CICS Transaction Server for z/OS
Version 5 Release 5

Installing CICS

IBM
Note
Before using this information and the product it supports, read the information in “Notices” on page 227.
Contents

About this PDF...vii

Chapter 1. Planning for installation...1
 Program Directories...2
 Prerequisites for installing CICS TS...3
 CICS Explorer planning..6
 CICSPlex SM setup checklist and worksheets...6
 MVS installation and setup checklist..6
 System worksheet..8
 CMAS worksheet...9
 MAS worksheet..10
 WUI server worksheet..11
 IVP planning worksheet...12

Chapter 2. CICS Explorer installation...13
 Configuring the FTP server for CICS Explorer..13

Chapter 3. Installing CICS TS Developer Trial..15

Chapter 4. Installing CICS TS VUE (Value Unit Edition)....................................17

Chapter 5. Installing CICS TS...19
 Installing the CICS TS activation module..19
 Installing the CICS TS base component from CBPDO..................................20
 Installing the CICS TS base component from ServerPac..............................21
 Resources to install the ServerPac..22
 Installing CICS TS using DFHISTAR..22
 Checking the output from the installation jobs...25
 Editing the DFHISTAR job...25
 Creating RACF profiles for the CICS Transaction Server data sets.............48
 Running the DFHISTAR job..49
 Running the installation jobs..49
 Checking the output from the installation jobs...55
 Postinstallation activities..55

Chapter 6. Activating CICS Transaction Server..61

Chapter 7. Setting up the MVS environment for CICS......................................63
 Authorizing the CICS and CICSPlex SM libraries..63
 Authorizing CICS regions to access MVS resources.....................................64
 Protecting CICS load module data sets...64
 Authorizing access to a CICS region z/OS Communications Server ACB........65
 Authorizing the region user ID to access category 1 transactions..................66
 Authorizing access to an SMSVSAM server...66
 Authorizing access to MVS log streams..66
 Authorizing access to z/OS UNIX System Services.......................................68
 Activating RACF resource classes...71
 Defining the default CICS user ID to RACF...71
 Installing CICS-required modules in the MVS linklist..................................71
Chapter 8. Getting ready to run CICS 161
Tailoring the CICS-supplied skeleton jobs......................... 161
The CICS installation libraries.. 161
Running DFHISTAR.. 162
CICSPlex SM postinstallation members......................... 162
Jobs for creating the CICS data sets............................ 164
Data set naming conventions.. 164
DFHCOMDS job for common data sets.................. 165
DFHDEFDS job for CICS region data sets............. 166
DFHMACI job for creating the messages data set..... 167
Defining the sample applications data sets........ 167
CICS resource definitions for CICSPlex SM......... 170
Adding CICS support for programming languages...... 172
Installing Language Environment support.................. 172
Enabling TCP/IP in a CICS region........................... 175
Using TCP/IP in a CICS region................................. 176
Installing MRO support.. 176
Installing the modules DFHIRP and DFHCSVC in the LPA... 177
Installation requirements for XCF/MRO............... 177
Defining z/OS images as systems in an XCF sysplex.. 178
Enabling MRO for CICS startup................................ 179
Adding communications support between systems....... 179
Verifying Java components checklist......................... 184
Defining DL/I support... 186
Program specification blocks (PDIR)......................... 186
Adding remote DL/I support................................. 186
Enabling REXX for CICS.. 187

Chapter 9. Renewing a Developer Trial license.................. 189

Chapter 10. Verifying the CICS installation..................... 191
Preparing to run the IVPs.. 191
Creating and defining activities for the IVP jobs............. 191
Reviewing and defining IVP security.......................... 192
Specifying system initialization parameters for the IVP jobs...... 193
Resources for the CICS messages facility, CMAC........... 194
The CICS startup procedure, DFHSTART.................. 195
Verify batch job, DFHIVPBT................................ 197
Verify interactive job, DFHIVPOL............................ 198
Verifying shared data tables support......................... 207
This PDF describes how to install CICS Transaction Server for z/OS, Version 5 Release 5. It is intended for system programmers who are responsible for installing and tailoring CICS and CICSPlex SM.

It describes:

- The content of CICS TS and its delivery methods
- Prerequisites and planning for installation
- How to install CICS TS and CICSPlex SM and verify the installation, before you go on to any further configuration and tailoring.

These tasks are done in conjunction with the Program Directory.

For details of the terms and notation used, see Conventions and terminology used in the CICS documentation in IBM Knowledge Center.

Date of this PDF

This PDF was created on June 20th 2019.
Chapter 1. Planning for installation

The IBM® packages that are available for installing CICS TS are a system replace method called ServerPac and the Custom-Built Product Delivery Option (CBPDO).

You can install CICS TS by using the standard IBM installation methods, or by using the CICS-supplied DFHISTAR jobs.

• If you order ServerPac, you receive the following items:
 – A series of tapes, each in IEBCOPY dump-by-data set format (not a physical volume dump) containing a complete generated CICS TS system. This system consists of distribution and target libraries, consolidated software inventory (CSI), and other SMP/E libraries already generated. CICS TS elements and their service are integrated into distribution and target libraries.
 – IBM has performed an IPL of the system and run all installation verification programs (IVPs) before shipment.
 – A CustomPac dialog, accessed through ISPF, that produces jobs that unload the tape to DASD. Through the dialog, you can name the data sets and place them in the catalogs you specify. The following documentation is included and tells you how to use the dialog:
 - ServerPac: Installing Your Order (customized for each customer order)
 - ServerPac: Using the Installation Dialog (SA22-7815)
 – All unintegrated service, available on a service tape.
 – Sample jobs to assist with the installation of CICS TS product and service.

Through the dialog, you can do the following tasks:
 – Name the data sets and place them on the volumes and in the catalogs you choose.
 – Save configuration data for the next install, easing your move to the next release of CICS TS.
 – Run tailored postinstallation verification jobs.

• If you order CBPDO, you receive one logically stacked SMP/E RELFILE tape that contains all the base elements. Depending on your customer profile, you receive uninstalled service. You also receive the following items:
 – Sample jobs to help you install CICS TS and service.
 – The CBPDO Memo to Users Extension and program materials that describe your CBPDO order.

For information about installing by using the DFHISTAR jobs, see “Installing CICS TS using DFHISTAR” on page 22.

Figure 1 illustrates the content differences between the ServerPac method and the CBPDO method of installing CICS TS.
Figure 1. Contents of the ServerPac and the CBPDO Delivery

Program Directories

The Program Directory is a document provided with CICS Transaction Server. It contains information about the materials and procedures for installing each component of CICS TS.

To install any of the editions of CICS Transaction Server for z/OS, you need the Program Directory for both components.
Prerequisites for installing CICS TS

Hardware requirements

Whether you choose the CBPDO method or the ServerPac method, the hardware requirement is the same. The amount of storage required for all the target and distribution data sets is detailed in the space table in the Program Directory.

You require a z196 or subsequent 64 bit z/Architecture processor with a configuration that has a terminal, and a tape device capable of reading the following type of tape on which CICS TS is supplied:
1/2 CST-IBM 3590-128 Track

Software requirements

The system software requirements for installing CICS TS using the ServerPac method or the CBPDO method are the same except for the addition of SMP/E for CBPDO. You must install z/OS, Version 2 Release 2 or a later release on the system that you use to install both the ServerPac and the CBPDO. z/OS includes the following elements that are required for installing CICS TS:

- Interactive System Productivity Facility (ISPF)
- Time Sharing Option/Extended (TSO/E)
- DFSMS/MVS
- Language Environment®
- Two components of z/OS Communications Server: SNA and IP (previously VTAM® and TCP/IP)
- z/OS UNIX System Services

If you are installing CICS TS using the CBPDO method, you also require:

- System Modification Program/Extended (SMP/E)
- High Level Assembler/MVS & VM & VSE.

For information about optional supported software and the service that you must apply to ensure that CICS TS installs correctly, see Detailed system requirements.
z/OS UNIX file system and PDSE requirements

Some components are installed in PDSE data sets and z/OS UNIX files, which affects the installation process.

CICS TS for z/OS, Version 5.5 requires PDSE data set support for installation to complete successfully. DFSMS/MVS, which is supplied as an element of z/OS, provides this support for PDSE data sets. For FMID JCI720D, which contains the z/OS UNIX-dependent code, the OMVS address space must be active in full-function mode, otherwise the installation of this function fails.

In the set of installation jobs, some initial jobs create the z/OS UNIX files and the directories shown in Figure 2 on page 5. Run these jobs before any of the normal DFHINSTn jobs. The user ID running these jobs requires superuser authority.
Figure 2. The z/OS UNIX directory structure for CICS
1. If you normally maintain additional SMP/E target zone libraries to apply service, you can also create additional directories at the /cicsts55 level to create the z/OS UNIX equivalent. See the DFHIHESA job for more information.

2. The /pathprefix in Figure 2 on page 5 is optional.

CICS Explorer planning

CICS Explorer® is a system management tool that is delivered as part of CICS Transaction Server. It provides an easy-to-use way to manage one or more CICS systems. It is based on an Eclipse platform and provides a view of some CICSPlex SM functions in a CICS Transaction Server, and a platform for the integration of CICS tools.

See Downloading and starting CICS Explorer in the CICS Explorer product documentation.

CICSPlex SM setup checklist and worksheets

Use the aids provided to help you install and setup CICSPlex SM.

Checklist

Use the checklist as a guide to your progress as you set up or revise the configuration of your CICSPlex SM components. The checklist is for use with a CICS Transaction Server for z/OS system and all of the components you can install on it.

You perform some of the tasks on the MVS checklist only once for your CICSPlex SM environment, and for other tasks perform them once for each component. See the 'Where to obtain information' column for a reference to information about how to perform each task.

The order of items in the checklist is a suggested order for performing the installation and setup steps. However, you might find that, particularly if you are modifying your CICSPlex SM environment, a different order is more practical.

Worksheets

Use the worksheets as a record of the names and locations of components and data sets. Copy the worksheets as required.

The worksheets contain, in some cases, more than one line for a type of CICSPlex SM component. You might have fewer or more than shown of that type of component.

MVS installation and setup checklist

A checklist is provided to help you to install and setup MVS™.

<table>
<thead>
<tr>
<th>Component</th>
<th>What you must do</th>
<th>Values to note</th>
<th>Where to obtain information</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM M W</td>
<td>Make note of SYS1.PARMLIB(IEASYSxx) values for this MVS system</td>
<td>APF= CMD= LNK= LNKAUTH= LPA= MAXUSER= NSYSLX= PROG= RSVNONR= RSVSTRT= SMF= SYSNAME=</td>
<td>“Noting IEASYSxx values for CICSPlex SM” on page 76</td>
</tr>
<tr>
<td>CM</td>
<td>Update number of linkage indexes in IEASYSxx</td>
<td>NSYSLX value</td>
<td>“Specifying each CMAS correctly in IEASYSxx” on page 77</td>
</tr>
<tr>
<td>CM M W</td>
<td>Update IEAAPFxX or PROGX to authorize SEYUAUTH</td>
<td>IEAAPFxX or PROGX member Library name</td>
<td>“Authorizing the CICS and CICSPlex SM libraries” on page 63</td>
</tr>
<tr>
<td>Component</td>
<td>What you must do</td>
<td>Values to note</td>
<td>Where to obtain information</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>M</td>
<td>Update IEAAPFxx or PROGxx to authorize SEYULPA Optional library. Can be populated below.</td>
<td>IEAAPFxx or PROGxx member Library name</td>
<td>“Authorizing the CICS and CICSPlex SM libraries” on page 63</td>
</tr>
<tr>
<td>CM</td>
<td>Verify SEYULINK is authorized</td>
<td>LNKAUTH= value Library name</td>
<td>“Authorizing the CICS and CICSPlex SM libraries” on page 63</td>
</tr>
<tr>
<td>CM</td>
<td>Update linklist with SEYULINK</td>
<td>LNKLSTxx member Library name</td>
<td>“CICS- and CICSPlex SM-supplied modules required in the MVS linklist” on page 71</td>
</tr>
<tr>
<td>M</td>
<td>Update LPA list with lindex.SYEYULPA Optional library. Can be populated below.</td>
<td>LPALSTxx member Library name</td>
<td>“Installing CICSPlex SM modules into the LPA” on page 117</td>
</tr>
<tr>
<td>CM</td>
<td>Use your ESM to protect CICSPlex SM libraries</td>
<td>As required by your ESM</td>
<td>See Creating profiles for the CICSPlex SM data sets and Defining the CICSPlex SM started tasks</td>
</tr>
<tr>
<td>CM</td>
<td>Define security for the CMAS startup procedures</td>
<td>Procedure names</td>
<td>Activating security parameters CICSPlex SM</td>
</tr>
<tr>
<td>CM</td>
<td>Create z/OS Communications Server application definition for each CMAS</td>
<td>SYS1.VTAMLST major node member Application name(s)</td>
<td>“Step 1: Creating a z/OS Communications Server application definition for a CMAS” on page 96</td>
</tr>
<tr>
<td>CM</td>
<td>Define cross-domain resources for each CMAS</td>
<td>SYS1.VTAMLST members</td>
<td>“Step 2: Defining cross-domain resources for a CMAS” on page 96</td>
</tr>
<tr>
<td>CM</td>
<td>Edit DFHISTAR for postinstallation members</td>
<td>Edited member</td>
<td>“CICSPlex SM postinstallation members” on page 162</td>
</tr>
<tr>
<td>CM</td>
<td>Run edited DFHISTAR member to generate POST installation members.</td>
<td>sysproc.XEYUINST output library name</td>
<td>“CICSPlex SM postinstallation members” on page 162</td>
</tr>
<tr>
<td>M</td>
<td>(Optional) Install LPA modules</td>
<td>Installed usermod name</td>
<td>“Installing CICSPlex SM modules into the LPA” on page 117</td>
</tr>
<tr>
<td>CM</td>
<td>Create CICSPlex SM data repository</td>
<td>dsindex.EYUDREP. cmasname</td>
<td>Creating the CICSPlex SM data repository</td>
</tr>
<tr>
<td>CM</td>
<td>Create CICSPlex SM system parameter member for each CMAS</td>
<td>Modified EYUCMSOP parameter member(s)</td>
<td>Preparing to start a CMAS</td>
</tr>
<tr>
<td>M</td>
<td>Edit CICSPlex SM system parameter member for each MAS</td>
<td>Modified EYULMSOP parameter member(s)</td>
<td>Preparing to start a z/OS MAS</td>
</tr>
<tr>
<td>W</td>
<td>Edit CICSPlex SM system parameter member for each WUI</td>
<td>Modified EYUWUI0P parameter member(s)</td>
<td>Web User Interface server initialization parameters</td>
</tr>
<tr>
<td>Component</td>
<td>What you must do</td>
<td>Values to note</td>
<td>Where to obtain information</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>CM</td>
<td>Edit CICS SIT parameters for each CMAS</td>
<td>Modified parameter member(s)</td>
<td>CMAS-related CICS system initialization parameters</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Edit CICS SIT parameters for each MAS</td>
<td>Modified parameter member(s)</td>
<td>z/OS MAS-related CICS system initialization parameters</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Edit CICS SIT parameters for each WUI</td>
<td>Modified parameter member(s)</td>
<td>Reviewing CICS system initialization parameters for the WUI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Create the CICS data sets and the data repository for each CMAS</td>
<td>Modified EYUCMSDS member</td>
<td>Preparing to start a CMAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Install CMAS startup procedure (EYUCMASP sample procedure)</td>
<td>Installed procedure member</td>
<td>Preparing to start a CMAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Create CMAS-to-CMAS links using the WUI or the EYU9XDBT utility</td>
<td>CMAS names Target APPLID Target CICS SYSID</td>
<td>CMAS to CMAS link definitions - CMTCMDEF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Create CICSpelix definition using the WUI or the EYU9XDBT utility</td>
<td>CICSpelix name</td>
<td>CICSpelix definitions - CPLEXDEF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Create all MAS definitions using the WUI or the EYU9XDBT utility</td>
<td>MAS name(s)</td>
<td>Creating a CICS system definition</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Start the MAS</td>
<td>Message EYUXL0007I LMAS Phase II initialization complete</td>
<td>Preparing to start a z/OS MAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Shut down the MASs using the WUI CICS regions view - stops CICS</td>
<td>Message EYUXL0016I MAS shutdown complete</td>
<td>Stopping and restarting management of a CICS system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System worksheet

A worksheet is provided to help you to setup your CICSpelix SM system.

System: _______

Subsystem ID: _______ SNA applid: _______

<table>
<thead>
<tr>
<th>Name:</th>
<th>SNA applid:</th>
<th>CICS-SYSID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMAS:</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>WUI server:</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>MAS:</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>MAS:</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>MAS:</td>
<td>------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
CMAS worksheet

A worksheet is provided to help you to setup your CMAS.

System: _______ CMAS name: _______
CICS sysid: _______ SNA applid: _______

SYS1.PARMLIB(IEASYSxx) values:

<table>
<thead>
<tr>
<th>APF=</th>
<th>LNK=</th>
<th>LNKAUTH=</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NSYLSX= _______ PROG= _______

DSN added to member IEAAPFx or PROGxx: when LNKAUTH=APF TAB: (when LNKAUTH=LNKLST, no DSN here)

<table>
<thead>
<tr>
<th>DSN added to member LNKLSTxx:</th>
</tr>
</thead>
<tbody>
<tr>
<td>____________________________</td>
</tr>
</tbody>
</table>

SNA mode table node name:

SYS1.VTAMLST start list (ATCSTRxx):

<table>
<thead>
<tr>
<th>SYS1.VTAMLST configuration list (ATCCONxx):</th>
</tr>
</thead>
</table>

SYS1.VTAMLST applications member:

SYS1.VTAMLST cross-domain member:

SNA definitions; node names:

<table>
<thead>
<tr>
<th>Name</th>
<th>SNA applid</th>
<th>CICS sysid</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAS:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Installation materials library: ___________________________SDFHINST

Modified DFHISTAR (postinstallation) member:

DFHINST exec output library: ___________________________XDFHINST

CICSPlex SM data repository DSN:

CICS resource definition tables output DSN:

CICS CSD DSN:

Modified EYUCMS0P member:

CICS SIT parameters member:

Modified EYUCMSDS member:

CMAS startup procedure member:

Links to other CMASs:

<table>
<thead>
<tr>
<th>CMAS name:</th>
<th>SNA applid:</th>
<th>CICS sysid:</th>
<th>Protocol:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Links to MASs:

<table>
<thead>
<tr>
<th>MAS name:</th>
<th>SNA applid:</th>
<th>CICS sysid:</th>
<th>Protocol:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAS worksheet
A worksheet is provided to help you to set up your MAS.

MVS system: ___________________________
CICSpixx name: _______________________
CPSM name: __________________________ MAS CPSM name: _______________________
CICS sysid: ________________________ MAS CICS sysid: ________________________
SNA applid: ________________________ MAS SNA applid: ________________________
MAS type: __________________________ AOR, TOR

DSN added to member IEAAPFxx or PROGxx: when LNKAUTH=APFTAB: (when LNKAUTH=LNKLST, no DSN here) ___________________________SEYUAUTH

DSN added to member LPALSTxx: ___________________________SEYULPA

SYS1.VTAMLST start list (ATCSTRxx): ______________________

SYS1.VTAMLST configuration list (ATCCONxx): ___________________________
Chapter 1. Planning for installation

WUI server worksheet

A worksheet is provided to help you to setup your WUI server.

MVS system: ____________________________
CICSplex name: ____________________________
CPM name: ____________________________ MAS CPSM name: ____________________________
CICS sysid: ____________________________ MAS CICS sysid: ____________________________
SNA applid: ____________________________ MAS SNA applid: ____________________________

DSN added to member IEAAPFx or PROGFxx: when LNKAUTH=APFTAB: (when LNKAUTH=LNKLST, no dsn here) ____________________________ SEYUAUTH

DSN added to member LPALSTxx: ____________________________ SEYULPA
SYS1.VTAMLST start list (ATCSTRxx): ____________________________
SYS1.VTAMLST configuration list (ATCCONxx): ____________________________
SYS1.VTAMLST applications member: ____________________________
Installation materials library: ____________________________ SDFHINST
Modified DFHISTAR (postinstallation) member: ____________________________
DFHINST exec output library: ____________________________ XDFHINST
LPA module (usermod) name: ____________________________
CICS resource definition tables output dsn: ____________________________
CICS CSD DSN: ____________________________
Modified EYULMSOP DSN (member): ____________________________
CICS SIT parameters DSN (member): ____________________________

Link from CMAS:

CMAS name: SNA applid: CICS sysid: Protocol:
__________________________ ________________ ________________ ________________
IVP planning worksheet

A worksheet is provided to help you to define your IVP.

<table>
<thead>
<tr>
<th>Component</th>
<th>DFHISTAR parameters</th>
<th>Your value</th>
<th>DFHISTAR defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load library high-level qualifier for CICS</td>
<td>TINDEX.CICS. XTRAQUAL</td>
<td></td>
<td>CICSTS55.CICS</td>
</tr>
<tr>
<td>Load library high-level qualifier for CICSPlex SM</td>
<td>TINDEX.CPSM. XTRAQUAL</td>
<td></td>
<td>CICSTS55.CPSM</td>
</tr>
<tr>
<td>Attributes of the CICS TS system data sets</td>
<td>DSINFO</td>
<td></td>
<td>CICSTS55 CICS41 3390</td>
</tr>
<tr>
<td>Data set name of the SCEECICS library</td>
<td>SCEECICS</td>
<td></td>
<td>SYS1.SCEECICS</td>
</tr>
<tr>
<td>Data set name of the SCEERUN library</td>
<td>SCEERUN</td>
<td></td>
<td>SYS1.SCEERUN</td>
</tr>
<tr>
<td>Data set name of the SCEERUN2 library</td>
<td>SCEERUN2</td>
<td></td>
<td>SYS1.SCEERUN2</td>
</tr>
<tr>
<td>Data set name of the SCEESAMP library</td>
<td>SCEESAMP</td>
<td></td>
<td>SYS1.SCEESAMP</td>
</tr>
<tr>
<td>CMAS name</td>
<td>CMASNAME</td>
<td></td>
<td>CMAS01</td>
</tr>
<tr>
<td>CMAS sysid</td>
<td>CMSSYSID</td>
<td></td>
<td>CM01</td>
</tr>
<tr>
<td>CMAS applid</td>
<td>CMASNAME</td>
<td></td>
<td>CMAS01</td>
</tr>
<tr>
<td>CICSPlex name</td>
<td>CSYSPLEX</td>
<td></td>
<td>CSYPLX01</td>
</tr>
<tr>
<td>MAS name</td>
<td>CSYSNAME</td>
<td></td>
<td>CSYS01</td>
</tr>
<tr>
<td>MAS sysid</td>
<td>CSYSYSID</td>
<td></td>
<td>CS01</td>
</tr>
<tr>
<td>Web User Interface CICSPlex name</td>
<td>WUIPLEX</td>
<td></td>
<td>WUIPCM01</td>
</tr>
<tr>
<td>Web User Interface applid</td>
<td>WUINAME</td>
<td></td>
<td>WUINCM01</td>
</tr>
<tr>
<td>Web User Interface sysid</td>
<td>WUISYSID</td>
<td></td>
<td>WU01</td>
</tr>
<tr>
<td>TCP/IP host name</td>
<td>TCPIPHST</td>
<td></td>
<td>xxxxxxxxxx. xxxxxxxxxx. xxxxxxxxxx. xxxxxxxxxx</td>
</tr>
<tr>
<td>TCP/IP port for Web User Interface</td>
<td>TCPIPPRT</td>
<td></td>
<td>12345</td>
</tr>
<tr>
<td>Timezone</td>
<td>TIMEZONE</td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>
Chapter 2. CICS Explorer installation

Optionally, you can install CICS Explorer a number of ways and in a number of locations, depending on the requirements of your organization. After installation, you must configure the FTP server for CICS Explorer.

For details, see Downloading and starting CICS Explorer in the CICS Explorer product documentation.

Configuring the FTP server for CICS Explorer

CICS Explorer uses the z/OS Communications Server FTP server to gain access to data sets, z/OS hierarchical file systems such as zFS, and the JES spool. For CICS Explorer to successfully obtain the required spool files, the FTP.DATA configuration file for the Server must specify JESINTERFACELEVEL 2.

About this task
This task describes how to check the JESINTERFACELEVEL in the FTP server.

Procedure
1. Start an FTP client and run a quote stat command.
2. Check the output to determine the JESINTERFACELEVEL. For example:

 230 userid is logged on. Working directory is "/u/<userid>".
 ftp> quote stat
 211-Server FTP talking to host 10.10.10.10, port 1087
 211-User: USERID Working directory: /u/<userid>
 211-The control connection has transferred 1360 bytes

 211-Truncated records will not be treated as an error
 211-JESRECL is 80
 211-JESRECFM is Fixed
 211-JESINTERFACELEVEL is 2
 211-Server site variable JESTRAILINGBLANKS is set to TRUE

 211 *** end of status ***
 ftp> quit
 221 Quit command received. Goodbye.

3. Change the FTP.DATA configuration file for the Server to specify JESINTERFACELEVEL 2.

What to do next
After you configure the FTP server, you must configure the CICS Explorer connections to your CICS or CICSPlex SM systems. See Connecting CICS Explorer to CICS systems in the CICS Explorer product documentation.
Chapter 3. Installing CICS TS Developer Trial

You use the same methods to install CICS TS Developer Trial as you do CICS Transaction Server. Make sure that you are familiar with the restrictions of CICS TS Developer Trial, described in Developer Trial.

In summary, you do the following:

1. Download CICS Developer Trial from Shopz. This comes as the CICS TS base component and the Developer Trial activation module. Make sure that you have the “Program Directories” on page 2 for both the base component and the Developer Trial activation module.
2. Using SMP/E, install both the base component and the activation module. For details, see Chapter 5, “Installing CICS TS,” on page 19 and Installing the CICS TS activation module in Installing.
3. Include the SDFHDEV activation library in the STEPLIB of your CICS JCL.
4. Restart your region. In the console view, message DFHTI0200 confirms that you are running Developer Trial and shows the expiry date. This message is issued daily at midnight until the expiry date is reached.

To extend your use of CICS TS Developer Trial at the end of the usage period, see Chapter 9, “Renewing a Developer Trial license,” on page 189.

You can upgrade from Developer Trial to a full version of CICS as the Monthly License Charge (MLC) base edition of CICS TS, subject to your purchased entitlement, without having to reinstall. For instructions, see Upgrading from CICS TS Developer Trial.
Chapter 4. Installing CICS TS VUE (Value Unit Edition)

You use the same methods to install CICS TS VUE as you do CICS Transaction Server. There are slightly different steps to go through depending on whether you are installing CICS TS VUE on its own or you are moving your existing CICS TS MLC (Monthly License Charge) installation to VUE.

Moving an existing CICS TS MLC installation to VUE

In this scenario, do the following:

1. Download CICS VUE from Shopz. This comes as the CICS TS base component and the VUE activation module. Make sure that you have the “Program Directories” on page 2 for both the base component and the VUE activation module.

2. Using SMP/E, install only the activation module on top of your existing base product. You do not need to install the CICS TS base component. There is no license acceptance panel during this installation. For details, see Installing the CICS TS activation module in Installing.

3. Modify your CICS JCL to replace the CICS TS MLC activation library (SDFHLIC) with the new SDFHVUE activation library in the STEPLIB. The SDFHVUE library must be APF-authorized. For details, see Authorizing the CICS and CICSPlex SM libraries. If you use coupling facility data table servers, temporary storage servers, region status servers, or named counter servers, you must also add the SDFHVUE library to the STEPLIB of the JCL for each of these servers.

4. Restart your region. In the console view, message DFHTI0103 confirms that you are running VUE.

Installing CICS TS VUE

In this scenario, do the following:

1. Download CICS VUE from Shopz. This comes as the CICS TS base component and the VUE activation module. Make sure that you have the “Program Directories” on page 2 for both the base component and the VUE activation module.

2. Using SMP/E, install both the base component and the activation module. There is no license acceptance panel during this installation. For details, see Chapter 5, “Installing CICS TS,” on page 19 and Installing the CICS TS activation module in Installing.

3. Include the SDFHVUE activation library in the STEPLIB of your CICS JCL. The SDFHVUE library must be APF-authorized. For details, see Authorizing the CICS and CICSPlex SM libraries. If you use coupling facility data table servers, temporary storage servers, region status servers, or named counter servers, you must also add the SDFHVUE library to the STEPLIB of the JCL for each of these servers.

4. Restart your region. In the console view, message DFHTI0103 confirms that you are running VUE.
Chapter 5. Installing CICS TS

You must install two components for any of the three editions of CICS Transaction Server for z/OS: the base component and the activation module that is specific to each edition.

CICS TS has two components:

• CICS TS for z/OS V5.5 - base component
• An activation module specific to the offering

These components can be installed in any order but they must both be installed before you can run the installation verification procedures, described in Verifying the CICS installation.

Installing the CICS TS activation module

You install an activation module for the CICS offering that you require. The activation module and the base component can be installed in any order.

Before you begin

Create an SMP/E environment for the components in your CICS Transaction Server for z/OS, Version 5 Release 5 offering. This environment can be shared between the CICS TS for z/OS V5.5 - base component and the activation module.

If you are using more than one offering, the activation modules for all the offerings can share the same SMP/E environment.

Make sure that you have access to the Program Directory for the activation module for the edition that you are installing. See “Program Directories” on page 2 for details.

About this task

This task describes the steps that are required to install the activation module.

Procedure

1. Install the activation module by using the instructions in the program directory for the activation module component that you require.
2. Authorize the data set.

Results

You installed data sets containing the activation module called CICSTS55.HLQ.suffix. Where suffix is the activate module suffix, which is one of the following:

• SDFHLIC for CICS TS for z/OS V5.5 - activation module
• SDFHDEV for CICS TS for z/OS Developer Trial V5.5 - activation module
• SDFHVUE for CICS TS for z/OS Value Unit Edition V5.5 - activation module

What to do next

If you previously installed CICS TS for z/OS Developer Trial Version 5.5 and are upgrading to another edition of the product, follow the instructions in Upgrading from CICS TS Developer Trial.

If this is the first version of CICS TS for z/OS, Version 5.5 that you installed, you must install the base component, as described in Chapter 5, “Installing CICS TS,” on page 19.
Installing the CICS TS base component from CBPDO

You install all the elements from the CICS TS CBPDO using a single installation process.

The CBPDO Memo to Users Extension contains information about the CBPDO you ordered and the features and service it includes. It also contains CBPDO installation information.

Read the Memo to Users Extension thoroughly before starting any of the installation tasks.

The Program Directory gives a sample IEBCOPY job that you can customize to copy RELFILE(2) from the CICS TS CBPDO tape.

1. Modify the LABEL=3 parameter to reference the file number of RELFILE(2) as supplied on the CBPDO tape.

2. When you have copied RELFILE(2) to DASD, you generate a single set of installation jobs using the CICS TS job generator, DFHISTAR.

3. This generates the following set of customized installation jobs, based on the parameters you specify to DFHISTAR:
 - DFHIHFS0, DFHIHFS1, DFHIHFSA, and DFHISMKD, the z/OS UNIX-related jobs
 - DFHINST1 through DFHINST6

Using the SMP/E RECEIVE, APPLY, and ACCEPT commands

The process for using the SMP/E RECEIVE, APPLY, and ACCEPT commands is explained in the Program Directory for CICS Transaction Server.

Using DFHISTAR process

DFHISTAR provides default qualifiers for the data sets into which you install CICS TS. The DFHISTAR job provides several parameters to enable you customize your settings.

CICS TS comprises a number of elements that are installed in a single process by the DFHINSTn jobs. To ensure the element libraries are easily identified, DFHISTAR adds an element qualifier to the data set names. Using the default high-level qualifier CICSTS55, the names generated by DFHISTAR take the following form:

CICS
 CICSTS55.CICS.ddname

CICSPlex SM
 CICSTS55.CPSM.ddname

REXX for CICS
 CICSTS55.REXX.ddname

To enable you to customize the z/OS UNIX-related jobs, the DFHISTAR job provides the following parameters:

HFS0DSN
 The data set name of the file system to be mounted at directory /pathprefix/usr/lpp/cicsts. Pathprefix is variable, and optional. The other parts of this directory name structure are fixed. The default data set name is OMVS.USR.LPP.CICSTS.

 The DFHIHFS0 job uses this parameter.

HFS1DSN
 The data set name of the file system to be mounted at directory /pathprefix/usr/lpp/cicsts/ussdir, where ussdir is a variable you specify in the ussdir parameter in DFHISTAR. If you omit the ussdir parameter it defaults to the value of the TINDEX parameter in lowercase, which in turn defaults to CICSTS55, so if both defaults are taken, the full directory path resolves to /pathprefix/usr/lpp/cicsts/cicsts55.

 The default data set name is OMVS.USR.LPP.CICSTS.CICSTS55.
The DFHIFHS1 job uses this parameter.

HFSADSN

The data set name of the file system to be mounted at directory `/pathprefix/usr/lpp/cicsts/ussdira`, where `ussdira` is a variable you also specify in DFHISTAR. If you omit the `ussdira` parameter, it defaults to the value (in lowercase) of `aindex`, which, in turn, defaults to CICSTS55.A. The default data set name is OMVS.USR.LPP.CICSTS.CICSTS55.A.

The DFHIFHSA job uses this parameter.

“Editing the DFHISTAR job” on page 25 describes all the parameters that you can specify to customize the installation jobs, and explains the jobs that are generated.

Installing the CICS TS base component from ServerPac

A CICS TS ServerPac consists of a number of tapes, the exact number depending on whether other products are included with the CICS TS ServerPac and also on the type of tape requested.

For example, a ServerPac order can consist of the following tapes:

- A tape that contains related-installation material (RIM) files
- Three tapes that contain the CICS TS product, consisting of all the SMP/E CSI data sets and the target and distribution libraries
- A service tape

If you already have printed copies of the ServerPac manuals, use these to guide you through the installation process. If you do not have copies, download and print the manuals from the first ServerPac tape. A sample job in member PRTDOC on the RIM tape enables you to print the manuals.

Summary of the ServerPac installation steps

You can do the following tasks from the primary option menu:

- Receive the order (option R)
- Install the order (option I)

The primary menu also enables you to display information about orders.

The following tasks are described, with illustrations of the various panels, in ServerPac: Using the Installation Dialog:

Receive the order

This step is described in section "6.0 Receive an Order".

The "Order Receive" panels enable you enter your CICS TS order information and to complete the job card information required to generate the order-receive job. The final phase of this step presents you with the generated JCL in an edit session, from which you can submit the job to receive the installation material (RIM) files to your DASD.

Install orders

This step is described in section "7.0 Installation Menu".

The "Installation Menu" panels enable you to perform the following tasks:

- Configure the order control information tables
- Define values for the installation variables used in skeleton batch jobs
- Define the names of the SMP/E zones into which you want to install CICS TS
- Modify data set profiles and DASD allocation for the order
- Define catalog data set names and the aliases associated with them
- Define system-specific aliases (where applicable)
- Select and submit the installation jobs
• Save the installation work configuration for use with future CICS TS orders
• Update the order inventory status

Resources to install the ServerPac

You require several resources to install the CICS TS ServerPac.
• A tape drive for reading the tapes
• A TSO session for running the CustomPac dialog
• A copy of ServerPac: Using the Installation Dialog (SA23-2278).
• The ServerPac: Installing Your Order, customized for each customer order
• The CustomPac dialog supplied with ServerPac

First-time user of the CustomPac dialog for ServerPac

If you are installing a ServerPac for the first time, start by installing the CustomPac dialog, then invoke it. See Installing and starting the dialog in ServerPac: Using the Installation Dialog.

Existing user of the CustomPac dialog for ServerPac

Invoke the CustomPac dialog, either from the ISPF primary options menu or by invoking the ServerPac CLIST. Make sure that you use the latest dialog that was provided with your ServerPac instead of existing dialogs from a previous installation.

As an existing user of the CustomPac dialog, you can begin at the step described in Receiving a new order in ServerPac: Using the Installation Dialog.

Installing CICS TS using DFHISTAR

Use the DFHISTAR job for installing CICS TS.

<table>
<thead>
<tr>
<th>Step</th>
<th>Done?</th>
<th>Description</th>
<th>See topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Check that you have received the material that you ordered.</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Check that you have all the installation prerequisites.</td>
<td>See the Program Directory</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Copy RELFILE(2) from the distribution tape. Record your name for the TDFHINST library: ___________________</td>
<td>See the Program Directory</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Edit the DFHISTAR job in the TDFHINST library.</td>
<td>“Editing the DFHISTAR job” on page 25</td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td>Specify the CICS Transaction Server temporary installation libraries.</td>
<td>“Specifying the CICS Transaction Server temporary installation libraries” on page 29</td>
</tr>
<tr>
<td>Step</td>
<td>Done?</td>
<td>Description</td>
<td>See topic</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td>Specify the JOB parameters for installation jobs.</td>
<td>“Specifying the JOB parameters for installation jobs” on page 30</td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td>Specify the scope of the installation.</td>
<td>“Specifying the scope of the installation” on page 30</td>
</tr>
<tr>
<td>4.4</td>
<td></td>
<td>Specify the type of JES to be used.</td>
<td>“Specifying the type of JES to be used” on page 30</td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td>Specify the utilities to be used.</td>
<td>“Specifying the utilities” on page 30</td>
</tr>
<tr>
<td>4.6</td>
<td></td>
<td>Specify the prefix of CICS Transaction Server jobs.</td>
<td>“Specifying the prefix of CICS Transaction Server jobs” on page 31</td>
</tr>
<tr>
<td>4.8</td>
<td></td>
<td>Specify the prefix of the CSSLIB library.</td>
<td>“Specifying the data set name of the CSSLIB library” on page 43</td>
</tr>
<tr>
<td>4.9</td>
<td></td>
<td>Specify the prefix of the SISPLOAD library.</td>
<td>“Specifying the library data set names” on page 43</td>
</tr>
<tr>
<td>4.10</td>
<td></td>
<td>Specify the indexes of CICS Transaction Server data sets.</td>
<td>“Specifying the indexes of CICS Transaction Server data sets” on page 31</td>
</tr>
<tr>
<td>4.11</td>
<td></td>
<td>Specify block sizes.</td>
<td>“Specifying block sizes” on page 33</td>
</tr>
<tr>
<td>4.13</td>
<td></td>
<td>Specify the disk unit for work data sets.</td>
<td>“Specifying the disk unit for work data sets” on page 33</td>
</tr>
<tr>
<td>4.14</td>
<td></td>
<td>Specify disk volumes.</td>
<td>“Specifying disk volumes” on page 34</td>
</tr>
<tr>
<td>4.15</td>
<td></td>
<td>Allocate the space for CICS Transaction Server disk volumes.</td>
<td>“Allocating space for CICS Transaction Server disk volumes” on page 36</td>
</tr>
<tr>
<td>4.16</td>
<td></td>
<td>Specify SMP/E zone attributes.</td>
<td>“Specifying SMP/E zone attributes” on page 38</td>
</tr>
<tr>
<td>4.17</td>
<td></td>
<td>Specify attributes of the temporary SMP/E work data sets.</td>
<td>“Specifying attributes of the temporary SMP/E work data sets” on page 37</td>
</tr>
<tr>
<td>4.18</td>
<td></td>
<td>Specify attributes of the permanent SMP/E data sets.</td>
<td>“Specifying attributes of the permanent SMP/E data sets” on page 38</td>
</tr>
<tr>
<td>Step</td>
<td>Done?</td>
<td>Description</td>
<td>See topic</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>4.19</td>
<td></td>
<td>Specify the high-level qualifiers for SMP/E data sets.</td>
<td>“Specifying the high-level qualifiers for SMP/E data sets” on page 41</td>
</tr>
<tr>
<td>4.20</td>
<td></td>
<td>Specify the z/OS UNIX directories and data sets.</td>
<td>“Specifying the CICS TS z/OS UNIX directories and data sets” on page 32</td>
</tr>
<tr>
<td>4.21</td>
<td></td>
<td>Specify the distribution tape device type.</td>
<td>“Specifying the distribution tape device type” on page 41</td>
</tr>
<tr>
<td>4.22</td>
<td></td>
<td>Specify attributes of the CICS Transaction Server system data sets.</td>
<td>“Specifying attributes of the CICS Transaction Server system data sets” on page 41</td>
</tr>
<tr>
<td>4.23</td>
<td></td>
<td>Specify attributes specific to CICSPlex SM (optional).</td>
<td>“Specifying attributes specific to CICSPlex SM” on page 46</td>
</tr>
<tr>
<td>4.24</td>
<td></td>
<td>Specify attributes of any additional target libraries.</td>
<td>“Specifying attributes of any additional target libraries” on page 41</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Create RACF® profiles for the CICS Transaction Server data sets.</td>
<td>“Creating RACF profiles for the CICS Transaction Server data sets” on page 48</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Run the DFHISTAR job.</td>
<td>“Running the DFHISTAR job” on page 49</td>
</tr>
<tr>
<td>6.1</td>
<td></td>
<td>Check the output from the DFHISTAR job.</td>
<td>“Checking the output from the DFHISTAR job” on page 49</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Run the installation jobs.</td>
<td>“Running the installation jobs” on page 49</td>
</tr>
<tr>
<td>8.1</td>
<td></td>
<td>Check the output from the installation jobs.</td>
<td>“Checking the output from the installation jobs” on page 25</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Copy the CICS Transaction Server procedures into a procedure library.</td>
<td>“Copying the CICS Transaction Server procedures into a procedure library” on page 55</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Create any extra sets of CICS Transaction Server target libraries (optional).</td>
<td>“Creating extra sets of CICS Transaction Server target libraries (optional)” on page 58</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Load the Japanese national language feature (optional).</td>
<td>“Loading other optional features” on page 60</td>
</tr>
</tbody>
</table>
This topic covers the following subjects:

- “Editing the DFHISTAR job” on page 25
- “Creating RACF profiles for the CICS Transaction Server data sets” on page 48
- “Running the DFHISTAR job” on page 49
- “Running the installation jobs” on page 49
- “Checking the output from the installation jobs” on page 25
- “Postinstallation activities” on page 55

Checking the output from the installation jobs

When you have successfully run all of the installation jobs, CICS Transaction Server is loaded.

You now have CICS Transaction Server installed on your DASD. Back up the volume on which CICS Transaction Server resides. If any errors occur during customization later, you do not have to re-run the installation jobs.

Editing the DFHISTAR job

You can edit the DFHISTAR job to assign values to installation parameters for your environment.

The DFHISTAR job is in the TDFHINST library when you copy RELFILE(2) from the distribution tape. You can either edit the DFHISTAR job directly or copy the DFHISTAR job to preserve the IBM supplied values and edit your copy.

Remember that the product is installed using cataloged data sets.

To help you look up details about a particular parameter, Table 4 on page 25 lists the DFHISTAR parameters, in alphabetical order, with their predefined values. The parameters in the DFHISTAR job itself are listed in associated groups. The table also indicates whether a parameter is relevant to CICS, or CICSPlex SM, or both.

The default values of the parameters are the same as the IBM supplied values. You can use the IBM supplied values, define your own values, or let the CICS Transaction Server installation process determine default values for you.

Enter your values for parameters of the DFHISTAR job in lowercase. Except for the z/OS UNIX parameters USSDIR, USSDIRA, and JAVADIR, the values are translated into uppercase when you run the DFHISTAR job.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CICS</th>
<th>CICSPlex</th>
<th>Supplied value</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVATE</td>
<td>X</td>
<td>X</td>
<td>SDFHLIC</td>
<td>“Specifying the data set name of the activation module” on page 32</td>
</tr>
<tr>
<td>ADDTVOL</td>
<td>X</td>
<td></td>
<td>CICS55 SYSALLDA</td>
<td>“Specifying attributes of any additional target libraries” on page 41</td>
</tr>
<tr>
<td>AINDEX</td>
<td>X</td>
<td></td>
<td>CICSTS55.A</td>
<td>“Specifying attributes of any additional target libraries” on page 41</td>
</tr>
<tr>
<td>ALINDEX</td>
<td>X</td>
<td></td>
<td>SYS1.CICSTS55.A</td>
<td>“Specifying attributes of any additional target libraries” on page 41</td>
</tr>
<tr>
<td>ASMPLTS</td>
<td>X</td>
<td></td>
<td>CICSTS55.A.SMPLTS</td>
<td>“Specifying attributes of any additional target libraries” on page 41</td>
</tr>
<tr>
<td>ASMPMTS</td>
<td>X</td>
<td></td>
<td>CICSTS55.A.SMPMTS</td>
<td>“Specifying attributes of any additional target libraries” on page 41</td>
</tr>
<tr>
<td>ASMPSCDS</td>
<td>X</td>
<td></td>
<td>CICSTS55.A.SMPSCD</td>
<td>“Specifying attributes of any additional target libraries” on page 41</td>
</tr>
<tr>
<td>ASMPSTS</td>
<td>X</td>
<td></td>
<td>CICSTS55.A.SMPSTS</td>
<td>“Specifying attributes of any additional target libraries” on page 41</td>
</tr>
<tr>
<td>Parameter</td>
<td>CICS</td>
<td>CICSPlex x SM</td>
<td>Supplied value</td>
<td>Refer to</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>---------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>AZONE</td>
<td>X</td>
<td></td>
<td>AZONE</td>
<td>“Specifying SMP/E zone attributes” on page 38</td>
</tr>
<tr>
<td>AZONECSII</td>
<td>X</td>
<td>CICSTS55.A.AZONE</td>
<td></td>
<td>“Specifying SMP/E zone attributes” on page 38</td>
</tr>
<tr>
<td>AZONELOG</td>
<td>X</td>
<td>CICSTS55.A.AZONE.SMPLOG</td>
<td></td>
<td>“Specifying SMP/E zone attributes” on page 38</td>
</tr>
<tr>
<td>BLKFB80</td>
<td>X</td>
<td></td>
<td>0</td>
<td>“Specifying block sizes” on page 33</td>
</tr>
<tr>
<td>BLKISPF</td>
<td>X</td>
<td></td>
<td>3200</td>
<td>This parameter is now obsolete.</td>
</tr>
<tr>
<td>BLKU</td>
<td>X</td>
<td>X</td>
<td>32760</td>
<td>“Specifying block sizes” on page 33</td>
</tr>
<tr>
<td>CMACVOL</td>
<td>X</td>
<td></td>
<td>CICSTS55</td>
<td>“Specifying disk volumes” on page 34</td>
</tr>
<tr>
<td>CMASNAME</td>
<td>X</td>
<td></td>
<td>CMAS01</td>
<td>“Specifying attributes specific to CICSPlex SM” on page 46</td>
</tr>
<tr>
<td>CMCIPORT</td>
<td>X</td>
<td></td>
<td>12346</td>
<td>“Specifying attributes specific to CICSPlex SM” on page 46</td>
</tr>
<tr>
<td>CMSSYSID</td>
<td>X</td>
<td></td>
<td>CM01</td>
<td>“Specifying attributes specific to CICSPlex SM” on page 46</td>
</tr>
<tr>
<td>CSSLIB</td>
<td>X</td>
<td></td>
<td>SYS1.CSSLIB</td>
<td>“Specifying the data set name of the CSSLIB library” on page 43</td>
</tr>
<tr>
<td>CSYSNAME</td>
<td>X</td>
<td></td>
<td>CSYS01</td>
<td>“Specifying attributes specific to CICSPlex SM” on page 46</td>
</tr>
<tr>
<td>CSYSPLEX</td>
<td>X</td>
<td></td>
<td>CSYPLX01</td>
<td>“Specifying attributes specific to CICSPlex SM” on page 46</td>
</tr>
<tr>
<td>DEFVOL</td>
<td>X</td>
<td>X</td>
<td>CICSTS55.SYSCALLDA</td>
<td>“Specifying disk volumes” on page 34</td>
</tr>
<tr>
<td>DINDEX</td>
<td>X</td>
<td>X</td>
<td>CICSTS55</td>
<td>“Specifying the indexes of CICS Transaction Server data sets” on page 31</td>
</tr>
<tr>
<td>DISTVOL</td>
<td>X</td>
<td>X</td>
<td>CICSTS55.SYSCALLDA</td>
<td>“Specifying disk volumes” on page 34</td>
</tr>
<tr>
<td>DOWNLOAD</td>
<td>X</td>
<td></td>
<td>CICSTS55.DOWNLOAD</td>
<td>“Specifying the DFHISTAR DOWNLOAD parameter” on page 48</td>
</tr>
<tr>
<td>DSINFO</td>
<td>X</td>
<td>X</td>
<td>CICSTS55.SYSCALLDA</td>
<td>“Specifying the attributes of the CICS Transaction Server system data sets” on page 41</td>
</tr>
<tr>
<td>DZONE</td>
<td>X</td>
<td></td>
<td>DZONE</td>
<td>“Specifying SMP/E zone attributes” on page 38</td>
</tr>
<tr>
<td>DZONECSII</td>
<td>X</td>
<td></td>
<td>CICSTS55.DZONE.NEW CICSTS55.SYSCALLDA</td>
<td>“Specifying SMP/E zone attributes” on page 38</td>
</tr>
<tr>
<td>DZONELOG</td>
<td>X</td>
<td></td>
<td>CICSTS55.DZONE.SMPLOG NEW</td>
<td>“Specifying SMP/E zone attributes” on page 38</td>
</tr>
<tr>
<td>GINDEX</td>
<td>X</td>
<td>X</td>
<td>CICSTS55</td>
<td>“Specifying the indexes of CICS Transaction Server data sets” on page 31</td>
</tr>
<tr>
<td>GZONE</td>
<td>X</td>
<td></td>
<td>NEW CICSOPT</td>
<td>“Specifying SMP/E zone attributes” on page 38</td>
</tr>
<tr>
<td>GZONECSII</td>
<td>X</td>
<td>X</td>
<td>CICSTS55.GZONE.NEW CICSTS55.SYSCALLDA</td>
<td>“Specifying SMP/E zone attributes” on page 38</td>
</tr>
<tr>
<td>GZONELOG</td>
<td>X</td>
<td></td>
<td>CICSTS55.GZONE.SMPLOG NEW</td>
<td>“Specifying SMP/E zone attributes” on page 38</td>
</tr>
<tr>
<td>Parameter</td>
<td>CICS</td>
<td>CICSPlex SM</td>
<td>Supplied value</td>
<td>Refer to</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------</td>
</tr>
<tr>
<td>HFS0DSN</td>
<td>X</td>
<td></td>
<td>OMVS.USR.LPP.CICSTS</td>
<td>“Specifying the CICS TS z/OS UNIX directories and data sets” on page 32</td>
</tr>
<tr>
<td>HFS1DSN</td>
<td>X</td>
<td></td>
<td>OMVS.USR.LPP.CICSTS.CICSTS55</td>
<td>“Specifying the CICS TS z/OS UNIX directories and data sets” on page 32</td>
</tr>
<tr>
<td>HFSADSN</td>
<td>X</td>
<td></td>
<td>OMVS.USR.LPP.CICSTS.CICSTS55.A</td>
<td>“Specifying the CICS TS z/OS UNIX directories and data sets” on page 32</td>
</tr>
<tr>
<td>JAVADIR</td>
<td>X</td>
<td></td>
<td>java/J8.0_64</td>
<td>“Specifying the installation directory for Java support” on page 33</td>
</tr>
<tr>
<td>JES</td>
<td>X</td>
<td></td>
<td>JES2</td>
<td>“Specifying the type of JES to be used” on page 30</td>
</tr>
<tr>
<td>JOB</td>
<td>X</td>
<td>X</td>
<td>(No valid value)</td>
<td>“Specifying the JOB parameters for installation jobs” on page 30</td>
</tr>
<tr>
<td>LIB</td>
<td>X</td>
<td>X</td>
<td>CICSTS55.XDFHINST</td>
<td>“Specifying the CICS Transaction Server temporary installation libraries” on page 29</td>
</tr>
<tr>
<td>LINDEX</td>
<td>X</td>
<td>X</td>
<td>SYS1.CICSTS55</td>
<td>“Specifying the indexes of CICS Transaction Server data sets” on page 31</td>
</tr>
<tr>
<td>LOGGER-INFO</td>
<td>X</td>
<td></td>
<td>001 500 4096 64000 2048 MVSX XXXXXXX XXXXXXXX</td>
<td>“Specifying log stream and log stream structure attributes” on page 46</td>
</tr>
<tr>
<td>MODNAME</td>
<td>X</td>
<td></td>
<td>DFHCSVC</td>
<td>“Installing the CICS SVCs” on page 85</td>
</tr>
<tr>
<td>NEWDREP</td>
<td>X</td>
<td></td>
<td>.</td>
<td>“Specifying block sizes” on page 33</td>
</tr>
<tr>
<td>OLDDREP</td>
<td>X</td>
<td></td>
<td>.</td>
<td>“Specifying attributes specific to CICSPlex SM” on page 46</td>
</tr>
<tr>
<td>OPTVOL</td>
<td>X</td>
<td></td>
<td>CICSTS55 SYSALLDA</td>
<td>“Specifying disk volumes” on page 34</td>
</tr>
<tr>
<td>PATHPREFIX</td>
<td>X</td>
<td></td>
<td>Null string</td>
<td>“Specifying the CICS TS z/OS UNIX directories and data sets” on page 32</td>
</tr>
<tr>
<td>PREFIX</td>
<td>X</td>
<td></td>
<td>DFH</td>
<td>“Specifying the prefix of CICS Transaction Server jobs” on page 31</td>
</tr>
<tr>
<td>SCEECICS</td>
<td>X</td>
<td>X</td>
<td>SYS1.SCEECICS</td>
<td>“Specifying the data set names of the SCEECICS and SCEERUN libraries” on page 44</td>
</tr>
<tr>
<td>SCEECPP</td>
<td>X</td>
<td></td>
<td>SYS1.SCEECPP</td>
<td>“Specifying the data set name of the SCEECPP library” on page 44</td>
</tr>
<tr>
<td>SCEELIB</td>
<td>X</td>
<td></td>
<td>SYS1.SCEELIB</td>
<td>“Specifying the data set names of the SCEERUN2 library” on page 44</td>
</tr>
<tr>
<td>SCEEBND2</td>
<td>X</td>
<td></td>
<td>SYS1.SCEEBND2</td>
<td>“Specifying the data set name of the SCEEBND2 library” on page 43</td>
</tr>
<tr>
<td>SCEERUN</td>
<td>X</td>
<td>X</td>
<td>SYS1.SCEERUN</td>
<td>“Specifying the data set names of the SCEECICS and SCEERUN libraries” on page 44</td>
</tr>
<tr>
<td>SCEERUN2</td>
<td>X</td>
<td>X</td>
<td>SYS1.SCEERUN2</td>
<td>“Specifying the data set names of the SCEERUN2 library” on page 44</td>
</tr>
<tr>
<td>SCEELKED</td>
<td>X</td>
<td></td>
<td>SYS1.SCEELKED</td>
<td>“Specifying the data set name of the SCEELKED library” on page 43</td>
</tr>
<tr>
<td>SCEELKEX</td>
<td>X</td>
<td></td>
<td>SYS1.SCEELKEX</td>
<td>“Specifying the data set name of the SCEELKEX library” on page 43</td>
</tr>
<tr>
<td>SCEEOBJ</td>
<td>X</td>
<td></td>
<td>SYS1.SCEEOBJ</td>
<td>“Specifying the data set name of the SCEEOBJ library” on page 44</td>
</tr>
<tr>
<td>Parameter</td>
<td>CICS</td>
<td>CICSPle</td>
<td>SM</td>
<td>Supplied value</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>---------</td>
<td>----</td>
<td>---------------------------</td>
</tr>
<tr>
<td>SCEESAMP</td>
<td>X</td>
<td>X</td>
<td></td>
<td>SYS1.SCEESAMP</td>
</tr>
<tr>
<td>SCSFMOD0</td>
<td>X</td>
<td></td>
<td></td>
<td>SYS1.SCSFMOD0</td>
</tr>
<tr>
<td>SCLBSID</td>
<td>X</td>
<td></td>
<td></td>
<td>SYS1.SCLBSID</td>
</tr>
<tr>
<td>SCOPE</td>
<td>X</td>
<td>X</td>
<td></td>
<td>ALL</td>
</tr>
<tr>
<td>SCSQLOAD</td>
<td>X</td>
<td></td>
<td></td>
<td>SYS1.SCSQLOAD</td>
</tr>
<tr>
<td>SCSQANLE</td>
<td>X</td>
<td></td>
<td></td>
<td>SYS1.SCSQANLE</td>
</tr>
<tr>
<td>SCSQCICS</td>
<td>X</td>
<td></td>
<td></td>
<td>SYS1.SCSQCICS</td>
</tr>
<tr>
<td>SCSQAUTH</td>
<td>X</td>
<td></td>
<td></td>
<td>SYS1.SCSQAUTH</td>
</tr>
<tr>
<td>SDSNLOAD</td>
<td>X</td>
<td></td>
<td></td>
<td>SYS1.SDSNLOAD</td>
</tr>
<tr>
<td>SEZACMTX</td>
<td>X</td>
<td></td>
<td></td>
<td>SYS1.SEZACMTX</td>
</tr>
<tr>
<td>SEZARPCL</td>
<td>X</td>
<td></td>
<td></td>
<td>SYS1.SEZARPCL</td>
</tr>
<tr>
<td>SISPLOAD</td>
<td>X</td>
<td></td>
<td></td>
<td>SYS1.SISPLOAD</td>
</tr>
<tr>
<td>SIXMEXP</td>
<td>X</td>
<td></td>
<td></td>
<td>SYS1.SIXMEXP</td>
</tr>
<tr>
<td>SMPLTS</td>
<td>X</td>
<td></td>
<td></td>
<td>CICSTS55.SMPLTS</td>
</tr>
<tr>
<td>SMPMTS</td>
<td>X</td>
<td></td>
<td></td>
<td>CICSTS55.SMPMTS</td>
</tr>
<tr>
<td>SMPPTS</td>
<td>X</td>
<td></td>
<td></td>
<td>CICSTS55.SMPPTS</td>
</tr>
<tr>
<td>SMPSCDS</td>
<td>X</td>
<td></td>
<td></td>
<td>CICSTS55.SMPSCDS</td>
</tr>
<tr>
<td>SMPSTS</td>
<td>X</td>
<td></td>
<td></td>
<td>CICSTS55.SMPSTS</td>
</tr>
<tr>
<td>SMPVOL</td>
<td>X</td>
<td>X</td>
<td></td>
<td>CIC555 SYSCALLDA</td>
</tr>
<tr>
<td>SMPWORK</td>
<td>X</td>
<td>X</td>
<td></td>
<td>SYSCALLDA</td>
</tr>
<tr>
<td>SMS</td>
<td>X</td>
<td></td>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>SVCNUMB</td>
<td>X</td>
<td></td>
<td></td>
<td>216</td>
</tr>
<tr>
<td>TAPEUNIT</td>
<td>X</td>
<td></td>
<td></td>
<td>3480</td>
</tr>
<tr>
<td>TARGVOL</td>
<td>X</td>
<td>X</td>
<td></td>
<td>CIC555 SYSCALLDA</td>
</tr>
</tbody>
</table>
Table 4. Alphabetical list of parameters for the DFHISTAR job (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CICS</th>
<th>CICSPlex</th>
<th>Supplied value</th>
<th>Refer to</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCPIPHST</td>
<td>X</td>
<td></td>
<td>XXXXXXXXX.XXXXXXXX.XXXXXXX XX.XXXXXXXXXX.XXXXXXXXX</td>
<td>“Specifying attributes specific to CICSPlex SM” on page 46</td>
</tr>
<tr>
<td>TCPIPPRT</td>
<td>X</td>
<td></td>
<td>12345</td>
<td>“Specifying attributes specific to CICSPlex SM” on page 46</td>
</tr>
<tr>
<td>TEMPLIB</td>
<td>X</td>
<td></td>
<td>CICSTS55.TDFHINST</td>
<td>“Specifying the CICS Transaction Server temporary installation libraries” on page 29</td>
</tr>
<tr>
<td>TIMEZONE</td>
<td>X</td>
<td></td>
<td>B</td>
<td>“Specifying attributes specific to CICSPlex SM” on page 46</td>
</tr>
<tr>
<td>TINDEX</td>
<td>X</td>
<td></td>
<td>CICSTS55</td>
<td>“Specifying the indexes of CICS Transaction Server data sets” on page 31</td>
</tr>
<tr>
<td>TZONE</td>
<td>X</td>
<td></td>
<td>TZONE</td>
<td>“Specifying SMP/E zone attributes” on page 38</td>
</tr>
<tr>
<td>TZONECSI</td>
<td>X</td>
<td></td>
<td>CICSTS55.TZONE.NEW CICSTS55 SYSALLDA</td>
<td>“Specifying SMP/E zone attributes” on page 38</td>
</tr>
<tr>
<td>TZONELOG</td>
<td>X</td>
<td></td>
<td>CICSTS55.TZONE.SMLOG NEW</td>
<td>“Specifying SMP/E zone attributes” on page 38</td>
</tr>
<tr>
<td>USSDIR</td>
<td>X</td>
<td></td>
<td>.</td>
<td>“Specifying the CICS TS z/OS UNIX directories and data sets” on page 32</td>
</tr>
<tr>
<td>USSDIRA</td>
<td>X</td>
<td></td>
<td>.</td>
<td>“Specifying attributes of any additional target libraries” on page 41</td>
</tr>
<tr>
<td>UTILITIES</td>
<td>X</td>
<td></td>
<td>ASMA90 IEWL GIMSMP IEBCOPY</td>
<td>“Specifying the utilities” on page 30</td>
</tr>
<tr>
<td>WORKUNIT</td>
<td>X</td>
<td></td>
<td>SYSALLDA</td>
<td>“Specifying the disk unit for work data sets” on page 33</td>
</tr>
<tr>
<td>WUI</td>
<td>X</td>
<td></td>
<td>YES</td>
<td>“Specifying attributes specific to CICSPlex SM” on page 46</td>
</tr>
<tr>
<td>WUINAME</td>
<td>X</td>
<td>WUINCM01</td>
<td></td>
<td>“Specifying attributes specific to CICSPlex SM” on page 46</td>
</tr>
<tr>
<td>WUIPLEX</td>
<td>X</td>
<td>WUIPCM01</td>
<td></td>
<td>“Specifying attributes specific to CICSPlex SM” on page 46</td>
</tr>
<tr>
<td>WUISYSID</td>
<td>X</td>
<td>WU01</td>
<td></td>
<td>“Specifying attributes specific to CICSPlex SM” on page 46</td>
</tr>
<tr>
<td>XTRAQUAL</td>
<td>X</td>
<td>.</td>
<td>.</td>
<td>“Specifying extra qualifiers” on page 32</td>
</tr>
</tbody>
</table>

Specifying the CICS Transaction Server temporary installation libraries

Specify your data set names for the two temporary libraries that are used to install CICS Transaction Server. If you do not want to use the default names, record your values for the TEMPLIB and LIB parameters.

TEMPLIB library_name

Specifies the name of the temporary installation library that contains the skeleton installation jobs. Specify the name of the data set into which you copied RELFILE(2) from the distribution tape, described in *Copy RELFILE(2) from the Distribution Tape* in the Program Directory.

Also specify this name on the SYSPROC DD statement of the DFHISTAR job.

LIB library_name

Specifies the name of the installation output library to which the jobs generated by the DFHISTAR job are added.
Specifying the JOB parameters for installation jobs

Decide which parameters you want to use on the JOB statements of the CICS Transaction Server installation jobs and specify them on the JOB parameter.

JOB accounting_information

Specifies the JOB statement and accounting information that you want substituted into the jobs generated by the DFHISTAR job. Here is an example:

```
JOB //XXXXXXXX JOB 1,userid,MSGCLASS=A,MSGLEVEL=(1,1),
JOB //CLASS=A,NOTIFY=userid
JOB /*JOBPARM SYSAFF=node1
JOB /*ROUTE PRINT node2.userid
```

1. Do not change XXXXXXXX given in the sample JOB statement in the DFHISTAR job because it is the 8-character job name that is substituted by the DFHISTAR job. For example, for the installation job DFHIVPBT, the DFHISTAR job changes XXXXXXXX to DFHIVPBT.

2. Normal JCL rules for coding JOB statements apply to the JOB parameter.

3. Delete or comment out extra lines of the JOB statement that you do not require.

4. Normal JCL rules apply when coding the JOB statement; for example, all lines except the last line must end in a comma.

Specifying the scope of the installation

Specify the scope of the CICS Transaction Server installation on the SCOPE parameter.

```
SCOPE ALL|BASE|POST
```

1. Specifies whether you want to generate all the CICS Transaction Server installation and postinstallation jobs, or only the postinstallation jobs. When you install CICS Transaction Server from the distribution tape, specify the default, SCOPE ALL. Code the other options, if necessary, during postinstallation tasks.

```
ALL

BASE

POST
```

Specifying the type of JES to be used

Specify the type of job entry subsystem (JES) that you use to install CICS Transaction Server on the JES parameter. The DFHISTAR job generates jobs with statements suitable for JES2 or JES3.

```
JES JES2|2|JES3|3
```

1. Specifies the release of JES that you are using. If you are using JES2, specify JES2 or 2. If you are using JES3, specify JES3 or 3.

Specifying the utilities

Specify the utilities to install CICS Transaction Server on the UTILITIES parameter.

```
UTILITIES asmprog binder smpeprog copyutil
```

1. Specifies the names of utility programs to be used when installing CICS Transaction Server elements and programs that it uses.

```
asmprog
```

1. The program name of the assembler. Specify ASMA90 for High Level Assembler/MVS and VM and VSE, which is required.
binder
The program name of the z/OS binder. Ensure that program IEWL references the z/OS program management binder.

smpeprog
The program name of the SMP/E program. The IBM-supplied name is GIMSMP.

copyutil
The program name of the data set copy utility program. The IBM-supplied name is IEBCOPY.

The High Level Assembler either must be in the LINKLST concatenation or you must add a STEPLIB DD statement that points to the library containing the High Level Assembler in any jobs that invoke SMP/E.

Specifying the prefix of CICS Transaction Server jobs
Specify the 1- to 6-character prefix to be added to the jobs generated by the DFHISTAR job. This prefix overwrites the first characters of the job name.

For example, PREFIX USERID changes the job name DFHINST1 to USERIDT1.

PREFIX prefix
The 1- to 6-character prefix to be added to the CICS jobs generated by the DFHISTAR job.

Specifying the indexes of CICS Transaction Server data sets
Optionally specify the high-level indexes (high-level qualifiers) for the CICS Transaction Server distribution, target, and SMP/E libraries allocated by the installation process. If you do not specify these parameters, they will take default values.

GINDEX library_prefix
Assigns a high-level index to the CICS Transaction Server SMP/E global libraries allocated by the installation process.

The `library_prefix` value must not be longer than 26 characters and the leading character must be alphabetic. If you specify more than one level of index, the names must be separated by a period; for example, GINDEX CICSTS55.TEST.

TINDEX library_prefix
Assigns a high-level index to the CICS Transaction Server SMP/E target libraries (except for the SDFHLINK, SDFHLPA, SEYULINK, and SEYULPA target libraries) allocated by the installation process.

1. The `LINDEX` parameter defines the high-level index for the SDFHLINK and SDFHLPA libraries.
2. The `dsindex` operand of the DSINFO parameter defines the high-level index for the data sets created by the DFHCOMDS and DFHDEFDS jobs.

The `library_prefix` value must not be longer than 26 characters and the leading character must be alphabetic. If you specify more than one level of index, the names must be separated by a period; for example, TINDEX CICSTS55.TEST.

DINDEX library_prefix
Assigns a high-level index to the CICS Transaction Server SMP/E distribution libraries allocated by the installation process.

The `library_prefix` value must not be longer than 26 characters and the leading character must be alphabetic. If you specify more than one level of index, the names must be separated by a period; for example, DINDEX CICSTS55.TEST.

LINDEX library_prefix
Assigns a high-level index to the SDFHLPA, SDFHLINK, SEYULINK, and SEYULPA libraries allocated by the installation process. Define the `library_prefix` value in the MVS Master Catalog.

The `library_prefix` value must not be longer than 26 characters and the leading character must be alphabetic. If you specify more than one level of index, the names must be separated by a period; for example, LINEX SY1.CICSTS53.TEST.
Specifying the data set name of the activation module
Specify the data set name of the activation module that is used during the installation process.

ACTIVATE dsname
- Specifies the data set qualifier for the activation module that is required to run your version of CICS.
- DFHSTART is updated with the activation module data set.
- The value that you specify must correspond with the version of CICS that you are installing.

SDFHLIC
- Specifies the licensed edition (the default value).

SDFHDEV
- Specifies the Developer Trial.

SDFHVUE
- Specifies the Value Unit Edition.

Specifying extra qualifiers
Specifying extra qualifiers that can optionally be inserted into the data set name of the 'target', 'distribution', and 'additional' zone data sets respectively, and inserted before the last data set qualifier. For example, XTRAQUAL JDOE . . changes the name of the target zone libraries to the values set by TINDEX.CICSTS55.CICS.JDOE.SDFHLOAD.

XTRAQUAL . . .
- Three qualifiers to be used by 'target', 'distribution', and 'additional' zone data sets. If a qualifier is not required, specify a period (\.).

Specifying the CICS TS z/OS UNIX directories and data sets
The DFHISTAR job has parameters that enable you to customize the UNIX system services z/OS UNIX directories.

PATHPREFIX
- The name of an optional prefix to the CICS TS directory /usr/lpp/cicsts. For example:
 - /example/usr/lpp/cicsts

USSDIR
- The name of the CICS TS directory, under /pathprefix/usr/lpp/cicsts.
- The full path is therefore /pathprefix/usr/lpp/cicsts/ussdir.
- USSDIR is a name that you can specify. The default value is the value of the TINDEX parameter in lowercase.
- The default path is:
 - /pathprefix/usr/lpp/cicsts/cicsts55
- The name of the UNIX System Services directory after the root directory (/usr/lpp/) is always /cicsts.

USSDIRA dsname
- The name of the UNIX System Services directory for the Additional Target zone, under /pathprefix/usr/lpp/cicsts.
- The full path is therefore /pathprefix/usr/lpp/cicsts/ussdira.
- USSDIRA is a name that you can specify. The default value is the value of the AINDEX parameter in lowercase.
- The default path is:
 - /pathprefix/usr/lpp/cicsts/cicsts55
- The name of the UNIX System Services directory after the root directory (/usr/lpp/) is always /cicsts.
HFS0DSN
The data set name of the file system to be mounted at directory `/pathprefix/usr/lpp/cicsts/cicsts53. These directory names are fixed. The default is data set name OMVS.USR.LPP.CICSTS.

`/pathprefix/usr/lpp/cicsts`

See “Running the DFHIHFS0 job” on page 50 for details of the job that uses this parameter.

HFS1DSN
The data set name of the file system to be mounted at directory `/pathprefix/usr/lpp/cicsts/ussdir`, where `ussdir` is the name of the directory specified on the ussdir parameter in the DFHISTAR job. The default is data set name OMVS.USR.LPP.CICSTS.CICSTS55.

See “Running the DFHIHFS1 job” on page 51 for details of the job that uses this parameter.

HFSADSN
The data set name of the z/OS UNIX equivalent of the SMP/E "additional target zone", to be mounted at directory `/pathprefix/usr/lpp/cicsts/ussdira`, where `ussdira` is the name of the directory specified on the ussdira parameter in the DFHISTAR job. The default data set name is OMVS.USR.LPP.CICSTS.CICSTS55.A.

See “Creating extra sets of CICS Transaction Server target libraries (optional)” on page 58 for details of the job that uses this parameter.

Specifying the installation directory for Java support
Specify the directory where the IBM 64-bit SDK for z/OS, Java Technology Edition is installed on z/OS UNIX. Support for the 31-bit version of the SDK is withdrawn, so you must upgrade to use the 64-bit version.

The `JAVADIR` parameter specifies the location of the SDK on z/OS UNIX. The supplied value `java/J8.0_64` points to the default installation directory for Version 8 of the IBM 64-bit SDK for z/OS, Java Technology Edition. This value of this parameter is appended to `/pathprefix/usr/lpp/`, giving a full path name of `/pathprefix/usr/lpp/javadir`.

The installation directory is used in the CICS-supplied sample JVM profiles.

Specifying block sizes
Specify the block sizes to be used when allocating data sets during installation on the BLKFB80 and BLKU parameters.

BLKFB80 `{0|blocksize}`
The block size to be used when allocating data sets that have a fixed block record format and record length of 80 bytes.

The IBM-supplied value in DFHISTAR is 0. Leave this value specified as 0 to allow z/OS to determine the optimum block size for you.

BLKU `{32760|blocksize}`
The block size to be used when allocating data sets that have an undefined record length.

Specifying the disk unit for work data sets
Specify the UNIT parameter for the disk or disks on which work data sets are stored on the WORKUNIT parameter.

WORKUNIT disktype
A unit identifier.
Specifying the SMS option for DASD allocations

Specify the extent to which you want to leave the allocation of CICS TS installation data sets to SMS. You can either let SMS handle all DASD allocation, or you can use volume parameters to control the allocations that do not have to be managed by SMS.

Some CICS TS data sets are installed in PDSE data sets. These are the following data sets:

- The SMP/E SMPLTS data set.
- The distribution libraries, ADFHAUTH, ADFHMOD and ADFHMOD2.
- The target libraries, SDFHLOAD, SDFHAUTH, and SDFHWSLD.

SMS YES | NO

If you specify SMS YES, the VOLUME parameter is omitted from the generated installation jobs and all data set allocations are handled by SMS.

If you specify SMS NO, the VOLUME parameter is included on the generated installation jobs, and is recognized according to your SMS configuration.

The VOLUME parameters used are those specified on the ADDTVOL, DEFVOL, DISTVOL, CMACVOL, OPTVOL, SMPVOL, and TARGVOL parameters.

Specifying disk volumes

To make the best use of your disk space, you can specify your own disk volumes and device types to be used to install CICS Transaction Server.

If you intend to install CICS Transaction Server into disk space managed by the storage management subsystem (SMS) component of MVS/DFP, you do not have to specify your own disk volumes; SMS can determine device assignment. In this case, proceed to “Specifying SMP/E zone attributes” on page 38. For further information about installing system-managed storage and about planning for and migrating storage to an SMS-managed environment, see z/OS DFSMSdfp Storage Administration.

You can specify your own disk details using the following parameters:

DEFVOL volume disktype

Defines the default disk on which the contents of the disk volumes CMACVOL, DISTVOL, OPTVOL, SMPVOL, and TARGVOL resides if the appropriate parameter is not coded in the DFHISTAR job. For example, if you do not code the DISTVOL parameter, the CICS Transaction Server distribution libraries resides on the disk defined by DEFVOL.

volume

Is one of the following entries:

- The volume serial identifier, in the range 1 through 6 characters, of the default volume.
- A period (.) if all volumes other than CMACVOL and SMPVOL that are not specifically defined by the appropriate parameter of the DFHISTAR job are put onto any available volume. The CMACVOL and SMPVOL volumes are put onto the same volume as the library specified by the TEMPLIB parameter.

disktype

Is the UNIT parameter of the volume.

If you omit the DEFVOL parameter, all volumes that are not specifically defined by the appropriate parameter of the DFHISTAR job are put onto the same volume as the library specified by the TEMPLIB parameter.

DISTVOL volume disktype

Defines the disk on which the CICS Transaction Server distribution libraries resides.

volume

Is one of the following entries:

- The volume serial identifier, in the range 1 through 6 characters, of the volume on which the distribution libraries resides.
- A period (.) if the CICS Transaction Server libraries are to be put onto any available volume.
disktype

Is the UNIT parameter of the volume.

If you omit the DISTVOL parameter, the distribution libraries are put on the volume specified by the DEFVOL parameter. If the DEFVOL parameter is omitted, or if a period (.) is specified for its **volume** operand, the distribution libraries are put onto any available volume.

TARGVOL volume disktype

Specifies details of the disk containing the CICS Transaction Server target libraries.

volume

Is one of the following entries:

- The volume serial identifier, in the range 1 through 6 characters, of the volume on which the CICS Transaction Server target libraries are to reside.
- A period (.) if the CICS Transaction Server target libraries are to be put onto any available volume.

disktype

Is the UNIT parameter for the volume.

If you omit the TARGVOL parameter, the CICS Transaction Server target libraries are put onto the volume specified by the DEFVOL parameter. If the DEFVOL parameter is omitted, or if a period (.) is specified for its **volume** operand, the CICS Transaction Server target libraries are put onto any available volume.

SMPVOL volume disktype

Specifies the disk that contains the permanent, non-VSAM SMP/E data sets for CICS Transaction Server that are associated with global or distribution zones and are therefore unique.

volume

Is one of the following entries:

- The volume serial identifier, in the range 1 through 6 characters, of the volume on which the permanent non-VSAM SMP/E data sets are to reside.
- A period (.) if the permanent non-VSAM SMP/E data sets are to be put onto the same volume as the library specified by the TEMPLIB parameter.

disktype

Is the UNIT parameter for the volume.

If you omit the SMPVOL parameter, the permanent non-VSAM SMP/E data sets for CICS Transaction Server are put on the volume specified by the DEFVOL parameter. If the DEFVOL parameter is omitted, or if a period (.) is specified for its **volume** operand, the data sets are put onto the same volume as the library specified by the TEMPLIB parameter.

OPTVOL volume disktype

Specifies details of the disk onto which the optional source material is copied.

volume

Is one of the following entries:

- The volume serial identifier, in the range 1 through 6 characters, of the volume on which the optional source material is to reside.
- A period (.) if the optional source material is to be put on any available volume.

disktype

Is the UNIT parameter of the volume. This is required only if **volume** is specified.

If you omit the OPTVOL parameter, the optional source material is put on the volume specified by the DEFVOL parameter. If the DEFVOL parameter is omitted, or if a period (.) is specified for its **volume** operand, the optional source material is put onto any available volume.

CMACVOL volume

Defines the disk on which the VSAM KSDS, DFHCMACD, resides. This data set is used for the CICS Transaction Server messages facility (CICS-supplied transaction CMAC).
volume
 Is one of the following entries:
 • The volume serial identifier, in the range 1 through 6 characters, of the volume on which the
 VSAM KSDS, DFHCMACD, is to reside.
 • A period (.) if the DFHCMACD data set is to be put onto the same volume as the library specified
 by the TEMPLIB parameter.

If you omit the CMACVOL parameter, the DFHCMACD data set is put onto the volume specified by the
DEFVOL parameter. If the DEFVOL parameter is omitted, or if a period (.) is specified for its volume
operand, the DFHCMACD data set is put onto the same volume as the library specified by the
TEMPLIB parameter.

When are these volumes used?
The reference table lists the DFHISTAR volume parameters and details of their use.

<table>
<thead>
<tr>
<th>DFHISTAR volume parameter</th>
<th>Installing</th>
<th>Applying service</th>
<th>Customizing</th>
<th>Assembling resource tables</th>
<th>Running CICS Transaction Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMPVOL</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>DISTVOL</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TARGVOL</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DZONECSI</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TZONECSI</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>GZONECSI</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1 The entries for xZONECSI parameters are also for the associated xZONE parameters.

You require the RELFILE data sets on SMPVOL during installation only.

You require SMPVOL, DISTVOL, TARGVOL, DZONE, TZONE, and GZONE when you apply service or
customize your CICS Transaction Server programs. You require SMPVOL and GZONE when you apply
service or customize your alternative libraries for use with the extended recovery facility.

You require SMPVOL, TARGVOL, TZONE, and GZONE when you assemble your CICS Transaction Server
tables. You require SMPVOL and GZONE when you assemble CICS Transaction Server tables for the
second (alternate) CICS Transaction Server region.

You require only TARGVOL to run CICS Transaction Server.

Allocating space for CICS Transaction Server disk volumes
Whether or not you use SMS-managed data sets, you still require enough disk space in which to create
the CICS Transaction Server disk volumes.

The space required by the installation jobs on these volumes depends on the type of disk you intend to
use. The number of tracks required on the different types of DASD are given in Table 5 on page 36. The
Program Directory describes the size of the CICS Transaction Server distribution and target libraries.

<table>
<thead>
<tr>
<th>Table 5. Number of tracks required for CICS Transaction Server</th>
<th>3380</th>
<th>3390</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CICSTS55.TDFHINST</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>CICSTS55.XDFHINST</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Relfile data sets on SMPVOL</td>
<td>4875</td>
<td>4500</td>
</tr>
<tr>
<td>SMP/E non-VSAM data sets on SMPVOL</td>
<td>390</td>
<td>375</td>
</tr>
</tbody>
</table>
Table 5. Number of tracks required for CICS Transaction Server (continued)

<table>
<thead>
<tr>
<th>Identification</th>
<th>3380</th>
<th>3390</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTVOL</td>
<td>4680</td>
<td>4320</td>
</tr>
<tr>
<td>TARGVOL</td>
<td>11235</td>
<td>10848</td>
</tr>
<tr>
<td>DZONE</td>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td>TZONE</td>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td>GZONE</td>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td>Total during installation</td>
<td>21705</td>
<td>19905</td>
</tr>
<tr>
<td>Total after installation</td>
<td>16830</td>
<td>15405</td>
</tr>
</tbody>
</table>

Allow up to 15% on the values in Table 5 on page 36 for servicing requirements. Secondary allocations are 10% of the primary allocations.

If you intend to store other IBM software or your own application programs in these libraries, you must modify the generated jobs accordingly.

Specifying attributes of the temporary SMP/E work data sets

You must define the attributes of the temporary SMP/E work data sets, SMPWRK1, SMPWRK2, SMPWRK3, SMPWRK4, and SMPWRK6, for the following CICS Transaction Server jobs: DFHINSTJ, DFHINST6, DFHLPUMD, DFHSMPE, and EYULPMOD.

Define the attributes of those SMP/E data sets on the SMPWORK parameter:

The CICS Transaction Server jobs used to install CICS Transaction Server for z/OS have DD statements for the SMP/E data sets that they must know about.

SMPWORK disktype

The UNIT parameter for the disk that is to contain the temporary SMP/E work data sets, SMPWRK1, SMPWRK2, SMPWRK3, SMPWRK4, and SMPWRK6, required to install CICS Transaction Server.

Do not allocate the SMPWRK6 data set to Virtual I/O (VIO). If you specify a value for `disktype`, ensure that SMPWRK6 cannot be allocated to VIO.

If you specify a value for `disktype`, or omit the SMPWORK parameter altogether, //SMPWRKn DD statements are added to the following jobs generated by the DFHISTAR job:

- DFHINSTJ
- DFHLPUMD
- DFHSMPE

If you specify NO, a period (.), or a null string, CICS Transaction Server assumes that SMP/E knows about the temporary SMP/E work data sets. To define the attributes of the SMP/E work data sets, you must do one of the following tasks:

- Provide appropriate DDDEFS for the temporary SMP/E work data sets.
- Apply the SMP/E sample usermod (SMP0001) that contains superzap statements for updating the default attributes of the SMP/E data sets in the GIMMPDFT module.

The GIMMPDFT module, which is part of SMP/E, defines the default attributes of SMP/E data sets, and can be used to dynamically allocate data sets to be used by all zones. For more information about the entries in the GIMMPDFT module and the sample entry values in the usermod SMP0001, see SMP/E for z/OS Reference.
Specifying attributes of the permanent SMP/E data sets
You can specify the attributes of the permanent SMP/E data sets using the SMPPTS, SMPMTS, SMPSTS, SMPSCDS and SMPLTS parameters.

Specify the attributes of the permanent SMP/E data sets on the following parameters:

SMPPTS dsname
Specifies the name of the SMP/E primary data set used to store temporarily PTF function SYSMODs or other fixes that are in RECEIVE or APPLY status; that is, PTF fixes that have not been rejected or accepted.

SMPMTS dsname
Specifies the name of the SMP/E macro temporary store (MTS) data set used to store updated versions of macros. Although required by SMP/E, CICS does not use the MTS data set.

SMPSTS dsname
Specifies the name of the SMP/E source temporary store (STS) data set used to store updated versions of source elements. Although required by SMP/E, CICS does not use the STS data set.

SMPSCDS dsname
Specifies the name of the SMP/E saved control data set (SCDS) used to store old target zone entries that have been modified by inline JCLIN processing in a SYSMOD.

SMPLTS dsname
Specifies the name of the link-edit temporary (LTS) data set used with the CALLLIBS function. This data set must always be an SMS-managed PDSE, whether or not Java is installed, unless you have installed the PTFs for z/OS UNIX and PDSE support on non-managed SMS volumes listed in Flash10007, which can be found by links from https://www.ibm.com/support/techdocs.

The CICS Transaction Server jobs that must know the attributes of the SMP/E data sets have DD statements for them.

Specifying SMP/E zone attributes
Specify the attributes of the SMP/E distribution zone, global zone, target zone, and any additional target zones.

The CICS Db2 attachment facility contains modules named with the DSN prefix. Therefore, to prevent existing Db2 modules with the same DSNxxxxx names from being overwritten, do not install CICS Transaction Server into the same target and distribution zones as Db2.

To specify SMP/E zone attributes, use the following parameters:

GZONELOG dsname NEW|OLD
Specifies details of the SMP/E log for the global zone CSI.

dsname
The name of the global zone log.

NEW|OLD
Specifies whether an existing global zone log is to be used. If you specify NEW, any existing global zone log with the specified dsname is deleted, and a new global zone log is allocated. If you specify OLD, an existing global zone log is used.

TZONELOG dsname NEW|OLD
Specifies details of the SMP/E log for the target zone CSI.

dsname
The name of the target zone log.

NEW|OLD
Specifies whether an existing target zone log is to be used. If you specify NEW, any existing target zone log with the specified dsname is deleted, and a new target zone log is allocated. If you specify OLD, an existing target zone log is used.

DZONELOG dsname NEW|OLD
Specifies details of the SMP/E log for the distribution zone CSI.
dsname
The name of the distribution zone log.

NEW|OLD
Specifies whether an existing distribution zone log is to be used. If you specify NEW, any existing distribution zone log with the specified dsname is deleted, and a new distribution zone log is allocated. If you specify OLD, an existing distribution zone log is used.

GZONECSI cluster NEW|OLD volume disktype
Specifies details of the global zone CSI.

cluster
The VSAM cluster name, without the qualifier '.CSI'.

NEW|OLD
Specifies whether an existing global zone CSI is to be used. If you specify NEW, any existing global zone CSI with the specified cluster name is deleted, and a new global zone CSI is allocated. If you specify OLD, an existing global zone CSI is used.

volume
Either the volume serial (volser) identifier for the volume on which the global zone CSI is to be allocated or a period (.) if the CSI is to be put on a volume determined by the CICS Transaction Server installation process.

disktype
The UNIT parameter for the volume.

TZONECSI cluster NEW|OLD volume disktype
Specifies details of the target zone CSI.

cluster
The VSAM cluster name, without the qualifier '.CSI'.

NEW|OLD
Specifies whether an existing target zone CSI is to be used. If you specify NEW, any existing target zone CSI with the specified cluster name is deleted, and a new target zone CSI is allocated. If you specify OLD, an existing target zone CSI is used.

volume
Either the volume serial (volser) identifier for the volume on which the target zone CSI is to be allocated or a period (.) if the CSI is to be put on a volume determined by the CICS Transaction Server installation process.

disktype
The UNIT parameter for the volume.

DZONECSI cluster NEW|OLD volume disktype
Specifies details of the distribution zone CSI.

cluster
The VSAM cluster name, without the qualifier '.CSI'.

NEW|OLD
Specifies whether an existing distribution zone CSI is to be used. If you specify NEW, any existing distribution zone CSI with the specified cluster name is deleted, and a new distribution zone CSI is allocated. If you specify OLD, an existing distribution zone CSI is used.

volume
Either the volume serial (volser) identifier for the volume on which the distribution zone CSI is to be allocated or a period (.) if the CSI is to be put on a volume determined by the CICS Transaction Server installation process.

disktype
The UNIT parameter for the volume.

GZONE NEW|OLD options
Specifies whether the global zone to be used already exists.
NEW|OLD
Specifies whether an existing global zone is to be used. The DFHISTAR job as supplied specifies NEW. Optionally, change this to OLD to use an existing global zone. If you specify OLD, CICS Transaction Server is installed into an existing SMP/E global zone.

Specify NEW if you want to preserve your existing releases of CICS Transaction Server in their current SMP/E zones and install the new release in its own zones.

If you specify OLD, the existing SMP/E zones are used and any existing release of the product is deleted.

If you specify OLD, but specify NEW for the GZONECSI parameter, both parameters are assigned the NEW disposition.

options
Specifies the name of the SMP/E options to be used on the SET BOUNDARY command.

TZONE zonename
Specifies the name of the target zone.

zonename
The name of the target zone to be used by SMP/E. This name must be unique to the target zone. It must not be longer than seven characters, and the leading character must be alphabetic.

DZONE zonename
Specifies the name of the distribution zone.

zonename
The name of the distribution zone to be used by SMP/E. This name must be unique in the global zone. It must not be longer than seven characters, and the leading character must be alphabetic.

Specifying SMP/E zone and zone log dispositions
As supplied, the DFHISTAR job assumes that you are going to install CICS Transaction Server into new target and distribution zones. However you can specify a new or old global zone, and new or old zone logs by the disposition option NEW|OLD on the associated parameters of the DFHISTAR job.

The disposition option NEW means that the DFHINST3 job deletes any existing zone or zone log with its name specified before redefining it. For example, if you specify the following parameter:

```
GZONELOG CICSTS55.GZONE.SMPLOG NEW
```

the DFHINST3 job deletes any existing SMP/E global zone log with the name CICSTS55.GZONE.SMPLOG before defining a new SMP/E global zone log with that name.

Further, if you specify different dispositions for a zone parameter and its associated zone log parameter, they are both given the default disposition NEW, to ensure that both a zone and its zone log have the same disposition.

If you intend to install CICS Transaction Server using one new CSI for all zones, you must specify the disposition NEW on all three CSI parameters of the DFHISTAR job. For example:

```
DZONE DZONE
DZONECSI CICSTS55.SMPZONE.NEW CICSTS55 SYSALLDA
DZONELOG CICSTS55.DZONE.SMPLOG NEW
GZONE NEW CICSOPT
GZONECSI CICSTS55.SMPZONE.NEW CICSTS55 SYSALLDA
GZONELOG CICSTS55.GZONE.SMPLOG NEW
TZONE TZONE
TZONECSI CICSTS55.SMPZONE.NEW CICSTS55 SYSALLDA
TZONELOG CICSTS55.TZONE.SMPLOG NEW
```
Specifying the high-level qualifiers for SMP/E data sets
For each different high-level qualifier that you have specified for SMP/E zone CSIs, logs, and other SMP/E data sets, you must create an ALIAS definition in the master catalog before the data sets can be used.

Specifying the distribution tape device type
Specify the type of device that will load the CICS Transaction Server distribution tape on the TAPEUNIT parameter.

TAPEUNIT devicetype
Specifies the device type to be used to read the distribution tape. Use 3480 for the 3480 tape cartridge, 3400-6 for the 6250 tape, or the unit names in use in your installation.

Specifying attributes of the CICS Transaction Server system data sets
Use the DSINFO parameter to specify the attributes of the CICS Transaction Server system data sets, which are created when you run the postinstallation jobs, DFHCOMDS, DFHDEFDS, EYUCMSDS, EYUWUIDS, and EYUCSYDS.

For more information about the postinstallation jobs DFHCOMDS and DFHDEFDS, see “DFHCOMDS job for common data sets” on page 165.

DSINFO dsindex volume disktype qualifier
Defines the following attributes of CICS TS system data sets:

dsindex
Assigns a high-level index to all the data sets defined by the jobs, DFHCOMDS, DFHDEFDS, EYUCMSDS, EYUWUIDS, and EYUCSYDS.

The leading character of dsindex must be alphabetic. dsindex can have one or two levels of index, but each level must be no longer than eight characters. If you specify more than one level of index, the names must be separated by a period, for example, CICSTS55.CICSHTC1.

volume
The volume identifier of the volume.

disktype
The UNIT parameter for the volume.

qualifier
A partial qualifier added to the index for the data sets created by the jobs DFHCOMDS, DFHDEFDS, EYUCMSDS, EYUWUIDS, and EYUCSYDS. You can specify a partial qualifier of up to four alphanumeric characters; these characters are appended to the characters CICS to make the qualifier. If you specify a period (.), no qualifier is used.

Specifying attributes of any additional target libraries
If you want to create extra copies of the CICS Transaction Server target libraries, specify the attributes of those libraries on the listed parameters.

AINDEX library_prefix
Assigns a high-level index to the additional set of CICS target libraries copied by a version of the DFHINSTA job.

Note:
1. The high-level index for the additional SDFHLINK and SDFHLPA libraries is defined by the ALINDEX parameter.
2. The high-level index for the data sets created by the jobs DFHCOMDS and DFHDEFDS is defined by the dsindex operand of the DSINFO parameter.

The AINDEX value must be unique; for example, it must be different from the INDEX value. It must not be longer than 26 characters, and the leading character must be alphabetic. If you specify more than one level of index, the names must be separated by a period; for example, AINDEX CICSTS55.A.TEST.
ALINDEX library_prefix
Assigns a high-level index to the additional SDFHLPA and SDFHLINK libraries allocated by running a version of the DFHINSTA job.

The library_prefix value must not be longer than 26 characters and the leading character must be alphabetic. If you specify more than one level of index, the names must be separated by a period; for example, ALINDEX SYS1.CICSTS55.A.TEST.

AZONELOG dsname
Specifies details of the SMP/E log for the additional target zone CSI.

dsname
The name of the additional target zone log to be used by SMP/E.

AZONECSI cluster
Specifies details of the additional target zone CSI. The CSI data set is created on the volume and unit specified by the ADDTVOL parameter.

cluster
The VSAM cluster name, without the qualifier .CSI.

AZONE zonename
Specifies the name of the additional target zone, to be used for the set of CICS Transaction Server target libraries copied by a version of the DFHINSTA job.

zonename
The name of the additional target zone to be used by SMP/E. This name must be unique to the target zone. It must not be longer than seven characters and the leading character must be alphabetic.

ASMPSCDS dsname
Specifies the name of the additional zone SMP/E SCDS data set.

dsname
The name of the additional zone SMP/E SCDS data set.

ASMPMTS dsname
Specifies the name of the additional zone SMP/E MTS data set.

dsname
The name of the additional zone SMP/E MTS data set.

ASMPSTS dsname
Specifies the name of the additional zone SMP/E STS data set.

dsname
The name of the additional zone SMP/E STS data set.

ASMPLTS dsname
Specifies the name of the additional zone SMP/E LTS data set.

dsname
The name of the additional zone SMP/E LTS data set.

ADDTVOL volume disktype
Specifies the volume and unit type to contain all the additional zone data sets.

volume
The volume serial identifier of the volume.

disktype
The UNIT parameter for the volume.
Specifying the library data set names
Specify the data set names for the SISPLOAD, CSSLIB, SCEELKED, SCEELIB, SCEEBND2, SCEELKEX, SCEEOBJ, SCEECPP, SCLBSID, SEZARPCL, SEZACMTX, SCEECICS, SCEERUN, SCEERUN2, SCEESAMP, SDSNLOAD, SC5QLOAD, SC5QANLE, SC5QCICS, SC5QAUTH, and SC5FMOD0 libraries.

Specifying the data set names of the SISPLOAD library
Specify the full data set name, up to 44 characters, of the library that contains ISPLINK; SISPLOAD for ISPF Version 4 and above, or ISPLOAD for ISPF version 3 and below. For example, SISPLOAD SYS1.USERID..SISPLOAD changes the SISPLOAD library name to SYS1.USERID.SISPLOAD. This library is accessed, as read-only, during the installation of CICS Transaction Server.

SISPLOAD dsname
Up to 44 characters.

Specifying the data set name of the CSSLIB library
Specify the full data set name, up to 44 characters, of the CSSLIB library. For example, CSSLIB SYS1.USERID..CSSLIB changes the CSSLIB library name to SYS1.USERID.CSSLIB. This library is accessed, as read-only, during the installation of CICS Transaction Server.

CSSLIB dsname
Up to 44 characters.

Specifying the data set name of the SCEELKED library
Specify the full data set name, up to 44 characters, of the SCEELKED library. For example, SCEELKED SYS1.USERID..SCEELKED changes the SCEELKED library name to SYS1.USERID.SCEELKED. This library is accessed, as read-only, during the installation of CICS Transaction Server.

SCEELKED dsname
Up to 44 characters.

Specifying the data set names of the SCEELIB library
Specify the full data set names, up to 44 characters, of the SCEELIB library. For example, SCEELIB SYS1.USERID..SCEELIB changes the SCEELIB library name to SYS1.USERID.SCEELIB. The library is accessed, as read-only, during the installation of CICS Transaction Server.

SCEELIB dsname
Up to 44 characters.

Specifying the data set name of the SCEEBND2 library
Specify the full data set name, up to 44 characters, of the SCEEBND2 library. For example, SCEEBND2 SYS1.USERID..SCEEBND2 changes the SCEEBND2 library to SYS1.USERID.SCEEBND2. This library is accessed, as read-only, during the installation of CICS Transaction Server.

SCEEBND2 dsname
Up to 44 characters.

Specifying the data set name of the SCEELKEX library
Specify the full data set name, up to 44 characters, of the SCEELKEX library. For example, SCEELKEX SYS1.USERID..SCEELKEX changes the SCEELKEX library name to SYS1.USERID.SCEELKEX. This library is accessed, as read-only, during the installation of CICS Transaction Server.

SCEELKEX dsname
Up to 44 characters.
Specifying the data set name of the SCEEOBJ library

Specify the full data set name, up to 44 characters, of the SCEEOBJ library. For example, SCEEOBJ SYS1.USERID.SCEEOBJ changes the SCEEOBJ library name to SYS1.USERID.SCEEOBJ. This library is accessed, as read-only, during the installation of CICS Transaction Server.

SCEEOBJ dsname

Up to 44 characters.

Specifying the data set name of the SCEECPP library

Specify the full data set name, up to 44 characters, of the SCEECPP library. For example, SCEECPP SYS1.USERID.SCEECPP changes the SCEECPP library name to SYS1.USERID.SCEECPP. This library is accessed, as read-only, during the installation of CICS Transaction Server.

SCEECPP dsname

Up to 44 characters.

Specifying the data set name of the SCLBSID library

Specify the full data set name, up to 44 characters, of the SCLBSID library. For example, SCLBSID SYS1.USERID.SCLBSID changes the SCLBSID library name to SYS1.USERID.SCLBSID. This library is accessed, as read-only, during the installation of CICS Transaction Server.

SCLBSID dsname

Up to 44 characters.

Specifying the data set names of the SEZARPCL and SEZACMTX libraries

Specify the full data set names, up to 44 characters, of the SEZARPCL and SEZACMTX libraries. For example, SEZARPCL SYS1.USERID.SEZARPCL changes the SEZARPCL library to SYS1.USERID.SEZARPCL. SEZACMTX SYS1.USERID.SEZACMTX changes the SEZACMTX library name to SYS1.USERID.SEZACMTX. These libraries are accessed, as read-only, during the installation of CICS Transaction Server.

SEZARPCL dsname

Up to 44 characters.

SEZACMTX dsname

Up to 44 characters.

Specifying the data set names of the SCEECICS and SCEERUN libraries

Specify the full data set names, up to 44 characters, of the SCEECICS & SCEERUN libraries. For example, SCEECICS SYS1.USERID.SCEECICS changes the SCEECICS library to SYS1.USERID.SCEECICS and SCEERUN SYS1.USERID.SCEERUN changes the SCEERUN library name to SYS1.USERID.SCEERUN. These libraries are accessed, as read-only, during the installation of CICS Transaction Server.

SCEECICS dsname

Up to 44 characters.

SCEERUN dsname

Up to 44 characters.

Specifying the data set names of the SCEERUN2 library

Specify the full data set names, up to 44 characters, of the SCEERUN2 library. For example, SCEERUN2 SYS1.USERID.SCEERUN2 changes the SCEERUN2 library to SYS1.USERID.SCEERUN2. This library is accessed, as read-only, during the installation of CICS Transaction Server.

SCEERUN2 dsname

Up to 44 characters.
Specifying the data set name of the SCEESAMP library

Specify the full data set name, up to 44 characters, of the SCEESAMP library. For example, SCEESAMP SYS1.USERID.SCEESAMP changes the SCEESAMP library name to SYS1.USERID.SCEESAMP. This library is accessed, as read-only, during the installation of CICS Transaction Server.

SCEESAMP dsnname
Up to 44 characters.

Specifying the data set name of the SDSNLOAD library

Specify the full data set name, up to 44 characters, of the Db2 SDSNLOAD library. For example, SDSNLOAD SYS1.USERID.SDSNLOAD changes the SDSNLOAD library name to SYS1.USERID.SDSNLOAD. This library is accessed, as read-only, during the installation of CICS Transaction Server.

The REXX for CICS element contains some modules that are link-edited against the Db2 load library, SDSNLOAD. If you do not have Db2 installed, the DFHINST6 job fails because SDSNLOAD cannot be allocated to the job. To avoid this problem, define a dummy SDSNLOAD data set, with LRECL=0 and RECFM=U, and specify the name of this empty data set on the SDSNLOAD parameter.

SDSNLOAD dsnname
Up to 44 characters.

Specifying the data set name of the SCSQLOAD library

Specify the full data set name, up to 44 characters, of the SCSQLOAD library. For example, SCSQLOAD SYS1.USERID.SCSQLOAD changes the SCSQLOAD library name to SYS1.USERID.SCSQLOAD. This library is accessed, as read-only, during the installation of CICS Transaction Server.

SCSQLOAD dsnname
Up to 44 characters.

Specifying the data set name of the SCSQANLE library

Specify the full data set name, up to 44 characters, of the SCSQANLE library. For example, SCSQANLE SYS1.USERID.SCSQANLE changes the SCSQANLE library name to SYS1.USERID.SCSQANLE. This library is accessed, as read-only, during the installation of CICS Transaction Server.

SCSQANLE dsnname
Up to 44 characters.

Specifying the data set name of the SCSQCICS library

If you want to run the IBM MQ for z/OS sample programs, specify the full data set name, up to 44 characters, of the SCSQCICS library. For example, SCSQCICS SYS1.USERID.SCSQCICS changes the SCSQCICS library name to SYS1.USERID.SCSQCICS. This library is accessed, as read-only, during the installation of CICS Transaction Server.

SCSQCICS dsnname
Up to 44 characters.

Specifying the data set name of the SCSQAUTH library

Specify the full data set name, up to 44 characters, of the SCSQAUTH library. For example, SCSQAUTH SYS1.USERID.SCSQAUTH changes the SCSQAUTH library name to SYS1.USERID.SCSQAUTH. This library is accessed, as read-only, during the installation of CICS Transaction Server.

SCSQAUTH dsnname
Up to 44 characters.
Specifying the data set names of the SCSFMOD0 and SIXMEXP libraries

Specify the full data set names, up to 44 characters, of the SCSFMOD0 and SIXMEXP libraries. For example, SCSFMOD0 SYS1. SCSFMOD0 changes the SCSFMOD0 library to SYS1.SCSFMOD0. These libraries are accessed, as read-only, during the installation of CICS Transaction Server.

SCSFMOD0 dsname
- Up to 44 characters.

SIXMEXP dsname
- Up to 44 characters.

Specifying log stream and log stream structure attributes

Specify attributes of the CICS Transaction Server log streams and the coupling facility structures that you use when you run the postinstallation jobs DFHILG1, DFHILG2, DFHILG3 and DFHILG4, on the LOGGER-INFO parameter.

For more information about these postinstallation jobs, see Defining the logger environment for CICS.

LOGGER-INFO strsfx logsz shuntsz jnlsz gensz sysname loghlq logmodel

Defines the following attributes of CICS Transaction Server system data sets:

- **strsfx**
 - The last part of the coupling facility structure names, can be any three characters allowed in a structure name. The default is 001. It is used in DFHILG1, DFHILG2, DFHILG3, and DFHILG4.

- **logsz**
 - The average buffer size for system log streams in the LOG_DFHLOG_strsfx structure. The default is 500. It is used in DFHILG1.

- **shuntsz**
 - The average buffer size for shunted system log streams in the LOG_DFHSHUNT_strsfx structure. The default is 4096. It is used in DFHILG1.

- **jnlsz**
 - The average buffer size for unforced user journal log streams in the LOG_USERJRNL_strsfx structure. The default is 64000. It is used in DFHILG1.

- **gensz**
 - The average buffer size for forced user journal log streams and forward recovery log streams in the LOG_GENERAL_strsfx structure. The default is 2048. It is used in DFHILG1.

- **sysname**
 - The MVS system name used to create model log streams for DFHLOG and DFHSHUNT. The default is MVSX. It is used in DFHILG2 and DFHILG5.

- **loghlq**
 - The first qualifier of the model name for general logs and DFHLGLOG. It is used in DFHILG3, DFHILG4, DFHILG6, and DFHILG7.

- **logmodel**
 - The second qualifier of the model name for general logs. It is used in DFHILG3 and DFHILG6.

Specifying attributes specific to CICSPlex SM

Use these DFHISTAR attributes to customize the postinstallation JCL for CICSPlex SM.

This JCL is used in the installation verification procedure for CICSPlex SM.

All attributes specific to CICSPlex SM have defaults. If you do not want to use CICSPlex SM, you can run DFHISTAR without providing overrides for any of the following CICSPlex SM specific parameters:

CMASNAME value

- Specifies the 1- to 8-character name to be allocated to a CMAS. The name can contain alphabetic, national, and numeric characters. However, the first character must be alphabetic or national. The default is CMAS01.

 - The name of a CMAS must be unique in the CICSPlex SM environment. It must not be the same as the name of another CMAS, a CICSPlex, a CICS system, or a CICS system group.
CMCIPORT value
Specifies the numeric identifier allocated to the TCP/IP port number for the CICS management client interface (CMCI) on the WUI server. The identifier can contain numeric characters only, in the range 1 to 65535. The default is 12346. The port number must be unique and used by only one WUI Server. The CICSPlex SM WUI Server does not support port sharing.

CMSSYSID value
Specifies the 4-character system identifier of the CMAS. This identifier can contain alphabetic, national, and numeric characters. It must match the SYSIDNT system initialization parameter for the CMAS. The default is CM01.

WUISYSID name
Specifies the 1- to 4-character name allocated to a WUI system identifier. The name can contain alphabetic, national, and numeric characters. However, the first character must be alphabetic or national. The default value is WU01.

CSYSYSID value
Specifies the 1- to 4-character system identifier for the managed CICS system. This identifier can contain alphabetic, national, and numeric characters. The default is CS01.

CSYSPLEX value
Specifies the 1- to 8-character name to be allocated to a CICSplex of managed systems. This identifier can contain alphabetic, national, and numeric characters. The default is CSYPLX01.

The name of a CICSplex must be unique in the CICSPlex SM environment. It must not be the same as the name of another CICSplex, a CICS system, or a CICS system group.

TCPIPHST
Specifies the TCP/IP host name for the WUI server. The default is XXXXXXX.XXXXXXXX.XXXXXXXX.XXXXXXXX.

TCPIPPRT
Specifies the numeric identifier allocated to the TCP/IP port number for the WUI server. The identifier can contain numeric characters only, in the range 1 to 65535. The default is 12345. The port number must be unique and used by only one WUI Server. The CICSPlex SM WUI Server does not support port sharing.

TIMEZONE code
Specifies the time zone assigned to the data repository. This code must be a single alphabetic character in the range B through Z. The default is B.

WUI value
Specifies whether to create a WUI CICSpex. This parameter is ignored if the OLDDREP parameter is specified. The default is YES if OLDDREP is not specified.

YES
Create a WUI CICSpex.

NO
Do not create a WUI CICSpex.

WUIPLEX name
Specifies the 1- to 8-character name allocated to a WUI CICSpex. The name can contain alphabetic, national, and numeric characters. However, the first character must be alphabetic or national. This parameter is ignored if the OLDDREP parameter is specified. The default is created from the characters WUIP, followed by the CMSSYSID. For example, using the default CMSSYSID, CM01, the default WUIPLEX name is WUIPCM01.

WUINAME name
Specifies the 1- to 8-character name allocated to a WUI. The name can contain alphabetic, national, and numeric characters. However, the first character must be alphabetic or national. The default is WUINCM01.
CSYSNAME name
Specifies the 1- to 8-character name to be allocated to a MAS. The name can contain alphabetic, national, and numeric characters. However, the first character must be alphabetic or national. The default is CSYS01.

The name of a MAS must be unique in the CICSPlex SM environment. It must not be the same as the name of another MAS, a CICSPlex, a CICS system, or a CICS system group.

OLDDREP dsname
Specifies an existing data repository that is being used by a previous release of CICSPlex SM. The records in the existing data repository are migrated to a new data repository for CICS TS for z/OS, Version 5.5. The existing data repository is not modified. If you do not specify this parameter, a new data repository is created.

dsname
The VSAM cluster name of the existing data repository.

The new CICS TS for z/OS, Version 5.5 data repository has the name

dsinfo.EYUDREP.cmasname
Where:

dsinfo
Is the index specified with the DSINFO parameter.

cmasname
Is the name specified with the CMASNAME parameter.

Use a period (the default value) to have an empty data repository created for CICS TS for z/OS, Version 5.5.

NEWDREP dsname
Specifies a new data repository that is being used by CICSPlex SM.

dsname
The VSAM cluster name of the existing data repository.

The new CICS TS for z/OS, Version 4.1 data repository has the name:

dsinfo.EYUDREP.cmasname
Where:

dsinfo
Is the index specified with the DSINFO parameter.

cmasname
Is the name specified with the CMASNAME parameter.

Use a period (the default value) to have an empty data repository created for CICS TS for z/OS, Version 5.5.

Specifying the DFHISTAR DOWNLOAD parameter
The DOWNLOAD parameter is populated into the DFHINSTE job that is created when running DFHISTAR.

Creating RACF profiles for the CICS Transaction Server data sets
Your Security Administrator creates appropriate RACF profiles for the CICS Transaction Server data sets.

At this stage, you require authority to access only the data set qualifiers specified on the TEMPLIB and LIB parameters of the DFHISTAR job. DFHISTAR uses a temporary sequential data set, with the high-level qualifier specified on the INDEX parameter, to resolve the parameters to be substituted into the jobs being tailored. However, consider coordinating the access authority for all the CICS Transaction Server data sets at the same time.

RACF profiles are discussed in detail in the RACF profiles.
Running the DFHISTAR job

Edit and save the DFHISTAR job with the values of installation parameters for your CICS Transaction Server environment. When you are ready to tailor the skeleton jobs, submit the DFHISTAR job.

The highest expected return code is 0.

When the DFHISTAR job has run, the Program Directory shows, in tabular form, the non-DFHISTAR jobs that have been copied and are tailored to your CICS Transaction Server environment, and are added to the library that you specified on the LIB parameter of the DFHISTAR job. By default, this library is the CICSTS55.XDFHINST library. If necessary, the DFHISTAR job creates the library specified on the LIB parameter.

Checking the output from the DFHISTAR job

Check the output from the DFHISTAR job and, if required, edit and submit the DFHISTAR job again.

The DFHISTAR job produces a job log and, if necessary, an error code:

• The output job log lists the values that were used for the parameters of the DFHISTAR job.
• If any error occurs when running the DFHISTAR job, a warning code of 4 or an error code of 12 is returned. For error code 4, the skeleton jobs are tailored and added to the CICSTS55.XDFHINST library. For error code 12, the skeleton jobs are not tailored or copied. To resolve the cause of either error code, examine the output job log and, if necessary, edit and submit the DFHISTAR job again.

You can run the DFHISTAR job any number of times to alter the attributes of the jobs that it creates.

When running the DFHISTAR job after the first time, you can select specific jobs to be created by using the SCOPE or SELECT parameter:

SCOPE ALL|BASE|POST

Specifies whether you want to generate all the CICS Transaction Server installation and postinstallation jobs, or only the postinstallation jobs. When you install CICS Transaction Server from the distribution tape, specify the default, SCOPE ALL. Code the other options, if necessary, during postinstallation tasks.

ALL

Specifies that you want to generate all the CICS Transaction Server installation jobs and all the postinstallation jobs.

BASE

Specifies that you want to generate only the installation jobs (DFHINST1 through DFHINST6, DFHIHFS0, DFHIHFS1, and DFHISMKD) that you use to install CICS Transaction Server from the distribution tape.

POST

Specifies that you want to generate only the postinstallation jobs that you can use to create the CICS Transaction Server data sets, and run the IVPs.

Running the installation jobs

Check that you are ready to run the installation jobs and then submit the jobs in sequence.

Before you run the installation jobs, read and run the included README file. Ensure the following settings are in place:

• The MVS image was IPLed with OMVS in full-function mode.
• The user ID under which you are running the jobs has superuser authority.

After you have run the DFHISTAR job to create the installation jobs, submit those jobs in sequence to install CICS Transaction Server. The following topics describe the CICS Transaction Server installation jobs, and give guidance on how to use them.
The CICS Transaction Server jobs are in the CICSTS55.XDFHINST library as a result of running the DFHISTAR job, which you copied from the distribution tape, as described in Copy RELFILE(2) from the Distribution Tape in the Program Directory.

Run these jobs one at a time. Before you run a job, read the information about it, starting with “Running the DFHIHFS0 job” on page 50.

After you have run a job, check its output before proceeding to the next job. If a job ends abnormally, find out why it failed by looking at the job log, which lists the error messages produced on each run. Correct the error and then proceed as advised in the job description. Do not attempt to run the next job until the previous job has run successfully.

Important: If you are installing electronically, rather than from a distribution tape, you should run the DFHINSTE job instead of DFHINST5. If you attempt to run DFHINST5 it will return an error.

Running the DFHIHFS0 job

This job create a file system and cicsts directory.

- Creates the **cicsts** directory at `/pathprefix/usr/lpp/`.
- Mounts the file system at directory `/pathprefix/usr/lpp/cicsts`.
- Creates the **dfhconfig** directory at `/pathprefix/usr/lpp/cicsts/`.
- Creates empty files `featuretoggle.properties` and `groupfeaturetoggle.properties` in the `dfhconfig` directory.

- **Owner=RWX**
- **Group=RWX**
- **Other=R-X**

(In octal form: 775)

where:

- **R**
 - Read
- **W**
 - Write
- **X**
 - Execute
- **-**
 - No permission

Note:

1. You might not need to run DFHIHFS0 if you have installed an earlier release of CICS TS or if you are re-installing CICS TS 4.1, because CICS creates the `/cicsts` directory that is common to all releases of CICS. If you do need to run DFHIHFS0, run this job once only.
2. You must grant RACF ALTER ACCESS to the OMVS data sets before running DFHIHFS0.
3. The `/cicsts` directory contains only directories, each being a mount point.
4. CICS requires the MOUNT issued by DFHIHFS0 to access files stored in the file system, but the MOUNT command is lost when you re-IPL MVS. SDFHINST member DFHBPXPO contains a MOUNT command for inclusion in a BPXPRMxx member of the SYS1.PARMLIB data set. The MOUNT command applies to the data set specified in the HFS0DSN parameter of the DFHISTAR job to be mounted at directory `/pathprefix/usr/lpp/cicsts`. Copy this command into a BPXPRMxx member of the SYS1.PARMLIB data set to ensure the mount is restored when MVS is IPLed.
5. All steps of DFHIHFS0 must end with return code zero for the job to be successful.
Running the DFHIHFS1 job
This job unmounts and deletes the file system, before creating and mounting a new file system as specified in DFHISTAR.

1. Unmounts the file system at directory /pathprefix/usr/lpp/cicsts/ussdir to allow the job to be rerun, and if necessary forces return code zero.
2. Deletes from /pathprefix/usr/lpp/cicsts the directory defined by the /ussdir parameter of the DFHISTAR job. This allows the job to rerun and, if necessary, forces return code zero.
3. Deletes the file system specified in the HFS1DSN parameter of the DFHISTAR job to allow the job to rerun and, if necessary, forces return code zero.
4. Creates the file system specified in the HFS1DSN parameter of the DFHISTAR job.
5. Creates the /ussdir directory at /pathprefix/usr/lpp/cicsts, where /ussdir is the name of the directory specified on the ussdir parameter.
6. Mounts the file system at directory /pathprefix/usr/lpp/cicsts/ussdir.
7. Creates the dfhconfig directory at /pathprefix/usr/lpp/cicsts/ussdir.
8. Creates empty files featuretoggle.properties and groupfeaturetoggle.properties in the dfhconfig directory.
9. Changes the permission settings for the /ussdir directory and the ussdir/dfhconfig directory to 775.

All steps of DFHIHFS1 must end with return code zero for the job to be successful.

CICS requires the MOUNT issued by DFHIHFS1 to access files stored in the z/OS UNIX file system, but the MOUNT command is lost when you re-IPL MVS. SDFHINST member DFHBXPX1 contains a MOUNT command for /pathprefix/usr/lpp/cicsts/ussdir, where /ussdir is the name of the directory specified in the ussdir parameter in the DFHISTAR job. Copy this command into a BPXPRMxx member of the SYS1.PARMLIB data set to ensure the mount is restored when MVS is IPLed.

Running the DFHISMKD job
This job creates the UNIX System Services directories.

You must run this job before any of the other installation jobs.

The highest expected return code is 0.

Running the DFHINST1 job
This job allocates and catalogs CICS Transaction Server distribution and target libraries.

To ensure that you can rerun this job, it deletes and uncatalogs the data sets that are allocated in the second step of the job.

If the DFHINST1 job ends abnormally, examine the job log to determine the cause, correct the problem, and then rerun the job.

The highest expected return code is 0.

Running the DFHINST2 job
This job allocates the CICS Transaction Server RELFILE data sets. If you run the DFHINST2 job now, you ensure that enough space has been allocated to the RELFILE data sets to allow the DFHINST5 job to complete.

To ensure that you can rerun this job, it deletes and uncatalogs the data sets, if they exist, that it allocates later.

If the DFHINST2 job ends abnormally, examine the job log to determine the cause, correct the problem, and then rerun the job.

The highest expected return code is 0.
Running the DFHINST3 job
This job allocates the CICS Transaction Server SMP/E data sets.

Caution: If you intend to use an existing target or distribution zone that contains an earlier release of CICS Transaction Server elements, be aware that any earlier release of CICS is cleared before being replaced by CICS Transaction Server.

Before you run the DFHINST3 job, if you intend to install CICS Transaction Server using both existing and new CSIs, make sure any new CSIs have the same control interval size as the existing CSIs.

If your existing CSIs do not have a control interval size of 4096 bytes, edit the DFHINST3 job before running it to change the CONTROLINTERVALSIZE(4096) parameter on the commands used to create the VSAM data sets for the new CSIs, to specify the same control interval size as the existing CSIs.

For further information about allocating CSI data sets, see [SMP/E for z/OS Reference](#).

To ensure that you can rerun this job, it deletes and uncatalogs the data sets, if they exist, that it allocates later.

This job also sets up the global, target, and distribution zones, depending on the parameters that you specified to the DFHISTAR job:

1. If you specified NEW for GZONE, the global zone is deleted and redefined.
2. The distribution zone is deleted and redefined.
3. The target zone is deleted and redefined.
4. Member GIMZPOOL from SYS1.MACLIB is copied using the REPRO command into the zones redefined in the previous steps.
5. If you specified OLD for GZONE, the entries for the DZONE and TZONE names are removed from the global zone.

If the DFHINST3 job ends abnormally, examine the job log to find the cause, correct the problem, and then rerun the job.

The highest expected return code is 0.

Running the DFHINST4 job
This job primes the global zone, target zone, and distribution zone, which are the new SMP/E zones created in DFHINST3.

If you did not run the DFHINST2 job, increase the DSSPACE values in the DFHINST4 job before submitting it.

If the DFHINST4 job ends abnormally, examine the job log to determine the cause, correct the problem, and then repeat all jobs, beginning with DFHINST1. This correction avoids SMP/E space problems, and consequent X37 stops with an abend message, during reruns of these SMP/E jobs.

The highest expected return code is 0, if you install into new zones, and 8, if you are installing into existing zones.

Running the DFHINST5 job
This job uses the RECEIVE command to receive the CICS Transaction Server software from the distribution tape into the RELFILE data sets created by the DFHINST2 job. This installation job, apart from the initial IEBCOPY job, is the only job that requires the distribution tape to be mounted.

If the DFHINST5 job ends abnormally, examine the job log to determine the cause, correct the problem, and then repeat all jobs, beginning with DFHINST1. This correction avoids SMP/E space problems, and consequent X37 stops with an abend message, during reruns of these SMP/E jobs.

The highest expected return code is 0.
Important: If you are installing electronically, rather than from a distribution tape, you should run the DFHINSTE job instead of DFHINST5. If you attempt to run DFHINST5 it will return an error.

Running the DFHINSTE job

IMPORTANT: Run this job instead of the DFHINST5 job if you are installing electronically rather than from a distribution tape.

If the DFHINSTE job ends abnormally, examine the job log to determine the cause, correct the problem, and then repeat all jobs, beginning with DFHINST1. This correction avoids SMP/E space problems, and consequent X37 stops with an abend message, during reruns of these SMP/E jobs.

The highest expected return code is 0.

Running the DFHINST6 job

This job performs the SMP/E APPLY and ACCEPT functions that install CICS Transaction Server into the target and distribution libraries respectively.

To ensure that DFHINST6 runs successfully, perform the following steps:

- Ensure that the Db2 SDSNLOAD library is available for this job. Without SDSNLOAD, DFHINST6 fails; see “Specifying the data set name of the SDSNLOAD library” on page 45.

 If you run DFHINST6 with an empty SDSNLOAD library, the APPLY step completes with return code 4, and the return code from the binder is 8. The REXX for CICS modules, CICSQL and CICDB2, which interface with Db2, are stored in SCICLOAD without the required Db2 routines and are not usable.

- Run DFHINST6 on the same MVS image on which the z/OS UNIX file system is installed, unless you are set up for MVS sharing.

 If you have modified the other installation jobs (for example, to use existing libraries and therefore existing target and distribution zones), consider splitting the DFHINST6 job to do APPLY CHECK, APPLY, ACCEPT CHECK, and ACCEPT functions as four separate jobs.

The DFHINST6 job is the longest running of all the installation jobs. It produces a large amount of printed output. The region size for the DFHINST6 job is currently set to 'REGION=0M', because this job requires more memory than the other installation jobs. Adjust your JES parameters (for example, with a JES2 / *JOBPARM LINES=99 statement) to avoid a system abend 722.

If successful, this job gives a return code of 4. See the "GIM23903W - LINK SUCCESSFUL . . " message, listed in the report that is output by the apply job. DFHINST6 job issues messages GIM23903W and GIM23913W depending on the execution environment of the installer. Both messages are acceptable.

The binder produces IEW2454W messages during the APPLY stage for unresolved external references while some CICS Transaction Server load modules are being link-edited during installation, giving return code 4. You might also receive numerous IEW2646W and IEW2651W messages, which indicate conflicts with user-specified RMODE and AMODE modes respectively. You can ignore these IEWxxxx messages, which are produced for component object modules of executable CICS Transaction Server load modules.

Messages IEW2689W, IEW2470E, IEW2648E, and IEW2303E might be displayed. You can ignore them.

When you have run the DFHINST6 job, the following SMP/E message is produced from the job:

| GIM20502I | GIMSMP PROCESSING IS COMPLETE - THE HIGHEST RETURN CODE WAS 04 |

You can ignore this SMP/E message.

If any other SMP/E messages appear, see SMP/E for z/OS Messages, Codes, and Diagnosis for guidance information about their meaning and take the appropriate action.

If the DFHINST6 job finishes abnormally, examine the job log to determine the cause, correct the problem, and then repeat all the jobs, beginning with DFHINST1. This correction avoids SMP/E space problems, and consequent X37 abends, during reruns of these SMP/E jobs.
If the DFHINST6 job fails and you are using an existing global zone (that is, you specified the GZONE parameter of the DFHISTAR job with the disposition parameter OLD), perform the following steps:

1. REJECT the CICS Transaction Server base-level function SYSMOD.
2. Rerun the DFHINST1 job. When you rerun the installation jobs, some steps that were successfully completed in the previous run produce return codes with a value of 8.

Running the DFHIJVMJ job
The DFHIJVMJ job creates the customized sample JVM profiles that you require if you want to run a JVM program in CICS.

DFHIJVMJ reads the supplied JVM profiles in the partitioned data set SDFHENV. It replaces the symbol &JAVA_HOME in the files with the value you specify on the JAVADIR parameter in the DFHISTAR installation job. The extra // characters on each side of the symbol in the supplied files are removed during symbol substitution.

The customized JVM profiles are then written as z/OS UNIX files in the directories listed in “Verifying Java components checklist” on page 184.

Running the DFHIFTG1 job
The DFHIFTG1 job is an optional job that tags the text files in the CICS USSHOME directory with the correct coded character set.

The expected highest return code is 0.

Running the DFHCSVCJ job
The DFHCSVCJ job runs the DFHCSVCU utility program to dynamically update the MVS SVC number that is specified in the PARM statement to invoke the required module, and so removes the need to restart the z/OS LPAR in order to use a new or updated SVC. You can use the DFHCSVCU utility program only if you have the required authorization.

The DFHCSVCU utility updates or adds a single SVC entry in the SVC table with a pointer containing the entry point of the supplied module. For an existing SVC number, before the SVC is updated, all CICS regions using that SVC number must be shut down, otherwise results can be unpredictable.

Before the DFHCSVCU utility program is run, the target program must be loaded into the MVS link pack area (LPA) using the following MVS console command:

```
SETPROG LPA, ADD, MODNAME=module, DSNAME=data set
```

Where:

- **module** is the module to be invoked by the SVC and
- **data set** is the load library where the module resides.

Because this utility issues SVCs (supervisor calls) it must be invoked from an authorized library by an operator who has sufficient authority to run the program.

The SVCnnn=module parameter identifies the number of the SVC to be modified and the program to be invoked by the SVC. The following checks are made by the utility program before any update is attempted:

1. A PARM statement is specified on the EXEC JCL card.
2. The PARM statement contains an SVCnnn= keyword statement.
3. The number specified is greater than 199 and less than 256.
4. The SVC type for the specified SVC number is 3 or 4.
5. The module name is less than or equal to 8 characters in length.

If any of these checks fail, the utility ends with the return code set to 12. If you do not load the target program into the MVS LPA, the utility ends with the return code set to 28.

When an existing SVC is to be updated the utility asks the operator to confirm that the SVC update is to proceed. Any response other than Yes results in the utility ending with the return code set to 12.
Note: Updates that are made by the DFHCSVCU utility are temporary, and are only valid until the system is restarted or another instance of the utility program is executed. For the updates to be permanent, member IEASVCxx in SYS1.PARMLIB must be updated with the changes.

Checking the output from the installation jobs

When you have successfully run all of the installation jobs, CICS Transaction Server is loaded.

You now have CICS Transaction Server installed on your DASD. Back up the volume on which CICS Transaction Server resides. If any errors occur during customization later, you do not have to re-run the installation jobs.

Postinstallation activities

Copy the CICS Transaction Server procedures into a cataloged procedure library, load any CICS features that you have, and tailor the CICS Transaction Server.

For information about tailoring CICS Transaction Server, see “Tailoring the CICS-supplied skeleton jobs” on page 161.

Copying the CICS Transaction Server procedures into a procedure library

CICS Transaction Server supplies procedures that can be tailored or are copied directly to your procedure library when you run the installation jobs. All procedures are described in the table.

The procedures DFHAUPLE, DFHSMPE, DFHSTART, EYUCMASP, EYUCSYSP, and EYUWUIP are tailored to your CICS Transaction Server environment and stored in the CICSTS55.XDFHINST library when you run the DFHISTAR job. The other procedures are not modified by the DFHISTAR job and are copied into the CICSTS55.SDFHPROC library when you run the CICS Transaction Server installation jobs.

Copy all these procedures into a cataloged procedure library; for example, SYS1.PROCLIB. Before you copy the procedures, read the following instructions:

1. Your procedure library might already contain procedures, supplied with an earlier release of CICS, that have the same names as the new procedures but are, in fact, different. If so, you must find some way of selecting the right release. Here are some ways of using the new versions:

 a. For the time being, rename either set of procedures and modify the appropriate jobs to use the new names.

 b. Insert the new procedures into the job streams that use them and use the procedures as in-stream procedures. Place the inserted procedures between the JOB statement and the first EXEC statement. You must insert a // PEND statement after the inserted procedures. When the new release becomes the production system, you can copy the new procedures into your procedure library.

 c. Indicate the DDNAME of the cataloged procedure library that is to be used to convert the JCL for the job. For example, you could use the JES2 /*JOBPARM PROCLIB=xxxxxxxx. For more information about specifying DDNAMEs in JCL, see the z/OS MVS JCL Reference.

 d. Specify, in the JCLLIB statement, the name of the procedure libraries that you want to search for the named procedure or procedures. For more information about JCLLIB, see the z/OS MVS JCL Reference.

2. If service is applied to the CICS Transaction Server procedures, the versions in the libraries CICSTS55.CICS.SDFHINST and CICSTS55.CICS.SDFHPROC are updated by SMP/E. You must then copy the updated procedures into your procedure library.

3. The default for the symbolic parameter GZONE in the procedures DFHSMPE and DFHAUPLE is taken from the value that you specified by the GZONE parameter of the DFHISTAR job.

4. The default for the ZNAME symbolic parameter in the procedures DFHSMPE and DFHAUPLE is taken from the value that you specified by the TZONE parameter of the DFHISTAR job. For a description of how the ZNAME parameter is used, see the SMPCNTL DD statement in The CICS TS-supplied SMP/E procedure.

5. Change the OUTC parameter as required.
When you have read these instructions, and acted on them as necessary, copy the procedures into a cataloged procedure library. The CICS Transaction Server-supplied procedures are listed in Table 6 on page 56.

CICS-supplied procedures
The CICS-supplied procedures and their descriptions are listed in an alphabetical table. Copy the procedures from the SDFHPROC library, unless the procedure specifies a different library.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHASMVS</td>
<td>Assembles some CICS Transaction Server programs and user-written assembler language programs.</td>
</tr>
<tr>
<td>DFHAUPLE</td>
<td>Assembles and link-edits CICS Transaction Server control tables and makes the assembly and link-edit information available to SMP/E. DFHAUPLE is installed in SDFHINST.</td>
</tr>
<tr>
<td>DFHBMSU</td>
<td>Runs the BMS load module disassemble utility program, DFHBMSUP.</td>
</tr>
<tr>
<td>DFHEBTAL</td>
<td>Translates, assembles, and link-edits assembler application programs using EXEC DLI commands in a batch environment under Language Environment.</td>
</tr>
<tr>
<td>DFHEGTAL</td>
<td>Translates, assembles, and link-edits AMODE(64) assembler application programs using the command-level interface.</td>
</tr>
<tr>
<td>DFHEITAL</td>
<td>Translates, assembles, and link-edits AMODE(24) and AMODE(31) assembler application programs using the command-level interface.</td>
</tr>
<tr>
<td>DFHEXTAL</td>
<td>Translates, assembles, and link-edits assembler application programs using the external CICS Transaction Server interface.</td>
</tr>
<tr>
<td>DFHLNKVS</td>
<td>Link-edits CICS Transaction Server programs and application programs.</td>
</tr>
<tr>
<td>DFHMAPS</td>
<td>Prepares physical and symbolic maps.</td>
</tr>
<tr>
<td>DFHMAPT</td>
<td>Prepares physical and symbolic maps for C++.</td>
</tr>
<tr>
<td>DFHSMPE</td>
<td>Runs SMP/E. DFHSMPE is installed in SDFHINST.</td>
</tr>
<tr>
<td>DFHSTART</td>
<td>Starts CICS. DFHSTART is installed in SDFHINST.</td>
</tr>
<tr>
<td>DFHYBTPL</td>
<td>Translates, compiles, and link-edits PL/I application programs using EXEC DLI commands in a batch environment under Language Environment.</td>
</tr>
<tr>
<td>DFHYBTVL</td>
<td>Translates, compiles, and link-edits COBOL application programs using EXEC DLI commands in a batch environment under Language Environment.</td>
</tr>
<tr>
<td>DFHYITDL</td>
<td>Translates, compiles, and link-edits C/370 application programs using the command-level interface under Language Environment.</td>
</tr>
<tr>
<td>DFHYITEL</td>
<td>Translates, compiles, and link-edits C++ application programs using the command-level interface under Language Environment.</td>
</tr>
<tr>
<td>DFHYITFL</td>
<td>Translates, compiles, and link-edits C application programs using the XPLINK compiler option under Language Environment.</td>
</tr>
<tr>
<td>DFHYITGL</td>
<td>Translates, compiles, and link-edits C++ application programs using the XPLINK compiler option under Language Environment.</td>
</tr>
<tr>
<td>DFHYITPL</td>
<td>Translates, compiles, and link-edits PL/I application programs using the command-level interface under Language Environment.</td>
</tr>
<tr>
<td>DFHYITVL</td>
<td>Translates, compiles, and link-edits COBOL application programs using the command-level interface under Language Environment.</td>
</tr>
<tr>
<td>Procedure</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>DFHYXTDL</td>
<td>Translates, compiles, and link-edits C/370 application programs using the external CICS Transaction Server interface under Language Environment.</td>
</tr>
<tr>
<td>DFHYXTEL</td>
<td>Translates, compiles, and link-edits C++ application programs using the external CICS Transaction Server interface under Language Environment.</td>
</tr>
<tr>
<td>DFHYXTPL</td>
<td>Translates, compiles, and link-edits PL/I application programs using the external CICS Transaction Server interface under Language Environment.</td>
</tr>
<tr>
<td>DFHYXTVL</td>
<td>Translates, compiles, and link-edits COBOL application programs using the external CICS Transaction Server interface under Language Environment.</td>
</tr>
<tr>
<td>DFHZITCL</td>
<td>Translates, compiles, and link-edits COBOL application programs using the integrated CICS translator.</td>
</tr>
<tr>
<td>DFHZITDL</td>
<td>Translates, compiles, and link-edits C application programs using the integrated CICS translator.</td>
</tr>
<tr>
<td>DFHZITEL</td>
<td>Translates, compiles, and link-edits C++ application programs using the integrated CICS translator.</td>
</tr>
<tr>
<td>DFHZITFL</td>
<td>Translates, compiles, and link-edits C XPLINK application programs using the integrated CICS translator.</td>
</tr>
<tr>
<td>DFHZITGL</td>
<td>Translates, compiles, and link-edits C++ XPLINK application programs using the integrated CICS translator.</td>
</tr>
<tr>
<td>DFHZITPL</td>
<td>Translates, compiles, and link-edits PL/I application programs using the integrated CICS translator.</td>
</tr>
<tr>
<td>DFHZXTCL</td>
<td>Translates, compiles, and link-edits EXCI COBOL application programs using the integrated CICS translator.</td>
</tr>
<tr>
<td>DFHZXTDL</td>
<td>Translates, compiles, and link-edits EXCI C application programs using the integrated CICS translator.</td>
</tr>
<tr>
<td>DFHZXTEL</td>
<td>Translates, compiles, and link-edits EXCI C++ application programs using the integrated CICS translator.</td>
</tr>
<tr>
<td>DFHZTPL</td>
<td>Translates, compiles, and link-edits EXCI PL/I application programs using the integrated CICS translator.</td>
</tr>
<tr>
<td>EYUCMASP</td>
<td>Starts a CMAS.</td>
</tr>
<tr>
<td>EYUCSYSP</td>
<td>Starts a MAS.</td>
</tr>
<tr>
<td>EYUEITAL</td>
<td>Assembler sample procedure provided in the SEYUPROC library to create replacement modules for EYU9WRAM.</td>
</tr>
<tr>
<td>EYUEITDL</td>
<td>C sample procedure provided in the SEYUPROC library to create replacement modules for EYU9WRAM.</td>
</tr>
<tr>
<td>EYUEITPL</td>
<td>PL/I sample procedure provided in the SEYUPROC library to create replacement modules for EYU9WRAM.</td>
</tr>
<tr>
<td>EYUEITVTL</td>
<td>COBOL sample procedure provided in the SEYUPROC library to create replacement modules for EYU9WRAM.</td>
</tr>
<tr>
<td>EYUJXBTP</td>
<td>JCL procedure used by the samples, EYUJXBT1, EYUJXBT2, EYUJXBT3, and EYUJXBT4, to invoke the EYU9XDBT program.</td>
</tr>
<tr>
<td>EYUJXDDP</td>
<td>Contains procedural JCL for running the DLA.</td>
</tr>
</tbody>
</table>
Table 6. CICS-supplied procedures (continued)

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUWUIP</td>
<td>Starts a WUI.</td>
</tr>
<tr>
<td>ICCFCC</td>
<td>CICS foundation classes.</td>
</tr>
<tr>
<td>ICCFCCL</td>
<td>CICS foundation classes.</td>
</tr>
<tr>
<td>ICCFCGL</td>
<td>CICS foundation classes.</td>
</tr>
<tr>
<td>ICCFCL</td>
<td>CICS foundation classes.</td>
</tr>
</tbody>
</table>

For further information about using the DFHSMPE and DFHSTART procedures, see “The CICS TS-supplied SMP/E procedure” on page 156.

Creating extra sets of CICS Transaction Server target libraries (optional)
You can use the CICS Transaction Server installation job, DFHISTAR, to generate an optional installation job, DFHINSTA, which you can use to create extra copies of the CICS Transaction Server target libraries and UNIX System Services directories.

About this task

What are the benefits of using multiple libraries
- Backing out PTFs and APARs. If you apply PTFs or APARs to CICS Transaction Server and if they fail a fix-test, you can back out the changes with minimum disruption.
- DASD failure. Multiple libraries protect you against failure of the DASD on which the CICS Transaction Server load libraries reside.

What are the factors you should consider when making the decision to use multiple libraries
- Your requirement for high availability. As already stated, the use of multiple libraries can protect you against CICS Transaction Server downtime caused by DASD failure or incorrect service, either from IBM-supplied PTFs or from your own modifications to your CICS Transaction Server region.
- The extra DASD required. Multiple libraries require more disk space.
- Other ways of providing high availability. For example, use a CICSPlex, z/OS Communications Server persistent sessions, and MVS functions to provide restart of CICS Transaction Server regions.
- The added complexity of maintaining multiple sets of CICS Transaction Server libraries. Two or more sets of CICS Transaction Server target libraries, together with the SMP/E procedures that are required to support them, increase the complexity of maintenance. Define procedures to ensure that upgrades to the CICS Transaction Server libraries are kept under control.
- Alternative solutions. If you have already established a proven process for fix verification and for testing applications developed for your production CICS Transaction Server region, you might decide that you do not require multiple CICS Transaction Server libraries.

You can use the DFHINSTA job, generated by the DFHISTAR job, to create extra sets of CICS Transaction Server target libraries fully under the control of SMP/E. Each time you run the DFHINSTA job, you can generate only one extra set of target libraries.

To create an extra set of target libraries, complete the following procedure. You can repeat the steps to create more sets of target libraries.

Procedure
1. Edit the DFHISTAR job to specify values:
 - The ADDTVOL, AINDEX, ASMPSYSDS, AZONE, AZONECSI, AZONELOG, and USSDIR parameters, for the new set of target libraries.
• The INDEX, TZONE, TZONECSI, and TZONELOG parameters, for the primary target libraries you want to copy from. The TZONE, TZONECSI, and TZONELOG parameters must specify the target zone that contains the CICS Transaction Server target libraries defined with the high-level qualifier provided by the INDEX parameter.

• The DZONE, DZONECSI, and DZONELOG parameters, for the distribution libraries to be associated with the new set of target libraries.

For further information about editing the DFHISTAR job and about the parameters of the DFHISTAR job, see “Editing the DFHISTAR job” on page 25. Do not change the other parameters in the DFHISTAR job.

2. Submit the DFHISTAR job.

When you run the DFHISTAR job, it saves the generated version of the DFHINSTA job in the CICSTS55.XDFHINST library with the member name specified on the SELECT parameter in the DFHISTAR job. The LIB parameter of the DFHISTAR job specifies the data set name of the CICSTS55.XDFHINST library.

3. Consider running the DFHIHFSA job.

If you decide to create an additional SMP/E target zone using job DFHINSTA, run the DFHIHFSA job before running the DFHINSTA job. DFHIHFSA creates an additional SMP/E target zone for z/OS UNIX. This job performs the following steps:

• Unmounts the z/OS UNIX file system at directory /pathprefix/usr/lpp/cicsts/ussdir to allow the job to rerun and, if necessary, forces return code 0.
• Deletes the /ussdira directory at /pathprefix/usr/lpp/cicsts, where ussdira is the name of the directory specified on the ussdira parameter in the DFHISTAR job. This allows the job to rerun and, if necessary, forces return code 0.
• Deletes the file system specified in the HFSADSN parameter of the DFHISTAR job to allow the job to rerun and, if necessary, forces return code 0.
• Creates the file system specified in the HFSADSN parameter of the DFHISTAR job.
• Creates the /ussdira directory at /pathprefix/usr/lpp/cicsts/ussdira.
• Creates the dfhconfig directory at /pathprefix/usr/lpp/cicsts/ussdira.
• Creates empty files featuretoggle.properties and groupfeaturetoggle.properties in the dfhconfig directory.
• Changes the permission settings for the ussdira directory and the ussdira/dfhconfig directory to 775.

All steps of this job must end with return code zero for the job to be successful.

CICS requires the MOUNT issued by DFHIHFSA to access files stored in the z/OS UNIX, but the MOUNT command is lost when you re-IPL MVS. SDFHINST member DFHBPXPA contains a MOUNT command for @pathprefix@/uss_path_a where where uss_path_a is the name of the directory specified in the uss_path parameter in the DFHISTAR job. Copy this command into a BPXPRMxx member of the SYS1.PARMLIB data set to ensure that the mount is restored when MVS is IPLed.

4. Submit DFHINSTA.

The DFHINSTA job, or a copy of it, copies the CICS Transaction Server target libraries specified by the INDEX parameter, and creates corresponding CICS Transaction Server SMP/E data sets for them. In particular, it allocates a new SMP/E CSI data set for the extra target zone.

So that you can run the DFHINSTA job more than once, step 1 deletes previous copies of the data sets to be created. Step 3 deletes the SMP/E CSI data set. Step 6 removes the ZONEINDEX entry for the extra target zone.

The first time the DFHINSTA job is run it will fail with return code 8, and step 6 will give the following messages:
You can ignore these messages the first time the job is run.

Loading other optional features
The sample job, DFHINSTJ, is supplied for loading other optional features.

CICS Transaction Server contains no optional features at General Availability time, but you can use the sample job if any optional features are shipped at a later date. The DFHINSTJ job is generated in the CICSTS55.XDFHINST library when you run the DFHISTAR job.
Chapter 6. Activating CICS Transaction Server

Perform the following steps after you have loaded CICS Transaction Server to disk.

1. Apply service; see “Applying service to CICS Transaction Server for z/OS” on page 155.
2. Integrate CICS Transaction Server with MVS; see Chapter 7, “Setting up the MVS environment for CICS,” on page 63.
3. Create CICS Transaction Server system data sets; see “Jobs for creating the CICS data sets” on page 164.
4. (Optional) Install CICS IMS DBCTL support; see “Defining DL/I support” on page 186.
5. (Optional) Install MRO and ISC support, see “Installing MRO support” on page 176.
6. (Optional) Run the installation verification procedures (IVPs); see Chapter 10, “Verifying the CICS installation,” on page 191.

Information about putting CICS Transaction Server into operational status is included as part of the process of verifying the installation; see Chapter 10, “Verifying the CICS installation,” on page 191.
You must perform a number of tasks after you have loaded the elements to DASD and before you run CICS.

The information about ACF/Communications Server, MVS, RACF, and other products given is for guidance only. Always consult the current publications of these products for the latest information.

The term "RACF" is used throughout this information to mean the MVS Resource Access Control Facility (RACF) or any other external security manager that provides equivalent function.

Authorizing the CICS and CICSPlex SM libraries

The SDFHAUTH, SEYUAUTH, SDFHLINK, SEYULINK libraries and the libraries for your product license modules (SDFHLIC, SDFHVUE for Value Unit Edition, and SDFHDEV for Developer Trial) must be APF-authorized.

The SDFHLPA and SEYULPA libraries do not need to be APF-authorized, because they are in the LPALST. However, you must ensure that you properly protect any data set in the LPALST to avoid system security and integrity exposures, just as you would protect any APF-authorized library.

1. APF-authorize these libraries by adding them to the list of APF-authorized libraries in the appropriate PROGxx or IEAAPFxx member in SYS1.PARMLIB. These libraries must be APF-authorized to enable certain modules, such as DFHSIP, to run in supervisor state.

2. If your lists of APF-authorized libraries are specified in the dynamic format in a PROGxx member, refresh the APF list dynamically by using the SETPROG or SET PROG=xx command.

3. If your lists of APF-authorized libraries are specified in the static format in IEAAPFxx members, schedule an MVS IPL for the APF-authorization to take effect.

4. When you prepare your startup job stream, provide a STEPLIB DD statement for the SDFHAUTH and SEYUAUTH libraries. The SEYUAUTH library loads the message files, therefore it is required for both basic CICS functions and if you are using any CICSPlex SM or CICS Explorer functions. When you define your STEPLIB DD statement, remember that all other libraries concatenated with the SDFHAUTH and SEYUAUTH libraries must also be APF-authorized. If any of the libraries in a STEPLIB concatenation are not authorized, MVS regards all of them as unauthorized.

5. The SDFHLOAD and SEYULOAD libraries contain only programs that run in problem state, and must not be authorized. You must include the SDFHLOAD library in the CICS DFHRPL library concatenation. An example of this library DD statement is in the sample job stream in A sample CICS startup job. For offline utilities the SDFHLOAD and SEYULOAD libraries are included in the STEPLIB concatenation of the job but again they must not be authorized. For example the CICS translator will abend with abend code U0101 if SDFHLOAD is authorized.

Although, in general, CICS runs in problem state, the CICS initialization program, DFHSIP, must run in supervisor state for part of its execution. The CMAS startup program, EYU9XEC5, also requires APF authorization.

For a module to run in supervisor state, it must be link-edited as an authorized module into a partitioned data set, which must also be defined to the operating system as APF-authorized. For CICS-supplied modules, the link-editing has been done for you. The CICS-supplied DFHSIP module is link-edited with the authorized attribute, using SETCODE AC(1), and is installed in the SDFHAUTH library.

For information about maintaining lists of APF-authorized libraries, see the z/OS MVS Initialization and Tuning Guide.

For information about authorizing access to CICS data sets, see Authorizing access to CICS data sets.
Authorizing CICS regions to access MVS resources

Protect your data sets, authorize your user IDs and regions and activate your RACF resource classes when you set up your security requirements to run CICS.

Grant access to the PDS libraries
Protect your data sets that use RACF. See “Protecting CICS load module data sets” on page 64.

SNA ACB
Authorize each CICS region user ID to open the SNA ACB for the region applid.

CICS system transactions
Authorize each CICS region user ID to access the CICS category 1 system transactions.

SMSVSAM server
Authorize each CICS region to open the SMSVSAM control ACB if you plan to use CICS with VSAM record-level data sharing.

System logger log streams
Authorize each CICS region user ID to access the MVS system logger log streams that are used by CICS.

z/OS UNIX
Include an OMVS segment in the CICS region user profile, specifying the UID parameter, to ensure that your CICS regions have the required access to z/OS UNIX. Failure to do so results in CICS failing to start under that region user ID with RACF message ICH408I and CICS message DFHKE002. Other messages such as DFHKE0501 and DFHDM0105 might also occur if different CICS domains fail to initialize.

RACF resource classes
Activate the appropriate RACF resource classes to enable terminal users to access CICS resources and user-defined resources.

VSAM catalogs
Give the CICS region user ID read access to each VSAM catalog that contains files, where CICS has the file definitions installed, and where these files are opened during or after CICS startup. Include the VSAM catalog for the DFHCSD file for the CICS system definition data set (CSD).

Protecting CICS load module data sets
To prevent unauthorized or accidental modification of hlq.SDFHAUTH or hlq.SDFJAUTH, you must RACF-protect these libraries.

Without protection, the integrity and security of your MVS system are at risk. Additionally, if you require protection against the unauthorized use of DFHSIP, do not place this module in the LPA and do not include hlq.SDFHAUTH in the MVS LNKLIST unless DFHSIP is RACF-protected as a controlled program with a profile in the RACF PROGRAM resource class.

You must also RACF-protect the other libraries, including hlq.SDFHLOAD, that make up the STEPLIB and DFHRPL library concatenations.

For information about authorizing access to CICS data sets, see Implementing RACF protection in a single CICS region.

Authorizing access to data set services modules
During initialization, CICS determines the availability of backup-while-open (BWO) support by linking to the callable services modules IGWAMCS2 and IGWABWO.

CICS also checks the DFSMSdss or DFDSS release level by linking to the module ADRRELVL. If access to this data set services module is controlled by means of RACF PROGRAM general resource profiles, security violation messages are issued against the CICS region user ID, unless the user ID is authorized to access ADR-prefixed module names.

You can avoid security violation messages against the CICS region user IDs, and still control access to data set services:
If you have generic PROGRAM profiles protecting access to ADR modules, create specific PROGRAM profiles for the ADDRELVL module and ensure that your CICS region user IDs have READ access to these specific profiles.

Instead of using PROGRAM profiles to protect access to data set services, use one of the following methods:

- Define suitable profiles in the DASD VOL general resource class.
- Define profiles in the FACILITY general resource class that are supported by DFSMS to control access to data set services.

For information about using DASD VOL and FACILITY class profiles to control the uses of data set services, see z/OS DFSMSdss Storage Administration.

Authorizing access to a CICS region z/OS Communications Server ACB

You can control which users, among those who are running non-APF-authorized programs, can open the SNA ACB associated with a CICS address space (CICS region).

Control ensures that only authorized CICS regions can present themselves as z/OS Communications Server applications that provide services with this applid, thus preventing unauthorized users from impersonating real CICS regions. The CICS region user ID requires the OPEN access, not the issuer of the z/OS Communications Server SET VTAM OPEN command.

1. To enable CICS to start with external security, authorize the CICS region user ID to open the CICS region's z/OS Communications Server ACB with the applid specified on the APPLID system initialization parameter.

2. For each applid, create an z/OS Communications Server APPL profile, and give the CICS region user ID READ access. For example:

 RDEFINE VTAMAPPL applid UACC(NONE) NOTIFY(userid)
 PERMIT applid CLASS(VTAMAPPL) ID(cics_region_userid) ACCESS(READ)

 The correct CICS applid to specify in the VTAMAPPL class is the specific applid, as specified in the CICS system initialization parameters. If you are using XRF (that is, if CICS is started with XRF=YES), you must define two VTAMAPPL profiles — one each for both the active and alternate CICS region's specific applid (the second operand on the CICS APPLID startup option).

3. Ensure that the VTAMAPPL class is active and RACLISTed for this protection to be in effect; for example:

 SETROPTS CLASSACT(VTAMAPPL) RACLIST(VTAMAPPL)

4. If a CICS region will not use z/OS Communications Server, do not reauthorize the CICS region user ID for the CICS applid.

5. If you do not control the opening of a CICS region's z/OS Communications Server ACB, a new z/OS Communications Server application started with the same applid as that of a running CICS region has the following effect:

 - The running CICS region performs a FORCECLOSE of its SNA ACB and issues message DFHZC0101.
 - The running CICS region either ends or continues, depending on your use of the XXRSTAT exit. The default is to end. If the CICS region continues, it no longer uses z/OS Communications Server.
 - The new application opens the z/OS Communications Server ACB with the specified applid.
 - If the first running CICS region used z/OS Communications Server persistent sessions, the new application recovers any z/OS Communications Server sessions that persist from that CICS region.

For information about creating z/OS Communications Server APPL profiles for CICS region applids, see the CICS system resource security. For information about the XXRSTAT exit, see the Exit XXRSTAT.
Authorizing the region user ID to access category 1 transactions

To enable CICS to start using external security, you must first have authorized the CICS region user ID to access the category 1 system transactions. If the region user ID does not have this authority at CICS startup, CICS issues message DFHXS1113 for each unauthorized category 1 system transaction and ends with message DFHXS1404.

To give the region user ID the authority to access the category 1 system transactions, edit and submit the sample job stream in Figure 3 on page 66 to run the CICS-supplied sample CLIST, DFH$CAT1. This job uses the RACF commands in the CLIST to update the RACF database.

Only a user with the RACF authority SPECIAL can run the CLIST to update the RACF database.

```
//RACFMIG  JOB 'accounting information',
  //      CLASS=A,USER=userid,PASSWORD=password
//DEFINE   EXEC PGM=IKJEFT01
//SYSPRINT DD SYSOUT=A
//SYSTSPRT DD SYSOUT=A
//SYSUDUMP DD SYSOUT=A
//SYSTSIN  DD *
EXEC 'CICSTS55.CICS.SDFHSAMP(DFH$CAT1)' LIST
/*

Figure 3. Batch job to run the sample CLIST, DFH$CAT1
```

Authorizing access to an SMSVSAM server

If you plan to run CICS with VSAM record-level sharing (RLS), you must authorize each region that connects to an SMSVSAM server to have access to that server.

In a test environment you might want to use the default action and allow any CICS region using VSAM RLS to connect to an SMSVSAM server. If you want to protect this access, the RACF SUBSYSNM general resource class must be active and you must authorize each CICS region that connects to an SMSVSAM server to have access to that server. This means granting access to the appropriate profile in the RACF SUBSYSNM general resource class. You define profiles in the SUBSYSNM resource class to control access by subsystems like CICS that want to connect to SMSVSAM.

A SUBSYSNM profile name is the name by which a given subsystem, such as CICS, is known to VSAM. For CICS regions, you must use the CICS applid as the profile name in the SUBSYSNM general resource class.

When CICS attempts to register the control ACB during CICS initialization, SMSVSAM calls RACF to check that the CICS region user ID is authorized to a profile name in the SUBSYSNM class that matches the CICS applid. If the CICS region user ID does not have READ authority, the register fails.

For example, if the applid of a CICS AOR is CICSDAA1, and the CICS region user ID (shared by a number of AORs) is CICSDA##, define and authorize the profile:

```
RDEFINE SUBSYSNM  CICSDAA1  UACC(NONE) NOTIFY(userid)
PERMIT  CICSDAA1  CLASS(SUBSYSNM)  ID(CICSDA##)  ACCESS(READ)
```

You can use wildcard characters on the applid to specify more than one CICS region, for example:

```
PERMIT  CICSDA%%  CLASS(SUBSYSNM)  ID(CICSDGRP)  ACCESS(READ)
```

Authorizing access to MVS log streams

CICS does not control LOGSTRM security checks. To control them, the MVS security administrator activates the LOGSTRM and FACILITY general resource classes with the SETROPTS command.

Users of the IXCMIAPU administrative data utility and CICS regions both require appropriate authorizations to log streams and IXLSTR coupling facility structures.
Authorizing users of IXCMIAPU
You can create log structures and define log streams using the IXCMIAPU administrative data utility to update the LOGR data set. Your user ID must have the appropriate level of authorization.

Here are examples of levels of user ID authorization:

Coupling facility structures
To define and delete log structures using IXCMIAPU, you must have ALTER access to the LOGR resource profile named MVSADMIN.LOGR in the FACILITY general resource class. For example, use the following RACF command:

```r
PERMIT MVSADMIN.LOGR CLASS(FACILITY) ACCESS(ALTER) ID(your_userid)
```

Coupling facility log streams
To define, delete, and update log streams, including log stream models, that are defined in coupling facility structures, you require these accesses:

- ALTER access to the appropriate log stream profile defined in the LOGSTRM general resource class
- UPDATE access to the coupling facility structure (IXLSTR) profile defined in the FACILITY general resource class; in this case, profile names are prefixed with IXLSTR.

For example, if the log stream and structure resource profiles are defined to RACF with the following commands:

```r
RDEFINE LOGSTRM log_stream_profile UACC(NONE) [NOTIFY]
RDEFINE FACILITY IXLSTR.structure_name_a UACC(NONE) [NOTIFY]
```

Use the following RACF commands to give your user ID the required authorizations to these two profiles:

```r
PERMIT log_stream_profile CLASS(LOGSTRM) ACCESS(ALTER) ID(your_userid)
PERMIT IXLSTR.structure_name_a CLASS(FACILITY) ACCESS(UPDATE) ID(your_userid)
```

Authorizations for CICS regions
If the LOGSTRM resource class is active, the level of authorization required depends on whether log streams are always explicitly defined to the MVS system logger.

Ensure that the CICS region user ID is authorized to write to, and create if necessary, the log streams and log stream data sets that are used for its system log and general logs. See Defining the logger environment for CICS. You do this by granting the appropriate access authorization to log stream profiles in the RACF LOGSTRM general resource class:

- If CICS is expected to create log streams dynamically, CICS must have **ALTER** authority to the relevant log stream (LOGSTRM) profiles, and **UPDATE** authority to the relevant coupling facility structure (IXLSTR and IXGLOGR) profiles. Here is an example:

```r
PERMIT region_userid.applid.* CLASS(LOGSTRM) ACCESS(ALTER) ID(region_userid)
PERMIT IXLSTR.structure_name_a CLASS(FACILITY) ACCESS(UPDATE) ID(region_userid)
```

- If all the log streams to which CICS writes are already defined to MVS, CICS requires only **UPDATE** authority to the log stream profiles:

```r
PERMIT region_userid.applid.* CLASS(LOGSTRM) ACCESS(UPDATE) ID(region_userid)
PERMIT IXGLOGR.region_userid.* CLASS(DATASET) ACCESS(UPDATE) ID(region_userid)
```
In the above examples, `region_userid.applid.*` is the generic profile name of the log stream resource. These examples illustrate a resource name prefixed by the region user ID and applid. `region_userid` is the CICS region user ID under which CICS is running, either as a started task or batch job.

Permit READ access to those users who read the CICS log streams. You must permit UPDATE access to those users who update journals by granting the user the appropriate authority to the log stream, in the LOGSTRM resource class, and to the JOURNALNAME in the JCICSJCT class. You must also grant access to the data set profile protecting the data set that contains the log stream.

The user ID for the JCICSJCT is the logon user ID, not the CICS region user ID. The example shows how to define it:

```plaintext
PERMIT journal_name CLASS(JCICSJCT) ACCESS(UPDATE) ID(logon_userid)
```

You can define the generic profile in the following example to cover all the log streams referenced by the CICS region identified by its region user ID and applid:

```plaintext
RDEFINE LOGSTRM region_userid.** UACC(NONE)
```

If, however, you have multiple CICS systems sharing the same region user ID, but with differing security requirements, include the applid in the generic profile:

```plaintext
RDEFINE LOGSTRM region_userid.applid.* UACC(NONE)
```

The following example allows the CICS region user ID under which CICS is running to write journal and log records to log streams in the named coupling facility structure:

```plaintext
PERMIT IXLSTR.structurename CLASS(FACILITY) ACCESS(UPDATE) ID(region_userid)
```

The following examples give access to two categories of user:

```plaintext
PERMIT region_userid.applid.* CLASS(LOGSTRM) ACCESS(READ) ID(authorized_browsers)
PERMIT region_userid.applid.* CLASS(LOGSTRM) ACCESS(UPDATE) ID(archive_userid)
```

In these examples, `archive_userid` is the user ID under which an application program runs to purge old data from CICS logs when the data is no longer required and `authorized_browsers` refers to the user IDs of users allowed to read log streams but not to purge data.

If several CICS regions share the same CICS region user ID, you can make profiles more generic by specifying `*` for the `applid` qualifier.

The number of profiles you define depends on the naming conventions of the logs and to what extent you can use generic profiling.

Authorizing access to z/OS UNIX System Services

CICS requires access to z/OS UNIX System Services and to directories and files in the file system. CICS facilities that require this access include TCP/IP support, Java support, CICS Web support, and task-related user exits that are enabled with the OPENAPI option, including the task-related user exit of the CICS Db2 attachment facility.

Before you begin

You must set up z/OS UNIX System Services, as described in z/OS UNIX System Services Planning.

About this task

To satisfy a CICS region request for a z/OS UNIX function for the first time, RACF does the following actions:

- Verifies that the user (the CICS region user ID) is defined as a z/OS UNIX user.
- Verifies that the user's current connect group is defined as a z/OS UNIX group.
- Initializes the control blocks required for subsequent security checks.

Follow the steps listed to ensure that each CICS region meets the security requirements:

1. Choose a RACF group that all your CICS regions can use to access z/OS UNIX and give a z/OS UNIX group identifier (GID) to this RACF group.
2. Give a z/OS UNIX user identifier (UID) to each CICS region user ID.
3. Make sure that each CICS region user ID connects to the RACF group that you chose.
4. Set up a home directory on z/OS UNIX for each of your CICS regions.

The UID and GID are numbers that can be in the range 0 to 16 777 216. 0 is a superuser ID. Give some thought to naming conventions and to any existing UIDs and GIDs in your z/OS UNIX system. For information on how to manage the UIDs and GIDs for your z/OS UNIX system, see z/OS UNIX System Services Planning.

Note: If you are upgrading to z/OS 2.1.0 or above and have defined a BPX.DEFAULT.USER profile, please note that this is no longer supported. Instead you must define the BPX.UNIQUE.USER profile to enable the automatic assigning of UIDs and GIDs to users without an assigned OMVS segment. For more information, see Using the BPX.UNIQUE.USER profile instead of BPX.DEFAULT.USER in z/OS Migration.

To assign a z/OS UNIX UID and GID for your CICS regions and set up a home directory:

Procedure

1. Choose a RACF group that can be used by all your CICS regions. For example, you might use a RACF group that is defined as the default group of your CICS region user IDs, or you could set up a RACF group to be used only for access to z/OS UNIX System Services.

 When you are setting up facilities such as Java support or CICS Web support, you might want to use this RACF group for giving file access permissions on z/OS UNIX, in which case the RACF group's z/OS UNIX group identifier (GID) is associated with these directories and files. This association means that the owner of these directories and files, and anyone who is not the owner but has to carry out operations with these files, must have this group as their group or one of their supplementary groups. The RACF profiles explains how RACF groups work.

2. Choose a suitable z/OS UNIX group identifier (GID) for the RACF group, and assign the GID to the RACF group. To assign a GID, specify the GID value in the OMVS segment of the RACF group profile. For example, if the RACF group is CICSTSAB, and the GID you want to assign is 9, use the command:

   ```
   ALTGROUP CICSTSAB OMVS(GID(9))
   ```

3. Choose a suitable z/OS UNIX user identifier (UID) for each CICS region. Implementing security for z/OS UNIX files explains how the region user ID under which CICS runs is specified when CICS is run as a started task, as a started job, or as a job.

 a) Assign your chosen UIDs to each of your CICS region user IDs. To assign UIDs, specify the UID value in the OMVS segment of the RACF user profile for each CICS region user ID.

 b) Also specify the name of a home directory for each CICS region using the HOME option. The directory name format is /u/CICS region user ID.

 CICS security tells you how to update a RACF user profile using the ALTUSER command. For example, if the CICS region user ID is CICSHAA1, and the UID you want to assign is 2001, use the command:

   ```
   ALTUSER CICSHAA1 OMVS(UID(2001) HOME('/u/cicshaa1'))
   ```

 If you want to know about the other information that can be specified in an OMVS segment parameter in a user profile besides the UID and home directory, see z/OS Security Server RACF Command Language Reference. You can assign the same UID to more than one CICS region user ID. If all your CICS regions must use the same z/OS UNIX files (for example, the files required for Java support), you can give all the CICS regions the same UID, and then you can use that UID for giving file access permissions on z/OS UNIX. However, bear in mind these points:
a. The sharing of UIDs allows each CICS region to access all of the z/OS UNIX resources that the other CICS regions with that shared UID can access, and this level of access might not be appropriate in your system.

b. The sharing of UIDs is not normally suitable in a z/OS UNIX system.

c. If you do choose to share UIDs, the z/OS UNIX System Services parameter MAXPROCUSER limits the maximum number of processes that a single user (that is, with the same UID) can have concurrently active.

4. Set up each of the z/OS UNIX directories that you have specified as a home directory for one of your CICS regions.

Further information on each of these steps is provided in z/OS UNIX System Services Planning.

a) If you are not using an automount facility, use the mkdir command to create the z/OS UNIX directories.

For example, issuing the UNIX command

```bash
mkdir /u/cicshaa1
```

Creates the z/OS UNIX directory /u/cicshaa1. If you are using the TSO command, enclose the directory name in single quotation marks.

b) Whether or not you are using an automount facility, allocate a z/OS UNIX data set for each directory.

c) If you are not using an automount facility, mount the data set that you have allocated.

The z/OS UNIX data set that you allocate for a CICS region’s home directory has a finite size. If a particular CICS region is using the home directory extensively, you might have to increase the amount of space that the region has available.

5. Verify that the permission defined for the /etc directory is set to 755, so that CICS can access the files. The /etc directory provides a symbolic link to the /SYSTEM/etc directory. The /SYSTEM/etc directory is created with a permission of 700, so you need to check that the /SYSTEM/etc directory permission is set to 755.

a) Check the permission set in the /SYSTEM/etc directory, from the Unix shell:

```bash
ls -ld /SYSTEM/etc
```

b) If the permission is not drwxr-xr-x, issue the following Unix shell command to set permission to 755:

```bash
chmod 755 /SYSTEM/etc
```

If permission is not set to 755, you might receive a RACF error indicating that you have insufficient authority for CICS to access the files.

6. Make sure that each of your CICS region user IDs connects to the RACF group to which you assigned a z/OS UNIX group identifier (GID). If your CICS region user IDs connect to more than one RACF group, a RACF list of groups must be active in your system.

What to do next

Your CICS regions now have access to z/OS UNIX System Services. When you set up facilities such as Java support or CICS Web support, use the UIDs or GIDs to give the CICS regions permission to access directories and files on z/OS UNIX.

To check the UID and GID details for a user, use the id command in the UNIX environment. For example, issuing the id command for our example CICS region user ID CICSHAA1 gives the following result:

```bash
uid=2001(CICSHAA1) gid=9(CICSTSAB)
```

For more general information about RACF facilities for controlling access to z/OS UNIX System Services, see z/OS Security Server RACF Security Administrator’s Guide.
Activating RACF resource classes

Before you can use RACF for CICS resources and for user-defined resources, you must activate the associated RACF resource classes by using the RACF SETROPTS command.

To run the CICS-supplied IVPs with external security, you must activate the resource classes for CICS resources.

To use your own user-defined resources with external security in your CICS environment:

• Define resource classes for your resources.
• Activate the resource classes.
• Optionally apply the RACLST option to the resource classes to be used for QUERY SECURITY commands, to build in storage profiles for those resource classes.

For information about RACF resource classes, see the RACF classes for CICS resources.

Defining the default CICS user ID to RACF

If you intend to use RACF to authorize terminal users to access CICS resources, define a default CICS user ID to RACF and specify it on the CICS system initialization parameter, DFLTUSER.

This default user ID assigns the security attributes to be used for all CICS terminal users who do not sign on with the CESN transaction or a user-written equivalent.

During startup, CICS tries to sign on the default user ID. If it is not signed on, perhaps because it is not defined, CICS issues message DFHSN0701 and stops CICS initialization. After the valid default CICS user ID is signed on, its security attributes are used for all CICS terminal users who do not sign on with the CESN transaction. If the default user ID is defined to RACF with a CICS segment, the operator attributes in that segment are also used for users who do not sign on.

For information about defining the user ID to RACF, see the CICS installation requirements for RACF.

Installing CICS-required modules in the MVS linklist

There are two categories of modules that are loaded from the MVS linklist. These are CICS- and CICSPlex SM-supplied modules, and modules of other MVS products, for example, DFSMS.

Look through the subtopics in this section and select the ones that are relevant to your installation. Work through these topics to create your customized MVS linklist.

CICS- and CICSPlex SM-supplied modules required in the MVS linklist

CICS TS supplies the modules listed in the SDFHLINK and SEYULINK libraries when you install CICS TS.

The following CICS modules are in SDFHLINK:

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMDUSREF</td>
<td>Alias of DFHTG720.</td>
</tr>
<tr>
<td>AXMSC</td>
<td>AXM server connection routines for CICS data-sharing servers.</td>
</tr>
<tr>
<td>AXMSI</td>
<td>AXM subsystem initialization routine for CICS data-sharing servers.</td>
</tr>
<tr>
<td>DFHDTCV</td>
<td>Connection validation subroutine for shared data tables.</td>
</tr>
<tr>
<td>DFHDTSVC</td>
<td>Shared data tables SVC services.</td>
</tr>
<tr>
<td>DFHGTCNV</td>
<td>Subroutine used by LOGR subsystem interface.</td>
</tr>
</tbody>
</table>
DFHHCADD
CICS Health Checker CSZADDCHECK exit routine.

DFHHHCCHK
CICS Health Checker.

DFHHZMGT
CICS Health Checker messages.

DFHLGCVN
Exit routine for LOGR subsystem interface.

DFHMVRMS
General MVS RESMGR exit stub.

DFHNCIF
Named counter server interface.

DFHNCOPT
Named counter server options.

DFHPD720
Dump formatting routine for use with IPCS.

DFHPRDUF
System dump formatting routine for ONC RPC.

DFHRPTRI
Trace interpretation routine for ONC RPC.

DFHRSXVSC
RRS domain authorized services.

DFHSNNFY
RACF CICS segment changes notification routine.

DFHSNPTO
CICS RACF dynamic parse TIMEOUT keyword print routine.

DFHSNVCL
CICS RACF dynamic parse OPCLASS validation routine.

DFHSNVID
CICS RACF dynamic parse OPIDENT validation routine.

DFHSNVPR
CICS RACF dynamic parse OPPTRY validation routine.

DFHSNVTO
CICS RACF dynamic parse TIMEOUT validation routine.

DFHSIN
CICS subsystem that initializes the console message handling facilities.

DFHSMMGT
CICS subsystem message table that contains the text of messages for the subsystem interface modules.

DFHTG720
Link module for the CICS GTF trace printing load module DFHTRGTF.

DFHTR720
Link module for the CICS GTF trace printing load module DFHTR720.

DFHTT720
Link module used for trace interpretation. You do not have to include DFHTT720 in the MVS linklist. If it is not in the linklist, an APF authorized library in the STEPLIB concatenation of the batch job is required for every job that uses the module.

DFHXCSVC
External CICS interface (EXCI) SVC services routine.

The following CICSPlex SM modules are in SEYULINK:
Dump formatting routine for use with IPCS.

In each MVS image that contains a CMAS. EYU9X550 is the initialization module for the ESSS.

In each MVS image that contains a CMAS where you want to run the CICSPlex SM API. EYU9A550 is the CICSPlex SM API subtask module.

CICSPlex SM to Tivoli NetView Communications module.

These modules are supplied in an APF-authorized library in the MVS linklist because of the following reasons:

1. Non-CICS regions such as batch jobs or a CICS data sharing server can require them.
2. They must be consistent across several CICS regions.
3. Both CICS and non-CICS regions can require them.
4. The Security Administrator who runs the ADDUSER or ALTUSER commands under TSO requires the RACF dynamic parse routines. For information about the RACF interface routines, see the An overview of the CICSPlex SM ESM interface.

Ensure the modules supplied in SDFHLINK and SEYULINK are available from an APF-authorized library in the MVS linklist:

- Add these modules, as required, to an existing APF-authorized library defined in the MVS linklist
- Define SDFHLINK and SEYULINK as APF-authorized libraries and include them in the MVS linklist

Compatibility with earlier CICS releases

Unless otherwise stated, the CICS Transaction Server for z/OS, Version 5 Release 5 levels of the modules in SDFHLINK are compatible with earlier releases of CICS. The CICSPlex SM modules in SEYULINK are not compatible with earlier releases. CICSPlex SM modules in SEYULINK are release specific. If you plan to run multiple releases of CICSPlex SM on the same MVS image, you must have the equivalent modules specific to the releases you are running.

DFHPD720, DFHTG720, DFHTR720, and DFHTT720 are release-dependent. If you run more than one release of CICS, ensure that the correct versions are available.

CICS shared data tables modules for the MVS linklist

CICS supplies the following modules, for shared data tables, in hlq.SDFHLINK.

If you intend using shared data tables, ensure that these modules are available in the MVS linklist or the MVS link pack area:

- DFHDTSVC and DFHDTCV, because all regions using shared data tables must use the same level of SVC code.
- DFHMVRMS, the RESMGR exit stub, because JOBLIB and STEPLIB data sets are unavailable at end-of-memory.

CICSPlex SM API linklist modules

In each MVS image that contains a CMAS in which you plan to run the CICSPlex SM API, ensure that these required modules are in the correct location.

These modules are supplied in the SEYUAUTH library.
EYU9AB00
In either the MVS linklist or the STEPLIB concatenation of the application that calls the API.
EYU9AB00 is the API batch interface module.

EYU9XESV
In an authorized library in either the MVS linklist or the CMAS STEPLIB concatenation. EYU9XESV is the API security exit module.

In addition, any application that calls the API must be link-edited with one of the following stub routine modules, regardless of what programming language is used:

EYU9ABSI
For batch, TSO, or NetView® programs. EYU9ABSI is supplied in the SEYUAUTH library.

EYU9AMSI
For application programs running in CICS. EYU9AMSI is supplied in the SEYULOAD library.

Installing the REXX function package

The REXX runtime interface to the API consists of a function package and host command environment.
The interface consists of a single load module that contains two entry points:

EYU9AR00
The function package

EYU9AR01
The host command

EYU9AR00 is supplied in the SEYUAUTH library with an alias of IRXFLOC.

For a REXX program to access the function package, the module EYU9AR00, with its alternate entry point EYU9AR01, and its alias IRXFLOC, must be in an authorized library in one of these places:

- The MVS linklist
- The STEPLIB concatenation of the application that calls the API

For a REXX program to access the function package from NetView, the EYU9AR00 module must also be aliased to DSIRXLFP and placed in an authorized library in either the MVS linklist or the STEPLIB concatenation for the NetView system.

Users of the CICSPlex SM runtime interface are subject to the normal CICSPlex SM API security checks. See the information in the CICSPlex SM security.

The following members contain SMP/E user modification control statements that you can use to move the necessary API load modules to the SEYULINK library. These members are supplied in CICSTS55 SEYUSAMP.

<table>
<thead>
<tr>
<th>Member</th>
<th>Load module</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYU$UM11</td>
<td>EYU9AR00</td>
</tr>
<tr>
<td>EYU$UM12</td>
<td>EYU9AB00</td>
</tr>
<tr>
<td>EYU$UM13</td>
<td>EYU9XESV</td>
</tr>
</tbody>
</table>

If you use the IRXFLOC or DSIRXLFP aliases to provide access to the REXX function package, you must place them ahead of any other IRXFLOC or DSIRXLFP modules in the STEPLIB or MVS linklist concatenation.

If you do not want to use the aliases for the REXX function package, you must modify your REXX parameter modules IRXPARMS, IRXTSPRM, and IRXISPRM. If you do this, do the following actions:

- Add the function package supplied by CICSPlex SM as a System function package, rather than a Local or User function package.
- Add a new host command entry. Here are some examples:
To complete installing the REXX function package:

- Increase the number of entries in the appropriate function package table.
- Add an entry to that table for EYU9AR00.

For more information about REXX function packages and host commands, see Developing REXX applications.

Modules of other MVS products in the MVS linklist

CICS loads some DFSMS modules from the MVS linklist. This requirement either depends on the function you are using, such as backup-while-open (BWO) support, or on the release of DFSMS.

The following modules are loaded:

IGWABWO

CICS loads this module, supplied in the MVS callable services library SYS1.CSSLIB, from the MVS linklist if you are using BWO for files accessed in non-RLS mode. In addition to IGWABWO in the linklist, IGWAMCS2 must be installed in the LPA. CICS tests for the presence of this module in the LPA to determine that BWO support is present in the MVS image before attempting to load IGWABWO.

For files that are accessed in RLS mode, CICS does not require IGWABWO or IGWAMCS2.

IGWARLS

CICS loads this module, supplied in the MVS callable services library SYS1.CSSLIB, from the MVS linklist. CICS issues the following message if it cannot load IGWARLS:

```
DFHFC0116 APPLD THE LOAD OF CALLABLE SERVICE IGWARLS HAS FAILED WITH RETURN CODE X'EEEE'.
```

CICS initialization fails if CICS cannot load this callable services module.

Defining CICS as an MVS subsystem

You define CICS as an MVS subsystem before you can use any of facilities listed.

- The console message-handling facility
- Multiregion operation (MRO)
- CICS shared data tables
- External CICS interface (EXCI).

For information about the console message-handling facility, see Administering CICS operations.

For information about MRO, see Multiregion operation.

The definition of CICS as an MVS subsystem involves three members of the SYS1.PARMLIB partitioned data set: IEASYSxx, IEFSSNaa, and DFHSSIyy. You require only member DFHSSIyy if you want the console message-handling facility.

In an IEASYSxx member of the SYS1.PARMLIB library used for MVS initialization, include the parameter SSN=aa, where aa refers to the SYS1.PARMLIB member IEFSSNaa that contains the definitions for all subsystems required for this IPL of MVS, including the definition of CICS as an MVS subsystem.

aa,xx,yy represent suffixes that are used to distinguish different versions of members of the SYS1.PARMLIB library.

To start CICS with the START command:
Coexistence with automation programs and other CICS releases

If you are using automated-operation programs or multiple CICS releases, then you must plan for them to coexist with the CICS message-handling facilities.

If your automation system must see the console messages before they are reformatted by CICS, place its subsystem definition in IEFSSNxx before the definition for CICS. But, if your automation system must see the reformatted messages, its definition must come after that of CICS. Consult the documentation of your automation package to determine which applies to you.

If you have defined the message-handling facility has been defined to MVS (by the CICS entry in the IEFSSNaa member of the SYS1.PARMLIB library), CICS regions running earlier releases of CICS in the same MVS image have the full benefit of the message handling that has been defined if either of the following cases is true:

• An automated-operation program, such as NetView, is active in the MVS image.
• A CICS region that supports message handling (see “The console message-handling facility” on page 80 for a list) is running in the same MVS image.

A consequence of the standard format console messages is that they no longer include date, time, and informational messages or information. If you use this kind of information as a token, you must make a change to the code so that it looks for a different token.

Noting IEASYSxx values for CICSPlex SM

Some of the MVS initialization values located in an IEASYSxx member of the SYS1.PARMLIB library are referenced during installation of CICSPlex SM address spaces.

Access the IEASYSxx member of the SYS1.PARMLIB library that is used to initialize your MVS system and make note of the values assigned to the following parameters:

APF=
 Completes the name of the parmlib member (IEAAPFxx) that contains authorized library names.

CMD=
 Completes the name of the parmlib member (COMMNDxx) that contains commands to be issued internally during master scheduler initialization.

LNK=
 Completes the name of one or more parmlib members (LNKLSTxx) that contain names of data sets that are to be concatenated to SYS1.LNKLIB.

LNKAUTH=
 Specifies that all data sets in the LNKLST concatenation will be treated as APF-authorized or that only those that are named in the APF table will be treated as APF-authorized.
LPA=
Completes the name of one or more parmlib members (LPALSTxx) that are concatenated to SYS1.LPALIB for the purpose of building the pageable LPA (PLPA and extended PLPA).

MAXUSER=
Specifies a value that the system uses, along with the RSVSTRT and RSVNONR parameter values, to limit the number of jobs and started tasks that the system can run concurrently during a given IPL.

NSYSXLX=
Specifies the number of linkage indexes (LXs), in addition to those in the system function table, that will be reserved for system linkage indexes (LXs).

PROG=
Completes the name of the parmlib member (PROGxx) that contains authorized library names when a dynamic APF list is being used.

RSVNONR=
Specifies the number of address space vector table (ASVT) entries that will be reserved for replacing those entries marked nonreusable for the duration of an IPL.

RSVSTRT=
Specifies the number of ASVT entries that will be reserved for address spaces created in response to a START command.

SYSNAME=
Specifies the name of the system being initialized.

For more information about these parameters, see z/OS MVS Initialization and Tuning Reference.

Specifying each CMAS correctly in IEASYSxx
In every z/OS image that contains a CMAS, verify that the IEASYSxx member of the SYS1.PARMLIB library that you use for z/OS initialization includes the MAXCAD and NSYSXLX parameters.

MAXCAD=nnn
Set the value to include the number of SCOPE=COMMON MVS™ data spaces that are required for each LPAR. This value will impact the number of concurrent CMASes that can run on each LPAR.

Each CMAS requires a number of SCOPE=ALL data spaces. This number depends on the CACHEDSNUM value for the CMAS. This setting controls the number of data spaces allocated for each component, except the data cache manager, which has only one data space. Therefore, the number of SCOPE=ALL data spaces required for a CMAS can be calculated as follows:

\[
\text{number of SCOPE=ALL data spaces} = (9 \times \text{CACHEDSNUM}) + 1
\]

The default value of the CACHEDSNUM parameter is 2, and normally you do not change it unless advised to do so by IBM Support. Therefore, each CMAS typically requires 19 SCOPE=ALL data spaces.

Include any SCOPE=COMMON data spaces that might be in use by other products in the MAXCAD value.

The lower the MAXCAD value, the more CMASes can be run at the same time on the LPAR.

At CMAS startup, if MVS cannot allocate the required number of SCOPE=ALL data spaces, CICSPlex SM produces message EYUXC0011E with a return code of '0000000C' and the CMAS shuts down. To reduce the chance of this happening, either lower the MAXCAD value if possible, or plan to reduce the number of CMASes on the LPAR.

Calculate the maximum number of CMASes that you can have on the LPAR at this CICS release as follows. Be aware that other releases of CICS TS might have different requirements:

1. Subtract the maximum number of entries in the PASN-AL (510) from the current MAXCAD value. This provides the number of PASN-AL entries that remain available for use by the Environment Services System Services (ESSS) address space to access the required data spaces. For example:
• If **MAXCAD** is set to the maximum possible value of 250, and the PASN-AL limit is 510, the calculation is: 510 (PASN-AL limit) - 250 (**MAXCAD** value) = 260 available entries left on the PASN-AL.

2. Divide the remaining PASN-AL entries by the number of SCOPE=ALL data spaces that each CMAS requires. This is the number of CMASes per release that can be started at the same time on the LPAR. For example, taking the number of PASN-AL entries from the previous step:

• Each CMAS typically uses 19 SCOPE=ALL data spaces, so the calculation is: 260/19 = 13.68. The maximum number of CMASes on the LPAR is 13.

To establish the count of SCOPE=ALL data spaces that are allocated to the ESSS, issue this command from z/OS:

```
/D A,EYUX546
```

The last 4 bytes of the DSPNAME contain the SYSID of each CMAS.

NSYSLX=nnn

Set or increase the value to include the minimum number of linkage indexes (LXs) that are required by CICSPlex SM. One LX is required for the Environment Services System Services (ESSS), so the minimum number of LXs required for use by CICSPlex SM is one.

For more information about this parameter, see z/OS MVS Initialization and Tuning Reference.

Coding the IEFSSNaa MVS subsystem initialization member

To define CICS as an MVS subsystem, code an entry in the IEFSSNaa member in the SYS1.PARMLIB library.

If you want to use the console message handling facility or to change the number of pipes that can be allocated in an EXCI address space, code the entry by using one of the following methods:

```
CICS,DFHSSIN,DFHSSIyy
```

or

```
SUBSYS SUBNAME(CICS)
INITRTN(DFHSSIN)
INITPARM(DFHSSIyy)
```

This entry is used for every CICS region that runs under MVS that you have IPLed with this version of the IEFSSN member. You do not have to specify both DFHSSIN and DFHSSIyy, however apart from the suffix yy, you must code the entry for each parameter using the exact format given in the example. The terms have the following meanings:

CICS

The name of the CICS subsystem.

DFHSSIN

The name of the CICS subsystem routine that initializes the console message-handling facilities and the number of pipes that can be allocated in an EXCI address space. If you omit this name, CICS is defined as an MVS subsystem, but none of the console message-handling facilities are enabled, and the default number of pipes that can be allocated in an EXCI address space is used. That default is 100.

DFHSSIyy

The name of a SYS1.PARMLIB member in which you have defined initialization parameters for message formatting and EXCI pipe allocation for the CICS subsystem. If you specify DFHSSIN but omit DFHSSIyy, the DFHSSIN routine tries to use the parameters that are defined in member DFHSSI00.

If the DFHSSI00 member does not exist, the routine uses the default values:

• For message formatting the default values are defined in the DFHSSIN member. They are described in “Default message-formatting initialization parameters” on page 82.
• For EXCI pipe allocation, the fixed value is 100.

The IEFSSNaa member in the SYS1.PARMLIB library also contains the definitions for all the other subsystems required for this IPL of MVS; for example, JES2, IRLM and Db2.

The SYS1.PARMLIB(BPXPRMxx) parameters

If you use certain CICS functions and run many CICS systems in an LPAR, the default options, shipped in the BPXPRMxx members of SYS1.PARMLIB, might not be sufficient.

You must review the default options for the following functions:

• C and C++ programs compiled using the XPLINK compiler option
• Programs that run on open TCBS and use APIs other than the CICS API
• SSL TCBS specified by the MAXSSLTCBS system initialization parameters
• Java programs running in JVM servers

If you use XPLINK or non-CICS APIs, you must increase the MAXPROCUSER and MAXPROCSYS values. See “Sizing MAXPROCSYS” on page 79 for guidance.

If CICS is configured to use SSL, you might have to increase the MAXTHREADS and MAXTHREADTASKS values.

If CICS is configured to use JVM servers, you might have to increase the total THREADLIMIT value in each JVMSERVER.

If your system uses two or more of these facilities, corresponding further increases in the values for these parameters is appropriate.

Sizing MAXPROCSYS

The z/OS MAXPROCSYS parameter specifies the maximum number of processes that can be active at the same time in the LPAR. MAXPROCSYS allows you to manage system resources by limiting the number of processes that the system is to support. If you set the MAXPROCSYS value too low, regions might abend because CICS cannot create a process when attempting to attach a TCB. However, avoid setting the MAXPROCSYS value too high because this value is shared between all the address spaces in a z/OS system.

CICS uses at least three processes for each CICS region. If you have many CICS regions, you must set your system limit to handle these processes. The following table explains which TCBs become processes, depending on the CICS system:

<table>
<thead>
<tr>
<th>TCB</th>
<th>Is the TCB always a process?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jobstep</td>
<td>Yes</td>
<td>The jobstep TCB is always created.</td>
</tr>
<tr>
<td>SO</td>
<td>Yes</td>
<td>The SO TCB is always created.</td>
</tr>
<tr>
<td>QR</td>
<td>Yes</td>
<td>The QR TCB becomes a process when an open TCB is attached (that is, L8, L9, X8, or X9).</td>
</tr>
<tr>
<td>SL</td>
<td>No</td>
<td>The SL TCB is created unless the system initialization parameter, TCPIP=NO, is specified.</td>
</tr>
<tr>
<td>SP</td>
<td>No</td>
<td>The SP TCB becomes a process, and the associated S8 TCBS are created and become threads only when SSL is used.</td>
</tr>
<tr>
<td>JVMSERVER (TP and T8)</td>
<td>No</td>
<td>Each enabled JVM server requires a single process regardless of how many threads it supports.</td>
</tr>
</tbody>
</table>
TCBs that become processes (continued)

<table>
<thead>
<tr>
<th>TCB</th>
<th>Is the TCB always a process?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L8, L9, X8, and X9 open TCBs</td>
<td>No</td>
<td>If applications running on open TCBs use USS APIs, then a process is associated with the open TCB. The process is removed when the open TCB is freed from the CICS task and returned to the dispatcher pool.</td>
</tr>
</tbody>
</table>

In summary, there is always a minimum of three processes for each CICS region. The maximum number of processes depends on which additional TCBs you are running and what open TCBs are used for.

You can issue the following command to give you a list of the processes that are running on your system:

```
D OMVS, A=addressspaceid
```

`addressspaceid` is the address space that you want to query.

If you run this command at system startup, and again when your system is stable, you can calculate the most appropriate number for MAXPROCSYS.

```
D OMVS, LIMITS
```

Running this command before and after starting CICS is also useful to see if you are getting close to any high water mark.

For more information about changing BPXPRMxx parameters, monitoring system limits, and calculating values for system resources, see z/OS UNIX System Services Planning.

The console message-handling facility

The console message-handling facility is an optional feature of the CICS subsystem that can affect the appearance of CICS messages displayed on an MVS console. It is effective when you specify FORMATMSG=YES as a parameter in the message-formatting initialization member for the CICS subsystem.

The subsystem reformatting is enabled when at least one of the following applications is executing in the MVS image where the subsystem is defined:

- Any version of CICS Transaction Server
- A message automation subsystem, such as NetView, which enables the MVS subsystem console message broadcasting service

The console message-handling facility affects the messages that are displayed on MVS system consoles in the following ways:

- The subsystem tries to ensure that all console messages issued by all CICS regions have a standard format. The format is:

  ```
  +DFHnnnnn APPLID MESSAGE-TEXT
  ```

In this message:

+DFHnnnnn

- Begins in column 1
- The plus sign (+) that precedes `DFHnnnnn` is added by MVS to indicate that a problem-state program issued the message. It is not present when CICS issues the message while it is in supervisor state.

APPLID

- Begins in column 13
– The applid inserted into the message is the specific application identifier. This identifier is specified in the **APPLID** system initialization parameter.

MESSAGE-TEXT
– Begins in column 22.
– If the original CICS message is long (greater than 113 characters), the message text begins on the next line.

• The subsystem adds route codes specified in the **ROUTECODE** subsystem initialization parameter, so the messages might be sent to more destinations.
• The subsystem reformats messages for all CICS releases.
• The subsystem does not reformat messages that are issued by a CICS region that has not yet determined its applid. These messages include those that are issued while processing the system initialization table and its overrides.
• The subsystem routine that reformats the messages does not receive control until after the message has been recorded in the CICS job log. Therefore, the reformatting is not usually apparent in the job log.
• Messages issued by the message domain already contain the applid. The subsystem does not insert the applid into such messages, but it might insert blank characters to cause alignment into standard locations.
• Multiple line messages might include a first control line with the applid inserted as well as being included in the MESSAGE-TEXT at its normal position.
• If the original CICS message is long, the addition of the applid might cause the message to exceed the maximum length for an MVS console message. In this case, the original message is suppressed and does not appear on the console, and the reformatted message is issued using the MVS multiple-line console message service to split the message over several lines. Both the original message and perhaps several instances of the reformatted multiple-line message appear in the job log, but only one copy of the reformatted message is displayed on the console.
• For some messages in which the applid normally follows a time and date stamp, the insertion of the applid in the standard position results in the applid being duplicated in the message. For these messages, the subsystem eliminates the time and date stamp, because these are available from other sources, and only one occurrence of the applid is shown.

Specifying the DFHSSIyy message-formatting initialization member
You can specify message-formatting initialization parameters for the CICS subsystem in a member **DFHSSIyy** of the SYS1.PARMLIB library, where **yy** is the suffix that identifies the SYS1.PARMLIB member used to define the CICS subsystem.

These parameters are **FORMATMSG**, **HIDEPASSWORD**, and **ROUTECODES**. Code the parameters in columns 1 through 71 of the **DFHSSIyy** member, like this:

```
FORMATMSG=YES,HIDEPASSWORD=YES,ROUTECODES=(1,2)
```

or with additional routecodes:

```
FORMATMSG=YES
HIDEPASSWORD=YES
ROUTECODES=(1,2,3,4,5,6)
```

FORMATMSG={YES|NO}
Specifies whether the CICS applid is to be inserted into all DFH console messages that do not use the CICS message domain.

YES
Insert CICS applid into messages.

NO
Do not insert CICS applid into messages.
HIDEPASSWORD={YES\|NO}
Specifies whether to mask the password or password phrase from MODIFY commands used to enter the CICS sign-on transactions at an MVS console.

YES
Mask the password or password phrase.

NO
Do not mask the password or password phrase.

ROUTECODES=(n1[,n2])
n1, n2... are numbers representing generic routecodes that are added to all DFH console messages issued by CICS. The routecodes 1-12 have special meanings:

1 Master console action
2 Master console information
3 Tape pool
4 Direct access pool
5 Tape library
6 Disk library
7 Unit record pool
8 Teleprocessing control
9 System security
10 System error/maintenance
11 Programmer information
12 Emulators

The status of other routecodes are listed:

13-20 Available for customer use
29-40 Reserved
41-128 Available to authorized programs only

For more information about these routing codes, see z/OS MVS Initialization and Tuning Reference.

Default message-formatting initialization parameters
You can define message-formatting initialization parameters for the CICS subsystem in a member DFHSSIyy of the SYS1.PARMLIB library.

To use parameters defined in a DFHSSIyy member other than the DFHSSI00 member, you must specify DFHSSIyy on the IEFSSNaa member in the SYS1.PARMLIB library used to define CICS as an MVS subsystem. If you do not specify DFHSSIyy, the DFHSSIN routine tries to use the parameters that are
defined in the DFHSSI00 member. If the DFHSSI00 member does not exist, it uses the default parameters that are defined in the DFHSSIN routine.

If you specify DFHSSIyy but it does not exist, the DFHSSIN routine uses the default message-formatting initialization parameters that are defined in the DFHSSIN routine.

The default message-formatting initialization parameters defined in the DFHSSIN routine are as follows:

| FORMATMSG=YES, HIDEPASSWORD=YES
| (generic routecodes are not added to messages) |

The default facilities:

- Insert the CICS applid into the CICS console message between the message identifier and the message text. The applid is inserted into only those console messages (starting with DFH) that do not use the CICS message domain. The CICS message domain inserts the CICS applid into all messages that it handles.

 If the original message is a long one, insertion of the CICS applid might cause the message to exceed the maximum length for an MVS console message. In this case, the original message is suppressed and does not appear on the console, and the reformatted message is issued using the MVS multiple-line console message service to split the message text over several lines. Both the original message and perhaps several instances of the reformatted multiple-line message appear in the job log, but only one copy of the reformatted message is displayed on the console.

- Examine each MODIFY command to see if it resembles a MODIFY CICS,CESN ... command. If the MODIFY command contains an old or new password (PS=xxxx, NEWPS=xxxx), the default facilities obliterate the password with asterisks. If the MODIFY command does not contain a password, the password you enter at the MVS console is masked.

- If your primary subsystem is JES3, the old and new passwords still appear in the JES3 hardcopy log. JES3 records the MODIFY command before the CICS message formatting subsystem can obliterate the password. (This processing does not happen when the primary subsystem is JES2.) The passwords are suppressed from the console for both JES2 and JES3.

If you do not specify DFHSSIN in the IEFSSNaa entry that defines CICS, the message handling facilities are not enabled. Also, if you run CICS as a started task, you cannot use the name “CICS” for the procedure name.

Activating message formatting

The next MVS subsystem to invoke the subsystem console message broadcasting service of MVS console support activates message-handling. Before activating message-handling, you must define CICS as an MVS subsystem with support for console message-handling, and also specify the message-formatting parameters in the DFHSSIyy member of the SYS1.PARMLIB library.

Message-handling is activated when you start a supported CICS region or if an automated-operation program, such as NetView, is active in the MVS image. See “The console message-handling facility” on page 80 for more information on console message-handling.

A newly started CICS region determines its own applid during initialization. Until the applid is known, message-formatting cannot operate. Therefore, messages issued very early in CICS initialization are not formatted.

Modules required to use the console message-handling facilities

To use the console message-handling facilities that are provided by the MVS subsystem functions of CICS, the CICS modules, DFHSSEN, DFHSSGC, DFHSSMGT, and DFHSSWT must be available at MVS IPL time.

DFHSSEN

The module that cleans up CICS resources at end-of-memory and at end-of-task.

DFHSSGC

The subsystem generic connect module that connects an active CICS region to the CICS subsystem.
DFHSSIN
The CICS subsystem initialization module.

DFHSSMGT
The subsystem message table that contains the text of messages for the subsystem interface modules.

DFHSSWT
The subsystem interface write-to-operator (WTO) router that determines whether to route WTO calls to the appropriate CICS-dependent modules.

These modules must reside in the LPA or in an APF-authorized library in the MVS linklist:

- The modules DFHSSIN and DFHSSMGT, installed in the hlq.SDFHLINK library, must reside in an APF-authorized library in the MVS linklist.
- The DFHSSEN module, installed in the hlq.SDFHLPA library, must reside in the LPA.
- The modules DFHSSGC and DFHSSWT, installed in the hlq.SDFHLPA library, must reside either in the LPA or in an APF-authorized library in the MVS linklist.

The LINDEX parameter in the DFHISTAR installation job defines hlq.

The current versions of these modules are compatible with earlier CICS releases that support console message handling.

For information about adding modules that are installed in the hlq.SDFHLINK library to the MVS linklist, see “Installing CICS-required modules in the MVS linklist” on page 71.

For information about adding modules installed in the hlq.SDFHLPA library to the LPA, see “Installing CICS modules in the MVS link pack area” on page 98.

EXCI pipe allocation

The external CICS interface is an application programming interface that enables a non-CICS program (a client program) running in MVS to call a program (a server program) running in a CICS region and to pass and receive data by means of a communications area.

The CICS application is invoked as though it is linked to by another CICS application program.

This programming interface allows a user to allocate and open sessions or pipes which operate in "half-duplex", flip-flop mode, to a CICS region and to pass distributed program link requests over them. The multiregion operation facility of CICS interregion communication supports these requests, and each pipe maps onto one MRO session, in which the client program represents the sending process and the CICS server region represents the receiving process. A default limit of 100 pipes for each EXCI address space applies.

Specifying the EXCI pipe allocation limit

Specify the EXCI pipe allocation limit for the CICS subsystem in a member DFHSSIyy of the SYS1.PARMLIB library, where yy is the suffix that identifies the SYS1.PARMLIB member used to define the CICS subsystem. The parameter is LOGONLIM.

Code the parameter in columns 1 through 71 of the DFHSSIyy member, like this:

```
LOGONLIM=nn
```

The minimum and maximum values that can be specified for nn are 100 and 250.

If you omit the parameter or the value specified lies outside the allowed range, CICS assumes a limit of 100.
The EXCI pipe allocation limit

CICS publishes the limit if it is determined during subsystem initialization, by creating a system-level name token pair formatted like this:

<table>
<thead>
<tr>
<th>Name: input, fixed length 16 byte type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes 0-7 : The character string 'DFHIRP'</td>
</tr>
<tr>
<td>Bytes 8-15: The character string 'LOGONLIM'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Token: output, fixed length 16 byte type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes 0-3 : The logon limit, held as fullword binary file</td>
</tr>
<tr>
<td>Bytes 4-15: Reserved, set to nulls</td>
</tr>
</tbody>
</table>

You can use the callable service, IEANTRT, to retrieve the token. Invoke IEANTRT with level IEANT_SYSTEM_LEVEL (EQU 4). The return code is interpreted in the following way:

0

The name and token pair exists and the token has been retrieved. The logon limit can be extracted from the token.

4

The name and token pair does not exist. The logon limit is assumed to be 100.

Any other value indicates that the callable service has detected an error.

Default EXCI pipe allocation limit initialization parameter

Define the EXCI pipe allocation limit parameter for the CICS subsystem in a member DFHSSIyy of the SYS1.PARMLIB library.

To use parameters defined in any DFHSSIyy member except the DFHSSI00 member, specify DFHSSIyy in the IEFSSNaa member in the SYS1.PARMLIB library used to define CICS as an MVS subsystem. For more information on IEFSSNaa, see “Coding the IEFSSNaa MVS subsystem initialization member” on page 78.

- If you do not specify DFHSSIyy, the DFHSSIN routine tries to use the parameters that are defined in the DFHSSI00 member.
- If the DFHSSI00 member does not exist, the DFHSSIN routine uses the default parameters that are defined in the DFHSSIN routine.
- If you specify DFHSSIyy but it does not exist, the DFHSSIN routine uses the default parameters that are defined in the DFHSSIN routine.

The default EXCI pipe allocation initialization parameter defined in the DFHSSIN routine is LOGONLIM=100.

Installing the CICS SVCs

Install the current level of the CICS Type 3 SVC, DFHCSVC, and the high performance option (HPO) SVC before you attempt to start a region.

If IBM changes the Type 3 SVC, for example at a new release or because of a service update, you must reinstall the current level of the CICS Type 3 SVC into the link pack area (LPA) and perform an IPL with the CLPA option.

To install the CICS Type 3 SVC, define the CICS SVCs to z/OS, install the DFHCSVC module into the LPA, and specify the DFHCSVC number on the CICSSVC system initialization parameter.

Alternatively, if you have the required authorization, you can use the DFHCSVCU utility program to install the CICS Type 3 SVC dynamically, without the need to perform an IPL of the z/OS system. For further information about running programs that require APF authorization, see Managing system security - APF-authorized library list in z/OS MVS Initialization and Tuning Reference. For further information about the DFHCSVCU utility program, see DFHCSVCU.
Defining the CICS SVCs to your z/OS system

1. Define both the CICS Type 3 SVC and the HPO SVC to your z/OS system by specifying SVCPARM statements. You define the CICS SVCs in an IEASVCxx member of the SYS1.PARMLIB library, using SVCPARM statements. See z/OS MVS Initialization and Tuning Guide and z/OS MVS Initialization and Tuning Reference for a description of the SVCPARM statements.

2. If you are using the default SVC numbers, the following CICS entries are shown:

 SVCPARM 216,REPLACE,TYPE(3),EPNAME(DFHCSVC)
 SVCPARM 215,REPLACE,TYPE(6),EPNAME(DFHHPSVC) [Only required for HPO]

 For the current SVC modules, you specify the EPNAME parameters as in the sample CICS entries.

3. If you have a version of the DFHHPSVC module from an earlier release of CICS already link-edited into your z/OS nucleus, you do not have to replace it with the latest version. Versions of the DFHHPSVC module from earlier releases of CICS are compatible with the current release. The version of the DFHHPSVC module from the current release of CICS is compatible with earlier releases of CICS. The CSECT name (EPNAME) of the version of the DFHHPSVC module from earlier releases is IGC215 or IGCnnn, if SRBSVC=nnn was used as a CICS system generation parameter in the earlier release.

4. If you are not using the default SVC numbers, change the values 215 and 216 to the SVC numbers you have chosen.

5. Select the required IEASVCyy member by coding the SVC parameter (SVC=yy) in a SYS1.PARMLIB member (IEASYSxx), which you use to perform an IPL of your z/OS system. When you code new SVC numbers, they do not come into effect until you next perform an IPL of your z/OS system.

Installing the DFHCSVC module into the LPA

Use the following guidelines when you install the DFHCSVC module into the LPA:

- Do not change DFHCSVC attributes.
- Do not relink-edit the DFHCSVC module to install it into the LPA. The term install means move or copy a module into the LPA by using SMP/E, or a copying method that reblocks the copied modules when the target data set has a smaller block size than the data set you are copying from.
- The DFHCSVC module, as supplied, has the attributes AMODE(31) and RMODE(ANY); do not change these attributes.

For further information about installing the DFHCSVC module in the LPA, see “Installing CICS modules in the MVS link pack area” on page 98.

Specifying the DFHCSVC number on the CICSSVC system initialization parameter

The current version of the CICS SVC module is compatible with all earlier releases of CICS, which enables you to run your earlier CICS regions with current regions in the same MVS image.

CICS contains a test to verify that it is using the correct level of the CICS DFHCSVC module. If CICS calls an SVC module using the SVC number specified on the CICSSVC system initialization parameter and that module is not at the current level, CICS issues message DFHKE0104. As a result of this message, CICS either abends with a system dump or prompts the operator to enter an alternative SVC number, depending on the option specified on the PARMERR system initialization parameter.

Using more than one version of the CICS Type 3 SVC

You might have to use more than one version of the CICS Type 3 SVC; for example, to test service applied to the DFHCSVC module while using the current version in a production system.

You can run several CICS regions, at different release levels, in the same MVS image, with each region using its own version of the CICS SVC. However, if some of those regions use MRO, all regions that use MRO must use the latest CICS Type 3 SVC (DFHCSVC module) and the latest DFHIRP module. For information about using the latest SVC with earlier releases of CICS, see “MRO between different CICS releases with a changed SVC number” on page 87.
To use more than one version of the CICS SVC, either use the DFHCSVCU utility program, or rename the
new SVC module in the LPA, and then respecify the SVC in the SVCPARM statements.

You must have authorization to use the DFHCSVCU utility program. For more information about this
program, see “Installing the CICS SVCs” on page 85.

To rename the new CICS SVC module, use the renaming facility of ISPF or IEBCOPY, or the TSO command
RENAME, renaming the module to a unique name of your choice. Use SMP/E to rename the CICS SVC
module in the SDFHLPA library. Use the SMP/E RENAME command to inform SMP/E of the change to the
name of the CICS SVC module. Therefore, if you later use SMP/E to apply service to that module, the
service is applied to the renamed module in the LPA, and not the DFHCSVC module.

For example, you might want to use an SVC number 255 for a test CICS region, and the default CICS SVC
number 216 for your production system:

1. Create and apply an SMP/E USERMOD to rename the new CICS SVC module:

   ```
   ++USERMOD (umod1).
   ++VER(C150) FMID(HCI7200).
   ++RENAME (DFHCSVC) TONAME(newname).
   ```

2. Specify the number 255 for the new CICS SVC version by adding an appropriate statement to the list of
 SVCPARM statements. That list then reads:

   ```
   SVCPARM 216,REPLACE,TYPE(3),EPNAME(DFHCSVC)
   SVCPARM 215,REPLACE,TYPE(6),EPNAME(DFHHPSVC)  [Only required for HPO]
   SVCPARM 255,REPLACE,TYPE(3),EPNAME(newname)   [New CICS SVC version]
   ```

 The EPNAME parameter for the new CICS SVC specifies the module name, not the CSECT name, for the
 new CICS SVC module.

 All the SVCPARM statements apply to the same IEASVCxx member of the SYS1.PARMLIB library.

3. Perform another IPL of MVS to enable all the SVC versions specified in the SVCPARM statements. After
 you perform another IPL of MVS, you can use both versions of the CICS SVC, provided that both
 regions do not use MRO concurrently. If both systems use MRO, only the new, latest version of the SVC
 and the latest DFHIRP module are used by both regions.

4. In your production system, specify the number of the current CICS SVC in the CICSSVC system
 initialization parameter. Similarly, in the test system, specify the number of the new CICS SVC version.

MRO between different CICS releases with a changed SVC number

If a CICS TS 5.5 region, and other CICS regions from earlier releases, in the same MVS image use MRO, all
the regions must use the CICS TS 5.5 SVC module.

If, when you install the CICS TS 5.5 SVC in the LPA, you give the SVC a number different from the number
defined to the earlier CICS regions, you must respecify the SVC number. On each CICS region from an
earlier release that will use the CICS TS 5.5 SVC, specify the new SVC number on the CICSSVC system
initialization parameter.

Selecting the high-performance option

The high-performance option (HPO) is for users whose top priority is to optimize terminal response times
and maximize transaction throughput. HPO improves performance by reducing the transaction path
length; that is, the number of instructions required to service each request.

Use of HPO potentially allows CICS application programs to bypass all MVS integrity controls. If you
decide to use HPO, ensure that the application programs used on your CICS system meet your own
installation's integrity requirements. The code to support the SNA authorized path feature of HPO, which is
the improved path through SNA, is in CICS.
Defining DFHHPSVC to MVS

Define the DFHHPSVC module to MVS as a Type 6 SVC; the default HPO SVC number defined in the DFHSIT module is 215.

To change the default Type 6 SVC number:

1. Define the new number to MVS. See “Installing the CICS SVCs” on page 85.
2. Define the new number to CICS by using the SRBSVC system initialization parameter.

If you are not using HPO, do not load the DFHHPSVC module into the MVS nucleus. You choose to use HPO explicitly by coding HPO=YES in the system initialization table.

Loading module DFHHPSVC

Before you can use HPO, ensure that the HPO SVC module is included in the MVS nucleus.

Use one of the following methods:

• Copy the DFHHPSVC module into SYS1.NUCLEUS, renaming it to IGC215 or the appropriate name if you are not using the default, and specify it on an INCLUDE statement in the NUCLSTxx member of the SYS1.PARMLIB library. You must also specify the name of the NUCLSTxx member on the NUCLST statement of the LOADxx member of the SYS1.PARMLIB library. The NUCLSTxx method provides you with greater flexibility in customizing the MVS nucleus than the NMLDEF method described in the second method.

For further information about coding a NUCLSTxx member and about a comparison with the NMLDEF macro, see the z/OS MVS Initialization and Tuning Guide.

• Copy the DFHHPSVC module into SYS1.NUCLEUS and specify it in a nucleus module list (NML) for CICS, created using the NMLDEF macro shown in the sample job. This NML selects the CICS members in SYS1.NUCLEUS that are to be loaded into the MVS nucleus, and eliminates the requirement for the MVS nucleus to be re-link-edited for the DFHHPSVC module or any other module in the MVS nucleus.

• For information about coding an NMLDEF macro, see z/OS MVS Programming: Authorized Assembler Services Reference (Volume 3). The sample job stream loads the CICS Type 6 SVC into the MVS nucleus:

```plaintext
//LOADSVC JOB 'accounting info',MSGCLASS=A,CLASS=A
//NMLDEF EXEC ASMHCL
//C.SYSIN DD *
IEANCnnn NMLDEF NUCL=DFHHPSVC
//L.SYSLMOD DD DSN=SYS1.NUCLEUS,UNIT=3380,DISP=OLD
//L.SYSLMOD DD *
NAME IEANCnnn
/*

nnn is the number of the CICS NML, in the range 001 through 256. Choose the value of nnn to be unique in your MVS nucleus.

Removing existing DFHHPSVC modules from the MVS nucleus

If you have a version of the DFHHPSVC module from an earlier release of CICS already installed in your MVS nucleus, you do not have to replace it with the latest version. Versions of the DFHHPSVC module from earlier releases of CICS are compatible with the current release. The version of the DFHHPSVC module from the current release of CICS is compatible with earlier releases of CICS.

However, you can remove a link-edited version of the DFHHPSVC module from the MVS nucleus by running a link-edit job to replace the existing version of the nucleus with one that does not contain the module to be removed, in one of the following ways:

• If the existing nucleus-resident DFHHPSVC module is known to SMP/E, use the SMP/E UCLIN statement to remove the module entry.
• You must link-edit the nucleus module, IEANUC0x, with the scatter (SCTR) attribute. If you do not do this, MVS enters a non-restartable wait state at system initialization.

---

**Defining EYU9XENF as a TSO/E authorized command**

Define the EYU9XENF command during set up to streamline problem diagnosis later, if required.

**About this task**

Defining EYU9XENF as a TSO/E authorized command will allow you to use the Environment Services System Services (ESSS) information display utility, should you be requested to do so by customer support when diagnosing problems with MVS systems.

For more detailed information about the ESSS information display utility, see *Using the ESSS Information Display Utility (EYU9XENF).*

**Procedure**

1. Add EYU9XENF to the 'AUTHCMD NAMES' section of the IKJTSOxx SYS1.PARMLIB member used by the MVS image.
2. Issue from TSO a 'PARMLIB UPDATE(xx)' command to implement the changes made to the IKJTSOxx member.
3. Ensure that CPSM550.SYEUAUTH is in the TSO users STEPLIB concatenation.

**Results**

EYU9XENF is now an authorized TSO/E command, and will be available for use should it be necessary in later problem diagnosis.

---

**Defining CICS regions as applications to SNA**

To use SNA LUs with CICS, ensure that your CICS regions are defined to SNA before you attempt to run them.

To define your CICS regions to SNA as SNA application programs:

1. Define SNA application program minor nodes for your CICS regions, by specifying APPL definition statements in a member of the SYS1.VTAMLST library or your own user.VTAMLST library.
2. Issue a VARY ACT command to activate the APPL definitions and enable the CICS regions to connect to SNA.
3. Ensure that you have properly defined your SNA LUs for connection to CICS. You must do so if you intend using CICS autoinstall. For those LUs for which you want to use autoinstall, code LOGON mode table entries that match the model TYPETERM and TERMINAL definitions that CICS uses. You can either code your own autoinstall models, or use the CICS-supplied model definitions that are generated for you when you initialize the CICS system definition data set.

Define SNA application program minor nodes for your CICS regions, by specifying APPL definition statements in a member of the SYS1.VTAMLST library or your own user.VTAMLST library. user.vtamlst will ONLY work if user.vtamlst is a concatenated data set in the //VTAMLST DD in the VTAM PROC, usually found in SYS1.PROCLIB or SYS1.IBM.PROCLIB.

For further information about defining SNA resources, see *z/OS Communications Server: SNA Network Implementation Guide* and *z/OS Communications Server: SNA Resource Definition Reference.*

The following topics provide more detailed information about defining your CICS regions to SNA.
Defining specific APPL definitions and APPL parameters to SNA

To define a CICS region to SNA, specify the minor node name to be used for the CICS region on the SNA APPL definition statement. Include specific parameters on the SNA APPL statement.

Defining specific CICS APPL statements to SNA

For example, you might use the following definition for the CICS region to be identified as CICSHTH1:

```plaintext
**
* Specific APPL definition for CICS region CICSHTH1
**
CICSHTH1 APPL AUTH=(ACQ,VPACE,PASS),VPACING=0,EAS=5000,PARSESS=YES
SONSCIP=YES,LUAPFX=XX
**
```

- Code CICSHTH1 on the CICS system initialization parameter APPLID to define the SNA application identifier to CICS.
- See “Data set naming conventions” on page 164 for information about the naming convention that is used for the CICSHTH1 applid.

SNA APPL parameters for CICS regions

**ACBNAME=acbname**

Specifies the minor node name (acbname) that is assigned to this application. This name must be unique in the domain. If you do not specify this parameter, the name of the SNA APPL statement is taken.

**AUTH=(ACQ,VPACE[,PASS])**

Allows CICS to acquire LUTYPE 6 sessions. VPACE allows pacing of the intersystem flows. Specify PASS if you intend to use the EXEC CICS ISSUE PASS command to pass existing terminal sessions to other SNA applications.

**EAS=number**

Specifies the number of network-addressable units. The number must include the total number of parallel sessions for this CICS system.

**HAVAIL=YES**

Indicates that the application supports XRF sessions and can initiate XRF sessions.

**LOGMODE=name**

(For CICS-to-CICS APPC systems.) Defines the name of the MODE table that contains the LU6.2 MODEENT for the secondary sessions.

**LUAPFX=string**

Specifies the prefix characters of the LU alias to be assigned when a dynamically generated cross-network CDRSC with NONMODE=NONAME is created for a session with CICS. SNA concatenates the characters specified with the next sequential number available to form an SNA-generated LUALIAS name for the cross-network dynamic CDRSC.

**string**

Indicates the two characters to be used as the prefix for all dynamically generated LUALIAS names for dynamic cross-network CDRSCs in session with the CICS region defined by the APPL statement. Take into account the SNA naming conventions when choosing this prefix. For CICS information about specifying the LU alias string, see “Choosing an LUAPFX value” on page 94.

SNA deletes a dynamically generated LU alias after a terminal session is closed, or the last session of an APPC parallel sessions connection is closed, and the CDRSCTI-specified timeout interval has expired. The permitted range of timeout values is 1 second to 7 days, but generally the default of 8 minutes is acceptable in most situations. The CDRSCTI timer does not start until no more sessions that involve the resource represented by a CDRSC remain.
For more information about CICS support for the SNA dynamic LU alias facility, see “SNA LU alias facility” on page 92.

**PARSESS=**YES

Specifies LUTYPE 6 parallel session support.

**PERSIST=MULTI**

Indicates that the application supports Multi Node Persistent Sessions. For further information, see z/OS Communications Server: SNA Network Implementation Guide.

**SONSCIP=YES**

Specifies session outage notification (SON) support. SON enables CICS, in certain cases, to recover a session after session failure without operator intervention.

**VPACING=**number

Specifies the maximum number of normal-flow requests that another logical unit can send on an intersystem session before waiting to receive a pacing response. Start with a value of 5.

**SNA version and release level indicator**

The terminal control modules in CICS are assembled against z/OS Communication Server.

You can use any release of z/OS Communication Server. For details of the minimum level of products that you can use with the current release, see Detailed system requirements.

CICS can communicate with different levels of z/OS Communication Server. It can find out which level you are using and the level of function that is available. So you can upgrade CICS and z/OS Communication Server at different times. CICS finds out whether extra function is available when a new version of z/OS Communication Server is installed, and produces a message if the function is not being exploited fully.

**Defining cross-domain services when using SNA**

If you want to use SNA services to access a CICS region on another MVS image, you must ensure that the required cross-domain services are defined to the SNAs involved.

For example, to be able to use an SNA APPC connection between a CICS region (applid CICSHTH1) on MVS image MVSH and a CICS region (applid CICSHAJ1) on MVS image MVSJ:

1. Define the cross-domain services (CDRSC) for accessing CICSHAJ1 in a member of the SYS1.VTAMLST library, or your own user.VTAMLST library, for MVSH.
2. Issue a VARY ACT command on MVSH to activate the CDRSC definition for accessing CICSHAJ1.
3. Define the cross-domain services (CDRSC) for accessing CICSHTH1 in a member of the SYS1.VTAMLST library, or your own user.VTAMLST library, for MVSJ.
4. Issue a VARY ACT command on MVSJ to activate the CDRSC definition for accessing CICSHTH1.

Here is an example:

1. Create the following CDRSC definition in a member of the VTAMLST library on MVSH:

   ```
 CDIDHAJ1 VBUILD TYPE=CDRSC
 **
 * CDRSC for access to applid CICSHAJ1 on MVSJ
 **
 CICSHAJ1 CDRSC CDRM=IYAMCDRM MVSJ
   ```

2. Issue the following command on MVSH to activate the cross-domain services to CICSHAJ1 on MVSJ:

   ```
 /V NET,ACT,ID=CDIDHAJ1
   ```

3. Create the following CDRSC definition in a member of the VTAMLST library on MVSJ:

   ```
 CDIDHTH1 VBUILD TYPE=CDRSC
 **
 * CDRSC for access to applid CICSHTH1 on MVSH
 **
 CICSHTH1 CDRSC CDRM=IYACDROM MVSH
   ```
4. Issue the following command on MVSJ to activate the cross-domain services to CICSHTH1 on MVSH:

/V NET,ACT,ID=CDIDHTH1

SNA LU alias facility

Specifying a prefix string on the LUAPFX parameter of the CICS APPL statement indicates that SNA is to generate LUALIAS names for dynamic cross-network CDRSCs in session with the CICS region defined by the APPL statement.

In this way, CICS can use an LU alias for autoinstalled terminals and workstations and ensure unique names in a CICSplex comprising terminal-owning and application-owning regions. SNA generates the LUALIAS names dynamically.

CICS supports both the predefined and dynamic forms of the SNA alias function only where shown in the following table:

<table>
<thead>
<tr>
<th></th>
<th>CICS-to-CICS APPC connections (APPL definitions)</th>
<th>APPC devices (LU definitions)</th>
<th>Terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Synclevel 1</td>
<td>Synclevel 2</td>
<td>Synclevel 1</td>
</tr>
<tr>
<td>SNA</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CICS</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- The LU alias is used as the NETNAME for terminals and workstations that log on to a CICS region.
- CICS does not support LU alias for synclevel 2 connections (LUTYPE 6.1 and 6.2), ignores any LU alias for these LU types, and continues to use the network name defined in the SNA APPL statement.

Dynamic LU alias support

CICS supports the use of a dynamic LU alias for CICS terminals and workstations that are autoinstalled only.

You enable dynamic LU alias support by specifying LUAPFX on the SNA APPL definition for any CICS terminal-owning region that can receive duplicate netnames. Also, when starting SNA, specify the following options on the SNA START command:

- NQNMODE=NQNAME.
- CDRSCTI=n to specify the length of time that the session name lasts after the last session has logged off.

1. Make the time specified on CDRSCTI long enough to cover any time interval specified on CICS START commands that are issued against a terminal resource that uses a dynamic LU alias. This requirement applies to STARTS with a delay that run on both a TOR or AOR. If the CDRSCTI time is not long enough, a resource can log off and then log back on again with a different network name and thus a different TERMID.

2. Also, the CDRSCTI time interval must be greater than that specified on the CICS AILDELAY system initialization parameter. However, if your applications have no dependency on the network name or TERMID, you can disregard CDRSCTI or set it to 1.

SNA generates a dynamic LU alias only if LUAPFX is specified on the CICS APPL statement and the resource comes from another network. That is, it has a different network name from the network to which the CICS region belongs.

When to use dynamic LU alias

Use dynamic LU alias when you are using autoinstalled cross-network terminals or duplicate network names. For example, in the following circumstances:
• Your cross-network terminals and workstations that log on to CICS are mainly autoinstalled.

The CICS region receives logons from terminals and synclevel 1 connections (both parallel and single sessions) and those logons (or binds) are from cross-network resources that might have duplicate network names.

However, be aware that synclevel 1 connections can become synclevel 2 in the future. For example, if you have a connection between a TXSeries® and CICS TS, the connection is synclevel 1; but, if you change to using TXSeries with a PPC gateway, synclevel 2 is used. CICS does not support dynamic LU aliases for synclevel 2 APPC connections.

• An AOR receives shipped terminals or connections with duplicate network names from different TORs.

Predefined LU alias support
CICS supports the use of a predefined LU alias for CICS terminals and workstations that are explicitly defined and those that are autoinstalled.

You can also use a predefined LU alias for CICS regions that communicate using CICS intersystem communication. You enable predefined alias support by specifying LUALIAS=alias on any cross-domain resource (CDRSC) that requires a specific alias. A terminal or APPC synclevel 1 workstation that is defined to CICS on an explicit resource definition (that is, it is not autoinstalled) and is in a different network, requires a CDRSC definition with a specific alias on the LUALIAS parameter. This alias overrides the dynamic generation of an alias where LUAPFX is specified on the CICS region’s APPL statement. To ensure that CICS can match the SNA LU alias with the installed terminal definition, the LUALIAS value must match the NETNAME specified on the CICS TERMINAL resource definition.

An LUALIAS option in the CDRSC is effective if the resource comes from another SNA domain. That is, it is not used if the resource comes from the same MVS image, but is used if the resource comes from another MVS image regardless of whether it is from the same sysplex, another sysplex in the same network, or from a different sysplex. If an LU alias is predefined, a dynamic LU alias is not generated.

When to use predefined LU alias
Use predefined LU alias where you do not have dynamic LU alias enabled or where you want to override dynamic LU aliases.

• Dynamic LU alias is in operation in a CICS region and your terminals or workstations are explicitly defined on CICS terminal resource definitions with explicit terminal identifiers. In this case, you use predefined LU aliases to override the generation of dynamic LU aliases, which CICS fails to match with any installed resource definition.

• Dynamic LU alias is not in operation in a CICS region, to avoid any conflict with duplicate network names.

Cross-network resources that require predefined LU alias
If the following SNA cross-network resources are to be connected to a CICS region that is defined to SNA, with LUAPFX specified on its APPL statement, they must each have a CDRSC LUALIAS=netname entry.

• CICS RDO-defined terminals connected from another network, including SNA LUs that cannot be autoinstalled:
  – Pipeline terminals
  – Automatic teller machines (3614 and 3624)
  – Devices for which CICS does not receive logons, such as printers.

• LUTYPE 6.2 synclevel 1 connections that might be bound using limited resources.

Like other LUTYPE 6.2 connections, limited resource connections release their dynamic LU alias when CDRSTI ends after the last session is unbound. However, these sessions are unbound whenever they are not in use, and, if they rebind after the dynamic LU alias is released, CICS installs another connection, potentially with a different LU alias.

• CICS RDO-defined work stations (LUTYPE 6.2 synclevel 1 connections) connected from another network.
• Resources that require an LU name in a RACF profile definition or resources for which prior knowledge of the LU name is required.

Choosing an LUAPFX value
When you choose an LUAPFX value, consider the scope of this parameter in the CICSplex, and also consider its scope in the sysplex in which your CICS regions operate.

A predefined LUALIAS name is supplied to CICS for cross-domain and cross-network resources. All the CICS regions in an MVS image share the same SNA and are in the same domain. A CICS region in a different MVS image uses a different SNA and is thus in a different domain. Resources coming from one SNA to another, but which share the name NETID, are cross-domain resources.

A dynamic LUALIAS name is supplied to CICS only for cross-network resources. A resource is a cross-network resource if it has a different network id. SNA ensures that all the dynamic LUALIAS names assigned in one MVS image are unique. However, CICS requires network names to be unique across MVS images so that there are no network name clashes in AORs.

It is important that all CICS regions across all connected networks use unique APPLIDs. This requirement is true whether or not dynamic LUALIASs are used; it is more important with dynamic LUALIASs.

To ensure that all SNA resources in a CICSplex have unique network names, use the LUAPFX prefix:
• Specify LUAPFX on terminal-owning regions (TORs) only.
• Use the same LUAPFX value for all the CICS TORs in the same MVS image (that is, for all the TORs that are connected to the same SNA), but ensure the LUAPFX is different in each MVS image in the sysplex.

If the LUAPFX values are not the same throughout an MVS image, you risk one resource having two different network names in the CICS regions in that image.

If the LUAPFX values are not unique to each MVS image in the sysplex, you risk two resources attempting to install in a TOR with the same dynamic LUALIAS, or having two resources with the same network name in an AOR.

To ensure the uniqueness of the LU prefix in each MVS, use model APPL definitions, and in these use an MVS system symbol (&SYSCLONE) as suggested in the z/OS Communications Server: SNA Resource Definition Reference.

If you use SNA generic resources and your CICS TORs are spread across different MVS images, be aware that if a resource with a dynamically allocated LU alias logs off and then logs on again, and SNA switches the resource to an SNA in another MVS image, a different LUALIAS is assigned because of the different LUAPFX value.

• Avoid using an LUAPFX value that corresponds to the first two characters of CICS RDO-defined terminal names or connection names installed in the CICSplex.

Using LU aliases
Factors to consider when you are planning to use SNA LU aliases with CDRSC resources.

Predictable TERMIDs
If your autoinstalled terminal resources must have a predictable and reproducible TERMID for such things as temporary storage queue names and START requests, you can modify your autoinstall user-replaceable module (URM) to select a reproducible TERMID from the network qualified name, NQNAME, supplied in the CINIT or the BIND.

The sample autoinstall URM contains an example of such code (commented-out), which extracts the network qualified name from the CINIT and BIND. The example illustrates how to create a TERMID from the last nonblank character of the NETID and the last 3 nonblank characters of the real network name (NETNAME).

MVS workload management
If your MVS workload policies specify LU name classifications, remove the LU name for any cross-network resources that are autoinstalled by CICS.
Recovery and persistent sessions support

Resources for which CICS uses any SNA LU alias, predefined or dynamic, and which come from a different network are not cataloged by a CICS region that is not using a persistent session. Therefore, the terminal sessions for the resources cannot be recovered during an emergency restart.

Resources for which CICS uses any SNA LU alias, predefined or dynamic, and which come from a different network are catalogued if CICS is using persistent sessions, so CICS can restore resource terminal session information from the CICS catalog pending recovery of the session from SNA. However, if the resource does not persist, the resource is deleted during an emergency restart.

This action is necessary because SNA might have been restarted, causing dynamic LU aliases to be reissued to different sessions. CICS cannot recognize if SNA has been restarted and CICS cannot differentiate between a predefined and a dynamic LU alias.

CLSDST PASS

If you ISSUE PASS (CLSDST PASS) for a terminal that uses a dynamic LU alias to pass control to another CICS region in another MVS image, the resource is known by a different network name in the receiving CICS. This condition is true if the APPL statement of only one or both the CICS regions specify LUAPFX to activate dynamic LU alias.

Generic resources

If a number of generic resource TORs are in two different MVS images, a terminal or work station that logs on to one image is assigned a different network name if it logs off and logs on to a TOR in another image.

FEPI

FEPI front end systems are not supported by SNA LU alias.

Defining SNA requirements for CICSPlex SM

You require ACF/SNA definitions to identify each CMAS used by CICSPlex SM. You must create z/OS Communications Server application definitions and, optionally, cross-domain resource management definitions. There are a number of steps to perform to create z/OS Communications Server application definitions and cross-domain resource management definitions for a CMAS.

1. Before you perform these steps, specify the sizes of the SNA buffers.
   - For the SNA-to-NCP connection, specify:
     - MAXDATA ≥ 4096
   - For the NCP-to-SNA connection, specify:
     - MAXBFRU * IOBUF ≥ 4096
     - MAXBFRU * UNITSZ ≥ 4096
   - For the NCP-to-NCP connection, specify:
     - TRANSFR * BFRS = RUSIZE ≥ 4096

   Specify the size as 36 bytes smaller than the smallest MAXDATA value in any NCP through which the link might pass. The 36 bytes allow for the headers that are required for SNA. For more information about the requirements for the SNA-to-NCP connection, refer to z/OS Communications Server: SNA Resource Definition Reference for your level of SNA. For more information about the requirements for the NCP-to-SNA and the NCP-to-NCP connections, refer to z/OS Communications Server: SNA Resource Definition Reference for your level of NCP.

   If you require help determining or modifying your z/OS Communications Server buffer specifications, discuss with the z/OS Communications Server system programmer at your enterprise.

2. Depending on your SNA conventions, you might have to modify the procedures that are described in this section:
   - Change references to the SYS1.VTAMLST library if you do not keep your definitions in the default z/OS Communications Server list.
• Modify the APPL and CDRSC statements if you want to add these statements to existing members, rather than create new ones.

3. Use the sample SNA APPL statements in the SEYUDEF library members, EYUDVTIA and EYUDVTIB. You can modify these samples to fit your requirements.

**Step 1: Creating a z/OS Communications Server application definition for a CMAS**

To establish a z/OS Communications Server for SNA application definition for a CMAS, either create a new member (major node) or access an existing member in the SYS1.VTAMLST library.

Add the following APPL statement to the member:

```
VBUILD TYPE=APPL
name APPL ACBNAME=acbname,AUTH=(VPACE,ACQ,SPO,PASS),
 EAS=10,PARSESS=YES,SONSCIP=YES,APPC=NO,
 VPACING=number
```

where:

- **name**
  A 1-character to 8-character unique name.

- **acbname**
  The node name of this CMAS. This name must be unique in the domain. If you omit this parameter, the name of the SNA APPL statement is used.

- **vpacing**
  The maximum number of normal-flow requests that another logical unit can send on an intersystem session before waiting to receive a pacing response. Start with a value of five.

For example, to create a z/OS Communications Server application definition for the CMAS on SYSA, you might create a member APCMAS1 in the SYS1.VTAMLST library that contains the APPL statement:

```
VBUILD TYPE=APPL
CMS1 APPL ACBNAME=CMS1,AUTH=(VPACE,ACQ,SPO,PASS),
 EAS=10,PARSESS=YES,SONSCIP=YES,APPC=NO,
 VPACING=5
```

You require the same type of definition for each CMAS you use.

**Step 2: Defining cross-domain resources for a CMAS**

Define cross-domain resources (CDRSCs) when a CMAS that is to communicate with another CMAS cannot take advantage of adjacent CDRSCs or you want to minimize the effort involved in using adjacent CDRSCs.

To establish a CDRSC definition, you must either create a new member or access an existing member in the SYS1.VTAMLST library. In the new or existing member, specify the following CDRSC statement for each CMAS that you want to communicate with:

```
VBUILD TYPE=CDRSC
name CDRSC CDRM=cdrm
```

where:

- **name**
  The name you assigned to a CMAS in Step 1.

- **cdrm**
  The name of the MVS image previously identified as the cross-domain resource manager (CDRM).

For example, to allow the CMAS on SYSA to communicate with the CMASs on SYSB and SYSC, you might create the member CDRCMS1 in the SYS1.VTAMLST library, that contains the CDRSC statements:

```
CMS2 VBUILD TYPE=CDRSC
CDRSC CDRM=VTAMB

CMS3 VBUILD TYPE=CDRSC
CDRSC CDRM=VTAMC
```
where VTAMB and VTAMC are the cross-domain resource manager names that are assigned to SYSB and SYSC respectively.

You also require the same types of definitions for the CMASs on SYSB and SYSC. That is, for the CMAS on SYSB, you might create a member CDRCMS2, that contains the CDRSC statements:

<table>
<thead>
<tr>
<th>CMS1</th>
<th>CDRSC</th>
<th>CDRM=VTAMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS3</td>
<td>CDRSC</td>
<td>CDRM=VTAMC</td>
</tr>
</tbody>
</table>

Note: VTAM is now z/OS Communications Server.

**Step 3: Updating the configuration list for a CMAS**

If, in Step 1 or 2, you created new members in the SYS1.VTAMLST library, you must update the SNA configuration list for each MVS image. When SNA starts, it automatically activates the new members.

To make these updates, add the new member names to the end of the configuration list in the appropriate ATCCONxx member of the SYS1.VTAMLST library. To find the suffix of the ATCCONxx member:

- Get the suffix of the COMMNDxx member from the CMD= parameter in the IEASYSxx member in SYS1.PARMLIB.
- Get the suffix of the ATCSTRxx member from the LIST= parameter on the command that is used to start SNA in the COMMNDxx member in SYS1.PARMLIB. If you do not start SNA from the COMMNDxx member, get the suffix from the LIST= parameter of the command that you use to start SNA.
- Get the suffix of the ATCCONxx member from the CONFIG= parameter in the ATCSTRxx member in SYS1.VTAMLST.

As an illustration, the examples shown in Steps 1 and 2 assume that the members APCMAS1 and CDRCMS1 exist. To add these members to the end of the configuration list in ATCCONxx, specify:

<table>
<thead>
<tr>
<th>APCMAS1, CDRCMS1</th>
</tr>
</thead>
</table>

If you added the CMAS and cross-domain definitions to existing members, ATCCONxx already contains these member names.

**Step 4: Activating the major nodes for a CMAS**

You can activate the definitions that are created in Steps 1 and 2 either by restarting the z/OS Communications Server for each system or by manually activating the definitions.

To manually activate a major node, you can issue the following commands, where name identifies a major node that was created or modified in Steps 1 and 2:

- Deactivate the major node if it is currently active by issuing this command:

  ```
 VARY NET,INACT,ID=name
  ```

- Activate or reactivate the major node by issuing this command:

  ```
 VARY NET,ACT,ID=name
  ```

To ensure that the major node has been activated, issue this command:

```
D NET,ID=name
```

For example, to activate the member APCMAS1 and then ensure that it has been activated, issue these commands:

```
VARY NET,INACT,ID=APCMAS1
VARY NET,ACT,ID=APCMAS1
D NET,ID=APCMAS1
```

Perform the preceding steps for each CMAS you are using.
Installing CICS modules in the MVS link pack area

How to define the CICS LPA library to your MVS, and how to install and use the CICS modules.

Preparing to install CICS modules in the MVS link pack area

Before you install modules in the MVS link pack area, you need to understand the benefits, the scope, service level implications, and the modules required in the MVS link pack area.

• “Benefits of using the MVS link pack area” on page 98
• “What is meant by the MVS link pack area?” on page 98
• “Which modules must be installed in the MVS link pack area?” on page 99
• “Which modules can be in the MVS link pack area?” on page 100
• “Mismatch of service levels” on page 99

Benefits of using the MVS link pack area

There are several benefits of placing code in the MVS link pack area.

• You protect the code from possible corruption by user applications. Because the MVS link pack area is in protected storage, it is virtually impossible to modify the contents of these programs.
• You can improve the performance, and reduce the demand for real storage, if you use the MVS link pack area for program modules. If more than one copy of the same release of CICS is running in multiple address spaces of the same processor, each address space requires access to the CICS nucleus modules. These modules can either be loaded into each of the address spaces or shared in the MVS link pack area. If they are shared in the MVS link pack area, the working set and, therefore, the demand for real storage (paging) can be reduced.
• You can decrease the storage requirement in the private area by careful allocation of the unused storage in the MVS link pack area created by rounding to the next segment.

If you know the amount of space that you require in the LPA, and from that the total size of the MVS common area above the CICS private storage, you can determine the 1 MB segment on which the boundary between the two areas lies. This calculation might indicate some space in the MVS common area is left unused, which you can use for CICS LPA-eligible modules. By moving more modules from CICS private storage to the LPA, you decrease the space that is required for modules in CICS private storage.

What is meant by the MVS link pack area?

The MVS link pack area comprises several areas, both above and below 16 MB. In these topics, the term MVS link pack area refers to the pageable link pack areas above and below 16 MB where modules that are used from the MVS link pack area are normally installed.

The MVS link pack area has both pageable and fixed parts. Although you can install CICS modules into the fixed parts, use the pageable areas for performance reasons.

The term LPA specifically refers to the MVS link pack area below 16 MB, and the term ELPA specifically refers to the area above 16 MB. A module that is link-edited with the RMODE(ANY) attribute is loaded into the ELPA.

If you install a module into the LPA or ELPA, that module cannot be retrieved from the MVS link pack area until you re-IPL your MVS with CLPA specified. To use the new module and avoid an IPL, you can use the MVS dynamic LPA in one of the following ways:

• With the SETPROG LPA command
• With an LPA statement in a PROGxx member of PARMLIB, which specifies the SET PROG=xx command
Mismatch of service levels

If you use modules with mismatching service levels, you can cause unpredictable results. To be safe, do not use the LPA version of a module if it differs from the version in the CICS libraries that you are using.

Except for DFH99SVC and except for when you use the DFHCSCVCU utility program to dynamically update the CICS SVC, do not use dynamic LPA with the 8 CICS modules that must be installed in the MVS link pack area. For details about the DFHCSCVCU utility program, see, “Running the DFHCSCVCJ job” on page 54.

Load modules used from the LPA might be at a lower service level than the rest of your CICS region in any of the following circumstances:

- You are running CICS from libraries that belong to a target zone currently at a higher service level than the LPA zone.
- You have applied service to the LPA zone since the last IPL of MVS.
- You are not using the MLPA to replace service-updated load modules, but have applied service to the LPA zone since the last IPL of MVS for which CLPA (create link pack area) was specified.

Thus, if you have applied service to a load module in your CICS libraries, you must also apply the service to the LPA version of the module, if one exists, so that the MVS link pack area always contains tested load modules.

Use the SMP/E RESTORE function to remove the USERMOD before the LPA zone is updated or copied. Then apply the USERMOD again.

If you have used a copy of the CICS-supplied USERMODS to install modules into the MVS link pack area, and the original USERMOD is serviced, you can reflect the changes in your version of the USERMOD.

Although it is possible for CICS PTFs to make changes to the CICS modules which must reside in the MVS link pack area, in reality it is a fairly rare event. The modules have to be downwardly compatible with lower releases, and applies to any code changes made to them by PTFs, as well as to the code at base level.

**Which modules must be installed in the MVS link pack area?**

The CICS modules that must be in the MVS link pack area are listed.

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
<th>When required in LPA</th>
<th>See notes after this table</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHCSVC</td>
<td>CICS Type 3 SVC</td>
<td>Always</td>
<td>1, 2, 3, 4, and 6</td>
</tr>
<tr>
<td>DFHDSPEX</td>
<td>CICS postexit stub</td>
<td>Always</td>
<td>1, 3, and 5</td>
</tr>
<tr>
<td>DFHDUMPX</td>
<td>SDUMPX IEASDUMP QUERY exit</td>
<td>Always</td>
<td>1, and 3</td>
</tr>
<tr>
<td>DFHIRP</td>
<td>Interregion communication program</td>
<td>To use MRO, CICS shared database, or the console message-handling facility</td>
<td>1, 2, 3, and 6</td>
</tr>
<tr>
<td>DFHSSEN</td>
<td>Subsystem interface end-of-memory and end-of-task clean up routine</td>
<td>To use the console message-handling facility</td>
<td>1, 2, 3, and 6</td>
</tr>
<tr>
<td>DFHSSGC</td>
<td>Subsystem generic connect module</td>
<td>To use the console message-handling facility</td>
<td>3, and 7</td>
</tr>
<tr>
<td>DFHSSWT</td>
<td>Subsystem interface WTO router</td>
<td>To use the console message-handling facility</td>
<td>3, and 7</td>
</tr>
<tr>
<td>DFH99SVC</td>
<td>Dynamic allocation - SVC services</td>
<td>Always</td>
<td>1, and 3</td>
</tr>
</tbody>
</table>
1. The module can be used only from the MVS link pack area and you must install it there before CICS can be started.

2. You must always install the latest service level of the modules DFHCSVC, DFHIRP (if required), and DFHSSEN.

3. The version of this module that is supplied with the current release is downward-compatible with earlier releases of CICS. It works correctly with CICS regions running earlier releases. Therefore, if you are running different releases of CICS on the same MVS image, use the latest version of this module.

4. You must define the DFHCSVC module to MVS as a Type 3 SVC. The default SVC number is 216. If you use a non-default SVC number, you must define it to CICS on the CICSSVC system initialization parameter.

Moving DFHCSVC into the MVS link pack area:

Do not use the link editor to install the CICS SVC module into a library in the MVS link pack area. To copy or move the module from the hlq.SDFHAUTH library to the nominated library in the MVS link pack area, use either a suitable copy utility program, such as IEBCOPY, or an SMP/E USERMOD with ++MOVE statements.

5. If you are running earlier releases of CICS with the latest version, ensure that the latest version of the DFHDSPEX module is installed in the MVS link pack area. The DFHDSPEX module must be in the MVS link pack area for integrity reasons, but the postexit routine, DFHDSAUT, can be either in the MVS link pack area or in the CICS address space. This choice enables you to use different levels of the DFHDSAUT module in different CICS regions running in the same MVS image, because the DFHDSAUT module might not be compatible between CICS versions.

6. To communicate by MRO, all CICS regions in the same MVS image must use the latest level of the modules DFHCSVC, DFHIRP, and DFHSSEN in the MVS link pack area.

If a region detects that DFHIRP is at a lower level when it attempts to open interregion communication, it issues message DFHIR3799 and interregion communication fails to open.

7. To use console message-handling, these modules must be either in the MVS link pack area or in an APF-authorized library in the MVS linklist.

If an LPA module is only ever referred to by name, then refreshing it in the LPA is valid. That is, if each time it is used, a new reference to it is obtained by using an MVS LOAD macro. However, most references to LPA modules do not work this way. The address of an LPA module could be saved into a control block after the initial LOAD of the module. The implication is that this address remains unchanged without a CLPA IPL. If dynamic LPA is used to pick up a change to an LPA module, then the address saved in the control block is no longer valid. Of the 8 CICS modules which must be installed in the LPA, only DFH99SVC is eligible to be refreshed in this way.

Which modules can be in the MVS link pack area?

A number of CICS modules and user application program modules are available from the MVS link pack area.

CICS modules

The following CICS modules can be installed in the LPA:

- Modules that can reside above 16 MB (for example, the CICS message table, DFHMGT). You can also install these modules in the extended link pack area (ELPA).
- Modules that are optionally installed in the MVS link pack area; that is, a module that is not required in the MVS link pack area can be used only by the release of CICS to which it relates.
- Modules that are eligible to be used from the MVS link pack area are listed in the CICS-supplied USERMODs. The USERMOD member for base CICS modules is DFH$UMOD, which is in the hlq.SDFHSAMP library. Refer to DFH$UMOD for a list of these modules, and to the details in “LPA-required and LPA-eligible modules” on page 101, to help you select the CICS modules that you want to install in the MVS link pack area.
User application programs

You can use user application programs from the MVS link pack area if they are read-only and meet one of the following criteria:

- They are written in COBOL, do not overwrite WORKING STORAGE, and are compiled using VS COBOL II, or a later version. The CICS translator generates a CBL statement with the required compiler options.
- They are written in PL/I (so they do not overwrite STATIC storage) and are compiled using one of the versions of PL/I for z/OS listed in Changes to CICS support for application programming languages. The CICS translator inserts the required REENTRANT option into the PROCEDURE statement.
- They are written in C/370, compiled with the RENT option, and link-edited with the RENT option.
- They are written in assembler language, assembled with the RENT option, and link-edited with the RENT and REFR options.

Command-level user application programs compiled using a Language Environment-conforming compiler, or written in assembler language or C/370, can be loaded above 16 MB. For information about installing application programs, see Installing application programs.

A read-only module that can be above 16 MB is also eligible for the ELPA.

LPA-required and LPA-eligible modules

The LPA-required modules, that is, modules that must be installed in the MVS link pack area, as supplied in hlq.SDFHLPA, are listed. The LPA-eligible modules that require associated system initialization parameters, or that are installed in the LPA below 16 MB, are also listed.

For a complete list of LPA-eligible modules, see the CICS-supplied sample DFH$UMOD. For further information about this sample, see “Installing CICS modules in the LPA” on page 111.

To find the size of each module, check the load library directory information.

LPA-required modules

All LPA-required modules are loaded into the part of the MVS link pack area that is above 16 MB (ELPA).

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHC SVC</td>
<td>CICS SVC startup</td>
<td></td>
</tr>
<tr>
<td>DFHD SPEX</td>
<td>DS domain - MVS POST exit stub</td>
<td>“2” on page 102</td>
</tr>
<tr>
<td>DFHD DUMPX</td>
<td>SDUMPX IEASDUMP QUERY exit</td>
<td>“2” on page 102</td>
</tr>
<tr>
<td>DF HI RP</td>
<td>Interregion communication program</td>
<td>“1” on page 102 “2” on page 102 “3” on page 102</td>
</tr>
<tr>
<td>DF HI SEN</td>
<td>Subsystem interface end-of-memory / end-of-task clean up routine</td>
<td>“1” on page 102 “2” on page 102 “3” on page 102</td>
</tr>
<tr>
<td>DF H SSC</td>
<td>Subsystem interface generic connect</td>
<td>“2” on page 102 “4” on page 102</td>
</tr>
<tr>
<td>DF H SS WT</td>
<td>Subsystem interface WTO router</td>
<td>“2” on page 102 “4” on page 102</td>
</tr>
<tr>
<td>DF H 99 SVC</td>
<td>Dyn alloc - SVC services</td>
<td>“1” on page 102 “2” on page 102</td>
</tr>
</tbody>
</table>

Notes:
1. You must always install the latest service level of the CICS SVC module, DFHCSVC. Install the DFHCSVC module into the MVS link pack area before you run the CICS installation verification procedures.

You must define the DFHCSVC module in an IEASVCxx member of the SYS1.PARMLIB library with SVC Parm statements. You select the required IEASVCxx member by coding the SVC parameter (SVC=xx) in a SYS1.PARMLIB member (IEASYSyy), which you use to IPL your MVS.

You can run several CICS regions, at different release levels, in the same MVS image. Each region uses its own version of the DFHCSVC module. If some regions use MRO, all regions that use MRO must use the latest DFHCSVC module and the latest DFHIRP module.

If some regions use the DFHCSVC module, and you allocate to the SVC a number different from the SVC number that is used by the regions, you must generate a new version of the DFHCRC program on the regions.

For more information about the DFHCSVC module, see “Program Directories” on page 2.

2. All LPA-required modules are compatible with earlier releases of CICS. If you are running earlier releases of CICS, you must ensure that the correct version is installed in the LPA. The module must be in the LPA for integrity reasons, but the post exit routine itself can stay in the LPA or in the CICS address space. You can then use different versions of the DFHDSAUT module in different CICS regions that run in the same MVS image, because the DFHDSAUT module might not be compatible with all releases.

3. The DFHIRP module must be in the MVS link pack area only if you are using MRO, CICS shared database, or the console message-handling facility. If you install the DFHIRP module in the MVS link pack area, you must also install DFHSSEN if you are using the console message-handling facility.

You must always install the latest service level of the DFHIRP (if required) and DFHSSEN.

If you are running CICS with MRO at different release levels, all regions in the same MVS image must use the latest DFHIRP module.

4. To use the console message formatting facility of the MVS subsystem interface, you must install the modules DFHSSGC and DFHSSWT either in the MVS link pack area or in an APF-authorized library in the MVS link list. These modules are used by the subsystem interface and not directly by CICS. Therefore, the use of these modules from the MVS link pack area is not controlled by CICS parameters or options.

For information about enabling the console message-formatting facility, and about the other modules it requires, see “Modules required to use the console message-handling facilities” on page 83.

**LPA-eligible modules**

Table 10 on page 103 and Table 11 on page 110 shows the LPA-eligible modules that require associated system initialization parameters, or that are affected by an option in the resource definition of the program.

- If an LPA-eligible module requires an associated system initialization parameter, you must specify this parameter to use the function that is associated with that module. For more information about the system initialization parameters, see System initialization parameter descriptions and summary.
- Some LPA-eligible modules are affected by the USELPACOPY option of the resource definition of the program. If USELPACOPY=NO, you do not need to include that module in the MVS link pack area. For more information about the USELPACOPY option, see PROGRAM attributes.

Table 10 on page 103 shows the LPA-eligible modules that require system initialization parameters or are affected by USELPACOPY and that are loaded into the part of the MVS link pack area above the 16 MB line (ELPA).

Table 11 on page 110 shows the LPA-eligible modules that require system initialization parameters or are affected by USELPACOPY and that are loaded into the link pack area below the 16MB line (LPA).
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>System initialization parameter or note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHAIIN</td>
<td>Terminal Autoinstall - initialization</td>
<td>AEXIT</td>
</tr>
<tr>
<td>DFHAIIQ</td>
<td>Terminal Autoinstall - locate/unlock/inquire/browse</td>
<td>AEXIT</td>
</tr>
<tr>
<td>DFHAIRP</td>
<td>Terminal Autoinstall - recovery</td>
<td>AEXIT</td>
</tr>
<tr>
<td>DFHAITM</td>
<td>Terminal Autoinstall - add replace/delete</td>
<td>AEXIT</td>
</tr>
<tr>
<td>DFHALP</td>
<td>Terminal allocation</td>
<td>AEXIT</td>
</tr>
<tr>
<td>DFHAPHN</td>
<td>WLM Health Notify Gate</td>
<td>WLMHEALTH=(xx,yy)</td>
</tr>
<tr>
<td>DFHBRAI</td>
<td>3270 Bridge Autoinstall</td>
<td>AIBRIDGE=YES</td>
</tr>
<tr>
<td>DFHCCNV</td>
<td>Codepage conversion</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHCEGN</td>
<td>Goodnight transaction stub</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHCESD</td>
<td>Shutdown transaction</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHCHS</td>
<td>CICS OS/2 mirror program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHCIS4</td>
<td>ESI over IPIC Message processing</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHCMAC</td>
<td>ME domain - CICS messages and codes transaction (CMAC)</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHCNV</td>
<td>Codepage conversion table</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHCRNP</td>
<td>Interregion connection manager</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHCRQ</td>
<td>ATI purge program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHCRR</td>
<td>Interregion session recovery program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHCRS</td>
<td>Remote scheduler program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHCRSP</td>
<td>CICS IRC startup module</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHCRT</td>
<td>Transaction routing relay program for APPC devices</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHDBAT</td>
<td>CICS DBCTL adapter/transformer</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHDBCT</td>
<td>CICS DBCTL control program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHDBTI</td>
<td>EXEC DLI LD table</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHDIP</td>
<td>Data interchange program</td>
<td>DIP=YES</td>
</tr>
<tr>
<td>DFHDIPDY</td>
<td>Data interchange program (dummy)</td>
<td>DIP=NO</td>
</tr>
<tr>
<td>DFHDPWM0</td>
<td>Application Debugging profile - English Messages</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHDPWM1</td>
<td>Application Debugging profile - German Messages</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHDPWM2</td>
<td>Application Debugging profile - Spanish Messages</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHDPWM3</td>
<td>Application Debugging profile - French Messages</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHDPWM4</td>
<td>Application Debugging profile - Japanese Messages</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHDPWM5</td>
<td>Application Debugging profile - Korean Messages</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHDPWM6</td>
<td>Application Debugging profile - Chinese Messages</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHDPT0</td>
<td>Application Debugging profile - English Template</td>
<td>“1” on page 110</td>
</tr>
</tbody>
</table>
Table 10. LPA-eligible modules that are loaded into the ELPA that require system initialization parameters or are affected by USELPACOPY (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>System initialization parameter or note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHDPWT1</td>
<td>Application Debugging profile - German Template</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHDPWT2</td>
<td>Application Debugging profile - Spanish Template</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHDPWT3</td>
<td>Application Debugging profile - French Template</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHDPWT4</td>
<td>Application Debugging profile - Japanese Template</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHDPWT5</td>
<td>Application Debugging profile - Korean Template</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHDPWT6</td>
<td>Application Debugging profile - Chinese Template</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHDSAUT</td>
<td>DS domain - authorized services</td>
<td>BMS=STANDARD</td>
</tr>
<tr>
<td>DFHDSBA$</td>
<td>BMS data stream build (standard)</td>
<td>BMS=STANDARD</td>
</tr>
<tr>
<td>DFHDSB1$</td>
<td>BMS data stream build (full)</td>
<td>BMS=FULL</td>
</tr>
<tr>
<td>DFHDSRP</td>
<td>Sample Distributed Dynamic Routing Program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHDYP</td>
<td>Dynamic routing program</td>
<td>DTRPGM=DFHDYP “1” on page 110</td>
</tr>
<tr>
<td>DFHD2CM0</td>
<td>CICS Db2 PLTPI Program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHD2CM1</td>
<td>CICS Db2 Command processor</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHD2CM2</td>
<td>CICS Db2 Shutdown Quiesce Program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHD2CM3</td>
<td>CICS Db2 PLTPI Program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHD2EDF</td>
<td>CICS Db2 EDF Processor</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHD2EX1</td>
<td>CICS Db2 Task Related User Exit Program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHD2EX2</td>
<td>CICS Db2 Service Task Program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHD2INI</td>
<td>CICS Db2 Initparm Processor</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEBU</td>
<td>EXEC FMH construction</td>
<td>ISC=YES/xx</td>
</tr>
<tr>
<td>DFHECBAM</td>
<td>Business Transaction Services Program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHECID</td>
<td>CECI service program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHCICIP</td>
<td>Command interpreter (CECI) program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHECSP</td>
<td>Command syntax check (CECS) program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEDAD</td>
<td>RDO (CEDA) service program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEDAP</td>
<td>RDO (CEDA) program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEDFBR</td>
<td>Temporary-storage browse transaction, CEBR</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEDFD</td>
<td>EDF display program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEDFE</td>
<td>EDF attach error handler</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEDFP</td>
<td>EDF control program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEDFR</td>
<td>EDF response table</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEDFX</td>
<td>EDF task switch program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>System initialization parameter or note</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------------------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td>DFHEDI</td>
<td>EXEC interface for data interchange</td>
<td>DIP=YES</td>
</tr>
<tr>
<td>DFHEDP</td>
<td>EXEC DLI command stub</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEGL</td>
<td>EXEC interface for unmapped LU6.2 commands</td>
<td>VTAM=YES</td>
</tr>
<tr>
<td>DFHEIGDS</td>
<td>Translator table (GDS commands)</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEIPSE</td>
<td>EXEC interface for perform security</td>
<td>SEC=YES</td>
</tr>
<tr>
<td>DFHEITAB</td>
<td>Translator table (basic commands)</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEITBS</td>
<td>Translator table (special commands)</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEITMT</td>
<td>Command language table for CEMT</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEITOT</td>
<td>Command language table for CEOT</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEITST</td>
<td>CEST language definition table</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEITSZ</td>
<td>EXEC CICS language definition table</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEMS</td>
<td>EXEC interface for BMS</td>
<td>BMS=STANDARD or FULL</td>
</tr>
<tr>
<td>DFHETAPA</td>
<td>Programmable interface to Master terminal program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHETXD</td>
<td>Master terminal (CEMT) service program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHETXP</td>
<td>Master terminal (CEMT) program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEOTP</td>
<td>CEOT service program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHEPS</td>
<td>System spooling interface stub</td>
<td>SPOOL=YES</td>
</tr>
<tr>
<td>DFHESTP</td>
<td>CEST service program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHER</td>
<td>EXEC interface for trace control</td>
<td>“3” on page 110</td>
</tr>
<tr>
<td>DFHERX</td>
<td>EXEC interface for enter tracenum, monitor</td>
<td>USERTR</td>
</tr>
<tr>
<td>DHGGM</td>
<td>z/OS Communications Server LU startup message</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DHIEP</td>
<td>IP ECI Listener Program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DHINDAP</td>
<td>Indoubt tool</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DHINDT</td>
<td>Indoubt tool</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DHINTRU</td>
<td>Indoubt tool task-related user exit</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFISAIP</td>
<td>IPCONN Autoinstall Program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DHISCOP</td>
<td>IPCONN - acquire and release program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFISEMP</td>
<td>ISC over TCPIP error handler</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFISLQP</td>
<td>ISC over TCPIP - local queue processing</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFIISREU</td>
<td>IS resync UOWs</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFIISREX</td>
<td>IS resync XIDs</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFISRRP</td>
<td>ISC over TCPIP - receiver</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>System initialization parameter or note</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------------------------</td>
<td>----------------------------------------------------------</td>
</tr>
<tr>
<td>DFHISRSP</td>
<td>ISC over TCPIP - remote scheduler</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHISP</td>
<td>Intersystem communication program</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHLDMAP</td>
<td>Loader map program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHLDMHF</td>
<td>Loader map HFS output program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHLDMHS</td>
<td>Loader map spool output program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMCPA$</td>
<td>BMS mapping control program (standard)</td>
<td>BMS=STANDARD</td>
</tr>
<tr>
<td>DFHMCPES$</td>
<td>BMS mapping control program (minimum)</td>
<td>BMS=MINIMUM</td>
</tr>
<tr>
<td>DFHMCP1$</td>
<td>BMS mapping control program (full)</td>
<td>BMS=FULL</td>
</tr>
<tr>
<td>DFHMCX</td>
<td>BMS fast path module</td>
<td>BMS</td>
</tr>
<tr>
<td>DFHMCY</td>
<td>Process MAPPINGEV Requests</td>
<td>BMS</td>
</tr>
<tr>
<td>DFHMIIRS</td>
<td>Mirror program</td>
<td>ISC=YES “1” on page 110</td>
</tr>
<tr>
<td>DFHMLB$</td>
<td>Schema to Language structure bootstrap program</td>
<td>ISC=YES “1” on page 110</td>
</tr>
<tr>
<td>DFHML1</td>
<td>BMS LU1 printer mapping program</td>
<td>BMS</td>
</tr>
<tr>
<td>DFHMQ$</td>
<td>CICS MQ interface - base panel program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQBP0</td>
<td>CICS MQ bridge - request handler</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQBP1</td>
<td>CICS MQ bridge - DPL abend handler</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQBR0</td>
<td>CICS MQ bridge - monitor main program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQCOD</td>
<td>CICS MQ PLT program to start connection by using INITPARM</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQCON</td>
<td>CICS MQ Back-end module that issues a connection request to the IBM MQ subsystem</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQCTL</td>
<td>CICS MQ First level transaction for operations. This program handles text mode operation only</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQDCI</td>
<td>CICS MQ Data conversion exit for inbound data to the bridge</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQDCO</td>
<td>CICS MQ Data conversion exit for outbound data from the bridge</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQDIS</td>
<td>CICS MQ Back-end module that services display requests</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQDSC</td>
<td>CICS MQ Back-end module that issues a disconnect request to the IBM MQ subsystem</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQDSL</td>
<td>CICS MQ Second-level transaction for DISPLAY</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQIG</td>
<td>CICS MQ inquire group</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQMCM</td>
<td>CICS MQ async consume driver</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQMON</td>
<td>CICS MQ Monitor program for pending events</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQPLT</td>
<td>CICS MQ Sample CONNECT program in phase 2 PLT execution</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQP$</td>
<td>CICS MQ BMS program that handles all pull-down maps</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
<td>System initialization parameter or note</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------------------------------------</td>
<td>----------------------------------------</td>
</tr>
<tr>
<td>DFHMQPRM</td>
<td>CICS MQ program - Retrieves all default adapter parameters</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQPUL</td>
<td>CICS MQ BMS program that handles all pull-down maps</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQQCN</td>
<td>CICS MQ Second-level transaction for CONNECT</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQRET</td>
<td>CICS MQ BMS program that handles the final screen, including scrolling</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQRS</td>
<td>CICS MQ Back-end module to service reset (change) requests</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQSSQ</td>
<td>CICS MQ Back-end module to service start and stop CKTI requests</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQTRU</td>
<td>CICS MQ task-related user exit program for IBM MQ</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMQTSK</td>
<td>CICS MQ Trigger monitor (CKTI transaction)</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMSP</td>
<td>Message switching program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHMXP</td>
<td>Local queuing shipper</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHM32A$</td>
<td>BMS 3270 mapping (standard)</td>
<td>BMS=STANDARD</td>
</tr>
<tr>
<td>DFHM321$</td>
<td>BMS 3270 mapping (full)</td>
<td>BMS=FULL</td>
</tr>
<tr>
<td>DFHPBPA$</td>
<td>BMS page and text build (standard)</td>
<td>BMS=STANDARD</td>
</tr>
<tr>
<td>DFHPBP1$</td>
<td>BMS page and text build (full)</td>
<td>BMS=FULL</td>
</tr>
<tr>
<td>DFHPGADX</td>
<td>Program autoinstall exit - Assembler</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHPHP</td>
<td>Partition handling program</td>
<td>BMS</td>
</tr>
<tr>
<td>DFPIAP</td>
<td>Pipeline - stub program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFPIDSH</td>
<td>Pipeline - HTTP inbound router</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFPIDSQ</td>
<td>Pipeline - mq dispatcher</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFPIITL</td>
<td>Pipeline - resolution program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFPILSQ</td>
<td>Pipeline - mq listener</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFPIPA</td>
<td>Soap envelope SAX parsing</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFPIRI</td>
<td>Pipeline - exec layer remote stub</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFPIRS</td>
<td>Pipeline - registration services</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFPIRT</td>
<td>Pipeline - outbound router</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFPISN1</td>
<td>Soap 1.1 node program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFPISN2</td>
<td>Soap 1.2 node program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFPITP</td>
<td>Pipeline - exec layer program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFPIQ1</td>
<td>Pipeline - mq interface</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFPIXC</td>
<td>Soap envelope sax parsing</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFPSNP</td>
<td>System spooling interface program</td>
<td>SPOOL=YES</td>
</tr>
<tr>
<td>DFPSSSVC</td>
<td>System spooling interface, retrieve a data set name</td>
<td>SPOOL=YES</td>
</tr>
</tbody>
</table>

Chapter 7. Setting up the MVS environment for CICS 107
<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>System initialization parameter or note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHQRY</td>
<td>Query transaction</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHRLMF</td>
<td>RL Manifest XSDBIND file</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHRLRA$</td>
<td>BMS route list resolution (standard)</td>
<td>BMS=STANDARD</td>
</tr>
<tr>
<td>DFHRLRP</td>
<td>RL resolution program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHRLSC</td>
<td>RL SCDL schema bootstrap</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHRLVC</td>
<td>RL vendor register/deregister</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHRLR1$</td>
<td>BMS route list resolution (full)</td>
<td>BMS=FULL</td>
</tr>
<tr>
<td>DFHRMSY</td>
<td>Resource manager resync program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHRPAL</td>
<td>ONC RPC feature alias list</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHRTC</td>
<td>CRTE cancel command processor</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHRTE</td>
<td>Transaction routing program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHRZJN</td>
<td>Remote join program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHFSF</td>
<td>Signoff program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHSSHRRP</td>
<td>Scheduler services - request receiving program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHSHRSP</td>
<td>Scheduler services - request sending program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHSJITL</td>
<td>SJ - Installation assist program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHSMTAB</td>
<td>CPSM LD table</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHSNP</td>
<td>Signon program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHTPPA$</td>
<td>BMS terminal page processor (standard)</td>
<td>BMS=STANDARD</td>
</tr>
<tr>
<td>DFHTPP$1$</td>
<td>BMS terminal page processor (full)</td>
<td>BMS=FULL</td>
</tr>
<tr>
<td>DFHTPQ</td>
<td>BMS terminal page clean up program</td>
<td>BMS “1” on page 110</td>
</tr>
<tr>
<td>DFHTPR</td>
<td>BMS terminal page retrieval program</td>
<td>BMS “1” on page 110</td>
</tr>
<tr>
<td>DFHTPS</td>
<td>BMS terminal page scheduling program</td>
<td>BMS “1” on page 110</td>
</tr>
<tr>
<td>DFHTRAO</td>
<td>TR domain - auxiliary trace output</td>
<td>AUXTR=ON</td>
</tr>
<tr>
<td>DFHTSP</td>
<td>Temporary-storage control program</td>
<td>TST=YES/xx</td>
</tr>
<tr>
<td>DFHWBAAX</td>
<td>WB - default analyzer program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHWBADX</td>
<td>WB - analyzer URM</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHWBENV</td>
<td>WB - environment variables program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHWBERX</td>
<td>WB - error transaction program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHWBIMG</td>
<td>WB - binary image support</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHWBPA</td>
<td>WB - parsing program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHWBUN</td>
<td>WB - unescaping program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHWSMS</td>
<td>DFHWSMS</td>
<td>XRF=YES/xx</td>
</tr>
</tbody>
</table>
Table 10. LPA-eligible modules that are loaded into the ELPA that require system initialization parameters or are affected by USELPACOPY (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>System initialization parameter or note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHWSSON</td>
<td>CAVM state management signon request handler</td>
<td>XRF=YES/xx</td>
</tr>
<tr>
<td>DFHWTI</td>
<td>XRF takeover initiation program</td>
<td>XRF=YES/xx</td>
</tr>
<tr>
<td>DFHXFP</td>
<td>Online data transformation program</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHXFX</td>
<td>Optimized data transformation program</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHXRP</td>
<td>XRF request program</td>
<td>XRF=YES/xx</td>
</tr>
<tr>
<td>DFHXRSP</td>
<td>XRF surveillance program</td>
<td>XRF=YES/xx</td>
</tr>
<tr>
<td>DFHXSS</td>
<td>XS domain - supervisor request services</td>
<td>SEC¬=NO</td>
</tr>
<tr>
<td>DFHXSWM</td>
<td>XRF message manager for security manager</td>
<td>XRF=YES/xx</td>
</tr>
<tr>
<td>DFHXTMP</td>
<td>Terminal sharing transformation program</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZATA</td>
<td>Autoinstall program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHZATD</td>
<td>Autoinstall delete program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHZATDX</td>
<td>User-replaceable autoinstall exit</td>
<td>AIEXIT “1” on page 110</td>
</tr>
<tr>
<td>DFHZATDY</td>
<td>User-replaceable autoinstall exit with APPC</td>
<td>AIEXIT “1” on page 110</td>
</tr>
<tr>
<td>DFHZCA</td>
<td>z/OS Communications Server working set module</td>
<td>VTAM=YES</td>
</tr>
<tr>
<td>DFHZCB</td>
<td>z/OS Communications Server working set module</td>
<td>VTAM=YES</td>
</tr>
<tr>
<td>DFHZCC</td>
<td>z/OS Communications Server working set module</td>
<td>VTAM=YES</td>
</tr>
<tr>
<td>DFHZCN1</td>
<td>CICS Client CCIN transaction</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHZCP</td>
<td>Terminal management program</td>
<td>VTAM=YES</td>
</tr>
<tr>
<td>DFHZCT1</td>
<td>CICS Client CTIN transaction</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHZCT2</td>
<td>Persistent verification signed-on-from list management program</td>
<td>VTAM=YES</td>
</tr>
<tr>
<td>DFHZCW</td>
<td>z/OS Communications Server nonworking set module</td>
<td>VTAM=YES</td>
</tr>
<tr>
<td>DFHZCX</td>
<td>LOCATE, ISC/IRC request</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZCR</td>
<td>Transaction routing module address list</td>
<td>ISC=YES</td>
</tr>
<tr>
<td>DFHZCY</td>
<td>z/OS Communications Server nonworking set module</td>
<td>VTAM=YES</td>
</tr>
<tr>
<td>DFHZCZ</td>
<td>z/OS Communications Server nonworking set module</td>
<td>VTAM=YES</td>
</tr>
<tr>
<td>DFHZGAI</td>
<td>APPC autoinstall - create APPC clones</td>
<td>AIEXIT</td>
</tr>
<tr>
<td>DFHZGBM</td>
<td>APPC manipulate bitmap</td>
<td>VTAM=YES</td>
</tr>
<tr>
<td>DFHZGCA</td>
<td>LU6.2 CNOS actioning</td>
<td>VTAM=YES</td>
</tr>
<tr>
<td>DFHZGCC</td>
<td>Catalog CNOS services</td>
<td>VTAM=YES</td>
</tr>
<tr>
<td>DFHZGCN</td>
<td>LU6.2 CNOS negotiation</td>
<td>VTAM=YES</td>
</tr>
<tr>
<td>DFHZGPR</td>
<td>z/OS Communications Server persistent sessions resource handler</td>
<td>VTAM=YES</td>
</tr>
<tr>
<td>DFHZHPRX</td>
<td>Authorized path SRB mode z/OS Communications Server EXECRPL</td>
<td>HPO=YES</td>
</tr>
</tbody>
</table>
Table 10. LPA-eligible modules that are loaded into the ELPA that require system initialization parameters or are affected by USELPACOPY (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>System initialization parameter or note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHZLS1</td>
<td>LU6.2 CNOS request transaction program</td>
<td>VTAM=YES “1” on page 110</td>
</tr>
<tr>
<td>DFHZRSP</td>
<td>Resync send program</td>
<td>TCP=YES/xx “1” on page 110</td>
</tr>
</tbody>
</table>

Notes:

1. The program is used from the MVS link pack area only if you set the USELPACOPY option of its program resource definition to YES.

2. All LPA-required modules are compatible with earlier releases of CICS. If you are running earlier releases of CICS, you must ensure that the correct version is installed in the LPA. The module must be in the LPA for integrity reasons, but the post exit routine itself can stay in the LPA or in the CICS address space. You can then use different versions of the DFHDSAUT module in different CICS regions that run in the same MVS image, because the DFHDSAUT module might not be compatible with all releases.

3. You can set the system tracing status by coding appropriate system initialization parameters, and you can also set it dynamically by using the CETR transaction.

You can use the following system initialization parameters:

**AUXTR**
Activate auxiliary trace.

**AUXTRSW**
Define the auxiliary switch status.

**GTFTR**
Enable CICS to use MVS GTF tracing.

**INTTR**
Activate CICS internal tracing.

**TRTABSZ**
Specify the size of the internal trace table.

**USERTR**
Set the master user trace flag on or off.

For information about using CICS trace and controlling the tracing status with the CETR transaction, see Setting trace destinations and tracing status.

Table 11. LPA-eligible modules that are loaded into the LPA that require system initialization parameters or are affected by USELPACOPY

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>System initialization parameter or note</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHFCBD</td>
<td>File control BDAM request processor</td>
<td>FCT=YES/xx</td>
</tr>
<tr>
<td>DFHFCU</td>
<td>File open utility program</td>
<td>“1” on page 110</td>
</tr>
<tr>
<td>DFHTRAOX</td>
<td>TR domain - auxiliary trace output</td>
<td>AUXTR=ON</td>
</tr>
</tbody>
</table>

Note:

1. The program is used from the MVS link pack area only if you set the USELPACOPY option of its program resource definition to YES.
Space requirements for CICS modules in the MVS link pack area

Allow enough space in the MVS link pack area for you to install those CICS modules that you intend using from there.

To find out how much space you require:

- Review the sizes of the modules that you want to install in the MVS link pack area, as given in the load library directory information.
- Review the module index of a system dump for the CICS region started with the system initialization parameter LPA=NO.
- Calculate the module sizes that are given for each module in the listing of modules that is provided by the IEHLIST utility program.

Remember also to allow space for any of your user application programs that you intend using from the MVS link pack area. The total space required depends on how the operating system packages the modules into the MVS link pack area.

When you have determined the space you require in the MVS link pack area, create a library with enough space and define it to your MVS. See “Defining the CICS LPA library to your MVS” on page 111 for more information.

Defining the CICS LPA library to your MVS

CICS supplies the library hlq.SDFHLPA. This library contains the modules that must be in the LPA. You can also use this library to install other CICS modules or application programs that you want to use from the LPA.

You can give the hlq.SDFHLPA library your own index, but, if you do, you must specify the new index on the LININDEX parameter of the DFHISTAR job.

Add the full name of the hlq.SDFHLPA library to an LPALSTxx member of SYS1.PARMLIB. You must then IPL the system with the CLPA option to ensure that the library contents are loaded into the PLPA. Set the CLPA option by specifying it as an IEASYSxx member of SYS1.PARMLIB or in response to message IEA101A. Include IEASYs as the SYSPARM value in the LOADxx member.

RACF-protect the hlq.SDFHLPA library, to prevent unauthorized or accidental modification of this library. For information about protecting the CICS libraries, see the CICS installation requirements for RACF.

You can install into the hlq.SDFHLPA library the CICS modules to be used from the MVS link pack area. See “Installing CICS modules in the LPA” on page 111.

Installing CICS modules in the LPA

You can install modules into the MVS link pack area by using SMP/E.

In the context of the LPA, install means to move or copy a module into a suitable LPA library by using SMP/E, or by using a copying method that re-blocks the copied modules when the target data set has a smaller block size than the data set you copy from. For example, you can use the COPYMOD function of the IEBCOPY program.

Do not relink-edit the modules to put them into the LPA library. CICS modules are supplied with the necessary attributes such that MVS loads them automatically above the 16 MB line into the ELPA.

The following steps summarize the procedure to install modules in the CICS LPA library, and to ensure that SMP/E can continue to service them. Further information explains these steps in more detail.

1. Select those modules that you want to use from the MVS link pack area and specify them in the SMP/E USERMOD to be used to install the modules in the MVS link pack area.

   For a list of CICS-supplied modules eligible for the MVS link pack area, see the CICS-supplied sample DFH$UMOD.

   To install modules in the MVS link pack area, use one of the following methods:
• Use an SMP/E USERMOD that contains ++MOVE statements for only the modules to be installed in the MVS link pack area.

CICS supplies an SMP/E USERMOD called DFHUMOD in member DFH$UMOD in the hlq.SDFHSAMP library. This USERMOD contains ++MOVE statements for all CICS modules, in the hlq.SDFHAUTH and hlq.SDFHLOAD libraries, that are eligible for the MVS link pack area. The USERMOD also indicates whether each module is LPA- or ELPA-eligible. You can choose which of the modules to install in the LPA by creating your own version of the USERMOD. Include modules in the working set of the installation.

• Use your own version of a USERMOD. Your version can include ++MOVE statements from both CICS-supplied USERMODs.

If you intend changing a CICS-supplied USERMOD, to choose modules to install in the MVS link pack area, take a copy of the USERMOD and update the copy only. If you have copied the hlq.SDFHSAMP library, for instance, when changing user-replaceable programs, you already have copies of the CICS-supplied USERMODs. If the original hlq.SDFHSAMP library is serviced, and the USERMOD is modified, you can reflect the changes in your version.

2. Choose which read-only modules to install in the MVS link pack area and edit your copy of the SMP/E USERMOD.
   a. Comment out the ++MOVE statements for the modules that you do not want to install in the LPA.
   b. Move the remaining ++MOVE statements for the modules that you do want to install in the LPA one column to the left, so that the ++MOVE statements start in column one of the USERMOD module.
   c. Add ++MOVE statements for your user application program modules that you want to install in the LPA, with the ++MOVE statements starting in column one of the DFH$UMOD module.

3. Receive the USERMOD into the CICS global zone. SMP/E moves those load modules you have specified from the named CICS target library (hlq.SDFHLOAD or hlq.SDFHAUTH) into the CICS LPA library.

To receive and apply the CICS-supplied sample USERMODs in DFH$UMOD, you can use the associated job DFHLPUMD, which is tailored to your CICS environment and stored in the hlq.XDFHINST library when you run the DFHISTAR job.

4. Apply the USERMOD to the LPA zone. When you apply the USERMOD, you also update the corresponding LMOD entries in the target zone SMPCSI.

5. To enable CICS to use the modules that you have installed in the MVS link pack area, re-IPL your MVS with CLPA specified.

   Also, specify that CICS uses modules from the LPA>. You can also control which modules are used from the MVS link pack area in several ways. See “Controlling the use of modules from the MVS link pack area” on page 112 for more information.

Controlling the use of modules from the MVS link pack area

Using customizable options, CICS allows you to control which of the eligible modules are executed from the MVS link pack area.

The methods for controlling the use of modules from the MVS link pack area do not apply to the modules DFHCSCV, DFHDSPEX, and DFHIRP. These modules are used only from the MVS link pack area.

Modules in the MVS link pack area from hlq.SDFHAUTH

CICS uses standard MVS load facilities for modules installed in the MVS link pack area from the CICS APF-authorized library, hlq.SDFHAUTH.

That is, such a module is used from the first of the following locations where it is found:

1. STEPLIB concatenation
2. MVS link pack area
3. MVS LNKLST
To use any of the CICS modules installed in the MVS link pack area from the *hlq*.SDFHAUTH library, you must remove any version of the module from the *hlq*.SDFHAUTH library or any other library in the STEPLIB concatenation.

You can prevent CICS using modules installed in the MVS link pack area from the *hlq*.SDFHAUTH library by installing versions of those modules in a library in the STEPLIB concatenation.

CICS then uses the versions of the modules from the STEPLIB concatenation into the CICS address space, rather than any versions that might be in the MVS link pack area.

**Modules in the MVS link pack area from hlq.SDFHLOAD**

CICS system initialization parameters and resource definitions control the use of CICS modules installed in the MVS link pack area from the *hlq*.SDFHLOAD library.

The *hlq*.SDFHLOAD library is used for non-nucleus CICS modules, and some CICS nucleus modules. You can also use the library for your own user application programs.

**Using modules from the MVS link pack area**

You must follow these steps to use the CICS modules installed in the MVS link pack area from the *hlq*.SDFHLOAD library.

- **Copy the modules into a CICS LPA library.** That is, you do not have to remove them from the *hlq*.SDFHLOAD library.
- **Specify the system initialization parameter LPA=YES.** CICS then uses the following search order:
  1. MVS link pack area
  2. DFHRPL DD concatenation
- **For a non-nucleus CICS module or user application program, specify USELPACOPY(YES) on the associated PROGRAM resource definition.** These modules are identified in the CICS-supplied USERMODs by this statement:

  ```
 /* Not loaded from LPA unless USELPACOPY is set to Y in the CSD */
  ```

  For each CICS-supplied LPA-eligible module that requires USELPACOPY(YES) specified in its associated PROGRAM resource definition, you must create your own resource definition with USELPACOPY(YES) specified, and use it instead of the CICS-supplied resource definition, because you cannot modify the CICS-supplied resource definitions. For example, you can use the DFHCSDUP utility program for these purposes:

  1. Copy the CICS-supplied resource groups that contain the module definitions to new resource groups.
  2. For each module that requires USELPACOPY(YES), change the PROGRAM resource definition in the new resource groups to specify USELPACOPY(YES).
  3. Add your new resource groups to a new group list; that is, at the start of the list.
  4. Append the CICS-supplied group list DFHLIST, or your own equivalent of that group list, to your group list. Alternatively, include DFHLIST on the GRPLIST system initialization parameter as well as your group list.
  5. Remove the CICS-supplied groups that you have copied.

When the program definitions have been changed on the CSD, perform the following steps:

- Reinitialize the CICS catalogs if you have been using modules not in the MVS link pack area, and now want to use those modules from the MVS link pack area
- Specify your new group list (and DFHLIST if your group list does not include the list of resource groups provided in DFHLIST) on the GRPLIST system initialization parameter.

A sample DFHCSDUP job for all CICS LPA-eligible jobs is in “Sample DFHCSDUP job to specify USELPACOPY(YES)” on page 116.

In the above example, instead of steps “3” on page 113 and “4” on page 113, you can use the CEDA transaction for these tasks:
Copy your group list to create a new group list.

Add the new (USELPACOPY(YES)) groups to the new group list in the same place as the original, CICS-supplied, groups.

CICS uses eligible modules installed in the MVS link pack area, if the following criteria are met:

- You have not specified the name of the module on the CICS system initialization parameter PRVMOD.
- The module has not already been loaded from the DFHRPL concatenation.

If CICS cannot find an eligible module in the MVS link pack area, it loads the private (non-shared) version into the CICS address space from the DFHRPL concatenation, after issuing the message DFHLD0109I to warn you that the module is not in the MVS link pack area. See “Handling the module-not-found warning message, DFHLD0109I” on page 115 for more information about this message.

CICS assumes that the PL/I modules, IBMBPSLA and IBMBPSMA, are installed in the MVS link pack area and issues message DFHLD0109I if it fails to find them there. If you want your PL/I application programs to run with the PL/I shared library, ensure that the modules IBMBPSLA and IBMBPSMA are installed in the MVS link pack area, in the hlq.SDFHLOAD library or in another library in the CICS DFHRPL library concatenation.

You must place program list tables (PLTs) in the DFHRPL concatenation. However, before PROGRAM resource definitions for phase one PLTPI programs and PLTSD programs are installed (for example, early in CICS initialization) CICS scans the MVS link pack area for those programs and issues message DFHLD0109I if it cannot find such a program there.

Similarly, before PROGRAM resource definitions for global and task-related user exit programs are installed (for example, early in CICS initialization) CICS scans the MVS link pack area for those programs, and issues message DFHLD0109I if it cannot find such a program there.

**Specifying USELPACOPY(YES)**

For every non-nucleus CICS module or user application program that you have moved to the MVS link pack area, that is, have removed from the DFHRPL concatenation, ensure that you have specified USELPACOPY(YES) on the associated PROGRAM resource definition. Otherwise, CICS cannot find the module and might fail to start successfully. See “Sample DFHCSDUP job to specify USELPACOPY(YES)” on page 116 for a sample job to specify USELPACOPY(YES).

**Using modules from DFHRPL**

You can prevent CICS from using modules installed in the MVS link pack area from the hlq.SDFHLOAD library by specifying the NO option on the LPA system initialization parameter or by specifying the name of the module on the PRVMOD system initialization parameter.

- Specify NO on the LPA system initialization parameter.

  The NO option prevents CICS from using any modules installed into the MVS link pack area from the hlq.SDFHLOAD library. CICS tries to load the modules from libraries in the DFHRPL concatenation.

You might use this option when you want to run CICS to test a lot of LPA-eligible modules before installing them in the MVS link pack area. For example, you can add the hlq.SDFHLPA library to the DFHRPL concatenation while testing CICS modules for the MVS link pack area. When you have verified the use of those modules from the MVS link pack area, specify the LPA=YES system initialization parameter and remove the hlq.SDFHLPA library from the DFHRPL concatenation.

- Specify the name of the module on the PRVMOD system initialization parameter.

  PRVMOD={name|(name1,name2,...)}

Specifying the module name prevents CICS from using the specified modules from the MVS link pack area for only the run of CICS on which the PRVMOD parameter is specified. You might use the PRVMOD parameter when you want to run CICS to test a new version of an LPA-eligible module before replacing the version already in the MVS link pack area.

Specify the full module name on the PRVMOD parameter, including any suffix; for example, DFHMCP1$. If only one module is named, the parentheses are optional. The PRVMOD parameter can span input lines.
However, do not split module names across lines, because CICS system initialization adds a comma at
the end of every input line that does not already end with a comma. The only validity check performed
on a module name is to ensure that it does not exceed eight characters.

You cannot code the `PRVMOD` parameter in the DFHSIT module; you specify it in the `PARM`
parameter, in the SYSIN data set, or through the system console.

- For a non-nucleus CICS module or user application program, specify USELPACOPY(NO), the default, on
  the associated PROGRAM resource definition. These modules are identified in the CICS-supplied
  USERMODs by the statement:

  ```
 /* Not loaded from LPA unless USELPACOPY is set to Y in the CSD */
  ```

  You might use the USELPACOPY(NO) option of the PROGRAM resource definition for a more permanent
  exclusion of an LPA-resident module than for the single run of CICS control provided by the `PRVMOD`
  system initialization parameter.

**Verifying modules for the MVS link pack area**

When verifying new versions of modules to be installed into the MVS link pack area, you can use any of
the following options to instruct a CICS region to use the new versions from the DFHRPL concatenation.

- The LPA=NO system initialization parameter
- The PRVMOD system initialization parameter
- The USELPACOPY(NO) option of the associated PROGRAM resource definition (where applicable)

For further information about these options, see “Using modules from DFHRPL” on page 114

In all cases, you must install the new versions of the modules into the `hlq.SDFHLOAD` library or another
library in the DFHRPL concatenation.

If you are verifying many CICS LPA-eligible modules, you might choose to add the `hlq.SDFHLPA` library to
the DFHRPL concatenation, allowing you to check that the modules you have installed in the MVS link
pack area are being loaded from there.

The CICS-supplied USERMODs use SMP/E to move CICS LPA-eligible modules into the `hlq.SDFHLPA`
library. Similarly, if you use SMP/E to apply service to any of those modules, the versions in the `hlq.SDFHLPA` library are updated. The updated versions of the modules are used from the MVS link pack
area after you next re-IPL your MVS with CLPA specified. Until then, if you add the `hlq.SDFHLPA` library to
the DFHRPL concatenation of your CICS region, and specify that CICS is not to use the version of the
modules in the MVS link pack area, the updated versions of the modules are used from the DFHRPL
concatenation.

After you have installed and verified the use of modules from the MVS link pack area, remove the versions
of the modules from the DFHRPL concatenation of your CICS startup job.

You can find out whether CICS is loading modules from the MVS link pack area or the DFHRPL
concatenation by reviewing the index of a system dump for the CICS region started with the system
initialization parameter LPA=YES. Modules loaded from the MVS link pack area have the dump option
LD=3.

**Handling the module-not-found warning message, DFHLD0109I**

CICS issues message DFHLD0109I if it searches the MVS link pack area for a module installed there from
`hlq.SDFHLOAD` and fails to find it.

If you see the module-not-found warning message, check that you have specified USELPACOPY=YES on
the associated PROGRAM resource definition, if applicable. For further information about using modules
loaded in the MVS link pack area from the `hlq.SDFHLOAD` library, see “Modules in the MVS link pack area
from hlq.SDFHLOAD” on page 113.

CICS uses console routing code 11 for this particular message, which allows you to control the output of
this message. For example, you can perform these actions:

1. Exclude, as required, routing code 11 from specific MVS console definitions in the CONSOLxx member
   of SYS1.PARMLIB.
2. Use the MVS VARY command to prevent this message from appearing on specified consoles by omitting route code 11 from a VARY command that defines which routing codes go to specified devices:

```
VARY devnum,CONSOLE,ROUT=(rtcode,rtcode,.,.,.)
```

Alternatively, you can remove route code 11 from those already defined by using the following VARY command:

```
VARY devnum,CONSOLE,DROUT=(11)
```

3. Use the MVS message processing facility (MPF) to inhibit the message. To use MPF, code an entry specifying the CICS message number in the MPFLSTxx member of SYS1.PARMLIB.

CICS assumes that the following PL/I modules are LPA eligible and issues message DFHLD0109I if it fails to find them there:

- IBMBPSLA
- IBMBPSMA

**Sample DFHCSDUP job to specify USELPACOPY(YES)**

The standard IBM-supplied program definitions in the CSD all specify USELPACOPY(NO). If you copy or move to the LPA the IBM programs defined by definitions in the CSD, the next step is to modify the USELPACOPY attribute to ensure that CICS uses the LPA copy.

To simplify this task:

- IBM supplies, in the DFH$ULPA member of the SDFHSAMP library, an alternate set of DEFINE statements for all the IBM-supplied programs. All the programs defined in DFH$ULPA specify USELPACOPY(YES).
- If you do not want all the programs to be defined for LPA use, edit the member to remove the programs that are to remain as USELPACOPY(NO).
- The USELPACOPY(YES) versions are all defined in one new group called DFH$ULPA. Change this group name if you want to use your own name.
- Run the sample DFHCSDUP job shown in Figure 4 on page 116 to add the DFH$ULPA versions of the definitions to your CSD.
- You do not have to remove the standard definitions from DFHLIST. If you specify your group list after DFHLIST on the GRPLIST system initialization parameter, you ensure that the modified definitions override the standard definitions.

```
//LPAMODS JOB (account_details),MSGCLASS=A,MSGLEVEL=(1,1),
// CLASS=A,NOTIFY=userid
//DEFULPA EXEC PGM=DFHCSDUP
//STEPLIB DD DSN=CICSTS55.CICS.SDFHLOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//DFHCSD DD DSN=CICSTS55.CICS.DFHCSD,DISP=OLD
//SYSIN DD DSN=user.CICSTS55.CICS.DFHCSD,DISP=OLD

Figure 4. Sample DFHCSDUP job for all CICS LPA-eligible modules
```

**Installing CICSPlex SM modules in the MVS link pack area**

There are benefits and points to consider if you use the MVS link pack area (LPA).

Benefits of using the LPA include:

- **Sharing** – Two or more CICS regions in the same MVS image can share modules in the LPA, giving an overall reduction in the total working set.
• **Integrity** – the LPA is page-protected, even against key 0 programs, so all modules placed there are automatically protected against overwriting by other programs such as CICS applications. This integrity feature applies equally to a single CICS system in the processor.

Every CICSPlex SM module installed in the LPA can be used only by the release of CICSPlex SM to which it relates.

CICSPlex SM supplies prebuilt SMP/E USERMODs as members in the CICSTS55.CPSM.SEYUSAMP library. The USERMOD is:

```
EYUSUM01 - Local MAS modules
```

These USERMODs contain `++MOVE` statements for each module that is eligible for the extended link pack area (ELPA). A read-only module that can reside above 16 MB is eligible for the ELPA.

CICSPlex SM allocates an empty library for your use, called SYS1.CICSTS55.CPSM.SEYULPA. You can use SYS1.CICSTS55.CPSM.SEYULPA as the LPA library or you can add the modules to another LPA library.

If you are going to use SYS1.CICSTS55.CPSM.SEYULPA, verify that you have already authorized this library, described in “Authorizing the CICS and CICSPlex SM libraries” on page 63, and that you have applied appropriate security. You can give the SYS1.CICSTS55.CPSM.SEYULPA library your own high-level index. If you do, you must specify the new index on the LININDEX parameter of the DFHISTAR job.

**Space requirements for CICSPlex SM modules**

Allow enough space in the link pack area for the installation of the selected CICSPlex SM modules.

The total space depends on how the modules are packaged into the link pack area by the operating system.

**Installing CICSPlex SM modules into the LPA**

In this context, the term *install* means to move or copy a module to the SYS1.CICSTS55.CPSM.SEYULPA library by using SMP/E, or by using a copying method that reblocks the copied modules when the target data set has a smaller block size than the data set you are copying from; for example, by using the COPYMOD function of the IEBCOPY program.

CICSPlex SM modules that are eligible for inclusion in the link pack area are listed in “CICSPlex SM modules eligible for the MVS link pack area” on page 118.

CICSPlex SM creates default definitions for the LPA-eligible modules specifying USELPACOPY(YES). So you do not have to modify these definitions to be able to search the LPA. You can, however, specify that the LPA is searched by using the CICS system initialization parameters LPA and PRVMOD. Specify LPA=YES for CICS to search the LPA for these programs. If you specify LPA=NO, which is the default, the LPA is not searched for these programs.

If you specify LPA=YES but have not moved the modules to the LPA, message DFHLD0109I is issued for each module. If you specify LPA=YES and have moved these modules to the LPA, you can use the PRVMOD system initialization parameter to control which modules are to be used from the LPA. See “Using modules from DFHRPL” on page 114 for more information.

Do not relink-edit the modules to put them into the SYS1.CICSTS55.CPSM.SEYULPA library. CICSPlex SM modules, as supplied, have the necessary attributes that cause MVS to load them automatically above 16 MB (into the ELPA).

The MVS link pack area has both pageable and fixed areas. Although you can install CICSPlex SM modules into the fixed areas, for performance reasons, use the pageable areas.

Modules to be loaded into the MVS pageable link pack area (PLPA) must have been link-edited with the RENT attribute. The library that contains these modules must be named in an LPALSTxx member of the SYS1.PARMLIB library.

To install modules in the CICSPlex SM LPA library, and to ensure that SMP/E can continue to service them, complete the following steps for one or both of the CICSPlex SM-supplied USERMODs:

1. Receive the USERMOD into the CICSPlex SM global zone and apply it to the CICSPlex SM target zone.
2. Define the SYS1.CICSTS55.CPSM.SEYULPA library to your MVS.

Receiving and applying the USERMOD
To receive and apply the CICSPlex SM-supplied USERMOD, in EYU$UM01, you can use the sample job EYULPMOD, which is tailored by DFHISTAR and stored in the CICSTS55.XDFHINST library when you run the DFHISTAR job.

Receive the USERMOD into the CICSPlex SM global zone and apply it to the CICSPlex SM target zone. This causes SMP/E to move those load modules you have specified from the named CICSPlex SM target library (either CICSTS55.CPSM.SEYUAUTH or CICSTS55.CPSM.SEYULOAD) into the SYS1.CICSTS55.CPSM.SEYULPA library.

When the USERMOD is applied, the corresponding LMOD entries in the target zone SMP CSI are updated. Either or both USERMODs can be applied depending on your enterprise’s requirements.

Do not accept the USERMOD into the distribution zone, and, for the time being, do not apply it to any other target zone.

Defining the SYS1.CICSTS55.CPSM.SEYULPA library to your MVS
Add the full name of the SYS1.CICSTS55.CPSM.SEYULPA library to an LPALSTxx member of SYS1.PARMLIB to ensure that the library contents are loaded into the PLPA at the next IPL of your system when CLPA is specified.

When you have defined the SYS1.CICSTS55.CPSM.SEYULPA library to MVS, re-IPL your MVS with CLPA specified so that the modules in the SYS1.CICSTS55.CPSM.SEYULPA library can be used from the LPA.

Use the USERMOD EYU$UM01, supplied in the SEYUSAMP library, to move the LPA-eligible modules into the SEYULPA library. These modules are listed in “CICSPlex SM modules eligible for the MVS link pack area” on page 118.

Applying maintenance to LPA modules
Use the SMP/E RESTORE function to back off the USERMOD before modules in the LPA are updated or copied. Afterwards, you can reapply the USERMOD.

CICSPlex SM modules eligible for the MVS link pack area
CICSPlex SM modules that are eligible for installation in the MVS link pack area (LPA) are specified in the CICSPlex SM supplied USERMOD, EYU$UM01.

The following table lists the CICSPlex SM modules that are eligible for inclusion in the LPA. The versions of these modules with the prefixes CJA, CJB, CJC, CJD, CJE, and CJF in place of the prefix EYU, are also eligible for inclusion in the LPA. For example, modules CJA9BA01, CJB9BA01, CJC9BA01, CJD9BA01, CJF9BA01, and CJA9BA01, as well as EYU9BA01, are eligible. The prefix relates to the CICS release specific agent code of the underlying module.

You must allow enough space in the link pack area for the installation of the selected CICSPlex SM modules. The total space you require depends on how the modules are packaged into the link pack area by the operating system and a local MAS requires approximately 2034KB.

All CICSPlex SM modules are installed in the LOAD library and loaded in the ELPA.

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYU9BA01</td>
<td>BAS MAS object</td>
</tr>
<tr>
<td>EYU9CM01</td>
<td>MAS communications</td>
</tr>
<tr>
<td>EYU9MN01</td>
<td>MAS monitor</td>
</tr>
<tr>
<td>EYU9NA01</td>
<td>MAS agents</td>
</tr>
<tr>
<td>EYU9PS01</td>
<td>MAS real-time analysis</td>
</tr>
</tbody>
</table>
Table 12. CICSPlex SM modules eligible for the LPA (continued)

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYU9TS01</td>
<td>MAS topology</td>
</tr>
<tr>
<td>EYU9WM01</td>
<td>MAS workload management</td>
</tr>
<tr>
<td>EYU9XC01</td>
<td>MAS cache</td>
</tr>
<tr>
<td>EYU9XD01</td>
<td>MAS data repository</td>
</tr>
<tr>
<td>EYU9XL01</td>
<td>MAS kernel linkage</td>
</tr>
<tr>
<td>EYU9XM01</td>
<td>MAS message format</td>
</tr>
<tr>
<td>EYU9XQ01</td>
<td>MAS queue manager</td>
</tr>
<tr>
<td>EYU9XS01</td>
<td>MAS common services</td>
</tr>
<tr>
<td>EYU9XZ01</td>
<td>MAS trace</td>
</tr>
</tbody>
</table>

Defining CICS IPCS exit control data to MVS

If you use the MVS interactive problem control system (IPCS) to format and analyze CICS system dumps, ensure that the release-specific CICS formatting routines are defined and available to MVS.

The formatting routine for use under IPCS has the release identifier as part of its name; that is, DFHPD720. You define this formatting routine to IPCS when formatting system dumps. The CICS formatting routine is release-specific, so, if you run more than one release of CICS, ensure that you use the correct version for the system dump you are formatting.

The DFHIPCSP CICS exit control data

IPCS provides an exit control table with IMBED statements to enable other products to supply exit control information.

The IPCS default table, BLSCECT, normally in the SYS1.PARMLIB library, has the following entry for CICS:

```
IMBED MEMBER(DFHIPCSP) ENVIRONMENT(ALL) /* CICS */
```

Ensure that your IPCS job can find the CICS-supplied DFHIPCSP member. The DFHIPCSP member is in the hlq.SDFHPARM library. You can either copy the DFHIPCSP member into SYS1.PARMLIB, so that it is in the same default library as BLSCECT, or provide an IPCSPARM DD statement to specify the library containing the IPCS control tables:

```
//IPCSParm DD DSN=SYS1.PARMLIB,DISP=SHR FOR BLSCECT
// DD DSN=CICSTS55.CICS.SDFHPARM,DISP=SHR FOR DFHIPCSP
```

For information about using IPCS to format CICS system dumps, see Displaying and formatting dumps with IPCS.

Preparing to use the CICSp lex SM IPCS tools

The interactive problem control system (IPCS) provides MVS users with interactive diagnostics of software failures. Before using IPCS, you must update BLSCECT, update library allocations and set SDUMP options.

You can use IPCS to format and analyze SDUMPs produced by CICSp lex SM or stand-alone dumps obtained while CICSp lex SM was active in the system being dumped. You can either view the dumps at your terminal or print them.
CICSPlex SM provides a dump formatting routine that you can use with the VERBEXIT subcommand to format CMAS, MAS, WUI server, or SMSS dumps.

- For more information about IPCS, see the z/OS MVS IPCS User's Guide.

**Updating BLSCECT**
IPCS provides an exit control table, BLSCECT, which is normally in SYS1.PARMLIB. This table contains imbed statements that you can update to enable other products to supply exit control information.

Perform the following steps to update BLSCECT:

1. Update the BLSCECT table with the following IMBED statement:

   ```
 IMBED MEMBER(EYUIPCSP) ENVIRONMENT(ALL)
   ```

   EYUIPCSP identifies the CICSPlex SM formatting routine as EYU9D550 with a VERB name of CPSM550.

2. Make sure EYUIPCSP can be found by your IPCS job by doing one of the following steps:
   - Copy EYUIPCSP from the CICSTS55.CPSM.SEYUPARM library into the same library as BLSCECT, usually SYS1.PARMLIB.
   - Provide an IPCSPARM DD statement to specify the library that contains the IPCS control tables. For example, the DD statement for a batch TSO session might look like this:

     ```
 //IPCSPARM DD DSN=SYS1.PARMLIB,DISP=SHR for BLSCECT
 // DD DSN=CICSTS55.CPSM.SEYUPARM,DISP=SHR for EYUIPCSP
     ```

For more information about SYS1.PARMLIB library members related to IPCS, see z/OS MVS IPCS Customization.

**Updating library allocations**

If CICSTS55.CPSM.SEYULINK is not in the linklist, include the EYU9D550 IPCS user exit routine.

Make sure that the EYU9D550 IPCS user exit routine is in a library in the linklist or a library that is accessed by the JOBLIB, STEPLIB, or TASKLIB option of the IPCS command, during the IPCS session. To accomplish this, perform one of these actions:

- Allocate CICSTS55.CPSM.SEYULINK to the intended DD statement.
- Copy CICSTS55.CPSM.SEYULINK (EYU9D550) to an appropriate library.
- Invoke IPCS, using the TASKLIB keyword to allocate CICSTS55.CPSM.SEYULINK.

For example, issue the TSO COMMAND:

```
IPCS NOPARM TASKLIB('CICSTS55.CPSM.SEYULINK ')
```

**MVS Program properties table entries**

You can optionally define some CICS properties to MVS in the MVS program properties table (PPT). Figure 5 on page 121 is an example of a CICS PPT entry in the SCHEDxx member of SYS1.PARMLIB.
For information about defining options in the PPT, see the z/OS MVS Initialization and Tuning Guide.

**RACF password checking**

If your installation has an MVS program properties table (PPT) entry for the DFHSIP program, ensure that the NOPASS option is not set in the PPT because this option bypasses password and RACF authorization checking.

For information about defining PPT entries for CICS in the SCHEDxx member of the SYS1.PARMLIB library, see z/OS MVS Initialization and Tuning Reference.

**Non-swappable CICS regions**

For performance reasons, consider making your CICS regions nonswappable by specifying the NOSWAP option of the PPT entry in the SCHEDxx member of SYS1.PARMLIB. If you specify NOSWAP on the PPT entry in the SCHEDxx member of SYS1.PARMLIB, PPTNSWP is set to ON in the PPT internal control block.

If you specify NOPASS on the MVS PPT entry in the SCHEDxx member of SYS1.PARMLIB, PTNPAS is set to ON in the PPT internal control block.

**MVS protection key for CICS**

To use the storage protection facility of CICS, you must specify the system initialization parameter **STGPROT=**YES or allow the system initialization parameter to default to YES. When you operate CICS with storage protection, CICS observes the storage keys and execution keys that you specify in system and resource definitions.

### Configuring MVS workload management for CICS systems

You can use z/OS workload management to manage sysplex resources across MVS subsystems, in parallel with the existing system resource management facilities.

For information about z/OS workload management and planning, see z/OS MVS Planning: Workload Management.

The following topic ensures that CICS performance parameters correspond to the policies defined for z/OS workload management.

**Matching CICS performance parameters to service policies**

Ensure that the CICS performance parameters are compatible with the workload manager service policies used for the CICS workload.

In general, define CICS performance objectives to the MVS workload manager first and observe the effect on CICS performance. When the MVS workload manager definitions are working correctly, then consider...
tuning the CICS parameters to further enhance CICS performance. However, use CICS performance parameters as little as possible.

Consider using these performance attributes:

- Transaction priority, passed on dynamic transaction routing. The priority assigned by the CICS dispatcher must be compatible with the task priority that is defined to MVS workload manager.
- Maximum number of concurrent user tasks for the CICS region.
- Maximum number of concurrent tasks in each transaction class.

**Implementing MVS automatic restart management**

You can exploit MVS automatic restart management to implement a sysplex-wide integrated automatic restart mechanism.

To use the MVS automatic restart manager facility, follow these steps:

1. Implement automatic restart management on the MVS images on which the CICS workload is to run.
2. Ensure that CICS startup JCL used to restart CICS regions is suitable for MVS automatic restart management.
3. Specify appropriate CICS START options.
4. Specify appropriate MVS workload policies.

Implementing MVS automatic restart management for CICS generally involves the following steps:

- Ensure that the MVS images available for automatic restarts have access to the databases, logs, and program libraries required for the workload.
- Identify those CICS regions for which you want to use automatic restart management.
- Define restart processes for the candidate CICS regions.
- Define ARM policies for the candidate CICS regions. Allow the RESTART_ORDER LEVEL to default to 2. CICS regions are generally level 2 in the ARM restart order, after Db2 and DBCTL.

For information about MVS automatic restart management, see Automatic restart management and z/OS MVS Setting Up a Sysplex.

**MVS cross-system MRO definitions**

You can use CICS interregion communication (IRC) for multiregion operation (MRO) between CICS regions across MVS images in a sysplex.

IRC exploits the cross-system coupling facility (XCF) of MVS and removes the need for z/OS Communications Server to communicate between MVS images in the same sysplex.

In a sysplex, you must install DFHIRP from the highest release of CICS running in that MVS image.

**Sysplex overview**

A sysplex consists of multiple MVS systems, coupled together by hardware elements and software services. In a sysplex, MVS provides a platform of basic multisystem services that multisystem applications like CICS can use. As the workload grows, you can add MVS systems to the sysplex to meet the requirements of the greater workload.

To use XCF to communicate in a sysplex, you specify the XCF group name to CICS using the SIT XCFGROUP parameter. The default name is DFHIR000. If you specify a different group name, only members that specify that same group name can communicate using XCF. For more information about XCFGROUP, see XCFGROUP system initialization parameter.
MVS XCF for MRO

When you format the primary and alternate couple data sets used by the XCF component of MVS, make sure that the following conditions are met:

- The value specified for the MAXMEMBER parameter must be large enough to handle the number of CICS regions and users of the EXCI in the CICS XCF group.

In a single sysplex, a theoretical maximum number of 1023 CICS regions can participate in XCF/MRO using the same XCF group. However, the maximum size of the XCF group is reduced if you set the MVS MAXMEMBER parameter, used to define XCF couple data sets, to a lower limit. When you calculate the maximum number of members in the CICS XCF group, allow one member for each of these items:

- Each CICS region to run on an MVS image in the sysplex.
- Each pipe that is allocated by a user of the external CICS interface (EXCI). For information about EXCI users and pipes, see The EXCI CALL interface.

To list the members in the CICS XCF group, you can use the MVS DISPLAY command. The name of the CICS group is always DFHIR000, so you can use this MVS command:

```plaintext
DISPLAY XCF,GROUP,DFHIR000,ALL
```

- The value specified for the MAXGROUP parameter must be large enough for the CICS XCF group to be established.

MVS ASREXIT - SYMREC Authorization Exit

A CICS program might call the first failure symptoms component. The component uses the MVS SYMREC macro to write symptom records to the MVS SYS1.LOGREC data set, in addition to, or instead of, a job log.

The SYMREC authorization exit, ASREXIT, must be in effect to allow CICS to use the SYMREC macro call; otherwise, the call fails with return code 12, reason code 3868 (X'F1C').

When SYMREC is called by CICS, the ASREXIT routine issues a return code that permits the SYMREC to be successfully written.

The MVS sample exit programs ASREXT0 and ASREXT1, supplied in SYS1.SAMPLIB, are suitable for this purpose. For further information about these exits, see z/OS MVS Installation Exits. The ASREXIT routine can determine whether CICS is the caller by testing EPLPNAME for the value DFHSIP, except in the following circumstances:

- When DFHSIP is renamed, in which case EPLPNAME contains the new name.
- When DFHSIP is the subject of an MVS LINK, in which case EPLPNAME contains the name of the program issuing the MVS LINK, unless it too is the subject of an MVS LINK.

If you choose this method, code your ASREXIT routine to allow for these exceptions.

An alternative method of coding the ASREXIT routine is shown in Figure 6 on page 124. This method is not affected by the exceptions described earlier.
Setting up VSAM RLS support

These topics provide an overview of each task you need to perform if you want to use VSAM RLS to enable CICS regions to share VSAM data sets.

Defining the master coupling facility lock structure

VSAM RLS support requires the coupling facility to define a master lock structure, IGWLOCK00, for cross-system locking. You can also optionally create up to 256 secondary lock sets per sysplex.

See z/OS DFSMSdfp Storage Administration for information about calculating the size you require for the lock structure.
The amount of coupling facility space required depends on several characteristics of your hardware configuration and the applications that you run:

- The number of processors you have
- The power of your processors
- Your ratio of nonupdate activity to update activity
- Your ratio of recoverable updates to nonrecoverable updates
- Your ratio of sequential requests to direct requests

You define the lock structure in the CFRRM policy with the IXCMIAPU utility.

As of z/OS 2.1, up to 256 secondary lock sets can be created in addition to the primary IGWLOCK00. Using a secondary lock structure can prevent workloads interfering with each other and improve system and application availability. Secondary lock structures help prevent locking constraints and allow isolation of workloads.

**Defining coupling facility cache structures and cache sets**

VSAM RLS support requires the coupling facility to define cache structures for cross-system buffer invalidation. You determine the number and size of cache structures you require.

The number you require depends on factors such as these:

- The number of coupling facilities you have
- The amount of space in each coupling facility
- The amount of data that is accessed through each coupling facility

See z/OS DFSMSdftp Storage Administration for information about calculating the amount of space you require for the cache structures. If you have previously used data sets in LSR mode, the total amount of coupling facility space allocated to cache structures will not be less than the amount of storage you were using for LSR pools, including any hiperspace buffers.

To achieve performance benefits:

- Make the size of the cache larger
- Divide cache structures appropriately across coupling facilities

You define cache structures in the CFRRM policy with the IXCMIAPU utility.

**Defining cache sets**

You define cache sets with the ISMF control data set (CDS) application. A cache set maps onto one or more cache structures. If you specify more than one cache set, the data sets can be rebound to another cache structure in the set if a cache structure fails.

See z/OS DFSMSdftp Storage Administration for more information about cache sets.

**Preparing for RLS access**

You need to define SMS storage classes and alter data set attributes to prepare for VSAM RLS access.

**Defining SMS storage classes for RLS access**

Before you can use VSAM RLS, you require one or more storage classes that specify a non-blank cache set name. Use the ISMF storage class application to specify a cache set name when you define or alter a storage class, together with weighting parameters for tuning, such as CF DIRECT WEIGHT and CF SEQUENTIAL WEIGHT. See z/OS DFSMSdftp Storage Administration for more information about defining SMS storage classes.

**Altering data set attributes for RLS access**

Before you can use a data set in RLS access mode, you must ensure that it is eligible.
To be eligible for RLS:

- Data sets must reside in SMS managed storage.
- Data sets must specify a storage class that has a nonblank cache set name.
- Data set recoverability attributes must be defined in the ICF catalog and not in the CICS file control resource definition, where they are ignored for RLS.

You can specify a data set's attributes using the Access Method Services (AMS) DEFINE CLUSTER or ALTER CLUSTER commands.

Specifying a LOG parameter of NONE, UNDO, or ALL ensures that the recoverability of the data set is defined. You cannot open files in RLS mode if the LOG parameter of the associated data set is UNDEFINED. If you specify LOG(ALL), you must also specify a forward recovery log stream on the LOGSTREAMID parameter.

To use backup while open (BWO) for an RLS-accessed sphere, specify the BWO parameter. Specifying BWO(TYPECICS) means that backup while open can be used. All other values for BWO, including undefined, mean that backup while open is not allowed. BWO(TYPECICS) is valid only if LOG(ALL) and LOGSTREAMID are also specified.

- Data sets must not specify the IMBED attribute.

If you have some data sets that specify IMBED, you must remove the IMBED option before you can use the data sets in RLS mode. Redefine a new data set without IMBED and use the AMS REPRO function to copy the old data set to the new data set.

Note that RLS supports the REPLICATE cluster attribute. It does not provide any performance benefit. Removing RLS might save storage space.

Considerations for migrating from non-RLS to RLS access mode

When you are migrating from non-RLS to RLS access mode, to avoid potential AFCG abends, consider enabling the following feature toggle:

```
com.ibm.cics.rls.delete.ridfld=true
```

For details on why AFCG abends might occur and how this feature toggle can solve this issue, see VSAM RLS.

Defining sharing control data sets

VSAM RLS requires sharing control data sets. These are used to maintain data integrity in the sharing environment. The sharing control data set is used sysplex-wide by all the SMSVSAM servers, and is always duplexed.

Two active, and at least one spare, sharing control data sets must be available at all times.

The size of these data sets depends on the number of MVS images in the sysplex and on the number of files that are expected to be open concurrently. For information about calculating the amount of space that is required for the sharing control data sets, see z/OS DFSMSdftp Storage Administration.

Sharing control data sets are VSAM linear data sets that must be on volumes that have global connectivity. The data sets can have multiple extents, but only on the same volume. You define them using standard techniques for defining data sets. The names must have SYS1.DFPSHCDS as the first and second qualifiers. See z/OS DFSMSdftp Storage Administration for other rules relating to the definition of sharing control data sets.

You must not issue RESERVEs on any volumes that contain sharing control data sets. Convert any such RESERVEs to enqueues.

You can check that the data sets are available to the sysplex with the MVS DISPLAY SMS command, on any MVS image:

```
D SMS,SHCDS
```
This command shows the names of the two active data sets and the spare data set as shown in the following example:

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>%UTIL</th>
<th>Status</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVE1.VP2SS03 7920KB</td>
<td>7920KB</td>
<td>74%</td>
<td>Good</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>ACTIVE2.VP2SS03 7920KB</td>
<td>7920KB</td>
<td>74%</td>
<td>Good</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>SPARE.VP2SS03 7920KB</td>
<td>7920KB</td>
<td>74%</td>
<td>Good</td>
<td>SPARE</td>
</tr>
</tbody>
</table>

The DISPLAY command shows only the third and fourth qualifiers of the sharing control data set names; the first and second qualifiers are always SYS1.DFPSHCDS.

The first time an SMSVSAM server is started in the sysplex, you vary online the sharing control data sets with this command for the active data sets:

```
V SMS,SHCDS(shcdsname),NEW
```

Use this command for the spare data set or data sets.

```
V SMS,SHCDS(shcdsname),NEWSPARE
```

for the spare data set (or data sets). The server cannot start properly if you do not issue these commands.

### Authorizing CICS user IDs for VSAM RLS support

Authorize each CICS user ID that is to use VSAM RLS support to have read access to a profile in the SUBSYSNM class that matches the APPLID.

See “Authorizing access to an SMSVSAM server” on page 66 for more information.

You can restrict user access to the access method services SHCDS subcommands, AMS SHCDS LIST and REMOVE. See z/OS DFSMS Access Method Services Commands.

### Adding new parameters to SYS1.PARMLIB(IGDSMSxx)

To include RLS support in your system, specify the required parameters in the IGDSMSxx member of SYS1.PARMLIB.

- Specify RLSINIT(YES); otherwise, SMSVSAM does not initialize automatically when you IPL MVS. Alternatively, you can start SMSVSAM using the VARY SMS, SMSVSAM, ACTIVE command.
- Specify a value for the deadlock detection interval with the DEADLOCK_DETECTION parameter.
- Specify time intervals for the creation and synchronization of VSAM RLS SMF records with the CF_TIME and SMF_TIME parameters.
- Specify the maximum size of the SMSVSAM local buffer pool with the RLS_MAX_POOL_SIZE parameter.

See z/OS DFSMSdfp Storage Administration for information about these parameters.

### Establishing new procedures for VSAM RLS support

You might require new operational procedures in a number of areas as a result of using VSAM RLS support, including integrity of data and management of coupling facilities and structures, use of RESERVEs, switching to non-RLS mode and forward recovery management.

- **Integrity of data in coupling facility caches**

  To make sure that non-IBM products or user programs do not compromise the integrity of data in coupling facility caches when they modify the data on a volume, either vary the volume offline to each system in the sysplex, or CF-quiesce the volume using the

  ```
 V SMS,CFVOL(volid),QUIESCE
  ```

  command before running such programs.
• Management of the coupling facility and coupling facility structures
• Use of RESERVEs on volumes that contain sharing control data sets.

  Make sure that RESERVEs are not used. Convert RESERVEs on other volumes into enqueues.
• Switching to non-RLS mode to run batch update jobs against recoverable data sets.
• Management of forward recovery and your forward recovery logs.

  Forward recovery differs from forward recovery for non-RLS access:
  – The forward recovery log stream must be in the ICF catalog.
  – All forward recovery log records for a data set merge into the same log stream.
  – Your forward recovery procedure must use the SHCDS FRSETRR, FRUNBIND, FRBIND, and FRRESETRR commands. CICS VSAM Recovery for z/OS automatically issues these commands.

  Refer to the DFSMS/MVS documentation for more details.

Activating the coupling facility structures

After you have defined the master coupling facility lock structure and coupling facility structures in the CFRM policy, activate the structures using the SETXCF START POLICY command, specifying a TYPE of CFRM and the policy name.

Console messages

The message domain supports the use of MVS message routing codes in the range 1 to 16 for those messages that are sent to the console.

By default, if the issuing module specifies only CONSOLE (without a qualifying number) as the destination, CICS routes the message with MVS route codes 2 and 11. This support is available for all domain-type messages of the form DFHxxnnnn, where xx is the domain code and nnnn is the message number.

CICS issues other messages (of the form DFHnnnn) with either no route code or route codes other than 2 and 11.

The physical destination of these messages is controlled by the ROUTECODE parameter on the MVS console entries in a SYS1.PARMLIB member, CONSOLEnn. For further information about MVS console definitions, see the z/OS MVS Initialization and Tuning Guide.

Defining the logger environment for CICS

CICS uses the MVS system logger for all its logging and journaling requirements.

Using services provided by the MVS system logger, the CICS log manager supports these logs:

• The CICS system log, which is used for these purposes:
  – Dynamic transaction backout
  – Warm and emergency restarts
  – Cold starts, but only if the log contains information required for resynchronizing indoubt units of work
• Forward recovery logs, autojournals, and user journals.

The MVS system logger is a component of MVS. It provides a programming interface to access records on a log stream. For information about the MVS system logger, see the following MVS publications:

• z/OS MVS Setting Up a Sysplex for:
  – General information about the MVS system logger.
  – Information about defining and formatting the LOGR couple data set.
  – Information about how to plan the system logger configuration, plan and set up a system logger application, and plan for recovery for system logger applications.
Requirements planning and checklist for the logger environment

The requirements and the procedure to set up the CICS logging environment are outlined. The procedure includes tasks for MVS system programmers, CICS system programmers, and security administrators, and close cooperation between all groups is required.

- Plan the logger environment.

  Consider the possible storage options, and choose which of the three available hardware options to use:
  - Nonvolatile coupling facility, where log stream data is duplexed in the MVS logger data space. Nonvolatile storage involves the use of battery backup or an uninterruptible power supply (UPS):
    - When using a UPS, you use a hardware console command to update coupling facility status.
    - When using battery backup, batteries must be online and charged.
  - Volatile coupling facility, where log stream data is duplexed to a staging data set.
  - DASD-only, where log stream data is duplexed in the MVS logger data space.

  See “Coupling facility or DASD-only?” on page 134, to help you decide on one of these or a combination of both.

  Make the following planning decisions:
  - Determine the number CICS regions that require logger support and hence system log streams.
  - Determine the number of user journals and autojournals that your regions use.
  - Determine the number of forward recovery logs required for VSAM data sets.
  - Determine whether any user journal or forward recovery log streams are to be shared between regions (to create merged data automatically). The system log streams, DFHLOG and DFHSHUNT, cannot be shared.
    - DASD-only log streams can be shared only in the same MVS image.
  - Decide on the number and sizes of the coupling facilities to be used.
    For information about types of coupling facility, see z/OS MVS Setting Up a Sysplex. The minimum level of coupling facility supported by the MVS system logger is CFLEVEL=1, with the appropriate service level of the coupling facility control code that supports CFLEVEL=1.
  - Determine the log stream sizes:
    - For coupling facility log streams, see “Coupling facility log streams” on page 135.
    - For DASD-only log streams, see “DASD-only log streams” on page 149.

- Apply any maintenance updates.

  Ensure that all maintenance affecting the MVS system logger, and the CICS log manager and its utilities, is applied.
  - Logger serviceability APARs that relate to the MVS system logger are identified with the LOGRSERVICE keyword.
  - APARs that relate to the CICS log manager are identified with the CICSLOGR keyword.

- Create and format the LOGR couple data sets.

  You need to know the number of log streams and, for coupling facility log streams, the number of structures. Each CICS region requires two system log streams and the following optional log streams:
  - A log stream for the log of logs.
  - One or more log streams for forward recovery logs.
– One or more log streams for autojournals.
– One or more log streams for user journals.

In consultation with your MVS system programmer, complete the following steps:
– Use MVS utility IXCL1DSU to create and format the primary and alternate LOGR couple data sets.
– Identify the LOGR couple data sets to the sysplex in the COUPLExx member in SYS1.PARMLIB.
– Make the LOGR couple data set available to the sysplex.

For more information, see "Format the LOGR Couple Data Set and Make it Available to the Sysplex" in z/OS MVS Setting Up a Sysplex.

• Define the coupling facility structures.

If you are using the coupling facility for some or all of your log streams, update your CFRM policy and your LOGR couple data set with the required structure definitions. See “Defining coupling facility structures” on page 135 for details, including a sample job.

• Establish the required security authorizations

Ensure that all the user IDs that are involved with running the system logger, or defining or accessing logger resources, are authorized, and that the required profiles are defined in the LOGSTRM general resource class.

– If the MVS system logger address space (IXGLOGR) is not given SAF privileged or trusted status, ensure that you give the required authorization to the user ID that runs IXGLOGR. For example, if the user ID that runs IXGLOGR (defined in the RACF started procedures table (ICHRIN03), or defined in the RACF STARTED class profile) is SYSTASK:
  - SYSTASK requires ALTER access to IXLSTR structure profiles in the FACILITY general resource class for access to log stream coupling facility structures.
  - SYSTASK requires ALTER access to the data set profiles (hlq.data_set_name) in the DATASET general resource class, for each DASD log stream and staging data set.

– To use the MVS system logger IXCMIAPU utility to define, update and delete entries in the LOGR couple data set, you must have appropriate authorizations to the relevant RACF profiles in the LOGSTRM and FACILITY general resource classes. See “Authorizing users of IXCMIAPU” on page 67 for information and examples of how to do this.

– To enable CICS to create log streams dynamically, and to write to log streams, ensure that the CICS region user ID has the required authorizations. See “Authorizations for CICS regions” on page 67 for information and examples of how to do this.

Ensure that all the user IDs that are involved with running the system logger, or defining or accessing logger resources, are authorized, and that the required profiles are defined in the LOGSTRM general resource class. For more information about authorizations for the system logger, see z/OS MVS Setting Up a Sysplex.

• Check the sysplex definition in PARMLIB.

To use the MVS system logger, each MVS image must be a member of a sysplex. Ensure your sysplex definition, in PARMLIB member IEASYSxx, specifies either PLEXCFG(MONOPLEX), for a single-member sysplex, or PLEXCFG(MULTISYSTEM), for a multi-member sysplex. Also ensure that you define a COUPLExx, member in PARMLIB. The value specified on the SYSPLEX parameter in COUPLExx, forms part of DASD-only and staging data set names.

• Activate the LOGR subsystem.

Ensure that the LOGR subsystem is active so that the CICS log manager batch utility, DFHJUP, can format and print log data. The LOGR subsystem is defined by the following entry in IEFSSNxx PARMLIB member:

```
SUBSYS SUBNAME(LOGR) INITRTN(IXGSSINT)
```

• Plan staging data set requirements.
Staging data sets are used for both DASD-only and coupling facility log streams, and if specified are dynamically allocated by the MVS system logger:

- For DASD-only log streams, staging data sets are the primary (interim) storage.
- For coupling facility log streams, staging data sets are allocated by the system logger to safeguard log data in the event of the log data being in a volatile configuration; that is:
  - There is a loss of the coupling facility battery backup
  - A structure failure that results in the only copy of log data being in MVS local storage buffers.

Review the following parameters:

- STG_DUPLEX(YES) and DUPLEXMODE(COND) to cause the system logger to use staging data sets if the coupling facility is not failure independent (see “Staging data sets for coupling facility log streams” on page 149 for more information).
- STG_MGMTCLAS to specify the System Managed Storage (SMS) management class to be used for staging data set allocation (valid only when STG_DUPLEX(YES) or DASDONLY(YES) is specified)
- STG_STORCLAS to specify the SMS storage class to be used for staging data set allocation (valid only when STG_DUPLEX(YES) or DASDONLY(YES) is specified).
- STG_SIZE to specify the size of staging data sets.
- SHAREOPTIONS(3,3) for log stream data sets and staging data sets (see "VSAM Share Options for System Logger" in z/OS MVS Setting Up a Sysplex).

- Plan DASD space and SMS environment for logger auxiliary storage.

- Define log streams and log stream models.

Define the specific log streams, and log stream models for dynamic creation of log streams, in the LOGR policy. Ensure that you complete the following steps:

- Set HIGHOFFLOAD no higher than 80% so that the offload function can be activated before structures reach the 90% level and to provide a buffer so that CICS can continue to write records without filling the logstream before offload completes.
- Set LOWOFFLOAD for DFHLOG and DFHSHUNT in the range 40–60%. For user journals and the log of logs, specify LOWOFFLOAD as 0.
- Specify HLQ for the high level qualifier for offload data sets. It is not part of the CICS log stream name. The default is IXGLOGR.
- Specify STG_DUPLEX(YES) and DUPLEXMODE(COND) for log streams in the coupling facility to ensure that staging data sets are used automatically if the coupling facility is volatile or failure dependent.
- Set STG_SIZE to control the size, in 4KB blocks, of staging data sets allocated by the system logger. For coupling facility log streams, the staging data set must hold at least as much data as the log stream in the structure, so that offloads are not triggered by the staging data sets. See “Sizing coupling facility log streams” on page 140 and “Sizing for DASD-only log streams” on page 151.
- Specify LS_DATACLAS and LS_SIZE, for the SMS data class and the number of 4KB allocation blocks respectively for log stream off load data sets. See “Managing auxiliary storage” on page 154.
- Specify MODEL(YES) to indicate that a log stream definition is a model only and not an actual log stream. See SDFHINST members DFHILG2 (coupling facility) and DFHILG5 (DASD-only) for samples of model log streams.

Use AUTODELETE(YES) with a suitable retention period (RETPD) for general logs but not for CICS system logs (DFHLOG and DFHSHUNT). See “Defining coupling facility log streams” on page 139 for some sample IXCMIAPU jobs, and z/OS MVS Setting Up a Sysplex for general information about updating LOGR policies.

- Define JOURNALMODEL resource definitions.
Define JOURNALMODEL resource definitions in the CICS CSD to enable CICS to map CICS journal names to MVS system logger log stream names. See JOURNALMODEL resources.

- Review the **AKPFREQ** system initialization parameter.

  This parameter represents the number of write operations (log records) by CICS log manager to the log stream buffer before an activity keypoint is taken, whereas under the old journal control program it specifies the number of consecutive blocks written to the system log data set.

  The parameter has a significant effect on the size of system logger primary (interim) storage, affecting the log tail management that takes place during activity keypoint (AKP) processing. The system logger acts as follows:
  
  - It deletes records that are no longer of interest to CICS
  - It moves records to DFHSHUNT for those tasks that wrote log records in the last ACP.

- Evaluate the results after implementation.

  After you implemented the procedure to use the MVS system logger for CICS log streams and journals, evaluate the results on a continual basis. You can use the following:

  - CICS interval statistics. You can collect these at specified intervals and end-of-day to obtain CICS log manager statistics. You can also collect statistics using the DFH0STAT sample program.
  - SMF Type 88 records. These are produced by the MVS system logger, and can be printed using IXGRPT1, which is supplied in SYS1.SAMPLIB. You can also print these records using IXGRPT1J and IXGRPT1L.

**Setting up the environment for CICS log manager**

CICS system programmers must consult with their MVS system programmers to plan for the storage that is required by the log streams required by the many CICS log managers operating in the sysplex.

Each log stream is a sequence of blocks of data, which the MVS system logger internally partitions over three different types of storage:

1. Primary storage, which holds the most recent records that were written to the log stream. Primary storage can consist of either of these areas:
   
   a. A structure in a coupling facility. Log data written to the coupling facility is also copied to either a data space or a staging data set.
   
   b. A data space in the same MVS image as the system logger. Log data written to the data space is also copied to a staging data set.

2. Auxiliary storage. When the primary storage for a log stream becomes full, the older records automatically spill into auxiliary storage, which consists of data sets managed by the storage management subsystem (SMS). Each log stream, identified by its log stream name (LSN), is written to its own log data sets.

3. Tertiary storage. A form of archive storage that is used as specified in your hierarchical storage manager (HSM) policy. Optionally, older records can be migrated to tertiary storage, which can be either DASD data sets or tape volumes.

See the different levels of log stream storage in Figure 7 on page 133 and Figure 8 on page 134.
Figure 7. The types of storage used by the MVS system logger
Coupling facility or DASD-only?

The CICS log manager supports the DASD-only option of the MVS system logger. Individual CICS log streams can use either coupling facility log structures or DASD-only logging.

Take the following points into account when deciding which log streams you define to use the coupling facility and which to use DASD-only:

- A coupling facility log stream must be used if you want to allow simultaneous access from CICS regions running in different MVS images. (Simultaneous access to a DASD-only log stream is limited to CICS regions in the same MVS image.)

For example, assume that you are using RLS and have several CICS application-owning regions (AORs) running on different MVS images. Because the forward recovery log must be accessible from all the AORs, it must be defined as a coupling facility log stream. A CICS system log, on the other hand, is accessed only by a single CICS region, and can therefore always be defined as a DASD-only log stream.
Without a coupling facility, you cannot share general log streams across MVS images.

- For optimum availability, avoid defining all your CICS log streams to use structures in a single coupling facility. See “Coupling facility log streams” on page 135 for more information.
- DASD-only log streams are easier to define and administer than coupling facility log streams.
- The CPU cost of a log write to a DASD-only log stream is greater than that of a write to a coupling facility log stream.
- If the amount of available coupling facility space is limited, you might want to define some DASD-only log streams to minimize the amount of space allocated to log structures.

Note that you can define a single-system sysplex, which must use a sysplex couple data set, with PLEXCFG=MONOPLEX. This definition is required for stand-alone MVS systems that use MVS system logger facilities. Also, define sysplexes that have two or more MVS images with PLEXCFG=MULTISYSTEM.

**Coupling facility log streams**

If you use a coupling facility, the most suitable environment is provided by two or more non-volatile coupling facilities that are failure-independent from any of the exploiting MVS images, using dedicated processor resources.

If one coupling facility fails, or requires maintenance, in such an environment, the system logger can rebuild its data in another coupling facility and continue. CICS systems that are running are minimally affected.

To define a higher availability Sysplex, review z/OS MVS Setting Up a Sysplex.

If possible, do not run with a single coupling facility because its failure can cause the MVS system logger, and any other users of the coupling facility, to suspend normal operation until access to the coupling facility is restored. CICS is effectively unusable in such a situation.

Unless you specify that the system logger is to use staging data sets, the recovery of log stream data depends on the MVS images remaining active so that the system loggers can use copies of log records held in storage to repopulate the coupling facility when it is again available. If you must run with a single coupling facility, specify DUPLEXMODE(UNCOND) to force the use of staging data sets.

**Defining coupling facility structures**

If you use a coupling facility for your CICS log streams, define the coupling facility structures you require for the log streams in your CFRM policy, in the CFRM data set, and in the LOGR policy, in the LOGR data set.

**Updating the CFRM policy**

Coupling facility space is divided into structures using the coupling facility resource management (CFRM) policy defined in the CFRM data set. The CFRM policy allows you to define how MVS is to manage coupling facility resources, and you update this policy using the IXCMIAPU utility. See Figure 9 on page 136 for a sample job to define coupling facility structures in the CFRM policy data set.

**Updating the LOGR policy**

You define structures in the MVS system logger LOGR policy in the system logger couple data sets using the DEFINE STRUCTURE specification of the IXCMIAPU utility. See Figure 10 on page 137 for a sample job to define coupling facility structures in the LOGR policy data set.

Before attempting to run any of the IXCMIAPU jobs, ensure that the MVS system logger, IXGLOGR, is running. If IXGLOGR is not running, for example, if MVS is running in LOCAL mode, logstream definition jobs fail with rc=0814.
Multiple log streams can write data to a single coupling facility structure. The log data is not merged; the log data stays segregated according to log stream. You can specify the number of log streams that use the resources of a single coupling facility structure using the LOGSNUM parameter on the IXCMIAPU service to define a structure.

Each log stream is allocated a proportion of the structure space based on the number of currently connected log streams, up to the limit specified in LOGSNUM.

For example, you might define a structure to contain a maximum of, say, 30 log streams. If only 10 log streams are connected, each log stream can use one tenth of the space in the structure. As other log
streams are connected and disconnected, the MVS system logger adjusts the proportion of space to be used by each log stream.

You must plan carefully before specifying a value for LOGSNUM, because this parameter determines how much storage space in the structure is available to each log stream. A number in the range 10 to 20 is optimum in many environments.

The JCL in Figure 10 on page 137 defines log stream coupling facility structures to the MVS system logger. It is meant for guidance only and you must substitute values appropriate to your requirements.

```
//DEFSTRUC JOB ...
//POLICY EXEC PGM=IXCMIAPU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//*** *
//* *
//* Define log stream coupling facility structures to the MVS logger *
//* *
//* AVGBUFSIZE and LOGSNUM values are just for illustration, *
//* substitute values appropriate to your intended usage *
//* *
//*** *
//SYSIN DD *
DATA TYPE(LOGR) REPORT(YES)
/* System logs */
DEFINE STRUCTURE NAME(LOG_DFHLOG_001) LOGSNUM(10)
 MAXBUFSIZE(64000) AVGBUFSIZE(500)
/* Secondary system logs */
DEFINE STRUCTURE NAME(LOG_DFHSHUNT_001) LOGSNUM(10)
 MAXBUFSIZE(64000) AVGBUFSIZE(4096)
/* User journals with unforced writes */
DEFINE STRUCTURE NAME(LOG_USERJRNL_001) LOGSNUM(10)
 MAXBUFSIZE(64000) AVGBUFSIZE(64000)
/* Fwd recovery logs and user jnls that are forced */
DEFINE STRUCTURE NAME(LOG_GENERAL_001) LOGSNUM(10)
 MAXBUFSIZE(64000) AVGBUFSIZE(2048)
/*

Figure 10. Sample JCL to define coupling facility structures to MVS system logger
```

For information about planning coupling facility configurations, see z/OS MVS Programming: Assembler Services Guide.

**Planning for the number of log structures**

There are a number of points to consider when planning the definition of your coupling facility structures.

- The CFRM policy allows a maximum of 255 structures for all purposes.
- Allow a maximum of 512 log streams per structure.
- Smaller structures are more quickly allocated, rebuilt, and recovered than larger ones.
- It is good practice to keep the log streams for test CICS systems and other systems not in regular use in structures separate from the structures holding the log streams of production CICS systems. This separation avoids the structure space available to production CICS systems being affected by structure usage of the test CICS systems.
- It is good practice to keep the log streams for terminal-owning regions (TORs) in structures separate from those accommodating log streams for application-owning regions (AORs). In addition, keep log streams for file-owning regions in structures separate from those accommodating log streams for TORs and AORs.
- Share structures between MVS images. If an MVS image or logger address space fails, and a surviving MVS image is using the same log stream structures, although not necessarily the same log streams, the surviving image is notified of the failure and can initiate immediate log stream recovery for the failing MVS.
Recovery, otherwise, is delayed until the next time that a system attempts to connect to a log stream in the affected structures, or until the logger address space of the failing system is restarted.

For example, in a 4-way sysplex comprising MVSA, MVSB, MVSC, and MVSD, you might have the CICS regions that normally run on MVSA and MVSB use structure LOG_DFHLOG_001, and the regions that run on MVSC and MVSD use structure LOG_DFHLOG_002. Thus, each MVS image has a partner to recover its log streams if MVS fails. If a structure fails, the two MVS images using the other structure can take over the workload. Also, if you have more than one coupling facility, allocate the system log structures to different coupling facilities. See Figure 11 on page 138 for an illustration of this example.

![4-Way Sysplex Diagram](image)

**Figure 11. Sharing system logger structures between MVS images**

- Use the appropriate buffer size. The average buffer size (AVGBUFSIZE) defined for a structure must be close to the actual buffer size of the log streams using the structure. If it is not, usable space might be exhausted long before the structure is full.

**Important:**

1. z/OS dynamically tunes the element and entry ratio, so the value you specify for AVGBUFSIZE is less important than it was on earlier releases of MVS.
2. You cannot update AVGBUFSIZE, like other structure definition attributes such as MAXBUFSIZE and LOGSNUM, unless you first delete the log streams in the structure definition.

- Set MAXBUFSIZE to slightly less than 64 KB; for example, 64 000 is suitable. This number allows CICS to write the maximum size user record and allows coupling facility storage to be allocated in 256-byte units. If you allow MAXBUFSIZE to default, coupling facility storage is allocated in 512-byte units. This size can be wasteful of storage.

  If you set MAXBUFSIZE lower than 64 000 you gain no significant advantage as far as the use of storage is concerned.

- Set a low value for the REBUILDPERCENT parameter in the CFRM policy for log structures used for CICS system logs.

**Log structure naming conventions**

Adopt a naming convention for your coupling facility structures that helps to identify the purpose of the structure.

Use a format such as LOG\_purpose\_nnn:

- *purpose* identifies the type of use of the structure.
- *nnn* is a sequence number to allow for more than one structure for each purpose.

Here are some examples:
LOG_DFHLOG_001
For the CICS primary system log. The structure must be large enough to avoid writing data to DASD. The average buffer size is small. See the sizing calculations in “Structure size for system log usage” on page 142.

LOG_DFHSHUNT_001
For the CICS secondary system log. The structure must be small, but requires a large buffer size. A structure of 150 KB per log stream might be sufficient.

LOG_USERJRNL_001
For user journals where block writes are not forced. The average and maximum buffer sizes of these structures must be the same.

LOG_GENERAL_001
For forward recovery logs and user journals in which block writes are forced periodically.

See also Develop a naming convention for system logger resources in z/OS MVS System Management Facilities.

Defining coupling facility log streams
Use the MVS IXCMIAPU utility to define coupling facility log streams to the LOGR couple data set.

The following code sample shows the basic syntax to define a coupling facility log stream:

```
DEFINE LOGSTREAM NAME(log_stream_name)
 STRUCNAME(structure_name)
 LOWOFFLOAD(low_offload) HIGHOFFLOAD(high_offload)
 STG_DUPLEX(YES|NO) DUPLEXMODE(COND|UNCOND)
```

For detailed information about the full range of log stream attributes, see the z/OS MVS Setting Up a Sysplex manual.

Figure 12 on page 139 shows example definitions for a pair of coupling facility log streams associated with a CICS system log. The definitions are for the CICS primary and secondary system log streams. The region_userid value is the RACF user ID under which the CICS address space is running. The applid value is the z/OS Communications Server APPL name of the CICS region (taken from the APPLID system initialization parameter).

The primary and secondary log streams are placed in different structures because of the large disparity in data volumes written to the primary and secondary system logs.

```
//DEFLOGS JOB ...
//LOGDEFN EXEC PGM=IXCMIAPU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//**
//* *
//* Define coupling facility log streams for CICS system log. *
//* *
//* The LOWOFFLOAD value is for illustration only -- *
//* substitute a value appropriate for your environment. *
//* *
//**
//SYSIN DD *
DATA TYPE(LOGR) REPORT(NO)
DEFINE LOGSTREAM NAME(region_userid.applid.DFHLOG)
 STRUCNAME(LOG_DFHLOG_001)
 LOWOFFLOAD(40) HIGHOFFLOAD(80)
 STG_DUPLEX(YES) DUPLEXMODE(COND)
DEFINE LOGSTREAM NAME(region_userid.applid.DFHSHUNT)
 STRUCNAME(LOG_DFHSHUNT_001)
 LOWOFFLOAD(40) HIGHOFFLOAD(80)
 STG_DUPLEX(YES) DUPLEXMODE(COND)
```

Figure 12. Example definitions of coupling facility log streams
**Using model log streams**

To avoid defining explicitly each log stream used by each of your CICS regions, you can use model log stream definitions.

Using models, log streams are defined to MVS dynamically, on their first usage. Figure 13 on page 140 shows an example of coupling facility model definitions for CICS primary and secondary system log streams.

```scheme
//DEFLOGS JOB ...
//LOGDEFN EXEC PGM=IXCMIAPU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//**
//* *
//* Define coupling facility model log streams for CICS system log. *
//* *
//* The LOWOFFLOAD value is for illustration only -- substitute a value *
//* appropriate for your environment. *
//**
//SYSIN DD *
DATA TYPE(LOGR) REPORT(NO)
DEFINE LOGSTREAM NAME(sysname.DFHLOG.MODEL)
MODEL(YES)
STRUCTNAME(LOG_DFHLOG_001)
LOWOFFLOAD(40) HIGHOFFLOAD(80)
STG_DUPLEX(YES) DUPLEXMODE(COND)
DEFINE LOGSTREAM NAME(sysname.DFHSHUNT.MODEL)
MODEL(YES)
STRUCTNAME(LOG_DFHSHUNT_001)
LOWOFFLOAD(40) HIGHOFFLOAD(80)
STG_DUPLEX(YES) DUPLEXMODE(COND)
```

Figure 13. Example model definitions for coupling facility system log streams

For detailed information about using model log streams, see Model log streams for CICS general logs. For information about the mapping of CICS journal definitions to log stream names, see Mapping of general log streams.

When using model log streams, note these points:

- For coupling facility log streams, a model log stream definition determines the coupling facility structure in which the new log streams are created. On an MVS image that runs both CICS production and CICS test regions, take care that the system logs for the production regions are kept separate from the system logs for the test regions.
- You must take into account recovery when using model log streams to define CICS system logs. See Recovery considerations for more information.

**Sizing coupling facility log streams**

You must work out the sizes of the CICS primary and secondary system log streams, forward recovery logs, and user journals and autojournals.

- Primary system log stream.

  Use the following guidelines when you size CICS primary system log stream, DFHLOG:

  - Minimize the amount of data that is offloaded to auxiliary storage.

    The MVS system logger begins the offload process when the high offload threshold (HIGHOFFLOAD) of the log stream is reached. The offload process has two steps:

    1. The MVS logger physically deletes the data in the log stream that the CICS log tail deletion process has marked for deletion.
    2. The MVS logger calculates how much data must be offloaded to auxiliary storage, based on the difference between HIGHOFFLOAD and LOWOFFLOAD, less the amount of data that was deleted since the last offload event.

    To minimize the amount of data offloaded from the CICS primary system log:
- Define a suitably sized coupling facility structure.
- Ensure that the log tail deletion process is working effectively. For detailed information about the log tail deletion process, see Log tail deletion.

- Avoid structure full events.

  A structure full event occurs when the structure space of a log stream becomes full before the offloading of data has completed. For information about monitoring and avoiding structure full events, see CICS logging and journaling.

  • Secondary log stream.
    You must size the secondary system log stream, DFHSHUNT, to avoid structure full events. However, typically some data is offloaded from DFHSHUNT to auxiliary storage.

  • General logs.
    You must size forward recovery logs, user journals, and autojournals to avoid structure full events. However, because CICS does not delete data from these log streams, data is typically offloaded to auxiliary storage.

### Setting attribute values for structure, log stream and system definitions

You can use the z Systems Coupling Facility Structure Sizer tool (CFSizer) to calculate storage requirements for coupling facility log streams. CFSizer is a web-based application that communicates with a coupling facility at a current CFLEVEL to calculate storage requirements. See System Z Coupling Facility Structure Sizer Tool (CFSizer).

You can use the CFSizer tool to calculate the following values:

- INITSIZE
- SIZE

For more information, see Structure size for system log usage.

For information about the CPC support for different CFLEVELs and the function in each CFLEVEL, see CF levels. For more information about the storage increments for different CFLEVELs, see the information about coupling facility control code support in z Systems Processor Resource/Systems Manager Planning Guide.

You can use the formulas provided in Structure size for system log usage to calculate the following values:

- INITSIZE
- AVGBUFSIZE
- SIZE
- LOWOFFLOAD

You can use the formula provided in Staging data set size calculation to calculate the following value:

- STG_SIZE

You must base your calculations on the journaling requirements of your applications.

Table 13 on page 142 summarizes how you decide on the values for various attributes on the structure definition, log stream definition, and system definition.
### Table 13. How to decide on the values of attributes

<table>
<thead>
<tr>
<th>Facility</th>
<th>Attribute</th>
<th>Method or Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>INITSIZE</td>
<td>Use CFSizer or the formula in INITSIZE calculation.</td>
</tr>
<tr>
<td></td>
<td>SIZE</td>
<td>Use CFSizer or the formula in SIZE calculation.</td>
</tr>
<tr>
<td></td>
<td>AVGBUFSIZE</td>
<td>Use the formula in AVGBUFSIZE calculation. Underestimate rather than overestimate.</td>
</tr>
<tr>
<td></td>
<td>MAXBUFSIZE</td>
<td>64 000</td>
</tr>
<tr>
<td>Primary system log stream (DFHLOG)</td>
<td>HIGHOFFLOAD</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>LOWOFFLOAD</td>
<td>Use the formula in LOWOFFLOAD calculation.</td>
</tr>
<tr>
<td>Secondary system log stream (DFHSHUNT)</td>
<td>HIGHOFFLOAD</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>LOWOFFLOAD</td>
<td>0</td>
</tr>
<tr>
<td>General log stream</td>
<td>HIGHOFFLOAD</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>LOWOFFLOAD</td>
<td>40 – 60</td>
</tr>
<tr>
<td>Log stream</td>
<td>STG_SIZE</td>
<td>Use the formula in Staging data set size calculation. Overestimate rather than underestimate.</td>
</tr>
<tr>
<td>CICS system</td>
<td>AKPFREQ</td>
<td>4 000</td>
</tr>
</tbody>
</table>

Startup might take longer than you experienced when using earlier releases. This is partly caused by the allocation and formatting of the staging data sets. Increased startup time depends on factors that include the following:

- Size of staging data set (STG_SIZE)
- DASD speed
- DASD contention

You can reduce startup time by avoiding large staging data sets.

**Structure size for system log usage**

You can use the z Systems Coupling Facility Structure Sizer tool (CFSizer), or the formulas provided, to calculate storage requirements for the primary system log, DFHLOG, and the secondary system log, DFHSHUNT.

The CFSizer calculations assume that the coupling facility is at the current CFLEVEL. The formulas provided assume the coupling facility is at CFLEVEL 11.

You use the results of these calculations to set the coupling facility resource manager (CFRM) INITSIZE and SIZE parameters in the CRFM policy.

The primary and secondary log streams must be placed in different structures because of the large disparity in data volumes written to the primary and secondary system logs.

Generally, the volume of data that CICS keeps in the primary system log at any one time is slightly greater than the amount written during one activity keypoint interval. This volume is determined by the activity keypoint frequency, which is measured in the number of write requests to the CICS system logstream output buffer, and defined on the AKPFREQ system initialization parameter. When you plan coupling facility structure sizes, review the value specified for the AKPFREQ parameter.

**Using CFSizer to determine structure size**

CFSizer is a web-based application that communicates with a coupling facility at a current CFLEVEL to calculate storage requirements. For primary and secondary system logs, it calculates suitable values for the INITSIZE and SIZE parameters. See System Z Coupling Facility Structure Sizer Tool (CFSizer).
To use CFSizer to calculate storage requirements for system logs, enter the following information:

**Maximum buffer size**
The size, in bytes, of the largest log block that can be written to a logstream. The value must be between 1 and 65532. This value corresponds to the MAXBUFSIZE value in the definition of the logstream coupling facility structure. See “Defining coupling facility structures” on page 135.

**Average buffer size**
The average size in bytes of log blocks written to all logstreams. This input is used to determine the initial entry to element ratio of the list structure. This value corresponds to the AVGBUFSIZE value in the definition of the logstream coupling facility structure. See “Defining coupling facility structures” on page 135.

Also, this value is available in the system logger reports produced by IXGRPT1 and IXGRPT1J. See “Analyzing system logger data (SMF Type 88 records)” on page 153.

**Highoffload**
The high offload threshold of the logstream. When this percentage of the coupling facility structure is full, the system logger begins to offload data from primary storage to offload data sets. For CICS logstreams, this value is usually between 80 and 85. See Checking logstream status and LOWOFFLOAD and HIGHOFFLOAD parameters on log stream definition.

For more information about the offload threshold parameter, see z/OS MVS Setting Up a Sysplex.

**Number of write requests per interval**
The number of log blocks written to the logstream (the total from all systems that use the logstream) during the data collection interval. This value is available in the CICS statistics reports. See Logstream statistics and Logstreams reports.

Also, this value is available in the #WRITES INVOKED data in the system logger reports produced by IXGRPT1 and IXGRPT1J. See “Analyzing system logger data (SMF Type 88 records)” on page 153.

**Length of interval in seconds**
The time interval in seconds over which the number of writes was collected. This value is available in the CICS statistics reports. See Statistics domain: Summary global statistics

**Longest running task in seconds**
The duration in seconds of the longest running transaction during the data collection interval. This is not the average response time.

**Log tail deletes**
The number of times CICS performed log tail deletion during the data collection interval. This value is available in the CICS statistics reports. See delete requests, stream deletes or logstream deletes in Logstream statistics and Logstreams reports. You can also determine this value by using joblog of the region and counting the number of DFHLG0743 messages that were issued during the interval.

**Calculation of INITSIZE for DFHLOG**
To calculate the INITSIZE value to use in the CFRM policy for the primary system log, use the following formula:

\[
\text{INITSIZE} = 310 + ( \text{LOGSNUM} \times A \times B / 1024)
\]

where:

- A = 2000 + (number_of_entries + 5)
- B = (AVGBUFSIZE \times 1.1289) + 195

To calculate a value for number_of_entries, use the following formula:

\[
\text{number_of_entries} = (\text{akpintvl} + \text{trandur}) \times \text{writespersec} / 0.9
\]

where:
akpintvl is the interval between activity key points, which varies with workload. Calculate it as follows:

\[ \text{akpintvl} = \frac{\text{AKPFREQ}}{(N1 \times R1) + (N2 \times R2) + \ldots + (Nn \times Rn)} \]

where:
- \( N1, N2 \ldots \text{Nn} \) is the transaction rate for each transaction (transactions per second).
- \( R1, R2 \ldots \text{Rn} \) is the number of log records written by each transaction.

\( \text{trandur} \) is the execution time (between sync points) of the longest-running transaction that runs as part of the normal workload.

If this duration is longer than the akpintvl value, you have the following choices:
- Increase the value of the \( \text{AKPFREQ} \) parameter, thus increasing the value of akpintvl, provided that the value does not result in an unacceptably large coupling facility structure size.
- Change the application logic to cause more frequent sync points.
- Calculate a structure size based on a shorter transaction duration, and accept that DASD offloading occurs when the long-running transaction is used.

\( \text{writespersec} = \text{lesser of } 25 \text{ or } ((N1 \times R1) + \ldots + (Nn \times Rn)) \), where:
- \( N1, N2 \ldots \text{Nn} \) are the transaction frequencies (transactions per second) of the most frequently run transactions.
- \( R1, R2 \ldots \text{Rn} \) is the number of log records written by each transaction.

To calculate the value of AVGBUFSIZE for the primary system log, DFHLOG, you can use the weighted average of the data logged by the most frequently run transactions in the system:

\[ \text{AVGBUFSIZE} = \frac{\text{bytespersec}}{\text{writespersec}} + 48 \]

where:
- \( \text{bytespersec} = (N1 \times D1) + (N2 \times D2) + \ldots + (Nn \times Dn) \)
- \( N1, N2 \ldots \text{Nn} \) are the transaction frequencies (transactions per second) of the most frequently run transactions.
- \( D1, D2 \ldots \text{Dn} \) are the bytes of data logged by each transaction.

You can calculate the amount of data (\( Dn \)) written to the system log for each transaction:

\[ Dn = Ns \times \text{syncreclen} + Nfc \times (\text{fcrechdr} + \text{fcreclen}) + Nts \times (\text{tsrechdr} + \text{tsreclen}) + Ntd \times (\text{tdrechdr} + \text{tdreclen}) + Nur \times (\text{urrechdr} + \text{urreclen}) \]

where:
- \( Ns \) is the number of sync points per transaction; usually 1.
- \( \text{syncreclen} \) is the sync point record length.
- \( Nfc, \text{fcrechdr}, \text{fcreclen} \) are the number of recoverable updates made, the length of the record headers, and the length of the records for file control, respectively.
  
  Count only READ UPDATE and WRITE ADD records. \( \text{fcrechdr} \) is 144 (136 bytes of record header plus 8 bytes of file name).
- \( Nts, \text{tsrechdr}, \text{tsreclen} \) are for recoverable temporary storage updates.
  
  Count only TS PUT and TS UPDATE records. For TS PUT records, \( \text{tsrechdr} \) is 108, and \( \text{tsreclen} \) is 88. For TS UPDATE records, \( \text{tsrechdr} \) is 108, and \( \text{tsreclen} \) is 52.
- \( Ntd, \text{tdrechdr}, \text{tdreclen} \) are for recoverable transient data updates.
  
  \( \text{tdrechdr} \) is 108, and \( \text{tdreclen} \) is 380.
- `urrechdr`, `urreclen` are for user records written to DFHLOG.
  `urrechdr` is 125.

- See *Writes per second calculation* for details of how to calculate `writespersec`.

If the result of the calculation shows a value for `AVGBUFSIZE` that is greater than the value defined for `MAXBUFSIZE`, the value defined for `MAXBUFSIZE` is taken as the value for `AVGBUFSIZE`, and `writespersec` is calculated as follows:

\[
\text{writespersec} = \frac{\text{bytespersec}}{(\text{MAXBUFSIZE} - 48)}
\]

Round the final result of the `INITSIZE` formula up to the next multiple of 256.

**Calculation of SIZE for DFHLOG**

To calculate the `SIZE` value to use in the CFRM policy for the primary system log, use the following formula:

\[
\text{SIZE} = 480 + \left( \text{LOGSNUM} \times \frac{A \times B}{1024} \right)
\]

where:

- \(A = 2500 + (\text{number_of_entries} + 5)\)
- \(B = (\text{AVGBUFSIZE} \times 1.6821) + 289\)

To calculate a value for `number_of_entries`, see *number of entries calculation*.

Round the final result of the `SIZE` formula up to the next multiple of 256. The formula for `SIZE` gives a result that is approximately fifty percent greater than the `INITSIZE` value.

**Calculation of LOWOFFLOAD for DFHLOG**

You can calculate a suitable value for `LOWOFFLOAD` for DFHLOG using one of the following formulas:

- \(\text{LOWOFFLOAD} = \left(\text{trandur} \times 90\right) / \left(\text{akpintvl} + \text{trandur}\right) + 10\) (where `RETPD=0` specified)
- \(\text{LOWOFFLOAD} = \left(\text{trandur} \times 90\right) / \left(\text{akpintvl} + \text{trandur}\right)\) (where `RETPD=dddd` specified)

where:

- `akpintvl` is the interval between activity key points. See *activity key point interval calculation*.
- `trandur` is the execution time, between sync points, of the longest-running transaction that runs as part of the normal workload.

If this duration is longer than `akpintvl` value, you have the following choices:

- Increase the value of the `AKPFREQ` parameter, thus increasing the value of `akpintvl`, provided that this value does not result in an unacceptably large coupling facility structure size.
- Change the application logic to cause more frequent sync points.
- Calculate a structure size based on a shorter transaction duration, and accept that DASD offloading occurs when the long-running transaction is used.

For a description of the low offload threshold for a logstream, see *LOWOFFLOAD and HIGHOFFLOAD parameters on log stream definition*.

**Calculation of INITSIZE and SIZE for DFHSHUNT**

Generally, the secondary system logstream is only a fraction of the size of the primary logstream. To calculate coupling facility space for DFHSHUNT, use the following formulas:

- \(^{\text{INITSIZE} = (150 \times \text{LOGSNUM}) + 310}\)
• \( \text{SIZE} = (230 \times \text{LOGSNUM}) + 480 \)

where LOGSNUM is the number of logstreams that can write data to the secondary logstream.

**Structure size for forward recovery log usage**
You can merge the forward recovery logs written by many CICS regions onto the same log stream. You can also use the same log stream for forward recovery data for multiple data sets.

You can calculate a value for the number of entries for the INITSIZE and SIZE attributes in the following way:

\[
\text{no. entries} = \text{writespersec} \times 12.5
\]

where:

\[
\text{writespersec} = \text{lesser of 25 or (N1 + ... + Nn)}
\]

where N1 ... Nn is the number of transactions per second writing to each data set.

You can calculate AVGBUFSIZE in the following way:

\[
\text{AVGBUFSIZE} = (\text{bytespersec} / \text{writespersec}) + 36
\]

where:

- \( \text{bytespersec} = (N1 \times W1 \times (D1 + \text{rechdr}) + ... + (Nn \times Wn \times (Dn + \text{rechdr}))) \)
- \( \text{writespersec} = \text{lesser of 25 or (N1 + ... + Nn)} \), where:
  - N1 ... Nn is the number of transactions per second writing to each data set.
  - W1 ... Wn is the number of write requests per transaction.
  - D1 ... Dn is the average record length for each data set.
- rechdr is the record header length of each record.

If the records are WRITE ADD, WRITE ADD COMPLETE, or WRITE ADD DELETE records, rechdr is 84 and is followed by the record key and the record data (including its key).

If the result of the calculation shows a value for AVGBUFSIZE that is greater than the value defined for MAXBUFSIZE, the value defined for MAXBUFSIZE is taken as the value for AVGBUFSIZE, and writespersec is calculated:

\[
\text{writespersec} = \text{bytespersec} / (\text{MAXBUFSIZE} - 36)
\]

**Structure size for user journal and autojournal usage**
You can use the z Systems Coupling Facility Structure Sizer tool (CFSizer), or the formulas provided, to calculate storage requirements for the user journal and autojournal.

The CFSizer calculations assume that the coupling facility is at the current CFLEVEL. The formulas provided assume the coupling facility is at CFLEVEL 11.

**Using CFSizer to determine structure size**
CFSizer is a web-based application that communicates with a coupling facility at a current CFLEVEL to calculate storage requirements. For the user journal and autojournal, it calculates suitable values for the INITSIZE and SIZE parameters. See System Z Coupling Facility Structure Sizer Tool (CFSizer).

To use CFSizer to calculate storage requirements for the user journal and autojournal, enter the following information:

**Writes per second**
The number of log blocks written to the log stream per second from a single system. This value is available in the CICS statistics reports. See Logstream reports.
Maximum buffer size
The size, in bytes, of the largest log block that can be written to a logstream. The value must be between 1 and 65532. This value corresponds to the MAXBUFSIZE value in the definition of the logstream coupling facility structure. See “Defining coupling facility structures” on page 135.

Average buffer size
The average size in bytes of log blocks written to all logstreams. This input is used to determine the initial entry to element ratio of the structure. This value corresponds to the AVGBUFSIZE value in the definition of the logstream coupling facility structure. See “Defining coupling facility structures” on page 135.

Number of logstreams
The number of logstreams allocated to a structure. This must be a value from 0 to 512. In a CICS environment, the number of logstreams should be between 10 and 20.

For the user journal and autojournal, CFSizer uses the following default values:

High offload
80

Low offload
0

Calculation of structure size
Calculate values for the INITSIZE and SIZE attributes. See “Calculation of INITSIZE for DFHLOG” on page 143 and “Calculation of SIZE for DFHLOG” on page 145.

To calculate a value for number_of_entries, use the following formula:

\[ \text{number_of_entries} = \text{writespersec} \times 12.5 \]

See the explanation of writespersec later in this topic.

For journals with log blocks that are not forced to the log stream, the average block size tends to be slightly less than the MAXBUFSIZE value defined for the coupling facility structure.

For journals with log blocks that are forced to the log, using the EXEC CICS WAIT JOURNALNAME or EXEC CICS WAIT JOURNALNUM commands, or using the WAIT option of the EXEC CICS WRITE JOURNALNAME or EXEC CICS WRITE JOURNALNUM commands, you can calculate AVGBUFSIZE from the weighted average of the data logged for each journal logging to the same log stream for a given CICS system.

\[ \text{AVGBUFSIZE} = \frac{\text{bytespersec}}{\text{writespersec}} + 36 \]

where:

- \( \text{bytespersec} = (N1 \times \text{Wr1} \times (D1 + \text{rechdr}) + \ldots + (Nn \times \text{Wrn} \times (Dn + \text{rechdr})) \)
- \( \text{writespersec} = \text{lesser of 25 or ((N1 \times \text{Wa1}) + \ldots + (Nn \times \text{Wan}))} \)

where:

- \( N1, \ldots, Nn \) is the number of transactions per second writing to the journal.
- \( \text{Wr1} \ldots, \text{Wrn} \) is the number of write requests per transaction.
- \( \text{Wa1} \ldots, \text{Wan} \) is the number of wait requests per transaction.
- \( D1 \ldots, Dn \) is the average record length of each journal record.
- \( \text{rechdr} \) is the record header length of each record.

Autojournal records are issued from file control. They might be DATA SET NAME records, which consist of a 204-byte record header, and no further data. Alternatively, they might be READ ONLY, READ UPDATE, WRITE UPDATE, WRITE ADD, or WRITE ADD COMPLETE records. In this case, \( \text{rechdr} \) is 84 bytes and is followed by the file control record itself.

User journal records consist of a 68-byte record header, followed by the user prefix and the user data.
If the result of the calculation shows a value for AVGBUFSIZE that is greater than the value defined for MAXBUFSIZE, the value defined for MAXBUFSIZE is taken as the value for AVGBUFSIZE, and writespersec is calculated as follows:

\[ \text{writespersec} = \frac{\text{bytespersec}}{(\text{MAXBUFSIZE} - 36)} \]

**Coupling facility requirements in an RLS environment**

When you move to an RLS environment from an environment where multiple AORs accessed data sets in an FOR, the logging activity of the FOR is distributed across the AORs. Therefore, the coupling facility structure size required by each AOR increases.

**Calculating increased AOR coupling facility storage requirements**

Use the following formulae to calculate the avgbufsize, number of entries and akpintvl values for the AORs in the new RLS environment.

Calculate the AOR AVGBUFSIZE value required by the INITSIZE and SIZE formulae:

\[ \text{AOR AVGBUFSIZE} = \frac{\text{AOR_bytes} + \left( \frac{\text{FOR_bytes}}{\text{no of AORs}} \right)}{(\text{intvlen} \times 25)} \]

where:

- \( \text{AOR_bytes} \) is the number of bytes written to the system log by an AOR in the sampling interval.
- \( \text{FOR_bytes} \) is the number of bytes written to the system log by an FOR in the sampling interval.
- \( \text{no of AORs} \) is the number of cloned AORs using the FOR.
- \( \text{intvlen} \) is the length in seconds of the sampling interval.

Calculate the AOR no. entries value required by the INITSIZE and SIZE formulae:

\[ \text{AOR no. entries} = \frac{(\text{AOR_akpintvl} + \text{trandur}) \times 25}{0.9} \]

where:

- \( \text{AOR_akpintvl} = \frac{\text{AKPFREQ} \times \text{intvlen}}{(\text{AOR_recs} + \left( \frac{\text{FOR_recs}}{\text{no of AORs}} \right)} \)

where:

- \( \text{intvlen} \) is the length in seconds of the sampling interval.
- \( \text{AOR_recs} \) is the number of records written to the system log by an AOR in the sampling interval.
- \( \text{FOR_recs} \) is the number of records written to the system log by an FOR in the sampling interval.
- \( \text{no of AORs} \) is the number of cloned AORs using the FOR.
- \( \text{trandur} \) is the execution time between sync points of the longest-running transaction that runs as part of the normal workload.

If this value is greater than AOR_akpintvl, use AOR_akpintvl as the duration or consider increasing AKPFREQ.

After you calculate the values for AOR AVGBUFSIZE and AOR no. entries, determine the values of INITSIZE and SIZE, as described in “Structure size for system log usage” on page 142.

Use the reports produced from the log stream statistics from CICS Transaction Server for z/OS that occur in a reporting interval for the AORs and the FOR to calculate the values:

- The number of log write operations
- The amount of data written
**Staging data sets for coupling facility logstreams**

MVS usually keeps a second copy of the data written to the coupling facility in a data space, for use when rebuilding a coupling facility log if an error occurs.

This backup is satisfactory if the coupling facility is failure-independent from MVS; that is, in a separate CPC and non-volatile.

When the coupling facility is in the same CPC, or uses volatile storage, the MVS system logger supports staging data sets for copies of logstream data that might otherwise be vulnerable to failures that affect both the coupling facility and the MVS images.

When defining logstreams, consider the following tasks:

- Define **STG**/**DUPLEX**(**YES**) and **DUPLEXMODE**(**COND**) for those logstreams that are associated with the system log. These definitions ensure that the MVS system logger automatically copies to staging data sets if it detects that the coupling facility is not failure-independent and is a single point of failure, and is therefore vulnerable to permanent log data loss. A connection to a logstream contains a single point of failure if the coupling facility is volatile or it resides on the same CPC as the MVS system connecting to it. For example, if there are two CPCs, CPC1 and CPC2, and CPC1 has an MVS LPAR and a coupling facility, but CPC2 has only MVS LPARs, the connections from the MVS LPAR in CPC1 to the coupling facility are failure-dependent. If you lose CPC1, you lose both MVS and its local buffers and the coupling facility. However, the connections from CPC2 are failure-independent, because the system logger local storage and buffers are in a physically separate CPC from the coupling facility, and the data is lost only if both fail. With **DUPLEXMODE**(**COND**), failure-dependent connections result in staging sets, but failure-independent connections are not allocated staging data sets.

- If you are operating with only a single coupling facility, define **STG**/**DUPLEX**(**YES**) and **DUPLEXMODE**(**UNCOND**) for those logstreams associated with the system log.

- Define **STG**/**DUPLEX**(**YES**) and **DUPLEXMODE**(**COND**) for those logstreams associated with forward recovery logs. If you do not, and a failure causes loss of data from the logstream, you need to take a new image copy of the associated VSAM data sets. For the consequent period of time until this operation is complete, the data sets are not fully protected.

- If you operate a nonvolatile, stand-alone coupling facility for normal logging, with a PR/SM LPAR configured as a coupling facility acting as backup, define all logstreams with **STG**/**DUPLEX**(**YES**) and **DUPLEXMODE**(**COND**).

- Define each staging data set to be at least the same size as the logstream share of the coupling facility, but round the average block size up to 4 KB.

For example, you can calculate the staging data set size that corresponds to the basic coupling facility space requirement for each CICS system logstream (DFHLOG) by using the following formula:

\[
\text{staging data set size} = \text{number of entries} \times \text{rnd-avg-buf} / 4096
\]

where \( \text{rnd-avg-buf} = \text{avgbufsize (rounded up to 4K)} \)

To calculate a value for \( \text{number of entries} \), see number of entries calculation.

**DASD-only log streams**

The CICS log manager supports the DASD-only option of the MVS system logger.

Individual CICS log streams can use either coupling facility log structures or DASD-only logging. You might define a log stream to use DASD-only logging for these reasons:

- You do not have a coupling facility.
- You want to preserve coupling facility space for other uses.
- You do not require the log stream to be shared across MVS systems. (The CICS system log can never be shared.)

See Setting up the environment for CICS log manager for advice about defining individual log streams to use coupling facility or DASD-only logging, based on their usage.
**Defining DASD-only log streams**

Use the MVS IXCMIAPU utility to define DASD-only log streams to the LOGR couple data set.

The following code sample shows the basic syntax to define a DASD-only log stream:

```sql
DEFINE LOGSTREAM NAME(log stream_name)
 DASDONLY(YES)
 MAXBUFSIZE(max_bufsize)
 STG_SIZE(stg_size)
 HIGHOFFLOAD(high_offload)
 LOWOFFLOAD(low_offload)
```

Figure 14 on page 150 shows example definitions for a pair of log streams associated with a DASD-only system log.

```sql
//DEFLOGS JOB ...
//LOGDEFN EXEC PGM=IXCMIAPU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//**
//* *
//* Define DASD-only log streams for CICS system log. *
//* *
//* The LOWOFFLOAD and STG_SIZE values are for illustration *
//* only -- substitute values appropriate for your environment. *
//* *
//**
//SYSIN DD (*)
DATA TYPE(LOGR) REPORT(NO)
DEFINE LOGSTREAM NAME(region_userid.applid.DFHLOG)
 DASDONLY(YES)
 MAXBUFSIZE(64000) STG_SIZE(3000)
 LOWOFFLOAD(40) HIGHOFFLOAD(80)
DEFINE LOGSTREAM NAME(region_userid.applid.DFHSHUNT)
 DASDONLY(YES)
 MAXBUFSIZE(64000) STG_SIZE(500)
 LOWOFFLOAD(40) HIGHOFFLOAD(80)
```

**Using model log streams**

To avoid defining explicitly each log stream used by each of your CICS regions, you can use model log stream definitions.

Using models, log streams are defined to MVS dynamically, on their first usage. Figure 15 on page 150 shows example DASD-only model definitions for CICS primary and secondary system log streams.

```sql
//DEFLOGS JOB ...
//LOGDEFN EXEC PGM=IXCMIAPU
//STEPLIB DD DSN=SYS1.MIGLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//**
//* *
//* Define DASD-only model log streams for CICS system log. *
//* *
//* The LOWOFFLOAD and STG_SIZE values are for illustration *
//* only -- substitute values appropriate for your environment. *
//* *
//**
//SYSIN DD (*)
DATA TYPE(LOGR) REPORT(NO)
DEFINE LOGSTREAM NAME(sysname.DFHLOG.MODEL)
 MODEL(YES)
 DASDONLY(YES)
 MAXBUFSIZE(64000)
 STG_SIZE(3000)
 LOWOFFLOAD(40) HIGHOFFLOAD(80)
DEFINE LOGSTREAM NAME(sysname.DFHSHUNT.MODEL)
 MODEL(YES)
 DASDONLY(YES)
 MAXBUFSIZE(64000)
 STG_SIZE(500)
 LOWOFFLOAD(40) HIGHOFFLOAD(80)
```

Figure 15. Example model definitions for DASD-only system log streams
For information about the mapping of CICS journal definitions to log stream names, see Setting up CICS log streams.

When using model log streams, note that, if you specify a STG_SIZE on the model definition, all new log streams created from the model have the same-sized staging data set.

**Sizing for DASD-only log streams**
You must work out the sizes of the CICS primary and secondary system log streams, forward recovery logs, and user journals and autojournals.

**Sizing DFHLOG**
To size the CICS primary system log stream, DFHLOG:

- **Minimize the amount of data that is offloaded to secondary storage**
  The MVS system logger begins the offload process when the high offload threshold (HIGHOFFLOAD) of the log stream is reached. The offload process consists of two steps:
  1. The MVS logger physically deletes the data in the log stream that has been marked for deletion by the CICS log-tail deletion process.
  2. The MVS logger calculates how much data must be offloaded to auxiliary storage, based on the difference between HIGHOFFLOAD and LOWOFFLOAD, less the amount of data that has been deleted since the last offload event.

  To minimize the amount of data offloaded from the CICS primary system log, you must:
  - Define a suitably sized staging data set. You can alter the size of a staging data set without deleting the log stream. To do so, use the UPDATE LOGSTREAM request of the MVS IXCMIAPU utility to change the value of the STG_SIZE parameter.
  - Ensure that the log-tail deletion process is working effectively. For detailed information about the log-tail deletion process, see Log tail deletion.

- **Avoid "staging-data-set-full" events**
  A staging-data-set-full event occurs when a log stream's staging data set becomes full before the offloading of data has completed.

  For advice on monitoring and avoiding staging-data-set-full events, see Monitoring the logger environment.

**Sizing DFHSHUNT**
You must size the secondary system log stream, DFHSHUNT, to avoid staging-data-set-full events. However, typically some data is offloaded from DFHSHUNT to secondary storage.

**Sizing general logs**
You must size forward recovery logs, user journals, and autojournals to avoid staging-data-set-full events. However, because CICS does not delete data from these log streams, data is typically offloaded to auxiliary storage.

**Setting attribute values for log stream and system definitions**
Table 14 on page 152 summarizes how you decide on the values for various attributes on the log stream definition, and system definition.
Table 14. How to decide on the values of attributes

<table>
<thead>
<tr>
<th>Facility (Facility)</th>
<th>Attribute</th>
<th>Method or Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary system log</td>
<td>HIGHOFFLOAD</td>
<td>80</td>
</tr>
<tr>
<td>stream (DFHLOG)</td>
<td>LOWOFFLOAD</td>
<td>Use the formula in “Sizing your DASD log streams” on page 152 to calculate a suitable value.</td>
</tr>
<tr>
<td></td>
<td>MAXBUFSIZE</td>
<td>64000</td>
</tr>
<tr>
<td></td>
<td>STG_SIZE</td>
<td>Use the formula in “Sizing your DASD log streams” on page 152 to calculate a suitable value.</td>
</tr>
<tr>
<td>Secondary system log stream (DFHSHUNT)</td>
<td>HIGHOFFLOAD</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>LOWOFFLOAD</td>
<td>40 – 60</td>
</tr>
<tr>
<td></td>
<td>MAXBUFSIZE</td>
<td>64 000</td>
</tr>
<tr>
<td></td>
<td>STG_SIZE</td>
<td>500 (4 KB blocks)</td>
</tr>
<tr>
<td>General log stream</td>
<td>HIGHOFFLOAD</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>LOWOFFLOAD</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>MAXBUFSIZE</td>
<td>64 000</td>
</tr>
<tr>
<td></td>
<td>STG_SIZE</td>
<td>Use the formula in “Sizing your DASD log streams” on page 152 to calculate a suitable value.</td>
</tr>
<tr>
<td>CICS system</td>
<td>AKPFREQ</td>
<td>4 000</td>
</tr>
</tbody>
</table>

Startup might take longer than you experienced when using earlier releases. This is caused in part by the allocation and formatting of the staging data sets. Increased startup time depends on factors like these:

- Size of staging data set (STG_SIZE)
- DASD speed
- DASD contention

You can reduce startup time by avoiding large staging data sets.

Sizing your DASD log streams

If you are capacity planning for new applications, you must calculate your space requirements.

The formulae provided help you to calculate values for LOWOFFLOAD and STG_SIZE.

You must base your calculations on the journaling requirements of your applications. These requirements provide the starting point for the following formulae.

You can calculate LOWOFFLOAD for DFHLOG using the following formula:

\[
LOWOFFLOAD = \frac{\text{trandur} \times 90}{\text{akpintvl} + \text{trandur}} + 10 \quad \text{(where RETPD=0 specified)}
\]

or

\[
LOWOFFLOAD = \frac{\text{trandur} \times 90}{\text{akpintvl} + \text{trandur}} \quad \text{(where RETPD=dddd specified)}
\]

where:

- \(\text{akpintvl}\) is the interval between activity key points. Calculate it using the following formula:

\[
\text{akpintvl} = \frac{\text{AKPFREQ}}{\left( \frac{\text{N1} \times \text{R1}}{1} + \frac{\text{N2} \times \text{R2}}{2} + \ldots + \frac{\text{Nn} \times \text{Rn}}{n} \right)}
\]

where:

- \(\text{N1}, \text{N2} \ldots \text{Nn}\) is the transaction rate for each transaction (transactions per second).
- R1, R2 ..., Rn is the number of log records written by each transaction.

- `trandur` is the execution time (between sync points) of the longest-running transaction that runs as part of the normal workload.

If this duration is longer than the `akpintvl` value, you have these choices:

- Increase the value of AKPFREQ, thus increasing the value of `akpintvl`, provided that this value does not result in an unacceptably large staging data set size.
- Change the application logic to cause more frequent sync points.
- Calculate a staging data set size based on a shorter transaction duration, and accept that offloading to auxiliary storage occurs when the long-running transaction is used.

You can calculate STG_SIZE for DFHLOG using the following formula:

<table>
<thead>
<tr>
<th>Staging DS size</th>
<th>= (AKP duration) * No. of log writes per second for system log (no. of 4k blocks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>where AKP duration = (CICS TS 390 AKPFREQ)/(No. buffers per second)</td>
<td></td>
</tr>
</tbody>
</table>

You can take the values for the number of log writes per second and buffer puts per second from your statistics. The value for log writes per second must not exceed 30.

### Converting a DASD-only log stream to use a coupling facility

You can upgrade a DASD-only log stream to use a coupling facility structure, without having to delete and redefine the log stream.

1. Make sure that there are no connections, neither active nor failed, to the log stream.

2. Use the UPDATE LOGSTREAM request of the MVS IXCMIAPU utility. Specify the STRUCTNAME keyword, and let the DASDONLY keyword default to NO. For example:

```plaintext
//LOGUPDT JOB ...
//LOGUPDT EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=A,DCB=RECFM=FBA
//**
//* *
//* Convert DASD-only log stream to coupling facility log stream.*
//* *
//**
//SYSIN DD *
DATA TYPE(LOGR) REPORT(NO)
UPDATE LOGSTREAM NAME(region_userid.applid.DFHLOG)
 STRUCTNAME(LOG_DFHLOG_001)
 STG_DUPLEX(YES) DUPLEXMODE(COND)
```

Figure 16. Converting a DASD-only log stream to use a coupling facility structure

1. To upgrade a DASD-only log stream to a coupling facility log stream that does not use a staging data set, you must explicitly specify STG_DUPLEX(NO), because the DASD-only log stream by definition uses a staging data set; unless you specify STG_DUPLEX(NO), this storage data set is retained by the coupling facility log stream.

2. You cannot use UPDATE LOGSTREAM to convert a log stream that uses a coupling facility structure to one that uses DASD-only. To do that, you must delete and redefine the log stream.

### Analyzing system logger data (SMF Type 88 records)

When you review the output from the system logger reports produced by IXGRPT1, IXGRPT1J, and IXGRPT1L, look at the following key fields for CICS system logs.

Check the following key fields:

- The number of bytes deleted from primary storage is close to the number of bytes written
- The number of bytes deleted from the system log after writing to offload data sets is usually very low:
  - If this number is high, resources are being used to move data to the offload data set only to be later deleted.
  - This number is a key indicator that log-tail deletion is not working effectively.
Check the MVS system log for any DFHRM0205 and DFHLG0743 messages from the affected CICS region.

Look for long-running tasks (using CICS monitoring data or a system monitoring package), or check if AKPFREQ is too high.

In general offloads are acceptable, but offloads triggered by NTRY FULL indicators are not a good sign:

- NTRY FULL indicates that the entry-to-element ratio is too high.
- Such offloads are probably the result of unlike logstreams defined in the same structure.
- The offloads are being triggered by all the entries being used rather than triggered by the HIGHOFFLOAD value.

- TYPE3 I/O counts must not appear in the statistics for coupling facility log streams, because they indicate that I/O is being initiated when over 90% of the elements for the log stream are in use.

- Average buffer size is important for these reasons:
  - If over 4 KB, the writes are asynchronous, rather than synchronous.
  - Buffer size is used to determine the entry to element ratio.
  - If MAXBUFSIZE specified on the log stream definition is lower than 65,532-bytes, the element size is 256-bytes.
  - If MAXBUFSIZE is 65,532-bytes, the element size is 512-bytes.
  - The entry-to-element ratio is calculated as (average-buffer-size plus 4 divided by 4).

Managing auxiliary storage

Use System Managed Storage (SMS) to manage log stream data sets.

Managing log data sets

You can specify the SMS characteristics of log data sets in a number of ways, depending on your installation.

Using automatic class selection (ACS) routines

You can use installation-written automatic class selection (ACS) routines to assign log data sets to SMS classes.

Using the LOGR policy

When you define or update a log stream definition in the LOGR policy, you can assign the SMS storage class, data class, and management class for both the DASD log data sets and staging data sets.

- Use LS_DATACLAS to specify the SMS data class to be used for log stream data set allocation.
- Use LS_STORCLAS to specify the SMS storage class to be used for log stream data set allocation.
- Use LS_SIZE to specify the size, in 4 KB blocks, of the log stream DASD data sets. Specify a size so that each data set can contain multiple offloads of the primary storage: this capability is particularly important if all the data is offloaded for a log stream, as in the case of user journals and forward recovery logs. The MVS system logger issues message IXG256I is you specify less than 64 KB. If you omit the size parameter, the size is taken from the ALLOCxx member of PARMLIB. The default is 2 tracks, which leads to a high number of new data set allocations. Specify a size that is large enough to avoid a high frequency of new data set allocations; aim for a new data set to be allocated less frequently than once an hour.

SHAREOPTIONS(3,3)

Always define logger data sets with SHAREOPTIONS(3,3), whether the system is a part of a multiple-member sysplex or a monoplex. The common symptom of not having SHAREOPTIONS(3,3) return code 84A or 403 from the logger.

For more information about managing log data sets, see z/OS MVS Setting Up a Sysplex.
Managing the system log

CICS manages the system log by deleting records, for completed units of work, during activity keypoint processing (log-tail deletion). With an appropriately sized log stream, the system log data remains in primary storage, thus avoiding data spilling to DASD.

Note that:

• The CICS system log must be used only for short-lived data required for recovery purposes. For example, do not write audit trail user records to the system log.

• Allow CICS to manage the size of the system log.

However, if historically you have used the system log for such things as audit trails, you might want to preserve system log data beyond the time it is typically deleted by CICS. You can use the RETPD MVS parameter to preserve system log data. Define DFHLOG and DFHSHUNT to MVS with AUTODELETE(NO) and RETPD(dddd). The default values are AUTODELETE(NO) and RETPD(0). By specifying AUTODELETE(NO), CICS, rather than MVS, retains control of the log-tail trimming process; dddd is the number of days for which data is to be retained. In this way, the MVS logger physically deletes an entire log data set when all of the data in the data set has been marked for deletion by the CICS log-tail trimming process and is older than the retention period specified for the log stream.

You can view log data that has been marked for deletion by CICS, but not yet physically deleted by MVS, with the DFHJUP utility program or the VIEW=ALL option of the MVS IXGBRWSE macro.

Managing general logs

The number of data sets per log stream recognized by the MVS logger is several million. Therefore, in general, do not be concerned about the limit being reached. You can cause redundant data to be deleted from log streams automatically, after a specified period. To arrange deletion for general log streams, define the logs to MVS with AUTODELETE(YES) and RETPD(dddd), where dddd is the number of days for which data is to be retained. This definition causes the MVS system logger to delete an entire log data set when all the data in it is older than the retention period (RETPD) specified for the log stream.

Unicode data conversion by z/OS

z/OS Unicode services provides support for the conversion of Unicode data (either UTF-8 or UTF-16) to any of the EBCDIC CCSIDs currently supported by CICS.

For more information on Unicode services, see z/OS Unicode Services User’s Guide and Reference.

The three CCSIDs for UTF data are as follows:

• CCSID 1202 indicates UTF-16LE.
• CCSID 1201 indicates UTF-16BE.
• CCSID 1200, which indicates that the data carries a byte order marker that must be examined to see whether the following form is big-endian or little-endian.

When handling CCSID 1200, CICS respects the byte order marker for inbound conversions, but cannot retain that information when handling a related outbound conversion. All outbound data for CCSID 1200 is UTF-16BE. Application programmers must know about this CCSID restriction, and perform their own BE to LE conversions if necessary.

Applying service to CICS Transaction Server for z/OS

Service material for CICS Transaction Server for z/OS is distributed as APAR fixes and PTFs.

An APAR (Authorized Program Analysis Report) is raised when you and your IBM programming service representative agree that a CICS problem exists. You might be given an APAR fix. When the problem has been analyzed, all users are sent a PTF (Program Temporary Fix) to correct the problem permanently on
the current release. PTFs are incorporated into any future CICS release. Both types of change are called
SYSMODs (system modifications).

Using SMP/E control statements, you can process SYSMODs in three stages:

1. The **RECEIVE** control statement moves the SYSMOD into the PTF temporary store (PTS) data set. This
   operation is reversed by the **REJECT** control statement.

2. The **APPLY** control statement moves the SYSMOD into the target libraries. This operation is reversed by
   the **RESTORE** control statement.

   At this point you can test the modified system.

3. The **ACCEPT** control statement moves the SYSMOD into the distribution libraries. This operation is not
   easily reversed.

When you are dealing with APAR fixes, apply the SYSMOD, but do not accept it. If you later obtain a PTF
that solves the problem in a different way, you might be asked to restore (that is, remove) the APAR fix
and apply the PTF instead.

When you are dealing with PTFs, apply the SYSMOD and then test it. Afterward you can accept it.

For background information about SMP/E operations, see the SMP/E for z/OS User’s Guide. For more
detailed information, see SMP/E for z/OS Reference.

**Load library secondary extents**

CICS supports load library secondary extents that are created while CICS is running.

If you define libraries in the DFHRPL or dynamic LIBRARY concatenation with primary and secondary
extents, and secondary extents are added while CICS is running, as a result of link-editing into the load
library, the CICS loader detects the occurrence and closes and then reopens the library. In this way, you
can introduce new versions of programs by using the CEMT NEWCOPY command, even if the new copy of
the program has caused a new library extent.

However, do not attempt to apply service to data sets that are used by CICS TS components that are
running.

**The CICS TS-supplied SMP/E procedure**

DFHSMPE is a CICS TS-supplied procedure for applying service to the CICS and CICSPlex SM components
of CICS TS.

This procedure is tailored to your environment and stored in the *hlq*.XDFHINST library when you run the
DFHISTAR job.

For information about how to apply corrective service with SMP/E, see the SMP/E for z/OS User’s Guide.

Whenever you do any SMP/E processing on CICS or CICSPlex SM software, and you use any of the
examples quoted in the SMP/E for z/OS User’s Guide, specify DFHSMPE as the name of the SMP/E
procedure on the EXEC statement; that is, in place of SMPPROC, as used in the examples. The DFHSMPE
procedure includes the following DD statement for supplying SMP/E control statements:

```plaintext
//SMPCNTRL DD DSN=&&SETBDY,DISP=(OLD,DELETE)
// DD DDNAME=DFHSMPIN
```

The **ZNAME** parameter of the DFHSMPE procedure generates a SET BDY command for the zone that is
identified by the parameter. The command is stored in the temporary data set, SETBDY. The **ZNAME**
parameter is set to the value of **zonename** that you specify for the **TZONE** parameter. If you do not specify
any value for **zonename** for the **TZONE** parameter of the DFHISTAR job, **zonename** and the **ZNAME** value
default to **TZONE**.

The **ZNAME** parameter also generates a SET BDY command in DFHAUPLE, the CICS TS procedure
supplied for assembling and link-editing CICS control tables.
If you supply an override SMPCNTL DD statement in the job that runs DFHSMPE, it must come before any DD statements that are additional to the procedure. Furthermore, if you provide an override, you receive the following MVS system message:

```
IEF686I DDNAME REFERRED TO ON DDNAME KEYWORD IN PRIOR STEP WAS NOT RESOLVED
```

You receive this message because the DD statement for DFHSMPIN is missing because of the SMPCNTL DD override. However, the message is not a JCL error, and does not prevent the step from running successfully with a return code of 0.

If you supply any SMP/E control statements in your job using the DFHSMPIN ddname, they are prefixed by a SET BDY command for the zone that you specify on the ZNAME parameter. If you run SMP/E with a command that does not require this SET BDY statement, the way your job runs is not affected.

**APARs and PTFs**

An APAR is a temporary fix created for individual customers. PTFs are intended for all users to install to avoid possible problems.

**APARs**

Generally, do not ACCEPT APAR fixes into distribution libraries. Subsequent PTFs might not include the APAR fix, and you might be required to reapply the APAR fix.

If two APAR fixes depend on each other, and each is a prerequisite of the other, you must apply them both in the same SMP/E APPLY processing step.

**PTFs**

A PTF can contain fixes for several different problems, so several APAR fixes reported in RETAIN might be superseded by the more permanent PTF:

- A PTF provides card-image changes that are functionally equivalent to those in the APAR fix.
- A PTF contains object-module replacements for preassembled CICS TS programs.

For further information about using SMP/E to apply service, see SMP/E for z/OS User's Guide.

**Applying service to CICS modules**

If you use the CICS TS-supplied SMP/E usermod to install a module into the LPA (for example, into the hlq.SDFHLPA library), and later apply service to that module, the LPA-resident version of the module is serviced. If you have not used the SMP/E usermod to install the module into the LPA, the original version in the hlq.SDFHAUTH library or hlq.SDFHLOAD library is serviced.

After you have installed CICS, and before you start the postinstallation tasks, change the TEMPLIB parameter and the SYSPROC DD statement of the DFHISTAR job to refer to the hlq.SDFHINST library. This reference ensures that, if you apply service to any of the skeleton jobs, the changes applied to the hlq.SDFHINST library are used in subsequent runs of DFHISTAR. In any such subsequent runs of DFHISTAR, you can use the SELECT parameter to select any jobs that are affected by service.

1. If DFHISTAR is serviced, add the service changes to your DFHISTAR module in the hlq.TDFHINST library to preserve your current installation parameters, or respecify your current installation parameters in the serviced DFHISTAR module, which you can copy from the hlq.SDFHINST library to the hlq.TDFHINST library.

2. Linkage editor messages IEW0461, IEW2454, IEW2646, IEW2651, and IEW2689 are produced during the APPLY stage for unresolved external references. These messages are issued, giving a return code of 4, when some CICS load modules are link-edited during PTF installation. You can ignore these IEWxxxx messages because they are produced for component object modules of executable CICS load modules.

3. JCI720D and JCI720E PTFs to ship Java service are often significantly larger than those for the base CICS product and might require more system resources during APPLY processing. To avoid errors caused by insufficient storage, do not restrict the region size for the SMP/E APPLY step for such PTFs.
If a region size limit is used and the APPLY fails with errors relating to insufficient storage, it might be necessary to increase or remove the limit for the SMP/E job. In some cases, you might require a region size of 500 MB or more.

**Applying service to CICSPlex SM**

Service material for CICSPlex SM is distributed as corrective or preventive service.

Both types of changes are called system modifications (SYSMODs). SYSMODs are processed using SMP/E control statements.

For background information on SMP/E operations, see SMP/E for z/OS User's Guide. For more detailed information, see SMP/E for z/OS Reference. For information about how to apply corrective service using SMP/E, see SMP/E for z/OS User's Guide.

**CICS Transaction Server for z/OS-supplied SMP/E procedure**

For all CICS Transaction Server regions, the procedure for applying service is DFHSMPE.

You can customize this procedure with the DFHISTAR job that is stored in the CICSTS55.CICS.XDFHINST library.

For full details about applying service to the CICSPlex SM component of CICS TS, see “Applying service to CICS Transaction Server for z/OS” on page 155.

**Applying PTFs to CICSplesxes**

Use this procedure if the PTF modifies a CICSPlex SM resource table.

**Note:** When you apply service to CICSPlex SM, PTFs that are applied to the ESSS are not intended to be downward-compatible with earlier maintenance levels at the same release. This means that all CMASes, MASes, WUI Server regions and API programs must run at the same maintenance level as the ESSS for their release. Otherwise, abends, data corruption and unexpected results might occur. See Designing your CICSPlex SM environment for additional considerations about the configuration of CICSPlex SM components. When you apply PTFs to CICSPlex SM, it is essential that all ++HOLD ACTION items associated with the SMP/E maintenance are followed carefully.

- First apply the PTF to the maintenance point for the CICSplesx.
- If the PTF modifies a repository record, upgrade the repository at the maintenance point before restarting the maintenance point CMAS.
- After the maintenance point CMAS is restarted, apply the PTF to any local MASs connected to the maintenance point CMAS. You can restart these local MASs one at a time. You do not have to restart them all together.
- After the maintenance point CMAS is restarted, apply the PTF to any other CMASs in the CICSplesx. You can do this at the same time as the MASs connected to the maintenance point are being updated. You can update the non-maintenance point CMASs one at a time and you do not have to restart them all together.
- If the PTF modifies a repository record, upgrade the repository for the non-maintenance point CMAS before restarting it.
- After a non-maintenance point CMAS is restarted, you can apply the PTF to any local MASs connected to that CMAS and restart them. You can restart these local MASs one at a time. You do not have to restart them all together.

To summarize, update the maintenance point CMAS first, then the other CMASs, and update a MAS only after its owning CMAS has been updated.

A PTF might contain additional documentation, giving further instructions specific to that PTF.

If you have multiple CMASes connected together in a network with more than one CMAS being a maintenance point for different CICSplesxes, you must apply PTFs to all CMASes simultaneously that function as a maintenance point.
For example, consider the following configuration:

- CMAS1 is a maintenance point for PLEX1
- CMAS2 is a maintenance point for PLEX2
- CMAS3 helps manage PLEX1 and PLEX2
- CMAS4 helps manage PLEX2

There are CMAS-to-CMAS connections between each CMAS in this list.

If you apply PTF maintenance to CMAS1, you must also apply it to CMAS2 at the same time, because both CMASs function as maintenance points for various CICSplexes. Failure to do so results in CMAS isolation.

### Applying service to CICSPlex SM modules

If you use the CICS TS-supplied SMP/E USERMOD to install modules into the LPA (for example, into the CICSTS55.CPSM.SEYULPA library), and later apply service to that module, the LPA-resident version of the module is serviced. If you have not used the SMP/E USERMOD to install the module into the LPA, the original version in the CICSTS55.CPSM.SEYUAUTH library or CICSTS55.CPSM.SEYULOAD library is serviced.

After you have applied CICSPlex SM service, ensure that all CICSPlex SM regions are running with a consistent set of CICSPlex SM libraries. Failure to do so can cause unpredictable results.

For more information about applying service to CICSPlex SM, see “CICS Transaction Server for z/OS-supplied SMP/E procedure” on page 158.
Chapter 8. Getting ready to run CICS

Before you can run CICS, you must customize the CICS TS supplied skeleton jobs and enable services that are required by CICS.

For detailed information on configuring CICS, including setting up the data sets, connectivity, and configuring CICSPlex SM see Configuring.

Tailoring the CICS-supplied skeleton jobs

You tailor the CICS-supplied skeleton jobs to your CICS TS environment.

If you used CBPDO or the ServerPac to install CICS TS, edit and run DFHISTAR to tailor the CICS-supplied skeleton jobs that create the CICS TS data sets and run the CICS TS IVPs.

If you used the distribution tape to install CICS TS you have typically tailored the skeleton jobs already, and you can now start “Jobs for creating the CICS data sets” on page 164.

Whichever method you used to install CICS TS, you can edit and run DFHISTAR several times, to create different copies of the skeleton jobs or subsequently change them. For example, to create several copies of DFHDEFDS to define data sets unique to several CICS regions, or if you have to apply service to any of the installation-related jobs. In this way, you can tailor the jobs to your CICS environment after you have loaded the CICS software into the SMP/E-supported CICS libraries.

The CICS installation libraries

When you use CBPDO to install CICS TS, you use the TDFHINST, XDFHINST, ADFHINST, and SDFHINST installation libraries.

© Copyright IBM Corp. 1974, 2019
skeleton installation-related jobs to your CICS environment. Until you have installed the CICS software into the SMP/E-supported CICS libraries, this library also stores the skeleton jobs to be tailored.

2. You edit DFHISTAR in the hlq.TDFHINST library, to specify CICS installation parameters specific to your CICS environment.

3. When you run DFHISTAR, the tailored copies of the skeleton jobs are copied from the hlq.TDFHINST library to the hlq.XDFHINST library. hlq.XDFHINST is used to store the tailored, executable, copies of the skeleton jobs that are to be run.

4. To install CICS, you run the tailored copies of the CICS-supplied installation jobs to transfer the CICS software from the distribution tape to the hlq.ADFHINST and hlq.SDFHINST libraries. hlq.ADFHINST is the SMP/E-supported distribution installation library. hlq.SDFHINST is the SMP/E-supported target installation library. After you have installed the CICS software into this library and other SMP/E-supported libraries, named SDFHxxxx and ADFHxxxx, the skeleton jobs that you use on any later runs of DFHISTAR are stored in the SDFHINST library.

The names of the TDFHINST and XDFHINST libraries, and the prefix for those and other CICS libraries, are defined in DFHISTAR, which you edit as described in this topic.

Running DFHISTAR

When you have edited DFHISTAR with the values for installation parameters for your CICS environment, submit DFHISTAR.

When you run DFHISTAR, it tailors the skeleton jobs selected by the SCOPE or SELECT parameter in the DFHISTAR input to your environment and adds them to the library that you specified on the LIB parameter (by default, hlq.XDFHINST). If necessary, DFHISTAR creates the library that is specified on the LIB parameter.

You must specify the full name of the installation library from which the skeleton jobs are obtained, on the TEMPLIB parameter and SYSPROC DD statement of DFHISTAR (by default, hlq.TDFHINST). For the postinstallation tasks that are described, specify TEMPLIB SDFHINST.

DFHISTAR produces a job log and, if necessary, an error code:

- The output job log lists the values that were used for the parameters of DFHISTAR.
- If an error occurs when running DFHISTAR, an error code of 4 or 12 is returned. For error code 4, the skeleton jobs are tailored and added to the hlq.XDFHINST library. For error code 12, the skeleton jobs are not tailored or copied. To resolve the cause of the error, examine the output job log and, if necessary, edit and submit DFHISTAR again.

CICSPlex SM postinstallation members

A number of CICSPlex SM postinstallation members are delivered, as skeletons, in the TDFHINST library. When you run DFHISTAR, the postinstallation members are customized and saved in the XDFHINST library.

Use these members to create a basic CICSPlex SM configuration that consists of a CMAS, a WUI, and a managed CICS system (MAS).

Postinstallation members are split into three areas as shown in Table 15 on page 162, Table 16 on page 163, and Table 17 on page 163.

### Table 15. Postinstallation members for a CMAS

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUCMASJ</td>
<td>JCL to start a CMAS. It runs EYUCMASP.</td>
</tr>
<tr>
<td>EYUCMASP</td>
<td>Starts a CMAS. This CMAS uses the CICS-supplied sample table, DFHSIT6$, but appropriate override values are supplied in the job.</td>
</tr>
<tr>
<td>EYUCMS0P</td>
<td>EYUPARM parameters for a CMAS.</td>
</tr>
</tbody>
</table>
### Table 15. Postinstallation members for a CMAS (continued)

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUCMDS</td>
<td>JCL to create and initialize the data sets for a CMAS.</td>
</tr>
<tr>
<td>EYUCMSSP</td>
<td>CICS SIT overrides for a CMAS.</td>
</tr>
</tbody>
</table>

For more information on CMAS data set customization, see Creating and customizing CMAS data sets.

### Table 16. Postinstallation members for a WUI

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUJWREP</td>
<td>JCL to delete and define a WUI data repository. This function is also included in EYUWUIDS.</td>
</tr>
<tr>
<td>EYUWUIOP</td>
<td>EYUPARM parameters for a WUI.</td>
</tr>
<tr>
<td>EYUWUIDS</td>
<td>JCL to create and initialize the data sets for a WUI.</td>
</tr>
<tr>
<td>EYUWUIIN</td>
<td>EYUWUI parameters for a WUI.</td>
</tr>
<tr>
<td>EYUWUIJ</td>
<td>JCL to start a WUI. It runs EYUWUIP.</td>
</tr>
<tr>
<td>EYUWUIP</td>
<td>Starts a WUI. This WUI uses the CICS-supplied sample system initialization table, DFHSIT6$, but appropriate override values are supplied in the job.</td>
</tr>
<tr>
<td>EYUWUIISP</td>
<td>CICS SIT overrides for a WUI.</td>
</tr>
</tbody>
</table>

For more information on WUI customization, see Creating and customizing the WUI data set.

### Table 17. Postinstallation members for a managed CICS system (MAS)

<table>
<thead>
<tr>
<th>Member</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUCSYDS</td>
<td>JCL to create and initialize the data sets for a managed CICS system.</td>
</tr>
<tr>
<td>EYUCSYSJ</td>
<td>JCL to start a managed CICS system. It runs EYUCSYSP.</td>
</tr>
<tr>
<td>EYUCSYSP</td>
<td>Procedure to start a managed CICS system. The MAS uses the CICS-supplied sample system initialization table, DFHSIT6$, but appropriate override values are supplied in the job.</td>
</tr>
<tr>
<td>EYUJHIST</td>
<td>JCL to delete and define a pair of history data sets.</td>
</tr>
<tr>
<td>EYULMS0P</td>
<td>EYUPARM parameters for a managed CICS system.</td>
</tr>
<tr>
<td>EYULMSSP</td>
<td>CICS SIT overrides for a managed CICS system.</td>
</tr>
<tr>
<td>EYULPMOD</td>
<td>JCL to apply the USERMOD function, EYU$UM01, that moves some MAS load modules to a link pack area (LPA) library.</td>
</tr>
</tbody>
</table>

For more information on managed CICS system customization, see Creating and customizing MAS data sets.
Jobs for creating the CICS data sets

After you have installed CICS, and applied any necessary service, you can run the DFHCOMDS, DFHDEFDS, DFHCMACI, DFH0JCUS, and DFH0JHLP jobs to create CICS data sets. These data sets are required if you want to run the IVP.

When you run DFHISTAR, these jobs are tailored to your environment and stored in the library that you specify on the LIB parameter of DFHISTAR (by default, hlq.XDFHINST). If you have not yet run DFHISTAR, do so before running any of the CICS postinstallation jobs.

You can generate several copies of these jobs by rerunning DFHISTAR, selecting the jobs that you want to copy. To generate new copies of these jobs, edit DFHISTAR to specify new values for the DSINFO and SELECT parameters. Only those jobs that you name in the SELECT parameter are regenerated.

The supplied level of DFSMS changes the way that the index control interval size (CISIZE) is calculated for the VSAM data sets that have index components. As a result, expect a large default CISIZE, which can cause open errors during CICS startup. The change in CISIZE applies to both CICS data sets and your own application data sets.

CICS supplies the following jobs to create the required data sets:

**DFHCOMDS**
Deletes and re-creates data sets common to all CICS regions.

**DFHDEFDS**
Deletes and re-creates copies of data sets that are used only by one CICS region. You can run a separate copy of this job to create the data sets for each CICS region.

**DFHCMACI**
Deletes and re-creates the CICS messages data set, dsindex.DFHCMACD, and loads it with the data from the CICS-supplied file, DFHCMACD, in the hlq.SDFHMSG library.

**Note:** This job is optional if you are installing CICS using the DFHISTAR job, but is used in Defining the CMAC messages data set.

**DFH0JCUS**
Deletes and re-creates the sample applications details data set, dsindex.SAMPLE.DFHCTCUS and its associated alternate index and path, and loads it with the data from the CICS-supplied file, DFH0DCUS, in the hlq.ADFHAPD2 library.

**DFH0JHLP**
Deletes and re-creates the sample applications help data set, dsindex.SAMPLE.DFHCTHLP, and loads it with the data from the CICS-supplied file, DFH0DHLP, in the hlq.ADFHAPD1 library.

Data set naming conventions

No restrictions apply to the data set names you choose for CICS data sets, other than MVS constraints.

In the examples in this information, hlq is the high-level qualifier, and the DD name is the lowest level. If you are running multiple CICS regions, you can use the CICS APPLID as a third-level qualifier.

The CTGI naming convention is an example of a naming convention that you can use for CICS 4-character names, and is based on the 4-character CTGI symbol:

- C identifies an entire CICSplex.
- T identifies the type of region.
- G identifies a group of regions.
- I identifies iterations of regions in a group.

Use the CTGI naming convention. For example, if CICSHTH1 is the APPLID, the following data set name for the CSD is correct:

```
DFHCSD DD DSN=CICSTS55.CICS.CICSHTH1.DFHCSD,DISP=SHR
```
Where names are allowed to be up to eight characters long, as for CICS APPLIDs, the letters CICS are used for the first four characters, particularly for production regions.

**DFHCOMDS job for common data sets**

The DFHCOMDS job deletes and re-creates the data sets that are common to CICS regions. The common data sets are DFHCSD and SYSIN.

For detailed information on creating these data sets for your CICS regions, see [Setting up the CICS system definition data set](#).

The DFHCOMDS job creates one of each of these data sets common to all CICS regions. If you use separate copies of any of these data sets for each CICS region, move and edit the appropriate statements into the DFHDEFS job. For further information about creating multiple copies of these data sets, see “Creating several copies of the DFHCSD and SYSIN data sets” on page 165.

The DFHCOMDS job comprises five job steps:

1. DELETE deletes the data sets.
2. DEFCSD defines the VSAM cluster for the CICS system definition data set, dsindex.DFHCSD, where *dsindex* is defined by the **DSINFO** parameter of DFHISTAR.
3. INITCSD initializes the CICS system definition data set.
4. DEFRPIDC defines the VSAM cluster for ONC RPC.
5. DEFSYSIN creates the SYSIN PDS and copies the following modules from the *hlq*.SDFHSAMP library:
   - DFH$SIPA
   - DFH$SIPD
   - DFH$SIPT
   - DFH$SIP1
   - DFH$SIP2
   - DFH$SIP5
   - DFHRCNO
   - DFHRCEYES

**Creating several copies of the DFHCSD and SYSIN data sets**

The CICS-supplied DFHCOMDS job creates one of each of the DFHCSD and SYSIN data sets common to all CICS regions.

To use separate copies of any of these data sets for each CICS region:

- Move the statements that define the data set from the DFHCOMDS job to the DFHDEFS job.
- Edit the statements in the DFHDEFS job to specify the symbol &REGNAME for the region qualifier in the name of the data set.

Move and edit the appropriate data set statements before you create copies of the DFHDEFS job for each CICS region. When you run DFHISTAR to create the new copies of the DFHDEFS job, it substitutes your values for the CICS region qualifier (&REGNAME) and index (&INDEX) into the data set names.

**For example:** If you intend using a copy of the DFHCSD data set for each CICS region, copy the job steps DELCSD, DEFCSD, and INITCSD from the DFHCOMDS job to the DFHDEFS job. Also, add the symbol &REGNAME for the qualifier to the name of the DFHCSD data set to give &DSINDEX.CICS&REGNAME.DFHCSD. If you edit DFHISTAR to select the DFHDEFS job to be copied, and specify the following DSINFO parameter:

```plaintext
DSINFO userid.CICSTS55.CICS H3P060 3390 IDA.
```

when you run the DFHDEFS job, it creates the DFHCSD data set called userid.CICSTS55.CICS.CICSIDA.DFHCSD for the CICS region identified by the qualifier IDA. If you change the SELECT and DSINFO parameters of DFHISTAR, to specify an appropriate new job name and
qualifier for another CICS region, you can create several copies of the DFHDEFDS job to create DFHCSD and SYSIN data sets for each CICS region.

**DFHDEFDS job for CICS region data sets**

The DFHDEFDS job deletes and re-creates copies of data sets that are required for each CICS region. For details about creating these data sets, see Defining data sets.

<table>
<thead>
<tr>
<th>Data set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFHAUXT</td>
<td>Non-VSAM auxiliary trace (A) data set</td>
</tr>
<tr>
<td>DFHBRNSF</td>
<td>Bridge</td>
</tr>
<tr>
<td>DFHBUXT</td>
<td>Non-VSAM auxiliary trace (B) data set</td>
</tr>
<tr>
<td>DFHDMPA</td>
<td>Non-VSAM dump (A) data set</td>
</tr>
<tr>
<td>DFHDMPB</td>
<td>Non-VSAM dump (B) data set</td>
</tr>
<tr>
<td>DFHDPFMB</td>
<td>The debugging profiles base data set</td>
</tr>
<tr>
<td>DFHDPFMP</td>
<td>The debugging profiles path data set</td>
</tr>
<tr>
<td>DFHDPFMX</td>
<td>The debugging profiles path data set</td>
</tr>
<tr>
<td>DFHGCD</td>
<td>CICS global catalog</td>
</tr>
<tr>
<td>DFHTML</td>
<td>HTML template data set</td>
</tr>
<tr>
<td>DFHINTRA</td>
<td>Intrapartition transient data set</td>
</tr>
<tr>
<td>DFHLCD</td>
<td>CICS local catalog</td>
</tr>
<tr>
<td>DFHLRQ</td>
<td>BTS local request queue</td>
</tr>
<tr>
<td>DFHPIDIR</td>
<td>WS-AT directory data set</td>
</tr>
<tr>
<td>DFHTEMP</td>
<td>Temporary storage data set</td>
</tr>
<tr>
<td>FILEA</td>
<td>Sample program file</td>
</tr>
</tbody>
</table>

Use DFHISTAR to create a copy of the DFHDEFDS job for each CICS region. Edit DFHISTAR, specifying the parameters **DSINFO** and **SELECT**, and run it once for each region.

In DFHISTAR, specify the following parameters:

- **SELECT DFHDEFDS newname** to specify the new name by which the copy of the DFHDEFDS job is to be known.
- **DSINFO** to specify the following details of the data sets for each CICS region:
  - The high-level index (*dsindex*)
  - The serial number of the volume (*volume*)
  - The unit type of the volume (*disktype*)
  - The region qualifier (*qualifier*)

The format of the data set names is:

```
dsindex.CICS qualifier dsname
```

*dsindex* is the high-level index for the data sets, specified on the **DSINFO** parameter of DFHISTAR. The default is *hlq*.
qualifier
Is the region qualifier for the data sets that are used by this CICS region, specified on the DSINFO parameter of DFHISTAR. The default is no qualifier.

dsname
Is the name of the data set being defined.

For example, the default name for the CICS local catalog is hlq.CICS.DFHLCD.

The DFHDEFDS job comprises the following job steps:

1. DELETE deletes any existing copies of the data sets.
2. DEFINE defines the clusters for the data sets.
3. INITDP initializes the debugging profiles base data set.
4. DEFAULT defines the alternate index for the debugging profiles data set.
5. BLDDP builds the alternate index for the debugging profiles data set.
6. INITGCD initializes the CICS global catalog.
7. INITLCD initializes the CICS local catalog.
8. DEFTRACE defines the trace data sets.
9. DEFDUMP defines the dump data sets.
10. DEFHTML defines the CICS default HTML data set.
11. LOADFILE loads the sample data into the FILEA data set.
12. LOADHTML loads HTML templates for supplied transactions.

DFHCMACI job for creating the messages data set
The DFHCMACI job deletes and re-creates the CICS messages data set DFHCMACD. This data set is used by the CMAC transaction.

The DFHCMACI job comprises the following job steps:

1. CMACDEF deletes any existing copies of the DFHCMACD data set and defines the VSAM cluster for the CICS message data set dsindex.DFHCMACD, where dsindex is defined by the DSINFO parameter of DFHISTAR.
2. CMACLLOAD loads the CICS message data set with data from the CICS-supplied file, DFHCMACD, in the hlq.SDFHMSGS target library.

For detailed information about setting up this data set, see Defining data sets.

Defining the sample applications data sets
CICS provides a range of samples that you can use to help develop your own applications and test various CICS functions; for example, as an aid to verifying that CICS has installed correctly.

Before you can use some of these samples, you must create the data sets that they use, and make them available to your CICS region, as described in these topics. Do not create these data sets, unless you intend using the associated sample applications.

The CUA text-level application
You can use this sample application to demonstrate BMS support for the Common User Access (CUA) interface. The application uses an action bar, with associated pull-downs, pop-ups, and help panels.

The application programs demonstrate how to code COBOL programs to display, overlay, and remove CUA style windows.

Creating the data sets for the CUA text-level application
To create the data sets that the CUA text-level application requires, submit the DFH0JCUS and DFH0JHLP jobs, which are installed in the hlq.XDFHINST library.
Making the data sets available to CICS
You can cause CICS to dynamically allocate the files for these data sets and open them after CICS initialization by installing the sample resource definitions in the group DFH$CTXT.

If no DD statement exists for these data sets in the CICS startup job stream, the files are allocated to the data sets with DSNAMEs that are specified in the resource definitions: hlq.SAMPLE.DFHCTCUS, hlq.SAMPLE.DFHCTHLP, and hlq.SAMPLE.DFHCTAIX, for the data sets and the alternate index. Alternatively, you can add DD statements for the data sets to your CICS startup job, which causes CICS to use the DSNAMEs specified on the DD statements instead of those in the resource definitions.

The FILEA sample application programs
The FILEA sample application programs comprise four sets of command-level application programs that operate on the sample VSAM file, FILEA.

Each of the four programming languages that are supported (Assembler, C, COBOL, and PL/I) has its own set. These programs show basic functions, such as inquire, browse, add, and update, that can serve as a framework for your own first programs. They were written before publication of the Common User Access guidelines.

Creating the data set for FILEA
When you submit the DFHDEFDS job, a copy of the data set that the FILEA application requires is created. This data set is installed in the hlq.SDFHINST library.

Making the data set available to CICS
When you tailor the CICS installation-related jobs, a DD statement for the FILEA data set is added to the CICS IVP jobs and the DFHSTART procedure. If you want CICS to dynamically allocate the data set and open the file, remove the DD statement and install a FILE resource definition with an appropriate DSNAME; for example, as supplied in the group DFH$FILA. For more information about CICS installation-related jobs, see “Tailoring the CICS-supplied skeleton jobs” on page 161.

The CICS Application Programming Primer sample application
You can use this sample application to demonstrate the design and programming of a standard CICS application.

It provides online inquiry and maintenance for a sample customer credit file in a department store. The application uses VSAM files and 3270 display and printer terminals. It was written before publication of the Common User Access guidelines, and provides similar function, without CUA support, as the CUA sample application.

Creating the data sets for the Primer application
To create the data sets that the Primer sample application requires, edit and submit the sample job.
//DEFACCTF JOB (accounting parameters),MSGCLASS=A,MSGLEVEL=(1,1),
//   CLASS=A,NOTIFY=userid
//
//*******************************************************************************
// CICS sample jobs to define ACCT files
//
// This job deletes and defines the following data sets for the
// ACCT sample described in the CICS Application Programming Primer
//
// STEPS:
// . DELETE AND DEFINE
//   - DELETE/DEFINE THE CLUSTERS FOR:
//     . CICSTS55.CICS.ACCTFILE
//     . CICSTS55.CICS.ACIXFILE
//   THE HIGH-LEVEL-QUALIFIER(S) OF THE DATASETS: CICSTS55.CICS
//   THE VOLUME SERIAL                        CICS41
//   THE UNIT TYPE                                3390
//
//*******************************************************************************
//DELETE    EXEC PGM=IDCAMS,REGION=1M
//SYSPRINT DD SYSOUT=*
//SYSIN    DD *
DELETE CICSTS55.CICS.ACCTFILE
DELETE CICSTS55.CICS.ACIXFILE
SET MAXCC=0
/**
//DEFINE    EXEC PGM=IDCAMS,REGION=1M
//SYSPRINT DD SYSOUT=*
//SYSIN    DD *
/**
DEFINE CLUSTER(NAME(CICSTS55.CICS.ACCTFILE)-
  KEYS(5 0)-
  INDEXED -
  RECORDSIZE(383 383)-
  REC(80)-
  SHR(2 3)-
  VOLUMES(CICS41)) -
  DATA(NAME(CICSTS55.CICS.ACCTFILE.DATA)-
    UNIQUE)-
  INDEX(NAME(CICSTS55.CICS.ACCTFILE.INDEX)-
    UNIQUE)
/**
DEFINE CLUSTER(NAME(CICSTS55.CICS.ACIXFILE)-
  KEYS(17 0)-
  INDEXED -
  RECORDSIZE(63 63)-
  REC(80)-
  SHR(2 3)-
  VOLUMES(CICS41)) -
  DATA(NAME(CICSTS55.CICS.ACIXFILE.DATA)-
    UNIQUE)-
  INDEX(NAME(CICSTS55.CICS.ACIXFILE.INDEX)-
    UNIQUE)
/**
/**

Figure 18. Example JCL to create the Primer sample data sets

Making the data sets available to CICS

You can cause CICS to dynamically allocate the files for these data sets and open them on first reference by installing the sample resource definitions in the group DFH$ACCT.

If no DD statement exists for these data sets in the CICS startup job stream, the files are allocated to the data sets with DSNAMEs that are specified in the resource definitions: hlq.ACCTFILE and hlq.ACIXFILE. Alternatively, you can add DD statements for the data sets to your CICS startup job, which causes CICS to use the DSNAMEs specified on the DD statements instead of those in the resource definitions.
CICS resource definitions for CICSPlex SM

You must review or change some definitions when you upgrade the CSD for CICSPlex SM.

**Dynamic creation of CICS resource definitions**

CICS can dynamically define the CICS resource definitions required to allow the CICSPlex SM CMAS, MAS agent, or WUI server to be started.

This includes the COLM and COVC transactions. If these transactions are invoked, or the equivalent CPSMCONN system initialization parameter is set, CICSPlex SM dynamically creates further definitions as required.

The dynamically created resource definitions and their attributes can be found in the following members of the SEYUSAMP sample library:

- EYU$CDEF contains the default resource definitions for a CMAS.
- EYU$MDEF contains the default resource definitions for a MAS.
- EYU$WDEF contains the default resource definitions for a WUI server.

If the dynamically created CICS resource definitions need to be changed, see “Overriding the dynamically created CICS resource definitions for CICSPlex SM” on page 170.

The CSD in use needs to be appropriate for the release of CICS in use. For example, upgrade the CSD to the latest release and depending on the CICS release of the region, add the CICS DFHCOMPx CSD compatibility groups to the CICS group list as necessary. See the appropriate CICS Upgrading documentation for details.

**Overriding the dynamically created CICS resource definitions for CICSPlex SM**

You do not have to update your CSD to obtain the default resource definitions supplied by CICSPlex SM.

You do not typically run user transactions in a CMAS. However, if you do choose to define your own transactions to the CMAS, be aware that transaction IDs used by CICSPlex SM in the CMAS have no specific format. To avoid conflict between your names and those that are used by CICSPlex SM, review the transactions that are defined in EYU$CDEF. For a list of these transactions, see Chapter 11, “Default CICS resource definitions for CICSPlex SM,” on page 219.

If you do want to modify a definition, you can do so using the required definition from the EYU$CDEF (CMAS), or EYU$WDEF (WUI) samples.

For MAS definitions use the following:

- EYU$M640: This sample includes the default CICS resource definitions used for a MAS agent at the CICS TS 5.1 level and the CICS region at CICS R640.
- EYU$M650: This sample includes the default CICS resource definitions used for a MAS agent at the CICS TS 5.1 level and the CICS region at CICS R650.
- EYU$M660: This sample includes the default CICS resource definitions used for a MAS agent at the CICS TS 5.1 level and the CICS region at CICS R660.
- EYU$M670: This sample includes the default CICS resource definitions used for a MAS agent at the CICS TS 5.1 level and the CICS region at CICS R670.
- EYU$MDEF: This sample includes the default CICS resource definitions used for a MAS agent at the CICS TS 5.1 level and the CICS region at CICS R680.

Copy the required definitions from the appropriate sample into a DFHCSDUP job, and make the required changes, including specifying a CSD group. Specify this CSD group in an appropriate GRPLIST for the CMAS, MAS, or WUI server. The region is then COLD or INITIAL started, as required, to process the change.

Some CICS resource definitions are enforced. If an inappropriate definition is found, a message is produced during CICSPlex SM initialization. If CICSPlex SM cannot dynamically correct the error, CICSPlex SM initialization can fail.

You can update the CSD for CICSPlex SM if CMAS journaling is required; see CMAS journaling.
Another reason you might want to update the CSD for CICSPlex SM is if your WUI servers require additional import or export TDQs to make copying WUI view or menu definitions easier. You can use the COVI and COVE definitions from EYU$WDEF as a model. For example, if the WUI servers can access the same MVS data sets, make your updates in this way:

1. Copy the COVI and COVE definitions from EYU$WDEF into a DFHCSD job.
2. Rename the COVE TDQ; for example, to MYEX. This TDQ definition must have the data set name specified. Also, this data set must be preallocated using data set characteristics.
3. Include the MYEX definition in a group that is to be used by the exporting WUI.
4. Install the MYEX TDQ, after the definition has been made on the CSD in one of these ways:
   - A COLD start of the exporting WUI, if the group is in the exporting WUI's group list, or
   - CEDA INSTALL, if the WUI server is running.
5. Rename the COVI TDQ; for example, to MYIM. This TDQ definition must have the same data set name specified on the MYEX TDQ definition.
6. Include the MYIM definition in a group that is to be used by the importing WUI.
7. Install the MYIM TDQ, after the definition has been made on the CSD in one of these ways:
   - A COLD start of the importing WUI, if the group is in the importing WUI's group list, or
   - CEDA INSTALL, if the WUI server is running.
8. Use COVC, on the exporting WUI, to export the required definitions to the MYEX TDQ. Wait for the Export to complete.
9. Use COVC, on the importing WUI, to import the required definitions to the MYIM TDQ.

If the WUI servers cannot access the same data sets, the export data set must be copied from the exporting system (after the COVC Export is complete) to the importing system (before the COVC Import is run).

The following DFHCSDUP SYSIN control statements contain the default definitions, copied from EYU $WDEF, with the modification to the default definitions, to allow the same data set to be used to export to a copy of the COVE output TD queue and the COVI input TD queue to import into another WUI. The modification is in bold type.

```
//CSDUP EXEC PGM=DFHCSDUP
//STEPLIB DD DSN=cics.index.SDFHLOAD,DISP=SHR
//DFHCSD DD DSN=cics.dfhcsd,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

* Create TDQUEUE definitions for import/export *

DELETE GROUP(group_name)
DEFINE TDQUEUE(MYIM) GROUP(group_name)
 DESCRIPTION(CPSM WUI IMPORT DATASET)
 TYPE(EXTRA) DATABUFFERS(1) Ddbname(EYUCOVI) DSNAMe(hlq.wui.screens)
 ERROROPTION(IGNORE) OPENTIME(DEFERRED) TYPEFILE(INPUT)
 RECORDSIZE(32000) BLOCKSIZE(0) RECORDFORMAT(VARIABLE)
 BLOCKFORMAT(BLOCKED) DISPOSITION(SHR)
*
DEFINE TDQUEUE(MYEX) GROUP(group_name)
 DESCRIPTION(CPSM WUI EXPORT DATASET)
 TYPE(EXTRA) DATABUFFERS(1) Ddbname(EYUCOVE) DSNAMe(hlq.wui.screens)
 ERROROPTION(IGNORE) OPENTIME(DEFERRED) TYPEFILE(OUTPUT)
 RECORDSIZE(32000) BLOCKSIZE(0) RECORDFORMAT(VARIABLE)
 BLOCKFORMAT(BLOCKED) DISPOSITION(SHR)
ADD GROUP(group_name) LIST(list_name)
```

where:

**STEPLIB**
Identifies cics.index.SDFHLOAD as the CICS load library that contains the DFHCSDUP module.

**DFHCSD**
Identifies cics.dfhcsd as the CICS CSD file to be updated.
SYSIN
   Shows the SYSIN input for import and export transient data queues.

**group_name**
   Identifies the name of your group.

**list_name**
   Identifies the name of a CSD list, which you include on the GRPLIST system initialization parameter for WUI server WUI A.

For information about TD queue definitions see Transient data queue definitions for the WUI.

A return code of 4 is expected from this run of DFHCSDUP because, before adding the designated group to the CSD, the job attempts to delete any group with the same name.

You can amend the supplied definitions for a CMAS and MAS in the same way. Run DFHCSDUP including the modified resource definition from the sample EYU$CDEF, for a CMAS, or EYU$MDEF, for a MAS, in a CSD list that you use when starting your system.

**Amending log stream names in a CMAS**
If the log stream names used by the CICS-supplied DFHLGMOD group are not appropriate for your environment, copy group DFHLGMOD to a new group, where you can make your amendments. Add the new group to a CSD list and ensure that the list is included for your CMAS, using the SIT GRPLIST system initialization parameter.

See Defining the logger environment for CICS for details on how to define log streams.

Do not operate the CMAS with log streams that are defined as DUMMY. Dummy log streams can cause problems when recovering the CSD or CICSPlex SM data repository (EYUDREP). See CMAS journaling for details about the various CMAS journaling options that you can activate.

---

**Adding CICS support for programming languages**

You must add runtime support for the programming languages used with the CICS command level (EXEC) programming interface before you can install your application programs.

**About this task**

To write CICS application programs that request CICS services through the command-level application programming interface (API), you can use Assembler language, C and C++, COBOL, or PL/I.

CICS provides the support required to run application programs written in Assembler language, and Language Environment provides the required support for all the other languages.

The programming guidance documentation expects that your CICS system is using the services of Language Environment, which provides a common runtime environment for IBM implementations of Assembler and those high-level languages (HLLs) supported by CICS, namely COBOL, PL/I, C, and C++. Supported compilers are listed in Changes to CICS support for application programming languages.

**Installing Language Environment support**

Language Environment support is provided by runtime libraries that establish a common runtime environment for application programs compiled by high-level languages. All programs compiled by a high-level language, whether by a Language Environment-conforming compiler or not, must be run under CICS-Language Environment support.

**About this task**

The CICS-Language Environment interface is initialized automatically when CICS performs the following tasks:

1. Loads the Language Environment interface modules, CEECCICS, CEEPIPI, and CEECTCB, from STEPLIB.
2. Successfully calls the CEECCICS module to initialize the interface.

Language Environment initialization takes place during CICS startup, when CICS issues the message DFHAP1203I applid Language Environment is being initialized. The CEECCICS module is loaded, followed by a partition initialization call, before the start of second phase PLT processing. If Language Environment cannot successfully complete the initialization of all languages supported by CICS, or can initialize only some of them, it issues messages to the MVS console. If Language Environment initialization fails completely, it might be because the CEECCICS module was not loaded, or something failed during the loading of a particular language routine.

Installing CICS support for Language Environment

To enable Language Environment support to be installed correctly by CICS, specify storage requirements and ensure that you have the required modules and resource definitions.

Procedure

1. Specify enough storage for the extended read-only dynamic storage area (ERDSA) to run CICS and Language Environment together. They require a minimum of 3,500 KB. To this minimum, add an amount of storage sufficient for your own requirements.

2. Ensure the CICS-Language Environment interface module, CEECCICS, and the Language Environment modules CEEPIPI and CEECTCB are installed in an APF-authorized library defined in the STEPLIB concatenation in the CICS startup JCL. You can do this by including the Language Environment SCEERUN library in an APF-authorized library in the STEPLIB concatenation of your CICS startup job, for example, in the CICSTS55.CICS.SDFHAUTH library, or in an APF-authorized library in the MVS LNKLSTnn concatenation.

3. Ensure that the CEE group is removed from any CICS startup group list named in the GRPLIST system initialization parameter. If CEE group definitions have been converted to bundle definitions or CICSPlex SM BAS definitions, these should also be removed. This is because with the CICS system autoinstall function, CICS dynamically installs Language Environment definitions when required, rather than installing a large number of definitions during startup.

   Note: Language Environment requires some definitions to be preloaded, such as the event handlers for Language Environment, which are named CEEEVnnn. So, during CICS initialization, Language Environment attempts to load all its 18 event handlers. As a result, all the 18 Language Environment event handler definitions are automatically installed; but later in initialization, before PLT phase 2, CICS discards, where possible, event handlers that are not required in a CICS environment.

   The following event handlers are retained because they are required in a CICS environment:
   • CEEEV003 for C and C++
   • CEEEV004 and CEEEV005 for COBOL
   • CEEEV006 for Debug Tool
   • CEEEV010 and CEEEV011 for PL/I

   In addition, two unwanted handlers, CEEEV007 for Fortran and CEEEV012 for OE sockets, will remain because Language Environment has successfully loaded the two event handler programs.

4. Define the Language Environment transient data destinations, CESE and CESO (DD names CEEMSG and CEEOUT).

   The CICS-supplied resource definition group DFHDCTG, in the CSD, contains entries for CESE and CESO.

   For information about the attributes required for Language Environment transient data destinations, see the z/OS Language Environment Programming Guide.

5. Define the Language Environment runtime libraries on the CICS STEPLIB and DFHRPL DD statements:

   a) Add the following libraries to STEPLIB or to a library in the MVS LNKLSTnn concatenation:
      • SCEERUN, which contains CEECCICS and CEECTCB
      • SCEERUN2, which contains support that is required for the IBM Java Virtual Machine (JVM) and also support for other programming languages
Both the libraries, SCEERUN and SCEERUN2, must be APF-authorized.

b) Add the SCEECICS, SCEERUN2, and SCEERUN libraries to DFHRPL.

For example:

```plaintext
//* CICS APF-authorized libraries
//STEPLIB DD DSN=hlq.CICS.SDFHAUTH,DISP=SHR
// DD DSN=hlq.LE.SCEERUN2,DISP=SHR
// DD DSN=hlq.LE.SCEERUN,DISP=SHR
//* CICS load libraries
//DFHRPL DD DSN=hlq.CICS.SDFHLOAD,DISP=SHR
// DD DSN=hlq.LE.SCEECICS,DISP=SHR
// DD DSN=hlq.LE.SCEERUN2,DISP=SHR
// DD DSN=hlq.LE.SCEERUN,DISP=SHR
```

Use only these Language Environment runtime libraries for all your high-level language application programs.

**Language Environment support for COBOL**

Language Environment is a prerequisite for application programs written in COBOL.

Changes to CICS support for application programming languages lists the COBOL compilers that are supported by CICS Transaction Server for z/OS, Version 5 Release 5, and their service status on z/OS. For information about Language Environment, see z/OS Language Environment Customization.

To run COBOL application programs:

- Install support for Language Environment, ensuring that CICS can initialize Language Environment during startup.
- Install resource definitions for your programs with the LANGUAGE attribute specified as LANGUAGE(COBOL), or leave the language blank.

For your application programs, CICS can create and install program resource definitions automatically, or you can create them specifically in the CSD, and install them by using the GRPLIST system initialization parameter or CEDA INSTALL command. For more information about installing program resource definitions, see Resource definition installation.

**Language Environment support for C and C++**

Language Environment is a prerequisite for application programs compiled using IBM C/C++ for MVS or SAA AD/Cycle C/370 compilers. Language Environment incorporates the runtime libraries required for both these C language compilers.

For information about Language Environment, see z/OS Language Environment Customization.

To run C application programs in CICS:

- Install support for Language Environment, ensuring that CICS can initialize the Language Environment environment during startup.
- Install resource definitions for your programs with the LANGUAGE attribute specified as LANGUAGE(C) or leave the language blank.

For information about installing program resource definitions, see Resource definition installation.

CICS supports application programs written in C++ that meet these requirements:

- Are compiled using the IBM C/C++ for MVS compiler (5655-121)
- Run with the Language Environment runtime libraries

If you use Version 3 Release 2, or later, of the C/C++ compiler to compile a C++ program, specify the CXX parameter when options are passed to the compiler; otherwise, the C compiler is invoked. Do not specify CXX if a C program is to be compiled. For further information, see Customized JCL and the CXX format in z/OS XL C/C++ Compiler and Runtime Migration Guide for the Application Programmer.
Language Environment support for PL/I
Language Environment is a prerequisite for application programs compiled using the IBM Enterprise PL/I for z/OS compiler. Language Environment incorporates the runtime libraries required for PL/I compilers.

PL/I support is also required if you use the web services support in CICS; in particular, it is required if you use the supplied SOAP 1.1 and SOAP 1.2 message handler programs.

To run CICS PL/I application programs:

- Install support for Language Environment, ensuring that CICS can initialize the Language Environment environment during startup.
- Install resource definitions for the programs with the LANGUAGE attribute specified as LANGUAGE(PLI) or leave blank.

For information about Language Environment, see z/OS Language Environment Customization. For information about installing program resource definitions, see Resource definition installation.

Language Environment support for Java
Language Environment is a prerequisite for Java programs that run in JVMs in CICS. However, unlike the other languages, Java programs do not require the CICS-Language Environment interface.

Java programs run with Language Environment support using MVS services, not CICS services. Java programs require the Language Environment support provided by the SCEERUN and SCEERUN2 libraries only, which can either be defined in the CICS STEPLIB or included in the MVS linklist. The SCEERUN and SCEERUN2 libraries must also be added to DFHRPL.

---

Enabling TCP/IP in a CICS region

The CICS sockets domain provides TCP/IP support, with network services supplied by z/OS.

About this task
The sockets domain provides listener support and outbound sockets support.

The listener
The listener monitors specified TCP/IP ports for incoming requests. You configure the listener with a TCPIPSERVICE resource definition to listen on a specific TCP/IP port and to attach a specified request receiver transaction to handle each connection. When the connection has been established between a client program and a particular request receiver, all subsequent requests from the client program over that connection flow to the same request receiver. The listener supports user applications initiated by TCP/IP services for the following protocols:

External Call Interface (ECI)
The ECI allows client applications to use a TCP/IP connection directly to a CICS region. The External Presentation Interface (EPI) and External Security Interface (ESI) are not supported.

Hypertext Transfer Protocol (HTTP)
HTTP messages are received and sent over the Internet, using CICS web support. See HTTP request and response processing for CICS(r) as an HTTP client for information about the transmission of HTTP messages on the web.

IP interconnectivity protocol (IPIC)
Intercommunication facilities available using IPIC

Outbound sockets
Outbound socket support allows CICS to open sockets and communicate using one of the supported TCP/IP networking protocols, for example, HTTP or IPIC.
Using TCP/IP in a CICS region

To use TCP/IP in a CICS region, install Communications Server, set and define system initialization parameters, and provide resource definitions. Additional tasks are required if you use SSL authentication.

1. Install Communications Server. Make ports belonging to Communications Server available for use by the CICS region involved.
2. Set the **TCPIP** system initialization parameter to **YES**.
3. Provide TCPIPSERVICE resource definitions for each active port and the type of service associated with it. The CICS TCP/IP listener is activated for the specified ports when the TCPIPSERVICE is installed, if you also specify **TCPIP(YES)**.
4. If Secure Sockets Layer (SSL) authentication is used, you must define the **KEYRING** system initialization parameter, to identify the RACF key ring containing the keys and X.509 certificates used in the SSL handshake.

The TCPIPSERVICE resource definitions are for use only with the CICS-provided TCP/IP services, and are not related to the z/OS Communications Server IP CICS Sockets interface. The TCP/IP Socket Interface for CICS is supplied with z/OS Communications Server, which is an integral part of z/OS and does not use the CICS Sockets domain.

A TCPIPSERVICE supports either one specific IP address or all IP addresses (INADDR_ANY). Therefore, if two CICS regions are required to listen on the same port at the same IP address, you must use a form of network load balancing, for example, TCP/IP port sharing.

Installing MRO support

CICS multiregion operation (MRO) enables CICS regions that are running in the same z/OS image, or in the same z/OS sysplex, to communicate with each other. MRO does not support communication between a CICS system and a non-CICS system such as IMS.

The external CICS interface (EXCI) uses a specialized form of MRO link to support communication between z/OS batch programs and CICS.

MRO does not require ACF/Communications Server or SNA networking facilities. The CICS support that enables region-to-region communication is called interregion communication (IRC). IRC is implemented in three ways:

1. Through support in CICS terminal control management modules and by use of a CICS-supplied interregion program, DFHIRP, loaded in the z/OS link pack area. DFHIRP is invoked by a type 3 supervisory call (SVC).
2. By z/OS cross-memory services, which you can select as an alternative to the CICS type 3 SVC mechanism. Here, DFHIRP only opens and closes the interregion links.
3. By the cross-system coupling facility (XCF) of z/OS. XCF/MRO is required for links between CICS regions in different z/OS images of an z/OS sysplex. CICS selects XCF/MRO dynamically for such links, if available.

For information about the design and implementation of interregion communication, and about the benefits of cross-system MRO, see Introduction to CICS intercommunication.

To install support for MRO, complete the following steps:

1. Define CICS as a z/OS subsystem. Multiregion operation with CICS requires z/OS Subsystem Interface (SSI) support. To obtain this support, you define CICS as an operating system subsystem.
2. Install the current versions of the DFHIRP and DFHCSVC modules in the LPA.
3. Specify appropriate system initialization parameters to enable MRO for each CICS region startup. To help you get started with MRO, a CICS job and a CICS startup procedure are supplied on the CICS distribution volume. For each MRO region, you must also create the CICS system data sets needed.

   To use cross-system MRO (XCF/MRO):

4. Install the required sysplex hardware and software.
5. Define the z/OS images as systems in an XCF sysplex.

To use the MRO support:

6. Define and install the MRO connections appropriate to your CICS environment.

Provided you complete these steps, you can use MRO to communicate with all supported levels of CICS.

If MRO is used to communicate between different releases of CICS, the function provided on any connection is that of the lower-level release.

**Installing the modules DFHIRP and DFHCSVC in the LPA**

You must install the DFHIRP and DFHCSVC modules to enable your regions to communicate by MRO.

**Procedure**

1. Install the current versions of the DFHIRP and DFHCSVC modules into the LPA, as described in “Installing CICS modules in the MVS link pack area” on page 98.

**Notes:**

- If you are running CICS with MRO at different release levels, all communicating CICS regions must use the latest DFHIRP module and the latest SVC module, DFHCSVC, on the same z/OS image. If a previous version of CICS is already installed on this z/OS image, do not use the dynamic LPA function to replace DFHIRP unless you have a strategy whereby all users of DFHIRP on the z/OS image that is being upgraded can be quiesced. For more information about dynamically updating DFHIRP, see Upgrading MRO. Failure to shut down all users of DFHIRP during the upgrade process can cause incompatibility between control blocks that results in abends that require an IPL of the z/OS image.

- Multiregion operation requires the CICS interregion communication modules to run in supervisor state to transfer data between different regions. CICS achieves this by using a normal supervisor call to this startup SVC routine, which is in the pregenerated system load library (CICSTS55.CICS.SDFHLOAD).

2. Define the SVC module, DFHCSVC, to z/OS, as described in “Installing the CICS SVCs” on page 85.

**Installation requirements for XCF/MRO**

For MVS images to communicate using MRO between CICS regions on different z/OS images, the z/OS images must be joined in a sysplex.

For the hardware and software that are required for z/OS systems in a sysplex, see the “Program Directories” on page 2.

A sysplex consists of multiple MVS images, coupled together by hardware elements and software services. In a sysplex, MVS images provide a platform of basic services that multisystem applications like CICS can exploit. As the workload for an installation grows, additional MVS images can be added to the sysplex so that the installation can meet the needs of the greater workload.

Usually, a specific function (one or more modules or routines) of the MVS application subsystem (such as CICS) is joined as a member (a member resides on one MVS image in the sysplex), and a set of related members is the group (a group can span one or more of the MVS images in the sysplex). A group is a complete logical entity in the sysplex. To use XCF to communicate in a sysplex, each CICS region joins an XCF group as a member, using services provided by DFHIRP.

For information about installing and managing MVS systems in a sysplex, see z/OS MVS Setting Up a Sysplex.

**Generating XCF/MRO support**

There are a number of steps you must complete to generate XCF/MRO support.

**Procedure**

1. Ensure that the version of DFHIRP in the extended link pack area (ELPA) is at the required level for all the MVS images containing CICS systems to be linked.
Depending on the versions of CICS installed in the MVS images participating in XCF/MRO, the versions of DFHIRP installed in the images can be different. The DFHIRP module must be from the most current CICS release in the image, or higher.

The CICS TS for z/OS, Version 5.5 DFHIRP module, which is required for multiple XCF group support, can be used only with z/OS, Version 2 Release 2 or later.

2. Ensure that each CICS APPLID is unique within the sysplex.
3. Ensure that the value of the **MAXMEMBER** MVS parameter, used to define the XCF couple data sets, is high enough to cater for the largest CICS XCF group.

The maximum size of any XCF group within a sysplex is limited by this value. The theoretical maximum size of any XCF group is 2047 members.

External CICS interface (EXCI) users that use an XCF/MRO link also join an XCF group. You must therefore set the value of **MAXMEMBER** high enough to allow all CICS regions and EXCI XCF/MRO users in the largest CICS XCF group to join the group concurrently.

To list the CICS regions and EXCI users in an XCF group, use the MVS **DISPLAY** command. For example, to list the CICS regions and EXCI users in the DFHIR001 XCF group, use the command:

```
DISPLAY XCF,GROUP,DFHIR001,ALL
```

Do not rely on the default value of **MAXMEMBER**, which might be too low to allow all the CICS regions and EXCI users in the largest XCF group to join the group. This is especially important if you have only a few CICS XCF groups.

Likewise, do not set a value much larger than you need, because this results in large couple data sets for XCF. The larger the data set, the longer it takes to locate entries.

Make the value of **MAXMEMBER** 10-15 greater than the combined number of CICS regions and EXCI users in the largest CICS XCF group.

**Results**

Each CICS region joins an XCF group when it logs on to DFHIRP. Its member name is its APPLID (NETNAME) used for MRO partners. The XCF group name is specified on the XCFGROUP system initialization parameter. If **XCFGROUP** is not specified, the XCF group name defaults to DFHIR000.

At connect time, CICS invokes the IXCQUERY macro to determine whether the CICS region being connected to resides in the same MVS image. If it does, CICS uses IRC or XM as the MRO access method, as defined in the connection definition. If the partner resides in a different MVS image, CICS uses XCF as the access method, regardless of the access method defined in the connection definition.

CICS regions can use MRO or XCF/MRO to communicate only with regions in the same XCF group. Members of different XCF groups cannot communicate using MRO, or XCF/MRO, even if they are in the same MVS image.

**Defining z/OS images as systems in an XCF sysplex**

To use XCF/MRO, you define all participating z/OS images as part of the same sysplex.

In a parallel sysplex, where MRO communication between z/OS images is by XCF/MRO, the DFHIRP programs installed in the different z/OS images can be at different release levels. However, DFHIRP must be installed from the highest release of CICS running in an z/OS image. For example, a CICS TS for z/OS, Version 3.2 DFHIRP can communicate with another DFHIRP across XCF/MRO, but the CICS regions running in the z/OS with the CICS TS for z/OS, Version 3.2 DFHIRP cannot be later than CICS TS for z/OS, Version 3.2.

For more information, see “MVS cross-system MRO definitions” on page 122.
Enabling MRO for CICS startup
For each CICS region that is to use MRO, you must specify ISC=YES to include the intersystem communication program, DFHISP.

If you want a CICS region to establish MRO communication during startup, also specify YES on the IRCSTART system initialization parameter.

Alternatively, after your CICS region is running, you can establish MRO communication by using the CEMT SET IRC OPEN command or the EXEC CICS SET IRC OPENSTATUS(cvda) command.

Either method establishes MRO communication with every CICS region that meets the following criteria:
1. The MRO connection is currently active.
2. The MRO connection is defined to your region by CONNECTION and SESSIONS definitions that are installed from the CSD. To establish MRO communication between two CICS regions, the installed CONNECTION definition must specify INSERVICE(YES) in both regions.

Adding communications support between systems
You can include communications to other systems in a CICS region by using either ISC over SNA or IP interconnectivity (IPIC).

MRO can be used only for CICS-to-CICS connections in the same z/OS image or z/OS sysplex. If you connect CICS to both CICS and non-CICS systems, and the remote systems can be inside or outside the local z/OS sysplex, CICS offers intersystem communication over SNA (ISC over SNA) and intersystem communication over TCP/IP. Intersystem communication over TCP/IP is known as IP interconnectivity (IPIC).

Unlike MRO, no special z/OS operating system requirements apply to these methods of communication.

Activating intersystem communication over z/OS Communications Server
To provide the necessary protocols to support communication between CICS regions that are in different z/OS images, or in different z/OS sysplexes, ISC over SNA uses the ACF/Communications Server access method.

You can also use ISC over SNA in the same CPC, through the application-to-application facilities of ACF/Communications Server.

You must include the following management programs in your CICS regions, by specifying the system initialization parameters that are given in parentheses:
• DFHISC – the intersystem communication program (ISC=YES).
• DFHTCP – the terminal control program (TCP=YES is the default).

Establishing ISC over SNA
Intersystem communication over SNA requires z/OS Communications Server support. CICS regions cannot communicate until they have established the z/OS Communications Server connection.

Specify VTAM=YES as a system initialization parameter.

If the z/OS Communications Server is running during CICS initialization, CICS opens the z/OS Communications Server ACB.

If the z/OS Communications Server is started after CICS, opening the z/OS Communications Server ACB fails, and you must open it using the z/OS Communications Server CEMT SET VTAM OPEN command when the z/OS Communications Server is available.
**ACF/SNA definition for CICS**

When you define your CICS system to ACF/SNA, you need to include a number of operands in the SNA APPL statement.

**About this task**

**MODETAB=logon-mode-table-name**

This operand names the SNA logon mode table that contains your customized logon mode entries. See "ACF/Communications Server LOGMODE table entries for CICS" on page 180 for more information. You can omit this operand if you choose to add your MODEENT entries to the IBM default logon mode table, without renaming it.

**AUTH=(ACQ,SPO,VPACE[,PASS])**

ACQ is required to allow CICS to acquire LU type 6 sessions. SPO is required to allow CICS to issue the MVS MODIFY snaname USERVAR command. VPACE is required to allow pacing of the intersystem flows.

PASS is required if you intend to use the EXEC CICS ISSUE PASS command, which passes existing terminal sessions to other SNA applications.

**VPACING=number**

This operand specifies the maximum number of normal-flow requests that another logical unit can send on an intersystem session before waiting to receive a pacing response.

Take care when selecting a suitable pacing count. Too low a value can lead to poor throughput because of the number of line turnarounds required. Too high a value can lead to excessive storage requirements.

**EAS=number**

This operand specifies the number of network-addressable units that CICS can establish sessions with. The number must include the total number of parallel sessions for this CICS system.

**PARSESS=YES**

This option specifies LU type 6 parallel session support.

**SONSCIP=YES**

This operand specifies session outage notification (SON) support. SON enables CICS, in particular cases, to recover a failed session without requiring operator intervention.

**APPC=NO**

APPC=NO is required for CICS. This setting is the default. If you do not use APPC=NO, you receive message DFHZC2400E, referencing the SNA return code 1013.

For more information about the SNA APPL statement, see z/OS Communications Server: SNA Resource Definition Reference.

**ACF/Communications Server LOGMODE table entries for CICS**

For APPC sessions, you can use the MODENAME option of the CICS DEFINE SESSIONS command to identify a z/OS Communications Server logmode entry that in turn identifies the required entry in the z/OS Communications Server class-of-service table.

Every modename that you supply, when you define a group of APPC sessions to CICS, must be matched by a z/OS Communications Server LOGMODE name. You need to create entries in the z/OS Communications Server LOGMODE table using the following format:

```
MODEENT LOGMODE=modename
MODEEND
```

An entry is also required for the LU services manager modeset (SNASVCMG):

```
MODEENT LOGMODE=SNASVCMG
MODEEND
```

If you plan to use autoinstall for single-session APPC terminals, additional information is required in the MODEENT entry.
For CICS-to-IMS links that are cross-domain, you must associate the IMS LOGMODE entry with the CICS APPLID, using the DLOGMOD or MODETAB parameters.

**ACF/SNA definition for IMS**
When the IMS system is defined to SNA, the following operands should be included on the SNA APPL statement.

**About this task**

**AUTH=(ACQ,VPACE)**
ACQ is required to allow IMS to acquire LU type 6 sessions. VPACE is required to allow pacing of the intersystem flows.

**VPACING=number**
This operand specifies the maximum number of normal-flow requests that another logical unit can send on an intersystem session before waiting to receive a pacing response. An initial value of 5 is suggested.

**EAS=number**
The number of network addressable units must include the total number of parallel sessions for this IMS system.

**PARSESS=YES**
This operand specifies LU type 6 parallel session support.

For more information, see z/OS Communications Server: SNA Programming.

**ACF/SNA LOGMODE table entries for IMS**
IMS allows the user to specify some BIND parameters in a z/OS Communications Server logmode table entry. The CICS logmode table entry must match that of the IMS system.

IMS uses, in order of priority, the mode table entry specified in the following places:
1. The MODETBL parameter of the TERMINAL macro
2. The mode table entry specified in CINIT
3. The DLOGMODE parameter in the VTAMLST APPL statement or the MODE parameter in the IMS / OPNDST command
4. The ACF/SNA defaults.

Figure 19 on page 181 shows an IMS logmode table entry:

```
LU6NEGPS MODEENT LOGMODE=LU6NEGPS, NEGOTIABLE BIND
 PSNDPAC=X'01', PRIMARY SEND PACING COUNT
 SRCVPAC=X'01', SECONDARY RECEIVE PACING COUNT
 SSNDPAC=X'01', SECONDARY SEND PACING COUNT
 TYPE=6, NEGOTIABLE
 FMPROF=X'12', FM PROFILE 18
 TSPROF=X'04', TS PROFILE 4
 PRIPROT=X'B1', PRIMARY PROTOCOLS
 SECPROT=X'B1', SECONDARY PROTOCOLS
 COMPROT=X'78A0', COMMON PROTOCOLS
 RUSIZES=X'8585', RU SIZES 256
 PSERVIC=X'66003800000038000000000000000000' SYSMSG/Q MODEL
 MODEEND
```

**Figure 19. Example IMS logmode table entry**
IMS system definition for intersystem communication
The IMS ISC-related macros that are used in IMS system definition are the COMM, NAME, SUBPOOL, TERMINAL, TYPE, and VTAMPOOL macros.

The COMM macro
The COMM macro identifies the IMS system.

APPLID=name
Specifies the APPLID of the IMS system. This APPLID is usually the name that you specify on the NETNAME option of DEFINE CONNECTION when you define the IMS system to CICS.

However, consider the following points:

• If APPLID on the COMM macro is coded as NONE, the CICS NETNAME option should specify the label on the EXEC statement of the IMS startup job.

• If the IMS system is started as a started task, NETNAME should specify the started task name.

• For an IMS system with XRF, the CICS NETNAME option should specify the USERVAR (that is, the generic applid) that is defined in the DFSHSBxx member of IMS.PROCLIB, not the applid from the COMM macro.

RECANY=(number,size)
Specifies the number and size of the IMS buffers that are used for SNA “receive any” commands. For ISC sessions, the buffer size has a 22-byte overhead. It must therefore be at least 22 bytes larger than the CICS buffer size specified in the SENDSIZE option of DEFINE SESSIONS.

This size applies to all other ACF/SNA terminals attached to the IMS system, and must be large enough for input from any terminal in the IMS network.

EDTNAME=name
Specifies an alias for ISCEDT in the IMS system. For CICS-to-IMS ISC, an alias name must not be longer than four characters.

The NAME macro
The NAME macro defines the logical terminal names associated with the subpool. Multiple LTERMs can be defined per subpool.

COMPT={1|2|3|4}
Specifies the output component associated with this session. The component specified determines the protocol that IMS ISC uses to process messages. An output component defined as SINGLE1 is strongly recommended.

ICOMPT={1|2|3|4}
Specifies the input component associated with this session. When IMS receives a message, it determines the input source terminal by finding the NAME macro that has the matching input component number. A COMPT1 input component must be defined for each session that CICS uses to send START commands.

EDIT=[{NO|YES}],[{ULC|UC}]
The first parameter specifies whether the user-supplied logical terminal edit routine (DFSCNTEO) is to be used.

The second parameter specifies whether the output is to be translated to uppercase (UC) or not (ULC) before transmission.

The SUBPOOL macro
A SUBPOOL macro is required for each session to the remote system.

NAME=subpool-name
Specifies the IMS name for this session. A CICS-to-IMS session is identified by a “session-qualifier pair” formed from the CICS name for the session and the IMS subpool name.

The CICS name for the session is specified in the SESSNAME option of the DEFINE SESSIONS command for the session.
The IMS subpool name is specified to CICS in the NETNAMEQ option of the DEFINE SESSIONS command.

**The TERMINAL macro**
The TERMINAL macro identifies the remote CICS system to IMS. It is comparable to DEFINE CONNECTION in CICS.

**NAME=name**
Identifies the CICS node to IMS. It must be the same as the APPLID of the CICS system.

**OUTBUF=number**
Specifies the size of the IMS output buffer. It must be equal to or greater than 256, and should include the size of any function management headers sent with the data. It must not be greater than the value specified in the RECEIVESIZE option of the DEFINE SESSIONS commands for the intersystem sessions.

**SEGSIZE=number**
Specifies the size of the work area that IMS uses for deblocking incoming messages. We recommend that you use the size of the longest chain that CICS may send. However, if IMS record mode (VLVB) is used exclusively, you could specify the largest record (RU) size.

**MODETBL=name**
Specifies the name of the z/OS Communications Server mode table entry to be used. You must omit this parameter if the CICS system resides in a different SNA domain.

**OPTIONS=[NOLTWA|LTWA]**
Specifies whether Log Tape Write Ahead (LTWA) is required. For LTWA, IMS logs session restart information for all active parallel sessions before sending a syncpoint request. LTWA is recommended for integrity reasons, but it can adversely affect performance. NOLTWA is the default.

**OPTIONS=[SYNCSESS|FORCSESS]**
Specifies the message resynchronization requirement following an abnormal session termination. SYNCSESS is the default. It requires both the incoming and the outgoing sequence numbers to match (or CICS to be cold-started) to allow the session to be restarted. FORCSESS allows the session to be restarted even if a mismatch occurs. SYNCSESS is recommended.

**OPTIONS=[TRANSRESP|NORESP|FORCRESP]**
Specifies the required response mode.

**TRANSRESP**
Specifies that the response mode is determined on a transaction-by-transaction basis. This is the default.

**NORESP**
Specifies that response-mode transactions are not allowed. In CICS terms, this means that a CICS application cannot initiate an IMS transaction by using a SEND command, but only by a START command.

**FORCRESP**
Forces response mode for all transactions. In CICS terms, this means that a CICS application cannot initiate an IMS transaction by using a START command, but only by means of a SEND command.

TRANSRESP is recommended.

**OPTIONS=[OPNDST|NOPNDST]**
Specifies whether sessions can be established from this IMS system. OPNDST is recommended.

**{COMPT1|COMPT2|COMPT3|COMPT4}={SINGLEn|MULTn}**
Specifies the IMS components for the IMS ISC node. Up to four components can be defined for each node. The input and output components to be used for each session are then selected by the ICOMPT and COMPT parameters of the SUBPOOL macro.

The following types of component can be defined:
SINGLE1
Used by IMS for asynchronous output. One output message is sent for each SNA bracket. The message may or may not begin the bracket, but it always ends the bracket.

SINGLE2
Each message is sent with the SNA change-direction indicator (CD).

MULT1
All asynchronous messages for a given LTERM are sent before the bracket is ended. The end bracket (EB) occurs after the last message for the LTERM is acknowledged and dequeued.

MULT2
The same as MULT1, but CD is sent instead of EB.

SESSION=number
Specifies the number of parallel sessions for the link. Each session is represented by an IMS SUBPOOL macro and by a CICS DEFINE SESSIONS command.

EDIT=[[{NO|YES}],[{NO|YES}]]
Specifies whether user-supplied physical output and input edit routines are to be used.

The TYPE macro
The TYPE macro specifies the terminal type. Parameters of the TERMINAL macro can also be specified in the TYPE macro if they are common to all the terminals defined for this type.

UNITYPE=LUTYPE6
Must be specified for ISC.

The VTAMPOOL macro
The VTAMPOOL macro heads the list of SUBPOOL macros that define the individual sessions to the remote system.

Defining ISC over SNA connections
Before you can use ISC over SNA, you must define and install connections with attributes appropriate to your CICS and SNA environment.

Activating IP interconnectivity (IPIC) connections
IP interconnectivity requires CICS TCP/IP services to be activated.

System initialization parameters
To activate IPIC at CICS startup, specify TCPIP=YES and ISC=YES as system initialization parameters. The default value of the TCPIP and ISC parameters is NO.

Defining IPIC connections
Before you can use IPIC, you must:
- Define and install IPCONNs with attributes appropriate to your CICS environment.
- Define and install a TCPIPSERVICE definition with the PROTOCOL attribute set to IPIC.
- Review your MAXSOCKETS system initialization parameter settings. Ensure that you allocate enough sockets to support IPIC connections and other traffic that requires IP sockets.

Verifying Java components checklist
The CICS components required to support Java applications are included in the base product. You must also install the IBM 64-bit SDK for z/OS, Java Technology Edition, on z/OS UNIX, to provide Java support.
Before you begin to set up and configure Java support in your CICS regions, verify that the Java components are correctly installed on your system.

**IBM 64-bit SDK for z/OS, Java Technology Edition installation**

Check that the IBM 64-bit SDK for z/OS, Java Technology Edition is installed in z/OS UNIX. CICS Transaction Server for z/OS, Version 5 Release 5 uses Version 8 of the IBM 64-bit SDK for z/OS, Java Technology Edition for Java support. CICS TS for z/OS, Version 5.5 supports only the 64-bit version of the SDK and not the 31-bit version.

The `JAVADIR` parameter of the DFHISTAR installation job for CICS specifies the location for the IBM SDK for z/OS. This parameter is used to customize the sample JVM profiles and Java security policy, so that they point to the SDK installation. The value in the JVM profiles determines the SDK that is used for Java support in a CICS region.

The default for the `JAVADIR` parameter is `java/J8.0_64`. This value is appended to `/pathprefix/usr/lpp/` to specify the default location of the IBM 64-bit SDK for z/OS, Java Technology Edition.

**Files supplied by CICS**

The CICS components for Java are installed during the installation process. Confirm that they are all present in the specified locations. z/OS UNIX System Services must be active in full function mode during the installation process to enable files to be stored in its file system.

In all of the directory paths shown here, cicsts55 is a user-defined value, specified on the `USSDIR` parameter in the DFHISTAR installation job. This value determines the installation directory for CICS files on z/OS UNIX. This value is used as the `uss_path` variable in the DFHJVMJ job, which creates the customized sample JVM profiles and Java security policy as z/OS UNIX files in the directories listed in the following table.

<table>
<thead>
<tr>
<th>Java component</th>
<th>Location</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Directory containing JAR files supplied by CICS</td>
<td>z/OS UNIX directory: <code>/pathprefix/usr/lpp/cicsts/cicsts55/lib</code></td>
<td>This directory is on the base library path and class path for all JVMs in CICS.</td>
</tr>
<tr>
<td>Directory containing the WebSphere® Application Server Liberty</td>
<td>z/OS UNIX directory: <code>/pathprefix/usr/lpp/cicsts/cicsts55/wlp</code></td>
<td>This directory contains the Liberty profile for running web servlets in a JVM server.</td>
</tr>
<tr>
<td>Sample programs</td>
<td>z/OS UNIX directory: <code>/pathprefix/usr/lpp/cicsts/cicsts55/samples</code></td>
<td>The sample programs demonstrate the use of output redirection, the JCICS classes, JDBC, pipelines, and web services.</td>
</tr>
<tr>
<td>JVM profiles</td>
<td>z/OS UNIX directory: <code>/pathprefix/usr/lpp/cicsts/cicsts55/JVMProfiles</code></td>
<td>JVM profiles specify options used in creating JVMs. These sample JVM profiles are customized for your system during the installation process. You can edit them using CICS Explorer or any text editor. The JVM profiles must always be available to CICS.</td>
</tr>
</tbody>
</table>

For all z/OS UNIX files, case is important. CICS does not automatically convert the name of these files to uppercase. When you use the name of a JVM profile anywhere in CICS, you must enter it using the same case as specified in the JVM profiles.
combination of uppercase and lowercase characters that is present in the z/OS UNIX file name. The file extension .jvmpofile must always be lowercase.

### Defining DL/I support

CICS can provide DL/I database support by using the IBM IMS Database Manager.

For information about appropriate versions and releases, see Overview of Database Control (DBCTL). As they become available, versions of IMS newer than those versions listed are also compatible.

You can use DL/I support with CICS through these methods:

- Database control (DBCTL)
- CICS remote DL/I support, also known as function shipping

The IMS libraries referred to in the job streams are identified by IMS.libnam; for example, IMS.PGMLIB. If you use your own naming convention for IMS libraries, rename the IMS libraries accordingly.

CICS provides a CICS-DBCTL interface which enables DBCTL, IMS, or IMS DM/TM to satisfy DL/I requests that are issued from the CICS region. This method is simpler to install than local DL/I and provides additional function. Details of installing and using DBCTL are in Installing and generating DBCTL.

CICS support for access to DL/I databases using the IBM Information Management System (IMS) product is included in the base product. No specific installation is required.

For more information about storage protection, see Storage protection.

### Program specification blocks (PDIR)

A directory of program specification blocks (PDIR) is a list of program specification blocks (PSBs) that define, for DL/I, the use of databases by application programs.

Your CICS region requires a PDIR to access a database owned by a remote CICS region. Your CICS region does not require a PDIR to access a DL/I database owned by DBCTL. For information about accessing DL/I databases owned by DBCTL, see the Overview of Database Control (DBCTL).

The modules that provide remote DL/I support are automatically loaded by CICS during startup when a DL/I PSB directory is specified with the PDIR= system initialization parameter.

### Adding remote DL/I support

Remote DL/I support is included in CICS Transaction Server for z/OS, and works with one of the supported levels of IMS.

For information about appropriate IMS versions and releases, see Overview of Database Control (DBCTL).

Usually, you use remote DL/I support, with either MRO or ISC connections, to access databases owned by another CICS region. You can also use CICS remote DL/I support to access, through another CICS region connected to DBCTL, databases owned by DBCTL. CICS regions accessing databases owned by DBCTL (that is, connected to DBCTL) must be running on the same MVS image as the DBCTL system. An overview is given in Figure 20 on page 186.

![Figure 20. Using CICS remote DL/I support to access DBCTL databases](image-url)
1. CICSB uses remote DL/I to access, through CICSA, databases owned by DBCTL 1 in MVS image 1. This support is only required if CICSB is not connected to DBCTL 1.

2. CICSB uses remote DL/I to access, through CICSC, databases owned by DBCTL 2 in MVS image 2.

For information about accessing DL/I databases owned by DBCTL, see the Overview of Database Control (DBCTL).

To add support in CICS for remote database access:

1. Code, assemble, and link-edit a program specification blocks directory (PDIR).

2. Code the PDIR CICS system initialization parameter for remote DL/I support.

### Defining a PSB directory

You code entries in a program specification block directory (PDIR), to indicate the identity of the remote CICS region, or regions, to which you want CICS to function ship DL/I requests.

You do this by coding the SYSIDNT parameter in DFHDLPSB TYPE=ENTRY macros, which you assemble and link-edit to create a PDIR. You must also code the MXSSASZ parameter. You can, optionally, code the RMTNAME parameter to define the name by which the PSB is known in the remote CICS region. For information about creating PDIRs, see Defining resources.

### Coding CICS system initialization parameters for remote DL/I support

The following summary of the DL/I parameters specifies the parameters that you can, or must, code as CICS system initialization parameters:

- **PDIR={YES|xx}** Suffix of PSB directory (mandatory for remote DL/I)
- **PSBCHK={NO|YES}** Security check on remote terminals starting transactions
- **XPSB={YES|name|NO}** PSB entries to be checked by RACF

### Enabling REXXX for CICS

The REXXY Development System for CICS and the REXY Runtime Facility for CICS are two licensed programs collectively referred to as REXXY for CICS. With REXXY for CICS, you can write and run REXXY programs in a CICS region.

These programs have access to most EXEC CICS API commands, the CICS CEDA and CEMT transactions, and Db2 databases through the EXEC SQL interface.

See Configuring REXXY support.
Chapter 9. Renewing a Developer Trial license

The Developer Trial has an fixed expiry date to allow at least 90 days use from the date that it is ordered. A console message showing the expiry date is issued each day. After that time, your system terminates and, if you try to initialize CICS TS Developer Trial, the console message DFHT10201 is issued. If you want to use the CICS Transaction Server for z/OS Developer Trial, Version 5 Release 5 after the expiry date, you can follow this procedure to renew a Developer Trial license. When installed, the Developer Trial is the latest version, with a new expiry date.

Before you begin
You must have a Developer Trial that is installed with a license that is expired.

Procedure
1. Download the latest version of the Developer Trial from Shopz.
   This downloaded package will give you a number of FMIDs. If you have already installed the developer trial, you need only the activation module to renew the license.
2. Install the latest level of the enablement module using the supplied activation module installation jobs. Ensure that you use the REDO operand on the SMP/E APPLY and ACCEPT step.

Results
You have now renewed your Developer Trial license and the Developer Trial is now ready for use.
Chapter 10. Verifying the CICS installation

After you have installed CICS and applied any necessary service, you can use the DFHIVPBT and DFHIVPOL CICS-supplied installation verification procedures (IVPs) to confirm that CICS is operational. You must have installed both the base component and activation module before you run the IVP jobs.

Preparing to run the IVPs

You must perform a number of tasks to prepare CICS for running the CICS installation verification procedures.

Creating and defining activities for the IVP jobs

In preparation for running the IVP jobs, create the CICS data sets, install the CICS SVC, define and activate the CICS applids, and define log streams.

Creating the CICS data sets for the IVP jobs

Before you can run any of the CICS-supplied IVP jobs, create the data sets that they use. For further information about creating the data sets for the IVP jobs, see “Jobs for creating the CICS data sets” on page 164.

Installing the CICS SVC for the IVP jobs

All the IVP jobs require the CICS Type 3 SVC, which must be installed in the LPA.

If you have not already installed the CICS SVC in the LPA, described in “Installing CICS modules in the MVS link pack area” on page 98, do so now before you attempt to run any of the IVP jobs. The IVP jobs do not use the Type 6 SVC (DFHHPSVC).

Defining and activating the CICS applids

If you want to use SNA with a CICS region started by any of the CICS IVP jobs, create and activate an SNA APPL definition for the CICS region application identifier (applid).

The applid defined to SNA must match the applid that is specified on the APPLID system initialization parameter that is used by the IVP job. For example, to be able to log on to the CICS region that is started by the DFHIVPOL job, you must perform one of the following actions:

- Create and activate an APPL definition for your own applid, which you specify on the APPLID parameter of the DFH$SIP1 member of the SYSIN data set.
- Define and activate an APPL definition for the default applid DBDCCICS, which you specify on the APPLID parameter of the DFH$SIP1 member of the SYSIN data set.

For more information about creating and activating SNA APPL definitions for CICS, see “Defining CICS regions as applications to SNA” on page 89 and “Data set naming conventions” on page 164.

Further, if you want to use SNA cross-domain services to communicate between CICS regions on separate MVS images, you must create and activate SNA CDRSC definitions in both MVS images involved in the communication. For more information about creating and activating SNA CDRSC definitions for CICS, see “Defining cross-domain services when using SNA” on page 91.

Defining log streams

CICS automatically attempts to connect to its system log stream, unless you define a journal model resource definition to define the log stream as TYPE(DUMMY). You decide whether you want to run the IVPs with system logs or to run with dummy logging.
If you decide to run with real log streams, see Defining the logger environment for CICS for information about defining log streams.

Alternatively, you can define a CICS JOURNALMODEL resource definition with TYPE(DUMMY) to avoid having to define log streams. To run the IVPs with the minimum effort:

- Define JOURNALMODEL resource definitions in the CSD for the primary and secondary system logs, DFHLOG and DFHSHUNT respectively, specifying TYPE(DUMMY); see Figure 21 on page 192 for a sample job.
- Add the CSD group that contains your dummy system log journal models to your own group list, and include your group list on the GRPLIST system initialization parameter.

Note that your group list must follow the IBM-supplied list DFHLIST. DFHLIST includes group DFHLGMOD, which contains DFHLOG and DFHSHUNT JOURNALMODEL definitions. Concatenating your list after DFHLIST ensures that your DUMMY definitions replace the IBM definitions.

```cics
//CSDUP EXEC PGM=DFHCSDUP,REGION=1M,PARM='CSD(READWRITE)'
//STEPLIB DD DSN=CICSTS55.SDFHLOAD,DISP=SHR
//DFHCSD DD DSN=CICSTS55.DFHCSD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSABOUT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//SYSUODUMP DD SYSOUT=*
//SYSSIN DD *
* DEFINE JOURNAL MODELS FOR CICS LOG STREAMS AS DUMMY *
DEFINE JOURNALMODEL(DFHLOG) GROUP(LOGTEST)
DESCRIPTION(DEFINE SYSTEM LOG AS DUMMY)
JOURNALNAME(DFHLOG) TYPE(DUMMY)
ADD GROUP(LOGTEST) LIST(mylist)
*
//
```

**Figure 21. Sample job to define DUMMY JOURNALMODELs for CICS system logs**

**Reviewing and defining IVP security**

You can run the IVP jobs with or without external security. To run the IVP jobs with external security, you must define to RACF an IVP default CICS user ID that has authority to run the transactions used as part of the IVP jobs.

**Reviewing security requirements**

As supplied, the system initialization parameters specify that external security is on. However, the IVP jobs have been set up with SEC=NO, indicating that external security is not on. The system initialization parameters also specify that the IVP jobs are subject to transaction security (XTRAN=YES), resource security (Xyyy=YES), and command security (XCMD=YES).

As supplied, the DFH$SIP2 member of the SYSIN data set used by the DFHIVPBT job specifies SEC=NO, so that you can run this job without external security.

To run the IVP jobs with external security:
1. Define CICS resource profiles to RACF.
2. Define an IVP default CICS user ID to RACF.
3. Specify the IVP user ID on the DFLTUSER=userid system initialization parameter.

You must also give the IVP user ID sufficient authority to use transactions and resources that are required to run the IVP jobs:
1. Authorize the IVP user ID to run the transactions that are used as part of the IVP jobs. (See Table 20 on page 193.) To do so, add the IVP user ID, with READ access, to the access list of the RACF profiles for the transaction member class (TCICSTRN) or the transaction group class (GCICSTRN).
2. If you define the transactions as prefixed resources, you must also specify the system initialization parameter SECPRFX={YES |prefix} for the IVP jobs.
3. Authorize the IVP user ID to access the resources that are used by the transactions. To do so, you add the IVP user ID, with appropriate authority, to the access list for the resource class profiles.

4. Authorize the IVP user ID to issue SP-type commands using the CEMT master terminal transaction. To do so, you add the IVP user ID, with appropriate authority, to the access list of the RACF profiles for the resource member class (CCICSCMD) or the resource group class (VCICSCMD). You must give the IVP user ID UPDATE access for the SHUTDOWN resource class; otherwise, the user ID cannot end the IVP jobs. Give the IVP user ID UPDATE access for the DUMPDS and SYSTEM resource classes, if the DFHIVPB1T job is to be run with external security.

For information about implementing external security, see CICS security. Alternatively, you can run the IVP jobs with limited security, for example:

- Without command security (XCMD=NO), the IVP user ID runs the IVP jobs without requiring authority to use the CEMT SP-type commands and the resources that they access.
- With transaction security only (Xyyy=NO including XCMD=NO), the IVP user ID runs the IVP jobs if authorized to use only the transactions used as part of the IVP jobs.

**Authorizing the IVP user ID**

To run the IVP jobs with external security, you must define to RACF an IVP default CICS user ID that has authority to run the transactions used as part of the IVP jobs.

These transactions include the CICS-supplied transactions that are listed in Table 20 on page 193. The level of authority that is required by the IVP user ID depends on the security that you want to use for the IVP jobs. On a production system, the default user must not have access to any CICS-supplied transactions except those that you require in your CICS environment. Make the resource access authorizations that you give to the default user clearly limited to those resources that you intend to be universally available, and therefore not restricted in any way.

For information about the security requirements for CICS-supplied transactions, and about CICS security in general, see Security for CICS-supplied transactions.

### Table 20. Transactions used as part of the IVP jobs

<table>
<thead>
<tr>
<th>Application</th>
<th>Transactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFH$BTCH</td>
<td>CWTO, CEMT, CEOT, CSFE</td>
</tr>
<tr>
<td>FILEA samples</td>
<td></td>
</tr>
<tr>
<td>DFH$MNU</td>
<td>AMNU, MENU, PMNU, DMNU</td>
</tr>
<tr>
<td>DFH$ALL</td>
<td>AINV, INQY, PINQ, DINQ, AADD, ADDS, PADD, DADD, AUUPD, UPDRT, PUPD, DUPD</td>
</tr>
<tr>
<td>DFH$xBRW</td>
<td>ABRW, BRWS, PBRW, DBRW</td>
</tr>
<tr>
<td>DFH$REN</td>
<td>AORD, OREN, PORD, DORD</td>
</tr>
<tr>
<td>DFH$xCOM</td>
<td>AORQ, OREQ, PORQ, DORQ</td>
</tr>
<tr>
<td>DFH$REP</td>
<td>AREP, REPT, PREP, DREP</td>
</tr>
<tr>
<td>Other functions</td>
<td>CETR, CEDA, CMAC, CMSG, CSGM</td>
</tr>
</tbody>
</table>

**Specifying system initialization parameters for the IVP jobs**

All the IVP jobs use the system initialization parameters that are specified in the associated DFH$SIPn member of the SYSIN data set.

The DFH$SIPn members, as supplied by CICS, use system initialization defaults, and the resources defined to CICS are adequate only for a basic CICS region. For example, in the case of the DFHIVPOL job, the resources defined limit the number of terminals you can use.
The DFH$SIPn members of the SYSIN data set also contain some system initialization parameters to exclude CICS resources that are not required by the IVP jobs, or to include some not specified by the default system initialization parameters.

One such parameter is TCT=5$, specifying the CICS sample LU control table, in the hlq.SDFHLOAD library. This LU control table defines the pair of sequential input and output devices, CARDIN and PRINTER. (These are the only devices that are defined in DFHTCT5$.)

You can edit the DFH$SIPn members of the SYSIN data set to make these changes:

• The default SVC number is 216. To use a different SVC number, specify CICSSVC=nnn as a parameter to the DFHSTART proc in the appropriate IVP job. For more information about defining CICS SVCs, see “Installing the CICS SVCs” on page 85.

  The IVP jobs do not require the Type 6 SVC.

• The applid used is CICSIVP1. To use a different applid, change the APPLID=CICSIVP1 system initialization parameter in the appropriate DFH$SIPn member.

• The IVP jobs have external security switched off. To run with security (SEC=YES), define a suitable default user ID (for example, IVPUSER) with the required authority to run the IVP transactions. Add DFLTUSER=IVPUSER in the appropriate DFH$SIPn member. For more information about defining the IVP user ID, see “Reviewing and defining IVP security” on page 192.

  You can define transactions as prefixed resources by using the IVP user ID, IVPUSER, or any other prefix, as the prefix (for example, IVPUSER.CEMT or prefix.CEMT). To do so, add SECPRFX=YES or SECPRFX=prefix in the appropriate DFH$SIPn member for the IVP job.

  The use of a prefix enables transactions to be run as part of the IVP jobs without affecting other CICS regions. For example, when the DFH$BTCH batch stream is run, CICS sends authorization requests to RACF for the transactions and identifies them as IVPUSER.xxxx, where xxxx is the transaction ID (for example, CWTO or CEMT).

• CICS provides Language Environment support, for all the high-level language sample programs. For the Language Environment modules, CICS requires either predefined CSD definitions to be installed or program autoinstall to be active.

  The IVP jobs include as comments the required DD statements for the Language Environment libraries.

• The IVP jobs run with auxiliary trace switched on (AUXTR=ON), and the auxiliary trace data set switching facility is set to switch once only (AUXTRSW=NEXT).

• TCT=NO is specified as a system initialization override, which causes CICS to use the dummy LU control table, DFHTCTDY. This dummy LU control table contains only the CICS and SNA control blocks for use with SNA LUs but no LU entries.

Resources for the CICS messages facility, CMAC

You can use the CICS messages facility, the CICS-supplied transaction CMAC, to provide the messages and codes descriptions online. Before you can use CMAC, you must create and initialize the CICS messages data set DFHCMACD, define the resources required by the facility, and make them available to your CICS region.

For information about creating and initializing the DFHCMACD data set, see “DFHCMACI job for creating the messages data set” on page 167.

The file DFHCMACD, managed by CICS file control, accesses the DFHCMACD data set. You must create a definition for this file in the CSD. The CICS-supplied definition for the DFHCMACD file and other resources that are required by the CICS messages facility are in the CSD group DFHCMAC. The CICS startup procedure (in the IVP jobs) has a DD statement for the CMAC file, but for dynamic allocation copy the supplied resource definition for the DFHCMACD file and add the DSNAMES option.

Specify the DFHCMAC group of resources for the CICS messages facility only in those CICS regions that use the facility; for example, on some terminal-owning regions, but perhaps not on data-owning regions.
The CICS startup procedure, DFHSTART

All the IVP jobs include a procedure to start CICS. You can use this procedure as a basis for your own CICS startup procedures.

The DFHSTART procedure comprises the following steps:

1. CICSCNTL: determine whether CICS is to be started.
2. DTCNTL: determine whether dump and trace analysis is to be performed.
3. CICS: run CICS.
4. PRTDMPA: print any contents of the CICS DFHDMPA dump data set.
5. PRTDMPB: print any contents of the CICS DFHDMPB dump data set.
6. PRTAUXT: print any contents of the auxiliary trace DFHAUXT data set.
7. PRTBUXT: print any contents of the auxiliary trace DFHBUXT data set.

When you run the DFHISTAR job, it overrides the default values in the IVP jobs with the values you specified in the DFHISTAR job.

Parameters

The following symbolic parameters are defined in the IVP jobs:

ACTIVE(SDFHLIC)

Is the type of license module used:

- SDFHLIC - Normal Licence
- SDFHVUE - Value Unit Edition
- SDFHDEV - Developer Trial

INDEX1(hlq)

Is the high-level index of the CICS runtime data sets, as specified on the DSINFO parameter of the DFHISTAR job.

INDEX2(hlq)

Is the high-level index of the CICS load libraries, as specified on the INDEX parameter of the DFHISTAR job.

INDEX3(hlq)

Is the high-level index of the CICSPlex SM load libraries, as specified on the INDEX parameter of the DFHISTAR job.

INDEX4(hlq)

Is the high-level index of the activation module load library, as specified on the INDEX parameter of the DFHISTAR job.

REGNAM(TR)

Is the REGION name for a single or MRO region.

REG(80M)

defines the MVS region size for the step to run CICS.

MEMLIM(10G)

The z/OS MEMLIMIT parameter limits the amount of 64-bit (above-the-bar) storage that the CICS address space can use.

START(AUTO)

Is the type of CICS startup to be performed.

DUMPTR(YES)

Specifies whether dump and trace analysis is required. The steps PRTDMPA, PRTDMPB, DFHAUXT, and DFHBUXT are run only if you specify DUMPTR=YES.

RUNCICS(YES)

Specifies whether CICS is to be started. The step to run CICS runs only if you code RUNCICS=YES (the default). To perform dump and trace analysis without starting CICS, code RUNCICS=NO.
OUTC(*)
Is the output print class.

SIP(T)
Is the suffix of the DFH$SIP member (in the SYSIN data set) to be used during CICS startup.

CICSSVC(216)
Specifies the CICSSVC number that you have assigned to the CICS type 3 SVC.

USSHOME(/usr/lpp/cicsts/cicsts55)
Specifies the name and path of the root directory for CICS Transaction Server files on z/OS UNIX.

**DD statements for CICS data sets**
The startup job step, DFHSTART, contains DD statements for the CICS data sets.

The IVP jobs include as comments the required DD statements for the Language Environment libraries.

| Table 21. DD statements for CICS data sets in the DFHSTART procedure |
|---|---|
| **DD name** | **Description** |
| SYSIN | SYSIN data set, containing the DFH$SIPn members that specify system initialization parameter overrides. |
| DFHCMACD | Messages data set, required for the CICS messages transaction, CMAC. |
| FILEA | Sample VSAM data set, required by the FILEA sample applications. |
| DFHTEMP | Auxiliary temporary storage data set, required by the FILEA sample applications. |
| DFHINTRA | Transient data intrapartition data set, required by the FILEA sample applications. |
| DFHAUXT | First auxiliary trace (A) data set. |
| DFHBUXT | Second auxiliary trace (B) data set. |
| The auxiliary trace data sets, DFHAUXT and DFHBUXT, are required because the IVP jobs run with auxiliary trace switched on, and the auxiliary trace data set switching facility is set to switch once only. |
DFHLCD	(Mandatory) CICS local catalog data set (VSAM), used by the CICS domains to save some of their information between CICS runs, and to preserve this information across a cold start.
DFHGCD	(Mandatory) CICS global catalog data set (VSAM) has a variety of uses, including: during a CICS run, holding resource definitions that are installed; and, during a controlled shutdown, recording part of the warm keypoint information.
DFHCXRF	Transient data extrapartition data set, used by CICS as the target for messages sent to any transient data destination before CICS has completed intrapartition transient data initialization. Use of this DDname is optional, but if it is not used, any messages that are written here are lost.
DFHLRQ	The local request queue data set is used to store pending BTS requests; for example, timer requests or requests to run activities. It is recoverable and used to ensure that, if CICS fails, no pending requests are lost. For more information, see Configuring for BTS.
LOGUSR	Data set for the extrapartition transient data destination, LOGA, used by the CICS sample programs.
MSGUSR	Data set for the extrapartition transient data destination, CSSL, used by a number of CICS services.
Table 21. DD statements for CICS data sets in the DFHSTART procedure (continued)

<table>
<thead>
<tr>
<th>DD name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUT</td>
<td>Data set for the extrapartition transient data destinations used by C/370 application programs. This data set is the destination for the C/370 output data streams, stdout (CCSO) and, indirectly, stderr (CCSE).</td>
</tr>
<tr>
<td>DFHDMPA</td>
<td>First transaction dump (A) data set. Second transaction dump (B) data set. The dump data sets are included because CICS always tries to open a transaction dump data set, and issues a warning message if it is unable to do so for any reason.</td>
</tr>
<tr>
<td>DFHCSD</td>
<td>(Mandatory) CICS system definition data set (VSAM).</td>
</tr>
</tbody>
</table>

Verify batch job, DFHIVPBT

The CICS-supplied verify batch job, DFHIVPBT, is tailored to your CICS environment and stored in the hlq.XDFHINST library when you run the DFHISTAR job.

For more information about installing CICS using DFHISTAR, see Installing CICS TS using DFHISTAR.

DFHIVPBT starts up CICS, specifying a pair of sequential input and output devices (CARDIN and PRINTER) to be used instead of an ordinary terminal. It then runs a number of CICS transactions that are read from CARDIN. The last transaction in the input stream shuts down CICS. If you want to verify support for the COBOL, C, C++, and PL/I languages, remove the comment marks from the SCEERUN and SCEERUN2 libraries, and increase the memory size for the job.

This IVP comprises the following job steps:

1. Job step GENINPT unloads the member DFH$BTCH from the hlq.SDFHSAMP library into the CARDIN data set, using the MVS utility program, IEBGENER.
2. Job step DFHSTART invokes the CICS initialization program, DFHSIP, to start CICS. The DFHSIP program reads startup system initialization parameters from the DFH$SIP2 member of the SYSIN data set. For information about the system initialization parameters used by the IVP jobs, see “Specifying system initialization parameters for the IVP jobs” on page 193.

The DFH$BTCH data set, as described in Figure 22 on page 197, is used as terminal input.

```
CWTO START OF BATCH STREAM DFH$BTCH
CEMT S TIME(120)\ EXIT TIME INTVL TO 120 MILLISEC
CEMT S DUMPDS SWITCH\ SWITCH FROM DUMP A TO B
CEOT\ INQUIRE TERMINAL STATUS
CSFE\ F. E. TERMINAL TEST REQUEST
PRINT\ TO SEND ALL CHARACTERS
THIS MESSAGE HAS BEEN RECEIVED FROM THE\ TO END THE TEST
END\ TERMINAL AND IS BEING SENT BACK\ invalid transaction ident.
CSXX\ NORMAL TERMINATION OF CICS
CWTO END OF BATCH STREAM DFH$BTCH - SHUTTING DOWN CICS
CEMT P SHUT\ normal termination of CICS
 where \ is the End Of Data Input character X'E0'.
```

Figure 22. DFH$BTCH data set, input to the DFHIVPBT job

Check the job log for the DFHIVPBT job to verify that CICS startup and shutdown completed successfully. Verify that the following messages are issued:

```
DFHSI1517 CICSIVP1 control is being given to CICS.
DFHKE1799 CICSIVP1 TERMINATION OF CICS IS COMPLETE.
```

The output from the DFHIVPBT job includes CICS messages written to one of the extrapartition destinations, responses to the transactions in the DFH$BTCH data set, and an auxiliary trace.

When CICS is initialized by DFHIVPBT, the log streams do not exist. CICS issues a request to create a log stream dynamically using MVS define log stream services. If system log initialization fails, CICS abends.
Verify interactive job, DFHIVPOL

The verify interactive job, DFHIVPOL, is tailored to your CICS environment and stored in the hlq.XDFHINST library when you run the DFHISTAR job.

You can use the DFHIVPOL job to start a CICS region to try out some functions, for example:

- Use the master LU transaction, CEMT. You can also use CEMT from the MVS system console. For information about CEMT, see CEMT - master terminal.
- Use the resource definition online transaction, CEDA. For information about using CEDA, see Resource management transaction CEDA commands.
- Use the sample application transaction AMNU, to access the sample VSAM file, FILEA.

You require either an IBM 3270 Information Display System LU or a console device, or both.

If you use an IBM 3270 Information Display System LU with this IVP, you can try CEDA, CEMT, and the sample applications.

From a console device, the CEDA transaction can be used only to INSTALL resource definitions. The sample programs cannot be run from a console device.

Defining an SNA LU for the online IVP

You can define an SNA LU by using one of these methods:

- Use the autoinstall facility, to avoid defining LUs to CICS explicitly before they can be used, see “Autoinstalling for an SNA LU” on page 198.
- Define a LU explicitly in the CSD, using the DEFINE command of DFHCSDUP (the batch utility for updating the CSD), see “Defining an SNA LU in the CSD” on page 199.

Autoinstalling for an SNA LU

With autoinstall, the resource definitions you create using RDO can act as models or templates for many resources of the same type. You then leave CICS to match real resources with one of the models. CICS installs table entries for these real resources dynamically, as and when they are required.

When using autoinstall, be aware that when CICS processes an autoinstall request, it uses data from the SNA logmode table. Be aware of this important consideration. An autoinstall request succeeds only when the logmode data, which is passed to CICS in the BIND image, matches one of the model terminal definitions recorded in the autoinstall model table (AMT) from the CSD. Before attempting to start CICS and autoinstall a LU for this IVP, check your SNA definitions with those given in Coding entries in the z/OS Communications Server LOGON mode table. If CICS fails to match model and logmode data, you receive message DFHZC6987I.

The CSD is defined and initialized for all the IVP jobs when you run the DFHCOMDS job and includes some IBM-supplied definitions for use with autoinstall. These definitions are defined in the following groups:

DFHTERM

Model LU definitions for use with autoinstall. For example, two of the TERMINAL definitions are 3270 and LU2.

DFHTYPE

Partial LU definitions (TYPETERMs) defining common LU properties, or attributes. For example, two of the TYPETERM definitions are DFH3270 (to define a non-SNA 3270 LU) and DFHLU2E2 (to define an SNA 3270 model 2 LU). The DFHLU2E2 resource definition matches the SNA-supplied logmode SNX32702.

The DFHTERM and DFHTYPE groups are included in the CICS-defined group list called DFHLIST, which is defined in the GRPLIST operand. If the CICS-supplied definitions are not suitable for your installation, you can create additional TYPETERM and model TERMINAL definitions in the CSD, but without a LU you must do this offline, using the DFHCSDUP utility program. For information about autoinstall definitions, see Autoinstall.
Autinstall also requires a user program to assign LU identifiers, and, if necessary, to control access to the system. When you run the online IVP, you are unlikely to have any special requirements for LU identifiers, or to control access, in which case you can use the IBM-supplied autoinstall user program, DFHZATDX. If you are using autoinstall for APPC connections and LUs, the sample autoinstall user program is called DFHZATDY.

**Defining an SNA LU in the CSD**

If you want to use an explicitly defined LU, rather than allow CICS to autoinstall a LU, define it offline using the DFHCSDUP utility program.

The normal way to create resource definitions in the CSD is to use the CEDA DEFINE command from a CICS master LU, but without a LU you can only do this using the DFHCSDUP utility program. For an example of a DFHCSDUP job to define an SNA LU in the CSD, see Figure 23 on page 199.

```plaintext
//DEFTERM JOB (accounting information),MSGCLASS=A,
// MSGLEVEL=(1,1),CLASS=A,NOTIFY=userid
//VTAMDEF EXEC PGM=DFHCSDUP
//STEPLIB DD DSN=CICSTS55.CICS.SDFHLOAD,DISP=SHR
//DFHCSD DD DSN=CICSTS55.CICS.DFHCSD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
* DEFINE TERMINAL(trmidnt) NETNAME(vtamname) GROUP(grpname)
* TYPETERM(name) INSERVICE(NO) AUTINSTMODEL(NO)
* APPEND LIST(DFHLIST) TO(yourlist)
* ADD GROUP(grpname) LIST(yourlist)
* LIST LIST(yourlist) OBJECTS
/*
```

Figure 23. Defining a LU by using the DFHCSDUP utility program

**GROUP(name)**

Code a unique name for the group to which the LU resource definition is to belong.

**NETNAME(name)**

Code the 8-character SNA name that identifies this LU to your SNA system.

**TERMINAL(name)**

Code a unique 4-character LU identifier as the name by which CICS is to know the LU.

**TO(yourlist) and LIST(yourlist)**

Code a unique name for yourlist. If your new group list does not include all the CICS-supplied resources as well as your own, you must specify DFHLIST and yourlist on the GRPLIST system initialization parameter of your CICS startup job.

**TYPETERM(name)**

Specify a unique name to identify the resource definition that matches the properties of the type of LU you are using. For example, to define an SNA 3270 model 2 LU, specify the CICS-supplied TYPETERM definition DFHLU2E2.

To include the CICS-supplied list of resources in a new group list, create a new list by copying the CICS-supplied list, DFHLIST, using the APPEND command. The CICS-supplied group list, DFHLIST, is a protected group that you cannot modify. You can then add your resource definition groups to the new list. Before you run the IVP, define your new group list to CICS, by adding a system initialization override to the SYSIN data set in the DFHIVPOL job stream.

**Defining the CICS APPLID to SNA**

Ensure that either SNA knows the CICS application identifier (APPLID) or you change the CICS APPLID to one that is already known to your SNA system.
If you use the default APPLID (DBDCCICS), define this to SNA as described in “Defining specific APPL definitions and APPL parameters to SNA” on page 90, before starting the DFHIVPOL job.

**Communicating with CICS from an MVS console or a TSO session**

If you want to communicate with CICS from an MVS console, you must define a console in the CSD before starting the IVP. You cannot define a console in the TCT. For more information about defining consoles, see Defining console devices to CICS.

If you want to communicate with CICS from a TSO session, you must define the TSO user as a console device in the CSD before starting the IVP. For more information, see Defining console devices to CICS.

**Running the DFHIVPOL job**

The DFHIVPOL job includes a procedure, DFHSTART, that calls the CICS initialization program, DFHSIP, to start CICS.

When you have successfully logged on to CICS, you can carry out any of the interactive operations described in “Verifying SNA LU operations” on page 203.

While logged on to CICS, perform a CEMT SET DUMPDS SWITCH to ensure that both dump data sets are initialized, before the dump utility program is run when you shut down CICS.

Finally, you can shut down CICS.

**Sample job log for the DFHIVPOL job**

When you run the DFHIVPOL job, your job log looks similar to the sample log shown.
Chapter 10. Verifying the CICS installation 201
CICS TS for z/OS: Installing CICS
Figure 24. Sample job log for the DFHIVPOL job

**Note:** VTAM is now z/OS Communications Server.

1. For information about the system initialization parameters that the IVP jobs use, see “Specifying system initialization parameters for the IVP jobs” on page 193. See also 2 and 3.

2. For more information about defining an APPLID for the CICS IVP jobs, see “Defining CICS regions as applications to SNA” on page 89. An APPLID of CICSIVP1 is used in Figure 24 on page 203.

3. The DFHSM0122 and DFHM0123 messages inform you of the limits available for the dynamic storage areas below 16 MB, and above 16 MB but below 2 GB. For information about these storage areas, see CICS dynamic storage areas. Storage for the extended read-only DSA, ERDSA, is obtained from read-only key 0 protected storage, because the default system initialization specifies RENTPGM=PROTECT.

4. The DFHTM1715 message is issued because the CICS region was shut down by the terminal user, with netname IYWTC30, issuing a CEMT PERFORM SHUTDOWN command.

5. If you want COBOL, C, C++, and PL/I languages, remove the comment marks from the SCEERUN and SCEERUN2 libraries, and increase the memory size for the job.

6. The DFHME0107 message Module CJEMCT1E cannot be found in the library, is displayed only when a CICS region is started without any CICSPlex System Manager libraries or infrastructure in place. This is informational and does not restrict any CICS functionality.

### Verifying SNA LU operations

You can perform a number of activities to verify that CICS is working properly, for example, logging on, using transactions, running sample programs, and shutting CICS down.

#### Logging on to a SNA LU

When the DFHIVPOL job displays the console message CONTROL IS BEING GIVEN TO CICS, you can log on to CICS using an IBM 3270 Information Display system terminal.

Use the CICS application identifier that you specified when you started CICS to log on through your SNA LU. For example, unless you changed the APPLID as specified as at system initialization (CICSIVP1), enter LOGON APPLID(CICSIVP1).

If you are using autoinstall, your logon request is passed to CICS and, if all the autoinstall requirements described in Autoinstall have been met, CICS installs your LU. It does so by creating a TCT terminal entry (TCTTE) using the model definitions defined in the group list, DFHLIST, and the LU identifier returned by the autoinstall user program (DFHZATDX in this case).

If you are using a LU defined in the CSD explicitly, and included in the group list specified in the startup job stream, CICS identifies the installed resource definitions by the SNA net name and creates the required TCTTE.

When you log on to CICS, your LU can display a “good morning” message as specified on the GMTRAN system initialization parameter. The default transaction, CSGM, displays a welcome message as defined by the GMTEXT system initialization parameter.
Using CICS provided transactions through a terminal

After you have started CICS with the DFHIVPOL job, you can use the CICS provided transactions to try out various functions of CICS to help you verify that CICS is working properly. You can use the transactions at a CICS terminal, for example, CEMT and, if you defined one, the system console.

For information about the CICS transactions that you can try with the DFHIVPOL job, and about the message-switching responses to those transactions, see CICS supplied transactions descriptions.

<table>
<thead>
<tr>
<th>Operator Input</th>
<th>System Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEMT</td>
<td>Status: ENTER ONE OF THE FOLLOWING</td>
</tr>
<tr>
<td></td>
<td>Discard</td>
</tr>
<tr>
<td></td>
<td>Inquire</td>
</tr>
<tr>
<td></td>
<td>Perform</td>
</tr>
<tr>
<td></td>
<td>Set</td>
</tr>
<tr>
<td>I</td>
<td>Status: ENTER ONE OF THE FOLLOWING</td>
</tr>
<tr>
<td></td>
<td>OR PRESS ENTER FOR DEFAULT</td>
</tr>
<tr>
<td></td>
<td>(Followed by a list of options)</td>
</tr>
<tr>
<td>PROG</td>
<td>STATUS: RESULTS - OVERTYPE TO MODIFY</td>
</tr>
<tr>
<td>Press ENTER key</td>
<td>Prog(CEECBLDY) Len(0000000) Ass Pro Ena Pri</td>
</tr>
<tr>
<td></td>
<td>Res(000) Use(0000000000) Any Cex Ful</td>
</tr>
<tr>
<td>Press F3 key</td>
<td>SESSION ENDED</td>
</tr>
<tr>
<td>Press CLEAR key</td>
<td></td>
</tr>
<tr>
<td>CEMT PERFORM STATISTICS</td>
<td></td>
</tr>
<tr>
<td>Press F3 key</td>
<td>SESSION ENDED</td>
</tr>
<tr>
<td>Press CLEAR key</td>
<td></td>
</tr>
<tr>
<td>CETR</td>
<td>Clear or F3 pressed</td>
</tr>
<tr>
<td>Press F3 key</td>
<td>Normal termination of CETR</td>
</tr>
<tr>
<td>Press CLEAR key</td>
<td></td>
</tr>
<tr>
<td>CEMT ITA</td>
<td>Displays list of tasks in the system</td>
</tr>
<tr>
<td>Press F3 key</td>
<td>SESSION ENDED</td>
</tr>
<tr>
<td>Press CLEAR key</td>
<td></td>
</tr>
<tr>
<td>CEMT I PROG(DFHFEP)</td>
<td>Prog(DFHFEP )Len(005848) Ass Pro Ena Pri</td>
</tr>
<tr>
<td></td>
<td>Res(000) Use(0000000000) Any Cex Ful Qua</td>
</tr>
<tr>
<td>Press F3 key</td>
<td>SESSION ENDED</td>
</tr>
<tr>
<td>Press CLEAR key</td>
<td></td>
</tr>
</tbody>
</table>
Table 22. Typical terminal interactions (continued)

<table>
<thead>
<tr>
<th>Operator Input</th>
<th>System Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEOT</td>
<td>Ter (tmid) Tra (CEOT) Pri (nnn) Pag Ins Ati Tti (Remember 'tmid' for use in next transaction, CMSG)</td>
</tr>
<tr>
<td>Press F3 key</td>
<td>SESSION ENDED</td>
</tr>
<tr>
<td>Press CLEAR key</td>
<td></td>
</tr>
<tr>
<td>CMSG ‘HELLO’,R=tmid,S</td>
<td>(Send the message ‘HELLO’ to your terminal)</td>
</tr>
<tr>
<td></td>
<td>MRS OK MESSAGE HAS BEEN ROUTED</td>
</tr>
<tr>
<td></td>
<td>(briefly at lower right of screen)</td>
</tr>
<tr>
<td></td>
<td>HELLO</td>
</tr>
<tr>
<td></td>
<td>(at upper left of screen)</td>
</tr>
</tbody>
</table>

You can enter your CEMT input in either uppercase or lowercase, because the master terminal transaction translates all input to uppercase. Use the CLEAR key and the F3 key as indicated.

If you enter the CETR transaction, CICS displays the status of the various trace options.

You can alter the status of any of the trace options by over typing the current value, indicated by ====> on the CETR display.

Using the CEDA transaction

When DFHIVPOL starts up CICS, system initialization specifies GRPLIST=DFHLIST, which causes all the CICS resource definitions that are required for normal running to be installed.

You can see which resources are included in DFHLIST by using the CEDA transaction; for example, by using the CEDA EXPAND LIST(DFHLIST) command.

Press F8 to see the continuation of the list. If you started the DFHIVPOL job with your own group list specified instead of the DFHLIST group list, specify the name of your list in the CEDA EXPAND command. The CICS-defined groups all begin with "DFH". For information about CEDA and the interactions for a typical sequence of CEDA commands, see CEDA - resource definition online.

The DFHLIST group list does not include any of the sample applications groups, the group names of which all begin with "DFH$". To use the sample programs, therefore, you must first install the resource definitions for the required samples. For example, to use the FILEA sample application:

1. Install the sample programs that are required for the FILEA applications. Use this command:

   CEDA INSTALL GROUP(DFH$AFLA)

2. Make the FILEA data set available to CICS, by performing one of the following tasks:

   • Install a FILE resource definition for the FILEA data set:

     CEDA INSTALL GROUP(DFH$FILA)

   • Provide a DD statement for the FILEA data set in your CICS startup JCL. For example,

     //FILEA DD DISP=SHR,DSN=CICSTS55.CICS.CICSHTH1.FILEA

To end the CEDA session, press F3.
**Invoking and running sample programs**

To try the assembler language version of the FILEA sample application, install group DFH$AFLA and then enter the AMNU transaction.

**Using transactions from a console device**

You can invoke CICS transactions other than CECI from a console device, and other CICS operators can communicate with the console operator. In particular, you can use the console device for CICS master terminal functions to control CICS terminals or to control several CICS regions with multiregion operation.

Normal operating-system use of the console device is not inhibited, and CICS supports multiple console devices where present.

- The CEDA transaction can be used from a console device only to INSTALL resource definitions.
- The CECI transaction and the sample programs cannot be used from a console device.

If you issue the MVS command `d consoles`, a list of console devices is displayed. This list identifies the console devices by name.

You can use a console device to submit MODIFY commands from your job stream if you define a console device in your CSD as CONSNAME(INTERNAL).

For further information about defining consoles, see Defining console devices to CICS.

To enter a command, use:

```
{MODIFY|F} jobname,['']command['']
```

where:

- **jobname**  
  Is the region identifier for the CICS region. This identifier is either the name of the job being used to run CICS, for example, DFHIVPOL, or the name of a procedure if CICS was initiated as a started task.

- **command**  
  Is a string of data, starting with a CICS transaction identifier. If the transaction requires further input, the operator is prompted in the same way as any normal terminal operator. The message from CICS contains a reply number that must be quoted in the reply.

You can use the commands shown in Figure 25 on page 207 to verify the CEMT and CEOT transactions from the MVS console.

**Entering commands from TSO**

A TSO user can enter CICS commands after invoking the TSO command CONSOLE, in either of two formats.

```
CONSOLE {MODIFY|F} cicsid,['']command['']
CONSOLE {MODIFY|F} cicsid,['']command['']
END
```

When the TSO CONSOLE command is used, TSO checks the user for authority to issue console commands. Further, if console operator command security is active, the TSO user must be specifically authorized to issue MODIFY cicsid.

The TSO user can interact with an alternate CICS by using the command CONSOLE MODIFY altcics,CEBT.

You can also use TSO CLIST processing to issue sequences of CICS commands.
<table>
<thead>
<tr>
<th>Operator input</th>
<th>System response</th>
</tr>
</thead>
<tbody>
<tr>
<td>f dfhivpol,'cemt i terminal'</td>
<td>Displays a list of terminals attached to CICS</td>
</tr>
<tr>
<td>f dfhivpol,'cemt i dump'</td>
<td>Displays status of transaction dump data sets</td>
</tr>
<tr>
<td>f dfhivpol,'cemt p statistics'</td>
<td>CICS writes statistics to SMF data sets</td>
</tr>
<tr>
<td>f dfhivpol,'cemt i ta'</td>
<td>Displays number and types of tasks currently running</td>
</tr>
<tr>
<td>f dfhivpol,'cemt p dump'</td>
<td>CICS invokes SDUMP macro for system dump to be taken</td>
</tr>
<tr>
<td>f dfhivpol,'cemt i prog(dfhpep)'</td>
<td>Displays details of DFHPEP module</td>
</tr>
<tr>
<td>f dfhivpol,'ceot'</td>
<td>Displays details of operator console</td>
</tr>
<tr>
<td>f dfhivpol,'cemt i journalname'</td>
<td>Displays status of CICS logs</td>
</tr>
</tbody>
</table>

*Figure 25. Using an MVS console for master terminal operations*

**Stopping CICS**

To stop CICS, enter `CEMT P SHUT` from the SNA LU or MVS console. CEMT P SHUT is a short form of CEMT PERFORM SHUTDOWN.

The system responds with message DFH1713 and following messages as shown in the sample job log shown in Figure 24 on page 203.

**Verifying shared data tables support**

You can verify that shared data tables can be used in a number of ways.

1. Start a CICS region on which you have installed support for shared data tables. To use shared data tables, you must install the DFHDTSVC, DFHDTCV, and DFHMVRMS modules in either an authorized system library in the MVS linklist (LNKLST concatenation of the MVS system) or in the LPA. When you install CICS, these modules are installed into the `hlq.SDFHLINK` library, which you usually include in the MVS linklist.

2. Define and install a user-maintained data table.

3. Try a generic read command on your data table, using the CECI transaction. Generic reads of user-maintained data tables are allowed only with shared data tables. If shared data tables is operational, you see a normal response. If shared data tables is not operational, you see an INVREQ response. This verification process uses user-maintained data tables throughout, because the behavior of CICS-maintained data tables is not apparent to their users. For example, a normal response is returned for a generic read of a CICS-maintained data table, regardless of whether or not shared data tables is operational.

To verify that the cross-memory services of shared data tables are working:

1. Start a second CICS region (the requester) that has an interregion communication connection to the first CICS region (the server, which contains the user-maintained data table and source data set).

2. On the requester CICS region, do the following tasks:
   a. Define and install a remote file referring to (associated with) the user-maintained data table on the server CICS region.
   b. Close the interregion communication connection between the two CICS regions so that function shipping is impossible; that is, only the cross-memory services of shared data tables can be used to access the shared data table from the requester CICS region. To close the connection, you can enter the command:
CEMT SET IRC CLOSED

To verify that function shipping cannot work, try a remote READ of a file (not a data table) on the server CICS region; you get a SYSIDERR response.

c. Try a generic read command on your data table, using the CECI transaction. If the cross-memory services of shared data tables can be used, you see a normal response.

3. To restore interregion communication between the two CICS regions, open the connection again. To do this, you can enter the command:

CEMT SET IRC OPEN

Example verification of shared data tables

This example shows the steps to perform to verify the shared data tables for the CICS shared data tables environment.

1. A CICS region, CICSIDC, is started. CICSIDC is the server CICS region in this example.

2. On CICSIDC, the following steps are completed:
   a. The user-maintained data table, MYSDT, is defined and installed. The MYSDT data table is based on the sample data set, hlq.CICSIDC.FILEA, installed on that region.
   b. The following generic READ command is entered at a terminal:

   CECI READ FILE(MYSDT) RIDFLD(00092) KEYLENGTH(5) GE GTEQ

   Figure 27 on page 209 shows the initial response (LOADING), and Figure 28 on page 210 shows the subsequent response when the command is repeated after the data table has completed loading.

The following steps were completed to verify the cross-memory services of shared data tables:

1. A second CICS region, CICSIDA, is started with support for shared data tables. CICSIDA is the requester CICS region in this example.

2. The following IRC connections and sessions are defined and installed on the associated CICS regions:

<table>
<thead>
<tr>
<th>Region</th>
<th>CONNECTION</th>
<th>SESSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICSIDA</td>
<td>CICA</td>
<td>ATOC</td>
</tr>
<tr>
<td>CICSIDC</td>
<td>CICC</td>
<td>CTOA</td>
</tr>
</tbody>
</table>

See Figure 31 on page 211 and Figure 32 on page 211 for the CICA and ATOC resource definitions attributes. The attributes for the CICC and CTOA resource definitions are similar.

3. On CICSIDA, the following steps are completed:
   a. The file, REMSDT, is defined and installed as remote, referring to the MYSDT data table on CICSIDC. See Figure 33 on page 212 for the parameters used for the REMSDT resource definition.
   b. The file, REMFIL, is defined and installed as remote, referring to the FILEA sample file on CICSIDC.
   c. The CEMT SET IRC CLOSED command is used to close the IRC connection to CICSIDC.
   d. The following generic READ command is entered at a terminal:

   CECI READ FILE(REMFIL) RIDFLD(00092) KEYLENGTH(5) LENGTH(80) GE GTEQ

   Figure 29 on page 210 shows the SYSIDERR response, because the remote file cannot be accessed by function-shipping. You also see this response for the remote data table, REMSDT, if the IRC connection is closed.

   e. The following generic READ command is entered at a terminal:
Figure 30 on page 211 shows the NORMAL response. You receive a NORMAL response only if MYSDT is already open on CICSIDC, as achieved in step “2.b” on page 208.

**Figure 26. CICS environment for example verification of shared data tables.**

```plaintext
read file(MYSDT) ridfld(00092) keylength(5) ge gteq
STATUS: COMMAND EXECUTION COMPLETE
EXEC CICS READ
File('MYSDT')
 < SYsid() >
 < SEt() | Into('') >
 < Length(+00000) >
 RIDfld('00092')
 < Keylength(+00005) < GEneric > >
 < RBa | RRn | DEBRec | DEBKey >
 < GTeq | Equal >
 < Uncommitted | Consistent | REpeatable | UPdate <token()> >
 < Nosuspend >

RESPONSE: LOADING
EIBRESP=+0000000944 EIBRESP2=+0000000104
PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF
```

**Figure 27. On CICSIDC, response to initial CECI generic READ FILE command with SDT support.**

Chapter 10. Verifying the CICS installation 209
Figure 28. On CICSIDC, response to CECI generic READ FILE command with SDT support.

Figure 29. On CICSIDA, response to remote CECI generic READ FILE command, with IRC closed.
read file(MYSRT) ridfld(00092) keylength(5) length(80) ge gteq
STATUS: COMMAND EXECUTION COMPLETE
EXEC CICS READ
File( 'MYSRT' )
< SYsid() >
( Set()
    | Into( '000983J. S. TILLING WASHINGTON, DC 34512' )
< Length( +00080 ) >
RIdfld( '00092' )
< Keylength( +00005 ) >
< RBa | RRn | DEBRec | DEBKey >
< GTeq | Equal >
< UNcommitted | Consistent | REpeatable | UPdate <token()> >
< Nosuspend >

RESPONSE: NORMAL
EIBRESP=+0000000000 EIBRESP2=+0000000000
PF 1 HELP 2 HEX 3 END 4 EIB 5 VAR 6 USER 7 SBH 8 SFH 9 MSG 10 SB 11 SF

Figure 30. On CICSIDA, response to remote CECI generic READ FILE command, with IRC closed.

OBJECT CHARACTERISTICS  CICS RELEASE = 0720
Connection : CICA
Group : CICAGRP
DEscription : MRO CONNECTION CICSIDA TO CICSIDC
CONNECTION IDENTIFIERS
Netname : CICSIDC
INDsys :
REMOTE ATTRIBUTES
REMOTESystem :
REMOTEName :
CONNECTION PROPERTIES
ACcessmethod : IRc Vtam | IRc | INdirect | Xm
Protocol :
Singleess : No No | Yes
Datastream : User User | 3270 | SCs | STrfield | Lms
RECordformat : U U | Vb
OPERATIONAL PROPERTIES
Autoconnect : No No | Yes | All
INservice :
SESSION CHARACTERISTICS  CICS RELEASE = 0720
Sessions : ATOC
Group : CICAGRP
DEscription : SESSION FOR MRO CICA TO CICC
SESSION IDENTIFIERS
Connection : CICA
SESSName :
NETnameq :
MODename :
SESSION PROPERTIES
Protocol : Lu61 Appc | Lu61
Maximum : 000 , 000 0-999
RECEIVEPfx : RB
RECEIVECount : 005 1-999
SENDPfx : SB
SENDCount : 003 1-999
SENDSize : 04096 1-30720
RECEIVESize : 04096 1-30720
SESSPriority : 100 0-255

Figure 31. Example CONNECTION resource definition, CICA, installed on CICSIDA.

Note: VTAM is now the z/OS Communications Server.

Figure 32. Example SESSION resource definition, ATOC, associated with connection, CICA.
Verifying the CICS-DBCTL interface

You can use the installation verification procedure, DFHIVPDB, to verify that the CICS-DBCTL interface can be used successfully.

To run the DFHIVPDB job successfully:

1. Tailor the DFHIVPDB job to your CICS and IMS environment.

   You can tailor DFHIVPDB as part of the process of tailoring all CICS sample postinstallation jobs, as described in “Defining DL/I support” on page 186. When you run the DFHISTAR job as part of the CICS installation process, the DFHIVPDB job is installed in the hlq.XDFHINST library.

   Change the prefix of the IMS.SDFSRESL library, previously called IMS.RESLIB, in the DFHIVPDB job to the prefix that you use for your IMS libraries.

2. Create the data sets required by the CICS region used by the DFHIVPDB job.

   To create the data sets, you can tailor and run copies of the following CICS sample jobs:

   **DFHCOMDS**

   This job creates the CICS data sets common to all CICS regions.

   **DFHDEFDS**

   This job creates the data sets required for each CICS region.

   When you run the DFHISTAR job as part of the CICS installation process, these jobs are installed in the hlq.XDFHINST library.

3. Run the IMS installation verification procedures, as outlined in “The IMS installation requirements for the DFHIVPDB job” on page 212.

The IMS installation requirements for the DFHIVPDB job

The DFHIVPDB job depends on running the IMS installation verification procedures, as part of the INSTALL/IVP process.

The following assumptions about the IMS INSTALL/IVP process are made:

1. The IMS sample database, DI21PART, has been successfully defined. This database comprises two data sets:
   - DI21PART
   - DI21PARO

Figure 33. Example remote FILE resource definition, REMSDT, installed on CICSIDA.
2. The DI21PART database has been loaded with the IMS-supplied sample data.

3. The following IMS-supplied procedures have been installed in an executable procedure library:
   - **ACBGEN**
   - **PSBGEN**

4. The sample DRA startup table, DFSPZPIV, has been built and installed in the IMS.SDFSRESL library, previously called IMS.RESLIB.

5. The sample DBCTL system, IVP3, is available.

   For information about installing IMS, the INSTALL/IVP process, and running the IMS IVPs, see Installation in IMS product documentation.

**The DFHIVPDB job steps**

The DFHIVPDB job consists of the GEN and CICS job steps.

1. **GEN.** This step unloads the member DFH$DBAN from the hlq.SDFHSAMP library into a temporary sequential data set called CARDIN. This member contains the transactions to invoke the assembler versions of the DL/I sample applications that CICS reads from CARDIN as soon as initialization is complete. The sequential data set CARDIN is defined in the sample terminal control table, DFHTCT5$, as a simulated terminal.

   The COBOL version, DFH$DBCB, and the PL/I version, DFH$DBPL, of the sample DL/I transactions are also in the hlq.SDFHSAMP library. If you want to run the COBOL or PL/I versions, modify this job step to load CARDIN with the appropriate member.

   Output generated by the transactions is sent to a similar device; a sequential data set defined as PRINTER.

2. **CICS.** This job step issues the DFHSTART procedure to start CICS, with the CICS-supplied resource group list DFH$IVPL. CICS attempts to connect to the DBCTL system IVP3, run the sample DLI transactions, and then shut down the CICS region. If the DBCTL system, IVP3, is not running, the sample DLI transactions stop with an abend message.

   If you want to examine the sample members used by this IVP, here is a list of them, indicating where you can find each one:

   **DFHIVPDB**
   This IVP contains some explanatory comments, and was installed in the hlq.XDFHINST library when you ran the DFHISTAR job. For details of the DFHISTAR job, see “Tailoring the CICS-supplied skeleton jobs” on page 161.

   **DFH$SIP5**
   DFH$SIP5 is the member of the hlq.SYSIN data set that contains the system initialization parameter overrides specific to the DFHIVPDB job. You can specify other system initialization parameters (for example, APPLID, CICSSVC, and DFLTUSER) for the DFHIVPDB job; the DFH$SIP5 member of the hlq.SYSIN data set is a convenient place to do so.

   **DFHTCT5$**
   DFHTCT5$ is the sample TCT that specifies the sequential devices that CICS uses in this IVP as a simulated terminal, with a terminal name of SAMA. The source statements are in the DFH$TCTS member of the hlq.SDFHSAMP library.

**Running the DFHIVPDB job**

Before you submit the DFHIVPDB job, run the DFHRMUTL program to reset the global catalog control record to perform an INITIAL start on the next CICS startup.

Here is an example of the DFHRMUTL program:

```
//DFHRMUTL JOB 24116475,'DFHRMUTL',
 CLASS=A,MSGCLASS=H,NOTIFY=userid
 /*--*/
 //* RESET GLOBAL CATALOG CONTROL RECORD TO INITIAL START */
 /*--*/
```
When you are satisfied that you have made all the necessary preparations, and that all the prerequisite jobs have been run, submit the DFHIVPDB job. The job loads the DL/I transactions into CARDIN. CICS reads the transactions, and sends the output to the PRINTER sequential data set. The process is as follows:

- The first transaction copied from the DFH$DBAN member of the hlq.SDFHSAMP library to CARDIN is CDBC CONNECT SUFFIX(IV). This transaction connects CICS to DBCTL, using the sample DRA startup table, DFSPZPIV.
- The final transaction copied from the DFH$DBAN member of the hlq.SDFHSAMP library to CARDIN is CEMT PERFORM SHUT.
- If you want to use some commands online before CICS shuts down, delete the CEMT command before you run the job. You can then issue CEMT, CEDA, and other CICS-supplied transactions, and initiate a shutdown either from a CICS terminal or through an MVS console.
- If you want to communicate with CICS through an MVS console, you must define a console to CICS before you start DFHIVPDB, as described in Defining console devices to CICS.
- If you want to enter MODIFY commands from terminals connected to TSO, you must define the TSO users as console devices, as described in Defining console devices to CICS.

A sample job log from a run of the DFHIVPDB job is given in Figure 34 on page 216. The results you get from the transaction processing are similar to those shown in Figure 34 on page 216, Figure 35 on page 217, and Figure 36 on page 217.
Chapter 10. Verifying the CICS installation

09.36.20 30836923 DFHPA1101 CICSIVP1 DPHSIT IS BEING LOADED.
09.36.20 30836923 DFHPA1108 CICSIVP1 DPHSIT HAS BEEN LOADED. (GENERATED AT: MM/DD= 01/12 HH:MM= 13:57).
09.36.20 30836923 DFHPA1100 CICSIVP1 OVERRIDE PARAMETERS FROM EXEC STATEMENT: START=AUTO,SYSIN
09.36.20 30836923 DFHPA1102 CICSIVP1 OVERRIDE PARAMETERS FROM JCL EXEC STATEMENT: START=AUTO,SYSIN
09.36.20 30836923 DFHPA1927 CICSIVP1 GRPLIST=DPHSIVPL, INCLUDE DLI SAMPLE PROGRAMS & TRANSACTIONS
09.36.20 30836923 DFHPA1108 CICSIVP1 DFHSIT HAS BEEN LOADED. (GENERATED AT: MM/DD= 01/12 HH:MM= 13:57).
09.36.20 30836923 DFHPA1101 CICSIVP1 DFHSIT IS BEING LOADED.
09.36.20 30836923 DFHPA1927 CICSIVP1 STNR=OFF, TCT INCLUDES SEQ DEVICES
09.36.20 30836923 DFHPA1927 CICSIVP1 XRF=NO,
09.36.20 30836923 DFHPA1927 CICSIVP1 STNRFC=1, TRACE FILE CONTROL AND DLI EVENTS
09.36.20 30836923 DFHPA1927 CICSIVP1 AUXR=ON,
09.36.20 30836923 DFHPA1927 CICSIVP1 AUXRsrv=Next,
09.36.20 30836923 DFHPA1927 CICSIVP1 SRT=NO,
09.36.20 30836923 DFHPA1927 CICSIVP1 SEC=NO,
09.36.20 30836923 DFHPA1927 CICSIVP1 SRT=NO,
09.36.20 30836923 DFHPA1927 CICSIVP1 AUXTRSW=NEXT,
09.36.20 30836923 DFHPA1927 CICSIVP1 AUXTR=ON,
09.36.20 30836923 DFHPA1927 CICSIVP1 STNTR=OFF,
09.36.20 30836923 DFHPA1927 CICSIVP1 XRF=NO,
09.36.20 30836923 DFHPA1927 CICSIVP1 TCT=5$, TCT INCLUDES SEQ DEVICES
09.36.20 30836923 DFHPA1927 CICSIVP1 FCT=NO,
09.36.20 30836923 DFHPA1927 CICSIVP1 CICSSVC=233,
09.36.20 30836923 DFHPA1927 CICSIVP1 SEC=NO,
09.36.20 30836923 DFHPA1927 CICSIVP1 SRT=NO,
09.36.20 30836923 DFHPA1927 CICSIVP1 AUXTRSW=NEXT,
09.36.20 30836923 DFHPA1927 CICSIVP1 XRF=NO,
09.36.20 30836923 DFHPA1927 CICSIVP1 TCT=5$, TCT INCLUDES SEQ DEVICES
09.36.20 30836923 DFHPA1927 CICSIVP1 FCT=NO,
09.36.20 30836923 DFHPA1927 CICSIVP1 CICSSVC=233,
09.36.20 30836923 DFHPA1927 CICSIVP1 SEC=NO,
09.36.20 30836923 DFHPA1927 CICSIVP1 SRT=NO,
09.36.20 30836923 DFHPA1927 CICSIVP1 AUXTRSW=NEXT,
09.36.20 30836923 DFHPA1927 CICSIVP1 XRF=NO,
09.36.20 30836923 DFHPA1927 CICSIVP1 TCT=5$, TCT INCLUDES SEQ DEVICES
09.36.20 30836923 DFHPA1927 CICSIVP1 FCT=NO,
The DFHVDPDB job uses some system initialization parameters included in the DFH$SIP5 member of the SYSIN data set, to override default system initialization parameters. Further, the DFH$SIP5 member was edited to specify other system initialization parameters to create the DFHVDPDB job log shown. For information about these extra system initialization parameters used by the IVP jobs, see “Specifying system initialization parameters for the IVP jobs” on page 193.

If you want COBOL, C, C++, and PL/I languages, remove the comment marks from the SCEERUN and SCEERUN2 libraries, and increase the memory size for the job.

You see messages similar to those in Figure 35 on page 217 at the end of the MSGUSER section of the job output.
Note: VTAM is now the z/OS Communications Server.

Figure 35. Sample job log output from the end of the MSGUSER section of the DFHIVPDB job

You see messages similar to those in Figure 36 on page 217 in the Printer section of the job output.

Testing the CICS Db2 environment

Use Phase 5 of the Db2 installation verification procedure to test the CICS Db2 environment.

To use the Db2 installation verification procedure, and Phase 5 in particular, see the Db2 administration documentation, which gives information about the procedure and describes the steps involved.

Running Db2 jobs DSNTEJ5C and DSNTEJ5P

To prepare the sample applications to be used in a CICS Db2 environment, run the DSNTEJ5C and DSNTEJ5P jobs supplied with Db2.

DSNTEJ5C installs the sample application transactions in COBOL and prepares the organization application. DSNTEJ5P installs the transactions in PL/I and prepares the organization, project, and phone applications.

Both these jobs perform the following functions:

• Compile and link-edit the CICS online applications.
• Bind the CICS online applications.
• Create the BMS maps for the online applications.

Starting a Db2 organization or project application

After logging on to CICS, you can start an organization or project application by entering one of the CICS transaction codes: D8PP, D8PS, or D8CS.

• D8PP starts the PL/I project version
• D8PS starts the PL/I organization version
• D8CS starts the COBOL organization version

If you enter one of these transaction codes, the panels shown in Figure 37 on page 218 or Figure 38 on page 218 are displayed.

For detailed information about running the organization and project applications, see Overview of the CICS Db2 interface.

Starting the Db2 phone application

To start the phone application, clear the screen and type in the transaction code D8PT. You can change the transaction codes when you install Db2. Check with your system administrator to find out if they have been changed from those shown.
Chapter 11. Default CICS resource definitions for CICSPlex SM

These tables describe the default CICS resource definitions supplied for CICSPlex SM to start a CMAS, MAS, and WUI.

**Default CICS resource definitions for a CMAS**

The default CICS resource definitions supplied for CICSPlex SM to start a CMAS, MAS, and WUI. These are supplied in samples EYU$CDEF, EYU$MDEF, and EYU$WDEF in the SEYUSAMP library.

On an INITIAL start of a CMAS, CICSPlex SM uses the default CICS resource definitions supplied in sample EYU$CDEF. Table 23 on page 219 lists these definitions.

**Important:** Do not change the recovery options of the EYUDREPN FILE definition. This definition is used when CICSPlex SM determines that Data Repository file operations do not require logging. It is usual to receive LSR pool messages for EYUDREPN during CMAS initialization and ignore them. Make sure that the CICS JCL does not have a DD statement for EYUDREPN, and do not associate EYUDREPN with a data set name.

<table>
<thead>
<tr>
<th>Resource type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>EYUDREP</td>
<td>CICSPlex SM data repository</td>
</tr>
<tr>
<td></td>
<td>EYUDREPN</td>
<td>CICSPlex SM data repository, alternate definition</td>
</tr>
<tr>
<td>Profile</td>
<td>EYUCICSD</td>
<td>CICSPlex SM debugger</td>
</tr>
<tr>
<td>Resource type</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>Program</td>
<td>EYUTMMDT</td>
<td>CICSPlex SM monitor definition table</td>
</tr>
<tr>
<td></td>
<td>EYUTXDDA</td>
<td>CICSPlex SM repository record control table</td>
</tr>
<tr>
<td></td>
<td>EYUTXLNT</td>
<td>CICSPlex SM notification table</td>
</tr>
<tr>
<td></td>
<td>EYUTXLPD</td>
<td>CICSPlex SM parameter table</td>
</tr>
<tr>
<td></td>
<td>EYU9BA00</td>
<td>CICSPlex SM BAS object</td>
</tr>
<tr>
<td></td>
<td>EYU9CM00</td>
<td>CICSPlex SM CMAS communications</td>
</tr>
<tr>
<td></td>
<td>EYU9DBG0</td>
<td>CICSPlex SM debugger</td>
</tr>
<tr>
<td></td>
<td>EYU9DBG1</td>
<td>CICSPlex SM debugger</td>
</tr>
<tr>
<td></td>
<td>EYU9DBG2</td>
<td>CICSPlex SM debugger</td>
</tr>
<tr>
<td></td>
<td>EYU9DBUG</td>
<td>CICSPlex SM debugger</td>
</tr>
<tr>
<td></td>
<td>EYU9MN00</td>
<td>CICSPlex SM MAS monitor</td>
</tr>
<tr>
<td></td>
<td>EYU9NA00</td>
<td>CICSPlex SM CMAS MAS component</td>
</tr>
<tr>
<td></td>
<td>EYU9NXOP</td>
<td>CICSPlex SM CMAS MAS program</td>
</tr>
<tr>
<td></td>
<td>EYU9P500</td>
<td>CICSPlex SM CMAS real-time analysis (RTA)</td>
</tr>
<tr>
<td></td>
<td>EYU9TS00</td>
<td>CICSPlex SM CMAS topology</td>
</tr>
<tr>
<td></td>
<td>EYU9WM00</td>
<td>CICSPlex SM CMAS workload management</td>
</tr>
<tr>
<td></td>
<td>EYU9XC00</td>
<td>CICSPlex SM CMAS cache</td>
</tr>
<tr>
<td></td>
<td>EYU9XDBU</td>
<td>CICSPlex SM CMAS batch repository input/output utility</td>
</tr>
<tr>
<td></td>
<td>EYU9XDO0</td>
<td>CICSPlex SM CMAS data repository</td>
</tr>
<tr>
<td></td>
<td>EYU9XLCI</td>
<td>CICSPlex SM debugger ATTACH program</td>
</tr>
<tr>
<td></td>
<td>EYU9XLCS</td>
<td>CICSPlex SM PLTPPI startup program</td>
</tr>
<tr>
<td></td>
<td>EYU9XLEV</td>
<td>CICSPlex SM main initialization</td>
</tr>
<tr>
<td></td>
<td>EYU9XLGR</td>
<td>CICSPlex SM global user abend exit</td>
</tr>
<tr>
<td></td>
<td>EYU9XLME</td>
<td>CICSPlex SM message exit</td>
</tr>
<tr>
<td></td>
<td>EYU9XLOP</td>
<td>CICSPlex SM object environment CREATE</td>
</tr>
<tr>
<td></td>
<td>EYU9XLSR</td>
<td>CICSPlex SM system user abend exit</td>
</tr>
<tr>
<td></td>
<td>EYU9XL00</td>
<td>CICSPlex SM CMAS kernel linkage</td>
</tr>
<tr>
<td></td>
<td>EYU9XM00</td>
<td>CICSPlex SM CMAS message format</td>
</tr>
<tr>
<td></td>
<td>EYU9XQ00</td>
<td>CICSPlex SM queue manager</td>
</tr>
<tr>
<td></td>
<td>EYU9XS00</td>
<td>CICSPlex SM common services</td>
</tr>
<tr>
<td></td>
<td>EYU9XSTR</td>
<td>CICSPlex SM CMAS-MAS task recovery task related user exit</td>
</tr>
<tr>
<td></td>
<td>EYU9XZ00</td>
<td>CICSPlex SM CMAS trace</td>
</tr>
<tr>
<td>Resource type</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Transaction</td>
<td>BMLT</td>
<td>CICSPlex SM BAS long-running task</td>
</tr>
<tr>
<td></td>
<td>CODB</td>
<td>CICSPlex SM debugger</td>
</tr>
<tr>
<td></td>
<td>COD0</td>
<td>CICSPlex SM debugger</td>
</tr>
<tr>
<td></td>
<td>COD1</td>
<td>CICSPlex SM debugger</td>
</tr>
<tr>
<td></td>
<td>COD2</td>
<td>CICSPlex SM debugger</td>
</tr>
<tr>
<td></td>
<td>COLU</td>
<td>CICSPlex SM CICS online utility</td>
</tr>
<tr>
<td></td>
<td>COSD</td>
<td>CICSPlex SM CMAS stop</td>
</tr>
<tr>
<td></td>
<td>LCMU</td>
<td>CICSPlex SM Transmit must-complete remote message argument lists</td>
</tr>
<tr>
<td></td>
<td>LCPP</td>
<td>CICSPlex SM check joining CMAS for plex export</td>
</tr>
<tr>
<td></td>
<td>LECI</td>
<td>CICSPlex SM CMAS-MAS CPI-C initial contact - CMAS</td>
</tr>
<tr>
<td></td>
<td>LECR</td>
<td>CICSPlex SM CMAS-MAS CPI-C RECEIVE manager - CMAS</td>
</tr>
<tr>
<td></td>
<td>LECS</td>
<td>CICSPlex SM CMAS-MAS CPI-C SEND manager - CMAS</td>
</tr>
<tr>
<td></td>
<td>LEEI</td>
<td>CICSPlex SM ESSS initial contact transient</td>
</tr>
<tr>
<td></td>
<td>LEER</td>
<td>CICSPlex SM ESSS RECEIVE link manager</td>
</tr>
<tr>
<td></td>
<td>LEMI</td>
<td>CICSPlex SM CMAS-MAS MRO initial contact - CMAS</td>
</tr>
<tr>
<td></td>
<td>LEMS</td>
<td>CICSPlex SM CMAS-MAS MRO SEND manager - CMAS</td>
</tr>
<tr>
<td></td>
<td>LENS</td>
<td>CICSPlex SM CMAS-NetView SEND link manager</td>
</tr>
<tr>
<td></td>
<td>LMIR</td>
<td>CICSPlex SM MRO RECEIVE link - CMAS</td>
</tr>
<tr>
<td></td>
<td>LNIC</td>
<td>CICSPlex SM CMAS-CMAS CPI-C initial contact</td>
</tr>
<tr>
<td></td>
<td>LNCS</td>
<td>CICSPlex SM CMAS-CMAS CPI-C SEND link manager</td>
</tr>
<tr>
<td></td>
<td>LNMI</td>
<td>CICSPlex SM CMAS-CMAS initial contact task</td>
</tr>
<tr>
<td></td>
<td>LNMS</td>
<td>CICSPlex SM CMAS-CMAS MRO initial contact task</td>
</tr>
<tr>
<td></td>
<td>LPDG</td>
<td>CICSPlex SM net direct address generation</td>
</tr>
<tr>
<td></td>
<td>LPLK</td>
<td>CICSPlex SM network lock</td>
</tr>
<tr>
<td></td>
<td>LPLT</td>
<td>CICSPlex SM connection long-running task</td>
</tr>
<tr>
<td></td>
<td>LPRT</td>
<td>CICSPlex SM connection services remove link</td>
</tr>
<tr>
<td></td>
<td>LPSC</td>
<td>CICSPlex SM repository synchronization check</td>
</tr>
<tr>
<td></td>
<td>LPSM</td>
<td>CICSPlex SM CMAS - shutdown MAS</td>
</tr>
<tr>
<td></td>
<td>LRLT</td>
<td>CICSPlex SM security long-running task</td>
</tr>
<tr>
<td></td>
<td>LSGT</td>
<td>CICSPlex SM garbage collection long-running task</td>
</tr>
<tr>
<td></td>
<td>LSRT</td>
<td>CICSPlex SM communications long-running task</td>
</tr>
<tr>
<td></td>
<td>LWTM</td>
<td>CICSPlex SM timing transaction</td>
</tr>
<tr>
<td></td>
<td>MCCM</td>
<td>CICSPlex SM data collector manager</td>
</tr>
<tr>
<td></td>
<td>MCKT</td>
<td>CICSPlex SM monitor end-of-task data collector</td>
</tr>
<tr>
<td></td>
<td>MMEI</td>
<td>CICSPlex SM end-of-interval processor</td>
</tr>
<tr>
<td></td>
<td>MMIS</td>
<td>CICSPlex SM monitor MAS attach</td>
</tr>
<tr>
<td></td>
<td>MMST</td>
<td>CICSPlex SM monitor initialization</td>
</tr>
<tr>
<td></td>
<td>PEAD</td>
<td>CICSPlex SM RTA evaluation asynchronous data processor</td>
</tr>
<tr>
<td></td>
<td>PELT</td>
<td>CICSPlex SM RTA MRM long-running task</td>
</tr>
<tr>
<td></td>
<td>PMLT</td>
<td>CICSPlex SM RTA MRM long-running task</td>
</tr>
<tr>
<td>Resource type</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>PNLT</td>
<td>CICSPlex SM RTA ACT long-running task</td>
<td></td>
</tr>
<tr>
<td>PPLT</td>
<td>CICSPlex SM RTA analysis point long-running task</td>
<td></td>
</tr>
<tr>
<td>PRLT</td>
<td>CICSPlex SM RTA ANL long-running task</td>
<td></td>
</tr>
<tr>
<td>PRPR</td>
<td>CICSPlex SM RTA analysis asynchronous data processor</td>
<td></td>
</tr>
<tr>
<td>PSLT</td>
<td>CICSPlex SM POL long-running transaction</td>
<td></td>
</tr>
<tr>
<td>TICT</td>
<td>CICSPlex SM topology long-running task map change</td>
<td></td>
</tr>
<tr>
<td>TIRT</td>
<td>CICSPlex SM topology long-running task RODM</td>
<td></td>
</tr>
<tr>
<td>TIST</td>
<td>CICSPlex SM topology long-running task services</td>
<td></td>
</tr>
<tr>
<td>TSMH</td>
<td>CICSPlex SM topology resident map list task</td>
<td></td>
</tr>
<tr>
<td>TSPD</td>
<td>CICSPlex SM topology CICSPlex delete</td>
<td></td>
</tr>
<tr>
<td>TSSC</td>
<td>CICSPlex SM topology system start event</td>
<td></td>
</tr>
<tr>
<td>TSSJ</td>
<td>CICSPlex SM topology join event</td>
<td></td>
</tr>
<tr>
<td>WMCC</td>
<td>CICSPlex SM workload manager (WLM) create work</td>
<td></td>
</tr>
<tr>
<td>WMGR</td>
<td>CICSPlex SM WLM long running task</td>
<td></td>
</tr>
<tr>
<td>WMLA</td>
<td>CICSPlex SM WLM update AOR abend lists</td>
<td></td>
</tr>
<tr>
<td>WMQB</td>
<td>CICSPlex SM query workloads for a CICSPlex</td>
<td></td>
</tr>
<tr>
<td>WMQM</td>
<td>CICSPlex SM manage query workload process</td>
<td></td>
</tr>
<tr>
<td>WMQS</td>
<td>CICSPlex SM quiescing AOR task</td>
<td></td>
</tr>
<tr>
<td>WMSC</td>
<td>CICSPlex SM update scope service class tables</td>
<td></td>
</tr>
<tr>
<td>WMWC</td>
<td>CICSPlex SM WLM create workload</td>
<td></td>
</tr>
<tr>
<td>WMWD</td>
<td>CICSPlex SM WLM AOR descriptor generation</td>
<td></td>
</tr>
<tr>
<td>WMWT</td>
<td>CICSPlex SM WLM end workload</td>
<td></td>
</tr>
<tr>
<td>WSCL</td>
<td>CICSPlex SM global lock service</td>
<td></td>
</tr>
<tr>
<td>WSLW</td>
<td>CICSPlex SM locking task</td>
<td></td>
</tr>
<tr>
<td>XDBM</td>
<td>CICSPlex SM batch repository mainline</td>
<td></td>
</tr>
<tr>
<td>XDNC</td>
<td>CICSPlex SM API notification long-running task</td>
<td></td>
</tr>
<tr>
<td>XDND</td>
<td>CICSPlex SM API disposition long-running task</td>
<td></td>
</tr>
<tr>
<td>XDNE</td>
<td>CICSPlex SM API connection long-running task</td>
<td></td>
</tr>
<tr>
<td>XDNR</td>
<td>CICSPlex SM API command-processing task</td>
<td></td>
</tr>
<tr>
<td>XDNS</td>
<td>CICSPlex SM API service long-running task</td>
<td></td>
</tr>
<tr>
<td>XDSR</td>
<td>CICSPlex SM build MPSYNCCR record queue</td>
<td></td>
</tr>
<tr>
<td>XLEV</td>
<td>CICSPlex SM initialization transaction</td>
<td></td>
</tr>
<tr>
<td>XLNX</td>
<td>CICSPlex SM notify long-running task</td>
<td></td>
</tr>
<tr>
<td>XLST</td>
<td>CICSPlex SM selector transaction</td>
<td></td>
</tr>
<tr>
<td>XMLT</td>
<td>CICSPlex SM consolidated message log long-running task</td>
<td></td>
</tr>
<tr>
<td>XQST</td>
<td>CICSPlex SM asynchronous spooling of CICSPlex SM queue</td>
<td></td>
</tr>
<tr>
<td>XZLT</td>
<td>CICSPlex SM CMAS-MAS trace processor</td>
<td></td>
</tr>
</tbody>
</table>
### Table 24. Sample resource definitions supplied in EYUSCDEF (Part 2) (continued)

<table>
<thead>
<tr>
<th>Resource type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient data queue</td>
<td>COLG</td>
<td>CICSPlex SM log output</td>
</tr>
<tr>
<td></td>
<td>COPR</td>
<td>CICSPlex SM parameters</td>
</tr>
</tbody>
</table>

**Default CICS resource definitions for a MAS**

On an INITIAL start of a MAS, or if a MAS is started by the COLM transaction, CICSPlex SM uses the default CICS resource definitions supplied in sample EYUSMDEF. Table 25 on page 223 lists these definitions.

### Table 25. Sample resource definitions supplied in EYUSMDEF

<table>
<thead>
<tr>
<th>Resource type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile</td>
<td>EYUCICSD</td>
<td>CICSPlex SM debugger transaction</td>
</tr>
<tr>
<td>Resource type</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>-------------------------------------------</td>
</tr>
<tr>
<td>Program</td>
<td>EYUTXLPD</td>
<td>CICSPlex SM parameter table</td>
</tr>
<tr>
<td></td>
<td>EYU9AEDF</td>
<td>CICSPlex SM API EDF formatter</td>
</tr>
<tr>
<td></td>
<td>EYU9BA01</td>
<td>CICSPlex SM MAS BAS object</td>
</tr>
<tr>
<td></td>
<td>EYU9CM01</td>
<td>CICSPlex SM CMAS communications</td>
</tr>
<tr>
<td></td>
<td>EYU9DBG0</td>
<td>CICSPlex SM debugger</td>
</tr>
<tr>
<td></td>
<td>EYU9DBG1</td>
<td>CICSPlex SM debugger</td>
</tr>
<tr>
<td></td>
<td>EYU9DBG2</td>
<td>CICSPlex SM debugger</td>
</tr>
<tr>
<td></td>
<td>EYU9DBUG</td>
<td>CICSPlex SM debugger</td>
</tr>
<tr>
<td></td>
<td>EYU9MN01</td>
<td>CICSPlex SM MAS monitor</td>
</tr>
<tr>
<td></td>
<td>EYU9NA01</td>
<td>CICSPlex SM MAS agents</td>
</tr>
<tr>
<td></td>
<td>EYU9NLDC</td>
<td>CICSPlex SM MAS XDUREQC exit</td>
</tr>
<tr>
<td></td>
<td>EYU9NLDR</td>
<td>CICSPlex SM MAS XDUREQ exit</td>
</tr>
<tr>
<td></td>
<td>EYU9NLID</td>
<td>CICSPlex SM MAS XRSINDI exit</td>
</tr>
<tr>
<td></td>
<td>EYU9NLME</td>
<td>CICSPlex SM MAS XMEOUT exit</td>
</tr>
<tr>
<td></td>
<td>EYU9NLSO</td>
<td>CICSPlex SM MAS XSNOFF exit</td>
</tr>
<tr>
<td></td>
<td>EYU9NMSM</td>
<td>CICSPlex SM MAS XSTOUT exit</td>
</tr>
<tr>
<td></td>
<td>EYU9NMTE</td>
<td>CICSPlex SM MAS XMNOUT exit</td>
</tr>
<tr>
<td></td>
<td>EYU9NPS2</td>
<td>CICSPlex SM MAS shutdown task</td>
</tr>
<tr>
<td></td>
<td>EYU9NLXI</td>
<td>CICSPlex SM MAS PLTPI</td>
</tr>
<tr>
<td></td>
<td>EYU9NXSD</td>
<td>CICSPlex SM MAS global shutdown exit</td>
</tr>
<tr>
<td></td>
<td>EYU9NXSH</td>
<td>CICSPlex SM MAS global shutdown program</td>
</tr>
<tr>
<td></td>
<td>EYU9PS01</td>
<td>CICSPlex SM MAS real-time analysis</td>
</tr>
<tr>
<td></td>
<td>EYU9TS01</td>
<td>CICSPlex SM MAS topology</td>
</tr>
<tr>
<td></td>
<td>EYU9WM01</td>
<td>CICSPlex SM MAS workload management</td>
</tr>
<tr>
<td></td>
<td>EYU9WRAM</td>
<td>CICSPlex SM WLM route</td>
</tr>
<tr>
<td></td>
<td>EYU9XC01</td>
<td>CICSPlex SM MAS cache</td>
</tr>
<tr>
<td></td>
<td>EYU9XC02</td>
<td>CICSPlex SM MAS cache</td>
</tr>
<tr>
<td></td>
<td>EYU9XD01</td>
<td>CICSPlex SM MAS data repository</td>
</tr>
<tr>
<td></td>
<td>EYU9XLAP</td>
<td>CICSPlex SM API object environment CREATE</td>
</tr>
<tr>
<td></td>
<td>EYU9XLEV</td>
<td>CICSPlex SM main initialization</td>
</tr>
<tr>
<td></td>
<td>EYU9XLRG</td>
<td>CICSPlex SM global user abend XPCTA exit</td>
</tr>
<tr>
<td></td>
<td>EYU9XLOP</td>
<td>CICSPlex SM object environment CREATE</td>
</tr>
<tr>
<td></td>
<td>EYU9XLSR</td>
<td>CICSPlex SM system user abend XSRAB exit</td>
</tr>
<tr>
<td></td>
<td>EYU9XL01</td>
<td>CICSPlex SM MAS kernel linkage</td>
</tr>
<tr>
<td></td>
<td>EYU9XM01</td>
<td>CICSPlex SM MAS message format</td>
</tr>
<tr>
<td></td>
<td>EYU9XQ01</td>
<td>CICSPlex SM MAS queue manager</td>
</tr>
<tr>
<td></td>
<td>EYU9XSTR</td>
<td>CICSPlex SM CMAS-MAS task recovery task related user exit</td>
</tr>
<tr>
<td></td>
<td>EYU9XSO1</td>
<td>CICSPlex SM MAS common services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CICSPlex SM MAS trace</td>
</tr>
</tbody>
</table>
Table 25. Sample resource definitions supplied in EYU$MDEF (continued)

<table>
<thead>
<tr>
<th>Resource type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transaction</td>
<td>CODB</td>
<td>CICSPlex SM debugger</td>
</tr>
<tr>
<td></td>
<td>COD0</td>
<td>CICSPlex SM debugger</td>
</tr>
<tr>
<td></td>
<td>COD1</td>
<td>CICSPlex SM debugger</td>
</tr>
<tr>
<td></td>
<td>COD2</td>
<td>CICSPlex SM debugger</td>
</tr>
<tr>
<td></td>
<td>COIE</td>
<td>CICSPlex SM MAS status transaction</td>
</tr>
<tr>
<td></td>
<td>COHT</td>
<td>CICSPlex SM MAS historical data collection transaction</td>
</tr>
<tr>
<td></td>
<td>COIR</td>
<td>CICSPlex SM RTA evaluation definition task - MAS</td>
</tr>
<tr>
<td></td>
<td>COI0</td>
<td>CICSPlex SM MAS communications receive transaction</td>
</tr>
<tr>
<td></td>
<td>COLM</td>
<td>CICSPlex SM MAS startup</td>
</tr>
<tr>
<td></td>
<td>COLU</td>
<td>CICSPlex SM CICS online utility</td>
</tr>
<tr>
<td></td>
<td>CONA</td>
<td>CICSPlex SM MAS alternate long-running task transaction</td>
</tr>
<tr>
<td></td>
<td>COND</td>
<td>CICSPlex SM MAS shutdown transaction</td>
</tr>
<tr>
<td></td>
<td>CONH</td>
<td>CICSPlex SM MAS history task</td>
</tr>
<tr>
<td></td>
<td>CONL</td>
<td>CICSPlex SM MAS initialization transaction</td>
</tr>
<tr>
<td></td>
<td>CONM</td>
<td>CICSPlex SM MAS monitor task</td>
</tr>
<tr>
<td></td>
<td>CORT</td>
<td>CICSPlex SM RTA task</td>
</tr>
<tr>
<td></td>
<td>COSH</td>
<td>CICSPlex SM MAS shutdown</td>
</tr>
<tr>
<td></td>
<td>COWC</td>
<td>CICSPlex SM MAS workload management garbage collection</td>
</tr>
<tr>
<td>Transient data queue</td>
<td>COPR</td>
<td>CICSPlex SM buffers</td>
</tr>
</tbody>
</table>

**Default CICS resource definitions for a WUI**

On an INITIAL start of a WUI, or if a WUI is started by the COVC transaction, CICSPlex SM uses the default CICS resource definitions supplied in sample EYU$WDEF. Table 26 on page 225 lists these definitions. As a WUI server is a MAS, CICSPlex SM also uses the default CICS resource definitions supplied in sample EYU$MDEF, and listed in Table 25 on page 223.

Table 26. Sample resource definitions supplied in EYU$WDEF

<table>
<thead>
<tr>
<th>Resource type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enqmodel</td>
<td>EYUWREP</td>
<td>CICSPlex SM WUI repository update serialization</td>
</tr>
<tr>
<td>File</td>
<td>EYUWREP</td>
<td>CICSPlex SM WUI data repository</td>
</tr>
<tr>
<td>Mapset</td>
<td>EYU9VCE</td>
<td>CICSPlex SM WUI control mapset</td>
</tr>
<tr>
<td>Resource type</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>------------------------------------------------------------</td>
</tr>
<tr>
<td>Program</td>
<td>EYU9VKEC</td>
<td>CICSPlex SM WUI server</td>
</tr>
<tr>
<td></td>
<td>EYU9VKIT</td>
<td>CICSPlex SM WUI initialization</td>
</tr>
<tr>
<td></td>
<td>EYU9WAN</td>
<td>CICSPlex SM WUI analyzer</td>
</tr>
<tr>
<td></td>
<td>EYU9WCV</td>
<td>CICSPlex SM WUI converter</td>
</tr>
<tr>
<td></td>
<td>EYUTOSE</td>
<td>CICSPlex SM WUI resource table text strings (US English)</td>
</tr>
<tr>
<td></td>
<td>EYUTTGGE</td>
<td>CICSPlex SM WUI GIF files (US English)</td>
</tr>
<tr>
<td></td>
<td>EYUTVTHE</td>
<td>CICSPlex SM WUI HTML pages (US English)</td>
</tr>
<tr>
<td></td>
<td>EYUTVTJE</td>
<td>CICSPlex SM Java classes (US English)</td>
</tr>
<tr>
<td></td>
<td>EYUTVTME</td>
<td>CICSPlex SM WUI messages (US English)</td>
</tr>
<tr>
<td></td>
<td>EYUTVTSE</td>
<td>CICSPlex SM WUI strings (US English)</td>
</tr>
<tr>
<td></td>
<td>EYUTVOSK</td>
<td>CICSPlex SM WUI resource table text strings (Japanese)</td>
</tr>
<tr>
<td></td>
<td>EYUTVTGK</td>
<td>CICSPlex SM WUI GIF files (Japanese)</td>
</tr>
<tr>
<td></td>
<td>EYUTVTKH</td>
<td>CICSPlex SM WUI HTML pages (Japanese)</td>
</tr>
<tr>
<td></td>
<td>EYUTVTJK</td>
<td>CICSPlex SM Java classes (Japanese)</td>
</tr>
<tr>
<td></td>
<td>EYUTVTMK</td>
<td>CICSPlex SM WUI messages (Japanese)</td>
</tr>
<tr>
<td></td>
<td>EYUTVTSK</td>
<td>CICSPlex SM WUI strings (Japanese)</td>
</tr>
<tr>
<td></td>
<td>EYUTVOSS</td>
<td>CICSPlex SM WUI resource table text strings (Simplified Chinese)</td>
</tr>
<tr>
<td></td>
<td>EYUTVTGS</td>
<td>CICSPlex SM WUI GIF files (Simplified Chinese)</td>
</tr>
<tr>
<td></td>
<td>EYUTVTHS</td>
<td>CICSPlex SM WUI HTML pages (Simplified Chinese)</td>
</tr>
<tr>
<td></td>
<td>EYUTVTJS</td>
<td>CICSPlex SM Java classes (Simplified Chinese)</td>
</tr>
<tr>
<td></td>
<td>EYUTVTMS</td>
<td>CICSPlex SM WUI messages (Simplified Chinese)</td>
</tr>
<tr>
<td></td>
<td>EYUTVTSS</td>
<td>CICSPlex SM WUI strings (Simplified Chinese)</td>
</tr>
<tr>
<td>Transaction</td>
<td>COVA</td>
<td>CICSPlex SM WUI user API task</td>
</tr>
<tr>
<td></td>
<td>COVC</td>
<td>CICSPlex SM WUI server controller</td>
</tr>
<tr>
<td></td>
<td>COVE</td>
<td>CICSPlex SM WUI HTTP error handler</td>
</tr>
<tr>
<td></td>
<td>COVG</td>
<td>CICSPlex SM WUI global task</td>
</tr>
<tr>
<td></td>
<td>COVP</td>
<td>CICSPlex SM WUI proxy</td>
</tr>
<tr>
<td></td>
<td>COUV</td>
<td>CICSPlex SM WUI resource server</td>
</tr>
<tr>
<td>Transient data queue</td>
<td>COLL</td>
<td>CICSPlex SM log output</td>
</tr>
<tr>
<td></td>
<td>COVE</td>
<td>CICSPlex SM WUI export data set</td>
</tr>
<tr>
<td></td>
<td>COVI</td>
<td>CICSPlex SM WUI import data set</td>
</tr>
<tr>
<td></td>
<td>COVP</td>
<td>CICSPlex SM WUI parameters</td>
</tr>
</tbody>
</table>
This information was developed for products and services offered in the U.S.A. This material might be available from IBM in other languages. However, you may be required to own a copy of the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property rights may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119 Armonk,
NY 10504-1785
United States of America

© Copyright IBM Corp. 1974, 2019
Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Programming interface information

CICS supplies some documentation that can be considered to be Programming Interfaces, and some documentation that cannot be considered to be a Programming Interface.

Programming Interfaces that allow the customer to write programs to obtain the services of CICS Transaction Server for z/OS, Version 5 Release 5 are included in the following sections of the online product documentation:

- Developing applications
- Developing system programs
- CICS security
- Developing for external interfaces
- Reference: application development
- Reference: system programming
- Reference: connectivity

Information that is NOT intended to be used as a Programming Interface of CICS Transaction Server for z/OS, Version 5 Release 5, but that might be misconstrued as Programming Interfaces, is included in the following sections of the online product documentation:

- Troubleshooting and support
- Reference: diagnostics

If you access the CICS documentation in manuals in PDF format, Programming Interfaces that allow the customer to write programs to obtain the services of CICS Transaction Server for z/OS, Version 5 Release 5 are included in the following manuals:

- Application Programming Guide and Application Programming Reference
- Business Transaction Services
- Customization Guide
If you access the CICS documentation in manuals in PDF format, information that is NOT intended to be used as a Programming Interface of CICS Transaction Server for z/OS, Version 5 Release 5, but that might be misconstrued as Programming Interfaces, is included in the following manuals:

- Data Areas
- Diagnosis Reference
- Problem Determination Guide
- CICSPlex SM Problem Determination Guide

**Trademarks**

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at [Copyright and trademark information](https://www.ibm.com/legal/copytrade.shtml).

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

**Terms and conditions for product documentation**

Permissions for the use of these publications are granted subject to the following terms and conditions.

**Applicability**

These terms and conditions are in addition to any terms of use for the IBM website.

**Personal use**

You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices are preserved. You may not distribute, display or make derivative work of these publications, or any portion thereof, without the express consent of IBM.
Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display these publications or any portion thereof outside your enterprise, without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied, to the publications or any information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM online privacy statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies or other technologies to collect product usage information, to help improve the end user experience, to tailor interactions with the end user or for other purposes. In many cases no personally identifiable information is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect personally identifiable information. If this Software Offering uses cookies to collect personally identifiable information, specific information about this offering’s use of cookies is set forth below:

For the CICSPlex SM Web User Interface (main interface):
Depending upon the configurations deployed, this Software Offering may use session and persistent cookies that collect each user's user name and other personally identifiable information for purposes of session management, authentication, enhanced user usability, or other usage tracking or functional purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface (data interface):
Depending upon the configurations deployed, this Software Offering may use session cookies that collect each user's user name and other personally identifiable information for purposes of session management, authentication, or other usage tracking or functional purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface ("hello world" page):
Depending upon the configurations deployed, this Software Offering may use session cookies that collect no personally identifiable information. These cookies cannot be disabled.

For CICS Explorer:
Depending upon the configurations deployed, this Software Offering may use session and persistent preferences that collect each user’s user name and password, for purposes of session management, authentication, and single sign-on configuration. These preferences cannot be disabled, although storing a user's password on disk in encrypted form can only be enabled by the user's explicit action to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you, as customer, the ability to collect personally identifiable information from end users via cookies and other technologies, you should seek your own legal advice about any laws applicable to such data collection, including any requirements for notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see IBM Privacy Policy and IBM Online Privacy Statement, the section entitled Cookies, Web Beacons and Other Technologies and the IBM Software Products and Software-as-a-Service Privacy Statement.
Index

Special Characters
-supplied procedures, copying into a 55

A
ACB (z/OS Communications Server), authorizing the region user ID to open 65
ACBNAME, parameter of SNA APPL statement 90
ACBNAME, VTAM APPL statement parameter 96
ACCEPT, function of SMP/E 53, 156
ACTFILE, primer sample application accounts data set 167
ACIXFILE, primer sample application index data set 167
ACTIVATE, parameter of DFHISTAR 32
activating real-time analysis
SNA definitions
for CMAS 97
activation module 19, 32
address space (CMAS)
define SNA requirements
activate the major nodes 97
define z/OS Communications Server for SNA requirements
define APPL statement 96
define cross-domain resources 96
define z/OS Communications Server requirements
define APPL statement 95
define cross-domain resources 95
journalmodel 172
preparing for API 73
start ESSS 73
update IEASYSxx 77
ADDTVOL, parameter of DFHISTAR 42
ADFHPD1 distribution library 34
ADFHPD2 distribution library 34
ADFHC370 elements 34
ADFHCCLIB distribution library 34
ADFHCDB elements 34
ADFHNINST distribution library 34
ADFHMAC distribution library 34
ADFHMMLIB distribution library 34
ADFHPMOD distribution library 34
ADFHMGS2 distribution library 34
ADFHMCSRC distribution library 34
ADFHHPARM distribution library 34
ADFHPL1 elements 34
ADFHPROC distribution library 34
ADFHSAMP distribution library 34
AINDEX, parameter of DFHISTAR 41
ALINDEX, parameter of DFHISTAR 42
allocating
distribution and target libraries 51
RELFILE data sets 51
SMP/E data sets 52
APAR fixes 155, 157
APF, MVS initialization parameter
IEASYSxx value 76
APPL statement
CMAS 96
application programming interface (API)
installing REXX function package 74
preparing for 73
APPLID
accessing from several MVS images 91
and IMS LOGMODE entry 180
notifying SNA of the CICS APPLID 199
using for SNA logon 203
APPLY, function of SMP/E 53, 156
applying service
supplied SMP/E procedure 156
applying service to CICS
corequisite fixes 157
ASMHCL exec, to create an MVS nucleus module list for CICS 88
ASMPLTS, parameter of DFHISTAR 42
ASMPMNTS, parameter of DFHISTAR 42
ASMPSCDS, parameter of DFHISTAR 42
ASMPSTS, parameter of DFHISTAR 42
ASREXIT 123
ATCONxx, SNA list member 97
ATCSRxx, SNA list member 97
attributes for SMP/E data sets 37, 38
AUTH, parameter of SNA APPL statement 90
AUTH, SNA APPL statement parameter
CMAS 96
automated-operation programs
message formatting coexistence 76
auxiliary trace (A) data set, DFHAUXT
creating for a CICS region 166
DD statement in IVP startup procedure 196
auxiliary trace (B) data set, DFHBUXT
creating for a CICS region 166
DD statement in IVP startup procedure 196
AZONE, parameter of DFHISTAR 42
AZONECSI, parameter of DFHISTAR 42
AZONELOG, parameter of DFHISTAR 42

B
BLKFB80 parameter of the DFHISTAR job 33
BLKU parameter of the DFHISTAR job 33
block sizes for data sets
block sizes for 33

C
catalogs
distribution and target libraries 51
category 1 transactions, authorizing the region user ID 66
CBPDO method of installing
description of 1
CDRSC
create or access member
in SYS1.VTAMLST library 96
CDRSC (continued)
  defining 96
CDRSTI, parameter of SNA START command 92
CDS (control data set), saved 38
CEDA transaction
  installing the CICS sample programs 203
CEECCICS, Language Environment interface module 172
CEEMSG, transient data destination, Language Environment 173
CEEOUT, transient data destination, Language Environment 173
CESE, transient data destination, Language Environment 173
CESO, transient data destination, Language Environment 173
checklists for setup
  CMAS 6
  MAS 6
  overview 6
  WUI 6
CICS Explorer
  Installation planning 6
  Installing 13
CICS libraries
  SMP/E function ACCEPT (DFHINST6) 53
CICS modules required in the LPA
  DFH99SVC 99
  DFHCSCV 99
  DFHDRUMPX 99
  DFHIRP 99
  DFHSPEX 99
  DFHSSEN 99
  DFHSSGC 99
  DFHSSWT 99
CICS provided transactions in interactive IVP
  from a terminal 203
CICS Sockets 176
CICS system
  definition (CSD) files
    updating 170
  CICS system definition data set, DFHCSD
    creating for all CICS regions 165
  DD statement in IVP startup procedure 197
  requirements for autoinstall 198
CICS TS
  installing 19, 22
  storage requirements 3
CICSPlex SM installation attributes 46
  class of service (COS)
    ACF/Communications Server LOGMODE entry 180
CMAC, CICS messages facility
  DD statement in IVP startup procedure 196
  defining resources required 167
  defining the messages data set, DFHCMACD 167
  messages data set, DFHCMACD 196
  resources required to use with the IVP jobs 194
CMACVOL parameter of the DFHISTAR job 35
CMAS
  setup worksheet 9
CMAS (address space)
  define SNA requirements
    activate the major nodes 97
  define z/OS Communications Server for SNA
  requirements
  define APPL statement 96
  define z/OS Communications Server requirements
CMAS (address space) (continued)
  define z/OS Communications Server requirements (continued)
    define APPL statement 95
    define cross-domain resources 95
  preparing for API 73
  start ESSS 73
  update IEASYSxx 77
CMAS (address space)
  define SNA requirements 95
  journalmodel 172
CMAS setup worksheet 9
CMASNAME parameter of the DFHISTAR job 46
CMCIPORT parameter of the DFHISTAR job 47
CMD, MVS initialization parameter
  IEASYSxx value 76
CMSSYSID parameter of the DFHISTAR job 47
COBOL under Language Environment 174
  coexistence
    automated-operation programs 76
    releases of CICS before this release 76
  common CICS data sets, creating (DFHCOMDS job) 165
  communications
    CMAS-to-CMAS 96
  Configuring TS Explorer 13
  console device for the IVP jobs
    definition 198
    using transactions 203
  CONSOLE macro 128
  console message formatting
    activating 83
    default initialization parameters 82
    defining CICS as an MVS subsystem 75
    modules required 83
  console messages 128
  console support
    TSO CLIST processing 203
    consolidated software inventory (CSI) 39
    coupling facility
      definition 135
      structures 135
    coupling facility cache structures, VSAM RLS 125
    coupling facility lock structure, VSAM RLS 124
  COUT, transient data extrapartition data set
    DD statement in IVP startup procedure 197
  cross system locking, VSAM RLS 124
  cross-domain resources (CDRSC)
    create or access member
      in SYS1.VTAMLST library 96
    defining 96
    cross-system coupling facility (XCF)
      for cross-system MRO 177
    used for interregion communication 176
    cross-system MRO (XCF/MRO)
      generating support for 177
CSD files
  updating 170
  CSI (consolidated software inventory) 39
  CSSLIB parameter of the DFHISTAR job 43
  CSYSNAME parameter of the DFHISTAR job 48
  CSYSPLEX parameter of the DFHISTAR job 47
  CSYSYSID parameter of the DFHISTAR job 47
  customizing CICS
    adding ISC support 179
    installing CICS modules in MVS link pack area 98

232  CICS TS for z/OS: Installing CICS
customizing CICS (continued)
using HPO support 87

D
data sets
RELFILE, allocating 51
data sets (non-SMP/E), assigning a high-level index 41
data sets for CICS
common to all regions, creating (DFHCOMDS job) 165
unique to each region, creating (DFHDEFDS job) 166
DBCTL
installation verification procedure (IVP) 212
debugging profiles alternate index data set, DFHDPFMP
creating for each CICS region 166
debugging profiles base data set, DFHDPFMB
creating for each CICS region 166
debugging profiles path data set, DFHDPFMP
creating for each CICS region 166
Default CICS user ID, defining 71
defining a LU for online IVP 198
defining IPIC connections 184
Defining the hlq.SDFHLPA library to your MVS 111
DEFFVOL parameter of the DFHISTAR job 34
Developer Trial 19
DFH$AFLA CSD group, FILEA sample programs 205
DFH$BTCH, input to the verify batch job 197
DFH$SIPn members of SYSIN data set, for IVP jobs 193
DFH99SVC, SVC services 99
DFHASMVS, -supplied procedure 56
DFHAUPLE, -supplied procedure 56
DFHAUXT data set, auxiliary trace
creating for a CICS region 166
DD statement in IVP startup procedure 196
DFHBMSU, -supplied procedure 56
DFHBUXT data set, auxiliary trace
creating for a CICS region 166
DD statement in IVP startup procedure 196
DFHCMACD, messages data set 167
DFHCMACI, job to create and initialize the messages data set 167
DFHCOMDS, job to create common CICS data sets 165
DFHCSD data set, CICS system definition
creating for all CICS regions 165
DD statement in IVP startup procedure 197
requirements for autoinstall 198
DFHCSHAR requirements
DFHCSD 171
SYSIN 171
DFHCSVC, CICS Type 3 SVC 99
DFHCSVCM, the CICS type 3 SVC
correct-level check 85
DFHCSCVU 86
installing 85
using for MRO between different CICS releases 87
using more than one version 86
DFHCTAIX, sample application alternate index 167
DFHCTCUS, sample application details data set 167
DFHCTHLHP, sample application help data set 167
DFHCXRF, transient data extrapolation data set
DD statement in IVP startup procedure 196
local request queue data set 196
DFHDEFDS, job to create data sets for each region 166
DFHDLPSB TYPE=ENTRY macro (remote DL/I) 187
DFHDMMPA data set, dump
creating for a CICS region 166
DD statement in IVP startup procedure 197
DFHDMMPB data set, dump
creating for a CICS region 166
DD statement in IVP startup procedure 197
DFHDPFMB debugging profiles alternate index data set
creating for each CICS region 166
DFHDPFMB debugging profiles base data set
creating for each CICS region 166
DFHDPFMB debugging profiles path data set
creating for each CICS region 166
DFHDSPEX, CICS post exit stub 99
DFHDSMPX, CICS dump query exit
LPA (link pack area) 99
DFHEBTAL, -supplied procedure 56
DFHEITAL, -supplied procedure 56
DFHEXTAL, -supplied procedure 56
DHGCD data set, global catalog
creating for a CICS region 166
DD statement in IVP startup procedure 196
DFHHPVSC, SNA authorized path SVC
loading into the MVS nucleus 87
DFHHTML data set for HTML templates
creating for a CICS region 166
DFHIJVMJ 54
DFHINST1, installation job 51
DFHINST2, installation job 51
DFHINST3, installation job 52
DFHINST4, installation job 52
DFHINST5, installation job 52, 53
DFHINST6, installation job 53
DFHINTRA data set, intapartition transient data
creating for a CICS region 166
DD statement in IVP startup procedure 196
DFHISMP, interregion communication program
MRO requirement 177
DFHISMP, installation job 51
DFHISTAR, creating postinstallation jobs 162
DFHISTAR, job to define installation-related jobs
BLKFB80 parameter 33
BLKU parameter 33
CMACVOL parameter 35
CMASNAME parameter 46
CMCIPORT parameter 47
CMSSID parameter 47
CSSLIB parameter 43
CSYNAME parameter 48
CSSYSPLEX parameter 47
CSYSSPD parameter 47
DEFVOL parameter 34
DINDEX parameter 31
DISTVOL parameter 34
DSINFO parameter 41
DZONE parameter 40
DZONECSI parameter 39
DZONELOG parameter 38
GINDEX parameter 31
GZONE parameter 39
GZONECSI parameter 39
GZONELOG parameter 38
JAVADIR parameter 33

Index 233
DFHISTAR, job to define installation-related jobs (continued)

- JES parameter 30
- JOB parameter 30
- LIB parameter 29
- LINDEX parameter 31
- LOGGER-INFO parameter 46
- NEWDREP parameter 48
- OLDREP parameter 48
- OPTVOL parameter 35
- parameter default values 25–29
- PREFIX parameter 31
- SCEEBND2 dsname 43
- SCEECICS dsname 44
- SCEECPP parameter 44
- SCEELIB dsname 43
- SCEELKED parameter 43
- SCEELKEX parameter 43
- SCEEOBJ parameter 44
- SCEERUN dsname 44
- SCEERUN2 dsname 44
- SCEESAM parameter 45
- SCLBSID parameter 44
- SCOPE parameter 30, 49
- SCSFMOD0 dsname 46
- SCSSQAU parameter 45
- SCSSQCI parameter 45
- SCSQL parameter 45
- SCSQL parameter 45
- SEZACMTX dsname 44
- SEZARPL parameter 44
- SIXMEXP dsname 46
- SMP/E zone and zone log dispositions 40
- SMPLTS parameter 38
- SMPMTS parameter 38
- SMPPTS parameter 38
- SMPSCDS parameter 38
- SMPSTS parameter 38
- SMPVOL parameter 35
- SMPWORK parameter 37
- SMS parameter 34
- TAPEUNIT parameter 41
- TARGVOL parameter 35
- TCPIPHST parameter 47
- TCPIPPT parameter 47
- TEMPLIB parameter 29
- TIMEZONE parameter 47
- TINDEX parameter 31
- TZONE parameter 40
- TZONECSI parameter 39
- TZONELOG parameter 38
- UTILITIES parameter 30
- WORKUNIT parameter 33
- WUI parameter 47
- WUINAME parameter 47
- WUIPLEX parameter 47
- WUISYSID parameter 47

DFHVBPB, batch IVP

- DFHYBTPL - supplied procedure 56
- DFHYBTVL - supplied procedure 56
- DFHYITDL - supplied procedure 56
- DFHYITEL - supplied procedure 56
- DFHYITGL - supplied procedure 56
- DFHYITPL - supplied procedure 56
- DFHYITVL - supplied procedure 56
- DFHYXTDL - supplied procedure 57
- DFHYXTEL - supplied procedure 57
- DFHYXTPL - supplied procedure 57
- DFHYXTVL - supplied procedure 57
- DFHZITDL - supplied procedure 57
- DFHZITEL - supplied procedure 57
- DFHZITFL - supplied procedure 57
- DFHZITGL - supplied procedure 57
- DFHZITPL - supplied procedure 57
- DFHZITVL - supplied procedure 57
- DFHZXITDL - supplied procedure 57
- DFHZXTEL - supplied procedure 57
- DFHZXTPL - supplied procedure 57

DFHLCD data set, CICS local catalog

- creating for each CICS region 166
- DD statement in IVP startup procedure 196

DFHLNKVS, - supplied procedure 56

DFHMAPS, - supplied procedure 56

DFHMAPT, - supplied procedure 56

DFHSME, - supplied procedure 56

DFHSMPE, cataloged procedure 156

DFHSSN, subsystem interface end-of-memory / end-of-
task clean up routine 99

DFHSSGC, connect module 99

CICS-supplied transactions 203

sample programs 203

terminating CICS 207

transactions 203
dump (B) data set, DFHDMPB (continued)
DD statement in IVP startup procedure 197
dynamic LU alias
LUAPFX parameter 90
dynamic parse validation routines, installing 73
DZONE parameter of the DFHISTAR job 40
DZONECSI parameter of the DFHISTAR job 39
DZONELOG parameter of the DFHISTAR job 38

E
EAS, parameter of SNA APPL statement 90
ECI 175
ELPA (extended link pack area)
eligible modules 100
Environment Services System Services (ESSS)
adding to MVS linklist 73
description of 73
ENVIRONMENT, EYU1PCSP EXEC parameter
IMBED statements required in BLSCECT 120
ESSS (Environment Services System Services)
adding to MVS linklist 73
description of 73
EXCI Pipe Allocation 84
extended recovery facility (XRF)
sessions, HAVAIL, parameter of SNA APPL 90
EYU9XESS module 73
EYUCMASC1 163
EYUCMSP 163
EYUCMSP, -supplied procedure 57
EYUCMSOP 163
EYUCMSDS 163
EYUCMSSP 163
EYUCSYDS 163
EYUCSYJS 163
EYUCSYSP 163
EYUCSYSP, -supplied procedure 57
EYUJHIST 163
EYUJWREP 163
EYULMSOP 163
EYULMSSP 163
EYULPMOD 163
EYUWUJOP 163
EYUWUIDS 163
EYUWUIIN 163
EYUWUIJ 163
EYUWUIP 163
EYUWUIP, -supplied procedure 58
EYUWUISP 163

F
FILEA data set, sample program data
creating for each CICS region 166
DD statement in IVP startup procedure 196
FILEA sample applications
transactions used 193
FORMATMSG, parameter of DFHSSIyy 81
function shipping 186

G
generic routecodes 82
gethostbyaddr function 176
GID 68
GIMMPDFT modules, attributes of SMP/E data sets 37
GIMSP messages and control statements 53
GIMZPOOL, member of SYS1.MACLIB 52
GINDEX parameter of the DFHISTAR job 31
global catalog data set, DFHGC
creating for a CICS region 166
DD statement in IVP startup procedure 196
global zone (GZONE)
CSI 39
log 38
group identifier (GID) 68
GZONE parameter of the DFHISTAR job 39
GZONECSI parameter of the DFHISTAR job 39
GZONELOG parameter of the DFHISTAR job 38

H
hardware requirements
installing CICS TS 3
HAVAIL, parameter of SNA APPL statement 90
HFS0DSN parameter of the DFHISTAR job 33
HFS1DSN parameter of the DFHISTAR job 33
HFSADSNS parameter of the DFHISTAR job
HFSADSNS parameter 33
HIDEPASSWORD, parameter of DFHSSIyy 82
high-performance option (HPO)
defining the CICS SVCs to MVS 85
DFHHPSVC, SNA authorized path SVC 87
SNA authorized path, DFHHPSVC 88
system initialization parameter 88
HTML template data set, DFHTML
creating for a CICS region 166
HTTP 175

I
ICCFCC, -supplied procedure 58
ICCFCL, -supplied procedure 58
ICCFGL, -supplied procedure 58
ICCFCL, -supplied procedure 58
IEASYSxx, MVS initialization member
establishing requirements 77
noting values in 76
updating
for a CMAS 77
IEFSSNaa, MVS subsystem initialization member 78
IEW0461 message from the binder 53
IEW2646 message from the binder 53
IEW2651 message from the binder 53
IMS, database control (DBCTL) 186
installation
ACF/Communications Server definition for CICS
LOGMODE entries 180
ACF/Communications Server definition for IMS 181
ACF/SNA definition for CICS 180
ACF/SNA definition for IMS
LOGMODE entries 181
of CICS sample programs 203
type 3 SVC routine 177
installation jobs
messages 53

Index 235
installation jobs (continued)
  restarting 50
  running 49
installation verification procedure (IVP)
  apilids, defining and activating 192
  auxiliary temporary storage data set, DFHTEMP 196
  auxiliary trace data set (A), DFHAUXT 196
  auxiliary trace data set (B), DFHBUXT 196
  batch IVP, DFHIVPBT 197
  CICS region definition data set 197
  CICS startup procedure, DFHSTART 195
  CMAC resources 194
  DFHS$SIP2 member of SYSIN data set 193
  DFHIVPBT, batch IVP
  system initialization parameters 193
  FILEA data set, sample application data 196
  global catalog data set, DFHGCD 196
  interactive IVP, DFHIVPOL
    defining a LU for 198
  local catalog data set, DFHLCD 196
  local request queue data set, DFHLRQ 196
  messages data set, DFHCMACD 196
  RACF user ID authority 192
  security 192
  SYSIN data set 196
  system definition data set 197
  system initialization parameters 193
  transaction dump (A) data set, DFHDMPA 197
  transaction dump (B) data set, DFHDMPB 197
  transient data extrapartition data set, COUT 197
  transient data extrapartition data set, DFHCXRF 196
  transient data extrapartition data set, LOGUSR 196
  transient data extrapartition data set, MSGUSR 196
  transient data intrapartition data set, DFHINTRA 196
  using the CEDA transaction 203
  using transactions from console device 203
  installing CICSplex modules in MVS link pack area
    eligible modules 117
  installing Language Environment support 173
  Installing modules in the MVS link pack area 111
  installing support for programming languages 172
  installing system
    software requirements 3
    interface modules
      CECCICS 172
      Language Environment 172
    interregion communication (IRC) 176
    intersystem communication over TCP/IP (IPIC)
      defining connections 184
    intrapartition transient data data set, DFHINTRA
      creating for a CICS region 166
      DD statement in IVP startup procedure 196
  IPCS tools
    preparing to use
      updating library allocations 120
  IPIC
    TCPIP initialization parameter 184
  ISC 175
  ISMF storage class application 125

J

Java
  samples 185

JAVADIR

JAVADIR 54
JAVADIR parameter of the DFHISTAR job 33
JES parameter of the DFHISTAR job 30
JOB parameter of the DFHISTAR job 30
journalmodels, CMAS 172

L

Language Environment
  support for C language 174
  support for COBOL 174
  support for PL/I 175
LIB parameter of the DFHISTAR job 29
libraries
  creating multiple sets 58
  load libraries
    support for secondary extents 156
  RACF-protecting 64
  SMP/E function ACCEPT (DFHINST6) 53
  target libraries 35
libraries, CICSplex SM
  DFHISTAR related 162
  skeleton jobs 162
LININDEX parameter of the DFHISTAR job 31
link editing modules
  IEW0461 message 53
  IEW2646 message 53
  IEW2651 message 53
  when running installation jobs 53
link pack area (LPA)
  CICS modules required in the LPA 99
  eligible CICSplex modules 117
  eligible modules 100
  installing CICS modules in 98, 111
  installing CICSplex modules in 116
  space for CICS requirements 111
link-edit temporary store (LTS) 38
link-editing
  messages during 53
linklist, installing CICS-required modules 73
listener 175
LNK, MVS initialization parameter
  IEASYSxx value 76
LNKAUTH, MVS initialization parameter
  IEASYSxx value 76
load libraries
  secondary extents 156
local catalog (DFHLCD)
  creating for each CICS region 166
  DD statement in IVP startup procedure 196
log manager
  coupling facility 135
  defining logger environment 128
  requirements planning 129
  using storage-only logging 149
log streams, authorizing the region user ID to use 66
logger environment
  coupling facility space required for RLS AORs 148
  RLS implications 148
  staging data sets 149
LOGGER-INFO parameter of the DFHISTAR job 46
LOGMODE entry
  CICS 180
  IMS 181
LOGMODE tables
required entries for autoinstall 198
LOGMODE, parameter of SNA APPL statement 90
LOGUSR, transient data extrapartition data set
DD statement in IVP startup procedure 196
LPA (link pack area)
eligible CICSPlex modules 117
eligible modules 100
installing CICS modules in 98, 111
installing CICSPlex modules in 116
space for CICS requirements 111
LPA, MVS initialization parameter
IEASYSxx value 76
LPA, system initialization parameter 114
LTS (link-edit temporary store) 38
LUAPFX, parameter of SNA APPL statement
choosing a value 94
LUs
defining for the online IVP 198
LUTYPE 6 sessions
ACQ 90
PARSESS 91
PERSIST 91
M
macro temporary store (MTS) 38
macros
DFHDLPSB TYPE=ENTRY (remote DL/I) 187
MAS
setup worksheet 10
MAS setup worksheet 10
MAXCAD, MVS initialization parameter
IEASYSxx value 77
MAXPROCUSER 68
messages
GIMSP 53
IEW0461, from the binder 53
IEW2646, from the binder 53
IEW2651, from the binder 53
SMP/E 53
when running installation jobs 53
modegroup
z/OS Communications Server LOGMODE entries 180
moderset
LU services manager 180
MODIFY command 203
modules eligible for the LPA/ELPA 100
modules, installing in LPA 98
MRO between different CICS release levels 87
MSGUSR, transient data extrapartition data set
DD statement in IVP startup procedure 196
MTS (Macro temporary store) 38
multiple libraries
creating 58
multiregion operation (MRO)
between different CICS release levels 87
cross-system MRO (XCF/MRO) 177
defining CICS as an z/OS subsystem 176
installation 176
MVS ASREXIT 123
MVS definitions
for CICS performance 121
for console messages 128
MVS linklist
installing CICS-required modules 73
installing IGWABWO 75
installing IGWARLS 75
other MVS product modules 75
MVS logger 128
MVS subsystem, defining CICS as 75
MVS workload management 121
N
NEWDREP parameter of the DFHISTAR job 48
NQNMODE, parameter of SNA START command 92
NSINTERADDR 176
NSYSXL, MVS initialization parameter
IEASYSxx value 77
O
OLDDREP parameter of the DFHISTAR job 48
OPTVOL parameter of the DFHISTAR job 35
P
PARSESS, parameter of SNA APPL statement 91
PASS option of SNA APPL parameter AUTH 96
PDIR (PSB directory) 186
PDSE 3
performance definitions for MVS 121
performance parameters (CICS), matching to service policies 121
PERSIST, parameter of SNA APPL statement 91
postinstallation member 162
postinstallation members
EYUCMASJ 163
EYUCMASP 163
EYUCMSOP 163
EYUCMSDS 163
EYUCMSSP 163
EYUCSYDS 163
EYUCSYSD 163
EYUCSYSP 163
EYUJHIST 163
EYUJWREP 163
EYULMS0P 163
EYULMSSP 163
EYULPMOD 163
EYUWUIOJP 163
EYUWUIDS 163
EYUWUIIN 163
EYUWUIJ 163
EYUWUIJP 163
EYUWUIISP 163
predefined LU alias 93
PREFIX parameter of the DFHISTAR job 31
procedures, copying into a procedure library 55
PROG, MVS initialization parameter
IEASYSxx value 77
program temporary fix (PTF) 157
protecting CICS load libraries 64
PRTAUXT step of IVP jobs 195
PRTBUXT step of IVP jobs 195
PRTDMPA step of IVP jobs 195
Index 237
PRTDMPB step of IVP jobs 195
PRVMOD, system initialization parameter 114
PTF (program temporary fix) 155, 157
PTF temporary store (PTS) 38
PTS (PTF temporary store) 38

R

RACF (resource access control facility)
activating resource classes 71
authorizing the region user ID for category 1 transactions 66
authorizing the region user ID to open a region’s z/OS Communications Server ACB 65
authorizing the region user ID to use MVS log streams 66
defining the default CICS user ID 71
installing the interface routines 73
IPv user ID authority 192
LOGSTRM general resource class 66
protecting CICS load libraries 64
RECEIVE, function of SMP/E 156
references, unresolved 53
region user ID, authorizing for category 1 transactions 66
region user ID, authorizing to OPEN a region’s ACB 65
RELFILE data sets
allocating 51
requirements for CICS TS
hardware 3
software 3
resource classes, activating 71
resource definitions
dynamic creation during CICSPlex SM initialization 170
RESTORE, function of SMP/E 156
REXX function package, installing 74
routecodes, generic 82
ROUTECODES, parameter of DFHSSIyy 82
RSVNONR, MVS initialization parameter
IEASYSxx value 77
RSVSTRT, MVS initialization parameter
IEASYSxx value 77

S

sample applications data sets, creating
ACCTFILE, primer sample application accounts 167
ACIXFILE, primer sample application index 167
DFHCTAIX, sample application alternate index 167
DFHCTCUS, sample application details 167
DFHCTHLPI, sample application help 167
sample JCL
to modify CICSPlex SM supplied CICS resource definitions 171
sample program data, FILEA
creating for each CICS region 166
DD statement in IVP startup procedure 196
sample programs in interactive IVP 203
sample programs, installing 203
saved control data set (SCDS) 38
SCDS (saved control data set) 38
SCEEBND2 parameter of the DFHISTAR job 43
SCEECICS parameter of the DFHISTAR job 44
SCEECPP parameter of the DFHISTAR job 44
SCEELIB parameter of the DFHISTAR job 43
SCEELKED parameter of the DFHISTAR job 43
SCEELKEX parameter of the DFHISTAR job 43
SCEEOB3 parameter of the DFHISTAR job 43
SCEERUN parameter of the DFHISTAR job 44
SCEERUN2 parameter of the DFHISTAR job 44
SCEESAMP parameter of the DFHISTAR job 45
SCLBSID parameter of the DFHISTAR job 44
SCOPE parameter of the DFHISTAR job 30, 49
SCSFMOD0 parameter of the DFHISTAR job 46
SCSQANLE parameter of the DFHISTAR job 45
SCSQAUTH parameter of the DFHISTAR job 45
SCSQCICS parameter of the DFHISTAR job 45
SCSQLOAD parameter of the DFHISTAR job 45
SDFHENV 54
SDFHPL1 target library 34
SDSNLOAD parameter
SDSNLOAD parameter 45
SDSNLOAD parameter of the DFHISTAR job 45
SDUMP options 120
secondary extents, load libraries 156
security with the CICS IVPs 192
service, applying
supplied SMP/E procedure 158
servicing CICS
corequisite fixes 157
session outage notification (SON)
SONSCIP 91
setting up
CMAS 170
SEZACMTX parameter of the DFHISTAR job 44
SEZARPC1 parameter of the DFHISTAR job 44
sharing control data sets, VSAM RLS 126
SISLOAD parameter of the DFHISTAR job 43
SIXMEXP parameter of the DFHISTAR job 46
SMF, MVS initialization parameter
IEASYSxx value 77
SMP/E data sets, attributes 37, 38
SMP/E options, specifying 40
SMP/E zone and zone log dispositions 40
SMP/E, using to apply service 158
SMP0001, SMP/E sample USERMOD for SMP/E data sets 37
SMPCNTL, DD statement of DFHSME 156
SMPLTS parameter of the DFHISTAR job 38
SMPMTS parameter of the DFHISTAR job 38
SMPPTS parameter of the DFHISTAR job 38
SMPSCDS parameter of the DFHISTAR job 38
SMPST parameter of the DFHISTAR job 38
SMPVOL parameter of the DFHISTAR job 35
SMPWORK parameter of the DFHISTAR job 37
SMS parameter of the DFHISTAR job 34
SNA
APPL statement
ACBNAME parameter 90
AUTH parameter 90
cross-domain services 91
EAS parameter 90
HAVAIL parameter 90
LOGMODE parameter 90
LUAPFX parameter 90
PERSIST parameter 91
PERSIST parameter 91
SONSCIP parameter 91
SNA parameters of the DFHISTAR job 34

238 CICS TS for z/OS: Installing CICS
SNA (continued)
authorized path 87
CICS APPLID 90
cross-domain services 91
definitions required for CICS 90
LOGMODE table entries for autoinstall 198
SNA requirements
activating definitions 97
software requirements
installing system 3
SONSCIP, parameter of SNA APPL statement 91
source temporary store (STS) 38
SSL 176
staging data sets 149
storage key definition 121
storage requirements
for CICS TS 3
storage-only logging 149
STS (source temporary store) 38
subsystem definition to z/OS 176
subsystem, MVS, defining CICS as 75
SVC
correct-level check for DFHCSVC 85
DFHHPsvc, loading into the MVS nucleus 87
installing the CICS type 3 SVC 85
using DFHCSVC for MRO between different CICS releases 87
using more than one version of DFHCSVC 86
SVCs, installing DFHCSVC in the LPA 99
SYMREC Authorization Exit 123
SYMREC macro 123
SYS1.CPSM320.SEYULPA
defining to your MVS 117, 118
SYS1.PARMLIB library
IEASYSxx member
   establishing requirements 77
   when creating CMAS started tasks 77
MAXCAD 77
SYS1.VTAMLST library
application definitions 96
SYSIN data set, partitioned
creating for all CICS regions 165
DD statement in IVP startup procedure 196
SYSMOD (system modification) 156, 158
sysplex, MVS
requirements for cross-system MRO 177
sysplex, z/OS
   cross-system coupling facility (XCF)
   for MRO links across z/OS images 176
SYSTCPD 176
system abend 722 53
system initialization parameters
TCP/IP 184
system modification (SYSMOD) 158
System Modification Program Extended (SMP/E)
ACCEPT function 53, 156
APPLY function 53, 156
DFHSMPE 156
messages 53
messages during link-editing 53
RECEIVE function 156
RESTORE function 156

T
tailoring CICS
installing MRO support 176
TAPEUNIT parameter of the DFHISTAR job 41
target libraries
allocating and cataloging 51
SMP/E function ACCEPT (DFHINST6) 53
target zone (TZONE)
   CSI 39
   log 38
TARGVOL parameter of the DFHISTAR job 35
TCP/IP
dns 176
ECI 175
enablement 175
HTTP 175
installation requirements 176
ISC 175
listener 175
SSL 176
TCP/IP, system initialization parameter 184
TCPIPHST parameter of the DFHISTAR job 47
TCPIPPRT parameter of the DFHISTAR job 47
TEMPLIB parameter of the DFHISTAR job 29
temporary storage data set, DFHTEMP
   creating for each CICS region 166
   DD statement in IVP startup procedure 196
TIMEZONE parameter of the DFHISTAR job 47
TINDEX parameter of the DFHISTAR job 31
transaction dump data sets
dump (A) data set, DFHDMPA 197
dump (B) data set, DFHDMPB 197
transient data extrapartition data sets
destination before transient data initialization, DFHCXRF 196
destination before transient data initialization, DFHLRQ 196
destination used by C/370 application programs 197
destination used by CICS services 196
destination, LOGA, used by CICS sample programs 196
type 3 SVC routine
   in LPA 177
   used for interregion communication 176
TZONE parameter of the DFHISTAR job 40
TZONECISI parameter of the DFHISTAR job 39
TZONELOG parameter of the DFHISTAR job 38

U
UID 68
UNIX System Services access
   MAXPROCUSER 68
unresolved references 53
updating CICSpex definition
   BLSCECT 120
   CSD files using DFHCSUDP 170
user identifier (UID) 68
USSDIR 54
USSDIRA, parameter of DFHISTAR 32
UTILITIES parameter of the DFHISTAR job 30
V

Value Unit Edition 19
VARY NET command 97
verification tests, running IVP jobs 191
verify batch job, DFHIVPB
   DFH$BTCH input 197
verify interactive job, DFHIVPOL
   invoking and running sample programs 203
terminating CICS 207
   using transactions 203
verify interactive job, DFHIVPOL
   invoking and running sample programs 203
verify interactive job, DFHIVPOL
   LU Verify
   using CICS-supplied terminal transactions 203
verify interactive job, DFHIVPOL
   VTAM 203
VPACING, parameter of SNA APPL statement 91
VSAM RLS
   activating the coupling facility structures 128
   adding new parameters to SYS1.PARMLIB 127
   amending parameters in SYS1.PARMLIB(BPXPRMxx) 79
   authorizing CICS user IDs 127
   CRMF policy 125
   defining coupling facility cache structures 125
   defining sharing control data sets 126
   defining SMS storage classes for RLS access 125
   defining the coupling facility lock structure 124
   definitions, required 124
   establishing new procedures 127
   ISMF storage class application 125
   IXCMIAPU utility 125
VTAM LU alias 92

W

Web User Interface Server
   setup worksheet 11
   workload management, MVS 121
worksheet for IVP
   CMAS 12
   MAS 12
   WUI 12
worksheets for setup
   CMAS 6
   MAS 6
   overview 6
   WUI 6
   WORKUNIT parameter of the DFHISTAR job 33
   WTO (write-to-operator) macro 128
   WUI parameter of the DFHISTAR job 47
   WUI setup worksheet 11
   WUINAME parameter of the DFHISTAR job 47
   WUIPLEX parameter of the DFHISTAR job 47
   WUISYSID parameter of the DFHISTAR job 47

X

XCF (cross-system coupling facility)
   for cross-system MRO 177
   XCF/MRO (cross-system MRO)
      generating support for 177
   XRF (extended recovery facility)
      sessions, HAVAIL, parameter of SNA APPL 90
   XTRAQUAL parameter 32
   XTRAQUAL parameter 32
   XTRAQUAL parameter of the DFHISTAR job 32
   XXRSTAT exit, effect on takeover of an SNA ACB 65

Z

z/OS Communication Server
   version, release, and modification level indicator 91
z/OS Communications Server
   LOGMODE entries 180
   modegroups 180
z/OS Communications Server ACB, authorizing the region
   user ID to open 65
z/OS Communications Server for SNA requirements 96
z/OS image
   XCF/MRO is required for links between CICS regions in
   different 176
   z/OS UNIX 3
   z/OS UNIX access 68
   z/OS UNIX System Services access 68
   zone and zone log dispositions 40