
IBM Workload Scheduler

Scenarios and How To Demos
Version 9 Release 4

IBM

IBM Workload Scheduler

Scenarios and How To Demos
Version 9 Release 4

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 51.

This edition applies to version 9, release 4, modification level 0 of IBM Workload Scheduler (program number
5698-WSH) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1999, 2016. © Copyright HCL Technologies Limited 2016, 2018

Contents

Chapter 1. Scenarios 1

Chapter 2. Dynamic job scheduling
scenarios 3
Setting up your environment for dynamic scheduling 3
Applying an order of preference to possible targets . 3

Business Goal 3
Running the Scenario 4

Performing load balancing based on available free
memory 6

Business Goal 6
Running the Scenario 7

Specifying software license requirements by using
resources 9

Business Goal 9
Running the Scenario 9

Dynamic job scheduling - A procedure to optimize
writing job definitions that simulate the use of
templates 12

Scenario goal 12
Running the Scenario 12

Scheduling jobs dynamically on SAP R/3 systems -
A high availability scenario 15

Business goal 15
Running the Scenario 16

Defining and scheduling new and classic jobs with
dynamic capabilities 19

Business Goal 19
Running the Scenario 20

Chapter 3. Cloud environment
scenarios 23
Managing workload in dynamic environments . . 23

Scenario goal 23
Software Requirements 24
Before you begin 25
Running the Scenario 25
Expected result 26

Sharing and reusing standard workload process
templates 26

Scenario goal 26
Running the Scenario 27

Chapter 4. Workload scheduling rules
scenario 31
Inclusive and exclusive rule-based run cycles . . . 31

Scenario goal 31
Software Requirements 32
Setting up the environment 32
Running the Scenario 32
Expected result 33

Chapter 5. Maintaining dependencies
across different scheduling
environments 35
Migrating a workload to another IBM Workload
Scheduler scheduling environment while
maintaining dependencies 35

Business Goal 35
Running the Scenario 37

Creating dependencies in a workload running in
two IBM Workload Scheduler scheduling
environments 38

Business Goal 38
Running the Scenario 39

Chapter 6. Variable Tables 41
Customizing jobs and job streams based on when
they are scheduled to run 41

Scenario goal 41
Running the Scenario 42

Customizing jobs and job streams based on why
they are scheduled to run 43

Scenario goal 43
Running the Scenario 44

Customizing jobs and job streams based on where
they are scheduled to run 45

Scenario goal 45
Running the Scenario 46

Customizing jobs and job streams for submission. . 47
Scenario goal 47
Running the Scenario 48

Notices 51
Trademarks 53
Terms and conditions for product documentation. . 53

Index 55

iii

iv IBM Workload Scheduler: Scenarios and How To Demos

Chapter 1. Scenarios

Scenarios demonstrating practical application of IBM Workload Scheduler in a
business environment.

View these scenarios to help you get familiar with IBM Workload Scheduler and
learn how to use the product to achieve your business goals.

You can find additional scenarios at the following links:
v The Workload Automation YouTube channel, which is continuously updated

with video demos that show new features and capabilities for both IBM
Workload Scheduler and Workload Automation on Cloud.

v The IBM Workload Scheduler Wiki Media Gallery, which contains demos (only
available in English) about how to use IBM Workload Scheduler.

v A workload service assurance scenario in the IBM Workload Scheduler User's
Guide and Reference, which describes how to monitor critical jobs.

1

https://www.youtube.com/user/workloadautomation2
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Workload%20Scheduler/page/Media%20Gallery
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_ref/awsrgmst_welcome.html
http://www-01.ibm.com/support/knowledgecenter/SSGSPN_9.4.0/com.ibm.tivoli.itws.doc_9.4/distr/src_ref/awsrgmst_welcome.html

2 IBM Workload Scheduler: Scenarios and How To Demos

Chapter 2. Dynamic job scheduling scenarios

This section describes the dynamic job scheduling scenarios.

Setting up your environment for dynamic scheduling

This section describes the prerequisite tasks you perform before running the
example dynamic scheduling scenarios in your IBM Workload Scheduler
environment.
v If you are installing IBM Workload Scheduler for the first time:

1. Install a master domain manager using the procedures described in IBM
Workload Scheduler: Planning and Installation. Tick the check box option to
create the Dynamic Workload Broker CPU definition and activate the
dynamic scheduling capability. After the installation completes, the broker
application is started automatically.

2. Install the IBM Workload Scheduler agents by selecting the Add Dynamic
scheduling capabilities during the installation.

3. Install the Dynamic Workload Console

For a step by step installation or upgrade procedure, see IBM Workload Scheduler:
Planning and Installation

For further details about configuring your environment for dynamic scheduling,
see IBM Workload Scheduler: Administration Guide.

Applying an order of preference to possible targets
In this scenario, you create a job that uses logical resources to apply an order of
preference to a group of eligible target computers on which a job can run.

Business Goal

A company needs to establish an order of preference when selecting a target
computer to run a job. The job is sent to the first available computer based on the
specified order of preference policy. This is useful when more than one computer
has suitable characteristics to run a given job. New machines can be added to the
preference order and if two or more machines match the needed criteria, the order
of preference is applied to select the target. In this scenario, target computers have
similar or identical characteristics and are typically used as backups for each other
during scheduled maintenance or in case of failover. The scenario consists of the
following tasks:
1. The administrator creates a logical resource for each of the eligible computer

targets that are part of the preference order list. The logical resources are all of
the same type and have a quantity that represents the preference value used to
order the list.

2. The administrator creates a definition for the job that must be run on the target
computers according to the preference order.

3. The administrator uses the Dynamic Workload Console to schedule the job.

3

Roles

This section lists the user roles needed to run the scenario:

dynamic workload broker Developer
Defines the jobs using the Job Brokering Definition Console

dynamic workload broker Operator
Monitors and controls the jobs that have been submitted.

IBM Workload Scheduler Job Scheduler
Manages the workload by submitting and monitoring jobs.

Software requirements

The following software must be installed and configured, before running this
scenario:
v A IBM Workload Scheduler network with the Dynamic Scheduling capability.
v Optionally, the Dynamic Workload Console

Setting up the environment

To run this scenario, complete the tasks described in “Setting up your environment
for dynamic scheduling” on page 3.

Running the Scenario
To create the logical resources and a job definition that selects a defined logical
resource based on an established order of preference, perform the following steps:

Procedure
1. Select the Define a New Logical Resource task option in the Dynamic

Workload Consoleto create the logical resources needed for the job. The job
must run on a Linux workstation. ComputerA, ComputerB, and ComputerC
are Linux workstations that are suitable for running the job. ComputerA is the
first preference. ComputerB is considered to be a backup if ComputerA is
unavailable, and ComputerC is used if neither ComputerA nor ComputerB is
available. Define the logical resources with the following characteristics:

Table 1. Logical resources for defining an order of preference

Logical resource
name Type Quantity Computer

Preference1 Preference 50 ComputerA

Preference2 Preference 30 ComputerB

Preference3 Preference 10 ComputerC

2. To create the job definition, in the Job Brokering Definition Console select File
> New > Job brokering definition and create a new job definition named
jobWithPreference. The job definition opens at the Overview page with the
job name assigned.

3. Open the Application page and define the required information for the
application that the job is to run. In the Type field select Executable. Specify
the executable name and path. In this definition, the variable myApp is used to
identify the executable myExecutable as shown in the sample JSDL file.

4. Open the Resources page and select the Software Requirements tab.

4 IBM Workload Scheduler: Scenarios and How To Demos

5. Create an operating system requirement, as follows:
a. In the Candidate Operating Systems pane, click Add. The Operating

System Details dialog box is displayed.
b. In the Type field, select LINUX and click OK.

6. Create a requirement for a logical resource, as follows:
a. In the Logical Resources pane, click Add. The Logical Resource Details

dialog box is displayed.
b. In the Type field, type Preference (the type assigned to the three logical

resources) and click OK.
7. Open the Optimization page and specify an optimization objective, as follows:

a. In the Type menu, choose Select best resource by optimization objective.
b. In the Resource Type menu, select Logical Resource.
c. In the Resource Property menu, select Quantity.
d. In the Optimization Objective menu, select Maximize.

When the job is submitted, it is sent to the first available workstation
associated with the logical resource of type Preference that has the highest
quantity available.

8. Select File > Save to save the job definition file.
9. Select the new JSDL and upload it to the server by clicking on the

corresponding icon.
10. Submit the job in one of the following ways, depending on whether you want

to submit it as a broker job or by using a job definition.
v Log in to the Dynamic Workload Console and choose the Dynamic

Workload Broker portfolio option.
– Select Definitions > Jobs . Optionally specify search criteria and click

Search. Select the job definition you created in the previous steps.
– To run the job, select Submit and click Go.

v Log in to the Dynamic Workload Console.
– Select Administration > Workload Design > Manage Workload

Definitionsto open the Workload Designer. Create a new broker job
definition by filling in the required fields as appropriate. In the
Workload Broker Job Name field, type the name of the JSDL file that
you created in the previous steps.

– Submit the IBM Workload Scheduler job by selecting Workload >
Submit > Submit Predefined Jobs .

You can also add the job to an existing job stream , or submit the job using
the jobsubmit command. For further information about the dynamic
workload broker command-line interface, see IBM Workload Scheduler:
Scheduling Workload Dynamically.

Expected Results
When the job is submitted, it is sent to the first available target computer
associated with the logical resource of type Preference that has the highest
quantity. If a selected target is unavailable, the job is submitted to the first
available target in the order of preference. You can change preference values for
your computers at any time. The new order becomes effective for job submission
as soon as it is saved.

Sample Configuration file

The JSDL file created for this scenario has the following syntax:

Chapter 2. Dynamic job scheduling scenarios 5

<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"

xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
name="JobWithPreference">

<jsdl:variables>
<jsdl:stringVariable name="myApp">myExecutable</jsdl:stringVariable>

</jsdl:variables>
<jsdl:application name="executable">
<jsdle:executable interactive="false" path="${myApp}"/>

</jsdl:application>
<jsdl:resources>
<jsdl:candidateOperatingSystems>

<jsdl:operatingSystem type="LINUX"/>
</jsdl:candidateOperatingSystems>
<jsdl:logicalResource subType="Preference"/>

</jsdl:resources>
<jsdl:optimization name="JPT_BestResource">
<jsdl:objective propertyObjective="maximize" resourcePropertyName="Quantity"

resourceType="LogicalResource"/>
</jsdl:optimization>

</jsdl:jobDefinition>

Performing load balancing based on available free memory
In this scenario, an optimization policy is defined to balance the distribution of a
set of jobs between resources based on total physical memory available on each
resource.

Business Goal

A company wants to set up job definitions for a group of jobs that must run at
about the same time on similar AIX® computers. To ensure that the jobs are
efficiently distributed between available resources, each job definition includes an
optimization objective to maximize the free physical memory. When the jobs are
submitted, a policy is applied to distribute the jobs between the available resources
according to the amount of free physical memory on each resource. All matching
resources are considered and the load is balanced proportionally between them,
using a policy that allocates more jobs to those resources having higher amounts of
free physical memory.

This policy is applicable when a set of jobs are clearly affected by a specific type of
resource (CPU usage, available memory, available disk space) and are to be run
with a high degree of parallelism.
v The administrator has a set of jobs that must be run on AIX machines and that

have specific physical memory requirements. This requires that the job is sent to
a machine with low physical memory utilization. Several computers are
available, each with an equivalent software configuration but with differences in
hardware characteristics and actual load. He creates a job definition for each of
the jobs and specifies that the job must run on AIX, has an objective of type
Balance load between resources by optimization objective and should be
optimized with the policy Maximize FreePhysicalMemory.

v The administrator uses theDynamic Workload Console to submit or schedule the
jobs for submission.

Roles

This section lists the user roles needed to run the scenario:

6 IBM Workload Scheduler: Scenarios and How To Demos

dynamic workload broker Developer
Defines the jobs using the Job Brokering Definition Console

dynamic workload broker Operator
Monitors and controls the jobs that have been submitted.

IBM Workload Scheduler Job Scheduler
Manages Tivoli® Workload Scheduler workload by submitting and
monitoring jobs.

Software requirements

The following software must be installed and configured, before running this
scenario:
v A IBM Workload Scheduler version 8.5.1 network with the dynamic scheduling

capability.
v Optionally, Dynamic Workload Console version 8.5.1.

Setting up the environment

To run this scenario you must install or upgrade to IBM Workload Scheduler
version 8.5.1. Complete the tasks described in “Setting up your environment for
dynamic scheduling” on page 3.

Running the Scenario
To create a job definition that uses optimization policies, perform the following
steps:

Procedure
1. In the Job Brokering Definition Console select File > New > Job brokering

definition and create a new job definition named jobBalancedbyAvailRAM. The
job definition opens at the Overview page with the job name assigned.

2. Open the Application page and define the required information for the
application that the job is to run. In the Type field select Executable. In this
definition, the variable myApp is used to identify the executable myExecutable as
shown in the sample JSDL file.

3. Open the Resources page and select the Software Requirements tab.
4. Create an operating system requirement, as follows:

a. In the Candidate Operating Systems pane, click Add. The Operating System
Details dialog box is displayed.

b. In the Type field, select AIX and click OK.
5. Open the Optimization page and specify an optimization objective, as follows:

a. In the Type menu, select Balance load between resources by optimization
objective.

b. In the Resource Type menu, select Operating System.
c. In the Resource Property menu, select Free Physical Memory.
d. In the Optimization Objective menu, select Maximize.

6. Select File > Save to save the job definition file.
7. Select the new JSDL and upload it to the server by clicking on the

corresponding icon.

Chapter 2. Dynamic job scheduling scenarios 7

8. Submit the job proceeding in one of the following ways, depending on whether
you want to submit it as a broker job or by using a Tivoli Workload Scheduler
job definition.
v Log in to the Dynamic Workload Console and choose the Tivoli Dynamic

Workload Broker portfolio option.
– Select Definitions > Jobs . Optionally specify search criteria and click

Search. Select the job definition that you created in the previous steps.
– To run the job, select Submit and click Go.

v Log in to the Dynamic Workload Console and choose the Tivoli Workload
Scheduler portfolio option.
– Select Workload > Design > Create Workload Definitions. In the

Workload Designer, create a new broker job definition filling in the
required fields as appropriate. In the Workload Broker Job Name field,
type the name of the JSDL file you created in the previous steps.

– Submit the IBM Workload Scheduler job by selecting Workload > Submit
> Submit Predefined Jobs.

You can also add the job to an existing job stream , or submit the job using
the jobsubmit command. For further information about the dynamic
workload broker command-line interface, see IBM Workload Scheduler:
Scheduling Workload Dynamically.

Expected Results
When the jobs are submitted, they are sent to the available computers in
proportion to the amount of available free physical memory. If, for example, the
snapshot of the currently available free physical memory is the following:

Table 2. Available Free Physical memory on eligible target AIX computers

Computer A Computer B Computer C

2048 Mbytes 3072 Mbytes 512 Mbytes

and 11 jobs are submitted within a time slot, the following proportional
distribution can occur:

Table 3. Job distribution on targets

Computer A Computer B Computer C

4 jobs 6 jobs 1 job

Sample Configuration file

The JSDL file created for this scenario has the following syntax:
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"

xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
name="jobBalancedbyAvailRAM">
<jsdl:variables>
<jsdl:stringVariable name="myApp">sleep</jsdl:stringVariable>

</jsdl:variables>
<jsdl:application name="executable">
<jsdle:executable interactive="false" path="${myApp}">

<jsdle:arguments>
<jsdle:value>30</jsdle:value>

</jsdle:arguments>
</jsdle:executable>

</jsdl:application>
<jsdl:resources>
<jsdl:candidateOperatingSystems>

8 IBM Workload Scheduler: Scenarios and How To Demos

<jsdl:operatingSystem type="AIX"/>
</jsdl:candidateOperatingSystems>

</jsdl:resources>
<jsdl:optimization name="JPT_JSDLOptimizationPolicyType">
<jsdl:objective propertyObjective="maximize"

resourcePropertyName="FreePhysicalMemory" resourceType="OperatingSystem"/>
</jsdl:optimization>

</jsdl:jobDefinition>

Specifying software license requirements by using resources
In this scenario, a job requires two software licenses to run. Using logical resources
to represent license availability, a company ensures compliance to license
requirements.

Business Goal

A company runs a job that uses two licensed software products. Product
SoftwareA is licensed under a node-locked license agreement, for which the
company has four entitlements assigned to ComputerA, ComputerB, ComputerC,
and ComputerD. For product SoftwareB, the company has a floating license, for
which there are three entitlements available to all computers in the network. The
job is submitted ensuring compliance to the licensing policies.

Roles

This section lists the user roles needed to run the scenario:

dynamic workload broker Developer
Defines the jobs using the Job Brokering Definition Console

dynamic workload broker Operator
Monitors and controls the jobs that have been submitted.

IBM Workload Scheduler Job Scheduler
Manages the workload by submitting and monitoring jobs.

Software requirements

The following software must be installed and configured, before running this
scenario:
v A IBM Workload Scheduler network with the dynamic scheduling capability.
v Optionally, the Dynamic Workload Console.

Setting up the environment

To run this scenario, complete the tasks described in “Setting up your environment
for dynamic scheduling” on page 3.

Running the Scenario

Before you begin

Before creating the job, the administrator uses the Define a New Logical Resource
Task option in the Dynamic Workload Console to create the logical resources, as
shown in Table 4 on page 10. The node-locked license logical resources are each
assigned to a computer and the quantities specified can only be used by jobs

Chapter 2. Dynamic job scheduling scenarios 9

running on the specified computer. The floating license logical resource is a global
resource. It is not assigned to a computer and can be accessed by a job running on
any computer until the total quantity is used.

Table 4. Logical resources for controlling license availability

logical resource
name Type Quantity Computer

locked_license1 SoftwareA 1 ComputerA

locked_license2 SoftwareA 1 ComputerB

locked_license3 SoftwareA 1 ComputerC

locked_license_4 SoftwareA 1 ComputerD

floating_license SoftwareB 3 None

To create a job definition that uses these logical resources to include license
requirements, perform the following steps:

Procedure
1. In the Job Brokering Definition Console, select File > New > Job Brokering

Definition and create a new job definition named jobThatConsumesLicenses.
The job definition opens at the Overview page with the job name assigned.

2. Open the Application page and define the required information for the
application that the job is to run.

3. Open the Resources page and select the Software Requirements tab.
4. Create a requirement for a SoftwareA logical resource, as follows:

a. In the Logical Resources pane, click Add. The Logical Resource Details
dialog box is displayed.

b. In the Type field, type SoftwareA and click OK . The Logical Resource
details are displayed.

c. In the Logical Resource details area, specify 1 in the quantity field.
5. Open the Related Resource page and create a requirement for the SoftwareB

logical resource, as follows:
a. In the Resource Requirements pane, click Add. The Resource Requirement

Details dialog box is displayed.
b. In the ID field, specify a meaningful ID, in this example,

Floating_Global_License.
c. In the Type field, select Logical Resource and click OK.
d. In the Resource Properties pane, click Add Requirement. The Resource

Requirement Details dialog box is displayed.
e. Select Subtype from the Property name menu, type SoftwareB in the

Property Value field, and click OK.
f. In the Allocations pane, click Add. The Allocations Details dialog box is

displayed.
g. Select Quantity from the Property name menu, type 1 in the Quantity field,

and click OK.
6. Select File > Save to save the job definition file.
7. Select the new JSDL and upload it to the server by clicking on the

corresponding icon.
8. Submit the job proceeding in one of the following ways, depending on whether

you want to submit it as a broker job or using a job definition.

10 IBM Workload Scheduler: Scenarios and How To Demos

v Log in to the Dynamic Workload Console and choose the Dynamic
Workload Broker portfolio option.
– Select Definitions > Jobs Optionally specify search criteria and click

Search. Select the job definition that you created in the previous steps.
– To run the job, select Submit and click Go.

v Log in to the Dynamic Workload Console.
– Select Administration > Workload Design > Manage Workload

Definitions. In the Workload Designer, create a new broker job definition
filling in the required fields as appropriate. In the Workload Broker Job
Name field, type the name of the JSDL file you created in steps 1 through
7.

– Submit the job by selecting Administration > Workload Submission >
Submit Predefined Jobs .

You can also add the job to an existing job stream , or submit the job using
the jobsubmit command. For further information about the dynamic
workload broker command-line interface, see IBM Workload Scheduler:
Scheduling Workload Dynamically.

Expected Results
When the jobs are submitted, they are sent to one of the nodes having a
node-locked license and using one of the floating global licenses, in accordance
with the licensing policies. With the settings used in this scenario, the maximum
number of jobthatConsumesLicenses instances that can run concurrently is 3
because each of them are allocated a floating license of SoftwareB. The instances
can either run on the same or on different computers holding the node-locked
license of SoftwareA.

Sample Configuration file

The JSDL file created for this scenario has the following syntax:
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"

xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
name="jobThatConsumesLicences">

<jsdl:variables>
<jsdl:stringVariable name="myApp">sleep</jsdl:stringVariable>

</jsdl:variables>
<jsdl:application name="executable">
<jsdle:executable interactive="false" path="${myApp}">

<jsdle:arguments>
<jsdle:value>120</jsdle:value>

</jsdle:arguments>
</jsdle:executable>

</jsdl:application>
<jsdl:resources>
<jsdl:logicalResource quantity="1" subType="SoftwareA"/>

</jsdl:resources>
<jsdl:relatedResources id="Floating_Global_License" type="LogicalResource">
<jsdl:properties>

<jsdl:requirement propertyName="SubType">
<jsdl:exact>SoftwareB</jsdl:exact>

</jsdl:requirement>
</jsdl:properties>
<jsdl:allocation propertyName="Quantity">1.0</jsdl:allocation>

</jsdl:relatedResources>
</jsdl:jobDefinition>

Chapter 2. Dynamic job scheduling scenarios 11

Dynamic job scheduling - A procedure to optimize writing job
definitions that simulate the use of templates

This scenario shows how you can set up JSDL job definition templates that you
can reuse for several job definitions. In this way you can optimize the number of
steps required to submit jobs to dynamic workload broker. Taking this concept a
little further, you can set up a different JSDL template for every class of job that
you want to submit. For background information, see Using JSDL job definition
templates in Scheduling workload dynamically.

Scenario goal

Typically, to run a job using dynamic scheduling, you write two definitions for the
job: the definition for the database (that you write with composer or enter in the
Dynamic Workload Console), and one definition stored in the Job Repository of
dynamic workload broker (for which you use the Job Brokering Definition
Console). The first definition specifies the type of job, the task string or the name
of the executable, the name of the workstation where the job is to run (which for
dynamic scheduling must be the workload broker workstation), scheduling dates,
and recovery options. The second definition specifies the task string or the name of
the executable, the types and quantities of resources needed to run the job, and
optimization and scheduling details. There must be a 1 to 1 match between the two
definitions. This means that you are duplicating work for every job that you want
to submit by using dynamic workload broker.

You can avoid part of this work by following a number of steps to write a single
JSDL definition file in the Job Brokering Definition Console that can be referenced
by several job definitions. You can then use this file as a template to which you can
link all the job definitions that match the required resources, and optimization and
scheduling preferences specified in the template.

Roles

This section lists the user roles needed to run the scenario:

dynamic workload broker Developer
Defines the jobs using the Job Brokering Definition Console

dynamic workload broker Operator
Monitors and controls the jobs that have been submitted.

IBM Workload Scheduler Job Scheduler
Manages the workload by submitting and monitoring jobs.

Software requirements

The following software must be installed and configured, before running this
scenario:
v IBM Workload Scheduler with the dynamic workload broker feature enabled
v Optionally, the Dynamic Workload Console.

Running the Scenario
To complete the scenario, perform the following steps:

12 IBM Workload Scheduler: Scenarios and How To Demos

Procedure
1. In the Job Brokering Definition Console, create a JSDL document and give it a

name. In the Application page, after setting the Type to Executable, specify the
following variable name in the Script field of the executable:
${tws.job.taskstring}. Fill in the data in the remaining pages, specifying the
required resources, and the optimization and scheduling details. Save the
document in the database. This is your template.

2. With composer or with the Dynamic Workload Console define a workstation of
type extended agent hosted by the workload broker workstation.
If you need background information about extended agents, see the IBM
Workload Scheduler: User's Guide and Reference. To create the template, you only
need to know the following facts about an extended agent:
v It is a logical definition that must be hosted by a physical workstation. For

JSDL templates, the physical workstation must always be the workload
broker workstation. The workload broker workstation is automatically
installed when you install IBM Workload Scheduler with dynamic scheduling
capabilities. This workstation can host as many extended agents as you need.

v It requires an access method. An access method can be a complex program,
but in this case it is only a statement that references the name of the JSDL
document that is your template.

3. Using composer or the Dynamic Workload Console write the job definitions that
you want to match with the new template. To link these job definitions with
your template, write the name of the extended agent as the workstation where
the jobs are to run.

4. Add the extended agent to the plan as you do for any other workstation. The
workload broker workstation has the task of managing the lifecycle of the
extended agent, notifying the master domain manager that it is up and
running.

Expected Results

When jobs are run on the extended agent, they are routed to the workload broker
workstation, which handles them differently from other jobs. Instead of searching
for the name of the JSDL definition in the task string of the job, the workload
broker workstation:
1. Gets the name of the target JSDL from the access method, and passes the task

string as a value for variable ${tws.job.taskstring}.
2. Replaces the task string value in the script element of the target JSDL, and is

used as a command string to run on the target agent that is dynamically
selected by the dynamic workload broker.
The JSDL definition invoked by the workload broker workstation works as a
sort of template that you can use to run different task strings defined in
different IBM Workload Scheduler jobs: the same JSDL document is reused for
multiple jobs.

Sample Configuration files

You want to use dynamic workload broker to run three jobs that share the same
resource requirements and optimization and scheduling preferences. You want to
use a JSDL template to minimize the required number of definitions. The jobs are
named SUBMIT_JOBXA1, SUBMIT_JOBXA2, and SUBMIT_JOBXA3. The following
definitions achieve this:
v The definition of the workload broker workstation. It is named DGCENTER_DWB

and it is of type BROKER. There can be only one workload broker workstation

Chapter 2. Dynamic job scheduling scenarios 13

running at a time in an IBM Workload Scheduler network (this applies also to
the dynamic workload broker active instance).
CPUNAME DGCENTER_DWB

OS OTHER
NODE DGCENTER TCPADDR 41111
ENGINEADDR 31111
DOMAIN MASTERDM
FOR MAESTRO

TYPE BROKER
AUTOLINK ON
BEHINDFIREWALL OFF
FULLSTATUS OFF

END

v The definition of extended agent DGCENTER_DWBXA. The extended agent must:
– Be hosted by the workload broker workstation (DGCENTER_DWB in this

example).
– Include the access method. While normally the ACCESS keyword is followed

by the name of the program that implements the specific access method, for
JSDL templates it needs only to define the name of the JSDL document that
you use as the template - that must be available in a local directory in the
workstation where you run the Job Brokering Definition Console - and
whatever other parameters you want to use. These items must be enclosed
between double quotes.
This requires that you created the JSDL document you will be using as a
template (named SJT in this example), defining the required resources,
candidate hosts, and scheduling and optimization preferences, and specifying
${tws.job.taskstring} in the Script field of the executable.

CPUNAME DGCENTER_DWBXA
OS OTHER
NODE DGCENTER TCPADDR 41111
FOR MAESTRO HOST DGCENTER_DWB ACCESS "/jsdl/SJT -var target=D:\vmware,RES=RES1"

TYPE X-AGENT
AUTOLINK OFF
BEHINDFIREWALL OFF
FULLSTATUS OFF

END

v The job definitions in IBM Workload Scheduler.
– The definition of job SUBMIT_JOBXA1:

DGCENTER_DWBXA#SUBMIT_JOBXA1
SCRIPTNAME "C:\Utils\Jobs\javacount_on.bat"
STREAMLOGON Administrator
DESCRIPTION "Counts files in APPMX directory."
TASKTYPE WINDOWS
RECOVERY RERUN

– The definition of job SUBMIT_JOBXA2:
DGCENTER_DWBXA#SUBMIT_JOBXA2
SCRIPTNAME "D:\Callcenter\Tasks\sortccalls.bat"
STREAMLOGON Administrator
DESCRIPTION "Sorts calls by customer."
TASKTYPE WINDOWS
RECOVERY RERUN

– The definition of job SUBMIT_JOBXA3:
DGCENTER_DWBXA#SUBMIT_JOBXA3
SCRIPTNAME "C:\Sales\Tools\runstats.bat"
STREAMLOGON Administrator
DESCRIPTION "Calculations on totalled business."
TASKTYPE WINDOWS
RECOVERY RERUN

14 IBM Workload Scheduler: Scenarios and How To Demos

Because the jobs are defined to run on extended agent DGCENTER_DWBXA, hosted
by the workload broker workstation and matched with the SJT JSDL definition,
the process:
1. Submits the jobs via dynamic workload broker
2. Uses the specifications of the SJT JSDL definition
3. Replaces variable ${tws.job.taskstring} with the SCRIPTNAME of each job

when the job is submitted.

Scheduling jobs dynamically on SAP R/3 systems - A high availability
scenario

This scenario shows how to achieve high availability when scheduling critical jobs
dynamically on SAP R/3 systems. Tivoli Workload Scheduler for Applications
users can take advantage of the dynamic scheduling capabilities of IBM Workload
Scheduler version 8.5.1 by defining a group of two or more IBM Workload
Scheduler agents, configured to schedule on a given SAP R/3 system, as
completely interchangeable. If an agent is unavailable to schedule on the SAP R/3
system, another agent in the group is dynamically selected.

Business goal

Tivoli Workload Scheduler for Applications users scheduling on SAP R/3 systems
can achieve 24 x 7 scheduling services on their vendor-acquired software by
implementing the dynamic scheduling scenario described in this section.

Roles

This section lists the user roles needed to run the scenario:

dynamic workload broker Developer
Defines the jobs using the Job Brokering Definition Console

dynamic workload broker Operator
Monitors and controls the jobs that have been submitted.

IBM Workload Scheduler Job Scheduler
Manages Tivoli Workload Scheduler workload by submitting and
monitoring jobs.

Software requirements

The following software must be installed and configured, before running this
scenario:
v A IBM Workload Scheduler version 8.5.1 network with the dynamic scheduling

capability.
v Tivoli Workload Scheduler for Applications version 8.5 or earlier
v Dynamic Workload Console version 8.5.1.

Setting up the environment

Complete the following tasks before running the scenario:
v If you are already using Tivoli Workload Scheduler Version 8.5 or earlier and

Tivoli Workload Scheduler for Applications for SAP R/3 (r3batch method):
1. Upgrade your Tivoli Workload Scheduler master domain manager

installation to version 8.5.1 using the procedures described in IBM Workload

Chapter 2. Dynamic job scheduling scenarios 15

Scheduler: Planning and Installation. During the upgrade procedure, tick the
checkbox option to create the Dynamic Workload Broker CPU definition and
activate the dynamic scheduling capability After the upgrade completes, the
broker application is started automatically. If you do not choose this option,
after the upgrade completes you must start the Broker application manually
by running the StartBrokerApplication.bat from the wastools directory on
your master domain manager.

Note: If in your network you have a backup master domain manager of a
previous release, you must install the latest fix pack level before you launch
the upgrade. The latest fix pack levels are:
– For IBM Workload Scheduler version 8.3: fix pack 8.
– IBM Workload Scheduler version 8.4: fix pack 4.

2. Upgrade the agents you intend to use for dynamic scheduling to IBM
Workload Scheduler version 8.5.1. These are the agents on which Tivoli
Workload Scheduler for Applications is also installed. During the upgrade
procedure, select Add Dynamic scheduling capability. This feature installs
the IBM Workload Scheduler agent and starts it.

3. Optionally upgrade the agents you selected to Tivoli Workload Scheduler for
Applications version 8.5.

4. On the agent systems which you selected as eligible targets for dynamic
scheduling on the SAP R/3 system, choose a common name for the options
files. All options files on each of the agents you selected must have the same
name.

v If you are installing Tivoli Workload Scheduler Version 8.5.1 for the first time:
1. Install a IBM Workload Scheduler version 8.5.1 master domain manager

using the procedures described in IBM Workload Scheduler: Planning and
Installation. Tick the checkbox option to create the Dynamic Workload Broker
CPU definition and activate the dynamic scheduling capability. After the
installation completes, the broker application is started automatically.

2. Install two or more IBM Workload Scheduler agents by selecting the Add
Dynamic scheduling capability during the installation. These are the agents
that are eligible for dynamic scheduling on your SAP R/3 system.

3. Install Tivoli Workload Scheduler for Applications version 8.5 on the agents
you selected in the previous step.

4. On the agent systems, choose a common name for the options files. All
options files on each of the agents you selected must have the same name.

Running the Scenario
To complete the scenario, perform the following steps:

Procedure
1. Log in to the Dynamic Workload Broker Console, and select Scheduling

Environment.
2. To define the agent computers that are part of the group eligible for

scheduling on the remote SAP system, select Define New Resource Group to
start the wizard.

3. In the Group Type Selection pane, specify the following:
v In the Name field specify the name of the group you are creating.
v Select the Computers radio button and click Next.

16 IBM Workload Scheduler: Scenarios and How To Demos

v In the Computer Search Criteria pane specify the search criteria of your
choice to select the computers for the resource group and click Next.

v Select the computers to include in the resource group from the search
results table and click Next.

v In the Summary pane, check your choices and click Finish to create the
resource group.

The agent computers belonging to the resource group must each have an
options file with the same name.
As an alternative, you can create a logical resource and associate it to the
agents you selected.

4. In the Job Brokering Definition Console, select File > New > Job brokering
definition to create a new definition for the job that runs on the SAP R/3
system. Specify a name for the definition and click Finish to display the
Overview page.

5. Open the Application page and type the required information for the job that
you are defining:
a. In the Type field, select Extended Job.
b. In the Task String field, specify the job instructions to be run on the target

SAP R/3 system. The submit job task is the only task supported in this
configuration. For example:-job DYN_SUB -C A -flag type=exec -user
TWS4APPS1 -s1 type=A -s1 program=Z_TWS_SLEEP -v1 ONE.

c. In the Task Type field, specify LJ (launch job).
d. In the Target field specify the name of the configuration (options) file

which is located on the systems that you defined in the resource group.
You can also define and use a variable with a default value for this field.
In this way, you can use the same JSDL to schedule on different SAP R/3
systems.

e. In the Access Method field, specify r3batch.exe.
6. In the Resources page, select Advanced Requirements > Resource Groups >

Add to associate the job definition to the resource group created previously.
7. Write the resource group name.
8. Click Save to store the job definition.

Note: You can also define optimization policies for your resource group. For
further information, see IBM Workload Scheduler: Scheduling Workload
Dynamically.

9. Select the new JSDL and upload it to the server by clicking on the
corresponding icon.

10. Submit the job in one of the following ways, depending on whether you want
to submit it as a broker job or by using a Tivoli Workload Scheduler job
definition.
v Log in to the Dynamic Workload Console and choose the Tivoli Dynamic

Workload Broker portfolio option.
– Select Definitions > Jobs Optionally specify search criteria and click

Search. Select the job definition you created in the previous steps.
– To run the job, select Submit and click Go.

v Log in to the Dynamic Workload Console and choose the Tivoli Workload
Scheduler portfolio option.
– Select Workload > Design > Create Workload Definitions. In the

Workload Designer create a new broker job definition filling in the

Chapter 2. Dynamic job scheduling scenarios 17

required fields as appropriate. In the Workload Broker Job Name field
type the name of the JSDL file you created in the previous steps.

– Submit the IBM Workload Scheduler job by selecting Workload >
Submit > Submit Predefined Jobs .

You can also add the job to an existing job stream , or submit the job using
the jobsubmit command. For further information about the dynamic
workload broker command-line interface, see IBM Workload Scheduler:
Scheduling Workload Dynamically.

Expected Results

When the job is submitted, the broker application selects an agent from those
defined in the resource group, based on availability and other criteria which you
can specify.

When multiple instances of the job are submitted using the selected JSDL, IBM
Workload Scheduler sends them dynamically to the agents defined in the resource
group. Regardless of the agent selected, the job is run on the same SAP R/3
system.

Sample Configuration files

An example jsdl file for the job:
<?xml version="1.0" encoding="UTF-8"?>
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdlxa="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdlxa" name="sapjobs">
<jsdl:variables>
<jsdl:stringVariable name="optionFile">SAP_SYS</jsdl:stringVariable>

<jsdl:variables>
<jsdl:application name="xajob">
<jsdlxa:xajob accessMethod="r3batch.exe" error="C:\myerr.txt"

output="C:\myout.txt" target="${optionFile}">
<jsdlxa:taskString>-job DYN_SUB -C A -flag type=exec -user TWS4APPS1
-s1 type=A -s1 program=Z_TWS_SLEEP -v1 ONE </jsdlxa:taskString>

<jsdlxa:credential>
<jsdlxa:userName>fta85bro</jsdlxa:userName>
<jsdlxa:password>fta85bro</jsdlxa:password>

</jsdlxa:credential>
</jsdlxa:xajob>

</jsdl:application>
<jsdl:resources>
<jsdl:group name="SAP_ENV"/>

</jsdl:resources>
</jsdl:jobDefinition>

An example options file:
R3CLIENT=000
R3HOST=9.168.125.153
R3INSTANCE=00
R3PASSWORD=&p2N-l?bO-dF3F-uX
R3SID=NSP
R3USER=twsuser
LONG_INTERVAL=300
R3AUDITLEVEL=0
SHORT_INTERVAL=10
retry=-1
xbpversion=3
pchain_details=on
rfc_open_retry=-1
ccms_alert_history=ON

18 IBM Workload Scheduler: Scenarios and How To Demos

throttling_enable_job_interception=ON
throttling_send_ccms_data=ON
throttling_interval=30
throttling_send_ccms_rate=2

Defining and scheduling new and classic jobs with dynamic
capabilities

This scenario describes how you can use the new workstations with dynamic
capabilities to run the jobs you created for the previous IBM Workload Scheduler
workstations. To run these jobs on the new workstations, you must change only
the workstation where you want the job to run. You can also define new job types.
While the classic IBM Workload Scheduler job is a generic script or command, you
can now define specific job types, such as database or Java™ jobs. To create this
type of jobs, you do not need specific skills on the applications where the job runs.

Business Goal

An insurance company runs a number of jobs at night to save the data processed
during the day to the backup database. It must also gather all of the data related to
the transactions completed during the day from all the workstations in the
company branches. They use DB2® databases. Using the Workload Designer, they
create a job to perform a database backup and another job to extract the data for
the daily transactions. To perform these operations, they use the new database job
type.

After gathering data from all the company workstations, they copy the resulting
data on a single workstation and process it to generate a report. They choose the
best available workstation dynamically by defining the requirements necessary to
run the job: a workstation with Windows operating system installed, low
processing workload, and the program required to generate the report.

The report highlights how many new contracts were signed and how many
customers are late with their payments. A mail is sent to the chief accountant,
listing the number of new contracts and late customers. A mail is also sent to the
secretaries with the name of the late customers for each branch, so they can write
them a letter pointing out the delay in the payment.

If the administrator does not want to modify the job stream he used in the past to
run a Java job, he can, for example, modify the name of the workstation where he
wants the job to run, inserting the name of a pool or dynamic pool of dynamic
agents where the Java executable is installed. IBM Workload Scheduler translates
the syntax of the job so that it can be run by the Java executable and assigns the
job to the best available resource in the pool.

The company can reach this objective, by:
v Using the new workstations with dynamic capabilities to run the jobs the

administrator created for the previous IBM Workload Scheduler workstations,
the administrator changes only the workstation where he wants the job to run.
The major advantage is that he can use the workflows he previously created
without additional effort.

v Defining the job types listed without having specific skills on the applications
where the job runs:
– Database jobs
– File transfer jobs

Chapter 2. Dynamic job scheduling scenarios 19

– Web services jobs
– Java jobs

These job types run on the new workstations:

dynamic agents
Workstations capable of running both classic and new job types.

pools Groups to which you can add dynamic agents depending on your needs.
Jobs are assigned dynamically to the best available dynamic agents.

dynamic pools
Groups of dynamic agents for which you specify your requirements and
have IBM Workload Scheduler select the dynamic agents which meet your
needs. Jobs are assigned dynamically to the best available dynamic agent.

Roles

This section lists the user roles needed to run the scenario:

IBM Workload Scheduler Administrator
Manages the workload by creating and modifying jobs.

IBM Workload Scheduler Job Scheduler
Manages the workload by submitting and monitoring jobs.

Software requirements

The following software must be installed and configured, before running this
scenario:
v A IBM Workload Scheduler network with the Dynamic Scheduling capability.
v A Dynamic Workload Console

Setting up the environment

Complete the tasks described in “Setting up your environment for dynamic
scheduling” on page 3.

Running the Scenario
To complete this scenario, you need to perform the following operations:

About this task
v Create a database job
v Create a dynamic pool with the following requirements:

– Windows operating system installed
– Program required to generate the report
– Low processing workload

v Modify an existing job stream so that it can run on an dynamic agent.

To create a database job, perform the following steps:

Procedure

Log on to the Dynamic Workload Console and launch the Workload Designer.
v To create a database job, perform the following steps:

1. In the Working List pane, select New ↦Job Definition ↦

20 IBM Workload Scheduler: Scenarios and How To Demos

2. Select Database.
3. Fill in the fields as necessary.

v To modify an existing job stream so that it can run on an dynamic agent,
perform the following steps:
1. Click Search ↦ Job Stream and type the name of the job stream you want to

modify.
2. Select the job stream and click Edit. The job stream is displayed in the right

pane.
3. Click the Browse icon next to the Workstation field. The Lookup panel is

displayed.
4. Search for the workstation where you want the job to run, select it and click

OK.
5. Save the job stream. A new job stream is created in the database.
6. Optionally delete the previous job stream.

Creating a dynamic pool
About this task

To create a create a dynamic pool with the necessary requirements, perform the
following steps:

Procedure
1. Log on to the Dynamic Workload Console.
2. From the navigation toolbar, select the entry for Administration > Workload

Environment Design > Create Workstations.
3. Select an engine and click Create Workstation. The Workstation properties

panel is displayed.
4. In the Workstation type menu, click the Dynamic Pool item. The layout of the

panel changes slightly.
5. Fill in the fields as necessary.
6. Click Edit Requirements. The Requirements panel is displayed.
7. Select the Windows check box.
8. Add a logical resource you previously created where the required product is

installed.
9. Select the Workload Balance radio button.

Expected Results
You have created a job which performs operations on a database, a second job that
is dynamically assigned to the best available dynamic agent and also modified an
existing job stream with minimal effort to take advantage of dynamic scheduling
functions.

Chapter 2. Dynamic job scheduling scenarios 21

22 IBM Workload Scheduler: Scenarios and How To Demos

Chapter 3. Cloud environment scenarios

The following scenarios show how to use IBM Workload Scheduler with cloud
environments to take advantage of virtualization, flexibility, and standardization.

Managing workload in dynamic environments
This scenario shows how Workload Automation in modern IT infrastructures
supports dynamic environments, where new servers can be provisioned and
removed in just a few minutes by using Cloud and Virtualization. Providing new
applications to support business requires a high level of automation for the
verification of new releases in a production-like environment. The change
management of the workflows can be simple and intuitive, making it possible to
share pre-built assets across departments and organizations.

Scenario goal
This scenario shows how an integrated Development and Operations Lifecycle is
an agile, scalable, and flexible solution for end-to-end lifecycle management and
automation, creating an environment that has collaboration between development
and operation teams reducing the possibility of applications being returned due to
deployment issues and achieving optimal efficiency. This solution is important to
the business because every delay in getting a software system deployed carries a
lost opportunity cost or a financial risk. Any production outage of any duration
can have a direct, negative impact on a company’s revenue. Outages related to
software defects carry additional risk due to the coordination of resources required
to identify, analyze, and correct the problem, as well as to test the fix and deploy it
into production without breaking dependent applications or components.

Business Scenario

A company producing and delivering software products finds it difficult to realize
its revenue because deployment fails due to inaccuracies in the configuration or is
delayed due to manual processes. The business cannot benefit from the new
capabilities and suffers financially if the failure or delay impacts business
continuity or compliance. Because the organization has complex manual
deployment processes and, as a result, high deployment failure rates, it needs to
find a solution. It currently manages configuration specifications in spreadsheets
and has difficulty in keeping the information current. The final part of the
deployment of complex applications can often take several months.

By deploying an integrated solution that uses IBM Workload Scheduler with
Provisioning and Remote Command job types, the company can reduce the cycle
time of a release to a number of days or even hours.

Using IBM Workload Scheduler, the company defines a Provisioning job to connect
to a SmartCloud Provisioning server and deploy all the virtual machines it needs
for any specific software project. Then, defining File Transfer and remote command
jobs, it can download, install and test the software on different operating systems
without installing specific agents to run the commands.

Finally, after the software is tested, the unnecessary virtual machines can be easily
removed by running Provisioning jobs.

23

After running this workflow in a test environment, the company can easily repeat
the same flow in a production environment.

Deploy
Undeploy

Undeploy

Undeploy

Install

InstallDownload Test

Test

TestInstall

Remote Command

Provisioning

FileTransfer Provisioning

Developer

Check in
code

Extracts
code

Build installable
media

Publish build report

TWS receives report
and triggers workflow

TWS submits and
tracks the workflow

Code repository Build engine

Report

Deploy in production

Workflow run in test environment
then repeated in production environment

Download

Download

Roles

This section lists the user roles needed to run the scenario:

IBM Workload Scheduler Developer
Defines the jobs.

IBM Workload Scheduler Job Scheduler
Manages IBM Workload Scheduler workload by submitting and
monitoring jobs.

Software Requirements
The following software must be installed and configured, before running this
scenario:
v IBM Workload Scheduler version 8.6.0.2 network with the Dynamic Scheduling

capability
v IBM SmartCloud Provisioning 2.1

24 IBM Workload Scheduler: Scenarios and How To Demos

Before you begin
Ensure that you have performed the prerequisite steps described in
Prereq_scp_job_t.html

Running the Scenario
To complete the scenario, perform the following steps:

About this task

Procedure
1. Create the virtual images of the SmartCloud Provisioning environment.
2. Create a Provisioning job to deploy several instances of the virtual images

defined in previous step.
a. In the Working List pane, select New > Job Definition > Cloud >

Provisioning.
b. In the Properties pane, specify the properties for the job definition you are

creating using the tabs available. For more detailed information about the
UI elements on each tab, see the Dynamic Workload Console online help.

c. On the General tab, specify general information about the job definition.
d. On the Affinity tab, optionally, specify the affinity relationship between two

or more jobs. Affinity relationships cause jobs to run on the same
workstation as the affine job.

e. On the Recovery Options tab, optionally specify the recovery options to be
followed if the job abends. You can choose to stop or continue the
scheduling activity, rerun the job, to display a prompt or run a recovery job.

f. On the Connection Server tab, specify the names and passwords of the
authorized users associated with the IBM SmartCloud Provisioning server.

g. On the Actions tab, select Deploy to deploy a virtual image in the cloud
group and create a new virtual system instance containing the number of
virtual image instances you specify.

3. Create a Provisioning job to start the systems you have deployed.
4. Create a FileTransfer job to upload the new build and all the required software

on the deployed systems.
a. From the Dynamic Workload Console portfolio, click Workload > Design >

Create Workload Definitions

b. Specify an engine name, either distributed or z/OS. The Workload Designer
opens. Job types and characteristics vary depending on whether you select a
distributed or a z/OS engine.

c. In the Working List pane, select New > Job Definition > File Transfer and
Coordination > FileTransfer.

d. In the Properties pane, specify the properties for the job definition you are
creating using the tabs available. For more detailed information about the
UI elements on each tab, see the Dynamic Workload Console online help.

5. Create a Remote Command job to complete the deployment of the application
and run a set of tests
a. In the Working List pane, select New > Job Definition > Native > Remote

Command.
b. In the Properties pane, specify the properties for the job definition you are

creating using the tabs available. For more detailed information about the

Chapter 3. Cloud scenarios 25

Prereq_scp_job_t.html

UI elements on each tab, see the Dynamic Workload Console online help.
The first tabs are common to Provisioning.

c. On the Tasks tab, enter the software installation and test commands that
you want to run.

d. On the Environment tab, optionally specify the standard output, and
standard error files for the command. These files are stored on the agent,
not locally on the workstations where the command runs. ensure you have
write permission for the specified directories, otherwise no file will be
created.

6. Create a Provisioning job to delete the unnecessary virtual instances
a. In the Working List pane, select New > Job Definition > Cloud >

Provisioning and create a new Provisioning job specifying in the Actions
tab, to delete the unnecessary virtual instances.

7. Create a job stream with the necessary job dependencies to run the jobs in the
appropriate sequence.

Expected result
You have created a Provisioning job that deploys some virtual instances, and a
Remote Command job that installs and verifies the built software and generates a
success report. Finally, when the environment is no longer needed, you can run a
Provisioning job to remove the virtual instances that you no longer use.

Sharing and reusing standard workload process templates
This scenario shows how, after developing a workload process that efficiently
answers your needs, you can standardize it by virtualizing the workload,
regardless of its topology, and exporting it to a new environment where it can be
easily deployed.

Scenario goal
Successful, efficient workload processes can be reused in multiple environments.
For example, you might want to move your tested and fine-tuned workload from
your development to your production environment. Also, you might have
standardized a solution that can work in your local environment as well as in all
your branch offices. Alternatively, you might want to produce a set of standard,
virtualized solutions that can be commercialized or shared with a community of
IBM Workload Scheduler users.

Business Scenario

A service provider that produces and delivers software products for the banking
sector has defined a workload application to detect fraud in banking financial
flows. After defining a set of job streams containing the jobs and dependencies to
detect and block fraud attempts, the service provider includes these job streams in
a workload application and exports it as a compressed file. The service provider
then makes this workload application available to the banking sector. An important
central bank that has been struggling against fraud problems for years, purchases
the workload application from the service provider. To run the workload
application, the bank just has to customize a mapping file to specify the names and
information typical of its environment and then deploy the workload application.
The same fraud-detecting workload, fine-tuned by the service provider, is now
running in the bank environment. The central bank can share this workload
application with all its branch offices to ensure all banking operations are
safeguarded against financial frauds.

26 IBM Workload Scheduler: Scenarios and How To Demos

The same workload application can be stored on a server and shared with the
whole authenticated banking community to be further improved by the
contribution of other users who adapt it to the latest international tax regulations.
As a result, the workload application might also become a type of open-source
IBM Workload Scheduler product that is continuously improved and run by its
users.

Workload

Mapping file

Definition file

Mapping file

Definition file

template
Export

Deploy

Workload Application
deployment environment

Roles

This section lists the user roles required to run the scenario:

IBM Workload Scheduler Developer
Defines the jobs.

IBM Workload Scheduler Job Scheduler
Manages IBM Workload Scheduler workload by submitting and
monitoring jobs.

Running the Scenario
To complete the scenario, perform the following steps:

About this task

Procedure
1. Create the jobs, job streams, and dependencies that satisfy your requirements.
2. Create and export the workload application template by performing the

following steps:
a. In the Working List pane, select New > workload application template. The

workload application template is created in the Details view and its
properties page is displayed.

b. In the Properties pane, specify the properties for the workload application
template that you are creating, using the available tabs. For more detailed
information about the UI elements on each tab, see the Dynamic Workload
Console online help.

Chapter 3. Cloud scenarios 27

c. Click Save to save the Dynamic Workload Console in the database.
d. From the Details view, right-click the Dynamic Workload Console and add

the created job streams to it. Together with the job streams, the
corresponding dependencies are also automatically added to the Dynamic
Workload Console.

e. Right-click the Dynamic Workload Console and click Export to produce a
compressed file containing all the files and information required to make
the workload to run also in another environment.

Results

The compressed file contains:

workload application template name_Definitions.UTF8.xml
XML file that contains the definitions of all the exported objects. These
definitions will be deployed in the target environment so as to populate
the target database with the same objects existing in the source
environment.

workload application template name_Mapping.UTF8.properties
Mapping file that the target user will modify replacing the names of the
objects in the source environment with the names that these objects will
have in the target environment.

workload application template name_SourceEnv_reference.txt
Reference information containing the definitions of the workstations used
in the workload application and other information that can be useful to
correctly map the source environment into the target environment and
allow the workload application to run.

Deploying the workload application
About this task

The central bank must then deploy the workload application template in its
environment, creating all the required objects to run the workload. Deploying a
workload application template is a two-step process beginning with customizing
the mapping file by specifying the names of the objects as they are defined in the
target environment (for example, the names of the workstations on which the job
streams will run) and then importing the mapping file and definitions file into the
new IBM Workload Scheduler environment. All the import and customization steps
must be performed in the target environment by using the command line.

Procedure
1. Customize the mapping file. Assign to each object listed in the mapping file the

name it must have in the target environment. For example:
CALENDAR_GALAXY=WORKINGDAYS
JOBSTREAM_JSA01=BANK1
JOBSTREAM_JSA02=BANK2
JOBSTREAM_JSA03=PAYROLL
JOBSTREAM_JSA04=ACCOUNTS
JOBSTREAM_JSA05=FOREIGN
JOB_JOB1=PAY
JOB_JOB2=CASH
JOB_JOBDEF6=HOMEOFFICE
RESOURCE_RES1=ROME1
VARIABLEVALUE_VALE_PARAM1=date
VARIABLEVALUE_VALE_PARAM2=root
VARTABLE_VALE=VALE
WORKSTATION_WSNAME=UNIX

28 IBM Workload Scheduler: Scenarios and How To Demos

The mapping file creates a relationship between objects in the source
environment, where the workload application is created, with objects in the
target environment. If you specify a target object name that is the same as an
object already in the target environment, then the import operation fails.

2. From the command line, submit the following command, indicating the file
names of both the definitions file and the customized mapping file:
-import <wkldappname_Definitions.UTF8.xml> [wkldappname_Mapping.UTF8.properties]

where,

wkldappname
Represents the name of the workload application you want to import.

For more information about the command usage and syntax, see wappman in
the User's Guide and Reference.

What to do next

You can subsequently update a workload application if a newer version becomes
available. Any objects already present in the IBM Workload Scheduler database of
the target environment are replaced with the updated versions, any objects that do
not already exist in the target environment are created, and objects are deleted
from the target environment if the object definition has been removed from the
updated workload application. The same mapping file used to originally deploy
the workload application can be used to update it, customizing any new objects
being deployed with the update.

If you need to delete an object from the workload application in the target
environment, you must import an updated version of the workload application
removing the definition of the object you want to delete from it so that the object
in the source environment is deleted also.

In the future, the central bank might decide to share the workload application with
a community of IBM Workload Scheduler users belonging to the banking sector to
keep it as an alive and continuously-improving application.

Chapter 3. Cloud scenarios 29

30 IBM Workload Scheduler: Scenarios and How To Demos

Chapter 4. Workload scheduling rules scenario

The following scenario shows how run cycle groups add additional flexibility to
define when your workload is scheduled to run.

A run cycle group is a distinct database object and the same run cycle group can
be reused in different job streams, avoiding the necessity of having multiple run
cycles definitions to have the same scheduling rules.

Run cycle groups are especially useful when you need to identify the days when a
job stream would normally be scheduled to run, but for some reason it is not
required to run so it can be “excluded”. Run cycles are organized in subsets within
the run cycle groups so that the exclusive run cycles are applied against the
positive occurrences generated by the run cycles belonging to the same subset.

In addition to specifying inclusive and exclusive run cycles, you can also specify a
positive or negative offset on a run cycle group.

Inclusive and exclusive rule-based run cycles
This scenario shows how a IBM Workload Scheduler administrator can use subsets
of run cycles in a run cycle group to achieve a specific workload schedule that,
without the use of a run cycle group, would require the definition of numerous
run cycles, calendars, or both. In addition, it demonstrates how you can reuse run
cycle groups in different job streams and add an offset to shift a workload
schedule forward by one day.

Scenario goal
In this scenario, a IBM Workload Scheduler administrator needs to run a process
that elaborates sales projections every day except Friday, and on the first day of
each month; in the latter case, it must run even if the first day of the month is a
Friday. The administrator must then run a post-sales check according to the same
schedule but a day later.

Business Scenario

To define the required workload schedule, the IBM Workload Scheduler
administrator creates a run cycle group with two subsets. The first subset defines
that the process must run every day except Fridays, and the second subset defines
that the process must run on the first day of each month, even if the first day of
the month is a Friday. The same run cycle group is reused in a different job stream
to run a post-sales check, however, this job stream should follow the same
schedule as the sales projections, but one day later.

Roles

This section lists the user roles needed to run the scenario:

IBM Workload Scheduler Developer
Defines the run cycle groups in a job stream.

IBM Workload Scheduler Job Scheduler
Manages IBM Workload Scheduler workload by submitting and
monitoring jobs.

31

Software Requirements
The following software must be installed and configured, before running this
scenario:
v IBM Workload Scheduler version 9.1.
v Dynamic Workload Console version 9.1.

Setting up the environment
To run this scenario you must install or upgrade to IBM Workload Scheduler
version 9.1.

Running the Scenario
To complete the scenario, perform the following steps:

About this task

Procedure
1. Define the run cycle group that will contain the two subsets.

a. In the Working List pane, select New > Run cycle group.
b. In the Properties pane, specify the properties for the run cycle group

definition you are creating using the tabs available. For more detailed
information about the UI elements on each tab, see the Dynamic Workload
Console online help.

c. On the General tab, specify general information about the run cycle group
definition such as the name, SalesProjections.

d. On the Time restrictions tab, specify time restrictions for the job stream
associated to the run cycle group.

e. Save the run cycle group definition.
2. Create a subset within which to create two run cycles. The first to run the

process on a daily basis, and the second to exclude Fridays.
a. Right-click the run cycle group SalesProjections and click Add Subset. By

default, the subset name is SUBSET-1, but you can optionally modify the
name.

b. Right-click SUBSET-1 and click Add Run Cycle.
c. On the General tab, specify general information about the run cycle

definition such as the name, DailyProcess.
d. Leave the default selection for Inclusive or Exclusive Run Cycle as

Inclusive.
e. On the Rule tab, specify Daily for the Repeat schedule, and leave the

default selection 1 for Run every selected number of days and Everyday
for On the following day type.

f. Save the run cycle group definition.
g. Right-click SUBSET-1 again and click Add Run Cycle to add a second run

cycle that excludes Friday from the daily process.
h. On the General tab, specify general information about the run cycle

definition such as the name, NoFridays.
i. In Inclusive or Exclusive Run Cycle select Exclusive since this run cycle

serves to exclude Fridays.
j. On the Rule tab, specify Weekly for the Repeat schedule, and select Friday

for On the following days of the week.

32 IBM Workload Scheduler: Scenarios and How To Demos

k. Save the run cycle group definition. You can click the Run Cycle Preview
tab to view the schedule for each of the run cycles and then the
combination of the run cycles on a calendar.

3. Create a second subset to define a run cycle to run the process on the first day
of each month.
a. Right-click the run cycle group SalesProjections and click Add Subset to

add a second subset. By default, the subset name is SUBSET-2, but you can
optionally modify the name.

b. Right-click SUBSET-2 and click Add Run Cycle.
c. On the General tab, specify general information about the run cycle

definition such as the name, FirstDayoftheMonth.
d. Leave the default selection for Inclusive or Exclusive Run Cycle as

Inclusive.
e. On the Rule tab, specify Monthly by month day for the Repeat schedule,

and 1st Day for On the (ascending order).
f. Save the run cycle group definition.

4. Create a job stream containing the jobs to run the sales projections processes
and then associate the run cycle group, SalesProjections, by adding a run
cycle containing a repeat schedule set to Run Cycle Group.
a. From the Working List click New > Job Stream.
b. Define a name and the workstation for the job stream.
c. Click Select an Action > Add Jobs.
d. Search for and select the jobs related to the sales projections processes and

click Add.
e. Select the job stream in the Details view, and click Select an Action > Add

Run Cycle.
f. Define a name for the run cycle.
g. On the Rule page, select Run Cycle Group for the Repeat schedule.
h. Search for and select the run cycle group SalesProjections and click OK.
i. Save the job stream definition Click Run Cycle Preview to view a calendar

displaying the run cycle schedule for the job stream.
5. Reuse the same run cycle group in a different job stream that runs a post-sales

check according to the same run cycle schedule but a day later.
a. Define a new job stream or open an existing job stream containing the jobs

to run the post-sales check, and add a run cycle to the job stream specifying
the SalesProjections run cycle group as the rule for the job stream.

b. In the Offset section on the Rule page, click the up arrow to specify an
offset of 1 day. Click Run Cycle Preview to display the same run cycle
schedule used in the sales projections job stream but with the dates shifted
over by one day.

Expected result
You have created a job stream with a run cycle group containing two subsets that
create a workload schedule that runs a process every day except Friday and the
first day of each month, even if the first day falls on a Friday. The same run cycle
group is used to run a different process but a day later with respect to the first job
stream.

Chapter 4. Workload scheduling rules 33

34 IBM Workload Scheduler: Scenarios and How To Demos

Chapter 5. Maintaining dependencies across different
scheduling environments

You can create relationships between jobs even when the jobs run in different
scheduling environments.

A cross dependency is a dependency of a local job on a remote job running in a
different scheduling environment. It is achieved by using a shadow job, which runs
in the same environment as the local job and maps the remote job processing.

The scenarios in this section demonstrate how you can migrate a workload to run
in two different scheduling environments, maintaining any dependencies created
between jobs, as well as a scenario that demonstrates how you can synchronize the
workload of two scheduling environments.

Migrating a workload to another IBM Workload Scheduler scheduling
environment while maintaining dependencies

This scenario describes how you can split the workload between different IBM
Workload Scheduler distributed environments, keeping the dependency flow. This
situation can happen, for example, when specific activities are migrated to a newly
added IBM Workload Scheduler master domain manager.

Business Goal

Two insurance companies are merged. Each of them has implemented its own IBM
Workload Scheduler distributed solution to run a workload. As result of the merge,
to avoid workload duplication and unify processes, some activities must be
migrated from one master domain manager to the other.

To accomplish this task, the administrator of TWSA needs to ensure that the
workflow dependencies are maintained even though part of the activities are
moved to TWSB managed environment.

Figure 1 on page 36 shows the workload flow that must be migrated from TWSA to
TWSB:

35

Roles

This section lists the user roles needed to run the scenario:

IBM Workload Scheduler Administrator
Manages IBM Workload Scheduler workload by creating and modifying
jobs.

IBM Workload Scheduler Operator
Manages IBM Workload Scheduler workload by submitting and
monitoring jobs.

Software requirements

The following software must be installed and configured, before running this
scenario:
v Two IBM Workload Scheduler networks.
v A Dynamic Workload Console

Setting up the environment

To run this scenario do the following:

On TWSA

v Ensure that the version of IBM Workload Scheduler installed is at least
8.6.

v Define remote engine workstations that map TWSB master domain
manager, and possible backup masters, and a dynamic pool workstation
that contains all these remote engine workstations. This configuration
helps you in managing, in a transparent way, failover situations or
maintenance activities of TWSB master domain manager.

v Verify that you can successfully telnet to the TWSB system using the port
number specified in the remote engine workstations definition.

On TWSB

v Ensure that the version of IBM Workload Scheduler installed is at least
8.6.

JOB1

JOB2

JOB3

JOB4

original
dependency

workload to migrate
from TWSA to TWSB

TWSA TWSB

Figure 1. Processing flow to migrate

36 IBM Workload Scheduler: Scenarios and How To Demos

v If you specified in the global option, bindUser, a user different from the
TWS_user, ensure that the specified user has the required authorizations
to bind the job stream containing JOB2, as well as JOB2 itself, in the plan.

v Ensure that the resources that were needed to run JOB1 and JOB2 on TWSA
are available with the same naming convention on TWSB.

Running the Scenario

About this task

To complete this scenario, as TWSA Administrator, you need to perform the
following operations:
1. Migrate JOB1 and JOB2 from TWSA to TWSB.
2. Remove the dependency on JOB2 from the JOB3 definition.
3. Define a shadow job on TWSA , JOB2SH, pointing to JOB2 running on TWSB
4. Define a dependency on JOB2SH for JOB3 on TWSA.

Figure 2 shows the new workload flow between the two environments:

As TWSB Administrator, generate the plan on TWSB.

As TWSA Administrator, generate the plan on TWSA.

Then, as TWSA Operator, do the following:
1. Log in to the Dynamic Workload Console to monitor the workload flow.

Note: If the engine connection to TWSB was defined on the Dynamic Workload
Console, then the TWSA Operator can monitor both the status of JOB2 defined on
TWSB, and the status of the shadow job JOB2SH defined on TWSA, from the same
user interface.

2. Monitor when the status of the shadow job becomes BOUND. This means that
the association of JOB2SH with the instance of JOB2 was established.

3. Rerun and recovery of the JOB2 instance are managed automatically by the
product and mapped to the shadow job status. If JOB2SH is submitted
successfully, but then goes to ERROR, then you have to contact the TWSB
administrator to understand why the bind failed.

JOB2

JOB1

JOB3

JOB4

JOBSH2

new
dependency

status notifications

TWSA TWSB

bind request

Figure 2. New processing flow

Chapter 5. Maintaining Dependencies 37

Expected Results
You moved and automated the workflow dedicated to run an activity from one
IBM Workload Scheduler environment to another, maintaining the workflow
dependency.

Creating dependencies in a workload running in two IBM Workload
Scheduler scheduling environments

This scenario describes how you can create a dependency relationship in a
workload running in different IBM Workload Scheduler environments using cross
dependencies.

Business Goal

An insurance company runs a number of jobs to collect the data processed during
the day. The information about the transactions completed during the day by all of
the workstations in the company branches is collected and processed on the
distributed IBM Workload Scheduler master domain manager, TWSD.

As soon as this processing completes, the IBM Workload Scheduler for z/OS
controller at the head office, TWSZ, must run reports and statistics on this data to
compare the actual results with the projected results.

To accomplish this task, the IBM Workload Scheduler administrator of TWSZ needs
to automate the following process: the job RUNREP that runs the reports starts only
after the job COLLECT_TRANSACTIONS, that collects data processed at the branch
offices, completes successfully on TWSD.

Roles

This section lists the user roles required to run the scenario:

IBM Workload Scheduler Administrator
Manages IBM Workload Scheduler workloads by creating and modifying
jobs.

IBM Workload Scheduler Operator
Manages IBM Workload Scheduler workloads by submitting and
monitoring jobs.

Software requirements

The following software must be installed and configured, before running this
scenario:
v A IBM Workload Scheduler for z/OS network and a IBM Workload Scheduler

network, whose managers can ping each other.
v A Dynamic Workload Console.

Setting up the environment

To run this scenario do the following:

On TWSZ

v Ensure that the version of IBM Workload Scheduler installed is at least
8.6.

38 IBM Workload Scheduler: Scenarios and How To Demos

v Define in the ROUTOPTS initialization statement, an HTTP or HTTPS
destination for the TWSD master domain manager and for each backup
master defined.

v Define remote engine workstations for each of these destinations. The
primary remote engine workstation, TWSDREM points to the TWSD master
domain manager. The other remote engine workstations are defined
cascading as alternate workstations.

On TWSD

v Ensure that the version of IBM Workload Scheduler installed is at least
8.6.

v If you specified in the global option bindUser a user different from
TWS_user, ensure that the specified user has the required authorizations
to bind the job stream containing COLLECT_TRANSACTIONS as well as the
COLLECT_TRANSACTIONS job itself.

Running the Scenario

About this task

To complete this scenario, as the TWSZ Administrator, you need to perform the
following operations:
1. Double-check with the TWSD Administrator the information needed to identify

the specific COLLECT_TRANSACTIONS job instance in the TWSD plan.
2. Create a shadow job COLLECTSH with the following characteristics:
v It is defined on the TWSDREM remote engine workstation.
v It points to the COLLECT_TRANSACTIONS job instance.
v The input arrival of the shadow job must follow the input arrival of the

COLLECT_TRANSACTIONS job instance.
3. Define a dependency in RUNREP job from COLLECTSH.
4. Extend the plan.

Figure 3 shows the workload flow between the two environments:

Then, as TWSZ Operator, do the following:
1. Log in to the Dynamic Workload Console to monitor the status of the shadow

job COLLECTSH.

Note: If the engine connection to TWSD is defined on the Dynamic Workload
Console, then the TWSZ Operator can monitor both the status of

RUNREPS

COLLECTSH

dependency

bind request and
status notification

TWSZ TWSD

COLLECT_TRANSACTIONS

Figure 3. Processing flow

Chapter 5. Maintaining Dependencies 39

COLLECT_TRANSACTIONS job defined on TWSD and the status of the shadow job
COLLECTSH defined on TWSZ from the same user interface.

2. Monitor when the status of the shadow job becomes BOUND. This means that
the association of COLLECTSH with the instance of COLLECT_TRANSACTIONS was
established.

3. Rerun and recovery of the COLLECT_TRANSACTIONS instance are managed
automatically by the product and mapped to the shadow job status. If
COLLECTSH is submitted successfully, but then fails or goes to ERROR, you have
to contact the TWSD administrator to verify what went wrong in the
COLLECT_TRANSACTIONS instance.

As soon as the information collected at the branch offices is collected, the
COLLECT_TRANSACTIONS job completes successfully on TWSD. As a consequence, the
shadow job COLLECTSH also completes on TWSZ. The RUNREP dependency from
COLLECTSH is resolved and, if RUNREP is free from other dependencies, it can start
running the report on closing day activities.

Expected Results
You automated your closing day activities run overnight by creating a dependency
on a job running locally from a job, that collects data from the branch offices,
running on a different IBM Workload Scheduler environment.

40 IBM Workload Scheduler: Scenarios and How To Demos

Chapter 6. Variable Tables

IBM Workload Scheduler Variable Tables describe how to customize job and job
stream behavior.

Customizing jobs and job streams based on when they are scheduled
to run

This scenario shows how to customize jobs and job streams based on when they
are scheduled to run, that is on which days they run, using variable tables
referenced at the run cycle level.

By having the ability to manage different tables of variables in run cycles, you no
longer need to define two different job streams to run the same work on different
data. Instead, you define:
v A single job stream with two run cycles, referencing two different variable

tables.
v File dependencies on jobs using variables, forcing instances generated on a

specific day to use different variable values with respect to instances generated
on another day.

v A variable in the path of the scriptname job attribute.

Using variable tables you reduce the number of scheduling object definitions
required to implement your workload saving time and money.

Using variable tables you need to define less scheduling objects required to
implement your workload with respect to the past saving time and money.

You can find more information on this subject in the User's Guide and Reference.

Scenario goal

A sales department needs to collect sales data to produce reports both at a business
unit level and at a corporate level. The department manager needs reports both
weekly and monthly. Report data is stored in two different directories. Data for
weekly reports is stored in a file located in the /reports/weekly directory. Data for
monthly reports is stored in a file located in the /reports/monthly directory.

The files containing the input data needed to generate the reports are stored in two
different directories, and the job stream used to generate reports has a dependency
on these files. To collect data you can now create one job stream with two different
run cycles (one that runs weekly and one that runs monthly) that reference two
different variable tables containing a variable that is in the file path.

Roles and skills

This section lists the users involved in the scenario, the related roles, and the
required skill level:

IBM Workload Scheduler Job Scheduler
Manages Tivoli Workload Scheduler workload. Required skills include
Tivoli Workload Scheduler knowledge.

41

System requirements

Install the following software before starting the scenario:
v IBM Workload Scheduler version 8.5
v Dynamic Workload Console version 8.5

Setting up the environment

Complete the following tasks before running the scenario:
v Install and configure IBM Workload Scheduler version 8.5
v Install and configure Dynamic Workload Console version 8.5

Running the Scenario
To complete the scenario, perform the following steps:

Procedure
1. Define the SC1_WEEKLY_DATA_TABLE and the

SC1_MONTHLY_DATA_TABLE variable tables as follows:
VARTABLE SC1_WEEKLY_DATA_TABLE

MEMBERS
REP_PATH "/reports/weekly"

END

VARTABLE SC1_MONTHLY_DATA_TABLE
MEMBERS
REP_PATH "/reports/monthly"

END

2. Locate the jobs used to generate the reports. The jobs run a script which
receives the directory name as an input argument as shown in the syntax
below:
SC1_PARSE_DATA SCRIPTNAME

"/reportApp/parseData.sh ^REP_PATH^" STREAMLOGON salesadm
SC1_PROCESS_DATA SCRIPTNAME

"/reportApp/processData.sh ^REP_PATH^" STREAMLOGON salesadm
SC1_CREATE_REPORTS SCRIPTNAME

"/reportApp/createReports.sh ^REP_PATH^" STREAMLOGON salesadm

3. Define a single job stream with the following content:
a. Two run cycles:
v A weekly run cycle referencing the SC1_WEEKLY_DATA_TABLE variable

table
v A monthly run cycle referencing the SC1_MONTHLY_DATA_TABLE

variable table
b. A dependency on the file containing the data used for report generation.
c. A variable used in the path of the job stream file dependency.
SCHEDULE SC1_RUN_REPORTS

ON RUNCYCLE SC1_MONTHLY_RCY VARTABLE SC1_MONTHLY_DATA_TABLE
"FREQ=MONTHLY; INTERVAL=1; BYMONTHDAY=27" AT 0800

ON RUNCYCLE SC1_WEEKLY_RCY VARTABLE SC1_WEEKLY_DATA_TABLE
"FREQ=WEEKLY; INTERVAL=1; BYDAY=FR" AT 0900

OPENS "^REP_PATH^/raw_data.out"
:
SC1_PARSE_DATA
SC1_PROCESS_DATA FOLLOWS SC1_PARSE_DATA
SC1_CREATE_REPORTS FOLLOWS SC1_PROCESS_DATA

END

42 IBM Workload Scheduler: Scenarios and How To Demos

4. Create a plan of 30 days to generate multiple instances of the job stream by
running the following command:
JnextPlan -days 30

Expected results

The REP_PATH variable assumes different values according to the run cycle that
applies, that is according to the variable table referenced in the corresponding run
cycle.

In this way, the job stream instances have a dependency on a different file
according to the type of report they are producing, monthly or weekly. That is:
v The job stream instances that generate the weekly report have a dependency on

the file containing the data located in the directory /reports/weekly.
v The job stream instances that generate the monthly report have a dependency on

the file containing the data located in the directory /reports/monthly.

Furthermore, the name of the target directory is correctly replaced in the task
string of the three jobs run by every job stream instance as follows:
v The jobs run by job stream instances that generate the weekly report run shell

scripts with the /reports/weekly directory as an input argument.
v The jobs run by job stream instances that generate the monthly report run shell

scripts with the /reports/monthly directory as an input argument.

Customizing jobs and job streams based on why they are scheduled
to run

This scenario shows how to customize jobs and job streams based on why they are
scheduled to run, for example to create a job that runs different commands for
different users, referencing different variable tables at job stream level.

By having the ability to manage different tables of variables, you no longer need to
create two different job definitions to run the same workload in different
environments. Instead, you define a single job that can be used both in the test and
in the production phase, using variables in the name of the file the job runs
(scriptname job attribute) and in the name of the user under which the job runs
(streamlogon job attribute). The variable tables are referenced in the job streams
containing the job. Using variable tables you reduce the number of scheduling
objects required to implement the desired workload saving therefore time and
money.

You can find more information on this subject in the User's Guide and Reference.

Scenario goal

After an acquisition, a company needs to integrate the acquired company
applications to its existing business environment. Before running them in the
production phase, the company decides to try a test application that runs the new
company application. After a month of testing, the application of the acquired
company will run in the production environment with the production user.

Roles and skills

This section lists the users involved in the scenario, the related roles, and the
required skill level:

Chapter 6. Variable Tables 43

IBM Workload Scheduler Job Scheduler
Manages Tivoli Workload Scheduler workload. Required skills include
Tivoli Workload Scheduler knowledge.

System requirements

Install the following software before starting the scenario:
v IBM Workload Scheduler version 8.5
v Dynamic Workload Console version 8.5

Setting up the environment

Complete the following tasks before running the scenario:
v Install and configure IBM Workload Scheduler version 8.5
v Install and configure Dynamic Workload Console version 8.5

Running the Scenario
To complete the scenario, perform the following steps:

Procedure
1. Define the TABLE_TEST and the TABLE_PROD variable tables as follows:

VARTABLE TABLE_TEST
MEMBERS
USER_LOGON "test"
PATH_SCRIPT "/usr/test"

END

VARTABLE TABLE_PROD
MEMBERS
USER_LOGON "mdm_85"
PATH_SCRIPT "/export/home/mdm_85/TWS"

END

2. Define the following job:
JOB_APP_01
SCRIPTNAME ^PATH_SCRIPT/applicationscript.sh"
STREAMLOGON "^USER_LOGON^"

3. Define the following job streams, specifying the same name but different
validity intervals:
SCHEDULE JS_APP_01

VARTABLE TABLE_TEST
ON RUNCYCLE RULE1 "FREQ=DAILY;"
:
JOB_APP_01

END

SCHEDULE JS_APP_01
VALIDFROM 05/19/2008
VARTABLE TABLE_PROD
ON RUNCYCLE RULE2 "FREQ=DAILY;"
:
JOB_APP_01

END

4. Generate a daily plan that ends on 05/18/2008, that is, the last day of the test
phase.

5. When you complete the test phase, extend the plan by one day.

44 IBM Workload Scheduler: Scenarios and How To Demos

Expected results

After you perform Step 4, the JS_APP_01 job stream will be included into the plan
generated, so that the JOB_APP_01 test job is included in the plan and you can
verify that the job is correctly scheduled and will run the test application.

After you perform Step 5, the JS_APP_01 job stream is included into the plan
running the JOB_APP_01 that uses as streamlogon and scriptname the values to
run the acquired company application in the production environment, without
having to modify the scheduling objects.

You can achieve the same result by using a single job stream in which you define
two run cycles with different validity intervals, each run cycle referencing a
different variable tables. The job stream has the following syntax:
SCHEDULE JS_APP_01

ON RUNCYCLE RULE1 VALIDTO 05/18/2008 VARTABLE TABLE_TEST "FREQ=DAILY;"
ON RUNCYCLE RULE2 VALIDFROM 05/19/2008 VARTABLE TABLE_PROD "FREQ=DAILY;"
:
JOB_APP_001

END

Customizing jobs and job streams based on where they are scheduled
to run

This scenario shows how to customize jobs and job streams based on where they
run, for example, on different workstations, using variable tables with
workstations.

By having the ability to manage different variable tables, you no longer need to
create two different job definitions to run the same workload (for example, a
command whose syntax changes depending on the operating system) on different
workstations. Instead, you define a single job that can be used on different
workstations, defining a different variable table for each workstation and
referencing it in the workstation definition. Each variable table contains the same
variable with different values. You can than use that variable in the command that
the job runs. Using variable tables you reduce the number of scheduling objects
required to implement the desired workload saving therefore time and money.

You can find more information on this subject in the User's Guide and Reference.

Scenario goal

A company needs to run a clean-up application on the workstations in the sales
department, once a week. These workstations have different IBM Workload
Scheduler home directories and different IBM Workload Scheduler users. Using
variable tables, you define a single job that runs the IBM Workload Scheduler
rmstdlist clean-up application and a single job stream that includes this job. Your
sales department includes multiple workstations which are all members of the
same workstation class, so you define a different variable table for each
workstation and reference it in the workstation definition. You define a job on the
workstation class. This job must contain a variable for the path in the scriptname
job attribute and a variable in the streamlogon job attribute.

Chapter 6. Variable Tables 45

Roles and skills

This section lists the users involved in the scenario, the related roles, and the
required skill level:

IBM Workload Scheduler Job Scheduler
Manages Tivoli Workload Scheduler workload. Required skills include
Tivoli Workload Scheduler knowledge.

System requirements

Install the following software before starting the scenario:
v IBM Workload Scheduler version 8.5
v Dynamic Workload Console version 8.5

Setting up the environment

Complete the following tasks before running the scenario:
v Install and configure IBM Workload Scheduler version 8.5
v Install and configure Dynamic Workload Console version 8.5

Running the Scenario
To complete the scenario, perform the following steps:

Procedure
1. Define the SC2_PATH_TABLE1 and the SC2_PATH_TABLE2 variable tables as

follows:
VARTABLE SC2_PATH_TABLE1

MEMBERS
TWS_HOME "/home/MDM_85/TWS"
TWS_USER "mdm_85"

END

VARTABLE SC2_PATH_TABLE2
MEMBERS
TWS_HOME "/var/fta_85/TWS"
TWS_USER "fta_85"

END
\

2. Reference the SC2_PATH_TABLE1 and the SC2_PATH_TABLE2 variable tables
on the workstations in your department. For example:
v Reference the SC2_PATH_TABLE1 variable table on the SC2_TWS1

workstation using the following syntax:
CPUNAME SC2_TWS1

DESCRIPTION workstation of sales department
VARTABLE SC2_PATH_TABLE1
OS UNIX
NODE iva.sales.com
....

END

v Reference the SC2_PATH_TABLE2 variable table on the SC2_TWS2
workstation using the following syntax:
CPUNAME SC2_TWS2

DESCRIPTION workstation of sales department
VARTABLE SC2_PATH_TABLE2

46 IBM Workload Scheduler: Scenarios and How To Demos

OS UNIX
NODE iva.sales.com
....

END

3. Create the SC2_TWSWCLASS workstation class containing the SC2_TWS1 and
the SC2_TWS2 workstations as members as follows:
SC2_TWSWCLASS

MEMBERS
SC2_TWS1
SC2_TWS2

END

4. Create the SC2_JOB_CLEANUP job definition that runs the rmstdlist clean-up
application using the following syntax:
SC2_TWSWCLASS#SC2_JOB_CLEANUP
DOCOMMAND "^TWS_HOME^/bin/rmstdlist" STREAMLOGON "TWS_USER"

5. Include the SC2_JOB_CLEANUP job definition in the following job stream:
SCHEDULE SC2_TWSWCLASS#SC2_JS_CLEANUP
ON SU
:
SC2_TWSCLASS#SC2_JOB_CLEANUP
END

Expected results

When a plan is created on Sunday, one instance of the job stream for each of the
workstations in the workstation class is included in the plan. The TWS_HOME and
the TWS_USER variables are resolved differently according to the workstation on
which the job is defined.

Customizing jobs and job streams for submission
This scenario shows how you customize jobs and job streams for submission, for
example, to submit a job that runs different data when a specific event occurs in
your workload environment.

By having the ability to manage different tables of variables, you no longer need to
create multiple job definitions to run different data when a specific event occurs.
Instead, you define a single job that can be used when a specific event occurs,
using variables in the data that the job runs (scriptname job attribute) and
specifying the variable table containing the data related to the event when
submitting the job. Using variable tables you reduce the number of jobs and job
streams required to implement your workload therefore saving time and money.

You can find more information on this subject in the User's Guide and Reference.

Scenario goal

When a new employee is hired, a company wants to run an application to set up
the environment for him. To be installed this application requires information such
as the name of the employee, the department to which he belongs, and so on. To
address this need the company performs the following actions:
v Defines a variable table that contains the variables that identify the new

employee.
v Defines a unique job containing the variables required to install the application

to be used for any new employee.

Chapter 6. Variable Tables 47

v Specify the variable table that contains the variables that identify the new
employee.

Roles and skills

This section lists the users involved in the scenario, the related roles, and the
required skill level:

IBM Workload Scheduler Job Scheduler
Manages IBM Workload Scheduler workload. Required skills include Tivoli
Workload Scheduler knowledge to:
v Manage workload complexity and dependencies.
v Optimize schedule efficiency, flexibility, and resiliency.

IBM Workload Scheduler Operator
Manages all operational processes and procedures, ensuring the business
continuity of the workflow. Required skills include Tivoli Workload
Scheduler knowledge to:
v Monitor critical events and perform first analysis of problems.
v Manage and coordinate the resolution of issues

System requirements

Install the following software before starting the scenario:
v IBM Workload Scheduler version 8.5
v Dynamic Workload Console version 8.5

Setting up the environment

Complete the following tasks before running the scenario:
v Install and configure IBM Workload Scheduler version 8.5
v Install and configure Dynamic Workload Console version 8.5

Running the Scenario
To complete the scenario, perform the following steps:

Procedure
1. Define the JOB_SETUP_HR job used to install the application that sets up the

environment for any new employee as follows:
JOB_SETUP_HR
SCRIPTNAME "/var/setupHRApp ^HOST^ ^PORT^ ^USER^ ^DEPT^"
STREAMLOGON admin

2. Define the JH_TABLE_ID001 new employee variable table as follows:
VARTABLE JH_TABLE_ID001
MEMBERS
HOST "cpux.acme.com"
PORT "42577"
USER "Jennifer Harold"
DEPT "Sales"

END

3. Submit the JOB_SETUP_HR job, specifying the JH_TABLE_ID001 new
employee variable table. To do this, run the following command:
conman sbj JOB_SETUP_HR ;vt=JH_TABLE_ID001

48 IBM Workload Scheduler: Scenarios and How To Demos

Expected results

After you submit the JOB_SETUP_HR job, the company environment for the new
employee is set up. You can reuse the same job for any new employee just by
specifying the variable table containing the new employee data when you submit
the job.

Chapter 6. Variable Tables 49

50 IBM Workload Scheduler: Scenarios and How To Demos

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

51

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data discussed herein is presented as derived under specific
operating conditions. Actual results may vary.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

52 IBM Workload Scheduler: Scenarios and How To Demos

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

IT Infrastructure Library is a Registered Trade Mark of AXELOS Limited.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are
trademarks of HP, IBM® Corp. and Quantum in the U.S. and other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

ITIL is a Registered Trade Mark of AXELOS Limited.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Notices 53

http://www.ibm.com/legal/us/en/copytrade.shtml

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

54 IBM Workload Scheduler: Scenarios and How To Demos

Index

S
scenarios 1

55

56 IBM Workload Scheduler: Scenarios and How To Demos

IBM®

Product Number: 5698-WSH

Printed in USA

	Contents
	Chapter 1. Scenarios
	Chapter 2. Dynamic job scheduling scenarios
	Setting up your environment for dynamic scheduling
	Applying an order of preference to possible targets
	Business Goal
	Running the Scenario
	Expected Results
	Sample Configuration file

	Performing load balancing based on available free memory
	Business Goal
	Running the Scenario
	Expected Results
	Sample Configuration file

	Specifying software license requirements by using resources
	Business Goal
	Running the Scenario
	Expected Results
	Sample Configuration file

	Dynamic job scheduling - A procedure to optimize writing job definitions that simulate the use of templates
	Scenario goal
	Running the Scenario
	Expected Results
	Sample Configuration files

	Scheduling jobs dynamically on SAP R/3 systems - A high availability scenario
	Business goal
	Running the Scenario
	Expected Results
	Sample Configuration files

	Defining and scheduling new and classic jobs with dynamic capabilities
	Business Goal
	Running the Scenario
	Creating a dynamic pool
	Expected Results

	Chapter 3. Cloud environment scenarios
	Managing workload in dynamic environments
	Scenario goal
	Software Requirements
	Before you begin
	Running the Scenario
	Expected result

	Sharing and reusing standard workload process templates
	Scenario goal
	Running the Scenario
	Deploying the workload application

	Chapter 4. Workload scheduling rules scenario
	Inclusive and exclusive rule-based run cycles
	Scenario goal
	Software Requirements
	Setting up the environment
	Running the Scenario
	Expected result

	Chapter 5. Maintaining dependencies across different scheduling environments
	Migrating a workload to another IBM Workload Scheduler scheduling environment while maintaining dependencies
	Business Goal
	Running the Scenario
	Expected Results

	Creating dependencies in a workload running in two IBM Workload Scheduler scheduling environments
	Business Goal
	Running the Scenario
	Expected Results

	Chapter 6. Variable Tables
	Customizing jobs and job streams based on when they are scheduled to run
	Scenario goal
	Running the Scenario
	Expected results

	Customizing jobs and job streams based on why they are scheduled to run
	Scenario goal
	Running the Scenario
	Expected results

	Customizing jobs and job streams based on where they are scheduled to run
	Scenario goal
	Running the Scenario
	Expected results

	Customizing jobs and job streams for submission
	Scenario goal
	Running the Scenario
	Expected results

	Notices
	Trademarks
	Terms and conditions for product documentation

	Index
	S

