Workload Scheduler
Version 8.6

Dynamic Workload Console
User's Guide

IBM
Before using this information and the product it supports, read the information in Notices.
Contents

Figures ... V

About this publication vii
- What is new in this release vii
- Who should read this publication vii
- Publications .. vii
- Accessibility vii
- Tivoli technical training viii
- Support information viii
- Conventions used in this publication ix
 - Typeface conventions ix
 - Operating system-dependent variables and paths ix

Chapter 1. Overview 1
- Naming conventions for scheduling objects ... 3
- Convention for specific platform information 4

Chapter 2. Installing and configuring the Dynamic Workload Console 7

Chapter 3. Getting Started 9
- Creating and managing engine connections 10
- Setting user preferences 11
- Customizing your global settings 11
- Event management configuration 12

Chapter 4. Managing settings repository 13
- Managing user settings 13
- Changing settings repository 14
- Sharing a settings repository 15
- Changing user of DB repository 16

Chapter 5. Tivoli Workload Scheduler Concepts .. 17
- Scheduling environment 17
 - Workstation .. 17
 - Domain ... 20
- Scheduling objects 23
 - Job .. 24
 - Job stream 24
 - Period ... 25
 - Calendar .. 26
 - Run cycle .. 27
 - Operator instructions 28
 - Parameter ... 28
 - Dependencies 28
 - Windows user 38
 - Workstation class 38
 - Variable table 39
 - Workload Broker job definition 39
- Production process 40
- Database ... 40

- Plans .. 41
- Engine connections 43
- Event management 44
- Reports ... 45
- Workload service assurance 47
 - Processing and monitoring critical jobs 48
 - Planning critical jobs 50
- Tivoli Workload Scheduler for SAP 52

Chapter 6. Customizing Your Console 55
- Customizing your portfolio 55
- Customizing your startup page 55
- Customizing your tasks 56
- Adding tasks to your favorite bookmarks 57
- Enabling and disabling news notification beacon 57

Chapter 7. Accessing the Console from Your Mobile Device 59

Chapter 8. Creating and Editing Objects in the Database 61
- Designing your Scheduling Environment 61
 - Creating a workstation 61
 - Creating a domain 63
 - Creating a pool of agents 64
 - Designing your Workload 64
 - Editing objects from the Working List View .. 65
 - Editing objects from the Quick Open View ... 66
 - Editing objects from the Details View 67
 - Editing objects from the Graphical View 67
 - Editing object properties 68
 - Adding a job to a job stream 68
 - Adding and removing dependencies 70
 - Creating cross dependencies 72
 - Creating SAP jobs 73
 - Creating job types with advanced options 73
 - Creating Dynamic Workload Broker objects ... 76
 - Creating an event rule 77
 - Listing object definitions in the database ... 82

Chapter 9. Monitoring your Objects in the Plan 87
- Monitoring the progress of your plan 87
- Monitor tasks 88
 - Monitoring your Scheduling Environment 89
 - Creating a task to Monitor Workstations 89
 - Creating a task to Monitor Domains 91
- Monitoring your Workload 92
 - Event management tasks 93
 - Plan view tasks 94
 - Creating a task to Monitor Jobs 94
 - Creating a task to Monitor Critical Jobs 95
 - Creating a task to Monitor Jobs on Multiple Engines .. 98
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Working with Plans</td>
<td>113</td>
</tr>
<tr>
<td>11. Submitting Workload on Request in Production</td>
<td>117</td>
</tr>
<tr>
<td>12. Reporting</td>
<td>121</td>
</tr>
<tr>
<td>13. Scenarios</td>
<td>127</td>
</tr>
<tr>
<td>14. Reference</td>
<td>135</td>
</tr>
</tbody>
</table>

Creating a task to Monitor Job Streams | 99
Creating a task to Monitor Job Streams on Multiple Engines | 101
Creating a task to Monitor Files | 102
Creating a task to Monitor Prompts | 103
Creating a task to Monitor Resources | 104
Creating a task to Monitor Event Rules | 105
Creating a task to Monitor Triggered Actions | 106
Creating a task to Monitor Operator Messages | 108
Controlling Jobs and Job Streams Processing | 109
Using dependencies to control job and job stream processing | 109
Using time restrictions to control job and job stream processing | 110
Using job priority and workstation fence to control distributed job and job stream processing | 110
Using limits to control job and job stream processing | 111
Using job confirmation to control job processing | 112
Using job recovery actions to control job processing | 112

Chapter 10. Working with Plans | 113
Selecting the working plan | 113
Generating Trial and Forecast Plans | 114
Creating a task to Show Plan View | 115

Chapter 11. Submitting Workload on Request in Production | 117
Submitting ad hoc jobs | 117
Submitting predefined jobs | 117
Submitting predefined job streams | 118
Setting properties for ad hoc jobs and predefined jobs and job streams | 118

Chapter 12. Reporting | 121
Creating a task to generate a Job Run Statistics report | 121
Creating a task to generate a Job Run History report | 122
Creating a task to generate a Workstation Workload Summary report | 123
Creating a task to generate a Workstation Workload Runtimes report | 124
Creating a task to Generate Plan Reports | 125
Creating a task to Generate Custom SQL Reports | 126

Chapter 13. Scenarios | 127
Customizing your job stream | 127
Using workload service assurance to monitor z/OS critical jobs | 129
Monitoring jobs running on multiple engines | 131

Chapter 14. Reference | 135
Accessing online publications | 135
Dynamic Workload Console global settings | 135
Users and groups | 139
Type of communication based on SSL communication options | 140
Status description and mapping for distributed jobs | 141
Status description and mapping for z/OS jobs | 143
Status description and mapping for distributed job streams | 145
Status description and mapping for z/OS job streams | 147
Workstation types | 148
Graphical Views in the plan | 152
Workload Designer | 156
Working List | 156
Quick Open | 157
Details view | 158
Graphical View | 160
Run Cycle Preview | 163
Message History | 164
Using recovery options in job definitions | 164
Reports | 166
Regular Expressions | 166
SQL report examples | 171
Event rule | 173
Action properties | 173
Event properties | 174
Activation statuses of the event rules | 175
Schemas for generic events | 175

Notices | 177
Trademarks | 178

Index | 181
Figures

1. Single-domain network ... 21
2. Multiple-domain network .. 22
3. Example of a condition dependency definition 34
4. Example of a condition dependency at run time 34
5. Auto-recovery job stream with step level dependency 35
6. Example of recovery job with condition dependencies 36
7. Cross dependencies .. 37
8. Critical path .. 49
About this publication

IBM® Tivoli® Workload Scheduler simplifies systems management across distributed environments by integrating systems management functions. Tivoli Workload Scheduler plans, automates, and controls the processing of your enterprise's entire production workload. The Tivoli Workload Scheduler Dynamic Workload Console User's Guide provides detailed information about how to configure and use the Dynamic Workload Console to manage your Tivoli Workload Scheduler environment.

What is new in this release

Information about new functions and latest changes.

For information about the new or changed functions in this release, see Tivoli Workload Automation Overview.

For information about the APARs that this release addresses, see the Tivoli Workload Scheduler [http://www.ibm.com/support/docview.wss?rs=672&uid=swg24027501].

Who should read this publication

This publication is intended for the following audience:

• Tivoli Workload Scheduler operators
• Tivoli Workload Scheduler administrators

Publications

Full details of Tivoli Workload Automation publications can be found in Tivoli Workload Automation: Publications. This document also contains information about the conventions used in the publications.

A glossary of terms used in the product can be found in Tivoli Workload Automation: Glossary.

Both of these are in the Information Center as separate publications.

Accessibility

Accessibility features help users with physical disabilities, such as restricted mobility or limited vision, to use software products successfully. The major accessibility features in this product enable users to do the following actions:

• Use assistive technologies, such as screen-reader software and digital speech synthesizer, to hear what is displayed on the screen. Consult the product documentation of the assistive technology for details on using those technologies with this product.
• Operate specific or equivalent features using only the keyboard.
• Magnify what is displayed on the screen.
In addition, the product documentation was modified to include features to aid accessibility:

- All documentation is available in both HTML and convertible PDF formats to give the maximum opportunity for users to apply screen-reader software.
- All images in the documentation are provided with alternative text so that users with vision impairments can understand the contents of the images.

Navigating the interface using the keyboard

Standard shortcut and accelerator keys are used by the product and are documented by the operating system. Refer to the documentation provided by your operating system for more information.

The Event Rule Editor panel is the only one that does not allow keyboard-only operations and CSS cannot be disabled. However, as an alternative, you can perform all the operations available in this panel by launching the `composer` command from the command line interface.

Magnifying what is displayed on the screen

You can enlarge information on the product windows using facilities provided by the operating systems on which the product is run. For example, in a Microsoft Windows environment, you can lower the resolution of the screen to enlarge the font sizes of the text on the screen. Refer to the documentation provided by your operating system for more information.

Tivoli technical training

Technical training information.

For Tivoli technical training information, refer to the following IBM Tivoli Education website:

Support information

Contacting support.

If you have a problem with your IBM software, you want to resolve it quickly. IBM provides the following ways for you to obtain the support you need:

- Searching knowledge bases: You can search across a large collection of known problems and workarounds, Technotes, and other information.
- Obtaining fixes: You can locate the latest fixes that are already available for your product.
- Contacting IBM Software Support: If you still cannot solve your problem, and you need to work with someone from IBM, you can use a variety of ways to contact IBM Software Support.

For more information about these three ways of resolving problems, see the appendix on support information in *Tivoli Workload Scheduler Troubleshooting*.
Conventions used in this publication

Conventions.

This publication uses several conventions for special terms and actions, and operating system-dependent variables and paths.

Typeface conventions

Information about typeface conventions.

This publication uses the following typeface conventions:

Bold

- Lowercase commands and mixed case commands that are otherwise difficult to distinguish from surrounding text
- Interface controls (check boxes, push buttons, radio buttons, spin buttons, fields, folders, icons, list boxes, items inside list boxes, multicolumn lists, containers, menu choices, menu names, tabs, property sheets), labels (such as Tip, and Operating system considerations)
- Keywords and parameters in text

Italic

- Words defined in text
- Emphasis of words (words as words)
- New terms in text (except in a definition list)
- Variables and values you must provide

Monospace

- Examples and code examples
- File names, programming keywords, and other elements that are difficult to distinguish from surrounding text
- Message text and prompts addressed to the user
- Text that the user must type
- Values for arguments or command options

Operating system-dependent variables and paths

Information about operating system-dependent variables and paths.

This publication uses the UNIX convention for specifying environment variables and for directory notation, except where the context or the example path is specifically Windows.

When using the Windows command line, replace $variable with %variable% for environment variables and replace each forward slash (/) with a backslash (\) in directory paths. The names of environment variables are not always the same in Windows and UNIX environments. For example, %TEMP% in Windows is equivalent to $tmp in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX conventions.
Chapter 1. Overview

For an interactive overview of the product and its features, you can view several demo scenarios, available (in English only) in the Tivoli Workload Scheduler Wiki Media Gallery.

Note: To optimize the viewing of the demos, use Internet Explorer as your preferred browser and ensure that you have the latest version of Adobe Flash Player installed.

The Dynamic Workload Console interface consists of the following sections:

1. **Portfolio**
 - It is located on the left, has a tree structure, and contains all the entries to launch Dynamic Workload Console functions. Use the portfolio to navigate to the panels.

2. **Portlet area**
 - It is your working area. It displays the panels that you selected in the portfolio. From each panel you can access the online help by clicking the ? symbol at the top right corner of the portlet.

3. **Task bar**
 - It contains a tab for each active function that you called from the portfolio. Each time you click an entry of the portfolio, the corresponding panel is opened in the portlet area. When you open a new panel, the preceding panels are minimized to tabs on the task bar and you can switch between the panels by clicking on these tabs. The browser task bar contains up to five open tabs. If you open more than five tabs, a new browser window opens and you can move from one page to another by opening the Select Action menu. Optionally, you can define a list of panels that are automatically opened as startup pages in the task bar each time you log in.
to the console. To add a panel to your startup pages, open the panel and click Select Action > Add To My Startup Pages at the top-right corner of the panel.

The portfolio main entries that you work with are:

Quick Start
Click this entry to run some basic operations. From this view you can create and manage queries of objects on the plan and you can also create and modify connections to Tivoli Workload Scheduler engines.

All Configured Tasks
Click this entry to view a list of all your saved tasks to monitor objects in the plan. A set of predefined tasks is provided to help you start using the application for the first time. These tasks cover the most common queries you might want to launch to find information about scheduling objects running on distributed, z/OS, or both platforms.

All Configured Reports
Click this entry to view a list of all your saved reports. From this view you can create new reports and customize existing ones.

Dashboard
Click this entry to open a graphical view that shows the progress of the current plan on the engines for which you configured a connection and specified its inclusion in the dashboard.

Workload
You can manage your workload to design objects in the database, to handle plans, to submit jobs or job streams to monitor objects in the plan, and to generate reports.

Design
Expand this entry to create, list, and edit objects and object definitions in the database. From this entry, for example, you can create and modify jobs, job streams, and event rules.

Forecast
Expand this entry to work with plans, creating and viewing trial and forecast plans and listing archived plans.

Submit
Expand this entry to submit jobs and job streams on request.

Monitor
Expand this entry to create, list, and edit tasks to monitor objects in the plan. From this entry, for example, you can create and modify queries for jobs or job streams in the plan. You can also manage queries about workload dependencies and events.

Scheduling Environment
You can design and control the topology of your scheduling environment, that is, your workstations and domains.

Design
Expand this entry to create, list, and edit workstations and domains in your environment.
Monitor
Expand this entry to create, list, and edit tasks to monitor workstations and domains in the plan.

Reporting
You can define and run reports to gather historical data or details about your plans. Expand this entry also to generate and run customized SQL reports.

Settings
You can configure and modify general settings about the Dynamic Workload Console.

Manage Engines
Click this entry to create, list, and edit your connections to Tivoli Workload Scheduler engines.

Manage User Preferences
Click this entry to configure and modify settings about table layout, time zone, and dashboard layout.

Manage Settings
Click this entry to import and export user preferences, configured tasks, and engine connections and to configure your settings repository.

Related tasks:
“Accessing online publications” on page 135
Accessing the Tivoli products online publications in the Tivoli software information center website.

Related information:
Chapter 13, “Scenarios,” on page 127

Naming conventions for scheduling objects

The Dynamic Workload Console allows you to manage and control Tivoli Workload Scheduler production for z/OS and distributed environments.

There are some differences in the processing and behavior between the Tivoli Workload Scheduler products for z/OS and distributed environments. When there are differences, the descriptions and related actions of scheduling objects are explained for both environments.

Table 1 lists the objects and object names typical of the Tivoli Workload Scheduler environment where they are defined.

Table 1. Naming convention for scheduling objects

<table>
<thead>
<tr>
<th>Object description</th>
<th>Object name in a distributed environment</th>
<th>Object name in a z/OS environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>An ordered list of activities in plan for the current production period.</td>
<td>Production Plan</td>
<td>Current Plan</td>
</tr>
</tbody>
</table>
Table 1. Naming convention for scheduling objects (continued)

<table>
<thead>
<tr>
<th>Object description</th>
<th>Object name in a distributed environment</th>
<th>Object name in a z/OS environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A unit of work that is part of an application or a job stream and that is processed at a workstation.</td>
<td>Job</td>
<td>Operation. An operation can contain a list of steps to run.</td>
</tr>
<tr>
<td>A list of jobs that run as a unit to accomplish a task (such as calculating payroll), together with times, priorities, and other dependencies that determine the order in which the jobs run.</td>
<td>Job stream</td>
<td>Application</td>
</tr>
<tr>
<td>A run of a job stream or an application scheduled in the plan.</td>
<td>Instance</td>
<td>Occurrence</td>
</tr>
<tr>
<td>A type of application description related to run cycle, calendar information, or job descriptions common to all applications defined as members of the group.</td>
<td>N/A</td>
<td>Application Group</td>
</tr>
<tr>
<td>A physical or logical asset where job processing occurs.</td>
<td>Workstation. It is qualified according to its position in the topology of the scheduling network and on its ability to interact with the information contained in the current plan.</td>
<td>Workstation. It is qualified according to the type of job processing it does in computer workstation, general workstation, print workstation.</td>
</tr>
<tr>
<td>Tivoli Workload Scheduler database</td>
<td>A customized set of tables in a relational database containing definitions for all scheduling objects, network topology, variables, and job processing statistics.</td>
<td>A collection of six sets of data, acting as a flat database, that contain information about calendars, periods, workstation descriptions, JCL variable tables, application descriptions, and operator instructions.</td>
</tr>
</tbody>
</table>

Related concepts:
“Workstation” on page 17
“Job” on page 24
“Job stream” on page 24
“Production process” on page 40

Convention for specific platform information

Icons to identify the information related only to specific platforms.

This publication uses the following icons to identify the information related only to specific platforms:
The information applies only to Tivoli Workload Scheduler running in a distributed environment.

The information applies only to Tivoli Workload Scheduler running in a z/OS environment.

All information that is not marked by an icon applies to all the supported environments.
Chapter 2. Installing and configuring the Dynamic Workload Console

To install the Dynamic Workload Console see Tivoli Workload Scheduler Planning and Installation or Tivoli Workload Scheduler for z/OS Planning and Installation.

To configure the Dynamic Workload Console, see Tivoli Workload Scheduler Administration to find information about:

- Launching in context with the Dynamic Workload Console
- Configuring access to the Dynamic Workload Console
- Configuring Dynamic Workload Console to use Single Sign-On
- Configuring the use of Lightweight Third-Party Authentication
- Configuring Dynamic Workload Console to use SSL
- Customizing your global settings
- Configuring Dynamic Workload Console to view reports
Chapter 3. Getting Started

Information about the Dynamic Workload Console installation and configuration

To install the Dynamic Workload Console see Tivoli Workload Scheduler Planning and Installation or Tivoli Workload Scheduler for z/OS Planning and Installation.

To configure the Dynamic Workload Console, see Tivoli Workload Scheduler Administration to find information about:
- Launching in context with the Dynamic Workload Console
- Configuring access to the Dynamic Workload Console
- Configuring Dynamic Workload Console to use Single Sign-On
- Configuring the use of Lightweight Third-Party Authentication
- Configuring Dynamic Workload Console to use SSL
- Customizing your global settings
- Configuring Dynamic Workload Console to view reports

You can access the Dynamic Workload Console from any computer in your environment using a web browser through either the secure HTTPS or HTTP protocol.

When you log in to the Tivoli Integrated Portal, you see a portfolio on the left containing an entry for each Tivoli product installed and integrated with it, for example, the Dynamic Workload Console. Expand the Tivoli Workload Scheduler entry in the portfolio to start to work with the console.

To access the Dynamic Workload Console online embedded documentation, click Help at the top right of the panel and select IBM Tivoli Workload Scheduler in the Contents section on the left of the panel that opens.

The first and main actions that you perform when you connect to the Dynamic Workload Console are:

Creating a connection to a Tivoli Workload Scheduler engine
You specify the details (such as IP address, user name, and password) to access a Tivoli Workload Scheduler engine, and, optionally, a database to operate with objects defined in plans or stored in the database.

From the Dynamic Workload Console, you can access the current plan, a trial plan, a forecast plan, or an archived plan for the distributed environment or the current plan for the z/OS environment.

You might want to access the database to perform actions against objects stored in it or to generate reports showing historical or statistical data.

In addition, working both on the database and on plans, you can create and run event rules to define and trigger actions that you want to run in response to events occurring on Tivoli Workload Scheduler nodes.

Defining a scheduling environment
You define your Tivoli Workload Scheduler network. You create workstation definitions in the database to represent the physical machines or computer systems on which your workload is scheduled to run. A Tivoli Workload Scheduler network is made up of the workstations where job
and job stream processing occurs. When you design your network, you assign roles to these workstations to suit your specific business requirements. You can design your network with multiple domains, to divide control of a large network into smaller manageable groups. A typical Tivoli Workload Scheduler network consists of a workstation acting as the master domain manager and at least one domain.

Defining scheduling objects in the database
You define your workload, which consists of jobs that are concatenated in job streams. Then, you specify the calendars and run cycles according to which job streams must run. You can also define dependencies to condition the workload processing. All these definitions can be done within the Workload Designer.

Creating tasks to manage Tivoli Workload Scheduler objects in the plan
You specify some filtering criteria to query a list of scheduling objects whose attributes satisfy the criteria you specified. Starting from this list, you can navigate and modify the content of the plan, switching between objects, opening more lists, and accessing other plans or other Tivoli Workload Scheduler environments.

Related concepts:
“Designing your Scheduling Environment” on page 61
“Monitoring your Scheduling Environment” on page 89
“Monitoring your Workload” on page 92

Related tasks:
“Creating and managing engine connections”
“Customizing your global settings” on page 11
How to customize your global settings
“Enabling and disabling news notification beacon” on page 57
How to enable and disable news notification
“Designing your Workload” on page 64

Creating and managing engine connections

To create, modify, or delete an engine connection, perform the following steps.

Note: You can modify or delete only engine connections that you created.

1. From the Dynamic Workload Console portfolio either:
 a. Click Quick Start.
 b. Click Manage Engines.... This button is enabled only if you are the owner of at least one connection.

 or:
 a. Click Settings > Manage Engines.

2. From the displayed panel you can create, edit, delete, or share an engine connection, and test the connection to the remote server where Tivoli Workload Scheduler is installed. You can order the list of engine connections displayed in this panel by using sorting criteria that you select with the buttons at the top left corner of the table.
Setting user preferences

To set the preferences to use in the output of tasks and reports, perform the following steps.

Note: The preferences that you set in this panel are not used in the output of plan reports. Those reports follow the preferences set on the workstation where the query is run.

1. Click Settings > Manage User Preferences. The Manage User Preferences panel containing the current settings is displayed.
2. To modify the current settings click Edit. In this panel you can specify the:
 - Number of rows that are displayed in the table of results of all your tasks as the default setting
 - Options to display dates, times, and time zones
 - Layout and the refresh rate for the dashboard
3. Click Save changes to save the changes you made or Discard changes to exit the page without saving.

In the Manage User Preferences panel, you can also enable again the news notification. For details, see “Enabling and disabling news notification beacon” on page 57.

Customizing your global settings

How to customize your global settings

Some general settings of Dynamic Workload Console can be included in a customizable file named TdwcGlobalSettings.xml.

When you modify this file, stop and restart the Dynamic Workload Console to make the changes effective in your environment.

Users with Administrator privileges can use a configuration file, named TdwcGlobalSettings.xml, to add and modify some customizable information.

A template of this file is located on the installation DVD under WEBUI/platform_name/utils. You can modify it, replacing default values with customized ones and enabling commented sections. After customizing, you must copy it into the /eWAS/profiles/TIPProfile/registry directory.

This file is accessed at each login, and all configurations specified in the file are immediately applied, except for precannedTaskCreation property. This property is read only when a user logs in for the first time and then is used whenever this user logs in again.

You can use any text or XML editor to edit this file, but ensure that you save it is as a valid XML file.

The file is organized into multiple sections that group similar properties.
Event management configuration

You can use the event management feature both from the Tivoli Workload Scheduler command line interface and from the Dynamic Workload Console.

You need the following authorizations to perform event management operations from the Dynamic Workload Console:

On Tivoli Integrated Portal
The user ID you use to log in to Dynamic Workload Console must be defined as user on Tivoli Integrated Portal and must be defined within one of the following groups:

<table>
<thead>
<tr>
<th>Groups</th>
<th>Event management operations you can perform</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWSWEBUIOperator</td>
<td>List and manage Event Rule Instances, Log Messages, and Triggered Actions.</td>
</tr>
<tr>
<td>TWSWEBUIDeveloper</td>
<td>Create, list, and manage Event Rules.</td>
</tr>
</tbody>
</table>

Note: Dynamic Workload Console users belonging to the TWSWEBUIAdministrator group can perform all operations available in the web-based user interface.

On Tivoli Workload Scheduler
The Tivoli Workload Scheduler user credentials defined in the engine connection must belong to a Tivoli Workload Scheduler user authorized to perform event management operations in the Tivoli Workload Scheduler security file.

You need the create permission set for the rule object. You also need the use permission on the objects (job, job stream, and so on) that you want to use as events. For more information about how to define and manage user authorizations in the security file, see Tivoli Workload Scheduler Administration.

Related concepts:
“Event management” on page 44
Chapter 4. Managing settings repository

How to configure, change, and share your settings repository.

User settings such as user preferences, saved tasks, and engine connections are stored in the settings repository, which by default is a local file. However, you can decide to have your settings repository on a database for all Dynamic Workload Console operations that involve user settings.

If you use a database as your repository, all your existing user settings relating to current Dynamic Workload Console are saved in the database, and all the operations involving user settings are run using the settings in this repository.

Managing user settings

How to export the user settings and import them into a new Dynamic Workload Console

To perform this task you need to have the TWSWEBUIAdministrator role.

User settings such as user preferences, saved tasks, and engine connections are stored in the settings repository, which by default is a local file. However, you can decide to have your settings repository on a database for all Dynamic Workload Console operations that involve user settings.

You can export the content of your settings repository as an XML file, optionally modify it, and then import it into the same or another instance of Dynamic Workload Console.

This is particularly useful for migration purposes or if you want to modify the same settings in multiple Dynamic Workload Console instances.

To export the settings and import them into a new Dynamic Workload Console, perform the following procedure.

Note: Import and export operations are performed from and to the currently-selected repository.

1. Click **Settings > Manage Settings**.
2. In the Manage Settings panel, click **Export Settings** and save the XML file in a directory of your choice.
3. Optionally, edit the file using an XML editor and save it.
4. Log in to the Dynamic Workload Console where you want to import the settings and open the Manage Settings panel.
5. Click **Import Settings** and browse to the XML file containing the settings you want to import. During the import operation, you choose to update or to overwrite the existing settings with the new settings.
6. If you are using a local file as repository, restart the Dynamic Workload Console to make the change effective or click **Undo** before restarting it to restore previous settings. This is not required if you are using a database as your repository, but in this case you must ensure that during the import operation there are no other users connected to the Dynamic Workload Console while the repository content is being updated.
Changing settings repository

Changing the settings repository.

- To perform this task you need to have the TWSWEBUIAdministrator role.
- You need to have access to an installed DB2 where a database has already been created. If you need information about how to create a DB2 database, see IBM DB2 Database for Linux, UNIX, and Windows Information Center.
- You must have Administrator rights on that database.

User settings such as user preferences, saved tasks, and engine connections are stored in the settings repository, which by default is a local file. However, you can decide to have your settings repository on a database for all Dynamic Workload Console operations that involve user settings.

This can be useful, for example, for scalability purposes or to have multiple Dynamic Workload Console instances sharing the same user settings.

To use a database for your settings repository, you must configure the database settings, as described in the following procedure:

1. Run the wastool:
 a. From the Tivoli Workload Scheduler installation path, open the $install_dir\wastools directory and run $installTDWCDatasource wastool to create the data source.
 b. Specify the connection details of the DB2 database in TDWCDatasource.properties file, located in $install_dir\wastools directory.

2. Restart the Dynamic Workload Console.

3. Export your settings:
 a. From the Dynamic Workload Console portfolio, click Settings > Manage Settings.
 b. Optionally, in the Manage Settings panel, click Export Settings and save the XML file in a directory of your choice. In this way you save your user settings in a local file to load them on the database, when it becomes your settings repository.

4. Switch repository to DB2.
 a. In the same panel, click Configure Settings Repository > Use database as repository to specify that settings must be saved in the database instead of in a local file.
 b. In the Database Settings section, specify the credentials required to connect to the database.

 Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

 c. Optionally, you can test the connection.
 d. Save the new configuration.

5. Import your settings or initialize the database:
 a. Optionally, click Import Settings to import your user settings from the XML file to the database repository. During the import operation, keep the default choice, which overwrites the existing settings with the new settings. Performing this step, the database is automatically initialized.
b. If you have not performed previous step, click **Create Database** to initialize the database.

As a result, all your existing user settings relating to current Dynamic Workload Console are saved in the database, and all the operations involving user settings are run using the settings in this repository.

Sharing a settings repository

How to share a settings repository on multiple Dynamic Workload Console instances.

To perform this task you need to have the TWSWEBUIAdministrator role.

User settings such as user preferences, saved tasks, and engine connections are stored in the settings repository, which by default is a local file. However, you can decide to have your settings repository on a database for all Dynamic Workload Console operations that involve user settings.

This can be useful, for example, for scalability purposes or to have multiple Dynamic Workload Console instances sharing the same user settings.

To use a database for your settings repository, you must configure the database settings, as described in the following procedure:

1. Ensure that all the Dynamic Workload Console instances that will share the same settings repository, also use the same user registry.
2. Ensure that one Dynamic Workload Console settings repository has been switched to database, as described in [Switch repository to DB2](#).
3. Specify this repository as the default one for all the other Dynamic Workload Console instances that must share it:
 a. From the Tivoli Workload Scheduler installation path, open the `install_dir\wastools` directory and run `installTDWCDatasource wastool` to create the data source, specifying the same database settings as in the first Dynamic Workload Console instance.
 b. Restart the Dynamic Workload Console.
 c. From the Dynamic Workload Console portfolio, click **Settings > Manage Settings**.
 d. In the same panel, click **Configure Settings Repository > Use database as repository** to specify that settings must be saved in the database instead of in a local file.
 e. In the **Database Settings** section, specify the credentials required to connect to the database.
 f. Optionally, you can test the connection.
 g. Save the new configuration.

As a result, all user settings are saved in the database, shared by all the Dynamic Workload Console instances, and all the operations involving user settings are run using the settings in this repository.
Changing user of DB repository

How to change the Dynamic Workload Console user that updates the settings repository on DB2.

To perform this task you need to have the TWSWEBUIAdministrator role.

You must have switched the Dynamic Workload Console settings repository from a local file to a database repository, as described in “Changing user of DB repository.”

Only users with database administrator rights are authorized to initialize the Dynamic Workload Console related tables on the database.

If you want the Dynamic Workload Console to access the database repository with a user without database administrator privileges you must follow these steps:

1. Create a new DB2 user and grant this user with SELECT, INSERT, UPDATE, DELETE rights on all the following tables, belonging to TDWC schema:
 - TDWC_EngineConnection
 - TDWC_QueryTask
 - TDWC_ReportTask
 - TDWC_MEQueryTask
 - TDWC_Credential
 - TDWC_ConfigurationProperty
 - TDWC_Preferenceable

2. Change Dynamic Workload Console user accessing DB2
 a. Return to the Dynamic Workload Console portfolio, click Settings > Manage Settings
 b. In the Database Settings section, specify the credentials of the newly created user that must to connect to the database.

 Note: As a result of this user switch, the Dynamic Workload Console without database administrator privileges will no longer be authorized to the following actions in the Manage Settings panel:
 - Initialize database
 - Import settings with Cancel and recreate option.
Chapter 5. Tivoli Workload Scheduler Concepts

Conceptual information about Tivoli Workload Scheduler

This section provides conceptual information about Tivoli Workload Scheduler and the Dynamic Workload Console.

Scheduling environment

This section contains the main concepts that help you to understand what a scheduling environment is and what it comprises.

Workstation

Note: This section provides information relating to the use of workstations for scheduling jobs and job streams. If, instead, you want to learn about workstations because you are planning your network, see Tivoli Workload Scheduler Planning and Installation.

The computer system where you run your jobs and job streams is called a workstation. Workstations can be grouped logically into workstation classes and organized hierarchically into domains, managed by domain managers.

When you create a workstation definition for a system in your network you define a set of characteristics that uniquely identify the system and that control how jobs run on it. For example, the IP address of the workstation, if it is behind a firewall, if communications with it must be secure, what time zone it is in, and the identity of its domain manager.

Workstations in the Tivoli Workload Scheduler scheduling network perform job and job stream processing, but can also have other roles. When your network is designed, these roles are assigned to these workstations to suit the specific needs of your business. The following types of workstation are available:

- **Distributed Master domain manager**
 A workstation acting as the management hub for the network. It manages all your scheduling objects. The master domain manager workstation must be installed with this role.

- **Distributed Backup master domain manager**
 A workstation that can act as a backup for the master domain manager when problems occur. It is a master domain manager, waiting to be activated. Its use is optional. This workstation must be installed as a master domain manager workstation. Learn more about switching to a backup master domain manager in Tivoli Workload Scheduler Administration.

- **Distributed Domain manager**
 A workstation that controls a domain and that shares management responsibilities for part of the Tivoli Workload Scheduler network. It is installed as an agent, and then configured as a domain manager workstation when you define the workstation in the database.

- **Dynamic domain manager**
 An installed component in a distributed Tivoli Workload Scheduler network that is the management hub in a domain. All communication to
and from the dynamic agents in the domain is routed through the dynamic domain manager. When you install a dynamic domain manager the workstation types listed below are created in the database:

fta
Fault-tolerant agent component manually configured as domain manager

broker
Broker server component

agent
Dynamic agent component

Backup dynamic domain manager
A workstation which can act as a backup for the dynamic domain manager, when problems occur. It is effectively a dynamic domain manager, waiting to be activated. Its use is optional. Learn more about switching to a backup dynamic domain manager in the *Tivoli Workload Scheduler Administration Guide*. When you install a dynamic domain manager the workstation types listed below are created in the database:

fta
Fault-tolerant agent component.

broker
Broker server component

agent
Dynamic agent component

Fault-tolerant agent
A workstation that receives and runs jobs. If there are communication problems with its domain manager, it can run jobs locally. It is installed as an agent, and then configured as a fault-tolerant agent workstation when you define the workstation in the database. This workstation is recorded in the Tivoli Workload Scheduler database as **fta**.

Standard agent
A workstation that receives and runs jobs only under the control of its domain manager. It is installed as an agent, and then configured as a standard agent workstation when you define the workstation in the database.

Extended agent
A workstation that has a host and an access method. The host is any other workstation, except another extended agent. The access method is an IBM-supplied or user-supplied script or program that is run by the host whenever the extended agent is referenced in the production plan. Extended agents are used to extend the job scheduling functions of Tivoli Workload Scheduler to other systems and applications. For example, to launch a job on an extended agent, the host runs the access method, passing it job details as command line options. The access method communicates with the external system or application to launch the job and return the status of the job.

Also it is a workstation where a Tivoli Workload Scheduler for Applications access method has been installed as a bridge so that you can schedule jobs in the SAP R/3, Oracle E-Business Suite, PeopleSoft, z/OS, or custom applications. It must be physically hosted by a fault-tolerant agent (up to 255 extended agents per fault-tolerant agent) and then defined as an extended agent in the database. For more information, see [Tivoli Workload Scheduler User’s Guide and Reference](#) and [Tivoli Workload Scheduler for Applications User’s Guide](#).
Workload broker agent
A workstation that manages the life cycle of Tivoli Workload Scheduler Workload Broker jobs in Dynamic Workload Broker. It is installed and configured as a dynamic workload broker workstation in the database.

TWS for z/OS agent
A distributed workstation that runs jobs scheduled from Tivoli Workload Scheduler for z/OS. Like fault-tolerant workstations, it is installed in a Tivoli Workload Scheduler distributed domain. Unlike fault-tolerant workstations, it does not:
- Have fault tolerance
- Require an end-to-end server
- Need topology definitions

Communication with the agents is handled directly by the controller. For more information about the end-to-end scheduling with fault tolerance capabilities, see Tivoli Workload Scheduler for z/OS Scheduling End-to-end with z-centric Capabilities.

Virtual workstation
A workstation that is created with the automatic reporting attribute and the virtual option, defining a list of destinations, for the workload submission, that are used to spread the workload across trackers. When the scheduler processes the jobs submitted to a virtual workstation, it distributes the workload according to a sequenced turn criteria, based on a round-robin algorithm. To submit the job, at least one of the destinations in the list must be available.

You can associate open intervals, parallel servers, and fixed resources to each destination belonging to the defined pool. The association is disabled at virtual workstation level, because the jobs that you submit on a virtual workstation are actually run on a single destination. When you associate parallel servers with a virtual workstation destination, you can specify a value up to 65535. The alternative workstation definition is not applicable either at workstation level or at single destination level.

Remote engine
A workstation that represents locally a remote Tivoli Workload Scheduler engine. It is a workstation used to run only shadow jobs. A shadow job is a job that runs locally and is used to map another job running on a remote engine. This relationship between the two jobs is called a cross dependency.

You define a remote engine workstation if you want to federate your environment with another Tivoli Workload Scheduler environment, either distributed or z/OS, to add and monitor dependencies on jobs running in the other scheduling environment. This type of workstation uses a connection based on HTTP protocol to allow the two environments to communicate.

Dynamic agent
A workstation that manages a wide variety of job types, for example, specific database or FTP jobs, in addition to existing job types. This workstation is automatically created and registered when you install the dynamic agent. Because the installation and registration processes are performed automatically, when you view the agent in the Tivoli Dynamic Workload Console, it results as updated by the Resource Advisor Agent. You can group agents in pools and dynamic pools.

Pool
A workstation grouping a set of dynamic agents with similar hardware or software characteristics to submit jobs to. Tivoli Workload Scheduler
balances the jobs among the dynamic agents within the pool and automatically reassigns jobs to available dynamic agents if an agent is no longer available. To create a pool of dynamic agents in your Tivoli Workload Scheduler environment, define a workstation of type pool hosted by the workload broker workstation, then select the dynamic agents you want to add to the pool. A computer system group is automatically defined in the workload broker database together with its associated dynamic agents.

Dynamic pool
A workstation grouping a set of dynamic agents that is dynamically defined based on the resource requirements you specify. For example, if you require a workstation with low CPU usage and the Windows operating system installed to run your job, you specify these requirements using the Tivoli Dynamic Workload Console or the composer command. When you save the set of requirements, a new workstation is automatically created in the Tivoli Workload Scheduler database. This workstation is hosted by the workload broker workstation. This workstation maps all the dynamic agents in your environment that meet the requirements you specified. The resulting pool is dynamically updated whenever a new suitable agent becomes available. Jobs scheduled on this workstation automatically inherit the requirements defined for the workstation.

Related tasks:
- “Creating distributed workstations” on page 61
- “Creating z/OS workstations” on page 62
- “Creating z/OS virtual workstations” on page 62
- “Creating a task to Monitor Workstations” on page 89
- “Creating Dynamic Workload Broker objects” on page 76

Related reference:
- “Workstation types” on page 148

Domain

The domain.

All the workstations in a distributed Tivoli Workload Scheduler network are organized into one or more domains, each of which consists of one or more agents and a domain manager acting as the management hub. Most communication to and from the agents in the domain is routed through the domain manager. If the agent has the “behind firewall” designation, all of it is.

All the networks have a master domain where the domain manager is the master domain manager. It maintains the database of all the scheduling objects in the domain and the central configuration files. The master domain manager generates the plan and creates and distributes the Symphony file. In addition, logs and reports for the network are maintained on the master domain manager.

You can organize all the agents in your network into a single domain or into multiple domains.

Single-domain network
A single domain network consists of a master domain manager and any number of agents. Figure 1 on page 21 shows an example of a
single-domain network. A single-domain network is well suited to companies that have few locations and business functions. All the communication in the network is routed through the master domain manager. With a single location, you are concerned only with the reliability of your local network and the amount of traffic it can handle.

Multiple-domain network

Multiple-domain networks are especially suited to companies that span multiple locations, departments, or business functions. A multiple-domain network consists of a master domain manager, any number of lower tier domain managers, and any number of agents in each domain. Agents communicate only with their domain managers, and domain managers communicate with their parent domain managers. The hierarchy of domains can have any number of levels.
In Figure 2, the master domain manager is located in Atlanta. The master domain manager contains the database files used to document the scheduling objects, and distributes the Symphony file to its agents and to the domain managers in Denver and Los Angeles. The Denver and Los Angeles domain managers then distribute the Symphony file to their agents and subordinate domain managers in New York, Aurora, and Burbank. The master domain manager in Atlanta is responsible for broadcasting inter-domain information throughout the network.

All the communication to and from the New York domain manager is routed through its parent domain manager in Denver. If there are schedules or jobs in the New York domain that are dependent on schedules or jobs in the Aurora domain, those dependencies are resolved.
by the Denver domain manager. Most inter-agent dependencies are handled locally by the lower tier domain managers, greatly reducing traffic on the network.

You can change the domain infrastructure dynamically as you develop your network. You move a workstation to a different domain, by changing the domain name in its database definition. The change takes effect when the master generates/extends the plan.

Tip: You cannot schedule jobs or job streams to run on all workstations in a domain by identifying the domain in the job or job stream definition. To achieve this, you must create a *workstation class* that contains all the workstations in the domain.

Related tasks:
- “Creating a domain” on page 63
- “Creating distributed workstations” on page 61
- “Creating a task to Monitor Domains” on page 91

Scheduling objects

The set of scheduling objects described in the current plan is a subset of all the scheduling objects stored in the database. The scheduling objects accessible from the Dynamic Workload Console depend on your Tivoli Workload Scheduler environment.

Distributed For distributed environments, the scheduling objects reported in the production plan are:

- All the active workstations defined in the database. These are the workstations whose definition does not have the *ignore* flag set to on.
- All the domains.
- All the job streams scheduled to start in the production period and all jobs belonging to these job streams.
- All the resources, files, parameters, variables, and prompts defined in the job streams.

z/OS For z/OS environments, the scheduling objects reported in the current plan are:

- All the active workstations defined in the database.
- All the job streams scheduled to start in the production period and all jobs belonging to these job streams.
- All the resources that these jobs and job streams depend on.

To differentiate between jobs and job streams defined in the database and jobs and job streams scheduled to run within the production period, according to the Tivoli Workload Scheduler standard naming convention, each occurrence of a job or a job stream scheduled to run in the current plan is called an *instance*. A current plan can contain more than one instance of the same job or job stream.
Related concepts:
“Designing your Scheduling Environment” on page 61
“Monitoring your Scheduling Environment” on page 89
“Monitoring your Workload” on page 92

Related tasks:
“Creating and managing engine connections” on page 10
“Customizing your global settings” on page 11
How to customize your global settings
“Enabling and disabling news notification beacon” on page 57
How to enable and disable news notification
“Designing your Workload” on page 64

Job

A job is a unit of work that specifies an action, such as a weekly data backup, to be performed on specific workstations in the Tivoli Workload Scheduler network.

Distributed
In a Tivoli Workload Scheduler distributed environment, jobs can be defined either independently from job streams or within a job stream definition.

z/OS
In a Tivoli Workload Scheduler for z/OS environment, jobs can be defined only within a job stream and are called operations. You can have started-task operations, which are operations run on a computer workstation that are used to start and stop started tasks.

Regardless of whether the Tivoli Workload Scheduler engine is distributed or z/OS based, you can define locally a shadow job to map a remote job instance running on a different Tivoli Workload Scheduler engine.

Related tasks:
“Creating a task to Monitor Jobs” on page 94
“Creating a task to Monitor Critical Jobs” on page 95
“Creating a task to Monitor Jobs on Multiple Engines” on page 98
“Adding a job to a job stream” on page 68
“Listing jobs and job streams” on page 83
“Creating SAP jobs” on page 73
“Creating job types with advanced options” on page 73

Related reference:
“Status description and mapping for distributed jobs” on page 141
“Status description and mapping for z/OS jobs” on page 143

Job stream

A job stream is a sequence of jobs to be run, together with times, priorities, and other dependencies that determine the order of processing. Each job stream is assigned a time to run, represented by run cycle with type calendar, set of dates, or repetition rates.

z/OS
In a Tivoli Workload Scheduler for z/OS environment, job streams are called applications.
Period

Periods are either cyclic, such as a week or 28-day period, or noncyclic, such as an academic semester.

Cyclic periods
- Defined by their origin date and their length: a cyclic period starts on a specific date and has a specified number of days. There are two kinds of cyclic periods:
 - **work-days-only cyclic periods**
 - Only working days are considered.
 - **all-days cyclic periods**
 - All the days are considered.

Noncyclic periods
- Defined by the origin date of each interval and can optionally have an end date for each interval.

Periods can be combined with offsets to create run cycles and define when a job stream runs. For example, an offset of 1 in a weekly period specifies Monday. An offset of 10 in a monthly period specifies the tenth day of each month.

The long-term planning process uses the calendar information, the period definitions, and the run cycle, to determine the days on which an application is scheduled to run.

If you run workload on fixed days of the week, month, or year, and take one of the standard Tivoli Workload Scheduler for z/OS actions when this day falls on a non-working day, you do not need to create your own periods. You can describe most cases with rules such as:
- First Sunday in June
- First working day in the week
- Last Friday in the year
- Last non-working day in the month

If you use rules with their built-in calendar cycles (days of the week, months of the year, and so on), you probably need to create only special noncyclic periods, such as university semesters and tax years. The following sections show some examples of types of periods.
Cyclic period examples

Examples of cyclic periods are a day, a week, and a fortnight, with fixed intervals of 1 day, 7 days, and 14 days, respectively. An academic semester cannot be described as a cyclic period, because spring, summer, and fall semesters have different lengths. The following example shows a lunar calendar month, assumed to be 28 days:

<table>
<thead>
<tr>
<th>Period name</th>
<th>Moon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cyclic based on all days</td>
</tr>
<tr>
<td>Interval</td>
<td>28 days</td>
</tr>
<tr>
<td>Interval origin</td>
<td>7 February 2009 (date of a new moon)</td>
</tr>
</tbody>
</table>

Non-cyclic period examples

Examples of non-cyclic periods are a quarter and a payroll period. You specify the start of each interval of a non-cyclic period with an origin date. This example shows a period for university semesters, with the interval origin and end specified for each semester:

<table>
<thead>
<tr>
<th>Period name</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Non-cyclic</td>
</tr>
<tr>
<td>Interval end</td>
<td>13 December 2009, 16 May 2010, 28 June 2010</td>
</tr>
</tbody>
</table>

Non-cyclic periods have a once-a-year maintenance overhead when you must create the intervals for the coming months. For this reason, carefully consider how flexible your period definitions are, and remove potentially duplicated definitions.

Calendar

A calendar is a list of dates that define when a job stream runs.

Distributed Calendar in a distributed environment

A calendar can also be designated as a non-working days calendar in a job stream. A non-working days calendar is a calendar that is assigned to a job stream to represent the days when the job stream and its jobs do not run. It can also be used to designate Saturdays or Sundays, or both, as workdays. The default non-working days calendar for all job streams is called the holidays calendar.

Z/OS Calendar in a z/OS environment

The calendar specifies normal working days and public holidays. Tivoli Workload Scheduler for z/OS uses the calendar to determine when job streams are scheduled and to calculate dates for JCL tailoring.
You can specify the calendar when you create a job stream. If no calendar is specified for the job stream, Tivoli Workload Scheduler for z/OS uses the calendar in the CALENDAR keyword of the BATCHOPT initialization statement, for batch services such as extending the long-term plan, or the calendar specified under the Tivoli Workload Scheduler for z/OS options, for online services such as testing a rule with GENDAYS.

If no calendar is specified, a calendar with the name DEFAULT is used. If the DEFAULT calendar does not exist, all days are considered as working days. You can have several calendars, but always name your default calendar DEFAULT, and specify the same calendar name on BATCHOPT or in the Tivoli Workload Scheduler for z/OS options. A calendar must contain at least one working day.

Related tasks:
- “Designing your Workload” on page 64
- “Listing workload objects” on page 82

Run cycle
A run cycle specifies the days that a job stream is scheduled to run. Each run cycle is defined for a specific job stream and cannot be used by other job streams. You can specify the following types of run cycle:

- **simple**
 A specific set of user-defined days when a job stream is run.

- **daily**
 A run cycle that specifies that the job stream runs according to a day frequency and type that you set. For example, it might run daily, every three days, or just on working days.

- **weekly**
 A run cycle that specifies the days of the week when a job stream is run. For example, a job stream can be run every Monday, Wednesday, and Friday using a weekly run cycle.

- **monthly**
 A run cycle that specifies that the job stream runs according to a monthly day or date that you set. For example, it might run every 1st and 2nd day of the month, or every 1st Monday and 2nd Tuesday of the month.
 - **Distributed**
 It can also run, for example, every 1st and 2nd day of the month every two months.

- **yearly**
 A run cycle that specifies that a job stream runs, for example, yearly.
 - **Distributed**
 It can also run, for example, every three years.

- **exclusive**
 A run cycle that specifies the days and times when a job stream cannot be run. Exclusive run cycles take precedence over inclusive run cycles.

- **inclusive**
 A run cycle that specifies the days and times when a job stream is scheduled to run. Exclusive run cycles take precedence over inclusive run cycles.

- **offset-based**
 A run cycle that uses a combination of user-defined periods and offsets. For example, an offset of 3 in a period of 15 days is the third day from the beginning of the period. It is more practical to use offset-based run cycles.
when the cycle is based on cyclic periods. This term is used only in Tivoli Workload Scheduler for z/OS, but the concept applies also to the distributed product.

rule-based

A run cycle that uses rules based on lists of ordinal numbers, types of days, and common calendar intervals (or period names in Tivoli Workload Scheduler for z/OS). For example, the last Thursday of every month. Rule-based run cycles are based on conventional periods, such as calendar months, weeks of the year, and days of the week. In Tivoli Workload Scheduler for z/OS, run cycles can also be based on periods that you define, such as a semester. This term is used only in Tivoli Workload Scheduler for z/OS, but the concept applies also to the distributed product. You can also specify a rule to establish when a job stream runs if it falls on a free day.

Operator instructions

In a Tivoli Workload Scheduler for z/OS environment, some jobs might require specific instructions about how they are to be handled. These instructions are called operator instructions.

An operator instruction can be permanent or temporary. A temporary instruction has a validity period associated with it, which specifies when the instruction is valid.

Parameter

A parameter is an object to which you assign different values to be substituted in jobs and job streams, either from values in the database or at run time.

Note: You cannot use parameters with extended agent jobs.

Parameters are useful when you have values that change depending on your job or job stream. Job and job stream definitions that use parameters are updated automatically with the value at the start of the production cycle.

Use parameters as substitutes for repetitive values when defining jobs and job streams. For example, using parameters for user logon and script file names in job definitions and for file and prompt dependencies allows the use of values that can be maintained centrally in the database on the master.

Dependencies

Controlling processing using dependencies

When defining job streams and managing the workload in the plan, you can control processing using dependencies.

You can specify the following types of dependencies:

- **Distributed Dependencies in a distributed environment:**
 You can have dependencies between jobs, between job streams, or between jobs and job streams. They can be:

 - **Internal dependencies**
 These are dependencies established between jobs belonging to the same job stream.
External dependencies
These are dependencies between job streams, between job streams and jobs belonging to other job streams, or between jobs belonging to different job streams. The following resolution criteria are used to satisfy these dependencies:

Closest preceding
The closest preceding in time before the instance that includes the dependency.

Same scheduled date
The instance planned to run on the same day.

Within a relative interval
The closest preceding instance within the relative time interval you chose, or, if none is found, the closest following instance within the relative time interval you chose.

Within an absolute interval
The closest preceding instance within an absolute time interval you chose, or, if none is found, the closest following instance within the absolute time interval you chose.

Regardless of the used matching criteria, if multiple instances of potential predecessor job streams exist in the specified time interval, the rule used by the product to identify the correct predecessor instance is the following:
1. Tivoli Workload Scheduler searches for the closest instance that precedes the depending job or job stream start time. If such an instance exists, this is the predecessor instance.
2. If there is no preceding instance, Tivoli Workload Scheduler considers the correct predecessor instance as the closest instance that starts after the depending job or job stream start time.

Internetwork dependencies
These are dependencies on jobs or job streams running in another Tivoli Workload Scheduler network. Internetwork dependencies require a network agent workstation to communicate with the external Tivoli Workload Scheduler network.

 Dependencies in a z/OS environment:
You can have dependencies only between jobs. They can be:

Dependencies between jobs belonging to the same job stream
When you create a job stream, you link, in a sequence, the jobs that it contains. You can also set dependencies between the jobs to have a successor job not begin until its predecessor job is complete. Dependencies determine when the successor job runs.

Dependencies between jobs belonging to different job streams
These dependencies are named external. External jobs represent jobs that are part of other job streams. You can create a dependency between jobs in different job streams by creating a dependency on an external job.

"Condition dependencies" on page 31
It is a relationship between one job, named a conditional successor, and one or more jobs, named conditional predecessors, stating that
the conditional successor can run only when a specific combination of conditional predecessor status and return code values occurs. You can define a conditional dependency where the conditional successor starts if its conditional predecessors are in ended-in-error or started status.

Note: Condition dependencies are always managed as external dependencies, even if they link jobs belonging to the same job stream occurrence in the plan.

Job streams in a z/OS environment do not support dependencies on files or prompts.

“Cross dependencies” on page 36

In multiple heterogeneous scheduling environments you can define dependencies on batch activities managed by other Tivoli Workload Scheduler environments. To define a cross dependency on a job running on a different Tivoli Workload Scheduler engine, you must define a dependency on a locally-defined shadow job pointing to the remote job instance and running on a remote engine workstation. The remote engine workstation manages the communication with the remote engine using an HTTP or HTTPS connection.

Dependencies on resources are supported by Tivoli Workload Scheduler in both the distributed and z/OS environments.

Related tasks:
“Adding a dependency” on page 70
“Removing a dependency” on page 71

Prompt

A prompt identifies a text message that is displayed to the operator and halts processing of the job or job stream until an affirmative answer is received (either manually from the operator or automatically by an event rule action). After the prompt is replied to, processing continues. You can use prompts as dependencies in jobs and job streams. You can also use prompts to alert an operator that a specific task was performed. In this case, an operator response is not required.

There are the following types of prompt:

global or named
A prompt that is defined in the database as a scheduling object. It is identified by a unique name and can be used by any job or job stream.

local or ad-hoc
A prompt that is defined within a job or job stream definition. It does not have a name, and it is not defined as a scheduling object in the database, therefore it cannot be used by other jobs or job streams.

recovery or abend
A special type of prompt that you define to be used when a job ends abnormally. The response to this prompt determines the outcome of the job or job stream to which the job belongs. A recovery prompt can also be associated to an action and to a special type of job called a recovery job.
Related tasks:
“Creating a task to Monitor Prompts” on page 103
“Adding a dependency” on page 70
“Removing a dependency” on page 71
“Designing your Workload” on page 64
“Listing workload objects” on page 82

Resource
A resource is either a physical or logical system resource that you use as a dependency for jobs and job streams. A job or job stream with a resource dependency cannot start to run until the required quantity of the defined resource is available.

Related tasks:
“Creating a task to Monitor Resources” on page 104
“Adding a dependency” on page 70
“Removing a dependency” on page 71
“Designing your Workload” on page 64
“Listing workload objects” on page 82

File
A file is used as a dependency for jobs and job streams. A job or job stream with a file dependency cannot start to run until the file exists with the characteristics defined in the dependency.

Related tasks:
“Creating a task to Monitor Files” on page 102
“Adding a dependency” on page 70
“Removing a dependency” on page 71
“Designing your Workload” on page 64
“Listing workload objects” on page 82

Condition dependencies
In Tivoli Workload Scheduler for z/OS, you can specify that jobs are dependent on other jobs. For example, if job A1 must complete before job A2 can start, then A1 is a predecessor of A2, and A2 is a successor of A1. These relationships between jobs are called dependencies.

When specifying dependencies, you can also define work flows with alternative branches based on conditions, specifically to achieve the same results as using IF/THEN/ELSE statements in the job JCL. You can use both job return code and job status as conditional logic elements to determine the start of a successor job. The following example shows how this works.

A condition dependency relationship is set up by using a condition.

You can define condition dependencies at the following levels:
Job level
 By conditioning the start of the successor to the check on job return code
 or status of the predecessor.

Step level
 By conditioning the start of the successor to a specific step return code of
 the predecessor.

How condition dependencies work

A condition dependency is a specific check of the status or return code of a
predecessor job or of the return code of a job step.

The job processing flow is affected by the conditions set and their final status.

The status of a condition is set based on the rule defined and on the statuses of its
condition dependencies.

The condition dependency is evaluated only when a path in the plan exists,
otherwise the condition dependency remains Undefined until a manual
intervention or a rerun is done.

A possible path for the conditional predecessor exists when at least one of the
following conditions occurs:

- The job has status Completed and a normal successor exists.
- There is at least one conditional successor that has all the subsets of conditions,
 referencing that conditional predecessor, set to true, according to the condition
 rules.

For example:

- A conditional predecessor (Job A) has several conditional successors (Jobs B, C, D)
- Each conditional successor has a set of condition dependencies, relating to job A,
 that must be satisfied to make it possible for the successor to start.
- Job A runs and changes its status.
- If at least one subset of conditions between job A and one of its successors is
 true, the path in plan exists and all the successors’ condition dependencies
 related to job A are evaluated. Otherwise all condition dependencies are left
 undefined.

When specifying predecessors in the database, you can define a list of conditions by
combining single condition dependencies on predecessor job status or return code.
You cannot define a job both as a conditional and as a normal predecessor of
another job. For each condition you can specify one of the following rules:

- At least n number of conditions out of all the condition dependencies must be
 satisfied. This rule corresponds to the OR operator in Boolean logic.
- All the condition dependencies in the list must be satisfied. This rule
 corresponds to the AND operator in Boolean logic.

At run time, the scheduler evaluates the condition status resulting from the
condition dependencies statuses, based on the selected rule. The condition status
can be:

True When ALL condition dependencies are true.

If the rule is set to AND
 When ALL condition dependencies are true.
If the rule is set to **OR** (at least \(n \) condition dependencies must be true)
When at least \(n \) condition dependencies are true.

False The condition was not satisfied.

If the rule is set to AND
When at least one condition dependency is false.

If the rule is set to **OR (at least \(n \) condition dependencies must be true)**
When at least \(n \) condition dependencies cannot be true.

Undefined
When the rule cannot be evaluated yet.

A set of conditions results as satisfied if all the conditions are satisfied, according to the logic of the AND operator.

When a predecessor ends, the successor job status changes to one of the following statuses:

Waiting
Undefined, until the scheduler evaluates all the defined conditions. At least one normal predecessor is not in **Completed** or **Suppressed by Condition** status or at least one condition is U (Undefined). The scheduler processes all subsequent statuses as usual, up to a final status.

Ready Ready, when all the defined conditions are satisfied. Job normal predecessors are in **Completed** or **Suppressed by Condition** status and all its conditions are True. The scheduler processes all subsequent statuses as usual, up to a final status.

Suppressed by Condition
Suppressed by condition, when the defined condition dependency is not satisfied. At least one condition is **False**.

Note: When evaluating conditional successors status, predecessor jobs in status **Suppressed by Condition** are considered equal to predecessor operations in status **Completed**.

Examples of condition dependencies

Use a job-level condition dependency when you want a successor job to start depending on a combination of one or more return codes or statuses of predecessor jobs.

Figure 3 on page 34 shows the two different types of job level conditions, one based on the predecessor return code and the other based on the predecessor job status. For example, using the return code as condition type, you can define that job OP2 is dependent on job OP1, specifying that OP2 must run when OP1 ends with a return code in the range from 1 to 3. Similarly, using job status as condition, you can define job OP4 as dependent on job OP3, specifying that OP4 must run if OP3 ends with status **Error**.
In this example, OP1 is a *conditional predecessor* of OP2 and OP3 is a *conditional predecessor* of OP4.

In the previous example, if OP1 ends with return code of 8, the scheduler sets OP2 to status **Suppressed by Condition**, because the condition is not satisfied.

Step level dependency

If you configured Tivoli Workload Scheduler for z/OS to track step-end events, then the step dependencies are checked at step-end time when the return code value is available.

This section contains an example showing how job processing flow is affected when using step-level conditions.

If the predecessor job is associated to a job comprising several steps, you can specify a dependency on step return codes. Figure 5 on page 35 shows an example of conditional dependency logic at job step level, to obtain auto-recovery applications with recovery jobs that can start without waiting for the end of predecessor jobs, depending on the result of specific steps.
In this example:
- JOBB can start if STEP100, belonging to JOBA, ends with RC=4.
- JOBC is a normal successor of JOBA and therefore starts if JOBA status is Completed.

Handling recovery using condition dependencies

Using condition dependencies, the error status of a job can be used as a criteria for starting a successor, when this successor is used as a recovery job.

By specifying the conditional recovery job option, you can define that the job is used as the recovery job for a conditional predecessor.

Any conditional predecessor that Ended-in-Error, with a status or error code matching a condition dependency defined for the job, does not prevent the daily plan process from removing the occurrence to which the predecessor belongs. To check if the status Ended-in-error can be ignored at occurrence removal phase, the daily plan process uses a field automatically set by the scheduler, corresponding to Recovered by condition.

Note: As soon as a recovery job becomes ready, the scheduler checks the predecessors in error status at that time. Any predecessor that ends in error after the recovery job runs cannot be flagged as Recovered by condition. The daily plan process removes the occurrence in the following cases:
- The occurrence status is Completed.
- The occurrence status is Ended-in-error, and includes only jobs in one of the following statuses:
 - Completed
 - Suppressed by condition
 - Ended-in-error with the Recovered by condition option specified.

For example, suppose that either JOBR1 or JOBR2 must run when JOBB ends with an error. You can specify JOBB as their conditional predecessor, as shown in Figure 6 on page 36.
When defining JOBR1 and JOBR2 and specifying JOBB as conditional predecessor, you can also set the Conditional recovery job option to have the daily plan process remove the occurrence containing JOBB, because it ended with an error code matching one of the defined condition dependencies.

Cross dependencies
A cross dependency is a dependency of a local job on a remote job running in a different scheduling environment. It is achieved by using a shadow job, which runs in the same environment as the local job and maps the remote job processing.

Cross dependencies help you integrate workload running on more than one engine. They can be both Tivoli Workload Scheduler for z/OS engines (controller) and Tivoli Workload Scheduler engines (master domain manager).

The following objects allow you to define and manage cross dependencies:

Remote engine
A workstation that represents locally a remote Tivoli Workload Scheduler engine. It is a workstation used to run only shadow jobs. A shadow job is a job that runs locally and is used to map another job running on a remote engine. This relationship between the two jobs is called a cross dependency. You define a remote engine workstation if you want to federate your environment with another Tivoli Workload Scheduler environment, either distributed or z/OS, to add and monitor dependencies on jobs running in the other scheduling environment. This type of workstation uses a connection based on HTTP protocol to allow the two environments to communicate.

Shadow job
A job running locally that is used to map a job running on the remote engine. This job is called a remote job. Shadow jobs can run only on remote engine workstations. The shadow job definition contains all the information needed to correctly match the remote job in the plan of the remote engine. The status transition of the shadow job reflects the status transition of the remote job.

Remote job
A job that runs on a remote scheduling environment and is mapped by a shadow job to become a dependency for a job that runs in a local environment.

To add a cross dependency to a local job on a job that is defined on a remote engine, you must define a normal dependency for your local job on a shadow job that:

- Points to the remote job on which you want to create the cross dependency
• Is defined on a local workstation of remote engine type, that points to the engine where the remote job is defined.

To do this, you must
1. Create a remote engine workstation where the shadow job runs.
2. Create a shadow job pointing to a specific job instance defined on a remote engine.
 Shadow jobs can be added to the plan by the plan creation process or dynamically at run time. The shadow job scheduled time identifies the remote job instance in the remote engine plan.
 The **bind** process is the process to associate a shadow job with a job instance in the remote engine plan.
 As soon as the bind is established, the remote engine sends back an HTTP notification containing the status of the bind and, if the bind was successful, the information to identify the remote job instance bound. This information is saved in the shadow job instance details.
3. Add the shadow job as a dependency of the local job.

The resolution of the cross dependency depends on the status of the shadow job, which reflects at any time the status of the remote job. Because the remote job status transition is mapped into the shadow job status transition, the status of the cross dependency is represented by the status of the normal dependency.

The key attributes to identify the remote job instance and the matching criteria depend on the type of remote engine where the remote job instance is defined. z/OS engines support only **closest preceding** matching criteria. Distributed shadow jobs, instead, support the four matching criteria available for external dependencies. See ["Dependencies" on page 28](#) for more details.

The scheduled time of the job stream containing the shadow job is used to find the match.

To avoid incongruence, at plan creation or extension time, consistency checks are performed to ensure that no mismatch has occurred in between the definition of jobs and workstations in the database and their inclusion in the current plan.

Figure 7 summarizes how cross dependencies work.
For more information about cross dependencies, see the sections about defining and managing cross dependencies in [Tivoli Workload Scheduler User’s Guide and Reference](#) and in [Tivoli Workload Scheduler for z/OS Managing the Workload](#).

Related tasks:
“Creating cross dependencies” on page 72

Windows user

A *Windows user* is the user name used as the login value for Windows job definition. Windows users must be defined in the database. This is not required for users who run jobs on other operating systems.

If you schedule a job on an agent, on a pool, or on a dynamic pool, the job runs with the user defined on the pool or dynamic pool. However, the Windows user must exist on all workstations in the pool or dynamic pool where you plan to run the job.

Related tasks:
“Designing your Workload” on page 64
“Listing workload objects” on page 82

Workstation class

A *workstation class* is a group of workstations with similar job scheduling characteristics. Any number of workstations can be grouped in a class, and a workstation can be included in many classes. Jobs and job streams can be assigned to run on a specific workstation class and this makes the running of jobs and job streams across multiple workstations easier.

For example, you can set up the following types of workstation classes:

- Workstation classes that group workstations according to your internal departmental structure, so that you can define a job to run on all the workstations in a department
- Workstation classes that group workstations according to the software installed on them, so that you can define a job to run on all the workstations that have a particular application installed
- Workstation classes that group workstations according to the role of the user, so that you can define a job to run on all the workstations belonging to, for example, managers

In the previous example, an individual workstation can be in one workstation class for its department, another for its user, and several for the software installed on it.

Distributed Workstations can also be grouped into domains when your network is set up. Because the domain name is not one of the selection criteria used when choosing where to run a job, you might need to mirror your domain structure with workstation classes if you want to schedule a job to run on all workstations in a domain.
Variable table

A variable table is a table containing multiple variables and their values. All global parameters, now called variables, are contained in at least one variable table.

You are not required to create variable tables to be able to use variables, because the scheduler provides a default variable table.

However, you might want to define a variable with the same name, but different values, depending on when and where it is used. You do this by assigning different values to the same variable in different variable tables. You can then use the same variable name in different job definitions and when defining prompts and file dependencies. Variable tables can be assigned at run cycle, job stream, and workstation level.

You can also define verification criteria and dependency list and associate them to variables.

Variable tables can be particularly useful in job definitions when a job definition is used as a template for a job that belongs to more than one job stream. For example, you can assign different values to the same variable and reuse the same job definition in different job streams.

Related tasks:
“Designing your Workload” on page 64
“Listing workload objects” on page 82

Workload Broker job definition

A Workload Broker job definition is a text file in Job Submission Description Language (JSDL) schema file format, which contains all the parameters necessary to run a job.

The Job Brokering Definition Console provides an easy-to-use graphical interface that you can install locally to create and edit job definitions. Job definitions, saved in the JSDL schema, are created by your input into the Job Brokering Definition Console.

The JSDL schema offers great flexibility and supports a wide variety of criteria to determine job requirements, scheduling and load-balancing.

Examples of how to define a job to achieve different objectives are provided in Tivoli Workload Scheduler Scheduling Workload Dynamically.

From the Dynamic Workload Console, you can create Workload Broker job definitions that map Dynamic Workload Broker jobs. You can also monitor Dynamic Workload Broker jobs and browse the corresponding job logs.
Production process

Tivoli Workload Scheduler production is based on a plan that runs in a production period.

You can define the production period when creating or extending the production plan and it can span from a few hours to multiple days (by default it lasts 24 hours).

The production plan contains information about the jobs to run, on which fault-tolerant agent, and what dependencies must be satisfied before each job can start.

Distributed You use the JnextPlan script to generate the production plan and distribute it across the Tivoli Workload Scheduler network. Then, if you want to extend your production plan at a fixed time interval, for example every day, you have the option to automate the extension by using the final job stream at the end of each production period. A sample job stream helps you to automate plan management and runs the sequence of script files included in JnextPlan to generate the new production plan.

When the production plan is generated, all of the required information about that production period is taken from the scheduling environment and object definitions and is included in the plan.

During the production period, the production plan is regularly updated to show what work is completed, in progress, and left to process.

In Tivoli Workload Scheduler for distributed environments or in a z/OS end-to-end network, a file called Symphony contains all the information about the production plan. This file is sent to all the subordinate domain managers and fault-tolerant agents in the scheduling environment. This allows the fault-tolerant agents throughout the network to continue their processing even if the network connection to their domain manager is down.

Tivoli Workload Scheduler processes monitor the production plan and make calls to the operating system to launch jobs as required. The operating system runs the jobs, and informs Tivoli Workload Scheduler if the job completed successfully. This information is used to update the production plan to indicate the status of the job.

From the Dynamic Workload Console or the command line interface, you can view and make changes in the current production plan.

Database

The Tivoli Workload Scheduler database, hereafter referred to as the database, is a relational database that is accessible by the master domain manager and contains all the definitions for scheduling objects, such as jobs, job streams, resources, and workstations. It also holds statistics of job and job stream execution, as well as information about the user ID that created an object and when an object was last modified.
For more information about the types and versions of the supported relational database, see the Tivoli Workload Scheduler documentation.

Related tasks:
“Designing your Workload” on page 64

Plans

A plan contains all jobs and job-related scheduling objects that are scheduled for a selected time interval. There are different types of plans based on the type of Tivoli Workload Scheduler environment you are connected to.

Note: z/OS The only type of plan that you can access through the Dynamic Workload Console is the current plan.

The following plans are available:

Production plan (current plan)

A production plan (in distributed environment) or current plan (in z/OS environment) is the master control for all job scheduling activity planned for a user-defined time interval, named the production period. Scheduling object definitions stored in the database, such as jobs and job streams, become instances in the production plan, where they can be monitored and modified.

The production plan is created on the master domain manager and contains all the jobs and job streams that are scheduled to run within the production period together with their depending objects and all workstation definitions. The production plan can be extended to cover future time intervals. Any job streams that did not complete successfully within the production period or that are either running or still waiting to be run, can be carried forward into the plan extension.

Preproduction plan

A preproduction plan is used to identify in advance the job stream instances and the job stream dependencies involved in a specified time period.

This improves performance when generating the production plan by preparing in advance a high-level schedule of the anticipated production workload.

The preproduction plan contains:
- The job stream instances to be run during the covered time period.
- The external dependencies that exist between the job streams and jobs included in different job streams.

Symnew plan

A Symnew plan is a temporary plan. It is an intermediate production plan that covers the whole time the new production plan that is being generated will cover. It is replaced by the production plan as soon as it starts.

Archived Plan

An archived plan is a copy of an old production plan that ran in the Tivoli Workload Scheduler environment and that is now stored in the Tivoli Workload Scheduler database.

Using this type of plan you can, for example, see the result of running a past production plan. The difference between using an archived plan and a forecast plan covering the same time interval is that an archived plan
shows how the real production was based on the job and job stream processing results, while a forecast plan shows how the production was planned to be.

Trial plan

A trial plan is a projection of what a production plan would be if it covered a longer period of time. For example, if you generate a production plan that covers two days, but you want to know what the plan would be if it covered three days, you can generate a trial plan.

A trial plan is typically created to extend a production plan and to have an idea of future impacts on the scheduling environment. Therefore, if there is a valid production plan, the start time option is greyed out. By default, the trial plan start date is the same as the production plan end date.

Using this type of plan you can, for example, see how the current production evolves based on the job and job stream dependencies defined in the production plan, if available, or in the preproduction plan. Trial plans are based on the information contained either in the production or in the preproduction plan. If neither is available, a trial plan cannot be created.

Forecast plan

A forecast plan is a projection of what the production plan would be in a chosen time interval. For example, if you generate a production plan that covers two days and you want to know what the plan would be for the next week you can generate a forecast plan.

A forecast plan is typically created to anticipate and solve any kind of scheduling problems, therefore the start time is always enabled and it is a mandatory field.

Using this type of plan you can, for example, see how the production will be in a future time interval based on the job and job stream dependencies defined in the Tivoli Workload Scheduler database. Based on this information, you can modify some information in the database, if needed, before extending the production plan.

When workload service assurance is enabled, it can calculate the predicted start time of each job in the job stream. You can enable and disable this feature using the `enForecastStartTime` global option. Tivoli Workload Scheduler calculates the average run for each job based on all previous runs. For complex plans, enabling this feature could negatively impact the time taken to generate the forecast plan.

Note: Neither the trial nor the forecast plan takes into account any dynamic updates made to the Symphony file while the production plan is being processed. Therefore, all the job streams it contains are in one of the following states:

- **HOLD**
 - If they are dependent on other job streams or if their start time is later than the plan start time.

- **READY**
 - If they are free from dependencies and their start time has elapsed.
Engine connections

An engine connection is a set of configuration information that identifies a specific workstation in the Tivoli Workload Scheduler environment in the network.

To manage scheduling objects you must connect from the Dynamic Workload Console to a Tivoli Workload Scheduler environment. In Dynamic Workload Console you do this by defining engine connections.

You can connect to both Tivoli Workload Scheduler distributed and z/OS environments and you can create as many engine connections as you need.

When you create an engine connection, you give it a name and select the plan that you want it to access. The selected plan must be accessible from that workstation.

- **z/OS** If you connect to a Tivoli Workload Scheduler for z/OS environment, the plan that you access is the current plan and the engine that you connect to is the controller workstation, which is the management hub of the Tivoli Workload Scheduler for z/OS environment.

- **Distributed** If you connect to a Tivoli Workload Scheduler distributed environment, you can access different types of plans and connect to different types of engines.

 Based on the type of plan that you select and the engine that you connect to, you can get different results when running your tasks in the same Tivoli Workload Scheduler distributed environment. You can connect to:

 The master domain manager workstation

 The top management hub. Select this workstation if you want to access the entire set of objects involved in the current plan, or if you want to access a trial plan, a forecast plan, or an archived plan. You can define and use different engine connections to the master domain manager, each accessing a different plan.

 A fault-tolerant agent if the connector is installed

 A workstation where jobs and job streams are run. Select this workstation if you want to access the set of objects involved in the current plan and scheduled to run in that fault-tolerant agent. You choose this option if you need up-to-date information regarding job status on this workstation.
Event management

You can use the event management feature to launch a predefined set of actions in response to events that occur on the nodes where Tivoli Workload Scheduler runs.

The main elements of event management are:
- "Events"
- "Actions"
- "Event rules" on page 45

You can use event management capabilities to:
- Create Event Rules
- Create and run Workload Events tasks

Events

An event represents a set of circumstances that match selected criteria. Events are divided into the following major categories:

Tivoli Workload Scheduler objects related events
All the events relating to scheduling objects such as jobs, job streams, workstations, and prompts. This type of event is described in more detail in Tivoli Workload Scheduler plan events.

File monitoring events
Events relating to changes to files and logs. This type of event is described in more detail in File monitor.

Application monitoring events
Events relating to Tivoli Workload Scheduler processes, file system, and message box. This type of event is described in more detail in Application Monitor.

Generic events
Events used to manage custom events sent by external applications, such as SAP. You can write an XML file to define a custom event. A schema is provided to validate your XML, as well as a basic event template that you can use as a starting point. For more information, see the schemas for generic events. Events of this category are:
- Changes in a resource of the operating system, such as processes and memory
- Email received

Actions

When one or more of the above events occurs, you can specify which actions to perform. Actions are divided into the following main categories:

Operational actions
Actions that cause a change in the status of one or more Tivoli Workload Scheduler objects. Actions in this category include:
- Submitting jobs or job streams
- Submitting ad hoc jobs
• Replying to a prompt

This type of action is described in more detail in Tivoli Workload Scheduler actions.

Notification actions

Actions such as sending emails or SMS, forwarding Tivoli Enterprise Console events, and writing messages in a logging repository. This type of action is described in more detail in Mail sender plug-in, Message logger, and Tivoli Enterprise Console event forwarder.

Generic actions

Actions performed by running a command. This type of action is described in more detail in Generic action plug-in.

Event rules

Use event rules to associate one or more events to the response actions that you want to perform. When you create an event rule, you are actually creating an event rule definition in the database. While the event rule is in Draft status, it is not deployed to the Tivoli Workload Scheduler. All new and modified non-draft rules saved in the database are periodically (by default every five minutes) found, built, and deployed by an internal process named rule builder. At this time they become active. Meanwhile, an event processing server, which is normally located in the master domain manager, receives all events from the agents and processes them. The updated monitoring configurations are downloaded to the Tivoli Workload Scheduler agents and activated. The occurrence of an event rule that has performed the corresponding actions is called the event rule instance.

Related concepts:

“Event management configuration” on page 12

Reports

Create a report task to customize and generate Tivoli Workload Scheduler reports, which you can then view, print, and save, in different kinds of output. Reports help you in many business-related activities, such as:

Tuning the workload on the workstations

• Workstation Workload Summary
• Workstation Workload Runtimes

Extract detailed information about the plan

• Planned Production Details
• Actual Production Details

Detect jobs with exceptions

• Job Run History
• Job Run Statistics

The following table shows the available reports and their details.
Table 3. Report types

<table>
<thead>
<tr>
<th>Report Name</th>
<th>Description</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Run History</td>
<td>Collects the historical job run data during a specified time interval. Use it to detect which jobs ended in error or were late. It also shows which jobs missed their deadline, long duration jobs, and rerun indicators for reruns.</td>
<td>Available in table format only. It can be HTML or CSV.</td>
</tr>
<tr>
<td>Job Run Statistics</td>
<td>Collects the job run statistics. Use it to detect success, error rates; minimum, maximum, and average duration; late and long duration statistics.</td>
<td>Available in graphic and table formats. It can be HTML or CSV.</td>
</tr>
<tr>
<td>Workstation Workload Summary</td>
<td>Shows the workload on the specified workstations. The workload is expressed in terms of number of jobs that ran on them. It helps for capacity planning adjustments (workload modelling and workstation tuning).</td>
<td>Available in graphic and table formats. It can be HTML or CSV.</td>
</tr>
<tr>
<td>Workstation Workload Runtimes</td>
<td>Shows job run times and duration on the specified workstations. It helps for capacity planning adjustments (workload modelling and workstation tuning).</td>
<td>Available in graphic and table formats. It can be HTML or CSV.</td>
</tr>
<tr>
<td>Custom SQL</td>
<td>Allows you to create reports that best fit your business needs. You can specify an SQL query or import SQL scripts.</td>
<td>Available in table format only. It can be HTML or CSV.</td>
</tr>
<tr>
<td>Planned Production Details</td>
<td>Extracts information about planned production plans into either an XML or a CSV format, to be used respectively, with Microsoft Project and Microsoft Excel. This also allows users who do not know Tivoli Workload Scheduler to access plan information in a familiar format.</td>
<td>Available in CSV or XML format only.</td>
</tr>
<tr>
<td>Actual Production Details</td>
<td>Extracts current plan information into either an XML or a CSV format, to be used, respectively, with Microsoft Project and Microsoft Excel. This also allows users who do not know Tivoli Workload Scheduler to access plan information in a familiar format.</td>
<td>Available in CSV or Microsoft Project format only.</td>
</tr>
</tbody>
</table>

The output of historical reports, which is extracted from the database, consists of the following main sections. The output of a Planned and Actual report is not structured because it is a file that must be opened with an external program.

Report header
Contains the report title, description, engine name, engine type, creation time, type, and the total number of the result set extracted.

Report of content
Contains a set of hyper-links to each section and subsection.

Report format
Depending on the kind of information you are processing, you can choose to view it in the most appropriate format. The report output can be in:

Table format
It shows information organized in rows and columns, in a CSV or HTML file.
If you choose the graphical formats, depending on the report type, and on the information you choose to include, you can have data displayed in pie charts, bar charts, line charts, or tables.

Note: To see report output correctly, make sure that you configure your browser as follows:
- Allow pop-up windows.
- Remove any optional browser toolbar that you installed, if its settings prevent new windows from opening.
- To see CSV reports, configure the browser security settings to automatically prompt for file downloads.

Related reference:
- Chapter 12, “Reporting,” on page 121
- “Reports” on page 166

Workload service assurance

Workload service assurance is an optional feature that allows you to identify critical jobs and to ensure that they are processed in a timely manner.

When the workload service assurance feature is enabled, you can indicate that a job is critical and define a deadline by which it must be completed when you add the job to a job stream. Defining a critical job and deadline triggers the calculation of timings for all jobs that make up the critical network. The critical network includes the critical job itself and any predecessors that are defined for the critical job. When changes that have an impact on timings are made to the critical network, for example addition or removal of jobs or follows dependencies, the critical start times are automatically recalculated.

The critical network is constantly monitored to ensure that the critical job deadline can be met. When a critical network job completes, timings of jobs that follow it are recalculated to take account of the actual duration of the job. The system also acts automatically to remedy delays by prioritizing jobs that are actually or potentially putting the target deadline at risk. Some conditions that cause delays might require your intervention. A series of specialized critical job views, available on the Dynamic Workload Console, allow you to monitor critical jobs, display their predecessors and the critical paths associated with them, identify jobs that are causing problems, and drill down to identify and remedy problems.

Dynamic critical path

If a job is critical and must complete by the deadline set on the database you can mark it as a critical job thus specifying that it must be considered as the target of a critical path. The critical path consists of the critical job predecessors with the least slack time. In a critical job predecessor path, the slack time is the amount of time the predecessor processing can be delayed without exceeding the critical job deadline. It is the spare time calculated using the deadline, scheduled start, and duration settings of predecessors jobs. The calculation of critical path is performed dynamically. In this way, during daily planning processing, a critical path including the internal and external predecessors of the critical job is calculated, and a table of predecessors is cached (in the local memory for z/OS and on the master domain manager for distributed systems). Every time a predecessor of the critical
job starts delaying, the scheduler *dynamically* recalculates the critical path, to check whether a new path, involving different jobs, became more critical than the path calculated at daily planning phase.

You can launch a query for all the jobs included in a critical path by clicking **Critical Path** in the panels that show the results of monitor jobs tasks.

As well as jobs included in the critical path job list, there are other lists of jobs that might be important to manage to ensure that your critical job does not fail.

Hot list

The *hot list* contains a subset of critical predecessors that can cause a delay to the critical job because they are states such as error, late, fence (for distributed systems only), suppressed (for distributed systems only), or long duration. If these jobs do not complete successfully on time, they prevent the critical job from completing on time. Using the hot list view, you can quickly see which jobs need you to take appropriate recovery actions. Jobs included in the hot list are not necessarily also included in the critical path.

You can launch a query for all the jobs in the hot list by clicking **Hot List** in the panels that show the results of monitor critical jobs tasks.

Related tasks:

"Creating a task to Monitor Critical Jobs" on page 95

Related information:

"Using workload service assurance to monitor z/OS critical jobs" on page 129

Processing and monitoring critical jobs

Automatic tracking and prioritizing of critical network jobs.

Workload service assurance provides automatic tracking and prioritizing of critical network jobs and online functions that allow you to monitor and intervene in the processing of critical network jobs.

Automatic tracking and prioritizing

To ensure that critical deadlines can be met, workload service assurance provides the following automated services for critical jobs and for predecessor jobs that form their critical networks:

Promotion

When the critical start time of a job is approaching and the job has not started, the promotion mechanism is used. A promoted job is assigned additional operating system resources and its submission is prioritized.

The timing of promotions is controlled by the global option `promotionoffset`. Promoted jobs are selected for submission after jobs that have priorities of "high" and "go", but before all other jobs. Prioritizing of operating system resources is controlled by the local options `jm promoted nice` (UNIX and Linux) and `jm promoted priority` (Windows).

Calculation of the critical path

The critical path is the chain of dependencies, leading to the critical job, that is most at risk of causing the deadline to be missed at any given time. The critical path is calculated using the estimated end times of the critical job predecessors. Working back from the critical job, the path is constructed...
by selecting the predecessor with the latest estimated end time. If the actual end time differs substantially from the estimated end time, the critical path is automatically recalculated.

Figure 8 shows the critical path through a critical network at a specific time during the processing of the plan.

![Critical path diagram]

Figure 8. Critical path

At this specific time, the critical path includes Job3a, Job2a, and Job1a. Job3a and Job3b are the immediate predecessors of the critical job, job4, and Job3a has the later estimated end date. Job3a has two immediate predecessors, Job2a and Job_y. Job2a has the later estimated end time, and so on.

Addition of jobs to the hot list

Jobs that are part of the critical network are added to a hot list that is associated to the critical job itself. The hot list includes any critical network jobs that have a real or potential impact on the timely completion of the critical job. Jobs are added to the hot list for one or more of the following reasons. Note that only the jobs that begin the current critical network, for which there is no predecessor, can be included in the hot list.

- The job has stopped with an error. The length of time before the critical start time is determined by the approachingLateOffset global option.
- The job has been running longer than estimated by a factor defined in the longDurationThreshold global option.
The job has still not started, although all its follows dependencies have either been resolved or released, and at least one of the following conditions is true:

- The critical start time has nearly been reached.
- The job is scheduled to run on a workstation where the limit is set to zero.
- The job belongs to a job stream for which the limit is set to zero.
- The job or its job stream has been suppressed.
- The job or its job stream currently has a priority that is lower than the fence or is set to zero.

Setting a high or potential risk status for the critical job

A critical job can be set to the following risk statuses:

High risk

Calculated timings show that the critical job will finish after its deadline.

Initially, estimated start and end times are used. As jobs are completed, timings are recalculated to take account of the actual start and end times of jobs.

Potential risk

Critical predecessor jobs have been added to the hot list.

Online tracking of critical jobs

The Dynamic Workload Console provides specialized views for tracking the progress of critical jobs and their predecessors. You can access the views from the Dashboard or by creating Monitor Critical Jobs tasks.

The initial view lists all critical jobs for the engine, showing their status: normal, potential risk, or high risk. From this view, you can navigate to see:

- The hot list of jobs that put the critical deadline at risk.
- The critical path.
- Details of all critical predecessors.
- Details of completed critical predecessors.
- Job logs of jobs that have already run.

Using the views, you can monitor the progress of the critical network, find out about current and potential problems, release dependencies, and rerun jobs.

Planning critical jobs

Planning critical jobs.

Workload service assurance provides the means to identify critical jobs, define deadlines, and calculate timings for all jobs that must precede the critical job.

If it is critical that a job must be completed before a specific time, you can flag it as critical when you add it to a job stream using the Workload Designer functions on the Tivoli Dynamic Workload Console. You can define the deadline either at job or job stream level.
Jobs can also be flagged as critical by including the **critical** key word on the job statement when you create or modify a job stream using the **composer** command line.

When you run the command to include the new job in the production plan, all jobs that are direct or indirect predecessors of the critical job are identified. These jobs, together with the critical job itself, form a **critical network**.

Because timing of jobs in the critical network must be tightly controlled, Time Planner calculates the following timing benchmarks for each critical network job:

Critical start

- Applies to distributed systems only and represents the latest time at which the job can start without causing the critical job to miss its deadline.

Critical start times are calculated starting with the deadline set for the critical job and working backwards using the estimated duration of each job to determine its critical start time. For example, if the critical job deadline is 19:00 and the estimated duration of the critical job is 30 minutes, the critical job will not finish by the deadline unless it starts by 18:30. If the immediate predecessor of the critical job has an estimated duration of 20 minutes, it must start at latest by 18.10.

Note: Only the deadline of the critical job is considered when calculating critical start times for jobs in the critical network. If other jobs have deadlines defined, their critical start times might be later than their deadlines.

Earliest start

- Represents the earliest time at which a job in the critical network can start, taking into consideration all dependencies and resource requirements.

Estimated start times are calculated starting with the earliest time at which the first job or jobs in the critical network can start and working forward using the estimated duration of each job to estimate the start time of the job that follows it.

Estimated start and end time

- For the initial calculations, these values are set to the planned start and end time. They are subsequently recalculated to take into consideration any changes or delays in the plan.

Estimated duration

- The estimated duration of a job is based on statistics collected from previous runs of the job. If the job has never run before, a default value of one minute is used. Take this into account when considering the accuracy of calculated timings for critical job networks that include jobs running for the first time.

The timings for each job in the critical network are added to the **Symphony** file, which includes all the plan information and is distributed to all workstations on which jobs are to be run.

As the plan is run, **Plan Monitor** monitors all critical networks: subsequent changes to the critical network that affect the timing of jobs trigger the recalculation of the critical and estimated start times. Changes might include manual changes, for example, releasing dependencies or rerunning jobs, and changes made automatically by the system in response to a potential or actual risk to the timely completion of the critical job.
Specific views for critical jobs and their predecessors, available from the Tivoli Dynamic Workload Console, allow you to keep track of the processing of the critical network. The views can immediately identify problems in your planning of the critical job. For example, if the estimated start time of a job in the critical network is later than the critical start time, this is immediately signalled as a potential risk to the critical job.

Tivoli Workload Scheduler for SAP

With SAP R/3 support, you can use Tivoli Workload Scheduler to do the following tasks:

- Use Tivoli Workload Scheduler standard job dependencies and controls on SAP R/3 jobs.
- Create SAP R/3 jobs using the Tivoli Workload Scheduler interface.
- Schedule SAP R/3 jobs to run on specified days and times, and in a defined order.
- Define inter-dependencies between SAP R/3 jobs and jobs that run on different platforms.
- Define the national language support options.
- Use the SAP R/3 Business Warehouse Support function.
- Customize job execution return codes.
- Use SAP R/3 logon groups for load balancing and fault-tolerance.
- Work with SAP R/3 variants and placeholders.
- Use Business Component-eXternal Interface Background Processing (BC-XBP 2.0) interface support to:
 - Intercept jobs
 - Track child jobs
 - Keep all job attributes when you rerun a job
 - Raise events

Note: For more information about SAP, see [Tivoli Workload Scheduler for Applications User’s Guide](#).

Scheduling process for the SAP R/3 extended agent

Tivoli Workload Scheduler launches jobs in SAP R/3 using jobs defined to run on a Tivoli Workload Scheduler extended agent workstation.

An SAP R/3 extended agent workstation is defined as a Tivoli Workload Scheduler workstation that is hosted by a fault-tolerant agent or master workstation, and which uses the r3batch access method.

The SAP R/3 extended agent workstation uses the access method r3batch to pass SAP R/3 job-specific information to predefined SAP R/3 instances. The access method uses information provided in an options file to connect and launch jobs on an SAP R/3 instance. For more information about this, see Tivoli Workload Scheduler for Applications User’s Guide.

You can define multiple extended agent workstations to use the same host, by using multiple options entries or multiple options files. Using the SAP R/3 extended agent name as a key, r3batch uses the corresponding options file to determine which instance of SAP R/3 will run the job. It makes a copy of a
template job in SAP R/3 and marks it as able to run with a start time of start immediate. It then monitors the job through to completion, writing job progress and status information to a job standard list found on the host workstation.

Related tasks:
"Creating SAP jobs" on page 73
Chapter 6. Customizing Your Console

How to customize your Console.

When you log in to the Tivoli Integrated Portal, you see a portfolio on the left with an entry for each Tivoli product installed inside it, such as, for example, the Dynamic Workload Console.

In the following sections you can see how to customize the portfolio and the startup page to include only the entries and the pages that you really need to access. In addition to this, you can see how to customize the tasks that you need to run and how to enable or disable the notification about product updates.

Customizing your portfolio

How to customize your portfolio.

In the Tivoli Integrated Portal, use the View selection list at the top left of the panel to select the entries to be displayed in your console portfolio.

You can decide to see only the entries related to a specific application by selecting the related entry in the list, for example, Tivoli Workload Scheduler.

To customize your list of entries to be displayed in the console portfolio, perform the following steps.

1. Select My tasks from the View selection list. If you did not customize your portfolio before, you must click Add tasks to open the My Tasks pane.
2. From the My tasks pane, select the entries you want to display.
3. Click Apply to save your changes.

Your customized list is displayed in the console portfolio.

You can define which view is displayed by default every time you log into the Tivoli Integrated Portal by selecting it in the My Startup Pages pane.

For additional information about the Tivoli Integrated Portal, click Help at the top right of the panel and select Using the console in the Contents section on the left of the displayed panel.

Customizing your startup page

How to customize the startup page

In the Tivoli Integrated Portal, you can define the list of pages that are launched every time you log in to the console.

To add a page to your startup pages, perform the following steps.

1. Open the page you want to be launched when you log in to the console.
2. In the Select Action list at the top right of the panel, select Add to My Startup Pages.

The page that you added is launched every time you log in to the console.
To manage the pages you added, select **My Startup Pages** in the portfolio on the left to access the My Startup Pages pane. From this pane you can remove the pages from the list or define the default page to be displayed when you log in.

From the My Startup Pages pane, you can also specify the default console view that is displayed as your portfolio.

For additional information about the Tivoli Integrated Portal, click **Help** at the top right of the panel and select **Using the console** in the Contents section on the left of the displayed panel.

Customizing your tasks

To customize a task, you must be the task owner.

Configured tasks are provided with default values. However, you can customize their properties and save the newly-modified tasks. You can modify the properties, such as filters and columns, of all the tasks that you own. Starting from a task, you can also customize the properties of secondary queries that are launched starting from the objects resulting from the task.

To customize your tasks, perform the following steps:

1. Click **All Configured Tasks**.
2. In the All Configured Tasks panel, select a task and click **Task Properties**. The task opens displaying some tabs on the left.

 Note: You can access the same task window by running the task and clicking the task properties icon from the navigation bar, above the table of results.
3. Click the tabs that refer to the properties you want to customize.
4. Modify the values as required and click **Save** to save the modified task.

You have personalized your task. Consider that any customization only applies to the single task you edited. For example, if you change the columns to be displayed in a task named **All Jobs in plan**, this change does not affect any other task to monitor jobs.

Customizing secondary queries

While editing or creating a task, you can also choose the columns to display in secondary queries. Secondary queries are those that are run from the table of results of a task. For example, from the list of jobs resulting from a task named **My Jobs**, you can run a secondary query to list all job streams and workstations associated to one of the listed jobs.

You can also customize these secondary queries from the Columns Definition panel of any task. In the Columns Definition panel of **My Jobs** task, you can also choose the columns to display in job stream and workstation tasks. However, this column selection only applies to the lists of job streams and workstations obtained by drilling down from the results of the **My Jobs** task; it does not apply to any other generic monitoring task about job streams or workstations.
Adding tasks to your favorite bookmarks

How to save a task to the favorite bookmarks of your browser.

When you run a task, you can save it as one of the favorite bookmarks of your browser so that you can launch it directly from the browser.

To add a task to your favorite bookmarks, from the panel displaying your task results, click the add link icon.

Related concepts:
“Monitoring your Scheduling Environment” on page 89
“Monitoring your Workload” on page 92

Enabling and disabling news notification beacon

How to enable and disable news notification

A beacon appears on your screen when an update for the product is made available. Click the beacon to open a pop-up that describes the update and gives you a direct link to it.

Update and news notifications relate to different topics, belonging to categories, such as:
- APARs
- Fixes and utilities
- News
- Technotes
- Product documentation and publications

By default, the news notification is enabled for all users to all the categories, however, optionally, you can customize this behavior.

Customize the list of recipients

If you have writing rights on the system where Dynamic Workload Console is installed, you can customize the TdwcGlobalSettings.xml file to specify the news categories that must be notified to users, based on their roles.

The TdwcGlobalSettings.xml file is organized into several sections that can be repeated multiple times in the same file and applied differently to different user roles. The NewsFeed section contains the configuration details regarding the notification beacon. Therefore, for example, to enable the notifications of specific categories only to a specific user role, you can insert a section like the following:

```xml
<settings role="TWSWEBUIOperator">
  <NewsFeed>
    <property name="FeedType" value="JSONP" />
    <property name="PollInterval" value="3600" />
    <property name="UnsubList" value="webcasts,technotes" />
  </NewsFeed>
</settings>
```
If you want to entirely disable the notification feature, edit the TdwcGlobalSettings.xml by assigning an empty string as value to the FeedURL property, for example:

```xml
<settings>
  <NewsFeed>
    <property name="FeedURL" value="" />  
    <property name="FeedType" value="JSONP" />  
    <property name="PollInterval" value="1800" />  
  </NewsFeed>
</settings>
```

Unsubscribe from news

If you do not want to receive any notifications at all, or if you want to unsubscribe from some specific categories, select the related checkbox in the news pop-up.

To enable again all the news notifications, perform the following steps:

1. Click **Settings > Manage User Preferences**. The Manage User Preferences panel containing the current settings is displayed.
2. Click **Restore beacon defaults**.

Related concepts:

“Scheduling objects” on page 23

Related reference:

“Dynamic Workload Console global settings” on page 135
Chapter 7. Accessing the Console from Your Mobile Device

Use your mobile device to monitor your jobs by accessing the dashboard and navigating to job details and log.

The following prerequisites must be satisfied:
• At least 256 MB RAM must be available.
• The engine connection must be configured to be shown in the dashboard.

You can access the dashboard form the standard browsers on the following devices:
• Blackberry OS 5.0
• IOS based devices
 – IPhone
 – IPod Touch
 – IPad
• Android-based devices version 2.2

You can use your mobile device to open the dashboard, see the jobs in plan, click them to view their details and job log, and also send this information using email.

1. Connect to this URL using your mobile device: https://
 host_name:port_number/IBM/TWSWebUI/dash.jsp
2. Log in using your Tivoli Integrated Portal credentials.
3. Select the engine that you want to see in the dashboard.
4. Scroll down to view the job statuses.
5. Touch the status of a job and scroll down to view more details about that job, such as the name of its job stream, workstation, and scheduled time.
6. Optionally, use the search box to search for a specific job.
7. Click Back to return to the list of engines and select a different engine.

From your mobile device, you can see a graphical view that shows the progress of the current plan on the engines for which you have configured a connection and specified the option to show the engine in the dashboard.

Optionally, you can scroll down the job details to view the job log, when available, and send the job log using email to someone.

In the job log, you can also filter for specific strings to display.

Related concepts:
“Monitoring the progress of your plan” on page 87
Chapter 8. Creating and Editing Objects in the Database

To create and edit objects in the database read the following sections.

Designing your Scheduling Environment

To begin working with Tivoli Workload Scheduler you must design your scheduling environment.

The scheduling environment is composed of the following objects:

- Workstations
- Distributed Domains

Depending on whether your engine is distributed or z/OS, the steps to follow are different:

- Distributed You create workstations and domains. Depending on the business needs of your organization and the complexity of your network, you can decide to have a hierarchical domain structure.
- z/OS You define workstations.

Related concepts:
“Scheduling objects” on page 23

Creating a workstation

To create a workstation definition in the database, perform the steps described in the following sections.

Creating distributed workstations

You can create multiple workstation definitions.

For more information about the main workstation types and their attributes, see the section about workstation definition in User’s Guide and Reference.

To add a workstation definition to the database and to assign it to a domain, perform the following steps.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

1. Click Scheduling Environment > Design > Create Workstations.
2. Select a distributed engine from the list and click Create Workstations.
3. In the Workstations properties panel, specify the attributes for the workstation you are creating. Depending on the type of workstation you select, some attributes are mandatory.
4. To assign the workstation to an existing domain or to create a new domain, click Assign to Domain.
5. Click Save.
The workstation is now added to the database. Alternatively, click Scheduling Environment > Design > List Workstations, select a distributed engine, and click Display. From the workstation table, click New.

Note: You can add workstation definitions to the database at any time, but you must run JnextPlan -for 0000 again to be able to run jobs on newly-created workstations. Every time you run JnextPlan all workstations are shut down and restarted.

Related concepts:
- “Workstation” on page 17
- “Domain” on page 20

The domain.

Related reference:
- “Workstation types” on page 148
- “Type of communication based on SSL communication options” on page 140

Creating z/OS workstations

To create a z/OS workstation definition in the database, perform the following steps.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

1. Click Scheduling Environment > Design > Create Workstations.
2. Select a z/OS engine from the list and click Create Workstation.
3. Specify the workstation attributes using the General, Resources, and Open Time Intervals tabs as appropriate. Depending on the type of workstation you select, some attributes are mandatory.
4. Click Save.

The workstation is now added to the database. Alternatively, click Scheduling Environment > Design > List Workstations, select a z/OS engine, and click Display. From the workstation table, click New.

Related concepts:
- “Workstation” on page 17

Related reference:
- “Workstation types” on page 148

Creating z/OS virtual workstations

To create a z/OS virtual workstation definition in the database, perform the following steps.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

1. Click Scheduling Environment > Design > Create Workstations.
2. Select a z/OS engine from the list and click Create Virtual Workstation.
3. Specify the workstation attributes using the General and Destinations tabs as appropriate. Depending on the type of workstation you select, some attributes are mandatory.

4. Click Save.

The workstation is now added to the database. Alternatively, click Scheduling Environment > Design > List Workstations, select a z/OS engine, and click Display. From the workstation table, click New Virtual.

Related concepts:
"Workstation" on page 17

Related reference:
"Workstation types" on page 148

Creating a domain

You add domain definitions to the Tivoli Workload Scheduler database in either of the following ways:
- When you are creating a distributed workstation, from the Create Workstations option in the portfolio
- From the List Distributed Workstations panel, by selecting Domains view.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

To create a new domain when creating a workstation, perform the following steps:
1. Click Scheduling Environment > Design > Create Workstations.
2. Select a distributed engine from the list and click Go.
3. In the Workstations Properties panel, specify the attributes for the workstation you are creating, then click Assign to Domain and, on the Select Domain panel, click New to create a new domain.
4. Click Save to add the domain to the database and return to the Select Domain panel.
5. In the Select Domain panel click OK to assign the new domain to the workstation you are creating.

To add a new domain definition from the List Distributed Workstations panel, perform the following steps:
1. Click Scheduling Environment > Design > List Workstations.
2. From the Workstations filter, click Display.
3. From the List Distributed Workstations, panel click Domains View.
4. Click New and, on the Domain Properties panel, specify the properties for the domain.
5. Click Save to add the domain to the database or Cancel to exit without saving.
Creating a pool of agents

You can define and schedule dynamic jobs to perform specific database, file transfer, Java, and Web Services operations. You can customize the sample files provided with the product to match the requirements of your environment.

To run these job types, you can use dynamic agents, a workstation type that you create by running the related installation process. The dynamic agents are automatically created and registered at installation time. You can also organize the dynamic agents into groups, called pools or dynamic pools. For more information about dynamic scheduling, see Tivoli Workload Scheduler Scheduling Workload Dynamically.

To add this kind of workstation definition to the database and to assign it to a domain, perform the following steps.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

1. Click Scheduling Environment > Design > Create Workstations.
2. Select an engine from the list and click Create Workstations.
3. In the Workstations properties panel, specify the attributes for the pool of dynamic agents you are creating. In the Workstation Type menu, select Pool or Dynamic Pool, depending on the set of dynamic agents you are defining.
 - Select Pool to define a cluster of dynamic agents with similar hardware or software characteristics to submit jobs to. Then, in the Member table that displays the dynamic agents that belong to the Pool, click Add to add new dynamic agents and Remove to remove unwanted dynamic agents.
 - Select Dynamic Pool to define a set of dynamic agents that is dynamically defined based on the resource requirements you specify. Then click Edit Requirements to display a panel where you can specify the requirements necessary for running your jobs. All your selections produce an XML file, which is used to select a workstation with the characteristics you require, to run Dynamic Workload Broker jobs. When you provide the requirements, you specify a list of workstation candidates to be included in the Dynamic Pool of dynamic agents and the preferred order in which they must be considered. You also specify the best criteria, which is used to change the workstation (workload balance, CPU utilization, or its use of logical resources).
4. Optionally, you can associate the new pool to a variable table.
5. Specify the Workload Broker hosting the workstation.

Related concepts:
“Workstation” on page 17

Designing your Workload

You can use the Workload Designer to manage your workload and to define and edit objects in the database.
1. Open the Workload Designer, from the portfolio, click **Tivoli Workload Scheduler > Workload > Design > Create Workload Definitions**.

2. In the displayed panel, specify the engine connection you want to use. Only the categories of objects supported by the engine that you selected are available.

You can open multiple occurrences of the Workload Designer. The following scenarios are supported:

- Same user connected to multiple engines
- Multiple users connected to the same engine.

When you open the Workload Designer panel, the following window is displayed, showing several working areas that you can use, depending on the task you want to perform.

Click the links in the picture below to find more information about each pane:

![Working List...](image)

![Details...](image)

![Graphical View...](image)

![Quick Open...](image)

![Object Properties...](image)

Related concepts:
- “Scheduling objects” on page 23

Editing objects from the Working List View

To modify objects from the **Working List** view, perform the following steps:

1. Open the **Search** menu and select the object you want to modify.
2. In the displayed lookup panel, select the required filtering criteria and click **Search**.
3. From the displayed list, select one or multiple objects and click one of the following action buttons:

 - **Create like**
 - To create a new object with the same properties of the selected object.
Edit
To modify the properties of the selected objects. When an object is open in edit mode the edit icon is displayed on the right of the object.

Unlock
To unlock the selected objects for further actions. When an object is unlocked, it is displayed in read-only mode.

Delete
To delete the selected objects from the database.

All the selected objects are listed in the Working List view. When you select an object from this list, its properties are displayed in the right pane, where you can view or edit them, if you have the required authorization defined in the Tivoli Workload Scheduler security file.

By hovering with the cursor over the icons located on the toolbar, you can see all the actions you can perform on the selected objects.

Related information:
“Working List” on page 156

Editing objects from the Quick Open View

To modify objects from the Quick Open view, perform the following steps:

1. Click one of the following icons displayed at the top of the pane to select the category of your search. Available categories depend on the engine connection you selected.

 Distributed In a distributed environment
 ![Distributed Icon]

 z/OS In a z/OS environment
 ![z/OS Icon]

2. Refine your search by using some filtering criteria. You can filter by object name by entering the name, or part of it, in the text box, or by using wildcards. Optionally, you can further filter your search by choosing more filtering criteria from the drop-down menu.

3. Click Search. The list of results is shown, up to a maximum of 250 items. If the list is longer, use the filters to refine your search and reduce the number of results.

4. Select one or more objects to open them in edit mode by clicking the Edit button. The open objects are locked in the database until you finish editing and save them.

When an object is open in edit mode, its properties are displayed in the right pane, where you can view and edit them.

You can drag the objects in the Quick Open pane and drop them in the Graphical View or you can quickly associate them to the item you are working with, by clicking the Add button. For example, you can search for jobs and automatically add them to the job stream you are editing, or add other objects as dependencies, such as resources or prompts.
Related information:
“Quick Open” on page 157

Editing objects from the Details View

To modify object from the Details view, perform the following steps:

1. Choose the object you want to modify and either:
 - Select it and click the **Select an Action** button.
 - Right-click it and choose an action from the context menu.
2. Choose one of the displayed actions to act on the selected item. Only actions available for the selected item are displayed in the menus.

When an object is open in edit mode, its properties are displayed in the bottom pane, where you can view and edit them.

You can also drag the objects contained in the Quick Open pane and drop them in the Details pane to create job and job stream dependencies and to add jobs to the job stream.

Related information:
“Details view” on page 158

Editing objects from the Graphical View

The Graphical View shows the job stream with the jobs it contains and related dependencies.

Note: By opening the menu next to the camera icon on the toolbar, you can see and launch a set of short demos that can help you become familiar with the Graphical View main features.

From the Graphical View you can edit an object in any of the following ways:

- Select it and click the **Select an Action** button.
• Right-click it and choose an action from the context menu. Only actions available for the selected item are displayed in the menus.
• Select an object or an arrow and use the buttons on the graphical view toolbar to create or remove dependencies.
• Search for an object in the Quick Open pane and click Add or drag and drop it on a job or on the job stream. You can use drag and drop to add jobs and dependencies to the job stream. You can also use it to add dependencies to jobs. Consider that, for example, if you drop a job on another job, it is added as an external dependency, even if the job is in the same job stream.

Related information:
“Graphical View” on page 160

Editing object properties

Use the Properties pane, to modify the properties of the selected object.

The properties pane is divided into tabs, which contain options and properties relating to the object currently open.

If you have more than one object open in the Working List, the properties displayed in this pane are relating to the object currently selected in the Details or Graphical view above.

Enter the required information in the mandatory fields. An automatic check allows you to enter only supported characters.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

Adding a job to a job stream

To perform this task, you must have a connection with a Tivoli Workload Scheduler engine up and running. You must also be connected to the database where the object definitions are stored.

To edit an object in the database you can use the different views available in the Workload Designer window.

1. You can open an existing job stream in either of the following ways:
 • Perform the following steps:
 a. Click Workload > Design > List Workload Definitions.
 b. Specify the engine connection and filtering criteria to retrieve the job stream to which you want to add the job.
 c. Select the job stream and click Edit.

 The Workload Designer panel opens in a new window displaying the selected job stream open in edit mode.
 • Perform the following steps:
 a. Click Workload > Design > Create Workload Definitions.
 b. Specify the engine connection and the Workload Designer panel opens in a new window.
 c. Open the job stream to which you want to add a job. To find the job stream you need, use either of the following ways:
– Search for it using the Search menu in the Working List pane

– Select the job stream icon and launch a search (optionally filtered) in the Quick Open pane.

2. You can now work with the job stream by using either the Graphical or the Details view. Select the tab for the view you want in the right part of the panel.

Related concepts:
“Job” on page 24
“Job stream” on page 24

Adding a job from the Graphical View

You can add a job to the job stream using the Graphical View.

From the Graphical View you can add a job to a job stream in either of the following ways:

• Perform the following steps:
 1. Right-click inside the job stream area, and select Add Jobs from the context menu
 2. Search for the required job by using the displayed Search panel and add it to the job stream.
• Search for the job in the Quick Open pane and click Add or drag and drop it on the job stream. Consider that if you drop the job on another job contained in the job stream, it is added as an external dependency, even if the job is in the same job stream.
• You can then edit the properties of the newly added job, optionally specifying its scheduling options and time restrictions. For example, here you can set a job as Critical if the job is mission critical and must be processed accordingly.

Adding a job from the Details View

If you use the Details view, you see a tree-table view of the job stream with all its jobs, dependencies, and run cycles.
From the Details view you can add a job to a job stream in either of the following ways:

- Perform the following steps:
 1. Right-click the job stream row and select Add Jobs from the context menu.
 2. Search for the required job by using the Search panel, and add it to the job stream.
- Search for the job in the Quick Open pane and click Add or drag and drop it on the job stream. Consider that if you drop the job on another job contained in the job stream, it is added as an external dependency, even if the job is in the same job stream.
- You can then edit the properties of the newly added job, optionally specifying its scheduling options and time restrictions. For example, here you can set a job as Critical if the job is mission critical and must be processed accordingly.

If you want to remove the job click the remove icon at the end of the job row.

Adding and removing dependencies

To perform this task, you must have a connection with a Tivoli Workload Scheduler engine up and running. You must also be connected to the database where the object definitions are stored.

To manage objects in the database, open the Workload Designer window from the portfolio by clicking Workload > Design > Create Workload Definitions.

Adding a dependency

To add a dependency, from the Workload Designer window perform the following steps:

1. Open the job stream to which you want to add a dependency or the job stream containing the job to which you want to add a dependency. To find the job stream, do either of the following actions:
 - Search for it using the Search menu in the Working List
• Select the job stream icon and launch a search (optionally filtered) in the Quick Open pane.

2. You can now work on the job stream by using either the Details or the Graphical view. Select the tab for the view you want.

 • From the Details view, do either of the following actions:
 – by using the menus, do the following steps:
 a. Right-click the job or job stream and select Add Dependencies from the context menu or select the object and choose an option from the Select an Action menu.
 b. From the context menu, select the type of dependency you want to add.
 c. From the Search panel, search for the required object and add it to the job or job stream.
 – by using drag and drop, do the following steps:
 a. Select an object from the Quick Open pane.
 b. Drag and drop it on the object that must depend on it.

 • From the Graphical view, do either of the following actions:
 – by using the menus, do the following steps:
 a. Right-click the job or job stream and select Add Dependencies from the context menu or select the object and choose an option from the Select an Action menu.
 b. From the context menu, select the type of dependency you want to add.
 c. From the Search panel, search for the required object and add it to the job or job stream.
 – by using the toolbar, do the following steps:
 a. Select the create dependency icon .
 b. Draw a line from the dependency to the job or job stream that must depend on it. You can use this tool to create dependencies only between objects displayed in the view.
 – by using drag and drop, do the following steps:
 a. Select an object from the Quick Open pane.
 b. Drag and drop it on the object that must depend on it.

Related concepts:
“Dependencies” on page 28
Controlling processing using dependencies

Removing a dependency

From the Workload Designer window you can remove a dependency in either of the following ways:

• From the Details view, click the remove icon at the end of the dependency row.

• From the Graphical View, select the dependency by clicking the node (if it is an external dependency) or by right-clicking the arrow. When the arrow you want to remove is highlighted, click the remove icon on the toolbar or from the context menu. If an object has multiple dependencies, click it again until the arrow you want to remove is highlighted.
Related concepts:
“Dependencies” on page 28
Controlling processing using dependencies

Creating cross dependencies

To add a cross dependency to a local job on a job that is defined on a remote engine, you must define a normal dependency for your local job on a shadow job that:

- Points to the remote job on which you want to create the cross dependency
- Is defined on a local workstation of remote engine type, that points to the engine where the remote job is defined.

To define the cross dependency, perform the following steps:

1. **Define a remote engine workstation**
 On a remote engine workstation you can run only shadow jobs. As a prerequisite for creating a remote engine workstation, you must ensure that an HTTP or HTTPS destination to communicate with the remote engine exists. The name of this destination must be specified in the remote engine workstation definition.
 a. Click Scheduling Environment > Design > Create Workstations.
 b. Select a z/OS engine from the list and click Create Workstation.
 c. Specify the workstation attributes, selecting Remote engine as Workstation Type. For more details about the options to select, see the online help by clicking the question mark located at the top right corner of the panel.

2. **Define a shadow job**
 It runs on the remote engine workstation and must contain the key values to identify the remote job.
 a. Select Workload > Design > Create Workload Definitions to define a job of type Shadow Job. The shadow job can be defined either on a distributed engine (created as an independent object) or on a z/OS engine (created within an existing job stream.)
 b. Specify the new job either as a Shadow Job Distributed or as a Shadow Job z/OS, depending on the type of remote engine on which the remote job is scheduled to run. For more details about the attributes to select, see the online help by clicking the question mark located at the top right corner of the panel.

 Shadow jobs can be added to the plan by the plan creation process or dynamically at run time. The shadow job scheduled time is used to identify the job instance in the remote engine plan.

3. **Add the shadow job as a dependency of the local job**
 The dependency can be internal (distributed only) or external. In the Details view, right-click the local job and use the context menu to add the shadow job as a dependency.

 As soon as the shadow job status satisfies the dependency rule, the dependency of the local job on the shadow job is resolved, and the cross dependency for the local job on the remote job is also resolved.

For more information about cross dependencies, see the sections about defining and managing cross dependencies in [Tivoli Workload Scheduler User’s Guide and Reference](#) and in [Tivoli Workload Scheduler for z/OS Managing the Workload](#).
Creating SAP jobs

You can create Tivoli Workload Scheduler job definitions that map to jobs that already exist on SAP systems. The job definitions can reference the following types of SAP jobs:

- Standard R/3
- Business Warehouse Process Chains
- Business Warehouse InfoPackages

To create Tivoli Workload Scheduler job definitions for existing SAP jobs, perform the following steps:

1. Click Workload > Design > Create Workload Definitions.
2. In the Workload Designer, from the Working List pane, click New > Job Definition > SAP Job Definition.
3. In the Workspace pane, specify the properties for the job using the General, Task, Affinity, and Recovery Options tabs.
4. Click Save to add the Workload Broker job definition to the Tivoli Workload Scheduler database.

You can also create and save Standard R/3 jobs directly on the remote SAP system, as you would do from the SAP graphical user interface. To create Standard R/3 jobs on the SAP system, perform the following steps:

1. Click Workload > Design > List Jobs on SAP.
2. In the Filter, select Standard R/3 Job and specify the workstation name. This parameter is mandatory because it identifies the remote SAP system.
3. Click Display to view a list of the Standard R/3 jobs for the specified workstation.
4. Click New to create a new Standard R/3 job and enter the required information in the R/3 Job Definition and R/3 steps tabs.
5. Click OK to save the job on the SAP system.

Creating job types with advanced options

You can define job types with advanced options both for the distributed and the z/OS environment, by selecting the appropriate engine. The job types with advanced options are specific job types you use to perform operations on external applications.

You can define job types with advanced options without having specific skills on the applications where the job runs. The following job types are available:

File transfer jobs
- Transfer files to and from a server reachable using FTP, SSH, or other protocols.

Database jobs
- Perform queries, SQL statements, and jobs on a number of databases,
including custom databases. You can also create and run stored procedures on DB2, Oracle, and MSSQL databases.

MSSQL jobs
Run a Microsoft SQL job.

Web services jobs
Call a web service.

Java jobs
Run a Java class

J2EE jobs
Allow Java applications in the same network to send and receive messages from and to a JMS destination.

Executable jobs
Run a script or command with advanced options, such as redirecting standard input and standard output to a file.

XA jobs
Extend job scheduling functions of Tivoli Workload Scheduler to other systems and applications using access methods. The access methods communicate with the external system to start the job and return the status of the job. The following access methods are available:
- Oracle E-Business Suite
- PeopleSoft
- SAP
- MVS
- Custom methods

IBM i jobs
Run a command on IBM i systems

Most job types include additional operations which vary depending on the job type to help you define and schedule the job correctly. For example, you can use these job-specific options to check for the connection to the database when defining a database job or to retrieve the list of available operations for a web service when defining a web service job. If you try to perform job-specific options on a dynamic agent, version 8.5.1, fix pack 1, an error message is returned because the options are not supported, but the job can be scheduled correctly.

In the distributed environment, you define job types with advanced options using the Dynamic Workload Console connected to a distributed engine or the composer command. For more information about defining job types with advanced options using the composer command, see *Tivoli Workload Scheduler User's Guide and Reference*.

In the z/OS environment, you define job types with advanced options using the Dynamic Workload Console connected to a z/OS engine or the JOBREC statement. For more information about defining job types with advanced options using the JOBREC statement, see the section about defining a job in the JOBLIB data set in *Tivoli Workload Scheduler for z/OS Scheduling End-to-end with z-centric Capabilities*.

In both environments, you can use the related configuration files to define options for some job types with advanced options. For more information, see the section
about configuring to schedule job types with advanced options in *Tivoli Workload Scheduler Administration* and in *Tivoli Workload Scheduler for z/OS Scheduling End-to-end with z-centric Capabilities*.

In addition, you can create custom plug-ins to implement your own job types with advanced options for applications not supported by Tivoli Workload Scheduler. For more information about how to create custom plug-ins, see the *Tivoli Workload Automation Developer’s Guide*.

You can schedule job types with advanced options only on dynamic agents, pools, and dynamic pools. If you schedule the job on a dynamic agent, version 8.5.1 fix pack 1,

This procedure describes how to create a file transfer job in both the distributed and z/OS environments. The procedure for creating other job types is similar, but each job type contains job-specific options. For more information about each job type, see the Dynamic Workload Console online help. To create a file transfer job, perform the following steps:

1. **Install a number of dynamic agents and add the Java runtime**
 To install dynamic agents, run the installation program. You can install the dynamic agent during the full installation of Tivoli Workload Scheduler or in a stand-alone installation of just the agent. During the installation, you have the option of adding the Java runtime to run job types with advanced options, both those types supplied with the product and the additional types implemented through the custom plug-ins.

 Follow the installation wizard to complete the installation. See the section about installation options in *Tivoli Workload Scheduler Planning and Installation* for descriptions of the installation parameters and options.

2. **Organize the dynamic agents in pools and dynamic pools.**
 Pools and dynamic pools help you organize the environment based on the availability of your workstations and the requirements of the jobs you plan to run.

 a. In the console navigation tree, expand Scheduling Environment > Design and click Create Workstations.

 b. Select a distributed or z/OS engine. The workstations you can create vary depending on the engine type you select.

 c. Select the workstation type you want to create.

 * To create a pool, define the dynamic agents you want to add to the pool and the workload broker workstation where the pool is hosted.

 * To create a dynamic pool, specify the requirements that each dynamic agent must meet to be added to the dynamic pool.

3. **Grant the required authorization for defining job types with advanced options.**
 The Tivoli Workload Scheduler administrator has to grant specific authorizations in the security file to allow the operators to create job types with advanced options.

 a. In the distributed environment, perform the following steps:

 a. Navigate to the TWA_home/TWS directory from where the dumpsec and makesec commands must be run.

 b. Run the dumpsec command to decrypt the current security file into an editable configuration file. For more information, see the section about dumpsec in *Tivoli Workload Scheduler Administration*.

Chapter 8. Creating and Editing Objects in the Database 75
c. Add display and run access to the workstation, as follows:
 – If the operation is performed on the Tivoli Workload Scheduler Connector, display and run access is required on the CPU corresponding to the workstation where the job is created.
 – If the operation is performed on the workstation where the job runs, display access is required on the workload broker workstation.

 For more information, see the section about configuring the security file in Tivoli Workload Scheduler Administration.

d. Close any open conman user interfaces using the exit command.

e. Stop any connectors on systems running Windows operating systems.

f. Run the makesec command to encrypt the security file and apply the modifications. For more information, see the section about makesec in Tivoli Workload Scheduler Administration.

g. If you are using local security, the file is immediately available on the workstation where it has been updated.
 1) If you are using a backup master domain manager, copy the file to it.
 2) Distribute the centralized file manually to all fault-tolerant agents in the network (not standard, extended, or broker agents), and store it in the TWA_home/TWS directory.
 3) Run JnextPlan to distribute the Symphony file that corresponds to the new security file.

4. Define a job with advanced options.
 a. In the console navigation tree, expand Workload > Design and click Create Workload Definitions.
 b. Specify an engine name, either distributed or z/OS. The Workload Designer is displayed. Job types and characteristics vary depending on whether you select a distributed or a z/OS engine.
 c. In the Working List panel, select New > Job Definition > FileTransfer. The properties of the job are displayed in the right-hand panel for editing.
 d. In the properties panel, specify the attributes for the job definition you are creating.
 e. Click Save to save the job definition in the database.

Related concepts:
 “Job” on page 24
 “Workstation” on page 17

Creating Dynamic Workload Broker objects

You can manage Dynamic Workload Broker jobs in a Tivoli Workload Scheduler environment by creating special workstations and job definitions.

Using the Dynamic Workload Console you can:
To create a Dynamic Workload Broker workstation, perform the following steps:

1. Click **Scheduling Environment > Design > Create Workstations**.
2. Select a distributed engine from the list and click **Go**.
3. In the Workstations Properties panel, specify the following fields. The values you specify here must match the values specified during the installation of the Dynamic Workload Broker component. You can retrieve them from the BrokerWorkstation.properties configuration file.
 - **Name**: It is the value specified in the **TWS Agent name** field.
 - **Workstation type**: Select **Workload Broker** from the available workstation types.
 - **Node Name**: The host name of the computer where the Tivoli Workload Scheduler master is installed.
 - **TCP/IP port**: The port number you specified when installing the Tivoli Workload Scheduler master. It is the value specified in the **TWS Agent Port** field.

4. Click **Save** to add the workstation to the database.

You can create Tivoli Workload Scheduler job definitions that map to Dynamic Workload Broker jobs, and submit and monitor the job status. To create a new Workload Broker job definition, perform the following steps:

1. Click **Workload > Design > Create Workload Definitions**.
2. In the Workload Designer, from the Working List pane click **New > Job Definition > Workload Broker Job Definition**.
3. In the Workspace pane, specify the properties for the job using the General, Task, Affinity, and Recovery Options tabs.
4. Click **Save** to add the Workload Broker job definition.

Related concepts:
- “Workstation” on page 17
- “Workload Broker job definition” on page 39

Creating an event rule

Use an event rule to specify a predefined set of actions in response to events that occur on the nodes where Tivoli Workload Scheduler runs. When one or more defined events occurs, you can specify which actions must be performed.

To create an event rule definition, perform the following steps:
1. Make sure you have the required authorizations granted as Tivoli Integrated Portal user, and in the Tivoli Workload Scheduler security file. For more information about security settings, see "Event management configuration" on page 12. Each time you create or modify an event rule, the corresponding object in the database is automatically locked. To release an object when you close the panel, click Close or the close button . You can unlock an event rule that you own by using the Unlock command.

2. From the portfolio, expand Workload > Design and click Create Event Rules.

3. In the Engine field, specify the engine (this must be either the master domain manager or a node installed as backup master domain manager but not necessarily belonging to the master domain) where you want to run the event rule and click Go. Only after you have selected an engine connection, is the remainder of the panel displayed. If you have only one engine defined, it is displayed by default and the whole panel is displayed.

 Note: When you change the engine connection, the available events and actions are also changed and the list of actions and events you had previously selected is reset. When you save your changes or select a different tab, a warning message is issued to inform you of the reset.

 The Event Rule Editor panel displays the following main sections relating to:
 - General Information
 - Events
 - Actions

 Click the header bar of each section to minimize or expand it.

4. In the General Information section, enter the required information. All mandatory fields have a yellow background and are marked by an asterisk.

 Note: Every time you modify and save any of these settings, the event rule (if not in Draft status) is newly deployed, and all possible events that were collected before the new deployment are ignored.

 Rule name
 Enter a name for the rule definition. It is a mandatory field with a maximum length of 40 characters. Blanks and special characters are not supported, except for minus (-) and underscore (_) characters. If you enter invalid characters, the field becomes red and the rule saving fails with an error.

 Description
 A generic descriptive text for the rule, with a maximum length of 120 characters.

 Draft
 When an event rule is in Draft status, it is neither deployed nor activated. When the event rule is not in Draft status, it is eligible to be deployed (automatically or manually, according to your deployment policy) and activated. As a result, actions are started whenever all the defined events take place, within the specified validity period. When you change a rule status into Draft or Not Draft, the rule goes respectively into Deactivation Pending or Activation Pending internal status.

 Use the following options to specify time settings for the rule. The rule is active in the specified time zone, within the specified validity period during the days and hours defined.
Time zone
Select a time zone from the list. It is the time zone according to which the rule is active (regardless of the engine time zone). If no time zone is specified, the engine time zone is used by default.

Valid from...Valid to
Enter the time period during which the rule is valid. If the conditions specified in the rule are satisfied within this time period, the defined actions are run. You can also specify only one value, leaving the other field blank. Blank fields are considered as infinite.

Daily start/Daily end
It indicates the hours during which the rule is active, every day during the validity period specified. You can specify only one value, leaving the other field blank. The value of a blank field is considered midnight. You can also enter time values that cross midnight. For example, you can specify: a start time of 7 p.m. and an end time of 6 a.m. In this case the rule is active 24 hours a day, except from 7 p.m. to 6 a.m. everyday, for all the validity period.

5. In the **Events** section, select the events you want to monitor:
 a. Each item of the list displayed on the left pane represents a category of events. Click an event category to view all the events belonging to it.
 b. Click an event to automatically add it as a new box in the event section on the right pane. Within each of the boxes representing an event, click:

 ☰
 To open a new window listing the event properties and details.

 ☐
 To remove the event from the list.

 ◀ ◁
 The left or the right arrow at the bottom of the box to change the order in which the events occur. This is important when you define, within the event rule, a sequence of events.

 c. In the **Properties** section, specify the event properties.
 The following list describes all the categories of events and their properties:

 Note: PDF users, the parameter tables listed below are html files referenced by the PDF. They are not saved locally with the PDF from the infocenter. You must first view them on the infocenter before saving or printing.

 Tivoli Workload Scheduler objects related events
 All the events relating to scheduling objects such as jobs, job streams, workstations, and prompts. This type of event is described in more detail in [Tivoli Workload Scheduler plan events](#).

 File monitoring events
 Events relating to changes to files and logs. This type of event is described in more detail in [File monitor](#).

 Application monitoring events
 Events relating to Tivoli Workload Scheduler processes, file system, and message box. This type of event is described in more detail in [Application Monitor](#).

 Generic events
 Events used to manage custom events sent by external applications,
you can write an XML file to define a custom event. A schema is provided to validate your XML, as well as a basic event template that you can use as a starting point. For more information, see the schemas for generic events. Events of this category are:

- Changes in a resource of the operating system, such as processes and memory
- Email received

In the Events toolbar, choose an icon to specify the relationship between the events. The corresponding response actions are started only when the events take place according to this relationship. Click:

- [] To specify one single event. Select this icon if you want a response action to start whenever the specified event occurs within the defined time period.

- [] To specify a set of events, regardless of the sequence in which they occur. Select this icon if you want a response action to start if all the specified events occur, regardless of the order, within the defined time period.

- [] To specify various events in sequence. Select this icon if you want a response action to start if all the specified events occur in sequence, within the defined time period.

e. Optionally, in the event toolbar, you can specify a **Timeout period**. This is a further condition that can be set for the rule, only if you selected a set or sequence of two or more events. When you set the timeout option, the specified period is calculated starting from the first event that occurs; if all the remaining events occur within the specified timeout, the response actions are started. If the timeout period expires before all the specified events have taken place, the defined timeout actions start.

f. Optionally, in the **Correlate events on:** section, you can select some common properties. These properties are common to the events selected. You can use them to create a correlation to further identify the events to monitor. The properties common to the selected events are automatically detected and listed in the right hand part of the event section. Select the properties you want to use for event correlation.

For example, if you want to receive an email every time a workstation remains unlinked for more than 10 minutes, you can correlate the following settings:

Event 1
Whatever workstation is unlinked.

Event 2
Whatever workstation is linked.

Event correlation
Start the action only if the property `workstation_name` is the same in Event 1 and Event 2.

Timeout
The two events must take place within 10 minutes of each other.
Action

Send an email to the administrator.

6. In the **Actions** section:
 a. Select the **Actions** tab. The number displayed in this tab, if any, represents the actions that have already been defined.
 b. In the left pane of this section, select the actions you want to start. Click an action to automatically add it to the action section on the right. Within each of the boxes representing an action click:

 - In the new panel that lists the action properties. Hover with the cursor over the fields to see an explanation about the action and its properties.
 - To remove the action from the list.
 c. In the **Properties** section, specify the action properties. The following list describes all the actions and their properties:

Operational actions

Actions that cause a change in the status of one or more Tivoli Workload Scheduler objects. Actions in this category include:
- Submitting jobs or job streams
- Submitting ad hoc jobs
- Replying to a prompt

This type of action is described in more detail in [Tivoli Workload Scheduler actions](http://www.ibm.com/support/docview.wss?uid=swg21232360).

Notification actions

Actions such as sending emails or SMS, forwarding Tivoli Enterprise Console events, and writing messages in a logging repository. This type of action is described in more detail in [Mail sender plug-in](http://www.ibm.com/support/docview.wss?uid=swg21232360), [Message logger](http://www.ibm.com/support/docview.wss?uid=swg21232360), and [Tivoli Enterprise Console event forwarder](http://www.ibm.com/support/docview.wss?uid=swg21232360).

Generic actions

Actions performed by running a command. This type of action is described in more detail in [Generic action plug-in](http://www.ibm.com/support/docview.wss?uid=swg21232360).

When defining the action properties, you can:
- Click **Variable** to associate the property to one or more variable values. At run time these values are displayed as properties associated to the selected action.
- Only for **TWS Actions**, you can click **Lookup** to select jobs, job streams, and workstations defined in the database.

 d. Optionally, select **Timeout actions** to define a further set of actions to start if the timeout period expires before all the specified events are performed. The number displayed in this tab, if any, represents the actions that have already been defined.

After you have defined events and actions, you can clear the **Draft** check box at the top of the panel and save the rule. The rule definition is then ready to be deployed and remains active according to its validity period, or until you disable it by marking it as **Draft**.
Listing object definitions in the database

The following sections describe how you list the object definitions available in the database.

Listing workload objects

To list all the workload definitions except for event rules, open the Workload Designer as follows:

1. From the portfolio, click **Tivoli Workload Scheduler > Workload > Design > Create Workload Definitions**.
2. In the displayed panel, specify the engine connection you want to use. Only the categories of objects supported by the engine you selected are available.

You can open multiple occurrences of the Workload Designer, but only the following scenarios are supported:

- Same user connected to multiple engines
- Multiple users connected to the same engine.

From the Workload Designer you can use the following views to list objects:

Working List

Use this pane to search for objects in the database. Perform the following steps:

1. Open the **Search** menu and select the object you want to view or modify.
2. In the displayed lookup panel, select the required filtering criteria and click **Search**.
3. From the displayed list, select one or multiple objects and click one of the following action buttons:

 - **Create like**
 To create a new object with the same properties of the selected object.

 - **Edit**
 To modify the properties of the selected objects. When an object is open in edit mode the edit icon is displayed on the right of the object.

 - **Unlock**
 To unlock the selected objects for further actions. When an object is unlocked, it is displayed in read-only mode.

 - **Delete**
 To delete the selected objects from the database.

 - **New**
 To create a new object.
Close To close the currently open object.

All the selected objects are listed in the Working List view. When you select an object from this list, its properties are displayed in the right pane, where you can view or edit them, if you have the required authorization defined in the Tivoli Workload Scheduler security file.

By hovering with the cursor over the icons located on the toolbar, you can see all the actions you can perform on the selected objects.

Quick Open

Use this pane to rapidly open objects from the database. Perform the following steps:

1. Click one of the icons displayed at the top of the pane to select the category of your search. Available categories depend on the engine connection you selected.

2. Refine your search by using some filtering criteria. You can filter by object name by entering the name, or part of it, in the text box, or by using the wildcard. Optionally, you can further filter your search by choosing more filtering criteria from the drop-down menu.

3. Click Search. The list of results is shown up to a maximum of 250 items. If the list is longer, use the filters to refine your search to reduce the number of results.

4. Select one or more objects and click Edit, to modify their properties, or View, to browse their properties.

You can drag the objects in the Quick Open pane and drop them in the Graphical View or you can quickly associate them to the item you are working with, by clicking the Add button. For example, you can search for jobs and automatically add them to the job stream you are editing, or add other objects as dependencies, such as resources or prompts.

Related concepts:

- “Prompt” on page 30
- “File” on page 31
- “Resource” on page 31
- “Calendar” on page 26
- “Windows user” on page 38
- “Workstation class” on page 38
- “Variable table” on page 39

Listing jobs and job streams

To view a list of jobs and job streams available in the database, perform the following steps:

1. From the portfolio, click Tivoli Workload Scheduler > Workload > Design > List Workload Definitions.

2. In the displayed panel, specify your engine connection and the filtering criteria for your query. With distributed engine connections, from the Object type drop-down menu, select the object you want to list.

3. In the Columns section, select the column you want to display in the list of results.

4. Click Display to launch the query.
Listing event rules

To view a list of event rules available in the database, perform the following steps:

1. From the portfolio, click Tivoli Workload Scheduler > Workload > Design > List Event Rules. Or In the portfolio on the left, click Quick Start > New Task... or All Configured Tasks > New.
2. In the Select Task Type panel, select Event Management Task > List Event Rule Definitions and click Next.
3. In the Enter Task Information panel, specify the task name and select the engine connection where you want to run the task. You can run this type of query only in a Tivoli Workload Scheduler distributed environment on either the master domain manager or on a node installed as a backup master domain manager, but not necessarily belonging to the master domain. You can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.
4. Click Next to proceed with task creation or click Finish to complete the creation using the default values and exit without proceeding to the following steps. If you are editing an existing task, properties are organized in tabs.
5. In the Filter Criteria panel, specify some broad filtering criteria to limit the results retrieved by your query. Here you start refining the scope of your query by also considering the amount of information you want to retrieve. You can search for event rule definitions based on their status, validity intervals, or types of events and associated actions.
6. In the Columns Definition panel, select the information you want to display in the table containing the query results. According to the columns you choose here, the corresponding information is displayed in the task results table. For example, for each of the event rule definitions resulting from your query, you might want to see the status, type, or timeframe during which it is valid. You can then drill down into this information displayed in the table and navigate it.
7. In the Create New Task panel, you can see the main details about the task you just created. You can also choose to run the task immediately. In this case, if you have not yet specified an engine connection name, you must do so now. The task is now in the list of your tasks where you can open and modify it. You can find it in the task lists displayed by clicking the following options: All Configured Tasks or Workload > Design > List Event Rules.
8. After running the task, a table is displayed showing a list of event rule definitions, on which you can take several actions, such as setting them as complete or as draft depending whether you want to make them available for deployment.

Listing workstations

To view a list of workstations available in the database, perform the following steps:
1. From the portfolio, click Tivoli Workload Scheduler > Workload > Design > List Workstations.
2. In the displayed panel, specify your engine connection and the filtering criteria for your query.
3. In the Columns section, select the column you want to display in the list of results.
4. Click Display to launch the query.
Chapter 9. Monitoring your Objects in the Plan

To monitor your scheduling environment and workload objects in the plan, read the following sections.

Monitoring the progress of your plan

You can request a graphical view that shows the progress of the current plan on the engines for which you have configured a connection and specified the option to show the engine in the dashboard. To request this graphical view, click Dashboard from the portfolio. The panel opens showing a chart for each engine for which you configured a connection and specified the option to show the engine in the dashboard.

To customize the dashboard refresh time interval for all the engines, open Settings > Manage User Preferences in the portfolio. In the lower part of this panel you can find a section to customize this interval.

Job status

The initial view is a pie chart but optionally you can switch to the bar chart by clicking the icon in the toolbar below. The pie is divided into slices of different colors that indicate, as the bars of the bar chart, the current statuses of jobs in the plan. Below the chart, a legend identifies the status that is mapped to each color and indicates the number of jobs in the plan that currently have that status. For more details about possible statuses and their meaning depending on the operating system, see:

- Distributed "Status description and mapping for distributed jobs" on page 141
- z/OS "Status description and mapping for z/OS job streams" on page 147

Plan progress bar chart

The progress bar displayed in this section shows the progress of your plan. Successful jobs are represented by the green progress bar.

The progress bar view includes a subset of the job statuses included in the pie chart view. The following statuses are included:

- Successful
• Error

You can work with each pane in the following ways:

Change chart view
To switch between pie chart and bar chart view, click the graphic icon in the toolbar below the graphic:

View details about the jobs that have a particular status
Click the hyperlinks to run a query to show details about the jobs with the selected status. The results of the query are displayed in a separate tab of Dynamic Workload Console. With engines version 8.6 and later, in case of rerun jobs, only the last rerun job instance is displayed in the query results.

View details about critical jobs
Critical jobs can be displayed only on engines on which the critical path feature is available and enabled. Click the critical job icon to view the section that displays the risk level of critical jobs on each engine. Click the hyperlinks to run a query on all the critical jobs with that risk level, running on that engine. The results of the query are displayed in a separate tab of Dynamic Workload Console.

Critical jobs can have one of the following risk levels:

- **High Risk.** Critical jobs with high risk of missing their deadline. Their estimated end time is later than their deadline. This is probably because some predecessors have missed their deadline.
- **No Risk.** Critical jobs with no risk of missing their deadline. Their estimated end time is before their deadline. No action has to be taken.
- **Potential Risk.** Critical jobs with potential risk of missing their deadline. This is probably because some predecessors are late or are having a long duration process.

Related concepts:
“Plans” on page 41

Related tasks:
Chapter 7, “Accessing the Console from Your Mobile Device,” on page 59
Use your mobile device to monitor your jobs by accessing the dashboard and navigating to job details and log.

Monitor tasks
Create and run *monitor tasks* to obtain a list of objects on which you can perform monitoring and control actions. Creating and running a monitor task means creating a filter and running a search on it. This search returns a list of objects whose attributes satisfy the criteria that are defined in the task. From this list, you can click an item to view its properties or to run actions against it. In this way you can easily change some settings and the processing of the plan.
Monitoring your Scheduling Environment

To monitor workstations and domains in your environment, you create and run tasks.

Note: You must create a connection to a remote Tivoli Workload Scheduler engine, before you can run tasks on it to obtain data.

When you create a task, you are actually defining a query where you specify multiple criteria to search for items and to display the search results. You can then save, reuse, and share this task with other users, and modify it at any time. When you run the task, you are actually running the query on the plan to retrieve the information according to the filters and level of detail you specified when you created the task.

Note: You can also save your tasks as one of your favorite bookmarks of your browser. To do this, from the panel displaying your task results, click the icon to launch your task directly from the browser, just as you do when accessing any other website.

To create a task, perform the following procedure:
1. From the Quick Start panel, click New Task.
2. In the Select Task Type panel, select the task you want to create, and click Next.
 You must select a task type to make the corresponding list active.
3. Follow the procedure relating to the specific task you are creating.

Each task you create and save is included under the All Configured Tasks menu.

Related concepts:
“Scheduling objects” on page 23

Creating a task to Monitor Workstations

To create a Monitor Workstations task, perform the following steps.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

1. In the portfolio on the left, click Quick Start > New Task... or All Configured Tasks > New.
2. In the Select Task Type panel, under Monitor Task, select Monitor Workstations and click Next.
3. In the Enter Task Information panel, define the type of scheduler engine where you want to run the task. You can select a specific engine, if available in the drop-down list, or you can select Ask when needed and choose the engine at a later time. Remember that the engine name must be specified before running the task. Depending on the engine type you choose, the filtering criteria and the results you can display are different. You can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.
4. Click **Next** to proceed with task creation or click **Finish** to complete the creation using the default values and exit without proceeding to the following steps. If you are editing an existing task, properties are organized in tabs.

5. In the General Filter panel, specify some broad filtering criteria to limit the results retrieved by your query. Here you start refining the scope of your query by also considering the amount of information you want to retrieve. Optionally, you can customize how often to refresh the information in the results table by specifying the refresh interval in seconds. If the periodic refresh is enabled for a task, when the task runs, the refresh time control options are shown in the results table. You can also set or change the periodic refresh interval directly in the results table. In this case, the value specified at task creation time is temporarily overwritten.

- **Distributed** You can filter the task results based on the workstation and domain names, or part of names (using wildcard characters).
- **z/OS** You can filter the task results based on the workstation types and reporting attributes.

6. In the Columns Definition panel, select the information you want to display in the table containing the query results. According to the columns you choose here, the corresponding information is displayed in the task results table. For example, for all the objects resulting from your query, you might want to see their link statuses, domains, and type, or you might want to see their statuses and the number of jobs successful or running on them. You can then drill down into this information displayed in the table and navigate it.

In the Columns Definition panel, not only can you select the columns for this task results, but you can also specify the columns for secondary queries on:

- **Distributed** jobs, job streams domains, files, and resources. For example, you are creating a task to search for all the workstations of a domain. From the resulting list of workstations, you can navigate to see (secondary query) a list of all the jobs running on each of them.
- **z/OS** jobs. For example, you are creating a task to search for all the virtual workstations that are also fault-tolerant. From the resulting list of workstations, you can navigate to see (secondary query) a list of all the jobs running on each of them.

7. In the Create New Task panel, you can see the main details about the task you just created. You can also choose to run the task immediately. In this case, if you have not yet specified an engine connection name, you must do so now. The task is now in the list of your tasks where you can open and modify it. You can find it in the task lists displayed by clicking the following options: **All Configured Tasks** or **Scheduling Environment > Monitor > Monitor Workstations**.

You have created your task that, when run, creates a list of workstations satisfying your filtering criteria and showing, for each workstation in the list, the information contained in the columns you selected to view.
Creating a task to Monitor Domains

To create a Monitor Domains task, perform the following steps.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

1. In the portfolio on the left, click **Quick Start > New Task...** or **All Configured Tasks > New.**
2. In the Select Task Type panel, under **Monitor Task**, select **Monitor Domains** and click **Next.**
3. In the Enter Task Information panel, define the type of scheduler engine where you want to run the task. You can select a specific engine, if available in the drop-down list, or you can select **Ask when needed** and choose the engine at a later time. Remember that the engine name must be specified before running the task. Depending on the engine type you choose, the filtering criteria and the results you can display are different. You can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.
4. Click **Next** to proceed with task creation or click **Finish** to complete the creation using the default values and exit without proceeding to the following steps. If you are editing an existing task, properties are organized in tabs.
5. In the General Filter panel, specify some broad filtering criteria to limit the results retrieved by your query. Here you start refining the scope of your query by also considering the amount of information you want to retrieve. Optionally, you can customize how often to refresh the information in the results table by specifying the refresh interval in seconds. If the periodic refresh is enabled for a task, when the task runs, the refresh time control options are shown in the results table. You can also set or change the periodic refresh interval directly in the results table. In this case, the value specified at task creation time is temporarily overwritten. You can filter the task results based on the domain name, or part of name (using wildcard characters). You can also configure the automatic refresh of the task results in the table.
6. In the Columns Definition panel, select the information you want to display in the table containing the query results. According to the columns you choose here, the corresponding information is displayed in the task results table. You can then drill down into this information displayed in the table and navigate it. In the Columns Definition panel, not only can you select the columns for this task results, but you can also specify the columns for secondary queries on workstations. Starting from the Monitor Domains task table of result, you can start further queries on the workstations associated to one of the domains in the table; the information to be retrieved with these secondary queries is specified in this panel.
7. In the Create New Task panel, you can see the main details about the task you just created. You can also choose to run the task immediately. In this case, if you have not yet specified an engine connection name, you must do so now. The task is now in the list of your tasks where you can open and modify it.
You can find it in the task lists displayed by clicking the following options: All Configured Tasks or Scheduling Environment > Monitor > Monitor Domains.

You have created your task that, when run, creates a list of domains satisfying your filtering criteria and showing, for each domain in the list, the information contained in the columns you selected to view.

Related concepts:

“Domain” on page 20
The domain.

Monitoring your Workload

To control and manage scheduling activities and objects in plans, you create and run tasks.

Note: You must create a connection to a remote Tivoli Workload Scheduler engine, before you can run tasks on it to obtain data.

You can create the following types of task:

Monitor Task
When you create a Monitor Task, you define a query where you specify multiple criteria to search for items and to display the search results. You can then save, reuse, and share this task with other users, and modify it at any time. When you run the task, you launch the query, according to the filtering criteria, on all the objects associated to the Tivoli Workload Scheduler connection you specified. A list of the objects that satisfy the search criteria is displayed when you run the task. You can view the objects resulting from your query, and their properties, and take actions on some of them.

See also “Monitoring your Scheduling Environment” on page 89 for information about other monitor tasks.

Event Management Task
When you create an Event Management Task you define a query where you specify multiple criteria to search for specific monitoring objects stored on the database and to display the search results. Available monitoring objects are event rules, triggered actions, and operator messages. You can then save, reuse, and share this task with other users, and modify it at any time. When you run the task, you launch the query, according to the filtering criteria, on all the objects associated to the Tivoli Workload Scheduler connection you specified. A list of the objects that satisfy the search criteria is displayed when you run the task. You can view the objects resulting from your query, and their properties, and take actions on some of them.

Report Task
See Chapter 12, “Reporting,” on page 121 for information about this type of task.

To create a task, perform the following procedure:

1. From the Quick Start panel, click New Task.
2. In the Select Task Type panel, select the task you want to create, and click Next.
 You must select a task type to make the corresponding list active.
3. Follow the procedure relating to the specific task you are creating.
Note: You can also save your tasks as one of your favorite bookmarks in your browser. To do this, from the panel displaying your task results, click the add link icon to launch your task directly from the browser, in the same way you do when accessing any other website.

Each task you create and save is included under the All Configured Tasks menu. Saved tasks are also listed under:

Workload > Monitor
For tasks to monitor jobs, critical jobs, and job streams.

Workload > Monitor > Workload Dependencies
For tasks to monitor files, resources, and prompts.

Workload > Monitor > Workload Events
For tasks to monitor event rules, operator messages, and triggered actions.

Related concepts:
“Scheduling objects” on page 23

Event management tasks
You can create and run an event management task by creating a filter and running a search to get information about event management related objects.

The information retrieved when running event tasks is stored in the Tivoli Workload Scheduler databases, therefore, to run event tasks you must be connected to a Tivoli Workload Scheduler engine and must be authorized in the Tivoli Workload Scheduler security file to access those objects in the database.

You can create event management tasks to query for:

Event rule definitions
The template that defines an event rule consists of:
- One or more events, defined with its properties.
- The relationship between the specified events (they can be randomly grouped or listed in chronological order).
- The actions that must be performed when all the event conditions are satisfied.

Event rules
The instance of a rule definition in the plan.

Triggered action
The actual occurrence of an action defined in the event rule and triggered when the event conditions have been satisfied.

Operator messages
The instance of the `MessageLogger` action specified in the event rule definition. It provides information about the result of an event rule instance on a repository stored in the Tivoli Workload Scheduler relational database.
Plan view tasks

You can create and run plan view tasks to obtain a view of a collapsed plan showing its job streams, but hiding its jobs and dependencies. You can use this view to have an overall picture of the plan and how it is structured.

Creating and running a plan view task means creating a filter and running a search on it. This search returns a graphical representation of job streams whose attributes satisfy the criteria that are defined in the task.

From plan view, you can click a job stream to view its properties or to run some actions against it. You can also modify the filtering criteria to display different job streams.

Creating a task to Monitor Jobs

To create a Monitor Jobs task, perform the following steps.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

1. In the portfolio on the left, click Quick Start > New Task... or All Configured Tasks > New.
2. In the Select Task Type panel, under Monitor Task, select Monitor Jobs and click Next.
3. In the Enter Task Information panel, define the type of scheduler engine where you want to run the task. You can select a specific engine, if available in the drop-down list, or you can select Ask when needed and choose the engine at a later time. Remember that the engine name must be specified before running the task. Depending on the engine type you choose, the filtering criteria and the results you can display are different. You can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.
4. Click Next to proceed with task creation or click Finish to complete the creation using the default values and exit without proceeding to the following steps. If you are editing an existing task, properties are organized in tabs.
5. In the General Filter panel, specify some broad filtering criteria to limit the results retrieved by your query. Here you start refining the scope of your query by also considering the amount of information you want to retrieve. Optionally, you can customize how often to refresh the information in the results table by specifying the refresh interval in seconds. If the periodic refresh is enabled for a task, when the task runs, the refresh time control options are shown in the results table. You can also set or change the periodic refresh interval directly in the results table. In this case, the value specified at task creation time is...
temporarily overwritten. You can search for jobs based on their status, on the workstation where they run, or the job streams they belong to. For example, you can look for all the jobs that did not complete successfully on the specified workstations, or you can look for all the jobs with the same owner and that have a specific priority level and an immediate restart option set.

6. In the Time Data Filter panel, specify a time range to limit your search to jobs or job streams that ran within a specific time period.

 Note: If no date and time is specified then the jobs and job streams are not filtered based on their processing time.

7. In the Dependencies Filter panel, you can filter your results based on the dependencies they have. Only jobs that have the dependencies you specify in this panel are included in the query results. Dependencies can be jobs, job streams, resources, files, or prompts.

8. In the Columns Definition panel, select the information you want to display in the table containing the query results. According to the columns you choose here, the corresponding information is displayed in the task results table. For example, for all the objects resulting from your query, you might want to see their statuses, the workstations where they ran, when they ran, and when they were scheduled to run. You can then drill down into this information displayed in the table and navigate it. In the Columns Definition panel, not only can you select the columns for this task results, but you can also specify the columns for secondary queries on job streams, jobs on critical network, and workstations. Starting from the Monitor Jobs task table of results, you can start further queries on the secondary objects associated to one of the jobs in the table; the information to be retrieved with these secondary queries is specified in this panel.

9. In the Create New Task panel, you can see the main details about the task you just created. You can also choose to run the task immediately. In this case, if you have not yet specified an engine connection name, you must do so now. The task is now in the list of your tasks where you can open and modify it. You can find it in the task lists displayed by clicking the following options: All Configured Tasks or Workload > Monitor > Monitor Jobs.

You have created your task that, when run, creates a list of jobs satisfying your filtering criteria and showing, for each job in the list, the information contained in the columns you selected to view.

Related concepts:

“Job” on page 24

Related reference:

“Status description and mapping for distributed jobs” on page 141

“Status description and mapping for z/OS jobs” on page 143

Creating a task to Monitor Critical Jobs

You can use this task to retrieve all the jobs that were marked as Critical during their job stream creation. If it is critical that a job must be completed before a specific time, you can flag it as critical when you add it to a job stream using the Workload Designer. Jobs can also be flagged as critical by including the critical keyword to the job statement when you create or modify a job stream using the composer command line. For more details about this, see: Tivoli Workload Scheduler User's Guide and Reference. You can then use this list of critical jobs to control them, ensuring that nothing prevents them from completing on time.
Starting from the list of critical jobs, you can drill down and take actions on their predecessors (internal and external), which might be located far away in the whole critical job network.

You can retrieve the following lists of predecessors to act on them (for example, by releasing dependencies or answering prompts) if they compromise the critical job success:

Critical Path
- Critical job predecessors with the least slack time (delay allowed to let the critical job complete on time).

Hot List
- The hot list contains a subset of critical predecessors that can cause a delay of the critical job because they are in such states as error, late, fence (for distributed systems only), suppressed (for distributed systems only) or long duration. If these jobs do not complete successfully on time, they prevent the critical job from completing on time. In the hot list view, you can quickly see which jobs need you to take appropriate recovery actions. Jobs included in the Hot List are not necessarily included in the Critical Path.

To create a Monitor Critical Jobs task, perform the following steps.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

1. In the portfolio on the left, click **Quick Start > New Task...** or **All Configured Tasks > New**.
2. In the Select Task Type panel, under **Monitor Task**, select **Monitor Critical Jobs** and click **Next**.
3. In the Enter Task Information panel, define the type of scheduler engine where you want to run the task. You can select a specific engine, if available in the drop-down list, or you can select **Ask when needed** and choose the engine at a later time. Remember that the engine name must be specified before running the task. Depending on the engine type you choose, the filtering criteria and the results you can display are different. You can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.
4. Click **Next** to proceed with task creation or click **Finish** to complete the creation using the default values and exit without proceeding to the following steps. If you are editing an existing task, properties are organized in tabs.
5. In the General Filter panel, specify some broad filtering criteria to limit the results retrieved by your query. Here you start refining the scope of your query by also considering the amount of information you want to retrieve. Optionally, you can customize how often to refresh the information in the results table by specifying the refresh interval in seconds. If the periodic refresh is enabled for a task, when the task runs, the refresh time control options are shown in the results table. You can also set or change the periodic refresh interval directly in the results table. In this case, the value specified at task creation time is temporarily overwritten. You can search for jobs based on their status, on the
workstation where they run, or on the job streams they belong to. For example, you can look for all the jobs that have a specific priority level and a high risk of missing their deadlines.

Note: The Monitor Critical Jobs task searches only for jobs that have been marked as critical.

Depending on what you choose as Risk Level, one or more of the following alert levels is shown in the list of critical jobs:

- Critical jobs at high risk. This icon means that the critical job estimated end is beyond the job deadline. If nothing changes, the critical job is going to miss its deadline. The critical job estimated end is dynamically recalculated.

- Critical jobs at potential risk. This icon means that the critical job estimated end has not yet passed the job deadline. However, the critical job has some predecessors in late, long duration, or error state. For distributed systems, the late condition can also be due to priority, limit, or fence values that are preventing jobs from running. If nothing changes, there is the possibility that the critical job will miss its deadline.

- Critical job is on track. If nothing changes, it will meet its deadline.

6. In the Time Data Filter panel, specify a time range to limit your search to jobs or job streams that ran within a specific time period. If no date and time are specified, the jobs and job streams are not filtered based on their processing time.

7. In the Columns Definition panel, select the information you want to display in the table containing the query results. According to the columns you choose here, the corresponding information is displayed in the task results table. For example, for all the objects resulting from your query, you might want to see their statuses, the workstations where the ran, when they ran, and when they were scheduled to run. You can then drill down into this information displayed in the table and navigate it. In the Columns Definition panel, not only can you select the columns for this task results, but you can also specify the columns for secondary queries on jobs, job streams, jobs in critical network, and workstations. Starting from the Monitor Critical Jobs results, you can launch further queries on secondary objects associated to the jobs in the table. The information you can retrieve with these queries is specified in this panel. One of these secondary queries retrieves the list of jobs in the critical network, which includes all the critical job predecessors. The critical path is part of the critical network. The columns set for the list of jobs in the critical network are displayed as details of all the critical jobs Predecessors, and in the Hot List and Critical Path views. All these views can be launched by using the corresponding buttons from the Monitor Critical Jobs table of results.

8. In the Create New Task panel, you can see the main details about the task you just created. You can also choose to run the task immediately. In this case, if you have not yet specified an engine connection name, you must do so now. The task is now in the list of your tasks where you can open and modify it. You can find it in the task lists displayed by clicking the following options: All Configured Tasks or Workload > Monitor > Monitor Critical Jobs.
You have created your task that, when run, creates a list of jobs satisfying your filtering criteria and showing, for each job in the list, the information contained in the columns you selected to view.

You can find a workload service assurance scenario in the [Tivoli Workload Scheduler](#) User’s Guide and Reference about using this feature to monitor critical jobs.

Related concepts:
- “Job” on page 24
- “Workload service assurance” on page 47

Related reference:
- “Status description and mapping for distributed jobs” on page 141
- “Status description and mapping for z/OS jobs” on page 143

Related information:
- “Using workload service assurance to monitor z/OS critical jobs” on page 129

Creating a task to Monitor Jobs on Multiple Engines

If you need to combine queries about jobs running on multiple distributed and z/OS engines, you can use Monitor Tasks on Multiple Engines. For example, it might be useful to run a query to find all the jobs in error in your environment by running a single task.

To create this task, perform the following steps.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

1. In the portfolio on the left, click **Quick Start > New Task...** or **All Configured Tasks > New**.
2. In the Select Task Type panel, click **Monitor Tasks on Multiple Engines > Monitor Jobs** and click **Next**.
3. In the Enter Task Information panel, specify a name for the task you are creating (a default name is provided) and define the Tivoli Workload Scheduler engines where you want to run the task. The task is run following the specified engine sequence. In this panel, you can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.
4. Click **Next** to proceed with task creation or click **Finish** to complete the creation using the default values and exit without proceeding to the following steps. If you are editing an existing task, properties are organized in tabs.
5. In the General Filter panel, specify some broad filtering criteria to limit the results retrieved by your query. Here you start refining the scope of your query by also considering the amount of information you want to retrieve. Optionally, you can customize how often to refresh the information in the results table by specifying the refresh interval in seconds. If the periodic refresh is enabled for a task, when the task runs, the refresh time control options are shown in the results table. You can also set or change the periodic refresh interval directly in the results table. In this case, the value specified at task creation time is temporarily overwritten. You can search for jobs based on their identifier, on the job streams they belong to, or on their status, scheduled time, and priority. For example, you can look for all the jobs that did not complete successfully and were scheduled to run within a specific time period.
6. In the Columns Definition panel, select the information you want to display in the table containing the query results. According to the columns you choose here, the corresponding information is displayed in the task results table. For example, for all the objects resulting from your query, you might want to see their statuses, the job streams they belong to, when they were scheduled to run, and the engines on which they ran. You can then drill down into this information displayed in the table and navigate it.

7. In the Create New Task panel, you can see the main details about the task you just created. Here you can also choose to launch the task immediately. The task is now in the list of your tasks where you can open and modify it. You can find it in the task lists displayed by clicking the following options: All Configured Tasks or Workload > Monitor > Monitor Jobs.

You have created your task that, when run, creates a list of jobs satisfying your filtering criteria and showing, for each job in the list, the information contained in the columns you selected to view.

To view connection status information and statistical information about the engines against which the task was run, click the statistical icon on the table toolbar.

A pie chart showing the number of query results and job status is displayed for each engine on which the task ran successfully. Click the pie sections to see further details. If the task did not run successfully on one or more engines, you see a message containing details about the errors.

Related concepts:
- “Job” on page 24
- “Monitoring jobs running on multiple engines” on page 131

Related reference:
- “Status description and mapping for distributed jobs” on page 141
- “Status description and mapping for z/OS jobs” on page 143

Creating a task to Monitor Job Streams

To create a Monitor Job Streams task, perform the following steps.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

1. In the portfolio on the left, click Quick Start > New Task... or All Configured Tasks > New.
2. In the Select Task Type panel, under Monitor Task, select Monitor Job Streams and click Next.
3. In the Enter Task Information panel, define the type of scheduler engine where you want to run the task. You can select a specific engine, if available in the drop-down list, or you can select Ask when needed and choose the engine at a later time. Remember that the engine name must be specified before running the task. Depending on the engine type you choose, the filtering criteria and the results you can display are different. You can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.
4. Click **Next** to proceed with task creation or click **Finish** to complete the creation using the default values and exit without proceeding to the following steps. If you are editing an existing task, properties are organized in tabs.

5. In the General Filter panel, specify some broad filtering criteria to limit the results retrieved by your query. Here you start refining the scope of your query by also considering the amount of information you want to retrieve. Optionally, you can customize how often to refresh the information in the results table by specifying the refresh interval in seconds. If the periodic refresh is enabled for a task, when the task runs, the refresh time control options are shown in the results table. You can also set or change the periodic refresh interval directly in the results table. In this case, the value specified at task creation time is temporarily overwritten. You can search for job streams based on their scheduled run time, status, or the workstation where they run. For example, you can look for all the job streams with a given priority level that remained in waiting state on a set of workstations, or you can look for all the job streams with a specific group, a given priority level, and whose most critical job has a specified duration.

6. In the Time Data Filter panel, specify a time range to limit your search to jobs or job streams that ran within a specific time period.

Note: If no date and time is specified, then the jobs and job streams are not filtered based on their processing time.

7. **Distributed** In the Dependencies Filter panel, you can filter your results based on the dependencies they have. Only job streams that have the dependencies you specify in this panel are included in the query results. Dependencies can be jobs, job streams, resources, files, or prompts.

8. In the Columns Definition panel, select the information you want to display in the table containing the query results. According to the columns you choose here, the corresponding information is displayed in the task results table. For example, for all the objects resulting from your query, you might want to see their statuses, the workstations where the ran, when they ran, and when they were scheduled to run. You can then drill down into this information displayed in the table and navigate it. In the Columns Definition panel, not only can you select the columns for this task results, but you can also specify the columns for *secondary* queries on jobs and workstations (for distributed job streams only). Starting from the Monitor Job Streams task table of result, you can start further queries on jobs and workstations associated to one of the job streams in the table; the information to be retrieved with these secondary queries is specified in this panel.

9. In the Create New Task panel, you can see the main details about the task you just created. You can also choose to run the task immediately. In this case, if you have not yet specified an engine connection name, you must do so now. The task is now in the list of your tasks where you can open and modify it. You can find it in the task lists displayed by clicking the following options: **All Configured Tasks** or **Workload > Monitor > Monitor Job Streams**.

You have created your task that, when run, creates a list of job streams satisfying your filtering criteria and showing, for each job stream in the list, the information contained in the columns you selected to view.
Creating a task to Monitor Job Streams on Multiple Engines

If you need to combine queries about job streams running on multiple distributed and z/OS engines, you can use Monitor Tasks on Multiple Engines. For example, it might be useful to run a query to find all the job streams running in your environment by running a single task.

To create this task, perform the following steps.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

1. In the portfolio on the left, click Quick Start > New Task... or All Configured Tasks > New.
2. In the Select Task Type panel, click Monitor Tasks on Multiple Engines > Monitor Job Streams and click Next.
3. In the Enter Task Information panel, specify a name for the task you are creating (a default name is provided) and define the Tivoli Workload Scheduler engines where you want to run the task. The task is run following the specified engine sequence. In this panel, you can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.
4. Click Next to proceed with task creation or click Finish to complete the creation using the default values and exit without proceeding to the following steps. If you are editing an existing task, properties are organized in tabs.
5. In the General Filter panel, specify some broad filtering criteria to limit the results retrieved by your query. Here you start refining the scope of your query by also considering the amount of information you want to retrieve. Optionally, you can customize how often to refresh the information in the results table by specifying the refresh interval in seconds. If the periodic refresh is enabled for a task, when the task runs, the refresh time control options are shown in the results table. You can also set or change the periodic refresh interval directly in the results table. In this case, the value specified at task creation time is temporarily overwritten. You can search for job streams based on their identifier, status, scheduled time, and priority. For example, you can look for all the job streams that are currently running and were scheduled to run within a specific time period.
6. In the Columns Definition panel, select the information you want to display in the table containing the query results. According to the columns you choose here, the corresponding information is displayed in the task results table. For example, for all the objects resulting from your query, you might want to see their statuses, when they were scheduled to run, and the engines on which they ran. You can then drill down into this information displayed in the table and navigate it.
7. In the Create New Task panel, you can see the main details about the task you have just created. Here you can also choose to launch the task immediately. The task is now in the list of your tasks where you can open and modify it. You can
find it in the task lists displayed by clicking the following options: All Configured Tasks or Workload > Monitor > Monitor Job Streams.

You have created your task that, when run, creates a list of job streams satisfying your filtering criteria and showing, for each job stream in the list, the information contained in the columns you selected to view.

To view connection status information and statistical information about the engines against which the task was run, click the statistical icon on the table toolbar.

A pie chart showing the number of query results and job stream status is displayed for each engine on which the task ran successfully. Click the pie sections to see further details. If the task did not run successfully on one or more engines, you see a message containing details about the errors.

Related concepts:
“Job stream” on page 24

Related reference:
“Status description and mapping for distributed job streams” on page 145
“Status description and mapping for z/OS job streams” on page 147

Creating a task to Monitor Files

To create a Monitor Files task, perform the following steps.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

1. In the portfolio on the left, click Quick Start > New Task... or All Configured Tasks > New.
2. In the Select Task Type panel, under Monitor Task, select Monitor Files and click Next.
3. In the Enter Task Information panel, define the type of scheduler engine where you want to run the task. You can select a specific engine, if available in the drop-down list, or you can select Ask when needed and choose the engine at a later time. Remember that the engine name must be specified before running the task. Depending on the engine type you choose, the filtering criteria and the results you can display are different. You can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.
4. Click Next to proceed with task creation or click Finish to complete the creation using the default values and exit without proceeding to the following steps. If you are editing an existing task, properties are organized in tabs.
5. In the General Filter panel, specify some broad filtering criteria to limit the results retrieved by your query. Here you start refining the scope of your query by also considering the amount of information you want to retrieve. Optionally, you can customize how often to refresh the information in the results table by specifying the refresh interval in seconds. If the periodic refresh is enabled for a task, when the task runs, the refresh time control options are shown in the results table. You can also set or change the periodic refresh interval directly in the results table. In this case, the value specified at task creation time is temporarily overwritten. You can filter the task results based on the file and
workstation names, or part of names (using wildcard characters). You can also configure the automatic refresh of the task results in the table.

6. In the Columns Definition panel, select the information you want to display in the table containing the query results. According to the columns you choose here, the corresponding information is displayed in the task result. For example, for all the files resulting from your query, you might want to know their status and associated workstations. You can then drill down into this information displayed in the table and navigate it. In the Columns Definition panel, not only can you select the columns for this task results, but you can also specify the columns for secondary queries on jobs, job streams, and workstations. For example, you are creating a task to search for all the files whose names start with the same characters. From the resulting list of files, you can launch a secondary query to view a list of all the jobs associated to each of these files. Starting from the Monitor Files task results table, you can start further queries on secondary objects associated to one of the files in the table; the information to be retrieved with these secondary queries is specified in this panel.

7. In the Create New Task panel, you can see the main details about the task you just created. You can also choose to run the task immediately. In this case, if you have not yet specified an engine connection name, you must do so now. The task is now in the list of your tasks where you can open and modify it. You can find it in the task lists displayed by clicking the following options: All Configured Tasks or Workload > Monitor > Workload Dependencies > Monitor Files.

You have created your task that, when run, creates a list of files satisfying your filtering criteria and showing, for each file in the list, the information contained in the columns you selected to view.

Related concepts:
“File” on page 31

Creating a task to Monitor Prompts

To create a Monitor Prompts task, perform the following steps.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

1. In the portfolio on the left, click Quick Start > New Task... or All Configured Tasks > New.
2. In the Select Task Type panel, under Monitor Task, select Monitor Prompts and click Next.
3. In the Enter Task Information panel, define the type of scheduler engine where you want to run the task. You can select a specific engine, if available in the drop-down list, or you can select Ask when needed and choose the engine at a later time. Remember that the engine name must be specified before running the task. Depending on the engine type you choose, the filtering criteria and the results you can display are different. You can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.
4. Click Next to proceed with task creation or click Finish to complete the creation using the default values and exit without proceeding to the following steps. If you are editing an existing task, properties are organized in tabs.
5. In the General Filter panel, specify some broad filtering criteria to limit the results retrieved by your query. Here you start refining the scope of your query by also considering the amount of information you want to retrieve. Optionally, you can customize how often to refresh the information in the results table by specifying the refresh interval in seconds. If the periodic refresh is enabled for a task, when the task runs, the refresh time control options are shown in the results table. You can also set or change the periodic refresh interval directly in the results table. In this case, the value specified at task creation time is temporarily overwritten. You can filter the task results based on the prompt name or status. You can also configure the automatic refresh of the task results in the table.

6. In the Columns Definition panel, select the information you want to display in the table containing the query results. According to the columns you choose here, the corresponding information is displayed in the task results table. For example, for all the prompts resulting from your query, you might want to know their type and text. You can then drill down into this information displayed in the table and navigate it. In the Columns Definition panel, not only can you select the columns for this task results, but you can also specify the columns for secondary queries on jobs, and job streams. From the resulting list of prompts, you can launch a secondary query to view a list of all the jobs associated to each of them. Starting from the Monitor Prompts task results table, you can start further queries on secondary objects associated to one of the prompts in the table; the information to be retrieved with these secondary queries is specified in this panel.

7. In the Create New Task panel, you can see the main details about the task you just created. You can also choose to run the task immediately. In this case, if you have not yet specified an engine connection name, you must do so now. The task is now in the list of your tasks where you can open and modify it. You can find it in the task lists displayed by clicking the following options: All Configured Tasks or Workload > Monitor > Workload Dependencies > Monitor Prompts.

You have created your task that, when run, creates a list of prompts that satisfying your filtering criteria and showing, for each prompt in the list, the information contained in the columns you selected to view.

Related concepts:
“Prompt” on page 30

Creating a task to Monitor Resources

To create a Monitor Resources task, perform the following steps.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

1. In the portfolio on the left, click Quick Start > New Task... or All Configured Tasks > New.
2. In the Select Task Type panel, under Monitor Task, select Monitor Resources and click Next.
3. In the Enter Task Information panel, define the type of scheduler engine where you want to run the task. You can select a specific engine, if available in the drop-down list, or you can select Ask when needed and choose the engine at a later time. Remember that the engine name must be specified before running the task. Depending on the engine type you choose, the filtering criteria and
the results you can display are different. You can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.

4. Click Next to proceed with task creation or click Finish to complete the creation using the default values and exit without proceeding to the following steps. If you are editing an existing task, properties are organized in tabs.

5. In the General Filter panel, specify some broad filtering criteria to limit the results retrieved by your query. Here you start refining the scope of your query by also considering the amount of information you want to retrieve. Optionally, you can customize how often to refresh the information in the results table by specifying the refresh interval in seconds. If the periodic refresh is enabled for a task, when the task runs, the refresh time control options are shown in the results table. You can also set or change the periodic refresh interval directly in the results table. In this case, the value specified at task creation time is temporarily overwritten. You can filter the task results based on the resource and workstation names, or part of names (using wildcard characters). You can also configure the automatic refresh of the task results in the table.

6. In the Columns Definition panel, select the information you want to display in the table containing the query results. According to the columns you choose here, the corresponding information is displayed in the task results table. For example, for all the resources resulting from your query, you might want to know if they are in use and the associated workstations. You can then drill down into this information displayed in the table and navigate it. In the Columns Definition panel, not only can you select the columns for this task results, but you can also specify the columns for secondary queries on jobs, job streams, and workstations. For example, you are creating a task to search for all the resources whose names start with the same characters. From the resulting list of resources, you can navigate to see (secondary query) a list of all the jobs that use each of them. Starting from the Monitor Task task results table, you can start further queries on secondary objects associated to one of the resources in the table; the information to be retrieved with these secondary queries is specified in this panel.

7. In the Create New Task panel, you can see the main details about the task you just created. You can also choose to run the task immediately. In this case, if you have not yet specified an engine connection name, you must do so now. The task is now in the list of your tasks where you can open and modify it. You can find it in the task lists displayed by clicking the following options: All Configured Tasks or Workload > Monitor > Workload Dependencies > Monitor Resources.

You have created your task that, when run, creates a list of resources satisfying your filtering criteria and showing, for each resource in the list, the information contained in the columns you selected to view.

Related concepts:
"Resource” on page 31

Creating a task to Monitor Event Rules

To create a Monitor Event Rules task, perform the following steps.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.
1. In the portfolio on the left, click **Quick Start > New Task...** or **All Configured Tasks > New**.

2. In the Select Task Type panel, under **Event Management Task**, select **Monitor Event Rules** and click **Next**.

3. In the Enter Task Information panel, specify the task name and select the engine connection where you want to run the task. You can run this type of query only in a Tivoli Workload Scheduler distributed environment on either the master domain manager or on a node installed as a backup master domain manager, but not necessarily belonging to the master domain. Here you also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.

4. Click **Next** to proceed with task creation or click **Finish** to complete the creation using the default values and exit without proceeding to the following steps. If you are editing an existing task, properties are organized in tabs.

5. In the General Filter panel, specify some broad filtering criteria to limit the results retrieved by your query. Here you start refining the scope of your query by also considering the amount of information you want to retrieve. Optionally, you can customize how often to refresh the information in the results table by specifying the refresh interval in seconds. If the periodic refresh is enabled for a task, when the task runs, the refresh time control options are shown in the results table. You can also set or change the periodic refresh interval directly in the results table. In this case, the value specified at task creation time is temporarily overwritten. You can search for rule instances based on their status, type, or trigger timestamps.

6. In the Columns Definition panel, select the information you want to display in the table containing the query results. According to the columns you choose here, the corresponding information is displayed in the task results table. For example, for all the objects resulting from your query, you might want to see their statuses, and the kind of rule that generated them. You can then drill down into this information displayed in the table and navigate it. In the Columns Definition panel, not only can you select the columns for this task results, but you can also specify the columns for *secondary* queries on event rules (the event rule definition stored in the database). The information to be retrieved with these secondary queries is specified in this panel.

7. In the Create New Task panel, you can see the main details about the task you just created. You can also choose to run the task immediately. In this case, if you have not yet specified an engine connection name, you must do so now. The task is now in the list of your tasks where you can open and modify it. You can find it in the task lists displayed by clicking the following options: **All Configured Tasks** or **Workload > Monitor > Workload Events > Monitor Event Rules**.

You have created your query that, when run, lists the event rule instances satisfying your filtering criteria and shows, for each event rule in the list, the information you selected to view.

Related concepts:

- “Event management tasks” on page 93
- “Event management configuration” on page 12

Creating a task to Monitor Triggered Actions

To create a Monitor Triggered Actions task, perform the following steps.
Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

1. In the portfolio on the left, click **Quick Start > New Task...** or **All Configured Tasks > New**.

2. In the Select Task Type panel, select **Event Management Task > Monitor Triggered Actions** and click **Next**.

3. In the Enter Task Information panel, specify the task name and select the engine connection where you want to run the task. You can run this type of query only in a Tivoli Workload Scheduler distributed environment on either the master domain manager or on a node installed as a backup master domain manager, but not necessarily belonging to the master domain. You can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.

4. Click **Next** to proceed with task creation or click **Finish** to complete the creation using the default values and exit without proceeding to the following steps. If you are editing an existing task, properties are organized in tabs.

5. In the General Filter panel, specify some broad filtering criteria to limit the results retrieved by your query. Here you start refining the scope of your query by also considering the amount of information you want to retrieve. Optionally, you can customize how often to refresh the information in the results table by specifying the refresh interval in seconds. If the periodic refresh is enabled for a task, when the task runs, the refresh time control options are shown in the results table. You can also set or change the periodic refresh interval directly in the results table. In this case, the value specified at task creation time is temporarily overwritten. You can search for triggered actions based on the type of rule instance that triggers them or on their scope. The scope of an action (or an event) is the set of properties that most characterize it.

6. In the Columns Definition panel, select the information you want to display in the table containing the query results. According to the columns you choose here, the corresponding information is displayed in the task results table. For example, for each of the actions resulting from your query, you might want to see the status, type, or associated message. You can then drill down into this information displayed in the table and navigate it. In the Columns Definition panel, not only can you select the columns for this task results, but you can also specify the columns for secondary queries on event rule instances. The information to be retrieved with these secondary queries is specified in this panel.

7. In the Create New Task panel, you can see the main details about the task you just created. You can also choose to run the task immediately. In this case, if you have not yet specified an engine connection name, you must do so now. The task is now in the list of your tasks where you can open and modify it. You can find it in the task lists displayed by clicking the following options: **All Configured Tasks** or **Workload > Monitor > Workload Events > Monitor Triggered Actions**.

You have created your query that, when run, lists the event rule instances satisfying your filtering criteria and shows, for each event rule in the list, the information you selected to view.
Creating a task to Monitor Operator Messages

To create a Monitor Operator Messages task, perform the following steps.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

1. In the portfolio on the left, click Quick Start > New Task... or All Configured Tasks > New.
2. In the Select Task Type panel, select Event Management Task > Monitor Operator Messages and click Next.
3. In the Enter Task Information panel, specify the task name and select the engine connection where you want to run the task. You can run this type of query only in a Tivoli Workload Scheduler distributed environment on either the master domain manager or on a node installed as a backup master domain manager, but not necessarily belonging to the master domain. You also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.
4. Click Next to proceed with task creation or click Finish to complete the creation using the default values and exit without proceeding to the following steps. If you are editing an existing task, properties are organized in tabs.
5. In the General Filter panel, specify some broad filtering criteria to limit the results retrieved by your query. Here you start refining the scope of your query by also considering the amount of information you want to retrieve. Optionally, you can customize how often to refresh the information in the results table by specifying the refresh interval in seconds. If the periodic refresh is enabled for a task, when the task runs, the refresh time control options are shown in the results table. You can also set or change the periodic refresh interval directly in the results table. In this case, the value specified at task creation time is temporarily overwritten. You can search for operator messages based on their severity, time stamp, or scope. The scope of an operator message is the set of properties that most characterize it.
6. In the Columns Definition panel, select the information you want to display in the table containing the query results. According to the columns you choose here, the corresponding information is displayed in the task results table. For example, for each of the operator messages resulting from your query, you might want to see the severity, the type of associated event, or the group in whose queue the message is. You can then drill down into this information displayed in the table and navigate it.
7. In the Create New Task panel, you can see the main details about the task you just created. You can also choose to run the task immediately. In this case, if you have not yet specified an engine connection name, you must do so now. The task is now in the list of your tasks where you can open and modify it. You can find it in the task lists displayed by clicking the following options: All Configured Tasks or Workload > Monitor > Workload Events > Monitor Operator Messages.
You have created your query that, when run, lists the event rule instances satisfying your filtering criteria and shows, for each event rule in the list, the information you selected to view.

Related concepts:
- “Event management tasks” on page 93
- “Event management configuration” on page 12

Controlling Jobs and Job Streams Processing

In the Dynamic Workload Console, you can control job and job streams processing by specifying dependencies and other properties as described in the following sections.

Using dependencies to control job and job stream processing

A dependency is a prerequisite that must be satisfied before processing can proceed. You can define dependencies for both jobs and job streams to ensure the correct order of processing. You can use these types of dependencies:

- **Distributed**: On completion of jobs and job streams

 A job or a job stream must not begin processing until other jobs and job streams have completed. May be defined to require success or just completion

- **Resource**: A job or a job stream needs one or more resources available before it can begin to run.

- **File**: A job or a job stream needs to have one or more files meet the specified criteria before it can begin to run.

- **Prompt**: A job or a job stream needs to wait for an affirmative response to a prompt before it can begin to run.

You can define up to 40 dependencies for a job or job stream. In a Tivoli Workload Scheduler network, dependencies can cross workstation and network boundaries.

- **z/OS**: On completion of jobs belonging to the same job stream

 A job must not begin processing until other jobs belonging to the same job stream have completed successfully.

- **z/OS**: On completion of jobs belonging to different job streams

 A job must not begin processing until other jobs belonging to other job streams have completed successfully.

- **Resource**: A job or a job stream needs one or more resources available before it can begin to run.

In addition to this, each job needs the workstation where it is scheduled to run to be available.

To add a dependency to a job or to a job stream from the Workload Designer, see “Adding and removing dependencies” on page 70.

You can also add a dependency from the panel displayed as result of your monitor task related to jobs or job streams by performing the following steps:
1. In the query result panel select a job or a job stream and click Dependencies.
2. In the Dependencies panel expand the section related to the dependency type you want to add and click Add.
3. Enter the required information and click OK.
 For all the details about options and fields displayed in the panel, see the online help by clicking the question mark located at the top-right corner of the panel.

Using time restrictions to control job and job stream processing

Time restrictions can be specified for both jobs and job streams.

For a specific job or job stream you can specify the time that processing begins, *earliest start*, or the time after which processing can no longer be started, *latest start*. By specifying both, you define a time interval within which a job or job stream runs. You can use them as time dependencies.

You can also specify a *deadline* to specify the time within which a job or a job stream must complete. Jobs or job streams that have not yet started or that are still running when the deadline time is reached, are considered late in the plan. The deadline does not prevent jobs or job streams from starting.

For jobs you can also specify a *repeat range*; for example, you can have Tivoli Workload Scheduler launch the same job every 30 minutes between 8:30 a.m. and 1:30 p.m.

To specify time restrictions for a job or a job stream, perform the following steps:
1. Click **Workload > Design > Create Workload Definitions**.
2. In the Workload Designer, edit the job stream you want to modify. For information about editing an object see “Editing objects from the Working List View” on page 65.
3. Select the job or the job stream in the Details view and click the **Time restrictions** tab in the Properties section.
4. Enter the time restriction properties and save the job stream.
 For all the details about options and fields displayed in the panel, see the online help by clicking the question mark located at the top-right corner of the panel.

Using job priority and workstation fence to control distributed job and job stream processing

Tivoli Workload Scheduler has its own queuing system, consisting of levels of *priority*. Assigning a priority to jobs and job streams gives you added control over their precedence and order of running.

The *fence* provides another type of control over job processing on a workstation. When it is set to a priority level, it only allows jobs and job streams whose priority exceeds the fence value to run on that workstation. Setting the fence to 40, for example, prevents jobs with priorities of 40 or less from being launched.

To specify job priority for a job or a job stream, perform the following steps:
1. Click **Workload > Design > Create Workload Definitions**.
2. In the Workload Designer, edit the job stream you want to modify. For information about editing an object see “Editing objects from the Working List View” on page 65.
3. Select the job or the job stream in the Details view and click the **Scheduling options** tab in the Properties section.
4. Enter the job priority and save the job stream.
 For all the details about options and fields displayed in the panel, see the online help by clicking the question mark located at the top-right corner of the panel.

You can also add a job priority from the panel displayed as result of your monitor task related to jobs or job streams by performing the following steps:
1. In the query result panel select a job or a job stream and click **More Actions > Priority**.
2. In the Set Priority panel specify a priority value and click **OK**.

To set a workstation fence perform the following steps:
1. In the panel displayed as results of your monitor workstation task, select the workstation and click **More Actions > Fence**.
2. In the Set Fence panel specify a fence value and click **OK**.

Using limits to control job and job stream processing

The **limit** provides a means of setting the highest number of jobs that Tivoli Workload Scheduler is allowed to launch. You can set a limit:
- In the job stream definition
- In the workstation definition

Setting the limit on a workstation to 25, for example, allows Tivoli Workload Scheduler to have no more than 25 jobs running concurrently on that workstation.

To specify a limit for a job stream, perform the following steps:
1. Click **Workload > Design > Create Workload Definitions**.
2. In the Workload Designer, edit the job stream you want to modify. For information about editing an object see “Editing objects from the Working List View” on page 65.
3. Select the job stream in the Details view and click the **Scheduling options** tab in the Properties section.
4. Enter the limit value and save the job stream.
 For all the details about options and fields displayed in the panel, see the online help by clicking the question mark located at the top-right corner of the panel.

You can also add a limit from the panel displayed as result of your monitor job stream task by performing the following steps:
1. In the query result panel select a job stream and click **More Actions > Limit**.
2. In the Set Limit panel specify a new limit value and click **OK**.

To set a workstation limit perform the following steps:
1. In the panel displayed as result of your monitor workstation task, select the workstation and click **More Actions > Limit**.
2. In the Set Limit panel specify a new limit value and click OK.

Using job confirmation to control job processing

There might be scenarios where the completion status of a job cannot be determined until you have performed some tasks. You might want to check the results printed in a report, for example. In this case, you can set in the job definition that the job *requires confirmation*, and Tivoli Workload Scheduler waits for your response before marking the job as successful or failed.

To specify that a job requires confirmation, perform the following steps:

1. Click **Workload > Design > Create Workload Definitions**.
2. In the Workload Designer, edit the job stream you want to modify. For information about editing an object see "Editing objects from the Working List View" on page 65.
3. Select the job in the Details view and click the **Scheduling options** tab in the Properties section.
4. Check **Requires confirmation** and save the job stream.

For all the details about options and fields displayed in the panel, see the online help by clicking the question mark located at the top-right corner of the panel.

Using job recovery actions to control job processing

When you schedule a job, you can specify the type of recovery you want performed by Tivoli Workload Scheduler if the job fails. The predefined recovery options are:

- Continue with the next job
- Stop and do not start the next job
- Run the failed job again

In addition, you can specify other actions to be taken in terms of recovery jobs and recovery prompts. For example, if a job fails, you can have Tivoli Workload Scheduler automatically run a recovery job, issue a recovery prompt that requires an affirmative response, and then run the failed job again.

To specify the job recovery actions, perform the following steps:

1. Click **Workload > Design > Create Workload Definitions**.
2. In the Workload Designer, edit the job you want to modify. For information about editing an object see "Editing objects from the Working List View" on page 65.
3. Click the **Recovery options** tab in the Properties section.
4. Enter the recovery **Action** and the other information. Then save the job.

For all the details about options and fields displayed in the panel, see the online help by clicking the question mark located at the top-right corner of the panel.
Chapter 10. Working with Plans

This section contains the main tasks that involve plans. You can find information about selecting the working plan, creating trial and forecast plans, monitoring the progress of a plan, and generating a plan view.

Selecting the working plan

When you monitor the processing of your scheduling activities, you can choose the plan you want to work with. This plan is called the active plan.

There are several ways of defining the active plan. By default, the active plan is the default plan, which is associated to the engine connection. However, you can select a different plan and define it as active in the following ways:

“Associating a plan to the task”

Every time the task is run, it is run using the specified plan. Usually this setting is useful if you want to run multiple queries at the same time against different plans. To run the task on a different plan, you must either change this selection or use a temporary plan selection that lasts only until the current session expires. This plan selection takes precedence over all other selections and is the first to be used. It is made during the task creation when specifying the engine connection in the Enter Task Information panel.

“Dynamically defining a temporary plan” on page 114

You can set a temporary plan selection. This plan is used as the active plan for the current session only. All tasks and engines that have been set to use the active plan will use the currently defined plan. This plan selection is valid unless a different plan is defined as the active plan in the Enter Task Information panel.

“Associating a plan to an engine” on page 114

If none of the above settings are specified, tasks are run against the plan associated to the engine. By default, this plan and the active plan are the same.

Associating a plan to the task

To associate a plan to a task, perform the following steps:

1. In the portfolio on the left, click Quick Start > New Task... or All Configured Tasks > New.
2. In the Select Task Type panel, select the type of task you want to create and click Next.
3. In the Enter Task Information panel, select a distributed engine as the scheduler engine where you want to run the task. If you select Ask when needed, you cannot perform the next steps.
4. Click Select to specify the plan that you want to associate to this task. Unless you change this selection, this task is always run against this plan. Alternatively, click Use Active Plan, if you want this task to run using the plan that is set as the active plan in the plan list panel.
5. In the Select Plan panel, select the plan that you want to associate to this task and click OK to return to the Enter Task Information panel.
If you do not select any plan, the task uses the plan set as active. You can change the active plan by following the procedure described in "Dynamically defining a temporary plan."

Dynamically defining a temporary plan

From the List Available Plans entry in the portfolio, you can specify some filtering criteria to retrieve a list of plans.

Regardless of whether you are the owner of the engine connection or if it is only shared with you, you can select a plan from the list to define it as the active plan for the current session.

Follow these steps to define a filter and run a query to create a list of available plans:

1. Click **Workload > Forecast > List Available Plans**.
2. In the View Available Plans panel:
 a. Under **Select an Engine**, select the engine where you want to list the plans.
 b. Under **Select Plan Type**, click the corresponding check box to select the type of plan you want to list. Selections are mutually exclusive. By default, all available plans are listed.
 c. Under **Select Plan Name**, specify the name of the file containing the plan you want to search. You can use wildcard characters.
 d. Click **Display Plans List** to generate a list of plans.
3. From the displayed list, select a plan and click **Set as active** to set it as a temporary plan that remains valid until the current session expires or you set another active plan.

Only for the current session, the plan selection made in this panel overrides the plan selection specified in the engine connection properties panel. However, it does not override the plan selection specified during the task definition.

Associating a plan to an engine

To associate a plan to an engine, perform the following steps:

1. Click **Quick Start > Manage Engines...** or **Settings > Manage Engines**
2. In the Manage Engines panel, select an engine and click **Connection Properties**.
3. Under the Plans section, click **Select** to view a list of the available plans.
4. Choose a plan from the list and click **OK**. This setting is overridden by the plan selection made in the Enter Task Information panel or, if not available, by the selection made in the List Available Plans panel.

Related concepts:

"Plans" on page 41

Generating Trial and Forecast Plans

To create a new plan, perform the following steps:

1. In the portfolio, under **Workload > Forecast**, select:

 Generate Trial Plan

 To create a trial plan. The Create Trial Plan panel is displayed.
Generate Forecast Plan

To create a new forecast plan. The Create Forecast Plan panel is displayed.

2. Under the Plan Information section, enter the required information:

 Engine Name
 In the drop-down menu, select the engine where you want to create the plan. Only the engine connections that you created are available in the menu.

 Plan Filename
 Assign a name to the file that contains the plan. This is a mandatory field.

3. Under the Plan Start section, assign the date and time when the plan starts.
 Because the trial plan is mainly an extension of an existing and processing current plan, if you selected to create a new trial plan and a current plan is available on the engine, these fields are grayed out and their values are the same as the current plan end date. If you selected to create a new trial plan and a current plan is not available on the engine, or if you selected to create a new forecast plan, you can enter a date and time for the plan to start.

4. Under the Plan End section, assign one of the following values:
 - A date and time when the plan ends.
 - The number of days and hours the plan lasts.
 By default the plan covers a one-day time interval.

5. Under the Plan Time Zone section, choose the time zone used in the plan.

6. Click OK to create the plan.

Related concepts:
“Plans” on page 41

Creating a task to Show Plan View

Note: This task can be run only on Tivoli Workload Scheduler v8.5.1 or later and Tivoli Workload Scheduler for z/OS v8.5.1 using the z/OS Connector v8.5.1 or later.

When you create a task, you define a query where you specify multiple criteria to search for items and to display the search results. You can then save, reuse, and share this task with other users, and modify it at any time. When you run the task, you run the query on the plan to retrieve the information according to the filters and level of detail you specified when you created the task.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

To create a Show Plan View task, perform the following steps:

1. In the portfolio on the left, click Quick Start > New Task... or All Configured Tasks > New.

2. In the Select Task Type panel, under Monitor Task, select Show Plan View and click Next.

3. In the Enter Task Information panel, define the type of scheduler engine where you want to run the task. You can select a specific engine, if available in the drop-down list, or you can select Ask when needed and choose the engine at a
later time. Remember that the engine name must be specified before running the task. Depending on the engine type you choose, the filtering criteria and the results you can display are different. You can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.

4. Click **Next** to proceed with task creation or click **Finish** to complete the creation using the default values and exit without proceeding to the following steps. If you are editing an existing task, properties are organized in tabs.

5. In the General Filter panel, specify some filtering criteria to limit the number of job streams displayed as a result. You can filter based on the names of job streams and workstation (distributed systems only), or on the starting times of the job streams. You can also decide whether to include predecessors and successors in the Plan View. Consider that predecessors and successors are included in the graphic only after all filter-matching job streams have already been included. When the maximum number of displayed job streams is reached, no more predecessors and successors are included in the graphic.

6. In the Create New Task panel, you can see the main details about the task you just created. You can also choose to run the task immediately. In this case, if you have not yet specified an engine connection name, you must do so now. The task is now in the list of your tasks where you can open and modify it. You can find it in the task lists displayed by clicking the following options: **All Configured Tasks** or **Workload > Monitor > Show Plan View**.

You have created your task that, when run, generates the Plan View. The Plan View is a graphical representation of a filtered set of the job streams that make up the plan. Using the Plan View toolbar, you can perform several actions on the object displayed, as shown in the picture below: From the Plan View, you can also modify the filtering criteria to display different job streams, by clicking the view and update filter icon . However, changes performed from this view apply to the current view only, they do not apply to the task saved in the task list.

Related concepts:
- “Plans” on page 41
- “Plan view tasks” on page 94

Related information:
- “Graphical Views in the plan” on page 152
Chapter 11. Submitting Workload on Request in Production

In addition to the jobs and job streams that are scheduled to run in production, you can also submit at any time other jobs and job streams. However, these jobs and job streams are not considered when identifying predecessors for jobs and job stream dependencies.

In production you can:

- **Submit Ad Hoc Jobs**
 - This is a job that is:
 - Not defined in the database.
 - Used to run a command or a script in production.

- **Submit Predefined Jobs**
 - This is a job that is:
 - Defined in the database.

- **Submit Predefined Job Streams**
 - This is a job stream that is:
 - Defined in the database.

See the following sections for instructions about inserting each of these types.

Submitting ad hoc jobs

To add an ad hoc job to the current plan, perform the following steps:

1. From the portfolio, expand **Workload > Submit**, and click **Submit Ad Hoc Jobs**.
2. In the displayed panel, select, from the drop-down list, the engine where you want to run the job, and click **Go**.
3. Enter all the required information about the job that you want to add. For more details about the information to enter in this panel, see the screen help, which you can open by clicking the question mark located at the top-right corner of the panel.
4. Click **OK** to save your changes, exit the panel and submit the job.

Submitting predefined jobs

To add a predefined job to the current plan, perform the following steps:

1. From the portfolio, expand **Workload > Submit**, and click **Submit Predefined Jobs**.
2. In the displayed panel, select, from the drop-down list, the engine where you want to run the job, and click **Go**.
3. Enter all the required information about the job that you want to add. For more details about the information to enter in this panel, see the screen help, which you can open by clicking the question mark located at the top-right corner of the panel.
4. Click **OK** to save your changes, exit the panel and submit the job.

Submitting predefined job streams

To add a predefined job stream to the current plan, perform the following steps:

1. From the portfolio, expand **Workload > Submit**, and click **Submit Predefined Job Streams**.
2. In the displayed panel, select, from the drop-down list, the engine where you want to run the job.
3. Enter all the required information about the job stream that you want to add. For more details about the information to enter in this panel, see the screen help, which you can open by clicking the question mark located at the top-right corner of the panel. To find the job stream that you want to submit, you can launch searches based on part of the job stream name, workstation name, alias or variable table associated to it.
4. Optionally, specify a scheduled time to submit the job stream.
5. After completing the panel, click **Submit** to submit your job stream in the plan. Close the tab to exit discarding your changes.

Setting properties for ad hoc jobs and predefined jobs and job streams

To set the properties required to add jobs or job streams to the current plan, perform the following steps.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

1. Enter the required information in the **General** section.
2. For predefined and ad hoc jobs only: under the **Task** tab, enter the task properties for the job in the displayed panel.
3. Select the **Time Restrictions** tab, and enter the required information in the displayed panel to set time restrictions for the job or job stream.
4. Select the **Resources** tab to set resource dependencies.
 - To create a new resource, click **New** and enter the required information in the Info panel.
 - To delete an existing resource, select it from the list and click **Delete**.
 - To modify a resource listed in the table, double-click its name and edit its properties in the Info panel.
5. Select the **Prompts** tab to set prompts as dependencies for the job or job stream.
 - To create a new prompt, click **New** and enter the required information in the Info panel.
 - To delete an existing prompt, select it from the list and click **Delete**.
 - To modify a prompt listed in the table, double-click its name and edit its properties in the Info panel.
6. Select the **Files** tab to set file dependencies for the job or job stream.
 - To create a new file, click **New** and enter the required information in the Info panel.
 - To delete an existing file, select it from the list and click **Delete**.
• To modify the file properties, double-click the file and edit the settings in the displayed table.

7. Select the **Internetwork Predecessors** tab to add predecessor dependencies from a remote Tivoli Workload Scheduler network. The displayed panel shows existing internetwork predecessor properties.
 • To create a new internetwork predecessor, click **New** and enter the required information in the Info panel. Click the ... (Browse) button to search for and select the name of the network agent. Internetwork dependencies require that a network agent is configured to communicate with the external scheduler network.
 • To delete an existing internetwork predecessor, select it from the list and click **Delete**.
 • To modify an existing internetwork predecessor properties, double-click it, and edit its settings.

8. Select the **Predecessors** tab to set predecessor dependencies for the job or job stream. The displayed panel shows existing predecessor properties.
 • To create a new predecessor, click **New** and enter the required information in the displayed panel.
 • To delete an existing predecessor, select it from the list and click **Delete**.
 • To modify an existing predecessor properties, double-click it, and edit its settings in the displayed table.
Chapter 12. Reporting

To create a report you must create and run tasks.

Note: You must create a connection to a remote Tivoli Workload Scheduler engine, before you can run tasks on it to obtain data.

When you create a Report task, you generate Tivoli Workload Scheduler reports, which you can then view, print, and save, in different kinds of output. You can then save, reuse, and share this task with other users, and modify it at any time. You can also create customized reports by writing SQL scripts.

Related concepts:
"Reports" on page 45

Related reference:
"Reports" on page 166

Creating a task to generate a Job Run Statistics report

To create a task to run a Job Run Statistics Report, perform the following steps:

1. Click All Configured Reports > New. Alternatively, expand the Reporting section, click Generate Historical Reports, and click New.
2. In the Select Task Type panel, select Report Definition, Job Run Statistics Report, and then click Next.
3. In the Enter Task Information panel, define the type of scheduler engine where you want to run the task. You can select a specific engine, if available in the drop-down list, or you can select Ask when needed and choose the engine at a later time. Remember that the engine name must be specified before running the task. Depending on the engine type you choose, the filtering criteria and the results you can display are different. You can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.
4. In the Report Header panel, choose the name and the format of the output of the report, and click Next to proceed, or click Finish to complete the task creation using all the default values. If you are editing an existing task properties, click Save to keep your changes and open the next panel, if needed.
5. In the Filter Criteria panel, define a filter to select the jobs you want to include in the report. All the information about fields and options is available in the panel help. Click Next to proceed or click Finish to complete the task creation using all the default values.
6. In the Report Output Content panel, select the layout of your report. You can view the information either as a chart or as a table. The chart view displays the statistics for each job run in pie charts. You can select the report format. If you select HTML format, you can also limit the size of the report. You can also select the job details and the statistics you want to include in your report. After you made your selection, click Next to proceed or click Finish to complete the task creation using all the default values.
7. In the Create New Task panel:
Creating a task to generate a Job Run History report

To create a task to run a Job Run History report, perform the following steps:

1. Click All Configured Reports > New. Alternatively, expand the Reporting section, click Generate Historical Reports, and click New.

2. In the Select Task Type panel, select Report Definition, Job Run History Report, and then click Next.

3. In the Enter Task Information panel, define the type of scheduler engine where you want to run the task. You can select a specific engine, if available in the drop-down list, or you can select Ask when needed and choose the engine at a later time. Remember that the engine name must be specified before running the task. Depending on the engine type you choose, the filtering criteria and the results you can display are different. You can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.

4. In the Report Header panel, choose the name and the format of the output of the report, and click Next to proceed, or click Finish to complete the task creation using all the default values. If you are editing an existing task properties, click Save to keep your changes and open the next panel, if needed.

5. In the Filter Criteria panel, define a filter to select the jobs you want to include in the report. All the information about fields and options is available in the panel help. Click Next to proceed or click Finish to complete the task creation using all the default values.

6. In the Report Output Content panel, select the layout of your report. You can view the information only as a table, but you can format it as an HTML or CSV file. If you select HTML format, you can also limit the size of the report. You can also select the job details you want to include in your report. After you make your selection, click Next to proceed or click Finish to complete the task creation using all the default values.

7. In the Create New Task panel:
 - Select Run this Task Now and click Finish if you want to run the report task. If you have not yet specified an engine connection, you are prompted to do so now.
 - Click Cancel to exit without saving your changes.
 - Click Finish to save the task, without starting it immediately.

You have created your task that, when run, creates a report of jobs satisfying your filtering criteria and showing, for each job in the list, the information you selected to view.
Creating a task to generate a Workstation Workload Summary report

To create a task to run a Workstation Workload Summary report, perform the following steps:

1. Click All Configured Reports > New. Alternatively, expand the Reporting section, click Generate Historical Reports, and click New.
2. In the Select Task Type panel, select Report Definition, Workstation Workload Summary Report, and click Next.
3. In the Enter Task Information panel, define the type of scheduler engine where you want to run the task. You can select a specific engine, if available in the drop-down list, or you can select Ask when needed and choose the engine at a later time. Remember that the engine name must be specified before running the task. Depending on the engine type you choose, the filtering criteria and the results you can display are different. You can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.
4. In the Report Header panel, choose the name and the format of the output of the report, and click Next to proceed, or click Finish to complete the task creation using all the default values. If you are editing an existing task properties, click Save to keep your changes and open the next panel, if needed.
5. In the Filter Criteria panel, define a filter to select the jobs you want to include in the report. All the information about fields and options is available in the panel help. Click Next to proceed or click Finish to complete the task creation using all the default values.
6. In the Report Output Content panel, select the layout of your report. You can view the information either as a chart or as a table. The chart view shows the workload of all the specified workstations, aggregated by time. You can also choose to view the workloads of all the specified workstations in a single line chart. Aggregating all the information, you have a comparative view of the workstation workloads. You can select the report format. If you select HTML format, you can also limit the size of the report. You can also select the granularity with which to extract the data (by day or hour) and to order the report. After you make your selection, click Next to proceed or Finish to complete the task creation using all the default values.
7. In the Create New Task panel:
 - Select Run this Task Now and click Finish if you want to run the report task. If you have not yet specified an engine connection, you are prompted to do so now.
 - Click Cancel to exit without saving your changes.
 - Click Finish to save the task, without starting it immediately.

You have created your task that, when run, creates a report of jobs satisfying your filtering criteria and showing, for each job in the list, the information you selected to view.
Creating a task to generate a Workstation Workload Runtimes report

To create a task to run a Workstation Workload Runtimes report, perform the following steps:

1. Click **All Configured Reports** > **New**. Alternatively, expand the **Reporting** section, click **Generate Historical Reports**, and click **New**.

2. In the **Select Task Type panel**, select **Report Definition, Workstation Workload Runtimes Report**, and click **Next**.

3. In the **Enter Task Information panel**, define the type of scheduler engine where you want to run the task. You can select a specific engine, if available in the drop-down list, or you can select **Ask when needed** and choose the engine at a later time. Remember that the engine name must be specified before running the task. Depending on the engine type you choose, the filtering criteria and the results you can display are different. You can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.

4. In the **Report Header panel**, choose the name and the format of the output of the report, and click **Next** to proceed, or click **Finish** to complete the task creation using all the default values. If you are editing an existing task properties, click **Save** to keep your changes and open the next panel, if needed.

5. In the **Filter Criteria panel**, define a filter to select the jobs you want to include in the report. All the information about fields and options is available in the panel help. Click **Next** to proceed or click **Finish** to complete the task creation using all the default values.

6. In the **Report Output Content panel**, select the layout of your report. You can view the information either as a chart or as a table. The chart view shows in a bar chart the number of jobs that are running on the workstations. Selecting the chart view, you can also specify how many jobs to display in each chart. You can specify the format of your report. If you select HTML format, you can also limit the size of the report. You can also select the information you want to include in the report and how you want it ordered. After you make your selection, click **Next** to proceed or **Finish** to complete the task creation using all the default values.

7. In the **Create New Task panel**:
 - Select **Run this Task Now** and click **Finish** if you want to run the report task. If you have not yet specified an engine connection, you are prompted to do so now.
 - Click **Cancel** to exit without saving your changes.
 - Click **Finish** to save the task, without starting it immediately.

You have created your task that, when run, creates a report of jobs satisfying your filtering criteria and showing, for each job in the list, the information you selected to view.
Creating a task to Generate Plan Reports

Perform the following steps to create one of the following reports:

Planned Production Details Report
A report based on the information stored either in a trial or in a forecast plan. The information contained in these plans is retrieved from the Tivoli Workload Scheduler database. A Planned Production Details Report can be run on distributed engines (master domain manager and backup domain manager). A real production report extracted from a fault-tolerant agent might contain different information with respect to a plan extracted from a master domain manager. For example, the number of jobs and job streams is the same, but their status can change, because a job successful on the master can be in hold or ready on the agent. The update status rate is the same only on the full status agent that runs on the domain master.

Actual Production Details Report
A report based on the information stored either in the current or in an archived plan. The information contained in these plans is retrieved from the Symphony files. Actual Production Details Report can be run on distributed engines (master domain manager, backup domain manager, domain manager with connector, and fault-tolerant agent with connector).

1. Click **All Configured Reports > New**. Alternatively, expand the **Reporting** section, click **Generate Plan Reports**, and click **New**.
2. In the Select Task Type panel, choose the type of report that you want to create, and click **Next**.
3. In the Enter Task Information panel, define the type of scheduler engine where you want to run the task. You can select a specific engine, if available in the drop-down list, or you can select **Ask when needed** and choose the engine at a later time. Remember that the engine name must be specified before running the task. Depending on the engine type you choose, the filtering criteria and the results you can display are different. You can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.
4. In the Report Header panel, choose the name and the format of the output of the report and click **Next** to proceed or click **Finish** to complete the task creation using all the default values.
5. In the Filter Criteria panel, define a filter to select the jobs that you want to include in the report. All the information about fields and options is available in the panel help. Click **Next** to proceed or click **Finish** to complete the task creation using all the default values.
6. In the Report Output Content panel, select the job information that you want to display in the report output. After you make your selection, click **Next** to proceed or **Finish** to complete the task creation using all the default values.
7. In the Create New Task panel:
 - Select **Run this Task Now** and click **Finish** if you want to run the report task. If you have not yet specified an engine connection, you are prompted to do so now.
 - Click **Cancel** to exit without saving your changes.
 - Click **Finish** to save the task, without starting it immediately.
Creating a task to Generate Custom SQL Reports

Use this task to define your own reports by writing or importing SQL queries for extracting data in HTML or CSV format. To create an SQL report task, perform the following steps:

1. Click All Configured Reports > New. Alternatively, expand the Reporting section, click Generate Custom SQL Reports, and click New.

2. In the Select Task Type panel, select Report Task, Custom SQL Report, and click Next.

3. In the Enter Task Information panel, define the type of scheduler engine where you want to run the task. You can select a specific engine, if available in the drop-down list, or you can select Ask when needed and choose the engine at a later time. Remember that the engine name must be specified before running the task. Depending on the engine type you choose, the filtering criteria and the results you can display are different. You can also specify whether to share the task with others, to allow them to see and run the task, but not to modify it.

4. In the Report Header panel, choose the name and the format of the output of the report and click Next to proceed or Finish to complete the task creation using all the default values. The Custom SQL Report supports only the Tables View in either HTML or CSV format.

5. In the Filter Criteria panel, enter the SQL statement on which you want to base your report. You can write the query in the text pane or load an existing query from a file by browsing to the required file and clicking Load. Click Next to proceed or Finish to complete the task creation using all the default values.

6. In the Report Output Content panel, select the job information that you want to display in the report output. After you make your selection click Next to proceed or Finish to complete the task creation using all the default values.

7. In the Create New Task panel:
 - Select Run this Task Now and click Finish if you want to run the report task. If you have not yet specified an engine connection, you are prompted to do so now.
 - Click Cancel to exit without saving your changes.
 - Click Finish to save the task, without starting it immediately.

You have created your task that, when run, creates a report satisfying your filtering criteria and showing the information you selected to view.

Related concepts:
“Reports” on page 45

Related information:
“SQL report examples” on page 171
Chapter 13. Scenarios

This section provides some scenarios about the product usage that can help you get familiar with Tivoli Workload Scheduler.

You can find additional scenarios about the product usage at the following links:
- [Tivoli Workload Scheduler Wiki Media Gallery](#) to access demos (only available in English) about how to use the Tivoli Workload Scheduler product
- [Scenarios and How to Demos](#) to access scenarios about dynamic scheduling and variable table usage
- [Tivoli Workload Scheduler Designing Your Workload](#) to access a scenario about working with objects in the database to automate some operations and to organize them in a logical workflow
- A workload service assurance scenario in the [Tivoli Workload Scheduler User’s Guide and Reference](#) about using this feature to monitor critical jobs.

Customizing your job stream

This scenario describes how you can use the Dynamic Workload Console to create a job stream, schedule it to run at specified times, and change its behavior based on the day when it is scheduled to run.

Overview

A sales department manager needs to collect data on sales reports both at business unit level and at corporation level. For this reason the department manager needs reports both on a weekly and on a monthly basis. Report data is stored in two different directories, as follows:
- Data for weekly reports is stored in a set of files located in the directory `/reports/weekly`.
- Data for monthly reports is stored in a set of files located in the directory `/reports2/monthly`.

The job stream used for generating the reports has a dependency on the presence of these files. To collect the required data, the Tivoli Workload Scheduler administrator creates one job stream with two different run cycles, one scheduled to run on a weekly basis and one scheduled to run on a monthly basis.

Each run cycle references two different variable tables, which contain the variable and the related value used to define the path where the correct input files are located.

Creating the job stream and the related objects

To create all the database objects required to reach the business goal, the Tivoli Workload Scheduler designer uses the Workload Designer on the Dynamic Workload Console.

1. He opens the Dynamic Workload Console and selects **Tivoli Workload Scheduler > Workload > Design > Create Workload Definitions**. The Workload Designer is displayed.
Using the **New** menu in the **Working List** section, the administrator can create all the necessary objects. He can also search for existing objects to edit and insert in the plan in the **Quick Open** section.

2. The administrator selects **New > Variable Table** to create the two variable tables required to provide the two different values for the input file paths.
 a. He creates a variable table with name SC1_WEEKLY_DATA_TABLE. This table is the default table. The path to the files required to generate the weekly reports is indicated by the REP_PATH variable, to which he assigns the value "/reports/weekly".
 b. He creates a variable table with name SC1_MONTHLY_DATA_TABLE. The path to the files required to generate the monthly reports is indicated by the REP_PATH variable, to which he assigns the value "/reports2/monthly".

3. The administrator selects **New > Job Definition > Windows Job Definition** to create the job definitions which generate the reports. All job definitions run a script each, which receives the value of the REP_PATH variable as the input value. He creates the following job definitions:
 a. The job definition named SC1_PARSE_DATA SCRIPTNAME runs on the relevant workstation logging in as root. It runs a script which contains the following statement: "/reportApp/parseData.sh ^REP_PATH^".
 b. The job definition named SC1_PROCESS_DATA SCRIPTNAME runs on the relevant workstation logging in as root. It runs a script which contains the following statement: "/reportApp/processData.sh ^REP_PATH^".
 c. The job definition named SC1_CREATE_REPORTS SCRIPTNAME runs on the relevant workstation logging in as root. It runs a script which contains the following statement: "/reportApp/createReports.sh ^REP_PATH^".

4. The administrator selects **New > Job Stream** to create the job stream which contains the jobs. The job stream is named SC1_RUN_REPORTS and runs on the relevant workstation.

5. The administrator selects **Add to Selected > Run Cycle > Inclusive** to define two run cycles for the job stream, as follows:
 a. The run cycle named SC1_WEEKLY_RCY uses the variable table SC1_WEEKLY_DATA_TABLE, which contains the value for the file path to be used for generating the weekly report. The run cycle also specifies that the job stream is to run once per week on Friday.
 b. The run cycle named SC1_MONTHLY_RCY uses the variable table SC1_MONTHLY_DATA_TABLE, which contains the value for the file path to be used for generating the monthly report. The run cycle also specifies that the job stream is to run once per month on the 27th day.

6. The administrator selects **Add to Selected > Add Dependency > File** to specify a dependency from the files containing the data used for report generation. He uses the REP_PATH variable to define the path to the required files.

7. The administrator searches for the job definitions he previously created (SC1_PARSE_DATA SCRIPTNAME, SC1_PROCESS_DATA SCRIPTNAME, SC1_CREATE_REPORTS SCRIPTNAME) and adds them to the job stream.

8. The administrator creates a plan lasting 30 days to generate multiple instances of the job stream.

As a result, the variable REP_PATH is assigned different values depending on the run cycle that applies. The administrator defines two run cycles, each of which references a specific variable table.
In this way, the job stream instances have a dependency on a different set of files depending on the type of report they have to produce, either monthly or weekly, as follows:

- The job stream instances that generate the weekly report have a dependency on the files located in the /reports/weekly directory.
- The job stream instances that generate the monthly report have a dependency on the files located in the /reports2/monthly directory.

Furthermore, the name of the target directory is correctly replaced in the task string of the three jobs run by every job stream instance, as follows:

- The jobs run by job stream instances that generate the weekly report run shell scripts with the directory /reports/weekly as an input argument.
- The jobs run by job stream instances that generate the monthly report run shell scripts with the directory /reports2/monthly as an input argument.

The administrator can therefore define a single job stream with two different run cycles and ensure that the appropriate reports are generated on the correct dates without further user intervention.

Related concepts:
- “Job stream” on page 24
- “Job” on page 24
- “Variable table” on page 39
- “Run cycle” on page 27
- “Dependencies” on page 28

Related tasks:
- “Designing your Workload” on page 64

Using workload service assurance to monitor z/OS critical jobs

This scenario shows how an operator can monitor the jobs that are critical for the customer business and that must complete by their deadline.

Overview

The operator uses the Tivoli Dynamic Workload Console to meet a Service Level Agreement (SLA) that requires a DB2 database to be up and running each day by 3 p.m., after its backup.

The operator must be informed whether critical jobs risk missing their deadline, to take the appropriate actions if needed. While the plan is running, the operator expects that the scheduler dynamically controls the network of submitted jobs, detecting when a critical job predecessor is late, long running, or ended with an error.

Roles

The scheduling administrator and the operator are involved in this scenario:

Tivoli Workload Scheduler for z/OS scheduling administrator

When planning the operations, the administrator defines:

- Scheduled time, duration, and deadline times.
• Critical jobs.

Tivoli Workload Scheduler operator
Controls the submitted workload by using Critical Jobs and Hot List views.

Setting up the environment

Complete the following tasks when planning your operations:

1. Mark your critical jobs in the z/OS database. Set DBSTART and DBPRINT as critical jobs, using a job network with the following structure:

 ![Job Network Diagram]

 Key:
 - ➔ Job dependency
 - ➔ Job dependency on a critical path

2. Run a daily planning job. The daily planning process calculates the critical paths in your job network, using the deadline, scheduled time arrival, and duration settings.

Running the scenario

After you updated your current plan, you can monitor your critical workload by using Critical Path and Hot List views:

1. Select Workload > Monitor > Monitor Critical Jobs from the portfolio.
2. Click New to create a Monitor Critical Jobs task:
 a. In the Enter Task Information panel, specify the task name and select the engine.
 b. In the General Filter panel, specify DB* as Job Name and set a Risk Level different from None as filter criteria, because you want to monitor the critical jobs that risk missing their deadlines.
 c. Click Finish to complete the task, leaving the default values in the remaining panels.
3. In the displayed panel, select from the list the task you created and click Run. The task output shows that the Risk Level for DBSTART job is Potential Risk.
4. Select the DBSTART job and click Critical Path to view the path of the DBSTART predecessors with the least slack time. The Critical Path view does
not show any cause for the delay, because no problems occurred for any of the DBSTART predecessors in the critical path. Return to the Monitor Critical Jobs task output.

5. Click Hot List or the Potential Risk hyperlink to get a list of any critical job predecessor that is late, has been running for too long, or has ended with an error. The returned Hot List shows DBMAINT as a late job. It is scheduled to run on the CPU2 workstation.
 a. Click the CPU2 hyperlink.
 b. After verifying that CPU2 is offline, activate the workstation. The DBMAINT job starts to run.

6. Refresh the Monitor Critical Jobs task output. It shows that the Risk Level for DBSTART job is now No Risk.

Related concepts:
“Workload service assurance” on page 47

Related tasks:
“Creating a task to Monitor Critical Jobs” on page 95

Monitoring jobs running on multiple engines

This scenario describes how you use the Dynamic Workload Console to create a task to simultaneously monitor jobs that run on multiple engines, which can be in mixed distributed and z/OS environments.

Overview

High efficiency batch processing relies on powerful monitoring capabilities. The need for a single operator to monitor systems is continuously increasing. Up until about 10 years ago, only a limited amount of workload was monitored, but this is increasing to the monitoring of an entire division, and even to an entire company.

Today operators frequently have to monitor multiple large divisions or multiple companies for service providers. These operators work in shifts in multiple geographical locations according to a "follow-the-sun" approach, in some cases. They must try to balance what must be monitored with the size of the monitored environment.

Business scenario

In this scenario, an insurance company, named Starbank, consists of a headquarters where its central office accounting department is located, and multiple branch offices located all over the world, where several administrative departments perform accounting activities.

The central office is in charge of the company's entire accounting workload. Therefore, the Tivoli Workload Scheduler operator must verify that all the workload processing for the Starbank company proceeds smoothly and without errors and needs a comprehensive workload management solution.

To achieve this goal, the operator needs to create a task that he can run every day to monitor all the administrative jobs, detecting in real time any possible failures.

However, although the sales department of the company runs its jobs in a z/OS environment, the single business units run their jobs in distributed environments.
The operator needs a single console panel, from which he can control all the jobs, both z/OS and distributed, at the same time.

The operator creates a task to monitor jobs that run on multiple engines, including both the environments. He does this by creating and running a task to Monitor Jobs on multiple engines.

Creating a Monitor Jobs task for multiple engines

The operator logs in to the Dynamic Workload Console and clicks Tivoli Workload Scheduler > Quick Start > New Task....

In the Select Task Type panel, under Monitor Tasks on Multiple Engines, the operator selects Monitor Jobs and clicks Next.

Selecting the engines

In the Enter Task Information panel, the operator specifies a name for the task, for example AccError, and defines the scheduler engines on which to run the task.

According to a company naming convention policy, all the engine names have a prefix specifying to which department they belong. Therefore, the operator includes in the Selected Engines list all the engines named acc_*: The operator then organizes the list by importance, placing the engines belonging to the most critical company departments (like Finance and Sales) at the beginning of the list, so as to have their results displayed as the first rows of the table. The task runs following the engine sequence, but the results are displayed altogether, only after the task has run on all the engines in the list.
Defining the filter

In the General Filter panel, the Tivoli Workload Scheduler operator specifies some filtering criteria to limit the results retrieved by the query. Here he starts refining the scope of the query by also considering the amount of information to retrieve. Defining a meaningful filter is very important to avoid unnecessary overhead, considering that the task runs on multiple engines. First, the operator sets the automatic refresh time to 600 so as to receive the updated monitoring results every 600 seconds (10 minutes). He then filters for jobs based on their job streams. According to a company policy, all administrative job streams begin with the company name followed by the department code. In our scenario, the operator looks for all the job streams whose identifier starts with Starb* that did not complete successfully.

Selecting the columns

In the Columns Definition panel, the operator selects the information to display in the table containing the query results. According to the columns he chooses, the corresponding information is displayed in the task results table. In our scenario, for all the jobs resulting from the query, the operator wants to see their statuses, the job streams they belong to, when they were scheduled to run, and the engines on which they ran. Then, if more details are necessary, he can drill down into this information displayed in the table of results and navigate it.

Results

In the Create New Task panel, the operator can see the main details about the task that he has just created and launch the task immediately. The task is now in the list of saved tasks from where the operator can open and modify it any time. To find the task from the displayed task lists, he clicks the following options: Workload > Monitor > Monitor Jobs.

The operator has created a task that can be run every day to highlight possible critical failure in real time. If there is a failure in any of the administrative jobs run by the selected offices, the operator discovers it no later than 10 minutes after the error occurs.

Running the Monitor Jobs task for multiple engines

To launch the task, the operator clicks Workload > Monitor > Monitor Jobs.

The operator clicks AccError task to launch it. Because some engine connections do not work correctly, the Checking engine connections panel reports some errors on two of the eight engines defined. The failing connections are the Tokyo and Paris offices. The operator could ignore the failed connections and proceed, running the task on the successful engines only. However, monitoring the entire workload running in all the branch offices is crucial to his activity, and he does not want to skip any engine connection. Therefore, by clicking Fix it next to each failing engine connection, the operator opens a dialog where he can enter the credentials required for that engine. After entering the correct credentials, also the remaining engine connections work successfully and the operator clicks Proceed to run the task against all the engines.
Viewing results and taking corrective actions

Viewing the results of the AccError task, the operator realizes that there is a job in error, named PayAcc1. He right-clicks the job to open its job log, to better determine the cause and effects of this error.

From the job log, he finds out that only the last step of the job failed, which was a data backup process. This step can be done manually at a later time. The most important part of the job, consisting of the accounting processes related to payrolls, completed successfully.

Now the operator needs to determine the impact that this job in error has on the overall plan. To do this, he selects the PayAcc1 job and clicks Graphical View > Impact View. From this view, he realizes that this job is a predecessor dependency of another job, named Balance1. The operator releases the failing job dependency so as to make it possible for the successor Balance1 to start and the whole workload processing to complete.

A second job in error results from the AccError task. It is a z/OS job, named Info. The operator selects this job from the list and right-clicks it to open the Operator Instructions that give him important information about what to do. According to the instructions, this is an optional procedure, which can be skipped without consequence for the entire processing. Therefore, the operator right-clicks the job and cancels it.

The operator then refreshes the view to ensure that there are no other jobs in error.

To view connection status information and statistical information about the engines against which the task was run, the operator clicks the statistical icon on the table toolbar.

A pie chart showing the number of query results and job status is displayed for each engine on which the task ran successfully. By clicking the pie sections, he can see further details. If the task did not run successfully run on one or more engines, he sees a message containing details about the errors.

Related tasks:

“Creating a task to Monitor Jobs on Multiple Engines” on page 98
Chapter 14. Reference

This section provides some reference information that can be useful to perform the main tasks and activities from the Dynamic Workload Console.

Accessing online publications

Accessing the Tivoli products online publications in the Tivoli software information center website.

IBM posts publications for this and all other Tivoli products, as they become available and whenever they are updated, to the Tivoli software information center website. Access the Tivoli software information center at the following links:

- [Tivoli Workload Scheduler Information Center](#) to access all the publications related to the Tivoli Workload Scheduler product
- [Tivoli Workload Scheduler Wiki Media Gallery](#) to access demos (only available in English) about how to use the Tivoli Workload Scheduler product
- [Tivoli Information Center](#) to access information about all the Tivoli products.

Note: If you print PDF publications on other than letter-sized paper, set the option in the File -> Print window that enables Adobe Reader to print letter-sized pages on your local paper.

Dynamic Workload Console global settings

Role based customization

The file is organized into several sections that group similar properties. Sections can be repeated multiple times in the same file and applied differently to different user roles.

To apply a section only to the users belonging to a role, the section must be included within the following setting:

```xml
<settings role="TWSWEBUIOperator">
  <graphViews>
    <property name="planViewNewWindow" value="false"/>
  </graphViews>
</settings>
```

Only one **settings** section can be specified for each role. If a user has more than one role, the settings associated to the higher role are taken into consideration.

Example:

```xml
<settings>
  <graphViews>
    <property name="planViewNewWindow" value="true"/>
  </graphViews>
</settings>
<settings role="TWSWEBUIOperator">
  <graphViews>
    <property name="planViewNewWindow" value="false"/>
  </graphViews>
</settings>
```
TdwcGlobalSettings.xml sections

The following sections can be included in the file:

- The **graphViews** section contains the configuration parameters that apply to the graphical views in the plan, such as the maximum number of objects shown in each view.

 - **planViewMaxJobstreams**
 - The maximum number of job streams displayed in the Plan View.
 - Default value is **1000**.

 - **jobstreamViewLimit**
 - The maximum number of objects displayed in the Job Stream View.
 - Default value is **1000**.

 - **impactViewLimit**
 - The maximum number of job streams displayed in the Impact View.
 - Default value is **2000**.

 - **planViewNewWindow**
 - Set it to TRUE if you want the plan view to be displayed in a new window each time it is launched. Default value is **FALSE**.

- The **NewsFeed** section contains the configuration details to be constantly up-to-date with product information.

 - **FeedURL**
 - It contains the URL from which you receive news and updates. Default value: https://www.ibm.com/developerworks/wikis/pages/viewpageattachments.action?pageId=119079645&sortBy=date&highlight=twsjsonp&

 - **PollInterval**
 - The interval in seconds between two checks for updates. Default value is **3600**.

 - **FeedType**
 - A string that identifies the type of update. Default value is **JSONP**.

 - **UnsubList**
 - The specified categories are automatically excluded from the notification mechanism. News and updated belonging to the categories listed in this property will be ignored. Multiple categories can be specified, separated by a pipe (|). Wildcard characters are not supported. Possible news categories are:
 - APARs
 - Fixes and utilities
 - News
 - Technotes
 - Product documentation and publications

- The **application** section defines the environment for which predefined tasks are created.

 - **precannedTaskCreation**
 - Some predefined tasks are created by default and are available when you log in to the console. There is a predefined Monitor task for every object, for both z/OS and distributed engines. To change this setting, use one of the following values:
 - all
– distributed
– zos
– none

Default value is all.

• The help section indicates the address of the current version of the Information Center.

infocenterURL

It contains the URL of the Information Center. Default value is Distributed Information Center.

• The twsObjectDoc section contains URLs where you can store customized documentation about your jobs or job streams. By default this setting is not specified. If you want to associate customized documentation to a job or job stream, use this setting to specify the external address where this information is located. When you specify this setting, an action to access the relevant documentation becomes available from More Actions menus in Monitor Jobs and Monitor Job Streams tasks as well as in the graphical views in the plan (in the object's*ENT!*'s tooltips, context menus and properties) making it possible to open the documentation while monitoring your job or job stream in the plan. If you use any of the following special characters in the URL, you must write them as follows:

quote (")
\

apostrophe (')

≈apos;

ampersand (&)

&

less than (<)

&lt

greater than (>)

&gt

backslash (\)

\\

customActionLabel

The name of the action displayed in menus, object properties, and tooltips to access customized documentation about your jobs or job streams.

jobUrlTemplate

The address of your job documentation. No default value available.

jobstreamUrlTemplate

The address of your job stream documentation. No default value available.

These properties must be valid URLs, containing one or more of the variables listed in the table below, as shown in the example:

Example: <settings>
<twsObjectDoc>
<property name="jobstreamUrlTemplate" value="http://www.yourhost.com/tws/docs/jobstream/${js_name_w}" />

Chapter 14. Reference 137
Multiple variables can be included in a URL and must be specified using the following syntax: `${variable}`:

<table>
<thead>
<tr>
<th>Name</th>
<th>Object</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>job_name_w</td>
<td>Job</td>
<td>The name of the job</td>
</tr>
<tr>
<td>job_number_w</td>
<td>Job z/OS</td>
<td>The number of the job</td>
</tr>
<tr>
<td>job_wkst_w</td>
<td>Job</td>
<td>The name of the workstation on which the job runs</td>
</tr>
<tr>
<td>job_jsname_w</td>
<td>Job</td>
<td>The name of the job stream that contains the job</td>
</tr>
<tr>
<td>job_jswkst_w</td>
<td>Job</td>
<td>The name of the workstation on which the job stream runs</td>
</tr>
<tr>
<td>job_actualarrival_w</td>
<td>Job z/OS</td>
<td>The actual start time of the job (date format: YYYY-MM-DDThh:mm:ss)</td>
</tr>
<tr>
<td>job_actualend_w</td>
<td>Job z/OS</td>
<td>When the job actually completed (date format: YYYY-MM-DDThh:mm:ss)</td>
</tr>
<tr>
<td>job_starttime_w</td>
<td>Job</td>
<td>The start time of the job (date format: YYYY-MM-DDThh:mm:ss)</td>
</tr>
<tr>
<td>job_id_w</td>
<td>Job</td>
<td>The ID of the job</td>
</tr>
<tr>
<td>job_returncode_w</td>
<td>Job</td>
<td>The return code of the job</td>
</tr>
<tr>
<td>js_name_w</td>
<td>Job stream</td>
<td>The name of the job stream that contains the job</td>
</tr>
<tr>
<td>js_wkst_w</td>
<td>Job stream</td>
<td>The name of the workstation on which the job stream runs</td>
</tr>
<tr>
<td>js_id_w</td>
<td>Job stream</td>
<td>The job stream ID</td>
</tr>
<tr>
<td>js_latest_start_w</td>
<td>Job stream</td>
<td>The latest time at which a job stream can start (date format: YYYY-MM-DDThh:mm:ss)</td>
</tr>
<tr>
<td>engine_name_w</td>
<td>Engine</td>
<td>The name of the engine connection</td>
</tr>
<tr>
<td>engine_host_w</td>
<td>Engine</td>
<td>The hostname of the engine connection</td>
</tr>
<tr>
<td>engine_port_w</td>
<td>Engine</td>
<td>The port number of the engine connection</td>
</tr>
<tr>
<td>engine_plan_w</td>
<td>Engine</td>
<td>The ID of selected plan</td>
</tr>
<tr>
<td>engine_serv_w</td>
<td>Engine</td>
<td>The remote server name of the engine connection</td>
</tr>
</tbody>
</table>

TdwcGlobalSettings.xml sample

The following is a sample of the file:

```xml
<settings role="TWSWEBUIOperator">
  <graphViews>
    <property name="planViewMaxJobstreams" value="1000"></property>
    <property name="jobstreamViewLimit" value="1000"></property>
    <property name="impactViewLimit" value="1000"></property>
  </graphViews>
</settings>
```
Related tasks:
- "Customizing your global settings" on page 11
- How to customize your global settings
- "Enabling and disabling news notification beacon" on page 57
- How to enable and disable news notification

Users and groups

The Dynamic Workload Console uses the Tivoli Integrated Portal capabilities for defining users and to authorize them to view and use items on the navigation menu. Users defined in each group can perform only the operations that are visible to them. This means that depending on your user designation, you might not see all of the items described in this help system. The groups available in the current release are:

TWSWEBUIAdministrator
Users in this group can see the entire portfolio and use all features of the Dynamic Workload Console.

TWSWEBUIConfigurator
Users in this group can manage Dynamic Workload Console scheduler connections, user preferences, and scheduling environment design.

TWSWEBUIOperator
Users in this group can see Dynamic Workload Console:
- All Monitor tasks
- Jobs and job streams to be submitted on request
- Manage User Preferences

TWSWEBUIDeveloper
Users in this group can create, list, and edit workload definitions, workstations, and event rule definitions in the Tivoli Workload Scheduler database.

TWSWEBUIAnalyst
Users in this group can manage Dynamic Workload Console reports and user preferences.
The following table lists some entries of the portfolio, and some activities you can perform on the Dynamic Workload Console. Beside each item, the table shows the groups whose users are authorized to access them.

Table 5. Menu and Group Permissions

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Groups with Permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick Start</td>
<td>TWSWEBUIAdministrator</td>
</tr>
<tr>
<td>All Configured Tasks</td>
<td>TWSWEBUIAdministrator TWSWEBUIOperator</td>
</tr>
<tr>
<td>All Configured Reports</td>
<td>TWSWEBUIAdministrator TWSWEBUIAnalyst</td>
</tr>
<tr>
<td>Workload -> Design</td>
<td>TWSWEBUIAdministrator TWSWEBUIOperator</td>
</tr>
<tr>
<td>Workload -> Forecast</td>
<td>TWSWEBUIAdministrator TWSWEBUIOperator</td>
</tr>
<tr>
<td>Workload -> Submit</td>
<td>TWSWEBUIAdministrator TWSWEBUIOperator</td>
</tr>
<tr>
<td>Workload -> Monitor</td>
<td>TWSWEBUIAdministrator TWSWEBUIOperator</td>
</tr>
<tr>
<td>Scheduling Environment -> Design</td>
<td>TWSWEBUIAdministrator TWSWEBUIConfigurator</td>
</tr>
<tr>
<td>Scheduling Environment -> Monitor</td>
<td>TWSWEBUIAdministrator TWSWEBUIOperator</td>
</tr>
<tr>
<td>Reporting</td>
<td>TWSWEBUIAdministrator TWSWEBUIAnalyst</td>
</tr>
<tr>
<td>Settings ->Manage Engines</td>
<td>TWSWEBUIAdministrator TWSWEBUIConfigurator</td>
</tr>
<tr>
<td>Settings -> Manage User Preferences</td>
<td>TWSWEBUIAdministrator TWSWEBUIConfigurator TWSWEBUIDeveloper TWSWEBUIAnalyst</td>
</tr>
<tr>
<td>Settings -> Manage Settings</td>
<td>TWSWEBUIAdministrator</td>
</tr>
</tbody>
</table>

Type of communication based on SSL communication options

Based on the authentication types that you defined for the workstations in your network, communication between workstations is different. The following table summarizes the types of connection for the different authentication type settings.

Table 6. Type of communication based on workstation SSL communication options

<table>
<thead>
<tr>
<th>Fault-tolerant Agent (Domain Manager)</th>
<th>Domain Manager (Parent Domain Manager)</th>
<th>Connection Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled</td>
<td>Disabled</td>
<td>TCP/IP</td>
</tr>
<tr>
<td>Allow Incoming</td>
<td>Disabled</td>
<td>TCP/IP</td>
</tr>
<tr>
<td>Upward Forced</td>
<td>Disabled</td>
<td>No connection</td>
</tr>
<tr>
<td>All Forced</td>
<td>Disabled</td>
<td>No connection</td>
</tr>
<tr>
<td>Disabled</td>
<td>Upward Forced</td>
<td>TCP/IP</td>
</tr>
<tr>
<td>Allow Incoming</td>
<td>Upward Forced</td>
<td>TCP/IP</td>
</tr>
</tbody>
</table>
Table 6. Type of communication based on workstation SSL communication options (continued)

<table>
<thead>
<tr>
<th>Fault-tolerant Agent (Domain Manager)</th>
<th>Domain Manager (Parent Domain Manager)</th>
<th>Connection Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upward Forced</td>
<td>Upward Forced</td>
<td>SSL</td>
</tr>
<tr>
<td>All Forced</td>
<td>Upward Forced</td>
<td>SSL</td>
</tr>
<tr>
<td>Disabled</td>
<td>Allow Incoming</td>
<td>TCP/IP</td>
</tr>
<tr>
<td>Allow Incoming</td>
<td>Allow Incoming</td>
<td>TCP/IP</td>
</tr>
<tr>
<td>Upward Forced</td>
<td>Allow Incoming</td>
<td>SSL</td>
</tr>
<tr>
<td>All Forced</td>
<td>Allow Incoming</td>
<td>SSL</td>
</tr>
<tr>
<td>Disabled</td>
<td>All Forced</td>
<td>No connection</td>
</tr>
<tr>
<td>Allow Incoming</td>
<td>All Forced</td>
<td>SSL</td>
</tr>
<tr>
<td>Upward Forced</td>
<td>All Forced</td>
<td>SSL</td>
</tr>
<tr>
<td>All Forced</td>
<td>All Forced</td>
<td>SSL</td>
</tr>
</tbody>
</table>

For details about how to create SSL certificates and how to set local options for SSL communication, see [Tivoli Workload Scheduler Administration].

Related tasks:
"Creating distributed workstations" on page 61

Status description and mapping for distributed jobs

There are the following types of status for distributed jobs:

"Job status"
A subset of internal status that is common for both Tivoli Workload Scheduler for distributed and Tivoli Workload Scheduler for z/OS environments.

"Job internal status" on page 142
The Tivoli Workload Scheduler job status registered on the workstation where the job is running. The internal status uniquely identifies a job status in Tivoli Workload Scheduler.

Job status

Table 7 lists the job statuses.

Table 7. Job status

<table>
<thead>
<tr>
<th>This job stream status ...</th>
<th>Means that ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting</td>
<td>The job is waiting for its dependencies to be resolved.</td>
</tr>
<tr>
<td>Ready</td>
<td>The dependencies of the job have been resolved and the job is ready to run.</td>
</tr>
<tr>
<td>Running</td>
<td>The job is running.</td>
</tr>
<tr>
<td>Successful</td>
<td>The job completed successfully.</td>
</tr>
<tr>
<td>Error</td>
<td>The job stopped running with an error.</td>
</tr>
<tr>
<td>Canceled</td>
<td>The job was canceled.</td>
</tr>
</tbody>
</table>
Table 7. Job status (continued)

<table>
<thead>
<tr>
<th>This job stream status ...</th>
<th>Means that ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Held</td>
<td>The job was put on hold.</td>
</tr>
<tr>
<td>Undecided</td>
<td>The job status is currently being checked.</td>
</tr>
<tr>
<td>Blocked</td>
<td>The job was blocked because of unfulfilled dependencies.</td>
</tr>
</tbody>
</table>

Job internal status

Table 8 lists the job internal statuses.

Note: The + flag written beside the INTRO and EXEC statuses means that the job is managed by the local batchman process.

Table 8. Job internal status

<table>
<thead>
<tr>
<th>This job stream status ...</th>
<th>Means that ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABEND</td>
<td>The job terminated with a nonzero exit code or with an exit code outside the defined RC mapping.</td>
</tr>
<tr>
<td>ABEND P</td>
<td>An ABEND confirmation was received, but the job is not completed.</td>
</tr>
<tr>
<td>ADD</td>
<td>The job is being submitted.</td>
</tr>
<tr>
<td>BOUND</td>
<td>For shadow jobs, it means that the shadow job matched a remote job instance in the remote plan. For TWS for z/OS agents, it means that the job is on the JES queue.</td>
</tr>
<tr>
<td>CANCEL</td>
<td>The job was canceled.</td>
</tr>
<tr>
<td>CANCEL P</td>
<td>The job is pending cancelation. Cancelation is deferred until all of the dependencies, including at time dependencies, are resolved.</td>
</tr>
<tr>
<td>DONE</td>
<td>The job completed in an unknown status.</td>
</tr>
<tr>
<td>ERROR</td>
<td>For internetwork and cross dependencies only, an error occurred while checking for the remote status.</td>
</tr>
<tr>
<td>EXEC</td>
<td>The job is running.</td>
</tr>
<tr>
<td>EXTRN</td>
<td>For internetwork dependencies only, the status is unknown. An error occurred, a rerun action was just performed on the job in the external job stream, or the remote job or job stream does not exist.</td>
</tr>
<tr>
<td>FAILED</td>
<td>Unable to launch the job.</td>
</tr>
<tr>
<td>FENCE</td>
<td>The job's priority is below the fence.</td>
</tr>
<tr>
<td>HOLD</td>
<td>The job is awaiting dependency resolution.</td>
</tr>
<tr>
<td>INTRO</td>
<td>The job is introduced for launching by the system.</td>
</tr>
<tr>
<td>PEND</td>
<td>The job completed, and is awaiting confirmation.</td>
</tr>
<tr>
<td>READY</td>
<td>The job is ready to launch, and all dependencies are resolved.</td>
</tr>
<tr>
<td>R JOB</td>
<td>The job is running.</td>
</tr>
<tr>
<td>SCHED</td>
<td>The job's at time has not arrived.</td>
</tr>
<tr>
<td>SUCC</td>
<td>The job completed with an exit code of zero.</td>
</tr>
<tr>
<td>SUCC P</td>
<td>A SUCC confirmation was received, but the job is not completed.</td>
</tr>
<tr>
<td>SUSP</td>
<td>The job was blocked because of unfulfilled dependencies.</td>
</tr>
<tr>
<td>USER STAT</td>
<td>The job was put on hold by the user.</td>
</tr>
</tbody>
</table>
Table 8. Job internal status (continued)

<table>
<thead>
<tr>
<th>This job stream status ...</th>
<th>Means that ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAIT</td>
<td>The job is waiting to fulfill its dependencies.</td>
</tr>
<tr>
<td>WAITD</td>
<td>The job is waiting to fulfill its dependencies.</td>
</tr>
</tbody>
</table>

Job status mapping

Table 9 describes how a job status is mapped to the corresponding job internal status.

Table 9. Job status mapping

<table>
<thead>
<tr>
<th>This job status ...</th>
<th>Maps to this job internal status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting</td>
<td>ADD, PEND, WAIT, WAITD, INTRO, HOLD</td>
</tr>
<tr>
<td>Ready</td>
<td>READY</td>
</tr>
<tr>
<td>Running</td>
<td>EXEC, SUCC P, ABEND P, R JOB, BOUND</td>
</tr>
<tr>
<td>Successful</td>
<td>SUCC</td>
</tr>
<tr>
<td>Error</td>
<td>ABEND, FAILED</td>
</tr>
<tr>
<td>Canceled</td>
<td>Status of the job when it was canceled. Canceled flag is set.</td>
</tr>
<tr>
<td>Held</td>
<td>Priority = 0, WAIT, READY, USER STAT</td>
</tr>
<tr>
<td>Undecided</td>
<td>ERROR, EXTRN</td>
</tr>
<tr>
<td>Blocked</td>
<td>SUSP</td>
</tr>
</tbody>
</table>

Related concepts:

“Job” on page 24

Related tasks:

“Creating a task to Monitor Jobs” on page 94
“Creating a task to Monitor Critical Jobs” on page 95
“Creating a task to Monitor Jobs on Multiple Engines” on page 98

Status description and mapping for z/OS jobs

There are the following types of status for z/OS jobs:

“z/OS job status”

A subset of internal statuses common for both Tivoli Workload Scheduler distributed and z/OS environments.

“z/OS job internal status” on page 144

The job status registered on the Tivoli Workload Scheduler controller. The internal status uniquely identifies the status of a z/OS job.

z/OS job status

Table 10 on page 144 shows the z/OS job statuses that are displayed by the Dynamic Workload Console.
Table 10. z/OS job status

<table>
<thead>
<tr>
<th>This job status</th>
<th>Means that ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting</td>
<td>The job is waiting for its dependencies to be resolved.</td>
</tr>
<tr>
<td>Ready</td>
<td>The dependencies of the job have been resolved and the job is ready to run.</td>
</tr>
<tr>
<td>Running</td>
<td>The job is running.</td>
</tr>
<tr>
<td>Successful</td>
<td>The job completed successfully.</td>
</tr>
<tr>
<td>Error</td>
<td>The job has stopped running with an error.</td>
</tr>
<tr>
<td>Canceled</td>
<td>The job was canceled.</td>
</tr>
<tr>
<td>Held</td>
<td>The job was put in hold.</td>
</tr>
<tr>
<td>Undefined</td>
<td>The job status is currently being checked.</td>
</tr>
<tr>
<td>Suppressed by Condition</td>
<td>The job is suppressed because the condition dependencies associated to its predecessors are false.</td>
</tr>
</tbody>
</table>

z/OS job internal status

Table 11 shows the z/OS job internal statuses that are displayed by the Dynamic Workload Console and how they map to the status displayed on the Tivoli Workload Scheduler for z/OS controller.

Table 11. z/OS job internal status

<table>
<thead>
<tr>
<th>This job internal status</th>
<th>Means that ...</th>
<th>Maps to ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arriving</td>
<td>The job is ready for processing; no predecessors were defined.</td>
<td>A</td>
</tr>
<tr>
<td>Complete</td>
<td>The job has completed</td>
<td>C</td>
</tr>
<tr>
<td>Deleted</td>
<td>The job has been deleted from the plan</td>
<td>D</td>
</tr>
<tr>
<td>Error</td>
<td>The job has ended-in-error.</td>
<td>E</td>
</tr>
<tr>
<td>Interrupted</td>
<td>The job is interrupted.</td>
<td>I</td>
</tr>
<tr>
<td>Ready</td>
<td>The job is ready for processing; all predecessors are complete.</td>
<td>R</td>
</tr>
<tr>
<td>Started</td>
<td>The job has started</td>
<td>S</td>
</tr>
<tr>
<td>Undefined</td>
<td>The job status is being evaluated.</td>
<td>U</td>
</tr>
<tr>
<td>Waiting</td>
<td>The job is waiting for a predecessor to complete.</td>
<td>W</td>
</tr>
<tr>
<td>Ready - non-reporting workstation</td>
<td>Ready - At least one predecessor is defined on a nonreporting workstation; all predecessors are complete.</td>
<td>*</td>
</tr>
<tr>
<td>Suppressed by Condition</td>
<td>The condition dependencies associated to its predecessors are not satisfied.</td>
<td>X</td>
</tr>
</tbody>
</table>

z/OS job status mapping

Table 12 on page 145 describes how a z/OS job status is mapped to the corresponding job internal status.

144 IBM Tivoli Workload Scheduler: Dynamic Workload Console User’s Guide
Table 12. z/OS job status mapping

<table>
<thead>
<tr>
<th>This job status ...</th>
<th>Maps to this job internal status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting</td>
<td>W</td>
</tr>
<tr>
<td>Ready</td>
<td>A, R, *</td>
</tr>
<tr>
<td>Running</td>
<td>S</td>
</tr>
<tr>
<td>Successful</td>
<td>C</td>
</tr>
<tr>
<td>Error</td>
<td>E</td>
</tr>
<tr>
<td>Canceled</td>
<td>I, D</td>
</tr>
<tr>
<td>Held</td>
<td>A,R,* manually held</td>
</tr>
<tr>
<td>Undefined</td>
<td>U</td>
</tr>
<tr>
<td>Suppressed by Condition</td>
<td>X</td>
</tr>
</tbody>
</table>

Related concepts:
“Job” on page 24

Related tasks:
“Creating a task to Monitor Jobs” on page 94
“Creating a task to Monitor Critical Jobs” on page 95
“Creating a task to Monitor Jobs on Multiple Engines” on page 98

Status description and mapping for distributed job streams

There are the following types of status for job streams:

“Job stream status”
A subset of internal statuses that is common for both Tivoli Workload Scheduler for distributed and Tivoli Workload Scheduler for z/OS environments.

“Job stream internal status” on page 146
The Tivoli Workload Scheduler job stream status registered on the workstation where the job stream is running. The internal status uniquely identifies a job stream status in Tivoli Workload Scheduler.

Job stream status

Table 13 lists the job stream statuses.

Table 13. Job stream status

<table>
<thead>
<tr>
<th>This job stream status ...</th>
<th>Means that ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting</td>
<td>The job stream is waiting for its dependencies to be resolved.</td>
</tr>
<tr>
<td>Ready</td>
<td>The dependencies of the job stream have been resolved and the job stream is ready to run.</td>
</tr>
<tr>
<td>Running</td>
<td>The job stream is running.</td>
</tr>
<tr>
<td>Successful</td>
<td>The job stream completed successfully.</td>
</tr>
<tr>
<td>Error</td>
<td>The job stream has stopped running with an error.</td>
</tr>
<tr>
<td>Canceled</td>
<td>The job stream was canceled.</td>
</tr>
<tr>
<td>Held</td>
<td>The job stream was interrupted.</td>
</tr>
</tbody>
</table>
Table 13. Job stream status (continued)

<table>
<thead>
<tr>
<th>This job stream status ...</th>
<th>Means that ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undefined</td>
<td>The job stream status is currently being checked.</td>
</tr>
<tr>
<td>Blocked</td>
<td>The job stream was blocked because of unfulfilled dependencies.</td>
</tr>
</tbody>
</table>

Job stream internal status

Table 14 lists the job stream internal statuses.

Table 14. Job stream internal status

<table>
<thead>
<tr>
<th>This job stream status ...</th>
<th>Means that ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABEND</td>
<td>The job stream terminated with a nonzero exit code.</td>
</tr>
<tr>
<td>ADD</td>
<td>The job stream was added with operator intervention.</td>
</tr>
<tr>
<td>CANCEL</td>
<td>The job stream was canceled.</td>
</tr>
<tr>
<td>CANCEL P</td>
<td>The job stream is pending cancelation. Cancellation is deferred until all of the dependencies, including an at time, are resolved.</td>
</tr>
<tr>
<td>EXEC</td>
<td>The job stream is running.</td>
</tr>
<tr>
<td>EXTRN</td>
<td>The job stream is in a remote Tivoli Workload Scheduler network and its status is unknown. An error occurred, a Rerun action was performed on the EXTERNAL job stream, or the NET job or job stream does not exist.</td>
</tr>
<tr>
<td>HOLD</td>
<td>The job stream is awaiting dependency resolution.</td>
</tr>
<tr>
<td>READY</td>
<td>The dependencies for the job stream have been met but the time restrictions for the job stream have not.</td>
</tr>
<tr>
<td>STUCK</td>
<td>The job stream was interrupted. No jobs are launched without operator intervention.</td>
</tr>
<tr>
<td>SUCC</td>
<td>The job stream completed with an exit code of zero.</td>
</tr>
<tr>
<td>Get Job Status Error</td>
<td>This is for internetwork job streams and specifies that an error occurred while checking for the remote status.</td>
</tr>
</tbody>
</table>

Job stream status mapping

Table 15 describes how a job stream status is mapped to the corresponding job stream internal status.

Table 15. Job stream status mapping

<table>
<thead>
<tr>
<th>This job stream status ...</th>
<th>Maps to this job stream internal status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting</td>
<td>ADD, PEND, WAIT, WAITD, INTRO, HOLD</td>
</tr>
<tr>
<td>Ready</td>
<td>READY</td>
</tr>
<tr>
<td>Running</td>
<td>EXEC</td>
</tr>
<tr>
<td>Successful</td>
<td>SUCC</td>
</tr>
<tr>
<td>Error</td>
<td>ABEND, FAILED</td>
</tr>
<tr>
<td>Canceled</td>
<td>CANCEL, HOLD, CANCEL P</td>
</tr>
<tr>
<td>Held</td>
<td>HOLD</td>
</tr>
<tr>
<td>Undefined</td>
<td>ERROR, EXTRN</td>
</tr>
</tbody>
</table>
Status description and mapping for z/OS job streams

There are the following types of status for z/OS job streams:

z/OS job stream statuses
A subset of internal statuses that is common for both Tivoli Workload Scheduler for distributed and Tivoli Workload Scheduler for z/OS environments.

z/OS job stream internal statuses
The Tivoli Workload Scheduler job stream statuses registered on the controller. The internal status uniquely identifies the status of a z/OS job stream in Tivoli Workload Scheduler.

z/OS job stream statuses

<table>
<thead>
<tr>
<th>This job stream status</th>
<th>Means that ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting</td>
<td>No job in the job stream has started.</td>
</tr>
<tr>
<td>Running</td>
<td>The job stream is running.</td>
</tr>
<tr>
<td>Successful</td>
<td>The job stream completed successfully.</td>
</tr>
<tr>
<td>Error</td>
<td>The job stream has stopped running with an error.</td>
</tr>
<tr>
<td>Canceled</td>
<td>The job stream was canceled.</td>
</tr>
</tbody>
</table>

z/OS job stream internal statuses

<table>
<thead>
<tr>
<th>This job stream status</th>
<th>Means that ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting</td>
<td>No job in the job stream has started.</td>
</tr>
<tr>
<td>Started</td>
<td>The job stream is running.</td>
</tr>
<tr>
<td>Completed</td>
<td>The job stream completed successfully.</td>
</tr>
</tbody>
</table>
Table 17. z/OS job stream internal status (continued)

<table>
<thead>
<tr>
<th>This job stream status ...</th>
<th>Means that ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>The job stream has stopped running with an error.</td>
</tr>
<tr>
<td>Deleted</td>
<td>The job stream was deleted.</td>
</tr>
<tr>
<td>Undefined</td>
<td>The job stream status is not known.</td>
</tr>
</tbody>
</table>

z/OS job stream status mapping

Table 18 describes how a z/OS job stream status is mapped to the corresponding job stream internal status.

Table 18. z/OS job stream status mapping

<table>
<thead>
<tr>
<th>This job stream status ...</th>
<th>Maps to this job stream internal status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waiting</td>
<td>Waiting</td>
</tr>
<tr>
<td>Running</td>
<td>Started</td>
</tr>
<tr>
<td>Successful</td>
<td>Completed</td>
</tr>
<tr>
<td>Error</td>
<td>Error</td>
</tr>
<tr>
<td>Canceled</td>
<td>Deleted</td>
</tr>
</tbody>
</table>

Related concepts:
“Job stream” on page 24

Related tasks:
“Creating a task to Monitor Job Streams” on page 99
“Creating a task to Monitor Job Streams on Multiple Engines” on page 101

Workstation types

Table 19. Attribute settings for management workstation types

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Master domain manager</th>
<th>Domain manager</th>
<th>Backup domain manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpuname</td>
<td>The name of the workstation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>A description for the workstation enclosed within double quotes. This attribute is optional.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vartable</td>
<td>The name of a variable table associated with the workstation. Variables used with the workstation are defined in this table. This attribute is optional.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>os</td>
<td>The operating system installed on the system. Specify one of the following values: UNIX, WNT, OTHER, IBM_i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>node</td>
<td>The system host name or IP address.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcpaddr</td>
<td>The value assigned to \texttt{nm port} in the \texttt{localopts} file. For multiple workstations on a system, enter an unused port number. The default value is 31111.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>secureaddr</td>
<td>The value assigned to \texttt{nm ssl port} in the \texttt{localopts} file. Specify it if \texttt{securitylevel} is set to on, force or enabled.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timezone tz</td>
<td>The time zone in which the system is located. It is recommended that the value matches the value set on the operating system.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 19. Attribute settings for management workstation types (continued)

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Master domain manager</th>
<th>Domain manager</th>
<th>Backup domain manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>MASTERDM</td>
<td>The name of the managed domain.</td>
<td></td>
</tr>
<tr>
<td>host</td>
<td>Not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>access</td>
<td>Not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>manager</td>
<td></td>
<td>fta</td>
</tr>
<tr>
<td>ignore</td>
<td>Use this attribute if you do not want this workstation to appear in the next production plan.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>autolink</td>
<td>It indicates if a link between workstations is automatically opened at startup. Specify one of the following values:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This is an optional attribute. The default value is ON.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>behindfirewall</td>
<td>This setting is ignored.</td>
<td></td>
<td>It indicates if there is a firewall between the workstation and the master domain manager. Specify one of the following values:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>The default value is OFF.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>securitylevel</td>
<td>The type of SSL authentication to use:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>enabled</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>on</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>force</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fullstatus</td>
<td>ON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>server</td>
<td>Not applicable</td>
<td></td>
<td>This setting is ignored.</td>
</tr>
<tr>
<td>protocol</td>
<td>Not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>members</td>
<td>Not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>requirements</td>
<td>Not applicable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 20 describes the values you set for each attribute for target workstation types. Following the table you find additional details about each attribute.

Table 20. Attribute settings for target workstation types

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Fault-tolerant agent and standard agent</th>
<th>Workload broker workstation</th>
<th>Extended agent</th>
<th>Agent</th>
<th>Remote engine workstation</th>
<th>Pool</th>
<th>Dynamic pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpuname</td>
<td>The name of the workstation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>A description for the workstation enclosed within double quotes. This attribute is optional.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vartable</td>
<td>The name of a variable table associated with the workstation. Variables used with the workstation are defined in this table. This attribute is optional.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 20. Attribute settings for target workstation types (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Fault-tolerant agent and standard agent</th>
<th>Workload broker workstation</th>
<th>Extended agent</th>
<th>Agent</th>
<th>Remote engine workstation</th>
<th>Pool</th>
<th>Dynamic pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>os</td>
<td>The operating system installed on the system. Specify one of the following values:</td>
<td>OTHER</td>
<td>The operating system installed on the machine. Specify one of the following values:</td>
<td>This value setting is discovered on the system.</td>
<td>The operating system installed on the machine. Specify one of the following values:</td>
<td>The operating system installed on the machine. Specify one of the following values:</td>
<td>NULL</td>
</tr>
<tr>
<td></td>
<td>UNIX</td>
<td>WNT</td>
<td>OTHER</td>
<td>IBM_i</td>
<td>UNIX</td>
<td>WNT</td>
<td>OTHER</td>
</tr>
<tr>
<td></td>
<td>Specify OTHER for IBM i systems running as limited fault-tolerant agents.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>node</td>
<td>The system host name or IP address.</td>
<td></td>
<td>The system host name or IP address. Specify NULL when host is set to $MASTER, or when defining an extended agent for PeopleSoft, SAP or Oracle.</td>
<td>Agent host name or IP address.</td>
<td>Remote engine host name or IP address.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tcpaddr</td>
<td>The value assigned to nm port in the localopts file. When defining multiple workstations on a system, enter an unused port number. The default value is 31111.</td>
<td>The value assigned to nm port in the localopts file. When defining multiple workstations on a system, enter an unused port number. The default value is 41114.</td>
<td>See the selected access method specifications.</td>
<td>The port number to communicate with the agent when the protocol is http.</td>
<td>The port number to communicate with the remote engine when the protocol is http.</td>
<td></td>
<td>Not applicable</td>
</tr>
<tr>
<td>secureaddr</td>
<td>The value assigned to nm ssl port in the localopts file. Specify it if securitylevel is set to on, force or enabled.</td>
<td>Not applicable</td>
<td>Not Applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timezone</td>
<td>The time zone in which the system is located. It is recommended that the value matches the value set on the operating system.</td>
<td>The time zone set on the workstation specified in the host attribute.</td>
<td>The time zone set on the agent.</td>
<td>The time zone set on the remote engine.</td>
<td>The time zone set on the pool agents.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>domain</td>
<td>Specify an existing domain. The default value for fault-tolerant agents is MASTERDM. This setting is mandatory for standard agents.</td>
<td>Specify an existing domain. This setting is needed only if the value assigned to host is $MASTER.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attribute</td>
<td>Fault-tolerant agent and standard agent</td>
<td>Workload broker workstation</td>
<td>Extended agent</td>
<td>Agent</td>
<td>Remote engine workstation</td>
<td>Pool</td>
<td>Dynamic pool</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>-------</td>
<td>---------------------------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>host</td>
<td>Not Applicable</td>
<td>The host workstation. It can be set to $MASTER or $MANAGER.</td>
<td>The broker workstation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>access</td>
<td>Not Applicable</td>
<td>Select the appropriate access method file name.</td>
<td>Not Applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>agentID</td>
<td></td>
<td>The unique identifier of the dynamic agent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>fta s-agent</td>
<td>broker x-agent agent rem-eng pool d-pool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ignore</td>
<td></td>
<td></td>
<td>Use this attribute if you do not want this workstation to appear in the next production plan.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>autolink</td>
<td>It indicates if a link between workstations is automatically opened at startup. Specify one of the following values:</td>
<td>OFF</td>
<td>Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>behindfirewall</td>
<td>It indicates if there is a firewall between the workstation and the master domain manager. Specify one of the following values:</td>
<td>OFF</td>
<td>Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>securitylevel</td>
<td>The type of SSL authentication to use:</td>
<td>Not Applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>on</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>force</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Not applicable for IBM i systems running as limited fault-tolerant agents.
Table 20. Attribute settings for target workstation types (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Fault-tolerant agent and standard agent</th>
<th>Workload broker workstation</th>
<th>Extended agent</th>
<th>Agent</th>
<th>Remote engine workstation</th>
<th>Pool</th>
<th>Dynamic pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>fullstatus</td>
<td>It indicates if the workstation is updated about job processing status in its domain and subdomains. Specify one of the following values: ON OFF Specify OFF for standard agents.</td>
<td>OFF</td>
<td>Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>server</td>
<td>0-9, A-Z. When specified, it requires the creation of a dedicated mailman processes on the parent workstation.</td>
<td>Not Applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>protocol</td>
<td>Not applicable</td>
<td>Specifying one of the following values: http https</td>
<td>Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>members</td>
<td>Not applicable</td>
<td>Required value</td>
<td>Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>requirements</td>
<td>Not applicable</td>
<td>Required value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Related concepts:
- "Workstation" on page 17

Related tasks:
- "Creating distributed workstations" on page 61
- "Creating z/OS workstations" on page 62
- "Creating z/OS virtual workstations" on page 62
- "Creating a task to Monitor Workstations" on page 89

Graphical Views in the plan

You can use these views to monitor the progress of your job streams in the plan in a graphical map.

You can also take several actions on the objects displayed in the maps. Almost all the actions and information available in the traditional views resulting from Monitor tasks are also graphically available from these views.

All the panels provide a toolbar that you can use to act upon the views and the objects displayed. For more information about the actions available from the toolbars, see the specific panel help.
The actions that have any effect on the plan require that you click the **Refresh** button before their outcome is displayed. The action is submitted to the engine and the outcome becomes visible only after the engine has processed it.

By clicking the export icon, you can also export the displayed graphic in a Scalable Vector Graphics (SVG) file. With this type of file, vector-based images can be scaled indefinitely without degrading.

The following graphical views are currently available in the plan:

- **“Plan View”** (available only with Tivoli Workload Scheduler 8.5.1 or higher and Tivoli Workload Scheduler for z/OS 8.5.1 via z/OS Connector 8.5.1 or higher.)
- **“Impact View” on page 154**
- **“Job Stream View” on page 154**

Plan View

Use this view to get an overall picture of your plan.

This view shows a collapsed plan; it shows only the job streams, hiding any jobs and internal dependencies. External dependencies, both at job and job stream levels, are shown as arrows between job streams. If a job stream has multiple dependencies on another job stream, these are shown as one single arrow.

The following is an example of the view:

![Plan View Example](image)

Because potentially a plan can contain a huge number of job streams, by default the Plan View displays a limited number of objects. You can determine which job streams to display by specifying filtering criteria in the **Show Plan View** task.

The maximum number of job streams displayed by the Plan View is 1000.

You can launch this view, in the following way:

1. From the portfolio, click: **Workload > Monitor > Show Plan View.**
2. From the list of Show Plan View tasks, click the task you want to run.

From the Plan View, you can modify the filters to show different job streams by clicking the icon, changing filter criteria, and running the task again. Consider that changes in the filters apply only to the current view; not to the task definition.

Impact View

This view has similar appearance and available actions to the Job Stream View.

An important difference is that the Impact View allows you to navigate through the displayed jobs and job streams, choosing the level of predecessors and successors to display.

You can open this view, in the following ways:
- From the table of results of a Monitor Jobs or Monitor Job Streams task, select an item and select **Graphical Views** > **Impact View**.
- From a Job Stream View, right-click a job or job stream and select **Open** > **Impact View**. In the new panel the object from which you started the Impact view is centered and highlighted.
- From an Impact View, right-click a job or job stream and select **Show** > **Impact View**. The same panel is refreshed, displaying a new view where the object from which you started the Impact view is centered and highlighted.
- From a Plan View, right-click a job stream and select **Open** > **Impact View**. In the new panel, the object from which you started the Impact view is centered and highlighted.

By default the Impact View displays all the internal predecessors and successors of the selected object and the first level of external predecessors and successors. Jobs that belong to the same job stream but that are not predecessors or successors of the selected job are not displayed, unless you choose a deeper dependency level, or switch to the job stream view.

The maximum number of dependencies displayed by the Impact View is 1000.

The actions you can take on the objects in the view are almost the same as those available in the Job Stream View, except for those regarding files, prompts, and resources, which are not displayed in the Impact View.

Job Stream View

This view displays a picture of the job stream with all its jobs and related dependencies. You can open this view in the following ways:
- From the table of results of a Monitor Jobs or Monitor Job Streams task, select an item and select **Graphical Views** > **Job Stream View**.
- From a Job Stream View or Impact View, right-click a job or job stream and select **Open** > **Job Stream View**.
- From the Plan View, right-click a job stream and select **Open** > **Job Stream View**.

The following is an example of Job Stream View:
The main elements in the Job Stream View are:

- **Jobs**

 Their status is indicated by their colors and small icons at the bottom right corner. Further icons can be displayed inside the box to indicate:

 - The job is part of a rerun chain. By opening the job properties you can view further details about the rerun jobs, such as the outcome and job log of each rerun job.

 - The job or job stream is time-dependent.

 This image represents shadow jobs, which are jobs running locally that are used to map jobs running on the remote engine.

 Further details are available in the tooltip displayed by hovering on the job with the cursor.

 You can take multiple actions on the job by right-clicking it and choosing options from the context menu. The actions available depend on the selected engine and on the type of job. From this menu, you can view and print the job log and the job properties, or act on the job and its dependencies. You can also take actions on the job workstation or open the job and job stream definitions in the database to modify them.

- **Dependencies**

 They are shown as smaller boxes, connected to the depending objects by arrows that represent the dependency relationships. To take actions on dependencies,
you can right-click either the box or the arrow and choose an option from the context menu. Icons displayed next to the box corners describe the dependency type and status. Further details are available in the tooltip displayed by hovering on the dependency with the cursor. The maximum number of dependencies displayed by the Job Stream View is 1000.

Related concepts:
- “Plans” on page 41
- “Plan view tasks” on page 94

Related tasks:
- “Creating a task to Show Plan View” on page 115

Workload Designer

This section provides some reference information about the Workload Designer.

Working List

Use this pane to view all the objects you are working on, to create new objects, and to search for existing ones in the database.

The objects you see in this list are those you have currently open and you can switch between them to act on them in the workspace on the right.

In this pane you can use the following toolbars:

- Use the toolbar to work with the objects displayed in this pane.

- Use the toolbar to select or clear all the objects displayed in the list or to collapse and expand the list.

The object highlighted in the list is open in the workspace on the right, where you can edit it.

The object open in the workspace on the right is displayed in bold in this list.

The objects in the list can be marked by the following icons: The objects in the list can be marked by the following icons:

- The object is open in edit mode.

- The object has pending changes that must still be saved. Click the Save icon to commit the changes to the database.

- The object is incorrect or incomplete and cannot be saved until all errors are fixed.

- The object is currently being loaded. It cannot be edited until the loading completes.

If you close an object, it is removed from the working list. If it was locked, by closing it you also unlock it.
Quick Open

Use this pane to rapidly open objects from the database.

To create dependencies as well as to add jobs to a job stream, you can drag one or more of the objects contained in the Quick Open pane and drop them in the Details pane or Graphical View in the workspace on the right.

Each of the following icons represents an object category. Click the icon corresponding to the object type that you want to open.

- Job Definition
- Job Stream
- Prompt
- Resource
- Windows User
- Calendar
- Workstation Class
- Variable Table
- Period
- Operator Instructions
- Event Tracking Criterion
- Workstation Closed Interval
- JCL

Click this button to start the search, after having optionally specified your search criteria. If you leave a field blank or specify a single asterisk (*), no specific search criterion is used. The available fields vary depending on the object type you select.

Wildcard characters are supported and used as follows: the asterisk (*) indicates multiple characters and the question mark (?) indicates one single character.

All the objects resulting from your search are shown up to a maximum of 250 items. If the list is longer, use filters to refine your search and reduce the number of results.
Hover with the cursor over an object to see its description displayed in a tooltip.

Click this button to open the selected objects in edit mode. The objects are locked in the database until you finish editing and save them. The objects you open are listed in the Working List pane.

Click this button to open the selected objects in read-only mode.

If you are editing a job stream, you can search for jobs or dependencies and click this button to add them to the selected object. You can also drag the objects contained in the Quick Open pane and drop them in the Details pane or Graphical View to create dependencies and to add jobs to the job stream.

Related tasks:
“Designing your Workload” on page 64
“Editing objects from the Quick Open View” on page 66

Details view

Use this view to create, display, and modify job streams, and to add jobs, run cycles, and dependencies to them. It shows the job stream with all the jobs it contains, associated dependencies, and run cycles.

This view displays the structure of the objects in a tree table. It applies to

- Distributed job streams
- OS job streams and resources.

It also shows the resource availability intervals. Use the view also to create, display, and modify resources, and to add availability intervals to them.

You can drag objects from the Quick Open section and drop them in these panes to:

- Add jobs to the job stream.
- Add external dependencies to the job stream and its jobs.

For example, you can:

- Drag a job definition and drop it into a job stream to add a new job to the job stream.
- Drag a job definition and drop it outside a job stream to create a job stream external dependency.
- Drag a job definition and drop it over a job in the job stream to create a job external dependency.
- Drag a resource, prompt, or job stream and drop it over a job or job stream to create an external dependency.

In this view you can use the following toolbar, icons, and buttons:
All the actions available using the icons of the toolbar act on the root object of the tree table.

Use this button to print the contents of the tree in text format for job streams. Click the button to open a new page containing the information in the tree table for the job stream you are viewing. The output is organized in columns. For all job streams, the object properties shown are Name, Type, and Workstation.

For z/OS job streams, also Task Type and Owner are shown.

This icon is located at the end of each row and in the objects context menu. Click it to remove the corresponding object from the tree table. Use it, for example, to remove a job from a job stream or a dependency from a job. The removal becomes effective only when you save the object.

Use this button to act on objects located at inner levels. Select the object in the tree table and open the menu, or use the context menu by right-clicking the object. This button is enabled only if the operation is available for the selected object.

Some of the actions available from the action menus are:

Add Objects Selected in Working List
Add all the objects currently selected in the Working List. The objects are added as part of the flow or as dependencies. For example, adding a job definition to a job stream adds it to the job stream flow, while adding a prompt adds it as a dependency.

Add object
Add any specific object listed in the option.

Open Job Definition
Open the definition of the job to display its properties as they are defined in the database.

Copy
Copy the object and keep it in memory until you either copy another object or close the Workload Designer window. You can only copy a job stream if it already exists in the database (that is, it must have been saved at least once). You can also copy dependencies, except for internal job dependencies.

Paste as Dependency
Paste the object previously copied as a dependency of the selected one. The copied object can be a job, a job stream, or any kind of dependency. You can only paste source objects that already exist in the database.

You can paste a job stream as:
- External job stream dependency of the same or of another job stream
- External job stream dependency of a job in the same or in another job stream

You can paste a job as:
- External job dependency of itself or of the job stream it belongs to
- Internal job dependency of another job in the same job stream
- External job dependency of another job stream or job in another job stream

The object selected in the tree table is highlighted in light blue and is displayed in bold in the **Working List**. When you select an object in the tree table, its properties are displayed in the lower pane, where you can view and edit them, if you are authorized to do so.

Related tasks:
- “Designing your Workload” on page 64
- “Editing objects from the Details View” on page 67

Graphical View

This view shows the job stream with all the jobs it contains and their associated dependencies. When you select an object in the graphical view, the object properties are displayed at the bottom of the properties pane.

The same information and actions available from the **Details** pane are also available from the **Graphical View**.

You can drag objects from the **Quick Open** section and drop them in these panes to:
- Add jobs to the job stream.
- Add external dependencies to the job stream and its jobs.

For example, you can:
- Drag a job definition and drop it into a job stream to add a new job to the job stream.
- Drag a job definition and drop it outside a job stream to create a job stream external dependency.
- Drag a job definition and drop it over a job in the job stream to create a job external dependency.
- Drag a resource, prompt, or job stream and drop it over a job or job stream to create an external dependency.

In this view you can use the following toolbar, icons, and buttons:

- Use this button to perform multiple actions. Select the object in the graphic and open the menu, or use the context menu by right-clicking the object. This button is enabled only if this operation is available for the selected object.

- Use the toolbar to rapidly create dependency relationships, remove objects, or move and optimize the view.

- Use this icon to resize the graph to its best view.

- Click this icon and select an object to highlight all the incoming and outgoing dependencies.

- Use this icon to create dependencies. Click the icon, click an object, and then draw a line to the job stream or to the job that you want to depend
on the object. You can only use this icon to create dependencies from objects displayed in the view and by drawing lines in the correct direction (from the dependency to the depending object).

You can use this icon also to create a conditional dependency on jobs internal to the job stream. However, in this case, the job stream cannot be saved until you have manually updated the conditional dependency table, by specifying all the required information about the condition.

Click this icon to remove the selected object from the view. Use it, for example, to remove a job from a job stream or a dependency from a job. The removal becomes effective only when you save the object.

Click this icon to refresh the view.

Click this icon to launch short videos that provide some tips about what you can do from this panel. From the displayed list, click the demo you want to watch. These and more demos are stored on the Tivoli Workload Scheduler Wiki Media Gallery and are available in English only.

Click this icon to export the graphic in a Scalable Vector Graphics (SVG) file. With this type of file, vector-based images can be scaled indefinitely without degrading. A vector graphics program uses these mathematical formulas to construct the screen image, building the best quality image possible, given the screen resolution.

Hover with the cursor over an object to display a tooltip containing more object information.

The object selected in this view is displayed in bold in the Working List and its properties are shown in the pane at the bottom of the view.

The following picture is an example of a graphical representation of a job stream.
Dependencies

When you click a job stream or job dependency, you select its dependency relationship (which is highlighted in light blue) and you can copy or remove it. If this object is a dependency for multiple items, click it again to select the next dependency relationship.

The arrows represent the dependency relationships; where the arrow goes from the dependency to the object that depends on it.

Dependencies can also be conditional. In the graphical view, this type of dependency is represented by a box with an icon, which is the target of all the arrows spawned from the objects defined as conditions to be satisfied. The box is also the starting point for the arrow targeted to the depending objects, as shown in the following picture.

Note: The graphical view is powered by IBM ILOG JViews. See http://www.ilog.com for more information.

Related tasks:
* “Designing your Workload” on page 64
* “Editing objects from the Graphical View” on page 67

Scalable Vector Graphics

Scalable Vector Graphics (SVG) is a file format for describing two-dimensional vector graphics.

It can natively represent geometrical primitives such as lines, curves, and shapes, and is therefore an ideal format for storing diagrams and graphs. Because Scalable Vector Graphics files contain geometrical objects, images can be freely transformed or zoomed without decreasing their quality, and usually print very crisply even when resized.

Scalable Vector Graphics format is supported by many graphics applications as well as by many browsers.

Object properties
You can use the Properties pane to modify the properties of the selected object.
The properties pane is divided into tabs, which contain options and properties relating to the object currently open.

If you have more than one object open in the Working List, the properties displayed in this pane are relating to the object currently selected in the Details or Graphical view above.

Note: For all the details about options and fields displayed in the panels, see the online help by clicking the question mark located at the top-right corner of each panel.

Run Cycle Preview

This view applies only to job streams and shows the run cycles defined for the selected job stream.

It shows the days on which the job stream runs and the days on which it is explicitly excluded from running. You can see this view as a Month or full Year view, and use the navigation toolbar to go to the next or previous Month or Year.

When you modify a run cycle, the view is automatically updated.

Color coding and symbols are used to indicate included and excluded days in the run cycle rule.

Selecting a run cycle, the colors have the following meanings:

- **The run cycle includes that day.**
- **The run cycle excludes that day.**

Selecting a job stream, the colors have the following meanings:

- **The job stream runs only once on that day.**
- **The job stream runs more than once on that day.**
- **The job stream runs, but some runs have been excluded.**
- **The job stream runs more than once, but some runs have been excluded.**
- **The job stream does not run, because it is excluded by a rule.**
- Non-working day.

Click any highlighted day to view details about the run cycles occurring on the selected day.
Related tasks:
“Designing your Workload” on page 64

Message History

Use this panel to view all the messages related to the active session.

When you open this section, by default all warning and error messages of the current session are displayed.

Click the error, warning or information icon to filter for the corresponding messages. No message is displayed until you click an icon.

- Click this icon to view error messages.
- Click this icon to view warning messages.
- Click this icon to view informational messages.
- Click this icon to clear all messages from the list, regardless of whether they are displayed or filtered out.
- Click this icon to clear only the messages currently displayed.

Find
Type the string you want to find in the messages. Typing in the text fields automatically triggers the search, you do not have to click any further button. To reset the search criteria, clear the Find text field.

Return
Click this button to go back to the previous view, hiding the Message History view.

Related tasks:
“Designing your Workload” on page 64

Using recovery options in job definitions

The recovery options indicate the actions to be taken if a job fails.

The following table summarizes possible combinations of recovery options and actions. The table is based on the following criteria from a job stream called **sked1**:
- Job stream **sked1** has two jobs, **job1** and **job2**.
- If selected for **job1**, the recovery job is **jobr**.
- **Job2** is dependent on **job1** and will not start until **job1** is complete.

<table>
<thead>
<tr>
<th>Prompt/Job</th>
<th>Stop</th>
<th>Continue</th>
<th>Rerun</th>
</tr>
</thead>
</table>
| Recovery prompt: No | | Run job2 regardless of job1 completion status. | - Rerun job1.
| Recovery job: No | Intervention is required. | | - If job1 ends in error, issue scheduler prompt.
| | | | - If reply is yes, repeat the above steps.
| | | | - If job1 is successful, run job2. |
Table 21. Recovery option table (continued)

<table>
<thead>
<tr>
<th>Prompt/Job</th>
<th>Stop</th>
<th>Continue</th>
<th>Rerun</th>
</tr>
</thead>
</table>
| Recovery prompt: Yes, Recovery job: No | Issue recovery prompt. Intervention is required. | • Issue recovery prompt.
 • If reply is yes, run job2 regardless of job1 completion status. | • Issue recovery prompt.
 • If reply is yes, rerun job1.
 • If job1 ends in error, repeat the above steps.
 • If job1 is successful, run job2. |
| Recovery prompt: No, Recovery job: Yes | Run jobr.
 • If jobr ends in error, intervention is required.
 • If jobr is successful, run job2. | Run jobr.
 • Run job2 regardless of job1 completion status. | Run jobr.
 • If jobr ends in error, intervention is required.
 • If jobr is successful, rerun job1.
 • If job1 ends in error, issue scheduler prompt.
 • If reply is yes, repeat the above steps.
 • If job1 is successful, run job2. |
| Recovery prompt: Yes, Recovery job: Yes | • Issue recovery prompt.
 • If reply is yes, run jobr.
 • If jobr ends in error, intervention is required.
 • If jobr is successful, run job2. | • Issue recovery prompt.
 • If reply is yes, run jobr.
 • Run job2 regardless of job1 completion status. | • Issue recovery prompt.
 • If reply is yes, run jobr.
 • If jobr ends in error, intervention is required.
 • If jobr is successful, rerun job1.
 • If job1 ends in error, repeat the above steps.
 • If job1 is successful, run job2. |

Note:

- *Intervention is required* means that job2 is not released from its dependency on job1, and therefore must be released by the operator. You can also manually rerun job1 or cancel it.
• The **continue** recovery option overrides the abend state, which might cause the schedule containing the job ended in error to be marked as successful. This prevents the schedule from being carried forward to the next day.

• If you select the **Rerun** option without supplying a recovery prompt, when the job is unsuccessful Tivoli Workload Scheduler creates a prompt that asks if you want to proceed.

• To reference a recovery job in **conman**, you must use the name of the original job (job1 in the scenario above, not jobr). Recovery jobs are run only one per abend.

Not all jobs are eligible to have recovery jobs run on a different workstation. Follow these guidelines:

• If either workstation is an extended agent, it must be hosted by a domain manager or a fault-tolerant agent that runs in **Full Status** mode.

• The recovery job workstation must be in the same domain as the parent job workstation.

• If the recovery job workstation is a fault-tolerant agent, it must run in **Full Status** mode.

Reports

This section contains examples of regular expressions and SQL reports. Some samples of report output are also shown.

Related concepts:

“Reports” on page 45

Related reference:

Chapter 12, “Reporting,” on page 121

Regular Expressions

This section gives some examples of useful regular expressions, together with a table that defines the expressions supported by Tivoli Workload Scheduler. Further information about regular expressions is also widely available in the Internet.

Useful regular expressions

The following table shows some useful regular expressions for use with the plan extractor, both for filtering jobs and job streams, and for configuring business unit names.

Table 22. Useful regular expressions

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Regular expression</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>To obtain the same effect as using the "@" character in the Tivoli Workload Scheduler command line</td>
<td>.*</td>
<td>-JScpu .*</td>
</tr>
<tr>
<td></td>
<td>Used as a parameter to the plan extractor, filters for all job stream workstations.</td>
<td></td>
</tr>
</tbody>
</table>
Table 22. Useful regular expressions (continued)

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Regular expression</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>To join different criteria in an "OR" relationship</td>
<td>(TIV.*)(.IBM.)</td>
<td>Filters for all items that begin with the string "TIV" or that contain the string "IBM" (regular expressions are case-sensitive).</td>
</tr>
<tr>
<td>To select objects that begin with one of several characters</td>
<td>[<the characters to be included>]</td>
<td>Filters for all items that begin with either "A", "B", or "C".</td>
</tr>
<tr>
<td>To select objects that do not begin with one of several characters</td>
<td>[^<the characters to be excluded>]</td>
<td>Filters for all items that do not begin with either "A", "B", or "C".</td>
</tr>
<tr>
<td>To select objects in which certain characters appear a certain number of times</td>
<td><the character to be counted>{"<the character count>}</td>
<td>Filters for all items that begin with the string "AAA".</td>
</tr>
<tr>
<td>To select objects in which certain characters appear at least a certain number of times</td>
<td><the character to be counted>{"<the character count>}</td>
<td>Filters for all items that begin with the string "AAA", "AAAA", "AAAAA", and so on.</td>
</tr>
<tr>
<td>To select objects in which certain characters appear at least a certain number of times, but not more than a certain number of times</td>
<td><the character to be counted>{"<the lower character count>,<the upper character count>}</td>
<td>Filters for all items that begin with the string "AAA", or "AAAA"; a string that began with "AAAAA" would not be selected.</td>
</tr>
</tbody>
</table>

Complex expressions

These individual regular expressions can be combined to make a complex expression, as shown in the following table.

Table 23. Complex expressions

<table>
<thead>
<tr>
<th>Example requirement</th>
<th>Regular expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select all strings that begin with "AA", "AB", "AC", "BA", "BB", "BC", "CA", "CB", or "CC", and also those that do not end in "X", "Y", or "Z".</td>
<td>([ABC][2]{*}) (.*[^XYZ])</td>
</tr>
<tr>
<td>Select all strings that begin with "AA" followed by either one or more numbers or one or more letters, and then by the character ".". It can finish with any characters.</td>
<td>A{2}{[0-9]+</td>
</tr>
<tr>
<td>This would, for example, select the string AA11_XYZ76 and the string AAF6H_43KKK, but not the string AABH_32321HSDG, because this latter has both numbers and letters between the "AA" and the ".".</td>
<td></td>
</tr>
</tbody>
</table>
Regular expressions supported by the plan extractor

The following tables provide full details of the regular expressions supported by the plan extractor.

Table 24. Regular expressions supported by the plan extractor: character

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Filters for?</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>The character x (regular expressions are case-sensitive)</td>
</tr>
<tr>
<td>\</td>
<td>The backslash character</td>
</tr>
<tr>
<td>\0n</td>
<td>The character with octal value \0n (0 <= n <= 7)</td>
</tr>
<tr>
<td>\0nn</td>
<td>The character with octal value \0nn (0 <= n <= 7)</td>
</tr>
<tr>
<td>\0mnn</td>
<td>The character with octal value \0mnn (0 <= m <= 3, 0 <= n <= 7)</td>
</tr>
<tr>
<td>\0xhh</td>
<td>The character with hexadecimal value \0xhh</td>
</tr>
<tr>
<td>\uhhhh</td>
<td>The character with hexadecimal value \uhhhh</td>
</tr>
<tr>
<td>\t</td>
<td>The tab character (\u0009)</td>
</tr>
<tr>
<td>\n</td>
<td>The newline (line feed) character (\u000A)</td>
</tr>
<tr>
<td>\r</td>
<td>The carriage-return character (\u000D)</td>
</tr>
<tr>
<td>\f</td>
<td>The form-feed character (\u000C)</td>
</tr>
<tr>
<td>\a</td>
<td>The alert (bell) character (\u0007)</td>
</tr>
<tr>
<td>\e</td>
<td>The escape character (\u001B)</td>
</tr>
<tr>
<td>\cx</td>
<td>The control character corresponding to x</td>
</tr>
</tbody>
</table>

Table 25. Regular expressions supported by the plan extractor: character classes

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Filters for?</th>
</tr>
</thead>
<tbody>
<tr>
<td>[abc]</td>
<td>a, b, or c (simple class)</td>
</tr>
<tr>
<td>^abc</td>
<td>Any character except a, b, or c (negation)</td>
</tr>
<tr>
<td>[a-zA-Z]</td>
<td>a through z or A through Z, inclusive (range)</td>
</tr>
<tr>
<td>[a-d][m-p]</td>
<td>a through d, or m through p: [a-dm-p] (union)</td>
</tr>
<tr>
<td>[a-z&&[def]]</td>
<td>d, e, or f (intersection)</td>
</tr>
<tr>
<td>[a-z&&[^bc]]</td>
<td>a through z, except for b and c: [ad-z] (subtraction)</td>
</tr>
<tr>
<td>[a-z&&[^m-p]]</td>
<td>a through z, and not m through p: [a-lq-z] (subtraction)</td>
</tr>
</tbody>
</table>

Table 26. Regular expressions supported by the plan extractor: predefined character classes

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Filters for?</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>Any character (might or might not match line terminators)</td>
</tr>
<tr>
<td>\d</td>
<td>A digit: [0-9]</td>
</tr>
<tr>
<td>\D</td>
<td>A non-digit: [^0-9]</td>
</tr>
<tr>
<td>\s</td>
<td>A whitespace character: [\t\n\x0B\f\r]</td>
</tr>
<tr>
<td>\S</td>
<td>A non-whitespace character: [^\s]</td>
</tr>
<tr>
<td>\w</td>
<td>A word character: [a-zA-Z_0-9]</td>
</tr>
<tr>
<td>\W</td>
<td>A non-word character: [^\w]</td>
</tr>
</tbody>
</table>
Table 27. Regular expressions supported by the plan extractor: POSIX character classes (US-ASCII only)

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Filters for?</th>
</tr>
</thead>
<tbody>
<tr>
<td>\p{Lower}</td>
<td>A lowercase alphabetic character: [a-z]</td>
</tr>
<tr>
<td>\p{Upper}</td>
<td>An uppercase alphabetic character: [A-Z]</td>
</tr>
<tr>
<td>\p{ASCII}</td>
<td>All ASCII: [:\x00-\x7F]</td>
</tr>
<tr>
<td>\p{Alpha}</td>
<td>An alphabetic character: [\p{Lower}\p{Upper}]</td>
</tr>
<tr>
<td>\p{Digit}</td>
<td>A decimal digit: [0-9]</td>
</tr>
<tr>
<td>\p{Alnum}</td>
<td>An alphanumeric character: [\p{Alpha}\p{Digit}]</td>
</tr>
<tr>
<td>\p{Punct}</td>
<td>Punctuation: One of !"#$%&'()*+,-./:;<=>?@[]^_`{</td>
</tr>
<tr>
<td>\p{Graph}</td>
<td>A visible character: [\p{Alnum}\p{Punct}]</td>
</tr>
<tr>
<td>\p{Print}</td>
<td>A printable character: [\p{Graph}]</td>
</tr>
<tr>
<td>\p{Blank}</td>
<td>A space or a tab: [\t]</td>
</tr>
<tr>
<td>\p{Cntrl}</td>
<td>A control character: [\x00-\x1F\x7F]</td>
</tr>
<tr>
<td>\p{XDigit}</td>
<td>A hexadecimal digit: [0-9a-fA-F]</td>
</tr>
<tr>
<td>\p{Space}</td>
<td>A whitespace character: [\t\n\x0B\f\r]</td>
</tr>
</tbody>
</table>

Table 28. Regular expressions supported by the plan extractor: classes for Unicode blocks and categories

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Filters for?</th>
</tr>
</thead>
<tbody>
<tr>
<td>\p{InGreek}</td>
<td>A character in the Greek block (simple block)</td>
</tr>
<tr>
<td>\p{Lu}</td>
<td>An uppercase letter (simple category)</td>
</tr>
<tr>
<td>\p{Sc}</td>
<td>A currency symbol</td>
</tr>
<tr>
<td>\P{InGreek}</td>
<td>Any character except one in the Greek block (negation)</td>
</tr>
<tr>
<td>[\p{L}&&[^\p{Lu}]]</td>
<td>Any letter except an uppercase letter (subtraction)</td>
</tr>
</tbody>
</table>

Table 29. Regular expressions supported by the plan extractor: boundary matchers

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Filters for?</th>
</tr>
</thead>
<tbody>
<tr>
<td>^</td>
<td>The beginning of a line</td>
</tr>
<tr>
<td>$</td>
<td>The end of a line</td>
</tr>
<tr>
<td>\b</td>
<td>A word boundary</td>
</tr>
<tr>
<td>\B</td>
<td>A non-word boundary</td>
</tr>
<tr>
<td>\A</td>
<td>The beginning of the input</td>
</tr>
<tr>
<td>\G</td>
<td>The end of the previous match</td>
</tr>
<tr>
<td>\Z</td>
<td>The end of the input but for the final terminator, if any</td>
</tr>
<tr>
<td>\z</td>
<td>The end of the input</td>
</tr>
</tbody>
</table>

Table 30. Regular expressions supported by the plan extractor: greedy quantifiers

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Filters for?</th>
</tr>
</thead>
<tbody>
<tr>
<td>X?</td>
<td>X, once or not at all</td>
</tr>
<tr>
<td>X*</td>
<td>X, zero or more times</td>
</tr>
<tr>
<td>X+</td>
<td>X, one or more times</td>
</tr>
</tbody>
</table>
Table 30. Regular expressions supported by the plan extractor: greedy quantifiers (continued)

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Filters for?</th>
</tr>
</thead>
<tbody>
<tr>
<td>X{n}</td>
<td>X, exactly n times</td>
</tr>
<tr>
<td>X{n,}</td>
<td>X, at least n times</td>
</tr>
<tr>
<td>X{n,m}</td>
<td>X, at least n but not more than m times</td>
</tr>
</tbody>
</table>

Table 31. Regular expressions supported by the plan extractor: reluctant quantifiers

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Filters for?</th>
</tr>
</thead>
<tbody>
<tr>
<td>X??</td>
<td>X, once or not at all</td>
</tr>
<tr>
<td>X*?</td>
<td>X, zero or more times</td>
</tr>
<tr>
<td>X+?</td>
<td>X, one or more times</td>
</tr>
<tr>
<td>X{n}?</td>
<td>X, exactly n times</td>
</tr>
<tr>
<td>X{n,}?</td>
<td>X, at least n times</td>
</tr>
<tr>
<td>X{n,m}?</td>
<td>X, at least n but not more than m times</td>
</tr>
</tbody>
</table>

Table 32. Regular expressions supported by the plan extractor: possessive quantifiers

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Filters for?</th>
</tr>
</thead>
<tbody>
<tr>
<td>X?+</td>
<td>X, once or not at all</td>
</tr>
<tr>
<td>X++</td>
<td>X, zero or more times</td>
</tr>
<tr>
<td>X+++</td>
<td>X, one or more times</td>
</tr>
<tr>
<td>X{n}+</td>
<td>X, exactly n times</td>
</tr>
<tr>
<td>X{n,}+</td>
<td>X, at least n times</td>
</tr>
<tr>
<td>X{n,m}+</td>
<td>X, at least n but not more than m times</td>
</tr>
</tbody>
</table>

Table 33. Regular expressions supported by the plan extractor: logical operators

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Filters for?</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Y</td>
<td>X followed by Y</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>(X)</td>
<td>X, as a capturing group</td>
</tr>
</tbody>
</table>

Table 34. Regular expressions supported by the plan extractor: back references

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Filters for?</th>
</tr>
</thead>
<tbody>
<tr>
<td>\n</td>
<td>Whatever the nth capturing group matched</td>
</tr>
</tbody>
</table>

Table 35. Regular expressions supported by the plan extractor: quotation

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Filters for?</th>
</tr>
</thead>
<tbody>
<tr>
<td>\</td>
<td>Nothing, but quotes the following character</td>
</tr>
<tr>
<td>\Q</td>
<td>Nothing, but quotes all characters until \E</td>
</tr>
<tr>
<td>\E</td>
<td>Nothing, but quotes all characters until \Q</td>
</tr>
</tbody>
</table>
SQL report examples

This section provides some examples of queries that can be run using the SQL custom reports.

Jobs grouped by return codes

For each return code, this query returns the number of jobs that ended with the corresponding return code:

```
SELECT DISTINCT return_code AS RC, count(job_name) AS #JOB
FROM mdl.job_history_v
GROUP BY return_code
```

<table>
<thead>
<tr>
<th>RC</th>
<th>#JOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1670</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>127</td>
<td>352</td>
</tr>
</tbody>
</table>

Job statistics grouped on job status

For each job status, this query returns the number of jobs that ended with the corresponding job status and also the planned duration time, the total elapsed time, and total CPU time:

```
SELECT job_status, count(job_name) AS job_count,
       floor(sum(planned_duration/1000)) AS planned_duration,
       floor(sum(total_elapsed_time/1000)) AS total_elapsed,
       floor(sum(total_cpu_time/1000)) AS total_cpu
FROM mdl.job_history_v
GROUP BY job_status
```

<table>
<thead>
<tr>
<th>RC</th>
<th>#JOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1670</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>127</td>
<td>352</td>
</tr>
</tbody>
</table>
FROM mdl.job_history_v GROUP BY job_status

FROM mdl.job_history_v

GROUP BY return_code

Table 38. Example of query outcome

<table>
<thead>
<tr>
<th>JOB_STATUS</th>
<th>JOB_COUNT</th>
<th>PLANNED DURATION</th>
<th>TOTAL ELAPSED</th>
<th>TOTAL CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>366</td>
<td>0</td>
<td>21960</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>1670</td>
<td>1413360</td>
<td>1423500</td>
<td>183</td>
</tr>
</tbody>
</table>

Jobs in a range of return code

This query returns the number of job in a range of return codes

SELECT *

FROM (select DISTINCT return_code, count(job_name) AS #JOB

FROM mdl.job_history_v

GROUP BY return_code) AS temp

WHERE return_code > 0 AND return_code < 6

Table 39. Example of query outcome

<table>
<thead>
<tr>
<th>RETURN_CODE</th>
<th>#JOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>11</td>
</tr>
</tbody>
</table>

Jobs that ran within a time range and finished with a specific job status

SELECT WORKSTATION_NAME, JOB_NAME, JOB_RUN_DATE_TIME

FROM MDL.JOB_HISTORY_V

WHERE JOB_RUN_DATE_TIME BETWEEN '2008-05-19 10:00:00.0' AND '2008-05-19 21:00:00.0' AND JOB_STATUS <> 'S'

ORDER BY JOB_RUN_DATE_TIME

Table 40. Example of query outcome

<table>
<thead>
<tr>
<th>WORKSTATION_NAME</th>
<th>JOB_NAME</th>
<th>JOB_RUN_DATE_TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC122072</td>
<td>PEAK_A_06</td>
<td>2008-08-03 23:23:00.0</td>
</tr>
<tr>
<td>NC122072</td>
<td>JOB_RER_A</td>
<td>2008-08-03 23:23:00.0</td>
</tr>
<tr>
<td>NC122072</td>
<td>PEAK_A_13</td>
<td>2008-08-03 23:23:00.0</td>
</tr>
<tr>
<td>NC122072</td>
<td>PEAK_A_20</td>
<td>2008-08-03 23:23:00.0</td>
</tr>
<tr>
<td>NC122072</td>
<td>PEAK_A_27</td>
<td>2008-08-03 23:23:00.0</td>
</tr>
<tr>
<td>NC122072</td>
<td>PEAK_A_43</td>
<td>2008-08-03 23:23:00.0</td>
</tr>
</tbody>
</table>
Table 40. Example of query outcome (continued)

<table>
<thead>
<tr>
<th>WORKSTATION_NAME</th>
<th>JOB_NAME</th>
<th>JOB_RUN_DATE_TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC122072</td>
<td>PEAK_B_19</td>
<td>2008-08-03 23:24:00.0</td>
</tr>
</tbody>
</table>

Related tasks:
“Creating a task to Generate Custom SQL Reports” on page 126

Event rule

An event rule defines a set of actions that run when specific event conditions occur. An event rule definition correlates events and trigger actions.

Related concepts:
“Event management” on page 44
“Event management configuration” on page 12

Related tasks:
“Creating an event rule” on page 77

Action properties

When you select an action, its properties are displayed at the bottom of the panel, where you can edit them. Mandatory property values are displayed by default, marked by asterisks and with a yellow background. If you try to add an action without specifying one or more mandatory values, the action turns red and the rule cannot be saved.

You can add further properties by selecting them from the drop-down list. When you add new properties, they become mandatory, therefore you cannot leave them blank, but you can delete them by clicking the close icon.

You can also add the same property multiple times assigning different values to it. In this case all these properties are logically correlated by the conjunction and, creating a cumulative filter.

For examples, when you define your event filter, if you want to exclude some files from it, you can define as event properties all the filenames that match/tmp/tool/oldfiles, and all the filenames that do not match /tmp/tools/newfiles. Additionally, you can also remove the non-required properties, by clicking the close icon next to them. You cannot remove mandatory properties.

Using variable information into action properties

To better qualify your action, you can use some event properties as variable information that can be added to the action properties.

For example, you can include the job name in the mail body, if you have mail notification as a response action to a job-related event. You can include this variable information together with normal text in action properties that require a string value. For those properties that require a numeric value, you can enter either the variable information or a number.

The event properties that can be used as variable information for the actions can be selected from the list that is displayed if you click the button Variable. Select Machine-readable format check box when you want to use the variable as input to
a command or a script. Alternatively, you can recall this information within the action property by copying the event alias (displayed in the first row of the event box) and pasting it into the action property field, complying with the following syntax:

```
{%{event_alias.property_name}
    Use it to include normal text information. This can be useful if you want to see this text in a message or an email.

${event_alias.property_name}
    Use it to include machine-readable information. This can be useful if you want to use the action as input to a command or a script.
```

Event properties

When you select an event, its properties are displayed at the bottom of the panel, where you can edit them. A tooltip over the event box shows all the event properties available as variables that you can use to define the action properties.

When you choose the event properties, you define a filter for all the events that you want to monitor and manage. The most meaningful properties you choose are logically correlated and represent the event scope, which is displayed in the event box.

You can add further properties by selecting them from the drop-down list. When you add new properties, they become mandatory, therefore you cannot leave them blank but you can delete them by clicking the close icon.

Mandatory property values are displayed by default, marked by asterisks and with a yellow background. If you try to add an event without specifying one or more mandatory values, the event turns red, the invalid fields are highlighted, and the rule cannot be saved.

You can also add the same property multiple times assigning different values to it. In this case all these properties are logically correlated by the conjunction and, creating a cumulative filter.

For example, when you define your event filter, if you want to exclude some files from it, you can define as event properties all the filenames that match /tmp/tool/oldfiles, and all the filenames that do not match /tmp/tools/newfiles. You can also remove the non-required properties, by clicking the close icon next to them. You cannot remove mandatory properties.

When completing this section, consider that wildcard characters are supported, depending on the event type. When wildcard characters are supported, the wildcard icon is enabled.

Event properties that do not support wildcard characters are identified by the wildcards not supported icon.

Some event properties allow you to specify multiple values separated by semicolon (;). These properties are identified by the multiple filter icon. When you specify multiple values, these values are logically correlated by the conjunction or.
For example, if you create a **Job Status Changed** event specifying the **Job name** property as "A;B;C", an action is triggered each time either of the specified jobs changes its status.

Event properties that do not support multiple values are identified by this icon

Activation statuses of the event rules
The following list shows the possible statuses of the event rules:

Active
This status includes rules that are in any of the following internal conditions:
- Active
- Update Pending
- Error During Update
- Deactivation Pending
- Error During Deactivation

Inactive
This status includes rules that are in any of the following internal conditions:
- Inactive
- Activation Pending (an intermediate status that occurs, for example, when you change a rule, save these changes, and set the rule to **Non Draft**)
- Error During Activation

Schemas for generic events
This section lists some schemas that you can use to produce a customized event.

Note: For PDF users, the parameter tables listed below are files referenced by the PDF. They are not saved locally with the PDF from the infocenter. You must first view them on the infocenter before saving or printing.

- Action definitions
- Event definition
- Common definitions
Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the products, services, or features discussed in this publication in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this publication. The furnishing of this publication does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases payment of a fee.

The licensed program described in this publication and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml
Adobe, and all Adobe-based trademarks are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, other countries, or both.

Intel, and Itanium, are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names might be trademarks or service marks of others.
Index

A
abend prompt 30
accessibility vii
accessing
 online publications 135
action
 generic 44
 notification 44
 operational 44
 properties
 using variable information 173
activation status
 event rules 175
ad-hoc prompt 30
adding
 a job to a job stream 68
 dependency 70
 task
 to favorite bookmarks 57
agents pool
 creating 64
application monitoring event 44
archived plan 41
associating
 plan
 to engine 114
 to task 113
creating (continued)
 task (continued)
 monitor triggered actions 106
 monitor workstations 89
 show plan view 115
 z/OS virtual workstation 62
 z/OS workstation 62
critical job
 high risk status 50
 monitoring 48
 monitoring scenario
 by using workload service assurance 129
 planning 50
 potential risk status 50
 processing 48
 tracking 50
critical path
 calculation of 48
cross dependencies 30, 36
 creating 72
 current plan 41
 customizing
 console 11, 55
 job stream
 scenario 127
 portfolio 55
 secondary queries 56
 startup page 55
 task 56
 cyclic periods
 definition 25
 examples 26

B
backup domain manager
 attributes 61
 configuring 61
backup dynamic domain manager
 attributes 61
 configuring 61
backup master domain manager 17
 attributes 61
 configuring 61
beacon 57
bookmark
 adding tasks to 57

C
calendar
 definition 26
 holidays 26
call to a Web service
 sample JSDL files 73
changing
 settings repository user 16
communication
 type based on SSL communication options 140
complex expressions 167
condition dependencies
 definition 29, 31
 examples 33
 handling recovery 35
 creating (continued)
 step level 34
 conditional logic 31
 conditional recovery job option 35
 configuring
 settings repository 14
 console
 customizing 11, 55
 controlling
 job processing
 by using dependencies 109
 by using job confirmation 112
 by using job priority 110
 by using job recovery actions 112
 by using limits 111
 by using time restrictions 110
 by using workstation fence 110
 job stream processing
 by using dependencies 109
 by using job priority 110
 by using limits 111
 by using time restrictions 110
 by using workstation fence 110
 conventions
 typeface ix
 conventions used in publications vii
 creating
 cross dependencies 72
 database objects 64
 distributed workstation 61
 domain 63
 Dynamic Workload Broker objects 76
 event rule 77
 objects in the database 61
 pool of agents 64
 SAP jobs 73
 task
 generate Custom SQL report 126
 generate Job Run History report 122
 generate Job Run Statistics report 121
 generate Plan report 125
 generate Workstation Workload
 Runtime report 124
 generate Workstation Workload Summary report 123
 list event rule definitions 84
 monitor critical jobs 95
 monitor domains 91
 monitor event rules 105
 monitor files 102
 monitor job streams 99
 monitor job streams on multiple engines 101
 monitor jobs 94
 monitor jobs on multiple engines 98
 monitor operator messages 108
 monitor prompts 103
 monitor resources 104
 creating (continued)
 task (continued)
 monitor triggered actions 106
 monitor workstations 89
 show plan view 115
 z/OS virtual workstation 62
 z/OS workstation 62
database stored procedure
 database jobs
 sample JSDL files 73
 sample JSDL files 73
 DB2 repository
 changing user 16
defining
 temporary plan 114
dependencies
 adding 70
 condition 29, 31
cross 30, 36
definition 28
 external 29
 file 31
 internal 28
 internetwork 29
 prompt 30
 removing 71
 resource 31
 using
to control job processing 109
to control job stream
processing 109
designing
 scheduling environment 61
Details view 158
 editing
 database objects 67
directory names
 notation ix
 installing
disabling
 news notification beacon 57
distributed workstation
 creating 61
domain 20
 creating 63
 configuring 61
domain manager 17
 attributes 61
 configuring 61
dynamic agent 19
dynamic critical path 47
dynamic domain manager
 attributes 61
 configuring 61
dynamic pool 20
 creating 64
dynamic scheduling 19, 20
Dynamic Workload Broker
 creating objects 76
dynamic workstations 19, 20

e engine (continued)
 connection 43
 environment variables
 notation ix
event
 application monitoring 44
definition 44
generic 44
 schemas for 175
 management 44
task 93
 objects related 44
 properties 174
 rules 45
 event rule
 activation status 175
 creating 77
 definition
 listing 84
 monitoring 105
 examples
 SQL report 171
 exclusive run cycle 27
 executable jobs 73
 exporting
 settings 13
 expression
 complex 167
 regular 166, 168
 extended agent workstation 18, 52
 external dependencies 29

g generic (continued)
 event 44
generic Java job
 template 73
generic Web service call
template 73
global prompt 30
glossary vii
Graphical view
ingriting
 database objects 67
 in the plan 152
groups 139

H
 high risk status 50
 holidays calendar 26
hot list 48
 addition of jobs 49

I
 IBM i jobs 73
 AS/400 jobs 73
 impact view 154
importing
 settings 13
 inclusive run cycle 27
installation
 Dynamic Workload Console 7
installation
 Dynamic Workload Console 7
 internal dependencies 28
 internal status
 distributed job stream 146
distributed jobs 142
 z/OS job stream 147
 z/OS jobs 144
 internetwork dependencies 29

J
 J2EE jobs 73
Java jobs
 sample JSDL files 73
Java operations
 sample JSDL files 73
JnextPlan 40
job
 ad hoc
 setting properties for 118
 submitting 117
 adding to a job stream 68
 addition to the hot list 49
 controlling process
 by using dependencies 109
 by using job confirmation 112
 by using job priority 110
 by using job recovery actions 112
 by using limits 111
 by using time restrictions 110
 by using workstation fence 110
 critical
 monitoring 48, 95
job (continued)
critical (continued)
 processing 48
 risk level 97
 definition 24
 using recovery options in 164
 internal status 142, 144
 listing 83
 monitoring 94, 98
 monitoring scenario 131
 predefined
 setting properties for 118
 submitting 117
 return codes 171
 statistics
 return codes 171
 status 87
 description 141, 143
 mapping 143, 144
 time range 172
 workstation 89
job definition
 workload broker 39
job stream
 adding a job to 68
 controlling process
 by using dependencies 109
 by using job priority 110
 by using limits 111
 by using time restrictions 110
 by using workstation fence 110
 customizing scenario 127
 internal status 146, 147
 listing 83
 monitoring 99, 101
 predefined
 setting properties for 118
 submitting 118
 status
 description 145, 147
 mapping 146, 148
job stream view 154
job types
 template 73
job types with advanced options
 sample JSDL files 73
 template 73
job-specific options 74

L
 limits
 using
 to control job processing 111
 to control job stream processing 111
 listing
 database objects 82
 event rule definitions 84
 job streams 83
 jobs 83
 workstations 84
 local prompt 30
 logical resource 31

M
 managing
 settings 13
 settings repository 13
 master domain manager 13
 message history 164
 mobile
 used to monitor jobs 59
 monitor task 88
 monitoring
 critical jobs 95
 domain 91
 event rules 105
 files 102
 job streams 99
 job streams on multiple engines 101
 jobs 94
 jobs from mobile 59
 jobs on multiple engines 98
 scenario 131
 objects in the plan 87
 operator messages 108
 plan 87
 prompts 103
 resources 104
 scheduling environment 89
 triggered actions 106
 workload 92
 workstation 89
 z/OS critical jobs
 by using workload service assurance 129
 monthly run cycle 27
 MSSQL jobs 73
 multiple engines
 monitor job streams 101
 monitor jobs 98
 multiple-domain network 21
 offset-based run cycle 27
 operational action 44
 operator instruction
 definition 28
 operator message
 monitoring 108
 option
 conditional recovery job 35
 recovered by condition 35

O
 object
 creating 64
 editing 64
 from the Details view 67
 from the Graphical view 67
 from the Quick Open view 66
 from the Working List view 65
 listing 82
 related event 44
 offset-based run cycle 27
 operational action 44
 operator instruction
 definition 28
 operator message
 monitoring 108
 option
 conditional recovery job 35
 recovered by condition 35

P
 parameter
 definition 28
 path
 critical
 calculation of 48
 path names
 notation ix
 period
 cyclic 25
 definition 25
 noncyclic 25
 physical resource 31
 plan
 archived 41
 associating to engine 114
 to task 113
 current 41
 forecast 42
 generating 114
 monitoring 87
 monitoring objects 87
 preproduction 41
 production 41
 progress 87
 Symnew 41
 temporary
 defining 114
 trial 42
 generating 114
 working
 selecting 113
 plan view 153
 plan extractor
 regular expressions supported 168
 portfolio
 customizing 55
 potential risk status 50
preproduction plan 41
production plan 40, 41
process 40
submitting workload in production 117
promotion 48
prompt
abend 30
ad-hoc 30
global 30
local 30
monitoring 103
named 30
recovery 30
properties
setting 68, 163
publications vii
accessing 135
Q
queries
secondary
customizing 56
Quick Open view 157
editing
database objects 66
R
recovered by condition option 35
recovery options
using in job definitions 164
recovery prompt 30
regular expressions 166, 168
remote engine workstation 19, 30, 36
removing
dependency 71
report
Custom SQL
 generating 126
definition 45
format 46
header 46
Job Run History
 generating 122
Job Run Statistics
 generating 121
Plan
 generating 125
Workstation Workload Runtimes
 generating 124
Workstation Workload Summary
 generating 123
repository
 changing user 16
settings 13, 14, 15
resource
 logical 31
monitoring 104
 physical 31
return codes
 job statistics grouped by 171
 jobs grouped by 171
risk level 97
rule-based run cycle 27
run cycle
daily 27
exclusive 27
inclusive 27
monthly 27
offset-based 27
preview 163
rule-based 27
simple 27
weekly 27
yearly 27
S
SAP
 creating jobs 73
 extended agent 52
Tivoli Workload Scheduler for z/OS 52
scalable vector graphics 162
scenario 127
scheduling environment
 designing 61
monitoring 89
schemas for generic events 175
secondary queries
 customizing 56
selecting
 working plan 113
setting
 properties 68, 163
 for ad hoc jobs 118
 for predefined job streams 118
 for predefined jobs 118
settings
 changing repository 14
 exporting 13
 importing 13
 managing 13
 repository 13, 14
 saving in database 14
 sharing repository 15
settings repository
 managing 13
 sharing 15
shadow job 24, 30
sharing
 settings repository 15
showing
 plan view 115
simple run cycle 27
single-domain network 20
specific job types
 sample JSDL files 73
SQL report
 examples 171
SSL communication options 140
standard agent 18
startup page
 customizing 55
status description
 distributed job stream 145
 distributed jobs 141
 z/OS job stream 147
 z/OS jobs 143
status mapping
 distributed job stream 146
 distributed jobs 143
status mapping (continued)
z/OS job stream 148
z/OS jobs 144
submitting
 ad hoc jobs 117
 predefined job streams 118
 predefined jobs 117
 workload in production 117
Symnew plan 41
Symphony file 40, 51
T
task
 adding to favorite bookmarks 57
 associating a plan to 113
 customizing 56
event management 93
generate Custom SQL report 126
generate Job Run History report 122
generate Job Run Statistics report 121
generate Plan report 125
generate Workstation Workload Runtimes report 124
generate Workstation Workload Summary report 123
list event rule definitions 84
monitor 88
 critical jobs 95
 domains 91
 event rules 105
 files 102
 job streams 99
 job streams on multiple engines 101
 jobs 94
 jobs on multiple engines 98
 operator messages 108
 prompts 103
 resources 104
 triggered actions 106
monitor workstations 89
plan view 94
show plan view 115
technical training viii
time range 172
time restrictions
 using
 to control job processing 110
 to control job stream processing 110
Tivoli Workload Scheduler for z/OS
 agent 19
tracking
 critical jobs 50
training
 technical viii
trial plan 42
generating 114
triggered actions
 monitoring 106
typeface conventions ix
U
usage scenario 127
users 139

V
variable information
using into action properties 173
variable table 39
variables
environment
notation ix
view
details 158
graphical 160
impact 154
job stream 154
plan 153
virtual workstation 19

W
Web service jobs
sample JSDL files 73
weekly run cycle 27
working list 156
Working List view
ingting
database objects 65
working plan
monitoring 113
workload
monitoring 92
submitting in production 117
workload broker
agent workstation 19
job definition 39
workload designer 156
workload service assurance 47
scenario 129
workstation
backup master domain manager 17
class 38
creating 61, 62
definition 17
domain manager 17
dynamic agent 19
dynamic pool 20
extended agent 18, 52
fault-tolerant agent 18
master domain manager 17
monitoring 89
pool 19
remote engine 19, 36
standard agent 18
Tivoli Workload Scheduler for z/OS
agent 19
virtual 19
workload broker agent 19
workstation fence
using

to control job processing 110
to control job stream
processing 110
workstations
listing 84

X
XA jobs 73

Y
yearly run cycle 27

Z
z/OS virtual workstation
creating 62
z/OS workstation
creating 62