
Workload Automation
Version 8.6

Overview

SC32-1256-12

���





Workload Automation
Version 8.6

Overview

SC32-1256-12

���



Note
Before using this information and the product it supports, read the information in “Notices” on page 85.

This edition applies to version 8, release 6 of IBM Tivoli Workload Automation (program numbers 5698-A17,
5698-WSH, and 5698-WSE) and to all subsequent releases and modifications until otherwise indicated in new
editions.

This edition replaces SC32-1256-11.

© Copyright IBM Corporation 1991, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Figures . . . . . . . . . . . . . . . v

About this publication . . . . . . . . vii
What is new in this release . . . . . . . . . vii
What is new in this publication . . . . . . . vii
Who should read this publication . . . . . . . vii
Publications . . . . . . . . . . . . . . viii
Accessibility . . . . . . . . . . . . . . viii
Tivoli technical training . . . . . . . . . . viii
Support information . . . . . . . . . . . viii
How to read the syntax diagrams . . . . . . . ix

Chapter 1. Summary of enhancements . 1
Tivoli Workload Scheduler for z/OS enhancements . 1

Dynamic capabilities added to Tivoli Workload
Scheduler for z/OS agents . . . . . . . . . 2
Defining and scheduling new and existing jobs
with dynamic capabilities . . . . . . . . . 2
Support for cross dependencies among jobs
running on different scheduling engines . . . . 3
Enhancements to ISPF panels . . . . . . . . 3
Send generated reports by email . . . . . . . 4
Automatic job log retrieval . . . . . . . . 4
Enhancements to Variable substitution . . . . . 4
Installing the Tivoli Workload Scheduler for z/OS
connector on WebSphere Application Server for
z/OS . . . . . . . . . . . . . . . . 4
Support for extended format VSAM data sets . . 5
Keeping external dependencies on completed
operations in the extended plan . . . . . . . 5
Enhancements for RACF user fields . . . . . 5

Tivoli Workload Scheduler enhancements . . . . . 5
New Dynamic Domain Managers . . . . . . 6
Defining and scheduling new and existing jobs
with dynamic capabilities . . . . . . . . . 6
Support for cross dependencies among jobs
running on different scheduling engines . . . . 7
The Tivoli Workload Scheduler distributed - Agent
for z/OS. . . . . . . . . . . . . . . 8
New command to run batch reports from the
command line interface . . . . . . . . . . 9
Checking prerequisites . . . . . . . . . . 9
Use of twsinst extended to Windows operating
systems . . . . . . . . . . . . . . . 9
Creating and upgrading Tivoli Workload
Scheduler database tables before installing or
upgrading the product . . . . . . . . . . 9
Using the Federated Repository security
mechanism for authentication enhancements . . 10
Upgrading when there are corrupt registry files 10
Keeping you constantly and quickly informed . . 10

Dynamic Workload Console enhancements . . . . 10
Multiple engine query . . . . . . . . . . 10
New look and feel for the dashboard . . . . . 11
Support for dynamic scheduling . . . . . . 11

Support for the new job types with advanced
options . . . . . . . . . . . . . . . 11
Support for Cross Dependencies . . . . . . 11
Enhanced management of user settings . . . . 11
Additional usability improvements . . . . . 11
Support for mobile device access . . . . . . 11

Tivoli Workload Automation documentation
enhancements . . . . . . . . . . . . . 12

Chapter 2. Overview of Tivoli Workload
Automation . . . . . . . . . . . . . 13
The state-of-the-art solution . . . . . . . . . 13

Comprehensive workload planning . . . . . 14
Centralized systems management . . . . . . 14
Systems management integration . . . . . . 14

An integration scenario . . . . . . . . 16
Automation . . . . . . . . . . . . . 17
Workload monitoring . . . . . . . . . . 18
Automatic workload recovery . . . . . . . 18
Productivity . . . . . . . . . . . . . 18

Business solutions . . . . . . . . . . . . 18
User productivity . . . . . . . . . . . . 18
Growth incentive . . . . . . . . . . . . 19
How Tivoli Workload Automation benefits your
staff . . . . . . . . . . . . . . . . . 19

Role of the scheduling manager as the focal point 19
Role of the operations manager. . . . . . . 20
A powerful tool for the shift supervisor . . . . 20
Role of the application programmer . . . . . 20
Console operators . . . . . . . . . . . 20
Workstation operators . . . . . . . . . . 21
End users and the service desk . . . . . . . 21

Summary . . . . . . . . . . . . . . . 21

Chapter 3. Tivoli Workload Automation
and ITUP . . . . . . . . . . . . . . 23
The ITUP processes. . . . . . . . . . . . 23
Service execution and workload management . . . 23
Managing workload with Tivoli Workload
Automation . . . . . . . . . . . . . . 24

Chapter 4. Who performs workload
management . . . . . . . . . . . . 27

Chapter 5. A business scenario . . . . 29
The company . . . . . . . . . . . . . . 29
The challenge. . . . . . . . . . . . . . 31
The solution . . . . . . . . . . . . . . 32

Typical everyday scenarios . . . . . . . . 36
Managing the workload . . . . . . . . 36
Monitoring the workload . . . . . . . . 38
Managing the organization of the IT
infrastructure . . . . . . . . . . . . 39

The benefits . . . . . . . . . . . . . . 40

© Copyright IBM Corp. 1991, 2011 iii



Chapter 6. Tivoli Workload Scheduler 43
Overview . . . . . . . . . . . . . . . 43

What is Tivoli Workload Scheduler . . . . . 43
The Tivoli Workload Scheduler network . . . . 43
Manager and agent types . . . . . . . . . 44
Topology . . . . . . . . . . . . . . 46
Networking . . . . . . . . . . . . . 46
Tivoli Workload Scheduler components . . . . 47
Tivoli Workload Scheduler scheduling objects . . 48
The production process . . . . . . . . . 50

Scheduling . . . . . . . . . . . . . . 51
Defining scheduling objects . . . . . . . . 51
Creating job streams . . . . . . . . . . 51
Setting job recovery . . . . . . . . . . 52
Defining and managing mission-critical jobs . . 52
Scheduling workload dynamically . . . . . . 53

Running production . . . . . . . . . . . 54
Running the plan . . . . . . . . . . . 54
Running job streams . . . . . . . . . . 55
Monitoring . . . . . . . . . . . . . 55

Controlling with IBM Tivoli Monitoring . . . 56
Reporting . . . . . . . . . . . . . . 57
Auditing . . . . . . . . . . . . . . 57
Using event-driven workload automation . . . 57

Options and security . . . . . . . . . . . 58
Setting the Tivoli Workload Scheduler options . . 58
Setting security . . . . . . . . . . . . 59

Secure authentication and encryption . . . . 59
Work across firewalls . . . . . . . . . 59
Centralized security mechanism . . . . . 60

Using time zones . . . . . . . . . . . 60
Using extended agents. . . . . . . . . . . 60

Chapter 7. Tivoli Workload Scheduler
for z/OS . . . . . . . . . . . . . . 63
How your production workload is managed . . . 63

Structure . . . . . . . . . . . . . . 63
Concepts . . . . . . . . . . . . . . 63
Using Plans in Tivoli Workload Scheduler for
z/OS . . . . . . . . . . . . . . . 66

Long-term planning . . . . . . . . . 66
Detailed planning . . . . . . . . . . 67

Automatically controlling the production
workload . . . . . . . . . . . . . . 67

Automatic workload submission . . . . . 68

Automatic recovery and restart . . . . . . 69
z/OS automatic restart manager support . . 71
Workload Manager (WLM) support . . . . 71
Automatic status checking . . . . . . . 71
Status reporting from heterogeneous
environments . . . . . . . . . . . . 71
Status reporting from user programs . . . . 71
Additional job-completion checking . . . . 71
Managing unplanned work . . . . . . . 71

Interfacing with other programs . . . . . . 72
Manual control and intervention . . . . . . 72

Status inquiries . . . . . . . . . . . 72
Modifying the current plan . . . . . . . 72

Management of critical jobs . . . . . . . . 73
Management of critical path . . . . . . . 73

Security . . . . . . . . . . . . . . 74
Audit trail . . . . . . . . . . . . . 74
System authorization facility. . . . . . . 74

Protection of data and resources . . . . 75
Data integrity during submission . . . . 75

Configurations of Tivoli Workload Scheduler for
z/OS . . . . . . . . . . . . . . . . 75

The controlling system . . . . . . . . . 75
Controlled z/OS systems . . . . . . . . . 76

Remote systems . . . . . . . . . . . 77
Remote panels and program interface
applications . . . . . . . . . . . . . 77
Scheduling jobs that are in Tivoli Workload
Scheduler . . . . . . . . . . . . . . 77

Chapter 8. Dynamic Workload Console 79

Chapter 9. End-to-end scheduling . . . 81
End-to-end scheduling with fault tolerance
capabilities . . . . . . . . . . . . . . 81
End-to-end scheduling with z-centric capabilities . . 83
Distributed agents . . . . . . . . . . . . 83
Benefits of end-to-end scheduling . . . . . . . 84

Notices . . . . . . . . . . . . . . 85
Trademarks . . . . . . . . . . . . . . 86

Index . . . . . . . . . . . . . . . 89

iv IBM Tivoli Workload Automation: Overview



Figures

1. Integration scenario for Tivoli Workload
Scheduler for z/OS. . . . . . . . . . . 17

2. The Fine Cola company integrated workload
solution . . . . . . . . . . . . . . 32

3. How to satisfy SLA response time during peak
periods using the dynamic scheduling
capability of Tivoli Workload Scheduler. . . . 38

4. This Tivoli Workload Scheduler network is
made up by two domains . . . . . . . . 44

5. How extended agents work . . . . . . . 61

6. Automatic recovery and restart . . . . . . 69
7. Production workload restart and hot standby 70
8. Security . . . . . . . . . . . . . . 74
9. Tivoli Workload Scheduler for z/OS

configurations. . . . . . . . . . . . 76
10. End-to-end with fault tolerance capabilities

configuration . . . . . . . . . . . . 82
11. End-to-end with z-centric capabilities

configuration . . . . . . . . . . . . 83

© Copyright IBM Corp. 1991, 2011 v



vi IBM Tivoli Workload Automation: Overview



About this publication

IBM® Tivoli® Workload Automation Overview describes the suite of Tivoli Workload
Scheduler and its enterprise workload management functions. This publication
provides introductory information about the following products. It does not
provide detailed technical explanations about how they work.
v Tivoli Workload Scheduler
v Tivoli Workload Scheduler for Applications
v Tivoli Workload Scheduler for z/OS®

v Dynamic Workload Console

This publication describes:
v The structure of the product
v Where it fits in single-host and multiple-host systems
v Major functions
v How it works with other products

What is new in this release
For information about the new or changed functions in this release, see Chapter 1,
“Summary of enhancements,” on page 1.

For information about the APARs that this release addresses, see the Tivoli
Workload Scheduler Download Document at http://www.ibm.com/support/
docview.wss?rs=672&uid=swg24027501.

What is new in this publication
This section describes what has changed in this publication since Tivoli Workload
Scheduler version 8.5.1 Fixpack 1.

The following changes were made:
v Chapter 1, “Summary of enhancements,” on page 1 lists the product

enhancements available in the latest version.
v The interoperability tables that document the compatibility among different

Tivoli Workload Scheduler, Tivoli Workload Scheduler for z/OS, and Dynamic
Workload Console versions have moved to the Tivoli Workload Scheduler
Release notes.

Who should read this publication
This publication is intended for:
v Data processing (DP) operations managers and their technical advisors who are

evaluating the product or planning their scheduling service
v Individuals who require general information for evaluating, installing, or using

the product.

© Copyright IBM Corp. 1991, 2011 vii

http://www.ibm.com/support/docview.wss?rs=672&uid=swg24027501
http://www.ibm.com/support/docview.wss?rs=672&uid=swg24027501


Publications
Full details of Tivoli Workload Automation publications can be found in Tivoli
Workload Automation: Publications, . This document also contains information on the
conventions used in the publications.

A glossary of terms used in the product can be found in Tivoli Workload Automation:
Glossary, .

Both of these are in the Information Center as separate publications.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You can also
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

For full information with respect to the Dynamic Workload Console, see the
Accessibility Appendix in the Tivoli Workload Scheduler: User's Guide and Reference,
SC32-1274.

Tivoli technical training
For Tivoli technical training information, refer to the following IBM Tivoli
Education website:

http://www.ibm.com/software/tivoli/education

Support information
If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Go to the IBM Software Support site at http://www.ibm.com/software/
support/probsub.html and follow the instructions.

IBM Support Assistant
The IBM Support Assistant (ISA) is a free local software serviceability
workbench that helps you resolve questions and problems with IBM
software products. The ISA provides quick access to support-related
information and serviceability tools for problem determination. To install
the ISA software, go to http://www.ibm.com/software/support/isa.

Troubleshooting Guide
For more information about resolving problems, see the problem
determination information for this product.

For more information about these three ways of resolving problems, see the
appendix on support information in Tivoli Workload Scheduler: Troubleshooting Guide,
SC32-1275.

Publications

viii IBM Tivoli Workload Automation: Overview

http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa


How to read the syntax diagrams
Throughout this publication, syntax is described in diagrams like the one shown
here, which describes the SRSTAT TSO command:

�� SRSTAT ' resource name '
OPCA

SUBSYS( subsystem name )
MSTR

�

�
KEEP

AVAIL( RESET )
NO
YES

KEEP
DEVIATION( amount )

RESET

�

�
KEEP

QUANTITY( amount )
RESET

YES
CREATE( NO )

�

�
0

TRACE( trace level )

��

The symbols have these meanings:

��─────
The statement begins here.

──────�
The statement is continued on the next line.

�──────
The statement is continued from a previous line.

─────��
The statement ends here.

2 right arrow heads at beginning of line
The statement begins here.

1 right arrow head at end of line
The statement is continued on the next line.

1 right arrow head at beginning of line
The statement is continued from a previous line.

One right arrow head, one left arrow head at end of line
The statement ends here.

Read the syntax diagrams from left to right and from top to bottom, following the
path of the line.

These are the conventions used in the diagrams:
v Required items appear on the horizontal line (main path):

�� STATEMENT required item ��

v Optional items appear below the main path:

How to read syntax diagrams

About this publication ix



�� STATEMENT
optional item

��

v An arrow returning to the left above the item indicates an item that you can
repeat. If a separator is required between items, it is shown on the repeat arrow.

�� STATEMENT �

,

repeatable item ��

v If you can choose from two or more items, they appear vertically in a stack.
– If you must choose one of the items, one item of the stack appears on the

main path:

�� STATEMENT required choice 1
required choice 2

��

– If choosing one of the items is optional, the entire stack appears below the
main path:

�� STATEMENT
optional choice 1
optional choice 2

��

– A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items:

�� STATEMENT �

,

optional choice 1
optional choice 2
optional choice 3

��

�� STATEMENT �

,

required choice 1
required choice 2
required choice 3

��

v Parameters that are above the main line are default parameters:

�� STATEMENT
default

alternative
��

v Keywords appear in uppercase (for example, STATEMENT).
v Parentheses and commas must be entered as part of the command syntax as

shown.
v For complex commands, the item attributes might not fit on one horizontal line.

If that line cannot be split, the attributes appear at the bottom of the syntax
diagram:

How to read syntax diagrams

x IBM Tivoli Workload Automation: Overview



�� STATEMENT required choice 1
option 1 option 2

required choice 2
required choice 3

��

option 1

default
optional choice 1( alternative )

option 2

default
optional choice 2( alternative )

How to read syntax diagrams

About this publication xi



How to read syntax diagrams

xii IBM Tivoli Workload Automation: Overview



Chapter 1. Summary of enhancements

The enhancements provided in Tivoli Workload Automation Version 8.6 add power
to both schedulers and extend the scope of their functionality.

Important improvements such as cross dependencies, added dynamicity to the
Tivoli Workload Scheduler for z/OS agent and the new Tivoli Workload Scheduler
distributed - Agent for z/OS are proof that the declared intention to achieve ever
increasing integration between the distributed and the host scheduler worlds is a
reality.

The new workstation types, dynamic agents, pools, dynamic pools, and dynamic
domain managers are dramatically changing the makeup of your scheduling
environment.

The added capability to develop your own custom plug-ins (job types with
advanced options) with the Tivoli Workload Scheduler Integration Workbench
provide wider margins for your workload design.

An ever more performing Dynamic Workload Console provides an easy and
accessible interface to run your work.

This chapter includes:
v “Tivoli Workload Scheduler for z/OS enhancements”
v “Tivoli Workload Scheduler enhancements” on page 5
v “Dynamic Workload Console enhancements” on page 10
v “Tivoli Workload Automation documentation enhancements” on page 12

Tivoli Workload Scheduler for z/OS enhancements
This section describes the enhancements added with Tivoli Workload Scheduler for
z/OS version 8.6:
v “Dynamic capabilities added to Tivoli Workload Scheduler for z/OS agents” on

page 2
v “Defining and scheduling new and existing jobs with dynamic capabilities” on

page 2
v “Support for cross dependencies among jobs running on different scheduling

engines” on page 3
v “Enhancements to ISPF panels” on page 3
v “Send generated reports by email” on page 4
v “Automatic job log retrieval” on page 4
v “Enhancements to Variable substitution” on page 4
v “Installing the Tivoli Workload Scheduler for z/OS connector on WebSphere

Application Server for z/OS” on page 4
v “Support for extended format VSAM data sets” on page 5
v “Keeping external dependencies on completed operations in the extended plan”

on page 5

The following features are no longer supported:

© Copyright IBM Corp. 1991, 2011 1



v Job Scheduling Console
v EJB job types

Dynamic capabilities added to Tivoli Workload Scheduler for
z/OS agents

Dynamic capabilities have been added to Tivoli Workload Scheduler for z/OS
agents so that now the scheduler automatically assigns your submitted workload
to the workstations that best meet both the hardware and software requirements
needed to run it. In this case, you install the Tivoli Workload Scheduler for z/OS
agents on the distributed systems adding the dynamic capabilities, and connect
them to the dynamic domain manager. Refer to Tivoli Workload Scheduler: Planning
and Installation Guide for a detailed explanation on how to install a dynamic
domain manager for a z/OS controller.

See also Tivoli Workload Scheduler for z/OS: Scheduling End-to-end with z-centric
Capabilities.

Defining and scheduling new and existing jobs with dynamic
capabilities

While the standard Tivoli Workload Scheduler for z/OS job is a generic script or
command, you can define and schedule jobs to perform specific tasks, such as
database, file transfer, Java, and web services operations. To define and schedule
these job types with advanced options, you do not need to have specific skills on
the applications where the job runs.

The job types with advanced options include both those supplied with the product
and the additional types implemented through the custom plug-ins.

You define job types with advanced options connecting to a z/OS engine with the
Dynamic Workload Console, with the exception of the IBM i job type which you
can create only with the JOBREC statement. From the Dynamic Workload Console,
you open the Workload Designer and select the job type you want to create. When
the job definition is saved, it is stored in the JCL library and is available for
scheduling from Tivoli Workload Scheduler for z/OS.

The job types with advanced options run on Tivoli Workload Scheduler for z/OS
agents in both the static configuration (Tivoli Workload Scheduler for z/OS agent
connected directly to the z/OS controller) and in the dynamic configuration (Tivoli
Workload Scheduler for z/OS agent connected to the dynamic domain manager).

For more information about the procedure for defining job types with advanced
options, see the section about creating job types with advanced options in Tivoli
Workload Scheduler: Dynamic Workload Console User’s Guide. For more information
about each job type, see the Dynamic Workload Console online help. For
information about how to create jobs using the JOBREC statement, see the section
about JOBREC in Tivoli Workload Scheduler for z/OS: Scheduling End-to-end with
z-centric Capabilities.

In addition to configuring job types with advanced options using the Dynamic
Workload Console, you can use the related configuration files. For more
information, see the section about configuring to schedule job types with advanced
options in Tivoli Workload Scheduler for z/OS: Scheduling End-to-end with z-centric
Capabilities.

Summary of enhancements

2 IBM Tivoli Workload Automation: Overview



You can also create custom plug-ins to implement your own job types with
advanced options for applications not supported by Tivoli Workload Scheduler for
z/OS. For more information about how to create custom plug-ins, see Tivoli
Workload Automation: Developer's Guide: Extending Tivoli Workload Automation.

The agents with dynamic capabilities can run the jobs you created for the existing
Tivoli Workload Scheduler for z/OS workstation types. To run these jobs on the
dynamic agents, change the specification of the workstation where you want the
job to run. The major advantage is that you can use the workflows you previously
created without additional effort.

Support for cross dependencies among jobs running on
different scheduling engines

This feature enables you to integrate workload running on different engines, which
can be a mix of Tivoli Workload Scheduler for z/OS engines (Controller) and Tivoli
Workload Scheduler engines (Master Domain Manager and Backup Master Domain
Manager).

A cross dependency is, from a logical point of view, a dependency of a local job on
a job instance that is scheduled to run on a remote engine plan. To implement a
cross dependency, you need to define the following objects:

Remote engine workstation
A new type of workstation that represents locally a remote Tivoli Workload
Scheduler engine, either distributed or z/OS. This type of workstation uses
a connection based on HTTP or HTTPS protocol to allow the local
environment to communicate with the remote environment.

Remote job
A job scheduled to run on a remote Tivoli Workload Scheduler engine.

Shadow job
A job defined locally, on a remote engine workstation, which is used to
map a remote job. The shadow job definition contains all the information
necessary to correctly match, in the remote engine plan, the remote job
instance.

Bind The process to associate a shadow job with a remote job instance
scheduled in the remote Tivoli Workload Scheduler engine plan.

To define a cross dependency, you:
1. Create a shadow job that runs on a remote engine workstation defined in your

local engine. The workstation points to the remote engine where the remote job
is scheduled to run.

2. Define a normal dependency that makes your local job dependent on the
shadow job.

See Chapter 20. Defining and managing cross dependencies in Tivoli Workload Scheduler
for z/OS: Managing the Workload for reference.

Enhancements to ISPF panels
A new panel style can be applied to the AD application to enable you to list and
browse a single AD, and also for the CP operation, to list and browse a single
operation in the plan. The new panel style gives you a quick, at-a-glance scrollable
view of the AD application descriptions and CP operations. A further enhancement
related to color-coded fields enables you to quickly distinguish the status of

Summary of enhancements

Chapter 1. Summary of enhancements 3



applications and operations. The color code can also be applied to distinguish
applications from groups of applications. See Chapter 7. Creating applications and
groups -> Listing applications in Tivoli Workload Scheduler for z/OS: Managing the
Workload.

Send generated reports by email
Reports generated by running batch programs can optionally be sent to other users
by email. Simply customize the file, SENDREPORT.MAC available in Tivoli Workload
Scheduler for z/OS, to include the email address, the subject, a message, the name
of the report, and the name of the output file generated. See Appendix B. Batch
programs -> Sending generated reports by email in Tivoli Workload Scheduler for z/OS:
Managing the Workload.

Automatic job log retrieval
Job logs are automatically retrieved when a job ends in error. In previous releases,
job logs had to be retrieved manually when they were required. New parameters
in the RCLOPTS and HTTPOPTS initialization statements can be configured to
automatically retrieve the job log when a job ends in error. The automatic job log
retrieval can be customized also for z-centric jobs that end in error. You can also
configure to automatically retrieve the restart information for a restart and cleanup
action. The new parameters are:
v JOBLOGRETRIEVAL and RESTARTINFORETRIEVAL in the RCLOPTS statement
v JOBLOGRETRIEVAL in the HTTPOPTS statement.

See Tivoli Workload Scheduler for z/OS: Customization and Tuning

Enhancements to Variable substitution
The variable substitution mechanism used in Tivoli Workload Scheduler for z/OS
native job types works the same way when scheduling jobs on Tivoli Workload
Scheduler for z/OS agents; however, the mechanism changes when you define job
types with advanced options. With version 8.6, the support for new job types with
advanced options that perform specific operations, such as Java jobs that run a
Java class, file transfer jobs that transfer files to and from a server, and web service
operations, to name a few. These new types of jobs are created and edited using
the Dynamic Workload Console. The following parameters have been added to the
HTTPOPTS statement that enables you to define a list of variable tables that must be
searched:
v VARTABLES

v VARFAIL

v VARSUB

See Tivoli Workload Scheduler for z/OS: Customization and Tuning.

See also Chapter 22. Job tailoring->Variable substitution for job types with advanced
options in Tivoli Workload Scheduler for z/OS: Managing the Workload.

Installing the Tivoli Workload Scheduler for z/OS connector on
WebSphere Application Server for z/OS

You can now install the Tivoli Workload Scheduler for z/OS connector on IBM
WebSphere Application Server for z/OS to maintain your business in a z/OS
environment and simultaneously manage your workload using modern
applications like Web Services.

Summary of enhancements

4 IBM Tivoli Workload Automation: Overview



See details in Chapter 8. Installing and uninstalling on WebSphere Application Server for
z/OS of Tivoli Workload Scheduler for z/OS: Planning and Installation Guide.

Support for extended format VSAM data sets
Tivoli Workload Scheduler for z/OS Version 8.6 supports an extended format
VSAM data set that can be allocated for JS data sets that exceed 4 GB. See the
extended data sets included in the EQQPCS01 sample.

See also Chapter 4. Installing->Step 9. Allocating data sets->Allocating the VSAM data
sets in Tivoli Workload Scheduler for z/OS: Planning and Installation Guide.

Keeping external dependencies on completed operations in
the extended plan

The new KEEPCOMPDEPS parameter of the BATCHOPT initialization statement
determines the permanence of external dependencies on a completed operation
that belongs to occurrences that are still active when a daily plan job is submitted
and either extended or replanned. This feature, if specified, facilitates a rerun
operation because the external dependencies remain defined on the operation
when the plan is extended and therefore there is no need to redefine them.

See the BATCHOPT statement in Tivoli Workload Scheduler for z/OS: Customization and
Tuning for a description of KEEPCOMPDEPS. See also Chapter 11. Producing the current
plan->Extending the current plan and Chapter 26. Updating the current plan->Running
work on request->Rerunning an occurrence in the current plan from a specific operation in
Tivoli Workload Scheduler for z/OS: Managing the Workload.

Enhancements for RACF user fields
For the AD.UFVAL and CP.UFVAL subresources that you specify in the AUTHDEF
inizialization statement to protect user fields, support has been provided to protect
user fields longer than 54 characters. Define a new RACF profile or use an existing
profile and specify, for example, MAXLNTH=80 to ensure that user field names and
user field values up to 80 characters are supported.

See Chapter 3. Implementing security->Functions and data that you can protect in Tivoli
Workload Scheduler for z/OS: Customization and Tuning.

Tivoli Workload Scheduler enhancements
This section describes the enhancements added with Tivoli Workload Scheduler
version 8.6:
v “New Dynamic Domain Managers” on page 6
v “Defining and scheduling new and existing jobs with dynamic capabilities” on

page 6
v “Support for cross dependencies among jobs running on different scheduling

engines” on page 7
v “The Tivoli Workload Scheduler distributed - Agent for z/OS” on page 8
v “New command to run batch reports from the command line interface” on page

9
v “Checking prerequisites” on page 9
v “Use of twsinst extended to Windows operating systems” on page 9
v “Creating and upgrading Tivoli Workload Scheduler database tables before

installing or upgrading the product” on page 9

Summary of enhancements

Chapter 1. Summary of enhancements 5



v “Using the Federated Repository security mechanism for authentication
enhancements” on page 10

v “Upgrading when there are corrupt registry files” on page 10
v “Keeping you constantly and quickly informed” on page 10

The following features are no longer supported:
v Job Scheduling Console
v EJB job types
v Tivoli Data Warehouse integration

New Dynamic Domain Managers
This new domain manager type includes the dynamic workload broker component
of previous versions. It enables you to more easily schedule and control your static
and dynamic workload both in the distributed and end-to-end environments. A
dynamic domain manager lets you run your dynamic schedule even if the master
domain manager and the backup master domain manager are unavailable. It also
improves fault-tolerant and dynamic agents scalability because the workload of the
agents in the domain is directly controlled by the dynamic domain manager to
which they are directly connected. If you want to ensure that your workload runs
even if the connection to the dynamic domain manager is unavailable, install a
backup dynamic domain manager.

A dynamic domain manager or backup dynamic domain manager include the
following:
v Fault-tolerant agent
v Broker server
v Dynamic agent
v Plan Connector

When you install a dynamic domain manager or backup dynamic domain
manager, the following workstation types are created in the Tivoli Workload
Scheduler database:

Broker
For the broker server

Agent For the dynamic agent

More information is available in Chapter 4. Installing->Installing a dynamic domain
manager or backup dynamic domain manager in Tivoli Workload Scheduler: Planning and
Installation Guide.

Defining and scheduling new and existing jobs with dynamic
capabilities

You can use new workstation types with dynamic capabilities, named dynamic
agents, pools, and dynamic pools, to run the jobs you created for the existing
Tivoli Workload Scheduler workstation types. To run these jobs on the new
workstation types, change the specification of the workstation where you want the
job to run. The major advantage is that you can use the workflows you previously
created without additional effort.

Also, while the existing Tivoli Workload Scheduler job is a generic script or
command, you can now define and schedule jobs to perform specific tasks, such as

Summary of enhancements

6 IBM Tivoli Workload Automation: Overview



database, file transfer, Java, and web services operations. To define and schedule
these job types with advanced options, you do not need to have specific skills on
the applications where the job runs. In addition, you can have your developing
team write the code for new custom job types with advanced options on the Tivoli
Workload Scheduler Integration Workbench following a guided and documented
procedure. See the Integration Workbench online help or the new Tivoli Workload
Automation: Developer's Guide: Extending Tivoli Workload Automation.

To run these job types, you can use only the dynamic agent, a new workstation
type, which you create simply by running the related installation process. The
dynamic agent is automatically created and registered at installation time. You can
also organize the dynamic agents in groups, called pools or dynamic pools.

A pool is a workstation that groups a set of dynamic agents with similar hardware
or software characteristics to submit jobs to. Tivoli Workload Scheduler balances
the jobs among the dynamic agents within the pool and automatically reassigns
jobs to available workstations if a workstation is no longer available. To create a
pool of dynamic agents in your environment, define a workstation of type pool
hosted by the dynamic workload broker workstation, then select the dynamic
agents you want to add to the pool.

A dynamic pool is a workstation that groups a set of dynamic agents, which is
dynamically defined based on the resource requirements you specify. For example,
if you require a workstation with low CPU usage and Windows installed to run
your job, you specify these requirements using the Dynamic Workload Console or
the composer command. When you save the set of requirements, a new
workstation is automatically created in the Tivoli Workload Scheduler database.
This workstation maps all the dynamic agents in your environment that meet the
requirements you specified. The resulting pool is dynamically updated whenever a
new suitable dynamic agent becomes available. Jobs scheduled on this workstation
automatically inherit the requirements defined for the workstation.

If you want to use the dynamic capability when scheduling job types with
advanced options, you schedule them on pools and dynamic pools, which
dynamically assign the job to the best available resource. If you are interested only
in defining job types with advanced options, without using the dynamic
scheduling capability, you schedule these jobs on a specific dynamic agent, on
which the job runs statically.

For more information, see the section about adding dynamic capabilities to your
environment in Tivoli Workload Scheduler: Scheduling Workload Dynamically. For
information about how to create pools and dynamic pools using the Dynamic
Workload Console, see the section on creating a pool of agents in Tivoli Workload
Scheduler: Dynamic Workload Console User’s Guide. For more information about how
to create job definitions, pools and dynamic pools using the composer command,
see Tivoli Workload Scheduler: User's Guide and Reference.

Support for cross dependencies among jobs running on
different scheduling engines

This feature enables you to integrate workload running on different engines, which
can be a mix of Tivoli Workload Scheduler engines (Master Domain Manager and
Backup Master Domain Manager) and Tivoli Workload Scheduler for z/OS engines
(Controller).

Summary of enhancements

Chapter 1. Summary of enhancements 7



A cross dependency is, from a logical point of view, a dependency of a local job on
a job instance that is scheduled to run on a remote engine plan. To implement a
cross dependency, you need to define the following objects:

Remote engine workstation
A new type of workstation that represents locally a remote Tivoli Workload
Scheduler engine, either distributed or z/OS. This type of workstation uses
a connection based on HTTP or HTTPS protocol to allow the local
environment to communicate with the remote environment.

Remote job
A job scheduled to run on the remote Tivoli Workload Scheduler or Tivoli
Workload Scheduler for z/OS engine.

Shadow job
A job defined locally, on a remote engine workstation, which is used to
map a remote job. The shadow job definition contains all the information
necessary to correctly match, in the remote engine plan, the remote job
instance.

Bind The process to associate a shadow job with a remote job instance
scheduled in the remote engine plan.

To define a cross dependency, you:
1. Create a shadow job that runs on a remote engine workstation defined in your

local engine. The workstation points to the remote engine where the remote job
is scheduled to run.

2. Define a normal dependency that makes your local job dependent on the
shadow job.

See Chapter 16. Defining and managing cross dependencies in Tivoli Workload Scheduler:
User's Guide and Reference for reference.

The Tivoli Workload Scheduler distributed - Agent for z/OS
The agent for z/OS provides the capability of running workload that is defined
and submitted in Tivoli Workload Scheduler on a z/OS system. You run the
definition and planning tasks on Tivoli Workload Scheduler, while the execution is
demanded to the JES2 subsystem of z/OS.

The agent is installed on z/OS and connects via HTTP with the dynamic workload
broker component of a master domain manager or of a dynamic domain manager.
Upon connection, it is automatically defined as a workstation of type agent on
Tivoli Workload Scheduler.

The agent acts as a proxy between Tivoli Workload Scheduler and JES2: it passes
workload to JES2 and returns status events to Tivoli Workload Scheduler. You can
use either the Dynamic Workload Console or the composer and conman command
lines to define and submit jobs of type JCL from Tivoli Workload Scheduler and to
track their execution. Jobs of type JCL include the JCL statements that will be run
by JES2. The job execution events are also tracked in the message log (MLOG) of
z/OS.

The agent is sold as a separate product named Tivoli Workload Scheduler
distributed - Agent for z/OS and is targeted for Tivoli Workload Scheduler
customers who also have a z/OS system. The agent for z/OS is not a replacement
for Tivoli Workload Scheduler for z/OS as it lacks the sophisticated scheduling
features of this scheduler.

Summary of enhancements

8 IBM Tivoli Workload Automation: Overview



New command to run batch reports from the command line
interface

The new reportcli command enables you to schedule batch reports to run on a
timely basis. See Chapter 12. Getting reports and statistics->Running batch reports from
the command line interface in Tivoli Workload Scheduler: User's Guide and Reference for
details.

Checking prerequisites
If you are preparing to install or upgrade on UNIX and Linux operating systems,
Tivoli Workload Scheduler automatically runs a prerequisite check on your system.
Having an environment that meets the Tivoli Workload Scheduler system
requirements ensures that an installation succeeds without any delays or
complications.

The prerequisite check verifies that:
v The operating system is supported for the product.
v The necessary engine software patch levels are installed.
v There is enough permanent and temporary disk space.
v There is enough memory and virtual memory swap space.
v The necessary kernel parameters are correctly configured.

See the chapter about checking prerequisites in Tivoli Workload Scheduler: Planning
and Installation Guide.

Use of twsinst extended to Windows operating systems
You can use the twsinst script to install a Tivoli Workload Scheduler fault-tolerant
or dynamic agent. You can use the script as an alternative to the silent installation
wizard. In addition, if you are installing the dynamic agent, you can use the script
to add to the agent the Java runtime necessary to run job types with advanced
options. Previously, it was available on UNIX only. See Chapter 4.
Installing->Installing agents using twsinst in Tivoli Workload Scheduler: Planning and
Installation Guide for more information.

Creating and upgrading Tivoli Workload Scheduler database
tables before installing or upgrading the product

Using this procedure, the database administrator, can create or upgrade the
database tables before the IT administrator installs or upgrades the product with a
user different from the database administrator user. In this way, only the database
administrator manages all the confidential information related to the database such
as the database administrator user ID and password. The IT administrator does not
need to know this information when installing or upgrading the product.

The IT administrator can perform:
v The installation, specifying as database administrator user name the user to be

granted access, by the administrator of the DB2 server, to the Tivoli Workload
Scheduler database.

v The upgrade, by using another user that has the same permissions as the user
that installed the product.

See the chapter about Creating and upgrading Tivoli Workload Scheduler database
tables in Tivoli Workload Scheduler: Planning and Installation Guide.

Summary of enhancements

Chapter 1. Summary of enhancements 9



Using the Federated Repository security mechanism for
authentication enhancements

Versions of Tivoli Workload Scheduler from 8.6 onwards are configured for
authentication (through the embedded WebSphere Application Server) in VMM
(Virtual Member Manager) mode. This creates a Federated User Registry, which
supports the contemporaneous use of more than one user registry. The user
registry choices and LDAP server options remain much the same as prior to
version 8.6.

See Chapter 5. Upgrading->Upgrading a master domain manager or backup master
domain manager instance->Upgrading overview->Updating authentication in Tivoli
Workload Scheduler: Planning and Installation Guide for more information.

Upgrading when there are corrupt registry files
It is now possible to upgrade a stand-alone fault-tolerant agent that has corrupt
registry files without having to reinstall the product. Tivoli Workload Scheduler
version 8.6 has a recovery option you can run to recreate the necessary files. You
can also use this option when upgrading nodes in clusters, where the node on
which you want to perform the upgrade is not available or is in an inconsistent
state. The recovery option re-creates the registry files and the Software Distribution
information without having to reinstall the complete product.

See Chapter 5. Upgrading->Upgrading when there are corrupt registry files in Tivoli
Workload Scheduler: Planning and Installation Guide for more information.

Keeping you constantly and quickly informed
Keep constantly and quickly informed about product news, updates, technotes,
APARs, and fixes using the "News and Updates" feature. To use this feature you
must be connected to the Internet. See the chapter about the Launchpad in Tivoli
Workload Scheduler: Planning and Installation Guide.

Dynamic Workload Console enhancements
This section describes the enhancements added with Dynamic Workload Console
version 8.6:
v “Multiple engine query”
v “New look and feel for the dashboard” on page 11
v “Support for dynamic scheduling” on page 11
v “Support for the new job types with advanced options” on page 11
v “Support for Cross Dependencies” on page 11
v “Enhanced management of user settings” on page 11
v “Additional usability improvements” on page 11
v “Support for mobile device access” on page 11

Multiple engine query
A new task to monitor Jobs and Job streams running on multiple engines is
available. It allows you to use a unique query that collects into one view
monitoring data gathered from different scheduling environments, even mixed
environments (z/OS and distributed). See Chapter 8. Monitoring your Objects in the
Plan->Monitoring your Workload->Creating a task to Monitor Job Streams on Multiple
Engines in Tivoli Workload Scheduler: Dynamic Workload Console User’s Guide for
details.

Summary of enhancements

10 IBM Tivoli Workload Automation: Overview



New look and feel for the dashboard
Dashboard performance has been improved together with its new look and feel
that is integrated with Tivoli Integrated Portal. The dashboard can now also be
accessed from your mobile device. See Chapter 8. Monitoring your Objects in the
Plan->Monitoring the progress of your plan in Tivoli Workload Scheduler: Dynamic
Workload Console User’s Guide for more information.

Support for dynamic scheduling
New workstation types (Agent, Pool, Dynamic Pool) can be defined and monitored
through the Dynamic Workload Console to support the enhanced dynamic
scheduling capability.

Support for the new job types with advanced options
New job types with advanced options can be defined from the Workload Designer
to perform specific tasks, such as database, file transfer, Java, and web service
operations, as well as any custom job types created by your developing team with
the Tivoli Workload Scheduler Integration Workbench.

Support for Cross Dependencies
A new type of job (Shadow job) and a new type of workstation (Remote Engine
workstation) can be defined and monitored through the Dynamic Workload
Console to allow the creation of dependencies between two different scheduling
environments, including mixed z/OS and Distributed environments.

Enhanced management of user settings
Dynamic Workload Console settings, like user preferences, configured tasks and
engine connections, can now be imported and exported to and from the
currently-selected settings repository, which can be a File registry (by default) or a
Database registry. User settings can be saved in an xml file that can be easily
modified, and then imported into the same or another instance of Dynamic
Workload Console.

See Chapter 3. Getting Started->Managing user settings in Tivoli Workload Scheduler:
Dynamic Workload Console User’s Guide for further information.

Additional usability improvements
The following usability improvements have been implemented:
v From the Monitor Task result tables, you can right-click on an item to open a

context menu containing all the actions available for the selected object. If you
do not want to specify an engine each time you run a task, you can save a
preferred engine that is proposed as the default one for all the tasks associated
to an "Ask when needed engine". The engine persistence is valid for the current
session only.

v If there are jobs in the plan that have been rerun, now in the Monitor Jobs view
you can show only the last occurrence of the rerun chain for each job.

Support for mobile device access
You can now use your mobile device to open the dashboard, see the jobs in plan,
click them to view their details and job log, and also send this information using
email. Support is provided for the following:
v IOS based devices - IPhone, IPod Touch, IPad

Summary of enhancements

Chapter 1. Summary of enhancements 11



v Android-based devices version 2.2 or later

See Chapter 6. Accessing the Console from Your Mobile Device in Tivoli Workload
Scheduler: Dynamic Workload Console User’s Guide for reference.

Tivoli Workload Automation documentation enhancements
A set of Developer Guides have been added that are targeted to software
developers and document methods and procedures for developing interfaces and
plug-ins. They can be found in the IBM Tivoli Workload Automation V8.6
Information Center and they are:

Driving Tivoli Workload Automation
Describes two application programming interfaces which you can use to
drive Tivoli Workload Automation products from your own applications:
v The Java application programming interface for creating your own GUI

or command-line interface to perform all the functions of the
command-line programs composer, conman, and planman and the
Dynamic Workload Console for both Tivoli Workload Scheduler and
Tivoli Workload Scheduler for z/OS.

v The web services interface to create your own web client application to
perform a subset of Tivoli Workload Scheduler and Tivoli Workload
Scheduler for z/OS functions to manage jobs and job streams in the
plan.

You can use the Tivoli Workload Automation Software Development Kit
Integration Workbench provided with the product to develop and
implement these application programming interfaces.

Extending Tivoli Workload Automation
Explains how to extend Tivoli Workload Automation by creating plug-ins
that add functionality relevant to your business activities in two main
areas:
v Event-driven workload automation
v Job types with advanced options

In addition, it documents how to create Java jobs that implement a Java
project of your creation on the target workstation.

Driving Tivoli Workload Scheduler for z/OS
Describes how to use the programming interfaces for Tivoli Workload
Scheduler for z/OS to help you plan, schedule, and monitor work in the
production department of your computer installation.

It comprises all the documentation previously released in Tivoli Workload
Scheduler for z/OS: Programming interfaces.

Summary of enhancements

12 IBM Tivoli Workload Automation: Overview



Chapter 2. Overview of Tivoli Workload Automation

Tivoli Workload Automation is the state-of-the-art production workload manager,
designed to help you meet your present and future data processing challenges. Its
scope encompasses your entire enterprise information system, including
heterogeneous environments.

Pressures on today's data processing (DP) environment are making it increasingly
difficult to maintain the same level of service to customers. Many installations find
that their batch window is shrinking. More critical jobs must be finished before the
morning online work begins. Conversely, requirements for the integrated
availability of online services during the traditional batch window put pressure on
the resources available for processing the production workload. Increasing by 7
days a week, 24 hours a day is not only a DP objective but a requirement.

Users and owners of DP services are also making more use of batch services than
ever before. The batch workload tends to increase each year at a rate slightly below
the increase in the online workload. Combine this with the increase in data use by
batch jobs, and the end result is a significant increase in the volume of work.

Furthermore, there is a shortage of people with the required skills to operate and
manage increasingly complex DP environments. The complex interrelationships
between production activities, between manual and machine tasks, have become
unmanageable without a workload management tool.

Tivoli Workload Automation simplifies systems management across heterogeneous
environments by integrating systems management functions. There are three main
components to the portfolio:
v Tivoli Workload Scheduler for z/OS

The scheduler in z/OS environments
v Tivoli Workload Scheduler

The scheduler in distributed environments
v Dynamic Workload Console

A Web-based, graphical user interface for both Tivoli Workload Scheduler for
z/OS and Tivoli Workload Scheduler

The Job Scheduling Console has been replaced by Dynamic Workload Console as
the Tivoli Workload Automation graphical user interface.

The state-of-the-art solution
The portfolio provides leading-edge solutions to problems in production workload
management. It can automate, plan, and control the processing of your enterprise's
entire production workload, not just the batch subset. The portfolio works as an
“automatic driver” for your production workload to maximize the throughput of
work, and optimize your resources, but also allows you to intervene manually as
required.

When the portfolio interfaces with other system management products, it forms
part of an integrated automation and systems management platform for your DP
operation.

© Copyright IBM Corp. 1991, 2011 13



Comprehensive workload planning
The portfolio forms operating plans based on user descriptions of the operations
department and its production workload. These plans provide the basis for your
service level agreements and give you a picture of the production workload at any
precise time.

Good planning is the cornerstone of any successful management technique.
Effective planning also helps you maximize return on your investments in
information technology.

Centralized systems management
The portfolio automates, monitors, and controls the flow of work through your
enterprise's entire DP operation on both local and remote systems. From a single
point of control, the portfolio analyzes the status of the production work and
drives the processing of the workload according to installation business policies. It
supports a multiple-end-user environment, enabling distributed processing and
control across sites and departments within your enterprise.

Systems management integration
Solutions to today's systems management problems require an integration of
application programs and processes. The portfolio offers you integration with the
following:
v Agents for controlling the workload on non-z/OS platforms
v Other systems management applications and architecture environments.

The portfolio interfaces directly with some of the z/OS products as well as with a
number of other IBM products to provide a comprehensive, automated processing
facility and an integrated approach for the control of complex production
workloads.

NetView®. NetView is the IBM platform for network management and automation.
You can use the interface for Tivoli Workload Scheduler for z/OS with NetView to
pass information about the work that is being processed. The portfolio lets you
communicate with NetView in conjunction with the production workload
processing. Tivoli Workload Scheduler for z/OS can also pass information to
NetView for alert handling in response to situations that occur while processing
the production workload. NetView can automatically trigger Tivoli Workload
Scheduler for z/OS to perform actions in response to these situations using a
variety of methods. Tivoli Workload Scheduler/NetView is a NetView application
that gives network managers the ability to monitor and diagnose Tivoli Workload
Scheduler networks from a NetView management node. It includes a set of
submaps and symbols to view Tivoli Workload Scheduler networks
topographically and determine the status of job scheduling activity and critical
Tivoli Workload Scheduler processes on each workstation.

Workload Manager (WLM). WLM controls the amount of system resources
available to each work unit in host environments. Tivoli Workload Scheduler for
z/OS works in concert with WLM to detect critical jobs and move them to a
higher-performance service class. In addition with WLM, critical jobs receive more
system resources and complete more quickly.

Resource Object Data Manager (RODM). RODM provides a central location for
storing, retrieving, and managing the operational resource information needed for

Overview

14 IBM Tivoli Workload Automation: Overview



network and systems management. You can map a special resource to a RODM
object. This lets you schedule the production workload considering actual resource
availability, dynamically updated.

Tivoli Decision Support for z/OS (Decision Support). Decision Support helps you
effectively manage the performance of your system by collecting performance data
in a DATABASE 2 (DB2®) database and presenting the data in a variety of formats
for use in systems management. Decision Support uses data from Tivoli Workload
Scheduler for z/OS to produce summary and management reports about the
production workload, both planned and actual results.

Output Manager for z/OS. Helps customers increase productivity and reduce the
costs of printing by providing a means for storing and handling reports in a z/OS
environment. When a dialog user requests to view a job log or to automatically
rebuild the JCL for a step-level restart, Tivoli Workload Scheduler for z/OS
interfaces with Output Manager. This interface removes the requirement to
duplicate job log information, saving both CPU cycles and direct access storage
device (DASD) space.

Tivoli Information Management for z/OS. Supports the administration of the
systems management process of an enterprise's hardware, software, and related
resources. An interface with Tivoli Information Management for z/OS is provided
for reporting problems detected while processing the production workload.

Resource Access Control Facility (RACF®). RACF is the IBM product for data
security. You can use RACF as the primary tool to protect your Tivoli Workload
Scheduler for z/OS services and data at the level required by your enterprise. With
RACF 2.1 and later, you can use a Tivoli Workload Scheduler for z/OS reserved
resource class to protect your resources.

IBM Tivoli Monitoring (ITM). You can use it to monitor your hardware, operating
systems, applications, databases. It provides proactive monitoring and automated
fault management, and includes a specific module for Business Integration. You
can also manage configuration and collect monitoring information for reporting,
performance analysis, trend predictions and enterprise wide business impact
assessment.

IBM Tivoli Service Request Manager (TSRM). It is an incident management
system. TSRM can function as a service desk for both internal IT assets and
internal corporate, non-IT enterprise assets, such as facilities or fleet. TSRM helps
to improve IT performance by providing automation of processes, better visibility
of service support functions, commitments, and measurements.

Tivoli System Automation for z/OS (SA z/OS). SA z/OS initiates automation
procedures that perform operator functions to manage z/OS components, data
sets, and subsystems. SA z/OS includes an automation feature for Tivoli Workload
Scheduler for z/OS. You can define an automation workstation in Tivoli Workload
Scheduler for z/OS to handle system automation operations with a specific set of
options.

Data Facility Hierarchical Storage Manager (DFHSM). Tivoli Workload Scheduler
for z/OS catalog management functions invoke DFHSM to recall migrated data
sets during data set cleanup for a failed or rerun job.

CICS® and IMS™ (Computer Information Control System and Information
Management System). Tivoli Workload Scheduler for z/OS lets you schedule the

Overview

Chapter 2. Overview 15



starting and stopping of started tasks. Because Tivoli Workload Scheduler for z/OS
tracks the status of started tasks, you can serialize work, such as backups of your
transaction databases, according to the status of your CICS or IMS subsystems.

Tivoli Business Systems Manager. Tivoli Business Systems Manager provides
monitoring and event management of resources, applications, and subsystems with
the objective of providing continuous availability for the enterprise. Using Tivoli
Business Systems Manager with the portfolio provides the ability to manage
strategic applications from a unique business systems perspective. Tivoli Business
Systems Manager monitors batch-related applications and operations represented
by the portfolio and seamlessly integrates these objects with all other business
objects monitored by Tivoli Business Systems Manager.

Tivoli Enterprise Console®. The Tivoli Enterprise Console is a powerful,
rules-based event management application that integrates network, systems,
database, and application management. It offers a centralized, global view of your
computing enterprise while ensuring the high availability of your application and
computing resources. Tivoli Enterprise Console acts as a central collection point for
alarms and events from a variety of sources, including those from Tivoli
applications. Tivoli Workload Scheduler runs a Tivoli Enterprise Console adapter
that reads events from the Tivoli Workload Scheduler log file.

Besides these IBM products, there are many products from other software vendors
that work with or process data from the portfolio.

For white papers about using IBM products, refer to the following link:
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/Web/WP-
ByProduct?OpenDocument&Start=1&Count=1000&Expand=18.

An integration scenario
This section shows how you can monitor late critical jobs and perform incident
management, by integrating Tivoli Workload Scheduler for z/OS with the following
products:
v IBM Tivoli Monitoring (ITM)
v Maximo Tivoli Service Request Manager (TSRM)
v Tivoli System Automation (SA)

Tivoli Workload Scheduler for z/OS schedules jobs according to the defined
current plan. ITM is configured with a situation that sends an email notification to
Maximo TSRM, when a critical job is late.

The integrate components work as follows:
1. ITM detects a critical job tied to a WLM scheduling environment.
2. ITM sends an email causing the automatic opening of a service request.
3. The Maximo TSRM operator captures the service request and runs a launch in

context of the Dynamic Workload Console, to perform incident analysis.
4. The analysis confirms that a critical job is waiting for a WLM scheduling

environment.
5. A System Automation job is submitted through Dynamic Workload Console, to

make available the WLM scheduling environment.
6. As soon as the WLM scheduling environment is available, the scheduler

submits again the critical job.
7. The service request is closed.

Overview

16 IBM Tivoli Workload Automation: Overview

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/Web/WP-ByProduct
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/Web/WP-ByProduct


Automation
By automating management of your production workload with the portfolio, you
can minimize human errors in production workload processing and free your staff
for more productive work. The portfolio helps you plan, drive, and control the
processing of your production workload. These are important steps toward
automation and unattended operations. Whether you are running one or more
systems at a single site, or at several distributed sites, the portfolio helps you
automate your production workload by:
v Coordinating all shifts and production work across installations of all sizes, from

a single point of control
v Automating complex and repetitive operator tasks
v Dynamically modifying your production workload schedule in response to

changes in the production environment (such as urgent jobs, changed priorities,
or hardware failures) and then managing the workload accordingly

v Resolving workload dependencies
v Managing utilization of shared resources
v Tracking each unit of work
v Detecting unsuccessful processing
v Displaying status information and instructions to guide operations personnel in

their work
v Interfacing with other key IBM products to provide an integrated automation

platform

The portfolio lets you centralize and integrate control of your production workload
and reduces the number of tasks that your staff need to perform.

Figure 1. Integration scenario for Tivoli Workload Scheduler for z/OS.

Overview

Chapter 2. Overview 17



Workload monitoring
Besides providing a single point of control for the production workload across
your systems, the portfolio:
v Monitors the production workload in real time, providing operations staff with

the latest information on the status of the workload so that they can react
quickly when problems occur.

v Provides security interfaces that ensure the protection of your services and data.
v Enables manual intervention in the processing of work.
v Reports the current status of your production workload processing.
v Provides reports that can serve as the basis for documenting your service level

agreements with users. Your customers can see when and how their work is to
be processed.

Automatic workload recovery
The portfolio enables processing production workload to continue even when
system or connection failures occur. If one system fails, the portfolio can restart the
processing on another system. When the controlling system is running in a z/OS
system complex (sysplex), a hot standby function can automatically transfer control
of the production workload to another system in the sysplex. Because the portfolio
continues to manage the production workload during failures, you can maintain
the integrity of your processing schedules and continue to service your customers.

In Tivoli Workload Scheduler, a switchmgr function provides the possibility to
replace a failing master domain manager or domain manager workstation with an
appropriately configured backup fault-tolerant agent or domain manager .

Productivity
The portfolio represents real productivity gains by ensuring fast and accurate
performance through automation. Many of today's automation solutions quote
unrealistic productivity benefits. Some of the tasks automated should never be
performed, or certainly not as often as they are by automation. Because of this, it is
difficult to correlate real productivity benefits to your enterprise.

The tasks the portfolio performs not only have to be performed, but have to be
performed correctly, every time, and as quickly as possible. Many of these tasks,
traditionally performed by DP professionals, are tedious and as a result prone to
error. With the portfolio, your DP staff can use their time more efficiently.

Business solutions
The portfolio provides business solutions by:
v Driving production according to your business objectives
v Automating the production workload to enhance company productivity
v Providing you with information about current and future workloads
v Managing a high number of activities efficiently.

User productivity
Your DP staff and end users can realize significant productivity gains through the
portfolio's:
v Fast-path implementation.

Overview

18 IBM Tivoli Workload Automation: Overview



v Immediate response to dialog requests for workload status inquiries. Users are
provided with detailed real-time information about production workload
processing so that they can detect and promptly correct errors.

v Automation of operator tasks such as error recovery and data set cleanup.

Growth incentive
As you implement automation and control you can manage greater production
workload volumes. The portfolio brings growth within your DP operation by
providing:
v Ways of absorbing the increasing batch workload without increasing operations

personnel
v An open interface for submitting and tracking the workload on a variety of

operating systems
v Interfaces with other systems management application programs
v An open interface for, and communicating with, programs on other platforms
v Management of current and future production workload volumes
v Simulation facilities to forecast future workloads

How Tivoli Workload Automation benefits your staff
In a typical enterprise, many people contribute to the implementation and
operation of Tivoli Workload Automation:
v Scheduling manager
v Operations manager
v Shift supervisor
v Application programmer
v Console operators
v Workstation operators, such as print operators, job setup staff, and login

receptionists
v End users
v Service desk

This section describes how the portfolio can directly benefit your DP staff.

Role of the scheduling manager as the focal point
Tivoli Workload Automation makes it possible for the scheduling manager to
maintain current and future production processing across your enterprise. The
portfolio benefits the scheduling manager in the following ways:
v Automatically scheduling all production workload activities.
v Automatically resolving the complexity of production workload dependencies

and driving the work in the most efficient way.
v Supporting the simulation of future workloads on the system. The scheduling

manager can evaluate, in advance, the effect of changes in production workload
volumes or processing resources.

v Giving a real-time view of the status of work as it flows through the system so
that the scheduling manager can quickly:
– Respond to customer queries about the status of their work
– Identify problems in the workload processing.

v Providing facilities for manual intervention.

Overview

Chapter 2. Overview 19



v Managing many workload problems automatically. The production-workload-
restart facilities, hot standby, automatic recovery of jobs and started tasks, and
data set cleanup provide the scheduling manager with comprehensive
error-management and disaster-management facilities.

v Providing a log of changes to the production workload data through the
audit-trail facility. This assists the scheduling manager in resolving problems
caused by user errors.

v Managing hard-to-plan work.

Role of the operations manager
The reporting, planning, and control functions can help the operations manager do
the following:
v Improve the efficiency of the operation
v Improve control of service levels and quality
v Set service level agreements for end-user applications and for services provided
v Improve relationships with end-user departments
v Increase the return on your IT investment
v Develop staff potential.

A powerful tool for the shift supervisor
The portfolio is important for the shift supervisor, especially in multisystem
complexes, where local and remote systems are controlled from a central site. The
portfolio can help the shift supervisor do the following:
v Monitor and control the production workload through multisystem complexes
v Control the use of mountable devices
v Separate information about work status from system and other information
v Provide end users with status information directly
v Manage the workload if a system failure occurs
v Make changes to the current plan in response to unplanned events, such as

equipment failures, personnel absences, and rush jobs.

Role of the application programmer
The user-authority checking functionality enables application development groups
to use all the planning and control functions in parallel with, but in isolation from,
production systems and services.

The portfolio can be a valuable tool for application development staff when they
are doing the following:
v Packaging new applications for the production environment
v Testing new JCL in final packaged form
v Testing new applications and modifying existing ones

Console operators
The portfolio can free console operators from the following time-consuming tasks:
v Starting and stopping started tasks
v Preparing JCL before job submission
v Submitting jobs
v Verifying the sequence of work
v Reporting job status
v Performing data set cleanup in recovery and rerun situations
v Responding to workload failure
v Preparing the JCL for step-level restarts.

Overview

20 IBM Tivoli Workload Automation: Overview



Workstation operators
The portfolio helps workstation operators do their work by providing the
following:
v Complete and timely status information
v Up-to-date ready lists that prioritize the work flow
v Online assistance in operator instructions.

End users and the service desk
Your end users often need to be informed about the status of workload processing.
They can use the Dynamic Workload Console to check the status of the processing
of their job streams themselves from a personal workstation. End users can make
queries using the Dynamic Workload Console without having to be familiar with
the portfolio, ISPF, or TSO, and without having to be logged on to a local system.

The help desk can use the Dynamic Workload Console in the same way to answer
queries from end users about the progress of their workload processing.

Summary
Tivoli Workload Automation communicates with other key IBM products to
provide a comprehensive, automated processing facility and an integrated solution
for the control of all production workloads. Here are the benefits that the portfolio
offers you:

Increased automation
Increases efficiency and uses DP resources more effectively, resulting in
improved service levels for your customers.

Improved systems management integration
Provides a unified solution to your systems management problems.

More effective control of DP operations
Lets you implement change and manage growth more efficiently.

Increased availability
Is made possible by automatic workload recovery.

Opportunities for growth
Are made possible by your ability to manage greater workload volumes.

Investment protection
Is made easier by building on your current investment in z/OS and
allowing existing customers to build on their existing investment in
workload management.

Improved customer satisfaction
Is achieved thanks to higher levels of service and availability, fewer errors,
and faster response to problems.

Greater productivity
Results because repetitive, error-prone tasks are automated and operations
personnel can use their time more efficiently.

Integration of multiple operating environments
Provides a single controlling point for the cooperating systems that
comprise your DP operation.

Overview

Chapter 2. Overview 21



The portfolio is more than just a batch scheduling tool: it is a production
management system with the capability to schedule all the work running on any
system.

Overview

22 IBM Tivoli Workload Automation: Overview



Chapter 3. Tivoli Workload Automation and ITUP

This chapter explains where Tivoli Workload Automation is placed within the IBM
Tivoli Unified Process (ITUP).

The IBM Tivoli Unified Process provides detailed documentation of IT Service
Management processes based on industry best practices, to help users to
significantly improve their organization’s efficiency and effectiveness. ITUP helps
users to easily understand processes, the relationships between processes, and the
roles and tools involved in an efficient process implementation.

The processes described in ITUP are strongly aligned with the Information
Technology Infrastructure Library (ITIL) which is based on best practices observed
within the IT industry. ITIL provides high-level guidance of what to implement,
but not how to implement. ITUP contains detailed process diagrams and
descriptions to help users understand processes and their relationships, making
ITIL recommendations easier to follow.

ITUP is based on the IBM Process Reference Model for IT™ (PRM-IT), which was
jointly developed by IBM Global Services and Tivoli. PRM-IT provides detailed
process guidance for all activities that fall under the office of the CIO, including,
but not limited to, IT Service Management.

The ITUP processes
ITUP describes a comprehensive set of processes within an IT organization. Each
process is defined by:

Tool Mentors that describe best practice use of IBM tools in a process context
Tool mentors help users identify which IBM products and solutions can be
used to perform specific process activities and details their appropriate use.
By following this guidance users can reduce time, effort, and errors, and
get the maximum value out of their investments.

Role definitions, responsibilities, and resources
ITUP describes the roles and responsibilities of all actors in the process
model. Users can identify their roles and understand the activities they
need to perform and the tools available to help them.

Work products and other information
ITUP describes all work products, often referred to as artifacts, produced
as output or required as input by processes and activities. Other
information such as key terms and concepts are also defined.

Scenarios describing common problems and best practice solutions
Scenarios help users understand how real world problems can be
addressed with process improvement and integration, proper tool use, and
defined roles and responsibilities.

Service execution and workload management
Among the processes supported by Tivoli Workload Automation, service execution
is one of the key IT processes described by ITUP. Its mission is to deliver
operational services to the IT infrastructure and to the enterprise.

© Copyright IBM Corp. 1991, 2011 23



The main service execution activities supported by Tivoli Workload Automation
are:
v Deliver service
v Manage delivery resources
v Manage workload

Workload management has the target to maximize the utilization of task execution
resources and to minimize the total time that is required to deliver the output of
task processing. This activity operates at both a macro-level and micro-level to
prepare work schedules and to pre-process work items where necessary so that the
delivery resources can be matched to the demands of the flow of work in an
optimal fashion.

The objectives of workload scheduling focus on:
v Managing the execution of activities according to business calendars, time

constraints, and resource availability.
v Managing activities that have interactions between each other and have

dependencies with each other and external entities and events.
v Enabling integration with business application environments like SAP R3 and

PeopleSoft, and managing the running of activities in those environments.
v Managing the life cycle for defining the activities to run and their running.
v Enabling monitoring and control on the running of these activities and collecting

results and historical running data.

Managing workload with Tivoli Workload Automation
Tivoli Workload Automation is a portfolio of products provided by IBM to
automate all workload management tasks. The scheduling features of Tivoli
Workload Automation help you plan every phase of your workload production.
During the processing period, the production control programs manage the
production environment and automate most operator activities. The schedulers
prepare jobs for running, resolve interdependencies, and launch and track jobs.
Because jobs start running as soon as their dependencies are satisfied, idle time is
minimized, and throughput improves significantly. Jobs never run out of sequence,
and, if a job fails, the schedulers can handle the recovery process with little or no
operator intervention.

Workload management is based on a database that contains the definitions of the
scheduling objects. There are two versions of the scheduling objects database
depending on the placement of the main workload controller: it can be based on a
mainframe computer (in this case, z/OS) or on a distributed platform. Some of the
scheduling objects can exist in both of the databases, some apply only to the
distributed platform, and others might apply only to the mainframe platform.

The minimum set of object definitions that are required to produce a workload
consists of a workstation, a job, and a job stream. Other required scheduling objects
might be predefined and exist by default.

A workstation is a definition that represents a computer system or another entity
that is capable of running specific tasks, and that has the ability to report the status
of task execution to the scheduler. With the Tivoli Workload Automation interfaces,
you can identify the physical resources associated with the workstations.

Tivoli Workload Scheduler and ITUP

24 IBM Tivoli Workload Automation: Overview



A job is the representation of a task (an executable file, program, or command) that
is scheduled and launched by the scheduler. The job is run by a workstation and,
after running, has a status that indicates if the run was successful or not. A job
definition can specify information on what to do whenever its run was not
successful. Jobs not included in a job stream do not have any attribute for running,
and are only the description of a task with a definition on how to perform it in a
form that is known to the specified workstation.

A job stream represents a container for related jobs and organizes them, in terms of
run time, sequencing, concurrency limitations, repetitions, assigning priority or
resources, and so on. Job streams are the macro elements of the workload that you
manage.

The scheduling plan is the to-do list that tells Tivoli Workload Scheduler or Tivoli
Workload Scheduler for z/OS what jobs to run, and what dependencies must be
satisfied before each job is launched. Tivoli Workload Scheduler or Tivoli Workload
Scheduler for z/OS builds the plan using the elements that are stored in the
scheduling database.

The running of a plan requires tracking to identify possible problems that can
impact the effective delivery of the work products. It is possible to perform the
tracking from a Web-based Java interface, the Dynamic Workload Console, on
either of the platforms (z/OS and distributed). As an alternate interface to the
Dynamic Workload Console on the z/OS platform you can also use the ISPF panel
interface, and on the distributed platforms you can use the command-line interface.

See Chapter 5, “A business scenario,” on page 29 which describes a possible
implementation of workload management based on Tivoli Workload Automation.

Tivoli Workload Scheduler and ITUP

Chapter 3. Tivoli Workload Automation and ITUP 25



26 IBM Tivoli Workload Automation: Overview



Chapter 4. Who performs workload management

The primary roles most directly responsible for workload management are:

The IT administrator
Is the general IT administrator of all the hardware and software used by
the company. He is in charge of installing, supporting, and maintaining
servers or other computer systems, and planning for and responding to
service outages and other problems.

He installs and maintains the job scheduling tool.

The Tivoli Workload Scheduler IT administrator
A good deal of his time is focused on keeping job scheduling running
smoothly. He rarely does any actual scheduling himself, but instead acts as
the person in the background who supports those who do. The Tivoli
Workload Scheduler IT administrator:
v Defines and maintains the security for the job scheduling tool.
v On certain occasions does a minimal amount of tuning and

customization of the job scheduling tool.
v Guarantees that the job scheduling tool environments are up and

running all of the time, and if something goes wrong he needs to
quickly resolve the problem.

v Monitors the health status of the job scheduling tool infrastructure. Uses
tools that alert him (usually via email or pager) and create alerts or
automatically open a trouble-ticket to alert the responsible person when
there is a problem.

v Occasionally spends his time helping to fix job scheduling problems that
the job schedulers cannot understand.

v Generates and uses reports.
v Occasionally documents major problems and work-arounds on the

community website.
v Interacts mainly with fellow team members, programmers, and job

schedulers.
v Sometimes makes suggestions to management about capacity planning

and IT software purchases.

The job scheduler
Is the primary actor in workload management and needs to easily create
and maintain a plan containing the company workload. He is responsible
for modeling the company workload, and for designing, fixing, and
maintaining schedules. His main responsibilities are to:
v Manage workload complexity and dependencies.
v Optimize schedule efficiency, flexibility, resiliency.
v Analyze and fix modeling issues.
v Look proactively for the schedule's integrity.

The scheduling operator
Is responsible for performing all operational processes and procedures,
ensuring the business continuity of the workflow. His main responsibilities
are to:
v Monitor critical events and perform first analysis of problems.

© Copyright IBM Corp. 1991, 2011 27



v Manage and coordinate the resolution of issues.
v Ensure that operations continue.

He is usually not dedicated to monitoring job scheduling alone.

The Scheduling and Operations manager
He:
v Does not use job scheduling tools himself; but is interested in the

operational data from the tools, such as reports on long and late running
jobs and service level agreement status.

v Makes sure his team has the knowledge and tools they need to schedule
and manage jobs efficiently.

v Is always looking for ways to reduce cost in his organization by making
his team more efficient.

v Believes that process is the key to IT management and also thinks that
his team’s job scheduling process can be improved. He is familiar with
ITUP of which his IT organization has implemented the basic aspects of
change management. Consequently, his team follows this process.

Who performs workload management

28 IBM Tivoli Workload Automation: Overview



Chapter 5. A business scenario

The purpose of the following scenario is to show how the choice of the correct
workload scheduling product, together with process improvement and integration,
and well-defined roles and responsibilities, can improve the business of a
manufacturing enterprise.

The company
Fine Cola is a medium-sized enterprise that produces and distributes soft drinks to
retailers across the country. It owns a production plant and several strategically
located distribution centers. The primary customers of Fine Cola are foodstore
chains and the quantity and size of their orders is usually regular and stable.
Order quantities, however, peek in the warmer season and during holidays.
Moreover, in the mid term, Fine Cola wants to increase its business by gaining
market in other countries. Fine Cola's sales people are always keen to place new
orders and increase the customer portfolio. These characteristics determine Fine
Cola's production and distribution processes. Production and distribution can be
broken down into ongoing subprocesses or phases which are constantly interlocked
with each other. They are:

Inventory
Underlays the entire production process. The raw materials database is
sized on the production levels supplemented by minimum safety levels.
The production levels are in turn based on the order quantity for the
specific period.

Ordering
Raw material quantity levels must be available to production according to
the preset production levels. Orders must be planned and issued in
advance to take into account delivery times by third-party suppliers.

Production
General production levels are planned for well in advance based on
customer orders. Production is regularly increased by an additional five
percent to provide the capability to honor unplanned-for orders.

Supply
From the production plant the soft drinks are transported to the
distribution centers according to the customer delivery schedules.

Delivery
The last phase of the process. Fine Cola sodas are delivered from the
distribution centers to the customer shelves.

Inventory, ordering, and production take place in the production plant. Supply
takes place from the production plant to the distribution centers. Delivery takes
place from the distribution centers to the end destinations.

These phases are tightly bound to each other. While each soda placed on the shelf
might be regarded as the outcome of a specific sequence that starts with inventory
and terminates with delivery, all phases are actually constantly interwoven. In fact,
the same data is shared in one way or another by all or most phases, and
applications are designed to carry on the daily operations and set up future ones.

© Copyright IBM Corp. 1991, 2011 29



Fine Cola uses the following databases for running the above-mentioned
subprocesses:

Customer Orders
Contains all orders for the upcoming period from Fine Cola's customer
base. Provides input to:
v Inventory

Raw Materials
Contains the quantities in stock of the raw materials required to produce
Fine Cola's sodas. From here, orders are dispatched to suppliers when
stock levels reach a pre-set minimum. Receives input from:
v Production Volumes

Production Volumes
Contains the quantities of sodas that are to be produced daily according to
order volumes. Provides input to:
v Inventory
v Raw Materials

Receives input from:
v Inventory

Inventory
Contains the quantities in stock of the finished product. Is monitored to
verify that the quantities in stock are sufficient to honor the orders of a
specific time interval. Provides input to and receives input from:
v Production Volumes
v To Supply

To Supply
Contains the quantities of sodas that must be sent periodically from the
manufacturing plant to the distribution centers to satisfy foodstore orders
for the upcoming period. Provides input to:
v Inventory
v To Deliver

To Deliver
Contains the quantities that are to be delivered from each distribution
center to the foodstores in its area. Provides input to:
v Customer Orders

Receives input from:
v To Supply

The company workload is both application oriented, such as accounting, payroll,
supplier and utility payments, purchasing, ordering, fulfillment, and
system-oriented, such as data backup, migration, export, transfer or load
operations. Typically, the workload processes multiple data items such as accounts,
orders, transactions, database records, at the same time.

These core applications are highly relevant for the profitability of the company and
also directly influence customer satisfaction.

To create added value and exceed customers expectations, the company must
strengthen integration with business applications and provide complete scheduling
capabilities and tighter integration with enterprise applications.

A business scenario

30 IBM Tivoli Workload Automation: Overview



The challenge
Currently the databases are not automatically integrated with each other and need
continual human intervention to be updated. This affects Fine Cola's operations
because:
v The process as a whole is onerous and prone to error.
v The interfaces between phases are slow and not very efficient.

The company realizes it needs to better integrate with the distribution centers
because processing is extremely low during the regular office hours in the warmer
seasons and during holidays. Users experience applications freezing, often taking
considerable time before being available for them to use again. This lack of
integration is causing problems for the organization in terms of lost productivity,
while applications come back online. This is a problem because the interruption of
important processing is not acceptable when the company wants to expand the
business. The response time for service level agreements (SLAs) must continue to
be met if a resource goes down, a workstation breaks, or there is urgency for
maintenance, and even more during peak periods even if the resources are
geographically distributed. On the other hand the company does not want to buy
new IT resources (hardware, software, applications) because this would not be
used during the other periods of the year.

Fine Cola realizes that their main weakness lies in their processing. They need to
implement a solution that:
v Integrates the data behind their processing workflow from inventory to

distribution. This makes it possible to automatically trigger the daily operations
without much need for human intervention. It also gives Fine Cola complete
control over the entire business process, reducing human intervention only to
exception handling.

v Integrates external data coming from third parties, such as selected customers
and raw material suppliers, into their process flow. Such data is provided to Fine
Cola in several formats and from different applications and should be integrated
into Fine Cola's databases in a seamless manner.

v Enables daily backups of their data as well as subsequent reorganization of the
DB2 database with as little impact as possible on their processes. Processing of
data collected online during the previous day is the next step.

v Optimizes capacity across the IT infrastructure and runs a high workload, much
more than before, using shared resources, even if the resources are
geographically distributed.

v Ensures 24x7x365 availability of critical business services. Disaster recovery
plans are no longer sufficient because the business requires recovery within a
couple of hours, not days. Recovering from last night tapes and recapturing lost
transactions after a system or application failure is no longer a viable option for
the company in a highly competitive market.

v Has very low probability of failure leading to maximum system reliability.

The main company goal at this time is to obtain an integrated workload solution
that can entirely choreograph its business application tasks. This means solutions
that optimize capacity across the IT infrastructure and run a tremendous workload,
much more than before, using less resources. For example, if the company has a
problem and a primary server does not process the workload, the company wants
to automate the quick redistribution of system resources to process workloads and
scale up or down for flawless execution. In this way the company reduces costs
because it speeds recovery time, no matter what the source. The goal is to have a

A business scenario

Chapter 5. A business scenario 31



view of the best available resources across this dynamically shifting
cross-enterprise pool.

The solution
Fine Cola decides that one important step toward improving their process
execution is to adopt a solution based on automatic and dynamic workload
scheduling. The solution is based on a choice that strengthens integration with
business applications to run the following tasks:
v Read data from one database to update other databases.
v Read data from external applications, process it, and add it to the appropriate

databases.
v Provide the information necessary for the operation of every phase.
v Trigger some of the phases when predetermined thresholds are reached.
v Back up their data without interrupting production.

12

2

3

4

5
6

7

8

9

10

11 1
12

2

3

4

5
6

7

8

9

10

11 1

12

2

3

4

5
6

7

8

9

10

11 1
12

2

3

4

5
6

7

8

9

10

11 1 12

2

3

4

5
6

7

8

9

10

11 1
12

2

3

4

5
6

7

8

9

10

11 1

12

2

3

4

5
6

7

8

9

10

11 1
12

2

3

4

5
6

7

8

9

10

11 1

Job1 Job 2

Company goal
Obtain an integrated workload
solution that can choreograph
business application tasks

Job 3 Job 4 Job 5 Job 6

Company goal
Obtain an integrated workload
solution that can choreograph
business application tasks

Customer Pains

The databases are not
integrated with each other.

The response time for service
level agreements (SLAs) is not
guaranteed if a resource is not
available, a computer breaks,
or during peak periods.

The capacity across the IT
infrastructure is not optimized
so they are suffering slow
processing during regular office
hours.

Inventorying Ordering Supply On the Shelf

Integrated Workload System

Figure 2. The Fine Cola company integrated workload solution

A business scenario

32 IBM Tivoli Workload Automation: Overview



v From a capacity management perspective, understands the size of an application
and what resources it requires, models that against the existing resources and is
able to predict and forecast the capacity that the new application needs as it is
defined in the enterprise.

v From an availability management perspective, use the resources available in the
environment to support the application and understand out how to work to
effectively schedule, monitor, and manage that application as it is submitted.
Then if the resources are not available, interact with the change management
and provisioning processes to dynamically allocate the necessary resources.

v Have a business management process monitoring all the various policies and
driving a consistent view of the policies for the application.

After analyzing the workload management products available on the market, Fine
Cola has chosen to use IBM Tivoli Workload Scheduler and specifically the
dynamic domain manager to:
v Optimize and automate the tasks to process their applications and dynamically

adapt their processing in response to changes in the environment.
v Plan, choreograph, and schedule required changes to applications to minimize

the impact of changes on critical production workloads, and ensure that
workload processes are updated to reflect changes throughout asset life cycles.

v Minimize the total amount of time that is required to deliver the output of the
task resolution processes.

v Handle dependencies between tasks, data, and external applications so that the
entire workload can be managed homogeneously in the same process flow.

v Create a policy-based view of workflow automation, not just workload
automation, but cross-enterprise workflow, and direct that workflow across the
enterprise while planning, scheduling, managing, and monitoring all these
things. Dynamically tuning the cross-enterprise capacity to support this dynamic
view of workloads.

v Automatically transfer entire workloads across multiple platforms, and update
policies across multiple platforms.

v Balance between the ability to provide sophisticated planning, testing,
choreographing, monitoring, and adaptation of workload processes with fault
tolerance and redundancy for high availability of the scheduling infrastructure,
while minimizing server and network resource requirements.

v Perfectly integrate with each other.

Tivoli Workload Scheduler operates at both a macro-level and micro-level to
prepare work schedules and to preprocess work items where necessary so that the
delivery resources can be matched to the demands of the flow of work in an
optimal fashion.

The dynamic domain manager dynamically routes workload to the best available
resources based on application requirements and business policies. Moreover it
optimizes the IT computing resource use according to SLAs.

Fine Cola's applications are mapped to what in Tivoli Workload Scheduler
terminology are units of work called jobs. Some of these jobs are statically
allocated to dedicated resources to run (static job definition), others are
dynamically allocated to physical or virtual resources according to the job
importance, requirements, scheduling policies, and based on the environment
resource characteristics, relationships, availability, load, and performance (dynamic
job definition). They drive the resource allocation to meet the job SLA and the
resource optimization.

A business scenario

Chapter 5. A business scenario 33



Jobs that run as a unit (such as a weekly backup application), along with times,
priorities, and other dependencies that determine the exact order of the jobs are
grouped into job streams.

Fine Cola's job streams are collections of jobs that are grouped for organizational
purposes. The jobs of any particular job stream are related because they:
v Operate toward the completion of related tasks. For example, the jobs of

Jobstream100 run tasks designed to convert incoming customer orders into
operational data.

v Might be dependent on each other. Some jobs might have to wait for the
completion of predecessor jobs before they can start running. The jobs are
usually laid out in a sequence where the outcome of a predecessor is fed to a
successor job.

v Share the same programs, applications, and databases.
v Share the same time-frames within the planning period.

Using Tivoli Workload Scheduler, Fine Cola's business process is structured in the
following way:
1. At the start of each day, Jobstream100:

a. Extracts the new incoming orders from the Customer Orders database.
b. Checks an external application where a number of selected customers can

place unforeseen orders. If there are orders, they are extracted and merged
with the other data.

c. Copies the consolidated orders into a separate database view.
d. Sorts them by due delivery date and by quantity and makes a report.

2. As soon as the report is available, Jobstream200 extracts the numbers from the
report and compares them with relevant data in the Inventory database. The
goal is to determine the production volume required in the next production
cycle to satisfy the orders.

3. Jobstream300 extracts the production volume data and updates the Production
Volumes database with the quantities of each type of soda that is to be
manufactured in the next cycle.

4. Jobstream400 reads the data in the Production Volumes database and:
a. Calculates the quantities of raw materials required to run the upcoming

production cycle.
b. Flags these quantities as allocated to next cycle in the Raw Materials

database.
c. Checks the quantities to see if they have reached the minimum stock levels

and triggers orders to Fine Cola's raw material suppliers if necessary.
5. Jobstream500 reads the report with upcoming due orders from the Customer

Orders database and:
a. Produces the transportation schedules and destinations.
b. Updates the To Supply database.
c. Sends the delivery schedules to the distribution centers.

6. Jobstream600 reads the distribution center databases and:
a. Extracts the orders that have been filled.
b. Updates the Customer Orders database so that invoices can be prepared

and sent.
7. Jobstream700 makes a backup of every database.

A business scenario

34 IBM Tivoli Workload Automation: Overview



Fine Cola sets up a long term plan that encompasses the entire workload, spanning
job streams that run on a daily basis and job streams that have other reoccurrences.
From the long term plan, a current plan is extracted at the beginning of every time
unit. The time period of the current plan can be chosen to vary from some hours to
several days. Fine Cola has chosen to set their current plan on a daily basis. At the
start of every day a new daily plan is built by their workload scheduling software:
data is taken from the long term plan and from the daily plan of the previous day
to include any jobs that might not have completed.

The company must also ensure that during peek periods the jobs in the critical
path are run in the required time frame. To ensure this they converted some jobs
from static definition to dynamic definition to manage the extra orders using the
dynamic domain manager. With the dynamic domain manager, the company can:
v Manage the automatic discovery of available resources in the scheduling

environment with their characteristics and relationships.
v Assign to the job the appropriate resources for running based on the job

requirements and on the administration polices.
v Optimize the use of the resources by assigning to the job the required resources

based on the SLA.
v Manage and control the resource consumption and load.
v Dispatch jobs to target resources that meet the requirements to run the job.

The Tivoli Workload Scheduler relational database contains the information related
to the jobs, the job streams, the workstations where they run, and the time
specifications that rule their operation. It also contains data used by the dynamic
domain manager, such as information about the current IT environment, the
resource real time performance, and load data. It also stores the job definitions and
keeps track of resources assigned to each job.

In this way, Fine Cola's scheduling analyst can create and change any of these
objects at any time and Fine Cola's IT administrator can dynamically assign the
best set of resources to match allocation requests based on the defined policies,
without any impact on the business.

The IT administrator can also ensure the correct concurrent or exclusive use of the
resources across the different jobs according to resource characteristics. If the
resource request cannot be immediately carried out, he can use dynamic
scheduling to automatically queue the resource until changes in the resource
utilization or in the environment lead to its fulfillment.

The workload scheduling plan can be changed as quickly and dynamically as the
business and operational needs require. The scheduling analyst makes full use of
the trial and forecast planning options available in the scheduler to adjust and
optimize workload scheduling and, as a consequence, Fine Cola's line of
operations.

To respond to any unexpected and unplanned-for demands, individual jobs can be
added ad hoc to the scheduling plan at any time.

Moreover, the company can use dynamic scheduling to rapidly adapt to the
increase of workload during peak periods driving the requirement for workload
virtualization, that is the ability to manage and control the workload so that it can
be slit, routed to appropriate resources and capacity, and dynamically moved
around in logical resource pools.

A business scenario

Chapter 5. A business scenario 35



If a resource is not available, the SLA defined continues to be met because the job
processing is restarted from the point where the failure happens.

Typical everyday scenarios
This section describes roles and responsibilities of Fine Cola's IT staff and everyday
scenarios they might face on any typical day. Fine Cola's IT staff, involved in
workload scheduling are:
v The scheduling analyst. He is in charge of modeling the company workload, and

for designing, fixing, and maintaining schedules. His main responsibilities are:
– Managing Fine Cola's workload complexity and dependencies.
– Optimizing the schedule's efficiency, flexibility, and resilience.
– Analyzing and fixing modeling issues; look pro-actively for the schedule's

integrity.
v The operations analyst. His main responsibilities are:

– Monitoring critical events and performing first analysis of problems.
– Managing and coordinating the resolution of issues.
– Ensuring that operations continue.

v The IT infrastructure administrator. His main responsibilities are:
– Fulfilling the need to assign physical or virtual resources to jobs according to

the job importance, requirements, scheduling policies, and based on the
environment resources characteristics, relationships, availability, load, and
performance.

– Managing the advanced reservation or provisioning of required resources.
– Drive the resource allocation to meet the job SLA and the resource

optimization data without service disruption, and possibly transparently for
the end users.

– Backing up the schedule daily with no impact on operations.
– Ensuring high availability of the infrastructure. If a resource goes down or a

workstation is not available, the SLA-defined availability must continue to be
met.

– Defining and maintaining the environment topology.

Managing the workload
Together with the IT infrastructure administrator and other staff, the scheduling
analyst agrees on a change in the application workflow that should go into
production in a month. The change impacts Jobstream100 and includes:
v Defining a new job and replacing some job dependencies in the job stream.
v Defining two Jobstream100 instances to run twice a day for a week and during

the summer season. He must therefore:
– Define a run cycle for each of the two instances. The first run cycle has the

expected start time of 9 a.m. The second is scheduled to start at 5 p.m.
– Agree with the IT infrastructure administrator the pool of resources that

satisfy the job SLA in terms of RAM and microprocessors.

He then proceeds in the following way:
1. He reviews the new stream logic and sets a plan. He wants to design the

changes, test them over three days, and have a first automatic test run within
a week.

2. He proceeds to apply the changes to Jobstream100. While he does this, he
realizes that the application specialist must modify the tasks (scripts)
contained in some of the jobs.

A business scenario

36 IBM Tivoli Workload Automation: Overview



3. For this reason he leaves the job stream in draft state while the work is still in
progress, so that it is not included in the plan generated every day.

4. To apply the changes he operates directly using the job stream editor available
with Fine Cola's scheduling product: defining a new job by renaming an
existing job definition and adding a new dependency.

5. After he has finished drafting the changes, he saves the job stream with a
validity date set to tomorrow and active status on the test system.

6. Before launching the plan containing the modified job stream, he generates a
trial plan to verify that the dependencies are correctly resolved.

7. When the trial plan ends, he analyzes job statistics and finds that a different
design of dependencies could improve total elapsed time.

8. He applies the changes, sets the new dependencies, and creates a plan
extension. The job stream is rescheduled and run in a test environment
correctly and timely.

9. He meets the IT infrastructure administrator to verify that all the resources
involved in the running of the new plan are available on the following days.

10. The IT infrastructure administrator, after analyzing the plan of availability of
the IT resources, warns him that one of the required resources will not be
available the next week.

11. The IT infrastructure administrator asks the scheduling analyst to run a
forecast plan.

12. He then runs a forecast plan, which contains the scheduled activities for next
week, to verify that the unavailability of the resources will not cause any
major problem.

13. He finds that the unavailability of the resources will cause a decrease in
performance because the other resources become overloaded.

14. He notifies the IT infrastructure administrator of the potential problem.
15. The IT infrastructure administrator analyzes the availability of resources

between departments and realizes that the resources belonging to another
department meet the requirements to run the job definition.

16. The scheduling analyst moves the workload from static to dynamic resource
allocation. He uses the dynamic domain manager to route workloads to the
best available systems by matching load requirements and business policies to
available resource capacities.

17. He identifies the jobs in the critical path and modifies their definitions so that
they can be run dynamically.

18. He finally sets a date to run the new plan in the production environment and
notifies the IT infrastructure administrator.

Figure 3 on page 38 shows how the Fine Cola company can dynamically manage
its workload using the added dynamic scheduling capability of Tivoli Workload
Scheduler and satisfying the SLA response time.

A business scenario

Chapter 5. A business scenario 37



Monitoring the workload
While the operations analyst monitors the automated workload on a typical work
day, he realizes that Job306, which is in the critical path of the schedule, is in the
abend status. Because of this, Jobstream300 does not complete in the necessary time
frame, causing a negative effect on the rest of the schedule. The consequent delay
in running the plan might cause problems to Fine Cola's daily operations. With the
help of the Dynamic Workload Console he then:
1. Analyzes the job and error logs in the current plan and finds that the error

occurred for an unmanaged exception. The error might occur again and he
cannot simply restart Job306.

2. Identifies the application specialist who is responsible for Job306 and opens a
problem ticket containing all the information concerning the job.

3. Queries the status of depending jobs, exports the list in Comma Separated
Variables (CSV) format, and attaches it to the ticket so that it can be viewed
with a spreadsheet. Requests that the ticket be answered with high priority.

12

2

3

4

5

6

7

8

9

10

11 1
12

2

3

4

5

6

7

8

9

10

11 1

12

2

3

4

5

6

7

8

9

10

11 1
12

2

3

4

5

6

7

8

9

10

11 1 12

2

3

4

5

6

7

8

9

10

11 1
12

2

3

4

5

6

7

8

9

10

11 1

12

2

3

4

5

6

7

8

9

10

11 1
12

2

3

4

5

6

7

8

9

10

11 1

Job1 Job 2

Company goal
Satisfy the SLA response time
during peak periods

SLA

Response time <10s

Availability 99.00%

All orders available
by 5 p.m.

Static way

If an unplanned order
arrives, the SLA for the
job cannot be met

During peak periods
some resources will
become overloaded

If new resources are
added the jobs must be
reconfigured

Dynamic way

Automatically discovers
the available resources

The SLAs for the jobs
continue to be met

The jobs are automatically
assigned to any available
resource that matches
the job requirements

Job 3 Job 4 Job 5

Tivoli Workload Scheduler
with dynamic scheduling capability

Policy
Maximize resource
utilization

Figure 3. How to satisfy SLA response time during peak periods using the dynamic
scheduling capability of Tivoli Workload Scheduler.

A business scenario

38 IBM Tivoli Workload Automation: Overview



After an internal analysis, the application specialist finds that there is a broken
execution path that must be fixed. The expected time for resolution is three hours,
including a hot fix and a regression test.

One hour later, however, the operations analyst realizes that even if the application
support team works overtime, the fix will not be completed before the end of the
day and it will be impossible to close the daily processing today. He checks the
status of the depending jobs and sets a target time to have the hot fix loaded into
production during the night.

Then, sometime during the night:
1. The application team releases the hot fix and notifies the scheduling analyst

who loads the new job into the production system, and notifies the operations
analyst.

2. The operations analyst connects to the scheduling system from home to restart
the job stream.

3. The operations analyst restarts Job306. The fix works and the job completes, as
expected, one hour too late to complete the depending jobs before the next
daily plan extension.

4. Early next morning the plan for the day is created. Because of the functionality
of the latest version of Tivoli Workload Scheduler, the jobs depending on
Job306, that could not complete in time, are now simply moved to run today,
keeping their name and all their active file dependencies.

5. The operations analyst monitors the process remotely. When he arrives at work
in the morning, he checks the actual completion of the daily workload.
Everything completed successfully and he closes the ticket.

Managing the organization of the IT infrastructure
Two weeks before Christmas, the IT infrastructure administrator receives a
notification from the scheduling analyst that an unplanned order adds so many
tasks to a job stream in the critical path that its completion is delayed by a day.
This causes a delay also in the completion of the plan scheduled to run the week
before Christmas. The scheduling analyst advises him that he has already run the
forecast plan and verified that with this addition the SLA for the job stream cannot
be met and also the resources will become overloaded. To avoid this, concurrent
jobs that need to use the same resource will need to wait until the requested
quantity is available causing delay in the delivery of the order.

To find a solution to the potential problem and achieve the goals set for workload
processing, without buying additional resources, using the dynamic domain
manager, he proceeds in the following way:
1. He performs an automatic discovery of the resources available in the

scheduling domain with their characteristics and relationships.
2. He finds a pool of resources in the Inventory department that meet the SLA to

run the jobs. These resources have the required RAM, microprocessor, operating
system, and application environments to run the new job stream and will be
used at half their capacity during Christmas.
Without the use of dynamic scheduling he could not adapt the new workload
processing to match load requirements with business policies and priorities,
and resource availability and capacity. The only way to solve the problem
would be to buy new hardware to run the added job streams increasing the
cost of IT management infrastructure without optimizing the use of the existing
resources.

A business scenario

Chapter 5. A business scenario 39



3. He determines, based on the policies and jobs dispatching, how many new
resources are required to run the new job stream.

4. He manages the definition of business-oriented performance goals for the entire
domain of servers, provides an end-to-end view of actual performance relative
to those goals, and manages the server resource allocation and load to meet the
performance goals.

5. He identifies the required resources and finds an agreement with the Inventory
department manager, to share the required resource between the two
departments.

6. He defines a new logical resource in which he outlines the machines that are
shared between the departments.

7. He communicates to the Ordering department the new agreement with the
resource optimization.

8. Now he can guarantee the running of jobs within the time frame according to
policies, rules, and resources planned availability. In this way he can also
satisfy the optimization policy to maximize resource utilization.

9. The scheduling analyst now builds a feasible production plan.
Using dynamic scheduling he met the constraints imposed by rules and policies
and achieved SLA goals, optimizing execution time, throughput, cost, and
reliability.

The benefits
By adopting a workload scheduling strategy, and in particular by using Tivoli
Workload Scheduler and its dynamic scheduling capabilities, Fine Cola is
experiencing significant and immediate benefits, such as:
v The successful integration of all its manufacturing and distribution processes.

Because of how Fine Cola implemented their new processing flow, every
customer order is active from the time a customer service representative receives
it until the loading dock ships the merchandise and finance sends an invoice.
Now orders can be tracked more easily, and manufacturing, inventory, and
shipping among many different locations can be coordinated simultaneously. If
an unplanned order arrives, it can be easily managed in the new dynamic IT
infrastructure.

v The standardization and speeding up of the manufacturing process.
Tivoli Workload Scheduler has helped to automate many of the steps of Fine
Cola's manufacturing process. This results in savings in time and increase in
productivity.

v Reduce inventory
The manufacturing process flows more smoothly, and this improves visibility of
the order fulfillment process inside the company. This can lead to reduced
inventory of the raw materials used, and can help better plan deliveries to
customers, reducing the finished goods inventory at the warehouses and
shipping docks.

v Optimize IT infrastructures
The dynamic allocation of the IT resources maximizes the workload throughput
across the enterprise reducing costs, improving performance, and aligning IT
with business needs and service demands.

v Guarantees Fault Tolerance and High Availability
Tivoli Workload Scheduler can recover from server, agent, and communication
failures and it can restart from the point where the failure happened. No status

A business scenario

40 IBM Tivoli Workload Automation: Overview



information will be lost due to failure events. Moreover if a computer breaks, its
workload is automatically routed to another computer that can guarantee the
SLAs.

In conclusion, this solution provides business value because it:
v Delivers service response times according to service level objectives.
v Understands dependencies on services for each line of business.
v Accommodates unpredictable use patterns with predictive logic.
v Understands service relationships to each other and to the IT infrastructure and

business process layers.
v Provides network fault tolerance and high availability of the scheduling

infrastructure.
v Reduces system and operational complexity and leverages IT staff skills and

knowledge.
v Integrates systems quickly and easily, with minimal disruption to existing

business processes.

A business scenario

Chapter 5. A business scenario 41



A business scenario

42 IBM Tivoli Workload Automation: Overview



Chapter 6. Tivoli Workload Scheduler

Tivoli Workload Scheduler’s scheduling features help you plan every phase of
production. During the plan processing period, the Tivoli Workload Scheduler
production control programs manage the production environment and automate
most operator activities. Tivoli Workload Scheduler prepares jobs for execution,
resolves interdependencies, and launches and tracks each job. Because jobs start
running as soon as their dependencies are satisfied, idle time is minimized, and
throughput improves significantly. Jobs never run out of sequence, and, if a job
fails, Tivoli Workload Scheduler handles the recovery process with little or no
operator intervention.

Overview
The next sections provide an outline of Tivoli Workload Scheduler.

What is Tivoli Workload Scheduler
Tivoli Workload Scheduler is composed of three parts:

Tivoli Workload Scheduler engine
The scheduling engine. It runs on every computer of a Tivoli Workload
Scheduler network. During installation, the engine is configured for the
role that the workstation will play within the scheduling network, such as
master domain manager, domain manager, or agent.

Tivoli Workload Scheduler Connector
It maps Dynamic Workload Consolecommands to the Tivoli Workload
Scheduler engine through the embedded version of WebSphere®

Application Server. The Tivoli Workload Scheduler connector usually runs
on the master and on any of the fault-tolerant agents (FTAs) that you plan
to use as backup machines for the master workstation.

The Dynamic Workload Console
Is Web-based, light, powerful, and user friendly. It can be used on any
computer that has a web browser and provides access to all the current
Tivoli Workload Scheduler functions. It is the strategic graphical user
interface for the entire Tivoli Workload Automation portfolio.

The Tivoli Workload Scheduler network
A Tivoli Workload Scheduler network is made up of the workstations, or CPUs, on
which jobs and job streams are run.

A Tivoli Workload Scheduler network contains at least one Tivoli Workload
Scheduler domain, the master domain, in which the master domain manager is the
management hub. Additional domains can be used to divide a widely distributed
network into smaller, locally managed groups.

© Copyright IBM Corp. 1991, 2011 43



Using multiple domains reduces the amount of network traffic by reducing the
amount of communication required between the master domain manager and other
computers.

In a single domain configuration, the master domain manager maintains
communication with all of the workstations in the scheduling network.

In a multi-domain configuration, the master domain manager communicates with
the workstations in its domain and with the subordinate domain managers. The
subordinate domain managers, in turn, communicate with the workstations in their
domains and with their subordinate domain managers. Multiple domains also
provide fault-tolerance by limiting the problems caused by losing a domain
manager to a single domain. To limit the effects further, you can designate backup
domain managers to take over if their domain managers fail.

Every time the production plan is created or extended the master domain manager
creates a production control file, named Symphony. Tivoli Workload Scheduler is
then restarted in the network, and the master domain manager sends a copy of the
new production control file to each of its automatically linked agents and
subordinate domain managers. The domain managers, in turn, send copies to their
automatically linked agents and subordinate domain managers.

Once the network is started, scheduling messages like job starts and completions
are passed from the agents to their domain managers, through the parent domain
managers to the master domain manager. The master domain manager then
broadcasts the messages throughout the hierarchical tree to update the production
control files of domain managers and fault tolerant agents running in Full Status
mode.

Manager and agent types
Primarily, workstation definitions refer to physical workstations. However, in the
case of extended and network agents, the workstations are logical definitions that
must be hosted by a physical Tivoli Workload Scheduler workstation.

Figure 4. This Tivoli Workload Scheduler network is made up by two domains

Tivoli Workload Scheduler

44 IBM Tivoli Workload Automation: Overview



Tivoli Workload Scheduler workstations can be of the following types:

Master domain manager (MDM)
The domain manager in the topmost domain of a Tivoli Workload
Scheduler network. It either contains or connects to the relational database
that stores the scheduling object definitions. It creates or updates the
production file when the plan is created or extended and distributes it in
the network. It performs all logging and reporting for the network.

Backup master
A fault-tolerant agent or domain manager capable of assuming the
responsibilities of the master domain manager for automatic workload
recovery.

Domain manager
The management hub in a domain. All communications to and from the
agents in a domain are routed through the domain manager.

Backup domain manager
A fault-tolerant agent capable of assuming the responsibilities of its
domain manager.

Dynamic domain manager
An installed component in a distributed Tivoli Workload Scheduler
network that is the management hub in a domain. All communication to
and from the dynamic agents in the domain is routed through the dynamic
domain manager.

Backup dynamic domain manager
A workstation which can act as a backup for the dynamic domain
manager, when problems occur. It is effectively a dynamic domain
manager, waiting to be activated. Its use is optional.

Fault-tolerant agent (FTA)
A workstation capable of resolving local dependencies and launching its
jobs in the absence of a domain manager.

Dynamic agent
An agent installed with dynamic scheduling capabilities. It is assigned the
execution of dynamic workload based on the state of its resources at the
time of execution.

Standard agent
A workstation that launches jobs only under the direction of its domain
manager. It is not fault-tolerant.

Extended agent
A logical workstation definition that helps you launch and control jobs on
other systems and applications, such as PeopleSoft, Oracle Applications,
SAP, and z/OS.

z-centric agent
Runs jobs scheduled from Tivoli Workload Scheduler for z/OS but is
installed in the Tivoli Workload Scheduler environment. It has no
fault-tolerance and communicates directly with the Tivoli Workload
Scheduler for z/OS controller through the RESTful HTTP interface. In
Tivoli Workload Scheduler for z/OS it has the same functionality as a
computer automatic workstation even though it runs in the distributed
environment.

Tivoli Workload Scheduler

Chapter 6. Tivoli Workload Scheduler 45



Network Agent
A logical workstation definition for creating dependencies between jobs
and job streams in separate Tivoli Workload Scheduler networks.

Topology
A key to choosing how to set up Tivoli Workload Scheduler domains for an
enterprise is the concept of localized processing. The idea is to separate or localize
the enterprises’s scheduling needs based on a common set of characteristics.

Common characteristics are things such as geographical locations, business
functions, and application groupings. Grouping related processing can limit the
amount of interdependency information that needs to be communicated between
domains. The benefits of localizing processing in domains are:
v Decreased network traffic. Keeping processing localized to domains eliminates

the need for frequent interdomain communications.
v Provides a convenient way to tighten security and simplify administration.

Security and administration can be defined at, and limited to, the domain level.
Instead of network-wide or workstation-specific administration, you can have
domain administration.

v Network and workstation fault tolerance can be optimized. In a multiple domain
Tivoli Workload Scheduler network, you can define backups for each domain
manager, so that problems in one domain do not disrupt operations in other
domains.

Networking
The following questions will help in making decisions about how to set up your
enterprise’s Tivoli Workload Scheduler network. Some questions involve aspects of
your network, and others involve the applications controlled by Tivoli Workload
Scheduler. You may need to consult with other people in your organization to
resolve some issues.
v How large is your Tivoli Workload Scheduler network? How many computers

does it hold? How many applications and jobs does it run?
The size of your network will help you decide whether to use a single domain
or the multiple domain architecture. If you have a small number of computers,
or a small number of applications to control with Tivoli Workload Scheduler,
there may not be a need for multiple domains.

v How many geographic locations will be covered in your Tivoli Workload
Scheduler network? How reliable and efficient is the communication between
locations?
This is one of the primary reasons for choosing a multiple domain architecture.
One domain for each geographical location is a common configuration. If you
choose single domain architecture, you will be more reliant on the network to
maintain continuous processing.

v Do you need centralized or decentralized management of Tivoli Workload
Scheduler?
A Tivoli Workload Scheduler network, with either a single domain or multiple
domains, gives you the ability to manage Tivoli Workload Scheduler from a
single node, the master domain manager. If you want to manage multiple
locations separately, you can consider the installation of a separate Tivoli
Workload Scheduler network at each location. Note that some degree of
decentralized management is possible in a stand-alone Tivoli Workload
Scheduler network by mounting or sharing file systems.

Tivoli Workload Scheduler

46 IBM Tivoli Workload Automation: Overview



v Do you have multiple physical or logical entities at a single site? Are there
different buildings, and several floors in each building? Are there different
departments or business functions? Are there different applications?
These may be reasons for choosing a multi-domain configuration. For example, a
domain for each building, department, business function, or each application
(manufacturing, financial, engineering, etc.).

v Do you run applications, like SAP R/3, that will operate with Tivoli Workload
Scheduler?
If they are discrete and separate from other applications, you may choose to put
them in a separate Tivoli Workload Scheduler domain.

v Would you like your Tivoli Workload Scheduler domains to mirror your
Windows domains?
This is not required, but may be useful.

v Do you want to isolate or differentiate a set of systems based on performance or
other criteria?
This may provide another reason to define multiple Tivoli Workload Scheduler
domains to localize systems based on performance or platform type.

v How much network traffic do you have now?
If your network traffic is manageable, the need for multiple domains is less
important.

v Do your job dependencies cross system boundaries, geographical boundaries, or
application boundaries? For example, does the start of Job1 on CPU3 depend on
the completion of Job2 running on CPU4?
The degree of interdependence between jobs is an important consideration when
laying out your Tivoli Workload Scheduler network. If you use multiple
domains, you should try to keep interdependent objects in the same domain.
This will decrease network traffic and take better advantage of the domain
architecture.

v What level of fault-tolerance do you require?
An obvious disadvantage of the single domain configuration is the reliance on a
single domain manager. In a multi-domain network, the loss of a single domain
manager affects only the agents in its domain.

Tivoli Workload Scheduler components
Tivoli Workload Scheduler uses several manager processes to efficiently segregate
and manage networking, dependency resolution, and job launching. These
processes communicate among themselves through the use of message queues.
Message queues are also used by the Console Manager (conman) to integrate
operator commands into the batch process.

On any computer running Tivoli Workload Scheduler there are a series of active
management processes. They are started as a system service, or by the StartUp
command. The following are the main processes:

Netman
The network management process that establishes network connections
between remote mailman processes and local Writer processes.

Mailman
The mail management process that sends and receives inter-CPU messages.

Tivoli Workload Scheduler

Chapter 6. Tivoli Workload Scheduler 47



Batchman
The production control process. Working from Symphony™, the production
control file, it runs jobs streams, resolves dependencies, and directs jobman
to launch jobs.

Writer The network writer process that passes incoming messages to the local
mailman process.

Jobman
The job management process that launches and tracks jobs under the
direction of batchman.

In addition, Tivoli Workload Scheduler uses two command line interfaces:

Composer
The command-line program used to define, manage, and store scheduling
objects in the Tivoli Workload Scheduler database. The composer
command-line program can be installed and used on any computer
connected through TCP/IP to the system where the master domain
manager is installed. It does not require the installation of a Tivoli
Workload Scheduler workstation as a prerequisite. It communicates
through HTTP/HTTPS with the master domain manager where the
relational database management system (RDBMS) is installed. The
HTTP/HTTPS communication setup and the authentication check are
managed by the WebSphere Application Server - Express® infrastructure.
The composer uses edit files to update the scheduling database.

Conman
The console manager. It is the user interface for plan running activities by
means of the command line interface. Conman writes information that is
received by either the local netman or mailman processes.

Tivoli Workload Scheduler scheduling objects
Scheduling with Tivoli Workload Scheduler includes the capability to do the
following:
v Schedule jobs across a network.
v Group jobs into job streams according, for example, to function or application.
v Set limits on the number of jobs that can run concurrently.
v Create job streams based on day of the week, on specified dates and times, or by

customized calendars.
v Ensure correct processing order by identifying dependencies such as successful

completion of previous jobs, availability of resources, or existence of required
files.

v Set automatic recovery procedures for unsuccessful jobs.
v Forward incomplete jobs to the next production day.

Starting from version 8.3, the Tivoli Workload Scheduler scheduling objects are
stored in a relational database. This results in a significant improvement, in
comparison with previous versions, of how objects are defined and managed in the
database. Each object can now be managed independently without having to use
lists of scheduling objects like calendars, parameters, prompts and resources. The
command syntax used to define and manage these objects has also become direct
and powerful.

Tivoli Workload Scheduler administrators and operators work with these objects
for their scheduling activity:

Tivoli Workload Scheduler

48 IBM Tivoli Workload Automation: Overview



Workstation
Also referred to as CPU. Usually an individual computer on which jobs
and job streams are run. Workstations are defined in the Tivoli Workload
Scheduler database as a unique object. A workstation definition is required
for every computer that executes jobs or job streams in the Tivoli Workload
Scheduler network.

Workstation class
A group of workstations. Any number of workstations can be placed in a
class. Job streams and jobs can be assigned to execute on a workstation
class. This makes replication of a job or job stream across many
workstations easy.

Job A script or command, run on the user’s behalf, run and controlled by
Tivoli Workload Scheduler.

Job stream
A list of jobs that run as a unit (such as a weekly backup application),
along with run cycles, times, priorities, and other dependencies that
determine the exact order in which the jobs run.

Calendar
A list of scheduling dates. Each calendar can be assigned to multiple job
streams. Assigning a calendar to a job stream causes that job stream to run
on the dates specified in the calendar. A calendar can be used as an
inclusive or as an exclusive run cycle.

Run cycle
A cycle that specifies the days that a job stream is scheduled to run. Run
cycles are defined as part of job streams and may include calendars that
were previously defined. There are three types of run cycles: a Simple run
cycle, a Weekly run cycle, or a Calendar run cycle (commonly called a
calendar). Each type of run cycle can be inclusive or exclusive. That is,
each run cycle can define the days when a job stream is included in the
production cycle, or when the job stream is excluded from the production
cycle.

Prompt
An object that can be used as a dependency for jobs and job streams. A
prompt must be answered affirmatively for the dependent job or job
stream to launch. There are two types of prompts: predefined and ad hoc.
An ad hoc prompt is defined within the properties of a job or job stream
and is unique to that job or job stream. A predefined prompt is defined in
the Tivoli Workload Scheduler database and can be used by any job or job
stream.

Resource
An object representing either physical or logical resources on your system.
Once defined in the Tivoli Workload Scheduler database, resources can be
used as dependencies for jobs and job streams. For example, you can
define a resource named tapes with a unit value of two. Then, define jobs
that require two available tape drives as a dependency. Jobs with this
dependency cannot run concurrently because each time a job is run the
tapes resource is in use.

Variable and variable table
A variable can be used to substitute values in scheduling objects contained
in jobs and job streams; that is, in JCL, log on, prompts dependencies, file
dependencies, and recovery prompts. The values are replaced in the job
scripts at run time. Variables are global (that is, they can be used on any
agent of the domain) and are defined in the database in groups called
variable tables.

Parameter
A parameter can be used to substitute values in jobs and job streams just

Tivoli Workload Scheduler

Chapter 6. Tivoli Workload Scheduler 49



like global variables. The difference is that a parameter is defined on the
specific workstation where the related job is to run and has no global
effect, but only on that specific workstation. Parameters cannot be used
when scripting extended agent jobs.

User On Windows workstations, the user name specified in the Logon field of a
job definition must have a matching user definition. The definitions
provide the user passwords required by Tivoli Workload Scheduler to
launch jobs.

Event rule
A scheduling event rule defines a set of actions that are to run upon the
occurrence of specific event conditions. The definition of an event rule
correlates events and triggers actions. When you define an event rule, you
specify one or more events, a correlation rule, and the one or more actions
that are triggered by those events. Moreover, you can specify validity
dates, a daily time interval of activity, and a common time zone for all the
time restrictions that are set.

You can control how jobs and job streams are processed with the following
attributes:

Dependencies
Conditions that must be satisfied before a job or job stream can run. You
can set the following types of dependencies:
v A predecessor job or job stream must have completed successfully.
v One or more specific resources must be available.
v Access to specific files must be granted.
v An affirmative response to a prompt.

Time constraints
Conditions based on time, such as:
v The time at which a job or job stream should start.
v The time after which a job or job stream cannot start.
v The repetition rate at which a job or job stream is to be run within a

specified time slot.

Job priority
A priority system according to which jobs and job streams are queued for
execution.

Job fence
A filter defined for workstations. Only jobs and job streams whose priority
exceeds the job fence value can run on a workstation.

Limit Sets a limit to the number of jobs that can be launched concurrently on a
workstation.

The production process
Tivoli Workload Scheduler production is based on a plan that runs in a production
period. The production period is defined by the user when creating or extending
the production plan. It can span from a few hours to some days (by default it is a
24 hours period). Before the start of each production period, Tivoli Workload
Scheduler executes a program that creates the production plan starting from the
modeling data stored in the database and from an intermediate plan called
preproduction plan. Then another program includes the uncompleted schedules from
the previous production period into the current plan and logs all the statistics of
the previous production into an archive.

Tivoli Workload Scheduler

50 IBM Tivoli Workload Automation: Overview



All of the required information for that production period is placed into a
production control file named Symphony. During the production period, the
production control database is continually being updated to reflect the work that
needs to be done, the work in progress, and the work that has been completed. A
copy of the Symphony file is sent to all subordinate domain managers and to all
the fault-tolerant agents in the same domain. The subordinate domain managers
distribute their copy to all the fault-tolerant agents in their domain and to all the
domain managers that are subordinate to them, and so on down the line. This
causes fault-tolerant agents throughout the network to continue processing even if
the network connection to their domain manager is down. From the graphical
interfaces or the command line interface, the operator can view and make changes
in the current production by making changes in the Symphony file.

Tivoli Workload Scheduler processes monitor the production control database and
make calls to the operating system to launch jobs as required. The operating
system runs the job, and in return informs Tivoli Workload Scheduler if the job
completed successfully or not. This information is entered into the production
control database to indicate the status of the job.

Scheduling
Scheduling can be accomplished either through the Tivoli Workload Scheduler
command line interface or one of the two graphical interfaces.

Scheduling includes the following tasks:
v Defining and maintaining workstations
v Defining scheduling objects
v Defining job streams
v Starting and stopping production processing
v Viewing and modifying jobs and job streams.

Defining scheduling objects
Scheduling objects are workstations, workstation classes, domains, jobs, job
streams, resources, prompts, calendars, variables and variable tables, parameters,
and event rules. Scheduling objects are managed with the Composer program and
are stored in the Tivoli Workload Scheduler database. To create or modify an
object, you can use either the Tivoli Workload Scheduler command line interface or
one of the graphical interfaces.

Creating job streams
The primary processing task of Tivoli Workload Scheduler is to run job streams. A
job stream is an outline of batch processing consisting of a list of jobs. Job streams
can be defined using either the command line interface or one of the graphical
interfaces. Using either graphical interface you can easily create and modify job
streams. You can use their job stream editors to work with the jobs and the
follows dependencies between the jobs, as well as the job stream run cycles. You
can also easily specify time restrictions, resource dependencies, file dependencies,
and prompt dependencies at the job stream level.

Job streams can be defined as draft. A draft job stream is not considered when
resolving dependencies and is not added to the production plan. It becomes actual
only after the draft keyword is removed from its definition, and the JnextPlan
command is run to add it to the preproduction plan and so to the production plan.

Tivoli Workload Scheduler

Chapter 6. Tivoli Workload Scheduler 51



Setting job recovery
When defining a job, consider that in some instances it might not complete
successfully. The administrator can define a recovery option and recovery actions
when defining the job. The following recovery options are available:
v Do not continue with the next job. This stops the execution of the job stream and

puts it in the stuck state. This is the default action.
v Continue with the next job.
v Run the job again.

Optionally, a recovery prompt can be associated to the job. A recovery prompt is a
local prompt to display when the job completes unsuccessfully. Processing does not
continue until the prompt is answered affirmatively.

Another option is to define a recovery job that can be run in the place of the
original job if it completes unsuccessfully. The recovery job must have been
defined previously. Processing stops if the recovery job does not complete
successfully.

Defining and managing mission-critical jobs
Job schedulers can use the Tivoli Workload Scheduler command line or the
Dynamic Workload Console to flag jobs as mission-critical and specify their
deadlines. A critical job and all its predecessors make up what is called a critical
network. At planning time, Tivoli Workload Scheduler calculates the start time of
the critical job and of each of its predecessors starting from the critical job deadline
and estimated duration. While the plan runs, this information is dynamically kept
up-to-date based on how the plan is progressing. If a predecessor, or the critical job
itself, is becoming late, Tivoli Workload Scheduler automatically prioritizes its
submission and promotes it to get more system resources and thus meet its
deadline.

Within a critical network, Tivoli Workload Scheduler dynamically identifies the
path of predecessors that is potentially most at risk; this is called the critical path.
Tivoli Workload Scheduler calculates the level of risk that each critical job has of
missing its deadline; a high risk indicates that the estimated end of the critical job
is after its deadline while a potential risk indicates that some predecessors of the
critical job have a warning condition, for example are late or in error.

The Dynamic Workload Console provides specialized views for tracking the
progress of critical jobs and their predecessors. Job schedulers and operators can
access the views from the Dashboard or by creating Monitor Critical Jobs tasks.

The initial view lists all critical jobs for the engine, showing the status: normal,
potential risk, or high risk. From this view, an operator can navigate to see:
v The hot list of jobs that put the critical deadline at risk.
v The critical path.
v Details of all critical predecessors.
v Details of completed critical predecessors.
v Job logs of jobs that have already run.

Using the views, operators can monitor the progress of the critical network , find
out about current and potential problems, release dependencies, and rerun jobs.

For example:

Tivoli Workload Scheduler

52 IBM Tivoli Workload Automation: Overview



1. To flag a critical job and follow it up, the Job scheduler opens the Workload
Designer on the Dynamic Workload Console, marks the specific job as critical,
and sets the deadline for 5 a.m.
When JnextPlan is run, the critical start dates for this job, and all the jobs that
are identified as its predecessors, are calculated.

2. To track a specific critical job, the operator proceeds as follows:
a. The operator checks the dashboards and sees that there are critical jobs

scheduled on one of the engines.
b. He clicks the link to get a list of the critical jobs.

The specific job shows a Potential Risk status.
c. He selects the job and clicks Hot List to see the predecessor job or jobs that

are putting the critical job at risk.
One of the predecessor jobs is listed as being in error.

d. He selects the job and clicks Job log.
The log shows that the job failed because of incorrect credentials for a
related database.

e. After discovering that the database password was changed that day, he
changes the job definition in the symphony file and reruns the job.

f. When he comes back to the dashboard, he notices that there are no longer
any jobs in potential risk. Also, the critical jobs list that was opened when
clicking on the potential risk link no longer shows the critical job after the
job is rerun.

g. The job is now running after being automatically promoted, getting higher
priority for submission and system resources.

h. No further problems need fixing and the critical job finally completes at
4.45 a.m.

Scheduling workload dynamically
You can choose to set Tivoli Workload Scheduler to dynamically associate your
submitted workload (or part of it) to the best available resources at run time.

The Tivoli Workload Scheduler installation process includes the option to install
the dynamic scheduling capability. If you select this option, you get the following
functionality:
v Automatically discover scheduling environment resources
v Match job requirements to available resources
v Control and optimize use of resources
v Automatically follow resource changes
v Request additional resources when needed

You can submit Tivoli Workload Scheduler jobs, including jobs defined to run on
extended agents, as well as J2EE applications (if you selected the option to
schedule J2EE at installation time). To schedule workload dynamically, you:
1. Use the Dynamic Workload Console to define the agents you want to use for

running workload as logical resources or groups of resources.
2. Update your Tivoli Workload Scheduler job definitions to make as destination

CPU the dynamic workload broker workstation (this workstation works as a
bridge between the scheduler engine and the pool of resources)

3. For every Tivoli Workload Scheduler job, add a JSDL (Job Submission
Description Language) job definition where you match the job with required

Tivoli Workload Scheduler

Chapter 6. Tivoli Workload Scheduler 53



resources, candidate hosts, and scheduling and optimization preferences. Use
the Dynamic Workload Console to do this easily.

When a job is thus submitted, either as part of a job stream in the plan or through
ad hoc submission, Tivoli Workload Scheduler checks the job requirements, the
available resources and the related characteristics and submits the job to the
resource that best meets the requirements.

Running production
Production consists of taking the definitions of the scheduling objects from the
database, together with their time constraints and their dependencies, and building
and running the production control file.

Running the plan
The production plan contains information about which jobs to run, on which
fault-tolerant agent, and what dependencies must be satisfied before each job is
launched. Tivoli Workload Scheduler creates the production plan starting from the
modeling data stored in the database and from an intermediate plan called the
preproduction plan. The preproduction plan is automatically created and managed
by the product. To avoid problems, the database is locked during the generation of
the plan and is unlocked when the generation completes or if an error condition
occurs. The preproduction plan is used to identify in advance the job stream
instances and the external follows job stream dependencies involved in a specified
time period.

You use the JnextPlan command on the master domain manager to generate the
production plan and distribute it across the Tivoli Workload Scheduler network.

To generate and start a new production plan, Tivoli Workload Scheduler performs
the following steps:
1. Updates the preproduction plan with the objects defined in the database that

were added or updated since the last time the plan was created or extended.
2. Retrieves from the preproduction plan the information about the job streams to

run in the specified time period and saves it in an intermediate production
plan.

3. Includes in the new production plan the uncompleted job streams from the
previous production plan.

4. Creates the new production plan and stores it in a file named Symphony.
5. Distributes a copy of the Symphony file to the workstations involved in the

new product plan processing.
6. Logs all the statistics of the previous production plan into an archive.
7. Updates the job stream state in the preproduction plan.

The copy of the newly-generated Symphony file is used starting from the top
domain's fault-tolerant agents and domain managers of the child domains and
down the tree to all subordinate domains.

Each fault-tolerant agent that receives the production plan can continue processing
even if the network connection to its domain manager goes down.

At each destination fault-tolerant agent, Tivoli Workload Scheduler performs the
following actions to manage job processing:

Tivoli Workload Scheduler

54 IBM Tivoli Workload Automation: Overview



1. Accesses the copy of the Symphony file and reads the instructions about which
job to run.

2. Makes calls to the operating system to launch jobs as required.
3. Updates its copy of the Symphony file with the job processing results and

sends notification back up the tree to the master domain manager and to all
full status fault-tolerant agents. The original copy of the Symphony file stored
on the master domain manager and the copies stored on the backup master
domain managers, if defined, are updated accordingly.

This means that during job processing, each fault-tolerant agent has its own copy
of the Symphony file updated with the information about the jobs it is running (or
that are running in its domain and child domains if the fault-tolerant agent is
full-status or a domain manager), and the master domain manager (and backup
master domain manager if defined) has the copy of the Symphony file that
contains all updates coming from all fault-tolerant agents. In this way the
Symphony file on the master domain manager is kept up-to-date with the jobs still
to run, the jobs running, and the jobs already completed.

After the production plan is generated for the first time, it can be extended to the
next production period with the JnextPlan command. The Symphony file is
refreshed with the latest changes and redistributed throughout the network.

Running job streams
Depending on their run cycle definition, job streams are taken from the Tivoli
Workload Scheduler database and automatically inserted into the current
production plan.

While the job stream is in the plan, and has not completed, you can still modify
any of its components. That is, you can modify the job stream properties, the
properties of its jobs, their sequence, the workstation or resources they use, and so
on, to satisfy last-minute requirements.

You can also hold, release, or cancel a job stream, as well as change the maximum
number of jobs within the job stream that can run concurrently. You can change the
priority previously assigned to the job stream and release the job stream from all
its dependencies.

Last minute changes to the current production plan include the possibility to
submit jobs and job streams that are already defined in the Tivoli Workload
Scheduler database but were not included in the plan. You can also submit jobs
that are being defined ad hoc. These jobs are submitted to the current plan but are
not stored in the database.

Starting from version 8.3, you can create and manage multiple instances of the
same job stream over a number of days or at different times within the same day.
This new feature introduced the possibility to have in the same plan more than
one instance of the same job stream with the same name. Each job stream instance
is identified by the job stream name, the name of the workstation where it is
scheduled to run, and by the start time defined in the preproduction plan.

Monitoring
Monitoring is done by listing plan objects in either graphical user interface. Using
lists, you can see the status of all or of subsets of the following objects in the
current plan:

Tivoli Workload Scheduler

Chapter 6. Tivoli Workload Scheduler 55



v Job stream instances
v Job instances
v Domains
v Workstations
v Resources.
v File dependencies
v Prompt dependencies.

You can use these lists also to manage some of these objects. For example, you can
reallocate resources, link or unlink workstations, kill jobs, or switch domain
manager.

Additionally, you can monitor the daily plan with Tivoli Business Systems
Manager, an object-oriented systems management application that provides
monitoring and event management of resources, applications, and subsystems, that
is integrated with Tivoli Workload Scheduler.

Network managers can use Tivoli Workload Scheduler/NetView, a NetView
application, to monitor and diagnose Tivoli Workload Scheduler networks from a
NetView management node. It includes a set of submaps and symbols to view
Tivoli Workload Scheduler networks topographically, and determine the status of
job scheduling activity and critical Tivoli Workload Scheduler processes on each
workstation. Menu actions are provided to start and stop Tivoli Workload
Scheduler processing and to run conman on any workstation in the network.

Controlling with IBM Tivoli Monitoring
IBM Tivoli Monitoring is a product that applies pre-configured best practices to the
automated monitoring of essential system resources. It helps you to detect
bottlenecks and other potential problems and provides you with the means for
automatic recovery from critical situations. In this way it eliminates the need for
system administrators to manually scan through extensive performance data.

Tivoli Workload Scheduler integrates with IBM Tivoli Monitoring. A set of IBM
Tivoli Monitoring resource models, tailored to check the status of scheduling
resources, is included with Tivoli Workload Scheduler.

By adding this set of resource models to the IBM Tivoli Monitoring default
resource models set, you can add these resource models to monitoring profiles and
distribute them to the profile subscribers where the scheduling resources are.

Within the monitoring profile you can define the following items:
v Which resource models you want to distribute, and, for each resource model:

– When an alarm is triggered
– Which response severity is assigned to the triggered alarm
– Who is notified about the alarm and how
– If a program is run in response to a triggered alarm
– If events are to be sent to Tivoli Enterprise Console in response to triggered

alarms
v Who are the subscribers of the monitoring profile distribution
v When the monitoring profile containing the resource model is active

Tivoli Workload Scheduler

56 IBM Tivoli Workload Automation: Overview



In addition to these resource models a set of additional BAROC files is provided.
These BAROC profiles are used to customize the TEC Event Server to manage the
events triggered by the new set of resource models.

Reporting
As part of the pre-production and post-production processes, reports are generated
which show summary or detail information about the previous or next production
day. These reports can also be generated ad-hoc. The following reports are
available:
v Job details listing
v Prompt listing
v Calendar listing
v Parameter listing
v Resource listing
v Job History listing
v Job histogram
v Planned production schedule
v Planned production summary
v Planned production detail
v Actual production summary
v Actual production detail
v Cross reference report

In addition, during production, a standard list file (STDLIST) is created for each
job instance launched by Tivoli Workload Scheduler. Standard list files contain
header and trailer banners, echoed commands, and errors and warnings. These
files can be used to troubleshoot problems in job execution.

Auditing
An auditing option helps track changes to the database and the plan.

For the database, all user modifications, except for the delta of the modifications,
are logged. If an object is opened and saved, the action is logged even if no
modification is made.

For the plan, all user modifications to the plan are logged. Actions are logged
whether or not they are successful.

Audit files are logged to a flat text file on individual machines in the Tivoli
Workload Scheduler network. This minimizes the risk of audit failure due to
network issues and allows a straightforward approach to writing the log. The log
formats are basically the same for both the plan and the database. The logs consist
of a header portion which is the same for all records, an “action ID”, and a section
of data which varies according to the action type. All data is stored in clear text
and formatted to be readable and editable from a text editor such as vi or notepad.

Using event-driven workload automation
Use this optional feature to set up and run rules that perform predefined actions in
response to particular events occurring on your agents. Your organization can
benefit from using this feature by adding on-demand workload automation to
plan-based job scheduling, gaining savings in time and resources.

Tivoli Workload Scheduler

Chapter 6. Tivoli Workload Scheduler 57



Event-driven workload automation is based on the concept of event rule. In Tivoli
Workload Scheduler an event rule is a scheduling object and is made up of events,
event-correlating conditions, and actions. When you define an event rule, you
specify one or more events, a correlation rule, and one or more actions that are
triggered by those events. Moreover, you can specify validity dates, a daily time
interval of activity, and a common time zone for all the time restrictions that are
set.

You can set up event rules to:
v Trigger the execution of batch jobs and job streams based on the occurrence or

combination of real time events
v Reply to prompts
v Notify users when anomalous conditions occur in the Tivoli Workload Scheduler

scheduling environment or batch scheduling activity
v Invoke an external product when a particular event condition occurs

Tivoli Workload Scheduler includes a set of predefined event and action plug-ins,
but also provides a software development kit with samples and templates for your
application programmers to develop their own plug-ins.

Options and security
The Tivoli Workload Scheduler options files determine how Tivoli Workload
Scheduler runs on your system. Several performance, tuning, security, logging, and
other configuration options are available.

Setting the Tivoli Workload Scheduler options
You can set two types of properties to configure your Tivoli Workload Scheduler
runtime environment, properties that are set on the master domain manager and
affect processing on all workstations in the Tivoli Workload Scheduler network,
and properties that are set locally on a workstation and affect processing on that
workstation only. The former are managed using the Tivoli Workload Scheduler
command line program named optman, and the latter you define locally on the
workstation by customizing the configuration files useropts, localopts, and
jobmanrc.

Global options are used to:
v Define if the security files of all the workstations of the network can be created

and managed only from the master domain manager or if the root user or
administrator of each workstation can create and manage their own.

v Select whether to enable or disable database auditing.
v Control which objects in the plan the user is permitted to list when running a

query.
v Select whether to enable plan auditing.
v Select whether to enable strong encryption.
v Select whether to enable or disable the fault tolerant switch manager.
v Select whether to enable or disable the time zone option.
v Enter the number of days for which you want to save job statistics.
v Set the minimum and maximum lengths of the preproduction plan in days.
v Determine if uncompleted job streams are carried forward from the old to the

new production control file.
v Define the start time of the Tivoli Workload Scheduler processing day.

Tivoli Workload Scheduler

58 IBM Tivoli Workload Automation: Overview



Local options are used to:
v Specify the name of the local workstation
v Prevent the launching of jobs run by root in UNIX
v Prevent unknown clients from connecting to the system
v Specify a number of performance options
v Specify a number of logging preferences
v Set SSL security options.

Setting security
Security is accomplished with the use of a security file that contains one or more
user definitions. Each user definition identifies a set of users, the objects they are
permitted to access, and the types of actions they can perform.

A template file is installed with the product. Edit the template to create the user
definitions and compile and install it with a utility program to create a new
operational security file. After it is installed, you make further modifications by
creating an editable copy with another utility.

Each workstation in a Tivoli Workload Scheduler network has its own security file.
An individual file can be maintained on each workstation, or a single security file
can be created on the master domain manager and copied to each domain
manager, fault-tolerant agent, and standard agent.

Secure authentication and encryption
Security is enhanced for connections between protected and non-protected domains
by applying the authentication and encryption mechanism based on the Secure
Sockets Layer (SSL) protocol. SSL uses digital certificates to authenticate the
identity of a workstation.

The Tivoli Workload Scheduler administrator must plan how authentication will be
used within the network:
v Use one certificate for the entire Tivoli Workload Scheduler network.
v Use a separate certificate for each domain.
v Use a separate certificate for each workstation.

SSL support is automatically installed with Tivoli Workload Scheduler.

Work across firewalls
For previous versions of Tivoli Workload Scheduler, running the commands to start
or stop a workstation or to get the standard list required opening a direct TCP/IP
connection between the originator and the destination nodes. In a firewall
environment, this forces users to break the firewall to open a direct communication
path between the master and each fault-tolerant agent in the network.

Tivoli Workload Scheduler provides a configurable attribute, named behindfirewall,
in the workstation's definition in the database. You can set this attribute to ON to
indicate that a firewall exists between that particular workstation and its domain
manager, and that the link between the domain manager and the workstation
(which can be another domain manager) is the only allowed link between the
domains.

Also, for all the workstations having this attribute set to ON, the commands to
start or stop the workstation or to get the standard list will be transmitted through

Tivoli Workload Scheduler

Chapter 6. Tivoli Workload Scheduler 59



the domain hierarchy instead of opening a direct connection between the master
(or domain manager) and the workstation.

Centralized security mechanism
A new global option makes it possible to change the security model in the Tivoli
Workload Scheduler network. If you use this option, then the security files for the
fault-tolerant agents in the network can be created or modified only on the master
domain manager. The Tivoli Workload Scheduler administrator is responsible for
creating, updating, and distributing the security files for all the agents where user
access is required. Setting this global option triggers a security mechanism to
identify and trust the Tivoli Workload Scheduler network corresponding to that
master domain manager.

If you prefer the traditional security model, you can still use it by not activating
the global variable.

Using time zones
Tivoli Workload Scheduler supports different time zones. Enabling time zones
provides you with the ability to manage your workload across a multiple time
zone environment. Both the 3-character and the variable length notations are
supported with the current version of Tivoli Workload Scheduler. The variable
length notation format is area/city, for example Europe/Paris as equivalent to ECT
(European Central Time). The 3-character notation is supported for backward
compatibility with previous versions of the product.

Once configured, time zones can be specified for start and deadline times within
jobs and job streams.

Using extended agents
With IBM Tivoli Workload Scheduler for Applications, extended agents (XA) are
used to extend the job scheduling functions of Tivoli Workload Scheduler to other
systems and applications. An extended agent is defined as a workstation that has a
host and an access method.

The host is a Tivoli Workload Scheduler fault-tolerant agent (FTA) or standard
agent (SA).

The access method is a program that is run by the hosting workstation whenever
Tivoli Workload Scheduler, either through its command line or either graphical
interface, interacts with the external system. IBM Tivoli Workload Scheduler for
Applications includes the following access methods:
v Oracle E-Business Suite access method (MCMAGENT)
v PeopleSoft access method (psagent)
v R/3 access method (r3batch)
v z/OS access method (mvsjes and mvsopc)

To launch and monitor a job on an extended agent, the host runs the access
method, passing it job details as command line options. The access method
communicates with the external system to launch the job and returns the status of
the job.

An extended agent workstation is a logical entity related to an access method
hosted by the physical Tivoli Workload Scheduler workstation (a fault-tolerant

Tivoli Workload Scheduler

60 IBM Tivoli Workload Automation: Overview



agent or standard agent). More than one extended agent workstation can be hosted
by the same Tivoli Workload Scheduler workstation and rely on the same access
method. The extended agent is defined in a standard Tivoli Workload Scheduler
workstation definition, which gives the extended agent a name and identifies the
access method.

Figure 5 shows how these elements fit together in the case of a typical extended
agent configuration.

To launch a job in an external environment, Tivoli Workload Scheduler runs the
extended agent access method, providing it with the extended agent workstation
name and information about the job. The method looks at the corresponding file
named <WORKSTATIONNAME>_<methodname>.opts to determine which external
environment instance it will connect to. The access method can then launch jobs on
that instance and monitor them through completion writing job progress and status
information in the standard list file of the job.

Extended agents can be used to run jobs also in an end-to-end environment, where
their scheduling and monitoring is performed from a Tivoli Workload Scheduler
for z/OS controller.

Figure 5. How extended agents work

Tivoli Workload Scheduler

Chapter 6. Tivoli Workload Scheduler 61



62 IBM Tivoli Workload Automation: Overview



Chapter 7. Tivoli Workload Scheduler for z/OS

Tivoli Workload Scheduler for z/OS expands the scope for automating your data
processing (DP) operations. It plans and automatically schedules the production
workload. From a single point of control, it drives and controls the workload
processing at both local and remote sites. By using Tivoli Workload Scheduler for
z/OS to increase automation, you use your DP resources more efficiently, have
more control over your DP assets, and manage your production workload
processing better.

How your production workload is managed
How does Tivoli Workload Scheduler for z/OS give you all this? This section
describes functions that make your information systems (IS) operations run more
efficiently. But first, here is a brief introduction to the structure of the product and
some concepts.

Structure
Tivoli Workload Scheduler for z/OS consists of a base product, the agent and a
number of features. Every z/OS system in your complex requires the base product.
One z/OS system in your complex is designated the controlling system and runs
the engine feature. Only one engine feature is required, even when you want to
start standby engines on other z/OS systems in a sysplex.

Tivoli Workload Scheduler for z/OS with Tivoli Workload Scheduler addresses
your production workload in the distributed environment. You can schedule,
control, and monitor jobs in Tivoli Workload Scheduler from Tivoli Workload
Scheduler for z/OS. For example, in the current plan, you can specify jobs to run
on workstations in Tivoli Workload Scheduler.

The workload on other operating environments can also be controlled with the
open interfaces provided with Tivoli Workload Scheduler for z/OS. Sample
programs using TCP/IP or an NJE/RSCS (network job entry/remote spooling
communication subsystem) combination show you how you can control the
workload on environments that at present have no scheduling feature.

Additionally, national language features let you see the dialogs and messages, in
the language of your choice. These languages are currently available:
v English
v German
v Japanese
v Spanish

Panel and message text can also be modified to include enterprise-specific
instructions or help.

Concepts
In managing production workloads, Tivoli Workload Scheduler for z/OS builds on
several important concepts.

Plans. Tivoli Workload Scheduler for z/OS constructs operating plans based on
user-supplied descriptions of the DP operations department and its production

© Copyright IBM Corp. 1991, 2011 63



workload. These plans provide the basis for your service level agreements and give
you a picture of the status of the production workload at any point in time. You
can simulate the effects of changes to your production workload, calendar, and
installation by generating trial plans.

Job streams. A job stream is a description of a unit of production work. It can
include the following:
v A list of the jobs (related tasks) associated with that unit of work, such as:

– Data entry
– Job preparation
– Job submission or started-task initiation
– Communication with the NetView program
– File transfer to other operating environments
– Printing of output
– Postprocessing activities, such as quality control or dispatch
– Other tasks related to the unit of work that you want to schedule, control,

and track
v A description of dependencies between jobs within a job stream and between

jobs in other job streams
v Information about resource requirements, such as exclusive use of a data set
v Special operator instructions that are associated with a job
v How and where each job should be processed
v Run policies for that unit of work; that is, when it should be scheduled or

alternatively the name of a group definition that records the run policy

Tivoli Workload Scheduler for z/OS schedules work based on the information you
provide in your job stream descriptions.

Workstations. When scheduling and processing work, Tivoli Workload Scheduler
for z/OS considers the processing requirements of each job. Some typical
processing considerations are:
v Which human or machine resources are required for processing the work, for

example, operators, processors, or printers?
v When are these resources available?
v How are these jobs to be tracked?
v Can this work be processed somewhere else if the resources become

unavailable?

Tivoli Workload Scheduler for z/OS supports a range of work process types, called
workstations, that map the processing requirements of any task in your production
workload. Each workstation supports one type of activity. This gives you the
flexibility to schedule, monitor, and control any type of DP activity, including the
following:
v Job setup, both manual and automatic
v Job submission
v Started-task actions
v Communication with the NetView program
v Print jobs
v Manual preprocessing or postprocessing activity

You can plan for maintenance windows in your hardware and software
environments. Tivoli Workload Scheduler for z/OS helps you perform a controlled
and incident-free shutdown of the environment, preventing last-minute

Tivoli Workload Scheduler for z/OS

64 IBM Tivoli Workload Automation: Overview



cancellation of active tasks. You can choose to reroute the workload automatically
during any outage, planned or unplanned.

Tivoli Workload Scheduler for z/OS tracks jobs as they are processed at
workstations and dynamically updates the plan with real-time information on the
status of jobs. You can view or modify this status information online using the
workstation ready lists in the dialog.

Virtual Workstations.Using virtual workstations improves workload balancing and
the monitoring of system availability. This feature automatically directs the
submission of workload to different destinations removing the need to associate a
workstation to a specific destination. You can define a list of destinations for the
submission of workload and the scheduler distributes the workload to
automatically-selected active destinations, according to a round-robin scheduling
approach.

You can activate this feature by specifying the new virtual option at workstation
definition level. This option is allowed for computer workstations with the
automatic reporting attribute, and is supported by all the interfaces available to
define, modify, and monitor workstations.

Using virtual workstations the scheduler distributes the workload across your
trackers evenly, thus avoiding bottlenecks when submitting or running jobs. In fact,
the scheduler splits the workload among the available destinations, so that the Job
Entry System (JES) and Workload Manager (WLM) do not find overloaded input
queues when selecting jobs for their action.

Dependencies. In general, every DP-related activity must occur in a specific order.
Activities performed out of order might create invalid output and possibly even
corrupt your corporate data. This might cause costly reruns, missed deadlines, and
unsatisfied customers.

You can define dependencies for jobs when a specific processing order is required.
When Tivoli Workload Scheduler for z/OS manages the dependent relationships
for you, the jobs are always started in the correct order every time they are
scheduled. A dependency is called internal when it is between two jobs in the same
job stream, and external when it is between two jobs in different job streams.

When specifying dependencies, you can use both return code and status of an
operation to determine the starting of another operation. Standard logical operators
are supported to define the check on status or return code values, to implement
dependencies definition with a conditional logic. If the predecessor operation is
associated to a job with different steps, you can specify a conditional step-level
dependency on individual step return codes.

Tivoli Workload Scheduler for z/OS lets you serialize work based on the status of
any DP resource. A typical example is a job that uses a data set as input, but must
not start until the data set is successfully created and loaded with valid data. You
can use resource serialization support to send availability information about a DP
resource to Tivoli Workload Scheduler for z/OS.

Special resources. Special resources are typically defined to represent physical or
logical objects used by jobs. A special resource can be used to serialize access to a
data set or to limit the number of file transfers on a particular network link. The
resource does not have to represent a physical object in your configuration,
although it often does.

Tivoli Workload Scheduler for z/OS

Chapter 7. Tivoli Workload Scheduler for z/OS 65



Tivoli Workload Scheduler for z/OS keeps a record of the state of each resource
and its current allocation status. You can choose to hold resources if a job
allocating the resources ends abnormally. You can also use the Tivoli Workload
Scheduler for z/OS interface with the Resource Object Data Manager (RODM) to
schedule jobs according to real resource availability. You can subscribe to RODM
updates in both local and remote domains.

Tivoli Workload Scheduler for z/OS lets you subscribe to data set activity on z/OS
systems. The data set triggering function of Tivoli Workload Scheduler for z/OS
automatically updates special resource availability when a data set is closed. You
can use this notification to coordinate planned activities or to add unplanned work
to the schedule.

Calendars. Tivoli Workload Scheduler for z/OS uses information about when the
job departments work, so that job streams are not scheduled to run on days when
processing resources are not available (for example, Sundays and holidays). This
information is stored in a calendar. Tivoli Workload Scheduler for z/OS supports
multiple calendars for enterprises where different departments have different work
days and non-working days. Different groups within a business operate according
to different calendars.

The multiple calendar function is critical if your enterprise has installations in
more than one geographical location (for example, with different local or national
holidays).

Business processing cycles. Tivoli Workload Scheduler for z/OS uses business
processing cycles, or periods, to calculate when your job streams run, for example,
weekly, or every 10th working day. Periods are based on the business cycles of
your customers. Tivoli Workload Scheduler for z/OS supports a range of periods
for processing the different job streams in your production workload.

When you define a job stream, you specify when it is planned to run, using a run
cycle, which can be:
v A rule with a format such as

ONLY the SECOND TUESDAY of every MONTH

EVERY FRIDAY in the user-defined period SEMESTER1

where the words in upper case are selected from lists of ordinal numbers, names
of days, and common calendar intervals or period names.

v A combination of period and offset. For example, an offset of 10 in a monthly
period specifies the 10th day of each month.

Using Plans in Tivoli Workload Scheduler for z/OS
Tivoli Workload Scheduler for z/OS plans your production workload schedule. It
produces both high-level and detailed plans. These plans both drive the production
workload and show you the status of the production workload on your system at
any specified time. You can produce trial plans to forecast future workloads.

Long-term planning
The long-term plan is a high-level schedule of your anticipated production
workload. It lists, by day, the instances of job streams to be run during the period
of the plan. Each instance of a job stream is called an occurrence. The long-term
plan shows when occurrences are to run, as well as the dependencies that exist
between the job streams. You can view these dependencies graphically on your
workstation as a network, to check that work has been defined correctly. The plan

Tivoli Workload Scheduler for z/OS

66 IBM Tivoli Workload Automation: Overview



can help you in forecasting and planning for heavy processing days. The
long-term-planning function can also produce histograms showing planned
resource use for individual workstations during the plan period.

You can use the long-term plan as the basis for documenting your service level
agreements. It lets you relate service level agreements directly to your production
workload schedules so that your customers can see when and how their work is to
be processed.

The long-term plan provides a window to the future. You can decide how far into
the future, from one day to four years. You can also produce long-term plan
simulation reports for any future date. Tivoli Workload Scheduler for z/OS can
automatically extend the long-term plan at regular intervals. You can print the
long-term plan as a report, or you can view, alter, and extend it online using the
dialogs.

Detailed planning
The current plan is the center of Tivoli Workload Scheduler for z/OS processing. It
drives the production workload automatically and provides a way to check its
status. The current plan is produced by the run of batch jobs that extract from the
long-term plan the occurrences that fall within the specified period of time from
the job details. The current plan selects a window from the long-term plan and
makes the jobs ready to be run. They are started depending on the decided
restrictions (for example, dependencies, resources availability, or time-dependent
jobs).

The current plan is a rolling plan that can cover several days. A common method
is to cover 1 to 2 days with regular extensions each shift. Production workload
processing activities are listed by minute.

You can either print the current plan as a report, or view, alter, and extend it
online, by using the dialogs.

Automatically controlling the production workload
Tivoli Workload Scheduler for z/OS automatically drives the production workload
by monitoring the flow of work and by directing the processing of jobs to follow
the business priorities established in the plan.

Through its interface to the NetView program or its management-by-exception
ISPF dialog, Tivoli Workload Scheduler for z/OS can alert the production control
specialist to problems in the production workload processing. Furthermore, the
NetView program can automatically trigger Tivoli Workload Scheduler for z/OS to
perform corrective actions in response to these problems.

Tivoli Workload Scheduler for z/OS automatically:
v Starts and stops started tasks
v Edits job statements: z/OS JCL or equivalent job statements for other operating

environments before submission
v Submits jobs in the specified sequence to the target operating environment every

time
v Tracks each scheduled job in the plan
v Determines the success or failure of the jobs
v Displays status information and instructions to guide workstation operators

Tivoli Workload Scheduler for z/OS

Chapter 7. Tivoli Workload Scheduler for z/OS 67



v Provides automatic recovery of jobs when they end in error, regardless of the
operating environment

v Generates processing dates for your job stream run cycles using rules, such as:
– Every second Tuesday of the month
– Only the last Saturday in June, July, and August
– Every third workday in the user-defined PAYROLL period

v Starts jobs with regard to real resource availability
v Performs data set cleanup in error and rerun situations for the z/OS workload
v Tailors the JCL for step restarts of z/OS jobs and started tasks
v Dynamically schedules additional processing in response to unplannable

activities
v Provides automatic notification when an updated data set is closed; this can be

used to trigger subsequent processing
v Generates alerts when abnormal situations are detected in the workload

Tivoli Workload Scheduler for z/OS also provides manual control facilities, which
are described in “Manual control and intervention” on page 72.

Automatic workload submission
Tivoli Workload Scheduler for z/OS automatically drives work through the system,
taking into account work that requires manual or program-recorded completion.
Program-recorded completion refers to situations where the status of a
scheduler-controlled job is set to “complete” by a user-written program. It also
promotes the optimum use of resources, improves system availability, and
automates complex and repetitive operator tasks. Tivoli Workload Scheduler for
z/OS automatically controls the submission of work according to:
v Dependencies between jobs
v Workload priorities
v Specified time for the submission of particular work
v Availability of resources

By saving a copy of the JCL for each separate run, or occurrence, of a particular job
in its plans, Tivoli Workload Scheduler for z/OS prevents the unintentional reuse
of temporary JCL changes, such as overrides.

Job tailoring. Tivoli Workload Scheduler for z/OS provides automatic job tailoring
functions to automatically edit jobs. This can reduce your dependency on
time-consuming and error-prone manual editing of jobs. Tivoli Workload Scheduler
for z/OS job tailoring provides:
v Automatic variable substitution
v Dynamic inclusion and exclusion of inline job statements
v Dynamic inclusion of job statements from other libraries or from an exit

For jobs submitted on a z/OS system, these job statements are z/OS JCL.
Scheduler JCL tailoring directives can be included in jobs that are submitted on
other operating systems, such as AIX®/6000.

Variables can be substituted in specific columns, and you can define verification
criteria to ensure that invalid strings are not substituted. Special directives
supporting a variety of date formats used by job stream programs let you
dynamically define the required format and change the multiple times for the same
job. You can define arithmetic expressions to calculate values such as the current
date plus four work days. And you can set a temporary variable to a specific value
or to an expression composed of other temporary variables.

Tivoli Workload Scheduler for z/OS

68 IBM Tivoli Workload Automation: Overview



System Automation commands tailoring. Tivoli Workload Scheduler for z/OS
provides a function that edits system automation commands automatically. This
helps you to save time and reduce the possibility of editing errors. Tivoli Workload
Scheduler for z/OS command tailoring provides automatic variable substitution.

Automatic recovery and restart
Tivoli Workload Scheduler for z/OS provides automatic restart facilities for your
production work. You can specify the restart actions to take if work initiated by
Tivoli Workload Scheduler for z/OS ends in error (see Figure 6.) You can use these
functions to predefine automatic error recovery and restart actions for jobs and
started tasks. The scheduler’s integration with the NetView program allows it to
automatically pass alerts to the NetView program in error situations. Using the
z/OS cross-system coupling facility (XCF) enables Tivoli Workload Scheduler for
z/OS to maintain production workload processing when system failures occur.

Recovery of jobs and started tasks. Automatic recovery actions for failed jobs are
specified in user-defined control statements. Parameters in these statements
determine the recovery actions to be taken when a job or started task ends in error.

Restart and cleanup. You can use restart and cleanup to catalog, uncatalog, or
delete data sets when a job ends in error, or when you need to rerun a job. Data
set cleanup handles JCL in the form of in-stream JCL, in-stream procedures, and
cataloged procedures on both local and remote systems. This function can be
initiated automatically by Tivoli Workload Scheduler for z/OS or manually by
using the panels. Tivoli Workload Scheduler for z/OS resets the catalog to the
status that it was before the job ran for both generation data set groups (GDGs)
and for DD allocated data sets contained in JCL. In addition, restart and cleanup
supports the use of Removable Media Manager in your environment.

Restart at both the step- and job-level is also provided in the Tivoli Workload
Scheduler for z/OS panels. It manages resolution of generation data group (GDG)

User Application

Restart
An Earlier

Job?

Automatic
Catalog

Cleanup?

Restart
the Failing

Job?

Job 3
Ends In

Error

1

2

Job 2

Job 3

!

Job 1

Continue? Do Nothing?

Recovery
Job?

Analyze

The Scheduler Analyzes
the Error and Determines

the Restart Action

Figure 6. Automatic recovery and restart

Tivoli Workload Scheduler for z/OS

Chapter 7. Tivoli Workload Scheduler for z/OS 69



names, JCL containing nested INCLUDEs or PROC, and IF-THEN-ELSE
statements. Tivoli Workload Scheduler for z/OS also automatically identifies
problems that can prevent successful restart, providing a logic of the “best restart
step.”

You can browse the job log or request a step-level restart for any z/OS job or
started task even when there are no catalog modifications. The job-log browse
functions are also available for the workload on other operating platforms, which
is especially useful for those environments that do not support an SDSF-like
facility. If you use a SYSOUT archiver, for example RMDS, you can interface with
it from Tivoli Workload Scheduler for z/OS and so prevent duplication of job log
information.

These facilities are available to you without the need to make changes to your
current JCL.

Tivoli Workload Scheduler for z/OS gives you an enterprise-wide data set cleanup
capability on remote agent systems.

Production workload restart. Tivoli Workload Scheduler for z/OS provides a
production workload restart, which can automatically maintain the processing of
your work if a system or connection fails. Scheduler-controlled production work
for the unsuccessful system is rerouted to another system. Because Tivoli Workload
Scheduler for z/OS can restart and manage the production workload, the integrity
of your processing schedule is maintained, and service continues for your
customers.

Tivoli Workload Scheduler for z/OS uses the VTAM® Model Application Program
Definition feature and the z/OS defined symbols to ease the configuration and job
in a sysplex environment, giving you a single system view of the sysplex.

Starting, stopping, and managing your engines and agents do not require you to
know on which sysplex z/OS image they are actually running on.

z/OS

Controlling
Scheduler

Shared
DASD

Controlled
Scheduler

(Hot Standby)

Controlled
Scheduler

XCF

XCF XCF

Parallel Sysplex

Figure 7. Production workload restart and hot standby

Tivoli Workload Scheduler for z/OS

70 IBM Tivoli Workload Automation: Overview



Hot standby. Tivoli Workload Scheduler for z/OS provides a single point of
control for your z/OS production workload. If this controlling system fails, Tivoli
Workload Scheduler for z/OS can automatically transfer the controlling functions
to a backup system within a Parallel Sysplex®, see Figure 7 on page 70. Through
XCF, Tivoli Workload Scheduler for z/OS can automatically maintain production
workload processing during system or connection failures.

z/OS automatic restart manager support
All the scheduler components are enabled to be restarted by the Automatic Restart
Manager (ARM) of the z/OS operating system, in the case of program failure.

Workload Manager (WLM) support
With Workload Manager (WLM), you can make the best use of resources accessed
by your scheduled jobs. In addition, your jobs maintain the highest possible
throughput with WLM and Tivoli Workload Scheduler for z/OS. When used with
WLM, the scheduler can achieve the best possible system response times.

Automatic status checking
To track the work flow, Tivoli Workload Scheduler for z/OS interfaces directly
with the operating system, collecting and analyzing status information about the
production work that is currently active in the system. Tivoli Workload Scheduler
for z/OS can record status information from both local and remote processors.
When status information is reported from remote sites in different time zones,
Tivoli Workload Scheduler for z/OS makes allowances for the time differences.

Status reporting from heterogeneous environments
The processing on other operating environments can also be tracked by Tivoli
Workload Scheduler for z/OS. You can use supplied programs to communicate
with the engine from any environment that can establish communications with a
z/OS system.

Status reporting from user programs
You can pass status information about production workload processing to Tivoli
Workload Scheduler for z/OS from your own user programs through a standard
supplied routine.

Additional job-completion checking
If required, Tivoli Workload Scheduler for z/OS provides further status checking
by scanning SYSOUT and other print data sets from your processing when the
success or failure of the processing cannot be determined by completion codes. For
example, Tivoli Workload Scheduler for z/OS can check the text of system
messages or messages originating from your user programs. Using information
contained in job completion checker (JCC) tables, Tivoli Workload Scheduler for
z/OS determines what actions to take when it finds certain text strings. These
actions can include:
v Reporting errors
v Requeuing SYSOUT
v Writing incident records to an incident data set

Managing unplanned work
Tivoli Workload Scheduler for z/OS can be automatically triggered to update the
current plan with information about work that cannot be planned in advance. This
allows Tivoli Workload Scheduler for z/OS to control unexpected work. Because
Tivoli Workload Scheduler for z/OS checks the processing status of this work,
automatic recovery facilities are also available.

Tivoli Workload Scheduler for z/OS

Chapter 7. Tivoli Workload Scheduler for z/OS 71



Interfacing with other programs
Tivoli Workload Scheduler for z/OS provides a program interface (PIF). Using this
interface, you can automate most actions that you can perform online through the
dialogs. This interface can be called from CLISTs, user programs, and using TSO
commands.

The application programming interface (API) lets your programs communicate
with Tivoli Workload Scheduler for z/OS from any compliant platform. You can
use Common Programming Interface for Communications (CPI-C), advanced
program-to-program communication (APPC), or your own logical unit (LU) 6.2
verbs to converse with Tivoli Workload Scheduler for z/OS through the API. You
can use this interface to query and update the current plan. The programs can be
running on any platform that is connected locally, or remotely through a network,
with the z/OS system where the engine runs.

Manual control and intervention
Tivoli Workload Scheduler for z/OS lets you check the status of work and
intervene manually when priorities change or when you want to run unplanned
work. You can query the status of the production workload and then modify the
schedule if needed.

Status inquiries
With the ISPF dialogs, you can make queries online and receive timely information
on the status of the production workload.

Time information that is displayed by the dialogs is in the local time of the dialog
user. Using the dialogs, you can request detailed or summary information on
individual job streams, jobs, and workstations, as well as summary information
concerning workload production as a whole. You can also display dependencies
graphically as a network at both job stream and job level. Status inquiries:
v Provide you with overall status information that you can use when considering

a change in workstation capacity or when arranging an extra shift or overtime
work.

v Help you supervise the work flow through the installation; for example, by
displaying the status of work at each workstation.

v Help you decide whether intervention is required to speed up the processing of
specific job streams. You can find out which job streams are the most critical.
You can also check the status of any job stream, as well as the plans and actual
times for each job.

v Help you to check information before making modifications to the plan. For
example, you can check the status of a job stream and its dependencies before
deleting it or changing its input arrival time or deadline. See “Modifying the
current plan” for more information.

v Provide you with information on the status of processing at a particular
workstation. Perhaps work that should have arrived at the workstation has not
arrived. Status inquiries can help you locate the work and find out what has
happened to it.

Modifying the current plan
Tivoli Workload Scheduler for z/OS makes status updates to the plan
automatically, using its tracking functions. However, it lets you change the plan
manually to reflect unplanned changes to the workload or to the operations
environment, which often occur during a shift. For example, you might want to
change the priority of a job stream, add unplanned work, or reroute work from

Tivoli Workload Scheduler for z/OS

72 IBM Tivoli Workload Automation: Overview



one workstation to another. You might also want to correct operational errors
manually. Modifying the current plan might be the best way to handle these
situations.

You can modify the current plan online. For example, you can:
v Include unexpected jobs or last-minute changes to the plan. Tivoli Workload

Scheduler for z/OS then automatically creates the dependencies for this work.
v Manually modify the status of jobs.
v Delete occurrences of job streams.
v Graphically display job dependencies before you modify them.
v Modify the data in job streams, including the JCL.
v Respond to error situations by:

– Rerouting jobs
– Rerunning jobs or occurrences
– Completing jobs or occurrences
– Changing jobs or occurrences

v Change the status of workstations by:
– Rerouting work from one workstation to another
– Modifying workstation reporting attributes
– Updating the availability of resources
– Changing the way resources are handled

v Replan or extend the current plan

In addition to using the dialogs, you can modify the current plan from your own
job streams using the program interface or the application programming interface.
You can also trigger Tivoli Workload Scheduler for z/OS to dynamically modify
the plan using TSO commands or a batch program. This adds unexpected work
automatically to the plan.

Management of critical jobs
Tivoli Workload Scheduler for z/OS uses the capability of the Workload Manager
component of z/OS to ensure that critical jobs are completed on time. If a critical
job is late, Tivoli Workload Scheduler for z/OS favors it using the Workload
Manager interface.

Management of critical path
In addition to the handling of critical jobs based on Workload Manager, Tivoli
Workload Scheduler for z/OS provides the dynamic handling of the critical path
calculated by the daily planning batch jobs process.

The critical path is the path, within a network of jobs, with the least slack time.

The slack time, in a critical job predecessor path, is the amount of time that
processing of the predecessor jobs can be delayed without exceeding the deadline
of a critical job. It is the spare time calculated using the deadline, input arrival, and
duration settings of predecessor jobs.

The capabilities include:
v Monitoring of critical job predecessors that are late, long running, or ended with

an error. This process uses the same internal logic that the scheduler applies to
monitor alert conditions.

v Monitoring of the paths that are consuming their slack time, becoming more
critical than the paths calculated at plan generation.

Tivoli Workload Scheduler for z/OS

Chapter 7. Tivoli Workload Scheduler for z/OS 73



v Enhanced critical jobs monitoring, using ISPF dialog flows.
v Back-end support for new views available using the Dynamic Workload

Console.

Security
Today, DP operations increasingly require a high level of data security, particularly
as the scope of DP operations expands and more people within the enterprise
become involved. Tivoli Workload Scheduler for z/OS provides complete security
and data integrity within the range of its functions. It provides a shared central
service to different user departments even when the users are in different
companies and countries. Tivoli Workload Scheduler for z/OS provides a high
level of security to protect scheduler data and resources from unauthorized access.
With Tivoli Workload Scheduler for z/OS, you can easily organize, isolate, and
protect user data to safeguard the integrity of your end-user applications (see
Figure 8 on page 74). Tivoli Workload Scheduler for z/OS can plan and control the
work of many user groups, and maintain complete control of access to data and
services.

Audit trail
With the audit trail, you can define how you want Tivoli Workload Scheduler for
z/OS to log accesses (both reads and updates) to scheduler resources. Because it
provides a history of changes to the databases, the audit trail can be extremely
useful for staff that work with debugging and problem determination.

A sample program is provided for reading audit-trail records. The program reads
the logs for a period that you specify and produces a report detailing changes that
have been made to scheduler resources.

System authorization facility
Tivoli Workload Scheduler for z/OS uses the system authorization facility (SAF), a
function of z/OS, to pass authorization verification requests to your security
system, for example RACF. This means that you can protect your scheduler data
objects with any security system that uses the SAF interface.

Scheduler

Scheduler Data

Audit
Trail

JCL

JCL

Finance

TSO User

Manufact.Sales

RACF

TSO User

TSO User JCL

Figure 8. Security

Tivoli Workload Scheduler for z/OS

74 IBM Tivoli Workload Automation: Overview



Protection of data and resources: Each user request to access a function or to
access data is validated by SAF. This is some of the information that can be
protected:
v Calendars and periods
v Job stream names or job stream owner, by name
v Workstation, by name
v Job stream-specific data in the plan
v Operator instructions
v JCL

To support distributed, multi-user handling, Tivoli Workload Scheduler for z/OS
lets you control the level of security you want to implement, right down to the
level of individual records. You can define generic or specific RACF resource
names to extend the level of security checking.

If you have RACF Version 2 Release 1 installed, you can use the Tivoli Workload
Scheduler for z/OS reserved resource class to manage your Tivoli Workload
Scheduler for z/OS security environment. This means that you do not have to
define your own resource class by modifying RACF and restarting your system.

Data integrity during submission: Tivoli Workload Scheduler for z/OS can
ensure the correct security environment for each job it submits, regardless of
whether the job is run on a local or a remote system. Tivoli Workload Scheduler
for z/OS lets you create tailored security profiles for individual jobs or groups of
jobs.

Configurations of Tivoli Workload Scheduler for z/OS
Tivoli Workload Scheduler for z/OS supports many configuration options using a
variety of communication methods:
v The controlling system
v Controlled z/OS systems
v Remote panels and program interface applications
v Scheduling jobs that are in Tivoli Workload Scheduler

The controlling system
The controlling system requires both the agent and the engine. One controlling
system can manage the production workload across all your operating
environments.

The engine is the focal point of control and information. It contains the controlling
functions, the dialogs, and the scheduler's own batch programs. Only one engine is
required to control the entire installation, including local and remote systems (see
Figure 9 on page 76).

Tivoli Workload Scheduler for z/OS

Chapter 7. Tivoli Workload Scheduler for z/OS 75



Controlled z/OS systems
An agent is required for every controlled z/OS system in an configuration. This
includes, for example, local controlled systems within shared DASD or sysplex
configurations.

The agent runs as a z/OS subsystem and interfaces with the operating system
(through JES2 or JES3, and SMF), using the subsystem interface and the operating
system exits. The agent monitors and logs the status of work, and passes the status
information to the engine via shared DASD, XCF, or ACF/VTAM.

You can use z/OS and cross-system coupling facility (XCF) to connect your local
z/OS systems. Instead of being passed to the controlling system using shared
DASD, work status information is passed directly through XCF connections. XCF
lets you use all the production-workload-restart facilities and its hot standby
function. See “Automatic recovery and restart” on page 69.

Sysplex

OS/390 Tracker

Hot Standby Controller

OS/390 Tracker

Hot Standby ControllerOS/390 Tracker

Active Controller

Sysplex

z/OS Tracker

Hot Standby Controller

z/OS Tracker

Hot Standby Controllerz/OS Tracker

Active Controller

Domain Managers

Distributed
ConnectorWebSphere

Application
Server

z/OS Agents

Tivoli Dynamic Workload Console

Distributed
Agents

Note: TDWC does not need Connector

to link to distributed engines

z/OS Connector

Figure 9. Tivoli Workload Scheduler for z/OS configurations

Tivoli Workload Scheduler for z/OS

76 IBM Tivoli Workload Automation: Overview



Remote systems
The agent on a remote z/OS system passes status information about the
production work in progress to the engine on the controlling system. All
communication between Tivoli Workload Scheduler for z/OS subsystems on the
controlling and remote systems is done through ACF/VTAM.

Tivoli Workload Scheduler for z/OS lets you link remote systems using
ACF/VTAM networks. Remote systems are frequently used locally “on premises”
to reduce the complexity of the data processing (DP) installation.

Remote panels and program interface applications
ISPF panels and program interface (PIF) applications can run in a different z/OS
system from the one where the engine is running. Dialogs and PIF applications
send requests to and receive data from a Tivoli Workload Scheduler for z/OS
server which is running on the same z/OS system where the target engine is
running, using advanced program-to-program communications (APPC). The server
communicates with the engine to perform the requested actions.

The server is a separate address space, started and stopped either automatically by
the engine or by the user through the z/OS start command. There can be more
than one server for an engine.

If the dialogs or the PIF applications run on the same z/OS system where the
target engine is running, the server might not be involved.

Scheduling jobs that are in Tivoli Workload Scheduler
Tivoli Workload Scheduler for z/OS also allows you to access job streams
(schedules in Tivoli Workload Scheduler) and add them to the current plan in
Tivoli Workload Scheduler for z/OS. In addition, you can build dependencies
among Tivoli Workload Scheduler for z/OS job streams and Tivoli Workload
Scheduler jobs. From Tivoli Workload Scheduler for z/OS, you can monitor and
control the distributed agent.

Using fault-tolerant workstations
In the Tivoli Workload Scheduler for z/OS current plan, you can specify
jobs to run on fault-tolerant agents in Tivoli Workload Scheduler. Tivoli
Workload Scheduler for z/OS passes the job information to the Tivoli
Workload Scheduler Symphony file, which in turn passes the jobs in the
current plan to Tivoli Workload Scheduler to distribute and process. In
turn, Tivoli Workload Scheduler reports the status of running and
completed jobs back to the current plan for monitoring in Tivoli Workload
Scheduler for z/OS.

Using z-centric workstations
z-centric workstations are agents that are installed in a Tivoli Workload
Scheduler network and that can be connected to Tivoli Workload Scheduler
for z/OS by HTTP or HTTPS. They provide the means to schedule from
Tivoli Workload Scheduler for z/OS jobs that need to run on distributed
platforms (UNIX, Linux, Windows). They are equivalent to computer
automatic workstations in Tivoli Workload Scheduler for z/OS and require
less configuration and a smaller supporting infrastructure than
fault-tolerant workstations.

Tivoli Workload Scheduler for z/OS

Chapter 7. Tivoli Workload Scheduler for z/OS 77



Tivoli Workload Scheduler for z/OS

78 IBM Tivoli Workload Automation: Overview



Chapter 8. Dynamic Workload Console

The Dynamic Workload Console is a Web-based user interface for:
v Tivoli Workload Scheduler
v Tivoli Workload Scheduler for z/OS
v Tivoli Workload Scheduler for Applications

It is the strategic user interface for the Tivoli Workload Automation suite of
products and includes support for the latest functions and enhancements available
with the scheduling engines. It has replaced the Job Scheduling Console, whose
functional contents have not been extended beyond those of version 8.4.

The Dynamic Workload Console is a light, powerful and user-friendly single point
of operational control for the entire scheduling network. It allows for single
sign-on and authentication to one or many schedulers, is highly scalable, and
provides real-time monitoring, management and reporting of enterprise workloads.
It also greatly simplifies report creation and customization.

With Dynamic Workload Console you can:
v Manage your workload to design objects in the database, handle plans, submit

jobs or job streams, and monitor objects in the plan.
v Design and control the topology of your scheduling environment, that is

workstations and domains.
v Define and run reports to gather historical data or details about your plans. You

can also generate and run customized SQL reports.
v Define and manage logical resources or groups of logical resources for use with

dynamic scheduling.

You can access the Dynamic Workload Console from any computer in your
environment using a web browser through both secure HTTPS or HTTP protocol.

The first and main actions you perform when you connect to the Dynamic
Workload Console are:

Creating a connection to a scheduling engine (Tivoli Workload Scheduler or
Tivoli Workload Scheduler for z/OS)

You type the details (such as IP address, user name, and password) to
access a scheduling engine, and, optionally, a database to operate with
objects defined in plans or stored in the database. You can also define new
scheduling objects in the database.

From the Dynamic Workload Console you can access the current plan, a
trial plan, a forecast plan, or an archived plan for the distributed
environment or the current plan for the z/OS environment.

You might want to access the database to perform actions against objects
stored in it or generate reports showing historical or statistical data.

In addition, working both on the database and on plans, you can create
and run event rules to define and trigger actions that you want to run in
response to events occurring on Tivoli Workload Scheduler nodes.

Creating tasks to manage scheduling objects in the plan
You specify some filtering criteria to query a list of scheduling objects

© Copyright IBM Corp. 1991, 2011 79



whose attributes satisfy the criteria you specified. Starting from this list,
you can navigate and modify the content of the plan, switching between
objects, opening more lists and accessing other plans or other Tivoli
Workload Scheduler or Tivoli Workload Scheduler for z/OS environments.

The console provides also the following graphical views tools to manage your
workload:

Job stream view (for modeling)
A graphical extension to the Workload Designer that shows graphical
representations of job stream definitions in the database. It provides an
intuitive way to create and maintain them.

Plan view (for monitoring)
A high-level representation of a plan of any type, showing a filtered set of
job streams and their mutual dependencies.

Impact view (for monitoring)
An expansible graphical representation of job streams and jobs in plan. It
provides a straightforward, multilevel analysis of how job and job stream
completion affects plan progress.

Job stream view (for monitoring)
A graphical representation of a single job stream in plan. It provides a
direct way to work with it and its dependencies.

From each view, you can take actions on objects, view their properties, and easily
switch between the views. Graphics can be exported to SVG files.

You can also launch short demos (visual helps) directly from some Dynamic
Workload Console panels. In fact, by clicking the "camera" icon on the toolbar, you
open a menu listing some short demos that help you get rapidly familiar with the
main functions available from that panel.

Dynamic Workload Console

80 IBM Tivoli Workload Automation: Overview



Chapter 9. End-to-end scheduling

By using end-to-end scheduling, you can schedule and control jobs on mainframe,
Windows, and UNIX environments, for truly distributed scheduling. In the
end-to-end configuration, Tivoli Workload Scheduler for z/OS is used as the
planner for the job scheduling environment. Tivoli Workload Scheduler domain
managers, standard, fault-tolerant, and z-centric agents are used to schedule on the
distributed platforms. The agents replace the use of tracker agents.

Tivoli Workload Scheduler for z/OS also allows you to access job streams
(schedules in Tivoli Workload Scheduler) and add them to the current plan in
Tivoli Workload Scheduler for z/OS. In addition, you can build dependencies
among Tivoli Workload Scheduler for z/OS job streams and Tivoli Workload
Scheduler jobs. From Tivoli Workload Scheduler for z/OS, you can monitor and
control the distributed agents.

You can manage distributed scheduling by activating either of the following
features:
v “End-to-end scheduling with fault tolerance capabilities”
v “End-to-end scheduling with z-centric capabilities” on page 83

End-to-end scheduling with fault tolerance capabilities
End-to-end scheduling with fault tolerance capabilities directly connects Tivoli
Workload Scheduler standard agents, fault-tolerant agents, and domain managers
(with their underlying agents and domains) to Tivoli Workload Scheduler for
z/OS. Tivoli Workload Scheduler for z/OS is seen by the distributed network as
the master domain manager.

Tivoli Workload Scheduler for z/OS creates the production plan also for the
distributed network and sends it to the domain managers and to the
directly-connected agents. The domain managers send a copy of the plan to each of
their agents and subordinate domain managers for execution.

The Tivoli Workload Scheduler domain managers function as the broker systems
for the distributed network by resolving all dependencies for their subordinate
managers and agents. They send their updates (in the form of events) to Tivoli
Workload Scheduler for z/OS so that it can update the plan accordingly. Tivoli
Workload Scheduler for z/OS handles its own jobs and notifies the domain
managers of all the status changes of the Tivoli Workload Scheduler for z/OS jobs
that involve the Tivoli Workload Scheduler plan. In this configuration, the domain
managers and all the distributed agents recognize Tivoli Workload Scheduler for
z/OS as the master domain manager and notify it of all the changes occurring in
their own plans. At the same time, the agents are not permitted to interfere with
the Tivoli Workload Scheduler for z/OS jobs, because they are viewed as running
on the master that is the only node that is in charge of them.

In the Tivoli Workload Scheduler for z/OS current plan, you can specify jobs to
run on workstations in the Tivoli Workload Scheduler network. Tivoli Workload
Scheduler for z/OS passes the job information to the Symphony file in the Tivoli
Workload Scheduler for z/OS server, which in turn passes the Symphony file to
the Tivoli Workload Scheduler domain managers (DMZ) to distribute and process.

© Copyright IBM Corp. 1991, 2011 81



In turn, Tivoli Workload Scheduler reports the status of running and completed
jobs back to the current plan for monitoring in the Tivoli Workload Scheduler for
z/OS engine.

Figure 10 shows a Tivoli Workload Scheduler network managed by a Tivoli
Workload Scheduler for z/OS and the flow of data.

DomainZ
AIX

AIX HPUX

AIX Windows 2000 Solaris

DomainB

FTA3 FTA4 FTA5 FTA6

OS/400

TWS plan

Domain
Manager
DMZ

DomainA

Domain
Manager
DMA

Domain
Manager
DMB

Master
Domain
Manager

MASTERDM
z/OS

TWS for
z/OS plan

TWS plan

The TWS plan is extracted
from the TWS for z/OS plan

Windows 2000

Windows 2000

AIX

AIX

The TWS plan is distributed to
the subordinate DMs and FTAs

FTA2

FTA1

SA1

A light version of the TWS plan
is distributed to the SAs

TWS topology

TWS plan

TWS plan

TWS plan

Figure 10. End-to-end with fault tolerance capabilities configuration

End-to-end scheduling

82 IBM Tivoli Workload Automation: Overview



End-to-end scheduling with z-centric capabilities
End-to-end scheduling with z-centric capabilities directly connects Tivoli Workload
Scheduler z-centric agents to Tivoli Workload Scheduler for z/OS, that is the
master domain manager for the distributed network.

Powerful mainframe capabilities, such as standard variable substitution, automatic
recovery statements and alternate workstation, are supported to manage
distributed workload.

Communication between the z-centric agents and Tivoli Workload Scheduler for
z/OS controller is direct, through the HTTP or HTTPS protocol.

Figure 11 shows a network with this configuration.

TWSz

z/OS

TWS for
z/OS plan

AIX
Windows Solaris

Linux

engine

z-centric

z-centric z-centric

z-centric

agent

agent

agent

agent

Distributed agents
A distributed agent is a computer running Tivoli Workload Scheduler on which
you can schedule jobs from Tivoli Workload Scheduler for z/OS. Examples of
distributed agents are the following: standard agents, extended agents,
fault-tolerant agents, and domain managers.

The following is a description of the types of distributed agents:

Domain Manager
The management hub in a domain. All communications to and from the agents
in a domain are routed through the domain manager.

Figure 11. End-to-end with z-centric capabilities configuration

End-to-end scheduling

Chapter 9. End-to-end scheduling 83



Backup Domain Manager
A fault-tolerant agent or domain manager capable of assuming the
responsibilities of its domain manager for automatic workload recovery.

Fault-tolerant Agent (FTA)
A workstation capable of resolving local dependencies and launching its jobs in
the absence of a domain manager.

Standard Agent
A workstation that launches jobs only under the direction of its domain
manager.

Extended Agent
A logical workstation definition that helps you launch and control jobs on other
systems and applications, such as PeopleSoft, Oracle E-Business Suite, SAP, and
z/OS JES2 and JES3.

z-centric Agent
A workstation that runs jobs scheduled from Tivoli Workload Scheduler for
z/OS. The controller directly handles the communication with this type of
agent.

Distributed agents replace tracker agents in Tivoli Workload Scheduler for z/OS.
The distributed agents help you schedule on non-z/OS systems with a more
reliable and scalable agent.

In the Tivoli Workload Scheduler for z/OS plan, the logical representation of a
distributed agent is called a fault-tolerant workstation or a z-centric workstation.

Benefits of end-to-end scheduling
The benefits that can be gained from using end-to-end scheduling are the
following:
v Connecting either fault-tolerant or z-centric Tivoli Workload Scheduler agents to

Tivoli Workload Scheduler for z/OS.
v Scheduling on additional operating systems.
v Synchronization of work in mainframe and distributed environments.
v The ability for Tivoli Workload Scheduler for z/OS to use multi-tier architecture

with domain managers.

End-to-end scheduling

84 IBM Tivoli Workload Automation: Overview



Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 1991, 2011 85



IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at "Copyright and trademark information" at http://www.ibm.com/legal/
copytrade.shtml.

Adobe, and all Adobe-based trademarks are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, other countries, or
both.

Intel, and Itanium, are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

86 IBM Tivoli Workload Automation: Overview

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml


Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Oracle and/or its affiliates.

Other company, product, and service names might be trademarks or service marks
of others.

Notices 87



88 IBM Tivoli Workload Automation: Overview



Index

A
accessibility viii
advanced program-to-program

communication (APPC) 72
alerts, passing to NetView 69
API (application programming

interface) 72
APPC (advanced program-to-program

communication) 72
application

definition of 64
application job plug-ins 2, 6
application programmer 20
application programming interface

(API) 72
audit-trail facility 74
authority checking 74
automatic

job submission 68
status checking 71
status reporting 71

automatic job and started-task
recovery 69, 71

automation 17
availability 18

B
backup domain manager 45
backup dynamic domain manager 45
backup master 45
backup system 70
batchman 48
benefits 13, 22
business processing cycle 66

C
calendar 49

definition 66
CICS 15
Common Programming Interface for

Communications (CPI-C) 72
Composer 48
configurations 75
Conman 48
connector 43
console operator 20
controlled systems 76
controlling system

description 75
recovery of 70

conventions used in publications viii
CPI-C (Common Programming Interface

for Communications) 72
cross-system coupling facility (XCF) 69,

71, 76
current plan 67
customers, queries from 21

D
Data Facility Hierarchical Storage

Manager (DFSHM) 15
Decision Support 15
dependencies

defining 65
DFHSM (Data Facility Hierarchical

Storage Manager) 15
domain manager 45
dynamic agents

overview 2, 6
dynamic domain manager 45
dynamic pools

overview 2, 6
Dynamic Workload Console

accessibility viii

E
education

See Tivoli technical training
end users, queries from 21
existing Tivoli Workload Scheduler jobs

adding dynamic capabilities 2, 6
scheduling dynamically 2, 6

extended agent 45

F
fault-tolerant agent 45
file dependency 56

G
global options 58
glossary viii

H
helpdesk 21

I
IBM Tivoli Monitoring (ITM) 15
IBM Tivoli Service Request Manager

(TSRM) 15
IMS 15
integration 14
ISPF (Interactive System Productivity

Facility)
dialog 67

ITM (IBM Tivoli Monitoring) 15

J
job completion checker (JCC) 71
job dependencies

See operation dependencies

job recovery
automatic 69
manual 72

job streams 77
job submission

automatic 68
manual 72

job tailoring 68
job types with advanced options 2, 6

overview 2, 6
scheduling dynamically 2, 6
scheduling statically 2, 6

jobman 48

L
local options 58
long-term plan 66

M
mailman 47
manual status control 73
master domain 43
master domain manager 45
monitoring the workload 18
multi-tier architecture 84

N
national language features 63
netman 47
NetView

alerts 69
description of 14
RODM 14

network Agent 46
new executors 2, 6

O
occurrences 66, 67
operation dependencies 65
operations manager 20
operator, workstation 21
Output Manager for z/OS 15

P
parameter 49
periods 66
PIF (program interface) 72
PIF applications

applications 77
plan

current 67
definition of 66
detailed 67
long-term 66

© Copyright IBM Corp. 1991, 2011 89



plan (continued)
modification of 72
trial 64
types 63

planning
trial plans 64

pools
overview 2, 6

production control file 44
production period 50
production workload restart 69, 71
program interface (PIF) 72
prompt 49
prompt dependency 56
publications viii

R
RACF (Resource Access Control

Facility) 15, 74
recovery 69, 71
recovery job 52
recovery prompt 52
remote dialogs

dialogs 77
resource 49
Resource Access Control Facility

(RACF) 15, 74
Resource Object Data Manager

(RODM) 14
restart 69, 71
restart management 69, 71
RODM (Resource Object Data

Manager) 14
run cycle 49

S
SA for z/OS Automation Feature 15
SAF (system authorization facility) 74
schedule 66
scheduling dynamically 2, 6
scheduling manager 19
security 74
shift supervisor 20
simulation with trial plans 64
special resources

definition of 65
standard agent 45
standard list file 57
status checking, automatic 71
status control

manual 72
status inquiries 72
status reporting

automatic 71
from heterogeneous environments 71
from user programs 71

step-level restart 69
symphony 44, 51
syntax diagrams, how to read ix
SYSOUT, checking of 71
system authorization facility (SAF) 74
system automation commands

tailoring 69
System Automation for z/OS 15

System Automation z/OS (SA/zOS) 15
system failures 69
Systems Application Architecture

Common Programming Interface for
Communications 72

T
technical training

See Tivoli technical training
Tivoli Business Systems Manager 56
Tivoli Information Management for

z/OS 15
Tivoli technical training viii
Tivoli Workload Scheduler 63, 77
Tivoli Workload Scheduler/NetView 56
tracker agents 81
training

See also Tivoli technical training
technical viii

trial plans 64
TSRM (IBM Tivoli Service Request

Manager) 15
TWS connector 43

U
unplannable work 71
user 50
user authority checking 74

V
variable 49
variable table 49
virtual workstation

definition of 65

W
work submission, automatic 68
Workload Manager (WLM) 14, 71
workload monitoring 18
workload restart 69, 71
workstation

changing the status of 73
definition 64
operator 21

workstation class 49
writer 48

X
XCF (cross-system coupling facility) 69,

71, 76

Z
z-centric agent 45

90 IBM Tivoli Workload Automation: Overview





����

Product Number: 5698-A17, 5698-WSH, 5698-WSE

Printed in USA

SC32-1256-12



Sp
in
e
in
fo
rm
at
io
n:

IB
M

Ti
vo

li
W

or
kl

oa
d

Au
to

m
at

io
n

Ve
rs

io
n

8.
6

Ov
er

vi
ew

�
�

�


	Contents
	Figures
	About this publication
	What is new in this release
	What is new in this publication
	Who should read this publication
	Publications
	Accessibility
	Tivoli technical training
	Support information
	How to read the syntax diagrams

	Chapter 1. Summary of enhancements
	Tivoli Workload Scheduler for z/OS enhancements
	Dynamic capabilities added to Tivoli Workload Scheduler for z/OS agents
	Defining and scheduling new and existing jobs with dynamic capabilities
	Support for cross dependencies among jobs running on different scheduling engines
	Enhancements to ISPF panels
	Send generated reports by email
	Automatic job log retrieval
	Enhancements to Variable substitution
	Installing the Tivoli Workload Scheduler for z/OS connector on WebSphere Application Server for z/OS
	Support for extended format VSAM data sets
	Keeping external dependencies on completed operations in the extended plan
	Enhancements for RACF user fields

	Tivoli Workload Scheduler enhancements
	New Dynamic Domain Managers
	Defining and scheduling new and existing jobs with dynamic capabilities
	Support for cross dependencies among jobs running on different scheduling engines
	The Tivoli Workload Scheduler distributed - Agent for z/OS
	New command to run batch reports from the command line interface
	Checking prerequisites
	Use of twsinst extended to Windows operating systems
	Creating and upgrading Tivoli Workload Scheduler database tables before installing or upgrading the product
	Using the Federated Repository security mechanism for authentication enhancements
	Upgrading when there are corrupt registry files
	Keeping you constantly and quickly informed

	Dynamic Workload Console enhancements
	Multiple engine query
	New look and feel for the dashboard
	Support for dynamic scheduling
	Support for the new job types with advanced options
	Support for Cross Dependencies
	Enhanced management of user settings
	Additional usability improvements
	Support for mobile device access

	Tivoli Workload Automation documentation enhancements

	Chapter 2. Overview of Tivoli Workload Automation
	The state-of-the-art solution
	Comprehensive workload planning
	Centralized systems management
	Systems management integration
	An integration scenario

	Automation
	Workload monitoring
	Automatic workload recovery
	Productivity

	Business solutions
	User productivity
	Growth incentive
	How Tivoli Workload Automation benefits your staff
	Role of the scheduling manager as the focal point
	Role of the operations manager
	A powerful tool for the shift supervisor
	Role of the application programmer
	Console operators
	Workstation operators
	End users and the service desk

	Summary

	Chapter 3. Tivoli Workload Automation and ITUP
	The ITUP processes
	Service execution and workload management
	Managing workload with Tivoli Workload Automation

	Chapter 4. Who performs workload management
	Chapter 5. A business scenario
	The company
	The challenge
	The solution
	Typical everyday scenarios
	Managing the workload
	Monitoring the workload
	Managing the organization of the IT infrastructure


	The benefits

	Chapter 6. Tivoli Workload Scheduler
	Overview
	What is Tivoli Workload Scheduler
	The Tivoli Workload Scheduler network
	Manager and agent types
	Topology
	Networking
	Tivoli Workload Scheduler components
	Tivoli Workload Scheduler scheduling objects
	The production process

	Scheduling
	Defining scheduling objects
	Creating job streams
	Setting job recovery
	Defining and managing mission-critical jobs
	Scheduling workload dynamically

	Running production
	Running the plan
	Running job streams
	Monitoring
	Controlling with IBM Tivoli Monitoring

	Reporting
	Auditing
	Using event-driven workload automation

	Options and security
	Setting the Tivoli Workload Scheduler options
	Setting security
	Secure authentication and encryption
	Work across firewalls
	Centralized security mechanism

	Using time zones

	Using extended agents

	Chapter 7. Tivoli Workload Scheduler for z/OS
	How your production workload is managed
	Structure
	Concepts
	Using Plans in Tivoli Workload Scheduler for z/OS
	Long-term planning
	Detailed planning

	Automatically controlling the production workload
	Automatic workload submission
	Automatic recovery and restart
	z/OS automatic restart manager support
	Workload Manager (WLM) support
	Automatic status checking
	Status reporting from heterogeneous environments
	Status reporting from user programs
	Additional job-completion checking
	Managing unplanned work

	Interfacing with other programs
	Manual control and intervention
	Status inquiries
	Modifying the current plan

	Management of critical jobs
	Management of critical path

	Security
	Audit trail
	System authorization facility
	Protection of data and resources
	Data integrity during submission



	Configurations of Tivoli Workload Scheduler for z/OS
	The controlling system
	Controlled z/OS systems
	Remote systems

	Remote panels and program interface applications
	Scheduling jobs that are in Tivoli Workload Scheduler


	Chapter 8. Dynamic Workload Console
	Chapter 9. End-to-end scheduling
	End-to-end scheduling with fault tolerance capabilities
	End-to-end scheduling with z-centric capabilities
	Distributed agents
	Benefits of end-to-end scheduling

	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z


