted jobs in the ZOSJob
elements. (continued)

Element

Action to perform on job in job stream

Add Modify Delete

workstationName Set to the ID of the
workstation as defined in
the current plan.
Maximum 4 characters. If
left void, an error
message is returned.

Set to the ID of the
workstation as defined
in the current plan.
Maximum 4 characters.
If left void, the
last-saved value is used.

Enter a null
value.

textDescription Optional. Maximum 24
characters.

Maximum 24 characters.
If left void, the
last-saved description is
used.

Enter a null
value.

jobName Set to the name of the
job. Maximum 8
characters. If left void, an
error message is returned.

Maximum 8 characters.
If left void, the
last-saved value is used.

Enter a null
value.

parallelServer The number of parallel
servers required to run
the job. If left void, it
takes 0 as the default
value. Depending on the
workstation in some
cases may return an error
message.

Set to -1 to leave the
last-saved value. The
default is 0.

Enter a null
value.

duration Set in milliseconds. If left
void, an error message is
returned.

Set to -1 to leave the
last-saved value. The
default is 0.

Enter a null
value.

autoSubmit If auto submit is
required, set to true
otherwise set to false. If
left void, takesfalse.

If auto submit is
required, set to true
otherwise set to false. If
left void, takes the
last-saved value.

Enter a null
value.

timeDependent If the job is
time-dependent, set to
true otherwise set to
false. If left void, takes
false.

If the job is
time-dependent, set to
true otherwise set to
false. If left void, takes
the last-saved value.

Enter a null
value.

centralizedScript If the job has a
centralized script, set to
true otherwise set to
false. If left void, takes
true.

This option is only
available on jobs
scheduled to run on a
fault-tolerant agent.

Enter a null value
(cannot be modified
from the original value).

Enter a null
value.

inputArrivalTime The input arrival time in
HH.MM format.

The input arrival time in
HH.MM format. If left
void, the last-saved
value is used.

Enter a null
value.

Chapter 5. Web services interface 61

Table 7. Properties to set for added, modified, and deleted jobs in the ZOSJob
elements. (continued)

Element

Action to perform on job in job stream

Add Modify Delete

R1 The number of instances
of job resource 1
required. If left void, it
takes 0 as value.

The number of instances
of job resource 1
required. Set to -1 to
leave the last-saved
value. The default is 0.

Enter a null
value.

R2 The number of instances
of job resource 2
required. If left void, it
takes 0 as value.

The number of instances
of job resource 2
required. Set to -1 to
leave the last-saved
value. The default is 0.

Enter a null
value.

internalStatus Can be one of the
following:
v COMPLETE
v DELETED
v ERROR
v WAITING
v STARTED
v UNDECIDED
v READY
v PENDINGPRED
v WAITINGFORINPUT
v INTERRUPTED
v NOREPORTINGPRED

If left void, takes
UNDECIDED as value.

If left void, the
last-saved value is used.

Enter a null
value.

Remember to define the dependencies (if there are any) of the new jobs you add.

Add or delete internal dependencies in the plan
To perform either of these actions, you must write an array of Dependency
statements containing the specifications for these actions. If the dependecyLst array
is empty, or if it contains null values, no action is taken.

The following describes the parameters you need to specify in each Dependency
statement to specify a dependency you want to add or delete in a job stream in the
plan. If all elements are not defined, an error is returned:

action The action to be taken on the dependency. Can be either ADD or DELETE.

type The type of dependency. Can be either PREDECESSOR or SUCCESSOR.

jobNumber
The job number of the job impacted.

dependencyNumber
The job number of the job that you are defining as a predecessor or
successor of jobNumber.

queryJobStreams (z/OS)
Describes the queryJobStreams Web service for IBM Workload Scheduler for z/OS.

62 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Description
Use this service to run queries on IBM Workload Scheduler for z/OS job
stream instances.

Input parameters

engineName
The name of the IBM Workload Scheduler for z/OS engine.

filter A list of filtering criteria represented by an array of filterCriteria
statements. The filterCriteria statements are defined and
documented in the TWS-Types.xsd file and in “Defining the filtering
criteria to query z/OS job streams.”

Output
The response queryJobStreamsResponse returns an array
queryJobStreamsReturn of the identifiers of the job streams that matched
the query. The array includes the following fields:

occurrenceToken
The occurrence identifier.

owner The owner ID defined for the application.

authorityGroup
The name of the authority group that the application belongs to.

containingMonitoredJob
The application includes at least one monitored operation. Can be
true or false.

Defining the filtering criteria to query z/OS job streams:
Each filterCriteria statement has the following form:

details
Not used; set to null.

value An array of values for the dataType.

minimum
A single value representing the minimum of a range.

maximum
A single value representing the maximum of a range.

dataType
A string identifying the field for which you have supplied a value, several
values, or a range. The fields are defined and documented in the
SchedulingFactory.wsdl file and are as follows:

JOB_STREAM_NAME
The name of the job stream.

WORKSTATION_NAME
The name of the workstation that ran the job stream.

STATUS_LIST
Can be one of the following:
v BLOCKED
v CANCELLED
v COMPLETED
v ERROR
v HELD
v READY

Chapter 5. Web services interface 63

v STARTED
v WAITING
v UNDECIDED

INTERNAL_STATUS_LIST
Can be one of the following:
v COMPLETE
v DELETED
v ERROR
v WAITING
v STARTED
v UNDECIDED

PRIORITY
The execution priority with which the job stream ran. Can be one
of the following:
v A number ranging from 0 to 99
v hi
v go

PRIORITY_RANGE
Used if you want to query job streams within a range of priority
values. In this case, minimum and maximum must also be supplied.

START_TIME
The start time defined for the job stream in YYYYMMDD HHMM format
or milliseconds.

START_TIME_RANGE
Used if you want to query job streams within a range of start times
in YYYYMMDD HHMM format or milliseconds. In this case, minimum and
maximum must also be supplied.

DEADLINE_TIME
The deadline time defined for the job in YYYYMMDD HHMM format or
milliseconds.

DEADLINE_TIME_RANGE
Used if you want to query job streams within a range of deadline
times in YYYYMMDD HHMM format or milliseconds. In this case,
minimum and maximum must also be supplied.

OCCURRENCE_TOKEN
The occurrence token of the job stream instance in the plan (in
hexadecimal).

OWNER
The owner of the job stream.

AUTH_GROUP
The authority group assigned to the job stream.

MONITORED_JOB
Determines if only monitored jobs are to be selected. Can be true
or false.

JobService details
Describes the Web services available in the JobService.wsdl file.

This section describes the web services you can use from the JobService.wsdl file.

64 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Web services are described separately for IBM Workload Scheduler and IBM
Workload Scheduler for z/OS.

JobService web services for IBM Workload Scheduler
Describes the web services that are available in JobService.wsdl for IBM Workload
Scheduler.

The following web services can be used to interface with job instances in IBM
Workload Scheduler.

getProperties
Describes the getProperties Web service for IBM Workload Scheduler jobs.

Description
Use this service to display information about a job instance.

You must have list access to the job in the security file to run this service.

Input parameters

engineName
Not used; set to null.

jobId The job identifier in the plan:
workstationName#jobStreamName.jobName.

Output
The response getPropertiesResponse returns an array getPropertiesReturn
containing the following information fields:

jobId The job identifier.

jobName
The name of the job.

jobStreamName
The name of the job stream including the job.

workstationName
The name of the workstation that ran the job.

jobStreamWorkstationName
The name of the workstation associated with the job stream.

jobNumber
The number assigned to the job at runtime.

priority
The execution priority with which the job ran. Can be one (or a
range of values) of the following:
v A number ranging from 0 to 99
v hi
v go

status Can be one of the following:
v ERROR
v HELD
v READY
v RUNNING
v SUCCESSFULL
v UNDECIDED
v WAITING

Chapter 5. Web services interface 65

internalStatus
Can be one of the following:
v ABEND
v ABENDP
v BOUND
v CANCP
v DONE
v ERROR
v EXEC
v EXTRN
v FAIL
v FENCE
v HOLD
v INTRO
v PEND
v READY
v RJOB
v SCHED
v SUCC
v SUCCP
v SUSP
v USER
v WAIT
v WAITD

requiredConfirmation
Can be true or false.

aliased
Can be true or false.

canceled
Can be true or false.

every The job instance was run with the every option. Can be true or
false.

everyRerun
The job instance is a rerun of a job defined with the every option.
Can be true or false.

external
The job is a predecessor to another job stream or one of its jobs.
Can be true or false.

jobLate
The job passed its completion deadline. Can be true or false.

pendingCancellation
The job stream is pending cancellation. Cancellation is deferred
until all of the dependencies, including an at time, are resolved.
Can be true or false.

recoveryRerunJob
The job is defined with the recovery action RERUN. This enables
the recovery job to take some corrective action, before the parent
job attempts to run again. Can be true or false.

released
The job was released from its dependencies. Can be true or false.

66 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

rerunJob
The job was rerun. Can be true or false.

running
The job is still running. Can be true or false.

startTime
The start time defined for the job in YYYYMMDD HHMM format or
milliseconds.

lateststartTime
The value of the until restriction of the job instance in YYYYMMDD
HHMM format or milliseconds.

lateststartAction
The action taken after the until restriction time elapsed. Can be
CANCEL, CONTINUE, or SUPPRESS.

deadlineTime
The value of the deadline restriction of the job instance in YYYYMMDD
HHMM format or milliseconds.

repeatRange
The time interval between every reruns of the job in milliseconds.

If the service did not run successfully, getPropertiesResponse returns one
of the errors described in “Managing errors” on page 39.

setProperties
Describes the setProperties Web service for IBM Workload Scheduler jobs.

Description
Use this service to define additional properties for a job in the plan.

You must have submit access to the job in the security file to run this
service.

Input parameters

engineName
Not used; set to null.

jobId The job identifier in the plan:
workstationName#jobStreamName.jobName.

properties
An array containing the properties you want to set. The properties
can be:

priorityIsMonitored
The job priority is monitored if it is a key job. The value is
either true or false.

requiresConfirmation
Operator confirmation is required after the job completes to
mark it as successful or failed. The value is either true or
false.

startTime
The time when the job must start in YYYYMMDD HHMM format
or milliseconds.

lateststartTime
The latest time when the job must start in YYYYMMDD HHMM
format or milliseconds.

Chapter 5. Web services interface 67

lateststartAction
The action that will be taken if the job exceeds its latest
start time. Can be CANCEL, CONTINUE, or SUPPRESS.

deadlineTime
The time within which the job must complete in YYYYMMDD
HHMM format or milliseconds.

repeatRange
The time interval between every reruns of the job in
milliseconds.

Output
The response setPropertiesResponse is void if the service ran succesfully;
otherwise, it returns one of the errors described in “Managing errors” on
page 39.

getOutput
Describes the getOutput Web service for IBM Workload Scheduler jobs.

Description
Use this service to get the execution log of a job in the plan.

You must be logged on as the TWS_user to have proper authorization to
run this service.

Input parameters

engineName
Not used; set to null.

jobId The job identifier in the plan:
workstationName#jobStreamName.jobName.

Output
The response getOutputResponse returns a string containing the execution
log of the specified job.

If the service did not run successfully, getOutputResponse returns one of
the errors described in “Managing errors” on page 39.

kill
Describes the kill Web service for IBM Workload Scheduler jobs.

Description
Use this service to stop a job that is running.

You must have kill access to the job in the security file to run this service.

Input parameters

engineName
Not used; set to null.

jobId The job identifier in the plan:
workstationName#jobStreamName.jobName.

Output
The response killResponse is void if the service ran successfully;
otherwise, it returns one of the errors described in “Managing errors” on
page 39.

cancel
Describes the cancel Web service for IBM Workload Scheduler jobs.

68 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Description
Use this service to cancel a job.

If you cancel the job before it is started, it does not start. If you cancel it
after it was started, it continues to run. If you cancel a job that is running
and it completes in the ABEND state, no automatic job recovery steps are
attempted.

You must have cancel access to the job in the security file to run this
service.

Input parameters

engineName
Not used; set to null.

jobId The job identifier in the plan:
workstationName#jobStreamName.jobName.

isPending
Value is true or false. True cancels the job only after its
dependencies are resolved. False cancels the job immediately (and
any jobs and job streams that are dependent on the cancelled job
are released immediately from the dependency).

Output
The response cancelResponse is void if the service ran successfully;
otherwise, it returns one of the errors described in “Managing errors” on
page 39.

releaseAllDependencies
Describes the releaseAllDependencies Web service for IBM Workload Scheduler
jobs.

Description
Use this service to release a job from all its defined dependencies.

You must have release access to the job in the security file to run this
service.

Input parameters

engineName
Not used; set to null.

jobId The job identifier in the plan:
workstationName#jobStreamName.jobName.

Output
The response releaseAllDependenciesResponse is void if the service ran
successfully; otherwise, it returns one of the errors described in “Managing
errors” on page 39.

JobService web services for IBM Workload Scheduler for z/OS
Describes the web services that are available in JobService.wsdl for IBM Workload
Scheduler for z/OS.

The following web services can be used to interface with operations in IBM
Workload Scheduler for z/OS.

Chapter 5. Web services interface 69

getProperties (z/OS)
Describes the getProperties Web service for IBM Workload Scheduler for z/OS
operations.

Description
Use this service to display information about an operation.

Input parameters

engineName
The name of the IBM Workload Scheduler for z/OS controller.

jobId The operation identifier in the current plan. Note that the plan
object identifiers returned contain the '\0' character. This is not a
valid character and must be replaced by a blank.

Output
The response getPropertiesResponse returns an array getPropertiesReturn
containing the following information fields:

occurrenceToken
The identifier of the occurrence that includes the operation.

extendedStatus
The extended status code assigned to the operation.

errorCode
The error code that terminated the operation.

operationCommand
Can be one of the following: BD = Bind shadow; job EX = Execute
operation; KJ = Kill operation; KR = Kill recovery job; MH = Hold
operation; MR = Release operation; NP = NOP operation; PN =
Prompt reply no; PY = Prompt reply yes; UN = Un-NOP operation.

authorityGroup
The name of the authority group that the operation belongs to.

cleanUpStatus
Can be one of the following: Blank=none C=Completed E=Ended
in error I=Initiated O=Avail opinfo R=Request opinfo S=Started
W=Waiting opinfo

latestOutPassed
The operation exceeded its latest starting time and is late. Can be
true or false.

latestOut
The latest possible time, calculated at plan-creation-time, that the
operation can start to meet the deadline time (HHMM).

actualArrival
The actual run time of the operation (HHMM).

actualEnd
The time the operation is reported as complete or ended-in-error
(HHMM).

If the service did not run successfully, getPropertiesResponse returns one
of the errors described in “Managing errors” on page 39.

setProperties (z/OS)
Describes the setProperties Web service for IBM Workload Scheduler for z/OS
operations.

70 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Description
Use this service to define additional properties for an operation.

Input parameters

engineName
The name of the IBM Workload Scheduler for z/OS controller.

jobId The operation identifier in the current plan. Note that the plan
object identifiers returned contain the '\0' character. This is not a
valid character and must be replaced by a blank.

properties
An array containing the properties you want to set. The properties
can be:

priorityIsMonitored
The priority is monitored if it is a key operation. The value
is either true or false.

startTime
The time when the operation must start in YYYYMMDD HHMM
format or milliseconds.

lateststartTime
The latest time when the operation must start in YYYYMMDD
HHMM format or milliseconds.

lateststartAction
The action that will be taken if the operation exceeds its
latest start time. Can be CANCEL, CONTINUE, or
SUPPRESS.

deadlineTime
The time within which the operation must complete in
YYYYMMDD HHMM format or milliseconds.

Output
The response setPropertiesResponse is void if the service ran successfully;
otherwise, it returns one of the errors described in “Managing errors” on
page 39.

getOutput (z/OS)
Describes the getOutput Web service for IBM Workload Scheduler for z/OS
operations.

Description
Use this service to get the job log of an operation.

Input parameters

engineName
The name of the IBM Workload Scheduler for z/OS controller.

jobId The operation identifier in the current plan. Note that the plan
object identifiers returned contain the '\0' character. This is not a
valid character and must be replaced by a blank.

Output
The response getOutputResponse returns a string containing the job log of
the specified operation.

If the service did not run successfully, getOutputResponse returns one of
the errors described in “Managing errors” on page 39.

Chapter 5. Web services interface 71

cancel (z/OS)
Describes the cancel Web service for IBM Workload Scheduler for z/OS operations.

Description
Use this service to cancel an operation.

Note that this service works only if the operation has not started. If the
operation has already started, it continues to run.

Input parameters

engineName
The name of the IBM Workload Scheduler for z/OS controller.

jobId The operation identifier in the current plan. Note that the plan
object identifiers returned contain the '\0' character. This is not a
valid character and must be replaced by a blank.

isPending
The operation is in pending status. The value can be true or false.

Output
The response cancelResponse is void if the service ran successfully;
otherwise, it returns one of the errors described in “Managing errors” on
page 39.

JobStreamService details
Describes the Web services available in the JobStreamService.wsdl file.

This section describes the web services you can use from the
JobStreamService.wsdl file.

Web services are described separately for IBM Workload Scheduler and IBM
Workload Scheduler for z/OS.

JobStreamService web services for IBM Workload Scheduler
Describes the web services that are available in JobStreamService.wsdl for IBM
Workload Scheduler.

The following web services can be used to interface with job stream instances in
IBM Workload Scheduler.

getProperties
Describes the getProperties Web service for IBM Workload Scheduler job streams.

Description
Use this service to display information about a job stream instance.

You must have list access to the job stream in the security file to run this
service.

Input parameters

engineName
Not used; set to null.

jobStreamId
The job stream identifier in the plan: either

72 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

workstationName#jobStreamName(hhmm[date]) or
workstation#jobstream_id. See the IBM Workload Scheduler: User's
Guide and Reference for details.

Output
The response getPropertiesResponse returns an array getPropertiesReturn
containing the following information fields:

jobStreamId
The job stream instance identifier.

jobStreamName
The name of the job stream.

aliasJobStreamName
The job stream alias name.

originalJobStreamName
The name of the job stream as defined in the database.

workstationName
The name of the workstation associated with the job stream.

status Can be one of the following:
v BLOCKED
v CANCELLED
v ERROR
v HELD
v READY
v RUNNING
v SUCCESSFUL
v UNDECIDED
v WAITING

internalStatus
Can be one of the following:
v ABEND
v ABENDP
v CANCP
v DONE
v ERROR
v EXEC
v EXTRN
v FAIL
v FENCE
v HOLD
v INTRO
v PEND
v READY
v RJOB
v SCHED
v SUCC
v SUCCP
v SUSP
v USER
v WAIT
v WAITD

limit The job limit of the job stream.

Chapter 5. Web services interface 73

priority
The execution priority defined for the job stream. Can be one (or a
range of values) of the following:
v A number ranging from 0 to 99
v hi
v go

numberOfJobs
The number of jobs included in the job stream.

canceled
The job stream instance is in the cancelled status. Can be true or
false.

carriedForward
The job stream instance was carried forward. Can be true or false.

carryForward
The job stream was scheduled with the carryforward option. Can
be true or false.

external
The job stream is a predecessor to another job stream or to one of
its jobs located in another IBM Workload Scheduler network. Can
be true or false.

lateJobStream
The job stream instance passed its completion deadline. Can be
true or false.

pendingCancellation
The job stream is pending cancellation. Cancellation is deferred
until all of the dependencies, including an at time, are resolved.
Can be true or false.

released
The job stream was released from its dependencies. Can be true or
false.

startTime
The start time defined for the job stream in YYYYMMDD HHMM format
or milliseconds.

lateststartTime
The value of the until restriction of the job stream in YYYYMMDD
HHMM format or milliseconds.

lateststartAction
The action taken after the until restriction time elapsed. Can be
CANCEL, CONTINUE, or SUPPRESS.

deadlineTime
The value of the deadline restriction of the job stream instance in
YYYYMMDD HHMM format or milliseconds.

If the service did not run successfully, getPropertiesResponse returns one
of the errors described in “Managing errors” on page 39.

setProperties
Describes the setProperties Web service for IBM Workload Scheduler job streams.

Description
Use this service to define additional properties for a job stream in the plan.

74 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

You must have submit access to the job stream in the security file to run
this service.

Input parameters

engineName
Not used; set to null.

jobStreamId
The job stream identifier in the plan: either
workstationName#jobStreamName(hhmm[date]) or
workstation#jobstream_id. See the IBM Workload Scheduler: User's
Guide and Reference for details.

properties
An array containing the properties you want to set. The properties
can be:

limit The number of jobs in the job stream that can run
simultaneously on the same workstation.

priority
The execution priority. Can be one (or a range of values) of
the following:
v A number ranging from 0 to 99
v hi
v go

isCarryForward
The value is either true or false.

isMonitored
The job stream is monitored. The value is either true or
false.

startTime
The time when the job stream must start in YYYYMMDD HHMM
format or milliseconds.

lateststartTime
The latest time when the job stream must start in YYYYMMDD
HHMM format or milliseconds.

lateststartAction
The action that will be taken if the job stream exceeds its
latest start time. Can be CANCEL, CONTINUE, or
SUPPRESS.

deadlineTime
The time within which the job stream must complete in
YYYYMMDD HHMM format or milliseconds.

Output
If the service ran successfully, the response setPropertiesResponse returns
the identifier of the modified job stream; otherwise, it returns one of the
errors described in “Managing errors” on page 39.

getJobsList
Describes the getJobsList Web service for IBM Workload Scheduler job streams.

Description
Use this service to get a list of the jobs - and their properties - of a job
stream in the plan.

Chapter 5. Web services interface 75

You must have list access to the job stream in the security file to run this
service.

Input parameters

engineName
Not used; set to null.

jobStreamId
The job stream identifier in the plan: either
workstationName#jobStreamName(hhmm[date]) or
workstation#jobstream_id. See the IBM Workload Scheduler: User's
Guide and Reference for details.

Output
The response getJobsListResponse returns an array getJobsListReturn
containing the list of the jobs included in the job stream. For each job
instance the following details are also listed:

jobId The job identifier.

jobName
The name of the job.

jobStreamName
The name of the job stream including the job.

workstationName
The name of the workstation that ran the job.

jobStreamWorkstationName
The name of the workstation associated with the job stream.

jobNumber
The number assigned to the job at runtime.

priority
The execution priority with which the job ran. Can be one (or a
range of values) of the following:
v A number ranging from 0 to 99
v hi
v go

status Can be one of the following:
v ERROR
v HELD
v READY
v RUNNING
v SUCCESSFULL
v UNDECIDED
v WAITING

internalStatus
Can be one of the following:
v ABEND
v ABENDP
v BOUND
v CANCP
v DONE
v ERROR
v EXEC
v EXTRN

76 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

v FAIL
v FENCE
v HOLD
v INTRO
v PEND
v READY
v RJOB
v SCHED
v SUCC
v SUCCP
v SUSP
v USER
v WAIT
v WAITD

requiredConfirmation
Can be true or false.

aliased
Can be true or false.

canceled
Can be true or false.

every The job instance was run with the every option. Can be true or
false.

everyRerun
The job instance is a rerun of a job defined with the every option.
Can be true or false.

external
The job is a predecessor to another job stream or one of its jobs.
Can be true or false.

jobLate
The job passed its completion deadline. Can be true or false.

pendingCancellation
The job stream is pending cancellation. Cancellation is deferred
until all of the dependencies, including an at time, are resolved.
Can be true or false.

recoveryRerunJob
The job is defined with the recovery action RERUN. This enables
the recovery job to take some corrective action, before the parent
job attempts to run again. Can be true or false.

released
The job was released from its dependencies. Can be true or false.

rerunJob
The job was rerun. Can be true or false.

running
The job is still running. Can be true or false.

startTime
The start time defined for the job in YYYYMMDD HHMM format or
milliseconds.

Chapter 5. Web services interface 77

lateststartTime
The value of the until restriction of the job instance in YYYYMMDD
HHMM format or milliseconds.

lateststartAction
The action taken after the until restriction time elapsed. Can be
CANCEL, CONTINUE, or SUPPRESS.

deadlineTime
The value of the deadline restriction of the job instance in YYYYMMDD
HHMM format or milliseconds.

repeatRange
The time interval between every reruns of the job in milliseconds.

If the service did not complete successfully, getJobsListResponse returns
one of the errors described in “Managing errors” on page 39.

cancel
Describes the cancel Web service for IBM Workload Scheduler job streams.

Description
Use this service to cancel a job stream.

If you cancel the job stream before it is started, it does not start. If you
cancel it after it was started, the jobs that have started complete, but no
other jobs are launched.

You must have cancel access to the job stream in the security file to run
this service.

Input parameters

engineName
Not used; set to null.

jobStreamId
The job stream identifier in the plan: either
workstationName#jobStreamName(hhmm[date]) or
workstation#jobstream_id. See the IBM Workload Scheduler: User's
Guide and Reference for details.

isPending
The value can be true or false. True cancels the job stream only
after its dependencies are resolved. False cancels the job stream
immediately (and any jobs and job streams that are dependent on
the cancelled job stream are released immediately from the
dependency).

Output
The response cancelResponse is void if the service ran successfully;
otherwise, it returns one of the errors described in “Managing errors” on
page 39.

releaseAllDependencies
Describes the releaseAllDependencies Web service for IBM Workload Scheduler job
streams.

Description
Use this service to release a job stream from all its defined dependencies.

You must have release access to the job stream in the security file to run
this service.

78 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Input parameters

engineName
Not used; set to null.

jobStreamId
The job stream identifier in the plan: either
workstationName#jobStreamName(hhmm[date]) or
workstation#jobstream_id. See the IBM Workload Scheduler: User's
Guide and Reference for details.

Output
The response releaseAllDependenciesResponse is void if the service ran
successfully; otherwise, it returns one of the errors described in “Managing
errors” on page 39.

JobStreamService web services for IBM Workload Scheduler
for z/OS

Describes the Web services available in JobStreamService.wsdl for IBM Workload
Scheduler for z/OS.

The following Web services can be used to interface with application occurrences
in IBM Workload Scheduler for z/OS.

getProperties (z/OS)
Describes the getProperties Web service for IBM Workload Scheduler for z/OS
application occurrences.

Description
Use this service to display information about an application occurrence.

Input parameters

engineName
The name of the IBM Workload Scheduler for z/OS controller.

jobStreamId
The occurrence identifier in the current plan. Note that the plan
object identifiers returned contain the '\0' character. This is not a
valid character and must be replaced by a blank.

Output
The response getPropertiesResponse returns an array getPropertiesReturn
containing the following information fields:

occurrenceToken
The occurrence identifier.

owner The owner ID defined for the application.

authorityGroup
The name of the authority group that the application belongs to.

containingMonitoredJob
The application includes at least one monitored operation. Can be
true or false.

If the service did not run successfully, getPropertiesResponse returns one
of the errors described in “Managing errors” on page 39.

Chapter 5. Web services interface 79

setProperties (z/OS)
Describes the setProperties Web service for IBM Workload Scheduler for z/OS
application occurrences.

Description
Use this service to define additional properties for an application
occurrence.

Input parameters

engineName
The name of the IBM Workload Scheduler for z/OS controller.

jobStreamId
The occurrence identifier in the current plan. Note that the plan
object identifiers returned contain the '\0' character. This is not a
valid character and must be replaced by a blank.

properties
An array containing the properties you want to set. The properties
can be:

priority
The execution priority. The value can be from 1 (lowest) to
9 (urgent).

isMonitored
The occurrence includes monitored operations. The value is
either true or false.

startTime
The time when the occurrence must start in YYYYMMDD HHMM
format or milliseconds.

lateststartTime
The latest time when the occurrence must start in YYYYMMDD
HHMM format or milliseconds.

lateststartAction
The action that will be taken if the occurrence exceeds its
latest start time. Can be CANCEL, CONTINUE, or
SUPPRESS.

deadlineTime
The time within which the occurrence must complete in
YYYYMMDD HHMM format or milliseconds.

Output
If the service ran successfully, the response setPropertiesResponse returns
the identifier of the modified job stream; otherwise, it returns one of the
errors described in “Managing errors” on page 39.

getJobsList (z/OS)
Describes the getJobsList Web service for IBM Workload Scheduler for z/OS
application occurrences.

Description
Use this service to get a list of the operations - and their properties - that
make up an application occurrence.

Input parameters

80 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

engineName
The name of the IBM Workload Scheduler for z/OS controller.

jobStreamId
The occurrence identifier in the current plan. Note that the plan
object identifiers returned contain the '\0' character. This is not a
valid character and must be replaced by a blank.

Output
The response getJobsListResponse returns an array getJobsListReturn
containing the list of the operations included in the occurrence. For each
operation the following details are also listed:

occurrenceToken
The identifier of the occurrence that includes the operation.

extendedStatus
The extended status code assigned to the operation.

errorCode
The error code that terminated the operation.

operationCommand
Can be one of the following: BD = Bind shadow; job EX = Execute
operation; KJ = Kill operation; KR = Kill recovery job; MH = Hold
operation; MR = Release operation; NP = NOP operation; PN =
Prompt reply no; PY = Prompt reply yes; UN = Un-NOP operation.

authorityGroup
The name of the authority group that the operation belongs to.

cleanUpStatus
Can be one of the following: Blank=none C=Completed E=Ended
in error I=Initiated O=Avail opinfo R=Request opinfo S=Started
W=Waiting opinfo

latestOutPassed
The operation exceeded its latest starting time and is late. Can be
true or false.

latestOut
The latest possible time, calculated at plan-creation-time, that the
operation can start to meet the deadline time (HHMM).

actualArrival
The actual run time of the operation (HHMM).

actualEnd
The time the operation is reported as complete or ended-in-error
(HHMM).

If the service did not complete successfully, getJobsListResponse returns
one of the errors described in “Managing errors” on page 39.

cancel (z/OS)
Describes the cancel Web service for IBM Workload Scheduler for z/OS application
occurrences.

Description
Use this service to delete an application occurrence from the current plan.

Input parameters

Chapter 5. Web services interface 81

engineName
The name of the IBM Workload Scheduler for z/OS controller.

jobStreamId
The occurrence identifier in the current plan. Note that the plan
object identifiers returned contain the '\0' character. This is not a
valid character and must be replaced by a blank.

isPending
The occurrence is in pending status. The value can be true or
false.

Output
The response cancelResponse is void if the service ran successfully;
otherwise, it returns one of the errors described in “Managing errors” on
page 39.

Further information
Describes how to obtain further information about using Web services.

For more information about how to manage WSDL files to create your own Web
Services-based user interface refer to the IBM redbook IBM Redbooks: WebSphere
Version 5.1 Application Developer 5.1.1 Web Services Handbook, SG24-6891, which has
the following description:
v This IBM Redbook describes the new concept of Web services from various

perspectives. It presents the major building blocks Web services rely on. Here,
well-defined standards and new concepts are presented and discussed.

v Whereas these concepts are described vendor-independent, this book also
presents IBM view and illustrates with suitable demonstration applications how
Web services can be implemented using WebSphere Application Server Version
5.1 and WebSphere Studio Application Developer Version 5.1.1.

v This book is a major update to the IBM Redbook Web Services Wizardry with
WebSphere Studio Application Developer, SG24-6292, and to WebSphere Version
5 Web Services Handbook, SG24-6891-00.

To access this publication, follow this link: http://www.redbooks.ibm.com/
abstracts/sg246891.html.

82 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

http://www.redbooks.ibm.com/abstracts/sg246461.html?Open
http://www.redbooks.ibm.com/abstracts/sg246461.html?Open

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

83

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data discussed herein is presented as derived under specific
operating conditions. Actual results may vary.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

84 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a Registered Trade Mark of AXELOS Limited.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

ITIL is a Registered Trade Mark of AXELOS Limited.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Notices 85

http://www.ibm.com/legal/us/en/copytrade.shtml

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

86 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

Index

A
accessibility x
AddEventRule

API project example 8
application program interface

accessing reference material 30
build.xml file 7
connecting to products 10
create project

from example 8
from scratch 8

examples for TWS 11
examples for TWS for z/OS 18
further information 30
information, further 30
Java 5, 6, 7, 8, 9, 10, 11, 13, 15, 18, 28,

30
libraries 7
naming convention 5
overview 5, 33
project example 9
project folders 7
projects 5
redbooks 30
reference 5
reference material, accessing 30
REST 33
source tree 6
specification 5
using to work with z/OS JCL 28
working with event rules in

database 15
working with objects in database 11
working with objects in plan 13

B
build.xml file

Java project file 7

C
cancel, Web service for IBM Workload

Scheduler for z/OS application
occurrences 81

cancel, Web service for IBM Workload
Scheduler for z/OS operations 72

cancel, Web service for IBM Workload
Scheduler job streams 78

cancel, Web service for IBM Workload
Scheduler jobs 69

Cloud & Smarter Infrastructure technical
training x

config
Java project folder 7

D
database objects

working with using the Java API 11
Dynamic Workload Console

accessibility x

E
editSubmitJobStreamWithJobVarSub

example 59
editSubmitJobStreamWithJobVarSub, Web

service for IBM Workload Scheduler for
z/OS 56

editSubmitJobStreamWithVarSub
example 55

editSubmitJobStreamWithVarSub, Web
service for IBM Workload Scheduler for
z/OS 53

education x
EngineNotMaster, web services error 39
event rules in database

working with using the Java API 15

G
getJobsList, Web service for IBM

Workload Scheduler for z/OS
application occurrences 80

getJobsList, Web service for IBM
Workload Scheduler job streams 75

getOutput, Web service for IBM
Workload Scheduler for z/OS
operations 71

getOutput, Web service for IBM
Workload Scheduler jobs 68

getProperties, Web service for IBM
Workload Scheduler for z/OS
application occurrences 79

getProperties, Web service for IBM
Workload Scheduler for z/OS
operations 70

getProperties, Web service for IBM
Workload Scheduler job streams 72

getProperties, Web service for IBM
Workload Scheduler jobs 65

I
installing

Integration Workbench 3
Integration Workbench

installing 3
Integration Workbench help

using 3
InvalidArguments, web services error 39

J
Java API

accessing reference material 30
build.xml file 7
connecting to products 10
create project

from example 8
from scratch 8

examples for TWS 11
examples for TWS for z/OS 18
further information 30
information, further 30
libraries 7
naming convention 5
overview 5
project example 9
project folders 7
projects 5
redbooks 30
reference 5
reference material, accessing 30
source tree 6
specification 5
using to work with z/OS JCL 28
working with event rules in

database 15
working with objects in database 11
working with objects in plan 13

Java API examples
IBM Workload Scheduler for z/OS

defining a job stream with existing
data 20

JobService.wsdl 64
JobStreamService.wsdl 72

K
keys

Java project folder 7
kill, Web service for IBM Workload

Scheduler jobs 68

L
Locking, web services error 39

M
MakeQueryJobsOnPlan

API project example 8
MakeQueryOnPlan

API project example 8
MakeZOSQueryOnPlan

API project example 8

O
ObjectNotFound, web services error 39
OperationFailed, web services error 39

87

P
plan objects

working with using the Java API 13
publication

who should read ix

Q
queryJobs, Web service for IBM Workload

Scheduler 43
queryJobs, Web service for IBM Workload

Scheduler for z/OS 48
queryJobStreams, Web service for IBM

Workload Scheduler 46
queryJobStreams, Web service for IBM

Workload Scheduler for z/OS 63

R
read the publication, who should ix
redbooks 30
releaseAllDependencies, Web service for

IBM Workload Scheduler job
streams 78

releaseAllDependencies, Web service for
IBM Workload Scheduler jobs 69

RerunJobInPlan
API project example 8

REST API
overview 33

S
SchedulingFactory.wsdl 40
Security, web services error 39
setProperties, Web service for IBM

Workload Scheduler for z/OS
application occurrences 80

setProperties, Web service for IBM
Workload Scheduler for z/OS
operations 71

setProperties, Web service for IBM
Workload Scheduler job streams 74

setProperties, Web service for IBM
Workload Scheduler jobs 67

submitAdHocJob, Web service for IBM
Workload Scheduler 41

submitJob, Web service for IBM Workload
Scheduler 40

SubmitJobInPlan
API project example 8

submitJobStream, Web service for IBM
Workload Scheduler 45

submitJobStream, Web service for IBM
Workload Scheduler for z/OS 51

submitJobStreamWithVarSub, Web service
for IBM Workload Scheduler for
z/OS 51

T
technical training x
training

technical x
Transport, web services error 39

U
using

Integration Workbench help 3

W
web services

access 38
error management 39
for IBM Workload Scheduler 36
for IBM Workload Scheduler for

z/OS 37
further information 82
identifying master domain

manager 39
information, further 82
introduction 35
invoking 38
management 37
managing errors 39

88 IBM Workload Automation: Developer's Guide: Driving IBM Workload Automation

IBM®

Product Number: 5698-T08, 5698-WSH, and 5698-WSE

Printed in USA

	Contents
	Figures
	Tables
	About this guide
	What is new in this release
	Who should read this publication
	Accessibility
	Technical training
	Support information

	Chapter 1. Introduction to driving IBM Workload Automation
	Chapter 2. Integration Workbench
	Installing the Integration Workbench
	Using the Integration Workbench help

	Chapter 3. Driving IBM Workload Automation with the Java API
	Naming conventions
	API detailed specification
	IBM Workload Scheduler API projects
	Java source tree (src)
	Java libraries
	Other project folders
	build.xml
	Creating a project from scratch
	Creating a project from an API example
	The examples you can choose from

	Example IBM Workload Scheduler API project

	Connecting to the products
	Examples for IBM Workload Scheduler
	Working with objects in the database
	Working with objects in the plan
	Working with event rules in the database

	Examples for IBM Workload Scheduler for z/OS
	Example 5: Adding a job stream to the plan after modifying its contents
	Using the API to work with z/OS JCL
	Defining the connection with the IBM Workload Scheduler for z/OS connector
	Add JCL Job
	Read JCL Job
	Modify JCL Job
	Remove JCL Job

	Reference material
	Further information

	Chapter 4. Driving IBM Workload Scheduler with REST API
	Chapter 5. Driving IBM Workload Automation with the Web services interface
	Web services for IBM Workload Scheduler
	Web services for IBM Workload Scheduler for z/OS
	Web services management
	Accessing the services
	Identifying the correct master domain manager
	Managing errors

	SchedulingFactory Web services
	SchedulingFactory web services for IBM Workload Scheduler
	submitJob
	submitAdHocJob
	queryJobs
	submitJobStream
	queryJobStreams

	SchedulingFactory web services for IBM Workload Scheduler for z/OS
	queryJobs (z/OS)
	submitJobStream (z/OS)
	submitJobStreamWithVarSub
	editSubmitJobStreamWithVarSub
	editSubmitJobStreamWithJobVarSub
	queryJobStreams (z/OS)

	JobService details
	JobService web services for IBM Workload Scheduler
	getProperties
	setProperties
	getOutput
	kill
	cancel
	releaseAllDependencies

	JobService web services for IBM Workload Scheduler for z/OS
	getProperties (z/OS)
	setProperties (z/OS)
	getOutput (z/OS)
	cancel (z/OS)

	JobStreamService details
	JobStreamService web services for IBM Workload Scheduler
	getProperties
	setProperties
	getJobsList
	cancel
	releaseAllDependencies

	JobStreamService web services for IBM Workload Scheduler for z/OS
	getProperties (z/OS)
	setProperties (z/OS)
	getJobsList (z/OS)
	cancel (z/OS)

	Further information

	Notices
	Trademarks
	Terms and conditions for product documentation

	Index
	A
	B
	C
	D
	E
	G
	I
	J
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	W

