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documentation in IBM Knowledge Center.
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Chapter 1. CICS web support
CICS web support is a collection of CICS services that enable a CICS region to act both as an HTTP server,
and as an HTTP client.

CICS as an HTTP server

When CICS is an HTTP server, a web client can send an HTTP request to CICS and receive a response. The
response can be a static response created by CICS from a document template or static file, or an
application-generated response created dynamically by a user application program.

The actions of CICS as an HTTP server are controlled by:

1. System initialization parameters and resource definitions, including TCPIPSERVICE definitions and
URIMAP definitions, which are used to configure CICS web support and instruct CICS how to process
requests and responses.

2. CICS utility programs, which can be used to analyze and process the HTTP requests and responses.
3. User-written application programs, which are used to receive the HTTP requests and provide material

for HTTP responses. These can be web-aware application programs designed for use with CICS web
support, or non-web-aware CICS application programs that were not originally designed for use with
CICS web support.

The behavior of CICS web support as an HTTP server is conditionally compliant with the HTTP/1.1
specification, as described in RFC 2616.

CICS as an HTTP client

When CICS is an HTTP client, a user application program in CICS can initiate a request to an HTTP server,
and receive a response from it.

The actions of CICS as an HTTP client are controlled by user-written application programs. The EXEC
CICS WEB application programming interface includes commands that an application program can use to
construct and initiate HTTP requests from CICS, and to receive responses sent by servers. URIMAP
resource definitions can be used to provide information such as a URL or a client certificate label.

CICS web support and non-HTTP messages

CICS web support also supports non-HTTP requests from clients. You can use many of the components of
CICS web support, including TCPIPSERVICE definitions, CICS utility programs, and user-written
application programs, to provide request handling for any request format that you have defined. Non-
HTTP messages that are handled by CICS web support use a special protocol (the USER protocol) on the
TCPIPSERVICE resource definition, so that they are not subjected to the checks that CICS carries out for
HTTP messages.

In CICS Transaction Server for z/OS, Version 5 Release 4, this facility is primarily intended to provide
support for requests from user-written clients that use nonstandard request formats. The processing that
takes place for requests is defined by the user. The facility does not provide specific support for any
formally defined protocols which are used for client-server communication.

The support that CICS web support provides for non-HTTP messages is not the same thing as the TCP/IP
Sockets interface for CICS. The IP CICS Sockets interface supplied with z/OS Communications Server has
an application programming interface which allows clients to communicate directly with CICS application
programs over TCP/IP. CICS web support is not involved with this process. z/OS Communications Server:
IP Sockets Application Programming Interface Guide and Reference describes the CICS Sockets
interface.
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Internet, TCP/IP, and HTTP concepts
Make sure that you are familiar with the relevant key elements of the Transmission Control Protocol/
Internet Protocol (TCP/IP) and the Hypertext Transfer Protocol (HTTP). If necessary, review the HTTP
specifications listed in these topics.

TCP/IP protocols
TCP/IP is a family of communication protocols used to connect computer systems in a network. It is
named after two of the protocols in the family: Transmission Control Protocol (TCP) and Internet Protocol
(IP). Hypertext Transfer Protocol (HTTP) is a member of the TCP/IP family.

The protocols in the TCP/IP family correspond, in many cases, to the layers of the Open Systems
Interconnection (OSI) model. Table 1 on page 2 shows HTTP and the underlying layers of the TCP/IP
family in terms of the OSI model. The Systems Network Architecture (SNA) layers, which approximately
match the OSI layers, are also shown.

Table 1. The layers of the TCP/IP protocol family

Layer OSI SNA TCP/IP

7 Application Application HTTP

6 Presentation Presentation (empty)

5 Session Data flow (empty)

4 Transport Transmission TCP

3 Network Path control IP

2 Data link Data link Subnetwork

1 Physical Physical Subnetwork

Internet Protocol (IP)
IP is a network-layer protocol that provides a connectionless data transmission service that is used by
TCP. Data is transmitted link by link; an end-to-end connection is never set up during the call. The unit
of data transmission is the datagram.

Transmission Control Protocol (TCP)
TCP is a transport-layer protocol that provides a reliable, full duplex, connection-oriented data
transmission service. Most Internet applications use TCP.

Hypertext Transfer Protocol (HTTP)
HTTP is an application-layer protocol that is used for distributed, collaborative, hypermedia
information systems. HTTP is the protocol used between web clients and web servers.

Many TCP/IP implementations provide an application programming interface to the TCP protocol; that is,
to the transport layer. This interface is commonly known as the Sockets interface. The TCP/IP Sockets
interface for CICS is the z/OS Communications Server IP CICS Sockets interface. It is supplied with z/OS
Communications Server and is an integral part of z/OS. It is not part of CICS web support and does not
use the CICS SO domain. z/OS Communications Server: IP CICS Sockets Guide describes the CICS
Sockets interface.

IP addresses
Each server or client on a TCP/IP internet is identified by a numeric IP (Internet Protocol) address. The
two types of IP address are the IPv4 (IP version 4) address and the IPv6 (IP version 6) address.

IP addresses are managed and allocated to users by the Internet Assigned Numbers Authority (IANA) and
its delegates. The internet address specifies both the network and the individual host. This specification
varies with the size of the network.
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IPv6 addresses

IPv6 addresses are 128-bit addresses, usually expressed in hexadecimal notation:

IP address in hexadecimal notation :   '000100220333444400000000abc0def0'x
Halfword 0:  0001 hexadecimal
Halfword 1:  0022 hexadecimal
Halfword 2:  0333 hexadecimal
Halfword 3:  4444 hexadecimal
Halfword 4:  0000 hexadecimal
Halfword 5:  0000 hexadecimal
Halfword 6:  abc0 hexadecimal
Halfword 7:  def0 hexadecimal
IP address in colon hexadecimal notation: 1:22:333:4444::abc0:def0

IP address in hexadecimal notation :   '00000000000000000000ffff01020304'x
Halfword 0:  0000 hexadecimal
Halfword 1:  0000 hexadecimal
Halfword 2:  0000 hexadecimal
Halfword 3:  0000 hexadecimal
Halfword 4:  0000 hexadecimal
Halfword 5:  ffff hexadecimal
Halfword 6:  0102 hexadecimal
Halfword 7:  0304 hexadecimal
IP address in colon hexadecimal notation: ::ffff:1.2.3.4 or ::ffff:0102:0304

The address consists of eight halfword fields. Zeros are treated in the following ways in the address
output:

• If a field contains leading zeros, they are ignored; for example, 0001 is represented as 1
• If one or more consecutive fields in the address contain the value 0000, these fields are expressed

using the notation ::

For example, 000000000000ffff is represented as ::ffff

The :: substitution is used once only in an address, to avoid confusion in calculating how many fields
were substituted.

IPv4 addresses

IPv4 addresses are 32-bit addresses, usually expressed in dotted decimal notation:

IP address in hexadecimal notation :   '817EB263'x
Byte 0:  81 hexadecimal = 129 decimal
Byte 1:  7E hexadecimal = 126 decimal
Byte 2:  B2 hexadecimal = 178 decimal
Byte 3:  63 hexadecimal =  99 decimal
IP address in dotted decimal notation: 129.126.178.99

In this example, 129.126 specifies the network and 178.99 specifies the host on that network.

IP address formats accepted by CICS
CICS accepts IPv4 and IPv6 addresses in specific formats for processing.

IPv6 address formats

CICS accepts IPv6 addresses in the following format only:

• As a native IPv6 colon hexadecimal address without square brackets or /nn notation; for
example, ::a:b:c:d

IPv6 address syntax is described in more detail in RFC 4291, IP Version 6 Addressing Architecture,
available at https://tools.ietf.org/html/rfc4291.

Double colons in an IPv6 address

The layout of an IPv6 address is defined in RFC 2373, IP Version 6 Addressing Architecture, available at
https://tools.ietf.org/html/rfc2373. This permits the single use of a double colon to mean one or more 0:
elements sufficient to make an eight element address.
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For example: 1::7:8 means 1:0:0:0:0:0:7:8

The double colon can:

• Start an IPv6 address, so that ::5:6:7:8 means 0:0:0:0:5:6:7:8
• End an IPv6 address, so that 1:2:3:4:: means 1:2:3:4:0:0:0:0
• Be in the middle of an IPv6 address, so that 1:2::6:7:8 means 1:2:0:0:0:6:7:8

There are two special cases for the use of an initial double colon:

• When using a double colon to specify an IPv4 address in IPv4 compatible format (::1.2.3.4)
• When using a double colon to specify an IPv4 address in IPv4 mapped format (::FFFF:1.2.3.4)

IPv4 address formats

CICS accepts IPv4 addresses in the following formats:

• A native IPv4 dotted decimal address without /nn notation; for example, 1.2.3.4
• An IPv4 address that is migrated to IPv6 format (an IPv4-mapped IPv6 address); for

example, ::ffff:1.2.3.4

– Internally, CICS translates the address into the binary equivalent of 0:0:0:0:0:ffff:0102:0304
• An IPv6 compatible address (an IPv4-compatible IPv6 address); for example, ::1.2.3.4

– Internally, CICS translates the address into the binary equivalent of 0:0:0:0:0:0:0102:0304

This exception applies:

– CICS does not allow the following entries:

- 0.0.0.0
- ::0.0.0.0
- ::0

Whichever format you specified for your IPv4 address, CICS displays all IPv4 addresses as a native IPv4
dotted decimal address; for example, 1.2.3.4

Specifying an IPv4 address in CICS TS

Certain CICS Transaction Server for z/OS (CICS TS) V4.1, and later, objects require the specification of an
IPv4 address in, for example, the HOST field of the object. Here is now to specify different types of IPv4
addresses within CICS TS.

An IPv6 address consists of 8 elements, which are specified in hexadecimal. Each element consists of
two hexadecimal bytes with right zero justification. Use of a double colon permits many 0 elements to be
compressed.

An example IPv6 address is 1:2:3:4:5:6:7:8, which is processed as
0001:0002:0003:0004:0005:0006:0007:0008

In contrast, there are many ways of supplying an IPv4 address to CICS TS as shown in the following table:

Table 2. IPv4 Addresses. Six options of supplying IPv4 addresses to CICS TS.

Type of specification Examples Specification rules

IPv4 native 1.2.3.4
255.255.255.255
1.02.003.14

There must be 4 elements that
are delimited by dots. Each
element must be numeric and be
0 - 255. Leading zeros are
acceptable.
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Table 2. IPv4 Addresses. Six options of supplying IPv4 addresses to CICS TS. (continued)

Type of specification Examples Specification rules

IPv4 compatible (in compressed
format)

::1.2.3.4
::255.255.255.255
::1.02.003.14

Starts with a double colon, and
then the formatting is as for IPv4
native.

IPv4 compatible 0:0:0:0:0:0:1.2.3.4
0::255.255.255.255
0::00:1.02.003.14

Elements 1,2,3,4,5 and 6 of the
full IPv6 address must evaluate
to 0 (with right zero justification).
Elements 7 and 8 are formed by
using the IPv4 formatting rules.

IPv4 mapped (in compressed
format)

::FFFF:1.2.3.4
::ffff:255.255.255.255
::fFfF:1.02.003.14

Starts with a ::FFFF:, and then
the formatting is as for IPv4
native. The FFFF can be in mixed
case.

IPv4 mapped ::0:FFFF:1.2.3.4
0:0:0:0:0:FFFF:255.255.255.255
0::FfFf:1.02.003.14

IPv4 mapped ::0:FFFF:1.2.3.4
0:0:0:0:0:FFFF:255.255.255.255
0::FfFf:1.02.003.14 Elements
1,2,3,4 and 5 of the full IPv6
address must evaluate to 0 (with
right zero justification) and
elements 6 must be FFFF (in
mixed case). Elements 7 and 8
are formed by using the IPv4
native rules.

IPv6 hexadecimal notation ::0:ABCD:EF12
0:0:00:000:0000:0:abCd:eF12
0::aBCD:ef12

Elements 1,2,3,4,5 and 6 must
evaluate to 0 (with right zero
justification). Elements 7 and 8
are the IPv4 address that is
specified in hexadecimal
notification: element 7 is the first
two elements of the native IPv4
address and element 8 is third
and forth elements of the IPv4
native address. In all of these
cases, the IPv4 native address is
171.205.239.18.

Understanding IPv6 and CICS
IPv6 is the protocol that replaces IPv4. To use IPv6 addressing, the sending and receiving environments
must support dual-mode addressing (IPv4 and IPv6) and your CICS regions must be running at the
correct level of CICS.

Infrastructure requirements for IPv6

A dual-mode TCP/IP implementation is required to allow both IPv4 and IPv6 addressing. A single-mode
(IPv4) environment uses the AF_INET address family when it establishes a connection between an
AF_INET socket and another AF_INET socket in another region. IPv6 addresses are not supported over
AF_INET sockets; these addresses require the AF_INET6 address family and AF_INET6 sockets in the
sending and receiving regions to establish a connection. Dual-mode environments provide both AF_INET
and AF_INET6 sockets. For more information on AF_INET and AF_INET6, see z/OS Communications
Server: IPv6 Network and Application Design Guide.
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This figure shows that a single-mode environment does not have IPv6 capability, because it does not
have an AF_INET6 socket.

CICS requirements for IPv6

You need a minimum level of CICS TS 4.1 to communicate using IPv6. The CICS region must be running in
a dual-mode (IPv4 and IPv6) environment and the client or server with which CICS is communicating
must also be running in a dual-mode environment.

The next figure shows CICS-to-CICS communication, where two dual-mode CICS environments can
communicate using either IPv4 or IPv6 addressing. A single-mode CICS environment is also connected,
but can communicate using IPv4 only.

The next figure shows CICS-to-CICS communication, where two dual-mode CICS environments can
communicate using either IPv4 or IPv6 addressing. A dual-mode pre-CICS TS environment is also
connected, but can communicate using IPv4 only.

Host names
A host, or website, on the Internet is identified by a host name, such as www.example.com. Host names
are sometimes called domain names. Host names are mapped to IP addresses, but a host name and an
IP address do not have a one-to-one relationship.

A host name is used when a web client makes an HTTP request to a host. The user making the request
can specify the IP address of the server rather than the host name, but that is now unusual on the
Internet. Host names are more convenient for users than numeric IP addresses. Companies,
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organizations, and individuals frequently choose host names for their websites that can be easily
remembered by users.

More importantly in modern HTTP implementations, the use of host names in HTTP requests has these
consequences:

• Services in the name of one host can be provided by many servers, which have different IP addresses.
• One server, with one IP address, can provide services in the name of many hosts. This usage is known

as virtual hosting. “Virtual hosting” on page 7 explains this process.

Host names are mapped to IP addresses by a server known as a DNS server or domain name server. In a
large network, many DNS servers collaborate to provide the mapping between host names and IP
addresses.

Virtual hosting
HTTP includes the concept of virtual hosting, where a single HTTP server can represent multiple hosts at
the same IP address. You can use virtual hosting in web support by setting up URIMAP resources.

A DNS server can allocate several different host names to the same IP address. When an HTTP client
makes a request to a particular host, it uses the DNS server to locate the IP address corresponding to that
host name, and sends the request to that IP address.

In HTTP/1.0 the host name does not appear in the HTTP message; it is lost after the IP address has been
resolved. If more than one set of resources is held on the server represented by the IP address, the server
has difficulty distinguishing which resources belong to which host.

However, HTTP/1.1 requests provide the host name in the request, usually in a Host header. The
presence of the host name in the message enables the HTTP server to direct requests containing different
host names to the appropriate resources for each host. This feature of HTTP is known as virtual hosting.
CICS web support provides support for virtual hosting through the use of URIMAP resources.

Port numbers
In a server, more than one user process can use TCP at the same time. To identify the data associated
with each process, port numbers are used. Port numbers are 16-bit, and numbers up to 65535 are
possible, although in practice only a small subset of these numbers is commonly used.

When a client process first contacts a server process, it might use a well-known port number to initiate
communication. Well-known port numbers are assigned to particular services throughout the Internet, by
IANA, the Internet Assigned Numbers Authority. The well-known port numbers are in the range 0 through
1023. Some examples are shown in Table 3 on page 7:

Table 3. Services and their well-known port numbers

Service
Well-known port

number

File Transfer Protocol (FTP) 21

Telnet 23

Hypertext Transfer Protocol (HTTP) 80

HTTP with Secure Sockets Layer (SSL) 443

The CICS External Call Interface (ECI) has a registered port number, 1435.

Well-known ports are used only to establish communication between client and server processes. After
that, the server allocates an ephemeral port number for subsequent use. Ephemeral port numbers are
unique port numbers, which are assigned dynamically when processes start communicating. They are
released when communication is complete.
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IANA media types and character sets
The Internet Assigned Numbers Authority (IANA) is the international body responsible for assigning
names for protocols used on the Internet. Use these links to find out more about the names.

• IANA media types are names for the types of data that are commonly transmitted over the Internet.
They are described at http://www.iana.org/assignments/media-types/media-types.xhtml

Text media types (such as a type that begins with text/, or a type that contains +xml) are identified
by RFC 3023, which is available at https://www.ietf.org/rfc/rfc3023.txt.

• IANA character sets are the names of character set registries. They are described at http://
www.iana.org/assignments/character-sets

CICS does not support all the IANA character sets for code page conversion. The character sets that
CICS supports are described in HTML coded character sets.

The components of a URL
A URL (Uniform Resource Locator) is a specific type of URI (Universal Resource Identifier). A URL normally
locates an existing resource on the Internet. A URL is used when a web client makes a request to a server
for a resource.

This topic is a summary of URLs and URIs. If you need to know more, the concepts of the URI and the URL
are defined by the Internet Society and IETF (Internet Engineering Task Force) Request for Comments
document RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax (https://www.ietf.org/rfc/
rfc2396.txt).

Briefly, a URI is defined as any character string that identifies a resource. A URL is defined as those URIs
that identify a resource by its location or by the means used to access it, rather than by a name or other
attribute of the resource.

A newer form of resource identifier, the IRI (Internationalized Resource Identifier), permits the use of
characters and formats that are suitable for national languages other than English. An IRI can be used in
place of a URI or URL when the applications involved with the request and response support IRIs. For
more information about IRIs, see Internationalized Resource Identifiers (IRIs).

A URL for HTTP (or HTTPS) is normally made up of three or four components:

1. A scheme. The scheme identifies the protocol to be used to access the resource on the Internet. It
can be HTTP (without SSL) or HTTPS (with SSL).

2. A host. The host name identifies the host that holds the resource. For example, www.example.com. A
server provides services in the name of the host, but hosts and servers do not have a one-to-one
mapping. Refer to Host names.

Host names can also be followed by a port number. Refer to Port numbers. Well-known port numbers
for a service are normally omitted from the URL. Most servers use the well-known port numbers for
HTTP and HTTPS , so most HTTP URLs omit the port number.

3. A path. The path identifies the specific resource in the host that the web client wants to access. For
example, /software/htp/cics/index.html.

4. A query string. If a query string is used, it follows the path component, and provides a string of
information that the resource can use for some purpose (for example, as parameters for a search or as
data to be processed). The query string is usually a string of name and value pairs; for example,
term=bluebird. Name and value pairs are separated from each other by an ampersand (&); for
example, term=bluebird&source=browser-search.

The scheme and host components of a URL are not defined as case-sensitive, but the path and query
string are case-sensitive. Typically, the whole URL is specified in lowercase.

The components of the URL are combined and delimited as follows:

scheme://host:port/path?query

• The scheme is followed by a colon and two forward slashes.
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• If a port number is specified, that number follows the host name, separated by a colon.
• The path name begins with a single forward slash.
• If a query string is specified, it is preceded by a question mark.

http:// host name

IP address

:80

: port

/ path component

? query string

Figure 1. Syntax of an HTTP URL

Here is an example of an HTTP URL:

http://www.example.com/software/index.html

With a port number specified, the URL is:

http://www.example.com:1030/software/index.html

A URL can be followed by a fragment identifier. The separator used between the URL and the fragment
identifier is the # character. A fragment identifier is used to point a web browser to a reference or function
in the item that it has just retrieved. For example, if the URL identifies an HTML page, a fragment identifier
can be used to indicate a subsection within the page, using the ID of the subsection. In this case, the web
browser typically displays the page to the user so that the subsection is visible. The action taken by the
web browser for a fragment identifier differs depending on the media type of the item and the defined
meaning of the fragment identifier for that media type.

Other protocols, such as File Transfer Protocol (FTP) or Gopher, also use URLs. The URLs used by these
protocols might have a different syntax to the one used for HTTP.

The HTTP protocol
The correct format for HTTP requests and responses depends on the version of the HTTP protocol (or
HTTP specification) that is used by the client and by the server.

The versions of the HTTP protocol (or "HTTP versions") commonly used on the Internet are HTTP/1.0,
which is an earlier protocol including fewer functions, and HTTP/1.1, which is a later protocol including
more functions. The client and server might use different versions of the HTTP protocol. Both client and
server must state the HTTP version of their request or response in the first line of their message.

Internet Society and IETF (Internet Engineering Task Force) Request for Comments documents (known
as RFCs) provide the official definitions for the HTTP protocol:

HTTP/1.0
RFC 1945, Hypertext Transfer Protocol - HTTP/1.0, available from https://tools.ietf.org/html/rfc1945

HTTP/1.1
RFC 2616, Hypertext Transfer Protocol - HTTP/1.1, available from https://tools.ietf.org/html/rfc2616

The RFCs state the actions that a client and a server perform to exchange requests and responses in an
appropriate way for each version of the HTTP protocol. An HTTP request is made by a client, to a named
host, which is located on a server. The aim of the request is to access a resource on the server. An HTTP
response is made by a server to a client. The aim of the response is to provide the client with the resource
it requested, or to inform the client that the action it requested has been carried out, or to inform the
client that an error occurred in processing its request. All these actions are described as "requirements".
A client or server that fulfils the requirements for its version of the HTTP protocol is said to be "compliant"
with the HTTP specification.

In the HTTP response that is sent to a client, the status code, which is a 3-digit number, is accompanied
by a reason phrase (also known as status text) that summarizes the meaning of the code. With the HTTP
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version of the response, these items are placed in the first line of the response, which is therefore known
as the status line.

HTTP requests
An HTTP request is made by a client, to a named host, which is located on a server. The aim of the request
is to access a resource on the server.

To make the request, the client uses components of a URL (Uniform Resource Locator), which includes
the information needed to access the resource. The components of a URL explains URLs.

A correctly composed HTTP request contains the following elements:

1. A request line.
2. A series of HTTP headers, or header fields.
3. A message body, if needed.

Each HTTP header is followed by a carriage return line feed (CRLF). After the last of the HTTP headers, an
additional CRLF is used (to give an empty line), and then any message body begins.

Request line

The request line is the first line in the request message. It consists of at least three items:

1. A method. The method is a one-word command that tells the server what it should do with the
resource. For example, the server could be asked to send the resource to the client.

2. The path component of the URL for the request. The path identifies the resource on the server.
3. The HTTP version number, showing the HTTP specification to which the client has tried to make the

message comply.

An example of a request line is:

GET /software/htp/cics/index.html HTTP/1.1

In this example:

• the method is GET
• the path is /software/htp/cics/index.html
• the HTTP version is HTTP/1.1

A request line might contain some additional items:

• A query string. This provides a string of information that the resource can use for some purpose. It
follows the path, and is preceded by a question mark.

• The scheme and host components of the URL, in addition to the path. When the resource location is
specified in this way, it is known as the absolute URI form. For HTTP/1.1, this form is used when a
request will go through a proxy server. Also for HTTP/1.1, if the host component of the URL is not
included in the request line, it must be included in the message in a Host header.

HTTP headers

HTTP headers are written on a message to provide the recipient with information about the message, the
sender, and the way in which the sender wants to communicate with the recipient. Each HTTP header is
made up of a name and a value. The HTTP protocol specifications define the standard set of HTTP
headers, and describe how to use them correctly. HTTP messages can also include extension headers,
which are not part of the HTTP/1.1 or HTTP/1.0 specifications.

The HTTP headers for a client's request contain information that a server can use to decide how to
respond to the request. For example, the following series of headers can be used to specify that the user
only wants to read the requested document in French or German, and that the document should only be
sent if it has changed since the date and time when the client last obtained it:
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Accept-Language: fr, de
If-Modified-Since: Fri, 10 Dec 2004 11:22:13 GMT

An empty line (that is, a CRLF alone) is placed in the request message after the series of HTTP headers, to
divide the headers from the message body.

Message body

The body content of any HTTP message can be referred to as a message body or entity body. Technically,
the entity body is the actual content of the message. The message body contains the entity body, which
can be in its original state, or can be encoded in some way for transport, such as by being broken into
chunks (chunked transfer-coding). The message body of a request may be referred to for convenience as
a request body.

Message bodies are appropriate for some request methods and inappropriate for others. For example, a
request with the POST method, which sends input data to the server, has a message body containing the
data. A request with the GET method, which asks the server to send a resource, does not have a message
body.

HTTP responses
An HTTP response is made by a server to a client. The aim of the response is to provide the client with the
resource it requested, or inform the client that the action it requested has been carried out; or else to
inform the client that an error occurred in processing its request.

An HTTP response contains:

1. A status line.
2. A series of HTTP headers, or header fields.
3. A message body, which is usually needed.

As in a request message, each HTTP header is followed by a carriage return line feed (CRLF). After the last
of the HTTP headers, an additional CRLF is used (to give an empty line), and then the message body
begins.

Status line

The status line is the first line in the response message. It consists of three items:

1. The HTTP version number, showing the HTTP specification to which the server has tried to make the
message comply.

2. A status code, which is a three-digit number indicating the result of the request.
3. A reason phrase, also known as status text, which is human-readable text that summarizes the

meaning of the status code.

An example of a response line is:

HTTP/1.1 200 OK

In this example:

• the HTTP version is HTTP/1.1
• the status code is 200
• the reason phrase is OK

“Status codes and reason phrases” on page 12 explains more about these elements of the status line.

HTTP headers

The HTTP headers for a server's response contain information that a client can use to find out more about
the response, and about the server that sent it. This information can assist the client with displaying the
response to a user, with storing (or caching) the response for future use, and with making further requests

Chapter 1. CICS web support  11



to the server now or in the future. In the case of an unsuccessful request, headers can be used to tell the
client what it must do to complete its request successfully.

An empty line (that is, a CRLF alone) is placed in the response message after the series of HTTP headers,
to divide the headers from the message body.

Message body

The message body of a response may be referred to for convenience as a response body.

Message bodies are used for most responses. The exceptions are where a server is responding to a client
request that used the HEAD method (which asks for the headers but not the body of the response), and
where a server is using certain status codes.

For a response to a successful request, the message body contains either the resource requested by the
client, or some information about the status of the action requested by the client. For a response to an
unsuccessful request, the message body might provide further information about the reasons for the
error, or about some action the client needs to take to complete the request successfully.

Status codes and reason phrases
In the HTTP response that is sent to a client, the status code, which is a three-digit number, is
accompanied by a reason phrase (also known as status text) that summarizes the meaning of the code.
Along with the HTTP version of the response, these items are placed in the first line of the response,
which is therefore known as the status line.

The status codes are classified by number range, with each class of codes having the same basic
meaning.

• The range 100-199 is classed as Informational.
• 200-299 is Successful.
• 300-399 is Redirection.
• 400-499 is Client error.
• 500-599 is Server error.

When describing a range as a whole, it may be named as "1xx", "2xx", and so on. The HTTP protocol
specifications do not define any status codes of 600 or greater.

Only a few status codes in each range are defined by the HTTP/1.0 and HTTP/1.1 specifications. The
HTTP/1.1 specification includes more status codes than the HTTP/1.0 specification.

The reason phrases defined in the HTTP specifications (for example, "Not Found" or "Bad Request") are
recommended but optional. The HTTP/1.1 specification says that the reason phrases for each status code
may be replaced by local equivalents.

The 200 (OK) status code is used for a normal response that provides the full resource requested by the
web client. Most other status codes are used in situations where there is an error that prevents fulfilment
of the request, or where the client needs to do something else in order to complete its request
successfully, such as following a redirection URL, or amending the request so that it is acceptable to the
server.

The HTTP headers for the response, or the response body, or both, may provide further instructions and
information for the client. The HTTP specifications include requirements and suggestions for the content
of responses with each status code. The requirements specify:

• Any HTTP headers that must, or may, be used on the response. For example, if you use the status code
405 (Method not allowed), you must use the Allow header to state the methods which are allowed.

• Whether or not a response body should be used. For example, message bodies are not allowed with
status codes 204, 205, and 304.

• If a response body is used, what information it can provide. For example, message bodies for a
redirection can provide a hyperlink for the redirection URL.
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For full information about the meaning and correct use of status codes, you should consult the HTTP
specification to which you are working. See “The HTTP protocol” on page 9 for more information about
the HTTP specifications.

Reserved and excluded characters
To assist with the correct transmission and interpretation of an HTTP request, the use of certain
characters in a URL is restricted. These characters must be converted to a safe format when the request
is transmitted.

This topic is a summary about reserved and excluded characters. For more information, the Internet
Society and IETF (Internet Engineering Task Force) Request for Comments document RFC 2396, Uniform
Resource Identifiers (URI): Generic Syntax, lists the characters that are reserved or excluded in URIs and
URLs. RFC 2396 is available from https://www.ietf.org/rfc/rfc2396.txt.

In a URI or a URL, characters that have a special purpose in the context of one or more URI or URL
components are known as reserved characters. For example, the characters /, ?, &, and : are used as
delimiters for various components. Machine interpreters might misinterpret the URI or URL if the reserved
characters are used for any reason.

Also, certain characters are disallowed, or excluded, from use anywhere in a URI or URL, either because
they are a potential cause of confusion for machine or human users, or because they are known to cause
problems for some machine interpreters. For example, the space character is not permitted in a URL.

If reserved characters are wanted in a URL for any reason other than their special purpose, or if excluded
characters are wanted in a URL, they must be escaped when a request containing components of the URL
is sent to a server. Such characters in data that is sent in a query string must also be escaped.

Characters are escaped by being replaced with a 3-character string of the form %xx where xx is the ASCII
hexadecimal representation of the reserved character. Because of this format, escaping is also known as
percent-encoding.

When the request reaches the server, the server can unescape the escaped characters. Unescaping takes
place only after the information in the URL and query string has been parsed, to avoid the risk of the
parsing application misinterpreting the reserved or excluded characters.

Form data in a request is normally sent with special characters escaped, because the default encoding for
forms (application/x-www-form-urlencoded) escapes reserved or excluded characters. See “HTML
forms” on page 13.

HTML forms
In HTML, forms are areas delimited by a <form> tag, containing text input boxes, buttons, check boxes,
and other features of a graphical user interface. Forms are used by web applications to allow users to
provide data to be sent to the server.

In a form, the elements with which users can interact to provide data are known as form fields. Each form
field is given a name in the HTML, which identifies it to the server application, but is not visible to the user.

Although the various elements of a form appear different to the user, they all transmit information to the
server application as a series of name and value pairs, separated by & characters. Each name is the name
of a form field, and the value is the data produced by the user's actions. For example, here is a form with
two text input boxes for a user to enter first and last name:

firstname=Maria&lastname=Smith

The form data is transmitted to the server in one of two ways, depending on which method (GET or POST)
is specified in the <form> tag:

• When the method is GET, the form data is transmitted in a query string in the URL.
• When the method is POST, the form data is transmitted in the message body.
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The character set that is required for encoding the form data is specified by the CHARACTERSET option,
and must match the forms encoding determined by the corresponding HTML form. See “How the client
encoding is determined” on page 14 for more information.

Form data is normally transmitted with special characters escaped. “Reserved and excluded characters”
on page 13 explains the purpose of escaping.

If the form is defined with the GET method, because the data is sent as a query string in the URL, reserved
or excluded characters must always be escaped.

If the form is defined with the POST method, the data is sent in the message body. However, as defined in
the HTML 2.0 specification, the default encoding type for all forms is application/x-www-form-
urlencoded. See http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1. When this
encoding is used for a form with the POST method, although the data is sent in the message body,
reserved or excluded characters are escaped, as they would be if they were in a URL.

If the alternative encoding type multipart/form-data is specified for the form (which is done using
the ENCTYPE attribute on the HTML <form> tag), non-ASCII characters in field names must be escaped,
but non-ASCII characters in field values do not need to be escaped. The data is also presented in a series
of individual sections in the message body. Older applications might not support this encoding. CICS does
support it. The multipart/form-data encoding is described in the Internet Society and IETF Request for
Comments document RFC 1867, Form-based File Upload in HTML (https://www.ietf.org/rfc/rfc1867.txt).

How the client encoding is determined
The character encoding (charset parameter) used by HTTP clients for forms data (both for the GET and
POST methods) is determined by information in the HTML form.

The HTTP client normally submits forms data using the same character encoding that was used for the
HTML form, specified either by the charset parameter on the Content-Type header or by an equivalent
META tag embedded in the HTML; for example:

<META http-equiv="Content-Type" content="text/html; charset=UTF-8">

You can also use the accept-charset attribute on the HTML FORM element to specify an additional
acceptable character encoding. If you do not specify the code page, CICS obtains this information from
the charset parameter. The HTML form character encoding is normally either ISO-8859-1 (CCSID 819)
or UTF-8 (CCSID 1208), but is not restricted to these values.

The character encoding information is not typically present as part of the submitted form request. So, if
the default character set for the internet (ISO-8859-1) is not used, the application reading the form must
specify the encoding using the CHARACTERSET keyword. If CHARACTERSET is omitted, but the HTTP
client provides a charset value in a Content-Type header (not standard practice for HTML forms
submission), the charset value is used; otherwise, CICS assumes ISO-8859-1.

Chunked transfer-coding
Chunked transfer-coding, also known as chunking, involves transferring the body of a message as a series
of chunks, each with its own chunk size header. The end of the message is indicated by a chunk with zero
length and an empty line.

This topic briefly summarizes chunked transfer-coding. To use chunked transfer-coding, both the client
and server must be using HTTP/1.1. For details, see the HTTP/1.1 specification (RFC 2616).

This defined process means that an application-generated entity body, or a large entity body, can be sent
in convenient segments. The client or server knows that the chunked message is complete when the zero
length chunk is received.

The body of a chunked message can be followed by an optional trailer that contains supplementary HTTP
headers, known as trailing headers. Clients and servers are not required to accept trailers, so the
supplementary HTTP headers provides only nonessential information, unless a server knows that a client
accepts trailers.
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Pipelining
Pipelining involves a client sending multiple HTTP requests to a server without waiting for a response.
Responses must then be returned from the server in the same sequence that the requests were received.

This topic summarizes pipelining. The HTTP/1.1 specification (RFC 2616) defines the rules about
idempotency for HTTP requests. See “The HTTP protocol” on page 9 for more information about the HTTP
specifications.

The requester is responsible for ensuring that the requests are idempotent. Idempotency means that the
same result is always obtained when all, or part, of the series of requests is repeated. Thus, if the
connection to the server fails in some way, the client can retry the series of requests, without knowing if
the server has implemented all, some, or none of the requests.

Most request methods are idempotent if they are used on their own, because the same result is obtained
each time the method is used. (The exception is the POST method, because it changes the resource on
the server.) However, when a sequence of requests is issued during pipelining, the sequence might be
non-idempotent, particularly if resources are being changed.

If you plan to pipeline requests, check that the request sequence can be ended at any point, and
restarted from the beginning, without causing a logical error. Otherwise, make the requests individually
and await confirmation after each request.

Persistent connections
Persistent connections between a web client and a server can be reused for more than one exchange of a
request and a response.

Persistent connections improve network performance because a new connection does not have to be
established for each request. Establishing a new connection consumes significant additional network
resources compared to making a request using an existing connection.

In HTTP/1.0, the default action for the server was to close the connection when it had received a request
from the web client and sent a response. If the web client wanted the server to keep the connection open,
it had to send a Connection: Keep-Alive header on the request.

For HTTP/1.1, persistent connections are the default. When a connection is made between a web client
and a server, the server keeps the connection open by default. The connection is closed only if the web
client requests closure by sending a Connection: close header, if the server timeout setting is reached, or
if the server encounters an error.

HTTP basic authentication
HTTP basic authentication is a simple challenge and response mechanism with which a server can
request authentication information (a user ID and password) from a client. The client passes the
authentication information to the server in an Authorization header. The authentication information is in
base-64 encoding.

This topic summarizes HTTP basic authentication. For details, see RFC 2617, HTTP Authentication: Basic
and Digest Access Authentication, at https://tools.ietf.org/html/rfc2617.

Note: The HTTP basic authentication scheme can be considered secure only when the connection
between the web client and the server is secure. If the connection is insecure, the scheme does not
provide sufficient security to prevent unauthorized users from discovering the authentication information
for a server. If you think that a password might be intercepted, use basic authentication with SSL
encryption to protect the user ID and password.

If a client makes a request for which the server expects authentication information, the server sends an
HTTP response with a 401 status code, a reason phrase indicating an authentication error, and a WWW-
Authenticate header. Most web clients handle this response by requesting a user ID and password from
the user.

The format of a WWW-Authenticate header for HTTP basic authentication is:

WWW-Authenticate: Basic realm="Our Site"
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The WWW-Authenticate header contains a realm attribute, which identifies the set of resources to which
the user ID and password will apply. Web clients display this string to the user. Each realm might require
different authentication information. Web clients can store the authentication information for each realm
so that users do not need to retype the information for every request.

When the web client has obtained a user ID and password, it resends the original request with an
Authorization header. Alternatively, the client can send the Authorization header when it makes its
original request, and this header might be accepted by the server, avoiding the challenge and response
process.

The format of the Authorization header is:

Authorization: Basic userid:password

Components of CICS web support
CICS web support includes some base components that are used for all CICS web support tasks, and
some task-specific components, which you select and configure for individual CICS web support tasks.

Base components

• TCP/IP support in CICS is provided by the CICS SO (sockets) domain, with network services (z/OS
Communications Server and access to a DNS server) supplied by z/OS.

• z/OS UNIX Systems Services are used as part of TCP/IP support, and the CICS region needs to access
these components.

• Secure Sockets Layer (SSL) support is used to provide security for the CICS web support
implementation. For a list of security protocols supported by CICS, see Support for security protocols.

• DOCCODEPAGE system initialization parameter specifies the default host code page that is used by
CICS document template support.

• LOCALCCSID system initialization parameter specifies the coded character set identifier for the local
CICS region (which is the code page that CICS considers as the default for application programs).

• TCPIP system initialization parameter activates CICS TCP/IP services at start.
• WEBDELAY system initialization parameter defines a timeout period for inactive CICS web tasks, only

where the web 3270 bridge facility is involved. Timeout for other CICS web tasks is handled by the
RTIMOUT value for the relevant transaction, or (for CICS as an HTTP server) by the SOCKETCLOSE
attribute on the TCPIPSERVICE definition.

• The Sockets listener task (CSOL) detects inbound TCP/IP connection requests, and starts CICS web
support by attaching the web attach task. CSOL can also identify those inbound requests, which are
qualified to be processed by directly attached user transactions, and bypassing the web attach task. For
more information, see Processing HTTP requests by using directly attached user transactions.

• Web attach tasks (CWXN, CWXU, or an alias) receive data from the web client and deal with initial
processing of requests, including URIMAP matching, code page conversion of the HTTP headers,
analysis of the request, and code page conversion of the message body. The tasks also pre-process
chunked and pipelined messages that are received from a web client. If a static response is delivered
(by using a URIMAP definition), the web attach task handles this processing as well.

Resource definitions

• TCPIPSERVICE resource definitions are used to define each port that you use for CICS as an HTTP
server, including security options for connections on that port, and timeout and maximum size limits for
inbound requests. They are not used for CICS as an HTTP client.

Note: The TCPIPSERVICE resource definitions are for use only with the CICS provided TCP/IP services,
and have nothing to do with the z/OS Communications Server IP CICS Sockets interface. The TCP/IP
socket interface for CICS is supplied with z/OS Communications Server, which is a part of z/OS and does
not use the CICS SO domain.
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• URIMAP resource definitions match the URLs of requests from web clients, or requests to an HTTP
server, and provide CICS with information on how to process the requests. URIMAP definitions
incorporate, and can replace, the CICS web support processing functions that were provided before
CICS Transaction Server for z/OS, Version 3 Release 1 by the analyzer program that is associated with
the TCPIPSERVICE definition. URIMAP definitions can also be used to deliver a static response to a
request from a web client, without involving an application program.

• TRANSACTION resource definitions are used to define alias transactions for HTTP request processing.
CICS supplies a resource definition for a default alias transaction, CWBA. When the web attach task
completes initial processing for the request, if an application-generated response is to be produced, an
alias transaction handles the remaining stages of processing. These include receiving the request,
running the application's business logic, construction of the HTTP response and code page conversion
of the HTTP response. For those inbound requests that qualify for the option to bypass the web attach
task before the alias transaction logic is started, CICS receives data from the web client and deals with
initial processing of requests, including URIMAP matching, code page conversion of the HTTP headers,
analysis of the request, and code page conversion of the message body.

User application programs

• Web-aware application programs can be designed for CICS web support, that uses the EXEC CICS
WEB and EXEC CICS DOCUMENT application programming interfaces. For CICS as an HTTP server,
these programs can receive and analyze HTTP requests and provide application-generated responses to
the web client. For CICS as an HTTP client, a user application program in CICS can initiate an HTTP
request to a server, and receive a response from it.

• COMMAREA applications, programs, which are linked to from another program that uses a COMMAREA
interface, can be accessed by using CICS web support with a converter program to convert their output
into HTML for transmission to a web client. Alternatively, you can write a web-aware application
program that links to a COMMAREA application and uses its output to provide HTTP responses.

• 3270 display applications, programs, which are designed to communicate with 3270 terminals, can be
accessed by using the Web Terminal Translation Application. The HTML output that is created by the
Web Terminal Translation Application can be displayed in a web browser.

Programming interfaces

• Use the WEB command to interpret and construct HTTP requests and responses. Some commands are
used for CICS as an HTTP server, some for CICS as an HTTP client, and some are for both forms of CICS
web support.

• Use the DOCUMENT command to construct CICS documents to provide the body of a response or
request that is sent out from CICS.

• Use the EXTRACT TCPIP command to obtain information about TCP/IP characteristics of the current
transaction.

• Use the EXTRACT CERTIFICATE command to obtain information from the client certificate that is
received over a TCP/IP service that specified client authentication.

CICS web support utility programs

• Analyzer programs are associated with TCPIPSERVICE definitions. They are used to interpret an HTTP
request if a URIMAP definition specifies the use of an analyzer program, or if no URIMAP definition is
present. CICS supplies a default analyzer program DFHWBAAX, which provides basic error handling,
and a sample analyzer program DFHWBADX, which supports requests that use the URL format that
CICS web support used before CICS TS 3.1. Either of these analyzers can be used as a basis for your
own analyzer program.

• Converter programs can be used to decode an HTTP request and construct input to a user application
program. Web-aware application programs do not normally require converter programs, but they might
be needed by non-web-aware applications that were not designed for CICS web support. CICS does not
supply a converter program. You can write a number of converter programs and select any converter
program in your CICS region to process a request.
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• Web error programs provide an error response to the web client when a request error or an abend
occurs in the CICS web support process. CICS supplies the web error program DFHWBEP, which is used
in most error situations, and the web error application program DFHWBERX, which is used with the
default analyzer DFHWBAAX when URIMAP matching fails (and can be specified for other situations).
The web error programs are user-replaceable, and they can be modified to customize or change the
error response that is sent to the web client in each error situation.

• The Web Terminal Translation Application DFHWBTTA (and its aliases for alternative processing,
DFHWBTTB and DFHWBTTC) can be used to create HTML output from programs, which are designed to
communicate with 3270 terminals. The program uses the CICS 3270 bridge mechanism. Applications
that do, and applications that do not use BMS, are both supported. No application program changes are
needed to use this feature.

• The password expiry management program DFHWBPW is used when basic authentication is
specified for the connection, and the user's password is expired. The program takes the user through
the process of setting a new password. You can customize or replace the web pages that are presented
to the user by DFHWBPW.

Document construction facilities

• z/OS UNIX Systems Services files can be served as the body of a response to an HTTP request from a
web client.

• Document template support enables message bodies to be built from fragments of HTML, which are
prepared offline.

• BMS macros construct HTML document templates from BMS map sets.

Code page conversion

CICS provides facilities to convert HTTP messages into a code page that is suitable for a user application
program, or suitable for use on the Internet. CICS handles code page conversion that uses z/OS
conversion services.

The code page conversion table (DFHCNV), which was required in earlier CICS releases, is not normally
required for CICS web support in CICS Transaction Server for z/OS, Version 5 Release 4. The exception is
if you want to use an analyzer program that you coded in an earlier CICS release to reference DFHCNV. In
this case, you must either continue to supply the code page conversion table, or make an update to the
analyzer program. For more information, see Upgrading entries in the code page conversion table
(DFHCNV).

Task structure for CICS web support
When CICS web support is active in a CICS region, for CICS as an HTTP server, separate tasks are used to
listen for inbound connection requests; to receive data from the socket and perform initial processing;
and to cover work that is carried out by application programs with a request. For CICS as an HTTP client,
only one task applies, which is the task for the application program that is making the HTTP requests.

The Sockets listener task (CSOL)

This is a long running CICS task. There is one instance of the Sockets listener task in a CICS system.

The task detects inbound TCP/IP connection requests on all ports that are defined to CICS, and starts the
CICS service that is associated with the port. When the port is intended for CICS web support (that is,
HTTP or USER is specified as the protocol), the web attach task is defined as the transaction in the
TCPIPSERVICE resource definition for the port. The listener either attaches the web attach task, or if the
request is eligible directly attaches the user transaction for the request. For more information about
which requests are eligible, see Processing HTTP requests by using directly attached user transactions.
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web attach tasks (CWXN, CWXU, or an alias)

When the TCPIPSERVICE definition for a port has the protocol HTTP, the default transaction ID for the
web attach task is CWXN. When the protocol is USER, the default is CWXU. An alias can be used instead,
but the transaction always runs program DFHWBXN.

When a web attach task is started by the Sockets listener task, the first thing it does is to issue a SOCKET
RECEIVE request to receive data from the web client. When some data is received, the web attach task
deals with initial processing of the web client's request.

• For an HTTP request (on the HTTP protocol), the initial processing includes URIMAP matching, code
page conversion of the HTTP headers, analysis of the request, and code page conversion of the
message body. The task also pre-processes chunked and pipelined messages that are received from a
web client. If an analyzer program is used, it is covered by this transaction.

• For a non-HTTP request (on the USER protocol), no initial processing takes place.

If a static response is delivered to an HTTP request (that uses a URIMAP definition), the web attach task
handles this processing as well. If an application-generated response is required, the web attach task
attaches an alias transaction.

There is a web attach task for each individual request from a web client, which is in the initial stages of
processing. Before CICS Transaction Server for z/OS, Version 3 Release 1, if a web client and CICS had a
persistent connection, the CWXN transaction would remain in the system during the persistent
connection. Now, the CWXN transaction terminates after a request from the web client is passed to the
alias transaction, or after the static response is delivered. The Sockets listener task monitors the socket,
and initiates a new instance of CWXN for each request on the persistent connection. This behavior, which
is known as an asynchronous receive, avoids the possibility of a deadlock in a situation where the
maximum task specification (MXT) is reached, when a CWXN transaction that is remaining in the system
would not be able to attach alias transactions to process further requests.

Alias transactions for application-generated responses

When a web attach task completes initial processing for a request, if an application-generated response is
to be produced, the web attach task attaches the alias transaction, which is specified for the remaining
processing stages of that request. CICS supplies a resource definition for a default alias transaction,
CWBA. Alias transactions are not used where a static response is provided. The alias transaction might be
attached by the listener task. For more information, see Processing HTTP requests by using directly
attached user transactions.

An alias transaction handles the processing stages for an application-generated response, which include
receiving the request, running the application's business logic, constructing the HTTP response and code
page conversion of the HTTP response. If a converter program is used to process the request, it is also
handled by the alias transaction. There is an instance of an alias transaction for each HTTP request, which
is in these stages of processing.

CICS as an HTTP client

For CICS as an HTTP client, all activity that is caused by an application program that makes HTTP client
requests is covered by a single task. This includes the application program's actions, the actions of CICS
in sending requests and receiving responses, and socket activity. If the application program links to other
programs using the EXEC CICS LINK command, these are also covered by the task. The task has the
transaction ID that triggers the application program.

The task remains in the system from the beginning to the end of the application program's activity. The
task might involve more than one request and response, and the application program might open and
maintain more than one connection to a server. When the task ends, any open connections are
automatically closed.
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HTTP request and response processing for CICS as an HTTP server
HTTP requests for CICS as an HTTP server are initiated by a web client that makes a request to CICS.
CICS provides the web client with responses to the requests it makes. The responses can be created from
a static document identified by a URIMAP resource definition, or they can be created dynamically by a
user application program.

Figure 2 on page 21 shows the processing that is carried out by CICS web support to receive a request
from a web client and provide a response.
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Figure 2. Processing for CICS as an HTTP server

Processing for CICS as an HTTP server takes place as follows:

1. CICS receives a TCP/IP connection request. The CICS Sockets domain uses the TCPIPSERVICE
resource definition for the port to determine that the request should be processed by CICS web
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support. The TCPIPSERVICE definition specifies security attributes to be applied to the request,
specifies the timeout setting for receiving the request message, and limits the maximum amount of
data that can be received for a single request.

2. CICS matches the URL for the request to a URIMAP definition, if available. CICS tries to match the
URL specified in the HTTP request to any URIMAP resource definitions that are related to the
TCPIPSERVICE definition and apply to CICS as an HTTP server. If a successful match is made, the
URIMAP definition tells CICS how to process the request. If no match is found, CICS continues with
the default process, which begins at processing stage 7 with the analyzer program.

3. If the URIMAP definition specifies redirection, CICS redirects the web client to the specified
URL. CICS composes the redirection message and transmits it to the web client. This completes the
processing for that HTTP request.

4. If the URIMAP definition relates to an Atom document, CICS locates the specified
ATOMSERVICE resource to handle the request. Processing for Atom documents is described in
“How Atom feeds work in CICS” on page 39.

5. If the URIMAP definition relates to a web service, CICS locates the specified PIPELINE resource
to handle the request. Processing for web services is described in How CICS supports web services .

6. If the URIMAP definition specifies a static response, CICS forms and supplies the response. CICS
uses a document template or a z/OS UNIX System Services file, together with appropriate HTTP
headers, to form an HTTP response. The response undergoes appropriate code page conversion, and
CICS then transmits the response to the web client. This completes the processing for that HTTP
request.

7. An analyzer program may be run, if the URIMAP definition specifies its use, or if no matching
URIMAP definition is found. The analyzer program can interpret the request dynamically, or it can
be used for monitoring or audit purposes.

The analyzer program for the TCPIPSERVICE definition must be used in the request processing path
if no URIMAP definition has been set up for the request. It might also be needed if you are using a
non-web-aware application program that has special requirements, for code page conversion or for
pre-CICS TS Version 3 compatibility processing. (Analyzer programs in Developing system programs
explains these situations.) Otherwise, the use of an analyzer program is optional, but note that the
analyzer program is called to process the request if the URIMAP definition is not found.

If an analyzer program is being used, the HTTP request and the HTTP headers are passed to the
analyzer program. The analyzer program can interpret the request to determine:

• Which CICS resources are to be used to service the request.
• Which user ID is to be associated with the request.
• Which of the remaining processing stages are required.

8. A converter program may be used to decode the request and construct input to the application
program. Web-aware application programs should accept an HTTP request without any decoding.
However, if you want to service an HTTP request using a non-web aware application program that
requires COMMAREA input, you can use a converter program to decode the request and construct
input that fits the requirements of your application program. A converter program can be specified
using a URIMAP definition, or it can be selected by an analyzer program.

9. An application program is executed to service the request. You can specify the application
program using a URIMAP definition, or using an analyzer program. A web-aware application program,
using the EXEC CICS WEB and EXEC CICS DOCUMENT application programming interfaces, can be
used to handle the request and construct a response. A non-web-aware application program can be
enabled for the web using either a converter program (which translates the web client's request into
acceptable input, and composes an HTTP response based on the program's output), or a web-aware
application program that calls the non-web aware program and uses its output.

The application program runs under an alias transaction.

The application program can perform the following tasks:
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• If the application program is web-aware, it can examine the HTTP headers on the request, extract
information (such as a query string) from the request line, receive the body of the request into a
buffer for processing, select a status code and text for the status line of the response, and write
HTTP headers for the response. EXEC CICS WEB API commands such as WEB SEND and WEB
WRITE HTTPHEADER are used to construct the response.

• Whether or not the application is web-aware, it can produce output that forms the body of the
response. Web-aware application programs can produce an entity body formed from a CICS
document template or from a buffer of data. Application programs that are not web-aware can
produce output that can be converted by a web-aware application program or a converter program
into an entity body.

10. A converter program may be used to encode the output from the application program and
construct an HTTP response. If the application program is not web-aware and its output is not in the
correct form to send to a web client, you can use a converter program to produce an appropriate
HTTP response including a status line and HTTP headers. The converter program can also perform
other types of processing on the output.

The converter program can specify that processing stages 6 (decoding or other processing using
converter program), 7 (application program) and 8 (encoding or other processing using converter
program) should be repeated. Because the converter program can change the name of the
application program, you can use this facility to allow more than one application program to work on
the same request in sequence, and provide a single response.

11. If a request error or an abend occurs in the CICS web support process, an error response is sent
to the web client, which can be customized using the user-replaceable web error programs.
DFHWBEP or DFHWBERX receives information about the error situation, and the default HTTP
response (including status code and status text) that CICS plans to send to the web client. The user-
replaceable programs can customize the response or build a new one, and return it to CICS for
sending.

The web error programs are not used in all error situations. They are used when problems occur in
initial processing of requests, and for abends or failures in subsequent processing. They are not used
for situations where processing (such as processing by a user-written application program)
completes correctly and an error or redirection response is the designed outcome.

12. CICS generates some required HTTP headers and adds them to the message. Appropriate
headers are generated depending on the HTTP version for the response. If the response is HTTP/1.1,
CICS adds headers that are required for HTTP/1.1 messages. If the response is HTTP/1.0, CICS adds
the Connection: Keep-Alive header if the client has requested a persistent connection, and a small
number of other headers. The values for some of these headers are generated directly by CICS (such
as the Date header), and the values of others are based on information provided by a web-aware
application program (using the WEB SEND command) or by a URIMAP definition. The headers can be
added both to output from a web-aware application, and to output from a converter program.

13. CICS transmits the complete HTTP response to the web client. If the web client supports
persistent connections, CICS keeps the connection open for further possible HTTP requests, until the
user application or web client requests closure or the timeout period is reached.

During this process, code page conversion is usually needed when messages enter and leave the CICS
environment, so that CICS web support processing and user-written applications (which typically use an
EBCDIC encoding) can communicate with web clients (which typically use an ASCII encoding). “Code
page conversion for CICS Web support” on page 33 explains when and how this takes place. The type of
code page conversion that is required can be specified using options on the WEB SEND or WEB RECEIVE
commands.

To improve performance, HTTP requests can bypass the web attach task. For further information, see
Processing HTTP requests by using directly attached user transactions.
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HTTP request and response processing for CICS as an HTTP client
For CICS as an HTTP client, CICS is the web client, and it communicates with an HTTP server. A user-
written application program sends requests through CICS to the HTTP server, and receives the responses
from it. CICS maintains a persistent connection with the server. A session token is used on the commands
issued by the application program to identify the connection.

An application program that makes an HTTP request and receives a response must use the EXEC CICS
WEB API commands to explicitly direct the interaction with the server. A web-aware application program
could be used to make an HTTP request, and then process the results to provide information to an
application that is not web-aware.

The application program that initiates the HTTP request should be designed to process whatever CICS
receives from the server in response to that request, which might include error responses, redirection to
another URL, embedded hypertext links, HTML forms, image source, or other items that request an action
from the application program. CICS can perform code page conversion for requests and responses, if
required.

Figure 3 on page 25 shows the process described in this topic.
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Figure 3. Processing for CICS as an HTTP client

Processing for CICS as an HTTP client takes place as follows:

1. The application program initiates a connection to the HTTP server through CICS. The application
program does this by issuing the EXEC CICS WEB OPEN command. A URIMAP resource that you
have created can be referenced to specify the scheme and host name for the connection, or the
application program can provide this information. (See URIMAP resource definitions for more
information about URIMAP resources.) An application can have more than one connection open at a
time.
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2. CICS establishes the connection with the server, or checks for a suitable pooled connection.
Using the information provided by the application program, CICS opens a TCP/IP connection on a
socket and contacts the server. During this process, the XWBOPEN user exit can be used (if it has
been activated using the ENABLE PROGRAM command) to redirect the application program's
requests through a proxy server, if required, and to apply a security policy to connections to the host.
Alternatively, if the application program used a URIMAP resource that specifies connection pooling
(the SOCKETCLOSE attribute), CICS checks whether a dormant connection is available in the pool for
reuse. When the TCP/IP connection is established, or the existing connection is supplied to the
application for reuse, CICS returns a session token to the application program to uniquely identify the
connection during its use. This session token is used on all the remaining commands issued by the
application program concerning that connection. See “Session tokens” on page 27 for more
information about the session token.

3. The application program can write HTTP headers for its request. User-written HTTP headers can
be built using the WEB WRITE HTTPHEADER command and stored ready for sending.

4. The application program specifies components of the request line. The request method, path
information, and query string are specified using the WEB SEND or WEB CONVERSE command. The
HTTP version for the request is supplied by CICS.

5. The application program can produce an entity body for its request. The content of the request is
specified on the WEB SEND or WEB CONVERSE command. It can be formed from a CICS document
(using the DOCUMENT interface), or from the contents of a buffer. If the server is at HTTP/1.1,
chunked transfer-encoding may be used for a request body formed from the contents of a buffer (but
not for a CICS document).

6. The application program initiates transmission of the request. When the application program
issues the WEB SEND or WEB CONVERSE command, the request is passed to CICS for sending across
the connection specified by the session token.

7. CICS generates some required HTTP headers and adds them to the request, then sends the
request to the server. The values for some of the headers are generated directly by CICS (such as
the Date header), and the values of others are based on information provided by the application
program (using the WEB SEND or WEB CONVERSE command) or by a URIMAP resource. During
sending of the request, two user exits can be invoked, if required. XWBSNDO is called to apply a
security policy for the individual request, and XWBAUTH specifies the username and password
details required for Basic Authentication.

8. The server receives and processes the request, and provides a response. CICS passes the
response to the application program.

9. The application program examines the response. The WEB READ HTTPHEADER command, or the
HTTP header browsing commands, can be used to examine the headers of the response. The WEB
RECEIVE or WEB CONVERSE command receives the body of the response (if there is one), which can
be processed by the application program, and the response's status code and status text.

10. The application program can initiate further requests and responses. If the server supports
persistent connections, the connection identified by the session token remains open for further
requests. If the server does not support persistent connections, the server instructs CICS to close the
connection.

11. The application program finishes its use of the connection. When all the requests and responses
are completed, the application program issues a WEB CLOSE command to end its use of the
connection. If the connection was opened using a URIMAP resource that specified connection
pooling, and neither the server nor the application program have made a request to close the
connection, CICS does not close the connection. Instead, CICS checks that the connection is in a
good state and then places it in a pool of dormant connections. Pooled connections can be reused by
another application program or by another instance of the same application program to connect to
the same server. When a connection is not suitable for connection pooling, because it has been
closed, or it was not opened using a URIMAP resource, or it is not in a good state, CICS closes the
connection.

During this process, code page conversion is usually needed when messages enter and leave the CICS
environment, so that CICS web support processing and user-written applications (which typically use an
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EBCDIC encoding) can communicate with HTTP servers (which typically use an ASCII encoding). “Code
page conversion for CICS Web support” on page 33 explains when and how this takes place. The type of
code page conversion that is required can be specified using options on the WEB SEND, WEB RECEIVE, or
WEB CONVERSE commands. For CICS as an HTTP client, the default is that code page conversion does
take place when messages are sent and received.

Session tokens
A session token is an 8-byte binary value that uniquely identifies a client HTTP connection that is in use
between CICS as an HTTP client, and an HTTP server. The use of a session token for each active
connection means that CICS web support can distinguish between the connections that are being used by
different application programs, and also means that an application program can control more than one
connection.

A connection begins in response to a WEB OPEN command issued by a user application program. The
session token is returned on successful completion of the WEB OPEN command, and is used on all the
EXEC CICS WEB commands issued by the application program concerning that connection.

By using the connection, the user application program can make HTTP client requests to the server, and
receive responses from it. The connection can persist for more than one exchange of a request and a
response. See “How CICS web support handles persistent connections” on page 31 for more details
about how CICS web support handles persistent connections and how they are terminated.

If the server terminates the connection, the application program cannot send any further requests using
that connection, but it can read the response that the server sent before it terminated the connection. The
session token remains valid for use on commands to access that data, until the application issues the WEB
CLOSE command.

After the WEB CLOSE command is issued, the session token that applies to the connection is no longer
valid. If the application program does not issue a WEB CLOSE command, the session token becomes
invalid at the end of the task. If you have implemented connection pooling for client HTTP connections,
CICS might pool the connection in a dormant state for reuse by another application or another instance of
the same application. The session token does not persist after a connection is pooled, so an application
that reuses the client connection is given a new session token for its use of the connection.

The maximum number of open HTTP client connections, in use with session tokens, that can be present
simultaneously in a CICS region is 32,768.

URLs for CICS web support
In a request URL for a resource that is provided by CICS web support, the path component of the URL is
up to you. In CICS web support, the URIMAP definition or the analyzer program creates the linkage
between the request URL and the resource provided by CICS, so the URL does not need to have any direct
relationship to the CICS resource. However, you can design the URL to provide information for processing
or administrative purposes.

The components of a URL explains the different components of a request URL and their role.

A newer form of resource identifier, the IRI (Internationalized Resource Identifier), permits the use of
characters and formats that are suitable for national languages other than English. An IRI can be used in
place of a URI or URL where the applications involved with the request and response support this. CICS
supports the use of IRIs in URIMAP resource definitions. For more information about IRIs, see
“Internationalized Resource Identifiers (IRIs)” on page 45.

URLs for application-generated responses

Information in a request URL can be used by analyzer programs and by user-written application
programs.
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Where an analyzer program is used in the processing path for the request, you can design a URL that tells
the analyzer program which programs and transaction to specify for further processing. The CICS-
supplied sample analyzer program DFHWBADX analyzes URLs with a path component in the format /
converter/alias/program/other path information, where converter names the converter
program (if any), alias names the alias transaction, program names the user application program, and
other path information gives additional information that is not used by the analyzer.

A Web-aware application program which is providing a response can also use information from the path
component of the URL. The path component can be extracted by the application using the WEB EXTRACT
command, and analyzed to determine the appropriate action. For example, the path component can be
used to specify a particular function provided by the application. Alternatively, if the web-aware
application is providing a front end for more than one other application, the path component of the URL
can identify the application to which the request applies.

For application-generated responses that are managed using URIMAP definitions, the path components
of URLs can be designed to map multiple request URLs to the same application. You can do this by
making the path components of the URLs begin in the same way, and creating a single URIMAP definition
with a wildcard to map all the request URLs to a single resource. For example, all requests whose path
begins with /staffapps/ordering/ could be mapped to a particular CICS application, by creating a
URIMAP definition that specifies the path /staffapps/ordering/* and specifies the relevant
application. The application can then extract and analyze information in the remainder of the URL to
determine the appropriate action for each request.

URLs for static responses

In CICS web support, the URL does not need to have any direct relationship to the CICS resource. For
static responses, this means that the URL does not have to contain the full path to the file that provides
the response. Instead, the URIMAP definition matches the request URL to the appropriate file.

However, where z/OS UNIX files are used as the static responses, you could decide to design the path
components of the request URLs so that they match the directories used on z/OS UNIX. If all the z/OS
UNIX files provided by CICS web support are located in subdirectories of the same directory, such as the
HOME directory of the CICS region userid, you might want to omit this directory and make the request
URLs match the remainder of the paths to the files. For example, if your HOME directory is /u/cts/
CICSHome, and you want to provide the following z/OS UNIX files as static responses:

/u/cts/CICSHome/FAQs/ordering.html
/u/cts/CICSHome/help/directory/viewing.html

you could use request URLs such as:

http://www.example.com/faqs/ordering.html
http://www.example.com/help/directory/viewing.html

Remember that the path components of URLs are case-sensitive, and so are z/OS UNIX names. URLs are
normally specified in lowercase. Take care to use the correct case when specifying each item in the
URIMAP definition, especially if the file name is in mixed case and the URL is in lowercase.

You might want to make your request URLs match your file directory structure:

• To make administration of resources more straightforward.
• To follow standard practice for web servers.
• To reduce the number of URIMAP definitions that you need to create.

You can create a single URIMAP definition with wildcards, to deliver multiple static responses using the
path matching mechanism. This is possible where the path component of the URL for all those static
responses begins in the same way, and where the files for the static responses are stored in the same
z/OS UNIX file directory. Wildcards are used at the end of the path component of the URL, and also at the
end of the file path for the z/OS UNIX file. In the previous example, all the HTML documents stored in the
FAQs directory could be provided by a single URIMAP definition that specifies the path /faqs/* and
specifies the HFSFILE attribute as /u/cts/CICSHome/FAQs/*. A similar technique can be used with
CICS document templates whose names begin in the same way. Note that a URIMAP definition for a static
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response specifies a media type (for example text/html), so if you need to provide different file types in
this way, ensure that they are stored in separate directories.

Query strings

A query string in a request URL can be used to select alternative URIMAP definitions. To use a query string
for URIMAP matching, the complete and exact query string must be specified in the path attribute of the
URIMAP definition, together with the path itself.

For application-generated responses, the application can extract and analyze information from a query
string, using the WEB EXTRACT command or the WEB READ FORMFIELD command. This can be done
whether or not the query string has been used for URIMAP matching.

If you are providing a static response with a document template, CICS automatically passes the content
of the query string into the named CICS document template as a symbol list. If you want to use the
content of the query string in the document template, you can include appropriate variables in your
document template to be substituted for the content of the query string. This happens only if the query
string has not already been used for URIMAP matching.

URL length: CICS web support

CICS web support has the following limitations on URL length:

• For the URLs of inbound HTTP requests (for CICS as an HTTP server), CICS accepts a length of up to
32K. This length is at least eight times more than that supported by some commonly-used web browser
clients. If CICS does receive a URL that is longer than it can handle, it returns a 414 (Request-URI Too
Long) status code.

• For the URLs of outbound HTTP requests (made by CICS as an HTTP client), CICS supports a path
component of up to 255 characters in a URIMAP resource definition. The user application program that
makes the request may override the URIMAP definition (or not use one at all), and supply a longer path
component. Check the URL length that can be handled by the server.

URL length: URIMAP definitions

When choosing URLs for resources provided using URIMAP definitions, note the following additional
limitations on URL length:

• CICS supports a path component of up to 255 characters in a URIMAP resource definition. Try not to
use longer path components than this. The HTTP/1.1 specification says that servers should be cautious
about URLs with a total length (comprising scheme, host and path components, and delimiters) that is
greater than 255 characters, because older web clients and proxies might not support these properly. If
you are using an IRI that contains percent-encoded Unicode characters, note that a character in this
context means a single ASCII character, not the original Unicode character. For example, the Cyrillic
character that has the percent-encoded representation %D0%B4 counts as 6 characters from the 255–
character limit.

• If you need to use a longer path component, you usually can, because you do not have to specify the
complete path in the URIMAP resource definition. An asterisk (*) may be used as a wildcard character at
the end of the path. The behavior of the URIMAP definition will be correct if:

– The specified part of the URL is unique to that resource.
– The specified part of the URL is not unique to that resource, but you are providing a static response,

and using the path matching mechanism to complete the URL.
• If you are using a query string for the purpose of URIMAP matching, and specifying it in the path

attribute of the URIMAP definition, the total length must still be within the 255-character limit. (Part of
the path component may be replaced by an asterisk, if the behavior will still be correct, but an asterisk
cannot be used within the query string.) If you are not using the query string for this purpose, then any
length of query string can be accepted, up to CICS web support's overall 32K limit on URL length.

• For a redirection (using the LOCATION and REDIRECTTYPE attributes in the URIMAP definition), CICS
supports a redirection URL of up to 255 characters. This must be a complete URL, including the
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scheme, host and path components, and appropriate delimiters. If you plan to use a resource as a
destination for redirected clients, make sure that its complete URL fits within this 255-character limit.

How CICS web support handles chunked transfer-coding
Messages using chunked transfer-coding can be sent and received by CICS.

CICS as an HTTP server can receive a chunked message as a request, or send one as a response. CICS as
an HTTP client can send a chunked message as a request, or receive one as a response. CICS web
support handles these different cases as follows:

• When CICS as an HTTP server receives a chunked message as an HTTP request, CICS web support
recognizes the chunked encoding. It waits until all the chunks are received (indicated by the receipt of a
chunk with zero length), and assembles the chunks to form a complete message. The assembled
message body can be received by a user application program using the WEB RECEIVE command.

– You can limit the total amount of data that CICS accepts for a single chunked message, using the
MAXDATALEN option on the TCPIPSERVICE resource definition that relates to the port on which the
request arrives.

– When CICS is an HTTP server, the timeout value for receiving a chunked message is set by the
SOCKETCLOSE attribute of the TCPIPSERVICE definition.

– Trailing headers from the chunked message can be read using the HTTP header commands. The
Trailer header identifies the names of the headers that were present as trailing headers. If you are
using an analyzer program in the processing path for the request, note that trailing headers are not
passed to the analyzer program along with the main request headers.

• When CICS as an HTTP client receives a chunked message as a response to an application program's
request, the chunks are also assembled before being passed to the application program as an entity
body, and any trailing headers can be read using the HTTP header commands. You can specify how long
the application will wait to receive the response, using the RTIMOUT attribute of the transaction profile
definition for the transaction ID that relates to the application program.

• When CICS sends a chunked message, either as an HTTP server (response) or as an HTTP client
(request), the application program can specify chunked transfer-coding by using the
CHUNKING(CHUNKYES) option on the WEB SEND command for each chunk of the message. The
message can be divided up in whatever way is most convenient for the application program. CICS sends
each chunk of the message, adding appropriate HTTP headers to indicate to the recipient that chunked
transfer-coding is being used. The application program issues WEB SEND with CHUNKING(CHUNKEND),
to indicate the end of the message. CICS then sends an empty chunk (containing a blank line) to end the
chunked message, along with any trailing headers that are wanted.

Sending an HTTP request or response with chunked transfer-coding explains the process to use for
chunked transfer-coding when sending an HTTP message from CICS. This procedure should be followed
in order for your chunked message to be acceptable to the recipient.

How CICS web support handles pipelining
A pipelined request sequence can be sent and received by CICS. CICS as an HTTP server can receive a
pipelined request sequence from a web client, and CICS as an HTTP client can send a pipelined request
sequence to a server.

CICS web support handles pipelined request sequences, and the responses to them, as follows:

• When CICS as an HTTP server receives a pipelined sequence of HTTP requests, the requests are
processed serially. This is to ensure that the responses are returned in the same order that the requests
were sent. CICS treats each message in the pipelined sequence as a separate transaction, either
providing a static response specified in a URIMAP definition, or passing the message to an application
program and waiting for the application program to produce a response. Each transaction handles a
single request and provides a response. The remaining requests in the pipelined message sequence are
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held by CICS until the response to the previous request is sent, and then a new transaction is initiated
to process each further request.

• When CICS as an HTTP client sends a pipelined request sequence, pipelining is enabled automatically.
Each HTTP request is sent immediately, so the application program can send multiple HTTP requests
before it receives any response. When the last message in the pipelined sequence has been sent, the
application can begin to receive the responses.

• When CICS as an HTTP client receives HTTP responses to a pipelined request sequence, the responses
are returned to the application program in the order that CICS receives them from the server. A server
that supports pipelining provides the responses in the same sequence in which the requests were
received. The application program begins to receive the responses when it has finished sending all its
HTTP requests.

For CICS as an HTTP client, it is the application program's responsibility to ensure that any pipelined
sequence of requests is idempotent. “Pipelining” on page 15 explains idempotency. For the benefit of
your application program's logic as well as for the benefit of the server, if you are not sure that a sequence
of requests is idempotent, it is advisable to make separate requests, and wait for a response to each
request before sending the next one.

How CICS web support handles persistent connections
When a connection is made between a web client and CICS as an HTTP server, or between CICS as an
HTTP client and a server, by default CICS attempts to keep the connection open as a persistent
connection.

When CICS is the HTTP server, a persistent connection is closed in the following situations:

• The user-written application that is handling the request from the web client requests the client to close
the connection (by specifying the CLOSESTATUS(CLOSE) option on the WEB SEND command).

• The web client requests CICS to close the connection (notified by a Connection: close header).
• The web client is an HTTP/1.0 client that does not send a Connection: Keep-Alive header.
• The timeout period is reached (indicating that the connection has failed, or that the web client has

deliberately exited the connection).
• The CICS region has reached a limit that you specified for the maximum number of persistent

connections, and is now requesting web clients to close their connections after they receive each
response. See “CICS as an HTTP server: Connection throttling for inbound HTTP connections” on page
32 for more information about connection throttling.

• The number of tasks in the region has exceeded the limit for persistent connections.
• Periodically, to allow work to be shared more efficiently among regions listening on shared IP

endpoints.
• The TCPIPSERVICE is closed.

Otherwise, CICS leaves the persistent connection open for the web client to send further requests. If
there is a persistent connection with the client, CICS keeps the connection open after an error response is
sent through a web error program. The exception is where CICS selects the 501 (Method Not
Implemented) status code for the response, in which case the connection is closed by CICS. CICS marks
new connections as non-persistent when the number of tasks in the region has exceeded the limit for
persistent connections.

Some TCP/IP statistics indicate how persistent HTTP connections are. For details, see Connection
persistence statistics.

In a TCPIPSERVICE resource definition for CICS web support, the SOCKETCLOSE and MAXPERSIST
attributes of the TCPIPSERVICE definition should not be specified as zero. A zero setting for
SOCKETCLOSE means that CICS as an HTTP server closes the connection immediately after receiving
data from the web client, unless further data is waiting. A zero setting for MAXPERSIST means that CICS
requires every web client to close the connection after they receive each response from CICS. In either of
these situations, persistent connections cannot be maintained. Only use zero settings for these attributes
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if you have a special requirement for them in a CICS region that is not currently handling external
requests, for example in a test environment.

When CICS is the HTTP client, a persistent connection is closed in the following situations:

• The server requests CICS to close the connection (notified by an HTTP/1.1 server sending a Connection:
close header, or an HTTP/1.0 server failing to send a Connection: Keep-Alive header).

• The user application program requests the server to close the connection (by specifying the
CLOSESTATUS(CLOSE) option on the WEB SEND or WEB CONVERSE command).

If the user application program needs to test whether the server has requested termination of the
connection, the READ HTTPHEADER command can be used to look for the Connection: close header in
the last message from the server. If the server requests closure of the connection, but the application
program has not yet issued a WEB CLOSE command, CICS closes the connection but maintains the data
relating to the connection (including the last response received from the server and its HTTP headers).
The application program can continue to use that data until it issues a WEB CLOSE command or end of
task is reached.

When the user application program issues the WEB CLOSE command to end its use of the connection, if
the connection is still open CICS does not necessarily close it. If connection pooling was not specified for
the connection, or if the connection is not in a good state for connection pooling, CICS does close the
connection. However, if connection pooling was specified in the URIMAP resource that was used to open
the connection, and the connection is in a good state, CICS does not close the connection. Instead, CICS
places the connection in a pool of dormant connections, and it can be reused by another application
program or by another instance of the same application program to connect to the same server. See
“CICS as an HTTP client: Connection pooling for outbound HTTP connections” on page 33 for more
information about connection pooling.

If CICS as an HTTP client is communicating with an HTTP/1.0 server, CICS automatically sends
Connection: Keep-Alive headers on HTTP messages. The application program that requested the
connection does not need to provide these. Keep-Alive informs the server that a persistent connection is
required.

CICS as an HTTP server: Connection throttling for inbound HTTP connections

If multiple web clients set up long-lived persistent connections to CICS as an HTTP server and use the
connections heavily, it is possible for a CICS region handling the connections to become overloaded and
experience performance problems. If you experience this problem, you can set up connection throttling
to make excess web clients connect to other CICS regions that share the port and provide the same
service.

With connection throttling, you can set a limit on the number of persistent HTTP connections that a CICS
region accepts for a particular port. If the limit is reached and further web clients send requests, CICS
sends Connection: close headers with each response to require the new clients to close their connection.
The web clients that already have persistent connections to the CICS region can maintain their persistent
connections. When the new clients reconnect, if they connect to another CICS region that shares the port
and has not reached its limit, they can maintain a persistent connection there. The CICS region that has
reached its limit begins to accept new persistent connections again when the web clients that have
persistent connections to it close their connections.

Connection throttling is managed by the MAXPERSIST attribute on the TCPIPSERVICE resource definition
for the port. The default setting, MAXPERSIST(NO), means that there is no limit on the number of
persistent connections that the CICS region accepts. To set up connection throttling, specify a suitable
value for the MAXPERSIST attribute based on the number of persistent connections that the CICS region
can handle simultaneously. The setting applies only to the HTTP and HTTPS protocols, not to any other
protocol.

An HTTP/1.1 server should normally allow persistent connections, so only set up connection throttling in
a CICS region that has experienced performance problems due to long-lived persistent connections. A
zero setting for MAXPERSIST, meaning that the CICS region does not allow any persistent connections, is
not compliant with the HTTP/1.1 specification. Only use a zero setting if you have a special requirement
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for it in a CICS region that is not currently handling external requests, for example, in a test environment.
When you specify a value greater than zero for MAXPERSIST, CICS as an HTTP server is still compliant
with the HTTP/1.1 specification: the default behavior is still to allow persistent connections, and web
clients receive a Connection: close header if they cannot obtain a persistent connection. However, you
should be aware that refusing persistent connections is not recommended as a normal practice for an
HTTP/1.1 server. Also be aware that the performance of web clients can be affected when they fail to
obtain a persistent connection that they expected.

CICS as an HTTP client: Connection pooling for outbound HTTP connections

By default, CICS closes a client HTTP connection after a CICS application has finished using the
connection, or a service requester application has made a web service request and received a response,
or the HTTP EP adapter has emitted a business event. When you set up connection pooling, instead of
closing the connection CICS can place the connection in a pool in a dormant state. The dormant
connection can be reused by the same application or by another application that connects to the same
host and port. Connection pooling can provide performance benefits where multiple invocations of CICS
web support applications, web services applications, or the HTTP EP adapter make connection requests
to a particular host and port, or where a web services application makes multiple requests and responses.

To set up connection pooling, you specify the SOCKETCLOSE attribute on a URIMAP resource definition
for the client HTTP connection. For a client HTTP connection to be pooled, the CICS application program
must specify the URIMAP resource on the INVOKE SERVICE or WEB OPEN command, and CICS web
support applications must issue the WEB CLOSE command to explicitly end their use of the connection. A
connection cannot be pooled if the server has requested CICS to close the connection, or if the
application program has requested the server to close the connection by specifying the
CLOSESTATUS(CLOSE) option on the WEB SEND or WEB CONVERSE command. CICS also checks the state
of an open connection before placing it in the pool; connections are not pooled if they are found or
suspected to be in a poor state, for example, if the last HTTP response was not OK.

When an application uses a URIMAP resource to make a client HTTP connection, CICS checks whether a
dormant connection is available in the pool for that host and port, and if so supplies it to the application
rather than opening a new connection. Applications reuse a pooled connection in exactly the same way as
they use a new connection, and the connection can be pooled again after use. If a connection reaches the
time limit that you specified in the SOCKETCLOSE attribute without being reused, CICS discards it. CICS
also closes dormant connections in the pool if MAXSOCKETS is reached for the CICS region, or if you
discard the URIMAP resource for the connection, or if the server requests CICS to close the connection.

Code page conversion for CICS Web support
When CICS exchanges messages with a Web client or server, character data in the messages normally
needs to undergo code page conversion on entering and leaving the CICS environment.

Code page conversion for text in messages is required for two reasons:

• CICS and user-written applications for CICS typically use an EBCDIC encoding, but Web clients and
servers typically use an ASCII encoding.

• Within each encoding, a number of different code pages are used to support national languages.

Non-text content of messages, such as images or application data, does not require code page
conversion.

In releases of CICS before CICS Transaction Server for z/OS, Version 3 Release 1, code page conversion
for CICS Web support was handled using a code page conversion table (DFHCNV). In CICS Transaction
Server for z/OS, Version 5 Release 4, the code page conversion table is no longer required for CICS Web
support, except in limited circumstances for upgrade purposes. CICS Web support handles code page
conversion using z/OS conversion services.

In CICS Web support, the defaults for code page conversion of text are:
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• The default character set is the ASCII Latin-1 character set, ISO-8859-1. In HTTP messages, request or
status lines and HTTP headers are typically in the US-ASCII character set, which is an older subset of
ISO-8859-1. Message bodies containing text are often in ISO-8859-1.

• The default EBCDIC code page, for data in the CICS environment, is specified by the LOCALCCSID
system initialization parameter for the CICS region. The default for LOCALCCSID is the EBCDIC Latin
character set, code page 037.

Sometimes a more suitable alternative code page can be identified:

• A Web client or a server may specify a character set in the Content-Type header for a request or
response, which is the character set that has been used for the message body.

• A Web client may send an Accept-Charset header on a request, stating which character sets are
acceptable for the response.

• For non-HTTP requests and some older HTTP implementations, the character set used when
transmitting the message might not be identified in the message headers, and you might need to
identify this from your own knowledge of the message's source.

• Application programmers need to identify a suitable code page in which their application can receive
message data, if the default is not suitable.

CICS does not support all the character sets named by IANA. The IANA character sets supported by CICS
for code page conversion are listed in HTML coded character sets.

In most circumstances, the media type for the message can determine whether or not code page
conversion takes place. Request or response bodies with a non-text media type usually do not undergo
code page conversion. An exception is made for compatibility with Web-aware applications coded in
earlier releases; if the options used on a command indicate that the application was coded before CICS
Transaction Server for z/OS, Version 3 Release 1, the media type does not influence code page
conversion.

Depending on the type of message and the processing path, code page conversion information might be
identified automatically by CICS, or specified in the URIMAP definition, or specified by an analyzer
program, or specified in the commands issued by a Web-aware application program. “Code page
conversion for CICS as an HTTP server” on page 34 explains the process for CICS as an HTTP server, and
“Code page conversion for CICS as an HTTP client” on page 36 explains the process for CICS as an HTTP
client.

Code page conversion for CICS as an HTTP server
When CICS as an HTTP server exchanges messages with a web client, code page conversion is normally
required for the message bodies. The method of specifying this depends on whether you are making an
application-generated response or a static response, and whether you are using a web-aware application
or a non-web-aware application.

Request line and HTTP headers

Code page conversion for a request line or status line and for HTTP headers is handled as follows:

• Soon after receiving a request, CICS converts the request line (including any query string) and HTTP
headers, from their character set, into the EBCDIC code page specified by the LOCALCCSID system
initialization parameter (which applies to the whole of the local CICS region, and has a default of 037).
For a successful conversion, you should set the LOCALCCSID system initialization parameter to any
EBCDIC code page into which the ASCII Latin-1 character set ISO-8859-1 (code page 819) can be
converted. If LOCALCCSID is set to an unsuitable code page, CICS uses the default EBCDIC code page
037 instead.

• When an application uses the WEB EXTRACT, WEB READ HTTPHEADER or WEB READ FORMFIELD
commands to extract information from the request line (including any query string) and HTTP headers,
the information is presented in its converted form, in the EBCDIC code page specified by the
LOCALCCSID system initialization parameter (or the default 037).
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• When CICS is preparing to send out a response, the status line and HTTP headers may be generated by
CICS, or specified by the application using the WEB WRITE HTTPHEADER command. Before sending, all
the headers and the status line are converted from the EBCDIC code page in which they were specified,
into the US-ASCII character set.

Message bodies: application-generated response

If the request is to have a dynamic response from a user-written application, code page conversion for
message bodies is handled as follows:

• If a web-aware application receives the request, CICS carries out code page conversion if any of the
code page conversion options are used to specify conversion on the WEB RECEIVE command. If none of
the options are present, code page conversion does not take place. You can either supply, or allow CICS
to identify, the character set, and request a code page if the default is not suitable.

• If an analyzer program is used in the processing path for the request, the analyzer program can specify
or suppress code page conversion for the copy of the request which is passed to subsequent processing
stages in a block of storage. You supply both the character set and the application code page that are
used. CICS still holds the original version of the request body. Applications or converter programs which
use the EXEC CICS WEB API commands access the original body, not the block of storage, and they
can specify code page conversion on the EXEC CICS WEB API commands.

• When a converter program is passed the request in a block of storage, if there is no analyzer program in
the processing path, CICS converts the request body in the block of storage, identifying the character
set and converting to the default code page.

• To identify the character set that the web client used for the request body, CICS examines the request
headers. If the request headers do not provide this information, or the specified character set is
unsupported, CICS assumes as a default that the message body is in the ISO-8859-1 character set. If
the message body is not in that character set, and there is no information in the headers, you need to
identify the correct character set.

• By default, CICS converts the request body into the EBCDIC code page specified by the LOCALCCSID
system initialization parameter (which applies to the whole of the local CICS region, and has a default of
037). If your application requires a different code page (which could be EBCDIC or ASCII), you can
specify this.

• If an application or converter program sends the response using the EXEC CICS WEB API commands,
CICS carries out code page conversion if any of the code page conversion options are used to specify
conversion on the WEB SEND command. If none of the options are present, code page conversion does
not take place.

• If a converter program produces the response in a block of storage and passes it to CICS for sending,
CICS mirrors the code page conversion that was carried out for the request. The character set and host
code page settings from the analyzer program, or the default settings in the absence of an analyzer
program, are used. If the analyzer program suppressed code page conversion for the request, no code
page conversion is carried out for the response body.

Message bodies: static response

If the request is to have a static response determined by a URIMAP definition, code page conversion for
message bodies is handled as follows:

• For a static response, CICS does not examine any message body that is present on a web client's
request, so no code page conversion is required.

• You specify code page conversion for the body of the response in the URIMAP definition that produces
the static response. If the response contains text, the URIMAP definition needs to specify all of the
following:

– A text media type, using the MEDIATYPE attribute. There is no default for this attribute.
– A character set for the web client, using the CHARACTERSET attribute.
– The code page in which the CICS document template or z/OS UNIX file for the response is encoded,

using the HOSTCODEPAGE attribute.

Chapter 1. CICS web support  35



CICS retrieves the z/OS UNIX file, or retrieves the CICS document template and creates the document,
and then carries out appropriate code page conversion.

Code page conversion for CICS as an HTTP client
When CICS as an HTTP client exchanges messages with a server, code page conversion is normally
required for the message bodies. You specify an application code page when opening the connection. The
character sets can usually be identified by CICS or allowed to default.

Request line and HTTP headers

Code page conversion for a request line or status line and for HTTP headers is handled as follows:

• When CICS is preparing to send out a request, the request line and HTTP headers may be generated by
CICS, or specified by the application using the WEB WRITE HTTPHEADER command. Before sending, all
the headers are converted from the EBCDIC code page in which they were specified, into the US-ASCII
character set.

• Soon after receiving a response, CICS converts the status line and HTTP headers from the US-ASCII
character set, into the EBCDIC code page 037. The application receives the status line and other
information, and examines the HTTP headers, in their converted form, in the EBCDIC code page 037.

Message bodies

Code page conversion for the message bodies is handled as follows:

• The EBCDIC code page used by the application program is specified on the WEB OPEN command that
initiates communication with the server. The default is the EBCDIC code page specified by the
LOCALCCSID system initialization parameter (which applies to the whole of the local CICS region, and
has a default of 037). CICS uses this information for converting the message bodies for requests and
responses on this connection.

• For each request that the application sends out, the CLIENTCONV option on the WEB SEND or WEB
CONVERSE command specifies whether or not CICS carries out code page conversion for the request
body. The default is that code page conversion does take place. If you are using the WEB CONVERSE
command, you can choose to specify code page conversion for either, both, or neither of the request
body and the response body.

• If you have specified conversion for a request, the default is that CICS converts the request body to the
ISO-8859-1 character set. You can use the CHARACTERSET option on the WEB SEND or WEB
CONVERSE command to select an alternative, if you know that the server prefers a different character
set.

• For each response that the application receives, the CLIENTCONV option on the WEB RECEIVE or WEB
CONVERSE command specifies whether or not CICS carries out code page conversion for the response
body, into the EBCDIC code page specified when the connection was opened. The default is that code
page conversion does take place. CICS examines the response headers to identify the character set that
the server used for the response body. If the response headers do not provide this information, or the
named character set is unsupported, CICS assumes as a default that the message body is in the
ISO-8859-1 character set.

Overview of Atom feeds
A web feed, sometimes just called a "feed", is a series of related items that a content provider publishes
on the Internet. An Atom feed is a web feed that uses the Atom Syndication Format and the Atom
Publishing Protocol.

Atom comprises an XML-based format that describes an Atom feed and the items of information in it, and
a protocol for publishing and editing Atom feeds. This format and protocol are described in two Internet
Society and IETF (Internet Engineering Task Force) Request for Comments documents (known as RFCs):

RFC 4287, The Atom Syndication Format, available from https://tools.ietf.org/html/rfc4287
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RFC 5023, The Atom Publishing Protocol, available from https://tools.ietf.org/html/rfc5023

Content providers often deliver web feeds in an earlier format called RSS (Really Simple Syndication).
CICS supports Atom, but does not support RSS.

The items of information that make up an Atom feed are known as Atom entries. A content provider
publishes, or "syndicates", an Atom feed by making it available through a URL on the Internet and
updating it with new items. Web pages can display the items in the Atom feed, and web users can obtain
the items from the feed using a feed reader or web browser. An Atom feed might be used as part of a
mashup, which is a web application that merges content from a number of data sources so that users can
experience and understand the data in a new way. In a mashup, the data from the Atom feed can be
handled by a widget, which is a script application that runs in a web page.

The Atom Publishing Protocol specifies the way that users can add, delete, edit, or view individual Atom
entries in an Atom feed by making HTTP requests to a server that stores the entries. A GET request
retrieves an entry for viewing, a POST request adds a complete new entry, a PUT request edits an existing
entry, and a DELETE request deletes an entry. The server handles the requested changes in an
appropriate way and responds to the user's client with confirmation of the changes.

Atom documents
Atom documents are one of the following types: entry documents, feed documents, collections, service
documents, or category documents.
Atom entry documents

An Atom entry document is an XML document that contains a single item of information, known as an
entry, for the Atom feed.

An Atom entry document consists of an <atom:entry> element that contains a number of child
elements. The child elements provide the content for the entry and also metadata about the entry,
such as its title or the time when it was first published.

The content of an Atom entry can be plain text, HTML, XHTML, or another IANA (Internet Assigned
Numbers Authority) media type. IANA media types are listed at http://www.iana.org/assignments/
media-types/media-types.xhtml. An Atom entry can also have as its content a link to a media
resource such as a movie or image, in which case it is called a media link entry.

The media type for an Atom entry document is application/atom+xml.

Atom feed documents
An Atom feed document is an XML document that provides metadata about an Atom feed and one or
more entries for the feed. When a client makes a request for information from the feed, the server
generates a feed document that includes a suitable number of Atom entries to fulfil the request.

An Atom feed document consists of an <atom:feed> element that contains a number of child
elements. The <atom:entry> element is the most important child element, but normally the entries for
the feed exist as separate XML documents, and the server adds them when it serves the feed
document. An Atom feed document is still an acceptable document when it does not contain any
<atom:entry> elements.

The other child elements contain metadata about the feed, such as its title and subtitle, or its main
author. Some of the items of metadata in the Atom feed document, such as the author's details and
the information about intellectual property rights, can apply to all the entries in the feed unless an
entry includes its own version of that item of metadata.

The media type for an Atom feed document is application/atom+xml.

Atom collection
An Atom collection is a special kind of Atom feed document that lists the URLs of Atom entries that
are available to be edited. Its format is like that of an ordinary Atom feed document with the addition
of some specialized elements. It is distinguished as a collection by being listed in an Atom service
document.

An Atom collection contains some specialized <atom:link> elements. If the collection is large enough
that more than one feed document is required to return all the entries, the elements <atom:link
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rel="first">, <atom:link rel="last">, <atom:link rel="next">, and <atom:link rel="previous"> supply
navigation between the feed documents. Entries also have an <atom:link rel="edit"> link to which edit
requests can be directed. The <app:edited> element is added to entries in a collection to state the
time of the last edit for each entry.

When Atom entries are made available as a collection, a client can edit or delete the existing entries
and create new entries for the collection. The client manipulates the entries by sending HTTP
requests to the server as follows:
GET

Retrieve a single Atom entry or a list of Atom entries. GET requests for a list of Atom entries are
sent to the URL of the collection, as stated in the Atom service document. GET requests for a
single Atom entry are sent to the URL of an individual Atom entry in the collection, as stated in the
<atom:link rel="edit"> link for the entry.

POST
Create a new Atom entry. POST requests are sent to the URL of the collection.

PUT
Edit an existing Atom entry that the client has obtained using a GET request. PUT requests are
sent to the URL of an individual Atom entry in the collection.

DELETE
Delete an existing Atom entry. DELETE requests are sent to the URL of an individual Atom entry in
the collection.

The server sends an appropriate HTTP response to the client in each case. A server can change the
metadata that the client provides for the entry, so when a client makes a successful POST or PUT
request, the server also returns a copy of the new entry as the body of the response.

As well as containing standard Atom entries, a collection can also contain media resources, such as a
movie or image. If a server supports media resources, it creates special Atom entries known as media
link entries in the collection to provide links to these resources. CICS does not provide support for
media resources.

Atom service document
An Atom service document is an XML document that lists the collections that are available from a
server.

An Atom service document has the root element <app:service>. (The app: prefix is the namespace
prefix for the Atom Publishing Protocol.) It has one or more <app:workspace> elements that define
workspaces containing a number of <app:collection> elements. A workspace is used only for grouping
collections; you cannot perform any actions on a workspace.

The <app:collection> elements list the URL and title of each collection, and might also state the types
of input that the collection accepts and the categories that can be used for entries.

The media type for an Atom service document is application/atomsvc+xml.

Atom category document
A category document contains lists of categories for the entries in a collection. Categories can also be
specified in a service document. Separate category documents are useful if you want to use the same
categories to define multiple Atom feeds.

An Atom category document has the root element <app:categories>. (The app: prefix is the
namespace prefix for the Atom Publishing Protocol.) The <app:categories> element contains a list of
<atom:category> elements that are permitted for entries in a collection. The list of categories can be
fixed, in which case the server can reject entries with other categories, or it can be open, so that other
categories can be used.

If a separate Atom category document is used in the place of a list of categories in an Atom service
document, the category document is referenced in the service document by its URL.

The media type for an Atom collection is application/atomcat+xml.
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Related concepts
How Atom feeds work in CICS
To serve an Atom document, CICS must include suitable URLs, identify and obtain the data for the Atom
entries, and determine the arrangement of the Atom entries in the Atom document. When you set up an
Atom feed or collection, you must provide information in your Atom configuration file or your service
routine to help CICS complete these tasks.

How Atom feeds work in CICS
To serve an Atom document, CICS must include suitable URLs, identify and obtain the data for the Atom
entries, and determine the arrangement of the Atom entries in the Atom document. When you set up an
Atom feed or collection, you must provide information in your Atom configuration file or your service
routine to help CICS complete these tasks.
Related concepts
Atom documents
Atom documents are one of the following types: entry documents, feed documents, collections, service
documents, or category documents.

Data processing for Atom feeds from CICS
To produce an Atom feed or collection document containing Atom entries, CICS obtains data for the Atom
entries either directly from a file or temporary storage queue, or from a service routine that extracts data
from another resource.

Figure 4 on page 39 shows how CICS uses an Atom configuration file to identify and extract relevant
data from a record in a file:

Figure 4. Extracting Atom entry data directly from a file

• The record in the file contains fields called "Title" and "Content" that hold data for the Atom entry.
• The Atom configuration file includes a <cics:resource> element that identifies the file, a <cics:bind>

element that refers to the XML binding for the file, and a <cics:fieldnames> element. The title attribute
of the <cics:fieldnames> element identifies the "Title" field in the file record as the field that holds the
data for the title of the Atom entry. The content attribute identifies the "Content" field in the file record
as the field that holds the data for the content of the Atom entry.

• CICS uses the information in the Atom configuration file and the XML binding to locate and extract the
data from the "Title" and "Content" fields in the file record, and uses that data to populate the
<atom:title> and <atom:content> elements of an Atom entry in an Atom feed document.

• When CICS has carried out this processing for a series of records from the file to produce the required
number of Atom entries, CICS sends the Atom feed document containing the Atom entries to the web
client.
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Figure 5 on page 40 shows how CICS obtains data from a record in a database through a user-written
service routine program:

Figure 5. Using a service routine to supply Atom entry data

• The record in the database contains fields called "Title" and "Content" that hold data for the Atom entry.
• A service routine extracts the data from the "Title" and "Content" fields in the database. If a service

routine is working with a resource that has an XML binding, it can obtain the names of the relevant fields
from information in a <cics:fieldnames> element in an Atom configuration file, which CICS passes to the
service routine as parameters in a container called DFHATOMPARMS. DFHATOMPARMS also contains
other information about the web client's request.

• The service routine creates containers called DFHATOMTITLE and DFHATOMCONTENT, and writes the
data from the "Title" and "Content" fields into the containers. It then returns the containers to CICS
Atom processing.

• The Atom configuration file includes an <atom:title> element that gives a default title for Atom entries,
and an <atom:author> element that contains an <atom:name> element giving the author name Joe
Bloggs.

• CICS composes an Atom entry using the title and content that were supplied by the service routine in
the DFHATOMTITLE and DFHATOMCONTENT containers. The service routine did not supply an author
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name, so CICS uses the author name from the Atom configuration file. CICS does not need the default
title from the Atom configuration file, because the service routine has supplied that data.

• When CICS has called the service routine a number of times to supply data from different database
records to produce the required number of Atom entries, CICS sends the Atom feed document
containing the Atom entries to the web client.

URLs for Atom feeds from CICS
Atom feed documents, collections, and Atom entry documents within feeds or collections, contain URLs
(Uniform Resource Locators) that web clients can use to interact with the documents. Each URL is
provided in an <atom:link> element in the Atom document. An Atom document can have more than one
<atom:link> element, and the rel attribute of the element, known as the link relation, specifies the
purpose of the different URLs.

An Atom feed document or collection served by CICS contains up to four types of URL:

• A URL that locates the whole of the Atom feed or collection. This feed URL is provided in an <atom:link
rel="self" > element that is a child element of the <atom:feed> element. A web client can use this URL
to obtain an Atom feed document containing multiple entries from the Atom feed or collection.

• Individual URLs to locate each Atom entry in the feed or collection. These entry URLs are provided in
<atom:link rel="self" > elements that are child elements of the <atom:entry> element. A web client can
use these URLs to retrieve single Atom entries from the feed or collection.

• Editing URLs that web clients can use to make requests to edit a collection. These URLs are provided in
<atom:link rel="edit" > elements. CICS provides one editing URL for the whole of a collection, as a child
element of the <atom:feed> element in the collection document, and individual editing URLs for each
Atom entry in a collection, as child elements of the <atom:entry> elements. CICS also provides
<atom:link rel="self" > URLs for collections and Atom entries in collections.

• Navigation URLs that web clients can use to retrieve partial lists of the Atom entries in an Atom feed or
collection. These URLs are provided in <atom:link> elements with rel attributes of "first", "previous",
"next", and "last". These URLs enable web clients to explore the whole of an Atom feed or collection
without having to retrieve all the Atom entries at once. CICS provides an <atom:link rel="next">
element in Atom feed documents with a URL that web clients can use to retrieve the next window of
Atom entries from the feed. In Atom documents that contain partial lists of entries from collections,
CICS adds <atom:link> elements with rel attributes of "first", "previous", "next", and "last", to provide
navigation to the other partial lists of Atom entries from the collection.

For an Atom feed, the URL for the whole feed is typically publicized on the Internet or a company's
intranet. When a web client obtains an Atom feed document by using the feed URL, the Atom entries in
the Atom feed document include their own individual URLs, and a web client can use these to retrieve
single Atom entries.

For a collection, which contains Atom entries that can be edited, the service document that is available
from the server provides the editing URL of each of the collections on the server. A web client can use one
of these URLs to view the Atom entries in the collection and make requests to add further entries to it.
The web client can use the editing URL for an individual Atom entry to make a request to update or delete
the entry.

The Atom Syndication Format allows the use of Internationalized Resource Identifiers (IRIs), which
permit Unicode characters and formats that are suitable for national languages other than English. You
may use IRIs that include Unicode characters as the resource locators for Atom feeds from CICS, in place
of an ordinary URL. In the RFCs for the Atom Syndication Format and the Atom Publishing Protocol, the
resource locators for Atom feeds and Atom entries are referred to as IRIs. “Internationalized Resource
Identifiers (IRIs)” on page 45 explains IRIs and how you can use them for Atom feeds.

How Atom URLs are specified and resolved

In CICS, you use the <atom:link> child elements of the <atom:feed> and <atom:entry> elements in an
Atom configuration file to specify a URL for the whole of the Atom feed or collection, and also a standard
URL for the individual Atom entries. In the Atom configuration file you always specify <atom:link
rel="self"> for these child elements, and when CICS sends out the Atom document, CICS adds an
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identical link in an <atom:link rel="edit" > element to collections and Atom entries in collections. You may
omit the scheme and host components of the URL from the Atom configuration file, and specify only the
path component. CICS adds the scheme and host components to the URLs when it returns the feed or
entry document to the client.

You do not need to specify any of the <atom:link> elements for navigation URLs, with rel attributes of
"first", "previous", "next", and "last", in your Atom configuration file. CICS creates these links for you.

The URLs that you specify for the whole feed and as a standard URL for the individual entries must have
path components that begin in the same way. You specify this common part of the path component in the
URIMAP resource definition that CICS uses to handle web client requests for the Atom feed, and use an
asterisk to indicate that the rest of the path is to be used for path matching. The common part of the path
component is what CICS uses to identify the Atom feed or collection, so it must be unique to this Atom
feed or collection among all the Atom feeds or collections that you serve using a given host name.

When a web client makes a request using a URL that includes this common part of the path component,
CICS finds the matching URIMAP resource definition, and uses a number of other resources to map the
request URL to the data for the Atom feed. Figure 6 on page 42 shows this process for a feed URL:

Figure 6. Request URLs for Atom feeds

• To handle incoming requests from web clients, you create a URIMAP resource definition that specifies
the part of the path component that is common to the feed and entry URLs. In this example, the
common part of the path component is atom/cicsfile/. When a web client makes a request using
the URLs that you have defined for an Atom feed or collection or for an Atom entry, CICS finds the
URIMAP resource that matches the common part of the path component. In this example, the web
client requests the Atom feed using the feed URL www.example.com/atom/cicsfile/filea.
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• The URIMAP resource specifies an ATOMSERVICE resource that names the Atom configuration file, XML
binding (XSDBIND file), and CICS resource that provide the Atom feed. The example ATOMSERVICE
resource names the FILEA file as the resource that holds the data for the Atom entries.

• CICS uses the ATOMSERVICE resource to locate the Atom configuration file, and compares the path
component of the inbound URL used by the web client to the URLs specified in all the <atom:link>
elements in the Atom configuration file. When CICS finds a URL in an <atom:link> element that has a
matching path component, it carries out the appropriate action, either returning the Atom feed or entry
document or implementing the edit request. In this example, the request URL used by the web client
matches the URL specified for the Atom feed in the Atom configuration file, so CICS must return an
Atom feed document.

• The Atom configuration file, like the ATOMSERVICE resource, names the FILEA file as the resource that
holds the data for the Atom entries. As explained in “Data processing for Atom feeds from CICS” on
page 39, CICS might operate directly to extract the data from the file or temporary storage queue that
contains the data for the Atom entries, or pass the request on to a service routine.

In Figure 6 on page 42, the path for the URL for the whole Atom feed, as specified in the <atom:link> child
element of the <atom:feed> element in the Atom configuration file, is /atom/cicsfile/filea. The
<atom:entry> element in the Atom configuration file also has an <atom:link> child element, which
contains the path /atom/cicsfile/entry. This is a standard path for Atom entries. The standard path
for Atom entries begins with the common part of the path component, atom/cicsfile/. The remainder
of the standard path for Atom entries must be different from the path for the Atom feed that is specified in
the <atom:link> child element of the <atom:feed> element. CICS uses this part of the path for path
matching within the Atom configuration file, to determine whether an Atom feed document or an Atom
entry document is required.

Figure 7 on page 44 shows how CICS handles a request from a web client for a single Atom entry, and
identifies the correct Atom entry:
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Figure 7. Request URLs for Atom entries

• The web client requests a single Atom entry using the URL www.example.com/atom/cicsfile/
entry/23. The web client obtained this URL from the <atom:link> child element for the Atom entry,
which the web client originally received as part of an Atom feed document.

• The Atom entry URL contains the common part of the path component for the Atom feed, atom/
cicsfile/, so it is handled by the same URIMAP and ATOMSERVICE resources as the feed URL. In
this example, the request URL used by the web client matches the standard path specified for Atom
entries in the Atom configuration file, so CICS must return an Atom entry document.

• CICS identifies the Atom entry to return to the web client by examining the remainder of the request
URL that follows the standard path. In this example, the request URL contains the number "23". This is
the selector value for the entry. The selector value is an identifier, typically a number, that identifies the
record in a file, temporary storage queue, or other resource that contains the data for the Atom entry. In
this example, the selector value chosen for the Atom entries was the record number. When you choose
a selector value, you must make sure that the URL for the whole Atom feed and the standard path for
Atom entries will still be different when the selector value is appended to them. “Selector value for
Atom entries” on page 46 explains in more detail how selector values are chosen and used.

CICS also uses the selector value to build navigation links to partial lists of entries from the Atom feed or
collection, in the <atom:link> elements with rel attributes of "first", "previous", "next", and "last". CICS
builds these navigation links by taking the path that you specified for the whole of the Atom feed or
collection, and appending the selector value for the Atom entry that appears at the beginning of the
partial list. CICS uses this information together with the window setting specified for the Atom feed or
collection to return a partial list to the web client. In the example Atom feed used here, for a partial list of
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entries that begins with the Atom entry with the selector value "9", CICS creates the link
www.example.com/atom/cicsfile/filea/9.

These examples show the selector value being appended to the URLs in the default format, known as the
"segment" format, where the selector value is placed as the final segment of the path component. As an
alternative, you can choose a URL style that is compatible with applications developed using the CA8K
SupportPac, where the selector value for the Atom entry is placed in a query string. You can specify this
alternative "query" format using the <cics:selector> element in the Atom configuration file. If
<cics:selector style="query"/> is specified for the example Atom feed used here, CICS creates the links
for individual Atom entries in the format www.example.com/atom/cicsfile/entry?s=23. The same
format is used for the navigation links.

Internationalized Resource Identifiers (IRIs)
Internationalized Resource Identifiers (IRIs) are a form of resource identifier for the Internet that permits
the use of characters and formats that are suitable for national languages other than English. IRIs can be
used in place of URIs or URLs where the applications involved with the request and response support
them.

IRIs are described by RFC 3987, Internationalized Resource Identifiers (IRIs), which is available from
https://tools.ietf.org/html/rfc3987. CICS supports the use of IRIs in URIMAP resources for inbound web
client requests to CICS as an HTTP server, and in Atom feed documents.

Host name

To accommodate the requirements of domain name servers, web clients convert the host name in an IRI
into a format called Punycode. Punycode is described by RFC 3492, Punycode: A Bootstring encoding of
Unicode for Internationalized Domain Names in Applications (IDNA), which is available from https://
tools.ietf.org/html/rfc3492. This algorithm encodes the hostname into a string composed only of
alphanumerics, hyphens, and periods.

If you want to use an IRI as the link for a web resource or Atom feed that is served by CICS, in the
URIMAP resource definition that defines the web client's request to CICS, you must specify the host name
in Punycode. CICS does not provide a tool to carry out this conversion, but free applications are available
on the Internet to support the conversion of Unicode to Punycode. If you use a single asterisk in place of
the host name, to make the URIMAP resource match any host name, you do not need to use Punycode.

Path component

Web clients do not convert the path component of an IRI into Punycode, but they do escape, or percent-
encode, Unicode characters in the path.

If you are using an IRI for a web resource that is served by CICS, in the URIMAP resource definition, you
must percent-encode any Unicode characters in the path that you specify. If you do not have an
application that can convert Unicode characters to percent-encoded representations, free applications
are available on the Internet to perform this task. Note that the limits on URL length listed in “URLs for
CICS web support” on page 27 apply also to URLs for Atom feeds, which means that the part of the path
component of the URL that you specify in the URIMAP resource definition must be 255 characters or less.
A character in this context means a single ASCII character, not the original Unicode character. For
example, the Cyrillic character that has the percent-encoded representation %D0%B4 counts as 6
characters from the 255–character limit.

When CICS installs the URIMAP resource definition, CICS stores the path in the canonical form
recommended for URIs and unescapes some of the characters, but the path that is displayed when you
view the URIMAP resource remains as you entered it.

When you use an IRI as a link for an Atom feed or entry document, you specify the IRI in the Atom
configuration file as well as in the URIMAP resource definition. You must percent-encode any Unicode
characters in the IRI in the Atom configuration file.

When CICS issues an Atom document containing the IRI, CICS converts the percent-encoded characters
to XML character references, so that the XML is valid. To use the resulting link in a web client request, you
must convert the XML character references back into percent-encoded characters.
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This example URIMAP resource contains a path that uses Unicode characters to specify the beginning of
an IRI for an Atom feed, with an asterisk at the end to indicate that path matching is used for the
remainder of the IRI:

  Urimap         : ALEXANDR                                                  
  Group          : IRIMAPS                                                   
  DEScription    :                                                           
  STatus         : Enabled            Enabled | Disabled                     
  USAge          : Atom               Server | Client | Pipeline | Atom      
 UNIVERSAL RESOURCE IDENTIFIER                                               
  SCheme         : HTTP               HTTP | HTTPS                           
  POrt           : No                 No | 1-65535                           
  HOST           : *                                                         
  (Mixed Case)   :                                                           
  PAth           : %D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80%D0%
  (Mixed Case)   : A1%D0%BE%D0%BB%D0%B6%D0%B5%D0%BD%D0%B8%D1%86%D1%8B%D0%BD* 

This example Atom entry contains an IRI using the equivalent XML character references for the Unicode
characters that are represented in the example URIMAP resource:

<entry>
<link rel="self" href="http://example.com:5050/&#x0410;&#x043B;&#x0435;
&#x043A;&#x0441;&#x0430;&#x043D;&#x0434;&#x0440;&#x0421;&#x043E;&#x043B;&#x0436;
&#x0435;&#x043D;&#x0438;&#x0446;&#x044B;&#x043D;/000100"/>
<id>tag:example.com,2009-02-13:file:FILEA:000100</id>
<title>FILEA item 000100</title>
<rights>Copyright (c) 2009, Joe Bloggs</rights>
<published>2008-11-06T12:35:00.000Z</published>
<author>
    <name>Joe Bloggs</name>
    <email>JBloggs@example.com</email>
</author>
<app:edited>2009-03-11T14:42:38+00:00</app:edited>
<updated>2009-03-11T14:42:38+00:00</updated>

<content type="text/xml">
  <DFH0CFIL xmlns="http://www.ibm.com/xmlns/prod/cics/atom/filea">
  <filerec>
  <numb>000100</numb><name>S. D. BORMAN</name><amount>$0100.11</amount>
  </filerec>
  </DFH0CFIL>
</content>

</entry>

Selector value for Atom entries
The selector value for an Atom entry is any identifier that CICS or a service routine can use to locate the
record in a file, temporary storage queue, or other resource that contains the data for the Atom entry. A
suitable selector value is any identifier that is unique and always applies to a given record in the resource
that holds the data for the Atom entries, such as an item number or unique key.

When CICS is issuing an Atom document as a response to a web client, CICS uses the selector values for
the individual Atom entries to construct links directly to the Atom entries, and also as part of the
generated Atom IDs for the entries. The web client can use the links to make requests for single Atom
entries. The selector value from each link identifies the correct record in the resource that contains the
data for the Atom entries. “URLs for Atom feeds from CICS” on page 41 explains how a selector value is
appended to a link.

When CICS is delivering Atom entries directly from a file or temporary storage queue, CICS identifies a
suitable selector value depending on the type of resource. For a temporary storage queue, the selector
value is the number that identifies the record in the temporary storage queue, which CICS assumes is a
decimal number. For a file, the selector value is the key for the file, which must be unique. CICS assumes
that the format of the selector value for each file type is as follows:

• A decimal number for RRDS and VRRDS files.
• A binary number for ESDS and extended ESDS files.
• A character string for any other type of VSAM file.
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If the key for your file is not in the format that CICS assumes, you can specify the correct format in the
<cics:selector> element in the Atom configuration file.

When a service routine returns the data for Atom entries, you can choose what the selector value is. The
selector value can be anything that your program can use to locate the correct record in your resource to
provide the data for the Atom entry. For example, if the resource is a database, you might use the unique
identifier that provides a key for the records. If the key is not a character string, you must specify in the
<cics:selector> element in the Atom configuration file that you are using a hexadecimal selector value.

When a service routine returns an Atom entry from a feed or collection, you must use the ATMP_NEXTSEL
parameter in the DFHATOMPARMS container to return a selector value for the next Atom entry that you
have available in the feed. If the web client has requested a number of entries, CICS links to your program
again using this selector value, so that your program can identify and return the next Atom entry that is
held as a record in your resource. This process continues until CICS has enough entries for the feed, or
until your program returns a null value to indicate that no further Atom entries are available from your
resource.

When a service routine returns an Atom entry from a collection, you must use the ATMP_PREVSEL,
ATMP_FIRSTSEL, and ATMP_LASTSEL parameters in the DFHATOMPARMS container to return selector
values for the previous, first, and last Atom entries in the collection. CICS uses these values to construct
<atom:link> elements containing links to other partial lists of entries in the collection. You may return
these values for an Atom entry from a feed, if you think they would be useful to your web clients in order
to retrieve other windows of Atom entries from the feed, but they are not required for a feed. The
processing to produce a link using ATMP_PREVSEL increases response times, so only specify this value
for a feed if your web clients are set up to use this form of navigation.

The identity of the first, previous, next, and last Atom entries in your feed or collection depends on the
order in which you choose to return the Atom entries. “Sequence for Atom entries” on page 47 explains
how CICS determines the order in which to return Atom entries, and suggests the order in which a service
routine can return Atom entries.

Sequence for Atom entries
CICS, or your service routine, must determine the order in which multiple Atom entries are arranged in an
Atom feed document.

RFC 5023, The Atom Publishing Protocol, which is available from https://tools.ietf.org/html/rfc5023,
states that entries in an Atom collection should be returned to a web client according to the order in
which they were edited, as shown by the <app:edited> element in the entry. The Atom entry that was
most recently edited should be returned first, so that it is the first Atom entry to appear in the Atom feed
document. The next most recently edited Atom entry should be returned next, and so on, with the entry
that was least recently edited being returned last. This function is a SHOULD requirement in RFC 5023 for
a full list of Atom entries, where the whole collection is returned in a single feed document, but a MUST
requirement for a partial list of Atom entries. RFC 5023 and RFC 4287 do not make any requirement for
the ordering of Atom entries in an Atom feed that is not defined as a collection, so for entries in an Atom
feed, servers can choose any order that is consistent and logical.

For reasons of performance, CICS does not automatically return Atom entries in a collection in the order
in which they were most recently edited. CICS deviates from this requirement in order to maintain
acceptable response times while still providing the useful function of partial lists. For both Atom feeds
and collections, when CICS is extracting data directly from a resource to produce Atom documents, CICS
returns Atom entries ordered by the time when they were written as records in the resource, as far as
CICS can determine. The Atom entry that was written most recently is returned first, the next most
recently written Atom entry is returned next, and so on. CICS determines the order of writing as follows:

• For temporary storage queues, the Atom entry that has the highest record number is returned first.
• For ESDS and extended ESDS files, the Atom entry that has the highest RBA (relative byte address) or

XRBA (extended relative byte address) is returned first.
• For RRDS and VRRDS files, the Atom entry that has the highest RRN (relative record number) is returned
first.
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• For KSDS and AIX files, which do not have a concept of the order of writing, the Atom entries are
returned in order of their record key, and the Atom entry with the lowest record key is returned first.

If you use a service routine to supply the data for your Atom entries, you can choose the order in which
you return the Atom entries. If you want to return Atom entries in a collection according to when they
were edited, in compliance with RFC 5023, a service routine can do this for Atom entries that are stored in
a file. To return Atom entries in order of editing, take the following actions:

1. In your file, include a field in the records that contains a time stamp in ABSTIME format showing when
the entry was last edited. You can output this information in your Atom entries as the <app:edited>
element.

2. Define the field containing the time stamp as an alternate index for the file.
3. In your service routine, use the alternate index to locate the records containing the data for the Atom

entries, and return them with the most recently edited entry first, as indicated by the most recent
timestamp.

You can also use this method if you want to return Atom entries in a feed according to when they were
updated, rather than when they were first written. If you cannot store a suitable time stamp in the file that
holds the data for your Atom entries, or if you find that ordering the entries using that information
produces unacceptable response times, return the Atom entries in any order that is consistent and
logical, such as the order used when CICS extracts data directly from a resource.

The values that your service routine supplies for the ATMP_PREVSEL, ATMP_NEXTSEL, ATMP_FIRSTSEL,
and ATMP_LASTSEL parameters in the DFHATOMPARMS container depend on the order that you have
chosen for returning your Atom entries. If you are returning the Atom entries according to when they were
edited or updated, as indicated by a time stamp, then the values for the parameters are as follows:

• The previous Atom entry is the Atom entry that was edited after the present entry was edited.
• The next Atom entry is the Atom entry that was edited just before the present entry was edited.
• The first Atom entry is the Atom entry that was edited the most recently.
• The last Atom entry is the Atom entry that was edited the least recently.

If you are returning the Atom entries according to when they were first written, then the values for the
parameters are as follows:

• The previous Atom entry is the Atom entry that was written after the present entry was written.
• The next Atom entry is the Atom entry that was written just before the present entry was written.
• The first Atom entry is the Atom entry that was written the most recently.
• The last Atom entry is the Atom entry that was written the least recently.

Date and time stamps for Atom entries
The metadata for an Atom entry can include date and time stamps to show when the Atom entry was first
published, when it was last updated, and when it was last edited.

The Atom Syndication Format and Atom Publishing Protocol define these date and time stamps as
follows:
<atom:published>

The date and time when the Atom entry was first created or first made available. For example, if your
Atom feed uses records in a database to provide the data for the Atom entries, this date and time
would be the point when the record containing the data was added to the database.

<atom:updated>
The date and time when the Atom entry was last changed in a way that you consider to be significant.
For example, you might record this date and time stamp if the value of a field in the record in the
database was changed.

<app:edited>
The date and time when the Atom entry was last edited. This date and time stamp applies only to
Atom entries that are part of a collection, and in that case it is required (as a SHOULD requirement).
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If you are setting up a new resource to contain data for Atom entries, you can include fields in the records
in the resource to hold the date and time stamps. A service routine can return this data by overwriting the
ATMP_PUBLISHED, ATMP_UPDATED , and ATMP_EDITED parameters in the DFHATOMPARMS container.
If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_PUBLISHED_FLD, ATMP_UPDATED_FLD, and ATMP_EDITED_FLD parameters have the name and
length of the relevant field in the records in your resource.

If the records in your resource do not contain any fields to hold metadata, CICS provides the current date
and time as a default timestamp for all of these elements. In this case, a service routine returns spaces
for the relevant parameters in the DHFATOMPARMS container. For the <atom:published> element, you
can specify an alternative default timestamp in the prototype Atom entry in your Atom configuration file.
You cannot specify alternative defaults for the <atom:updated> and <app:edited> elements in the
prototype Atom entry in your Atom configuration file.

The date and time stamps that you use for these elements must be in the RFC 3339 format, also known
as the XML dateTime datatype. RFC 3339, Date and Time on the Internet: Timestamps , is a format
specification for date and time stamps in UTC (Coordinated Universal Time), taken from the ISO 8601
standard. You can read this specification at https://www.ietf.org/rfc/rfc3339.txt.

Use the EXEC CICS ASKTIME command followed by the EXEC CICS FORMATTIME command to produce a
date and time stamp in the RFC 3339 format. Alternatively, if your service routine can use the
TRANSFORM DATATOXML command, you can convert a CICS ABSTIME value held in your resource record
into a date and time stamp in this format.

If you are populating a record in your resource with data for a new Atom entry supplied by a web client (a
POST request), or editing the fields in a record in your resource at the request of a web client (a PUT
request), the web client might provide date and time stamps in the <atom:updated>, <atom:published>,
or <app:edited> elements. In the case of the <atom:updated> and <app:edited> elements, it is advisable
to ignore these and generate a new date and time stamp to ensure accuracy and validity. For a PUT
request in particular, the date and time stamps might just be the date and time stamps from the existing
record in the resource, returned unchanged.

Atom IDs for Atom entries
Each Atom entry has a unique Atom ID that must remain the same for the lifetime of the Atom entry.

The Atom ID for an Atom entry is specified in the <atom:id> element. It must be in the form of a valid
Internationalized Resource Identifier (IRI), but it does not need to relate to a real resource location.

Tag URIs

CICS can generate a unique Atom ID for each Atom entry in the tag URI format when it serves the Atom
feed, using information that you specify in the <cics:authority> element in the Atom configuration file. The
tag URI scheme is described in RFC 4151, The 'tag' URI Scheme.

To produce the tag URI for the Atom ID of an Atom entry, CICS uses the following items in order:

1. A scheme of "tag"
2. An authority name and date that you specify in the <cics:authority> element in the Atom configuration

file
3. A specific consisting of the resource type and resource name that you specify in the <cics:resource>

element in the Atom configuration file, and the selector value for the individual Atom entry

The authority name and date are separated by a comma, and the other elements are separated by a
colon. An example of a tag URI produced by CICS is as follows:

tag:example.com,2009-01-08:tsqueue:WB20TSQ:23

The authority name in the tag URI is a domain name or email address that is registered to you or to your
company, and the date is a date on which the authority name was owned by you or your company.
cics:authority element has details of the requirements for the authority name and date.
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For an Atom feed where CICS obtains data directly from a file or temporary storage queue, the resource
type and resource name are those of the file or temporary storage queue. For an Atom feed where a user-
written service routine provides the data, the resource type and resource name are those of the service
routine.

The tag URIs that CICS produces as Atom IDs have the following characteristics:

• The Atom ID remains the same for the lifetime of each Atom entry, as long as you do not change the
name of the file, temporary storage queue, or service routine, change the relevant information in the
Atom configuration file, or move the Atom entry to a different resource.

• The Atom ID remains the same if the same resource is served in the same way from a different CICS
region.

• The Atom ID changes if you rename the file, temporary storage queue, or service routine. To be
compliant with the Atom format, if you rename a resource, you must not continue to serve it as the
same Atom feed (with the same URL), because its Atom IDs are different.

• The Atom ID is unique within a CICS region, but it is not guaranteed to be unique across different CICS
regions. In the situation where you want to set up Atom feeds from resources that have the same name
and type but are in different CICS regions, you can specify a different authority name or a different date
in the <cics:authority> element of the Atom configuration file for each of the feeds. Tag URIs that have
different dates are not equivalent to each other, even if all the other information is the same.

• The Atom ID is unique for Atom entries provided by a user-written service routine that deals with a
single Atom feed, but it is not unique if the user-written service routine provides more than one feed. If
your user-written service routine provides multiple feeds, either choose an alternative format for your
Atom IDs, or use a different authority name or date in the <cics:authority> element of the Atom
configuration file for each of the feeds.

Alternative formats for Atom IDs

Instead of using the tag URI format that is generated by CICS, you may specify an alternative format for
your Atom IDs using the <atom:id> element for the prototype Atom entry in the Atom configuration file.
CICS appends the selector value to your alternative format, to produce a unique Atom ID for each Atom
entry.

If you use an alternative Atom ID format, make sure that the resulting Atom IDs are unique and meet the
requirements of the Atom format specification in RFC 4287.

To ensure correct formatting, CICS ignores any Atom IDs that are supplied by web clients, and instead
uses the format that you specify in the Atom configuration file for the feed.

Storing Atom IDs

Because CICS can produce the same Atom ID for an Atom entry each time it serves the Atom entry, it is
not essential to store the Atom ID with the Atom entry. This function enables you to provide Atom entry
data from a resource that does not contain fields to store metadata, provided that you keep the Atom IDs
the same and do not change the Atom ID in the configuration file, move the Atom entry to a different
resource, or, for tag URIs, change the name of the resource or service routine.

However, RFC 4287 recommends that an Atom ID should be stored with the Atom entry. If you are able to
store Atom IDs in the resource that holds the data for your Atom entries, you can follow this
recommendation. If you are storing your Atom entries in a file, this field can be the unique key for the
records. CICS, or your service routine, stores a complete Atom ID for the Atom entry in the field, and an
Atom ID stored with an Atom entry can differ from and override the Atom ID that CICS would generate for
that Atom entry.

For a service routine, CICS uses the ATMP_ATOMID parameter to send a prototype Atom ID for the Atom
entry, using the information that you specified in either the <cics:authority> element or the <atom:id>
element in the Atom configuration file. To produce a complete Atom ID, your service routine can either
complete the prototype Atom ID by appending the selector value, or ignore it and substitute its own valid
Atom ID. For example, you could generate a URI with the urn:uuid scheme using a hexadecimal
Universally Unique Identifier (UUID), as described in RFC 4122, A Universally Unique IDentifier (UUID)
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URN Namespace. The service routine can store the Atom ID in the resource record, using the field named
in the ATMP_ID_FLD parameter, and then return it using the ATMP_ATOMID parameter.

To ensure accuracy, CICS ignores Atom IDs that are supplied by web clients, and does not store these in
the records in a file or temporary storage queue, or pass them to a service routine.

RFC 4287 requires that the Atom ID remain with the Atom entry if the entry is reused or moved to another
location. If you store Atom IDs with your Atom entries, you can move the Atom entries to another location
and still comply with this requirement. If you do not store Atom IDs with your Atom entries, do not move
the Atom entry to another location.

Atom IDs for Atom feeds

An Atom feed also has a unique identifier. If you use the <cics:authority> element in the Atom
configuration file to make CICS generate tag URIs as Atom IDs, CICS generates an Atom ID for the Atom
feed in the same format as for the Atom entries, but without the selector value or unique identifier that is
appended for the Atom entries. For example:

tag:example.com,2009-01-08:tsqueue:WB20TSQ

If you prefer an alternative Atom ID format, you can use the <atom:id> element for the Atom feed to
specify a complete Atom ID for the Atom feed. Make sure that the Atom ID is unique and meets the
requirements of the Atom format specification in RFC 4287.
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Chapter 2. Configuring CICS web support
components

These components of CICS web support are needed for all CICS web support tasks. Configure them
before starting to work with CICS web support.

About this task
Components of CICS web support provides a full list of all the components.

If you want to use an analyzer program that you coded in an earlier CICS release to reference the code
page conversion table DFHCNV, you might need to set up some DFHCNV entries. Code page conversion
table entries are not required for new CICS web support development.

Set up these base components as described in the following list. Then work through the subtopics to
complete your setup and to verify the operation of CICS web support.

Procedure

1. Enable TCP/IP support for the CICS region, following the instructions in Enabling TCP/IP in a CICS
region.
This process includes setting up Communications Server and establishing access to a DNS, or domain
name, server through z/OS.

2. Enable CICS to access z/OS UNIX System Services by including an OMVS segment in the user profile of
the CICS region user ID, following the instructions in Giving CICS regions access to z/OS UNIX System
Services.

3. Set up SSL support, following the instructions in Configuring CICS to use SSL.
Support for security protocols also explains the facilities that SSL provides.

4. Optional: To configure the values CICS sets in the HTTP server and user-agent headers, set values for
the HTTPSERVERHDR and HTTPUSRAGENTHDR system initialization parameters.

Specifying system initialization parameters for CICS web support
Specify these system initialization parameters to enable CICS web support.

Procedure

1. Specify TCPIP=YES to activate CICS TCP/IP services.
The default setting is NO. YES must be specified to enable CICS web support.

2. Use the LOCALCCSID system initialization parameter to specify the coded character set identifier for
the local CICS region.
CICS considers this code page as the default for application programs. The default is the EBCDIC code
page 037. If you do not select alternative code page conversion options, CICS translates the data
content of incoming HTTP requests into this code page before passing it to an application program.
CICS assumes that the application has provided HTTP responses in this code page. For more
information, see LOCALCCSID system initialization parameter.

3. If you are planning to use CICS document template support, either to provide a static response to
HTTP requests, or as part of an application-generated response, specify the default host code page for
the document domain using the DOCCODEPAGE system initialization parameter. The default is the
EBCDIC code page 037.
For more information, see DOCCODEPAGE system initialization parameter.
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4. If you are planning to give web clients access to 3270 display applications, or if you are using the CICS
business logic interface, specify suitable timeout periods using the WEBDELAY system initialization
parameter.

• The length of time, in minutes, after which a web task and its associated data are marked for
deletion if no activity takes place on it. The default is 5 minutes.

• The frequency, in minutes, with which the garbage collection transaction CWBG is run to delete the
marked tasks and their data. The default is 60 minutes.

WEBDELAY does not apply to CICS web support tasks that do not involve 3270 display applications or
the CICS business logic interface. For more information, see WEBDELAY system initialization
parameter.

5. If you are want to use security with CICS web support, also set values for the following additional
system initialization parameters:

• CRLPROFILE
• ENCRYPTION
• KEYRING
• MAXSSLTCBS
• SSLCACHE

For information on how to configure SSL, including specifying these system initialization parameters,
see Configuring CICS to use SSL.

Reserving ports for CICS web support
Reserve as many z/OS Communications Server ports as you need for CICS web support. Ensure that CICS
web support has exclusive use of those ports where possible.

Procedure

• For HTTP, the well-known (or default) port number is 80, and, for HTTPS, the well-known port number
is 443.
Take care to resolve conflicts with any other servers at the same IP address that might use the well-
known ports.

• Application programmers can use port numbers from 1024 to 32 767 for nonstandard servers.
Ports that are less than 1024 are the well known port numbers, which are designed by IANA for
particular functions. So, except for the HTTP port 80 and the HTTPS port 443, do not use these ports
for CICS web support.
SSL and non-SSL requests must use separate ports.

• To reserve a port on which CICS web support listens for incoming client requests, you can specify the
PORT statement or the CICS job name in the PROFILE.TCPIP data set, as described in z/OS
Communications Server: IP Configuration Reference.

• The maximum length of any queue of requests for a TCP/IP port on which a program is listening is
controlled by the SOMAXCONN parameter in the PROFILE.TCPIP data set. CICS listens on a TCP/IP
port, so you must coordinate the value of this parameter with the value chosen for the BACKLOG
parameter in the TCPIPSERVICE definition.
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Upgrading entries in the code page conversion table (DFHCNV)
A code page conversion table is not now required for CICS web support. However, you might have existing
request processing structures that include an analyzer program that references entries in the conversion
table. If you do not want to change the analyzer program, you can continue to provide DFHCNV entries.

About this task

In releases of CICS before CICS Transaction Server for z/OS, Version 3 Release 1, the code page
conversion table (DFHCNV) was used to define code page conversions between the code pages used in
CICS and the ASCII code pages used by web clients. For CICS web support in CICS Transaction Server for
z/OS, Version 5 Release 4, you do not have to create any new entries in the code page conversion table.
CICS web support handles code page conversion using z/OS conversion services.

However, if you want to continue to use an analyzer program that you coded in an earlier CICS release to
reference DFHCNV, you must either continue to supply the entries in the code page conversion table, or
change the analyzer program. To change the analyzer program, you code two new output parameters to
specify the client and server code pages, in place of the output parameter that specified the name of a
DFHCNV entry. If you make this change, you do not have to upgrade your DFHCNV entries. Writing an
analyzer program tells you how to code your output parameters in this way.

Note: As supplied, the CICS-supplied sample analyzer DFHWBADX specifies an entry defined in the
sample code page conversion table DFHCNVW$. The sample conversion table can be used without any
configuration, but you might prefer to modify DFHWBADX to use the new output parameters, to provide
greater control and avoid the use of the sample conversion table.

If you prefer, to continue using DFHCNV:

Procedure

1. Locate your source for the DFHCNV resource definition macros that you used to define the conversion
table in an earlier CICS release.
The sequence of macros includes a DFHCNV TYPE=ENTRY macro for each pair of code pages.

2. Use the macros to set up a DFHCNV conversion table, following the process described in Defining the
conversion table.
You define, assemble, and link-edit the table.

Verifying the operation of CICS web support
Sample programs DFH$WB1A (Assembler) and DFH$WB1C (C) help you to test that CICS web support is
working. The sample programs use EXEC CICS WEB and EXEC CICS DOCUMENT commands to receive
your request and construct and send a simple response.

About this task

You can access DFH$WB1A or DFH$WB1C using the supplied sample URIMAP resource DFH$URI1. The
URIMAP resource points to DFH$WB1A, so to access DFH$WB1C, modify the resource to point to DFH
$WB1C. You can also access DFH$WB1A or DFH$WB1C using the CICS-supplied sample analyzer
program DFHWBADX.

If you plan to use CICS as an HTTP client, the CICS-supplied sample programs for pipelining client
requests work with a CICS region that has DFH$WB1A and DFH$URI1 set up.

The sample programs construct HTTP responses in this way:

DFH$WB1A on system applid successfully invoked through CICS web support

where applid is the applid of the CICS system in which CICS web support is running.
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To run the sample programs:

Procedure

1. Modify and install the sample TCPIPSERVICE definition HTTPNSSL, which is provided in group DFH
$SOT. The CICS-supplied sample analyzer program DFHWBADX is specified in the TCPIPSERVICE
definition. You might have to change the following options:
a) PORTNUMBER: HTTPNSSL uses port 80, the well-known port number for HTTP. If port 80 is not

reserved for the use of CICS, specify another port belonging to z/OS Communications Server that
you have reserved for the use of CICS.

b) HOST or IPADDRESS: HTTPNSSL does not specify an IP address, so this option defaults to the IP
address corresponding to the default z/OS Communications Server TCP/IP stack. This situation is
the most typical. If you have multiple TCP/IP stacks in your z/OS image, and you want to use a
nondefault stack, specify the IP address corresponding to that stack.

2. Optional: If you want to use the sample program DFH$WB1C:
a) Install the PROGRAM resource for DFH$WB1C, which is provided in the DFH$WEB resource

definition group.
The PROGRAM resource definition for DFH$WB1A is in the DFHWEB resource definition group,
which is already installed as part of DFHLIST.

b) If you want to use a URIMAP resource, modify the sample URIMAP definition DFH$URI1 to point to
DFH$WB1C and install the resource.
The sample resource is in the DFH$WEB group.

3. At a web browser, enter a URL that connects to CICS web support, using the following URL
components:
Scheme

HTTP
Host

The host name assigned to the z/OS image. If you do not know the host name, you can use the
dotted decimal IP address from the HTTPNSSL TCPIPSERVICE definition. If you do not specify the
IP address explicitly, it is filled in by CICS, and you can view it in the installed TCPIPSERVICE
definition.

Port number
The port number specified in the TCPIPSERVICE definition. If the number is 80, you do not have to
specify it explicitly.

Path

• To access DFH$WB1A, use the path /CICS/CWBA/DFH$WB1A
• To access DFH$WB1C, use the path /sample_web_app, if you have installed the sample

URIMAP definition, or the path /CICS/CWBA/DFH$WB1C, if you want to use the sample analyzer
program instead.

4. Optional: When you are satisfied that CICS web support is working, you can discard the sample
TCPIPSERVICE definition HTTPNSSL and disable the URIMAP definition DFH$URI1.
You can replace HTTPNSSL with your own TCPIPSERVICE definition later on.

CICS web support and non-HTTP requests
You can use CICS web support to process inbound TCP/IP client requests that are not in the HTTP format,
primarily to support requests from user-written clients that use nonstandard request formats. You define
the processing and the response. No specific support is provided for any formally defined protocols for
client-server communication.

CICS web support handles non-HTTP messages only when CICS is the server. CICS client requests made
through CICS web support use the HTTP protocol.
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Note these points about CICS web support when handling non-HTTP requests:

• You can use TCPIPSERVICE resource definitions to control the ports on which requests are received.
• You can use an analyzer program to assemble and parse requests, specify code page conversion, and

determine subsequent request processing. You can code the analyzer program to parse requests in
accordance with any request format that you have defined, but note that CICS does not provide specific
support for any particular protocol for which a formal definition exists.

• You can use either web-aware application programs or non-web-aware applications with a converter
program to provide responses to requests. You can handle requests and responses using certain
elements of the EXEC CICS WEB programming interface or pass them between CICS applications in a
COMMAREA.

• The web error program DFHWBEP provides an error response if an abend occurs in the analyzer
program, converter program, or user-written application program, and also if the analyzer program and
converter program cannot determine which application program will service the request. The standard
HTTP error messages are used by default, but you can tailor them if required.

Some CICS web support facilities are not available for non-HTTP requests:

• Some of the facilities that help you interpret HTTP requests and construct the responses are not
available. For example, message headers cannot be accessed separately.

• The enhancements introduced in CICS TS Version 3, including chunked transfer-coding, are generally
not available to non-HTTP requests.

• Persistent connections are not supported.
• URIMAP definitions are not used for non-HTTP requests.

The support that CICS web support provides for non-HTTP messages is not the same as the TCP/IP
Sockets interface for CICS. The z/OS Communications Server IP CICS Sockets interface provides an
application programming interface to allow clients to communicate directly with CICS application
programs over TCP/IP. CICS web support is not part of this process.

The CICS Sockets interface is supplied with z/OS Communications Server, not with CICS. See z/OS
Communications Server: IP Sockets Application Programming Interface Guide and Reference.

Handling non-HTTP requests
To handle non-HTTP requests using CICS web support, you code an analyzer program to determine
processing for the requests and application programs to provide responses. You must also create some
resource definitions.

Before you begin

Configure the base components of CICS web support, as described in Chapter 2, “Configuring CICS web
support components,” on page 53.

About this task

These components of CICS web support are used for processing non-HTTP requests:

• TCPIPSERVICE resource definitions
• An analyzer program
• Converter programs, if required
• User-written application programs
• An alias transaction for the application programs
• The web error program DFHWBEP

Processing for HTTP requests and processing for non-HTTP requests are kept separate. Non-HTTP
requests are received using the USER protocol, specified on the TCPIPSERVICE definition. So CICS can
perform basic acceptance checks on HTTP requests and responses, and non-HTTP requests are not
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subjected to these checks. The acceptance checks would produce an error response for non-HTTP
requests and the request would not be processed.

To use CICS web support to handle non-HTTP requests:

Procedure

1. Decide on the port to be used.
Because only one active TCPIPSERVICE definition can exist for each port, non-HTTP requests cannot
use the same port as HTTP requests. The well-known port numbers 80 (for HTTP) and 443 (for HTTPS)
cannot accept non-HTTP requests. Web clients making non-HTTP requests must explicitly specify the
port number in the URL for their requests.

2. Set up resource definitions for the requests, using the information in “Resource definition for non-
HTTP requests” on page 58.

3. Code an analyzer program to handle each request, using the information in “Analyzer programs and
non-HTTP requests” on page 59.

4. Design and code one or more application programs to provide a response to each request, using the
information in “Application programming for non-HTTP requests” on page 59.

5. Ensure that the web error program DFHWBEP provides appropriate responses in error situations.
For non-HTTP requests, DFHWBEP is used if an abend occurs in the analyzer program, converter
program, or user-written application program, and also if the analyzer program and converter program
cannot determine which application program will service the request.
By default, DFHWBEP produces the standard HTTP messages that are sent as error responses for
HTTP requests in the same situations, but you can tailor them if required.
Refer to Web error programs.

Resource definition for non-HTTP requests
Non-HTTP requests require TCPIPSERVICE and TRANSACTION resource definitions. TCPIPSERVICE
resource definitions for non-HTTP requests must specify the USER (user-defined) protocol, which is
associated with the CICS-supplied transaction CWXU. URIMAP resource definitions are not used when
requests are received through the USER protocol.

About this task

Procedure

1. Create a TCPIPSERVICE resource definition, with the USER protocol, for each port that you use for
non-HTTP requests.
The attributes that can be used with the USER protocol are the same as the ones that can be used with
the HTTP protocol. Refer to “Creating TCPIPSERVICE resource definitions for CICS web support” on
page 109.

2. For each TCPIPSERVICE resource definition, decide whether to use the CICS-supplied transaction
CWXU, the CICS web user-defined protocol attach transaction, or an alternative.
The DFHCURDI sample includes a sample definition for CWXU. CWXU runs the CICS program
DFHWBXN. You can use an alternative transaction that runs DFHWBXN, except for the other default
transactions that are defined for protocols on the TCPIPSERVICE resource definition.

3. Optional: Create TRANSACTION resource definitions for any alias transactions that you want to use for
request processing. Refer to “Creating TRANSACTION resource definitions for CICS web support” on
page 112.

58  CICS TS for z/OS: Internet Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/administering/web/dfhtlh0.html


Analyzer programs and non-HTTP requests
An analyzer program is required for processing non-HTTP requests. It can reconstruct requests that have
been divided up for transmission across the network, specify code page conversion of the requests, and
perform any parsing that is required to determine subsequent request processing.

Reconstructing a non-HTTP request

An incoming request can be divided into several parts for transmission across the network. For non-HTTP
requests, CICS does not reconstruct the request before calling the analyzer program, so you must write
your analyzer code accordingly.

On entry to the analyzer, the user_data pointer addresses a COMMAREA, which contains the first part of
the incoming request. To receive the next part of the request, set the return code to URP_EXCEPTION and
the reason code to URP_RECEIVE_OUTSTANDING. CICS web support calls the analyzer again, and the
user_data pointer addresses the next part of the message. You can repeat this process until the entire
request has been received, up to the maximum supported length of 32,767 bytes.

The results of this process are not visible to the CICS WEB API commands. However, the reconstructed
message can be passed to a converter program.

Specifying code page conversion for non-HTTP requests

For non-HTTP requests, CICS web support does not perform any code page conversion on a request
before the analyzer program is called.

The analyzer can specify code page conversion of non-HTTP requests as it can for HTTP requests, using
either a code page conversion table (DFHCNV) key or the client and server code page output parameters.
Refer to Writing an analyzer program.

Alternatively, a web-aware application program can specify code page conversion of incoming non-HTTP
requests on a WEB RECEIVE command.

Non-HTTP requests are not parsed into the request line, header, and body elements. Any code page
conversion is for the whole request.

Determining non-HTTP request processing

The following input fields, which relate to HTTP requests, are undefined in an analyzer program for non-
HTTP requests:

• The HTTP version
• The method
• The path component of the request
• The request headers

The subsequent processing stages must therefore be determined by examining the content of the
request.

The analyzer program can specify subsequent request processing by a converter program or by a web-
aware application program. Writing an analyzer program explains the inputs and outputs from an analyzer
program, and how they are used to determine request processing.

Application programming for non-HTTP requests
Application programs for non-HTTP requests can use certain elements of the EXEC CICS WEB
programming interface. They can also be non-web-aware applications and produce output that is
encoded by a converter program.

A pseudoconversational programming model is not suitable for non-HTTP requests. Design your
applications to receive a single request and provide a single response.

Chapter 2. Configuring CICS web support components  59

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfhtlei.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfhtlei.html


Web-aware applications

To use a web-aware application to respond to non-HTTP requests, you can use the following CICS API
commands:

• The WEB RECEIVE command can receive a non-HTTP request. If the application is to respond to both
HTTP and non-HTTP requests, the TYPE option on the WEB RECEIVE command can distinguish between
the two request types. CICS does not carry out any parsing for a non-HTTP message. Requests that are
divided up for transmission across the network are not automatically assembled. If an analyzer program
assembles the request, the results are not visible to the CICS WEB API commands.

• The EXEC CICS DOCUMENT commands can compose a CICS document to form the body of a response.
• The WEB SEND command sends a response to a non-HTTP client. However, these options that relate to
HTTP-specific actions are not suitable:

– STATUSCODE and STATUSTEXT are ignored.
– CLOSESTATUS is ignored.
– CHUNKING causes an error on the command.

• The WEB RETRIEVE command retrieves a CICS document sent in an earlier EXEC CICS WEB SEND
command.

Other EXEC CICS WEB commands relate to HTTP requests only, and can result in an INVREQ condition if
used with non-HTTP requests.

An application program can specify code page conversion of non-HTTP requests using the WEB RECEIVE
command.

Non-web-aware applications with converter programs

With non-web-aware applications, you can use a converter program to convert the input from the web
client into a suitable COMMAREA for the application and to convert the output from the application into
HTML to provide the response. If an analyzer program has reconstructed the request after it was divided
up for transmission across the network, the results can be passed to a converter program.

The following input fields that relate to HTTP requests are undefined in a converter program for non-HTTP
requests:

• The HTTP version
• The method
• The path component of the URL
• The request headers

For more information, see Converter programs.

Setting up an Atom feed
You can create Atom feeds from a selection of CICS resources, such as files or temporary storage queues.
To set up Atom feeds, select the resource that supplies the Atom entry data and create the CICS
resources to make the Atom feed available. CICS supplies samples to help you get started.

How CICS supports Atom feeds
CICS supports Atom feeds using the HTTP server functions of CICS web support, and some additional
functions to carry out the actions required of a server that supports the Atom format and protocol. You
must select or set up a resource that provides the data for your Atom feed, and define the feed to CICS.

Before serving an Atom feed from CICS, you must configure the base components of CICS web support to
set CICS up as an HTTP server.

You can create Atom feeds from data held in or produced by existing resources, such as a temporary
storage queue, a file, records in a database application, a web service, or output produced by an existing
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application program. A single record in the resource holds the data for a single Atom entry. Alternatively,
you can set up a new resource to contain Atom entries.

If your resource is a file or temporary storage queue defined to CICS, and you have a language structure
written in COBOL, C, C++, or PL/I that describes the records in the resource, CICS can extract data
directly from the resource to produce the Atom feed. You use the language structure as input to the CICS
XML assistant program to produce an XML binding that defines the structure of the resource, so that CICS
can map the data to the correct elements in the Atom document.

You can also serve any resource as an Atom feed by writing a program, known as a service routine, that
extracts data from each record in the resource to form an Atom entry, and supplies the data to CICS in a
set of containers. If you are able to produce an XML binding for your resource, the service routine can
make use of the information in the XML binding, but the service routine does not require an XML binding.

When you have identified or created the resource, and produced an XML binding or written a service
routine, you define the Atom feed to CICS by creating the following items:

• An ATOMSERVICE resource definition to specify where CICS obtains the data to produce Atom
documents in response to a web client request.

• A URIMAP resource definition to specify how CICS handles HTTP requests from web clients for the
Atom feed. The URIMAP resource references the ATOMSERVICE resource definition. To support your
URIMAP resource definition, you must have a TCPIPSERVICE definition that defines an inbound port for
CICS web support, on which CICS can receive HTTP requests.

• An Atom configuration file, which contains the XML syntax for the Atom feed document, together with
some elements specific to CICS, such as elements to identify the resource that contains the data for the
feed. CICS uses the information in the Atom configuration file to construct an Atom feed document
containing a number of Atom entries, which CICS produces using the data from your resource.

If you want to enable web clients to manage and edit the Atom entries in the feed, you can take further
steps to set up the Atom feed as a collection. To set up a collection, you create a new URIMAP definition
to make the collection available separately from the feed. You also create a new ATOMSERVICE definition
and Atom configuration file by copying the equivalent files for the Atom feed from the same data,
redefining them to state that they are for a collection, and making minor changes. You then create an
Atom service document and optionally an Atom category document to define your collection, and make
those documents available through CICS. If you are using a service routine, you must code it to handle
web client requests to add, edit, and delete Atom entries from the collection.

Interacting with Atom feeds

When you have set up an Atom feed, web clients can access it to obtain a list of Atom entries. CICS,
together with your service routine if used, acts as a server to receive the web clients' HTTP requests and
return Atom feed documents containing a number of Atom entries. Many free or commercially available
web client applications are able to request, receive and display Atom feeds, including most modern web
browsers, dedicated feed readers, and applications that provide further functions, such as applications
for creating mashups. Check that the application is described as supporting the Atom format. You can
also write your own web client application to make GET requests for Atom feed data.

If you have also set up your Atom feed as a collection, you or others can manage and edit the entries in
the feed through a web client that supports HTTP POST, PUT, and DELETE requests for Atom feeds, as
described in the Atom Publishing Protocol. If you do not have a web client with this capability, you can
use a web client application that lets you compose and send your own HTTP requests and view the
responses. You can also write your own web client applications to make POST, PUT, and DELETE requests
to Atom collections. If CICS is managing your resource directly, CICS applies the web clients' editing
requests to the data that you have made available in the collection, and returns an appropriate response.
If you are using a service routine to provide your data, CICS passes the web clients' requests to the
service routine using the container interface, and you code the service routine to modify the resource in
response to the requests.
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Atom feeds from the CA8K SupportPac

If you used the CA8K SupportPac in CICS TS for z/OS, Version 3.1 or CICS TS for z/OS, Version 3.2 to set
up Atom feeds, and you want to upgrade to use the support for Atom feeds in CICS Transaction Server for
z/OS, Version 5 Release 4, you can continue to use your service routines. However, instead of PIPELINE
resource definitions, pipeline configuration files, and Resource Layout Mapping structures, you must use
ATOMSERVICE resource definitions, Atom configuration files, and XML bindings. You must also make
changes to your service routine code to rename the containers and to account for new parameters in one
of the containers, then recompile the modules.

Setting up a resource to supply Atom entry data
An Atom feed or collection consists of a series of Atom entries, which are items of data together with
suitable metadata. For an Atom feed served by CICS, the data for the Atom entries is taken from the
records in a resource, which could be a file, a temporary storage queue, or another resource such as a
database table. A single record provides a single Atom entry.

About this task

A record in your resource might hold items of metadata for the Atom entry as well as the content for the
Atom entry, or it might hold only the content for the Atom entry. When you set up your Atom feed, you can
make CICS supply any required items of metadata that are not held in your resource records.

You can use any of these resources to supply the data for the Atom entries in your Atom feed:

• A new VSAM file or temporary storage queue that you create to contain Atom entries.
• An existing VSAM file or temporary storage queue that is defined to CICS, from which CICS can extract

data directly to produce the Atom feed. CICS can extract data for Atom feeds from any type of VSAM
file, except for an alternate index file that has been defined with the NONUNIQUEKEY attribute. The file
must have a unique key for its records. CICS cannot extract data for Atom feeds directly from BDAM
files.

• Any other resource that you can access from a CICS application program. You can deliver a CICS or non-
CICS resource using a CICS application program known as a service routine, which extracts data for
Atom entries from the resource and supplies it to CICS in containers.

Procedure

Follow the appropriate procedure for the resource you want to supply Atom feed data:
• To create a new VSAM file or temporary storage queue to contain Atom entries, follow the instructions

in “Creating a CICS resource to store Atom entries” on page 63.
• Create or reuse an XML binding for the data in the VSAM file or temporary storage queue (TSQ). If

there is an existing XMLTRANSFORM resource that contains an XML binding for the data, this can be
used with the Atom feed. If you do not have an existing XMLTRANSFORM resource:
a) Find, or write, a language structure that describes the structure of the records in the resource.

– You can use a high-level language structure, or copybook, in COBOL, C, C++, or PL/I. The
language structure must be in a partitioned data set. For a file or temporary storage queue that is
used by a CICS application program, a language structure should already exist. You can write a
language structure for the records if you do not already have one.

– Alternatively, you can use an XML schema or WSDL document that describes the structure of the
records in the resource.

b) Use your language structure to produce an XML binding for the resource, as described in
Generating mappings from language structures.
Alternatively, you can use the File Import Wizard in CICS Explorer® to import a source language file
into a CICS bundle project to create an XML binding and an associated schema for Atom feeds. This
bundle project can then be exported to your CICS region. For more information about the File
Import Wizard, see “Creating an XML binding for the Atom feed using CICS Explorer” on page 86.
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• To deliver any other CICS or non-CICS resource, write a service routine to extract data for each Atom
entry from a record in the resource, and supply the data to CICS in a set of containers.
For instructions about writing a service routine, see “Writing a program to supply Atom entry data” on
page 66.

What to do next
When you have chosen the resource that holds your Atom entry data, and created an XML binding or a
service routine to support the delivery of this data, set up your Atom feed by following the instructions in
“Setting up CICS definitions for an Atom feed” on page 88. If you created and installed a BUNDLE
resource to create an XMLTRANSFORM resource, which defines the location of the XML binding file, it is
possible to reuse this XMLTRANSFORM resource in other Atom feeds.

Creating a CICS resource to store Atom entries
To store data as Atom entries, create a file or temporary storage queue in CICS, and write a language
structure in COBOL, C, C++, or PL/I to explain its structure.

About this task

In your new file or temporary storage queue, each record represents a single Atom entry. Each field in the
record contains the data for a single element in the Atom entry, which can be its content or an item of
metadata such as its title. When you set up your Atom feed, you specify the names of these fields to CICS
using the <cics:fieldnames> element in the Atom configuration file, and CICS will extract the data from
each record to assemble an Atom entry.

The complete listing and description of the possible elements in an Atom entry is in RFC 4287, The Atom
Syndication Format, which is available from https://www.ietf.org/rfc/rfc4287.txt. CICS does not support
all of these elements, and, of the elements that CICS does support, some are not supported in your file or
temporary storage queue, but can only be specified in the Atom configuration file. For a list and
description of the elements that CICS supports in files and temporary storage queues, see
<cics:fieldnames> Atom configuration file element. For a complete list of the elements that CICS does
and does not support in Atom feeds and Atom entries, see Atom element reference for CICS.

Procedure

1. Decide whether to use a temporary storage queue or a file as the resource to store the data for your
Atom entries.

• A temporary storage queue is suitable if you are experimenting with Atom feeds in CICS, because
you do not have to define a temporary storage queue to CICS before you use it, although you will
have to set up a CICS resource definition if you want to apply security measures. It is also suitable
for an Atom feed where the Atom entries are not of long-term interest; for example, if you are issuing
alerts for events in an application.

• A file takes longer to set up than a temporary storage queue, because you must define a file to CICS
before you can use it, and it normally requires a physical data set. However, a file provides suitable
long-term storage for any Atom feed, including a feed that you might want to set up as an editable
collection. A file that holds Atom entries must have a unique key for the records, and you cannot use
an alternate index file that has been defined with the NONUNIQUEKEY attribute. You can use any
type of VSAM file to hold Atom entries, but note that ESDS (entry-sequenced data set) files are not a
good choice for a feed that you might want to set up as an editable collection, for the reasons
mentioned in “ESDS files with Atom feeds” on page 66. You cannot use a BDAM file.

2. Plan the content of the records in your file or temporary storage queue.
The content of the Atom entry is the only item that CICS requires in your records, because you can
specify all the metadata in the Atom configuration file. However, when you are setting up a dedicated
file or temporary storage queue to contain Atom entries, you can include fields for metadata in the
records, which you can use to provide metadata specific to each Atom entry.
The following list summarizes the items of data that you can include as fields in your records and
whether they are required or optional:
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Atom ID
A unique identifier for the Atom entry. For more information about the format of Atom IDs, see
Atom IDs for Atom entries.

Atom entries must have a unique Atom ID. CICS can generate a unique Atom ID for each entry
when it serves the Atom feed, using information that you specify in the Atom configuration file. An
Atom ID created by CICS remains the same for the lifetime of the Atom entry as long as you do not
change the name of the file or temporary storage queue, change the relevant information in the
Atom configuration file, or move the Atom entry to a different resource. You therefore do not have
to include a field in your records to store the Atom ID.

However, to comply fully with the Atom format, an Atom ID must remain with the entry if the entry
is reused or moved to another location. If you think that you might use your Atom entries anywhere
other than in this file or temporary storage queue, or if you just prefer to follow the
recommendation in RFC 4287 that an Atom ID should be stored with the entry, include a field in
your records to hold the Atom ID. If you are storing your Atom entries in a file, this field can be the
unique key for the records.

Author's details
The personal name, email address, and website of the principal author of the Atom entry, in three
separate fields. You must supply an author name either for the Atom feed or for all the Atom
entries, but the other fields are optional. If your Atom entries have different authors, include a field
in your records for the name, and fields for other details if you want. If the name and other details
of the author are the same for all your Atom entries, specify the name and details in the Atom
configuration file instead.

Category
A category term that classifies the entry. This field is optional. If you plan to set up this Atom feed
as an editable collection, and to use categories to describe your collection, include this field. If you
do not plan to set up this feed as a collection, you can still include the field if it might be helpful to
consumers of your feed.

Content
The entire content to be published in the Atom entry. CICS requires content for every Atom entry.
Your content can be plain text, or HTML, XHTML, XML, or another text media type. CICS does not
support nontext content, or Atom entries with no content. If you are including any fields for
metadata, you must have a field, or a substructure of nested fields in the record, that holds the
content. If you are not including any fields for metadata, CICS publishes the whole of the record
from the file or temporary storage queue as the content of the entry.

Content type
The media type for the content of the Atom entry, such as text or XML. This field is optional. If all
your Atom entries have the same type of content, you can specify the media type in the Atom
configuration file instead.

Date last edited
The time stamp that indicates when the record was last edited. You can use time stamps in the
XML dateTime format, as described in RFC 3339, or a CICS ABSTIME value. For more information
about date and time stamps, see Date and time stamps for Atom entries. If you plan to set up this
Atom feed as an editable collection, including this field enables you to return the Atom entries
according to when they were last edited, which is recommended by the Atom Publishing Protocol
for a collection. If you do not plan to set up this feed as a collection, do not include this field.

Date first published
The time stamp or ABSTIME value that indicates when the record was first created or published as
an Atom entry. This field is optional. If you think that it might be helpful to consumers of your feed,
include the field.

Title
The title for the Atom entry. CICS only supports plain text for titles. A title is required for each
Atom entry, so you normally need to include this field. If all your Atom entries have the same title,
you can specify this title in the Atom configuration file instead.
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Summary
A summary of the Atom entry. CICS only supports plain text for summaries. This field is optional
unless the content of the entry is a nontext media type, in which case a summary is required. CICS
does not provide any support for nontext content in Atom entries.

Date last updated
The time stamp or ABSTIME value that indicates when the record was last updated. An updated
time stamp is required for each Atom entry, so you normally need to include this field. If you
cannot include this time stamp or ABSTIME value in your file or temporary storage queue, you can
omit the field and CICS can supply the current date and time when it issues the entry in an Atom
feed document, or a suitable alternative default that you specify in the Atom configuration file.

3. Write a language structure, or copybook, in COBOL, C, C++, or PL/I for your file or temporary storage
queue. A language structure describes the fields in a record in your file or temporary storage queue,
stating the name, content type, and length of each field in the order in which they appear.
If you plan to create records in your file or temporary storage queue using an application in COBOL, C,
C++, or PL/I, the application uses this language structure to write to the file or temporary storage
queue.
You also need this language structure to produce an XML binding for the file or temporary storage
queue, so it is required even if your application is in a different language, or if you are not using an
application, for example, if you are experimenting with Atom feeds in CICS and your record structure is
simple enough that you can use the CECI transaction to write to the file or temporary storage queue.

Note: Make sure that fields that are used to provide metadata for Atom entries are not nested in your
language structure. The metadata fields in your record must all be listed in your language structure at
the same level. You may use structures of nested fields within the field that provides the content for
the Atom entry.

Store your language structure in a partitioned data set that has a fixed record length of 80 bytes.
This example COBOL language structure declares alphanumeric fields of appropriate lengths to
contain the data for each element:

      ******************************************************************
      * Name: SAMPBIND.cob                                             *
      *                                                                *
      *                                                                *
      * This is a COBOL copy book to describe the data record.         *
      * You can generate a binding file from this.                     *
      *                                                                *
      ******************************************************************

            03 TITLE-FIELD                        PIC X(50).
            03 SUMMARY-FIELD                      PIC X(500).
            03 ATOMID-FIELD                       PIC X(20).
            03 CONTENT-FIELD                      PIC X(500).
            03 AUTHOR-NAME-FIELD                  PIC X(30).
            03 AUTHOR-EMAIL-FIELD                 PIC X(256).
            03 AUTHOR-URI-FIELD                   PIC X(256).
            03 EDITED-FIELD                       PIC X(25).
            03 UPDATED-FIELD                      PIC X(25).
            03 PUBLISHED-FIELD                    PIC X(25).
            03 CATEGORY-FIELD                     PIC X(20).

4. Use your language structure as input to the CICS XML assistant to create an XML binding, following the
steps in Generate mappings from language structures.

5. If you have decided to use a file to store your Atom entries:
a) Set up a suitable VSAM data set, following the procedures in VSAM data sets.
b) Define the file to CICS by creating and installing a FILE resource definition, using the information in

FILE resource definitions.
6. If you have decided to use a temporary storage queue to store your Atom entries, and you want to

specify security and recovery settings for it, define a temporary storage model (TSMODEL) using the
information in TSMODEL resource definitions.
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What to do next
If you already have an application that can work with the records in your file or temporary storage queue,
test your setup by using your application, or another suitable method, to write at least one record to your
file or temporary storage queue, using the WRITEQ TS command for a temporary storage queue, or the
WRITE command for a file.

ESDS files with Atom feeds
You may use ESDS (entry-sequenced data set) files to hold Atom entry data for an Atom feed, but there
are some restrictions on deleting the Atom entries, which apply if you set up your feed as an editable
collection.

Web clients can delete Atom entries in a collection by making HTTP requests with the DELETE method.
With an ESDS file, HTTP requests with the DELETE method are only supported if the ESDS has no
alternate index defined.

In response to a DELETE request, CICS deletes the relevant record from the ESDS by rewriting it with 'FF'x
as the first byte, to represent a logical deletion. If web clients make subsequent HTTP requests with the
GET method to retrieve the Atom entry that was in the deleted record, CICS returns a "not found"
response to the GET requests.

When you define an ESDS file as an Atom collection, you must use one of the following methods to ensure
that other application programs that use the ESDS file handle the deleted records correctly:

• In the FILE resource definition for the ESDS, set DELETE to NO.
• Alternatively, code the applications to process a record beginning with 'FF'x as being logically deleted.

To avoid these restrictions, if you are setting up a new resource to store Atom entry data for a collection,
choose a VSAM file type other than ESDS.

If the ESDS file is only used for an Atom feed that is not defined as a collection, so web clients cannot
make requests with the DELETE method, these restrictions do not apply. However, if you are setting up a
new resource to store Atom entry data for an Atom feed, avoid using an ESDS file in case you decide to set
up the Atom feed as a collection later on.

Writing a program to supply Atom entry data
You can write a service routine to provide an Atom feed from any data that can be accessed by a CICS
program, such as records from a DB2 database, records in a file, or a COMMAREA. These instructions tell
you how to write a program that responds to HTTP GET requests for an Atom feed.

About this task

Web clients might request a number of Atom entries from a feed, or request a specific entry. CICS
receives the requests from web clients, and links to the program with information about each client
request. CICS links to the program once for each Atom entry that the client requests, and the program
returns a single entry each time.

The program supplies the Atom entry using data that it has extracted from a record in the resource, such
as a database or file, that holds the data for the Atom entries for this feed. For an overview of this process,
see Data processing for Atom feeds from CICS.

CICS uses a container interface to communicate with the service routine. Use the EXEC CICS GET
CONTAINER and EXEC CICS PUT CONTAINER commands to interact with the containers. The C language
sample service routine DFH$W2S1 shows you how to use the containers to respond to HTTP GET
requests. The COBOL sample service routine DFH0W2F1 also shows you how to use the containers, but
be aware that the DFH0W2F1 sample is more complex because it responds to HTTP PUT, POST, and
DELETE requests as well as GET requests.

Because the web client request is an HTTP request, you can also interact with it using the CICS web API
commands, such as the WEB READ HTTPHEADER and WEB READ QUERYPARM commands. If you know
how to use these commands, you may use them in the service routine to obtain information directly from
the web client request, including any information that CICS does not provide in the DFHATOMPARMS
container.
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If you can create an XML binding for the resource that contains the data for your Atom entries, you can
pass information from CICS to the program in the DFHATOMPARMS container about the name and length
of fields in the resource records that contain data for the Atom entries. Your program can use this
information to locate the metadata fields in the resource records. By using these resource handling
parameters, you can create a generic service routine that can handle multiple resources. However, you do
not have to use the resource handling parameters; if you prefer, you can code information about the
resource structure directly in the program.

To respond to a GET request, your service routine must perform these tasks:

Procedure

1. Use the EXEC CICS GET CONTAINER command to retrieve the data in the DFHATOMPARMS
container.
CICS uses this container to provide the service routine with information about the request.
The sample service routine DFH$W2S1 shows you how to read the parameters in DFHATOMPARMS.
DFHATOMPARMS container has the full documentation for the parameters that CICS passes in this
container.

2. Check the value of the ATMP_HTTPMETH parameter to verify that the request method is GET.
CICS returns an error or makes an appropriate response for methods other than GET, POST, PUT, and
DELETE. For instructions on responding to HTTP PUT, POST, or DELETE requests to an Atom
collection, see Handling Atom collection editing requests in your service routine.

3. Use the values of the ATMP_ATOMTYPE and ATMP_SELECTOR parameters from the DFHATOMPARMS
container to identify the record in the resource that contains the data for the Atom entry that the
program must return to CICS.
The ATMP_SELECTOR parameter might contain a selector value that identifies a particular Atom
entry. Selector value for Atom entries explains what the selector value can be, and how CICS and the
service routine use it.
a) If ATMP_SELECTOR is null and ATMP_ATOMTYPE has the value "feed", the client did not specify a

particular Atom entry, so locate the record in the resource that holds the most recent Atom entry
that was added to the feed.
For example, if the data for your Atom entries is held in a database, use the newest record that
was added to the database.

b) If ATMP_SELECTOR contains a selector value and ATMP_ATOMTYPE has the value "feed", locate
the record in the resource that is identified by the selector value.
This combination of values might indicate that CICS needs a second or subsequent Atom entry
from the feed to complete a client request, and CICS is requesting one of these Atom entries using
a selector value that the service routine supplied in a previous iteration. This combination of
values is also used for the first Atom entry in a request when the client has requested a feed
document containing a specific range of Atom entries, such as a partial list.

c) If ATMP_SELECTOR contains a selector value and ATMP_ATOMTYPE has the value "entry", locate
the record in the resource that is identified by the selector value.
This combination of values indicates that the client is requesting a single, known Atom entry from
the feed.

4. If you have an XML binding for the resource that contains the data for your Atom entries, and you
want to use the resource handling parameters to pass information about the fields in the resource,
code the service routine to use the values of the ATMP_TITLE_FLD parameter and the other
parameters ending in _FLD to identify the name and length of each field that contains data for an
element of an Atom entry.
When you set up an Atom configuration file for the Atom feed that uses data from the resource, you
will need to specify the names of these fields in the <cics:fieldnames> element of the Atom
configuration file, and CICS will pass them to the service routine using the resource handling
parameters.
DFHATOMPARMS container documents the resource handling parameters.
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5. Use the PUT CONTAINER command to create a container named DFHATOMCONTENT, with
DATATYPE(CHAR), that contains the content for the Atom entry, as stated in the record that you have
identified from the resource.
This container is required. The sample service routine DFH$W2S1 shows you how to update the
container, and DFHATOMCONTENT container explains what to put in the container.

6. If the record that you have identified from the resource includes any fields that supply metadata for
the Atom entry, such as a title, use optional containers to return this metadata to CICS, following the
steps in Returning Atom entry metadata in containers.

7. If the record that you have identified from the resource includes any fields that supply date and time
stamps for the point when the data was created or updated, return them as new values for the
ATMP_PUBLISHED and ATMP_UPDATED parameters in the DFHATOMPARMS container.
The sample service routine DFH$W2S1 shows you how to return new values for these parameters.
For information about the format of these date and time stamps, see Date and time stamps for Atom
entries.

8. If the ATMP_SELECTOR parameter in the DFHATOMPARMS container was null on input to the service
routine, meaning that the web client did not request a specific Atom entry, replace the null value with
a suitable selector value for the present entry that you are returning.
The sample service routine DFH$W2S1 shows you how to return a selector value if the
ATMP_SELECTOR parameter is null.
Selector value for Atom entries explains how to choose a selector value.
If the ATMP_SELECTOR parameter contained a selector value on input to the service routine, do not
change it.

9. If the ATMP_ATOMTYPE parameter in the DFHATOMPARMS container had the value "feed", indicating
that the client wants multiple entries, check whether the resource contains any more, older, data that
can be used to provide further Atom entries.
a) If older data is present, locate the next data item that provides an Atom entry and return a

suitable selector value for this data item to be used in the ATMP_NEXTSEL parameter.
Sequence for Atom entries explains the order in which you should return the Atom entries.

b) If no more data is available, set the current length of the data in the ATMP_NEXTSEL parameter to
zero to return a null value.

10. Read the ATMP_ATOMID parameter in the DFHATOMPARMS container to see the prototype Atom ID
for the entry. The prototype Atom ID must be completed by appending the selector value for the
Atom entry, as specified in the ATMP_SELECTOR parameter. If you prefer, your service routine can
ignore the prototype Atom ID and substitute its own valid Atom ID for the Atom entry.
For more information about the requirements for Atom IDs, see Atom IDs for Atom entries.
a) If you have stored a complete Atom ID in the resource record for this Atom entry, return this Atom

ID followed by its length in the ATMP_ATOMID parameter.
If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_ID_FLD parameter has the name and length of the relevant field in the resource.

b) If the resource does not store Atom IDs, set the current length of the data for the ATMP_ATOMID
parameter to zero.
CICS appends the selector value to produce the complete Atom ID.

11. Return a suitable response code to be used in the ATMP_RESPONSE parameter in the
DFHATOMPARMS container.
The sample service routine DFH$W2S1 shows you how to do this.
The code is initialized to zero, indicating successful completion.
If an error response is returned, CICS produces a suitable default HTTP error response to send to the
web client. ATMP_RESPONSE parameter in DFHATOMPARMS container lists the available response
codes and the HTTP error response that CICS sends in each case.
The sample service routine DFH$W2S1 returns control to CICS after setting the response code.
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What to do next

When you have written your service routine, create and install a suitable PROGRAM resource definition in
CICS to describe the service routine. In your PROGRAM resource definition, use the EXECKEY(USER)
attribute. The PROGRAM resource must be defined locally. You will need to name this PROGRAM resource
in the ATOMSERVICE resource definition for your Atom feed.

When you have set up CICS definitions that use your service routine to provide data for an Atom feed, you
can use the CEDX transaction to monitor and debug your service routine as it responds to HTTP requests.
CW2A is the default alias transaction for Atom feeds, and your service routine runs under this transaction
unless you set up an alternative alias transaction. CEDX monitors the next instance of the transaction that
you specify, so if other users are working with Atom feeds in this CICS region using the same alias
transaction, set up an alternative alias transaction to use while you are debugging your service routine.

DFHATOMPARMS container
DFHATOMPARMS is a container of DATATYPE(BIT) that contains parameters that CICS uses to
communicate with a service routine that provides data for an Atom feed.

The DFHW2AP series of copybooks map the parameters passed in the DFHATOMPARMS container to the
service routine. The following copybooks are defined:

• DFHW2APD for Assembler
• DFHW2APH for C
• DFHW2APL for PL/I
• DFHW2APO for COBOL

The DFHW2CN series of copybooks contain constant values that are referenced by the DFHW2AP series
of copybooks. The following copybooks are defined:

• DFHW2CND for Assembler
• DFHW2CNO for COBOL
• DFHW2CNH for C
• DFHW2CNL for PL/I

Input-only parameters in DFHATOMPARMS container
CICS uses these parameters to supply information to the service routine about the web client's request.
These parameters include the resource handling parameters such as ATMP_TITLE_FLD.

Each of the input-only parameters in the DFHATOMPARMS container is the address of a double word
containing a pointer to an area and the current length of the data in the area. Your service routine must
not change these pointers, lengths, or storage.

The parameters ending in FLD are used for handling resources. CICS uses these resource handling
parameters to supply information about the fields in resource records to a CICS-supplied service routine
that is handling a CICS resource such as a temporary storage queue. CICS obtains the names of the fields
from the attributes that you specify for the <atom:content> element and the <cics:fieldnames> element
in the Atom configuration file, and from the XML binding for the resource. You can use these parameters if
you want to write a service routine that obtains its information about resource structures from the Atom
configuration file, rather than having this information coded directly in the service routine. If you use
these parameters, you must create an XML binding for the resource that contains the data.

ATMP_RESNAME
The name of the CICS resource that supplies the data for the Atom feed. For your service routine, this
is always the name of the service routine. CICS requires this parameter for the CICS-supplied service
routines that handle various resources directly. CICS obtains this information from the cics:resource
attribute of the <atom:content> element.

ATMP_RESTYPE
The type of the CICS resource in uppercase. The resource type can be PROGRAM, TSQUEUE, or FILE.
For your service routine, the resource type is always PROGRAM. CICS requires this parameter for the
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CICS-supplied service routines that handle various resources directly. CICS obtains this information
from the cics:type attribute of the <atom:content> element.

ATMP_ATOMTYPE
The type of Atom document being processed, in lowercase. The value of the type string is "feed",
"collection", or "entry". "feed" indicates that the client has requested a number of entries from an
Atom feed. "collection" indicates that the client has requested a listing of entries in a collection.
"entry" indicates that the client has requested a single, specified Atom entry, in either a feed or a
collection.

ATMP_HTTPMETH
The HTTP method for the client request, padded. The HTTP method is one of GET, POST, PUT, or
DELETE.

ATMP_TAG_AUTHORITY
The authority name specified in the name attribute of the <cics:authority> element in the Atom
configuration file. The authority name is a fully qualified domain name or email address that can be
used to construct tag URIs. The authority name forms part of the prototype Atom ID if you have
selected this format.

ATMP_TAG_DATE
The date specified in the date attribute of the <cics:authority> element in the Atom configuration file.
The date is used with the authority name to construct tag URIs. The date forms part of the prototype
Atom ID if you have selected this format.

ATMP_XMLTRANSFORM
The name of an XMLTRANSFORM resource. The XMLTRANSFORM resource is created when you
produce the XML binding for a CICS resource and install an ATOMSERVICE resource definition that
specifies it. The XMLTRANSFORM resource describes the layout of the records in the resource as an
XML structure. If the length of this name is zero, no XML binding was created for the resource, and the
service routine must perform its own mapping between the resource records and the elements of the
Atom entries.

ATMP_ROOT_ELEMENT
The name of the root element of the XML structure that is mapped by the XMLTRANSFORM resource.

ATMP_MTYPEIN
The media type of the body of the web client's HTTP request. A request body is present only when the
HTTP method, as specified by the ATMP_HTTPMETH parameter, is POST or PUT. The media type is
always "application/atom+xml", which indicates an Atom entry. CICS passes the request body to the
service routine in the DFHREQUEST container. GET and DELETE requests have no request body, so for
these HTTP methods the pointer and length are both zero.

ATMP_MTYPEOUT
The media type for the expected content of the Atom entry, as specified in the type attribute of the
<atom:content> element in the Atom configuration file for the Atom feed. As in RFC 4287, the media
type "text" is used for plain text instead of the IANA media type "text/plain", "html" is used instead of
"text/html", and "xhtml" is used instead of "application/xhtml+xml". If the Atom configuration file
does not contain this information, CICS passes the default media type "application/xml" to the service
routine. The service routine can use the media type to determine suitable markup for the data that it
returns in the DFHATOMCONTENT container. If you are using the resource handling parameters and
you have a field in your resource records to store a media type for individual Atom entries, the
ATMP_CONTENT_TYPE_FLD parameter contains the name of this field.

ATMP_WINSIZE
The feed window size. The value is a numeric string that contains either the default number of entries
to be returned in each feed or an alternative number of entries that the web client has requested. This
parameter is for information only, because CICS makes a series of requests to the service routine for
individual entries.

ATMP_ID_FLD
The name of a field in your resource records that contains the Atom ID of the Atom entry. CICS
obtains the name of the field from the atomid attribute of the <cics:fieldnames> element in the Atom
configuration file for the Atom feed. If CICS passes this information to the service routine, the service
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routine can use this named field to store or locate the Atom ID for the entry, and return it in the
ATMP_ATOMID parameter. This data is used in the <atom:id> element for the entry.

ATMP_PUBLISHED_FLD
The name of a field in your resource records that contains the time when the resource was last
published. CICS obtains the name of the field from the published attribute of the <cics:fieldnames>
element in the Atom configuration file for the Atom feed. If CICS passes this information to the service
routine, the service routine can use this named field to locate the value of the timestamp or ABSTIME
value that can be used to construct the value returned in the ATMP_PUBLISHED parameter. This data
is used in the <atom:published> element for the entry.

ATMP_UPDATED_FLD
The name of a field in your resource records that contains the time when the resource was last
updated. CICS obtains the name of the field from the updated attribute of the <cics:fieldnames>
element in the Atom configuration file for the Atom feed. If CICS passes this information to the service
routine, the service routine can use this named field to locate the value of the timestamp or ABSTIME
value that can be used to construct the value returned in the ATMP_UPDATED parameter. This data is
used in the <atom:updated> element for the entry.

ATMP_EDITED_FLD
The name of a field in your resource records that contains the time when the resource was last edited.
CICS obtains the name of the field from the edited attribute of the <cics:fieldnames> element. If CICS
passes this information to the service routine, the service routine can use this named field to locate
the value of the timestamp or ABSTIME value that can be used to construct the value returned in the
ATMP_EDITED parameter. This data is used in the <app:edited> element for the entry.

ATMP_TITLE_FLD
The name of a field in your resource records that contains the title of the requested Atom entry. CICS
obtains the name of the field from the title attribute of the <cics:fieldnames> element. If CICS passes
this information to the service routine, the service routine can use this named field to locate the title
for the entry and return it in the DFHATOMTITLE container. The data from the DFHATOMTITLE
container is used in the <atom:title> element for the entry.

ATMP_SUMMARY_FLD
The name of a field in your resource records that contains the summary of the requested Atom entry.
CICS obtains the name of the field from the summary attribute of the <cics:fieldnames> element. If
CICS passes this information to the service routine, the service routine can use this named field to
locate the summary for the entry and return it in the DFHATOMSUMMARY container. The data from
the DFHATOMSUMMARY container is used in the <atom:summary> element for the entry.

ATMP_CONTENT_FLD
The name of a field in your resource records that contains the whole content of the requested Atom
entry. CICS obtains the name of the field from the content attribute of the <cics:fieldnames> element.
If CICS passes this information to the service routine, the service routine can use this named field to
locate the content for the entry and return it in the DFHATOMCONTENT container. The data from the
DFHATOMCONTENT container is used in the <atom:content> element for the entry.

ATMP_CONTENT_TYPE_FLD
The name of a field in your resource records that contains the media type for the content of the Atom
entry, such as application/xml or text. As for the ATMP_MTYPEOUT parameter, the media types "text",
"html", and "xhtml" are used in place of the full IANA media types. The media type is specified in the
type attribute of the <atom:content> element for an Atom entry. CICS obtains the name of the field
from the content_type attribute of the <cics:fieldnames> element. If CICS passes this information to
the service routine, the service routine can use this named field to locate the media type for the
content and determine suitable markup for the content in the DFHATOMCONTENT container. If the
resource records do not have a field to store the media type for the content of the Atom entry, the
media type specified in the type attribute of the <atom:content> element in the Atom configuration
file applies. CICS passes this media type to the service routine in the ATMP_MTYPEOUT parameter.

ATMP_CATEGORY_FLD
The name of a field in your resource records that contains a category term that applies to the
requested Atom entry. CICS obtains the name of the field from the category attribute of the
<cics:fieldnames> element. If CICS passes this information to the service routine, the service routine
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can use this named field to locate the category and return it in the DFHATOMCATEGORY container.
The data from the DFHATOMCATEGORY container is used in the <atom:category> element for the
entry.

ATMP_AUTHOR_FLD
The name of a field in your resource records that contains the name of the principal author of the
Atom entry. CICS obtains the name of the field from the author attribute of the <cics:fieldnames>
element. If CICS passes this information to the service routine, the service routine can use this named
field to locate the author's name and return it in the DFHATOMAUTHOR container. The data from the
DFHATOMAUTHOR container is used in the <atom:name> element for the entry.

ATMP_AUTHORURI_FLD
The name of a field in your resource records that contains the URI of a website associated with the
principal author of the Atom entry. CICS obtains the name of the field from the authoruri attribute of
the <cics:fieldnames> element. If CICS passes this information to the service routine, the service
routine can use this named field to locate the URI and return it in the DFHATOMAUTHORURI
container. The data from the DFHATOMAUTHORURI container is used in the <atom:uri> element for
the entry.

ATMP_EMAIL_FLD
The name of a field in your resource records that contains the email address of the principal author of
the Atom entry. CICS obtains the name of the field from the email attribute of the <cics:fieldnames>
element. If CICS passes this information to the service routine, the service routine can use this named
field to locate the email address and return it in the DFHATOMEMAIL container. The data from the
DFHATOMEMAIL container is used in the <atom:email> element for the entry.

Input-output parameters in DFHATOMPARMS container
The service routine uses these parameters to supply information to CICS about the Atom entry that is
being returned.

Each of the input-output parameters in the DFHATOMPARMS container is the address of a triple word
containing a pointer to an area, the current length of the data in the area, and the maximum length of the
area.

To supply information to CICS using a parameter, the service routine can do either of the following:

• Copy some data into the area indicated by the pointer, and set the current length of the area to the
length of the data. The storage for the values of the input-output parameters in the DFHATOMPARMS
container is in user key, so you can access it when the service routine is defined with EXECKEY(USER).

• Set the pointer to some data in the service routine's own storage, which must last beyond the lifetime of
the program (such as TWA storage), and set the current length of the area to the length of the data. You
might need to do this if you have a value that is longer than the maximum length of the area provided.

If the service routine has no information relating to a particular parameter and CICS must use the default
that it provides for the parameter, the service routine must indicate this to CICS by setting the current
length of the data to zero.

ATMP_ATOMID
The Atom ID for the entry. An Atom ID is a unique identifier for the Atom entry. For more information
about the format of Atom IDs, see Atom IDs for Atom entries.

On input, CICS uses this area to send the prototype Atom ID for the entry to the service routine. You
determine the format of the prototype Atom ID by including either the <cics:authority> element or the
<atom:id> element in the Atom configuration file, depending on whether you want to use the tag URI
format or an alternative format to produce a unique identifier. CICS ignores Atom IDs that are
supplied by web clients, and does not pass these to the service routine.

The Atom format specification in RFC 4287 recommends that you store an Atom ID in the resource
record for the Atom entry. For a POST request, if your resource can store Atom IDs, your service
routine must complete the prototype Atom ID by appending the selector value for the Atom entry, as
specified in the ATMP_SELECTOR parameter, and then store the complete Atom ID in the appropriate
field in the resource record, as specified in the ATMP_ID_FLD parameter. If you prefer, your service
routine can ignore the prototype Atom ID and substitute its own valid Atom ID for the Atom entry. The
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service routine can use the values of the ATMP_TAG_AUTHORITY and ATMP_TAG_DATE parameters as
input to construct an Atom ID.

Note that if you are using the tag URI format, the resulting Atom ID is unique for Atom entries
provided by a user-written service routine that deals with a single Atom feed, but it is not unique if the
user-written service routine provides more than one feed. If your user-written service routine
provides multiple feeds, either choose an alternative format for your Atom IDs, or use a different
authority name or date in the <cics:authority> element of the Atom configuration file for each of the
feeds.

On output, the service routine must use the ATMP_ATOMID parameter as follows:

• If you have stored a complete Atom ID in the resource record for the Atom entry, the service routine
must return the complete Atom ID from the field in the resource record, as specified in the
ATMP_ID_FLD parameter, followed by the length of the Atom ID.

• If your resource does not store Atom IDs, the service routine must set the current length of the data
for the ATMP_ATOMID parameter to zero. In this case, CICS appends the selector value to the
prototype Atom ID to produce a complete Atom ID.

ATMP_ETAGVAL
An entity tag (or Etag) value for the selected resource record. To produce an entity tag, a service
routine can use the EXEC CICS BIF DIGEST command to calculate the SHA-1 digest of the record, or
use another suitable method to produce an entity tag that complies with the HTTP/1.1 protocol
requirements.

On input, CICS uses the ATMP_ETAGVAL parameter to provide any entity tag for the Atom entry to the
service routine. When a web client makes a PUT or DELETE request to edit an Atom entry, CICS
requires the client to supply an If-Match HTTP header on the request containing an entity tag. If CICS
provides an entity tag using this parameter, the service routine must calculate the entity tag for the
existing record and compare it to the web client's entity tag. If the tags do not match, indicating that
the entry has been changed by another agent, the service routine must reject the request with the
response code atmp_resp_etag_no_match. A web client might supply an asterisk in place of an
entity tag to indicate that the entry should be edited or deleted even if it has been changed by another
agent, and the service routine should comply with this request.

On output, the service routine must use the ATMP_ETAGVAL parameter as follows:

• Entity tags are not used for entries in an Atom feed. If the current Atom entry is part of an Atom
feed, the service routine must set the current length of the data to zero.

• CICS requires entity tags for entries in a collection. If the current Atom entry is part of a collection,
the service routine must calculate and return the entity tag. Do not store entity tags in resource
records; calculate them when they are needed.

ATMP_PUBLISHED
The service routine can use this parameter to return the date and time at which the returned Atom
entry was first published. "Published" means the point when the data was first created or first made
available. If your resource does not store this data, the service routine must indicate this by setting
the current length of the data to zero, and in this case CICS provides the default of the current time. If
the service routine returns a date and time stamp, it must be in the RFC 3339 format, also known as
the XML dateTime datatype. You can use the EXEC CICS FORMATTIME command to provide a date
and time stamp in this format, or if your service routine can use the TRANSFORM DATATOXML
command, you can convert a CICS ABSTIME value into a date and time stamp in this format.

ATMP_UPDATED
The service routine can use this parameter to return the date and time at which the returned Atom
entry was last updated. "Updated" means a point when the data was changed in a way that you
consider to be significant. If your resource does not store this data, the service routine must indicate
this by setting the current length of the data to zero, and in this case CICS provides the default of the
current time. If the service routine returns a date and time stamp, it must be in the RFC 3339 format.
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ATMP_EDITED
The service routine can use this parameter to return the date and time at which the returned Atom
entry was last edited. If your resource does not store this data, the service routine must indicate this
by setting the current length of the data to zero, and in this case CICS provides the default of the
current time. If the service routine returns a date and time stamp, it must be in the RFC 3339 format.

ATMP_SELECTOR
A selector value for the Atom entry that the service routine must provide. Selector value for Atom
entries explains what a selector value is.

• When a client is making a general request for a feed, on input, CICS sends a null value for the
ATMP_SELECTOR parameter, and the input parameter ATMP_ATOMTYPE has the value "feed". On
receiving this combination of values, the service routine must take the following actions:

– Return the data for the most recent Atom entry that was added to the feed.
– Use the ATMP_SELECTOR parameter to return a selector value identifying that entry. If your

resource does not hold Atom IDs for entries, CICS uses this selector value in the generated Atom
ID for the entry.

– Use the ATMP_NEXTSEL parameter to return a selector value for the next entry in the feed.
• When CICS needs a second or subsequent Atom entry from a feed to complete a client request, or a

client has requested a feed document containing a specific range of Atom entries, on input, CICS
uses the ATMP_SELECTOR parameter to send a selector value for one of the Atom entries in the
feed document, and the input parameter ATMP_ATOMTYPE has the value "feed". On receiving this
combination of values, the service routine must take the following actions:

– Return the data for the Atom entry that is represented by the selector value.
– Do not change the data or length that CICS supplied for the ATMP_SELECTOR parameter.
– Use the ATMP_NEXTSEL parameter to return a selector value for the next entry in the feed.

• When a client is requesting a specific entry from a feed, CICS uses the ATMP_SELECTOR parameter
to send the selector value extracted from the URL for the entry, and the input parameter
ATMP_ATOMTYPE has the value "entry". On receiving this combination of values, the service routine
must take the following actions:

– Return the data for the Atom entry that is represented by the selector value.
– Do not change the data or length that CICS supplied for the ATMP_SELECTOR parameter.
– For the ATMP_NEXTSEL parameter, return a null value by setting the current length of the data to

zero.

Note: For a collection, CICS uses the value "collection" for the ATMP_ATOMTYPE parameter in the
situations where the value "feed" would be used for an Atom feed. The value "entry" is the same for
an entry from a collection or an entry from an Atom feed.

ATMP_NEXTSEL
The service routine must use this parameter to return a selector value for the next Atom entry that is
available, if any. Sequence for Atom entries explains the order in which you should return your Atom
entries.

This value must be supplied whether the service routine is handling a feed or a collection. It is not
required when the client requests a single specific entry (with the value "entry" for ATMP_ATOMTYPE),
or when no more data is available to provide Atom entries. When the value is not required, the service
routine must return a null value for this parameter by setting the current length of the data to zero.

CICS uses the value supplied by the service routine to request further Atom entries from the service
routine to complete the Atom document. If the Atom document is complete, CICS uses this value to
produce the <atom:link rel="next"> link in the Atom document, which web clients can use to retrieve
the next window of Atom entries from the feed or the next partial list of Atom entries from the
collection.
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ATMP_PREVSEL
A service routine that is handling a collection must use this parameter to return a selector value for
the previous Atom entry in the collection, if any. Sequence for Atom entries explains the order in
which you should return your Atom entries.

This value must be supplied when the ATMP_ATOMTYPE parameter has the value "collection". It is not
required when the client requests a single specific entry (with the value "entry" for ATMP_ATOMTYPE),
or when there is no previous Atom entry. When the value is not required, the service routine must
return a null value for this parameter by setting the current length of the data to zero.

When the Atom document is complete, CICS uses this value to carry out a chain of requests to the
service routine to produce the <atom:link rel="previous"> link in the Atom document, which web
clients can use to retrieve the previous partial list of Atom entries from the collection.

This value is not required from a service routine that is handling an ordinary Atom feed. You may
specify it if the <atom:link rel="previous"> link would be useful to your web clients in order to retrieve
the previous window of Atom entries from the feed. However, the processing to produce this link
increases response times, so only specify this value for a feed if your web clients are set up to use this
form of navigation.

ATMP_FIRSTSEL
A service routine that is handling a collection must use this parameter to return a selector value for
the first Atom entry in the collection. Selector value for Atom entries explains the order in which you
should return your Atom entries.

This value must be supplied when the ATMP_ATOMTYPE parameter has the value "collection". On
subsequent calls relating to the same web client request, CICS uses the ATMP_FIRSTSEL parameter
to supply this selector value to the service routine, so the service routine does not need to provide it
again.

The value is not required when the client requests a single specific entry (with the value "entry" for
ATMP_ATOMTYPE). When the value is not required, the service routine must return a null value for this
parameter by setting the current length of the data to zero.

When the Atom document is complete, CICS uses this value to produce the <atom:link rel="first">
link in the Atom document, which web clients can use to retrieve the first (newest) partial list of Atom
entries from the collection.

This value is not required from a service routine that is handling an ordinary Atom feed. You may
specify it if the <atom:link rel="first"> link would be useful to your web clients in order to retrieve the
first (newest) window of Atom entries from the feed. CICS does not carry out any additional
processing to produce this link.

ATMP_LASTSEL
A service routine that is handling a collection must use this parameter to return a selector value for
the last Atom entry in the collection. Sequence for Atom entries explains the order in which you
should return your Atom entries.

This value must be supplied when the ATMP_ATOMTYPE parameter has the value "collection". On
subsequent calls relating to the same web client request, CICS uses the ATMP_LASTSEL parameter to
supply this selector value to the service routine, so the service routine does not need to provide it
again.

The value is not required when the client requests a single specific entry (with the value "entry" for
ATMP_ATOMTYPE). When the value is not required, the service routine must return a null value for this
parameter by setting the current length of the data to zero.

When the Atom document is complete, CICS uses this value to produce the <atom:link rel="last"> link
in the Atom document, which web clients can use to retrieve the last (oldest) partial list of Atom
entries from the collection. CICS issues this last partial list containing only a single entry, that is, the
last entry in the feed. web clients can use the <atom:link rel="previous"> links to retrieve all the
previous partial lists.
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This value is not required from a service routine that is handling an ordinary Atom feed. You may
specify it if the <atom:link rel="last"> link would be useful to your web clients in order to retrieve the
last (oldest) Atom entry from the feed. CICS does not carry out any additional processing to produce
this link.

ATMP_OPTIONS parameter in DFHATOMPARMS container
The ATMP_OPTIONS parameter is the address of a double word containing 64 option bits that you use to
indicate that your service routine is supplying optional containers with data such as a title for the Atom
entry. The options string is mapped by the ATMP_OPTIONS_BITS DSECT.

The options bitmap to which ATMP_OPTIONS points is mapped in two ways: ATMP_OPTIONS_BITS and
ATMP_OPTIONS_WORDS. ATMP_OPTIONS_BITS is a series of byte and bit definitions for use in languages
that understand bit values. ATMP_OPTIONS_WORDS is a pair of fullword values, for use in COBOL, where
bit values cannot be easily coded.

ATMP_OPTIONS_BITS

In ATMP_OPTIONS_BITS, the bit values that have meaning are in byte ATMP_OUTOPT_BYTE1, and they
are as follows:
OPTTITLE

The service routine is using the DFHATOMTITLE container to return a character string to be used as
the title for the entry.

OPTSUMMA
The service routine is using the DFHATOMSUMMARY container to return a character string to be used
as the summary for the entry.

OPTAUTHOR
The service routine is using the DFHATOMAUTHOR container to return a character string to be used as
the name of the author of the entry.

OPTAUTHEML
The service routine is using the DFHATOMEMAIL container to return a character string to be used as
the e-mail address for the author of the entry.

OPTAUTHURI
The service routine is using the DFHATOMAUTHORURI container to return a character string to be
used as the URI of a website associated with the author of the entry.

OPTCATEG
The service routine is using the DFHATOMCATEGORY container to return a character string to be used
as a category term for the entry.

ATMP_OPTIONS_WORDS

ATMP_OPTIONS_WORDS contains these two fullword values:
ATMP_OPTIONS_IN

A fullword of input option values, which is not used.
ATMP_OPTIONS_OUT

A fullword in which to store output option values. The fullword values equivalent to the bit values in
ATMP_OUTOPT_BYTE1 are specified in copybook DFH0W2CO. These values can be added together,
as required, to produce a suitable bitmap value.

Copybook DFH0W2CO contains binary integers representing the value of the bits in
ATMP_OUTOPT_BYTE1, for use in ATMP_OPTIONS_OUT, as follows:
OPTTITLE_NUM

Equivalent to OPTTITLE
OPTSUMMA_NUM

Equivalent to OPTSUMMA
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OPTAUTHOR_NUM
Equivalent to OPTAUTHOR

OPTAUTHEML_NUM
Equivalent to OPTAUTHEML

OPTCATEG_NUM
Equivalent to OPTCATEG

OPTAUTHURI_NUM
Equivalent to OPTAUTHURI

ATMP_RESPONSE parameter in DFHATOMPARMS container
The ATMP_RESPONSE parameter is the address of a double word that you use to return a response code
to CICS indicating success or error. If the service routine sends a response code indicating an error, CICS
produces a suitable default HTTP error response to send to the web client. The service routine can use
the DFHHTTPSTATUS container to return an alternative status code and text to override the default error
response.

Do not change the address of the double word. The first fullword, ATMP_RESPONSE_CODE, contains the
response code. It is initialized to zero, indicating successful completion. The second fullword,
ATMP_REASON_CODE, is also initialized to zero, and the service routine must not change this fullword; it is
reserved for future use.

The symbol values for ATMP_RESPONSE_CODE are defined in the DFHW2CN series of copybooks. The
values are as follows:

atmp_resp_normal            constant(0);  ! Normal success response 
atmp_resp_not_found         constant(4);  ! Resource not found      
atmp_resp_not_auth          constant(8);  ! Resource not authorized 
atmp_resp_disabled          constant(12); ! Resource is disabled    
atmp_resp_already_exists    constant(16); ! Resource already exists 
atmp_resp_etag_no_match     constant(20); ! If-Match compare failed 
atmp_resp_invalid_request   constant(24); ! Request not valid       
atmp_resp_access_error      constant(32); ! Other resource error    
atmp_resp_conversion_failed constant(36); ! XML Conversion error 

If the parameter is returned unchanged, CICS sends an HTTP response indicating successful completion
of the request. If the service routine sends a response code indicating an error, CICS produces a suitable
default HTTP error response to send to the web client. The default HTTP error responses are as follows:

Table 4. Default HTTP error responses from service routines for Atom feeds

ATMP_RESPONSE_CODE value HTTP status code HTTP status text

atmp_resp_normal 200 (201 for POST requests) OK (For POST requests,
Created)

atmp_resp_not_found 404 Not found

atmp_resp_not_auth 403 Forbidden

atmp_resp_disabled 503 Service unavailable

atmp_resp_already_exists 409 Duplicate resource

atmp_resp_etag_no_match 412 Precondition failed

atmp_resp_invalid_request 400 Invalid request

atmp_resp_access_error 500 Resource error

atmp_resp_conversion_failed 500 Resource error

When the service routine returns an error, it can use the DFHHTTPSTATUS container to return an
alternative status code and text to replace the default HTTP error response. For a listing of status codes
that you might want to use in your error responses, see HTTP status code reference for CICS web support.
You cannot override the default HTTP response for a successful request (with a zero response code).

Chapter 2. Configuring CICS web support components  77

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_statusref.html


DFHATOMCONTENT container
DFHATOMCONTENT is a container of DATATYPE(CHAR) that you use for your service routine to provide
the content for an Atom entry.

This container is required. CICS returns the data in the container as the <atom:content> element for the
Atom entry.

If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_CONTENT_FLD parameter has the name and length of the field in your resource record that holds
the data for this container. You can use data from a single field or from a structure of nested fields. If you
are not using the resource handling parameters, you can code your service routine either to return the
whole of the resource record as the content for the entry, or to select appropriate fields from the resource
record to assemble the content.

You can supply your content as plain text with no child elements, or you can use XML or another type of
markup, such as HTML or XHTML, to format your data. The ATMP_MTYPEOUT parameter in the
DFHATOMPARMS container contains the media type for the expected content of the Atom entry, as
specified in the type attribute of the <atom:content> element in the Atom configuration file for the Atom
feed. As in RFC 4287, the media type "text" is used for plain text instead of the IANA media type "text/
plain", "html" is used instead of "text/html", and "xhtml" is used instead of "application/xhtml+xml". If
you do not specify a media type in the Atom configuration file, CICS supplies a default media type of
"application/xml" in this parameter.

You can also store media types for individual Atom entries in your resource records. If you are using the
resource handling parameters, the ATMP_CONTENT_TYPE_FLD parameter has the name and length of the
field containing the media type for the content of the Atom entry.

<content> tags for Atom entry content

If your content is not in the expected media type that CICS supplied to the service routine in the
ATMP_MTYPEOUT parameter in the DFHATOMPARMS container, you must include the tag <content> in the
container at the beginning of your content, and the closing tag </content> at the end. If your content is
anything other than plain text, you must also add a type attribute to the <content> tag to specify the
media type for your content. Some possible type attributes are as follows:

• <content type="html"> specifies HTML.
• <content type="xhtml"> specifies XHTML.
• <content type="text/xml"> is the media type that is normally used for a human-readable XML

document.

You may specify <content type="text"> when you supply plain text, but the recipients of Atom documents
assume this media type if you do not specify any type attribute. If your content is in any other format,
specify the IANA media type that you would normally use for that format on the Internet. A listing of
media types is available at http://www.iana.org/assignments/media-types/. Note that CICS does not
provide support for nontext media types.

For content that is in the expected media type that CICS supplied to the service routine in the
ATMP_MTYPEOUT parameter in the DFHATOMPARMS container, you can omit the <content> and </
content> tags. In this case, CICS supplies the opening and closing tags and specifies the type attribute as
the media type in the ATMP_MTYPEOUT parameter.

Markup for Atom entry content

If you use a format other than plain text for your content, read the processing information in Section
4.1.3.3 of RFC 4287, The Atom Syndication Format, which is available from https://www.ietf.org/rfc/
rfc4287.txt. These rules explain how you must arrange your markup and how the recipients of Atom
documents (who are known as "Atom Processors") interpret and present the content depending on the
type of markup used. In particular, note that HTML markup must be escaped, for example, the tag "<br>"
must be written as "&lt;br>". CICS does not validate the markup that you use.
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If you want to produce XML content from the fields in your resource record, and your resource has an XML
binding with an associated XMLTRANSFORM resource, you can use the CICS functions for transforming
application data into XML. If you have a language structure, or copybook, that describes the structure of
the data in your resource in any one of the high-level languages supported by the DFHLS2SC procedure,
that is, COBOL, C, C++, or PL/I, you can create an XML binding. Generate mappings from language
structures explains how to do this. CICS dynamically creates the XMLTRANSFORM resource when you
install an ATOMSERVICE resource definition that names the XML binding.

If an XMLTRANSFORM resource is available, CICS provides its name in the ATMP_XMLTRANSFORM
parameter in the DFHATOMPARMS container. For more information about the TRANSFORM DATATOXML
command and instructions for using the data mapping functions, see Mapping and transforming
application data and XML.

Returning Atom entry metadata in containers
If the resource that contains the data for your Atom entries has fields in its records that supply metadata
for the individual Atom entries, such as a title or a summary, use the optional metadata containers, such
as DFHATOMTITLE, for your service routine to provide this data to CICS.

About this task

The DFHATOMCONTENT container, which holds the content for the Atom entry, is the only container that
the service routine is required to return to CICS. A number of other optional containers are available to
return any metadata that your service routine can extract from the records in the resource that contains
the data for the Atom entries. The records in your resource might not contain any fields to hold metadata,
for example, if you are creating an Atom feed from an existing file that was not originally set up for use as
an Atom feed. If you do not have any metadata in your records, you do not have to return these
containers, but in some cases you will need to supply default metadata when you set up the Atom
configuration file for the Atom feed.

The sample service routine DFH$W2S1 shows you how to create the optional containers using the PUT
CONTAINER command, and how to populate them with data that you extracted from a record in your
resource.

Procedure

1. If the records in your resource contain individual titles for Atom entries, use the PUT CONTAINER
command to create a container named DFHATOMTITLE, with DATATYPE(CHAR), that contains the title
of this Atom entry.
This container is optional, but if you do not provide this data from your service routine, you must
specify a default title in the Atom configuration file. “DFHATOMTITLE container” on page 80 explains
what to put in the container.

2. If the entries in your resource have individual summaries, use the PUT CONTAINER command to
create a container named DFHATOMSUMMARY, with DATATYPE(CHAR), that contains the summary for
the Atom entry.
This container is optional, but the Atom specification requires a summary if the content of an entry is
not text or XML. “DFHATOMSUMMARY container” on page 80 explains what to put in the container.

3. If you want to use your service routine to provide the name of the author of the entry, use the PUT
CONTAINER command to create a container named DFHATOMAUTHOR, with DATATYPE(CHAR), that
contains the author's name.
This container is optional, but if you do not provide this data from your service routine, you must
specify a default name in the Atom configuration file or accept the CICS default. “DFHATOMAUTHOR
container” on page 81 explains what to put in the container.

4. If you want to use your service routine to provide an e-mail address and URI (website address) for the
author of the entry, use the PUT CONTAINER command to create containers named DFHATOMEMAIL
and DFHATOMAUTHORURI, with DATATYPE(CHAR), that contain these items of data.
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These containers are optional, and you can provide either, both, or neither of them. “DFHATOMEMAIL
container” on page 81 and “DFHATOMURI container” on page 81 explain what to put in these
containers.

5. If you want to use your service routine to provide a category for the entry, use the PUT CONTAINER
command to create a container named DFHATOMCATEGORY, with DATATYPE(CHAR), that contains a
category term for the entry.
This container is optional.“DFHATOMCATEGORY container” on page 82 explains what to put in the
container.

6. In the DFHATOMPARMS container, set the appropriate option bit from the ATMP_OPTIONS_OUT
parameter for each optional container that you are returning to CICS.
“DFHATOMPARMS container ” on page 69 documents this parameter. The sample service routine DFH
$W2S1 shows you how to set these option bits.

DFHATOMTITLE container
DFHATOMTITLE is a container of DATATYPE(CHAR) that you may use for your service routine to provide a
title for an Atom entry.

This container is optional. CICS returns the data in the container as the <atom:title> element for the Atom
entry.

If your resource records do not hold individual titles for Atom entries, you can use the Atom configuration
file to specify the same title for every entry in your feed. Atom entries must have a title, so CICS requires a
default title in the Atom configuration file. If there is no suitable default title, you can use a blank default
title, but in this situation you must use the DFHATOMTITLE container to provide a title for every entry, in
order to be compliant with the Atom format specification.

If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_TITLE_FLD parameter has the name and length of the field in your resource record that holds the
data for this container.

Do not put tags around the data in the container, and do not use any markup to format it. CICS only
supports plain text for titles.

When you provide this container to CICS, set the OPTTITLE bit value in the ATMP_OPTIONS parameter in
the DFHATOMPARMS container.

DFHATOMSUMMARY container
DFHATOMSUMMARY is a container of DATATYPE(CHAR) that you may use for your service routine to
provide a summary for an Atom entry.

This container is optional. CICS returns the data in the container as the <atom:summary> element for the
Atom entry.

If your resource records do not hold individual summaries for Atom entries, you can use the Atom
configuration file to specify the same summary for every entry in your feed. The Atom specifications
require a summary if the content of an entry is not text or XML, so if you expect to provide content that
does not fit these categories, you must either provide the DFHATOMSUMMARY container or use the Atom
configuration file to provide this data. CICS does not check that you have provided a summary for a
nontext and non-XML entry, so it is your responsibility to comply with the specification in this respect.

If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_SUMMARY_FLD parameter has the name and length of the field in your resource record that holds
the data for this container.

Do not put tags around the data in the container, and do not use any markup to format it.

When you provide this container to CICS, set the OPTSUMMA bit value in the ATMP_OPTIONS parameter in
the DFHATOMPARMS container.
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DFHATOMAUTHOR container
DFHATOMAUTHOR is a container of DATATYPE(CHAR) that you may use for your service routine to
provide the name of the author of an Atom entry.

This container is optional. CICS returns the data in the container as the <atom:name> child element of the
<atom:author> element for the Atom entry.

The Atom specification requires an author name for each Atom entry. If the records in your resource have
a field in which individual authors are named, provide this data; otherwise your service routine can
provide the name of the same author for every entry in your feed. As an alternative, you can use the Atom
configuration file for the feed to provide the name of a single author for every entry in your feed. If you do
not provide an author's name by any means, CICS will send the response to the web client, but with a
default author name of "CICS Transaction Server".

If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_AUTHOR_FLD parameter has the name and length of the field in your resource record that holds the
data for this container.

Do not put tags around the data in the container, and do not use any markup to format it.

When you provide this container to CICS, set the OPTAUTHOR bit value in the ATMP_OPTIONS parameter
in the DFHATOMPARMS container.

DFHATOMEMAIL container
DFHATOMEMAIL is a container of DATATYPE(CHAR) that you may use for your service routine to provide
an e-mail address for the author of an Atom entry.

This container is optional. CICS returns the data in the container as the <atom:email> child element of the
<atom:author> element for the Atom entry.

The Atom specification does not require this data, so you can omit it if you do not have it or if you do not
want to distribute it. If the records in your resource include e-mail addresses for individual authors, you
can provide this data. If you are providing the name of a single author for every entry in your feed, either
through the service routine or in the Atom configuration file for the feed, you can do the same for the
email address.

If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_EMAIL_FLD parameter has the name and length of the field in your resource record that holds the
data for this container.

Do not put tags around the data in the container, and do not use any markup to format it.

When you provide this container to CICS, set the OPTEMAIL bit value in the ATMP_OPTIONS parameter in
the DFHATOMPARMS container.

DFHATOMURI container
DFHATOMURI is a container of DATATYPE(CHAR) that you may use for your service routine to provide a
URI (website address) that is relevant to the author of an Atom entry.

This container is optional. CICS returns the data in the container as the <atom:uri> child element of the
<atom:author> element for the Atom entry.

As for the author's e-mail address, the Atom specification does not require this data, so you can omit it if
you do not have it or if you do not want to distribute it. If the records in your resource include websites for
individual authors, you can provide this data. If all the authors are from your company, you could supply
the URI of the home page for your company. If you are providing the name of a single author for every
entry in your feed, either through the service routine or in the Atom configuration file for the feed, you can
do the same for the URI.

If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_AUTHORURI_FLD parameter has the name and length of the field in your resource record that
holds the data for this container.

Do not put tags around the data in the container, and do not use any markup to format it.
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When you provide this container to CICS, set the OPTAUTHURI bit value in the ATMP_OPTIONS
parameter in the DFHATOMPARMS container.

DFHATOMCATEGORY container
DFHATOMCATEGORY is a container of DATATYPE(CHAR) that you may use for your service routine to
provide a category for an Atom entry.

This container is optional. CICS returns the data in the container as the term attribute of an
<atom:category> element for the Atom entry. CICS does not support the optional scheme and label
attributes for the <atom:category> element.

If your resource records do not include categories for Atom entries, you can use the Atom configuration
file to specify the same category for every entry in your feed, if you know a reason why this would be
helpful. The Atom specifications do not require categories.

If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_CATEGORY_FLD parameter has the name and length of the field in your resource record that holds
the data for this container.

Do not put tags around the data in the container, and do not use any markup to format it.

When you provide this container to CICS, set the OPTCATEG bit value in the ATMP_OPTIONS parameter in
the DFHATOMPARMS container.

DFH$W2S1 C sample service routine for Atom feeds
The sample service routine DFH$W2S1 is a skeleton program in C language that shows you how to read
the parameters in the DFHATOMPARMS container, update the metadata and content containers (such as
DFHATOMTITLE and DFHATOMCONTENT), and update and return the DFHATOMPARMS container.

If you create and install an appropriate RDO definition, which must specify EXECKEY(CICS), for DFH
$W2S1, you can run the sample service routine to supply some data for test purposes in response to GET
requests for an Atom feed. As shipped, the program returns only the default data that is set up by its
code, and it does not handle POST, PUT, or DELETE requests. The process of identifying the required
record from the resource that holds the data for your Atom entries, and extracting the appropriate fields
from the record, or updating the record in response to a POST, PUT, or DELETE request, is specific to your
choice of resource and the structure of the records in that resource. For an example of how your service
routine can interact with your resource, see the description of DFH0W2F1 in DFH0W2F1 - COBOL sample
service routine for Atom feeds. DFH0W2F1 interacts with the CICS sample file FILEA.

The DFH$W2S1 sample service routine performs the following tasks:

• Includes the C header file for the copybook DFHW2APH that contains the parameter list for
DFHATOMPARMS, and the copybook DFHW2CNH that contains the constants for the response codes.

• Defines a structure called "outdata" that will be placed in the temporary work area (TWA). The program
will use this structure to store new data for the DFHATOMPARMS parameters, and will return pointers to
the new data for CICS to replace the existing values of the parameters. The storage for your new data
for the DFHATOMPARMS parameters must be in the TWA so that it can be read by CICS Atom
processing.

typedef struct
{
    char atomid??(50??);
    char published??(30??);
    ...
    char selector??(20??);
} outdata;

• Defines a structure called "indata", which is a placeholder that shows you how to extract all the values
from the DFHATOMPARMS parameters. In practice, your service routine can extract the values as it
needs them to perform each processing step.

typedef struct
{
    char* resname;  
    char* restype;
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    char* atomtype;
    ...
    char* emailfld;
} indata;

• Provides a helper method getParameter that you can use to obtain the pointer and length information
from a parameter in DFHATOMPARMS, read the value of the parameter into memory, add a null
terminator (zero byte) so that it can be used as a C string, and return a pointer to the new memory
location.

char* getParameter(atmp_parameter* ParamPtr)
{
    char* DataPtr;
    int DataLen;
    DataLen  = ParamPtr->atmp_parameter_len;
    
    EXEC CICS GETMAIN SET(DataPtr) FLENGTH(DataLen+1)
                      INITIMG(0x00);
    if (DataLen != 0) {
        memcpy(DataPtr, ParamPtr->atmp_parameter_ptr, DataLen);
    }
    
    return DataPtr;
}

• Provides a helper method updatedAtomParam that you can use to update the pointer and length that
CICS sent for a DFHATOMPARMS parameter with a pointer to a new string value containing your new
data, and the length of that string.

void updatedAtomParam(char *value, atmp_parameter *ParamPtr)
{
    ParamPtr->atmp_parameter_ptr = (unsigned long*)value;
    ParamPtr->atmp_parameter_len = strlen(value);
}

• Provides a helper method updateAtomContainer that uses the EXEC CICS PUT CONTAINER command
to update one of the metadata and content containers (such as DFHATOMTITLE and
DFHATOMCONTENT) with data for your Atom entry, taken from a field in the record in the resource that
holds the data for your Atom entries, and set the corresponding option bit to which DFHATOMPARMS
supplied a pointer.

void updateAtomContainer(char *cName, char *cChannel, char *value,
                         atmp_options_bits *optPtr)
{
    int len = strlen(value);
    
    EXEC CICS PUT CONTAINER(cName)
                  CHANNEL(cChannel)
                  FROM(value)
                  FLENGTH(len)
                  FROMCODEPAGE("IBM037");
        
    /* work out which option to set */
    if (strcmp(cName, "DFHATOMTITLE    ") == 0) {
        (*optPtr).atmp_options_outbit.atmp_outopt_byte1.opttitle = 1;
    }
    else if (strcmp(cName, "DFHATOMSUMMARY  ") == 0) {
        (*optPtr).atmp_options_outbit.atmp_outopt_byte1.optsumma = 1;
    }
    else if (strcmp(cName, "DFHATOMCATEGORY  ") == 0) {
        (*optPtr).atmp_options_outbit.atmp_outopt_byte1.optcateg = 1;
    }
    else if (strcmp(cName, "DFHATOMAUTHOR    ") == 0) {
        (*optPtr).atmp_options_outbit.atmp_outopt_byte1.optauthor = 1;
    }
    else if (strcmp(cName, "DFHATOMAUTHORURI ") == 0) {
        (*optPtr).atmp_options_outbit.atmp_outopt_byte1.optautheml = 1;
    }
    else if (strcmp(cName, "DFHATOMEMAIL     ") == 0) {
        (*optPtr).atmp_options_outbit.atmp_outopt_byte1.optauthuri = 1;
    }
    
}
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• In the main program, sets up variables such as the storage for data that will be placed into the
metadata and content containers (such as DFHATOMTITLE and DFHATOMCONTENT), and the "outdata"
and "indata" structures.

• Issues an EXEC CICS ADDRESS TWA command to set up storage for the "outdata" structure in the TWA,
and populates this structure with default values. These default values are returned if you run the
sample service routine as supplied. By setting the value for the ATMP_NEXTSEL parameter to 0, the
sample service routine makes CICS request the same Atom entry, consisting of this default data, over
and over until the number of entries specified as the window for the Atom feed document are obtained.
When you code your own service routine that supplies real data, do not use default values, because
depending on the request method, you might want to leave a number of data items unchanged.

 EXEC CICS ADDRESS TWA(outData);
    
    strcpy(outData->atomid,
           "cics-atomservice-sample:2009-02-02T00:00:00Z"); 
    strcpy(outData->published, "2009-02-02T00:00:00Z");  
    strcpy(outData->updated, "2009-02-20T14:54:34Z");  
    strcpy(outData->edited, "2009-02-20T14:54:34Z");  
    strcpy(outData->etagval, "");
    strcpy(outData->selector, "");
    strcpy(outData->nextsel, "0");  
    strcpy(outData->prevsel, "");  
    strcpy(outData->firstsel, "");  
    strcpy(outData->lastsel, ""); 

• Issues EXEC CICS GETMAIN commands to obtain storage to hold the values of the metadata and
content containers (such as DFHATOMTITLE and DFHATOMCONTENT), and populates these containers
with default data. The data in the containers does not need to be in the TWA. The content for the Atom
entry, in the DFHATOMCONTENT container, must be enclosed in <atom:content> opening and closing
tags, that may specify a type attribute giving the type of content. You may abbreviate <atom:content> to
just <content>, as the sample service routine does.

    EXEC CICS GETMAIN SET(AtomContent)   FLENGTH(512) INITIMG(0x00);
    EXEC CICS GETMAIN SET(AtomTitle)     FLENGTH(50) INITIMG(0x00);
    EXEC CICS GETMAIN SET(AtomSummary)   FLENGTH(100) INITIMG(0x00);
    EXEC CICS GETMAIN SET(AtomCategory)  FLENGTH(30) INITIMG(0x00);
    EXEC CICS GETMAIN SET(AtomAuthor)    FLENGTH(40) INITIMG(0x00);
    EXEC CICS GETMAIN SET(AtomAuthorUri) FLENGTH(256) INITIMG(0x00);
    EXEC CICS GETMAIN SET(AtomEmail)     FLENGTH(256) INITIMG(0x00);
    
    strcpy(AtomContent,
           "<content type='text/xml'>Hello world</content>");
    strcpy(AtomTitle,     "Sample Service Routine Entry");
    strcpy(AtomSummary,
           "This is an entry from the sample service routine");
    strcpy(AtomCategory,  "sample-entry");
    strcpy(AtomAuthor,    "CICS Sample service routine");
    strcpy(AtomAuthorUri, "");
    strcpy(AtomEmail,     "");

• Issues an EXEC CICS ASSIGN CHANNEL command to get the name of the current channel for use on the
later GET and PUT CONTAINER commands.

    EXEC CICS ASSIGN CHANNEL(cChannel);

• Checks for the presence of the DFHREQUEST container, which CICS uses to pass the body of a web
client's POST or PUT request to the service routine. The first EXEC CICS GET CONTAINER command
requests the length of the container, and if a nonzero response code is returned, meaning that either
the container does not exist or there is some problem with it, does not proceed. If a request body has
been passed, the sample service routine reads its contents into storage.

    EXEC CICS GET CONTAINER("DFHREQUEST      ")
                  CHANNEL(cChannel)
                  NODATA
                  FLENGTH(DataLen)
                  RESP(Resp) RESP2(Resp2);
    
    if(Resp != 0 || Resp2 != 0)
    {
        DataLen = -1;
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    }
    
    /* If we have a request body then get it */
    if(DataLen != -1)
    {
        DataLen++;
        EXEC CICS GETMAIN SET(RequestBody) FLENGTH(DataLen)
                          INITIMG(0x00);
        
        EXEC CICS GET CONTAINER("DFHREQUEST      ")
                          INTO(RequestBody)
                          FLENGTH(DataLen);
    }

• Issues an EXEC CICS GET CONTAINER command to set a pointer ParamList to the beginning of the data
for the DFHATOMPARMS parameters.

    EXEC CICS GET CONTAINER("DFHATOMPARMS    ")
                  SET(ParamListData)
                  FLENGTH(DataLen);
    
    ParamList = (atmp_parameter_list*)ParamListData;

• Goes through the data for the DFHATOMPARMS parameters, and uses the helper method getParameter
to obtain the value of each parameter and set a pointer for it in the "inData" structure.

    optPtr = (atmp_options_bits*)ParamList->atmp_options;
    
    ParamPtr = (atmp_parameter*)ParamList->atmp_resname;
    inData.resname = getParameter(ParamPtr);
    
    ParamPtr = (atmp_parameter*)ParamList->atmp_restype;
    inData.restype = getParameter(ParamPtr);
    
    ... 
    
    ParamPtr = (atmp_parameter*)ParamList->atmp_email_fld;
    inData.emailfld = getParameter(ParamPtr);

• Indicates where you must provide code that interacts with the resource that holds the data for your
Atom entries, based on the information in the DFHATOMPARMS parameters and the DFHREQUEST
container. Your service routine needs to locate the required record in the resource and extract the
appropriate fields from the record in response to a GET request, or update the record in response to a
POST, PUT, or DELETE request. The value of the ATMP_HTTPMETH parameter tells your service routine
what the request method is.

• Shows you how to place the data that you have obtained from your resource record into the memory
locations indicated by the pointers in the outData structure, and into the storage for the metadata and
content containers (such as DFHATOMTITLE and DFHATOMCONTENT). The example shows you how to
add a selector value for the current record if the ATMP_SELECTOR parameter was null on input for the
service routine.

     *  strcpy(outData->atomid,    ".....");  
     *  strcpy(outData->published, ".....");  
     *  strcpy(outData->updated,   ".....");  
     *  strcpy(outData->edited,    ".....");  
     *  strcpy(outData->etagval,   ".....");  
     *  strcpy(outData->nextsel,   ".....");  
     *  strcpy(outData->prevsel,   ".....");  
     *  strcpy(outData->firstsel,  ".....");  
     *  strcpy(outData->lastsel,   ".....");  
     * 
     *  if (strlen(inData->selector) == 0) {
     *      strcpy(outData->selector, ".....");
     *  }
     * 
     *  strcpy(AtomContent,   "....");
     *  strcpy(AtomTitle,     "....");
     *  strcpy(AtomSummary,   "....");
     *  strcpy(AtomCategory,  "....");
     *  strcpy(AtomAuthor,    "....");
     *  strcpy(AtomAuthorUri, "....");
     *  strcpy(AtomEmail,     "....");
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• Uses the updatedAtomParam helper method to update the storage for each DFHATOMPARMS
parameter with the pointers and lengths for your new items of data.

    updatedAtomParam(outData->atomid,
                     (atmp_parameter*)ParamList->atmp_atomid);
    updatedAtomParam(outData->published,
                     (atmp_parameter*)ParamList->atmp_published);
    updatedAtomParam(outData->updated,
                     (atmp_parameter*)ParamList->atmp_updated);
    updatedAtomParam(outData->edited,
                     (atmp_parameter*)ParamList->atmp_edited);
    updatedAtomParam(outData->etagval,
                     (atmp_parameter*)ParamList->atmp_etagval);
    updatedAtomParam(outData->nextsel,
                     (atmp_parameter*)ParamList->atmp_nextsel);
    updatedAtomParam(outData->prevsel,
                     (atmp_parameter*)ParamList->atmp_prevsel);
    updatedAtomParam(outData->firstsel,
                     (atmp_parameter*)ParamList->atmp_firstsel);
    updatedAtomParam(outData->lastsel,
                     (atmp_parameter*)ParamList->atmp_lastsel);
    
    if (strlen(outData->selector) != 0) {
        updatedAtomParam(outData->selector,
                         (atmp_parameter*)ParamList->atmp_selector);
    }

• Uses the updateAtomContainer helper method to add your new data to the metadata and content
containers, and set the option bit to indicate the presence of each container.

  updateAtomContainer("DFHATOMTITLE    ",cChannel,AtomTitle,optPtr);
  updateAtomContainer("DFHATOMSUMMARY  ",cChannel,AtomSummary,optPtr);
  updateAtomContainer("DFHATOMCATEGORY ",cChannel,AtomCategory,optPtr);
  updateAtomContainer("DFHATOMAUTHOR   ",cChannel,AtomAuthor,optPtr);
  updateAtomContainer("DFHATOMAUTHORURI",cChannel,AtomAuthorUri,optPtr);
  updateAtomContainer("DFHATOMEMAIL    ",cChannel,AtomEmail,optPtr);
  updateAtomContainer("DFHATOMCONTENT  ",cChannel,AtomContent,optPtr);

• Provides a response code from the selection defined in the DFHW2CNH copybook. The reason code is
ignored by CICS at present and reserved for future use, so its content is arbitrary.

    ResponsePtr = (atmp_responses*)ParamList->atmp_response;
    ResponsePtr->atmp_response_code = ATMP_RESP_NORMAL;
    /* 
     * ResponsePtr->atmp_response_code = ATMP_RESP_NOT_FOUND;
     * ResponsePtr->atmp_response_code = ATMP_RESP_NOT_AUTH;
     * ResponsePtr->atmp_response_code = ATMP_RESP_DISABLED;
     * ResponsePtr->atmp_response_code = ATMP_RESP_ALREADY_EXISTS;
     * ResponsePtr->atmp_response_code = ATMP_RESP_ACCESS_ERROR;
     */
    ResponsePtr->atmp_reason_code = 0;

• Returns control to CICS automatically as the main program ends. CICS Atom processing uses the data
from the metadata and content containers, and the data in the TWA for the DFHATOMPARMS
parameters for which the service routine has supplied new pointers and lengths, to construct the Atom
entry. CICS then requests further Atom entries from the service routine in the same way, until the
window of entries to construct the Atom feed document is complete.

Creating an XML binding for the Atom feed using CICS Explorer
Use the File Import Wizard in CICS Explorer to include a source language file into a CICS bundle project to
create an XML binding and an associated schema for Atom feeds. This bundle project can then be
deployed into your CICS system to create an XMLTRANSFORM resource.

Before you begin
You must have a language structure that defines each record in the data source for the Atom feed. For
example, this might be a COBOL copybook that defines the structure of the records stored within a VSAM
file.
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About this task

The wizard can use a COBOL, C/C++, or PL/I language structure to generate an XML binding and an
associated schema. The wizard imports the XML binding and schema into a bundle project.

Procedure

1. Optional: If you do not already have a project for the XML binding and an associated schema, create a
new CICS bundle project in CICS Explorer.
a) Switch to the Resource perspective by clicking Window > Open Perspective > Other on the main

menu bar. Choose Resource from the Open Perspective window, and click OK.
b) On the main menu bar, click Explorer > New Wizards > Other > CICS Resources > CICS Bundle

project.
The Bundle Project wizard opens.

c) In the Project name field, type a name for your new project.

d) Click Finish.

The new CICS bundle project is listed in the Project Explorer view.
2. Right-click the bundle project in the Project Explorer view of the Resource perspective and click

Import.
3. Expand the General folder and click Import XML Transform Source. The File Import Wizard opens.
4. Click Browse to locate the source language file that you want to associate with the XML transform.

Then navigate to the file that you want to use. This file can be one of the following file types:

File Type Programming language

.c C/C++ source code file

.cpp C/C++ source code file

.h C/C++ header file

.cbl COBOL source code

.cob COBOL source code

.cpy COBOL copybooks data
file

.pli PL/I data description file

5. In the Enter or select the parent folder field, overtype the name of the bundle project into which you
want to include the XML binding and schema, or select a bundle project from the list.

6. Specify the name of the XML binding and associated schema in the XML Transform source name in
bundle field. This field is populated with the name of the source language file you specified earlier,
however you can overtype this field with a different name provided that the file extension is
maintained.

7. Set the mapping level. The mapping level defines how much information is converted between the
source language file and the XML schema. To benefit from the most sophisticated mappings available,
set the mapping level to the latest level. For more information on mapping levels, see Mapping levels
for the CICS assistants

8. Click Finish to create the XML binding (.xsdbind) and schema (.xsd) and include them in the bundle
project. These files are included in the xsdbind folder of the bundle project. A copy of the source
language file is also included into the bundle project for reference and the manifest file (cics.xml) in
the META-INF folder is updated with the new XMLTRANSFORM resource.

Results
An XML binding and schema are included into a bundle project.
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What to do next
You must deploy the bundle project to a CICS region. When the bundle project has been deployed, CICS
automatically generates the XMLTRANSFORM resource for you. For more information about deploying a
bundle project, see “Deploying a CICS bundle project from CICS Explorer” on page 96.

Setting up CICS definitions for an Atom feed
To serve an Atom feed from CICS you can use the CICS Explorer to create an Atom configuration file in a
bundle project and deploy the project to a CICS region. When you install the BUNDLE resource, CICS
creates the ATOMSERVICE and URIMAP resources for you. You can also set up an alias transaction for
your Atom feed.

Before you begin

Before serving an Atom feed from CICS, you must configure the base components of CICS web support, if
you have not already done so. Chapter 2, “Configuring CICS web support components,” on page 53
explains how configure these base components of CICS web support.

Your CICS region must have a TCPIPSERVICE resource definition for the port where you want web clients
to make HTTP requests for your Atom feed. “Creating TCPIPSERVICE resource definitions for CICS web
support” on page 109 explains how to define a TCPIPSERVICE resource.

You must also select the resource that provides the data for your Atom entries, and create either an XML
binding or a service routine to support the delivery of this data. “Setting up a resource to supply Atom
entry data” on page 62 explains how to create an XML binding or a service routine.

About this task

Complete the tasks listed in the following procedure to set up CICS definitions to serve an Atom feed
composed of data from the selected resource, delivered using the XML binding or service routine that you
have created.

Ensure that the configuration file is in EBCDIC and it is assumed that it is provided in code page 1047
unless 'encoding=' has been specified.

Procedure

1. Create a basic Atom configuration file in a bundle project using the Atom configuration wizard in CICS
Explorer.
For more information, see “Creating an Atom configuration file” on page 89.

2. Edit the Atom configuration file using the Atom configuration editor in CICS Explorer, to amend
existing data or add addition XML elements.
For more information, see “Editing an Atom configuration file” on page 92.

3. Optional: Create an alias transaction for the Atom feed.
For more information, see “Creating an alias transaction for an Atom feed” on page 95.

4. Deploy the bundle project to your CICS region.
For more information, see “Deploying a CICS bundle project from CICS Explorer” on page 96.

Results
An Atom feed BUNDLE resource is defined and installed in a CICS region. CICS creates the
ATOMSERVICE, XMLTRANSFORM, and URIMAP resources for you. When the BUNDLE resource is enabled
web clients can access the Atom feed.

What to do next
Many free or commercially available web client applications are able to request, receive, and display
Atom feeds, including dedicated feed readers and also applications that provide further functions, such as
applications for creating mashups. Check that the application is described as supporting the Atom format.
You can also write your own web client application to make GET requests for Atom feed data.
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Creating an Atom configuration file
You use the Atom configuration wizard in CICS Explorer to create an Atom configuration file. This files is
comprised of a number of XML elements, which provide metadata for the Atom feed. You enter the basic
details to create the file using the New wizard and then add additional information using the editor.

Before you begin
You must have an XMLTRANSFORM resource on z/OS UNIX. The XMLTRANSFORM resource defines the
XML binding and schema to transform application data to XML. The XMLTRANSFORM resource might
already exist or you can create one using the File Import Wizard in CICS Explorer. For further information
on using the File Import Wizard, see “Creating an XML binding for the Atom feed using CICS Explorer” on
page 86.

About this task

When you create an Atom configuration file, you create a bundle project, then you use the Atom
configuration wizard to enter the basic details for the Atom feed. The wizard creates the Atom
configuration file that contains the XML elements associated with the details you enter.

The example Atom configuration file created in this task is based on the filea.xml sample Atom
configuration file. When you install CICS Transaction Server, the sample Atom configuration file is
installed in the directory /usr/lpp/cicsts/cicsts54/samples/web2.0/atom (where /usr/lpp/
cicsts/cicsts54 is the default install directory for CICS files on z/OS UNIX).

Procedure

1. Optional: If you do not already have a project for the Atom configuration file, create a new CICS bundle
project in the CICS Explorer.

a) Ensure you are in the Resource perspective. To switch to the Resource perspective, on the main
menu bar, click Window > Open Perspective > Other. Choose Resource from the Open
Perspective window, and click OK.

b) On the main menu bar, click File > New > Other > CICS Resources > CICS Bundle project.
The Bundle Project wizard opens.

c) In the Project name field, type a name for your new project.

d) Click Finish.

The new CICS bundle project is listed in the Project Explorer view.
2. In the Project Explorer view of the Resource perspective, click the bundle project that you want to

contain the new Atom configuration file.
3. Open the New Atom configuration wizard by using one of the following methods:

• Click the down arrow on the New icon  on the CICS Explorer toolbar and click Other . Expand
the CICS Resources folder and click Atom Configuration File.

• On the main menu bar, click File > New > Other. Expand the CICS Resources folder and click Atom
Configuration File.

• Right-click the project in the Project Explorer view and click New > Atom Configuration File.
Expand the CICS Resources folder and click Atom Configuration File.

4. Complete the fields in the wizard. The following table describes the fields in the Atom configuration
wizard. Figure 8 on page 91 shows the Atom configuration wizard in CICS Explorer with all fields
completed based on the XML elements in the filea.xml sample Atom configuration file

Chapter 2. Configuring CICS web support components  89



Table 5. Atom wizard fields

Field Description

Parent Folder The name of the project
containing the Atom

configuration file

. You can overtype this
field to change the
project.

File name The name of the Atom
configuration file that

you want to create

.

Service Type There are two service
types: collection and

feed

. A collection supplies
data that the web client
can edit or delete. A feed
supplies read-only data
to the web client.

Feed Title The title for the Atom
feed that is displayed in

the web client

. CICS only supports
plain text for titles.

Entry Title The title for the Atom
entry

. CICS supports only
plain text for titles. You
must specify an entry
title even if your CICS
resource provides a title
for Atom entries. Use a
suitable default title that
could apply to any of
your Atom entries.

Resource Type The type of resource
that you want to use for

your feed

.

Resource Name The name of the
resource that you want

to use for your feed

.

Default URI The partial URI for the
Atom feed

. You can omit the
scheme and host
components of the URI,
and specify only the path
component. The path
must be unique to the
Atom feed.

XML Transform Name The name of an existing
XMLTRANSFORM

resource in the CICS
region that points to the
XML binding associated

with the data source

.
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Figure 8. The Atom configuration wizard in CICS Explorer with all fields completed based on the XML
elements in the filea.xml sample Atom configuration file

5. Click Finish.

Results

The Atom configuration file is created. The attributes of this file are displayed in the Atom configuration
editor.

What to do next

You can edit the Atom configuration file, or add additional XML elements to the file, by using the Atom
configuration editor. The Atom configuration editor is a basic editor and, as such, not all XML elements
can be edited or added using this editor; for more information see “Editing an Atom configuration file” on
page 92. To add XML elements that are not supported by the Atom configuration editor, you must edit
the Atom configuration file directly using an alternative XML editor.

If no further editing is required, you must deploy the bundle project containing the Atom configuration file
to a CICS region.
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When the bundle project is installed, CICS automatically generates the ATOMSERVICE and URIMAP
resources for you. For more information about deploying a bundle project, see “Deploying a CICS bundle
project from CICS Explorer” on page 96.

Editing an Atom configuration file
You use the Atom configuration editor in CICS Explorer to amend existing data or add additional data to
Atom configuration files. You update or add information in the editor, save the changes, and the XML of
the Atom configuration file is updated.

About this task
The Atom configuration editor is the default editor for editing Atom configuration files. If you use this
editor you have to enter only the attribute values, because the editor creates the XML automatically.
Alternatively, you can use a text editor to edit the XML directly. The following steps describe how to edit
an Atom configuration file using the Atom configuration editor.

Procedure

1. Double-click the Atom configuration file in the Project Explorer in CICS Explorer. By default, the file
opens in the Atom configuration editor.

2. Enter the values for the additional attributes listed in the editor. Alternatively, you can edit the fields
that have been populated by the Atom configuration wizard. The Atom wizard fields table describes
the fields that are populated by the Atom configuration wizard. Table 6 on page 92 describes the
additional fields in the Atom configuration editor. Figure 9 on page 94 shows the Atom configuration
editor in CICS Explorer with all fields completed based on the XML elements in the filea.xml sample
Atom configuration file.

Table 6. Atom configuration editor fields

Field Description

Root XML Element The name of the top-
level data structure in

the XML binding

. This optional attribute is
only required if there is
more than one set of
conversions in the XML
binding.

Feed - Link URI The complete path that
a web client can use to
retrieve the Atom feed

. The beginning of the
path must match the
partial path stated in the
URIMAP resource
definition for the Atom
feed. You can omit the
scheme and host
components of the URI,
and specify only the path
component. CICS adds
the scheme and host
components to the URI
when it returns the Atom
feed to the client, to
comply with the Atom
format specification.
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Table 6. Atom configuration editor fields (continued)

Field Description

Window Size The default number of
entries that CICS returns

in the Atom feed

. If you leave this field
blank, the default
window size of 8 is used.
The window size applies
only when a web client
makes a request using
the feed link URI, or a
navigation URI for a
partial list of Atom
entries.

Entry - Link URI A standard URI path that
can be extended to

apply to any Atom entry
documents, and that

enables a web client to
retrieve these

documents individually

. The beginning of the
path must match the
partial path that you
specified in the URIMAP
resource definition for
the Atom. The remainder
of the standard path
must be different from
the complete path
specified in the feed link
URI. You can omit the
scheme and host
components of the URI,
and specify only the path
component. CICS adds
the scheme and host
components to the URI
when it returns the Atom
feed to the client, to
comply with the Atom
format specification.

URI

Transaction ID The name of an alias
transaction for the Atom

feed

. If you do not specify a
transaction ID, the
default alias transaction
ID for Atom feeds,
CW2A, is used.
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Table 6. Atom configuration editor fields (continued)

Field Description

User ID A default user ID under
which the alias

transaction can be
attached

. When authentication is
required for the
connection, so that CICS
requests an
authenticated user ID
directly from the client,
the default user ID is not
used. The authenticated
user ID of the client is
used instead, or if
authentication fails, the
request is rejected. If
authentication is not
required and you do not
supply a default user ID,
the CICS default user ID
is used.

Figure 9. The Atom configuration editor in CICS Explorer with all fields completed based on the XML
elements in the filea.xml sample Atom configuration file

3. Click the Save icon  to save your changes.
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The following code shows the XML elements generated by the Atom configuration editor with all fields
completed based on the filea.xml sample Atom configuration file.

<?xml version="1.0"?>
<cics:atomservice xmlns:atom="http://www.w3.org/2005/Atom" 
     xmlns:app="http://www.w3.org/2007/app" 
     xmlns:cics="http://www.ibm.com/xmlns/prod/cics/atom/atomservice" 
     version="2" type="feed">
    <cics:feed window="6">
        <cics:resource name="FILEA" type="file">
            <cics:bind xmltransform="FILEAXML"/>
        </cics:resource>
    </cics:feed>
    <cics:urimap uri="http://www.example.com/cics/atom/f/filea/*"/>
    <atom:feed>
        <atom:title>Sample CICS file FILEA</atom:title>
        <atom:link rel="self" href="http://www.example.com/cics/atom
/f/filea/feed"/>
        <atom:entry>
            <atom:title>FILEA item</atom:title>
            <atom:link rel="self" href="http://www.example.com/cics
/atom/f/filea/entry/"/>
            <atom:content cics:resource="FILEA" cics:type="file"/>
        </atom:entry>
    </atom:feed>
</cics:atomservice>

Results

The Atom configuration file is updated with the changes made using the editor.

What to do next

The Atom configuration editor is only a basic starter editor and does not support all the possible
attributes in an Atom configuration file. If you want to add attributes that are not displayed in the Atom
configuration editor, you must use an XML editor or a text editor. For more information about the XML
elements that can be configured for your Atom feed using an XML editor or text editor, see Atom
elements.

If no further editing is required, you can either export the Bundle project as a .zip file to the local file
system for deployment to a CICS system, or you can export the project directly to z/OS UNIX.

Creating an alias transaction for an Atom feed
An alias transaction handles the later stages of processing for an Atom feed. CICS supplies a resource
definition for a default Atom feed alias transaction, CW2A. Set up a TRANSACTION resource definition if
you want to define an alternative alias transaction.

About this task

For non-Atom HTTP requests handled by CICS web support, you only use an alias transaction when a
user-written application program handles the requests. However, for Atom feeds, an alias transaction is
used for processing all requests, whether or not a user-written service routine is involved.

You might want to use alternative alias transaction names for these purposes:

• Auditing, monitoring or accounting
• Modifying resource and command security settings
• Allocating initiation priorities
• Allocating DB2® resources
• Assigning different runaway values to different CICS application programs
• Transaction class limitation

You can set up as many alias transaction definitions as you want. You can use the URIMAP definition to
specify the alias transaction that is required for a particular request.
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CW2A specifies RESSEC(YES) and CMDSEC(YES), meaning that if resource and command security is
active for the CICS region, it is applied to this transaction. If you specify resource and command security
for your alias transaction, you will need to give web clients appropriate permissions to access the
resources and commands used by the transaction. For more information about security for Atom feeds
and collections, see Security for Atom feeds.

Follow the instructions in TRANSACTION resource definitions to create a transaction resource definition.
When you are following these instructions, note these points:

Procedure

• Base your alias transaction definition on the definition of CW2A, making any changes that you require.
Here is the definition of CW2A:

DEFINE TRANSACTION(CW2A)   GROUP(DFHWEB2)
       PROGRAM(DFHW2A)     TWASIZE(512)
       PROFILE(DFHCICST)   STATUS(ENABLED)
       TASKDATALOC(ANY)    TASKDATAKEY(CICS)
       RUNAWAY(SYSTEM)     SHUTDOWN(DISABLED)
       PRIORITY(1)         TRANCLASS(DFHTCL00)
       DTIMOUT(NO)         TPURGE(NO)        SPURGE(YES) 
       RESSEC(YES)         CMDSEC(YES)
       DESCRIPTION(CICS Web2.0 Atomservice alias transaction) 
 

• Your alias transaction definition must use the CICS-supplied alias program DFHW2A.
The alias program accesses the user-written service routine or CICS resource that is named in the
ATOMSERVICE definition.

• Your alias transaction definition must be a local transaction.
• Your alias transaction must have a transaction work area size (TWASIZE) of at least 512-bytes.
• Make sure the priority of the alias transaction is equal to, or higher than, the priority of the transactions

associated with web attach tasks, such as CWXN.
Priorities for CICS web support transactions (CWXN, CWXU, CWBA, CW2A) explains why this is
important.

• Atom feed requests might qualify for being processed by directly attached user transactions, and
bypassing the web attach task. Performance enhancement is gained by saving the CPU time needed
for processing requests. For more information, see Processing HTTP requests by using directly
attached user transactions.

Deploying a CICS bundle project from CICS Explorer
You can deploy an application as a CICS bundle project from CICS Explorer and use a BUNDLE resource to
create resources dynamically for you. The BUNDLE resource represents the application, so you can also
manage its availability in CICS by enabling and disabling the BUNDLE resource.

About this task

A bundle project is a collection of CICS resources, artifacts, references, and a manifest that you can
deploy into a CICS region to represent all or part of an application. The manifest is a file that describes the
contents of the bundle, including any prerequisite system resources for the application. CICS does not
dynamically create these system resources but can check that they are present in the CICS region. This
separation of resources means that you can install the same application into multiple CICS regions
without repackaging or redeploying the bundle.

When you have created a CICS bundle project in CICS Explorer, you must export it to a CICS region. You
can either export the bundle project as a .zip file to the local file system, transfer the archive file to z/OS
UNIX, and extract it into a directory, or you can export the project directly to z/OS UNIX. You must also
define and enable a BUNDLE resource for the bundle project. CICS will then create the bundle project
application resources dynamically for you.

Note: You can only export a bundle directly to a z/OS UNIX file system if your network is using Internet
Protocol version 4 (IPv4). The procedure does not work for IPv6 networks. The port can be secured to
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accept SSL traffic; if this is done, CICS Explorer detects this and switches to Secure Sockets Layer (SSL)
mode so that no data flows unencrypted. If an SSL connection cannot be established, basic
authentication is used.

Procedure

1. Export your bundle project from CICS Explorer using one of the following methods.

• Exporting to your local file system:

a. Right-click your CICS bundle project in the Project Explorer view and select Export. The Export
window opens.

b. Click Archive File.
c. Click Next.
d. Make sure that all the files in the project are selected. Enter a file name in the To archive file

field, and select Save in .zip format.
e. Click Finish.

• Exporting directly to a z/OS UNIX file system:

a. Right-click your CICS bundle project in the Project Explorer view and select Export to z/OS
UNIX File System. The Export to z/OS UNIX File System window opens. The Bundle project
field contains the name of your bundle project. Alternatively, you can type the name of a bundle
project in the field or click Browse.

b. In the Connection field, either select an existing connection to an FTP port by clicking the
twistie, or click the connection text hyperlink to define a new connection of type z/OS FTP.

c. In the Directory field, specify the name of a z/OS UNIX file system directory as a target for the
transfer. When you type the name of a directory folder, the directory tree is refreshed and this
folder is shown as the root. If you double-click a folder, this folder becomes the root of the tree.
Alternatively, you can select from the tree and navigate to the directory.

d. Select the Delete existing z/OS Unix Bundle Folder check box to remove the specified folder
and all the child folders and files in the target z/OS UNIX file system directory before the file
transfer. If you do not select the check box and a folder by that name exists, the export does not
take place.

e. Click Finish.
2. Define and enable a BUNDLE resource for the application bundle.

See BUNDLE attributes for details of the attributes to specify.
CICS reads the manifest in the bundle directory and dynamically creates the application resources. It
also checks that any required references, for example to programs or files, outside the application are
present in the CICS region, so that the application can run successfully.

Results
A bundle project is exported to z/OS UNIX and a BUNDLE resource for the bundle project is defined and
enabled.

What to do next
You can manage bundle project application availability in CICS by enabling and disabling the BUNDLE
resource.

Enabling CICS web support for CICS as an HTTP server
The CICS web support architecture for CICS as an HTTP server varies depending on the tasks that you
want it to perform. Some configurable components of CICS web support are required for all tasks, such as
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the TCPIPSERVICE definitions for the ports that receive inbound requests. Other configurable
components are required for specific tasks only.

Before you begin
Read HTTP request and response processing for CICS as an HTTP server so that you understand the
processing stages that can be involved.

About this task
The subtopics tell you how to provide responses to HTTP requests and how to communicate between
web clients and CICS programs that use the COMMAREA. In addition, these topics tell you how to enable
a web client using HTTP to access an existing 3270 display application in CICS and how to receive non-
HTTP requests from a client and provide an application-generated response:

Providing dynamic HTTP responses with web-aware application programs
You can use web-aware application programs to provide application-generated responses to HTTP
requests from a web client.

Before you begin
Configure the base components of CICS web support, as described in Chapter 2, “Configuring CICS web
support components,” on page 53.

About this task
This task involves the following components of CICS web support and includes a number of subtasks.

• TCPIPSERVICE resource definitions
• URIMAP resource definitions
• Web-aware application programs, that use the EXEC CICS WEB programming interface
• Alias transactions for the application programs
• Analyzer program
• Security facilities
• Web error programs

Figure 10 on page 99 shows the architecture elements for this CICS web support task. HTTP request
and response processing for CICS as an HTTP server explains how the process elements work together.
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Figure 10. Dynamic HTTP responses with web-aware application programs

Procedure

1. Design and code one or more web-aware application programs to provide a response to each request
by the web client, by using the information in Developing HTTP applications.
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Web-aware application programs can use EXEC CICS WEB and EXEC CICS DOCUMENT commands to
receive and analyze an HTTP request, and to write and send a response to the request. Each program
handles a single request and response.

Note: Web-aware application programs that use the EXEC CICS WEB commands must run in the
CICS region where the web client request is received. However, they can link to application programs
in other CICS regions.

2. Consider security issues for this CICS web support task.
CICS can implement HTTP basic authentication for a connection, where the user must supply an ID
and password. You can use the user ID to control access to individual resources used for application-
generated responses or static responses. If you need to protect information that is passed over the
Internet (including the user IDs and passwords that are used for basic authentication), consider using
Secure Sockets Layer (SSL). For more information, see Security for CICS web support.

3. Decide on the URL that the web client uses for each request, including the scheme, host and path
components, and any query string.
See The components of a URL. URLs for CICS web support explains the factors and limitations to
consider in choosing a URL.

4. Decide on the port that is used for the requests, referring to
“Reserving ports for CICS web support” on page 54.
For HTTP, the default port number is 80, and, for HTTPS (with SSL), the default port number is 443.
Port numbers that are not the default for a scheme are specified explicitly in the URL of requests.
If you prefer, you can allow a request to use any port that is associated with CICS web support.

5. If you do not yet have a TCPIPSERVICE definition for the port on which the requests are received,
follow the procedure in “Creating TCPIPSERVICE resource definitions for CICS web support” on page
109.
Use this definition to specify the security measures that you have selected for the port (such as the
use of SSL and basic authentication).
The name of the relevant TCPIPSERVICE definition is specified in the URIMAP definition for the
request. Specifying no TCPIPSERVICE definition means that requests matched by the URIMAP
definition can use any port for which a TCPIPSERVICE definition exists.

6. Select an alias transaction ID for the relevant user application programs. The default alias transaction
is CWBA. To create your own alias transaction, see “Creating TRANSACTION resource definitions for
CICS web support” on page 112.
You can use the URIMAP definition or an analyzer program to specify an alias transaction for each
HTTP request.
If you are implementing resource level security using the user IDs of web clients, the user IDs are
applied to this transaction and need permission to access protected CICS resources and commands
that are used by the transaction.

7. Decide whether to use the analyzer program because using this program can disqualify your HTTP
requests being processed by a directly attached user transaction. For more information, see
Processing HTTP requests by using directly attached user transactions. Otherwise, decide how the
analyzer program, described in Analyzer programs in Developing system programs, associated with
the TCPIPSERVICE definition is used, and select an appropriate program.
For web-aware applications, you can choose between the following strategies:
a) Use the CICS supplied default analyzer program DFHWBAAX to provide error handling. DFHWBAAX

is suitable where all of the requests that use this port are handled by using URIMAP definitions.
DFHWBAAX takes no action if a matching URIMAP definition is found. If no match is found, it gives
control to the user-replaceable web error program DFHWBERX to produce an error response.

b) Use the CICS supplied sample analyzer program DFHWBADX to provide basic support for requests
that use URIMAP definitions and for requests following the same process that CICS web support
used before CICS TS 3.1.
DFHWBADX takes no action if a matching URIMAP definition is found. If no match is found, it
analyzes URLs in the format that was required before CICS TS 3.1. If the analysis fails,
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DFHWBADX gives control to the user-replaceable web error program DFHWBEP to produce an
error response. (If the URLs specified in your URIMAP definitions do not fit the format that was
required before CICS TS 3.1, customize DFHWBADX or DFHWBEP to provide a meaningful
response.)

c) Use your own analyzer program to provide customized support:

• Make dynamic changes to processing for requests that use URIMAP definitions.
• Provide monitoring or audit actions during processing for requests.
• Support requests following the same process that CICS web support used before CICS TS 3.1.
• Provide error responses that use the user-replaceable web error programs, DFHWBEP and
DFHWBERX.

You can specify a customized analyzer program that uses the ANALYZER(YES) attribute in a
URIMAP definition. It is then involved in the processing path for requests. As supplied, DFHWBAAX
and DFHWBADX take no action if they are called from a URIMAP definition.

8. Decide how you want code page conversion to take place, for the HTTP requests, and for the
responses that the user application programs provide to them.
Code page conversion, described in Code page conversion for CICS Web support, typically consists of
converting the web client request, made by using an ASCII character set, into an EBCDIC code page
for use by the application program; and then reversing this process to return the application program
output to the web client. You can specify code page conversion settings in the EXEC CICS WEB API
commands that are issued by a web-aware application program.

9. Set up a URIMAP definition to handle each request. Follow the procedures in “Creating a URIMAP
resource for CICS as an HTTP server” on page 113.
You can pass HTTP requests directly to an analyzer program without using URIMAP definitions,
following the same process that CICS web support used before CICS TS 3.1. However, using URIMAP
definitions can make it easier to manage HTTP requests. Without URIMAP definitions, if you want to
change how CICS responds to a particular HTTP request, you need to change the logic in the analyzer
program. With URIMAP definitions, you can perform these changes dynamically as a system
management task.
Using URIMAP definitions (without an analyzer program) the listener task can directly attach user
transactions for fast arriving HTTP requests. The web attach task is bypassed, and performance
enhancement is gained by saving the CPU time needed for processing requests. For more
information, see Processing HTTP requests by using directly attached user transactions.

10. Ensure that the user-replaceable web error programs, described in Web error programs, provide
appropriate responses to the web client.
The web error programs are used if an error in initial processing, an abend, or failure occurs in the
CICS web support process. They are not used in all error situations.

Providing static HTTP responses with a CICS document template or z/OS UNIX file
You can use a CICS document template or a z/OS UNIX System Services file to provide a static response
to an HTTP request from a web client.

Before you begin
Configure the base components of CICS web support, described in Chapter 2, “Configuring CICS web
support components,” on page 53.

About this task
This task involves the following components of CICS web support and includes a number of subtasks.

• TCPIPSERVICE resource definitions
• URIMAP resource definitions
• z/OS UNIX files
• CICS document template support

Chapter 2. Configuring CICS web support components  101

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtlt0.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/csol_bypass_cwxn.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/administering/web/dfhtlh0.html


• Security facilities
• Web error programs

Figure 11 on page 102 shows the architecture elements for this CICS web support task. HTTP request
and response processing for CICS as an HTTP server explains how the process elements work together.

Figure 11. Static HTTP responses

Procedure

1. Consider security issues for this CICS web support task.
CICS can implement HTTP basic authentication for a connection, where the user must supply an ID
and password. You can use the user ID to control access to individual resources used for application-
generated responses or static responses. If you need to protect information that is passed over the
Internet (including the user IDs and passwords that are used for basic authentication), consider using
Secure Sockets Layer (SSL). For more information, see Security for CICS web support.

2. If you want to use a z/OS UNIX System Services file to provide a response, create the file and place it
in an appropriate location in the z/OS UNIX file system.
When this response is identified by a URIMAP definition that matches the web client request, CICS
retrieves the file and carries out appropriate code page conversion. Note these points:
a) Do not include any HTTP headers or status line information in the z/OS UNIX file.

CICS generates the required information when the response is sent. The z/OS UNIX file provides
only the body of the response.
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b) The location of the file is significant if you want to use path matching, as described later in this
task. If you do not want to use path matching, the location of the file does not need to have any
relationship to the URL of the request.

c) The CICS region must have permissions to access z/OS UNIX, and it must have permission to
access the directory containing the file and the file itself.
See Giving CICS regions access to z/OS UNIX directories and files.

d) If you are implementing access control using the user IDs of web clients, the user IDs must also
have permission to access the directory containing the file, and the file itself.
See CICS system and resource security for CICS web support.

3. If you want to use a CICS document template to provide the response, create the document
template, following the instructions in Creating a document.
The document template is defined using a DOCTEMPLATE resource definition. The document
template can be held in a partitioned data set, a CICS program, a file, a temporary storage queue, a
transient data queue, an exit program or a z/OS UNIX System Services file.
When this response is identified by a URIMAP definition that matches the web client request, CICS
creates a document using the template, retrieves the document, and carries out appropriate code
page conversion.
a) Do not include any HTTP headers or status line information in the document template.

CICS generates the required information when the response is sent. The document template
provides only the body of the response.

b) A query string that consists of name and value pairs can be used as a symbol list and substituted
into a document template.
(The query string cannot be used in this way if it has already been used for URIMAP matching, as
part of the PATH attribute in the URIMAP definition.)
To make the client send a query string of the expected format in the URL, send an HTML form with
the GET method for the user to spcify.

Any of the names in the query string can be coded in the document template as a symbol, and,
when the template is used, CICS substitutes each symbol for the value specified in the query
string. For example, if you have obtained a query string that includes a name and value pair
username=Peter, you can use this in your document template by coding username as a symbol:

Welcome to the finance system, &username;.

The resulting static response delivered to the user will read:

Welcome to the finance system, Peter.

Note: Symbols in document templates are case-sensitive. Specify the name using the same case
as in the original query string.

Any name and value pairs that do not correspond to symbols in the document template are
ignored.

c) If you are implementing resource level security using the user IDs of web clients, the user IDs
must have permission to access the document template.
See CICS system and resource security for CICS web support. Note that, if the document template
is a z/OS UNIX System Services file, the web clients do not need to be given permissions on the
file, but only on the DOCTEMPLATE resource definition.

4. Identify the media type (type of data content) that is provided by the z/OS UNIX file or CICS
document template.
See The components of a URL.
Note that when you use a URIMAP definition to send a static response, the use of quality factors (the
"q" parameter) is not supported. Use quality factors to choose among a client list of acceptable
media types or character sets, as specified in Accept headers. To carry out this type of analysis, you
can use an application-generated response instead.
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5. Identify the information that CICS requires for code page conversion of the static response.
Code page conversion takes place only where a text media type is specified. Refer to Code page
conversion for CICS Web support.
a) Identify the character set into which CICS will convert the static response before sending it to the

web client.
HTML coded character sets lists the IANA character sets supported by CICS for code page
conversion.

b) Identify the IBM® code page (EBCDIC) in which the document template or z/OS UNIX file providing
the response body is encoded.

For a static response, this information is specified in the URIMAP definition for the request.
6. Decide on the URL that the web client uses for each request, including the scheme, host and path

components, and any query string.
See The components of a URL. URLs for CICS web support explains the factors and limitations to
consider in choosing a URL.

7. If you want to use path matching in the URIMAP definition, plan your request URLs and arrange the
names of your CICS document templates or the locations of your z/OS UNIX files to support it.
In path matching, a wildcard character is used in the path component of the URIMAP definition, and
also in the name of the CICS document template or z/OS UNIX file that is specified by the URIMAP
definition. The portion of the path that is covered by the wildcard character is used to select the
document template or z/OS UNIX file to provide the response.
a) For CICS document templates, the portion of the path that is covered by the wildcard character is

substituted as the last part of the template name. You can create a collection of document
templates with names that begin in the same way, and access them using request URLs whose
paths begin in the same way, through a single URIMAP definition.

b) For z/OS UNIX files, the portion of the path that is covered by the wildcard character is substituted
as the last part of the file name. You can store a number of these files in the same directory, and
access them using request URLs with paths that begin in the same way, through a single URIMAP
definition.
Bear in mind that because a URIMAP definition must specify a type of data content (the
MEDIATYPE attribute), a single URIMAP definition can handle only a group of z/OS UNIX files that
produce the same type of data content.

8. Decide on the port that is used for the requests, referring to
“Reserving ports for CICS web support” on page 54.
For HTTP, the default port number is 80, and, for HTTPS (with SSL), the default port number is 443.
Port numbers that are not the default for a scheme are specified explicitly in the URL of requests.
If you prefer, you can allow a request to use any port that is associated with CICS web support.

9. If you do not yet have a TCPIPSERVICE definition for the port on which the requests are received,
follow the procedure in “Creating TCPIPSERVICE resource definitions for CICS web support” on page
109.
Use this definition to specify the security measures that you have selected for the port (such as the
use of SSL and basic authentication).
The name of the relevant TCPIPSERVICE definition is specified in the URIMAP definition for the
request. Specifying no TCPIPSERVICE definition means that requests matched by the URIMAP
definition can use any port for which a TCPIPSERVICE definition exists.

10. Set up a URIMAP definition to handle each request. Follow the procedures in “Creating a URIMAP
resource for CICS as an HTTP server” on page 113.
The URIMAP definition can identify either a z/OS UNIX file or a document template.

11. Check the error handling procedures for this CICS web support task.
a) Check the behavior of the analyzer program associated with the TCPIPSERVICE definition for the

port on which the requests are received. If URIMAP matching fails for a request, the request is
passed on to the analyzer program.
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If the port is used only for static responses, the CICS-supplied default analyzer program
DFHWBAAX provides suitable error handling. Otherwise, the choice of analyzer program is likely
to depend on the requirements of user application programs, and you might need to customize it
to provide suitable error handling for static responses. See Analyzer programs in Developing
system programs.

b) Ensure that the user-replaceable web error programs that are involved in your architecture
provide appropriate responses to the web client.
See Web error programs.

CICS web support resources on z/OS UNIX
When you use z/OS UNIX files to provide static responses to requests from web clients, a CICS region that
receives those requests and provides the responses needs read access to the files and their directories.

If you have stored all the files relevant to each CICS region in a directory structure that is a sub directory
of the home directory for the CICS region, you can make the CICS region the owner of each directory and
file (with the appropriate owner permissions). If some z/OS UNIX files are used by more than one CICS
region, use group permissions or access control lists (ACLs). The use of "other" permissions, which give
access to every z/OS UNIX user, is probably not suitable for CICS web support in a production
environment.

Giving web clients access to COMMAREA applications
You can use CICS web support to enable web clients to interact with CICS applications that use a
COMMAREA interface to communicate with other programs. A web-aware application program can link to
the application and use its output to provide HTTP responses. Alternatively, a converter program can
convert the input from the web client into a suitable COMMAREA and convert the output from the
application into an HTTP response.

Before you begin
Configure the base components of CICS web support, as described in Chapter 2, “Configuring CICS web
support components,” on page 53.

About this task
This task involves the following components of CICS web support and includes a number of subtasks.

• TCPIPSERVICE resource definitions
• URIMAP resource definitions
• COMMAREA application programs
• Either: Web-aware application programs, using the EXEC CICS WEB programming interface, that link to

the COMMAREA application programs and use their output
• Or: Converter programs that can provide suitable COMMAREA input and convert the output from the

application programs into an HTTP response
• Alias transactions to cover the user application programs involved in this process
• Analyzer program
• Security facilities
• Web error programs

Figure 12 on page 106 shows the architecture elements for this CICS web support task. HTTP request
and response processing for CICS as an HTTP server explains how the process elements work together.
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Figure 12. HTTP responses from a COMMAREA application

Procedure

1. You can write a web-aware application program that handles the HTTP request and links to the
COMMAREA application program. Or you can write a converter program to convert the input from the
web client into a suitable COMMAREA and then convert the output from the application into an HTTP
response. Converter programs can either use the EXEC CICS WEB API commands to read the web
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client request and produce the response, or they can work with the request and response in blocks of
storage.
a) If you want to use a web-aware application program, follow the steps in “Providing dynamic HTTP

responses with web-aware application programs” on page 98. Code your web-aware application
program to link to the COMMAREA application and use its output.
A web-aware application program cannot receive information that an analyzer program has
created to pass to the next processing stage (in a user token or shared work area). You have to
use a converter program. This limitation is not a concern when you are developing a new CICS
web support application.

b) If you want to use a converter program, follow the steps in this task.
2. Consider security issues for this CICS web support task.

CICS can implement HTTP basic authentication for a connection, where the user must supply an ID
and password. You can use the user ID to control access to individual resources used for application-
generated responses or static responses. If you need to protect information that is passed over the
Internet (including the user IDs and passwords that are used for basic authentication), consider using
Secure Sockets Layer (SSL). For more information, see Security for CICS web support.

3. Decide how the analyzer program associated with the TCPIPSERVICE definition is used, and select an
appropriate program. Refer to Analyzer programs in Developing system programs.
You can use URIMAP definitions or analyzer programs to map requests from web clients to
appropriate converter programs and user-written application programs.
Using URIMAP definitions (without an analyzer program) the listener task can directly attach user
transactions for fast arriving HTTP requests. The web attach task is bypassed, and performance
enhancement is gained by saving the CPU time needed for processing requests. For more
information, see Processing HTTP requests by using directly attached user transactions.
For non-web-aware applications, even if you have URIMAP definitions, you must use a customized
analyzer program in the processing path for the request in the following circumstances:
a) If the converter program is working with the request and response in blocks of storage, and you

require nonstandard code page conversion.
Converter programs do not have a mechanism for specifying code page conversion for blocks of
storage containing HTTP requests and responses. In the absence of an analyzer program, CICS
uses the standard settings described in Writing a converter program to convert the message body
supplied in the block of storage on both input and output. If this behavior is not suitable, you
either use an analyzer program in the processing path to specify alternative settings, or use the
EXEC CICS WEB API commands instead of working with the blocks of storage. See Code page
conversion for CICS Web support for more information.

b) If you need to communicate any information to a converter program in addition to the standard
input.
A user token is provided, which the analyzer and converter programs can use to exchange either a
small amount of information, or the address of a shared work area containing more information.

c) If you require monitoring or audit actions, which can be carried out by an analyzer program.
d) If you need to make dynamic changes to elements of the process such as the converter program

that is used, the application program that handles the request, or the alias transaction and user ID
used for the request.

If you do not need any of these functions, you can use the CICS-supplied default analyzer program,
DFHWBAAX, or the CICS-supplied sample analyzer program, DFHWBADX, to provide basic error
handling. DFHWBAAX is suitable where all the requests using this port are handled using URIMAP
definitions. DFHWBADX provides basic support for both requests using URIMAP definitions and
requests following the same process that CICS web support used before CICS TS 3.1.

4. Use the information in Converter programs to create a suitable converter program.
The converter program is called twice, first for the decode function, which examines the web client
request and any additional information supplied by the URIMAP definition or analyzer program, and
creates a suitable COMMAREA to pass to the application program. Next, the converter program is
called for the encode function, which receives the application program output and creates an HTTP
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response. If more than one application program is to supply data, the converter program can call the
decode function repeatedly. Refer to .

5. Decide on the URL that the web client uses for each request, including the scheme, host and path
components, and any query string.
See The components of a URL. URLs for CICS web support explains the factors and limitations to
consider in choosing a URL.

6. Decide on the port that is used for the requests, referring to
“Reserving ports for CICS web support” on page 54.
For HTTP, the default port number is 80, and, for HTTPS (with SSL), the default port number is 443.
Port numbers that are not the default for a scheme are specified explicitly in the URL of requests.
If you prefer, you can allow a request to use any port that is associated with CICS web support.

7. Select an alias transaction ID for the relevant user application programs. The default alias transaction
is CWBA. To create your own alias transaction, see “Creating TRANSACTION resource definitions for
CICS web support” on page 112.
You can use the URIMAP definition or an analyzer program to specify an alias transaction for each
HTTP request.
If you are implementing resource level security using the user IDs of web clients, the user IDs are
applied to this transaction and need permission to access protected CICS resources and commands
that are used by the transaction.

8. Set up a URIMAP definition to handle each request. Follow the procedures in “Creating a URIMAP
resource for CICS as an HTTP server” on page 113.
You can pass HTTP requests directly to an analyzer program without using URIMAP definitions,
following the same process that CICS web support used before CICS TS 3.1. However, using URIMAP
definitions can make it easier to manage HTTP requests. Without URIMAP definitions, if you want to
change how CICS responds to a particular HTTP request, you need to change the logic in the analyzer
program. With URIMAP definitions, you can perform these changes dynamically as a system
management task.
Using URIMAP definitions (without an analyzer program) the listener task can directly attach user
transactions for fast arriving HTTP requests. The web attach task is bypassed, and performance
enhancement is gained by saving the CPU time needed for processing requests. For more
information, see Processing HTTP requests by using directly attached user transactions.

9. If you do not yet have a TCPIPSERVICE definition for the port on which the requests are received,
follow the procedure in “Creating TCPIPSERVICE resource definitions for CICS web support” on page
109.
Use this definition to specify the security measures that you have selected for the port (such as the
use of SSL and basic authentication).
The name of the relevant TCPIPSERVICE definition is specified in the URIMAP definition for the
request. Specifying no TCPIPSERVICE definition means that requests matched by the URIMAP
definition can use any port for which a TCPIPSERVICE definition exists.

10. Check the error handling procedures for this CICS web support task.
a) Check the behavior of the analyzer program associated with the TCPIPSERVICE definition for the

port on which the requests are received. If URIMAP matching fails for a request, the request is
passed on to the analyzer program.
For more information, see Analyzer programs in Developing system programs.

b) Ensure that the user-replaceable web error programs provide appropriate responses to the web
client.
Refer to Web error programs.
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Defining resources for CICS as an HTTP server
You create some additional resource definitions for each CICS web support task that you want to perform.

About this task

The CICS-supplied resource definition group DFHWEB contains the following CICS web support
resources:

• Transaction definitions for CICS web support tasks (for example, CWBA and CWXN)
• CICS web support utility programs:

– The default analyzer program DFHWBAAX and the sample analyzer program DFHWBADX
– The web error programs DFHWBEP and DFHWBERX

• A temporary storage model, DFHWEB

The transient data queues for CICS web support messages, CWBO (for most messages) and CWBW (a
separate queue for warning header messages), are in the group DFHDCTG.

The resource definition group DFH$WEB contains most of the PROGRAM resource definitions and
URIMAP definitions for the sample CICS web support applications.

“Enabling CICS web support for CICS as an HTTP server” on page 97 gives guidance about the resource
definitions that you need for each task, and the following topics provide detailed information.

Creating TCPIPSERVICE resource definitions for CICS web support
Use TCPIPSERVICE resource definitions to define the association between ports and CICS services,
including CICS web support. Define and install a TCPIPSERVICE resource definition for each port that you
use for CICS web support.

About this task

Each TCPIPSERVICE definition that is active in a CICS system must specify a unique port number. CICS
uses the TCPIPSERVICE definition for a port to determine which CICS service is invoked when it receives
an inbound TCP/IP connection request on that port. Use the PROTOCOL attribute to identify the service.
Specify HTTP for standard CICS web support, and USER for non-HTTP requests that are handled using
CICS web support.

For CICS web support, create TCPIPSERVICE definitions for the default, or well-known, port numbers that
are used for Internet services. For HTTP, the default port number is 80, and, for HTTPS, the default port
number is 443. You can also use nonstandard port numbers.

Each TCPIPSERVICE definition can specify only one analyzer program and one transaction definition for
the web attach task. If you need to use more than one of these items, you must use different
TCPIPSERVICE definitions and, therefore, different ports.

CICS provides sample TCPIPSERVICE definitions for CICS web support in group DFH$SOT:
HTTPNSSL

CICS web TCPIPSERVICE with no SSL support
HTTPSSL

CICS web TCPIPSERVICE with SSL support

Important: Use the TCPIPSERVICE resource definition to specify the security measures that are applied
for each port. You can choose whether or not to use SSL, and, if you do use SSL, you choose the exact
security measures that are applied; for example, the authentication method, the sending of certificates by
client and server, and the encryption of messages. See Security for CICS web support for more
information about the security features that you can use to keep your CICS web support facility safe.
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Procedure

1. Identify a TCP/IP port to use for CICS web support.
You are recommended to reserve the port number for use by CICS web support. See “Reserving ports
for CICS web support” on page 54 for information on port usage.

2. Create TCPIPSERVICE resource.
When you set up URIMAP definitions for inbound HTTP requests on this port, specify the name of the
TCPIPSERVICE definition.

3. Use the STATUS attribute to specify whether CICS starts listening for this service immediately after
the definition is installed.
If you specify CLOSED, you must set the service open before it can be used. You can set the service
open or closed using the CEMT transaction or the SET TCPIPSERVICE system programming
command.

4. Specify the PORTNUMBER attribute as the number of the TCP/IP port that is covered by this
definition.

5. Use the HOST attribute to specify the dotted decimal or colon hexadecimal IP address on which the
TCPIPSERVICE listens for incoming connections. You can also use the IPADDRESS attribute to
specify the dotted decimal IP address for existing programs.
Alternatively, for configurations with more than one IP stack, you can specify INADDR_ANY to make
CICS try to bind to the port on every stack where it is defined. Or, if you have a multi-stack CINET
environment, and you want to assign affinity only to the default TCP/IP stack, you can specify
DEFAULT to do this.
The reference information about this TCPIPSERVICE resource definition attribute details some
additional considerations, which are important if you want more than one CICS region to share this
TCPIPSERVICE definition, or if you want more than one CICS region to bind to the port number that it
specifies.

6. Use the PROTOCOL attribute to specify that CICS web support handles requests on this port.
a) Specify HTTP for normal HTTP requests. HTTP requests might qualify for being processed by

directly attached user transactions, and bypassing the web attach task. For more information, see
Processing HTTP requests by using directly attached user transactions.
CICS forces HTTP if you specify ports 80 or 443. This option covers both HTTP with SSL and HTTP
without SSL. The SSL option specifies whether SSL is involved.

b) Specify USER for non-HTTP requests that are handled using CICS web support.
When you specify USER, CICS web support is used for handling the request, but no acceptance
checks are carried out for messages sent and received using this protocol. The requests are
flagged as non-HTTP and passed straight to the analyzer program.
URIMAP definitions are not used for these requests.

7. Specify the TRANSACTION attribute as the 4-character ID of the web attach task, which is normally
CWXN for HTTP requests or CWXU for non-HTTP (USER protocol) requests.
This task handles initial processing of a request. CICS provides CWXN as a default if you specify ports
80 or 443. If required for accounting or monitoring purposes, you can specify an alias of CWXN or
CWXU, both of which must run the program DFHWBXN.

8. Specify the URM attribute as the name of the analyzer program that is associated with this
TCPIPSERVICE definition.
For a non-HTTP (USER protocol) request, the analyzer program is always used.
For an HTTP request, the analyzer program is used to interpret the request if a URIMAP definition
specifies the use of an analyzer program, or if no URIMAP definition is present. You must specify an
analyzer program. You can select only one analyzer program for each TCPIPSERVICE definition, but
you can code it to handle any requests.
Analyzer programs in Developing system programs tells you about the basic support that your
analyzer program must provide if you intend to use URIMAP definitions to handle all your HTTP
requests. The architecture guidance in “Enabling CICS web support for CICS as an HTTP server” on
page 97 helps you to decide whether to involve the analyzer program for any particular HTTP request.
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9. Use the SOCKETCLOSE attribute to specify how long CICS waits before closing the socket after
issuing a receive for incoming data on that socket.
NO means that the socket is open until data is received or until the web client closes it. To prevent
the socket from being blocked by a slow or broken web client, specify a timeout value rather than
specifying NO. On the first receive command issued by the web attach task after a connection is
made, this timeout value is ignored, and the task waits to receive data from the web client for a
period of time determined by CICS (30 seconds for HTTP). This delay prevents a socket connection
from being closed as soon as it is started, even if no data is immediately available, and so prevents a
connection reset error at the web client.

Note: For CICS web support, a zero setting for SOCKETCLOSE means that a persistent connection
cannot be maintained, even if the web client requests it. This setting is not compliant with the
HTTP/1.1 specification. Only specify SOCKETCLOSE(0) with the HTTP protocol if you have a special
requirement for it in a CICS region that is not currently handling external requests, for example in a
test environment.

10. Use the BACKLOG attribute to specify the number of connections that can be queued before TCP/IP
starts to reject incoming requests from web clients.
If the value of BACKLOG is less than the value of the TCP/IP attribute SOMAXCONN, the
TCPIPSERVICE is opened with the backlog value specified by the BACKLOG attribute. If the value of
BACKLOG is greater than SOMAXCONN, the TCPIPSERVICE is opened with the backlog value
specified by SOMAXCONN. The default is 0, which means that the TCPIPSERVICE is opened with the
backlog value specified by SOMAXCONN.
The default is 1. A value of zero disables incoming connection requests. If the value of BACKLOG is
greater than the TCP/IP configuration value for SOMAXCONN, TCP/IP uses the value specified by the
SOMAXCONN attribute.

11. Use the MAXPERSIST attribute if you need to specify a limit on the number of persistent connections
from web clients that the CICS region allows for this port at any one time.
The default is that there is no limit, which is the normal behavior for an HTTP/1.1 server. Only specify
a limit in a region where CICS as an HTTP server has experienced performance problems due to long-
lived persistent connections. When the limit is reached, CICS implements connection throttling. How
CICS web support handles persistent connections explains what happens if you specify a limit.

Note: A zero setting for MAXPERSIST means that no web clients are allowed persistent connections.
This setting is not compliant with the HTTP/1.1 specification. Only specify MAXPERSIST(0) if you
have a special requirement for it in a CICS region that is not currently handling external requests, for
example in a test environment.

12. Use the MAXDATALEN attribute to specify the maximum length of data that can be received on this
connection.
The default value is 32 KB and the maximum is 524 288 KB. This option helps to guard against denial
of service attacks involving the transmission of large amounts of data.

13. Use the SSL attribute to specify whether the secure sockets layer (SSL) is used for this port.
YES means that SSL is used, and CICS sends a server certificate to the web client. CLIENTAUTH
means that SSL is used, and that the web client is requested to send a client certificate to CICS, in
addition to CICS sending a server certificate to the web client. ATTLSAWARE means CICS queries the
connection to see whether AT-TLS is active. CICS retrieves the client certificate if the partner
provided one. ATTLSAWARE mandates PROTOCOL(HTTP). CICS provides YES as a default if you
specify port number 443, and forces NO if you specify port number 80.
Security for CICS web support explains what to do if you are using SSL.
HTTP requests received by TCPIPSERVICE with SSL(NO) and SSL(ATTLSAWARE) might qualify for
being processed by directly attached user transactions, and bypassing the web attach task. For more
information, see Processing HTTP requests by using directly attached user transactions.

14. If you have specified SSL(YES) or SSL(CLIENTAUTH), use the CERTIFICATE attribute to specify the
label of an X.509 certificate that CICS uses as the server certificate during the SSL handshake.
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If this attribute is omitted, the default certificate defined in the key ring for the CICS region user ID is
used. The certificate must be stored in a key ring in the external security manager database. Security
for CICS web support has more information about using certificates.

15. Use the AUTHENTICATE attribute to specify the level of authentication that is used for web clients
making requests on this port.
Security for CICS web support explains authentication and identification.
a) Specify NO if the web client is not required to send authentication or identification information.

If the client sends a valid certificate that is already registered to the security manager, CICS can
use it.

b) Specify BASIC to make CICS attempt HTTP basic authentication, where CICS requests a user ID
and password from the web client.
HTTP basic authentication explains basic authentication in more detail.

c) Specify CERTIFICATE to use SSL client certificate authentication.
The web client must send a valid certificate that is already registered to the security manager and
associated with a user ID. If a valid certificate is not received, or the certificate is not associated
with a user ID, the connection is rejected.
You must specify SSL(CLIENTAUTH) or SSL(ATTLSAWARE) if you use this option.

d) Specify AUTOREGISTER to use SSL client certificate authentication with auto-registration for the
security manager.
The web client must send a valid certificate. If CICS finds that the certificate is not yet registered
to the security manager, HTTP basic authentication is used to request a user ID and password,
and CICS uses this information to register the certificate.
You must specify SSL(CLIENTAUTH) or SSL(ATTLSAWARE) if you use this option.

e) Specify AUTOMATIC to use SSL client certificate authentication with auto-registration for the
security manager (as for the AUTOREGISTER option), or, if no certificate is sent, to use HTTP basic
authentication (as for the BASIC option).

16. Use the REALM attribute to specify the realm that is used for HTTP basic authentication.
The user sees the realm during the process of basic authentication. It identifies the set of resources
to which the authentication information requested (that is, the user ID and password) apply.
a) If you require different authentication information for resources delivered using different

TCPIPSERVICE definitions, specify different realms to make this requirement clear to the end
user.

b) If users use the same authentication information across your resources, you can specify the same
realm on multiple TCPIPSERVICE definitions.

c) If you do not specify the REALM attribute, the default realm is used.
The default realm is:

realm="CICS application aaaaaaaa"

where aaaaaaaa is the applid of the CICS region.

Creating TRANSACTION resource definitions for CICS web support
TRANSACTION resource definitions define alias transactions for CICS web support. An alias transaction
handles the later stages of processing for an HTTP request, including receiving the request, executing the
application business logic, construction of the HTTP response, and code page conversion of the HTTP
response. Alias transactions can also be used for processing non-HTTP requests.

About this task

CICS supplies a resource definition for a default alias transaction, CWBA. You might want to use
alternative alias transaction names for these purposes:

• Auditing, monitoring, or accounting
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• Resource and command checking for security
• Allocating initiation priorities
• Allocating DB2 resources
• Assigning different runaway values to different CICS application programs
• Transaction class limitation

You can set up any number of alias transaction definitions. You can use the URIMAP definition or an
analyzer program to specify the alias transaction that is required for a particular request.

Important: Make sure that the priorities of the alias transactions used for application-generated
responses (like CWBA) are equal to, or higher than, the priority of the transactions associated with web
attach tasks (like CWXN or CWXU). See Priorities for CICS web support transactions (CWXN, CWXU,
CWBA, CW2A).

TRANSACTION resource definitions has instructions for this type of resource definition. In addition, note
these points:

Procedure

• Base your alias transaction definition on the definition of CWBA, making any changes that you require,
such as changes to priority.
The definition of CWBA is:

DEFINE TRANSACTION(CWBA)   GROUP(DFHWEB)
       PROGRAM(DFHWBA)     TWASIZE(0)
       PROFILE(DFHCICST)   STATUS(ENABLED)
       TASKDATALOC(BELOW)  TASKDATAKEY(USER)
       RUNAWAY(SYSTEM)     SHUTDOWN(ENABLED)
       PRIORITY(1)         TRANCLASS(DFHTCL00)
       DTIMOUT(NO)         INDOUBT(BACKOUT)
       SPURGE(YES)         TPURGE(NO)
       RESSEC(NO)          CMDSEC(NO)
 

• Your alias transaction definition must use the CICS-supplied alias program DFHWBA.
The alias program calls the user application program that you have specified to process the request.

• Your alias transaction definition must be a local transaction.

Creating a URIMAP resource for CICS as an HTTP server
When CICS is processing inbound requests as an HTTP server, URIMAP resources specify how HTTP
requests are processed.

About this task
You can generate a response to an HTTP request in the following ways:

• You can provide a dynamic response by writing a web-aware application program
• You can provide a static response in a CICS document template or a z/OS UNIX file

Whichever method you use, you must create a URIMAP resource. Many of the attributes you specify are
common to both methods; other attributes apply to one method or the other.

Specifying common URIMAP attributes for CICS as an HTTP server
A URIMAP resource definition defines how HTTP requests are processed. Many of the attributes specified
in a URIMAP apply to all configurations is which CICS acts as an HTTP server.

About this task
A URIMAP is a resource that matches the URLs that are received on inbound HTTP requests, to provide
information about how to process the requests.
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Procedure

1. Use the STATUS attribute to specify whether the URIMAP definition is installed in an enabled or
disabled state.

2. Specify a USAGE attribute of SERVER (CICS as an HTTP server).
3. Identify the URL to be processed by the URIMAP.

The URL represents a resource that you plan to make available to a web client through CICS, and
consists of several components.
For example, in http://www.example.com/software/index.html?n=John&s=Smith:

• The scheme component is http
• The host component is www.example.com
• The path component is /software/index.html
• The query string is ?n=John&s=Smith

The components of a URL are described in The components of a URL.
4. Specify the components of the URL in the corresponding attribute of the URIMAP resource.

a) Specify the scheme component in the SCHEME attribute.
You can specify values of HTTP or HTTPS. Do not include the delimiters // following the scheme
component. If you specify SCHEME(HTTP), the URIMAP accepts web client requests made using
either the HTTP scheme or the more secure HTTPS scheme. If you specify SCHEME(HTTPS), the
URIMAP accepts only web client requests made using the HTTPS scheme.

b) If you need to distinguish between URLs containing different host names, specify the host
component in the HOST attribute.
When you specify the host component:

• Do not include a port number.
• You can specify a host name or an IPv4 or IPv6 address.
• You can specify a single asterisk (*).

Use this option if you are not using multiple host names or if you do not want to distinguish
between hosts names. If you use this option, the URIMAP definition matches any host name on
incoming URLs.

c) Specify the path component in the PATH attribute.

• You can omit the delimiter / (forward slash) at the beginning of the path component, because
CICS automatically provides it.

• You can use an asterisk as a wildcard character at the end of the path. For example:

– If you specify /software/*, the URIMAP resource matches all requests with paths that start
with the string /software/.

– If you specifying /*, the URIMAP resource matches all requests directed to the host named in
the HOST attribute.

If more than one URIMAP resource containing a wildcard matches an HTTP request, the most
specific match is taken.

• If inbound URLs contain a query string, and you want to apply the URIMAP definition to a specific
query, include the query string, with the leading question mark (?) character, in the PATH
attribute. You can specify a query string following a path component that includes an asterisk as a
wildcard, but the query string cannot itself include an asterisk: you must specify the exact query
string. If you do not specify a query string in the URIMAP definition, matching takes place only on
the path, and any query string in the request is ignored.

• For a static response with a CICS document template, you can use a query string to select the
URIMAP definition or it can be substituted into the document template.

5. Optional: In the TCPIPSERVICE attribute, specify the name of the TCPIPSERVICE definition that
defines the inbound port to which this URIMAP definition relates.
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If you do not specify this attribute, the URIMAP definition applies to a matching HTTP request on any
inbound port.

When a URIMAP that specifies SCHEME( HTTPS) matches an inbound request, CICS checks that the
inbound port used by the request is using SSL. If SSL is not specified for the port, the request is
rejected with a 403 (Forbidden) status code. When the URIMAP definition applies to all inbound ports,
this check ensures that a web client cannot use an unsecured port to access a secured resource. No
check is carried out for a URIMAP definition that specifies HTTP as the scheme, so web clients can use
either unsecured or secured (SSL) ports to access these resources.

What to do next
Specify further attributes, depending on how you intend to provide the response to an inbound HTTP
request.

• You can provide a dynamic response by writing a web-aware application program
• You can provide a static response in a CICS document template or a z/OS UNIX file

Specifying URIMAP attributes for an application response to HTTP requests
Some of the attributes specified in a URIMAP apply only when an application program is used to supply
the response to HTTP requests.

About this task

The URIMAP resource has a number of attributes that you can use when you use an application program
to supply the response to an HTTP request.

Procedure

1. Specify the name of the application program that provides the response, in the PROGRAM attribute.
The HTTP request is passed to the program you specify.

Alternatively, you can specify an analyzer or converter program that supplies the name of the
application program. The analyzer or converter program can also change the name of the application
program that you specify in this attribute.

2. Specify the name of an alias transaction in the TRANSACTION attribute.
The alias transaction is a transaction defined to CICS under which the program that provides the
response is run. The default alias transaction is CWBA.

If you use an analyzer program, it can supply or change the name of the alias transaction.
3. Specify a default user ID under which the alias transaction can be attached, in the USERID attribute.

When authentication is required for the connection, so that CICS requests an authenticated user ID
directly from the client, the default user ID is not used. The authenticated user ID of the client is used
instead, or if authentication fails, the request is rejected. If you use an analyzer program, it can replace
a default user ID or an authenticated user ID with another user ID, or provide one. If no user ID is
specified, the default user ID is the CICS default user.

4. Specifying ANALYZER(NO) is required for HTTP requests to be eligible to be processed by directly
attaching the user transaction. Directly attaching the user transaction removes the web attach task
from the processing and results in a reduction in CPU usage. For more information, see Processing
HTTP requests by using directly attached user transactions.

5. If you want to use an analyzer program, specify ANALYZER(YES). The analyzer program is specified in
the URM attribute of the TCPIPSERVICE resources to which this URIMAP definition relates. If you use
an analyzer program, you can still specify the PROGRAM, TRANSACTION, USERID and CONVERTER
attributes. The values that you specify for these attributes are used as input to the analyzer program,
but they can be overridden by it. Alternatively, you can omit these attributes and let the analyzer
program specify them.

6. If want to use a converter program, specify the name of the program in the CONVERTER attribute.
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Unlike the analyzer program, the converter program and the TCPIPSERVICE definition are not
associated. If a converter program is used, you can still specify the PROGRAM attribute. The value that
you specify for this attribute is used as input to the converter program. The converter program can
change the PROGRAM attribute to specify a different application program to process the request.

Specifying URIMAP attributes for a static response to HTTP requests
Some of the attributes specified in a URIMAP apply only when you use a CICS document templates or a
z/OS UNIX file to provide a static response to HTTP requests.

Before you begin
If you are using path matching, make sure that you specify an asterisk character (*) when you specify the
PATH attribute in the URIMAP resource.

About this task

The URIMAP resource has a number of attributes that you specify when you provide a static response to
HTTP requests.

The URIMAP resource does not control security for CICS document templates and z/OS UNIX files
delivered as static responses. For information about using basic authentication and resource level
security to secure these items, see Security for CICS Web support.

Procedure

1. Specify the data content of the static response in the MEDIATYPE attribute.
For example, specify text/html or text/xml for HTML and XML data content respectively. See IANA
media types and character sets for more information about media types.
This attribute is required, and there is no default value.
CICS uses the information to create a Content-Type header for the response.

2. If the MEDIATYPE attribute specifies a text type of data content, specify the following attributes which
are required for code page conversion.
a) Specify the target character set in the CHARACTERSET attribute.

The target character set is the character set into which CICS converts the static response before
sending it to the web client. CICS does not support all the character sets named by IANA. HTML
coded character sets lists the IANA character sets that are supported by CICS.
This information is included in the Content-Type header of the response.

b) Specify the IBM code page (EBCDIC) in which the static document is encoded in the
HOSTCODEPAGE attribute.

For other types of content, there is no code page conversion.
3. If you are using a CICS document template to provide the response, specify the name of the document

template in the TEMPLATENAME attribute.
The name you specify is the name of the DOCTEMPLATE resource that defines the attributes of the
document template.
If you want to use path matching, include an asterisk as a wildcard character at the end of the name of
the CICS document template. CICS takes the portion of each HTTP request path that is covered by the
wildcard character and substitutes it as the last part of the template name.
URIMAP attributes has an example showing how path matching works.

If a query string is present on the URL, CICS passes the content of the query string into the named
CICS document template as a symbol list. CICS passes the content only when the query string has not
already been used in the PATH attribute of the URIMAP definition.

4. If you are using a z/OS UNIX file to form the static response, specify the name of the file in the
HFSFILE attribute.
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You can specify the z/OS UNIX file as an absolute (fully qualified) path, or as a path relative to the
HOME directory of the CICS region user ID. An absolute path begins with a slash character (/); an
relative path does not.

The CICS region user ID must have permissions to access z/OS UNIX, and the z/OS UNIX directory
containing the file, and the file itself. For more information, see Giving CICS regions access to z/OS
UNIX System Services and HFS directories .

If you want to use path matching, include an asterisk as a wildcard character at the end of the path for
the z/OS UNIX file. CICS takes the portion of each HTTP request path that is covered by the wildcard
character, and substitutes it as the last part of the z/OS UNIX file path. You must explicitly specify at
least one level of the directory structure; you cannot use an asterisk on its own in the HFSFILE
attribute.

URIMAP definition attributes has an example showing how path matching works.

You cannot substitute a query string into a z/OS UNIX file.

CICS web support and 3270 display applications
When a 3270 transaction is accessed by a web client, CICS can display the output as an HTML form. Use
the variants of the Web Terminal Translation Application (DFHWBTTA, DFHWBTTB, or DFHWBTTC) to
provide web clients with access to applications that were originally designed to use the 3270 display
system. CICS web support for 3270 applications supports the SEND, CONVERSE, and RECEIVE terminal
control commands.

You can create an HTML form from the output of a 3270 transaction in one of two ways:

• For applications that use BMS, an HTML template is generated from a BMS map and stored in the
template library. You can customize the generation of the template. However, if the only changes you
need to make to the generated HTML can be accommodated in the heading or footing section, you do
not need to generate a template from the BMS map, because the map can be processed at execution
time to generate the HTML form.

• For applications that do not use BMS, the outbound 3270 data stream is processed at execution time to
generate the HTML form.

You can be use the Web Terminal Translation Application to display the HTML forms to a web browser.

Note: The Web Terminal Translation Application operates at HTTP/1.0 level. It does not make full use of
the facilities available in CICS web support, such as the EXEC CICS WEB API, and so does not comply
with the HTTP/1.1 specification:

• Requests from the web client and responses from the application are not checked against the HTTP
protocol specification.

• CICS does not provide HTTP/1.1 responses, in normal or error situations, even if the client is at
HTTP/1.1 level.

All three variants of the Web Terminal Translation Application support nonconversational, conversational,
and pseudoconversational transactions.

• DFHWBTTA and DFHWBTTB perform the translation between 3270 data streams and HTML and
between templates generated from BMS maps and HTML. Use DFHWBTTA if your HTML templates are
32,767 bytes (32 KB) of data or smaller, and use DFHWBTTB if your HTML templates are larger than 32
KB. (Using DFHWBTTB for smaller HTML templates incurs an unnecessary performance degradation.)

• DFHWBTTC performs the translation between BMS maps and HTML when no template is generated.
BMS maps used in this way must specify TERM=3270 or omit the TERM parameter. DFHWBTTC
supports HTML output of any length. Use DFHWBTTC if you do not need to generate HTML templates.

DFHWBTTB and DFHWBTTC are aliases for DFHWBTTA; DFHWBTTA is called in each case. CICS uses the
name by which the program is called to determine which processing is needed.
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DFHWBTTA, DFHWBTTB, and DFHWBTTC generate HTML that conforms to the HTML 3.2 specification. If
you use a web browser that does not support HTML 3.2, some functions might not work correctly.

HTML generated for terminals having a page size that results in a field position greater than 4095 (x'FFF')
might not function correctly, particularly when using DFHWBTTC. The exception is when using old-style
templates. (Old-style templates are ones generated by DFHWBTLG from CICS TS 1.2 or CICS TS 1.3
before PTF UQ53534). Code has been supplied to tolerate BMS sends of such templates when using
DFHWBTTA or DFHWBTTB, but not DFHWBTTC.

You can create URIMAP definitions that specify DFHWBTTA, DFHWBTTB, or DFHWBTTC as the program
to be called to process a request (PROGRAM attribute). The method that the web client uses to access the
program is similar, but the use of URIMAP definitions gives you an online administration facility that can
be used to prevent or redirect requests. When a URIMAP definition is used, the use of an analyzer
program is optional. Refer to “URL path components for 3270 display applications” on page 119.

CICS web support for 3270 applications supports the SEND, CONVERSE, and RECEIVE terminal control
commands. It also supports minimum function BMS and the SEND TEXT command. The DEFRESP option
on the SEND and CONVERSE commands is ignored. Application recovery might be affected.

CICS web support does not support partitions, logical devices codes, magnetic slot readers, outboard
formatting, or other hardware features. You can use detectable fields with light pen support.

CICS web support processing for 3270 application programs
CICS web support processes a terminal-oriented transaction in this sequence.

Figure 13. How CICS web support interacts with a 3270 application program

These steps are shown in the figure:

1. Optionally, a converter program constructs the input that is passed to program DFHWBTTA.
2. DFHWBTTA attaches the user's transaction, specifying DFHWBLT as the bridge exit program, and waits

for a response from DFHWBLT. The user's transaction runs in a 3270 bridge environment.
3. The bridge exit sets up a 3270 environment for the user's application program.
4. The application program processes the input and constructs the 3270 output.
5. The bridge exit interprets the 3270 output and passes the HTTP response to DFHWBTTA.
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6. Optionally, a converter program modifies the output that is passed to the web client.

When you use CICS web support with 3270 applications, the application program runs under its own
transaction, and not under the alias transaction.

URL path components for 3270 display applications
To call a CICS 3270 application from a web browser, you enter a URL with a path component that starts
by calling the application program name DFHWBTTA, DFHWBTTB, or DFHWBTTC, with an appropriate
alias transaction and converter program (if required). This alias transaction does not apply to the 3270
application, which runs under its own transaction.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

Using an analyzer program
If you are using an analyzer program like the CICS-supplied sample analyzer DFHWBADX to handle
requests, the path component of the URL includes the name of the application program (DFHWBTTA,
DFHWBTTB, or DFHWBTTC). It also includes the name of any converter program that you are using
and the name of the alias transaction for request processing, such as the default CICS-supplied alias
transaction CWBA. As explained in CICS-supplied sample analyzer program DFHWBADX, these
elements of the path are extracted by the analyzer program and used to start subsequent processing
stages.

Using a URIMAP definition
If you are using a URIMAP definition to handle requests, the path component of the URL is specified in
the PATH attribute. With URIMAP definitions, the path component of the URL does not need to include
explicit information about the application program, converter program, and alias transaction, although
it can still do so. You can specify all these elements in the URIMAP definition, using the PROGRAM,
CONVERTER, and TRANSACTION attributes. You can then replace this part of the path component by
any path of your choice. To satisfy the requirements of DFHWBTTA, use an asterisk as a wildcard
character at the end of the path that you specify in the URIMAP definition. The wildcard allows the
remainder of the path component to be varied to control DFHWBTTA.

Using both a URIMAP definition and an analyzer program
You can use an analyzer program in the processing path for a request by specifying the
ANALYZER(YES) option in the URIMAP definition. The analyzer program can dynamically modify the
converter program, alias transaction ID, and program name that are specified by the URIMAP
definition. DFHWBTTA can see these changes.

After providing the information needed to call the application program, the next part of the path
component of the URL provides control information to DFHWBTTA:

• A keyword to specify if unformatted mode is used
• The transaction ID of the 3270 application that you want to use
• An input parameter for the specified transaction, using plus signs (+) as a delimiter

/ ignored

/ UNFORMAT

/ transaction ID

 + parameter

? token

Figure 14. Syntax of the path interpreted by DFHWBTTA

DFHWBTTA interprets the path component of the URL as follows:
ignored

The first part of the path is ignored by DFHWBTTA. This part is interpreted by the analyzer or matched
to a URIMAP definition, to provide the information needed to call the application program.
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UNFORMAT
The 3270 display can operate in two modes: formatted mode and unformatted mode. If this keyword
is present, DFHWBTTA simulates a 3270 display operating in unformatted mode. If this keyword is
omitted, DFHWBTTA simulates a 3270 display operating in formatted mode.

For more information, see Unformatted mode .

transaction ID
On the initial request, this information specifies the CICS transaction to be run. This element of the
path is ignored on a continuation request.

parameter
Specifies an input parameter for the transaction. Use plus signs (+), not spaces, as a delimiter to
separate the transaction ID and this data, and between elements of this data.

token
This information is ignored by DFHWBTTA. It can be used by an analyzer program.

Always code the URL in this form.

For example, if you are using the CICS-supplied analyzer program DFHWBADX, you can use the following
URL path to issue the CEMT INQ TAS command:

/cics/cwba/dfhwbtta/CEMT+INQ+TAS

• cics is used to indicate that no converter program is required.
• cwba is the name of the alias transaction for request processing.
• dfhwbtta is the name of the application program.
• CEMT+INQ+TAS tells DFHWBTTA to access the CEMT transaction and issue the INQ TAS command.

Alternatively, you can set up a URIMAP definition that includes the following attributes:

Path:           /terminal/*
Transaction:  CWBA
Program:      DFHWBTTA

With this URIMAP definition enabled, you can use the following URL path to issue the CEMT INQ TAS
command:

/terminal/CEMT+INQ+TAS

• terminal matches the URIMAP definition, which specifies the name of the alias transaction and
application program.

• CEMT+INQ+TAS is ignored by the URIMAP definition, but tells DFHWBTTA to access the CEMT
transaction and issue the INQ TAS command.

Initial and continuation requests
DFHWBTTA distinguishes two types of HTTP requests by their context in a transaction: initial requests
and continuation requests.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

Initial requests
The initial request initiates a CICS transaction. Send the initial request in one of these ways:

• Type the URL explicitly.
• Select a link in an HTML page.
• Select a button in an HTML form. Any data entered in the form is ignored.

Continuation requests

Continuation requests continue an existing CICS transaction. Send a continuation request in this way:
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• Select a button in an HTML form that was displayed as a response to the previous request.

Continuation requests use the HTML POST method; form data is transmitted in the entity body of the
HTML request.

In a conversational or pseudoconversational transaction, with several interactions between a web client
and CICS, one initial request is followed by one or more continuation requests. Simpler transactions, with
just one interaction, have one initial request and no continuation request.

A hidden element (DFH_STATE_TOKEN) in the HTML form displayed by the initial request and returned by
subsequent requests distinguishes between initial requests and continuation requests and associates
continuation requests with the correct transaction.

The transaction ID on continuation requests
On a continuation request, the URL is coded in the form displayed by the previous request. However, the
transaction ID coded in the URL is ignored on a continuation request.

Instead, the transaction is determined in the following way:

• When the continuation request is part of a conversational transaction, the same transaction continues
execution.

• When the continuation request is part of a pseudoconversational transaction, different transaction IDs
are used:

– If the previous transaction ended with an EXEC CICS RETURN command with the TRANSID option,
the specified transaction ID is used.

– If the previous transaction did not specify a transaction ID on its EXEC CICS RETURN command, but
the AID is associated with a transaction ID, that transaction ID is used.

– If no transaction ID was specified on the EXEC CICS RETURN command, and no transaction ID is
associated with the AID, CICS obtains the transaction ID from the HTML form.

The transaction ID in an HTML form
When a transaction is attached from a 3270 display, CICS expects to find the transaction ID in the first
modified field in the 3270 data stream.

The order in which web clients transmit form data is not always predictable, so CICS uses a mapping
between the name of the form field and the corresponding position on the 3270 screen:

• For transactions that do not use BMS maps, the mapping uses the field name directly, because the
name reflects the position of the field on the 3270 screen.

• For transactions that use BMS maps, the field names do not always reflect the positions on the 3270
screen, and an indirect mapping is used. The mapping uses the hidden variables DFH_NEXTTRANSID.n.
When an HTML template is created from a BMS map, up to five variables are created. The value of each
variable is the name of an input field, in sequence of 3270 buffer position.

When CICS receives an HTTP request, it examines each DFH_NEXTTRANSID field in turn, to determine
the name of the input field to which it refers and whether the HTTP request contains a value for the
field. If it does, because the user has modified it, it is therefore assumed to contain the transaction ID of
the next transaction.

When a screen is constructed by merging the output from several BMS and non-BMS SEND commands,
in some situations input fields are suppressed. See “How the footing section is chosen” on page 144 for
more information. So that CICS can correctly identify the transaction ID in the 3270 data stream, ensure
that input fields that might contain the transaction ID are not suppressed in the merged HTML page.

HTML templates generated from BMS maps
The 3270 display system and HTML forms have a number of similarities. BMS map templates can
represent the features of the 3270 display.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.
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The features of the 3270 display system have many parallels with HTML forms:

• In both cases, the display area can contain fixed text and areas where the user can enter data.
• The AID keys on the 3270 keyboard have a similar function to the buttons displayed on an HTML form.
• In both cases, you can detect whether the user has modified the contents of a data entry field.

Templates generated from BMS maps contain a number of elements to represent the features of the
3270 display:

• Protected fields in the map are displayed as typical HTML text.
• Unprotected fields in the map are displayed as text input elements. CICS gives each element a 2-part

name, which can be up to 32 characters long:

– The first part of the name is 11 characters long, and has the following form:

Frrcccllll_

where

- rr is a 2-digit number that denotes the row in which the field is displayed on a 3270 screen.
- ccc is a 3-digit number that denotes the column in which the field is displayed on a 3270 screen.
- llll is a 4-digit number that denotes the length of the field.

– For BMS fields that are named in the map, the second part consists of the name used in the map,
truncated if necessary to 21 characters.

– For BMS fields that are unnamed, the second part is of the form DFH_nnnn where nnnn is a 4–digit
number. The fields are numbered sequentially as they are encountered in the BMS map.

For example, suppose that the third unnamed and unprotected field is located at row 2 and column 11
of the screen, and has a length of 16 characters. The generated 2-part name is:

F020110016_DFH0003

Now suppose that the same field has a name of TOTAL_MONTHLY_PURCHASES in the BMS map. The
name that CICS generates for the HTML element is:

F020110016_TOTAL_MONTHLY_PURCHAS

Note: The sequence in which fields are displayed on the 3270 screen might not be the same as the
sequence in which they are coded in a BMS map definition. When the corresponding template is
displayed on a web client, the fields are displayed in the sequence in which they are coded.

• Each attention key supported by the 3270 display is simulated as a submit button. The buttons are
named:

– DFH_PF01 through DFH_PF24
– DFH_PA1 through DFH_PA3
– DFH_ENTER, DFH_CLEAR

When the user selects one of these buttons, the corresponding variable is transmitted in the HTTP
request. CICS uses the variable to determine which AID to simulate in the 3270 application.

An additional submit button named DFH_PEN is used with detectable fields.
• Detectable fields are simulated as text elements with a preceding check box. Refer to “Using detectable
fields” on page 129.

• A hidden element (DFH_STATE_TOKEN) is used to maintain the display state seen by the application
over a number of interactions with the web client.

• A hidden element (DFH_CURSOR) and a JavaScript function (dfhinqcursor()) cooperate to return the
cursor position to the application.

• A series of hidden elements (DFH_NEXTTRANSID.1 to DFH_NEXTTRANSID.n) are used to capture a
transaction ID entered in a web client field.
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HTML pages generated from 3270 data streams
For applications that do not use BMS, CICS web support generates an HTML page in three parts: a
heading section, a screen image section, and a footing section.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

The heading section

CICS web support generates the following heading section:

<!doctype html public "-//W3C//DTD HTML 3.2//EN">
<html>
<STYLE TYPE="text/css"> 
<!--                    
    TABLE, TR, TD       
    { padding: 0mm    } 
    TABLE               
    { width: 60%    }   
-->
.BRIGHT
{font-weight: bold}
{font-family: courier}
.INPUT
{font-family: courier}
</STYLE>
<head>
<title>CICS web support screen emulation - tranid</title>
<meta name="generator" content="CICS Transaction Server/2.2.0">
<script language="JavaScript">
<!--
 function dfhsetcursor(n)
  {for (var i=0;i<document.form3270.elements.length;i++)  
     {if (document.form3270.elements[i].name == n)        
         {document.form3270.elements[i].focus();          
          document.form3270.DFH_CURSOR.value=n;           
          break}}}                                        
 function dfhinqcursor(n)                                 
   {document.form3270.DFH_CURSOR.value=n}                 
 // -->
</script>
</head>
<body onLoad="dfhsetcursor('&DFH_CURSORPOSN;')"> 

You can modify the appearance of the page by providing your own heading section. Refer to “Modifying
the output from DFHWBTTA” on page 125.

The screen image section

This section of the HTML page is generated directly from an internal representation of a 3270 screen
image. Its size is determined from the DEFSCREEN and ALTSCREEN definitions on the FACILITYLIKE
terminal definition associated with your transaction. It contains the following elements:
Normal HTML text

Simulates protected fields
Text input elements

Simulate unprotected fields. Each element is given an 11-character name, and it has the following
form:

Frrcccllll_

where

• rr is a 2-digit number, which denotes the row in which the field is displayed on a 3270 screen
• ccc is a 3-digit number, which denotes the column in which the field is displayed on a 3270 screen
• llll is a 4-digit number, which denotes the length of the field

For example:
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• A field at row 1 and column 1 on a 3270 display, and which has a length of 78 bytes is named:

F010010078_

Text elements with a check box
Simulate detectable fields. Refer to “Using detectable fields” on page 129.

Hidden elements
A hidden element named DFH_STATE_TOKEN maintains the display state seen by the application over
a number of interactions with the web client.

A hidden element (DFH_CURSOR) and a JavaScript function (dfhinqcursor()) cooperate to return
the cursor position to the application. CICS uses the JavaScript focus() method to position the
cursor in the input box or field specified by DFH_CURSOR. Note that focus() cannot position the
cursor over a particular character in the input box or field, but only at the first character position.

<!doctype html public "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<title>CICS web support screen emulation - tranid</title>
<meta name="generator" content="CICS Transaction Server/2.1.0">
<script language="JavaScript">
<!--
 function dfhsetcursor(n)
  {for (var i=0;i<document.form3270.elements.length;i++)  
     {if (document.form3270.elements[i].name == n)        
         {document.form3270.elements[i].focus();          
          document.form3270.DFH_CURSOR.value=n;           
          break}}}                                        
 function dfhinqcursor(n)                                 
   {document.form3270.DFH_CURSOR.value=n}                 
 // -->
</script>
</head>
<body onLoad="dfhsetcursor('&DFH_CURSORPOSN;')">  

The HTML generated from the 3270 screen image is similar to the HTML generated in the templates for
BMS maps. The horizontal and vertical alignment of information on the page is achieved using an HTML
table:

• The HTML table contains one column for each different column of the 3270 screen that contains the
start of a field. For example, if the 3270 screen contains fields that start in columns 2, 11, 21, and 55,
the HTML table contains four columns. Thus, all fields with starting positions vertically aligned in the
3270 screen are vertically aligned in the HTML page.

• The HTML table contains one row for each row of the 3270 screen that contains the start of a field.
Thus, all fields with starting positions horizontally aligned in the 3270 screen are horizontally aligned in
the HTML page. Rows on the 3270 screen that do not contain fields are not represented in the HTML
table.

• In the table, text is displayed in a proportional font.

Consider a 3270 screen containing the following fields:

Field Row Starting column

Field_1 2 2

Field_2 3 2

Field_3 3 35

Field_4 4 2

Field_5 4 35

Field _6 9 2

Field_7 9 18
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Field Row Starting column

Field_8 9 35

All the fields start in column 2, 18, or 35 of the 3270 screen. Therefore, the resulting HTML table has
three columns. Similarly, all the fields are located on row 2, 3, 4, or 9 of the 3270 screen, so the HTML
table has four rows.

You can use the encode function of a converter program to modify the screen image section. Refer to
“Using a converter program with DFHWBTTA” on page 127.

The footing section

CICS web support generates the following footing section. Each attention key supported by the 3270
display is simulated as a submit button. When the user selects a button, the corresponding variable is
transmitted in the HTTP request. CICS uses the variable to determine which AID to simulate in the 3270
application. An additional submit button named DFH_PEN is used with detectable fields.

<input type="submit" name="DFH_PF1"  value="PF1">
<input type="submit" name="DFH_PF2"  value="PF2">
<input type="submit" name="DFH_PF3"  value="PF3">
<input type="submit" name="DFH_PF4"  value="PF4">
<input type="submit" name="DFH_PF5"  value="PF5">
<input type="submit" name="DFH_PF6"  value="PF6">
<input type="submit" name="DFH_PF7"  value="PF7">
<input type="submit" name="DFH_PF8"  value="PF8">
<input type="submit" name="DFH_PF9"  value="PF9">
<input type="submit" name="DFH_PF10"  value="PF10">
<input type="submit" name="DFH_PF11"  value="PF11">
<input type="submit" name="DFH_PF12"  value="PF12">
<br>
<input type="submit" name="DFH_PF13"  value="PF13">
<input type="submit" name="DFH_PF14"  value="PF14">
<input type="submit" name="DFH_PF15"  value="PF15">
<input type="submit" name="DFH_PF16"  value="PF16">
<input type="submit" name="DFH_PF17"  value="PF17">
<input type="submit" name="DFH_PF18"  value="PF18">
<input type="submit" name="DFH_PF19"  value="PF19">
<input type="submit" name="DFH_PF20"  value="PF20">
<input type="submit" name="DFH_PF21"  value="PF21">
<input type="submit" name="DFH_PF22"  value="PF22">
<input type="submit" name="DFH_PF23"  value="PF23">
<input type="submit" name="DFH_PF24"  value="PF24">
<br>
<input type="submit" name="DFH_PA1"   value="PA1">
<input type="submit" name="DFH_PA2"   value="PA2">
<input type="submit" name="DFH_PA3"   value="PA3">
<input type="submit" name="DFH_CLEAR" value="Clear">
<input type="submit" name="DFH_ENTER" value="Enter">
<input type="submit" name="DFH_PEN"   value="Pen">
<input type="reset"  value="Reset">
</form>
</body>
</html>

You can modify the appearance of the page by providing your own footing section. Refer to “Modifying the
output from DFHWBTTA” on page 125.

Modifying the output from DFHWBTTA
You can modify the output from DFHWBTTA either by customizing the HTML or by providing your own
heading and footing sections.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

About this task

For applications that use BMS, you can customize the HTML templates created from BMS maps. See
“Generating customized HTML templates” on page 131.
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For non-BMS applications, and BMS applications started using DFHWBTTC, you can modify the
appearance of the page by providing your own heading and footing sections. You cannot change the
screen image section directly, although tags that you insert in the heading section might affect the
appearance of the following sections.

Procedure

• To provide your own heading and footing sections, define and install one or more of the following
templates.
Their names are defined in the TEMPLATENAME fields of DOCTEMPLATE definitions.
tranHEAD

This template is inserted at the head of the HTML page that is the output for transaction tran, if it is
installed.

CICSHEAD
This template is inserted at the head of the HTML page that is the output for transactions which do
not have a corresponding tranHEAD template installed.

tranFOOT
This template is inserted at the foot of the HTML page that is the output for transaction tran, if it is
installed. If this template is not installed, CICSFOOT is used instead.

CICSFOOT
This template is inserted at the foot of the HTML page that is the output for transactions that do
not have a corresponding tranFOOT template installed.

For more information about creating document templates, see Programming with documents and
document templates.

The heading section generated by CICS web support, including DFHWBTTC, uses the EBCDIC Latin
character set (code page 037).
• If you use a different code page in your CICS system, you must create a similar heading section, using

your own code page:
a) Create a document template called CICSHEAD containing your heading section.
b) Define and install a DOCTEMPLATE definition for the template.
The following characters used in the CICS-generated heading section have different representations in
code pages other than 037:

! [ ] { }

Supplying your own heading template
If you supply your own heading template, you must provide some of the required elements of an HTML
page.

About this task

A heading template typically contains the following HTML elements:

• A doctype tag. For example:

<!doctype html public "-//W3C//DTD HTML 3.2//EN>

• An <html> tag.
• A <head> tag.
• A <STYLE> tag, which must contain style sheet rules for the BRIGHT and INPUT classes. For example:

<STYLE TYPE="text/css"> 
<!--                    
    TABLE, TR, TD       
    { padding: 0mm    } 
    TABLE               
    { width: 60%    }   

126  CICS TS for z/OS: Internet Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/doctemplate/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/designing/dfhp3_doc_prog.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/designing/dfhp3_doc_prog.html


-->
.BRIGHT
{font-weight: bold}
{font-family: courier}
.INPUT
{font-family: courier}
</STYLE>

You can use the width attribute of the TABLE element to fine tune the appearance of the screen image
section.

• A </head> tag.
• A <body> tag. You can use this tag to specify text colors or an image to be used as the background for

the page. For example:

<body background="/dfhwbimg/background2.gif" bgcolor="#FFFFFF"
 text="#000000" link="#00FFFF" vlink="#800080" alink="#FF0000"
onLoad="dfhsetcursor('&DFH_CURSORPOSN;')">

Note: This example uses DFHWBIMG, which is described in “Using DFHWBIMG to display graphics” on
page 129.

• Optionally, any other HTML elements that you need to customize the page.

Supplying your own footing template
If you supply your own footing template, you must provide some of the required elements of an HTML
page.

About this task

A footing template typically contains the following HTML elements:

• Input buttons to represent any programmed function keys or the ENTER key. For example:

<input type="submit" name="DFH_PF1"  value="Help">
<input type="submit" name="DFH_PF3"  value="Quit">
<input type="submit" name="DFH_ENTER"  value="Continue">
 

These buttons form part of the HTML form begun by CICS. The buttons, when selected by the user,
produce the AID indicator discussed in “HTML pages generated from 3270 data streams” on page 123,
with the names described there. The value parameter specifies the legend that appears on the
generated button. It is not used by DFHWBTTA.

• A </form> tag.
• Optionally any other HTML elements that you need to customize the page.
• A </body> tag to close the page.
• An </html> tag.

Using a converter program with DFHWBTTA
You can use the decode function of the converter program to modify requests passed to DFHWBTTA.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

About this task

You can modify requests in these ways:

• When an HTML form is submitted by the client using one of the buttons that represent an attention key,
the request contains a field indicating which button was selected. You can simulate the effect of a
different attention key by modifying the request. Change the value of the field to the intended attention
key, or insert a new field after the one transmitted by the web client.
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• When an HTML form is submitted by the client, the DFH_CURSOR field contains the name of the field
that contains the cursor. You can simulate the effect of a different cursor position by modifying the
request. Change the value of the DFH_CURSOR field to contain a different field name, or insert a new
DFH_CURSOR field after the one transmitted by the web client.

• You can select the next transaction ID by changing the DFH_NEXTTRANSID.n variables in the
continuation request. You can insert or delete a variable, or change the value of one of them. For more
information about how these fields are used to determine the next transaction ID, see “The transaction
ID in an HTML form” on page 121.

Do not modify the value of DFH_STATE_TOKEN.

You can use the encode function of the converter program to modify the output from DFHWBTTA:

• The response is in a buffer that begins with a 32-bit unsigned number that specifies the length of the
buffer. The rest of the buffer is the HTTP response. The HTML in the response is that corresponding to
the output BMS map or 3270 data stream from the transaction program.

• The HTTP headers in the HTTP response are generated automatically by DFHWBTTA. These headers are
generated by DFHWBTTA:

– Content-type: text/html
– Content-length: <length of the entity body>
– Pragma: no-cache
– Connection: Keep-Alive (if this connection is an HTTP 1.0 persistent connection)

If any additional headers are required, use the Encode function of the converter to add them to the
HTTP response.

Enabling detectable fields
To enable detectable field processing over the CICS web support 3270 bridge, define a bridge facility with
light pen support enabled.

Procedure

1. Copy the following definitions to a new group. Unless all applications running on the CICS system
require light pen support, you must also rename both definitions:

• The CICS-supplied bridge facility CBRF, in group DFHTERM
• Its default TYPETERM, DFHLU2, in group DFHTYPE

2. In the TYPETERM definition, change the LIGHTPEN option under DEVICE PROPERTIES to YES.
3. In the TERMINAL definition, change the TYPETERM parameter to point to the new TYPETERM.
4. Install the definitions in the CICS region.
5. If you have created a new bridge facility definition, update the PROFILE definition of the 3270

transaction that you are going to run with CICS web support, so that the bridge facility is modeled on
the new TERMINAL and TYPETERM definitions:
a) Identify the PROFILE that the transaction uses by using CEDA to view the PROFILE parameter of

the TRANSACTION definition.
b) If the profile is a CICS-supplied profile, copy it to your own group and rename it.
c) Alter the new PROFILE and enter the name of your new bridge facility in the FACILITYLIKE

parameter.
d) Alter your TRANSACTION definition to use the new PROFILE definition.
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Using detectable fields
When CICS generates an HTML page from the 3270 data stream, it simulates detectable fields with a text
input field preceded by a check box.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

Before you begin

To use detectable fields, configure the bridge facility associated with the transaction. Refer to “Enabling
detectable fields” on page 128.

About this task

Detectable fields are as follows:

• The field attribute byte identifies the field as being detectable or intensified.
• The primary character of the 3270 field contains a valid designator character. This character can be an

ampersand (&), a greater then sign (>), a question mark (?), a blank, or a null.

For more information about detectable fields, see BMS field selection features.

When the check box and text input field are displayed on the web client, note these characters:

• The designator character in the 3270 field is not displayed. Accordingly, the field length in the web
client is one character shorter than it is in the 3270 data stream.

• If the designator character is a greater than sign (>), the check box contains a check symbol (✓).
Otherwise, the check box is empty.

To use the detectable field on the web client:

Procedure

• Check the check box to simulate setting the modified data tag (MDT) bit in the 3270 data stream.
Uncheck the box to set the modified data tag off.
Entering data in the text field in the HTML page does not change the modified data tag.

• To transmit data to the CICS application, check the check box , and select the DFH_PEN button.

– If only one attention field is checked, the CICS application receives the contents of that field. The
EIBAID field is set to DFHPEN.

– If several attention fields are checked, the CICS application receives the contents of the field
closest to row 1 and column 1 of the 3270 screen. The EIBAID field is set to DFHPEN.

– If no attention fields are checked, CICS receives the contents of all the fields. The EIBAID field is set
to DFHENTER.

Using DFHWBIMG to display graphics
CICS supplies graphics that you can use in your web applications.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

About this task

CICS supplies these graphics:
CICS.GIF

The CICS logo
MASTHEAD.GIF

The CICS logo with the text 'CICS Web Interface'
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BACKGROUND1.GIF
A background containing the characters 'CICS'

BACKGROUND2.GIF
A background containing the characters 'CWI'

TEXTURE1.JPEG
A textured background

TEXTURE2.JPEG
A textured background

TEXTURE3.JPEG
A textured background

TEXTURE4.JPEG
A textured background

TEXTURE5.JPEG
A textured background

TEXTURE6.JPEG
A textured background

To display the graphics on your web browser, enter a URL in which (after translation to uppercase) the
path is in this form:

/DFHWBIMG/filename

where filename is the name of one of the graphics listed. For example:

 /DFHWBIMG/Texture1.jpeg

To incorporate any of the graphics in your output, include the path in the appropriate HTML tag. For
example, you can include a textured background with the following tag:

<body background="/DFHWBIMG/background1.gif" ... >

CICS processes HTTP requests in which the path begins with /DFHWBIMG as a special case; the analyzer
is not called, and DFHWBIMG runs as the converter program.

CICS uses some of these graphics in the templates used for CICS-supplied transactions.

The graphics that CICS supplies are hard coded as part of DFHWBIMG and are not available as separate
files; DFHWBIMG does not support the display of graphics apart from the ones named.

Creating HTML templates from BMS definitions
To create an HTML template from an existing BMS map set for which you do not have the source code,
you might be able to reconstruct the source from the corresponding load module.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

About this task
How to re-create BMS macro statements from a mapset load module

Use the BMS macro generation utility program (DFHBMSUP). This utility can re-create the original
BMS macros that were assembled to produce a mapset load module, when the macro statements are
no longer available. DFHBMSUP generates map definition macros that are equivalent to the originals,
and thus can be used to recreate symbolic maps; however, it is not possible to recover the original
field names used. You must edit the field names generated by the utility.

For details, see BMS macro generation utility (DFHBMSUP).
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How to install HTML templates created from a BMS map set
CICS provides catalogued procedure DFHMAPT for installing HTML templates that have been created
from a BMS map set. See Using the DFHMAPT procedure to install HTML templates from BMS maps
for details.

BMS-generated templates
A template generated from a BMS map contains constants and input fields, buttons, hidden variables, a
JavaScript function and a JavaScript exception handler.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

A template contains these items:

• Constants and input fields from the map.
• Buttons to represent the following:

– ENTER and CLEAR keys
– PA1, PA2, and PA3 keys
– Program function keys PF1 to PF24
– HTML reset

• Up to five hidden variables, DFH_NEXTTRANSID.1 to DFH_NEXTTRANSID.5, the values of which are the
names of the first five fields in the map. “CICS web support and 3270 display applications” on page 117
explains the use of these variables.

• A hidden variable DFH_CURSOR, the value of which is the name of the field in which the cursor is set in
the map. If the cursor is located in an unnamed field, DFH_CURSOR is zero.

• A JavaScript function dfhsetcursor(). When DFH_CURSOR contains the name of a field, the function
sets the cursor position to that field.

• A JavaScript exception handler for the onFocus exception. This function calls dfhsetcursor and
tracks the movement of the cursor.

Generating customized HTML templates
You can customize HTML templates generated from BMS maps in several ways. For example, you can
customize the way HTML templates are generated, add HTML text to the generated map, and so on.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

About this task
You can modify the way HTML templates are generated from BMS maps

You can use your customizing macro, instead of the CICS-supplied DFHMSX macro, to create HTML
templates for each of your BMS map definitions. With a customizing macro, you enjoy great flexibility
in defining HTML templates.

For CICS to use your customizing macro, you must specify your macro on the SYSPARM parameter in
the DFHMAPT procedure. For general guidance on how to create your customizing macro, see
“Writing a customizing macro definition” on page 132.

You can code your macro based on the DFHMSX macro, as described in “Customizing with the
DFHMSX macro” on page 133. “Examples of DFHMDX” on page 139 provides examples that show
how you can use DFHMDX macro keyword parameters to customize the HTML templates.

DFHMSX is used when the SYSPARM parameter does not specify a customizing macro name.

You can add HTML text to generated HTML pages
Use the DFHWBOUT macro in the BMS map definitions to add text to the HTML page generated from a
BMS map. The text is displayed only as part of the HTML page. For instructions, see “Customizing
templates with the DFHWBOUT macro” on page 134.
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You can manually edit the generated HTML templates

• To override the dynamic changes to attributes that take place when a program issues a MAP SEND
command.

• To use the HTML template outside the web 3270 environment.

In both cases, you change the Frrcccllll variables that are added by the template generation
process.

Important:

Do not edit CICS-generated HTML templates unless all your SEND MAP commands use the ERASE
option. SEND MAP commands without ERASE result in merging of HTML. Runtime logic is expecting to
encounter HTML that was generated by the CICS template generator. In particular, avoid making
changes to <tr> tags.

Considerations for CETR:

CICS provides HTML templates for the CICS-supplied CETR transaction, which uses BMS. The templates
use the EBCDIC Latin character set (code page 037). If you use a different code page in your CICS system,
you must generate your own version of these templates. The following characters used in the CICS-
generated heading section have different representations in code pages other than 037:

! [ ] { }

Use the CODEPAGE parameter on the DFHMDX macro to specify the code page.

Writing a customizing macro definition
You can use a customizing macro to create HTML templates for each of your BMS map definitions. Your
customizing macro must be a complete assembly language macro definition that is called by CICS-
supplied assembler macros.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

About this task

You write the definition of a customizing macro according to the rules for assembly language macro
definitions. The macro invocations in the definition must also follow the rules for assembly language
macro statements.

A customizing macro definition contains the following elements:

1. A MACRO statement to begin the definition.
2. The name of the macro.
3. Any number of invocations of the DFHMDX macro.

The syntax of DFHMDX is described in “DFHMDX macro” on page 134, and examples of its use are
described in “Examples of DFHMDX” on page 139.

4. A MEND statement to end the definition.

If you want to create a customizing macro based on DFHMSX, see “Customizing with the DFHMSX macro”
on page 133 for details.

Handling white space
When you customize a macro definition, consider the HTML specifications for white space.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.
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About this task

For 3270 terminals, you can use blanks (EBCDIC X'40') and nulls (EBCDIC X'00') to format screen data
positions. When such a data stream is converted into HTML, the client interpretation generates different
output from that found on a 3270 terminal.

A string of blanks is ignored by a client if it immediately follows a start tag, and any subsequent sequence
of contiguous blanks is interpreted as one blank. To force the rendering of all blanks, use the <pre> and
</pre> tags.

The handling of null characters is unspecified, and clients handle them inconsistently. They might or
might not be displayed.

Customizing with the DFHMSX macro
You can modify the way HTML templates are generated from BMS maps by coding your own version of the
DFHMSX macro.

DFHMSX is used when the SYSPARM parameter in the DFHMAPT procedure does not specify a
customizing macro name. DFHMSX is simply coded as is with no parameters. It invokes DFHMDX.

About this task

When you code your own version of the DFHMSX macro, you can specify these items:

• The 3270 keys that are represented by buttons
• The text or image that is displayed on each button
• The title of the HTML page
• A masthead graphic to be displayed at the start of the HTML page
• The page background as a graphic file or color
• The color of normal text, unvisited links, visited links, and active links
• Whether the page should include an HTML reset button, and the text displayed on it
• A mapping between the colors used in the BMS map and the colors used for the corresponding text in

the HTML template
• Which BMS fields are suppressed from the HTML page
• JavaScript onLoad() and onUnload() exception handlers
• Whether the text in the template is displayed in a proportional or nonproportional font
• The code page to be used when the template is generated, and the code point to be used for the special

characters []{} and !
• Whether protected fields are right-aligned in the HTML page

Note:

1. The ATTRB=BRT option of a BMS field does not affect an unnamed, unprotected (input) field.
2. DFHBMEOF, a 3270 attribute bit of the attribute byte of a field named in the logical map, is not set if

the field is emptied (for example, with the DEL key), or if the field was already empty (nulls or spaces)
on the previous SEND command and the Modified Data Tag (MDT) of that field was off.

When you code your own version of the DFHMSX macro, you can specify the maps to which the options
apply:

• All maps in all map sets
• All maps in certain map sets
• Individual maps

See “Examples of DFHMDX” on page 139 for customization examples.
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Customizing templates with the DFHWBOUT macro
Use the DFHWBOUT macro to add text to the HTML page generated from a BMS map. The text is
displayed only as part of the HTML page.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

About this task

If the macro is used before the first occurrence of DFHMDF in a map, the text is placed in the <head>
section of the HTML page. If the macro is used elsewhere in the map, the text is placed immediately
following the text generated by the preceding DFHMDF macro.

Do not use the DFHWBOUT macro when the application program builds the screen display using multiple
BMS maps.

DFHWBOUT
DFHWBOUT macro

DFHWBOUT macro
DFHWBOUT ' text '

, SOSI =

NO

YES

The parameters of this macro are as follows:

text
The text that is to be inserted in the HTML page.

SOSI
Whether the text contains DBCS characters delimited by shift-out (X'0E') and shift-in (X'0F'). The
default is SOSI=NO.

When you use the DFHWBOUT macro, note that the HTML text that you insert might affect the page layout
generated from the BMS map fields. You might have to adjust the inserted text to ensure a correct page
layout.

DFHMDX macro
The DFHMDX macro is called from within DFHMSX or from your customizing macro definitions.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

Its syntax is shown in Figure 15 on page 135.
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DFHMDX

DFHMDX MAPSET=  name

,MODULE=  name

,MAP=
*

name

MAPSET=* ,MAP=*

,DOCTYPE= '-//W3C//DTD HTML 3.2//EN'

doctype

,TITLE='  title-text '

,MASTHEAD= url

url,'alternate text'

,BACKGROUND=  url

,BGCOLOR= color

,TEXT= color ,LINK= color ,VLINK= color ,ALINK= color

,

,

key = button ,

,

bmscolor = color

,RESET=

YES

NO

' text '

,RALIGN=(

,

( row , col ) )

,SUPPRESS=(

,

( row , col )

,HEAD ,FOOT

)

,ONLOAD='  text ' ,ONUNLOAD='  text '

,PROPFONT=

YES

NO

OPENSQ = char

hex-value

CLOSESQ = char

hex-value

OPENBR = char

hex-value

CLOSEBR = char

hex-value

EXCLAM = char

hex-value

,CODEPAGE=  code page

,NUMALIGN=

NO

YES

Figure 15. Syntax of DFHMDX
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The keyword parameters to this macro can be in any order.

MAPSET
Specifies the name of the map set that contains the map to which other options refer. If you specify
an asterisk, the options become the default to all subsequent map sets.

MODULE
Specifies the name of the load module into which the map set is link-edited. You can use this
parameter only if you do not specify MAPSET=*. The name that you specify (which can only be 7
characters) is used to construct the names of the templates by adding a single character suffix. The
default value is the name of the map set.

MAP
Specifies the name of the map within the map set specified in MAPSET to which the options refer. If
you specify an asterisk, the options become the default to all subsequent maps.

DOCTYPE
Specifies the DTD public identifier part of the <!doctype> tag that you want to be displayed in the
HTML template. The default is -//W3C//DTD HTML 3.2//EN, which specifies HTML 3.2. Level 3.2 is
required for the color support in certain HTML tags.

TITLE
Specifies the title to be used as the HTML title and as the content of the first <h1> tag.

MASTHEAD
Specifies the URL of a masthead graphic to be displayed at the head of a page before the first <h1>
tag. If you supply alternate-text, the client uses the text if it cannot load the specified graphic.

BACKGROUND
Specifies the URL of a graphic file for the page background.

BGCOLOR
Specifies the color of the page background.

TEXT
Specifies the color of normal text.

LINK
Specifies the color of unvisited hypertext links on the page.

VLINK
Specifies the color of visited hypertext links on the page.

ALINK
Specifies the color of activated hypertext links on the page.

PF1-PF24
Specifies the name or image to be assigned to the simulated button for the corresponding 3270
program function key.

PA1-PA3
Specifies the name or image to be assigned to the simulated button for the corresponding 3270
program attention key.

CLEAR
Specifies the name or image to be assigned to the simulated button for the 3270 Clear key.

ENTER
Specifies the name or image to be assigned to the simulated button for the 3270 Enter key.

PEN
Specifies the name or image to be assigned to the simulated button for pen selection.

BLUE
Specifies the color to be displayed in the HTML page where blue is specified in the BMS map. The
default is #0000FF.

Restriction: DFHMDX overrides the color of unnamed fields only; it leaves named fields unchanged.
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GREEN
Specifies the color to be displayed in the HTML page where green is specified in the BMS map. The
default is #008000.

Restriction: DFHMDX overrides the color of unnamed fields only; it leaves named fields unchanged.

NEUTRAL
Specifies the color to be displayed in the HTML page where neutral is specified in the BMS map. The
default is #000000.

Restriction: DFHMDX overrides the color of unnamed fields only; it leaves named fields unchanged.

PINK
Specifies the color to be displayed in the HTML page where pink is specified in the BMS map. The
default is #FF00FF.

Restriction: DFHMDX overrides the color of unnamed fields only; it leaves named fields unchanged.

RED
Specifies the color to be displayed in the HTML page where red is specified in the BMS map. The
default is #FF0000.

Restriction: DFHMDX overrides the color of unnamed fields only; it leaves named fields unchanged.

TURQUOISE
Specifies the color to be displayed in the HTML page where turquoise is specified in the BMS map. The
default is #00FFFF.

Restriction: DFHMDX overrides the color of unnamed fields only; it leaves named fields unchanged.

YELLOW
Specifies the color to be displayed in the HTML page where yellow is specified in the BMS map. The
default is #FFFF00.

Restriction: DFHMDX overrides the color of unnamed fields only; it leaves named fields unchanged.

RESET
Specifies whether the HTML reset function is to be supported. Specify YES to get a default reset
button with the default legend Reset. Specify NO to get no reset button. Specify your own text for a
reset button with your own legend.

RALIGN
Specifies BMS map fields in which data is to be right-aligned in the HTML page. The values rr and cc
specified must correspond to the POS=(rr,cc) specification on the DFHMDF macro for a field to be
right-aligned. Each pair must be enclosed in parentheses, and the whole list of pairs must be enclosed
in parentheses. If you want to right-align every qualifying field that ends in a particular column,
specify the end column number and put an asterisk for the row specification. Calculate the end
column number for a field by adding its start column number to its LENGTH, as defined in the
DFHMDF macro. Fields are right-aligned only if they are protected, unnamed, and are initialized with
an INITIAL, XINIT, or GINIT value in the DFHMDF macro. The RALIGN parameter is ignored if you
specify it with MAP=* or MAPSET=*.

If you want to specify a list that exceeds the assembly language program limit of 256 characters for a
character string in macro definitions, code extra DFHMDX macros with the same MAPSET and MAP
values, and put more values in the RALIGN parameters.

SUPPRESS
Specifies BMS map fields that are not to be displayed in the HTML page. Specify any number of row
and column pairs for the start positions of the fields to be suppressed. The values rr and cc specified
must correspond to the POS=(rr,cc) specification on the DFHMDF macro for a field to be suppressed.
Each pair must be enclosed in parentheses, and the whole list of pairs must be enclosed in
parentheses. If you want to suppress all the fields in a row, specify the row number and put an
asterisk for the column specification. The SUPPRESS parameter is ignored if you specify it with MAP=*
or MAPSET=*.
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Use the keyword HEAD to suppress the heading section in the template. Use the keyword FOOT to
suppress the footing section in the template.

If you want to specify a list that exceeds the assembly language program limit of 256 characters for a
character string in macro definitions, code extra DFHMDX macros with the same MAPSET and MAP
values, and put more values in the SUPPRESS parameters.

ONLOAD
Specifies the JavaScript text to be used to replace the standard onLoad exception handler for the
HTML page. The text must not contain double quotes ("), and single quotes (') must be doubled ('')
following the usual assembly language program conventions. If you use this parameter, you suppress
the setting of the cursor to the field indicated by DFH_CURSOR provided by the standard onLoad
exception handler. You can use the function dfhsetcursor to set the cursor position.

ONUNLOAD
Specifies the JavaScript text to be used as the onUnload exception handler for the HTML page. The
text must not contain double quotes ("), and single quotes (') must be doubled (''), following the
usual assembly program language conventions.

PROPFONT
Specifies the font. If YES, the template specifies that text is to be presented in a proportional font, and
consecutive spaces are to be reduced to a single space. If NO, the template specifies that text is to be
specified in a font of fixed pitch, and consecutive spaces are to be preserved.

OPENSQ
The hex value or the character to be used to display an open square bracket. The default is X'BA'
(code page 37).

CLOSESQ
The hex value or the character to be used to display a close square bracket. The default is X'BB' (code
page 37).

OPENBR
The hex value or the character to be used to display an open brace. The default is X'C0' (code page
37).

CLOSEBR
The hex value or the character to be used to display a close brace. The default is X'D0' (code page 37).

EXCLAM
The hex value or the character to be used to display an exclamation mark. The default is X'5A' (code
page 37).

CODEPAGE
Specifies the IBM code page number in which any text generated by the template generation process
is encoded. This code page must match the code page used when the templates are used by CICS,
either in the HOSTCODEPAGE option of the EXEC CICS DOCUMENT command or in the SRVERCP
option of the DFHCNV macro selected by the analyzer program.

The standard CICS form of a host code page name consists of the code page number (or more
generally CCSID) written using 3 to 5 decimal digits as necessary, then padded with trailing spaces to
8 characters. For code page 37, which is fewer than 3 digits, the standard form is 037. CICS accepts
any decimal number of up to 8 digits (padded with trailing spaces) in the range 1 to 65,535 as a code
page name, even if it is not in the standard form.

The CODEPAGE parameter must specify an EBCDIC-based code page if any symbol processing is
required, as the delimiters used for symbol and symbol list processing are assumed to be in EBCDIC.

The default code page is 037.

NUMALIGN
Specifies how fields that are explicitly defined as numeric in the DFHMDF macro are aligned in the
table cells in the HTML template:
NO

Specifies that numeric fields are not right-aligned in their table cells. This is the default.
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YES
Specifies that numeric fields are right-aligned in their table cells:

• For a protected field, the generated HTML text is right-aligned in the cell. If the text contains
trailing blanks, they might not be preserved; some clients replace them with a single blank.

Note: The RALIGN parameter preserves trailing blanks; the NUMALIGN parameter does not. If
both parameters apply to a field (that is, if a numeric field is identified by the RALIGN parameter,
and NUMALIGN=YES is specified), trailing blanks are not preserved.

• For an unprotected field, the HTML text input element (but not the text in the element) is right-
aligned in the cell.

color can be an explicit specification #rrggbb, where rr, gg, and bb are 2-digit hexadecimal numbers
giving the intensities of red, green, and blue in the requested color, or it can be any one of the following
color names: AQUA, BLACK, BLUE, FUCHSIA, GRAY, GREEN, LIME, MAROON, NAVY, OLIVE, PURPLE, RED,
SILVER, TEAL, WHITE, YELLOW.

key can be any of PF1 to PF24, PA1 to PA3, CLEAR, ENTER, and PEN.

button can be (IMAGE,url), where url specifies the URL of a graphic image to be used for the button, or
'text', where text is the text to be put in the button, or NO if the button is not to be displayed.

bmscolor can be any of BLUE, GREEN, NEUTRAL, PINK, RED, TURQUOISE, and YELLOW.

Examples of DFHMDX
These examples show how to code DFHMDX keyword parameters to customize the generation of HTML
templates from BMS maps.

You can code your own version of the DFHMSX macro. See “Customizing with the DFHMSX macro” on
page 133 for a summary on how you can customize HTML templates. Refer to the following examples to
help you code DFHMDX in your customizing macro.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

The following example shows a customizing macro definition. DFHMSX is simply coded as is with no
parameters. It invokes DFHMDX. The first invocation of DFHMDX sets defaults for the values to be applied
to subsequent invocations of DFHMDX by specifying * for the map set name and map name. Later
invocations override or add to the parameters for specific maps in the map set. The continuation
characters are in column 72, and the continued text is resumed in column 16.

         MACRO
         DFHMSX
         DFHMDX MAPSET=*,MAP=*,                                        *
               F1='Help',F3='Exit',F4='Save',F9='Messages'
         DFHMDX MAPSET=DFHWB0,MAP=*,                                   *
               TITLE='CICS Web Interface',                             *
               F3='Messages'
         DFHMDX MAPSET=DFHWB0,MAP=DFHWB02,                             *
               TITLE='CICS Web Interface Enable',                      *
               F3='Save'
         MEND

When CICS creates the templates for each of your BMS map definitions, it calls the customizing macro
specified on the SYSPARM parameter in the DFHMAPT procedure. If the SYSPARM parameter does not
specify a customizing macro name, DFHMSX is used. Each macro is processed in sequence, and, if
applicable, the parameter values are stored. Where a duplicate parameter is specified for a particular map
or map set, the new value replaces the previous value for that map or map set only.

• The first DFHMDX macro in this example specifies MAPSET=*,MAP=* and F3='Exit'. This value of F3
applies to every map set and map for which a different value is not specified in a subsequent DFHMDX
macro.

• The second DFHMDX macro specifies MAPSET=DFHWB0,MAP=* and F3='Messages'. This value of F3
applies to every map in map set DFHWB0 for which a different value is not specified in a subsequent
DFHMDX macro.
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• The third DFHMDX macro specifies MAPSET=DFHWB0,MAP=DFHWB02 and F3='Save'. This value
applies only to map DFHWB02 in map set DFHWB0.

The default template generated from the BMS map contains buttons to represent all the following keys:

• ENTER and CLEAR keys
• PA1, PA2, and PA3 keys
• Function keys F1 to F24
• HTML reset

However, if you use the DFHMDX macro to specify the buttons that you want in your template, only the
buttons you specify are included in the template. For example, if you code as follows, the template will
contain buttons for the F3 and ENTER keys only:

DFHMDX MAPSET=*,MAP=*,F3='Exit',ENTER='Continue'

Here are further examples showing how you can customize the HTML template generated from a BMS
map.

• Support the application to use keys that are not in the standard output

You can add a button to the map AD001 as follows:

       DFHMDX MAP=AD001,Fxx='Resubmit'

where Fxx is the new function key number that you want to specify. The web client displays a button
with the legend "Resubmit". If the user clicks this button, it is reported to the application as Fxx.

• Suppress the HTML Reset function

You can suppress the Reset function for the map AD001 as follows:

        DFHMDX MAP=AD001,RESET=NO

The web client displays a page that does not contain a Reset button.
• Change the appearance of the buttons, or the text associated with them

You can change the legend on the F1 button as follows:

        DFHMDX F1='Help'

The web client displays a button with the legend "Help". If the user clicks this button, it is presented to
the application as F1.

• Provide an HTML title for the HTML page

You can add a title to a displayed map as follows:

        DFHMDX MAP=DFHWB01,TITLE='CICS web interface'

The web client displays "CICS web interface" as the title of the page.
• Provide a masthead graphic for the HTML page

Write a DFHMDX macro for the map that is to have the masthead. For example:

        DFHMDX MASTHEAD=(/dfhwbimg/masthead.gif,'CWI')

The web client uses the specified masthead, or shows "CWI" as the masthead if it cannot find the
graphic file.

• Change the color of the background, or specify a special background

Write a DFHMDX macro for the map that is to have a special background. For example:

        DFHMDX MAP=AD001,BACKGROUND=/dfhwbimg/texture4.jpeg
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The web client uses the specified file as a background for the page.

To change the color of the background, use the BGCOLOR parameter.
• Modify the BMS colors

To modify the BMS colors, write a DFHMDX macro like the following:

        DFHMDX MAP=AD001,BLUE=AQUA,YELLOW=#FF8000

The web client shows BMS blue text in HTML aqua (the same as BMS turquoise) and BMS yellow text in
bright orange.

• Suppress parts of the BMS map

You can suppress a field in a map as follows:

        DFHMDX MAP=AD001,SUPPRESS=((5,2),(6,2),(7,*))

The displayed page does not contain the field at row 5 column 2, nor the field at row 6 column 2, nor
any of the fields in row 7 of the map.

• Add web client control functions

If you want a JavaScript function to be called when a page is loaded, use the ONLOAD parameter of the
DFHMDX macro in your customization macro. For example, if you code:

         DFHMDX MAP=AD001,ONLOAD='jset(''CWI is wonderful'',''Hello there!'')'

JavaScript function jset() is invoked with the given parameters when the page is loaded.

To complete this customization, add the definition of the jset function to the header of the HTML page
with a DFHWBOUT macro. You must put the macro invocation before the first DFHMDF macro in the
BMS map definition. Here is a sample:

         DFHWBOUT '<script language="JavaScript">'
         DFHWBOUT 'function jset(msg,wng)'
         DFHWBOUT '         {window.status = msg; alert(wng)}'
         DFHWBOUT '</script>'

When the page is loaded, the status area contains the message "CWI is wonderful", and an alert window
opens that contains the message "Hello there!".

• Add text that appears only on the HTML page, but is not part of the BMS map

Put DFHWBOUT macros in the BMS map definition at the point where you want the text to appear. For
example:

         DFHWBOUT '<p>This text illustrates the use of the DFHWBOUT macro,'
         DFHWBOUT 'which can be used to output text that should only appear'
         DFHWBOUT 'in HTML templates, and will never appear in the'
         DFHWBOUT 'corresponding BMS map.'

produces the following lines in the HTML template:

<p>This text illustrates the use of the DFHWBOUT macro,
which can be used to output text that should only appear
in HTML templates, and will never appear in the
corresponding BMS map.

• Add HTML header information to the HTML page

Put DFHWBOUT macros in the BMS map definition before the first occurrence of DFHMDF. For example:

        DFHWBOUT '<meta name="author" content="E Phillips Oppenheim">'
         DFHWBOUT '<meta name="owner"  content="epoppenh@xxxxxxx.yyy.co*
               m">'
         DFHWBOUT '<meta name="review" content="19980101">'
         DFHWBOUT '<meta http-equiv="Last-Modified" content="&WBDATE&W*
               BTIME GMT">'
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produces the following lines in the head section of the HTML template:

<meta name="author" content="E Phillips Oppenheim">
<meta name="owner"  content="epoppenh@xxxxxxx.yyy.com">
<meta name="review" content="19980101">
<meta http-equiv="Last-Modified" content="23-Dec-1997 12:06:46 GMT">

DFHMSD sets the values of &WBDATE and &WBTIME to the time and date at which the macro is
assembled.

• Use country-specific characters in JavaScript and HTML

You can be modify the default US code page 37, which is used to produce the template, for different
code pages. For example:

DFHMDX OPENSQ=[,CLOSESQ=],OPENBR={,CLOSEBR=},EXCLAM=!

specifies the substitutions needed. You must enter the characters on a terminal on which the code page
corresponds to the SERVERCP on the DFHCNV call.

• Make fields right-aligned in the HTML page

You can align the data in a field as follows:

DFHMDX MAPSET=MAPSETA,MAP=AD001,RALIGN=((3,5),(*,15),(*,3),(6,7),(*,83))

In this example, data will be aligned in all the following fields:

DFHMDF POS=(3,5),LENGTH=4,INITIAL='TEXT',ATTRB=PROT
DFHMDF POS=(5,80),LENGTH=3,INITIAL='123',ATTRB=PROT
DFHMDF POS=(2,10),LENGTH=5,INITIAL='  EXT',ATTRB=ASKIP
DFHMDF POS=(4,8),LENGTH=7,INITIAL='INITEX ',ATTRB=PROT
DFHMDF POS=(1,1),LENGTH=2,XINIT='C1C2',ATTRB=ASKIP
DFHMDF POS=(6,7),LENGTH=4,XINIT='0E44850F',ATTRB=PROT,SOSI=YES
DFHMDF POS=(2,9),LENGTH=6,XINIT='0E448544830F',SOSI=YES,ATTRB=PROT
DFHMDF POS=(2,9),LENGTH=6,XINIT='448544834040',PS=8,ATTRB=PROT

• Make numeric fields right-aligned

You can make all fields with the NUMERIC attribute right-aligned in their HTML table cells as follows:

DFHMDX MAPSET=MAPSETA,MAP=AD001,NUMALIGN=YES

Installing the HTML templates
Some of your application programs might require customized HTML pages.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

Procedure

1. Review your CICS application programs and their use of BMS to see if customization is necessary.
2. For applications that need customized HTML pages, create a customization macro definition, and store

it in a library in the concatenation of macro libraries specified in the SYSLIB DD statement for the
assembly program. Write appropriate DFHWBOUT macro invocations, and put them in the appropriate
places in your map definitions.

3. Assemble the existing map definitions with TYPE=TEMPLATE on the DFHMSD macro or
SYSPARM=TEMPLATE in the parameters passed to the assembly program. Note that the label on the
DFHMSD macro names the HTML templates produced for each map in the map set being processed.
The HTML template names consist of the label from the DFHMSD macro, followed by a 1- or 2-
character suffix generated with the characters A-Z and 0-9. The 2-character suffix is used when the
map set contains more than 36 maps, and in this case the map set name must be 6 characters or less.
For the bridge exit to match the HTML template with the BMS map when a BMS SEND or RECEIVE is
issued by a program, the HTML template members must match the name of the map set value used on
the SEND and RECEIVE statements. If you are using a customizing macro, add the name of the

142  CICS TS for z/OS: Internet Guide



customizing macro to the TYPE. The assembly program produces IEBUPDTE source statements that
set up one template for each map in a map set.

4. Use IEBUPDTE to store the templates in the template library. If the record format of the template
library is not fixed blocked, you need to store them in another partitioned data set, and then convert
them to the record format of the template library using, for instance, ISPF COPY.

5. If you want to put your templates in a partitioned data set other than the one specified in the
DFHHTML DDname, you must define DOCTEMPLATE definitions for your templates, and specify an
alternative DDname.
You must also specify the alternative DDname in your CICS JCL.

To allocate a partitioned data set containing templates to a specific DD name so that you can install
templates from it, use the ADYN sample transaction. First install the DFH$UTIL group, which contains
ADYN and its related programs, and then run ADYN:

ADYN
ALLOC DDNAME(ddname) DATASET('template-pds') STATUS(SHR)

where ddname is the DDname specified in the DOCTEMPLATE definition, and template-pds is the name
of the partitioned data set containing the template to be installed. For further information on installing
and using ADYN, see Developing CICS compatibility interfaces.

Processing large HTML templates
No restriction applies to the size of templates used by transactions that run using the 3270 Bridge.
However, templates that exceed 32 KB of storage are processed differently from smaller templates.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

About this task

To process templates larger than 32 KB, you specify a path that maps to a program name of DFHWBTTB
in the HTTP request. Refer to “URL path components for 3270 display applications” on page 119.

Templates that require less than 32 KB of storage can expand to greater than 32 KB if symbol
substitution significantly increases the amount of data.

When the template is generated, DFHWBTLG issues a message containing the amount of storage required
for each template to be read from the DFHHTML data set. Use these messages to determine whether to
use a program name of DFHWBTTA or DFHWBTTB.

Combining BMS and non-BMS output
A transaction can issue a series of BMS and non-BMS commands to build the contents of the 3270 display
screen.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

The output from all the commands is combined to construct the HTML page, which is displayed on the
web browser:

1. When a BMS or non-BMS SEND command is issued, an HTML page (containing a heading section, a
screen image section, and a footing section) is generated, but not sent to the web client.

2. When the transaction issues a RECEIVE command or terminates:

• A heading section is selected from one generated previously.
• A new screen image section is created by merging all the ones that were generated previously.
• A footing section is selected from one generated previously.

3. The resulting HTML page is sent to the web client.
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How the heading section is chosen
The heading section is chosen from among the HTML pages, based on their starting positions and the
sequence in which they were created.

1. The pages that have a starting position closest to the first row of the screen are selected.
2. If more than one page remains in the selection process, the starting position of the remaining pages is

compared again. This time, the pages that have a starting position closest to the first column of the
screen are selected.

3. Finally, if more than one page remains, the earliest page generated is selected.

The heading section from the remaining selected page is used in the HTML page that is sent to the web
client.

Note:

• The starting position of an HTML page generated from a BMS map is the row and column of the upper-
left corner of the map.

• The starting position of an HTML page generated from a non-BMS command is the upper-left corner of
the screen (row 1, column 1).

How the footing section is chosen
The footing section is chosen from among the HTML pages, based on their ending positions and the
sequence in which they were created.

1. The pages which have an ending position closest to the last row of the screen are selected.
2. If more than one page remains in the selection process, the ending position of the remaining pages is

compared again. This time, the pages that have an ending position closest to the last column of the
screen are selected.

3. Finally, if more than one page remains, the latest page generated is selected.

The footing section from the remaining selected page is used in the HTML page that is sent to the web
client.

Note:

• The ending position of an HTML page generated from a BMS map is the row and column of the lower-
right corner of the map.

• The ending position of an HTML page generated from a non-BMS command is the lower-right corner of
the screen.

How the screen image sections are merged
When the screen image sections created as a result of a series of BMS and non-BMS SEND commands are
merged, a new screen image section is created; it contains, as far as possible, all the fields from all the
screen image sections that were used to construct it.

However, if fields from two or more of the constituent screen images wholly or partly overlap, merging is
not possible, and some of the overlapping fields might be modified or suppressed entirely:

• When fields overlap, fields associated with the earlier BMS or non-BMS SEND commands are modified
or suppressed in favor of fields from later commands.

• If an input field is partially or wholly overlapped, the entire input field is discarded and does not appear
in the final HTML.

• If an input field partially overlaps some normal text, any visible text up to the start of the input field is
visible in the final HTML and the remaining data is discarded, whether or not more text is visible after
the end of the input field on a 3270 device.

• If the table cell contains a horizontal rule tag (<hr>), overlapping the contents of the cell will produce
unpredictable results.

These rules are summarized in Table 7 on page 145. 
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Table 7. Overlapping fields in a merged screen image section

Field from earlier SEND Field from later SEND Result

Input (unprotected) Input (unprotected) or Text
(protected)

The earlier field is entirely
suppressed

Text (protected) Input (unprotected) Based upon the character
position in the 3270 screen:

• Protected characters before
the input field are retained.

• Protected characters overlaid
by the input field are
suppressed.

• Protected characters after the
input field are suppressed.

Text (protected) Text (protected) Based upon the character
position in the 3270 screen,
characters from the later send
will overwrite characters from
the earlier send.

You can edit HTML templates created from BMS maps before using them in an application program.
However, the algorithm by which the screen image sections are merged requires that the HTML in the
sections has a particular structure. Therefore, when you edit the screen image section in a template, and
the section will be merged with others, follow these guidelines:

• Each HTML page contains two comments with the strings DFHROW and DFHCOL respectively. The
values that follow these strings are important during the merging process because they are used to
calculate the position of each field on the 3270 screen. If these comments are modified or deleted, the
screen image sections are not merged but are displayed in the final HTML page appended one after the
other.

• The closing tags for table cells (</td>) and table rows (</tr>) are optional.
• Table cells must either contain a piece of normal text with or without additional attribute tags or they

must contain an input field. Additionally, they can contain a mixture of text and input fields in the same
table cell if the text and input fields follow each other without additional tags between them.

• Empty table cells cannot contain null values (X'00') or spaces between the opening and closing tags. In
other words, empty cells must be coded as <td></td>.

• You can bound a section of text or an input field with one or more of the following pairs of tags:
emphasis

<em> ... </em>
strong

<strong> ... </strong>
font

<font> ... </font>
underline

<u> ... </u>
blink

<blink> ... </blink>
Each tag must have a corresponding closing tag. You must also ensure that the opening and closing tags
are properly nested. For example, <u><strong> ... </strong></u> is properly nested, but
<u><strong> ... </u></strong> is not.
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• If you insert other tags into the table cell, they must be before or after the text or input field, but cannot
be both before and after in the same table cell.

• HTML comments are allowed in the table cell and can be before, after, or on both sides of a piece of
normal text or an input field.

• If the cell contains comments, it must also contain either a piece of normal text or an input field.

The CICS web server plug-in
The functions of the CICS web server plug-in are retained for compatibility reasons. You are
recommended to migrate to solutions that make use of CICS web services, CICS web support, or the CICS
Transaction Gateway.

This supplied plug-in enables a passthrough mechanism from the IBM HTTP Server through the external
CICS interface (EXCI) and into CICS web support, using the CICS business logic interface. The maximum
amount of data that can be passed on this interface is 32 KB.

Configuring the IBM HTTP Server
The functions of the CICS web server plug-in are retained for compatibility reasons. You are
recommended to use the CICS Transaction Gateway in new applications.

About this task

You have to change the configuration information in the IBM HTTP Server if it is to use the CICS business
logic interface to provide its service. For details of the configuration statements, see z/OS HTTP Server
Planning, Installing, and Using

Procedure

1. You must set up CICS as follows:
a) Initialize the CICS region with ISC=YES.
b) Install the RDO group DFHWEB.
c) Define a generic connection for EXCI; for example, by installing the sample group DFH$EXCI.
d) Ensure that IRC is open.

2. Define the CICSTS54.CICS.SDFHDLL1 load library and CICSTS54.CICS.SDFHEXCI to RACF® program
control.
RACF program control notes the volume serial number of the volume containing the library and does
not allow the use of a different volume. If you later move the load library or the
CICSTS54.CICS.SDFHEXCI library to another volume, you must redefine it to RACF Program Control.

3. Add the CICSTS54.CICS.SDFHDLL1 data set and the CICSTS54.CICS.SDFHEXCI library to the STEPLIB
concatenation in the JCL for the IBM HTTP Server.
SDFHEXCI and SDFHDLL1 are downwardly compatible with all supported releases of CICS.

4. Use the following command in the directory that contains the httpd.conf file for the IBM HTTP Server:

ln -e DFHWBAPI dfhwbapi.so

When it is used in the STEPLIB concatenation, this command establishes a link from the IBM HTTP
Server's home directory to the DLL dfhwbapi.so in member DFHWBAPI in the
CICSTS54.CICS.SDFHDLL1 library.

5. Add one or more service directives to the httpd.conf file.
Service directives map the URL entered by the user to the CICS resources that will satisfy the request.
Service directives for DFHWBAPI have the following format:

Service  /sourceurl/*  /home/dfhwbapi.so:DFHService/targeturl/*
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where the values are:
home

is the directory that contains the httpd.conf file for the IBM HTTP Server.
sourceurl

is a string of characters that selects an incoming URL to be processed by DFHWBAPI. The asterisk
following it is a wildcard string representing the remaining characters of the incoming URL.
sourceurl can be in any format, so details such as the applid and the transaction can be hidden
from users.

targeturl
targeturl is a string of characters that DFHWBAPI will use to determine which CICS resources will
satisfy the user request. After substitution of the wildcard, targeturl must be in the format:

/applid/converter/tran/program/filename

where the values are:
applid

the application id of the target CICS region
converter

the name of the converter program to be used in the CICS region, or CICS if no converter is to
be used.

tran
the transaction to be executed in the CICS region. Because the transaction is the target of an
EXCI request, it should not be the web alias transaction CWBA, but should be a mirror
transaction, such as CSM3. The transaction receives targeturl/*, not sourceurl/*, as the
incoming URL.

program
the name of the program to be executed in the CICS region.

filename
is any further information that will be examined by program.

If DFHWBAPI is used to access 3270 applications, CICS generates HTML forms which are
displayed on the web client. The URL which CICS inserts in the HTML form matches the targeturl
used in the previous request. To handle this situation, you must provide a service directive of the
following form, in addition to those previously described:

Service  /targeturl/*  /home/dfhwbapi.so:DFHService

In this case, the targeturl is passed unchanged to DFHWBAPI.
6. If you want to display the graphic files that are referenced from some of the CICS-supplied template

definitions, include a directive as follows:

Service  /dfhwbimg/*  /home/dfhwbapi.so:DFHService/applid/DFHWBIMG/CSM3/*

where applid specifies the CICS region that will supply the graphics files (this might not be the same
CICS region that does the bridge work). DFHWBIMG is a special-purpose CICS-supplied converter
program used by the CICS web bridge.

7. If you are accessing a CICS web application using both CICS web support and the CICS business logic
interface, you must specify the same host code page for both.
The default host code page for CICS is IBM-037, but for the IBM HTTP Server it is IBM-1047.

• To change the default code page for the IBM HTTP Server, use the DefaultFsCp configuration
directive. For example:

DefaultFsCp IBM-1047

• To change the default code page used by CICS, specify it in the DOCCODEPAGE system initialization
parameter; for example, DOCCODEPAGE=1047.
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Documents and document fragments referenced using this default must be encoded in the
specified code page. In particular, if you are using document templates generated from BMS map
definitions, you must use a template customization macro to change the code page in which the
templates are generated. Use the CODEPAGE parameter of the DFHMDX macro to specify this; for
example:

DFHMDX MAPSET=*,MAP=*,CODEPAGE=1047

What to do next

Escaped data and the IBM HTTP Server
If you use the IBM HTTP Server and CICS business logic interface to access the same CICS application
program, you must make sure that escaped data is handled consistently in both cases.

The IBM HTTP Server passes data to the CICS application program in its unescaped form; therefore, you
must ensure that CICS web support does the same.

For more information, see Selecting escaped or unescaped data from an analyzer program

Processing examples for IBM HTTP Server
Figure 16 on page 148 shows how the CICS web support processes a request from a web client that is
connected to the IBM HTTP Server.

Figure 16. Processing a request from the IBM HTTP Server

1. The web client constructs an HTTP request which is passed across the network to Communications
Server.

2. Communications Server relays the request to IBM HTTP Server.
3. IBM HTTP Server calls the CICS web server plug-in.
4. The CICS web server plug-in constructs a request for the CICS business logic interface and passes it to

CICS using the External CICS Interface (EXCI).
5. The CICS business logic interface invokes the requested CICS application program and returns any

output in the COMMAREA.
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Chapter 3. Developing web applications
You can develop an application that uses the CICS API to interact with clients or a server over HTTP. CICS
also provides a business logic interface to link to an application instead of calling it through the CICS
HTTP listener.

To develop Java™ EE applications for Liberty in CICS, see Developing Java applications to run in a Liberty
JVM server.

Developing HTTP applications
In CICS, web-aware application programs use EXEC CICS WEB commands to interact with a web client
or a server through CICS. For CICS as an HTTP server, these programs can receive and analyze HTTP
requests and provide application-generated responses to the web client.

Before you begin

Before you start to code web-aware application programs for CICS as an HTTP server, read HTTP request
and response processing for CICS as an HTTP server so that you understand the process.

If you want the service you are providing to web clients to comply with the HTTP protocol specifications,
in particular HTTP/1.1, read HTTP/1.1 compliance for CICS as an HTTP server for more information about
the actions that CICS and your user application can take.

About this task

For each HTTP request that requires an application-generated response, CICS calls the web-aware
application program that is specified on the URIMAP definition for the request, or by the analyzer program
if an analyzer is used. If you use a URIMAP definition to specify the application program, you can select a
single application program to service all requests using a particular URL. If you are using an analyzer
program either instead of, or in addition to, the URIMAP definition, it can analyze the request and decide
on an alternative application program.

Remember: Web-aware application programs that use the EXEC CICS WEB commands must run in the
CICS region where the web client's request is received. However, they can link to application programs in
other CICS regions; for example, to perform business logic.

For CICS as an HTTP server, when an application program has sent a response to a request and returned
control to CICS, it does not wait for further requests from the web client, even when requests form a
logical sequence, or are made using a persistent connection, or are pipelined. If you need to share
information between different programs (or new instances of the same program) across a series of
requests and responses, you can do so using CICS-managed resources or using elements of the requests
sent by the web client.

When EXEC CICS WEB commands are used for CICS as an HTTP server, they do not have the
SESSTOKEN option. The SESSTOKEN option indicates that a command is being used for CICS as an HTTP
client.

You can execute the business logic for the request processing, using the information you have gathered.
You might want to involve other application programs to perform processing. A web-aware application
program can produce a response to the HTTP request based on information that it receives from non-
web-aware programs. You are advised to separate the business logic from the presentation logic. In a
web-aware application, presentation logic controls the interaction with the web client. For more
information, see Separating business and presentation logic.

You can code web-aware application programs to process an HTTP request by following the guidance in
the subtopics.
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Examining the request line for an HTTP request
CICS stores the request line used for each HTTP request, for the application program to access if needed.
An application program can use the WEB EXTRACT command to extract components of the request URL
(including the path, host name, port number, and query string), the method used for the request, or the
HTTP version of the request. Non-HTTP requests can also be identified in this way.

About this task
For information about the items in a request line, see The HTTP protocol . The request URL is a major
element of the request line. The components of a URL explains the different parts of a URL. Your
application program might examine any of the items in the request line so that it can process the request
and provide an appropriate response. Here are some common reasons for extracting information from a
request line:

• To ensure that the same application program is called to handle a number of different requests,
perhaps as part of a logical request sequence, or as different requests that relate to the same resource.

• To see what action is being requested from the application by the HTTP method. HTTP method
reference for CICS web support explains the different methods that a web client might use for a
request, and suggests action that is appropriate in each case.

• To use the path component of the URL, which identifies the resource to which the request applies. In
addition to being used to map the request to the handling application, you can design the path
component of the URL to provide processing information to the application. For example, the path
component can specify a particular function provided by the application. Or, if the web-aware
application is providing a front end for more than one other application, the path component of the URL
can identify the application to which the request applies. URLs for CICS Web support explains how this
can be achieved.

• To obtain a query string for processing by the application.
• To identify the HTTP version for the web client, so that the application can provide an appropriate

response. The HTTP version used by the web client can affect the HTTP headers, status code, and
message content for the response. HTTP/1.0 clients might not handle the more advanced features
described in the HTTP/1.1 specification.

• To identify a non-HTTP request. CICS web support and non-HTTP requests has more information about
handling non-HTTP requests.

See WEB EXTRACT full reference information about the options. Use the WEB EXTRACT command to
obtain the following items:

Procedure

• Use the HOST option to obtain the host component of the request URL, as specified either in the Host
header field for the request, or in the request line if the absolute URI form was used for the request.

• Use the HTTPMETHOD option to obtain the HTTP method for the request; for example, GET or PUT.
• Use the HTTPVERSION option to identify the HTTP version, HTTP/1.1 or HTTP/1.0.
• Use the PATH option to obtain the path component of the URL.
• Use the PORTNUMBER option to obtain the port number that applies to the URL.

Well-known port numbers for a service are typically omitted from the URL. If the port number is not
present in the URL, the WEB EXTRACT command identifies and returns it based on the scheme. For
HTTP, the well-known port number is 80, and, for HTTPS, the well-known port number is 443.

• Use the QUERYSTRING option to obtain the whole of the query string.
The query string is returned in its escaped form, with %xx sequences to represent certain characters
that might prevent correct parsing. See Reserved and excluded characters for an explanation.
Alternatively, if the query string includes form data as name and value pairs, for example,
account=40138025 , you can use the WEB READ FORMFIELD command to obtain this data in an
unescaped form. “Examining form data in an HTTP request” on page 153 tells you how to use the
command.
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• Use the REQUESTYPE option to identify a non-HTTP request.

Examining the HTTP headers for a message
Each HTTP header for a request or response message consists of a header name and header value. CICS
stores this information for the application to access if required. An application can receive the value of a
specified header, or browse through the names and values of all the headers for a request or response.
You can also convert an architected date and time stamp string taken from a header into the ABSTIME
format.

About this task

Your application might need to examine information in the headers to process a request or response and
to construct subsequent messages.

• The TE header instructs the application whether trailing headers are permitted in a chunked response
message.

• Conditional headers can provide instructions to the application, such as to reply only if the response
document has changed.

Unless you know the exact format of the HTTP request or response, your application must not rely on the
presence of any particular header, because web clients and servers can be inconsistent in the headers
that they send.

Some HTTP headers contain date and time stamps. CICS provides the CONVERTTIME command to
convert common formats for architected date and time stamp strings into the ABSTIME format, for use by
the application.

The standard HTTP headers are described in the HTTP/1.1 specification (RFC 2616) and the HTTP/1.0
specification (RFC 1945). HTTP header reference for CICS web support explains the general use of HTTP
headers in CICS web support, and the actions that CICS web support takes for specific headers received
on messages. CICS ignores some HTTP headers, and the user application must take appropriate action in
response. Check the HTTP specification for detailed guidance and requirements about the meaning and
correct use of each HTTP header.

If the message includes any trailing headers, you can read these using the EXEC CICS WEB commands in
the same way as for standard headers. The Trailer header on the message specifies the names of all the
HTTP headers that were sent as trailing headers.

To examine and work with HTTP headers:

Procedure

• To examine the contents of a particular HTTP header, use the WEB READ HTTPHEADER command.
Your application program must provide a buffer that receives the contents of the header. CICS returns
a NOTFND condition if the header is not present in the request.

• To browse all the headers in a request or response:
a) Use the WEB STARTBROWSE HTTPHEADER command to begin browsing the header lines.
b) Use the WEB READNEXT HTTPHEADER command to retrieve the header name and header value for

each line.
Your application program must provide two buffers: one receives the name of the header, and the
other receives its contents. CICS returns an ENDFILE condition when all headers have been read.

c) Use the WEB ENDBROWSE HTTPHEADER command to end the browse when your program has
retrieved all the header information of interest.

• To convert an architected date and time stamp string that is provided in a HTTP header, receive it into
a buffer using the WEB READ HTTPHEADER command, and then process it using the CONVERTTIME
command.
You do not have to identify the format of the date and time stamp; the CONVERTTIME command
recognizes and converts three different date and time stamp formats that are commonly used on the
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Internet. These are RFC 1123 (the web standard), RFC 850 (an older format), and ASCtime (output
from C function).
The application can convert the ABSTIME to other formats, using the FORMATTIME command.

Retrieving technical and security information about an HTTP request
An application can obtain information about the TCP/IP environment for an HTTP request, including the
security options that are in use, and about a client certificate that has been provided by a web client.

About this task

CICS manages the TCP/IP connection between a web client and server, applies appropriate security
measures, and manages the process of authenticating the identity of a web client. The actions taken by
CICS for each connection are determined by the options that you set in the TCPIPSERVICE definition for
the port on which the web client request is received. A user-written application can examine information
obtained by this process, if this information is useful for determining how to process the request. For
example, you can obtain the host name and IP address of the web client that sent the HTTP request, or
check the level of security and encryption for the connection.

The EXTRACT TCPIP command provides information about the TCP/IP connection and about security
options specified in the TCPIPSERVICE definition. The EXTRACT CERTIFICATE command provides
information taken from any X.509 client certificate that was received from the web client during a Secure
Sockets Layer (SSL) handshake.

Procedure

• To obtain the host name and IP address of the web client that sent the HTTP request, use the
EXTRACT TCPIP command with the CLIENTNAME and CLIENTADDR options.
The IP address is available as a binary number or as a character string containing its colon
hexadecimal or dotted decimal representation.

• To obtain the host name and IP address of the host system on which the application is running (that is,
CICS itself), use the EXTRACT TCPIP command with the SERVERNAME and SERVERADDR options.
Again, the IP address is available as a binary number or as a character string containing its colon
hexadecimal or dotted decimal representation.

• To obtain the number of the port on which the request was received, you can use the EXTRACT TCPIP
command with the PORTNUMBER option.
The port number is available as a binary number or a character string. Alternatively, you can use the
WEB EXTRACT command with the PORTNUMBER option.

• To obtain the name of the TCPIPSERVICE resource definition associated with the request, use the
EXTRACT TCPIP command with the TCPIPSERVICE option.

• To identify the type of authentication (basic authentication, client certificate authentication, or no
authentication) that was specified in the TCPIPSERVICE definition, use the EXTRACT TCPIP command
with the AUTHENTICATE option.
CICS(r) as an HTTP server: authentication and identification explains more about the different types of
authentication.

• To identify whether Secure Sockets Layer (SSL) support is specified in the TCPIPSERVICE definition,
and the level of SSL encryption that is used, use the EXTRACT TCPIP command with the SSLTYPE and
PRIVACY options.
SSL with CICS web support explains more about SSL.

• To retrieve information from an X.509 certificate that was received from the web client during an SSL
handshake, use the EXTRACT CERTIFICATE command.
CICS has already verified the supplied certificate by checking it against the security manager database
and against a certificate revocation list that you can set up.
A certificate contains fields that identify the subject (sometimes called the owner or the user) of the
certificate and fields that identify the Certificate Authority that issued the certificate (the issuer). You
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can select the information that you require by specifying the OWNER or ISSUER option. You can also
use the SERIALNUM and USERID options to retrieve the serial number of the certificate and the RACF
user ID associated with the certificate.
Support for security protocols explains more about the content of certificates and how they are used.

Examining form data in an HTTP request
Form data is information provided by the user through interaction with an element in a HTML form, such
as a text input box, button, or check box. The information is transmitted as a series of name and value
pairs. CICS can scan an HTTP request to pick out the form fields, so an application can obtain the data
using CICS commands, without needing to receive and analyze the entire body of the request.

About this task

HTML forms explains more about forms and form fields.

An application can receive the value of a specified form field or it can browse through the names and
values of all the form fields contained in a request. You can specify code page conversion options if you
want to convert the data into a different code page for use by your application.

The web client sends form data in a query string when the GET method is used and in the message body
when the POST method is used. CICS can extract the data from either of these locations, so you do not
specify which method was used. As an alternative, if the form data is sent in the query string, you can
retrieve the entire query string using the WEB EXTRACT command. “Examining the request line for an
HTTP request” on page 150 tells you how to do that.

CICS reads form data only when CICS is the HTTP server and not when it is an HTTP client.

Procedure

• To obtain the value of a particular field of an HTML form, use the WEB READ FORMFIELD command.
Your application program can provide a buffer, which will receive the value, or, alternatively, you can
provide a pointer, which CICS sets to the address of the value. CICS returns a NOTFND condition if the
form data does not contain a field with the specified name.
The form data is unescaped by CICS before it is returned, with the %xx sequences converted back to
the original characters. See CICS web support and non-HTTP requests for an explanation of this.

• To browse all the fields in the form data:
a) Use the WEB STARTBROWSE FORMFIELD command to begin browsing the fields.
b) Use the WEB READNEXT FORMFIELD command to retrieve the name and value of each field in turn.

Your application program provides two buffers: one receives the name of the field, and the other
receives its contents. CICS returns an ENDFILE condition when all fields have been read.

c) Use the WEB ENDBROWSE FORMFIELD command to end the browse when your program has
retrieved all the fields of interest.

• CICS carries out code page conversion on the data you receive.
You can use the CHARACTERSET and HOSTCODEPAGE options on the WEB STARTBROWSE
FORMFIELD and WEB READ FORMFIELD commands to specify the code page used by the web client
and by your application program.
a) The character encoding used by a client application for both the GET and POST methods is

determined by information in the HTML form. However, this information is not typically present as
part of the submitted form request, so it is supplied by the application using the CHARACTERSET
option. This information must match the forms encoding determined by the corresponding HTML
form. See How the client encoding is determined for more information.

b) The HOSTCODEPAGE option specifies the CICS (host) code page used by the application program.
This code page is typically an EBCDIC code page. If the code page is not specified, the data is
returned in the EBCDIC code page specified by the LOCALCCSID system initialization parameter,
provided that the specified code page is supported by the CICS web interface. Otherwise, CICS
returns the data to the default EBCDIC code page 037.
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For more information on the CHARACTERSET and HOSTCODEPAGE options, see the WEB READ
FORMFIELD and WEB STARTBROWSE FORMFIELD commands.

Receiving the entity body of an HTTP request
An application can issue the WEB RECEIVE command to receive the entity body of an HTTP request. You
can receive only the first part of the entity body, or use a series of WEB RECEIVE commands to receive the
whole body in smaller sections.

About this task

The WEB RECEIVE command does not set a timeout value. The user application is called only when the
complete request has been successfully received from the web client and is being held by CICS. For CICS
as an HTTP server, the SOCKETCLOSE attribute in the TCPIPSERVICE definition for the port determines
how long the web client has to complete its request send. When this period expires, CICS returns a 408
(Request Timeout) response to the web client.

If a request message is sent using chunked transfer-coding, CICS assembles the chunks into a single
message before passing it to the application. If a series of pipelined requests is sent, CICS treats each
request as a separate transaction, and requires a response from the user application before making the
next request available to the next user application for processing.

See WEB RECEIVE (Client) for full reference information. Use the WEB RECEIVE command to perform
these actions:

Procedure

1. Identify whether you need to receive an entity body for this request.
a) For certain request methods, such as the GET method, an entity body is not appropriate, and your

application is allowed to ignore any entity body that is present.
HTTP method reference for CICS web support indicates the methods where this applies. If an
inappropriate entity body is present, you may still receive it if you want.
“Examining the request line for an HTTP request” on page 150 tells you how to identify the request
method.

b) For an HTTP/1.1 request, the presence of an entity body is indicated by a nonzero Content-Length
header on the request or a Transfer-Encoding header if the message is chunked.
If the value of the Content-Length header is zero, or if neither the Transfer-Encoding header nor the
Content-Length header is supplied, no entity body is present.
“Examining the HTTP headers for a message” on page 151 tells you how to read the HTTP headers
for the message.

c) HTTP/1.0 requests are not required to specify a Content-Length header, but they might do so. A
nonzero Content-Length header on the request indicates the presence of an entity body.
If no Content-Length header is present, but the request method (in particular, the POST method)
indicates that an entity body is appropriate, an entity body is probably present.

2. Receive the entity body by specifying either the INTO option (for a data buffer), or the SET option (for a
pointer reference), and the LENGTH option.
On return, the LENGTH option is set to the length of data received.

3. If you want to limit the amount of data received from the entity body, specify the MAXLENGTH option.
a) If you want to receive only the first part of the entity body, and discard any data that exceeds this

length, omit the NOTRUNCATE option.
NOTRUNCATE is the default.

b) If you want to retain, rather than discard, any data that exceeds this length, specify the
NOTRUNCATE option.
You can obtain any remaining data using further WEB RECEIVE commands.
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If the data has been sent using chunked transfer-coding, CICS assembles the chunks into a single
message before passing it to the application, so the MAXLENGTH option applies to the total length of
the entity body for the chunked message, rather than to each individual chunk. The total amount of
data that CICS accepts for a single message is limited by the MAXDATALEN attribute of the
TCPIPSERVICE definition.

4. Specify any options that you want to set here for code page conversion.
a) The SERVERCONV option provides overall control of code page conversion. Use it to specify

whether or not code page conversion takes place.
For CICS as an HTTP server, for compatibility with web-aware applications coded in earlier
releases, code page conversion is assumed if SERVERCONV is not specified but another code page
conversion option is specified. If you want to prevent code page conversion, either specify
SERVERCONV(NOSRVCONVERT) or omit all the code page conversion options.

If you receive an entity body that has been zipped or compressed, as indicated by a Content-
Encoding header on the message, make sure that you suppress code page conversion. CICS does
not decode these types of message for you, and, if code page conversion is applied, the results
might be unpredictable. If you cannot decipher a zipped or compressed entity body, you can inform
the web client by returning a 415 status code.

b) If you want code page conversion, but CICS cannot determine the character set of the web client,
use the CHARACTERSET option to specify it.
For older web clients, the request headers might not provide this information. In this case, CICS
assumes the ISO-8859-1 character set, so you only need to specify the character set if that
assumption is not correct.

c) If you want code page conversion, but the default code page for the local CICS region, as specified
in the LOCALCCSID system initialization parameter, is not suitable for your application, use the
HOSTCODEPAGE option to specify an alternative host code page.

Code page conversion does not take place for messages that specify a nontext media type, unless you
do not specify SERVERCONV, in which case, for compatibility purposes, the media type is not taken
into account. Note that for compatibility purposes, CICS deviates from the HTTP/1.1 requirement to
default to application/octet-stream if inbound messages do not specify a media type. CICS
uses text/plain as the default instead, so that code page conversion can be carried out for the
message.

5. If you specified the MAXLENGTH and NOTRUNCATE options, and you have more data to receive, issue
further WEB RECEIVE commands.
A single RECEIVE command using the SET option and without the MAXLENGTH option receives all the
remaining data, whatever its length. Alternatively, you can use a series of RECEIVE commands with the
NOTRUNCATE option to receive the remaining data in appropriate chunks.
Keep issuing the RECEIVE command until you no longer receive a LENGERR response.
If you receive less than the length requested on the MAXLENGTH option, it might not indicate the end
of the data; this situation might arise if CICS must avoid returning a partial character at the end of the
data.

Writing HTTP headers for a response
For dynamic responses created by application programs, CICS automatically provides the HTTP headers
that are required for basic messages, depending on the HTTP protocol version used for the message. Your
application does not need to write these headers. However, you might want to add further HTTP headers
to your response.

About this task

Here is the full list of headers created by CICS :

• ARM correlator
• Connection
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• Content-Type (written by CICS, but can be supplied by a client application if a complex header is
required)

• Content-Length
• Date
• Expect
• Host
• Server (automatic creation depends on system initialization parameter HTTPSERVERHDR
• TE (written by CICS but further instances may be added)
• Transfer-Encoding
• User-Agent (automatic creation depends on system initialization parameter HTTPUSRAGENTHDR
• WWW-Authenticate

Note that some of these headers are appropriate, and created, only when CICS is an HTTP client. The
circumstances in which these headers are created are described in HTTP header reference for CICS web
support . If you do write these headers on a response, CICS does not overwrite them, but uses the
versions provided by your application.

The headers that CICS provides when a response is sent are the ones that are typically written to make a
basic message comply with the appropriate HTTP protocol specification. You might want to add further
HTTP headers to the response for some purposes:

• Control of caching and document expiry; for example, Cache-Control, Expires, Last-Modified.
• Content negotiation; for example, Accept-Ranges, Vary.
• Information for the web client; for example, Title, Warning, further Content headers.

If your application program is performing complex actions, or if you select certain status codes for your
response, the HTTP specification to which you are working is likely to require the use of particular HTTP
headers for your message. When you add any HTTP headers to a response, check the HTTP specification
to which you are working for any important requirements that apply to those headers. See The HTTP
protocol for more information about the HTTP specifications.

Write additional HTTP headers for a message before you issue the WEB SEND command to send the
message. The exception to this rule is when you write headers to be sent as trailing headers on a chunked
message, in which case the subsequent procedure applies. To write HTTP headers for a response:

Procedure

• Use the WEB WRITE HTTPHEADER command for each header that you want to add to the message.
Make sure that you specify the name and value for each header in the format described by the HTTP
specification to which you are working. CICS does not validate the content of HTTP headers, because
you might want to use new or user-defined headers.
The command adds a single header, and you can repeat the command to add further headers. If you
write a header that you have already written, CICS adds the new header to the request or response in
addition to the existing header. Rewrite a header only when the HTTP specification states that the
header can be repeated.
CICS stores the headers ready to be added to the request when it is sent.

• If any of the HTTP headers that you use might be unsuitable for web clients lower than HTTP/1.1 level,
before writing those headers, check the HTTP version information that the web client has supplied to
you.
Use the WEB EXTRACT command to obtain this information.
To allow you to use user-defined (nonstandard) headers, CICS does not remove unsuitable user-
written headers. Some HTTP headers are not understood by servers lower than HTTP/1.1, and might
lead to errors in processing your request.

CICS does not make any special provision for a server or web client that is lower than HTTP/1.0 level.
CICS behaves as though they are at HTTP/1.0 level and returns HTTP/1.0 as the HTTP version.
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• If you want to produce a date and time stamp for use in one of your HTTP headers, for example, the
Last-Modified header, use the FORMATTIME command.
The STRINGFORMAT option on the command converts the current date and time, in ABSTIME format,
or a date and time produced by the application program, into suitable date and time stamp formats for
use on the Web. Other date and time stamp formats might not be accepted by some web clients or
servers with which CICS is communicating.

• If you want to produce a strong entity tag for use in the ETag HTTP header, you can use the SHA-1
digest produced by the BIF DIGEST BIF DIGEST command.
The presence of a strong entity tag enables a client to make conditional requests for a resource using
the entity tag in If-Match, If-None-Match, or If-Range headers, which is a more precise method of
checking the status of a resource than the Last-Modified date and time string. If you want to allow
conditional requests, your application program must provide support for them; CICS does not provide
its own support for If-Match, If-None-Match, or If-Range functions on HTTP GET requests.

• If you are using chunked transfer-coding to send an HTTP request or response, and you want to
include trailing headers at the end of the chunked message, follow the special instructions in “Sending
an HTTP request or response with chunked transfer-coding” on page 160.
You write a Trailer header before sending the first chunk of the message. All the HTTP headers written
after the WEB SEND command for the first chunk are treated as trailing headers.

• Make sure that your application program carries out any actions that are implied by your user-written
headers.
For example, if you have written content-negotiation headers, your application program must provide
different versions of the resource.

Producing an entity body for an HTTP message
Web-aware application programs can produce an entity body formed from a CICS document or from a
buffer of data.

About this task

CICS documents can be used as the entity body of an HTTP message. Use the EXEC CICS DOCUMENT
commands to create them. They can be populated by data specified directly by the application program,
and by document templates, which are portions of documents defined as CICS resources or created by
another CICS program. You can store documents and document templates for reuse.

Alternatively, you can specify a buffer of data created by the application program. You might find this
option more convenient for short or simple entity bodies, and you must use this option for chunked
transfer-coding for the message. However, data created in this way cannot be stored for reuse so easily.

Procedure

1. To create a CICS document, follow the instructions in Creating a document.
Use the EXEC CICS DOCUMENT application programming interface ( EXEC CICS DOCUMENT
CREATE, INSERT, and SET commands) to create the document. Use the DOCTOKEN option on the
WEB SEND command to specify the document token for the finished document. CICS retrieves the
document and performs appropriate code page conversion, depending on the options you specify on
the WEB SEND command.

The body of a chunked message cannot be formed from CICS documents.
2. Alternatively, assemble a message body in your application program.

Use the FROM option on the WEB SEND command to specify the buffer of data.

The size of the data buffer has no set maximum limit, but you must consider the following factors that
might limit its size in practice:

• The EDSA limit for the CICS region.
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• The number of other message bodies that you might be assembling at the same time in the CICS
region. Scheduling constraints might be imposed by the MAXACTIVE setting for any transaction class
definitions that apply to CICS web support transactions.

• The type of code page conversion used for the message body. For conversion from the EBCDIC code
page 037 to the ASCII code page ISO-8859-1, CICS overwrites the same buffer of data, so no
additional storage is used. For any other type of code page conversion, CICS requires additional
storage to contain the converted message body. Depending on the character sets used, the size of
this additional storage area can range from the same size as the original message body, to a
theoretical maximum of four times the size of the original message body (which is unlikely). For
example, a 2 MB buffer of data sent using the FROM option requires at least 4 MB of storage in total.
Double-byte character sets (DBCS) or multi-byte character sets are likely to require larger storage
areas within this range.

Sending an HTTP response from CICS as an HTTP server
Use the WEB SEND command to make CICS assemble the HTTP headers, entity body, status code, and
reason phrase for an HTTP response, carry out code page conversion, and transmit the response to the
web client.

Before you begin
Write any additional HTTP headers for the response using the WEB WRITE HTTPHEADER command
before issuing the WEB SEND command, as described in “Writing HTTP headers for a response” on page
155 . Also produce any entity body that is needed for the message, as described in “Producing an entity
body for an HTTP message” on page 157.

You specify a status code and reason phrase on the WEB SEND command. Status codes and reason
phrases explains what these are. HTTP status code reference for CICS web support provides an overview
of the status codes that your application might use. To plan your use of status codes and find further
information about them, consult the HTTP specification to which you are working. See The HTTP protocol
for more information about the HTTP specifications.

About this task

If wanted, the response can be sent in chunks (chunked transfer-coding). You cannot send pipelined
responses back to a web client; you must send a single response to each request sent by the web client.

See WEB SEND (Server) for reference information.

Note these points about the command:

Procedure

1. Specify the STATUSCODE option to select an appropriate status code for the response, depending on
the situation, and the STATUSTEXT and STATUSLEN options to provide the reason phrase.
CICS does not validate your choice of status code, and the user application must ensure that the value
is valid and conforms to the rules for HTTP status codes.
Depending on the status code that you select, you might have to complete some or all of the following
steps before issuing the WEB SEND command:
a) Check the HTTP version of the web client's request, to ensure that the status code can be

understood.
The HTTP/1.1 specification includes more status codes than the HTTP/1.0 specification.

b) If the HTTP specification states that the status code must be accompanied by certain HTTP
headers, use the WRITE HTTPHEADER command to create those headers.

c) If the HTTP specification states that the status code must be accompanied by a message body
giving special information, create an appropriate entity body.
You typically need special information when the status code indicates an error or requests further
action from the client.
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Message bodies are not allowed with status codes 204, 205, and 304. If you have selected a status
code that does not allow a message body, and attempt to use a message body, CICS gives an error
response to the WEB SEND command.

2. Identify the source of any entity body for the response by specifying either the DOCTOKEN option, for
a CICS document that you have created, or the FROM option, for a body of data that you have
assembled. If you are using the FROM option, specify the FROMLENGTH option to give the length of
the entity body, or of the chunk if chunked transfer-coding is in use.
For chunked transfer-coding, you cannot use the DOCTOKEN option.

3. Specify the media type for the body of the response, using the MEDIATYPE option.
CICS does not check the validity of the specification against the data content.
MEDIATYPE has no default. If you do not specify it, CICS does not build a Content-Type header for the
response.

4. If you want the message to be sent immediately, rather than at the end of the task (which is the
default), specify IMMEDIATE for the ACTION option.
If you are using chunked transfer-coding, IMMEDIATE is the default, so you do not have to make this
choice.

Only one response can be sent during a task. It can be a standard response using one WEB SEND
command or a chunked response using a sequence of WEB SEND commands.

5. If you want to close the connection after sending the response, specify CLOSE for the CONNECTION
option.
CICS writes a Connection: close header on the response, which notifies the web client that the
connection is closed and that no more requests can be sent. For a web client at HTTP/1.0 level, CICS
achieves the same effect by omitting the Connection: Keep-Alive header.

6. Specify the appropriate settings for code page conversion of the message body.
a) The SERVERCONV option provides overall control of code page conversion. Use it to specify

whether or not code page conversion takes place.
For CICS as an HTTP server, for compatibility with web-aware applications coded in earlier
releases, code page conversion is assumed if you specify another code page conversion option but
not SERVERCONN. If you want to prevent code page conversion, either specify
SERVERCONV(NOSRVCONVERT) or omit all the code page conversion options.

b) If you want code page conversion, but the character set selected by CICS is not suitable, use the
CHARACTERSET option to specify an alternative.
By default, CICS uses the character set specified in the Content-Type header of the original request
from the web client. If that character set was unsupported or not stated, CICS uses the
ISO-8859-1 character set instead.

A web client might specify alternative acceptable character sets in an Accept-Charset header. If
you want to specify one of these, your application must analyze the header, which might include
quality values to indicate the web client preference, and select an appropriate supported character
set.

CICS does not support all the character sets named by IANA. HTML coded character sets lists the
IANA character sets that are supported by CICS for code page conversion.

c) If you want code page conversion, and are using the FROM option to specify the message body, use
the HOSTCODEPAGE option to identify the code page for your application, if this is not the default
code page for the local CICS region as specified in the LOCALCCSID system initialization parameter.
If you are using a CICS document (DOCTOKEN option), CICS identifies the host code page from the
CICS document domain's record of the host code pages for the document.

Code page conversion does not take place for messages that specify a nontext media type, unless you
do not specify SERVERCONV, in which case, for compatibility purposes, the media type is not taken
into account.
The HTTP headers and status line are always converted into the ISO-8859-1 character set by CICS.
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7. If you are using chunked transfer-coding (or chunking), in addition to the basic instructions in this
topic, follow the special instructions in “Sending an HTTP request or response with chunked transfer-
coding” on page 160.
You must ensure that the procedure described in that topic is followed correctly, so that the chunked
message is acceptable to the recipient. Chunked messages are sent using several instances of the
WEB SEND command, with particular options.

Sending an HTTP request or response with chunked transfer-coding
You can set up chunked transfer-coding for an HTTP request by CICS as an HTTP client or for an HTTP
response from CICS as an HTTP server.

Before you begin
First, consider these attributes of the item that you want to send:

• The HTTP headers to be used at the beginning of the message. CICS supplies its usual message
headers, which are listed in HTTP header reference for CICS web support . For a chunked message,
CICS supplies the proper headers for chunked transfer-coding, including the Transfer-Encoding:
chunked header. If any additional headers are required at the beginning of the message, the application
can write them before the first WEB SEND command.

• Any headers to be sent in the trailer at the end of the message. These headers are known as trailing
headers. The HTTP/1.1 specification sets requirements for the use of trailing headers, including that it
must not matter if the recipient ignores them.

• How the message will be divided. Divide it in whatever way is most convenient for the application
program. For example, the output from a number of other application programs might be sent as it is
produced, or data from each row of a table might be read and sent individually.

• The length of each chunk of data that will be sent. Do not include the length of any trailing headers.

About this task

Use this procedure to create a correctly constructed chunked message, as defined in the HTTP/1.1
specification. See The HTTP protocol for more information. If the chunked message is not correctly
constructed, the recipient might discard it.

“ Sending an HTTP response from CICS as an HTTP server ” on page 158 is the main set of instructions for
writing an application program to send a server response. “ Making HTTP requests through CICS as an
HTTP client ” on page 163 is the main set of instructions for writing an application program to make a
client request. You can use the instructions in the present topic with either of those sets of instructions.

You cannot form the body of a chunked message directly from CICS documents, so you cannot use the
DOCTOKEN option. You must use the FROM option to specify data to form the body of a chunked
message.

When you have begun sending the parts of a chunked message, you cannot send any different messages
or receive any items until the final empty chunk is sent and the chunked message is complete.

Procedure

1. Before beginning a chunked message, verify that the web client or server is at HTTP/1.1 version.
All HTTP/1.1 applications must handle chunked transfer-coding. A chunked message cannot be sent
to an HTTP/1.0 recipient.
a) For responses sent by CICS as an HTTP server, use the WEB EXTRACT command to check the HTTP

version specified for the web client request.
b) For requests sent by CICS as an HTTP client, the HTTP version of the server is returned on the WEB

OPEN command for the connection if you specify the HTTPVNUM and HTTPRNUM options on the
command. If you did not specify these options, use the WEB EXTRACT command to check the HTTP
version of the server.
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c) Alternatively, you can omit this check and allow CICS to check the version of the web client or
server when you issue the WEB SEND command to send the first chunk of the message.
If the recipient is HTTP/1.0, you receive an error response.

2. Use the WRITE HTTPHEADER command as many times as necessary to write any HTTP headers that
must be sent before the body of the message.
Do not write the headers for chunked transfer-coding; CICS writes them itself, using the chunk length
information supplied by the application program.

3. If you want to include trailing headers (headers sent out after the body of the message) with the
chunked message, use the WRITE HTTPHEADER command to write a Trailer header. Specify the
names of all the HTTP headers that you plan to send in the trailer, as the value of the Trailer header.
You can send any headers as trailing headers, except the Transfer-Encoding, Trailer, and Content-
Length headers.
a) For responses sent by CICS as an HTTP server, ensure that the web client sent a TE: trailers header

on its request.
This header shows that the client handles trailing headers.
CICS returns an INVREQ response with a RESP2 value of 6 to the WRITE HTTPHEADER command if
you attempt to write the Trailer header when the client did not send TE: trailers. Alternatively, you
can use the READ HTTPHEADER command to check for the presence of the TE: trailers header.

b) For requests sent by CICS as an HTTP client, trailing headers can be included without reference to
the TE header.

The trailing headers themselves are written during the chunked sending process.
4. Use the WEB SEND command to send the first chunk of the message.

a) Specify CHUNKING(CHUNKYES) to tell CICS that it is a chunk of a message.
b) Use the FROM option to specify the first chunk of data from the body of the message.
c) Use the FROMLENGTH option to specify the length of the chunk.
d) For requests by CICS as an HTTP client, specify an appropriate method on the METHOD option.

Chunked transfer-coding is not relevant for requests with no message body, so it is not relevant for
the GET, HEAD, DELETE, OPTIONS, and TRACE methods, but you can use it for the POST and PUT
methods.

e) Specify any other options that apply to both chunked and non-chunked messages, as given in your
main set of instructions.

5. Use the WEB SEND command as many times as necessary to send each of the remaining chunks of the
message. On each WEB SEND command, specify the following items:
a) CHUNKING(CHUNKYES)
b) FROM, giving the chunk of data
c) FROMLENGTH, giving the length of the chunk

Do not specify any other options for the command. CICS sends each chunk as you issue the command.
6. Optional: At any time after issuing the WEB SEND command for the first chunk, but before issuing the

WEB SEND command for the final empty chunk (see the next step), use the WRITE HTTPHEADER
command to create further HTTP headers that are sent as trailing headers.
If a Trailer header was written on the first chunk of the message, the HTTP headers written during the
chunked sending process are treated by CICS as trailing headers, and they are sent out with the final
empty chunk. (If the Trailer header was not written, CICS does not allow any trailing headers to be
written.)
Note that CICS does not check whether your trailer headers match the names that you specified in the
initial Trailer header on the first chunk of the message.

7. When you have sent the last chunk of the data, specify a further WEB SEND command with
CHUNKING(CHUNKEND) and no FROM or FROMLENGTH option.
CICS then generates and sends an empty chunk to the recipient to end the chunked message. The
empty chunk is sent with the trailer containing any trailing headers that you wrote.
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8. For CICS as an HTTP server, errors are handled as follows:
a) If one of the WEB SEND commands fails during the sequence, an error response is returned, and

subsequent sends also fail. The application must handle this situation appropriately.
b) If all the chunks are sent successfully, but the application does not issue the final WEB SEND

command with CHUNKING(CHUNKEND), the transaction is abended with abend code AWBP.
This abend is necessary because CICS cannot guarantee that the chunked message is complete
and correct, and so cannot issue the final empty chunk on behalf of the application.

An incomplete chunked message is ignored and discarded by the recipient. The web client determines
whether to try the request again.

9. For CICS as an HTTP client, errors are handled as follows:

a) If your application program is informed of an error at any point in the chunked transfer-coding
process, use the WEB CLOSE command to stop the process and close the connection.
The server does not receive the final empty chunk and, therefore, ignores and discards the data
that you have sent so far. You can decide whether to retry the request.

b) If you do not send the final empty chunk or issue the WEB CLOSE command, a warning message is
written at task termination to CWBO, the transient data queue for CICS web support messages.
The server times out the receive and ignores and discards the data that you sent.

Managing application state across an HTTP request sequence
CICS initiates a new alias transaction and a new program for each request made by a web client. This
initiation is for pipelined requests, requests made using a persistent connection, and requests that form a
logical sequence, and for individual stand-alone requests. Consider how the application state will be
managed between requests.

About this task

To share data across the request sequence, between different programs or instances of the same
program, use CICS-managed resources or elements of the requests sent by the web client.

When more than one exchange of a request and response between a web client and CICS is needed to
complete a task successfully, the web client initiates each new step in the sequence. You can design the
response sent by CICS to guide the web client, and any human user of the web client, to the next step. For
example, the entity body can contain controls, such as links or buttons, with which the user can compose
the next request. However, you cannot easily enforce the correct sequence of requests. In particular, the
planned sequence can be disrupted for these reasons:

• The client is a web browser, and the user types a known URL to initiate a particular request, rather than
selecting a control in an HTML page provided by a previous response.

• The user abandons the activity, by shutting down the web client or by changing to an alternative activity
with the web client.

The user might also delay initiation of any request in the sequence.

You must design your application programs so that they can cope with delays or disruptions in the
request sequence. For example, if you are sharing data across the request sequence, ensure that the data
is cleaned up if the request sequence does not complete or is delayed excessively. If your application
programs update protected resources, ensure that updates that must be committed or backed out
together are made in the same transaction. So you must design a single request from the web client to
complete the update.

The best situation for an application is that each exchange of a request and response is self-contained
and completes an independent element of the task. However, this design is not always possible,
especially when the task is complex, or when a web client has sent a pipelined sequence of requests. You
might require a pseudoconversational model, in which the application state must be managed between
requests. Use the following techniques:
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Procedure

• You can design the requests sent by the web client so that application state, or shared data, is
incorporated in the request; for example, as part of a request URL that is used when the web client
submits an HTML form.
The next program can examine the request URL to obtain the shared data.

• You can store small quantities of application state using hidden fields in an HTML form that is returned
to the web client as a response.
When the user performs the next action in the planned sequence, the request that is sent to CICS can
include the hidden fields, which can be located and read by the next application program.

• For larger quantities of state, and state with an extended lifetime, you can create a CICS-managed
resource to maintain the application state, and pass a token that represents the resource.
CICS provides sample state management programs, DFH$WBST and DFH$WBSR, that store
application state in main storage or temporary storage queues, and provide tokens that application
programs can use to access the information.
A token can be conveyed from program to program in a pseudoconversation as a hidden field in an
HTML form, or from interaction to interaction as a query string in a URL.
Use this technique to preserve information throughout a pseudoconversation and also to preserve
information throughout an extended interaction between a user and various CICS application
programs, perhaps over several pseudoconversations.

HTTP client requests from a CICS application
CICS can act as an HTTP client and communicate with an HTTP server on the Internet. A user-written
application program sends requests through CICS to the HTTP server and receives the responses from it.

Your user-written application programs can work in these ways:

• Interact with hardware or software using the HTTP protocol; for example, printers can often be
controlled in this way.

• Access HTTP applications that provide items of information (for example, share prices) and retrieve this
information for use in the application.

The HTTP client facility of CICS web support is not designed for use as a web browser. User application
programs can make requests for individual, known resources that are available from a server, but they
cannot be expected to browse the Internet generally. The range of responses that you might receive from
a server, and the actions that you need to take to handle them, relate only to your preselected resources
and the error responses that might be associated with those resources and with the type of requests that
you are making.

Before writing an application program that makes an HTTP client request, make sure that you understand
the processing stages for these requests, because most of the stages are initiated by the application
program itself. Refer to HTTP request and response processing for CICS(r) as an HTTP client .
TCPIPSERVICE resource definitions, which are used for CICS as an HTTP server, do not apply to CICS as
an HTTP client.

Code page conversion is carried out for the requests CICS makes and the responses it receives. See Code
page conversion for CICS(r) as an HTTP client .

Making HTTP requests through CICS as an HTTP client
HTTP client requests made from CICS to a server on the Internet are initiated by a user-written
application program.

Before you begin
Before writing an application program that makes an HTTP client request, read about the processing
stages for these requests, because most of the stages are initiated by the application program itself.
HTTP request and response processing for CICS(r) as an HTTP client explains what the application
program needs to do, and what actions CICS takes during the process.
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About this task

For CICS as an HTTP client, the application program makes requests to a server and waits for the
responses. An application program can control more than one connection, using a session token to
differentiate between them.

To make HTTP requests and receive responses, write your application program to follow the process
described in the subtopics, followed by samples:

Opening a connection to an HTTP server
When you make an HTTP client request in CICS web support, you must open a connection to the server
before sending the first request. CICS returns a session token that represents the connection.

About this task

When you open the connection to the server, you can specify a URIMAP resource that contains the
information about the host server and port for the connection. You can code this information directly in
your application program instead of using a URIMAP resource. However, using a URIMAP resource has
the following advantages:

• System administrators can manage any changes to the endpoint of the connection, so you do not need
to recompile your applications if the URL for your request changes.

• If you are using SSL, you can specify an SSL client certificate or cipher suite codes in the URIMAP
resource, so that system administrators can manage any changes to these certificates and codes.

• You can choose to make CICS keep the connections that were opened with the URIMAP resource open
after use, and place them in a pool for reuse by another application or another instance of the same
application. Connection pooling is only available when you specify a URIMAP resource that has the
SOCKETCLOSE attribute set. For more information about the performance benefits of connection
pooling, see Connection pooling for HTTP client performance.

Initiate a connection with the server by issuing a WEB OPEN command.

Procedure

1. Specify the host name of the server, the length of the host name, and the scheme that is to be used
(HTTP or HTTPS).
Also specify the port number for the host if it is not the default for the specified scheme.
You can specify the URIMAP option on the WEB OPEN command to use this information directly from
an existing URIMAP resource. Connection pooling is enabled for the connection when you specify the
URIMAP option and name a URIMAP resource that has the SOCKETCLOSE attribute set.
Alternatively, you can supply the information using the SCHEME, HOST, HOSTLENGTH, and
PORTNUMBER options. You can extract these details from a known URL, using the WEB PARSE URL
command, or from an existing URIMAP definition, using the WEB EXTRACT URIMAP command (but
note that extracting information from a URIMAP definition does not enable connection pooling).

2. If required, specify the CODEPAGE option to change the EBCDIC code page for this connection to
something other than the default code page for the local CICS region (set by the LOCALCCSID system
initialization parameter). This page might be the EBCDIC code page for another national language.
When the server returns its response, if conversion is specified CICS converts the response body into
this code page before passing it to the application.

3. If you are using the HTTPS scheme, specify appropriate security options:
a) If you need to supply an SSL client certificate, specify the CERTIFICATE option.

If you specify the URIMAP option on the WEB OPEN command, you can use this information
directly from an existing URIMAP definition.

b) Use the CIPHERS and NUMCIPHERS options to specify a list of cipher suite codes for the
connection.
If you specify the URIMAP option on the WEB OPEN command, you can either accept the setting
from the URIMAP definition or specify your own cipher suite codes as overrides.
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4. If your first planned request involves actions that are not supported in all versions of the HTTP
protocol, and you want to check the HTTP version of the server to confirm that the actions will work,
specify either or both of the HTTPVNUM and HTTPRNUM options to return this information.
You might need this information if you do not already know the HTTP version of the server, and you
want to take actions that depend on the HTTP protocol version; for example:

• Writing HTTP headers that request an action that might not be carried out correctly by a server
below HTTP/1.1 level

• Using HTTP methods that might be unsuitable for servers below HTTP/1.1 level
• Using chunked transfer-coding
• Sending a pipelined sequence of requests

You do not always have to check the HTTP version of the server. Consult the HTTP specification to
which you are working to see whether it is acceptable to attempt the action with a server of the wrong
version. For example, some unsuitable HTTP headers might be ignored by the recipient. You might be
able to attempt the request without checking, and handle any error response from the server.
Do not specify the HTTPVNUM and HTTPRNUM options if you do not require this information, because
performance is better without these options.

5. Optional: If you want to make the connection to the server go through a proxy server, or to apply a
security policy to a host name, create a user exit program for the XWBOPEN user exit.
For details see HTTP client open exit XWBOPEN.

Results

If you specified a URIMAP resource with the SOCKETCLOSE attribute set, CICS checks whether a dormant
connection is available in the pool, and if so supplies the connection to the application program for reuse.
If no dormant connection is available, or if you did not specify a suitable URIMAP resource, CICS opens a
new connection to the server. The application program uses a new connection or a reused connection in
exactly the same way.

CICS returns a new session token to the application program to represent this application's use of the
connection.

What to do next
Save the session token and use it on all subsequent commands that relate to this use of the connection.

Writing HTTP headers for a request
For client HTTP requests, CICS automatically provides the HTTP headers that are required for basic
messages, depending on the HTTP protocol version used for the message. You might need to add further
HTTP headers to your request.

About this task

These HTTP headers are created automatically by CICS if the message requires them:

• ARM correlator
• Connection
• Content-Type (written by CICS, but can be supplied by a client application if a complex header is

required)
• Content-Length
• Date
• Expect
• Host
• Server (automatic creation depends on system initialization parameter HTTPSERVERHDR)
• TE (written by CICS but further instances may be added)
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• Transfer-Encoding
• User-Agent (automatic creation depends on system initialization parameter HTTPUSRAGENTHDR)
• WWW-Authenticate

Some of these headers are appropriate only for CICS as an HTTP server. The circumstances in which
these headers are created are described in HTTP header reference for CICS web support . You cannot
write your own versions of CICS-supplied request headers, except for the Content-Type and TE headers.

Typically, the headers that CICS provides for a request are written for a basic HTTP/1.1 message, to
comply with the HTTP/1.1 specification. (CICS sends your request with HTTP/1.1 given as the HTTP
version.) You might want to add further HTTP headers for purposes such as these:

• Stating preferences to the server; for example, Accept-Encoding, Accept-Language
• Making a conditional request; for example, If-Match, If-Modified-Since
• Providing basic authentication information to a server or proxy; Authorization, Proxy-Authorization

Check the HTTP specification to which you are working for requirements relating to any additional HTTP
headers that you decide to use for your message. Refer to The HTTP protocol.

Write additional HTTP headers for a message before you issue the WEB SEND command to send the
message. However, if you are writing headers to be sent as trailing headers on a chunked message, the
following procedure applies. Note these points:

Procedure

• For all commands, specify the session token for this use of the connection, using the SESSTOKEN
option.

• Use the WEB WRITE HTTPHEADER command for each header that you want to add to the message.
Make sure that you specify the name and value for each header in the format described by the HTTP
specification to which you are working.
The command adds a single header, and you can repeat the command to add further headers. If you
write a header that you have already written for the request, CICS adds the new header to the request
in addition to the existing header. Repeat headers only where the HTTP specification states that the
header may be repeated.
CICS stores the headers ready to be added to the request when it is sent.

• If you do not know the HTTP version of the server, and you want to use a header to request an action
that might not be carried out correctly by a server below HTTP/1.1 level, use the WEB EXTRACT
command to check the HTTP version of the server.
You do not always have to check the HTTP version of the server before carrying out actions that
depend on the version. Consult the HTTP specification to which you are working to see whether it is
acceptable to attempt the action with a server of the wrong version. For example, some unsuitable
HTTP headers might be ignored by the recipient. You might be able to attempt the request without
checking, and handle any error response from the server.

• If you want to produce a date and time stamp for use in one of your HTTP headers (for example, the If-
Modified-Since header), you can use the FORMATTIME FORMATTIME command.
The STRINGFORMAT option on the command converts the current date and time (in ABSTIME format),
or a date and time produced by the application program, into suitable date and time stamp formats for
use on the Web. Other date and time stamp formats might not be accepted by some web clients or
servers with which CICS is communicating.

• If you are using chunked transfer-coding to send an HTTP request, and you want to include trailing
headers at the end of the chunked message, refer to “Sending an HTTP request or response with
chunked transfer-coding” on page 160.
You must write a Trailer header before sending the first chunk of the message. All the HTTP headers
written after the WEB SEND command for the first chunk are treated as trailing headers.

• Make sure that your application program carries out any actions that are implied by your user-written
headers.
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Writing an HTTP request
For CICS as an HTTP client, you can use the WEB SEND command or the WEB CONVERSE command to
make a request. The WEB CONVERSE command combines the options available on the WEB SEND
command and the WEB RECEIVE command, so that you can use a single command to issue a request and
receive the response.

Before you begin

Write any additional HTTP headers for the request using the WEB WRITE HTTPHEADER command before
making the request, as described in “Writing HTTP headers for a request” on page 165.

About this task

You can send the request in chunks (chunked transfer-coding), or you can send a pipelined sequence of
requests, described in “Sending a pipelined sequence of requests” on page 168.

For reference information to accompany this task, see WEB SEND (Client) and WEB CONVERSE. Issue the
WEB SEND or WEB CONVERSE command as described in the following procedure.

Procedure

1. Specify the session token for this use of the connection, using the SESSTOKEN option.
2. Specify the HTTP method for the request (OPTIONS, GET, HEAD, POST, PUT, DELETE, or TRACE),

referring to HTTP method reference for CICS web support. The method tells the server what to do
with your request. For more detailed guidance, consult the HTTP specification to which you are
working, indicated in The HTTP protocol . CICS sends your request with HTTP/1.1.

3. Specify the path information for the required resource on the server.
The default is the path given in any URIMAP definition that you referenced on the WEB OPEN
command for this connection. You can specify an alternative path by using the URIMAP option to
name another URIMAP definition from which the path can be taken. (The new URIMAP definition
must specify the correct host name for the current connection.) Alternatively, you can use the PATH
and PATHLENGTH options to provide the path information.

4. Specify any query string for your request, using the QUERYSTRING and QUERYSTRLEN options.
5. Specify any entity body for the HTTP request and its length.

HTTP method reference for CICS web support tells you when the use of a request body is
appropriate.
If a request body is required, the body content can be formed from a CICS document, using the CICS
DOCUMENT interface and specifying the DOCTOKEN option to identify the document, or from the
contents of a buffer, specifying the FROM option. See “Producing an entity body for an HTTP
message” on page 157.

6. Specify the media type for any entity body that you are providing, using the MEDIATYPE option.
For requests with the POST and PUT methods, which require a body, you need to specify the
MEDIATYPE option. For requests with other methods, without body content, the MEDIATYPE option
is not required.

7. If code page conversion is not required for the request body, specify the appropriate conversion
option, depending on whether you are using the WEB SEND command or the WEB CONVERSE
command, so that CICS does not convert the request body.
For CICS as an HTTP client, the default setting is that the request body is converted, unless it has a
nontext media type.

8. If code page conversion is required, and the default ISO-8859-1 character set is not suitable, specify
a character set that is suitable for the server.
ISO-8859-1 is acceptable for most servers.

9. If you want to use the Expect header to test the acceptance by the server of the request, specify
EXPECT for the ACTION option.
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This setting makes CICS send an Expect header with the request line and headers for the request,
and await a 100-Continue response before sending the message body to the server. If a response
other than 100-Continue is received, CICS informs the application program and cancels the send. If
no response is received after a period of waiting, CICS sends the message body anyway.
The Expect header is not supported by servers before HTTP/1.1. If CICS does not yet know the HTTP
version of the server, CICS requests the version number before sending your request. If the Expect
header is not suitable, CICS sends your request without it.

10. Optional: If this request is the last one that you want to make to this server, depending on whether or
not you are using connection pooling, you might want to request the server to close the connection:
a) If you are not using connection pooling for this connection, you may specify CLOSE for the

CLOSESTATUS option. With this option, CICS writes a Connection: close header on the request, or,
for a server at HTTP/1.0 level, omits the Connection: Keep-Alive header. Specifying this option
means that the server can close its connection immediately after sending the final response. This
behavior is not a requirement for web clients, but it is best practice if you definitely do not want to
keep the connection available for reuse.

b) If you are using connection pooling for this connection, do not specify the CLOSESTATUS option. If
you specify CLOSESTATUS(CLOSE), the server closes the connection and it cannot be pooled.

Connection pooling is enabled when you open a connection using a URIMAP resource with the
SOCKETCLOSE attribute set.

11. If you want to use chunked transfer-coding to send the request body as a series of chunks, follow the
additional instructions in “Sending an HTTP request or response with chunked transfer-coding” on
page 160 .Chunked transfer-coding is not supported in these circumstances:
a) Servers before HTTP/1.1
b) The WEB CONVERSE command
c) CICS documents (the DOCTOKEN option)

Results
CICS assembles the request line, HTTP headers, and request body, and sends the request to the server.

Sending a pipelined sequence of requests
You can send further requests without waiting for a response from the server. This technique is known as
pipelining. The WEB SEND command is used for sending pipelined requests. You cannot use the WEB
CONVERSE command because that command includes waiting for a response.

About this task
How CICS web support handles pipelining has more detailed information.

The HTTP/1.1 specification states that your sequence of pipelined requests must be idempotent; that is,
if you repeat all or part of the sequence, the same results are obtained. Pipelining has more information
about idempotency.

Procedure

1. Make sure that you have a persistent connection with the server.
The HTTP/1.1 specification allows you to make one attempt to send a pipelined sequence without
checking that the connection is persistent. If this attempt fails, you must check before trying the
requests again. To determine the nature of the connection:
a) If you specified the HTTPVNUM and HTTPRNUM options on the WEB OPEN command for the

connection, examine the returned information to determine the HTTP version of the server.
b) If you did not specify those options on the WEB OPEN command, use the WEB EXTRACT command

to determine the HTTP version of the server.
c) If you have received a previous response from the server, use the WEB READ HTTPHEADER

command to check whether the server sent a Connection: close or a Connection: Keep-Alive
header.
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Servers that are at HTTP/1.1 level and do not send a Connection: close header, and servers that are at
HTTP/1.0 level and do send a Connection: Keep-Alive header, support persistent connections.
CICS does not carry out this check on your behalf, because CICS cannot determine whether a client
application program is sending a pipelined sequence of requests, because a pipelined request has no
special headers to identify it.

2. Do not specify CLOSESTATUS(CLOSE) on any of the requests, except the final request in the pipelined
sequence if you are not using connection pooling and want the server to close the connection.
If you are using connection pooling, do not specify CLOSESTATUS(CLOSE) at all.

Providing credentials for basic authentication
When an HTTP 401 WWW-Authenticate message is received, your application must provide the user
name and password (credentials) required by the server for basic authentication. Your application can
also provide these credentials without waiting for the 401 message.

Procedure

1. Open a web session with the server using the WEB OPEN command, using the SESSTOKEN option.
The SESSTOKEN is returned to you when the session is opened successfully, and the session token
must be used on all CICS WEB commands that relate to this use of the connection.

2. Issue a WEB SEND command, specifying the SESSTOKEN for this use of the connection.
This WEB SEND command retrieves the realm from the server.

3. Issue a WEB RECEIVE command. The server returns a status code. Use the STATUSCODE option on
the WEB RECEIVE command to check for a 401 response.

4. If the status code is 401 (the server requires authentication details), repeat your first WEB SEND
request, but this time add the AUTHENTICATE(BASICAUTH) option. The XWBAUTH global user exit is
called by the client application.
This second WEB SEND command uses the realm received from the first WEB SEND command and the
XWBAUTH exit to determine the required user name and password.

5. You might prefer to specify AUTHENTICATE(BASICAUTH) in your initial WEB SEND command, instead
of waiting for the 401 response. You have a choice:

• Supply your user name and password in the WEB SEND command using the
AUTHENTICATE(BASICAUTH) option.

• Call the XWBAUTH global user exit by specifying the AUTHENTICATE(BASICAUTH) option, but
omitting your credentials. The user exit is called, but the realm passed to the exit is empty, because
the realm has not yet been received from the server. The user exit must derive the required
credentials from other parameters; for example, HOST and PATH.

6. If your application needs to know the realm that was sent in the 401 response, use the WEB EXTRACT
command.

Results
CICS passes the user name and password credentials to the server in an Authentication header.

Receiving an HTTP response
Use the WEB RECEIVE command or the WEB CONVERSE command to receive the response from the
server. Use the WEB READ HTTPHEADER command or the HTTP header browsing commands to examine
the headers.

Before you begin
The time that the application is prepared to wait to receive a response is indicated by the RTIMOUT value
specified on the transaction profile definition for the alias transaction. The timeout limit does not apply to
reading the headers of the response.

When the period specified by RTIMOUT expires, CICS returns a TIMEDOUT response to the application.
An RTIMOUT value of zero means that the application is prepared to wait indefinitely. The default setting
for RTIMOUT on transaction profile definitions is zero, so it is important to check and change that setting.
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About this task

To receive an HTTP response, use the WEB RECEIVE (Client) or WEB CONVERSE command:

Procedure

1. Specify the session token for this use of the connection, using the SESSTOKEN option.
2. Specify data areas to receive the HTTP status code sent by the server and any text returned by the

server to describe the status code.
The data is returned in its unescaped form.

3. Specify a data area to receive the media type of the response body.
4. Receive the response body by specifying either the INTO option (for a data buffer), or the SET option

(for a pointer reference), and the LENGTH option.
The data is returned in its escaped form and is converted into a code page suitable for the application,
unless you request otherwise.

5. If you want to limit the amount of data received from the response body, specify the MAXLENGTH
option. If you want to retain, rather than discard, any data that exceeds this length, specify the
NOTRUNCATE option as well.
Any remaining data can be obtained using further WEB RECEIVE commands.
If the data has been sent using chunked transfer-coding, CICS assembles the chunks into a single
message before passing it to the application, so the MAXLENGTH option applies to the total length of
the entity body for the chunked message, rather than to each individual chunk.

6. If code page conversion is not required for the response body, specify the appropriate conversion
option, so that CICS does not convert the response body.
The default is that conversion takes place. In that case, CICS converts the body of the server response
into the default code page for the local CICS region or into any alternative EBCDIC code page that you
specified on the WEB OPEN command.

Note: If you receive an entity body that has been compressed, as indicated by a Content-Encoding
header on the message, make sure that you suppress code page conversion. CICS does not decode
these types of message for you, and, if code page conversion is applied, the results might be
unpredictable. If you do not want to receive compressed entity bodies, use an Accept-Encoding
header on your request to the server.

When you issue the WEB RECEIVE or WEB CONVERSE command, CICS returns the response body and
the information from the status line.

7. Examine the HTTP headers of the server response:

• If you want to read a specific HTTP header that you know the server provides, use the WEB READ
HTTPHEADER command to examine the contents of that header. Your application program must
provide a buffer to receive the contents of the header. CICS returns a NOTFND condition if the
header is not present in the request.

• If you want to browse all the HTTP headers in the response, use a WEB STARTBROWSE
HTTPHEADER command to begin browsing the header lines. Use a WEB READNEXT HTTPHEADER
command to retrieve the header name and header value for each line. Your application program
must provide two buffers: one to receive the name of the header and one to receive its contents.
CICS returns an ENDFILE condition when all headers have been read. Use a WEB ENDBROWSE
HTTPHEADER command when your program has retrieved all the relevant header information.

Remember to include the session token on each of the HTTP header commands.
8. Process the server response and run the application business logic.

If the response had a normal or information status code, such as 200 (OK), you can process the
response as normal. (The status code is received when you issue the WEB RECEIVE command.) If the
response had a status code indicating an error or requesting further action, you must carry out
alternative processing. HTTP status code reference for CICS web support has basic guidance on
responding to status codes.
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9. If you sent a pipelined sequence of requests, receive the rest of the responses from the server using
further WEB RECEIVE commands.
CICS holds the responses and returns them to the application program in the order that CICS received
them from the server. A server that handles pipelined requests provides the responses in the same
sequence in which the requests were received.

Tip: When you are receiving responses to pipelined requests, if you are using multiple WEB RECEIVE
commands to receive overlength message bodies, be careful to track how many WEB RECEIVE
commands you have issued. You might find it more convenient to receive the whole body for each of
these responses in a single WEB RECEIVE command.

Closing the connection to an HTTP server
When CICS is an HTTP client, the connection between CICS and the server can be closed by the server, or
by CICS following a command issued by the application program. If you are using connection pooling,
CICS keeps suitable connections in a pool of dormant connections for reuse, instead of closing them.

About this task

By default, the connection between CICS and the server is closed either at the server's request, or after
the application program has finished using it. However, if the connection was opened using a URIMAP
resource that specified connection pooling, and neither the server nor the application program have made
a request to close the connection, CICS does not close the connection. Instead, CICS checks that the
connection is in a good state and then places it in a pool of dormant connections. Pooled connections
remain open and can be reused by another application program or by another instance of the same
application program to connect to the same server.

Procedure

1. While you are using the connection, if you want to test whether the server has requested termination
of the connection, use the WEB READ HTTPHEADER command to look for the Connection: close
header in the last message from the server.
If the server closes the connection, the application program cannot send any further requests using
that connection, but it can receive responses that the server sent before it closed the connection.

2. Optional: If you are not using connection pooling, on the last request that you want to make to the
server, specify CLOSE for the CLOSESTATUS option on the WEB SEND or WEB CONVERSE command.
CICS writes a Connection: close header on the request or, for a server at HTTP/1.0 level, omits the
Connection: Keep-Alive header. Specifying this option means that the server can close its connection
immediately after sending the final response, rather than waiting for any further requests before
timing out. Specifying the CLOSESTATUS option does not have the same range of effects as issuing the
WEB CLOSE command.
Note: If you are using connection pooling, do not specify CLOSE for the CLOSESTATUS option.
Specifying CLOSESTATUS(CLOSE) means that the server closes the connection and so it cannot be
placed in a pool.

3. When all the HTTP requests and responses are completed, issue a WEB CLOSE command, specifying
the session token.
Issuing the WEB CLOSE command notifies CICS that the application program has finished using the
connection. When you issue the command, the session token that applies to this use of the connection
is no longer valid for use. The session token is required to receive a response from the server and to
read the HTTP headers for the response, so do not issue the WEB CLOSE command until you have
completed all interaction with the server and with the last response that it sent.

• If the connection is still open when you issue the WEB CLOSE command, and it was opened using a
URIMAP resource that specified connection pooling, CICS does not close the connection. CICS
checks the state of the connection and places it in a pool for reuse.

• If the connection is not suitable for connection pooling when you issue the WEB CLOSE command,
because the server or your application program has previously made a request to close the
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connection, or it was not opened using a suitable URIMAP resource, or it is not in a good state, CICS
closes the connection and does not place it in a pool.

• If you do not issue the WEB CLOSE command, CICS closes the connection at end of task. The closed
connection cannot be placed in a pool. To enable connection pooling, your application must issue
the WEB CLOSE command.

Sample programs: pipelining requests to an HTTP server
Sample programs DFH$WBPA (assembler language), DFH$WBPC (C), and DFH0WBPO (COBOL)
demonstrate how CICS can pipeline client requests to an HTTP server.

Before you begin
The sample programs send requests to a CICS region in which CICS web support is running. The requests
are handled by the CICS-supplied sample program DFH$WB1C. Before you use the sample programs, set
up a CICS region as an HTTP server, following the procedure described in Configuring CICS web support
components . Complete the procedure by setting up the sample program DFH$WB1C and modifying the
sample URIMAP definition DFH$URI1, as described in Verifying the operation of CICS(r) web support . If
your CICS region is already set up and operating as an HTTP server, and you have your own
TCPIPSERVICE definitions, do not install the sample TCPIPSERVICE definition HTTPNSSL again; just set
up DFH$WB1C and DFH$URI1.

About this task
When you have set up a CICS region as an HTTP server, complete the following steps to use the pipelining
sample programs:

Procedure

1. Identify the CICS region that will be the HTTP client.
To try out the sample programs, you have three options:

• You can use the same CICS region as both the server and the client; the requests will go out of and
into the region as they do with two separate CICS regions, and the results are the same. In this
case, no further CICS web support setup is required, because a CICS region that operates as an
HTTP server can also operate as an HTTP client.

• You can use a different CICS region as the client, which has already been set up for CICS web
support. Again, in this case, no further CICS web support setup is required.

• You can use a different CICS region as the client, which has not yet been set up for CICS web
support. In this case, you must carry out some basic CICS web support setup, described in Step 2.

2. Optional: If you are using a different CICS region as the HTTP client, and the region has not yet been
set up for CICS web support, carry out basic setup:
a) Enable TCP/IP support for the CICS region, following the instructions in Enabling TCP/IP in a

CICS(r) region .
This process includes setting up Communications Server and establishing access to a DNS, or
domain name, server through z/OS.

b) Specify the system initialization parameter TCPIP=YES for the region to activate CICS TCP/IP
services.

This setup enables the CICS region to function as an HTTP client.
3. In the CICS region that you set up as an HTTP server, identify the TCPIPSERVICE definition for a port

that the client region can use to make its requests.
Select any port that is defined with the HTTP protocol, but does not use SSL; that is, with a
TCPIPSERVICE definition that specifies PROTOCOL(HTTP) and SSL(NO). You can choose any suitable
port because the sample URIMAP definition DFH$URI1, which is used on the server to access the
sample program DFH$WB1C, matches any host name and port number.

4. In the HTTP client region, modify the supplied sample URIMAP definition DFH$URI2, which is
provided in the DFH$WEB resource definition group.
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Because DFH$WEB is a protected group, copy the definition to another group to enable editing.
DFH$URI2 is a URIMAP definition with a usage attribute of CLIENT. It specifies the components of
the URL that the sample programs use to make the requests to the HTTP server region. Follow these
steps to modify the sample:
a) Do not change the scheme (SCHEME attribute) specified in DFH$URI2 as HTTP.
b) The host (HOST attribute) specified in DFH$URI2 is a dummy host name. Modify this name to

insert the real host name:

• Specify the host name assigned to the z/OS image for the HTTP server region. If you do not
know the host name, you can use the colon hexadecimal or dotted decimal IP address from the
TCPIPSERVICE definition that you selected in Step 3.

• If the TCPIPSERVICE definition that you selected is for a port number other than 80 (the well-
known port number for HTTP), specify the port number from the TCPIPSERVICE definition after
the host name, with a colon separating the host name and port number.

c) Do not change the path (PATH attribute) specified in DFH$URI2 as /sample_web_app , which is
matched by DFH$URI1.

5. In the HTTP client region, install your modified URIMAP definition DFH$URI2.
6. In the HTTP client region, install the PROFILE definition DFH$WBPF, which is provided in the DFH

$WEB resource definition group.
7. Translate and compile one of the sample programs in the required language.

The pipelining sample programs are not compiled when you receive them. The sample programs are
supplied in the SDFHSAMP library. The names of the sample programs and their corresponding
transactions are as follows:

Language Program Transaction

Assembler DFH$WBPA WBPA

C DFH$WBPC WBPC

COBOL DFH0WBPO WBPO

8. In the HTTP client region, install the PROGRAM resource definition and the corresponding
TRANSACTION resource definition for your chosen sample program.
The resource definitions are provided in the DFH$WEB resource definition group.

9. In the HTTP client region, run the transaction for your chosen sample program.
The sample program sends information messages to your terminal when it sends each of the three
HTTP requests successfully, receives each of the three HTTP responses successfully, and completes.
If any of the sends or receives fail, an error message is given instead. The content of the HTTP
requests and responses is not displayed.

10. When you have finished using the sample program, for security reasons disable the URIMAP
definitions, DFH$URI1 and DFH$URI2, and uninstall the sample TCPIPSERVICE definition HTTPNSSL
if you were using it.

Sample programs: sending and receiving HTTP requests in chunks
Sample programs DFH$WBCA (assembler language), DFH$WBCC (C), and DFH0WBCO (COBOL)
demonstrate how CICS, as an HTTP client, can send a request in sections or chunks to an HTTP server
and receive a chunked message in response. Sample programs DFH$WBHA (assembler language), DFH
$WBHC (C), and DFH0WBHO (COBOL) demonstrate how CICS, as an HTTP server, can receive a request in
chunks from an HTTP client and send a chunked response.

Before you begin

The sample programs send and receive requests between CICS regions in which CICS web support is
running. The client chunking samples, DFH$WBCA, DFH$WBCC, and DFH0WBCO, are installed in the
HTTP client region, and the server chunking samples, DFH$WBHA, DFH$WBHC, and DFH0WBHO, are
installed in the HTTP server region. The client sample, for example, DFH$WBCA, opens a session with its
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corresponding server sample, DFH$WBHA. DFH$WBHA receives the chunked request from DFH$WBCA
and sends a chunked response. The client sample, DFH$WBCA, receives the response as a chunked
message.

Before you use the sample programs, set up a CICS region as an HTTP server, following the procedure
described in Configuring CICS web support components. If your CICS region is already set up and
operating as an HTTP server, and you have your own properly designed TCPIPSERVICE definitions, do not
install the sample TCPIPSERVICE definition HTTPNSSL again.

About this task
When you have set up a CICS region as an HTTP server, complete the following steps to use the chunking
sample programs:

Procedure

1. Identify the CICS region that will be the HTTP client.
To try out the sample programs, you have three options:

• You can use the same CICS region as both the server and the client; the requests will go out of and
into the region as they would with two separate CICS regions, and the results are the same. In this
case, no further CICS web support setup is required, because a CICS region that operates as an
HTTP server can also operate as an HTTP client.

• You can use a different CICS region as the client, which has already been set up for CICS web
support. Again, in this case, no further CICS web support setup is required.

• You can use a different CICS region as the client, which has not yet been set up for CICS web
support. In this case, you must carry out some basic CICS web support setup, described in Step 2.

2. Optional: If you are using a different CICS region as the HTTP client, and the region has not yet been
set up for CICS web support, carry out basic setup:
a) Enable TCP/IP support for the CICS region, following the instructions in Enabling TCP/IP in a

CICS(r) region .
This process includes setting up Communications Server and establishing access to a DNS, or
domain name, server through z/OS.

b) Specify the system initialization parameter TCPIP=YES for the region to activate CICS TCP/IP
services.

This setup enables the CICS region to function as an HTTP client.
3. In the CICS region that you set up as an HTTP server, identify the TCPIPSERVICE definition for a port

that the client region can use to make its requests.
Select any port that is defined with the HTTP protocol, but does not use SSL, so with a TCPIPSERVICE
definition that specifies PROTOCOL(HTTP) and SSL(NO). You can choose any suitable port because
the sample URIMAP definition DFH$URI4, which is used on the server to access the server chunking
sample program, matches any host name and port number.

4. In the HTTP client region, modify the supplied sample URIMAP definition DFH$URI3, which is
provided in the DFH$WEB resource definition group. Because DFH$WEB is a protected group, you
copy the definition to another group to enable editing.
DFH$URI3 is a URIMAP definition with a usage attribute of CLIENT. It specifies the components of
the URL that the sample programs use to make the requests to the HTTP server region.
a) Do not change the scheme (SCHEME attribute) specified in DFH$URI3 as HTTP.
b) DFH$URI3 specifies a dummy host name (HOST attribute). Modify it to insert the real host name:

• Specify the host name assigned to the z/OS image for the HTTP server region. If you do not
know the host name, you can use the IP address from the TCPIPSERVICE definition that you
selected in Step 3.

• If the TCPIPSERVICE definition that you selected is for a port number other than 80 (the
commonly used port number for HTTP), specify the port number from the TCPIPSERVICE
definition after the host name, with a colon separating the host name and port number.
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c) Do not change the path (PATH attribute) specified in DFH$URI3 as /
chunking_sample_application , which is matched by DFH$URI4.

5. In the HTTP client region, install your modified URIMAP definition DFH$URI3.
6. In the HTTP client region, install the PROFILE definition DFH$WBPF, which is provided in the DFH

$WEB resource definition group.
7. Translate and compile a client and a server sample program in the required language.

The chunking sample programs are not compiled when you receive them. The sample programs are
supplied in the SDFHSAMP library. Here are the names of the sample programs and their
corresponding transactions:

Type of Sample Language Program Transaction

Client chunking sample assembler DFH$WBCA WBCA

Client chunking sample C DFH$WBCC WBCC

Client chunking sample COBOL DFH0WBCO WBCO

Server chunking
sample

assembler DFH$WBHA -

Server chunking
sample

C DFH$WBHC -

Server chunking
sample

COBOL DFH0WBHO -

8. In the HTTP server region, install the PROGRAM resource definition for your chosen server chunking
sample program, and install the supplied sample URIMAP definition DFH$URI4.
The resource definitions are provided in the DFH$WEB resource definition group.
a) If you chose the C or COBOL sample, modify the supplied sample URIMAP definition DFH$URI4

before installing it.
Because DFH$WEB is a protected group, copy the definition to another group to enable editing.

b) Change the program (PROGRAM attribute) specified by DFH$URI4, from DFH$WBHA (the
assembler language chunking sample program), to your preferred server chunking sample
program.

c) Install your modified URIMAP definition DFH$URI4.
9. In the HTTP client region, install the PROGRAM resource definition and the corresponding

TRANSACTION resource definition for your chosen client chunking sample program.
The resource definitions are provided in the DFH$WEB resource definition group.

10. In the HTTP client region, run the transaction for your chosen client chunking sample.
The sample program sends information messages to your terminal when it sends all four chunks of
the message and two header trailers to the HTTP server successfully. A message is also displayed
confirming that the receive occurred. If any of the sends fail, an error message is given instead. The
content of the actual HTTP requests and responses is not displayed.

11. In the HTTP server region, your chosen server chunking sample is called by the corresponding client
chunking sample.
The sample program sends information messages to your terminal when it sends all four chunks of
the message and two header trailers to the waiting HTTP client successfully. If any of the sends fail,
an error message is given instead. The content of the actual HTTP requests and responses is not
displayed.

12. When you have finished using the sample programs, for security reasons disable the URIMAP
definitions, DFH$URI3 and DFH$URI4, and uninstall the sample TCPIPSERVICE definition HTTPNSS,
if you were using it.
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Creating a URIMAP resource for CICS as an HTTP client
You can create a URIMAP resource that specifies the components of the URI for an HTTP client request
(scheme, host, and path) and an SSL client certificate to be used with the request, if required. When you
use a URIMAP resource to open a client HTTP connection, administrators can manage any changes to the
server's URI, and you can also specify that the opened connection is pooled after use for reuse by other
applications.

About this task

You can name a URIMAP resource on the WEB OPEN command to provide a scheme and host name and a
default path for the connection. You can also name the resource on a WEB SEND command to provide a
path for the relevant request. Alternatively, you can use the WEB EXTRACT URIMAP command to extract
information from the URIMAP resource and use it directly in the application program that makes the HTTP
client request. URIMAP resources can also be used with the INVOKE SERVICE command to call a
service.

By default, after a CICS application finishes by using its client HTTP connection, CICS closes the
connection. When you specify the SOCKETCLOSE attribute in the URIMAP resource, instead of closing the
connection, CICS can place the connection in a pool in a dormant state. The dormant connection can be
reused by the same application or by another application that connects to the same host and port to save
opening a new connection. The application program uses a pooled connection in the same way as it uses
a new connection.

Outbound HTTP connection pooling is controlled entirely by the SOCKETCLOSE attribute in the client
URIMAP.

When you are using INVOKE SERVICE, the CICS PIPELINE code either uses a named URIMAP supplied
on the command or it attempts to locate a matching client URIMAP based on the host and path. If a
matching URIMAP is found, then it is passed to DFHWBCL OPEN_SESSION. Outbound connection pooling
is then in use, depending on the URIMAP definition.

Note: If the URIMAP is still installed and has a non-zero SOCKETCLOSE value, then outbound connection
pooling is still taking place.

The PIPELINE behavior is slightly different from using WEB OPEN and WEB CONVERSE. The WEB OPEN
command just passes the URIMAP to DFHWBCL if specified by the application on the command. The
initial reason for this is it is the only way to set a client certificate or set of ciphers to use for outbound SSL
connections in the PIPELINE. However, it also allows the system programmer to set up use of connection
pooling without requiring any application changes.

Procedure

1. Identify the URL that you plan to use for the HTTP client request.
The URL represents a resource that you plan to access on a server.

2. Identify whether a client certificate might be required for the request and obtain a suitable certificate
label.
If the scheme used for the request is HTTPS, the server might request an SSL client certificate. In this
case, CICS supplies the certificate label that is specified in the URIMAP resource.

3. Divide the URL for the request into its scheme, host, and path components.
See The components of a URL. Also, use a port number that is specified explicitly in the URL.
For example, in the URL http://www.example.com:1030/software/index.html.
a) The scheme component is http
b) The host component is www.example.com
c) The port number is 1030
d) The path component is /software/index.html
If you want to provide a query string in the URL for the request, you can specify it on the WEB SEND
command by using the QUERY option.
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4. Create a URIMAP resource with a name and group of your choice:
a) Specify the USAGE attribute as CLIENT because CICS is the HTTP client.
b) Specify the SCHEME attribute as the scheme component of the URL for the request. Use HTTP or

HTTPS.
Do not include the delimiters :// following the scheme component.

c) Specify the HOST attribute as the host component of the URL for the request.
The host component can be an explicit IPv4 or IPv6 address, or it can be a character host name.
If you want to specify a port number in the URL for the request to the server, include it in the HOST
attribute, together with the colon preceding it. You must specify the port number if it is not the
default for the scheme (80 for HTTP without SSL, or 443 for HTTPS, HTTP with SSL).

d) Specify the PATH attribute as the path component of the URL for the request.
Do not include a query string in the path component; you can specify it on the WEB SEND command
by using the QUERY option. Do not use a wildcard character (an asterisk) in a URIMAP resource
when CICS is the HTTP client. You can either include or omit the forward slash at the beginning of
the path component. If you omit it, CICS adds it at run time.
If the URIMAP resource is referenced on a WEB OPEN command, this path becomes the default
path for WEB SEND commands for that connection. If the URIMAP resource is referenced on a WEB
SEND command, the path is used for that WEB SEND command, but note that the host attribute for
that URIMAP resource must match the host that is specified on the WEB OPEN command for the
connection.

e) Optional: If SSL is being used, specify the CERTIFICATE attribute as the label of the certificate that
is to be used as the SSL client certificate for this request.

f) Optional: If SSL or TLS is being used, specify the CIPHERS attribute as the cipher code that is to be
used for this request.

g) Optional: If you want connections that were opened by using this URIMAP resource to be pooled
for reuse, specify the SOCKETCLOSE attribute as the length of time for which CICS keeps the
connection in the pool after the application program finishes using it.
For more information, see Connection pooling for HTTP client performance how CICS manages
pooled connections and how connection pooling improves application performance.

This example shows the URL http://www.example.com:1030/software/index.html specified
as a URIMAP resource:

 Urimap: softw
Group: MYGROUP
Description: Client request for software page
Status: Enabled
Usage: Client
Scheme: HTTP
Host: www.example.com:1030
Path: /software/index.html
Socketclose: 001500

Results
You created a URIMAP resource so that CICS can act as an HTTP client and send HTTP requests. If you
have any problems when installing the resource, check that you do not have an enabled URIMAP that
points to the same URI. You cannot have more than one enabled URIMAP resource that is pointing to the
same URI in a CICS region.

HTTP client send exit XWBAUTH
With XWBAUTH, you can specify basic authentication credentials (user name and password) for a target
server or service provider. XWBAUTH passes them to CICS on request, to create an Authorization header,
which is forwarded using HTTP.

When you specify AUTHENTICATE(BASICAUTH) in the EXEC CICS WEB SEND (Client) or WEB CONVERSE
command, the application can provide a user name and password. If they are not supplied, XWBAUTH is
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called, providing an alternative way of specifying these credentials. XWBAUTH is called when you specify
AUTHENTICATE(BASIC) in a URIMAP resource definition for USAGE(CLIENT), unless the application
provides a user name and password in the EXEC CICS WEB SEND (Client) or WEB CONVERSE command.
XWBAUTH is also called with EC INVOKE SERVICE() URIMAP() when urimap specifies
AUTHENTICATE(BASIC).

The user name and password are typically specific to the remote server environment, and might be longer
than the standard eight characters used by RACF systems. The user name and password fields can be up
to 256 characters in length. The syntax of these fields is not validated.

The host is passed to the user exit program as the UEPHOST parameter, and the path is passed as the
UEPPATH parameter. The realm is passed optionally as the UEPREALM parameter. In response, the user
exit program returns the user name and password as the UEPUSNM and UEPPSWD parameters. When
encoding the supplied userid and password CICS uses the EBCDIC code pages.

The following sample exit programs are shipped in the CICS sample library, SDFHSAMP:

• DFH$WBPI
• DFH$WBEX
• DFH$WBX1
• DFH$WBX2
• DFH$WBGA, a copybook to map the global work area used by the DFH$WBPI, DFH$WBX1, DFH$WBX2,

and DFH$WBEX samples.

For more information about the client sample exit programs, see HTTP client sample exit programs (DFH
$WB*). For more information about setting up your LDAP profile, see Configuring LDAP for CICS use

Exit XWBAUTH
When invoked

When the EXEC CICS WEB SEND or WEB CONVERSE command specifies
AUTHENTICATE(BASICAUTH), but the USERNAME and PASSWORD are not specified.

Exit-specific parameters
UEPHOST (Input supplied by CICS)

The address of a field containing the address of the host name, IPv4, or IPv6 address specified in
the HOST option of the WEB OPEN command for the connection. The host name is converted into
lowercase characters when it is saved in this field. Your user exit program must take this
conversion into account when matching the host name.

UEPHOSTL (Input supplied by CICS)
The address of a field containing the halfword length of the host name.

UEPPATH (Input supplied by CICS)
The address of a field containing the address of the path specified in the PATH option of the WEB
SEND or WEB CONVERSE command. The path is mixed case, as it was specified.

UEPPATHL (Input supplied by CICS)
The address of a field containing the halfword length of the path.

UEPREALM (Input supplied by CICS)
The address of a field containing the address of the realm name associated with the target
destination, if a realm name was returned in a previous HTTP 401 response from the server.

UEPREALML (Input supplied by CICS)
The address of a field containing the halfword length of the realm name.

UEPAUTHT (Input supplied by CICS)
The address of a 1-byte code that indicates the authentication type. This code is a binary 01,
indicating Basic Authentication.

UEPUSNM (Output supplied by user exit)
The address of a fullword field, containing the address of the user name required to access the
HTTP server. A predefined address and 64-byte area are created by CICS to store the user name.
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You can place your user name in this 64-byte area, leaving the address in UEPUSNM unchanged.
Alternatively, you can place your user name in your own area and replace the address in
UEPUSNM with your user name address. If you create your own user name area, the field can be
up to 256 bytes in length.

UEPUSNML (Input supplied by CICS and output supplied by user exit)
The address of a halfword field, which initially contains the length of the buffer address supplied
in UEPUSNM. Your user exit program must set the length of this buffer to the user name length, as
supplied in UEPUSNM.

UEPPSWD (Output supplied by user exit)
The address of a fullword field, containing the address of the password required to access the
HTTP server. A predefined address and 100-byte area are created by CICS to store the password
or password phrase. You can place your password in this 100-byte area, leaving the address in
UEPPSWD unchanged. Alternatively, you can place your password in your own area and replace
the address in UEPPSWD with the address of your password. If you create your own password
area, the field can be up to 256 bytes in length.

UEPPSWDL (Input supplied by CICS and output supplied by user exit)
The address of a halfword field, which initially contains the length of the buffer address supplied
in UEPPSWD. Your user exit program must set the length of this buffer to the actual password
length, as supplied in UEPPSWD.

UEPHOSTT (Input supplied by CICS)
The address of a 1-byte code that indicates the host type contained in the UEPHOST parameter.

Binary 01 indicates host name, binary 02 indicates an IPv4 address, and binary 03 indicates an
IPv6 address.

Return codes
UERCNORM

The exit has successfully returned a user name and password.
UERCBYP

The exit cannot identify a user name and password. An Authorization header is not sent.
UERCERR

The exit cannot identify a user name and password. The WEB SEND (Client) or WEB CONVERSE
command must be stopped.

XPI calls
All XPI calls can be used.

API and SPI commands
All API and SPI commands can be used, except for EXEC CICS SHUTDOWN and EXEC CICS XCTL.

Typical use of the LDAP XPI functions by XWBAUTH
The expected use of the DFHDDAPX functions (in association with the XWBAUTH global user exit) include
opening and closing an LDAP session, browsing results for credentials, scanning and locating results,
closing the browse, returning the correct value and closing the search.
BIND_LDAP

Establishes a session with an LDAP server. Used once on the first call to the global user exit
XWBAUTH. The LDAP session token is stored in XWBAUTH's global work area (if one is provided) for
use by subsequent calls to LDAP_SEARCH.

UNBIND_LDAP
Releases the connection with the LDAP server. This function is only required during CICS shutdown
processing. This function can be used during the XSTERM (system termination) global user exit.

SEARCH_LDAP
Searches for credentials, specifying an LDAP distinguished name, that identifies the URL and realm of
the required user information. Distinguished name is specified in the following format:

racfcid=uuuuuuuu, ibm-httprealm=rrrrrrrr, labeledURI=xxxxxxxx, cn=BasicAuth 
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where:

• uuuuuuuu is the current userid, obtained from the XWBAUTH parameter, UEPUSER.
• rrrrrrrr is the HTTP 401 realm, obtained from the XWBAUTH parameter, UEPREALM (if this

exists).
• xxxxxxxx is the target URL, obtained by concatenating http:// with the hostname from the

XWBAUTH parameter, UEPHOST, and the path from the XWBAUTH parameter, UEPPATH.
• cn=BasicAuth is an arbitrary suffix that is configured into the LDAP server for storing Basic

Authentication credentials.

START_BROWSE_RESULTS
Starts scanning the results returned by SEARCH_LDAP.

GET_NEXT_ENTRY
Locates the next result entry in a series of entries returned by SEARCH_LDAP. Typically, the URL
specified in SEARCH_LDAP will locate a unique entry and the GET_NEXT_ENTRY function is not used.

GET_NEXT_ATTRIBUTE
Locates the next attribute in the current result entry. Typically, specific attributes will be selected and
the GET_NEXT_ATTRIBUTE function is not used.

END_BROWSE_RESULTS
Ends the browse session started by SEARCH_LDAP.

GET_ATTRIBUTE_VALUE
Returns the values for various attributes of the target distinguished name. For XWBAUTH, these
attributes values are the username and password, stored in the attributes uid and userpassword.
XWBAUTH returns these attribute values as credentials.

FREE_SEARCH_RESULTS
Closes the search initiated by SEARCH_LDAP and releases associated storage.

HTTP client open exit XWBOPEN
With XWBOPEN, you can specify proxy servers that are used for HTTP requests by CICS as an HTTP client.
You can also apply a security policy to the host name specified for those requests.

XWBOPEN is called during processing of an EXEC CICS WEB OPEN command, which is used by an
application program to open a connection with a server. XWBOPEN is also called during processing of an
EXEC CICS INVOKE SERVICE command.

CICS does not have any requirements concerning the use (or otherwise) of proxy servers for HTTP
requests by CICS as an HTTP client, and CICS does not apply any security policy for those requests. You
have to set up these facilities if they are required by your system or organization.

The EXEC CICS WEB OPEN command instructs the CICS web domain to open a connection with a server.
XWBOPEN is called before the connection is opened. The host name for the connection (for example,
www.example.com), which is specified by the HOST option on the EXEC CICS WEB OPEN command, is
passed as the UEPHOST parameter to the user exit program for checking. At this point, you can use the
user exit program for two purposes:

• To determine whether the HTTP request needs to use a proxy server, and to return the name of any
proxy server that is required. If a proxy server is needed, return code UERCPROX is used, and the name
of the proxy server is returned to the CICS web domain, in the buffer identified by UEPPROXY, and used
to make the connection to the server. If no proxy server is needed, return code UERCNORM is used.

• To apply a security policy to the host name. Return code UERCBARR indicates that access to the host is
not permitted and a NOTAUTH response is returned to the WEB OPEN command. The application
programmer must stop trying to open that connection. If you want to apply a security policy for
individual resources, as well as (or instead of) for the host, use the XWBSNDO user exit on the EXEC
CICS WEB SEND and EXEC CICS WEB CONVERSE commands to apply a security policy to the path
component of the URL.

The XWBOPEN user exit does not support the use of EXEC CICS commands.
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The sample programs DFH$WBPI and DFH$WBEX, with the associated copybook DFH$WBGA, show you
how to set up proxy server information or a security policy in a global work area. For example, if all the
requests from your CICS system must use a single proxy server, you can specify the proxy server name as
an initialization parameter. If you use a number of proxy servers or want to apply a security policy to
different host names, you can load or build a table that matches host names to appropriate proxy servers
or marks them as barred, which can then be used as a lookup table during processing of the EXEC CICS
WEB OPEN command. The sample programs can be run during program list table post initialization
(PLTPI) processing or at any point before you expect the EXEC CICS WEB OPEN command to be used.

Exit XWBOPEN
When invoked

During processing of an EXEC CICS WEB OPEN or EXEC CICS INVOKE SERVICE command.
Exit-specific parameters

UEPHOST (Input supplied by CICS)
The address of a field containing the host name, IPv4, or IPv6 address specified in the HOST
option of the WEB OPEN command.

Note: The host name is converted into lowercase when it is saved in this field. Your user exit
program must take into account this conversion when matching the host name.

UEPHOSTL (Input supplied by CICS)
The address of a field containing the halfword length of the host name.

UEPPROXY (Output supplied by user exit)
The address of a field containing the address that points to the proxy server name. The proxy
server name must be in URL format. On input to the user exit program, the parameter is set to the
address of a field containing the address of a 2046-byte area. You can place the proxy server
name in this area and leave the address in UEPPROXY unchanged. Alternatively, you can place the
proxy server name in your own area and replace the address in UEPPROXY with the address of a
field containing the address of your own area.

UEPPROXYL (Output supplied by user exit)
The address of a field containing the halfword length of the proxy server name.

UEPHOSTT (Input supplied by CICS)
The address of a 1-byte code that indicates the host type contained in the UEPHOST parameter.

Note: Binary 01 indicates host name, binary 02 indicates an IPv4 address, and binary 03 indicates
an IPv6 address.

Return codes
UERCNORM

A proxy server is not needed for this HTTP request, and the host name is not barred.
UERCPROX

A proxy server is needed for this HTTP request. UEPPROXY has been set to the name of the
required proxy server, and UEPPROXYL has been set to the length of the proxy server name.

UERCBARR
The host name of the server is barred.

UERCERR
An error occurred in exit processing.

XPI calls
All XPI calls can be used.

API and SPI commands
No EXEC CICS commands can be used.

HTTP client send exit XWBSNDO
With XWBSNDO, you can specify a security policy for HTTP requests by CICS as an HTTP client.
XWBSNDO is called during processing of an EXEC CICS WEB SEND or EXEC CICS WEB CONVERSE
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command. The host name and path information are passed to the exit, and a security policy can be
applied to either or both of these components.

CICS does not apply any security policy for HTTP requests by CICS as an HTTP client; you must set up this
facility if it is required by your system or organization.

You can use the XWBOPEN exit on the WEB OPEN command to bar access to a whole host. You use the
XWBSNDO exit to do the same or to bar access to specific paths in a host. To bar access to a whole host,
using the XWBOPEN exit saves time, because the application program cannot open the connection and so
does not waste time creating the request that must be sent. The host name is provided to the XWBSNDO
exit so that you can differentiate between identical paths used by different hosts.

If chunked transfer-coding is being used for the HTTP request, XWBSNDO is called only on the first WEB
SEND command for the chunked message.

The XWBSNDO user exit does not support the use of EXEC CICS commands.

The host is passed to the user exit program as the UEPHOST parameter, and the path is passed as the
UEPPATH parameter. Return code UERCNORM indicates that the path is permitted, and return code
UERCBARR indicates that the path is not permitted. If the path is not permitted, a NOTAUTH response is
returned to the WEB SEND or WEB CONVERSE command, and the application programmer handles this
response by closing the connection with a WEB CLOSE command.

Exit XWBSNDO
When invoked

During processing of an EXEC CICS WEB SEND or EXEC CICS WEB CONVERSE command for an
HTTP request by CICS as an HTTP client. A client request is indicated by the use of the SESSTOKEN
parameter on the WEB SEND command.

Exit-specific parameters
UEPHOST

The address of a field containing the host name, IPv4, or IPv6 address specified in the HOST
option of the WEB OPEN command for the connection.

Note: The host name is converted into lowercase when it is saved in this field. Your user exit
program must take this conversion into account when matching the host name.

UEPHOSTL
The address of a field containing the halfword length of the host name.

UEPPATH
The address of a field containing the path specified in the PATH option of the WEB SEND
command. The path is in mixed case, as it was specified.

UEPPATHL
The address of a field containing the halfword length of the path.

UEPHOSTT
The address of a 1-byte code that indicates the host type contained in the UEPHOST parameter.

Note: Binary 01 indicates host name, binary 02 indicates an IPv4 address, and binary 03 indicates
an IPv6 address.

Return codes
UERCNORM

The path is permitted.
UERCBARR

The path is not permitted.
XPI calls

All XPI calls can be used.
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API and SPI commands
No EXEC CICS commands can be used.

Introduction to the CICS business logic interface
The CICS business logic interface makes it possible to link to a web-aware business application, rather
than invoking it through the CICS HTTP listener.

For example, a web server running on z/OS can use the external CICS interface (EXCI) to link to an
application using the CICS business logic interface. In this way, a web client can communicate with a
CICS application through an intermediate web server, rather than making a direct connection to CICS.

CICS business logic interface, DFHWBBLI has reference information for the interface.

How the CICS business logic interface is used
You can call the CICS business logic interface in any environment where you can link to a CICS application
program.

• You can issue an EXEC CICS LINK command from a CICS application program. 
• You can use the external CICS interface (EXCI). 
• You can use the external call interface (ECI) from a client. 
• You can use CICS ONC RPC support from an ONC RPC client.

Processing examples
Examples of how the CICS business logic interface processes a request from an MVS™ application that
uses either the EXCI or the ECI.

Figure 17 on page 183 shows how the CICS business logic interface processes a request from an MVS
application that uses the EXCI.

Figure 17. Processing a request from the EXCI

1. The MVS application constructs a COMMAREA that contains parameters for the CICS business logic
interface.

2. The MVS application uses the EXCI to call the CICS business logic interface.
3. The CICS business logic interface calls the requested service, and returns any output in the

COMMAREA.

Figure 18 on page 184 shows how the CICS business logic interface processes a request from a CICS
client that uses the ECI. 
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Figure 18. Processing a request from the ECI

1. The client, running in a workstation environment, constructs a COMMAREA that contains parameters
for the CICS business logic interface.

2. The client uses the ECI to call the CICS business logic interface.
3. The CICS business logic interface calls the requested service, and returns any output in the

COMMAREA.

The ECI operates with either the SNA protocol or with TCP62, which allows an SNA connection over
TCP/IP (see the CICS Family: Client/Server Programming for further information). 

Control flow in request processing
To make decisions about the facilities you will use, and how you will customize them, you need to
understand how the components of the CICS business logic interface interact.

Using the CICS business logic interface to call a program

Figure 19 on page 184 shows the control flow through the CICS business logic interface to a program. The
CICS business logic interface is accessed by a LINK command to PROGRAM DFHWBBLI.

Figure 19. Calling a program with the CICS business logic interface—control flow

1. A request arrives for the CICS business logic interface.
2. If the caller requests a converter, the CICS business logic interface calls it, requesting the Decode

function. Decode sets up the COMMAREA for the CICS application program.
3. The CICS business logic interface calls the CICS application program that the caller specified. The

COMMAREA passed to the application program is the one set up by Decode. If the caller of the CICS
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business logic interface indicates that a converter is not required, the first 32K bytes of the request is
passed to the CICS application program in its COMMAREA.

4. The CICS application program processes the request, and returns output in the COMMAREA.
5. If the caller requested a converter, the CICS business logic interface calls the Encode function of the

converter, which uses the COMMAREA to prepare the response. If no converter program was called,
the CICS business logic interface assumes that the CICS application program has put the intended
response in the COMMAREA.

6. The CICS business logic interface sends a reply back to the caller.

Using the CICS business logic interface to run a terminal-oriented transaction

Figure 20 on page 185 shows the control flow through the CICS business logic interface for a request for a
terminal-oriented transaction. Note that the business logic interface is running under a CICS mirror
transaction, not a web CICS transaction. The first part of the processing is the same as for calling a
program, but if you want to run a transaction, you must specify DFHWBTTA as the CICS application
program to be called, in wbbl_server_program_name.

Figure 20. Running a transaction with the CICS business logic interface—control flow

1. If the caller requests a converter, the CICS business logic interface calls it, requesting the Decode
function. Decode sets up the COMMAREA for DFHWBTTA.

2. The CICS business logic interface calls DFHWBTTA. The COMMAREA passed to DFHWBTTA is the one
set up by Decode. If no converter program was called, the COMMAREA contains the entire request.

3. DFHWBTTA extracts the transaction ID for the terminal-oriented transaction from the HTTP request,
and starts a transaction that runs the CICS web bridge exit.

4. When the program attempts to write to its principal facility, the data is intercepted by the CICS web
bridge exit. The exit constructs the HTML response which is returned to the CICS business logic
interface. If the caller requested a converter, the CICS business logic interface calls the Encode
function of the converter, which uses the COMMAREA to prepare the response. If no converter
program was called, the CICS business logic interface assumes that the COMMAREA contains the
intended response.
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Data flow in request processing
To make decisions about the facilities you will use, and how you will customize them, you need to
understand how data is passed in the CICS business logic interface.

Converter programs and the CICS business logic interface
You can have many converter programs in a CICS system to support the operation of the CICS business
logic interface.

The place of converters in the CICS business logic interface is illustrated in Figure 19 on page 184 and
Figure 20 on page 185. Each converter must provide two functions:

• Decode is used before the CICS application program is called. It can:

– Use the data from the incoming request to build the COMMAREA in the format expected by the
application program.

– Supply the lengths of the input and output data in the application program's COMMAREA.
– Perform administrative tasks related to the request.

• Encode is used after the CICS application program has been called. It can:

– Use the data from the application program to build the response.
– Perform administrative tasks related to the response.

Notes:

• If DECODE_DATA_PTR or ENCODE_DATA_PTR has been altered to address another storage location, it
is the converter program's responsibility to freemain the original storage.

• It is the responsibility of the caller of the CICS business logic interface to free the buffer addressed by
ENCODE_DATA_PTR (that is, the address returned in field WBBL_OUTDATA_PTR minus 4).

• If the converter abends, CICS will attempt to free the storage addressed by DECODE_DATA_PTR and
ENCODE_DATA_PTR. Therefore, you should ensure that these pointers never contain the address of
storage that has already been freed.

Using the CICS business logic interface to call a program
Data flows through the CICS business logic interface to a program, and back to the requester.

Figure 21. Calling a program with the CICS business logic interface—data flow
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1. The caller of the CICS business logic interface provides a COMMAREA that contains the request to be
processed. The contents of the COMMAREA must be in a code page acceptable to the subsequent
processes. Usually this means that they must be in EBCDIC.

2. If the caller requests a converter, the Decode function of the converter constructs the COMMAREA for
the CICS application program.

3. The CICS application program updates the COMMAREA.
4. If the caller requests a converter, the Encode function of the converter constructs the COMMAREA

that is to be returned to the caller.
5. The CICS business logic interface returns to its caller, which can now use the contents of the

COMMAREA.

Request for a terminal-oriented transaction

Figure 22 on page 188 shows the data flow for a request that starts a terminal-oriented transaction.
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Figure 22. Starting a terminal-oriented transaction—data flow

This figure shows the data flow through the CICS business logic interface for a 3270 BMS application.

1. The caller of the CICS business logic interface provides a COMMAREA that contains the request to be
processed. The contents of the COMMAREA must be in a code page acceptable to the subsequent
processes, and DFHWBTTA requires EBCDIC.

2. You can use the Decode function of the converter to modify the request if required.
3. As this is the first transaction of a conversation or pseudoconversation, the request includes the

transaction ID, and perhaps data to be made available to the transaction program. DFHWBTTA
extracts the data so that it can be made available to the transaction program in a RECEIVE command.

4. The transaction program uses a RECEIVE command to receive the data. It then constructs an output
map, and uses a SEND MAP command to send it to the requester.
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5. The map and its data contents are converted into HTML. This conversion uses templates defined in
DOCTEMPLATE definitions.

6. You can use the Encode function of the converter to modify the response if required.
7. The CICS business logic interface returns to its caller, which can now use the contents of the

COMMAREA.

Figure 23 on page 189 shows the data flow for a request that continues a terminal-oriented transaction. 

Figure 23. Continuing a terminal-oriented transaction—data flow

This figure shows the data flow when the CICS business logic interface processes the request.

1. The caller of the CICS business logic interface provides a COMMAREA that contains the request to be
processed. The contents of the COMMAREA must be in a code page acceptable to the subsequent
processes. Usually this means that they must be in EBCDIC.

2. The Decode function of the converter constructs the COMMAREA for DFHWBTTA.
3. As this is not the first transaction of a conversation or pseudoconversation, the request includes HTML

corresponding to the map that the transaction program is expecting to receive. DFHWBTTA extracts
the forms data to make it available to the transaction program in a RECEIVE MAP command.
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4. The incoming forms input data is converted into a BMS map. This conversion uses templates from
DOCTEMPLATE definitions.

5. The transaction program uses a RECEIVE MAP command to receive the data. It then constructs an
output map, and uses a SEND MAP command to send it to the requester.

6. The map and its data contents are converted into HTML. This conversion uses templates from
DOCTEMPLATE definitions.

7. The Encode function of the converter uses the HTML output from the conversion process to construct
the COMMAREA to be returned to the caller.

8. The CICS business logic interface returns to its caller, which can now use the contents of the
COMMAREA.

Offset mode and pointer mode
The CICS business logic interface can be called in two modes: offset mode and pointer mode.

Offset mode
In offset mode, there is a single storage area (Storage area 1 in Figure 24 on page 190 ) which
contains DFHWBBLI's COMMAREA and the CICS application program's area. Field wbbl_indata_offset
in DFHWBBLI's COMMAREA contains the offset of the application program's COMMAREA from the
start of the storage area. The maximum size of the storage area is 32k bytes.

In offset mode, your converter program must not change the values of DECODE_DATA_PTR or
ENCODE_DATA_PTR.

Pointer mode
In pointer mode, there are two independent storage areas: One (Storage area 1 in Figure 24 on page
190 ) contains DFHWBBLI's COMMAREA and the other (Storage area 2) contains the CICS application
program's area. Field wbbl_indata_ptr in DFHWBBLI's COMMAREA contains the address of the
application program's COMMAREA.

In pointer mode, your converter program can change the values of DECODE_DATA_PTR or
ENCODE_DATA_PTR.

The two modes are illustrated in Figure 24 on page 190. 

Figure 24. Offset mode and pointer mode in the CICS business logic interface

When you call the CICS business logic interface, you must specify the mode:

• Set wbbl_mode to "D" to indicate offset mode and that the body of the HTTP request (referenced by
wbbl_user_data_offset) is in ASCII. This is required if the server program uses any of the FORMFIELD
API commands.

• Set wbbl_mode to "P" to indicate pointer mode

In your converter program, you can test decode_volatile or encode_volatile to determine the
mode:

• 0 indicates offset mode
• 1 indicates pointer mode

All requests from any of the following sources use offset mode when calling the CICS business logic
interface:
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• Web clients using the IBM HTTP Server.
• Java applications using the local gateway function.
• Web clients using the CICS Transaction Gateway.

Code page conversion and the CICS business logic interface
The CICS business logic interface does not perform code page conversion; the data that you pass to the
business application, and the data that is returned is in the code page used by the application
programming interface.

However, the EXEC CICS WEB application programming commands allow you to specify the client code
page, and the data is converted in the application programming interface itself. Therefore, when you use
these commands, code page conversion is performed between the application program and the CICS
business logic interface. The data passed across the interface is in the code page specified in the
CHARACTERSET option of the EXEC CICS WEB commands (or its synonym CLNTCODEPAGE).

Configuring the CICS business logic interface

About this task

Procedure

1. You must set the WEBDELAY system initialization parameter, as described in Specifying system
initialization parameters for CICS(r) web support .

2. If you are not using autoinstall for programs, you must define all the user-replaceable programs
(converters) that the callers of the CICS business logic interface use.
If you are using autoinstall for programs, you do not need to define the converters. All the converters
must be local to the system in which the CICS business logic interface is operating.
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Chapter 4. Administering web support
When you have configured CICS to perform a variety of CICS web support tasks, and you have started to
respond to requests from web clients, you might have to administer your CICS web support structure and
to provide appropriate handling for requests if a resource is unavailable.

About this task

You are helped to administer CICS as an HTTP server by URIMAP definitions that manage your HTTP
requests:

• Redirect or reject specific HTTP requests dynamically in a running CICS system, if the resources needed
by those requests (for example, a CICS program) are not available.

• Have virtual hosts created by CICS, which can be managed using CICS commands.

If you do not have URIMAP definitions, you can administer CICS web support at the level of a
TCPIPSERVICE resource definition, which manages all requests on a particular port, but managing at the
level of the URIMAP resource definition gives greater control.

Administering virtual hosting
Use the INQUIRE HOST command and the virtual host browsing commands to see the virtual hosts that
CICS creates from your URIMAP definitions. Use the SET HOST command to change their status.

Each URIMAP definition that you set up for CICS as an HTTP server (with USAGE(SERVER) in the URIMAP
definition) includes the host name that the web client is expected to supply in its request. CICS
automatically creates virtual hosts for you, by grouping together into a single data structure all the
URIMAP definitions in a CICS region that specify the same host name and the same TCPIPSERVICE
definition. URIMAP definitions that specify no TCPIPSERVICE definition, and therefore apply to all of
them, are added to all the data structures that specify a matching host name, so these URIMAP
definitions might be part of more than one data structure. Each of these groups of URIMAP definitions
then forms a virtual host that can be managed as a single unit.

You can use the following CICS commands to manage the virtual hosts that CICS has created from your
URIMAP definitions:

• The INQUIRE HOST command, to inquire on the status of a virtual host. The command tells you the host
name of the virtual host, the TCPIPSERVICE definition with which it is associated (or if it is associated
with every TCPIPSERVICE definition in the CICS region), and whether it is enabled or disabled.

• The SET HOST command, to set the status of a virtual host to enabled or disabled. Disabling a virtual
host stops applications from accessing all the URIMAP definitions that make up the virtual host.
(However, note that a URIMAP definition that has been disabled in this way cannot be discarded.) When
a virtual host is disabled, CICS returns an HTTP 503 response (Service Unavailable) to the web client.

• The virtual host browsing commands, to browse the virtual hosts in the CICS system.

The statistics program DFH0STAT includes a report showing the virtual hosts that CICS has created.

CICS automatically deletes virtual hosts if all the URIMAP definitions that made up the virtual host have
been deleted. You might not want to manage the virtual hosts that CICS has created for you. In that case,
you can ignore them and manage at the level of your URIMAP definitions.

You can also process virtual hosts using an analyzer program. The host name for an HTTP request is
passed to the analyzer program, and you can code the program to provide a host-dependent response to
the request. However, if you set up virtual hosts in this way, you cannot manage them with the INQUIRE
HOST, SET HOST, and virtual host browsing commands.

© Copyright IBM Corp. 1974, 2019 193



Redirecting HTTP requests to another URL
You can redirect, temporarily or permanently, an HTTP request for CICS as an HTTP server to another URL
by using a URIMAP definition.

About this task

You can use redirection to ensure that requests are always processed by redirecting the web client to
another URL. Alternatively, you can use redirection to provide a temporary response to a request while
the intended resource is unavailable; for example, a page telling the requester that the application
requested is offline. In either case, you specify redirection with the LOCATION and REDIRECTTYPE
attributes of a URIMAP resource.

You can specify these attributes when you create the URIMAP, and you can change them while the
URIMAP is active.

Procedure

1. Use the LOCATION attribute of the URIMAP resource to specify a URL of up to 255 characters, to
which matching HTTP requests are redirected.
The specification must be complete, including scheme, host, and path components. Include all the
delimiters. CICS checks that the URL is complete and correctly delimited, but CICS does not check
that the destination is valid.

Optionally, you can use a fragment identifier (preceded by a # character) in the LOCATION attribute, to
point a web browser to a reference or function in the item identified by the URL. For example, a
fragment identifier can be the ID of a subsection in a document. Consult the technical specification for
the type of content that you are providing (for example, HTML) to see whether and how fragment
identifiers can be used.

2. Use the REDIRECTTYPE attribute of the URIMAP resource to specify temporary or permanent
redirection.
When requests are redirected on a temporary basis, the HTTP status code used for the response is
302 (Found). When requests are redirected permanently, the HTTP status code used for the response
is 301 (Moved Permanently).
CICS composes the redirection response, and it cannot be customized.
When REDIRECTTYPE(TEMPORARY) or REDIRECTTYPE(PERMANENT) is specified, the LOCATION
attribute of the URIMAP definition overrides any other attributes in the URIMAP definition, and
redirects the HTTP requests.

• When requests are redirected on a temporary basis, the HTTP status code used for the response is
302 (Found).

• When requests are redirected permanently, the HTTP status code used for the response is 301
(Moved Permanently).

3. To cancel redirection, set the REDIRECTTYPE attribute to NONE.
You do not need to change the URL specified in the LOCATION attribute, because it is used only when
redirection is active.

Rejecting HTTP requests
If an application or resource in your CICS system is temporarily unavailable and you cannot provide cover
through redirection, or if an application or resource has been permanently removed, you can reject HTTP
requests at several different levels. You can also implement connection throttling if a CICS region is at
risk of becoming overloaded with long-lived persistent connections from web clients.
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About this task
You can reject HTTP requests at these levels:

• At the level of the specific request URL. To achieve this level of granularity, the request URL is covered
by a URIMAP definition. If you do not have URIMAP definitions, you can modify the handling of HTTP
requests through changes to the analyzer program that handles the requests, but this technique is less
convenient.

• At the level of a virtual host (which covers all requests for a particular host name). For a request to be
incorporated into a virtual host, it must be covered by a URIMAP definition.

• At the level of a port. A port maps to a TCPIPSERVICE definition. For example, disabling the
TCPIPSERVICE definition for the default HTTP port 80 prevents CICS from receiving any HTTP requests,
except requests that use SSL or nonstandard ports.

• Completely, at the level of all ports. In the CEMT transaction or in CICSPlex® SM, you can shut down
CICS internal TCP/IP sockets support, and so shut down CICS web support completely.

Generally, if you reject the HTTP request at a more granular level, CICS can give a more useful error
response to the web client. For example, if you reject an HTTP request by disabling a URIMAP definition
or a virtual host, CICS returns an HTTP 503 response (Service Unavailable) to the web client through a
web error program. You can tailor the web error program to modify this response. However, if you reject
HTTP requests by disabling a TCPIPSERVICE definition, the web client receives only a general error
response that indicates a server error.

If you have a CICS region that has experienced performance problems because too many web clients set
up a long-lived persistent connections, you can implement connection throttling to control these
requests. Connection throttling automatically limits the number of persistent HTTP connections that a
single CICS region accepts for a particular port, so you do not have to intervene manually. Web clients can
obtain a persistent connection by reconnecting to another CICS region that shares the port and provides
the same service.

When you implement connection throttling, web clients over the limit that you set are required to close
their connection after each response. An HTTP/1.1 server should normally allow persistent connections,
so only set the connection throttling if you need to provide automatic intervention for a CICS region that
has experienced performance problems. How CICS web support handles persistent connections explains
the impact of connection throttling.

You can reject or throttle HTTP requests in these ways:

Procedure

• To reject requests to a particular request URL:
a) If you have a URIMAP definition for the URL, disable the URIMAP definition.

Check that the request URL is not matched by a less specific URIMAP definition that has a wildcard
character in the path.
CICS returns an HTTP 503 response (Service Unavailable) to the web client through a web error
program. You can tailor this response by changing the web error program.

b) If you do not have a URIMAP definition for the URL, you can reject requests by changing the
analyzer program associated with the TCPIPSERVICE definition for the port on which the request is
made.
You might want to code the analyzer program to provide an individual rejection message for each
URL, or you might prefer to provide a single message that covers any URL that is unavailable.
Analyzer programs in Developing system programs tells you which actions are appropriate for
handling rejected requests.

• To reject requests to a virtual host (that is, all requests to a certain host name), disable the virtual host
using the SET HOST command, as described in “Administering virtual hosting” on page 193.
CICS returns an HTTP 503 response (Service Unavailable) to the web client through a web error
program. You can tailor this response by changing the web error program.
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• To limit the number of persistent connections to the CICS region on a particular port, specify a value
for the MAXPERSIST attribute when you set up the TCPIPSERVICE definition.
If your limit is reached, connection throttling is implemented. CICS sends the Connection: close
header on responses to further web clients that connect on the port, and they must close the
connection after receiving the response. Be aware that the performance of these new web clients can
be affected by connection throttling, especially if they reconnect to the same CICS region. When these
web clients connect to another CICS region that shares the port and has not reached its limit, they can
maintain a persistent connection there instead. The web clients that already had persistent
connections to the CICS region can maintain their persistent connections.
When the web clients that have persistent connections close their connections, the CICS region begins
to accept new persistent connections again.

• To reject all requests on a particular port, disable the TCPIPSERVICE definition using the SET
TCPIPSERVICE command in CEMT, or CICSPlex SM.
You can choose to stop listening on the port normally, with active tasks being allowed to complete, or
immediately, with active tasks being ended abnormally.

• To reject all inbound and outbound requests and stop CICS web support completely, use the SET
TCPIP command in CEMT, or CPSM, to close TCP/IP.
You can choose to close normally, with active tasks being allowed to complete, or immediately, with
active tasks being ended abnormally.

Providing a favorites icon
Many web browsers automatically make a request for a favorites icon (favicon) when a user visits or
bookmarks a web page. You can provide a favicon as a static response using a URIMAP definition.

About this task
A favicon, also known as a website icon, shortcut icon, url icon, or bookmark icon is a 16×16 pixel, 32×32
pixel or 64×64 pixel square icon associated with a particular website or web page. A web designer can
create a favicon and install it into a website or web page, and most graphical web browsers use the
installed favicon.

Web browsers make requests for default favicons using the following URL:

http://www.example.com/favicon.ico

where www.example.com is the host name for the site. The HTTPS scheme can be used instead, if
appropriate. You can provide a favicon in these ways:

• A default favicon that is returned for any host name used by your CICS region
• A different default favicon for each host name used by your CICS region

If a web browser requests a favicon and you do not provide one, CICS sends an error response to the
browser:

• If you are using the CICS-supplied default analyzer DFHWBAAX, a 404 (Not Found) response is
returned. No CICS message is issued in this situation.

• If you are using the sample analyzer DFHWBADX, or a similar analyzer that can interpret only the URL
format that was required before CICS TS Version 3, the analyzer might misinterpret the path
favicon.ico as an incorrectly specified converter program name. In this case, message DFHWB0723
is issued, and a 400 (Bad Request) response is returned to the browser. To avoid this situation, you can
either modify the analyzer program to recognize the favicon request and provide a more suitable error
response, or provide a favicon using a URIMAP definition. Both actions mean that the sample analyzer
program is bypassed for these requests.

To provide a favicon for all or some of your host names, using a URIMAP definition, follow these steps:
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Procedure

1. Create the favicon and store it in a suitable location on a z/OS UNIX file system.
a) You can create the favicon using an icon editor package, or use an icon converter program to

convert an image created in another format.
b) The favicon must be 16 by 16 pixels.

Browsers might ignore favicons that are not the correct size.
c) The favicon must be saved in Windows icon format (.ico file extension), and named
favicon.ico.

Most web servers store the favicon in the root directory for the host name. For CICS, a URIMAP
definition can provide a favicon stored anywhere on z/OS UNIX. The CICS region must have
permissions to access z/OS UNIX, and it must have permission to access the z/OS UNIX directory
containing the file and the file itself. Giving CICS regions access to z/OS UNIX directories and files
explains how to grant these permissions.

2. Create a URIMAP definition using the CICS Explorer to provide the favicon as a static response, as
described in
Specifying common URIMAP attributes for CICS as an HTTP server and Specifying URIMAP attributes
for a static response to HTTP requests.
The following sample URIMAP definition attributes provide a favicon for all host names used by the
CICS region:

Table 8. Example favicon values for a URIMAP definition

Attribute Value Description

URIMAP favicon The name of the URIMAP

Group MYGROUP Any suitable group name

Description Favicon

Status Enabled

Usage Server For CICS as an HTTP server

Scheme HTTP Will also match HTTPS requests

Host * * matches any host name. Specify host name
if you provide different favicons.

Path /favicon.ico Browsers use this path to request favicons

TCPIPSERVICE Blank matches any port

Media type image/x-icon Choose a suitable media type

zFS file /u/cts/CICSHome/
favicon.ico

Location of the favicon in zFS

Note: Code page conversion is not required for a favicon, so do not specify the CHARACTERSET or
HOSTCODEPAGE options.
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Providing a robots.txt file
Web robots are programs that make automatic requests to servers. For example, search engines use
robots, sometimes known as web crawlers, to retrieve pages to include in their search databases. You can
provide a robots.txt file to identify URLs that robots should not visit.

About this task
On visiting a website, a robot makes a request for the document robots.txt, using the following URL:

http://www.example.com/robots.txt

where www.example.com is the host name for the site. If you have host names that can be accessed
using more than one port number, robots request the robots.txt file for each combination of host
name and port number. The policies listed in the file can apply to all robots or can name specific robots.
Disallow statements are used to name URLs that the robots must not visit. Even when you provide a
robots.txt file, any robots that do not comply with the robots exclusion standard might still access and
index your web pages.

If a web browser requests a robots.txt file and you do not provide one, CICS sends an error response
to the web browser:

• If you are using the CICS-supplied default analyzer DFHWBAAX, a 404 (Not Found) response is
returned. No CICS message is issued in this situation.

• If you are using the sample analyzer DFHWBADX or a similar analyzer that can interpret only the URL
format that was required before CICS TS Version 3, the analyzer can misinterpret the path robots.txt
as an incorrectly specified converter program name. In this case, message DFHWB0723 is issued, and a
400 (Bad Request) response is returned to the web browser. To avoid this situation, you can either
modify the analyzer program to recognize the robots.txt request and provide a more suitable error
response, or provide a robots.txt file using a URIMAP definition. Both actions bypass the sample
analyzer program for these requests.

To provide a robots.txt file for all or some of your host names:

Procedure

1. Create the text content for the robots.txt file.
Information and examples about creating a robots.txt file are available from several websites. Search
on "robots.txt" or "robots exclusion standard" and select an appropriate site.

2. Decide how to store and provide the robots.txt file. You can provide the file using only a URIMAP
definition or an application program.

• You can store the robots.txt file on z/OS UNIX System Services and provide the file as a static
response using a URIMAP definition. Most web servers store the robots.txt file in the root
directory for the host name. For CICS, a URIMAP definition can provide a file stored anywhere on
z/OS UNIX, and the same file can be used for more than one host name.

If you use a file stored on z/OS UNIX, the CICS region must have permissions to access z/OS UNIX,
and it must have permission to access the z/OS UNIX directory containing the file and the file itself.
Giving CICS regions access to z/OS UNIX directories and files explains how to grant these
permissions.

• You can make the robots.txt file into a CICS document, and provide it either as a static response
using a URIMAP definition or as a response from an application program. Creating a document
explains how to create a CICS document template. A document template can be held in a partitioned
data set, a CICS program, a file, a temporary storage queue, a transient data queue, an exit program,
or a z/OS UNIX System Services file.

• If you want to provide the contents of the robots.txt file using an application program, create a
suitable web-aware application program, as described in Developing HTTP applications. For
example, you can use the EXEC CICS WEB SEND command with the FROM option to specify a buffer

198  CICS TS for z/OS: Internet Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/java/dfhpjd8.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/designing/dfhp3_doc_create.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/web/dfhtl_appsweb_intro.html


of data containing your robots.txt information. Alternatively, you can use the application program
to deliver a CICS document from a template. Specify a media type of text/plain.

You might want to use an application program to handle requests from robots, so that you can track
which robots are visiting your web pages. The User-Agent header in a request from a robot gives the
name of the robot, and the From header includes contact information for the owner of the robot.
Your application program can read and log these HTTP headers.

3. Create a URIMAP definition using the CICS Explorer that matches requests made by web robots for the
robots.txt file.
See Specifying common URIMAP attributes for CICS as an HTTP server.
The following sample URIMAP definition attributes show how to match a request for a robots.txt
file for any host name:

Table 9. Example robots values for a URIMAP definition

Attribute Value Description

URIMAP robots The name of the URIMAP

Group MYGROUP Any suitable group name

Description Robots.txt

Status Enabled

Usage Server For CICS as an HTTP server

Scheme HTTP Will also match HTTPS requests

Host * * matches any host name. Specify host name
if you provide separate robots.txt files

Path /robots.txt Robots use this path to request robots.txt

TCPIPSERVICE Blank matches any port. Specify the
TCPIPSERVICE defintion name if you provide
different robots.txt files depending on port

Remember that the path components of URLs are case-sensitive. The path /robots.txt must be
specified in lowercase.

4. If you are providing the robots.txt file as a static response, complete the URIMAP definition to
specify the file location and the other information that CICS web support uses to construct responses.
Specifying URIMAP attributes for a static response to HTTP requests guides you through this process.
For example, you might specify the following URIMAP attributes to provide a robots.txt file that
was created using the EBCDIC code page 037 and stored in the /u/cts/CICSHome directory:

Table 10. Example static document properties in a URIMAP definition

Attribute Value

Media type /text/plain

Character set iso-8859-1

Host code page 037

HFS file u/cts/CICSHome/robots.txt

The HFS file name is case-sensitive.
5. If you are providing the content of the robots.txt file using an application program, complete the

URIMAP definition to specify that the program must handle requests.
Specifying URIMAP attributes for an application response to HTTP requests guides you through this
process.
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For example, you might use the following URIMAP definition attributes to make the web-aware
application program ROBOTS handle the request, with no analyzer or converter program involved:

Table 11. Example associated CICS resource properties in a URIMAP definition

Attribute Value Description

Analyzer No Analyzer is not used for the request

Converter Blank equals no converter program

Transaction Blank defaults to CWBA

Program ROBOTS ROBOTS

Warning headers
If the Warning header is present on an HTTP message, it typically contains information that is intended to
be read by a user. If CICS web support receives a message with a Warning header, the text associated
with the header is written to the CWBW transient data queue.

The message number used to record a warning header on a request (for CICS as an HTTP server) is
DFHWB0750, and for a warning header on a response (for CICS as an HTTP client) it is DFHWB0752. The
message for each warning header contains this information:

• The text associated with the warning header.
• The IP address of the server and client.

The messages are written to the CICS-supplied transient data queue CWBW, which is indirected to CSSL.
The DFHDCTG group contains a sample definition for the queue.

CWBO is the queue typically used for CICS web support messages, and CWBW is provided to keep
warning messages separate. If you receive too many warning headers, or warning headers that are no
longer useful (such as a warning that is always sent by a server in response to a client request that you
make repeatedly), you can remove the CWBW transient data queue to suppress these records.

Connection balancing
To avoid being dependent on a single CICS router region, consider using more than one router region to
share the workload from the network.

About this task

You can use several techniques to balance the workload between your router regions:
Sysplex Distributor

Sysplex Distributor is a feature of z/OS Communications Server that uses dynamic virtual IP
addresses (VIPAs) to allow connections to be distributed across listeners on multiple IP stacks within
a Parallel Sysplex®. CICS TCP/IP services in different regions are configured to listen on the same
distributed dynamic VIPA and port, and each VIPA is defined with the VIPADISTRIBUTE option. The
TCP/IP stack then balances connection requests across the listeners. For more information about
Sysplex Distributor, see z/OS Communications Server: IP Configuration Guide.

Application-specific virtual IP address (VIPA)
An application-specific VIPA is a feature of z/OS Communications server that provides a bind-
activated virtual IP address. The VIPA becomes active on a TCP/IP stack when a CICS region is
started, and the VIPA can move around a sysplex with a specific CICS region. For more information
about VIPA, see z/OS Communications Server: IP Configuration Guide.
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Port sharing
TCP/IP port sharing provides a method of distributing connection requests over a group of listeners
running in the same z/OS image. CICS TCP/IP services in different regions are configured to listen on
the same port, and TCP/IP is configured with the SHAREPORT option. The TCP/IP stack then balances
connection requests across the listeners. For more information about TCP/IP port sharing, see z/OS
Communications Server: IP Configuration Reference.

CICS web support in a CICSPlex
You can distribute applications that use CICS web support in a CICSPlex using various methods
individually or in combination.

• You can use connection balancing to distribute requests from web clients to several CICS regions.
• CICS web support and the business application can run in the same CICS region.
• CICS web support can run in a router region, and the business application can run in one or more

application-owning regions (AORs). However, you cannot use the EXEC CICS WEB API in the AOR, so a
web-aware application program cannot run in the AOR. You can use the EXEC CICS DOCUMENT API in
the AOR, but you must provide your own mechanism for transferring the HTML output back to the router
region. Refer to “Routing a web client request to an AOR” on page 202.

Figure 25 on page 201 illustrates these configurations. 

Figure 25. CICS web support configurations in a CICSPlex

You can distribute requests that use the CICS business logic interface in the same way, as shown in
Figure 26 on page 202. 
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Figure 26. CICS business logic interface configurations in a CICSPlex

When you plan to distribute applications in this way, consider any affinities that exist between the parts of
your application. For more information about affinities, see CICS Interdependency Analyzer for z/OS.

Also consider how the application state will be managed between requests. Managing application state
across an HTTP request sequence discusses the considerations for any CICS web support applications
that use a pseudoconversational model. You might have additional considerations:

• When dynamic routing is used to select the AOR where the business application runs
• When workload and connection balancing is used to select the router region and, indirectly, the AOR

CICS provides a sample state management program (DFH$WBSR) that you can use to manage your
application state. DFH$WBSR helps you to share application state through resources that can be shared
by several CICS regions. See Reference information for DFH$WBST and DFH$WBSR. (The other sample,
DFH$WBST, creates an affinity, and so is not suitable for use in a CICSPlex.)

For guidance about configuring CICS web support and the CICS business logic interface in a CICSPlex, see
Configuring workload management.

Routing a web client request to an AOR
You can use a Web-aware application to respond to a web client request. For non-Web-aware
applications, you can use a converter program in the router region.

About this task

If you want to use a Web-aware application to respond to requests, one solution is to code your
presentation logic in the Web-aware application program (which runs in the router region), and code your
business logic (which runs in the AOR) to be entirely independent of presentation. The Web-aware
application program is named as the program that handles the request, and it must manage its own
communication with the application program that carries out the business logic. HTTP request and
response processing for CICS as an HTTP server explains the processing stages for Web-aware
applications.

You cannot use the EXEC CICS WEB API in an AOR; you can use it only in the router region.

For non-Web-aware applications, you can use a converter program in the router region to produce an
HTTP response from information supplied by an application program in an AOR. Figure 27 on page 203
shows the processing stages and task structure associated with a request from a Web client when a non-
Web-aware application program is run in an application-owning region.
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Figure 27. How CICS web support routes non-Web-aware application requests to an AOR

The corresponding stages for the CICS business logic interface are shown in Figure 28 on page 204. 
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Figure 28. How the CICS business logic interface routes application requests to an AOR

CICS uses Distributed Program Link (DPL) to call the application program in the AOR; the application runs
under the mirror task. For information about DPL, see the Overview of DPL.

To run a business application in an AOR:

• Specify the REMOTESYSTEM attribute or specify DYNAMIC(YES) on the PROGRAM definition for the
application program. If you specify DYNAMIC(YES), the dynamic routing program determines where the
application program runs.

• Other resource definitions (for the analyzer program, the Web-aware application program or converter
program, and the alias transaction) must specify that they run in the router region.

• You must define an MRO or APPC connection between the router region and the AOR.

If the application program that runs in the AOR is entirely independent of presentation, it returns output
to the Web-aware application program or the converter program, which then constructs the HTML output.
Alternatively, if you are using a converter program, you might want to use the EXEC CICS DOCUMENT API
in the AOR to construct HTML output. The converter program can use this output to produce a complete
HTTP response.

You must provide your own mechanism for transferring the application program output back to the router
region. The output can be transferred in a COMMAREA. Alternatively, you can use some other mechanism,
such as a temporary storage queue, and transfer a token representing the data in that mechanism. The
program in the router region can use the token to retrieve the output, then process it, and pass it to the
web client. CICS provides a sample state management program (DFH$WBSR) that you can use to do this.
Refer to Reference information for DFH$WBST and DFH$WBSR. The other sample, DFH$WBST, creates
an affinity, and so is not suitable for use in a CICSPlex.
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Web error programs
When a request error or an abend occurs in the CICS web support process, a user-replaceable web error
program provides an error response to the web client.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

A web error program is used in the following situations:

• When CICS web support detects a problem in initial processing of a request from a web client; for
example, if required information is missing from the request, or if the request is sent too slowly and the
receive timeout is reached.

• When an installed URIMAP definition matches the request, but the URIMAP definition or virtual host is
disabled, or the resource for a static response cannot be accessed.

• When URIMAP matching fails, and the analyzer specified for the TCPIPSERVICE definition cannot
process the request and passes control to a web error program.

• When neither the URIMAP definition, nor the analyzer and converter program processing, can determine
which application program will service the request.

• When an abend occurs in the analyzer program, converter program, or user-written application
program, ensuring that a response can be returned to the web client even though processing has failed.

A web error program is not used in the following situations:

• When a sockets send or receive error occurs. The socket is closed and no response is sent to the web
client.

• When a URIMAP specifies a redirection response. These responses are composed by CICS and are not
customizable.

• When a user-written application program completes processing successfully and wants to return a
response indicating an error; for example, if the client has specified a method not supported for the
resource. These responses are composed and sent by the application.

• For processing involving CICS as an HTTP client. Web clients are not required to send an error response
to servers. Responses received from servers are handled by the client application program.

• With the EXEC CICS WEB RECEIVE command. The content that is received might be potentially
damaging. The subtopics tell you more.

If CICS has a persistent connection with the client, CICS keeps the connection open after an error
response is sent through a web error program. The exception is when CICS selects the 501 (Method Not
Implemented) status code for the response, in which case the connection is closed by CICS.

For general information about writing user-replaceable programs, see Customizing with user-replaceable
programs in Developing system programs.

Two user-replaceable web error programs are provided with CICS:

DFHWBERX, web error application program
DFHWBERX uses the EXEC CICS WEB and DOCUMENT API commands to obtain information about the
web client request and then it creates and sends the error response. It is called as an application
program. DFHWBERX can be specified by an analyzer program or as the PROGRAM attribute in a URIMAP
definition if an error response is always wanted for the request.

DFHWBERX is used when the CICS-supplied default analyzer DFHWBAAX is specified as the analyzer
program on the TCPIPSERVICE definition, and no matching URIMAP definition is found for a request.
DFHWBAAX sets DFHWBERX as the application program to handle the request, using the
wbra_server_program output parameter.

DFHWBERX is user-replaceable. CICS supplies the source code for DFHWBERX in assembly language
only.
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DFHWBERX does not receive a parameter list or a default HTTP response from CICS.

DFHWBERX provides an error response as follows:

• If the web client request is a POST request with media type text/xml, it is assumed to be a SOAP 1.1
request, and a SOAP 1.1 fault response is returned.

• If the request is a POST request with media type application/soap+xml, it is assumed to be a SOAP
1.2 request, and a SOAP 1.2 fault response is returned.

• All other requests are assumed to be a standard HTTP request, so a suitable HTTP response is
composed and returned with a 404 (Not Found) status code.

DFHWBERX uses these commands:

• EXEC CICS WEB EXTRACT, to obtain the URL of the web client request for which an error response is
needed.

• EXEC CICS DOCUMENT, to construct the message body.
• For SOAP fault responses, EXEC CICS WEB WRITE HTTPHEADER, to write an appropriate SOAP action

header.
• EXEC CICS WEB SEND, to specify an appropriate status code and send the response to the web client.

The UTF-8 character set is specified for code page conversion of the response body.

DFHWBERX does not use the EXEC CICS WEB RECEIVE command to receive the content of the web
client request. If you are replacing DFHWBERX with your own application program, do not use this
command. If you are using the CICS-supplied default analyzer DFHWBAAX, DFHWBERX is used to send
an error response to any request that is not matched by a URIMAP definition. The content of these
requests cannot be known, and their intent might be malicious, so it is not advisable to attempt to receive
the request.

DFHWBEP, web error program
DFHWBEP receives a parameter list from CICS, giving information about the error situation, and a block of
storage containing the default HTTP response, including status code and status text, that CICS plans to
send to the web client. The program can use or modify the default response or create and send its own
response using the EXEC CICS WEB and DOCUMENT API commands. DFHWBEP is user-replaceable.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

Assessing the error situation

The parameter list passed to DFHWBEP by CICS contains the 3-digit HTTP status code that CICS has used
in the default response. The parameter list also supplies information that identifies the error situation,
such as an error code, abend code, CICS message number, response and reason codes, and the name of
the program in which the error has occurred.

If you customize DFHWBEP, make sure that you are using an appropriate range of input parameters to
identify the situation to which the customized response applies, rather than relying on the status code
alone. Each status code can be used by CICS web support for various purposes. Any HTTP responses with
status codes that are not known to your program must be passed through unchanged.

In addition to examining the parameter list provided by CICS, you might want to use the EXEC CICS WEB
EXTRACT command and the EXEC CICS EXTRACT TCPIP command, to examine the request line and
obtain other information relating to the web client request for which the error response is needed. You
can also use the WEB READ HTTPHEADER command or the HTTPHEADER browsing commands to read
the HTTP headers for the request. If the request was in an invalid state or timed out, these commands
might not be available

Do not use the EXEC CICS WEB RECEIVE command, which receives the content of the web client request,
in your web error programs. In the range of error situations handled by DFHWBEP, the web client request
might have timed out, or it might be lacking required information, or it might have unanticipated and
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potentially malicious content, or it might have already been received by another application program.
Receiving a request in any of these states can lead to problems or unpredictable results.

Creating and sending the error response

The parameter list provided by CICS includes a pointer to a block of storage, containing the default HTTP
response for the error detected and also a parameter giving the length of the complete response
message. The block of storage contains a complete HTTP response, including the status line, HTTP
headers, and message body.

The web error program can choose one of the following actions:

1. Leave the default response unchanged and allow CICS to send it to the web client. Take this action for
any HTTP responses with status codes that are not known to your program, or in cases where you have
assessed the situation and found that the default response is appropriate.

2. Use the EXEC CICS WEB and DOCUMENT API commands to create a new response and send it to the
web client. CICS can then provide more assistance with checking the message. The default response is
discarded. Use the WEB WRITE HTTPHEADER command to write HTTP headers for the response, and
use the WEB SEND command to assemble and send the response. You must specify
ACTION(IMMEDIATE) in your command, because the default of ACTION(EVENTUAL) is not permitted
with DFHWBEP. Writing HTTP headers for a response, Producing an entity body for an HTTP message,
and Sending an HTTP response from CICS as an HTTP server explain how to create and send a
response using the API commands.

3. Modify the default response manually in the block of storage, update the length parameter
accordingly, and allow CICS to send it to the web client. Use this action if you want to make only minor
changes to the default response, such as replacing the default message body with a short piece of
text. You must be careful to ensure that the HTTP response remains valid and that the correct length is
stated.

4. Construct a new HTTP response manually in a new block of storage, pass back the address of the new
block of storage and the length of the new response, and allow CICS to send it to the web client. The
default response is discarded. This action is no longer recommended, because CICS cannot provide
full assistance with checking a message constructed in this way. If you have a version of DFHWBEP
that was customized before CICS Transaction Server for z/OS, Version 3 Release 2 and it acts in this
way, consider replacing it with an HTTP response constructed and sent using the EXEC CICS WEB and
DOCUMENT API commands.

Correct content for the error response

Whether you use the EXEC CICS WEB and DOCUMENT API commands to create a new response, or you
modify the default response manually in the block of storage, or construct a new HTTP response manually
in a new block of storage, you can modify all the items in the error response. However, you must ensure
that the HTTP response remains valid and appropriate and, if you are working with the response manually
in a block of storage, that the correct length is stated.

The response must contain an HTTP version, status code, status text, any HTTP headers that are required,
and the message body. The format of the response must comply with the HTTP protocol specification to
which you are working (HTTP/1.0 or HTTP/1.1). If you are using the API commands, CICS provides
assistance with all these elements.

Note the following guidance for individual items in the error response:

The HTTP version (HTTP/1.1 or HTTP/1.0)
In the default response, the version is decided by CICS according to the HTTP version of the web
client. If you are working with the default response in the block of storage, do not modify this element
of the response. If creating a new response using the API commands, use the WEB EXTRACT
command to identify the HTTP version of the web client, and tailor your response accordingly. The
HTTP version used by the web client can affect your choice of HTTP headers, status code, and
message content for the response. HTTP/1.0 clients might not understand the more advanced
features described in the HTTP/1.1 specification.
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The numeric status code (for example, 404 or 500)
CICS chooses a status code for the default response. Be cautious when modifying this element of the
default response or choosing a status code for your new response. HTTP status code reference for
CICS web support lists the status codes and why they are used. The HTTP/1.1 specification has more
information about all the status codes and the requirements for their correct use. If you choose a
different status code from the one selected by CICS web support, make sure that your usage complies
with the HTTP/1.1 specification. In particular, check that the status code is suitable for the HTTP
version of the web client. For non-HTTP errors, CICS always uses a 400 status code.

The reason phrase, or status text (for example, Not Found)
You may modify this element of the default response or supply your own reason phrase for a new
response. The reason phrases suggested by the HTTP/1.1 specification (for example, "Not Found" or
"Bad Request") are recommended but optional. The HTTP/1.1 specification states that the reason
phrases for each status code can be replaced by local equivalents.

HTTP headers
The default response contains the headers that CICS has written for the response; for example, Date
and Server headers. If you create a new response using the API commands, CICS adds these headers
automatically when you send the response. HTTP header reference for CICS web support lists the
headers that CICS can write. The headers written by CICS are appropriate for the HTTP version of the
message. Do not remove them if you are working with the default response, because they might be
required for compliance with the HTTP specifications. You can add further HTTP headers for the
response if appropriate. Check that the HTTP/1.1 specification allows the use of the headers in that
context. If you have selected a different status code, some headers might be required by the
HTTP/1.1 specification.

Message body
The message body for the default response repeats the status code and reason phrase that are given
in the release line. You can modify this element of the default response, or supply your own message
body for a new response. For many status codes, the body of the message can be used to provide you
with further information. Some status codes cannot be accompanied by a message body.

Code page conversion

The default HTTP response in the block of storage is passed to DFHWBEP in the EBCDIC code page 037.

When you use EXEC CICS WEB API commands in the web error program to produce a new error
response and send it to the web client, code page conversion takes place as you specify in the
commands, in the same way as for any other program that uses the EXEC CICS WEB API commands.

DFHWBEP cannot specify code page conversion settings for a response produced in a block of storage. If
you modify the default error response in the block of storage, or supply a new error response in a new
block of storage, and return it to CICS for sending, CICS assumes that the response provided in the block
of storage is also in the EBCDIC code page 037. CICS performs code page conversion on the response to
convert it to a suitable ASCII character set before returning it to the client. If an analyzer program is
involved in the processing path and has set parameters for code page conversion (as individual server and
client code page parameters, or as a DFHCNV key), CICS uses these options for code page conversion. If
no analyzer program is involved, or the analyzer was not called before the error occurred, the ISO-8859-1
character set is used for the response. If this outcome is not suitable, use the EXEC CICS WEB API
commands to produce the response instead.

Input and output parameters for DFHWBEP, web error program
CICS passes several parameters to DFHWBEP, including an error code, an abend code and an error
message. The output parameters for DFHWBEP are wbep_response_ptr and wbep_response_len.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

For a listing and technical descriptions of all the parameters relating to DFHWBEP, see Web error
program, DFHWBEP. For further information about IP address notation, see IP address formats accepted
by CICS.
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By default, the output parameters relate to the block of storage containing the default HTTP response
produced by CICS:

• If you have used the EXEC CICS WEB and DOCUMENT API commands in DFHWBEP to create a new
response and send it to the web client, CICS ignores and discards the HTTP response in the block of
storage, so the output parameters are unchanged.

• If you have modified the default response in the block of storage, you must update the length in
wbep_response_len, giving the new length of the whole buffer. You do not have to calculate the
message body length or change the Content-Length header in the response. CICS checks the length of
the message body that you have provided and corrects the Content-Length header accordingly.

• If you have constructed a new HTTP response manually in a new block of storage, you have to pass
back the address of the new block of storage in wbep_response_ptr and the length of the new
response in wbep_response_len.

CICS web support default status codes and error responses
The response code and reason code set by an analyzer or converter program map to default status codes
and associated responses. CICS also selects a default status code and associated response if an error
occurs when a static response is produced using a URIMAP definition. The status code and response can
be modified by the user-replaceable web error program DFHWBEP.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

The HTTP protocol specifications define status codes that a server can return for the HTTP response
when a request cannot be completed successfully. Refer to HTTP status code reference for CICS web
support .

When an error occurs during CICS web support processing, information is passed to the web error
program DFHWBEP in a parameter list to assist in determining an appropriate error response:

• If an error occurs during processing by an analyzer or converter program, you can identify the error
using the response and reason codes from the program in the parameter list.

• If an error occurs in producing a static response using a URIMAP definition, you can identify the error
using the associated CICS message number and text in the parameter list.

For all types of error, a complete default error response, including the status code, is passed to the web
error program to be accepted, modified, or replaced. Error responses are accompanied by a CICS
message and an exception trace entry.

The default status codes are as follows.

Table 12. Default status code for analyzer program processing error

wbra_response Default status code

Any value other than URP_OK 400 Bad Request

Table 13. Default status codes for the converter decode function

decode_response decode_reason Default status code

URP_EXCEPTION URP_CORRUPT_CLIENT_DATA 400 Bad Request

URP_EXCEPTION URP_SECURITY_FAILURE 403 Forbidden

URP_EXCEPTION any other value 501 Not Implemented

URP_INVALID any value 501 Not Implemented

URP_DISASTER any value 501 Not Implemented

any other value any value 500 Internal Server Error
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Table 14. Default status codes for the converter encode function

encode_response encode_reason Default status code

Any value other than

URP_OK
URP_OK_LOOP

any 501 Not Implemented

Table 15. Default status codes for static response processing errors (using a URIMAP definition)

CICS message
number

Error Default status code

0364 An attempt to establish security for the user ID has
failed.

403 Forbidden

0758 User does not have READ access to the resource needed
to produce the static response (CICS document template
or z/OS UNIX file).

403 Forbidden

0759 The resource needed to produce the static response
cannot be found (CICS document template or z/OS UNIX
file).

404 Not Found

0760 The z/OS UNIX file needed to produce the static
response cannot be read.

500 Internal Server Error

0761 Any other error. 500 Internal Server Error

Administering Atom feeds
To create an editable collection from an existing Atom feed, set up new URIMAP and ATOMSERVICE
resource definitions and a new Atom configuration file. Your new definitions use most of the settings from
the original Atom feed with some small changes.

Before you begin
If your Atom feed involves a service routine that extracts data from a resource and supplies to CICS,
before you make the data available as a collection, read “Administering Atom feeds and Atom
collections” on page 219, and modify your service routine to take appropriate actions for POST, PUT, and
DELETE requests as well as GET requests for the entries in the collection, by following the instructions in
“Handling Atom collection editing requests in your service routine” on page 230.

About this task

A client can use a collection in the same way as an ordinary Atom feed, by obtaining lists of the Atom
entries and displaying them. It would therefore be possible for you to change the ATOMSERVICE
definition and configuration file for your Atom feed to meet the requirements for a collection, and let CICS
deliver the collection to all users in place of the original Atom feed. However, good practice is to create
separate CICS resource definitions and use separate URLs to make your Atom entries available as a
collection, and continue to make them available separately as a feed. Setting up the same data as a feed
and as a collection does involve additional work, but has some important advantages:

• You can apply appropriate security measures to the editable collection, and make the read-only feed
freely available.

• You might achieve better response times by delivering the better-performing feed document to most
users. Delivering entries from a collection requires more processing than delivering entries from a feed,
because of the extra navigation that CICS provides for a collection.

To create an editable collection from an Atom feed:
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Procedure

1. Plan appropriate security measures for your collection, so that you allow only authenticated web
clients to edit the entries in the collection.
For more information about security, see Security for Atom feeds.

2. Set up a TCPIPSERVICE resource definition to specify the security measures that are applied for the
port where web clients make requests for your collection.
Creating TCPIPSERVICE resource definitions for CICS web support explains how to do this.

3. Select a suitable URL for your collection that is different from the URL that you used for the Atom feed,
and create a new URIMAP resource for the URL of the collection.
As well as being different from the URL for the Atom feed, the URL that you choose must also be
different from the URL for other Atom feeds and collections that you serve using the same host name.

4. Complete the steps in “Creating an ATOMSERVICE definition and Atom configuration file for a
collection” on page 211 to set up a new ATOMSERVICE definition and Atom configuration file based on
your existing files for the Atom feed.
If you are using resource and command security to protect your collection, make sure that the user
IDs of web clients have access to the ATOMSERVICE definition and the resources that it references,
including any CICS resources and commands used by a service routine.

5. Create an Atom service document that includes the collection, following the instructions in “Creating
an Atom service document” on page 212.
You can also create an Atom category document to specify categories for your collection, following the
instructions in “Creating an Atom category document” on page 216.

6. Set up CICS resource definitions to deliver your Atom service and category documents, following the
instructions in “Delivering an Atom service or category document as an Atom configuration file ” on
page 218 or “Delivering an Atom service or category document as a static response” on page 218 .

Results
When you have completed these tasks, your collection is available for web clients to add, update, and
delete entries. web clients can discover the URL for your collection by obtaining the service document.

What to do next
“Administering Atom feeds and Atom collections” on page 219 explains how you can edit your collection
by issuing HTTP GET, POST, PUT, and DELETE requests through a web client, and how a service routine
must handle editing requests.

Creating an ATOMSERVICE definition and Atom configuration file for a collection
Create an ATOMSERVICE definition and Atom configuration file for a collection by copying the equivalent
files for the Atom feed from the same data and making minor changes.

About this task

ATOMSERVICE resource definitions has information about the different methods of resource definition
and full reference information for the ATOMSERVICE resource definition attributes.

Procedure

1. Copy the Atom configuration file for the Atom feed and rename it with any suitable name of your
choice.
Make the following changes to the file:
a) Change the root element from <cics:atomservice type="feed"> to <cics:atomservice
type="collection">.

b) Change the <atom:title> child element of the <atom:feed> element to a suitable title for the
collection.
You do not have to change the <atom:title> child element of the <atom:entry> element.
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c) Change the <atom:id> child element of the <atom:feed> element to a suitable unique identifier for
the collection.

d) Change the href attribute of the <atom:link rel="self" href=" "> child element of the <atom:feed>
element to specify the complete path that web clients can use to retrieve the collection. The
beginning of the path must match the partial path that you stated in the URIMAP resource
definition for the collection.
For example, if you specified /myatomcoll/* as the path component in the URIMAP resource
definition, you could specify <atom:link rel="self" href="/myatomcoll/collection.atom"> in the
Atom configuration file.
You may omit the scheme and host components of the URL, and specify only the path component.

e) In the <atom:link rel="self" href=" "> child element of the prototype <atom:entry> element, change
the href attribute so that the beginning of this standard path matches the partial path that you
stated in the URIMAP resource definition for the collection.
It is helpful to users (but not required) to also change the remainder of the path so that it is
different from the path for the ordinary Atom feed from the corresponding data. The whole path
must be different from the complete path that you specified in the <atom:link rel="self" href=" ">
element for the collection.
CICS appends the selector value supplied by the service routine, or a suitable unique identifier for
the Atom entry, to the path to create a complete link for each Atom entry.

For example, if you specified /myatomcoll/* as the path component in the URIMAP resource
definition, and <atom:link rel="self" href="/myatomcoll/collection.atom"> as the link for the whole
collection in the Atom configuration file, you could specify <atom:link rel="self" href="/myatomcoll/
edit/"> as the standard path for entries in the collection.

When CICS issues the Atom entry document, CICS changes the "self" attribute to "edit" as required
by the Atom Publishing Protocol. Do not change this attribute yourself in the Atom configuration
file. In this example, CICS issues links such as <atom:link rel="edit" href="/myatomcoll/edit/23">.

2. Copy the ATOMSERVICE resource definition for the Atom feed, and rename it using the name that you
specified in the URIMAP resource definition for the collection.
Make the following changes to the definition:
a) Change the ATOMTYPE attribute from FEED to COLLECTION.
b) Change the CONFIGFILE attribute to the name of the Atom configuration file that you have just

created for the collection.
3. Install the ATOMSERVICE resource definition and the corresponding URIMAP resource definition that

you created for the collection.
You can also create a TRANSACTION resource definition for an alias transaction for the collection,
following the instructions in Creating an alias transaction for an Atom feed, and install this resource
definition.

Creating an Atom service document
Create an Atom service document to inform clients about the collections that are available from your
server. An Atom service document lists only Atom feeds that you want to make available as collections for
editing; it does not include ordinary Atom feeds that are not available for editing.

About this task

You normally create only one Atom service document for the collections that are available through a CICS
region. The Atom service document is stored in z/OS UNIX System Services. The Atom service document
is an XML document, and the file has the .xml extension. You can create the file using any XML editor or
text editor.

You can choose whether to create your Atom service document as an Atom configuration file, which CICS
manages using an ATOMSERVICE resource definition, or as a file delivered by CICS Web Support static
content delivery. Defining the Atom service document as an Atom configuration file requires an extra
resource definition, but means that the document is integrated with CICS support for Atom feeds.
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If you choose to define the Atom service document as an Atom configuration file, you begin the document
with the root element <cics:atomservice type="service">. Other than that element, the Atom service
document for your CICS collections does not contain any elements that are specific to the CICS
environment. It uses the standard elements that are defined by the Atom Publishing Protocol
specification in RFC 5023. The CICS documentation therefore does not include further reference
information for these elements. If you need any further reference information for the elements in an Atom
service document, consult RFC 5023, The Atom Publishing Protocol.

CICS does not validate the content of your Atom service document. If you correctly follow the steps listed
here, you can produce a valid Atom service document that is compliant with the Atom Publishing Protocol
specification. If you find that clients experience any problems reading your service document, or do not
interpret it in the way that you expected, recheck your service document against these instructions and
against the Atom Publishing Protocol specification in RFC 5023.

Procedure

1. If you want to define your Atom service document as an Atom configuration file, begin the document
with the root element <cics:atomservice type="service">, and add the <app:service> element as a
child element.

<?xml version="1.0"?>
<cics:atomservice type="service">
 <app:service>
 </app:service>
</cics:atomservice>

If you do not want to define the Atom service document as an Atom configuration file, use the
<app:service> element as the root element, as follows:

<?xml version="1.0"?>
<app:service>
</app:service>

2. Include the namespace declarations for the Atom XML namespace and the namespace for the Atom
Publishing Protocol in the root element of the Atom service document; that is, either the
<cics:atomservice> element or the <app:service> element.
If you have used the <cics:atomservice> element as the root element, also include the namespace
declaration for the CICS Atom XML namespace.
For example:

<?xml version="1.0"?>
<cics:atomservice type="service"
      xmlns:cics="http://www.ibm.com/xmlns/prod/cics/atom/atomservice"
      xmlns:atom="http://www.w3.org/2005/Atom"
      xmlns:app="http://www.w3.org/2007/app">
 <app:service>
 </app:service>
</cics:atomservice>

With the <app:service> element as the root element, the declarations look like this:

<?xml version="1.0"?>
<app:service
      xmlns:atom="http://www.w3.org/2005/Atom"
      xmlns:app="http://www.w3.org/2007/app">
</app:service>

3. Add at least one <app:workspace> element as a child element of the <app:service> element, and add
an <atom:title> element to each workspace with a suitable title.
<app:workspace> elements just group collections together in the service document, and the server
and client do not have to take any actions relating to them. However, the Atom Publishing Protocol
requires that you use at least one workspace, and that each workspace has a human-readable title.
This example shows a single workspace that can contain all your collections:
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<?xml version="1.0"?>
<cics:atomservice type="service"
      xmlns:cics="http://www.ibm.com/xmlns/prod/cics/atom/atomservice"
      xmlns:atom="http://www.w3.org/2005/Atom"
      xmlns:app="http://www.w3.org/2007/app">
 <app:service>
  <app:workspace>
     <atom:title>CICS Atom collections</atom:title>
  </app:workspace>
 </app:service>
</cics:atomservice>

4. For each of your collections, add an <app:collection> element as a child element of the
<app:workspace> element (or in a suitable <app:workspace> element if you have created more than
one).
Specify the following required items in each <app:collection> element:
a) An href attribute of the <app:collection> element, stating the complete URL for the collection, with

the complete path that you specified in the Atom configuration file for the collection.
Web clients use this URL for GET requests to retrieve a list of the Atom entries in the collection.
They also use this URL for POST requests to submit new Atom entries to the collection.
You must ensure that this link is valid, and that you have set up all the items needed to support the
collection, including a URIMAP resource definition and an ATOMSERVICE resource definition.

b) An <atom:title> element as a child element, stating the title of the collection.
For example:

<app:workspace>
    <atom:title>CICS Atom collections</atom:title>
  <app:collection 
      href="http://www.example.com/customers/customercol.atom"> 
         <atom:title>Customer collection</atom:title>
  </app:collection>
</app:workspace>

5. Optional: If you do not want clients to create new Atom entries in one or more of your collections,
include an empty <app:accept> element as a child element of the <app:collection> element.
For example:

  <app:collection 
      href="http://www.example.com/customers/customercol.atom"> 
         <atom:title>Customer collection</atom:title>
         <app:accept/>
  </app:collection>

You must implement additional security measures to prevent clients from editing the collection.
Clients should interpret an empty <app:accept> element to mean that they cannot create entries, but
the presence of an empty <app:accept> element does not make CICS prevent a client from attempting
to create an entry.

If you want clients to create Atom entries, omit the <app:accept> element. Because CICS does not
support media resources, do not use the <app:accept> element to specify any additional media types
for entries. CICS rejects any client request to create an entry that is not an Atom entry document; that
is, a document with the media type application/atom+xml, with or without the type=entry attribute.
This media type is the default, so when you omit the <app:accept> element, clients should understand
that they can create only Atom entry documents in this collection.

6. Optional: If you want to specify categories (which are optional) for the Atom entries in one or more of
your collections, decide whether you want to provide the list of categories in the service document
itself, or supply a reference to a separate category document.
A separate category document is useful if you have a long list of categories, or if you want to reuse the
same list of categories for different collections.
The Atom Publishing Protocol permits you to use multiple <app:categories> elements in a service
document, so you might choose, for example, to provide both a reference to a shared Atom category
document and a list of categories specific to the collection.
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When you have made your decision, proceed as follows:
a) To provide categories in the service document, add an <app:categories> element as a child

element of the <app:collection> element, then add one or more <atom:category> elements as child
elements of the <app:categories> element. Give each <atom:category> element a term attribute
that specifies the name of the category.
CICS does not support the optional scheme and label attributes, so do not use these attributes.
For example:

  <app:collection 
      href="http://www.example.com/customers/customercol.atom"> 
         <atom:title>Customer collection</atom:title>
      <app:categories>
         <atom:category term="Customers" /> 
         <atom:category term="Actions" />
      </app:categories>
  </app:collection>

The categories that you specify do not affect the way CICS behaves. CICS accepts client requests
that specify a category that is not included in your list. For this reason, for a request where CICS
handles the resource directly, do not use the fixed="yes" attribute in your <app:categories>
element, which indicates that the server does not allow any other categories. When you omit the
fixed attribute, a value of "no" is assumed. If you are using a service routine to make changes to the
resource, you may code your service routine to reject client requests on the basis of categories, and
indicate this in your <app:categories> element.

b) To provide categories in a separate category document, follow the instructions in “Creating an
Atom category document” on page 216 to create a category document and the resource definitions
that it requires. Then add an <app:categories> element as a child element of the <app:collection>
element, and give it an href attribute specifying the URL that the client can use to retrieve your
category document.
For example:

  <app:collection 
      href="http://www.example.com/customers/customercol.atom"> 
         <atom:title>Customer collection</atom:title>
      <app:categories href="http://www.example.com/cat/customercol"/>
  </app:collection>

You must not use any attributes or child elements in the <app:categories> element when you
specify a reference to a category document.

Example Atom service document with two collections

This Atom service document is defined as an Atom configuration file, with the root element
<cics:atomservice type="service">. It contains a single workspace with two collections. One of the
collections has a list of categories in the service document. The other collection has a reference to a
separate category document.

<?xml version="1.0"?>
<cics:atomservice type="service"
      xmlns:cics="http://www.ibm.com/xmlns/prod/cics/atom/atomservice"
      xmlns:atom="http://www.w3.org/2005/Atom"
      xmlns:app="http://www.w3.org/2007/app">
 <app:service>
  <app:workspace>
    <atom:title>CICS Atom collections</atom:title>
   <app:collection 
      href="http://www.example.com/customers/customercol.atom"> 
         <atom:title>Customer collection</atom:title>
      <app:categories>
         <atom:category term="Customers" /> 
         <atom:category term="Actions" />
      </app:categories>
   </app:collection>
   <app:collection 
      href="http://www.example.com/sysadmin/messagecol.atom">
      <atom:title>Messages from the systems administrator</atom:title>
      <app:categories href="http://www.example.com/cat/messagecol"/>
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   </app:collection>
  </app:workspace>
 </app:service>
</cics:atomservice>

What to do next

The Atom Publishing Protocol permits you to specify an <app:collection> element in an Atom feed
document, as a child element of the <atom:feed> element. This arrangement can be a useful way to link a
collection to the ordinary Atom feed for that data. Clients that understand this markup can see that the
Atom feed they requested is available as a collection, and can use the URL to create new entries or
browse the entries for editing, without having to view the service document.

If you want to specify your <app:collection> element in an Atom feed document, copy your
<app:collection> element and all its child elements from your Atom service document into the Atom
configuration file for the Atom feed, as a child element of the <atom:feed> element. Make sure that it is a
child of that element, and not of the <cics:feed> element or of the prototype <atom:entry> element. You
must also keep the specification of the <app:collection> element in the Atom service document. If in the
future you change the specification of the <app:collection> element in the Atom service document, make
corresponding changes in the copy in the Atom configuration file.

Next, follow the instructions in either “Delivering an Atom service or category document as an Atom
configuration file ” on page 218 or “Delivering an Atom service or category document as a static
response” on page 218 to set up the resource definitions to deliver your Atom service document to web
clients.

Creating an Atom category document
Create an Atom category document if you want to supply a long list of categories for a collection or to
reuse the same list of categories for different collections. For short or unique lists of categories, there is
little value in defining a separate category document; specify the categories in the Atom service
document instead.

About this task

An Atom category document is stored in z/OS UNIX System Services. An Atom category document is an
XML document, and the file has the .xml extension. You can create the file using any XML editor or text
editor.

As for an Atom service document, you can choose whether to create your Atom category documents as
Atom configuration files, or as files delivered by CICS Web Support static content delivery. Choose the
same approach as you took for your Atom service document in “Creating an Atom service document” on
page 212. CICS does not validate the content of an Atom category document.

Apart from the <cics:atomservice type="category"> root element, if you use it, an Atom category
document in CICS uses only the standard elements defined in RFC 5023 The Atom Publishing Protocol.
Consult that document if you need any further reference information.

The categories that you specify in a category document do not affect the way CICS behaves. CICS accepts
client requests that specify a category that is not included in your document. For this reason, for a request
where CICS handles the resource directly, do not use the fixed="yes" attribute in your <app:categories>
element, which indicates that the server does not allow any other categories. If you are using a service
routine to make changes to the resource, you may code your service routine to reject client requests on
the basis of categories, and indicate this in your <app:categories> element.

Note that for data held in a resource, CICS supports only a single category for each Atom entry.

Procedure

1. If you want to define your Atom category document as an Atom configuration file, begin the document
with the root element <cics:atomservice type="category">, and add the <app:categories> element as
a child element.
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<?xml version="1.0"?>
<cics:atomservice type="category">
 <app:categories>
 </app:categories>
</cics:atomservice>

If you do not want to define the Atom category document as an Atom configuration file, use the
<app:categories> element as the root element, as follows:

<?xml version="1.0"?>
<app:categories>
</app:categories>

Do not use the optional scheme attribute, because CICS does not support it. For a request where CICS
handles the resource directly, do not use the fixed="yes" attribute, because CICS does not provide any
support for disallowing categories. When you omit the fixed attribute, a value of "no" is assumed. For a
request where you are using a service routine to handle the resource, you may use the fixed="yes"
attribute if your service routine rejects requests on the basis of categories.

2. Include the namespace declarations for the Atom XML namespace and the namespace for the Atom
Publishing Protocol in the root element of the Atom category document; that is, either the
<cics:atomservice> element or the <app:categories> element.
If you have used the <cics:atomservice> element as the root element, also include the namespace
declaration for the CICS Atom XML namespace.
For example:

<?xml version="1.0"?>
<cics:atomservice type="category"
      xmlns:cics="http://www.ibm.com/xmlns/prod/cics/atom/atomservice"
      xmlns:atom="http://www.w3.org/2005/Atom"
      xmlns:app="http://www.w3.org/2007/app">
 <app:categories>
 </app:categories>
</cics:atomservice>

With the <app:categories> element as the root element, the declarations look like this:

<?xml version="1.0"?>
<app:categories
      xmlns:atom="http://www.w3.org/2005/Atom"
      xmlns:app="http://www.w3.org/2007/app">
</app:categories>

3. Add one or more <atom:category> elements as child elements of the <app:categories> element, and
give each <atom:category> element a term attribute that specifies the name of the category.
For example:

 <app:categories>         
    <atom:category term="Events" /> 
    <atom:category term="Comments" />
 </app:categories>

CICS does not support the optional scheme and label attributes, so do not use these attributes.
4. Include the full URL for your category document in your Atom service document, by specifying the

<app:categories> element with the href attribute in each applicable collection.
This example shows how to specify the <app:categories> element as a child of the <app:collection>
element in an Atom service document:

  <app:collection 
      href="http://www.example.com/events/eventcol.atom"> 
         <atom:title>Events collection</atom:title>
      <app:categories href="http://www.example.com/cat/eventcol"/>
  </app:collection>
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Example

This Atom category document is defined as an Atom configuration file, with the root element
<cics:atomservice type="category">.

<?xml version="1.0"?>
<cics:atomservice type="category"
      xmlns:cics="http://www.ibm.com/xmlns/prod/cics/atom/atomservice"
      xmlns:atom="http://www.w3.org/2005/Atom"
      xmlns:app="http://www.w3.org/2007/app">
 <app:categories>         
    <atom:category term="Events" /> 
    <atom:category term="Comments" />
 </app:categories>
</cics:atomservice>

What to do next

Follow the instructions in either “Delivering an Atom service or category document as an Atom
configuration file ” on page 218 or “Delivering an Atom service or category document as a static
response” on page 218 to set up the resource definitions to deliver your Atom category document to web
clients.

Delivering an Atom service or category document as an Atom configuration file
If you created your Atom service or category document as an Atom configuration file with the root
element <cics:atomservice>, set up URIMAP and ATOMSERVICE resource definitions to deliver the
document.

Procedure

1. Create a URIMAP resource for the Atom service or category document.
The path component of the URL that you choose for the Atom service document must not begin with
any of the common parts of path components that you specify in URIMAP resource definitions for
Atom feeds or collections that you serve using the same host name.

2. Create an ATOMSERVICE resource definition with the name that you specified in the URIMAP resource
definition for the Atom document, and a group of your choice, using one of the methods listed in Ways
of defining CICS resources.

3. Use the STATUS attribute to specify whether the ATOMSERVICE resource definition will be installed in
an enabled or disabled state.

4. Specify an ATOMTYPE attribute of SERVICE for an Atom service document, or CATEGORY for an Atom
category document.

5. Specify the CONFIGFILE attribute as the name and path for the Atom configuration file that you
created for the Atom document.

6. Install the ATOMSERVICE resource definition and the corresponding URIMAP resource.
If you created a TRANSACTION resource definition for an alias transaction in Creating an alias
transaction for an Atom feed, install this resource as well.

Delivering an Atom service or category document as a static response
If you created a plain Atom service or category document with the root element <app:service> or
<app:categories>, set up a URIMAP resource definition to deliver the document as a static response
through CICS web support.

Procedure

1. Complete the steps for planning to deliver a z/OS UNIX file as a static response, as described in
Providing static HTTP responses with a CICS document template or z/OS UNIX file.
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2. Complete the steps for setting up a URIMAP definition for a z/OS UNIX file as a static response, as
described in Specifying common URIMAP attributes for CICS as an HTTP server and Specifying
URIMAP attributes for a static response to HTTP requests.
When you are following these steps, make these choices in the URIMAP definition for your Atom
service or category document:
a) Specify the PATH attribute as a suitable URL for the service or category document, such as /
servicedocument.
The path for an Atom service or category document must not begin with the common part of the
path component for any of the Atom feeds and collections that you serve using the host name that
you specified.

b) Remember to specify a USAGE attribute of SERVER (CICS as an HTTP server), not ATOM.
c) Specify the MEDIATYPE attribute as application/atomsvc+xml for an Atom service document,

or application/atomcat+xml for an Atom category document.
d) Specify the HFSFILE attribute as the name of the z/OS UNIX file that contains your service or

category document.

Administering Atom feeds and Atom collections
A client can view the Atom entries in an Atom feed; Atom entries in an Atom feed are read-only and
cannot be edited. A client can view, edit, create, or delete Atom entries in an Atom collection.

To discover which Atom feeds or collections are available on a server, the client requests a service
document from the server. The service document lists the URLs of the Atom feeds and collections that are
available to the client. The client can then interact with the Atom entries by sending HTTP requests to the
server as follows:
GET

Retrieve a single Atom entry or a list of Atom entries. GET requests for a list of Atom entries are sent
to the URL of the collection, as stated in the Atom service document. GET requests for a single Atom
entry are sent to the URL of an individual Atom entry in the collection, as stated in the <atom:link
rel="edit"> link for the entry.

POST
Create a new Atom entry. POST requests are sent to the URL of the collection.

PUT
Edit an existing Atom entry that the client has obtained using a GET request. PUT requests are sent to
the URL of an individual Atom entry in the collection.

DELETE
Delete an existing Atom entry. DELETE requests are sent to the URL of an individual Atom entry in the
collection.

For POST and PUT requests, the client sends a request body containing a complete Atom entry document.
(CICS does not support other media types in Atom collections.) Although a PUT request typically updates
only a part of an existing entry, the client should send the whole entry, including the elements of the
existing entry that were not edited, to avoid any possible misinterpretation by the server. The server adds
the new entry or updates the existing entry, then sends an HTTP response to the client with an
appropriate HTTP status code. The server can change, add to, or remove the items of metadata (such as
the Atom ID or the date and time stamps) that the client provides for an entry. So when a client makes a
successful POST or PUT request, the server also returns a copy of the new entry as the body of the
response. CICS requires entity tags (ETags) for PUT requests for Atom entries in a collection, which
enable the server to confirm that the client has based its editing requests on an up-to-date copy of the
Atom entry.

RFC 5023 The Atom Publishing Protocol has a full statement of the protocol for interacting with Atom
entries in a collection, and some examples of the HTTP requests and responses used.

For a collection for which CICS extracts data directly from a file or temporary storage queue without the
involvement of a service routine, CICS carries out the actions of a server to process the client request,
update the resource, and return a response to the client. Be aware that these actions modify the contents
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of the file or temporary storage queue permanently. CICS adds or edits records in response to POST and
PUT requests. For DELETE requests relating to a file, CICS deletes the records, except in an ESDS where
records cannot be deleted. For DELETE requests relating to a temporary storage queue, CICS removes the
records by setting the first byte to 'FF'x. If these actions are not appropriate for your environment, use a
service routine instead to handle the client requests.

CICS does not support some of the possible actions described for collections in the Atom Publishing
Protocol (RFC 5023), in particular the following:

• CICS does not support media resources and media link entries in collections. Media resources are
specified by the Atom Publishing Protocol (RFC 5023) primarily as a means of organizing nontext
content in a collection. When a client attempts to create an entry in a collection, CICS rejects with a 415
status code any client request that is not an Atom entry (with the media type application/atom+xml,
with or without the type=entry parameter). Do not specify any additional media types in <app:accept>
elements in a service document for CICS.

• CICS does not reject Atom entries for a collection on the basis of categories. You can use the
<app:categories> element in a service document or category document to specify acceptable
categories for entries in a collection, but CICS does not police whether clients adhere to these
categories.

• For reasons of performance, CICS does not automatically return Atom entries in a collection in the order
in which they were most recently edited (as shown by the <app:edited> element in the entry). This
function is a SHOULD requirement in RFC 5023 for a full list of entries, but a MUST requirement for a
partial list of entries. CICS deviates from this requirement in order to maintain acceptable response
times while still providing the useful function of partial lists. If you are using a service routine to supply
the entries to CICS, you can make the collection compliant by supplying the entries in the order in which
they were last edited, if your resource is able to store this information.

Atom features not supported by CICS lists other unsupported items that are minor or do not relate
specifically to collections.

For a collection served by CICS involving data that a service routine extracts from a resource and supplies
to CICS, CICS passes the client request to the service routine in a set of containers. You must code your
service routine to apply the request to the data in the resource and then return a response to CICS to
send to the client. In this situation, you share the responsibility with CICS in some respects for
compliance with the Atom Publishing Protocol (RFC 5023). “Handling Atom collection editing requests in
your service routine” on page 230 explains how your service routine can handle GET, POST, PUT, and
DELETE requests for collections.

When you have finished setting up your Atom collection and (if necessary) your service routine, you can
edit the entries using any suitable client that handles the HTTP protocol. The exact process for making the
requests and viewing the responses varies depending on the client that you have chosen. For more
information about how to interact with the entries in a collection using GET, POST, PUT, and DELETE
requests, see “Editing Atom collections using a web client” on page 220.

Editing Atom collections using a web client
Use a web client that can make HTTP GET, POST, PUT, and DELETE requests to read, create, edit, and
delete entries in your Atom collection.

Before you begin

CICS provides a sample Atom collection supported by a mashup web page that lets you make web client
requests for the collection, and view the requests and responses. To see how web clients can edit Atom
collections in CICS, set up and use the sample Atom collection following the instructions in Atom feed
sample programs

About this task

Many free or commercially available web client applications can make HTTP GET requests to obtain and
display Atom feeds or collections. However, not all these web clients can also make HTTP POST, PUT, and
DELETE requests to edit the Atom entries. Check that the application is specifically described as
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supporting the Atom Publishing Protocol, not just the Atom format. If you have a web client with this
capability, consult the documentation for the client to read about the process for making the requests and
viewing the responses. The web client can interact with CICS as it does with any server that supports the
Atom Publishing Protocol, with the exception of certain functions listed in “Administering Atom feeds and
Atom collections” on page 219.

If you do not have a web client application that specifically supports POST, PUT, and DELETE requests for
Atom entries, you can use a web client application that lets you compose and send your own HTTP
requests and view the responses. You can also write your own web client applications to make POST,
PUT, and DELETE requests to Atom collections. For instructions to make web client requests from a CICS
application, see Providing credentials for basic authentication.

If you are writing your own web client application to edit an Atom collection, or if you are composing your
own HTTP requests in a suitable web client, make the requests following the steps described here. For
details of the protocol for interacting with Atom entries in a collection, see RFC 5023 The Atom Publishing
Protocol. For details of the protocol for making HTTP requests, see RFC 2616 Hypertext Transfer Protocol
-- HTTP/1.1.

Your collection should have security measures in place to control web client access. These instructions
assume that the web client that you are using has full access to read and modify the Atom entries. For
Atom feeds and collections served from CICS, you can allow some web clients to have read-only access
to the items so that they can make only HTTP GET requests, but other web clients can have UPDATE
access so that they can also make HTTP POST, PUT, and DELETE requests. If your web client does not
have the correct access to carry out an action on the collection, CICS returns an HTTP error response with
the status code 403 (Forbidden). For more information about security for Atom feeds and collections, see
Security for Atom feeds.

Procedure

1. If you do not know the URL of the collection that you want to edit, or you are writing an application that
can handle multiple collections, first make an HTTP GET request for the Atom service document that
you set up in “Creating an Atom service document” on page 212.
The Atom service document lists the URLs of the collections that are available on the server.
You can also check the possible categories for entries in the collection, which are listed either in the
service document or in a separate category document.

2. To obtain a list of the existing Atom entries in the collection, make an HTTP GET request to the URL of
the collection, following the instructions in “Making GET requests to Atom feeds or collections” on
page 222.
These instructions also apply to GET requests to an Atom feed that is not defined as a collection.

3. To obtain an individual Atom entry from the collection, make an HTTP GET request to the URL of the
Atom entry, following the instructions in “Making GET requests to Atom feeds or collections” on page
222.
These instructions also apply to GET requests to an Atom feed that is not defined as a collection.

4. To create a new Atom entry in the collection, make an HTTP POST request to the URL of the collection,
following the instructions in “Making POST requests to Atom collections” on page 226.

5. To edit an existing Atom entry in the collection, make an HTTP PUT request to the URL of the Atom
entry, following the instructions in “Making PUT requests to Atom collections” on page 228.

6. To delete an existing Atom entry from the collection, make an HTTP DELETE request to the URL of the
Atom entry, following the instructions in “Making DELETE requests to Atom collections” on page 230
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Making GET requests to Atom feeds or collections
A web client can obtain a list of the existing Atom entries in an Atom feed or collection by making an HTTP
GET request to the URL of the collection, or obtain an individual Atom entry from the Atom feed or
collection by making an HTTP GET request to the URL of the Atom entry.

Before you begin
If you want to edit a collection and you do not know the URL of the collection that you want to edit, or you
are writing an application that can handle multiple collections, first make an HTTP GET request for the
Atom service document that you set up in “Creating an Atom service document” on page 212. The Atom
service document lists the URLs of the collections that are available on the server. The URLs for Atom
feeds are not available through Atom service documents, but are typically publicized in a relevant
location, for example, as an invitation on a website to subscribe to a feed.

Procedure

1. To obtain a list of the existing Atom entries in the Atom feed or collection, make an HTTP GET request
to the URL of the Atom feed or collection. Compose the request as follows:
a) Begin with a request line consisting of the GET method, followed by the path component of the URL

of the Atom feed or collection, followed by HTTP/1.1, which is the HTTP version for the request.
You may also include the scheme (HTTP or HTTPS) and the host name in the URL.

b) If you want to obtain more or less than the default number of Atom entries that CICS sends for a
single request for this Atom feed or collection, specify a query string at the end of the URL, with the
name w (for "window") and the value as the number of Atom entries that you want to receive in this
Atom document.
This query string requests six Atom entries:

?w=6

c) Write HTTP headers for the request as follows, each on a new line:

• The Host header, giving the host name from the URL of the Atom feed or collection, if you did not
already include the host name in the request line.

• The Authorization header, with any security information required to access the Atom feed or
collection, such as a user ID and password for basic authentication.

Put an additional carriage return line feed (CRLF) after the last HTTP header to give an empty line.
Do not include a request body.
Send the request to the server.
The server returns an Atom feed document, which is a single HTTP response that contains a complete
or partial list of the Atom entries in the Atom feed or collection.

Note: The elements in Atom documents served by CICS typically do not include the atom: namespace
prefix. The Atom namespace is defined as the default namespace in the element at the beginning of
the Atom document, so the atom: prefix is not required for the child elements. However, in references
to the elements in the CICS documentation, the atom: prefix is used in the element names for clarity.

2. If you received a partial list of the Atom entries in the Atom feed or collection, and you want to obtain
more, make further HTTP GET requests to the links in the Atom feed document that specify further
partial lists, as follows:
a) Use the URL stated in the <atom:link rel="next"> element to obtain the next window or partial list

of entries.
CICS provides this link for both Atom feeds and collections.
As previously noted, CICS does not include the atom: namespace prefix for child elements, so the
element appears in the Atom feed document as <link rel="next">.

b) Use the URL stated in the <atom:link rel="previous"> element to obtain the previous partial list of
entries.
CICS provides this link for collections.
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c) Use the URL stated in the <atom:link rel="first"> element to obtain the first partial list of entries.
CICS provides this link for collections.

d) Use the URL stated in the <atom:link rel="last"> element to obtain the last partial list of entries.
CICS provides this link for collections.
For Atom documents served by CICS, to improve performance, this partial list contains only the last
Atom entry in the feed. You can use the <atom:link rel="previous"> links to retrieve all the previous
partial lists.

Be aware that the links to further partial lists represent a snapshot of the Atom feed or collection at
the point in time when CICS issues the Atom document containing them. When Atom entries are
added to or deleted from the collection, the links might become invalid. The links are therefore only
useful in the short term, to browse a collection that does not change quickly.

3. To obtain an individual Atom entry from the Atom feed or collection, make an HTTP GET request to the
URL of the Atom entry, as stated in the <atom:link rel="self"> or <atom:link rel="edit"> element of the
entry.
<atom:link rel="self"> provides the link for an Atom entry in a feed, and <atom:link rel="edit">
provides the link for an Atom entry in a collection. Atom entries in a collection might also have an
<atom:link rel="self"> link.
Compose the request as follows:
a) Begin with a request line consisting of the GET method, followed by the path component of the URL

of the Atom entry, followed by HTTP/1.1, which is the HTTP version for the request.
You may also include the scheme (HTTP or HTTPS) and the host name in the URL.

b) Write HTTP headers for the request as follows, each on a new line:

• The Host header, giving the host name from the URL of the Atom feed or collection, if you did not
already include the host name in the request line.

• The Authorization header, with any security information required to access the Atom feed or
collection, such as a user ID and password for basic authentication.

Put an additional carriage return line feed (CRLF) after the last HTTP header to give an empty line.
Do not include a request body.
Send the request to the server.
The server returns an HTTP response containing a copy of the individual Atom entry.

Example

The following HTTP request is for an Atom collection with the following URL:

• http://www.example.com:80/web20/myfeed

GET /web20/myfeed HTTP/1.1
Host: www.example.com:80

The following HTTP request is for an Atom collection with the following URL:

• http://www.example.com:80/web20/entry/7

GET /web20/entry/7 HTTP/1.1
Host: www.example.com:80

The following example HTTP response shows an Atom document that CICS sends in response to the
request for a single Atom entry. The example shows only the HTTP headers that are of interest for Atom
feeds; further HTTP headers might be present in the response. The ETag header for the HTTP response
gives the entity tag for the Atom entry, which you must use in the If-Match header if you make a PUT
request to edit the entry.

HTTP/1.1 200 OK
Content-Type: application/atom+xml
Content-Length: 1005
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ETag: c4826af12991fb102ef13099c927c2ac24e4caa2

<?xml version="1.0" encoding="utf-8"?>
<entry xmlns="http://www.w3.org/2005/Atom" xmlns:app="http://www.w3.org/2007/app">
    <generator uri="http://www.ibm.com/cics/" version="6.6.0">
    CICS Transaction Server Version 4.1.0
    </generator>
    <link rel="self" href="http://www.example.com:80/web20/entry/7"/>
    <link rel="edit" href="http://www.example.com:80/web20/entry/7"/>
    <id>tag:http://www.example.com/web20/myfeed,2009-01-20:tsqueue:WB20TSQ:7</id>
    <title>This is entry 7</title>
    <summary>
    Entry 7 is about something to do with feeds...
    </summary>
    <category term="Test Feeds"/>
    <rights>Copyright (c) 2009, Joe Bloggs</rights>
    <published>2008-12-02T15:41:00</published>
    <author>
        <name>Joe Bloggs</name>
        <email>JBloggs@example.com</email>
        <uri>http://www.example.com/JBloggs/</uri>
    </author>
    <contributor>
        <name>John Doe</name>
    </contributor>
    <app:edited>2009-02-02T16:29:36+00:00</app:edited>
    <updated>2009-02-02T16:29:36+00:00</updated>
    <content type="text/xml">
           <SAMPBIND xmlns="http://www.ibm.com/xmlns/prod/cics/atom/bindfile/sampbind">
              <data_field>
              Here is some content for entry 7
              </data_field>
           </SAMPBIND >
    </content>
</entry>

This example HTTP response shows an Atom document that CICS sends in response to the request for a
list of Atom entries from the Atom collection. Again, the example shows only the HTTP headers that are of
interest for Atom feeds; further HTTP headers might be present in the response.

HTTP/1.1 200 OK
Content-Type: application/atom+xml
Content-Length: 8661

<?xml version="1.0" encoding="utf-8"?>
<feed xmlns="http://www.w3.org/2005/Atom" xmlns:app="http://www.w3.org/2007/app">
    <generator uri="http://www.ibm.com/cics/" version="6.6.0">
    CICS Transaction Server Version 4.1.0
    </generator>
    <link rel="self" href="http://www.example.com:80/web20/myfeed"/>
    <link rel="edit" href="http://www.example.com:80/web20/myfeed"/>
    <id>tag:http://www.example.com/web20/myfeed,2009-01-20:tsqueue:WB20TSQ</id>
    <title type="text">CICS ATOM FEED TITLE</title>
    <subtitle>CICS ATOM FEED SUBTITLE</subtitle>
    <rights>Copyright (c) 2009, Joe Bloggs</rights>
    <category term="my-first-feed"/>
    <author>
        <name>Joe Bloggs</name>
        <email>JBloggs@example.com</email>
        <uri>http://www.example.com/JBloggs/</uri>
    </author>
    <contributor>
        <name>John Doe</name>
    </contributor>
    <!--*****************************************************************-->
    <entry>
        <link rel="self" href="http://www.example.com:80/web20/entry/9"/>
        <link rel="edit" href="http://www.example.com:80/web20/entry/9"/>
        <id>tag:http://www.example.com/web20/myfeed,2009-01-20:tsqueue:WB20TSQ:9</id>
        <title>This is entry 9</title>
        <summary>
        Entry 9 is about something to do with feeds...
        </summary>
        <category term="Test Feeds"/>
        <rights>Copyright (c) 2009, Joe Bloggs</rights>
        <published>2008-12-02T15:41:00</published>
        <author>
            <name>Joe Bloggs</name>
            <email>JBloggs@example.com</email>
            <uri>http://www.example.com/JBloggs/</uri>
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        </author>
        <contributor>
            <name>John Doe</name>
        </contributor>
        <app:edited>2009-02-02T16:29:36+00:00</app:edited>
        <updated>2009-02-02T16:29:36+00:00</updated>
        <content type="text/xml">
            <SAMPBIND xmlns="http://www.ibm.com/xmlns/prod/cics/atom/bindfile/sampbind">
               <data_field>
               Here is some content for entry 9
               </data_field>
            </SAMPBIND >
        </content>
    </entry>
    <!--*****************************************************************-->
    <entry>
        <link rel="self" href="http://www.example.com:80/web20/entry/8"/>
        <link rel="edit" href="http://www.example.com:80/web20/entry/8"/>
        <id>tag:http://www.example.com/web20/myfeed,2009-01-20:tsqueue:WB20TSQ:8</id>
        <title>This is entry 8</title>
        <summary>
        Entry 8 is about something to do with feeds...
        </summary>
        <category term="Test Feeds"/>
        <rights>Copyright (c) 2009, Joe Bloggs</rights>
        <published>2008-12-02T15:41:00</published>
        <author>
            <name>Joe Bloggs</name>
            <email>JBloggs@example.com</email>
            <uri>http://www.example.com/JBloggs/</uri>
        </author>
        <contributor>
            <name>John Doe</name>
        </contributor>
        <app:edited>2009-02-02T16:29:36+00:00</app:edited>
        <updated>2009-02-02T16:29:36+00:00</updated>
        <content type="text/xml">
            <SAMPBIND xmlns="http://www.ibm.com/xmlns/prod/cics/atom/bindfile/sampbind">
               <data_field>
               Here is some content for entry 8
               </data_field>
            </SAMPBIND >
        </content>
    </entry>
    <!--*****************************************************************-->
    <entry>
        <link rel="self" href="http://www.example.com:80/web20/entry/7"/>
        <link rel="edit" href="http://www.example.com:80/web20/entry/7"/>
        <id>tag:http://www.example.com/web20/myfeed,2009-01-20:tsqueue:WB20TSQ:7</id>
        <title>This is entry 7</title>
        <summary>
        Entry 7 is about something to do with feeds...
        </summary>
        <category term="Test Feeds"/>
        <rights>Copyright (c) 2009, Joe Bloggs</rights>
        <published>2008-12-02T15:41:00</published>
        <author>
            <name>Joe Bloggs</name>
            <email>JBloggs@example.com</email>
            <uri>http://www.example.com/JBloggs/</uri>
        </author>
        <contributor>
            <name>John Doe</name>
        </contributor>
        <app:edited>2009-02-02T16:29:36+00:00</app:edited>
        <updated>2009-02-02T16:29:36+00:00</updated>
        <content type="text/xml">
            <SAMPBIND xmlns="http://www.ibm.com/xmlns/prod/cics/atom/bindfile/sampbind">
               <data_field>
               Here is some content for entry 7
               </data_field>
            </SAMPBIND >
        </content>
    </entry>
    <!--*****************************************************************-->
    <entry>
        <link rel="self" href="http://www.example.com:80/web20/entry/6"/>
        <link rel="edit" href="http://www.example.com:80/web20/entry/6"/>
        <id>tag:http://www.example.com/web20/myfeed,2009-01-20:tsqueue:WB20TSQ:6</id>
        <title>This is entry 6</title>
        <summary>
        Entry 6 is about something to do with feeds...
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        </summary>
        <category term="Test Feeds"/>
        <rights>Copyright (c) 2009, Joe Bloggs</rights>
        <published>2008-12-02T15:41:00</published>
        <author>
            <name>Joe Bloggs</name>
            <email>JBloggs@example.com</email>
            <uri>http://www.example.com/JBloggs/</uri>
        </author>
        <contributor>
            <name>John Doe</name>
        </contributor>
        <app:edited>2009-02-02T16:29:36+00:00</app:edited>
        <updated>2009-02-02T16:29:36+00:00</updated>
        <content type="text/xml">
            <SAMPBIND xmlns="http://www.ibm.com/xmlns/prod/cics/atom/bindfile/sampbind">
               <data_field>
               Here is some content for entry 6
               </data_field>
            </SAMPBIND >
        </content>
    </entry>
</feed>

Making POST requests to Atom collections
A web client can create a new Atom entry in a collection by making an HTTP POST request to the URL of
the collection.

Before you begin
If you do not know the URL of the collection that you want to edit, or you are writing an application that
can handle multiple collections, first make an HTTP GET request for the Atom service document that you
set up in “Creating an Atom service document” on page 212. The Atom service document lists the URLs of
the collections that are available on the server.

Procedure

1. Begin your HTTP POST request with a request line consisting of the POST method, followed by the
path component of the URL of the collection, followed by HTTP/1.1, which is the HTTP version for the
request.
You may also include the scheme (HTTP or HTTPS) and the host name in the URL.

2. Write HTTP headers for the request as follows, each on a new line:

• The Host header, giving the host name from the URL of the collection, if you did not already include
the host name in the request line.

• The Authorization header, with any security information required to access your collection, such as a
user ID and password for basic authentication.

• The Content-Type header, with the value application/atom+xml;type=entry.
• The Content-Length header, stating the length of your message body in bytes (octets). Specify the

value for this header when you have finished writing the message body.

Put an additional carriage return line feed (CRLF) after the last HTTP header to give an empty line.
3. Set up a message body containing the XML markup for the Atom entry that you want to post.

a) If you already have Atom entries in your collection, make a GET request to obtain a feed or entry
document for the collection, and copy an existing Atom entry from the collection into your message
body.

b) If you do not have any Atom entries in your collection yet, write the XML markup for your first Atom
entry based on the examples in these topics.

c) Check that the <entry> tag at the start of your Atom entry contains the namespace declaration
xmlns="http://www.w3.org/2005/Atom", and add that namespace declaration if it is not present.
In Atom documents sent from CICS, the elements typically do not include the atom: namespace
prefix. The Atom namespace is defined as the default namespace in the element at the beginning of
the Atom document, so you do not have to use the atom: prefix for the child elements. In the CICS
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documentation, the prefix is used in the element names for clarity. If you prefer to use the atom:
namespace prefix in the elements in your request, change the namespace declaration to
xmlns:atom="http://www.w3.org/2005/Atom".

d) Add the element <?xml version="1.0" ?> before your Atom entry.
4. Specify the appropriate elements of your Atom entry with the data that you require, and delete any

elements that you do not use.
You do not need to provide data for all the elements that are present in an Atom entry document sent
out by CICS. When you post an entry to a collection managed by CICS, you can omit any elements that
are not stored in the CICS resource, and also any elements that are stored in the CICS resource but are
generated by CICS or the service routine. Typically, you can omit at least the following elements:

• Elements containing time stamps, such as the <atom:updated> element (unless your service routine
accepts user input for these)

• The <atom:id> element
• The <atom:contributor> element
• The <atom:link> element
• The <atom:rights> element

If in doubt, include the element, and CICS or the service routine will ignore it if it is not wanted.
RFC 5023 has the complete list of possible elements in Atom entries. For a summary of the elements
that are required, allowed, or not used in Atom entries, see Atom element reference for CICS. For a
description of the content of each element, see <atom:entry> Atom configuration file element.

5. Send your request to the server.

Results

The server sends an HTTP response with the status code 200, indicating successful completion of the
request, or a suitable error response. If the request is successful, the response contains a copy of the
new Atom entry. Check the Atom entry in the response from the server against your original submission,
to make sure that you are satisfied with the new entry.

If you receive an error response, read the message body for the response, and refer to the list of status
codes that CICS provides to web clients in HTTP status code reference for CICS web support. If the error
response indicates that there might be a problem with your request, such as the HTTP status code 400
(Bad Request or Invalid Request), check to see whether the CICS region has issued message
DFHML0100. CICS uses the z/OS XML System Services parser to parse the XML markup of your Atom
entry. If the parser finds a problem with the markup, CICS issues message DFHML0100 containing the
return code and reason code from the parser. For an explanation of the return code and reason code, see
the z/OS XML System Services User's Guide and Reference.

Example

This is a request to create a new Atom entry in a collection with the URL http://
www.example.com:80/web20/myfeed :

POST /web20/myfeed HTTP/1.1
Host: www.example.com:80
Content-Type: application/atom+xml;type=entry
Content-Length: 763

<?xml version="1.0" encoding="utf-8"?>
<entry xmlns="http://www.w3.org/2005/Atom">
    <title>This is my posted entry</title>
    <summary>
    This is my new posted entry
    </summary>
    <category term="Test Feeds"/>
    <author>
        <name>Joe Bloggs</name>
        <email>JBloggs@example.com</email>
        <uri>http://www.example.com/JBloggs/</uri>
    </author>
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    <content type="text/xml">
        <SAMPBIND xmlns="http://www.ibm.com/xmlns/prod/cics/atom/bindfile/sampbind">
            <data_field>
             Here is content for my posted entry
           </data_field>
        </SAMPBIND >
    </content>
</entry>

This is the response that CICS sends:

HTTP/1.1 201 Created
Content-Type: application/atom+xml;type=entry
Content-Length: 1029

<?xml version="1.0" encoding="utf-8"?>
<entry xmlns="http://www.w3.org/2005/Atom" xmlns:app="http://www.w3.org/2007/app">
    <generator uri="http://www.ibm.com/cics/" version="6.6.0">
    CICS Transaction Server Version 4.1.0
    </generator>
    <link rel="self" href="http://www.example.com:80/web20/entry/10"/>
    <link rel="edit" href="http://www.example.com:80/web20/entry/10"/>
    <id>tag:http://www.example.com/web20/myfeed,2009-01-20:tsqueue:WB20TSQ:10</id>
    <title>This is my posted entry</title>
    <summary>
    This is my new posted entry
    </summary>
    <category term="Test Feeds"/>
    <rights>Copyright (c) 2009, Joe Bloggs</rights>
    <published>2009-04-23T15:00:44+00:00</published>
    <author>
        <name>Joe Bloggs</name>
        <email>JBloggs@example.com</email>
        <uri>http://www.example.com/JBloggs/</uri>
    </author>
    <app:edited>2009-04-23T15:00:44+00:00</app:edited>
    <updated>2009-04-23T15:00:44+00:00</updated>
    <content type="text/xml">
        <SAMPBIND xmlns="http://www.ibm.com/xmlns/prod/cics/atom/bindfile/sampbind">
            <data_field>
             Here is content for my posted entry
            </data_field>
        </SAMPBIND >
    </content>
</entry>

Making PUT requests to Atom collections
A web client can edit an existing Atom entry in a collection by making an HTTP PUT request to the URL of
the Atom entry, as stated in the <atom:link rel="edit"> element of the entry.

About this task
You can only edit a single Atom entry at a time, using the URL of the individual Atom entry. You cannot
edit multiple Atom entries in a single request. CICS rejects PUT requests made to the URL of a collection.

Procedure

1. Make an HTTP GET request to the URL of the Atom entry, as stated in the <atom:link rel="edit">
element of the entry, to retrieve a current copy of the entry and to obtain its entity tag from the ETag
HTTP header on the response.
“Making GET requests to Atom feeds or collections” on page 222 explains how to do this.

2. Begin your HTTP PUT request with a request line consisting of the PUT method, followed by the path
component of the URL of the Atom entry, followed by HTTP/1.1, which is the HTTP version for the
request.
You may also include the scheme (HTTP or HTTPS) and the host name in the URL.

3. Write HTTP headers for the request as follows, each on a new line:

• The Host header, giving the host name from the URL of the Atom entry, if you did not already include
the host name in the request line.
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• The Authorization header, with any security information required to access your collection, such as a
user ID and password for basic authentication.

• The If-Match header, with the entity tag that you just obtained for the existing Atom entry. If you
have to override this check, you may use an asterisk in place of an entity tag, which makes the server
apply your edits to the Atom entry even if it has been changed by another agent since you obtained
it. Use this option with caution.

• The Content-Type header, with the value application/atom+xml;type=entry.
• The Content-Length header, stating the length of your message body in bytes (octets). Specify the

value for this header when you have finished writing the message body.

Put an additional carriage return line feed (CRLF) after the last HTTP header to give an empty line.
4. Copy the Atom entry into your message body, and add the element <?xml version="1.0" ?> before it.

Check that the <entry> tag contains the namespace declaration xmlns="http://www.w3.org/2005/
Atom".

5. Edit the content of the elements in the Atom entry that you want to change.
CICS provides correct time stamps, and a service routine must do the same, so do not update the time
stamps in the entry.
For a description of the content of each element, see <atom:entry> Atom configuration file element.

6. Send your request to the server.

Results

When your request is accepted, the server sends an HTTP response with the status code 200, indicating
successful completion of the request, or a suitable error response. CICS returns a copy of the edited Atom
entry as the body of the response, so that you can verify your changes if you want.

As for a POST request, if you receive an error response, read the message body for the response, and
refer to the list of status codes that CICS provides to web clients in HTTP status code reference for CICS
web support. For an error response that might indicate a problem with your request, check for message
DFHML0100 from the CICS region, and consult the z/OS XML System Services User's Guide and
Reference for an explanation of the return code and reason code.

Example

This is an HTTP PUT request to edit the Atom entry with the URL http://www.example.com:80/
web20/entry/10 :

PUT /web20/entry/10 HTTP/1.1
Host: www.example.com:80
Content-Type: application/atom+xml;type=entry
Content-Length: 1034
If-Match: c4826af12991fb102ef13099c927c2ac24e4caa2

<?xml version="1.0" encoding="utf-8"?>
<entry xmlns="http://www.w3.org/2005/Atom" xmlns:app="http://www.w3.org/2007/app">
    <generator uri="http://www.ibm.com/cics/" version="6.6.0">
    CICS Transaction Server Version 4.1.0
    </generator>
    <link rel="self" href="http://www.example.com:80/web20/entry/10"/>
    <link rel="edit" href="http://www.example.com:80/web20/entry/10"/>
    <id>tag:http://www.example.com/web20/myfeed,2009-01-20:tsqueue:WB20TSQ:10</id>
    <title>This is my updated entry</title>
    <summary>
    This is my new updated entry
    </summary>
    <category term="Test Feeds"/>
    <rights>Copyright (c) 2009, Joe Bloggs</rights>
    <published>2009-04-23T15:00:44+00:00</published>
    <author>
        <name>Joe Bloggs</name>
        <email>JBloggs@example.com</email>
        <uri>http://www.example.com/JBloggs/</uri>
    </author>
    <app:edited>2009-04-23T15:00:44+00:00</app:edited>
    <updated>2009-04-23T15:00:44+00:00</updated>

Chapter 4. Administering web support  229

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_atom_atomentry.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_statusref.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_statusref.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.gxla100/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.gxla100/toc.htm


    <content type="text/xml">
        <SAMPBIND xmlns="http://www.ibm.com/xmlns/prod/cics/atom/bindfile/sampbind">
            <data_field>
             Here is new content for my updated entry
            </data_field>
        </SAMPBIND >
    </content>
</entry>

Making DELETE requests to Atom collections
A web client can delete an existing Atom entry from a collection by making an HTTP DELETE request to
the URL of the Atom entry, as stated in the <atom:link rel="edit"> element of the entry.

About this task
You can only delete a single Atom entry from a collection at a time, using the URL for an individual Atom
entry. You cannot delete a whole collection at once. CICS rejects DELETE requests made to the URL of the
collection.

Procedure

1. Begin your HTTP DELETE request with a request line consisting of the method DELETE, followed by the
path component of the URL of the Atom entry, followed by HTTP/1.1, which is the HTTP version for
the request.
You may also include the scheme (HTTP or HTTPS) and the host name in the URL.

2. Write HTTP headers for the request as follows, each on a new line:

• The Host header, giving the host name from the URL of the Atom entry, if you did not already include
the host name in the request line.

• The Authorization header, with any security information required to access your collection, such as a
user ID and password for basic authentication.

Put an additional carriage return line feed (CRLF) after the last HTTP header to give an empty line.
Do not include any message body.

3. Send your request to the server.

Results
When your request is accepted, the server sends an HTTP response with the status code 200, indicating
successful completion of the request, or a suitable error response. The response does not contain a copy
of the deleted entry.

Example

This is a request to delete the Atom entry with the URL http://www.example.com:80/web20/
entry/10 :

DELETE /web20/entry/10 HTTP/1.1
Host: www.example.com:80

Handling Atom collection editing requests in your service routine
When you create a collection from an existing Atom feed that is provided by a service routine, update the
program to take appropriate actions for POST, PUT, and DELETE requests, as well as GET requests, for the
entries in the collection.

The interface between CICS and the service routine essentially works in the same way for a collection as
it does for an ordinary Atom feed. CICS provides information about the client request to your program in
the DFHATOMPARMS container. Your program must analyze the request and then respond by returning
the DFHATOMPARMS container, and other character containers as needed, to CICS. The sample service
routine DFH$W2S1 demonstrates how to do this.

The extra task involved for a collection is that the program might have to action the client request by
modifying records in the resource (a database, file, or other resource) that holds the data for the Atom
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entries for this feed. Instead of simply returning the data for a single Atom entry taken from the resource,
the program might need to respond as follows:

• For a POST request, add a new record and populate it with the data for a new Atom entry that the client
has supplied.

• For a PUT request, edit an existing record according to changes requested by the client.
• For a GET request, delete a record.

Depending on the request method, the response from the program might just be an HTTP status line to
confirm the requested change, with no further data. The changes made by your service routine
permanently modify the content of your resource, so you must make sure that appropriate security
measures are in place.

For client requests using the POST and PUT methods, CICS supplies the request body in a container
called DFHREQUEST. The client should send a request body containing a complete Atom entry document.
Your program must parse the markup of the Atom entry document, match the elements in the Atom entry
to the fields in the records in your resource, and use the content of the elements to create a new resource
record or update an existing resource record. Your program must also provide content for some elements,
such as date and time stamps.

The Atom Publishing Protocol (RFC 5023) allows servers much liberty to modify the metadata or content
of entries that a client submits to them. Your service routine can usually ignore or override the content of
elements in the client request if that is the best approach for your resource record, provided that the
resulting entry meets the requirements for the Atom format. If you have a query about a specific element
that you want to code your service routine to ignore or override, consult RFC 4287 and RFC 5023 to check
that your proposed action is acceptable, and then go ahead.

When your service routine receives a client request relating to a collection, it must perform the tasks
described in this section. The instructions assume that you have already written a service routine that
responds to HTTP GET requests from web clients for an Atom feed, as explained in Writing a program to
supply Atom entry data, and demonstrated in the sample service routine DFH$W2S1.

When you have coded your service routine to perform these tasks, if resource and command security are
active in your CICS region and in use for the collection, ensure that the user IDs for web clients have the
correct permissions to access the CICS resources and commands used by the service routine. For more
information about security measures to protect Atom collections, see Security for Atom feeds.

Handling GET requests for Atom collections
When a web client makes a GET request for an Atom collection, your service routine must respond with
an entry or a series of entries from the collection.

Procedure

1. Use the EXEC CICS GET CONTAINER command to retrieve the data in the DFHATOMPARMS container,
which contains information about the request.
The sample service routine DFH$W2S1 shows you how to do this.
DFHATOMPARMS container describes all the parameters that CICS passes in this container.

2. Check the value of the ATMP_HTTPMETH parameter to identify the request method.
CICS returns an error or makes an appropriate response for methods other than GET, POST, PUT, and
DELETE.

3. Use the values of the ATMP_ATOMTYPE and ATMP_SELECTOR parameters in the DFHATOMPARMS
container to identify the Atom entry that your program must return to CICS in this instance.
a) If ATMP_SELECTOR is null and ATMP_ATOMTYPE has the value "collection", the client did not

specify a particular Atom entry. If possible, return the Atom entry in the collection that was edited
most recently.
If your resource cannot store this data, return the Atom entry that was added to the collection most
recently.
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b) If ATMP_SELECTOR contains a selector value and ATMP_ATOMTYPE has the value "collection",
return the entry identified by the selector value.
This combination of values indicates that the client is requesting a second or subsequent entry
from the collection.

c) If ATMP_SELECTOR contains a selector value and ATMP_ATOMTYPE has the value "entry", return
the entry identified by the selector value.
This combination of values indicates that the client is requesting a single, known Atom entry from
the collection.

4. When you have identified the Atom entry that is required for the GET request, return the entry from the
collection as you would for an ordinary Atom feed, but take the following additional steps:
a) Use the ATMP_EDITED parameter in the DFHATOMPARMS container to return the date and time at

which this Atom entry was last edited.
If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_EDITED_FLD parameter has the name and length of the relevant field in the resource.
If your resource does not store this data, return spaces, and CICS assumes the current date and
time.
DFHATOMPARMS container documents the required format for this field.

b) Use the ATMP_ETAGVAL parameter in the DFHATOMPARMS container to return the entity tag for
the Atom entry, followed by its length.
To create an entity tag, you can use the EXEC CICS BIF DIGEST command to calculate the SHA-1
digest of the resource record, or use another suitable method to produce an entity tag that
complies with the HTTP/1.1 protocol requirements.

c) If ATMP_ATOMTYPE has the value "collection", meaning that the client wants multiple entries, and
your resource stores data about when the entries were last edited, return the ATMP_NEXTSEL
parameter as the selector value for the next Atom entry in the collection.
Sequence for Atom entries explains the order in which you should return your Atom entries.
Returning the entries in the order of editing helps your compliance with the Atom Publishing
Protocol.

d) If ATMP_ATOMTYPE has the value "collection", return the ATMP_PREVSEL, ATMP_FIRSTSEL, and
ATMP_LASTSEL parameters as the selector values for the previous, first, and last Atom entries in
the collection.
CICS uses these values to construct <atom:link> elements containing links to other partial lists of
entries in the collection.
For more information about these parameters, see DFHATOMPARMS container.

The steps to return an entry for an ordinary Atom feed are listed in Writing a program to supply Atom
entry data.

Handling POST requests for Atom collections
When a web client makes a POST request for an Atom collection, your service routine must create the
new entry in the collection and return a copy of it to the client.

About this task

The web client supplies a complete Atom entry document in the body of their HTTP POST request, and
CICS passes this request body to the service routine in the DFHREQUEST container.

If the resource that holds the data for your Atom entries has an XML binding with an associated
XMLTRANSFORM resource, you can use the CICS functions for transforming XML into application data to
parse the markup of the Atom entry document that the web client supplies. If an XMLTRANSFORM
resource is available, CICS provides its name in the ATMP_XMLTRANSFORM parameter in the
DFHATOMPARMS container. For more information about the TRANSFORM XMLTODATA command and
instructions for using the data mapping functions, see Mapping and transforming application data and
XML.
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If you do not have an XML binding for the resource that holds the data for your Atom entries, other
facilities are available depending on the language of your service routine:

• If your program is written in C or Assembler, you can use the z/OS XML System Services parser to parse
the markup of the entry.

• If your program is written in Enterprise COBOL, use the XML PARSE verb, as in the DFH0W2F1 COBOL
sample service routine.

• If your program is written in Enterprise PL/I, use the PLISAXA library function.

Procedure

1. Use the EXEC CICS GET CONTAINER command to retrieve the data in the DFHATOMPARMS container,
which contains information about the request.
The sample service routine DFH$W2S1 shows you how to do this.
DFHATOMPARMS container describes all the parameters that CICS passes in this container.

2. Check the value of the ATMP_HTTPMETH parameter to identify the request method.
CICS returns an error or makes an appropriate response for methods other than GET, POST, PUT, and
DELETE.

3. Use the EXEC CICS GET CONTAINER command to retrieve the data in the DFHREQUEST container,
which contains the new Atom entry.
The sample service routine DFH$W2S1 shows you how to do this.
CICS does not support other media types in Atom feeds, and rejects with a 415 status code any client
request that is not described as an Atom entry, with the media type application/atom+xml, with or
without the type=entry parameter.

4. Using the CICS functions for transforming XML into application data, or another suitable facility, parse
the XML markup for the Atom entry to identify all the elements of the Atom entry for which CICS
provides support and the resource that holds the data for your Atom entries has a suitable field to
store data.
For a listing and description of all the elements of Atom entries for which CICS provides support, see
<atom:entry> Atom configuration file element.
Ignore any elements that CICS does not support, or that your service routine does not recognize, or
that you cannot store in a field in a record in the resource that holds the data for your Atom entries.
Your Atom configuration file should already be set up to provide suitable defaults for any required
elements for which your resource is not able to store data.

Tip: If you find that the web client has submitted a request containing invalid XML markup or data,
reject the request with the response code atmp_resp_invalid_request.

5. Create a new record in the resource that holds the data for your Atom entries, and populate its fields
with the content of the elements that you have identified.
Your service routine can include whatever level of error checking you feel is appropriate, depending on
the nature of your client and the sensitivity of the resource that holds the data for your Atom entries.
If you have to override any of the data provided by the client, you may do this, but check your action
against RFC 4287 and RFC 5023 to verify that your override is valid.
CICS ignores Atom IDs provided by web clients, and your service routine should also do this.
Substitute an Atom ID produced by completing the prototype Atom ID passed by CICS in the
ATMP_ATOMID parameter in the DFHATOMPARMS container, or use another valid format. For more
information about the format of Atom IDs, see Atom IDs for Atom entries

6. If your resource stores data for the time when the entry was last edited (<app:edited> element), when
it was last updated (<atom:updated> element), or when it was first published (<atom:published>
element), use the EXEC CICS ASKTIME and EXEC CICS FORMATTIME commands to produce a date
and time stamp in the RFC 3339 format for the current date and time, and use this time stamp to
populate those fields.
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If the client provides date and time stamps in the <atom:updated>, <atom:published>, or
<app:edited> elements, you might want to generate a new date and time stamp to ensure accuracy
and validity.
For more information about handling date and time stamps, see Date and time stamps for Atom
entries.

7. If the client request is successful, return the new entry as you would for an ordinary Atom feed,
supplying the data that you just placed in the new resource record, but with the following exceptions
to the normal process:
a) Do not return an ATMP_NEXTSEL parameter.
b) Use the EXEC CICS BIF DIGEST command to calculate the SHA-1 digest of the new resource

record, or use another suitable method to produce an entity tag that complies with the HTTP/1.1
protocol requirements. Use the ATMP_ETAGVAL parameter in the DFHATOMPARMS container to
return the result as an entity tag for the Atom entry, followed by its length.

c) For the ATMP_EDITED parameter, you may either return the date and time stamp that you stored in
your resource, or return spaces to allow CICS to provide the current date and time (provided that
you did not specify an alternative default in your Atom configuration file).

The sample service routine DFH$W2S1 shows you how to return an Atom entry to CICS.
CICS creates the response with an HTTP status code of 201 and supplies a Location header to give the
client the URI of the new Atom entry, and a matching Content-Location header so that the client
knows the response is a complete representation of the Atom entry. The client can examine the entry
in the body of the message to see any modifications that you made to the data supplied in its request.

8. If the client request is unsuccessful, use the ATMP_RESPONSE parameter in the DFHATOMPARMS
container to return a suitable response code.
When you return an error response, CICS produces a suitable default HTTP error response to send to
the web client. DFHATOMPARMS container lists the response codes that you can use and the HTTP
error response that CICS sends in each case.

Handling PUT requests for Atom collections
When a web client makes a PUT request for an Atom collection, your service routine must update the
entry and indicate whether or not the request was successful.

About this task
As with a POST request, the web client supplies a complete Atom entry document in the body of their
HTTP PUT request, and CICS passes this request body to the service routine in the DFHREQUEST
container. If the resource that holds the data for your Atom entries has an XML binding with an associated
XMLTRANSFORM resource, you can use the CICS functions for transforming XML into application data to
parse the markup of the Atom entry document that the web client supplies. If you do not have an XML
binding for the resource that holds the data for your Atom entries, you can parse the markup of the Atom
entry document using one of the other facilities listed in “Handling POST requests for Atom collections”
on page 232.

Procedure

1. Use the EXEC CICS GET CONTAINER command to retrieve the data in the DFHATOMPARMS
container, which contains information about the request.
The sample service routine DFH$W2S1 shows you how to do this.
DFHATOMPARMS container describes all the parameters that CICS passes in this container.

2. Check the value of the ATMP_HTTPMETH parameter to identify the request method.
CICS returns an error or makes an appropriate response for methods other than GET, POST, PUT, and
DELETE.

3. Use the EXEC CICS GET CONTAINER command to retrieve the data in the DFHREQUEST container,
which contains the updated Atom entry.
The sample service routine DFH$W2S1 shows you how to do this.
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4. Use the ATMP_SELECTOR parameter to select, from the resource that holds the data for your Atom
entries, the record that contains the data for the Atom entry which the client wants to update.

5. Use the EXEC CICS BIF DIGEST command to calculate the SHA-1 digest of the current record in your
resource that contains the data for the Atom entry, or calculate the entity tag using your service
routine's alternative method, and compare this to the entity tag provided in ATMP_ETAGVAL.
If the tags do not match, indicating that the data for the Atom entry has been changed by another
agent since the web client obtained its copy, reject the request with the response code
atmp_resp_etag_no_match.
If the entity tag is an asterisk, the web client has chosen to override this process, and you should
accept the request.

6. Using the CICS functions for transforming XML into application data, or another suitable facility, parse
the XML markup for the Atom entry to identify all the elements of the Atom entry for which CICS
provides support and the resource that holds the data for your Atom entries has a suitable field to
store data.
For a listing and description of all the elements of Atom entries for which CICS provides support, see
<atom:entry> Atom configuration file element.
Ignore any elements that CICS does not support, or that your service routine does not recognize, or
that you cannot store in a field in a record in the resource that holds the data for your Atom entries.
Your Atom configuration file should already be set up to provide suitable defaults for any required
elements for which your resource is not able to store data.

Tip: If you find that the web client has submitted a request containing invalid XML markup or data,
reject the request with the response code atmp_resp_invalid_request.

7. Update the record in your resource that contains the data for the Atom entry, using the content of the
elements that you have identified to make modifications to the fields in the record.
In the body of a PUT request, the client is expected to provide the complete Atom entry including the
changed and unchanged elements, so in theory you can update all the fields in the resource record
without comparing them to see which ones have changed. However, depending on the nature of your
client and the sensitivity of your resource, you might want to carry out error checking for any fields
that have particular requirements for the format of their content, and check that the client has not
changed the content of any fields where a change is not logical, such as the Atom ID or the time of
first publication.
If you have to override any of the data provided by the client, you may do this, but check your action
against RFC 4287 and RFC 5023 to verify that your override is valid.

8. If your resource stores data for the time when the entry was last edited (<app:edited> element) and
when it was last updated (<atom:updated> element), use the EXEC CICS ASKTIME and EXEC CICS
FORMATTIME commands to produce a date and time stamp in the RFC 3339 format for the current
date and time, and use this time stamp to populate those fields.
If the client provides date and time stamps in the <atom:updated> or <app:edited> elements, ignore
these, because they might simply be the previous date and time stamps returned unchanged.
For more information about handling date and time stamps, see Date and time stamps for Atom
entries.

9. If the client request is successful, return the updated entry as you would for an ordinary Atom feed,
supplying the data from the updated resource record, but with the following exceptions to the normal
process:
a) Do not return an ATMP_NEXTSEL parameter.
b) Use the EXEC CICS BIF DIGEST command to calculate the SHA-1 digest of the updated resource

record, or use another suitable method to produce an entity tag that complies with the HTTP/1.1
protocol requirements. Use the ATMP_ETAGVAL parameter in the DFHATOMPARMS container to
return the result as a new entity tag for the Atom entry, followed by its length.

c) For the ATMP_EDITED parameter, you may either return the date and time stamp that you stored
in your resource, or return spaces to allow CICS to provide the current date and time (provided
that you did not specify an alternative default in your Atom configuration file).

The sample service routine DFH$W2S1 shows you how to return an Atom entry to CICS.
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CICS creates the response with an HTTP status code of 200, indicating successful completion of the
request. The client can examine the entry in the body of the message to see any modifications that
you made to the data supplied in its request.

10. If the client request is unsuccessful, use the ATMP_RESPONSE parameter in the DFHATOMPARMS
container to return a suitable response code.
When you return an error response, CICS produces a suitable default HTTP error response to send to
the web client. DFHATOMPARMS container lists the response codes that you can use and the HTTP
error response that CICS sends in each case.

Handling DELETE requests for Atom collections
When a web client makes a DELETE request for an Atom collection, your service routine must delete the
entry and indicate whether or not the request was successful.

Procedure

1. Use the EXEC CICS GET CONTAINER command to retrieve the data in the DFHATOMPARMS container,
which contains information about the request.
The sample service routine DFH$W2S1 shows you how to do this.
DFHATOMPARMS container describes all the parameters that CICS passes in this container.

2. Check the value of the ATMP_HTTPMETH parameter to identify the request method.
CICS returns an error or makes an appropriate response for methods other than GET, POST, PUT, and
DELETE.

3. Use the ATMP_SELECTOR parameter to select, from the resource that holds the data for your Atom
entries, the record that contains the data for the Atom entry which the client wants to delete.

4. Delete the record in your resource that corresponds to the selector value in the ATMP_SELECTOR
parameter, and use the ATMP_RESPONSE parameter in the DFHATOMPARMS container to return a
response code of zero.
CICS ignores the remaining parameters in the DFHATOMPARMS container, so you do not need to make
any changes to these.
CICS sends a response to the client with the status code 200, indicating successful completion of the
request.

5. If you do not carry out the request, return an alternative response code in the ATMP_RESPONSE
parameter.
DFHATOMPARMS container lists the response codes that you can use and the HTTP error response
that CICS sends in each case.
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Chapter 5. Security for CICS web support
When CICS is connected to the Internet, apply security measures to prevent unauthorized access to CICS
applications and data and also to prevent third parties obtaining private information.

Consider security throughout the development process for your CICS web support architecture, as part of
the design of your CICS web support applications and utility programs, and when creating resource
definitions for the relevant CICS facilities. The subtopics summarize the measures that you can use to
enhance the security of your CICS web support implementation.

CICS as an HTTP server: authentication and identification
For CICS as an HTTP server, you specify authentication schemes by the AUTHENTICATE attribute of the
TCPIPSERVICE definition. Identification is obtained in connection with the authentication process, or it
can be supplied by CICS if authentication is not needed.

Obtaining authentication and identification from web clients is a key step in protecting your CICS system
from access by unauthorized users.

Use TCPIPSERVICE resource definitions to specify the security measures that are applied for CICS as an
HTTP server. For each port that you use for CICS web support, the TCPIPSERVICE resource definition
specifies these attributes:

• Whether or not SSL is used for the port
• The authentication scheme that is used for the port
• The realm for basic authentication

Authentication

Two authentication schemes are supported by CICS for use with the HTTP protocol:

• Basic authentication is part of HTTP that enables a client to authenticate and identify itself to a server
by providing a user ID and password or password phrase. This information is encoded using base-64
encoding, which is simple to decode. Therefore, using basic authentication as the sole means of
authentication is appropriate only when the password cannot be intercepted. In most environments,
use basic authentication with SSL, so that SSL encryption protects the user ID and password
information.

• SSL client certificate authentication is a more secure method of authenticating a client, using a client
certificate that is issued by a trusted third party (or Certificate Authority), and sent using SSL encryption.
Refer to SSL authentication. A client certificate does not contain a user ID that can be used for
identification in CICS. To achieve identification, you can associate the client certificate with a user ID in
RACF or an equivalent security manager, either before the certificate is used, or automatically (using
basic authentication) when the client makes its request. The RACF user ID becomes the client user ID
each time the certificate is used, as described in Associating a RACF user ID with a certificate.

Creating TCPIPSERVICE resource definitions for CICS web support tells you how to set up a
TCPIPSERVICE definition for CICS web support that specifies one of these authentication schemes.

When you use basic authentication or client certificate authentication, CICS handles the process of
requesting authentication from the user, decoding the authentication information if necessary, checking
the supplied authentication against the security manager database, and rejecting the request if the
authentication is not acceptable. An analyzer program or user-written application program is called only
after the authentication is verified and accepted.

All the user IDs used by web clients must have a user profile in RACF or your equivalent external security
manager. Refer to RACF profiles.
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Note: CICS uses password verification to verify a user ID during the processes described here. CICS
enforces a full verification request once a day for each user ID that is used to log on to the CICS region.
The full verification request using the RACROUTE REQUEST=VERIFY macro makes RACF record the date
and time of last access for the user ID, and write user statistics.

For basic authentication, if the password or password phrase supplied by the user has expired, CICS
prompts the user for a new password or password phrase and helps the user to resubmit the request. The
CICS-supplied utility program DFHWBPW is used. You can customize the text on the web pages that CICS
displays to the user during this process, as described in “Password expiry management for HTTP basic
authentication” on page 239.

For client certificate authentication, CICS verifies the supplied certificate by checking it against the
security manager database, and, optionally, against any certificate revocation list that you have set up. A
user-written application can examine information obtained by this process, if this information is useful for
determining how to process the request. Use the EXTRACT CERTIFICATE command to retrieve these
items:

• Components of the issuer's or the subject's distinguished name. SSL authentication explains
distinguished names.

• The RACF user ID associated with the certificate.

Identification

Identification takes place when you obtain a user ID for the web client. The ID is obtained from the web
client:

• During basic authentication
• By the association of a user ID with a client certificate

For application-generated responses only, CICS can supply a user ID on behalf of the web client:

• In an analyzer program that is used in the processing path for the application-generated response. (This
ID can override a user ID obtained for the web client.)

• In the URIMAP definition for the request. (This ID cannot override a user ID obtained for the web client.)
• As the CICS default user ID, if no other can be determined.

Note that, if you supply a user ID on behalf of the web client, the identity of the client is not authenticated.
Supply a user ID only when communicating with your own client system, which has already authenticated
its users and communicates with the server in a secure environment. Identifying HTTP users explains in
more detail how the user ID is determined, depending on the settings for the TCPIPSERVICE definition.

When the client has been identified, the client user ID can be authorized for access to CICS resources like
any other user ID, using RACF or an equivalent external security manager. You can choose to apply
resource-level security to any or all of the individual resources that the web client is accessing in CICS,
such as web pages stored as CICS document templates, or z/OS UNIX files, or CICS commands used by
the application that provides the response. “CICS system and resource security for CICS web support” on
page 241 explains how to secure these resources and how to remove resource level security if you do not
want it.

CICS as an HTTP client: authentication and identification
When you make an HTTP client request through CICS, a server or proxy might require you to perform
basic authentication, proxy authentication, or SSL client certificate authentication.

You can perform basic authentication using the AUTHENTICATE option of your WEB SEND or WEB
CONVERSE command. Your user application carries out proxy authentication. You supply a client
certificate using a URIMAP definition.

Your client application might be asked to authenticate itself in the following ways:
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• Basic authentication allows you to provide a user name and password for access to specific
information. When you make a request to a server, the server might send you a response with a 401
status code, and a WWW-Authenticate header. The header names the realm for which basic
authentication is required. To receive the information you requested, provide the user name and
password, and CICS resends the request with an Authorization header, specifying your user name and
password, to allow you access to the realm. CICS can also send an Authorization header directly to a
server that is expecting it, thus eliminating the need for a 401 response. CICS converts the user name
and password to ASCII and applies base-64 encoding, as required by the basic authentication protocol.
So you can supply your credentials in normal characters through the WEB SEND or WEB CONVERSE
command, or through the XWBAUTH user exit. See Providing credentials for basic authentication and
HTTP basic authentication.

• Proxy authentication is initiated by a proxy server. For proxy authentication, the status code for the
response is 407, the challenge header from the proxy server is Proxy-Authenticate, and the response
header is Proxy-Authorization. CICS does not support this protocol.

• SSL client certificate authentication uses a client certificate, which is issued by a trusted third party
(or Certificate Authority). A server might require you to provide this authentication when you are making
an HTTPS request. Configuring CICS to use SSL tells you how to obtain a certificate and store it in a key
ring in the RACF database or equivalent external security manager. If a server does request a client
certificate, CICS supplies the certificate label, which is specified in the URIMAP definition that was used
on the WEB OPEN command for the connection. Alternatively, you can directly specify the certificate
label as an option in the WEB OPEN command. If you use a URIMAP definition but do not specify a
certificate label, the default certificate defined in the key ring for the CICS region user ID is used.

Some servers might ask you to provide other types of authentication or identification. If you cannot
provide acceptable authentication or identification to a server, your request is rejected. For basic
authentication or proxy authentication, the status code used when a server rejects your request is the
same as the status code for the challenge (401 for a server or 407 for a proxy). If you respond to a
challenge but then receive a further response with one of these status codes, the authorization
information that you used is not valid.

Password expiry management for HTTP basic authentication
When basic authentication is used for an HTTP connection, CICS web support checks the user ID and
password in the external security manager. If the password has expired, the CICS-supplied utility
program DFHWBPW is used to prompt the user to select a new password. You can customize or replace
the pages presented to the user by DFHWBPW.

DFHWBPW is used only for password expiry management when the TCPIPSERVICE definition that applies
to the request is defined with the BASIC, AUTOREGISTER, or AUTOMATIC option for the AUTHENTICATE
attribute. Although DFHWBPW has a structure similar to a converter program, it is not part of the normal
CICS web support processing path, so you do not need to add code to it for any other purpose. When the
user has selected a new password, DFHWBPW restarts the request submission by redirecting the client to
the URL for the original request, so that the complete processing path for the request occurs as normal.

DFHWBPW presents two web pages to the user:

1. Password prompt page. This page contains two elements:

a. A message about password validity. The initial message displayed to the user states that the
password has expired. A user ID can have both a standard password and a password phrase.
Passwords between 9 and 100 characters in length are password phrases; passwords of 8
characters or less are standard passwords. Standard passwords and password phrases operate
independently of each other. If a standard password has expired, it must be replaced with a new
standard password. Similarly, if a password phrase has expired, it must be replaced with a new
password phrase. If the user's attempt to change the password fails (for example, the two supplied
copies of the new password do not match), further messages are displayed to explain the problem.

b. An HTML form for the user to change the password.
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2. Confirmation and request refresh page. This page confirms that the expired password has been
successfully replaced, and provides a refresh tag and URL link so that the request can be remade
automatically or manually.

DFHWBPW builds these web pages using three CICS document templates: DFHWBPW1, DFHWBPW2,
and DFHWBPW3. The CICS-supplied definitions for these templates define them as loadable programs;
that is, they are of type PROGRAM(DFHWBPW1) and so on. The definitions are in the CICS-supplied
resource definition group DFHWEB. You can change these definitions by copying them to another group
and using the resource definition ALTER command to change them so that the templates are derived from
a different source. Alternatively, you can leave the resource definitions unchanged, and modify the
programs that are loaded instead. The three programs DFHWBPW1, DFHWBPW2, and DFHWBPW3 are
assembler language data-only modules, and their source is shipped to you in corresponding members of
the CICS sample library, SDFHSAMP. You can modify these samples and reassemble and link-edit them
into one of your normal CICS program libraries that are concatenated into the DFHRPL data definition
statement.

Note: To avoid unnecessary output, ensure that you specify the NOPROLOG and NOEPILOG parameters
when assembling DFHWBPW1, DFHWBPW2 and DFHWBPW3.

The content and function of each of the DFHWBPW templates is as follows:

DFHWBPW1
Part of the password prompt page. Provides the HTML page heading for the page, and sets symbols
for the possible password validity messages (using the server-side include technique for setting
symbols). The messages provide the following information:
message.1

Password has expired.
message.2

The entered user ID is invalid.
message.3

The two copies of the proposed new password do not match.
message.4

The previous password entered (the one that has just expired) is not correct.
message.5

The proposed new password is not permitted by the external security manager, because of
password quality rules.

message.6
The user ID is now revoked.

The DFHWBPW program selects the appropriate symbol to insert into the document for the password
prompt page. You can customize DFHWBPW1 to change the page heading and title, or alter the body
tag to change the page colors or background. You can also change the content of the message
symbols.

DFHWBPW2
Part of the password prompt page. Builds an HTML form where the user can input a user ID, the old
(expired) password (or password phrase), and two identical copies of a proposed new password. You
can customize DFHWBPW2 to change the text used to prompt the user, or otherwise change the
layout of the page. However, you must not modify the contents of the form tag, or any of the input
tags. If you do, DFHWBPW might not work as intended.

DFHWBPW3
Confirmation and request refresh page. The text notifies the user that the expired password was
successfully replaced, and explains that the user will shortly be prompted by the client to enter the
password again. You can customize the text and layout of the page.

DFHWBPW3 restarts the request process. It contains a meta http-equiv="Refresh" tag that
causes an automatic redirection after ten seconds to the page that the user had originally requested
when the expired password was detected. You can change the time limit on this tag or remove it if you
do not want users to be redirected automatically. However, the modified page must always contain a
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link forward to the originally requested page. The URL for that page is in the symbol
&dfhwbpw_target_url; . Restarting the request process means that, if the web client has cached
the old password, it can be replaced with the new password immediately, and also means that the
CICS web support processing path is unaffected.

CICS system and resource security for CICS web support
When CICS is an HTTP server, the CICS system must be protected from access by unauthorized users. If a
system is not properly protected, users might be able to access confidential data or obstruct the system
to cause denial of service to other users.

To police access to CICS web support in general, you request identification from each user that makes an
HTTP client request and then authenticate the identity stated by the user. You use the TCPIPSERVICE
definitions for inbound ports to specify these requirements. Refer to “CICS as an HTTP server:
authentication and identification” on page 237.

All the user IDs used by web clients must have a user profile in RACF or your equivalent external security
manager. Refer to RACF profiles.

When you have obtained an authenticated user ID for a web client, you can use this ID to implement
resource-level security for the resources in the CICS region that you are using to provide the response.
The procedure varies for each type of response:

• Application-generated responses
• Static responses, using a URIMAP definition that provides a CICS document template as the response
• Static responses, using a URIMAP definition that provides a z/OS UNIX Systems Services file as the

response

For application-generated responses, CICS system defaults specify that no resource security checking is
carried out, but transaction security checking is carried out (specifically, transaction-attach security for
the alias transaction). Assuming that transaction security is active in your CICS region, you must therefore
take some actions relating specifically to security for application-generated responses, even if you do not
plan to use web client authenticated user IDs for security checking.

For static responses, transaction-attach security does not apply to web client user IDs. However, CICS
system defaults specify that resource-level security checking is carried out if a user ID is available for web
clients. If you are obtaining authenticated user IDs from web clients, you must therefore either set up
resource permissions for these user IDs or take action to disable resource-level security checking.

Whether or not you choose to implement resource-level security using web client user IDs for every
response provided by CICS web support, you must provide the following protection:

• Implement measures to protect inbound ports against unauthorized or malicious access.
• Protect CICS system components from modification by unauthorized users, and ensure that authorized

users have the correct access to them.

Security for inbound ports
A TCPIPSERVICE resource definition defines each port used for CICS web support. The TCPIPSERVICE
definition specifies security options for the port, including whether SSL is used and the level of
authentication that is requested from clients. Ports must be guarded against unauthorized or malicious
access.

Creating TCPIPSERVICE resource definitions for CICS web support explains how to create definitions for
ports.

To help keep ports secure:

• Specify the MAXDATALEN attribute on every TCPIPSERVICE definition. This option limits the maximum
amount of data that CICS accepts for a single request, and it helps to defend CICS against denial of
service attacks involving the transmission of large amounts of data.
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• Use Secure Sockets Layer (SSL) wherever you want to ensure that your interaction with the web client
remains confidential and cannot be intercepted by a third party. The use of SSL is particularly important
when confidential data is being transmitted or when authorization such as a user ID and password are
being passed to the server. Refer to “SSL with CICS web support” on page 246.

If you do experience unusual activity on one or more of your CICS web support ports, use CICS system
commands to shut down CICS web support at different levels (a single request, a virtual host, a port, or
the whole of CICS web support), without shutting down the CICS system. Refer to Rejecting HTTP
requests in Administering.

URIMAP resource definitions name either HTTP or HTTPS as the scheme for the request. A URIMAP
specifying HTTP accepts web client requests made using either HTTP or the more secure HTTPS. A
URIMAP specifying HTTPS accepts only web client requests that are made using HTTPS.

When a URIMAP definition with HTTPS matches a request from a web client, CICS checks that the
inbound port used by the request is using SSL. If SSL is not specified for the port, the request is rejected
with a 403 (Forbidden) status code. When the URIMAP definition applies to all inbound ports, this check
ensures that a web client cannot use an unsecured port to access a secured resource. No check is carried
out for a URIMAP definition that specifies HTTP, so web clients can use either unsecured or secured (SSL)
ports to access these resources.

Security for CICS system components
As with any other CICS resource, you must protect CICS system components used in CICS web support
from modification by unauthorized users. You must also ensure that authorized users, particularly the
CICS region, have the required authority to use these components.

A number of components, such as application programs and resource definitions, are used to control
CICS web support. Refer to Components of CICS web support. If you do not secure these components
against unauthorized access, the security of your CICS web support architecture might be compromised.
For example, a user with access to the TCPIPSERVICE definition for a port might remove the requirement
for a web client to use SSL or to provide identification. Implementing RACF protection in a single CICS
region explains how to secure CICS transactions, resources, and commands against unauthorized use.

For some CICS system components, you might have to set up additional authorities to allow access to
authorized users:

• For URIMAP resources, additional authority might be required to set a user ID for the web client. If
surrogate user checking is enabled in the CICS region (with XUSER=YES specified as a system
initialization parameter), CICS checks that the user ID used to install the URIMAP definition is
authorized as a surrogate of the user ID specified for the USERID attribute.

• You can use document templates to produce the body of a response from CICS as an HTTP server, or
the body of a request from CICS as an HTTP client. You define them by DOCTEMPLATE resource
definitions. If the document templates are stored in partitioned data sets, the CICS region user ID must
have READ authority for the data set.

• You can use z/OS UNIX Systems Services files to produce the body of a static response from CICS as an
HTTP server. You can specify them under their own names or define them by DOCTEMPLATE resource
definitions. When a z/OS UNIX file is used, the CICS region must have permissions to access z/OS UNIX,
and it must have permission to access the z/OS UNIX directory containing the file, and the file itself.
Refer to Giving CICS regions access to z/OS UNIX directories and files.
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Resource and transaction security for application-generated responses
If you have obtained an authenticated user ID for a web client, which has a profile in your security
manager, this user ID is applied to the alias transaction that is used for the application-generated
response.

About this task

You either give appropriate permissions to the web client user IDs or you supply your own standard user
ID as an override. Whether or not you decide to use web client user IDs for resource security checking,
you must ensure that the user ID for the alias transaction has the appropriate permissions.

You define alias transactions by TRANSACTION resource definitions. The alias transaction for each
application-generated response is specified by the URIMAP definition for the request or by an analyzer
program. The default is the CICS-supplied alias transaction CWBA, which applies when either web-aware
applications or COMMAREA applications are used to provide the response.

The user ID under which the alias transaction runs must have authority to perform these tasks:

• Attach the alias transaction, if transaction-attach security is specified for the CICS region. Transaction-
attach security is controlled by the system initialization parameter XTRAN. The default is YES
(transaction-attach security is active).

• Access any CICS resources used by the alias transaction, if resource security is specified for the alias
transaction. Resource security is controlled by the RESSEC attribute in the TRANSACTION resource
definition for the alias transaction. The default is NO (no resource security), and NO is also the supplied
setting for CWBA.

• Access any CICS system programming commands used by the alias transaction, if command security is
specified for the alias transaction. These system programming commands are used in the user-written
application program that produces the response. Command security is controlled by the CMDSEC
attribute in the TRANSACTION resource definition for the alias transaction. The default is NO (no
command security), and NO is also the supplied setting for CWBA.

When a web client makes a request to CICS web support, and the response is provided by an application,
CICS selects a user ID for the alias transaction in the following order of priority:

1. A user ID that you set using an analyzer program. This user ID can override a user ID obtained from the
Web client or supplied by a URIMAP definition.

2. A user ID that you obtained from the Web client using basic authentication, or a user ID associated
with a client certificate sent by the Web client. If authentication is required for the connection but the
client does not provide an authenticated user ID, the request is rejected.

3. A user ID that you specified in the URIMAP definition for the request.
4. The CICS default user ID, if no other can be determined.

Depending on your CICS web support architecture, you might be using one or several of these types of
user ID, for different requests. If you obtain an authenticated user ID for a web client, it is used for the
alias transaction unless you take action to override it.

Take the following security actions for application-generated responses:

Procedure

1. If you are obtaining authenticated user IDs for web clients, but you do not want to use these for
security checking for your application-generated responses, you use an analyzer program to override
web client user IDs with a standard user ID for the relevant alias transactions. (You can use the CICS
default user ID.) Place the analyzer program in the processing paths for the requests where you want
to supply this override.
See Analyzer programs in Developing system programs. Make sure that this user ID has a user profile
defined in your security manager.
When you have set up a standard user ID, you can give the required permissions, as described in the
remaining steps of this procedure, to the standard user ID.
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2. If you are not obtaining authenticated user IDs for web clients, select suitable user IDs to be standard
user IDs for your alias transactions. Unless you just want to use the CICS default user ID, specify your
chosen user IDs in the URIMAP definitions for the requests, or set up an analyzer program to specify
them.
Make sure that the standard user IDs have user profiles defined in your security manager.

3. Assuming that transaction-attach security is specified for the CICS region, ensure that all the possible
user IDs for your alias transactions have authority to attach the transaction.
All user IDs might include web client user IDs, if you are obtaining them and are not overriding them,
or a standard user ID that you have specified in a URIMAP definition or analyzer program, or just the
CICS default user ID. See Transaction security.

4. Optional: Apply resource-level security checking for the resources used by an alias transaction:
a) Identify all the CICS resources used by the alias transaction, and determine which of them are

subject to resource security checking in your CICS region.
Here are some resources that might be used by an application program for CICS web support and
the system initialization parameters that control resource security checking for them:

• CICS document templates (XDOC system initialization parameter)
• Other application programs invoked by the main application program to perform business logic

(XPPT system initialization parameter)
• Temporary storage queues used to share application state across an HTTP request sequence

(XTST system initialization parameter)
• Files managed by CICS file control (XFCT system initialization parameter)

Resource security checking for zFS files (XHFS system initialization parameter) does not apply
when zFS files are used by an application program, because the files can be manipulated by an
application program only when they are defined as CICS document templates, and CICS document
template security controls access to them in this situation.

If you are using an analyzer program, it is the main program for the alias transaction, and so is not
subject to resource security checking (only to the transaction-attach security checking). However,
note that the user-written web application program itself, and any converter program that you use,
is subject to separate resource security checking. Similarly, if you are using a converter program
but no analyzer program, the converter program is the main program for the alias transaction, but
the application programs called by the converter program are subject to separate resource security
checking.

b) Give all the user IDs that are permitted to attach the alias transaction permission to use the
secured resources used by the alias transaction.

c) Specify RESSEC(YES) in the TRANSACTION resource definition for the transaction.
5. Optional: To apply command security checking for any CICS system programming commands used by

an alias transaction:
a) Confirm that command security is active in the CICS region. Command security is activated by the

XCMD system initialization parameter.
b) Identify the CICS system programming commands used by the application program or programs,

analyzer program (if used), and converter program (if used), that are associated with the
transaction.
CICS resources subject to command security checking has a checklist of commands.

c) Give all the user IDs that are permitted to attach the alias transaction permission to use the
commands used by the alias transaction.

d) Specify CMDSEC(YES) in the TRANSACTION resource definition for the alias transaction.

What to do next
For any security checking to take place in a CICS region, set the SEC=YES system initialization parameter.

244  CICS TS for z/OS: Internet Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/cics/dfht535.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/cics/dfht5m1.html


Resource-level security for static responses using document templates
If you have implemented basic authentication or client certificate authentication, and you also want to
control users' access to specific web pages, you can use web client authenticated user IDs to control
access to individual CICS document templates that you are using to provide static responses.

About this task

For static responses delivered by CICS web support using a CICS document template specified in a
URIMAP definition, resource security checking is enabled by default.

The XRES system initialization parameter controls resource security for CICS document templates. The
default for this parameter is YES, meaning that resource security is active. If you do not want to use
resource security checking for CICS document templates used for any purpose in your CICS region, you
can deactivate it by setting this system initialization parameter to NO.

The transaction for all static responses is the default web listener transaction CWXN, or any alternative
transaction that you have specified in place of CWXN using the TRANSACTION attribute on your
TCPIPSERVICE definitions. For CICS document templates, you can also control resource security
checking by the RESSEC attribute in the TRANSACTION resource definition. For CWXN, as supplied by
CICS, RESSEC(YES) is specified, meaning that resource security is active. If you do not want to use
resource security checking for static responses, the best way to deactivate it is to replace CWXN in your
TCPIPSERVICE definitions with an alternative transaction that specifies the program DFHWBXN and has
RESSEC(NO). This setting deactivates resource security checking for CICS document templates for static
responses only. Note that the RESSEC attribute cannot control security checking for z/OS UNIX files
specified by the HFSFILE attribute.

You can retrieve document templates from a variety of sources, including partitioned data sets, CICS
programs, CICS files, z/OS UNIX System Services files, temporary storage queues, transient data queues,
and exit programs. When resource security checking is carried out for a document template, CICS does
not perform any additional security checking on the resource that supplies the document template, even
if resource security is specified for that type of resource in the CICS region.

To set up resource-level security for static responses using CICS document templates:

Procedure

1. Identify the authenticated user IDs used by web clients. These IDs must be the basis of your resource
security checking. (You cannot supply an override using an analyzer program, as you can with
application-generated responses.)
Authenticated user IDs already have a user profile defined in your security manager.

2. Identify all the CICS document templates that you are using to provide static responses.
3. Implement security for CICS document templates in your CICS region, following the instructions in

Security using the XRES resource security parameter.
You must define a profile to your security manager for each CICS document template that you are
using to provide a static response, and give permissions to access appropriate CICS document
templates to each authenticated user ID.

4. Ensure that RESSEC(YES) is specified in the TRANSACTION resource definition of CWXN or in the
alternative transaction that you have specified in place of CWXN.
RESSEC(YES) is specified in CWXN as supplied by CICS, but, for TRANSACTION resource definitions in
general, the default is RESSEC(NO).
This step activates resource security checking for your static responses, so ensure that, whenever a
web client supplies a user ID, you have set up the appropriate permissions.

What to do next
For any security checking to take place in a CICS region, set the SEC system initialization parameter to
YES.
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SSL with CICS web support
You can use the Secure Sockets Layer (SSL) with HTTP to enable encryption, message authentication, and
client and server authentication using certificates. When you have configured CICS to use SSL, its facilities
are available for both CICS as an HTTP server, and CICS as an HTTP client.

Support for security protocols explains the facilities that SSL provides and Configuring CICS to use SSL
tells you how to make SSL work with CICS.

When CICS is an HTTP server, you can use SSL to protect an interaction with a web client. You specify
appropriate security options on the TCPIPSERVICE definition for the port on which CICS receives the
client requests.

As well as specifying the use of SSL, you can require basic authentication or require a client certificate. To
give more assistance to web clients, you can allow a client to provide a client certificate, and then register
itself to the security manager to supply identification for the CICS environment. You can also allow a
client to use self-registration or basic authentication as needed to supply identification. CICS handles all
these activities, so, if you are providing an application-generated response, your application does not
have to handle this registration. Refer to Creating TCPIPSERVICE resource definitions for CICS web
support.

When CICS is an HTTP client, a server might require the use of SSL for some connections. If that is the
case, you need to perform some or all of these actions:

• Use HTTPS as the scheme for the connection.
• Supply a list of cipher suites that you want to use for the connection. You can specify them in the

URIMAP definition that you use on the WEB OPEN command for the connection.
• Supply a client certificate. Client certificates are not a requirement for all SSL transactions, but a server

might require one for particular transactions. If a server does request a client certificate, you can
specify the label of a suitable certificate in the URIMAP definition that you use on the WEB OPEN
command for the connection, or on the WEB OPEN command itself. The client certificate must be stored
in your security manager key ring. If you use a URIMAP definition but do not specify a certificate label,
the default certificate defined in the key ring for the CICS region user ID is used.

Introduction to Application Transparent Transport Layer Security (AT-TLS)
Application Transparent Transport Layer Security (AT-TLS) can be used to create secure socket sessions
on behalf of CICS. Instead of implementing Transport Layer Security (TLS) in CICS, AT-TLS provides
encryption and decryption of data based on policy statements that are coded in the Policy Agent. When
AT-TLS is used to secure socket sessions, CICS SSL/TLS start parameters such as KEYRING and
MINTLSLEVEL/ENCRYPTION are no longer required as the implementation of TLS is provided by AT-TLS
policy statements and all encryption and decryption is done outside of the CICS address space.

AT-TLS MODES

When AT-TLS is active for a CICS socket connection, CICS sends and receives cleartext (unencrypted
data), while AT-TLS encrypts and decrypts data at the TCP transport layer. For more information about
AT-TLS and AT-TLS policy setup, see AT-TLS policy configuration in z/OS Communications Server: IP
Configuration Guide and Policy Agent and policy applications in z/OS Communications Server: IP
Configuration Reference.

Most address spaces (such as CICS) do not need to be aware of the security negotiations and encryption
that is done by TCP/IP on its behalf. However, some address spaces need to be aware of AT-TLS or have
control over the security functions that are being performed by TCP/IP. For example, if the address space
is a server that requires client authentication, it might want to access the client certificate and the user ID
associated with the client certificate. CICS issues an AT-TLS query on a new client connection when a
TCPIPSERVICE is defined with SSL(ATTLSAWARE).

Address spaces such as CICS that are taking advantage of AT-TLS can be separated into three different
types (AT-TLS Basic mode, AT-TLS Aware mode, and AT-TLS Controlling mode) as described in Table 16
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on page 247. The type is based on whether awareness of the service is needed and, if so, the amount of
control that the address space is given over the security functions.

AT-TLS Basic mode is where the address space (such as CICS) does not issue any AT-TLS calls to query a
socket for its AT-TLS status.

AT-TLS Aware mode is where the address space issues an AT-TLS calls to query a socket for its AT-TLS
status. The address space can access items such as the client certificate, and also the certificate User ID.

AT-TLS Controlling mode is where the address space issues AT-TLS calls to control the secure session on
a socket.

Table 16. Detailed description of AT-TLS modes and their CICS support

Mode Type AT-TLS calls issued.
ApplicationControlled
setting in AT-TLS policy

Supported by CICS TS
for z/OS

AT-TLS Basic Address space does not
issue any AT-TLS calls

Off All CICS releases

AT-TLS Aware Address space issues
query requests

Off From CICS TS V5.3

AT-TLS Controlling Address space issues
query and control
requests

On No CICS releases

AT-TLS Basic

In the basic mode, the address space is unaware that AT-TLS is encrypting or decrypting data. The AT-
TLS Basic mode is the only mode that can be used in earlier releases of CICS, from V5.2.

With basic mode, the address space (such as CICS) is oblivious to the fact that TCP/IP is performing a TLS
handshake and encryption/decryption of message flows on the socket.

With the basic mode of AT-TLS, a CICS TCPIPSERVICE would be defined with SSL(NO) as CICS is not
encrypting or decrypting the data, which flows on the socket. One drawback of this is that CICS cannot
access client certificates as it is unaware of a certificate that is associated with the socket.  Also, when
CICS uses HTTP redirection with this mode of operation, there are failures because CICS assumes that
the client connection is HTTP rather than HTTPS. A problem that might arise (for example) is when you
are using AUTHENTICATE(BASIC) on an HTTP TCPIPSERVICE, and CICS discovers that the user's
password expired. A dialog is triggered with the user to request a new password. At the end of this dialog,
there is an error because the resubmission of the original HTTP request specifies HTTP as the scheme
instead of HTTPS.

AT-TLS Aware

CICS supports the AT-TLS Aware mode with the additional option of SSL(ATTLSAWARE) on the
TCPIPSERVICE definition. SSL(ATTLSAWARE) is only allowed if the TCPIPSERVICE also specifies
PROTOCOL(HTTP).

When a TCPIPSERVICE is defined with SSL(ATTLSAWARE), CICS issues an AT-TLS query to obtain
information such as AT-TLS security status, negotiated CIPHER suite, partner certificate, and derived
RACF user ID.

When an HTTP TCPIPSERVICE is defined with SSL(ATTLSAWARE), CICS can access client certificates
and their associated RACF USERIDs. The result is all the certificate-related TCPIPSERVICE
AUTHENTICATE options (CERTIFICATE | AUTOREGISTER | AUTOMATIC) are supported by
SSL(ATTLSAWARE).

When a TCPIPSERVICE is defined with SSL(ATTLSAWARE) CICS will detect that the client is using an
HTTPS connection. This means that redirection failures which can occur when using AT-TLS in basic mode
(such as the expired password dialog) are fixed by using SSL(ATTLSAWARE).
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AT-TLS Controlling

CICS does not support AT-TLS Controlling mode.

For more information on AT-TLS modes (types), see Application Transparent Transport Layer Security
data protection in z/OS Communications Server: IP Configuration Guide.

CICS AT-TLS query

All new client connections for the SSL(ATTLSAWARE) TCPIPSERVICE are queried to extract their AT-TLS
attributes. When a client establishes a new connection to a CICS TCPIPSERVICE defined with
SSL(ATTLSAWARE), it will trigger the query and CICS accepts the new client connection.

• Connection status (AT-TLS secured/not secured).
• Client Authentication type (NONE | PASSTHRU | FULL | REQUIRED | SAFCHECK).
• Client certificate. If present, the client certificate is saved in the CICS certificate repository. Attributes of

the certificate can be retrieved later on by applications that issue EXEC CICS EXTRACT
CERTIFICATE.

• Client certificate USERID can be used with the AUTHENTICATE option of the TCPIPSERVICE to
establish the security context for the new web task. For
example, AUTHENTICATE(CERTIFICATE) requires a CERTIFICATE USERID to be present to allow a
web request to be processed.

• Negotiated CIPHER number. This number is registered in a performance monitoring record in the
existing field SOCIPHER.

Configurations for AT-TLS and CICS TCPIPService

There are certain combinations of AT-TLS policy and CICS TCPIPService, which are valid. The table here
shows these valid combinations and expected results in CICS. It also shows combinations that are invalid.

Table 17. Combinations for AT-TLS and CICS TCPIPService

AT-TLS policy for the port CICS TCPIPSERVICE

Valid
combinatio
n Expected result in CICS

HandShakeRole=Server SSL(NO | ATTLSAWARE) Yes The connection is
successfully established.

No client certificate is
available.

HandShakeRole=Server

or

HandShakeRole=ServerWithClient
Auth

SSL(YES | ClientAuth) No CICS issues DFHWB0732
and rejects the
connection.

HandShakeRole=ServerWithClient
Auth with
ClientAuthType=(REQUIRED |
SAFCHECK)

SSL(ATTLSAWARE) Yes The connection is
successfully established.

Client certificate is
available.

HandShakeRole=ServerWithClient
Auth with ClientAuthType=(FULL)

SSL(ATTLSAWARE) Yes The connection is
successfully established.

Client certificate is
available if client sends it
to the server.
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Table 17. Combinations for AT-TLS and CICS TCPIPService (continued)

AT-TLS policy for the port CICS TCPIPSERVICE

Valid
combinatio
n Expected result in CICS

HandShakeRole=ServerWithClient
Auth with any of ClientAuthType

SSL(NO) Yes The connection is
successfully established.

No client certificate is
available.

NO AT-TLS policy for the port, or the
client is exempted from using an AT-TLS
policy.

SSL(ATTLSAWARE) No CICS rejects the
connection with an HTTP
403 error.

CICS issues DFHSO0147
for the first connection
and DFHWB0365 for
every non-secure
connection.

HandShakeRole=ServerWithClient
Auth and
ClientAuthType=PASSTHRU

SSL(ATTLSAWARE) No CICS rejects the
connection because this
configuration bypasses
client certificate
validation.

CICS issues DFHSO0149
and TCPIPService is
closed.

NO AT-TLS policy configured. SSL(YES | ClientAuth) Yes CICS processes SSL-
connection as
documented.

Note: For TCPIPService, configuring AT-TLS HandShakeRole=Client is incorrect.

When you are using a TCPIPSERVICE that specifies SSL(ATTLSAWARE), CICS expects all connections to
be cryptographically secured by AT-TLS. If a client connection arrives which is not secured, it is rejected
with an HTTP 403 error. CICS also logs the error with message DFHWB0365.

CICS does not support AT-TLS policies that use ClientAuthType=PassThru. This configuration
bypasses client certificate validation, which is not acceptable to CICS. If CICS detects that this type of
client authentication is being used when you are receiving a client connection, it closes the connection
with the client then closes the TCPIPSERVICE. Message DFHSO0149 is written to the console when this
error is detected.

How to refresh the SSL environment and cache when AT-TLS is in use

When you are using a TCPIPSERVICE that specifies SSL(ATTLSAWARE), the PERFORM SSL REBUILD
command does not apply.

So to refresh the SSL environment and the certificate CICS is using, follow these steps:

1. Place the new certificate into the key ring defined in your AT-TLS policy.
2. Refresh the key ring within the security manager.
3. Change or add an EnvironmentUserInstance value in the policy rule for this CICS traffic.
4. Issue either of the following modify commands:

F PAGENT,REFRESH
or
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F PAGENT,UPDATE

AT-TLS diagnostics
There are a number of tools for diagnosing AT-TLS problems.

For diagnosing AT-TLS problems, see Diagnosing Application Transparent Transport Layer Security (AT-
TLS) in z/OS Communications Server: IP Diagnosis Guide.

AT-TLS messages contain return codes that are useful in diagnosing problems. Return codes below 5000
come from system SSL. For more information on return codes, see SSL function return codes in z/OS
Cryptographic Services System SSL Programming.

Socket Domain Trace Points for AT-TLS

The socket domain trace points listed, are relevant to AT-TLS. For more information, see, Socket domain
trace points.

• SO 0CAC (level-1)
• SO 0CAB (EXC)
• SO 0CA9 (level-2)
• SO 0CAA (level-2)

Diagnostic Messages

The messages DFHSO0147 and DFHSO0149 are relevant to AT-TLS and detailed here, DFHSO messages.
Also, message DFHWB0365 is detailed here, DFHWB messages.

CICS provides some diagnostic messages when you encounter errors that are discovered by CICS:

DFHWB0365

date time applid tranid A client connects to a TCPIPSERVICE defined with SSL(ATTLSAWARE) but the
connection is not secured by AT-TLS. Host IP address: hostaddr. Client IP address: clientaddr.
TCPIPSERVICE: tcpipservice.

DFHSO0147 W

applid A non-secure client connection is received for ATTLSAWARE TCPIPSERVICE tcpipservice. Client IP
address: clientaddr. TTLS_IOCTL value X'ttlsioctl'.

DFHSO0149 W 

applid A client connection that uses CLIENTAUTHTYPE(PASSTHRU) is detected for ATTLSAWARE
TCPIPSERVICE tcpipservice. TTLS_IOCTL value X'ttlsioctl'. The TCPIPSERVICE is closed.

Here are two examples of errors on AT-TLS connections:

1. The following diagnostics are seen when a client connects to an AT-TLS secured port, which is
configured by using HandShakeRole ServerWithClientAuth and ClientAuthType Required. This
configuration requires the client to provide a certificate. In this case, the client fails to provide a
certificate. Here is the information that is shown in the AT-TLS message log:

EZD1287I TTLS Error RC:  403 Initial Handshake  034     
LOCAL: ::FFFF:9.20.5.0..25931  
REMOTE: ::FFFF:9.174.17.124..50077 
JOBNAME: SSYCZCCM RULE: CICSD    
USERID: HORN GRPID: 0000000D ENVID: 00000013 CONNID: 00395D99  

The return code of 403 is a system SSL error, and corresponds to error GSK_ERR_NO_CERTIFICATE,
which means no certificate received from partner. Nothing is seen in the CICS log. CICS
never receives this connection as it is being rejected by AT-TLS.

2. The following diagnostics appear when a client connection is made to a TCPIPSERVICE defined with
SSL(ATTLSAWARE) where the TCPIPSERVICE port is NOT secured by AT-TLS. This time the client is
connecting to a port, which is not policed by AT-TLS and means that there are no AT-TLS diagnostics.
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However, CICS detects that the client connection is not secured by AT-TLS so it issues the following
messages:

• DFHSO0147 W IY2CZCCM 041 A non-secure client connection is received for ATTLSAWARE
TCPIPSERVICE ATTLS2. Client IP address: 9.174.17.124. TTLS_IOCTL value
X'0100000102010000'

• DFHWB0365 06/23/2015 10:14:22 IY2CZCCM CWXN A client connects to a TCPIPSERVICE defined
with SSL(ATTLSAWARE) but the connection is not secured by AT-TLS. Host IP address: 9.20.5.0.
Client IP address: 9.174.17.124. TCPIPSERVICE: ATTLS2.

The first message is only issued once for any TCPIPSERVICE. The second message is issued every
time a client connects and CICS finds that the connection is NOT secured by AT-TLS.

Migration from CICS SSL to AT-TLS
You can move an existing CICS Transport Layer Security (TLS) (SSL) implementation for an inbound
socket connection to Application Transparent Transport Layer Security (AT-TLS).

When CICS is used to establish a TLS (SSL) environment to perform a TLS handshake for an inbound
socket connection, the attributes that are used for the handshake are extracted from two sources: region
level SIT parameters and TCPIPSERVICE resource attributes.

The following two tables show the CICS SIT parameters and TCPIPSERVICE resource attributes that are
used for a TLS handshake and their AT-TLS level equivalents.

Table 18. SIT parameters and AT-TLS equivalents

SIT Parameter AT-TLS equivalents

MINTLSLEVEL TLSv1

TLSv1.1

TLSv1.2

ENCRYPTION (deprecated: use MINTLSLEVEL) TLSV1

TLSV1.1

TLSV1.2

KEYRING TTLSKeyRingParms

CRLPROFILE TTLSGskLdapParms

SSLDELAY GSK_V3_SESSION_TIMEOUT

MAXSSLTCBS Cannot be configured in AT-TLS; TCB numbers
grow dynamically.

SSLCACHE=SYSPLEX GSK_SYSPLEX_SIDCACHE ON

NISTSP800131A=CHECK FIPS140 ON

Table 19. TCPIPSERVICE resource attributes and AT-TLS equivalents

TCPIPSERVICE resource attribute AT-TLS equivalents

SSL=YES HandShakeRole Server

SSL=CLIENTAUTH HandShakeRole ServerWithClientAuth with
ClientAuthType FULL

ClientAuthType REQUIRED and ClientAuthType
SAFCHECK are also supported.

CERTIFICATE CertificateLabel
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Table 19. TCPIPSERVICE resource attributes and AT-TLS equivalents (continued)

TCPIPSERVICE resource attribute AT-TLS equivalents

CIPHERS TTLSCipherParms

The following examples show how to move an existing CICS TLS implementation to AT-TLS, then remove
the CICS TLS implementation.

Example 1: AT-TLS policy rules for TLS/SSL server authentication

An example configuration to use CICS to secure inbound HTTP connections might use simple server
authentication on the TCPIPSERVICE resource (SSL(YES)). This configuration does not support client
certificates. The following examples show the CICS configuration statements that are needed to establish
the CICS-TLS environment for simple server authentication.

CICS startup parameters:

MINTLSLEVEL=TLS10  (or its deprecated equivalent ENCRYPTION=STRONG) 
KEYRING=CICSKeyRing (includes the certificate named CICS-2048-certificate) 
SSLDELAY=600
MAXSSLTCBS=8
SSLCACHE=CICS
NISTSP800131A=NOCHECK

SSL-related TCPIPSERVICE resource attributes:

TCpipservice   : HTTPSSL                               
GROup          : JULESWEB                              
DEScription  ==> CICS WEB TCPIPSERVICE WITH SSL SUPPORT
POrtnumber   ==> 25008     
STatus       ==> Open        
PROtocol     ==> Http        
SSl          ==> Yes                
CErtificate  ==> CICS-2048-certificate 
CIphers      ==> 35363738392F303132330A1613100D15120F0C 
AUthenticate ==> Basic

To use AT-TLS to secure your inbound HTTP connections instead of CICS, you might use the following AT-
TLS policy, then update the TCPIPSERVICE resource definition to SSL(NO) or SSL(ATTLSAWARE).

Note: The following example AT-TLS policy uses the TLSV1.2 option, which is supported in z/OS 2.1 and
later. Using the TLSV1.2 option helps to achieve optimum performance; also, it is a prerequisite if you
need to conform to NIST SP800-131A.

Full details of the NIST standards are available at the NIST Computer Security Resource Center (nist.gov).

AT-TLS configuration that replicates the CICS environment for the TCPIPSERVICE named HTTPSSL:

TTLSRule SIMPLECICS
{
LocalPortRange 25008
Direction Inbound
Priority 256
TTLSGroupActionRef CICSGroupAct1
TTLSEnvironmentActionRef CICSEnvironmentAct1
}
TTLSGroupAction CICSGroupAct1
{
TTLSEnabled On
FIPS140 off
}
TTLSEnvironmentAction CICSEnvironmentAct1
{
HandShakeRole Server
TTLSKeyRingParmsRef CICSKeyRingParms1
TTLSCipherParmsRef CICSCipherParms1
TTLSEnvironmentAdvancedParmsRef CICSEnvAdvParms1
TTLSGskAdvancedParmsRef CICSGskAdvParms1
}
TTLSKeyRingParms CICSKeyRingParms1
{
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Keyring CICSKeyRing
}
TTLSCipherParms CICSCipherParms1
{
V3CipherSuites TLS_RSA_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DHE_RSA_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_RSA_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DHE_RSA_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_RSA_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DHE_RSA_WITH_DES_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_DES_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_DES_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_DES_CBC_SHA
}
TTLSEnvironmentAdvancedParms CICSEnvAdvParms1
{
SSLv3 Off
TLSV1 On
TLSV1.1 On
TLSV1.2 On
CertificateLabel CICS-2048-certificate 
}
TTLSGskAdvancedParms CICSGskAdvParms1
{
GSK_SYSPLEX_SIDCACHE off
GSK_V3_SESSION_TIMEOUT 600

}

Before you activate this AT-TLS policy, alter the CICS TCPIPSERVICE resource as follows:

TCpipservice   : HTTPSSL                               
GROup          : JULESWEB                              
DEScription  ==> CICS WEB TCPIPSERVICE WITH AT-TLS SSL SUPPORT
POrtnumber   ==> 25008     
STatus       ==> Open        
PROtocol     ==> Http       
SSl          ==> NO|ATTLSAWARE
CErtificate  ==> 
CIphers      ==> 
AUthenticate ==> Basic          

If SSL is set to NO, CICS does not check whether AT-TLS is securing inbound client connections.

If SSL is set to ATTLSAWARE, CICS checks whether AT-TLS is securing inbound client connections. If a
client connection is not secured by AT-TLS, it is rejected with an HTTP 403 error and message
DFHWB0365 is written to the CICS log.

Also, if SSL is set to ATTLSAWARE, CICS checks for the presence of a client certificate. The previous
example AT-TLS configuration does not support the use of client certificates. Therefore, ensure that the
TCPIPSERVICE definition does not specify an AUTHENTICATE option that requires client certificates. The
previous example TCPIPSERVICE resource specifies AUTHENTICATE(BASIC), which does not require a
client certificate.

When the AT-TLS policy is active and the TCPIPSERVICE resource is redefined to remove the SSL
attributes, you can also remove all the related SSL SIT parameters. However, first ensure that nothing
else in the CICS region depends on these parameters.

If your CICS-SSL system is started with NISTSP800131A=CHECK, CICS sets MINTLSLEVEL=TLS12 and
also sets FIPS140 on. To reflect these settings in the example AT-TLS POLICY configuration, modify it as
follows:

TTLSGroupAction CICSGroupAct1
{
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TTLSEnabled On 
FIPS140 on
}

TTLSEnvironmentAdvancedParms CICSEnvAdvParms1
{
SSLv3 Off 
TLSV1 Off
TLSV1.1 Off
TLSV1.2 On
CertificateLabel CICS-2048-certificate 
}

Example 2: AT-TLS policy rules for TLS/SSL client authentication

An example configuration to use CICS to secure inbound HTTP connections might use client
authentication on the TCPIPSERVICE resource (SSL(CLIENTAUTH)). This configuration supports client
certificates. The following examples show the CICS configuration statements that are needed to establish
the CICS-TLS environment for client authentication.

CICS startup parameters:

MINTLSLEVEL=TLS10  (or its deprecated equivalent ENCRYPTION=STRONG) 
KEYRING=CICSKeyRing (includes the certificate named CICS-2048-certificate) 
SSLDELAY=600
MAXSSLTCBS=8
SSLCACHE=CICS
NISTSP800131A=NOCHECK

SSL-related TCPIPSERVICE resource attributes:

TCpipservice   : CLAUTH
GROup          : JULESWEB                              
DEScription  ==> CICS Web TCPIPSERVICE with SSL CLIENTAUTH support
POrtnumber   ==> 25009
STatus       ==> Open        
PROtocol     ==> Http        
SSl          ==> Clientauth
CErtificate  ==> CICS-2048-certificate 
CIphers      ==> 35363738392F303132330A1613100D15120F0C    
AUthenticate ==> Certificate

To use AT-TLS to secure your inbound HTTP connections instead of CICS, you might use the following AT-
TLS policy, then update the TCPIPSERVICE resource definition to use SSL(ATTLSAWARE).

Note: The following example AT-TLS policy uses the TLSV1.2 option, which is supported in z/OS 2.1 and
later. Using the TLSV1.2 option helps to achieve optimum performance; also, it is a prerequisite if you
need to conform to NIST SP800-131A.

Full details of the NIST standards are available at the NIST Computer Security Resource Center (nist.gov).

AT-TLS client authentication configuration that replicates the CICS environment for the TCPIPSERVICE
named CLAUTH:

TTLSRule CLIENTAUTHCICS
{
LocalPortRange 25009
Direction Inbound
Priority 256
TTLSGroupActionRef CICSGroupAct2
TTLSEnvironmentActionRef CICSEnvironmentAct2
}
TTLSGroupAction CICSGroupAct2
{
TTLSEnabled On
FIPS140 off
}
TTLSEnvironmentAction CICSEnvironmentAct2
{
HandShakeRole ServerWithClientAuth
TTLSKeyRingParmsRef CICSKeyRingParms2
TTLSCipherParmsRef CICSCipherParms2
TTLSEnvironmentAdvancedParmsRef CICSEnvAdvParms2
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TTLSGskAdvancedParmsRef CICSGskAdvParms2
}
TTLSKeyRingParms CICSKeyRingParms2
{
Keyring CICSKeyRing
}
TTLSCipherParms CICSCipherParms2
{
V3CipherSuites TLS_RSA_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_DHE_RSA_WITH_AES_256_CBC_SHA
V3CipherSuites TLS_RSA_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_DHE_RSA_WITH_AES_128_CBC_SHA
V3CipherSuites TLS_RSA_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA
V3CipherSuites TLS_DHE_RSA_WITH_DES_CBC_SHA
V3CipherSuites TLS_DHE_DSS_WITH_DES_CBC_SHA
V3CipherSuites TLS_DH_RSA_WITH_DES_CBC_SHA
V3CipherSuites TLS_DH_DSS_WITH_DES_CBC_SHA
}
TTLSEnvironmentAdvancedParms CICSEnvAdvParms2
{
SSLv3 Off
TLSV1 On
TLSV1.1 On
TLSV1.2 On
CertificateLabel CICS-2048-certificate 
ClientAuthType Full
}
TTLSGskAdvancedParms CICSGskAdvParms2
{
GSK_SYSPLEX_SIDCACHE off
GSK_V3_SESSION_TIMEOUT 600
}

Before you activate this example AT-TLS policy, alter the CICS TCPIPSERVICE resource definition as
follows:

TCpipservice   : CLAUTH
GROup          : JULESWEB                              
DEScription  ==> CICS Web TCPIPSERVICE with SSL CLIENTAUTH support
POrtnumber   ==> 25009
STatus       ==> Open        
PROtocol     ==> Http        
SSl          ==> ATTLSAWARE
CErtificate  ==> 
CIphers      ==> 
AUthenticate ==> Certificate

In this example, SSL must be set to ATTLSAWARE so that CICS retrieves a client certificate from AT-TLS,
because AUTHENTICATE is set to CERTIFICATE (a client certificate is required). If a client connection is
not secured by AT-TLS, it is rejected with an HTTP 403 error and message DFHWB0365 is written to the
CICS log.

With SSL(ATTLSAWARE), CICS checks for a client certificate. If this check maps to a RACF USERID, CICS
runs the web user transaction under this USERID.

The previous example AT-TLS policy is defined with ClientAuthType Full. This ClientAuthType
replicates the SSL environment and handshake behavior that occurs when CICS uses SSL. However CICS
also supports ClientAuthType Required and ClientAuthType SAFCheck.

CICS does not support the use of ClientAuthType PassThru. If a TCPIPSERVICE port is configured by
using ClientAuthType PassThru and the TCPIPSERVICE resource is defined with
SSL(ATTLSAWARE), when the first client connection arrives, CICS detects the unsupported configuration.
CICS then closes the TCPIPSERVICE and issues message DFHSO0149.
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When the AT-TLS policy is active and the TCPIPSERVICE resource is redefined to remove the SSL
attributes, you can also remove all the related SSL SIT parameters. However, first ensure that nothing
else in the CICS region depends on these parameters.

If your CICS-SSL system is started with NISTSP800131A=CHECK, CICS sets MINTLSLEVEL=TLS12 and it
also sets FIPS140 on. To reflect these settings in the example AT-TLS POLICY configuration, modify it as
follows:

TTLSGroupAction CICSGroupAct2
{
TTLSEnabled On
FIPS140 on
}

TTLSEnvironmentAdvancedParms CICSEnvAdvParms2
{
SSLv3 Off
TLSV1 Off
TLSV1.1 Off
TLSV1.2 On
CertificateLabel CICS-2048-certificate 
ClientAuthType Full
}

Security for Atom feeds
CICS web support provides a suitable security protocol and authentication method to control web client
access to Atom collections and if required, to Atom feeds. You can use CICS resource and command
security to protect the resources that you use to deliver the Atom feed or collection.

RFC 5023 recommends that you use authentication to protect Atom collections. When you make Atom
feed data available as an editable collection, a web client can insert new entries, modify existing entries,
or delete entries. You must therefore ensure that you verify the identity of web clients and permit only
trusted clients to have access to the collection, especially if you have included business data in your
collection. Ordinary Atom feeds, which web clients cannot edit, are typically made available to any
subscribers without security restrictions, although you might need to restrict access to Atom feeds if they
include confidential business data or are intended only for certain users.

RFCs 4287 and 5023 discuss the use of digital signatures and encryption for Atom documents. CICS does
not provide support for digital signatures and encryption of Atom documents, but, in compliance with RFC
4287, CICS does not reject an Atom document that contains a signature.

CICS web support has the following security functions that you can use to protect Atom feeds or
collections from unauthorized access or updates:

SSL or TLS security protocol
RFC 5023 recommends the use of the Transport Layer Security (TLS) 1.0 as a minimum level of
security protocol for collections. For a list of security protocols supported by CICS, see Support for
security protocols.

HTTP basic authentication
RFC 5023 recommends the use of HTTP basic authentication as a minimum level of authentication for
collections.

Client certificate authentication
Client certificate authentication is a more secure method of authenticating a client, using a client
certificate which is issued by a trusted third party (or Certificate Authority), and sent using SSL
encryption. SSL authentication explains how this works.

When you set up these functions in CICS web support, you can apply them to an Atom feed or collection
using attributes of the TCPIPSERVICE definition for the port where CICS receives web client requests for
the Atom feed or collection. For information on setting up SSL support for CICS web support, see
Configuring CICS to use SSL.
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Chapter 6. CICS HTTP support: Performance and
tuning

You can tune several aspects of your system to improve the performance of CICS HTTP support.

What affects the limit on the number of HTTP connections

Several aspects of your CICS region configuration can affect the maximum number of HTTP connections
the region can support:

Storage available in the CICS region
In practical terms, the number of connections that can be active between a single CICS region and the
web is primarily limited by the storage available in the CICS region. “Storage requirements for CICS
web support” on page 259 explains the most significant storage requirements for CICS web support
activities.

Effect of the MXT setting
In each CICS region, the maximum number of concurrent connections between CICS as an HTTP
server and web clients, or between CICS as an HTTP client and a server on the web, can in theory be
up to 64,000. The MXT setting does not directly limit the number of concurrent connections:

• For CICS as an HTTP server, the CWXN transaction (web attach task) does not remain in the system
for the duration of a persistent connection, but terminates after each request for which it was
required. This means that between requests, a persistent connection can exist, being monitored by
the Sockets listener task (CSOL), without being associated with an active task.

• For CICS as an HTTP client, an application program can open and maintain more than one persistent
connection to a server on the web, and these are covered by the single active task for the
application program.

However, the MXT setting, and any limitations that you set in the transaction class definitions for CICS
web support transactions, can be used to limit the amount of CICS web support activity in the CICS
region. For information about how to set MXT, see Setting the maximum task specification (MXT) .

Using performance tuning for HTTP connections to protect CICS from unconstrained resource
demand

The SOTUNING SIT parameter specifies whether performance tuning for HTTP connections occur to
protect CICS from unconstrained resource demand. If the SOTUNING SIT parameter is set to the default
value of YES, if the region becomes overloaded CICS temporarily stops listening for new HTTP connection
requests. If overloading continues, CICS closes existing HTTP persistent connections and marks all new
HTTP connections as non-persistent. These actions prevent oversupply of new HTTP work from being
received and queued within CICS, allowing feedback to TCP/IP port sharing and Sysplex Distributor,
promoting a balanced sharing of workload with other regions that are sharing the same IP endpoint and
allowing the CICS region to recover more quickly. If SOTUNING is set to YES, CICS periodically closes
persistent connections to allow more efficient sharing of workload across regions that share IP endpoints,
using technologies such as TCP/IP shared ports and Sysplex distributor.

CICS TCP/IP statistics can be used to illustrate whether performance tuning has taken place. For more
information, see “Performance tuning statistics” on page 263.

Performance considerations for CICS as an HTTP server
What affects performance

Priority of transactions is significant
For CICS as an HTTP server, the priority of the various transactions involved for CICS web support
is significant, and incorrect settings might lead to a short-on-storage situation. “Priorities for CICS
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web support transactions (CWXN, CWXU, CWBA, CW2A)” on page 260 tells you how to set
priorities to avoid issues in this area.

Types of HTTP responses influence performance
For CICS as an HTTP server, HTTP responses can be generated by an application, or provided from
a static document, which can be either an zFS file or a CICS document template. A CICS document
template can be one of a variety of different CICS resources, including a program, a partitioned
data set, or a file. “Relative performance of CICS web support response methods” on page 262
explains the differences in performance between these response types.

How to improve performance
Connection throttling can prevent a CICS region from being overloaded

By default, CICS attempts to keep HTTP connections open as persistent connections. Persistent
connections between a web client and a server can be reused for more than one exchange of a
request and a response, so a new connection does not have to be established for each request.
Persistent connections improve network performance because compared with making a request
use an existing connection, establishing a new connection consumes significant additional
network resources. However, if multiple web clients set up long-lived persistent connections to
CICS as an HTTP server and use the connections heavily, it is possible for a CICS region handling
the connections to become overloaded and experience performance problems.

If you experience such problems, you can set up connection throttling to make excess web clients
connect to other CICS regions that share the port and provide the same service.

• Use the MAXPERSIST attribute on the TCPIPSERVICE resource definition to set a limit on the
number of persistent HTTP connections that a CICS region accepts for a particular port.
Subsequent web clients are subject to connection throttling, and are required to close their
connection after each response. When the new clients reconnect, if they connect to another
CICS region that shares the port and has not reached its limit they can maintain a persistent
connection there.

• An HTTP/1.1 server should normally allow persistent connections, so only set up connection
throttling in a CICS region that has experienced performance problems due to long-lived
persistent connections. If you do limit the number of persistent connections, CICS as an HTTP
server is still compliant with the HTTP/1.1 specification (provided that you do not set a zero
limit), but refusing persistent connections is not recommended as a normal practice.

• Be aware that the performance of web clients can be affected when they fail to obtain a
persistent connection that they expected, especially if they reconnect to the CICS region where
connection throttling is in place. The performance returns to normal when the web clients
connect to another CICS region that shares the port and has not reached its limit.

For more information about persistent connections and connection throttling, see How CICS web
support handles persistent connections.

CICS TCP/IP statistics can be used to illustrate how well connections are reused. For more
information, see “Connection persistence statistics” on page 265.

Performance considerations for CICS as an HTTP client
How to improve performance

Connection pooling can provide performance benefits in some situations
For CICS as an HTTP client, by default CICS closes client HTTP connections after an application
has finished using the connection. If you set up connection pooling, CICS can leave the connection
open and place it in a pool in a dormant state, and it can be reused by the same application or by
another application that connects to the same host and port. “Connection pooling for HTTP client
performance” on page 266 explains the situations in which connection pooling provides
performance benefits for CICS web support applications and web services applications.
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Performance considerations for SSL connections

• If you are using the Secure Sockets Layer (SSL), the security measures (such as encryption and
decryption and the SSL handshake) cause a slight increase in CPU per transaction. For CICS as an HTTP
client, if you implement connection pooling CICS applications can reuse client HTTP connections that
have already been made using SSL. The security measures do not need to be repeated when the
connection is reused, so applications that are given a connection from the pool do not experience this
CPU increase.

• You can monitor the cipher suites that are being selected for SSL connections between each CICS
region and its clients. The performance data field SOCIPHER (320) in the DFHSOCK group shows the
code for the cipher suite that was used for each SSL inbound connection. Use this information to
identify any cipher suites that are offered by the CICS region but are not being selected for SSL
connections. You can also identify any less efficient or less secure cipher suites that are being selected
for SSL inbound connections but that you would prefer to eliminate. Customizing encryption
negotiations explains how to customize the list of cipher suites that can be used in encryption
negotiations.

• SSL uses S8 TCBs. For HTTP requests over SSL, all CICS processing occurs on the S8 TCB (there is no
switching between the S8 and SO TCBs). This means that the web attach task (CWXN by default) will
stay on the S8 TCB until all the data has been sent or received. This could result in the task that is
sending or receiving the messages hitting the runaway limit and being terminated. If sending or
receiving large messages, you should determine if you need to increase the transaction RUNAWAY value
for the web server HTTP attach transaction (CWXN by default), the web server alias transactions, and
any transactions that issue the Web client API commands SEND, RECEIVE and CONVERSE.

You can monitor S8 TCBs using the dispatcher TCB statistics.

See CICS dispatcher: performance and tuning for guidance on setting the system initialization
parameters that control the number of TCBs that CICS uses.

Storage requirements for CICS web support
The number of connections that can be sustained between a single CICS region and the web is primarily
limited by the storage available in the CICS region.

The major influences on storage usage for CICS web support are:

• Basic storage requirement for each connection. About 4K of storage is required for each connection
between CICS and the Web.

• For CICS as an HTTP server: Size of requests received from web clients. The total amount of data
that CICS accepts for a single request can be limited by the MAXDATALEN attribute of the
TCPIPSERVICE definition.

– The request line and HTTP headers are stored in a container.
– The request body is stored in CICS main storage. Unwanted data from a request body can be ignored

by an application program, but the web attach task always reads the complete message in order to
clear the data from the socket, and places all the data in storage.

– Storage used for a request received from a web client is freed when a response has been sent to the
request.

• For CICS as an HTTP client: Size of responses received from web servers. There is no specific way to
limit the amount of data that CICS accepts for a response. (The HTTP client facility of CICS web support
is not designed for use as a browser, so your requests should return only known resources that you
have selected.)

– The status line and HTTP headers are stored in a container.
– The response body is stored in CICS main storage. Unwanted data from a response body can be

ignored by an application program, but the complete message is read and placed in CICS storage.
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– Storage used for responses received from web servers is required for the duration of the connection
with the web server. The storage obtained for the first response is overwritten by each subsequent
response that is received for the connection, or released and re-obtained if a subsequent response
requires a larger amount of storage. The storage is freed when the connection is closed by the
application program using a WEB CLOSE command (or at end of task if the connection has not
previously been closed). The maximum amount of storage that is obtained for each connection is
therefore equal to the size of the largest message received on the connection.

• For CICS as an HTTP server and CICS as an HTTP client: Size of messages produced by CICS
(requests or responses). While a request or response is being assembled for sending out from CICS,
storage is required for the HTTP headers, and also for the message body.

– The HTTP headers are stored in a container.
– The message body is stored in CICS main storage.
– Storage can be freed in two ways for WEB SEND (Client and Server) and WEB CONVERSE commands.

These options should only be used if you do not intend (later in this transaction) to retrieve the
contents of the document that has been sent:

- Specify the WEB SEND or CONVERSE command with the ACTION(IMMEDIATE) option.
- Specify the WEB SEND command with the ACTION(EVENTUAL) and DOCSTATUS(DOCDELETE)

options.
• Code page conversion. Code page conversion can be carried out for any message body received or sent

by CICS, if it is specified by an application program, analyzer program, or URIMAP definition in the
processing path for the request. The message body is in CICS main storage.

– For conversion between the EBCDIC code page 037 and the ASCII code page ISO-8859-1, CICS
writes the converted message body to the same area of storage as the original message body, so no
additional storage is used.

– For other types of code page conversion, CICS requires additional storage to contain the converted
message body. Depending on the character sets used, the size of this additional storage area can
range from the same size as the original message body, to a theoretical maximum of four times the
size of the original message body (which is unlikely). For example, 2MB of message body data would
require at least 4MB of storage in total. Double-byte character sets (DBCS) or multi-byte character
sets are likely to require larger storage areas within this range.

Priorities for CICS web support transactions (CWXN, CWXU, CWBA, CW2A)
When CICS receives a request which is not eligible for being processed by directly attached alias
transaction, a web attach task is used to receive requests from web clients and perform initial checks.
The default transaction ID for a web attach task is CWXN for the HTTP protocol, or CWXU for the USER
protocol. Alias transactions are used to cover subsequent processing for application-generated
responses. The default transaction ID for a CICS web support alias transaction is CWBA, and for an Atom
feed alias transaction, it is CW2A.

Task structure for CICS web support has more information about the transactions that are used for CICS
web support processing, and how they interact with each other. 

If you set the priority of the CWXN or CWXU transaction (or its alias) higher than the priority of the alias
transactions such as CWBA or CW2A, this can result in a build-up of requests that have been received but
not yet processed, which might lead to a short-on-storage situation.

The default priorities for the CWXN and CWXU transactions are set to 1, and the default priorities for the
CICS-supplied CWBA and CW2A transactions are also set to 1. You can adjust these priorities depending
on your workload. Make sure the priorities of the alias transactions like CWBA or CW2A are higher than
the priority of the transactions associated with web attach tasks like CWXN or CWXU.

Consider using TCLASS definitions to limit the number of web attach tasks that can run to less than 50%
of the maximum user task limit, in order to give priority to the processing of alias transactions. At peak
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workload, this means that storage is freed in preference to being acquired and that inflight tasks are
processed in preference to new requests.

Processing HTTP requests by using directly attached user transactions
The socket listener task CSOL is optimized to attach user transactions directly for fast arriving HTTP
requests. This bypasses the web attach task, so reduces the CPU time that is required to process each
request.

To qualify for optimization, the HTTP request and the TCPIPService and URIMAP resource attributes must
meet the criteria shown in Table 20 on page 261. Ensure that your requests are fully configured by
selecting all the resource attribute values from the "Required attribute values" column in this table.

Note: For requests that require a static response, the web attach task is always attached to process them.
No other transaction is involved.

Table 20. Criteria to process HTTP requests using directly attached user transactions

Resource or
request

Attribute or
request
condition

Required attribute values and
conditions for the direct route:
CSOL > user transaction

ALL criteria must apply

Attribute values and conditions
for the indirect route: CSOL > web
attach task > user transaction

Used if any criteria apply

TCPIPService PROTOCOL HTTP USER

SSL NO | ATTLSAWARE YES | CLIENTAUTH

URIMAP ANALYZER NO YES

USAGE SERVER | PIPELINE | ATOM CLIENT

HTTP REQUEST HEADER Arrived Not arrived

URIMAP Matched Not matched

The socket listener task CSOL detects inbound TCP/IP connection requests on all ports that are defined to
CICS, and starts the CICS service that is associated with the port. When the port is intended for CICS web
support that uses the PROTOCOL of HTTP and SSL support NO or ATTLSAWARE, CSOL uses the available
request data to assess whether a directly attached user transaction can handle the request.

For example, in the following situations, the request cannot be optimized and CSOL attaches the web
attach task to process the request:

• CSOL cannot determine the URI and the USER ID from the request header data (for example, an HTTP
1.0 request that did not contain the host header was received).

• No matching URIMAP is found or enabled for the request.
• The matching URIMAP indicates that the request needs to go through the analyzer program (that is, the

URM attribute on TCPIPService).

For web service requests and atom feeds (that is, URIMAP with usage of PIPELINE or ATOM), no analyzer
is involved, so these requests can be optimized and processed by the transactions CPIH or CW2A,
provided that no SSL session is used. This mechanism is ready to adopt the direct route and gain
performance enhancement, without any changes.

For an HTTP server request, if the matching URIMAP indicates that the client expects an application-
generated response and other criteria are also met, CSOL directly attaches the transaction CWBA that is
defined in the URIMAP to process the request. The transaction's task receives the request data from the
web client and processes it as normal.

Note: CWXN must always be configured so that the web attach task can process requests that do not
meet the optimization criteria.
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Relative performance of CICS web support response methods
Application-generated responses use more resources than static responses. Application-generated
responses require a user transaction to be attached. An analyzer program, converter program, or more
than one user-written application program might be involved in processing the request and producing the
response. Typically, greater elapsed time and processor time is required to produce the response.

Static responses involve only the web attach task, a URIMAP definition, and the source document for the
response body. Performance for a static response is better than for an application-generated response,
so if you are using an architecture with an application program and analyzer program to deliver a simple
response document, consider converting this to a static response. For those application-generated
responses, the requests that are targeting a URIMAP with ANALYZER(NO) specified might qualify for
being processed by directly attached user transactions, and bypassing the web attach task. For more
information, see “Processing HTTP requests by using directly attached user transactions” on page 261.

For UNIX files only, the HTTP If-Unmodified-Since header is respected. If the UNIX file is unmodified
since the time selected in this header, the file is not returned, and an HTTP 304 (Not Modified) response
with no message body is returned instead. This can considerably reduce the amount of data transmitted.

Within this category, performance is further influenced by the choice of source document used for the
response body, which can be:

• A z/OS UNIX System Services file, called directly from the URIMAP definition using the HFSFILE option.
• A z/OS UNIX System Services file, defined as a CICS document template, and called from the URIMAP
definition using the DOCTEMPLATE option.

• A document template stored in a z/OS partitioned data set or PDSE.
• A document template stored in a transient data queue.
• A document template stored in a temporary storage queue.
• A document template stored in a CICS file (ESDS, RRDS or another type of data set).
• A document template contained in a CICS program.
• A document template generated by an exit program. The content of the document template could be

loaded from a location such as DB2 or another database manager. Document templates generated by
an exit program are classed with static responses when they operate through a URIMAP definition and
not through a web-aware application program. However, they do involve an application program, so in
terms of resource and performance, they can be similar to an application-generated response.

Introduction to documents and document templates has more information about the different types of
CICS document template, and how to set them up. If you are using a CICS document template to provide
a static response, ensure that the definition is installed before you use it.

To improve performance, the CICS document handler caches a copy of most document templates when
they are installed. Subsequent references to the template use the cached copy. This means that the
relative speed of access for the document template type is not important after the first retrieval from the
source. Caching does not take place for document templates retrieved from CICS programs, because
programs are already managed by the CICS loader, and have fast retrieval times. For document templates
generated by exit programs, you can specify whether or not a copy is to be cached.

When storage is constrained, the performance of document templates can be impacted. Programs
containing document templates are managed like other CICS loaded programs, and may be flushed out
by program compression. Document templates cached by the document handler may be released, and on
the next reference of these document templates, they will need to be retrieved from the source.
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Performance tuning statistics
Performance tuning for HTTP connections protects CICS from unconstrained resource demand. You can
use TCP/IP statistics to see if performance tuning has taken place.

Using TCP/IP statistics to see whether CICS has paused listening for new HTTP connection requests
because it is under stress

If a region becomes overloaded, CICS pauses listening for new HTTP connection requests, and any new
requests queue outside of CICS in the TCP/IP backlog queue. The size of this queue is set per
TCPIPSERVICE by the resource BACKLOG attribute. If enough requests are received to fill the queue, new
connection requests will be dropped. The following fields in TCP/IP Global statistics indicate whether
CICS has paused listening for new HTTP connection requests as a result of performance tuning:

Performance tuning for HTTP connections (SOG_SOTUNING)
Indicates whether performance tuning for HTTP connections is enabled.

Socket listener has paused listening for HTTP connections (SOG_PAUSING_HTTP_LISTENING)
Indicates whether the listener has paused listening for HTTP connection requests because the
number of tasks in the region has reached the limit for accepting new HTTP connection requests.

Number of times socket listener notified at task accept limit (SOG_TIMES_AT_ACCEPT_LIMIT)
Indicates the number of times the listener has been notified that the number of tasks in the region
has reached the limit for accepting new HTTP connection requests.

Last time socket listener paused listening for HTTP connections
(SOG_TIME_LAST_PAUSED_HTTP_LISTENING)

Indicates the last time the socket listener paused listening for HTTP connection requests because the
number of tasks in the region had reached the limit for accepting new HTTP connection requests.

For a TCPIPSERVICE, the following fields in TCP/IP services: Resource statistics indicate whether
requests are queuing in the TCP/IP backlog queue and whether the queue is full and new connection
requests are being dropped:

Current backlog (SOR_CURR_BACKLOG)
Indicates the current number of connection requests waiting in the backlog queue, summed over all
appropriate stacks if the TCP/IP service is listening on multiple stacks.

Connections dropped (SOR_CONNS_DROPPED)
Indicates the total number of connections that were dropped because the backlog queue of the
TCP/IP service was full, summed over all appropriate stacks if the TCP/IP service is listening on
multiple stacks.

Time connection last dropped (SOR_CONN_LAST_DROPPED)
Indicates the time that a connection was last rejected because the backlog queue of the TCP/IP
service was full.

Current maximum backlog (SOR_CURR_MAX_BACKLOG)
Indicates the maximum number of connection requests that the TCP/IP service currently allows in the
backlog queue for the service, summed over all appropriate stacks if the TCP/IP service is listening on
multiple stacks. This value can be greater than the value that is specified in the BACKLOG attribute
(SOR_BACKLOG) of the TCP/IP service because the TCP/IP service might temporarily increase this
value if, for example, it determines that there is a SYN flood.

Note: If a CICS region has reached the maximum number of user tasks, which is specified in the MXT SIT
parameter, you might not be able to log into the CICS system and issue a STATS command. If this
happens, you can use the NETSTAT ALL command to obtain the information about the backlog queue
and connections dropped.
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Using TCP/IP statistics to see whether existing persistent HTTP connections are being closed
because a region is under stress

If the region continues to become overloaded, it closes existing persistent HTTP connections after their
next request completes, and does not allow new HTTP connections to be persistent until the region is no
longer under stress. The following statistics in TCP/IP Global statistics indicate whether CICS is
temporarily disallowing HTTP connection persistence as a result of performance tuning:

Performance tuning for HTTP connections (SOG_SOTUNING)
Indicates whether performance tuning for HTTP connections is enabled.

Region stopping HTTP connection persistence (SOG_STOPPING_PERSISTENCE)
Indicates whether the region is closing existing persistent connections when their next request
completes and is making new connections non-persistent, because the number of tasks in the region
has exceeded the limit.

Number of times region stopped HTTP connection persistence (SOG_TIMES_STOPPED_PERSISTENT)
Indicates the number of times the region took action to close existing persistent connections when
their next request completes and make new connections non-persistent, because the number of
tasks in the region had exceeded the limit.

Last time stopped HTTP connection persistence (SOG_TIME_LAST_STOPPED_PERSISTENT)
Indicates the last time the region took action to close existing persistent connections when their next
request completes and make new connections non-persistent, because the number of tasks in the
region had exceeded the limit.

Number of persistent connections made non-persistent (SOG_TIMES_MADE_NON_PERSISTENT)
Indicates the number of times a persistent HTTP connection was made non-persistent because the
number of tasks in the region had exceeded the limit.

Number of times disconnected an HTTP connection at max uses (SOG_TIMES_CONN_DISC_AT_MAX)
Indicates the number of times a persistent HTTP connection was disconnected because the number
of uses had exceeded the limit.

For a TCPIPSERVICE, the following statistics in TCP/IP services: Resource statistics indicate whether
existing persistent connections are being disconnected and whether new persistent connections will be
made non-persistent:

Made non-persistent at task limit (SOR_NONP_AT_TASK_LIMIT)
Indicates the number of times a new persistent HTTP connection was made non-persistent because
the number of tasks in the region had exceeded the limit.

Disconnected at task limit (SOR_DISC_AT_TASK_LIMIT)
Indicates the number of times an existing persistent HTTP connection was closed because the
number of tasks in the region had exceeded the limit.

Disconnected after maximum uses (SOR_DISC_AT_MAX_USES)
Indicates the number of times a persistent HTTP connection was disconnected because its number of
uses had exceeded the limit.

If there are suddenly a lot more non-persistent connections than normal, check whether performance
tuning temporarily disallowed connection persistence to allow the region to recover from overloading.

Multiple stacks considerations

If the TCPIPSERVICE is listening on multiple stacks, each stack has its own independent backlog queue
for the TCPIPSERVICE. The following statistics fields are the sum of values over all the stacks:

• Current backlog (SOR_CURR_BACKLOG)
• Connections dropped (SOR_CONNS_DROPPED)

The following statistics fields report the greatest value among all stacks:

• TCPIPSERVICE Backlog Setting (SOR_BACKLOG)
• Time connection last dropped (SOR_CONN_LAST_DROPPED)
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• Current maximum backlog (SOR_CURR_MAX_BACKLOG)

This means that the reported number of requests currently queuing in the backlog queue
(SOR_CURR_BACKLOG) can be greater than the reported backlog setting (SOR_CURR_MAX_BACKLOG)
because the latter is the size of the queue per stack.

Connection persistence statistics
By default, CICS attempts to keep HTTP connections open as persistent connections. From TCP/IP
statistics, you can obtain a view of connection persistence for a CICS region and for connections into a
specific TCPIPSERVICE.

Obtaining a view of connection persistence for a CICS region

The following statistics in TCP/IP Global statistics provide a view of connection persistence for a CICS
region:

Inbound
Total number of inbound sockets created (SOG_INB_SOCKETS_CREATED)

The total number of inbound sockets created
Total number of non-persistent inbound sockets created (SOG_NPERS_INB_SOCKETS_CREATED)

The total number of non-persistent inbound sockets created
Current number of inbound sockets (SOG_CURR_INBOUND_SOCKETS)

The current number of inbound sockets
Current number of non-persistent inbound sockets (SOG_CURR_NPERS_INB_SOCKETS}

The current number of non-persistent inbound sockets
Current number of persistent inbound sockets (calculated for the reports)

The current number of persistent inbound sockets
Peak number of inbound sockets (SOG_PEAK_INBOUND_SOCKETS)

The peak number of inbound sockets
Peak number of non-persistent inbound sockets (SOG_PEAK_NPERS_INB_SOCKETS)

The peak number of non-persistent inbound sockets
Peak number of persistent inbound sockets (SOG_PEAK_PERS_INB_SOCKETS)

The peak number of persistent inbound sockets
Outbound

Total number of outbound sockets created (SOG_OUTB_SOCKETS_CREATED)
The total number of outbound sockets created

Total number of persistent outbound sockets created (SOG_PERS_OUTBOUND_CREATED)
The total number of persistent outbound sockets created

Current number of non-persistent outbound sockets (SOG_CURR_OUTB_SOCKETS)
The current number of non-persistent outbound sockets

Current number of persistent outbound sockets (SOG_CURR_PERS_OUTB_SOCKETS)
The current number of persistent outbound sockets

Peak number of outbound sockets (SOG_PEAK_BOTH_OUTB_SOCKETS)
The peak number of outbound sockets

Peak number of non-persistent outbound sockets (SOG_PEAK_OUTB_SOCKETS)
The peak number of non-persistent outbound sockets

Peak number of persistent outbound sockets (SOG_PEAK_PERS_OUTB_SOCKETS)
The peak number of persistent outbound sockets

Chapter 6. CICS HTTP support: Performance and tuning  265

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/statistics/dfht3_stats_tcpip_global.html


Obtaining a view of connection persistence for connections into a TCPIPSERVICE

The following statistics in TCP/IP services: Resource statistics can give you a view of connection
persistence for connections into a specific TCPIPSERVICE:

Total Connections (SOR_TOTAL_CONNS)
The total number of connections made for the TCP/IP service

Non-Persistent Connections (SOR_TCPIPS_NON_PERSIST)
The number of connections where CICS did not allow the Web client to have a persistent connection

Maximum Persistent Connections (SOR_TCPIPS_MAX_PERSIST)
The maximum number of persistent connections from Web clients that the CICS region accepts at any
one time

Made non-persistent at MAXPERSIST (SOR_NONP_AT_MAXPERSIST)
The number of times a new persistent connection was made non-persistent because MAXPERSIST
was reached

Requests processed (SOR_REQUESTS)
The number of requests processed by the TCP/IP service

Many factors control connection persistence. For details, see How CICS web support handles persistent
connections. Note that IPIC connections are always persistent. If there are suddenly a lot more non-
persistent connections than normal, check whether performance tuning temporarily disallowed
connection persistence to allow the region to recover from overloading. For more information, see
“Performance tuning statistics” on page 263.

As non-persistent connections are by definition single use only, you can use the TCPIPSERVICE statistics
fields to calculate how many times persistent connections were reused:

Number of requests processed by existing persistent connections = Requests processed (SOR_REQUESTS) -
Total Connections (SOR_TOTAL_CONNS)

Note: If performance tuning for HTTP connections is active, CICS periodically closes persistent HTTP
connections to allow more efficient sharing of workload across regions that share IP endpoints. This limits
the maximum number of requests that can be processed by a connection.

Connection pooling for HTTP client performance
For CICS as an HTTP client, connection pooling can provide performance benefits where multiple
invocations of CICS web support applications, web services applications, or the HTTP EP adapter make
connection requests for the same host and port, or where a web services application makes multiple
requests and responses.

By default, CICS closes a client HTTP connection after the connection has been used:

• For CICS web support applications that make HTTP client requests, CICS closes the connection when
the application program issues a WEB CLOSE command to notify CICS that it has finished using the
connection. If the application does not issue the WEB CLOSE command, CICS closes the connection
when end of task is reached.

• For CICS web services applications that are service requesters, CICS closes the connection after the
application program has issued its service request using the INVOKE SERVICE command and received
the response if appropriate.

• For CICS event processing, CICS closes the connection after the HTTP EP adapter has emitted the
business event.

When you set up connection pooling, instead of closing the client HTTP connection after use, CICS keeps
the connection open and stores it in a pool in a dormant state. The dormant connection can be reused by
the same application or by another application that connects to the same host and port. When an
application issues a command to open a client HTTP connection, CICS checks whether a dormant
connection is available in the pool for that host and port, and if so supplies it to the application rather than
opening a new connection.
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When a pooled connection is reused, CPU use is reduced compared with opening a new connection. An
additional saving occurs where connections use the Secure Sockets Layer (SSL), because the security
measures do not need to be repeated when the connection is reused. Applications reuse a pooled
connection in exactly the same way as they use a new connection, and the connection can be pooled
again after use.

Connection pooling is specified by the SOCKETCLOSE attribute in a URIMAP resource, which defines if,
and for how long, CICS keeps a socket open after the CICS application has finished using its client HTTP
connection. Applications must specify the URIMAP resource when they open the connection.

The HTTP EP adapter requires a URIMAP resource to open a connection. URIMAP resources are not a
requirement for HTTP client requests from CICS web support and web services applications, but they
have a number of advantages. In addition to enabling connection pooling, when you use URIMAP
resources for client connections, system administrators can manage any changes to the endpoint of the
connection, and you do not need to recompile applications if the URI of a service provider changes. For
CICS web support applications, URIMAP resources can also be used to store and administer client
certificates and cipher suite codes for SSL.

Connection pooling can provide performance benefits for CICS applications that use client HTTP
connections in the following scenarios:

• Multiple CICS web support applications, either invocations of the same application or different
applications, make HTTP client requests to the same host and port.

• Multiple CICS web services applications that are service requesters make requests to the same web
service provider.

• A CICS web services application that is a service requester makes multiple requests to a web service
provider in a single task.

• The HTTP EP adapter sends events frequently to the HTTP server specified in the event binding.

Connection pooling does not enhance the performance of a single invocation of a user-written CICS web
support application, or a single web services request and response, or a single event emission.

How CICS manages connection pooling

Connection pooling is transparent to applications, and does not require any involvement from
administrators after the SOCKETCLOSE attribute is specified in the URIMAP resource definition. CICS
holds a pool of connections for each URIMAP resource that has a nonzero SOCKETCLOSE attribute.

Before placing an HTTP client connection in a pool of connections, CICS checks the state of the
connection. Connections are not placed in the pool if they are found or suspected to be in a poor state. For
example, the following situations would cause the connection to be in a poor state:

• The last HTTP response from the server was not OK.
• The number of requests and the number of responses on the connection are not equal.
• The connection still has data present on it that the CICS application did not receive.
• A CICS web support application that opened the connection did not issue a WEB CLOSE command to

notify CICS that it had finished using the connection.

When an application issues a command to open an HTTP client connection and suitable connections are
available in the pool, CICS selects the connection that was placed in the pool most recently. This practice
enables older connections to expire in the situation where connection usage has reduced from a previous
peak level. When a pooled connection reaches the time limit that you specified in the SOCKETCLOSE
attribute without being reused, CICS closes the socket and removes the connection.

CICS also closes dormant connections in a pool in the following situations:

• The web server closes a connection.
• You discard the URIMAP resource associated with the pool of connections.
• MAXSOCKETS is reached for the CICS region, and sockets are required for use by different connections.
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The resource statistics for URIMAP definitions, in DFHWBRDS, include statistics for connection pooling as
follows:

• The SOCKETCLOSE setting for the URIMAP resource
• The current and peak number of pooled connections in the pool for this URIMAP resource
• The number of dormant connections that CICS reclaimed from the pool because the CICS region had

reached the MAXSOCKETS limit
• The number of dormant connections that were not reused and expired while they were in the pool

These statistics are reported in the DFHSTUP and DFH0STAT reports.

The number of times that a connection is reused is reported region-wide in TCP/IP: Global statistics.

How to determine a SOCKETCLOSE value for Outbound Connection Pooling in CICS

Start by specifying a SOCKETCLOSE value of one minute 000100 (hhmmss) or a value of your choosing.
Then, make use of your DFHSTUP statistics output or use the STAT transaction online to capture URIMAP
Resource statistics. Specifically observing the following four statistics:

• URIMAP Socket pool size
• URIMAP Peak socket pool size
• URIMAP Sockets reclaimed
• URIMAP Sockets timed-out

You should not be too concerned about the "Socket pool size" or "Peak socket pool size" as they are
purely influenced by the number of concurrent requests using the specific URIMAP. A high value is only a
concern if the specific URIMAP is not expected to be being used very much.

The number of "Sockets reclaimed" is where CICS had no available sockets to service a new request so
one of the idle sockets from the pool was closed and reused for the new request. If the number of
reclaimed sockets is high then that could indicate the system is processing too much "sockets based
work" compared to its MAXSOCKETS setting within the CICS system initialization parameters (DFHSIT). If
this is your case you should consider increasing your MAXSOCKETS setting.

The most important value for tuning is the number of "Sockets timed out". If there is a huge number being
timed out then this would indicate that one of the following is happening:

• The sockets are not being used very much and are instead remaining idle in the pool until the
SOCKETCLOSE value is reached

• The SOCKETCLOSE value is too small and the sockets are getting closed before they have had a chance
to get reused

In this case, the value for SOCKETCLOSE should be increased to allow the sockets to get reused. If the
number of timeouts is 0 or a relatively small number then that indicates the pool is working well and the
sockets are being actively reused.

Setting up connection pooling
If any of the client HTTP connections in your CICS regions are good candidates for connection pooling,
you can use CICS resources to set it up.

About this task
For information about how connection pooling can improve performance, see “Connection pooling for
HTTP client performance” on page 266.
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Procedure

1. Specify the SOCKETCLOSE attribute in the URIMAP resource definitions for the selected client HTTP
connections for CICS web support, CICS web services, or CICS event processing. You can choose the
length of time for which CICS keeps each pooled connection open before discarding it.
For information about the SOCKETCLOSE attribute, see URIMAP resources.

2. For CICS web support and web services applications, ensure that CICS applications are specifying the
URIMAP resource definitions on the commands to open the client HTTP connections.
CICS web support applications open a client HTTP connection by using the WEB OPEN command. CICS
web services applications open a client HTTP connection by using the INVOKE SERVICE command, or
its synonym INVOKE WEBSERVICE. The applications must not specify the URI directly in the
command, or for service requesters, use a URI from the web service description.

3. For CICS web support applications only, verify that the application does not use the option
CLOSESTATUS(CLOSE) on any of the WEB SEND or WEB CONVERSE commands that it issues.
CLOSESTATUS(CLOSE) requests the server to close the connection, and closed connections cannot
be pooled.

4. For CICS web support applications only, verify that the application is issuing a WEB CLOSE command
when it finishes using the client HTTP connection.
CICS does not place connections in the pool if CICS web support applications do not issue the WEB
CLOSE command, in case the connections are not in a good state. In CICS web services applications,
the INVOKE SERVICE command completes the use of the connection by the application, so CICS web
services applications do not have to issue any additional commands to complete their use of the
connection.

Results
CICS keeps the HTTP connection open and stores it in a pool for reuse.
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Appendix A. HTML coded character sets
This reference lists the supported IANA-registered character set names (specified as charset= values in
HTTP headers), and the IBM CCSID equivalents.

All of these values are valid for code page conversion options on the following commands:

• WEB RECEIVE (Client)
• WEB RECEIVE (Server)
• WEB SEND (Client)
• WEB SEND (Server)
• WEB CONVERSE
• DOCUMENT RETRIEVE
• WEB READ FORMFIELD
• WEB STARTBROWSE FORMFIELD

Table 21. Coded character sets

Language Coded character set IANA charset IBM CCSID

Albanian ISO/IEC 8859-1 iso-8859-1 819

Arabic ISO/IEC 8859-6 iso-8859-6 1089

Bulgarian Windows 1251 windows-1251 1251

Byelorussian Windows 1251 windows-1251 1251

Catalan ISO/IEC 8859-1 iso-8859-1 819

Chinese (simplified) GB gb2312 1381 or 5477

Chinese (traditional) Big 5 big5 950

Croatian ISO/IEC 8859-2 iso-8859-2 912

Czech ISO/IEC 8859-2 iso-8859-2 912

Danish ISO/IEC 8859-1 iso-8859-1 819

Dutch ISO/IEC 8859-1 iso-8859-1 819

English ISO/IEC 8859-1 iso-8859-1 819

Estonian ISO/IEC 8859-1 iso-8859-1 819

Finnish ISO/IEC 8859-1 iso-8859-1 819

French ISO/IEC 8859-1 iso-8859-1 819

German ISO/IEC 8859-1 iso-8859-1 819

Greek ISO/IEC 8859-7 iso-8859-7 813

Hebrew ISO/IEC 8859-8 iso-8859-8 916

Hungarian ISO/IEC 8859-2 iso-8859-2 912

Italian ISO/IEC 8859-1 iso-8859-1 819

Japanese Shift JIS x-sjis or shift-jis 943 (932, a subset of
943, is also valid)
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Table 21. Coded character sets (continued)

Language Coded character set IANA charset IBM CCSID

Japanese EUC Japanese euc-jp 5050 (EUC)

Korean EUC Korean euc-kr 970 (for AIX® or Unix)

Latvian Windows 1257 windows-1257 1257

Lithuanian Windows 1257 windows-1257 1257

Macedonian Windows 1257 windows-1257 1251

Norwegian ISO/IEC 8859-1 iso-8859-1 819

Polish ISO/IEC 8859-2 iso-8859-2 912

Portuguese ISO/IEC 8859-1 iso-8859-1 819

Romanian ISO/IEC 8859-2 iso-8859-2 912

Russian Windows 1251 windows-1251 1251

Serbian (Cyrillic) Windows 1251 windows-1251 1251

Serbian (Latin 2) Windows 1250 windows-1250 1250

Slovakian ISO/IEC 8859-2 iso-8859-2 912

Slovenian ISO/IEC 8859-2 iso-8859-2 912

Spanish ISO/IEC 8859-1 iso-8859-1 819

Spanish ISO/IEC 8859-15 iso-8859-15 923

Swedish ISO/IEC 8859-1 iso-8859-1 819

Turkish ISO/IEC 8859-9 iso-8859-9 920

Ukrainian Windows 1251 windows-1251 1251

Unicode UCS-2 iso-10646-ucs-2 1200 (growing) or
13488 (fixed)

Unicode UTF-16 utf-16 1200

Unicode UTF-16 big-endian utf-16be 1201

Unicode UTF-16 little-endian utf-16le 1202

Unicode UTF-8 utf-8 1208
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Appendix B. HTTP header reference for CICS web
support

In CICS web support, CICS automatically provides some HTTP headers on outbound messages and you
can also add your own headers. When messages are sent to CICS, CICS takes action in response to some
HTTP headers, and a user application program can take action in response to others. This reference
information describes how CICS web support handles HTTP headers.

The standard HTTP headers are described in the HTTP/1.1 specification (RFC 2616) and the HTTP/1.0
specification (RFC 1945). There are many possible HTTP headers, including extension headers that are
not part of the HTTP protocol specifications. For fuller listings, consult the HTTP specification to which
you are working. The HTTP protocol has more information about the HTTP specifications.

This topic explains the general use of HTTP headers in CICS web support, and the actions that CICS web
support takes for specific headers. Check the HTTP specification to which you are working for detailed
guidance and requirements about how you should use HTTP headers; for example, the correct format for
header values, and the contexts in which each header should be used.

HTTP headers on messages received by CICS

• When an HTTP request or response is received by CICS, some of the HTTP headers are used to
determine actions that CICS web support takes. Table 22 on page 275 shows the actions taken by CICS
for headers on an HTTP request. Table 23 on page 276 shows the actions taken by CICS for headers on
an HTTP response. Other headers are not used by CICS, and it is up to the user application to take
appropriate action in response to these.

• All headers received for a message, whether or not they have been used by CICS, are made available to
a user application for inspection using the WEB READ HTTPHEADER command and the HTTP header
browsing commands. CICS does not alert the user application to the presence of any particular header
on a message. Ignore any headers that the application does not need or understand.

• CICS already deals with the MUST level requirements in the HTTP/1.1 specification relating to actions
that the server or client must perform on receiving a message. Because of this, you may receive and use
a request or response without examining the headers. However, you probably need to examine the
headers for information relating to actions that you take in future communications with the web client
or server.

• HTTP headers consist of a header name and header value, separated by a colon. The HTTP/1.1
specification states that a single space is preferred between the colon and the header value, and that
this common form should be followed. In the HTTP/1.0 specification, this single space was a
requirement, but the HTTP/1.1 specification permits applications to use more spaces or no spaces. To
preserve backwards compatibility, CICS requires the common form of a single space in some headers
where action is taken by CICS during message processing (such as the Content-Length header). If you
are designing an application that sends HTTP requests to CICS, ensure that this common form is
followed for all HTTP headers, as recommended in the HTTP/1.1 specification. The EXEC CICS WEB
WRITE HTTPHEADER command produces headers with the appropriate format, and any headers
written automatically by CICS are in the appropriate format.

HTTP headers on messages sent out from CICS

• On an HTTP request or response that is sent out from CICS with HTTP/1.1 as its version, CICS
automatically supplies key headers that should normally be written for a basic message to be compliant
with the HTTP/1.1 specification. On an HTTP response with HTTP/1.0 as its version, CICS automatically
supplies a smaller number of headers. Some of these headers are generated by CICS for every
message, and some are produced because of options that you specify on the WEB SEND command in a
user application program. Table 24 on page 277 and Table 25 on page 277 list the headers that are
written for each HTTP version, and the source of the header.

If the user application program writes a header that CICS also generates, CICS handles this depending
on the situation:
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– For CICS as an HTTP server, if the header is appropriate for a response CICS does not overwrite it,
but allows the application's version to be used.

– For CICS as an HTTP client, if the header is appropriate for a request CICS does not allow the
application to write it, and returns an error response to the WEB WRITE HTTPHEADER command. The
exceptions are the TE header and the Content-Type header. Application programs can add further
instances of the TE header. They can also supply the Content-Type header, if the required header
needs to contain spaces or more than 56 characters, and so cannot be specified on the MEDIATYPE
option of the WEB SEND command.

– If the header is not normally appropriate for the type of message (request or response), CICS allows
it, as is the case for all user-defined headers. This situation should not occur if your message is
compliant with the HTTP specification to which you are working.

• A user application program can add further HTTP headers to a request or response using the WEB
WRITE HTTPHEADER command. CICS tolerates and passes on any additional HTTP headers. Note that
for CICS as an HTTP server, if you are providing a static response with a CICS document template or
HFS file, headers cannot be added to the response beyond those that are automatically supplied by
CICS.

• CICS does not check the name or value of user-written headers. You should ensure that your
application program is providing correct, and correctly formatted, information in a way that meets the
HTTP specification to which you are working. Be particularly careful to check the HTTP specification for
applicable requirements if your application is performing complex actions. There are likely to be
important (MUST or SHOULD level) requirements to provide certain headers to describe these actions.
For example, special HTTP headers are required if you are performing the following actions:

– Responding to, or making, conditional requests using the modification date of the document or an
entity tag.

– Varying the content of a response according to the client capability or national language
requirements of the web client.

– Providing a response, or making a request, that involves a range of a document rather than the full
document.

– Providing cache control information for a response.

The use of certain status codes on your response might also require particular HTTP headers. For
example, if you use the status code 405 (Method not allowed), you must use the Allow header to state
the methods that are allowed. Appendix C, “HTTP status code reference for CICS web support,” on
page 279 has more information about the use of status codes.

The Upgrade header

• Be aware of the special case that in CICS web support, protocol upgrading is not supported. This
means:

– For CICS as an HTTP server, it is not possible for an application to take any action in response to an
Upgrade header sent by a web client.

– For CICS as an HTTP client, the Upgrade header must not be written on requests.

CICS does not support a switch in HTTP version during a connection, and upgrades in the security layer
are not supported.

CICS as an HTTP server: Headers where CICS takes action on receiving an HTTP request

Table 22 on page 275 shows the action that CICS takes for certain headers on a request received from a
web client.
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Table 22. CICS as an HTTP server: CICS actions for headers on an HTTP request

Header received from web client Action taken by CICS where
response is to be handled by user
application program

Action taken by CICS where
response is to be provided by
static document

Authorization Passes supplied user ID and
password to RACF for verification,
and rejects request if these are
invalid.

As for application-generated
response.

Connection Carries out web client's request for
connection close after sending
response.

As for application-generated
response.

Content-Length CICS requires the Content-Length
header on all inbound HTTP/1.1
messages that have a message
body. If a message body is present
but the header is not provided, or
its value is inaccurate, the socket
receive for the faulty message or
for a subsequent message can
produce unpredictable results. For
HTTP/1.0 messages that have a
message body, the Content-Length
header is optional.

Although a message body is not
used in processing for a static
response, it must still be received
from the socket, so the same
requirements apply as for an
application-generated response.

Content-Type Parses header to identify media
type and character set for code
page conversion.

Parses header to identify character
set for code page conversion of
response.

Expect Sends 100-Continue response to
web client and waits for remainder
of request.

As for application-generated
response.

Host If this header is not present and the
client is HTTP/1.1, sends 400 (Bad
Request) response to web client.

As for application-generated
response.

If-Modified-Since No action by CICS. User
applications could either check for
the presence of this header and
respond as appropriate, or ignore
the header and assume that the
application-generated response
has been modified.

Document template: Assumes that
the response has been modified
and sends the requested item. HFS
file: Checks modification date and
responds according to result of
check. Sends 304 response if item
has not been modified.

If-Unmodified-Since If header is present, always sends
412 (Precondition Failed) response
to web client, indicating that the
response has been modified since
the specified time. (This means that
user applications do not have to
check for the presence of this
header.)

Document template: As for
application-generated response,
assumes that the response has
been modified and sends 412
response. HFS file: Checks
modification date and responds
according to result of check.

Trailer Makes individual trailing headers
available to application through
WEB READ HTTPHEADER
command.

Chunked messages are not suitable
for a static response.
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Table 22. CICS as an HTTP server: CICS actions for headers on an HTTP request (continued)

Header received from web client Action taken by CICS where
response is to be handled by user
application program

Action taken by CICS where
response is to be provided by
static document

Transfer-Encoding For "chunked", receives all chunks
and assembles into single message
to pass to application. For anything
other than "chunked", sends 501
(Not Implemented) response to
web client. The Transfer-Encoding
header remains on the message,
but it is for information only.

Chunked messages are not suitable
for a static response.

Warning Writes warning text to the TS queue
CWBW. If more than 128
characters are used, the warning
text is truncated.

As for application-generated
response.

CICS as an HTTP client: Headers where CICS takes action on receiving an HTTP response

Table 23 on page 276 shows the action that CICS takes for certain headers on a response received from a
server.

Table 23. CICS as an HTTP client: CICS actions for headers on an HTTP response

Header received from server Action taken by CICS

Connection Carries out server's request for connection close after receiving response.

Content-Length CICS requires the Content-Length header on all inbound HTTP/1.1
messages that have a message body. If a message body is present but the
header is not provided, or its value is inaccurate, the socket receive for the
faulty message or for a subsequent message can produce unpredictable
results. For HTTP/1.0 messages that have a message body, the Content-
Length header is optional.

Content-Type Parses header to identify media type and character set for code page
conversion.

Trailer Makes trailing headers available to application through WEB READ
HTTPHEADER command.

Transfer-Encoding For "chunked", receives all chunks and assembles into single message to
pass to application. For anything other than "chunked", sends 501 (Not
Implemented) response to web client. The Transfer-Encoding header
remains on the message, but it is for information only.

Warning Writes warning text to the TS queue CWBW. If more than 128 characters are
used, the warning text is truncated.

CICS as an HTTP server: Headers that CICS writes for an HTTP response

Table 24 on page 277 shows the headers that CICS writes when responding to a request from a web
client, the HTTP versions for which the headers are used, and the source of the information that CICS
provides in the header.
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Table 24. CICS as an HTTP server: CICS-written headers for an HTTP response

Header written by
CICS

HTTP
version

Source where response is handled
by user application program

Source where response is provided
by static document

Connection 1.0 and
1.1

CLOSESTATUS option on WEB SEND
command. If no close is specified,
and client is HTTP/1.0, Keep-Alive is
sent. If close is specified,
Connection: close is sent, or for
HTTP/1.0 client Keep-Alive is
omitted. CICS also sends Connection:
close if connection throttling is in
place for the port, specified by the
limit in the MAXPERSIST attribute of
the TCPIPSERVICE definition.

Keep-Alive is sent on static
responses.

Content-Length
(unless chunked
transfer-coding is
used)

1.0 and
1.1

Where response body is a buffer of
data, the length is taken from the
FROMLENGTH option on the WEB
SEND command. Where response
body is a CICS document, the length
is calculated by CICS.

Calculated by CICS.

Content-Type 1.0 and
1.1

MEDIATYPE option on WEB SEND
command, and character set for
response body. (Header is only
created when the MEDIATYPE option
was specified.)

MEDIATYPE attribute of URIMAP
resource definition for request, and
character set for response body.

Date 1.0 and
1.1

Current date and time generated by
CICS.

Current date and time generated by
CICS.

Last-Modified (for
static HFS files only)

1.0 and
1.1

Not provided for dynamic response.
Application should produce this
where feasible.

For HFS file: Modification date of file.
For document template: Not
provided.

Server 1.0 and
1.1

This will depend on your
HTTPSERVERHDR system
initialization parameter, by default
this will be preset to "IBM_CICS_
Transaction_Server/ 5.3.0(zOS)".

This will depend on your
HTTPSERVERHDR system
initialization parameter, by default
this will be preset to "IBM_CICS_
Transaction_Server/ 5.3.0(zOS)".

Transfer-Encoding 1.1 only CHUNKING option on WEB SEND
command.

Not used.

WWW-Authenticate 1.0 and
1.1

AUTHENTICATE attribute of
TCPIPSERVICE resource definition.

AUTHENTICATE attribute of
TCPIPSERVICE resource definition.

CICS as an HTTP client: Headers that CICS writes for an HTTP request

Table 25 on page 277 shows the headers that CICS writes when an application program sends out a client
request to a server, the HTTP versions for which the headers are used, and the source of the information
that CICS provides in the header.

Table 25. CICS as an HTTP client: CICS-written headers for an HTTP request

Header written by CICS HTTP
version

Source

Connection 1.0 and 1.1 CLOSESTATUS option on WEB SEND command. Value of
header is selected according to HTTP version of server.
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Table 25. CICS as an HTTP client: CICS-written headers for an HTTP request (continued)

Header written by CICS HTTP
version

Source

Content-Length (unless chunked
transfer-coding is used)

1.0 and 1.1 FROMLENGTH option on WEB SEND command.

Content-Type 1.0 and 1.1 MEDIATYPE option on WEB SEND command, and character
set for response body. (Header is only created when the
MEDIATYPE option was specified.) Application programs
can supply the Content-Type header instead of CICS, if the
required header needs to contain spaces or more than 56
characters, and so cannot be specified on the MEDIATYPE
option.

Date 1.0 and 1.1 Current date and time generated by CICS, in RFC 1123
format with GMT time.

Expect 1.1 only ACTION(EXPECT) option on WEB SEND command. This
option must only be used if your request has a message
body. CICS does not send the header to HTTP/1.0 servers. If
CICS does not yet know the server version, specifying the
ACTION(EXPECT) option triggers an additional request with
the OPTIONS method.

Host 1.0 and 1.1 HOST option on WEB OPEN command.

TE 1.1 only Always added by CICS when sent to HTTP/1.1 servers, to
state that chunked messages and trailers are accepted.
(Chunked messages are not sent by HTTP/1.0 servers.) The
application program may add further TE headers.

Transfer-Encoding 1.1 only The first WEB SEND command in a sequence to send a
chunked message (CHUNKING option on command
indicates chunked transfer-coding). Transfer-Encoding
header is written only on first chunk of message.

User-Agent 1.0 and 1.1 This will depend on your HTTPUSRAGENTHDR system
initialization parameter, by default this will be preset to
"IBM_CICS_ Transaction_Server/ 5.3.0(zOS)".
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Appendix C. HTTP status code reference for CICS
web support

HTTP status codes are provided to clients by a server, to explain the consequence of the client's request.
When CICS is an HTTP server, depending on the circumstances, either CICS web support or the user
application program selects an appropriate status code for each response. When CICS is an HTTP client,
most status codes received from the server are passed to the user application program for handling.

Status codes and reason phrases explains how status codes are used in HTTP responses.

For full information about the meaning and correct use of status codes, you should consult the HTTP
specification to which you are working. The HTTP protocol has more information about the HTTP
specifications.

This topic provides a brief summary of the HTTP/1.1 status codes as they relate to CICS web support.
When you are selecting status codes to be sent through the web error programs, or directly from a user
application, it is important to check the HTTP specification to which you are working. The HTTP
specification provides detailed guidance and requirements about how you should use status codes, such
as what should be the content of the response body, and what HTTP headers should be included.

Status codes for responses sent by CICS (when CICS is an HTTP server)

• CICS web support generates a response to a web client in the following circumstances:

– When CICS web support detects a problem in initial processing of a request from a web client; for
example, if required information is missing from the request, or if the request is sent too slowly and
the receive timeout is reached.

– When an installed URIMAP definition matches the request, but the URIMAP definition or virtual host
is disabled, or the resource for a static response cannot be read.

– When the matching URIMAP definition refers the request to an ATOMSERVICE resource definition,
but the ATOMSERVICE definition is disabled, or the CICS resource for the Atom feed cannot be read.

– When URIMAP matching fails, and the analyzer specified for the TCPIPSERVICE definition is unable
to process the request and passes control to a web error program.

– When neither the URIMAP definition, nor the analyzer and converter program processing, manages to
determine what application program should be executed to service the request.

– When an abend occurs in the analyzer program, converter program, or user-written application
program. This ensures that a response can be returned to the web client even though processing has
failed.

– When a URIMAP specifies a redirection response.
– When a web client is not authorized to access the resources needed to provide the response.

In these situations, CICS selects an appropriate status code and creates a default response. Table 26
on page 280 describes the status codes used by CICS for these purposes. Note that CICS does not
generate a response in situations where the user-written application program has completed
processing successfully and wants to return a response indicating an error; for example, where the
client has specified a method not supported for the resource. The user-written application creates the
response in this case.

• For most CICS-generated responses with 4xx and 5xx status codes, the response sent to the web client
can be modified by tailoring the user-replaceable web error programs DFHWBEP and DFHWBERX.
CICS-generated responses involving 1xx, 2xx and 3xx status codes cannot be modified. The web error
programs can change the status code, reason phrase, HTTP headers and message body for the
response. When you modify the web error programs, ensure that your selection of status code and
response content is made according to the requirements in the HTTP specification to which you are
working. Web error programs explains how to tailor the web error programs.
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• A user application program that responds to a client's request needs to select a suitable status code for
the response. The status code can convey the following messages to a web client:

– The request has completed as expected.
– There is an error that prevents fulfillment of the request.
– The client needs to do something else in order to complete its request successfully. This could

involve following a redirection URL, or amending the request so that it is acceptable to the server.

The status code influences the other content of the response, that is, the message body and HTTP
headers. Sending an HTTP response from CICS as an HTTP server tells you how to assemble and send a
response, including a status code and reason phrase.

Status codes for responses received by CICS (when CICS is an HTTP client)

• When CICS is an HTTP client, CICS web support passes responses with most status codes directly to
the user application program for handling. A small number of status codes are handled by CICS and are
not returned to the application. If a status code is passed to the application, this indicates that CICS has
not taken any action in response to the code, and it is the application's responsibility to check the code
and take appropriate action.

• You should design your user application to act appropriately when it receives a message with a status
code indicating an error. In particular, you should always check the status code in the following
circumstances:

– If you intend to make an identical request to the server, now or during a future connection.
– If you intend to make further requests to the server using this connection.
– If your application is carrying out any further processing that depends on the information you receive

in the response.

Check the HTTP specification to which you are working for guidance on what action is appropriate. The
HTTP/1.1 specification contains no MUST level requirements that demand further action from the
application on receiving a status code, but there are some SHOULD requirements, such as the
requirement to follow a redirection.

CICS as an HTTP server: Status codes that CICS provides to web clients

Table 26 on page 280 shows the status codes used in situations in which CICS provides a response to a
web client's request. Some of these responses can be tailored by modifying the web error programs. A
user application program may also use many of the status codes listed here.

Some status codes are only appropriate for HTTP/1.1 clients. CICS does not return these status codes to
HTTP/1.0 clients.

Table 26. CICS as an HTTP server: Status codes for CICS-generated responses sent to web clients

Status code and
reason phrase
provided

Sent to
HTTP/1.0
clients?

Situation(s) in which this response is provided Can be
modified in
web error
program?

100 Continue No Web client sent an Expect header. No

200 OK Yes Delivery of normal response. No

201 Created Yes A new object has been created. No

301 Moved
Permanently

Yes URIMAP definition specifies a redirection, with attribute
REDIRECTTYPE (PERMANENT).

No

302 Found Yes URIMAP definition specifies a redirection, with attribute
REDIRECTTYPE (TEMPORARY).

No
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Table 26. CICS as an HTTP server: Status codes for CICS-generated responses sent to web clients (continued)

Status code and
reason phrase
provided

Sent to
HTTP/1.0
clients?

Situation(s) in which this response is provided Can be
modified in
web error
program?

304 Not Modified Yes If-Modified-Since header was used on request, and CICS is
able to verify that the static response has not been modified.

Yes

400 Bad Request
(some situations:
Invalid Request)

Yes Syntax error in request (such as request line wrongly
specified, request incomplete, problem in Atom entry for
Atom POST or PUT request). OR Host header is not supplied
(HTTP/1.1 only). OR A PUT request without an If-Match
header was received. A client that wants to update an object
without knowing the current entity tag should specify If-
Match: *.

Yes

401 Basic
Authentication
Error

Yes User ID and password required for basic authentication. This
is determined by security settings for the TCPIPSERVICE
definition for the port.

Yes

403 Forbidden
(some situations:
Client
Authentication
Error)

Yes Basic authentication was not successful. OR There is a
problem with the client certificate. OR User is not authorized
to access a resource that is needed to provide the response,
such as an ATOMSERVICE resource definition, alias
transaction, CICS command used by a program, or CICS
resource containing response data.

Yes

404 Not Found
(some situations:
Program Not
Found, File Not
Found)

Yes The program specified to respond to the request is not
found. OR A resource that is needed to provide the response
is not found. OR A record is not found within a CICS resource
that is used to provide data for an Atom feed.OR An image
file is not found.

Yes

408 Request
Timeout

No Receive timeout for request has been exceeded. This is
determined by the SOCKETCLOSE attribute in the
TCPIPSERVICE definition for the port.

Yes

409 Conflict
(some situations:
Duplicate
resource)

Yes An existing object already exists with the specified URL, so
the new object is not created.

No

412 Precondition
Failed

Yes If-Unmodified-Since header was used on request. OR The
entity tag value on the If-Match header does not match the
entity tag for the object being updated.

Yes

417 Expectation
Failed

No Expect header received which did not have value "100-
continue".

No

500 Internal
Server Error
(some situations:
Resource Error)

Yes Abend in one of the programs involved with processing the
request and providing the response. OR Error reading z/OS
UNIX file for a static response.OR Error involving a resource
for an Atom feed, such as an error producing XML markup
from a resource record for use as Atom entry content.

Yes
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Table 26. CICS as an HTTP server: Status codes for CICS-generated responses sent to web clients (continued)

Status code and
reason phrase
provided

Sent to
HTTP/1.0
clients?

Situation(s) in which this response is provided Can be
modified in
web error
program?

501 Method Not
Implemented

Yes Method is not supported by CICS for this HTTP version.
(Includes methods that are supported but not in the way the
client requests, such as OPTIONS requests that cite a
specific resource.) OR Media type for request is "multipart/
byteranges", which is not supported. OR Transfer coding for
request is other than "chunked". (Note: Connection is closed
by CICS.)

Yes

503 Service
Unavailable

Yes A matching URIMAP definition exists, but either it is
disabled, or the virtual host of which it is a part is disabled.
OR A matching URIMAP definition references an
ATOMSERVICE resource definition that is disabled.OR The
resource specified in the URIMAP definition or
ATOMSERVICE definition for providing response data is
disabled.

Yes

505 Version Not
Supported

No HTTP version is higher than 1.1, and method is not
recognized for highest version supported by CICS.

Yes

CICS as an HTTP server: Status codes in user applications

Table 27 on page 282 shows each status code, describes its relevance for a user application, and
suggests appropriate actions, in accordance with the recommendations in the HTTP/1.1 specification.

Remember that CICS does not take any specific action that might be implied by these status codes, and
that CICS does not generally check their validity against the content of the message. You should ensure
that the status codes are correct and that you have taken any necessary action. Ensure that you check the
HTTP specification to which you are working, for further information and requirements that apply to each
status code.

Table 27. CICS as an HTTP server: Status codes for user-written responses sent to web clients

Status code
and usual
reason
phrase

Suitable
for
HTTP/1.0
client?

Situation(s) in which you might provide
this response

Effect on message body and HTTP
headers (where status code is
appropriate for a user application).
See HTTP specification for more
information.

100 Continue No Do not use. CICS handles Expect
requests and sends 100-Continue
response itself.

101 Switching
Protocols

No Do not use. CICS does not support
upgrades in HTTP version or security
protocol.

200 OK Yes You have fulfilled the request. A normal
response.

Provide normal response body.

201 Created Yes You have created a new resource. (Use
202 Accepted if the resource has not yet
been created.)

Message body content and one or more
headers required.
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Table 27. CICS as an HTTP server: Status codes for user-written responses sent to web clients (continued)

Status code
and usual
reason
phrase

Suitable
for
HTTP/1.0
client?

Situation(s) in which you might provide
this response

Effect on message body and HTTP
headers (where status code is
appropriate for a user application).
See HTTP specification for more
information.

202 Accepted Yes You have accepted the request but have
not yet processed it, and do not
guarantee to process it.

Message body content required.

203 Non-
Authoritative
Information

No Do not use. The headers that you supply
will give authoritative information.

204 No
Content

Yes You are not sending a message body,
perhaps because you only need to send
updated headers.

No message body permitted.

205 Reset
Content

No You want the client to clear the form that
initiated the request.

No message body permitted.

206 Partial
Content

No You support byte range requests, and
this response fulfils the request.

Normal response body. One or more
headers required.

300 Multiple
Choices

Yes You are able to provide more than one
version of the resource (for example,
documents in different languages).

Message body content and one or more
headers required.

301 Moved
Permanently

Yes Not recommended for issuing by user
application. Redirection can be managed
using the LOCATION and
REDIRECTTYPE attributes in the
URIMAP definition, so that CICS
generates a correct response without
calling an application program.
REDIRECTTYPE (PERMANENT) selects
this status code.

302 Found Yes Not recommended for issuing by user
application. When you use a URIMAP
definition for redirection,
REDIRECTTYPE (TEMPORARY) selects
this status code.

303 See Other No You want client to make a GET request
for another resource that gives a
response (in particular, a response about
the outcome of a POST request).

Message body content and one or more
headers required.

304 Not
Modified

Yes The client made a conditional request,
and the resource you are providing has
not changed. Note that a response that
is built dynamically by an application is
likely to be modified on every request.
For resources that do not change,
consider delivering a static response
using a URIMAP definition.

No message body permitted. (You can
use the DOCTOKEN option to specify a
document with no content.) One or
more headers required.

305 Use Proxy No You want client to go through a named
proxy for its request.

One or more headers required.
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Table 27. CICS as an HTTP server: Status codes for user-written responses sent to web clients (continued)

Status code
and usual
reason
phrase

Suitable
for
HTTP/1.0
client?

Situation(s) in which you might provide
this response

Effect on message body and HTTP
headers (where status code is
appropriate for a user application).
See HTTP specification for more
information.

307
Temporary
Redirect

No Not recommended for issuing by user
application. CICS uses the 302 status
code, rather than this status code, for
URIMAP redirection.

400 Bad
Request

Yes The client's request contains syntax
errors or similar problems, and you
cannot process it.

Message body content required.

401
Unauthorized

Yes Do not use. CICS handles basic
authentication process when this is
specified in the security settings for the
TCPIPSERVICE definition.

403 Forbidden Yes You are refusing the client's request. Message body content required.

404 Not
Found

Yes You do not have a resource to respond to
the request; or you want to refuse the
request without explanation; or no other
status code is relevant.

Message body content required.

405 Method
Not Allowed

No The client used a method that is not
supported for this resource.

Message body content and one or more
headers required.

406 Not
Acceptable

No The client made a conditional request
using Accept headers, but you do not
have a version of the resource that
meets their criteria. Note that as an
alternative to using this status code, you
can send a response which does not
meet the conditions.

Message body content required.

407 Proxy
Authentication
Required

No Do not use. CICS does not act as a proxy
server.

408 Request
Timeout

No Not recommended for issuing by user
application. Timeout should be specified
for handling by CICS web support using
the SOCKETCLOSE attribute on the
TCPIPSERVICE definition.

409 Conflict No The resource has been changed and the
client's request cannot be applied to the
resource as it now stands.

Message body content required.

410 Gone No The resource is permanently
unavailable.

Message body content required.

411 Length
Required

No Do not use. CICS requires HTTP/1.1
requests to specify the Content-Length
header for successful socket receive.
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Table 27. CICS as an HTTP server: Status codes for user-written responses sent to web clients (continued)

Status code
and usual
reason
phrase

Suitable
for
HTTP/1.0
client?

Situation(s) in which you might provide
this response

Effect on message body and HTTP
headers (where status code is
appropriate for a user application).
See HTTP specification for more
information.

412
Precondition
Failed

No The client made a conditional request
and the conditions were not met.

Message body content required.

413 Request
Entity Too
Large

No Not recommended for issuing by user
application. Request size limit should be
specified for handling by CICS web
support using the MAXDATALEN
attribute on the TCPIPSERVICE
definition.

414 Request
URI Too Long

No The client's request URL is too large for
your application to process.

Message body content required.

415
Unsupported
Media Type

No The message body sent by the client has
a media type or content coding that you
do not support.

Message body content required.

416
Requested
Range Not
Satisfiable

No The client made a request using the
Range header field (but not the If-Range
header field), and although you support
byte-ranges, that range was not present
in the resource.

Message body content and one or more
headers required.

417
Expectation
Failed

No Do not use. CICS handles Expect
requests.

500 Internal
Server Error

Yes You cannot handle the request because
of an application or system error.

Message body content required.

501 Not
Implemented

Yes The method for the client's request is
not supported. This status code should
only be issued where the client is HTTP/
1.0, or you are using the USER protocol.
For the HTTP protocol, during initial
processing, CICS rejects any requests
with methods that are not recognized. If
the method is recognized but does not
apply for the resource, 405 Method Not
Allowed should be used for HTTP/1.1
clients.

Message body content required.

502 Bad
Gateway

Yes Do not use. CICS does not act as a proxy
or gateway.

503 Service
Unavailable

Yes A user application is unlikely to be in a
relevant situation to use this status
code, unless it needs to access another
application or system which is
temporarily unavailable.

Message body content and one or more
headers required.

504 Gateway
Timeout

No Do not use. CICS does not act as a proxy
or gateway.
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Table 27. CICS as an HTTP server: Status codes for user-written responses sent to web clients (continued)

Status code
and usual
reason
phrase

Suitable
for
HTTP/1.0
client?

Situation(s) in which you might provide
this response

Effect on message body and HTTP
headers (where status code is
appropriate for a user application).
See HTTP specification for more
information.

505 HTTP
Version Not
Supported

No Do not use. CICS matches HTTP version
of response to HTTP version of client's
request.

CICS as an HTTP client: Handling status codes received on responses from servers

Table 28 on page 286 shows the status codes that you might receive on a response from a server, and
suggests appropriate actions, in accordance with the recommendations in the HTTP/1.1 specification.
The WEB RECEIVE command returns the status code and status text. Bear in mind that the server might
have changed the text of the reason phrase from the text that is suggested in the HTTP specification.

Ensure that you check the HTTP specification to which you are working, for further information and
requirements that apply to each status code.

Table 28. CICS as an HTTP client: Handling status codes on responses

Status code and
probable reason
phrase

Why would the server send this status
code?

Suggested action by user application
program

100 Continue You used the ACTION(EXPECT) option on
the WEB SEND command, and the server
accepts the full message send.

CICS handles this response by sending
message body. User application will not
receive this status code.

101 Switching
Protocols

Should not be used. Protocol upgrading is
not supported by CICS web support.

User application should not receive this
status code.

200 OK Request is successful. A normal response. Continue processing the response as
planned.

201 Created You requested creation of a resource and
this has been done.

Continue processing the response as
planned.

202 Accepted Server accepts your request but processing
has not yet been carried out.

Continue processing the response as
planned, but note that any changes you made
have not necessarily been committed, and
might never be committed.

203 Non-
Authoritative
Information

Headers relating to message body are not
an exact match with those on the server.

Continue processing the response as
planned.

204 No Content There is no message body for the response. Continue processing the response as
planned, but note that there is no body to
receive.

205 Reset
Content

Server wants you to clear the form that
caused the request to be sent.

Clear any form fields that you were using to
make the request.

206 Partial
Content

You made a request using the Range header
field and it was successful.

Continue processing the response as
planned.
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Table 28. CICS as an HTTP client: Handling status codes on responses (continued)

Status code and
probable reason
phrase

Why would the server send this status
code?

Suggested action by user application
program

300 Multiple
Choices

Different versions of the resource are
available.

Choose your preferred version from the
information provided, and make a new
request. There might be a Location header
containing the URL for the server's preferred
choice.

301 Moved
Permanently

The resource has moved permanently to a
new location.

Make a new request to the URL supplied by
the server (probably in the Location header),
and use this for all future requests.

302 Found The resource has moved temporarily to a
new location.

Make a new request to the URL supplied by
the server (probably in the Location header),
but do not use this for future requests.

303 See Other Server wants you to make a GET request for
another resource that gives a response (in
particular, a response about the outcome of
a POST request).

Make a new request, using the GET method,
to the URL supplied by the server (probably in
the Location header).

304 Not Modified You made a conditional request and the
resource has not changed.

Refer to your existing stored version of the
response for the information, but do not
present this to a user as current information,
because CICS does not support caching.

305 Use Proxy Server wants you to use the specified proxy
for your request.

Make a new request using the URL supplied
by the server (in the Location header).

307 Temporary
Redirect

As for 302 Found. As for 302 Found.

400 Bad Request Something is wrong with the syntax of your
request.

Check the request, make changes and try
again.

401
Unauthorized

Server requires authorization; or your
supplied authorization has been refused.

See CICS(r) as an HTTP client: authentication
and identification.

403 Forbidden Server refuses your request. Do not repeat the request. Message body
might contain information about why the
request was refused.

404 Not Found Server has not found the requested URL. Check that the request was specified as you
intended. The situation might be temporary,
so consider trying again later.

405 Method Not
Allowed

You specified a method which is not
supported for this resource.

Read the Allow header in the response for a
list of supported methods, and make a new
request using one of these methods, if
wanted.

406 Not
Acceptable

You made a request using Accept headers,
and the server does not have a version of
the resource that meets your criteria.

Examine the message body for information
about resources that the server does have,
and make a new request for one of these, if
wanted.

407 Proxy
Authentication
Required

A proxy server requires authorization; or
your supplied authorization has been
refused.

See CICS(r) as an HTTP client: authentication
and identification.
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Table 28. CICS as an HTTP client: Handling status codes on responses (continued)

Status code and
probable reason
phrase

Why would the server send this status
code?

Suggested action by user application
program

408 Request
Timeout

Server will not wait any longer for you to
complete your request.

Repeat the request, if wanted. Check that
your application is not taking a long time to
assemble and send the message.

409 Conflict The resource has been changed and your
request cannot be applied to the resource
as it now stands.

Examine the message body for information
about the cause of the conflict, and make a
new request based on this information, if
wanted.

410 Gone The resource is permanently unavailable. Do not repeat the request in the future.

411 Length
Required

Server requires you to supply a Content-
Length header.

CICS normally provides that header, unless
you are using the USER protocol on the
TCPIPSERVICE definition. If that is the case,
write the header yourself and make a new
request.

412 Precondition
Failed

You made a conditional request and the
conditions were not met.

Continue processing as planned, noting that
any action specified in your request has not
been applied.

413 Request
Entity Too Large

Your message body is too large for the
server to process.

Read the Retry-After header to see if the
situation is temporary. You may wait, or
reduce the length of the message body, and
try again. You might need to open a new
connection.

414 Request URI
Too Long

Your request URL is too long for the server
to process.

Check the request and try again, or abandon
the request.

415 Unsupported
Media Type

You sent a message body with a media type
or content coding that the server does not
support for this resource.

Check the media type that you have specified,
and correct and repeat the request if you
have made an error.

416 Requested
Range Not
Satisfiable

You made a request using the Range header
field, but that range was not present in the
resource.

Read the Content-Range header to see the
actual length of the resource, and repeat the
request with an appropriate byte range, if
wanted.

417 Expectation
Failed

You used the ACTION (EXPECT) option on
the WEB SEND command, but the server
does not accept the full message send.

You may repeat the same request without the
ACTION (EXPECT) option, but it will be likely
to fail again. Check the request is correctly
specified, and correct and repeat the request
if you have made an error.

500 Internal
Server Error

Server cannot handle the request because
of an unexpected error.

The situation might be temporary, so consider
trying the request again later.

501 Not
Implemented

Server does not support this request
method.

Do not repeat the request.

502 Bad
Gateway

Your request has gone through a proxy or
gateway, which has received an invalid
response from another server.

The situation might be temporary, so consider
trying the request again later, perhaps
avoiding the proxy or gateway if possible.
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Table 28. CICS as an HTTP client: Handling status codes on responses (continued)

Status code and
probable reason
phrase

Why would the server send this status
code?

Suggested action by user application
program

503 Service
Unavailable

Server is temporarily unable to handle the
request.

Read the Retry-After header to see if the
condition is temporary, and if it is, try again
after that time.

504 Gateway
Timeout

Your request has gone through a proxy or
gateway, which did not receive a timely
response from another server.

Repeat the request if wanted, perhaps
avoiding the proxy or gateway if possible.

505 HTTP
Version Not
Supported

Should not be used. CICS web support
sends client requests with HTTP/1.1 as
version.

User application should not receive this
status code.
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Appendix D. HTTP method reference for CICS web
support

HTTP requests include a method, which is a keyword explaining the action that the client wants the server
to perform for the material included in the request. CICS web support implements all the standard
request methods defined by the HTTP/1.1 specification, and some additional methods that were
accepted in earlier CICS releases.

For detailed guidance on the correct use of methods and the correct actions in response to them, and
information on applicable requirements, always consult the HTTP specification to which you are working.

• For requests received from HTTP/1.1 web clients (when CICS is an HTTP server), the standard methods
defined by the HTTP/1.1 specification are accepted. These methods are GET, HEAD, POST, PUT,
OPTIONS, and DELETE.

• For requests received from HTTP/1.0 web clients and earlier (when CICS is an HTTP server), the
methods defined by the HTTP/1.0 specification, and some additional methods, are accepted:

– The methods defined by the HTTP/1.0 specification are GET, HEAD, and POST.
– The additional methods accepted on HTTP/1.0 requests inbound to CICS are PUT, DELETE, LINK,

UNLINK, and REQUEUE.
• For requests made by CICS as an HTTP client:

– The standard methods defined by the HTTP/1.1 specification can be used. These methods are GET,
HEAD, POST, PUT, OPTIONS, and DELETE.

– The LINK, UNLINK, and REQUEUE methods are not supported for this purpose.
– The version of the request is always given as HTTP/1.1.
– Some HTTP/1.0 servers may accept methods that are not defined in the HTTP/1.0 specification. An

HTTP/1.0 server should return the status code 501 Not Implemented for methods that it cannot
accept.

• Message bodies are appropriate for some request methods and inappropriate for others.

– For CICS as an HTTP server, you should be aware that some clients (particularly user-written clients)
might send a message body for a method where it is not appropriate, and you can handle or ignore
this as you choose.

– For CICS as an HTTP client, CICS bars the sending of a message body for methods where it is
inappropriate, and requires it for methods where it is appropriate.

• When CICS is an HTTP server, for requests received from a web client, CICS web support takes a range
of actions in response to the method, depending on the method and the HTTP version of the client.

– Requests with most methods are passed directly to the application program for handling.
– CICS automatically returns appropriate responses for the OPTIONS method, without calling a user

application program.
– If a method is not implemented at the HTTP version for the request, CICS returns an error response

to the web client, without calling a user application program.
• In addition to the standard request methods defined in the HTTP specifications, nonstandard request

methods, known as extension methods, might be implemented by some servers.

– For CICS as an HTTP server, CICS web support does not accept requests with nonstandard methods
on the HTTP protocol. (Before CICS Transaction Server for z/OS, Version 5 Release 4, these requests
were accepted and processed as non-HTTP.) If you need to receive requests with nonstandard
methods, this can be done with the user-defined protocol (USER option on the TCPIPSERVICE
definition), where HTTP acceptance checks do not take place.
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– For CICS as an HTTP client, you cannot use nonstandard methods on EXEC CICS WEB API
commands.

The tables in this reference list the circumstances in which each method may be used. Consult the HTTP
specification to which you are working, for more detailed guidance about the methods mentioned in this
reference.

CICS as an HTTP server: Handling request methods received from a web client

Table 29 on page 292 shows the actions that CICS takes for request methods, and the actions suggested
for a user application program. It is important to check the HTTP specification to which you are working,
for detailed guidance and any relevant requirements.

Table 29. CICS as an HTTP server: Request methods received from a web client

Method CICS action
with HTTP/1.0
client

CICS action
with HTTP/1.1
client

Message
body
appropriate
on request?

Suitable action by user application
program

GET
(Request
for
resource)

Accepted.
Request passed
to application.

Accepted.
Request passed
to application.

No Send resource to the web client, or send an
error response explaining why you cannot do
this.

HEAD
(Request
for
response
headers)

Accepted.
Request passed
to application.

Accepted.
Request passed
to application.

No Send resource to the web client exactly as if
responding to a GET request for the same
resource. CICS removes response body to
leave only headers.

POST (Send
input data)

Accepted.
Request passed
to application.

Accepted.
Request passed
to application.

Yes Support for method is optional. Extract data
(which might be form fields), process it and
send a response to the web client. May also
be used for changing or creating a resource,
in which case handle as for a PUT request.

PUT (Send
new item)

Accepted.
Request passed
to application.

Accepted.
Request passed
to application.

Yes Support for method is optional. If request is
valid, create a resource with the specified
URL using the content of the message, or
replace your existing resource with the
content of the message, as appropriate. Send
an acknowledgment to the web client. The
HTTP/1.1 specification has detailed
requirements for correct operation.

Tip: This request type is unlikely to be
applicable for your CICS web support
implementation. If wanted, it could be
fulfilled by creating a URIMAP definition for
the specified URL, and storing the resource to
be provided as a static response.

TRACE (See
request's
path and
final state)

Rejected with
status code 501
Not
Implemented.
No user
application
called.

Rejected with
status code 501
Not
Implemented.
No user
application
called.

No Not passed to user application.
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Table 29. CICS as an HTTP server: Request methods received from a web client (continued)

Method CICS action
with HTTP/1.0
client

CICS action
with HTTP/1.1
client

Message
body
appropriate
on request?

Suitable action by user application
program

OPTIONS
(Request
for
information
about
server)

Rejected with
status code 400
Bad request. No
user application
called.

CICS supports
OPTIONS
without a path.
In this case,
CICS accepts
and responds to
OPTIONS *
requests
without a
handler and no
user application
is called.

CICS supports
OPTIONS with a
path only if an
OPTIONS
handler
program has
been specified
by feature
toggle
com.ibm.cics
.http.option
s.handler. In
this case, CICS
accepts and
responds to
OPTIONS
requests by
invoking the
specified
handler
program. The
handler is
responsible for
sending a
response to the
client.

If the feature
toggle is not
specified,
requests
specifying
OPTIONS with a
path are
rejected with
405.

Undefined Not passed to user application. When no
handler has been specified, CICS returns
response with basic information (the HTTP
version and server software description). If a
handler has been specified, the handler is
invoked and is responsible for responding to
the client.
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Table 29. CICS as an HTTP server: Request methods received from a web client (continued)

Method CICS action
with HTTP/1.0
client

CICS action
with HTTP/1.1
client

Message
body
appropriate
on request?

Suitable action by user application
program

DELETE
(Delete
resource)

Accepted.
Request passed
to application.

Accepted.
Request passed
to application.

No Support for method is optional. If request is
valid, delete your existing resource, and send
an acknowledgment to the web client.

LINK,
UNLINK,
REQUEUE

Accepted.
Request passed
to application.

Rejected with
status code 501
Not
Implemented.
No user
application
called.

Undefined Use not recommended, as not described in
HTTP/1.1 specifications. For compatibility,
HTTP/1.0 request is still passed to
application.

CICS as an HTTP client: Using methods on requests to a server

Table 30 on page 294 lists the request methods supported by the CICS API for HTTP client requests, and
summarizes the correct use of the methods. For guidance on the correct use of each method, and any
requirements that apply to an HTTP client using the method, check the HTTP specification to which you
are working.

Table 30. CICS as an HTTP client: Request methods sent to a server

Method Send to
HTTP/1.0
server?

Send to
HTTP/1.1
server?

Message
body on
request?

Purpose

GET (Request
for resource)

Yes Yes No Obtain a resource from the server.

HEAD
(Request for
response
headers)

Yes Yes No Obtain the headers for a resource from the
server. Enables you to check on the nature,
status or size of the resource without having to
retrieve the whole body.

POST (Send
input data)

Yes Yes Yes Send data to a server. For example, form data
might be sent in this way. Servers are not
required to support this method.

PUT (Send
new item)

Might not be
supported by
server.

Yes Yes Create or modify a resource on the server. The
URL for your request is the URL that the
resource has on the server. The request can be
used to update an existing item or to create a
new item. Servers are not required to support
this method.

TRACE (See
request's path
and final
state)

Might not be
supported by
server.

Yes No Obtain a response showing the final state of
your request and the path it took to the server
(shown in the Via header). You can see what
proxy servers are being used to handle your
request. Servers are not required to support this
method.
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Table 30. CICS as an HTTP client: Request methods sent to a server (continued)

Method Send to
HTTP/1.0
server?

Send to
HTTP/1.1
server?

Message
body on
request?

Purpose

OPTIONS
(Request for
information
about server)

Might not be
supported by
server.

Yes Allowed, but
no purpose
defined for
it at present.

Obtain information about the server. Apply the
request to the whole server by specifying *
(asterisk) as the request path, or specify a full
request path to get information about that
resource. Servers are not required to support
this method.

DELETE
(Delete
resource)

Might not be
supported by
server.

Yes No Delete a resource on the server. The request
URL is the URL of the item to be deleted. Servers
are not required to support this method.

LINK,
UNLINK,
REQUEUE,
and extension
methods
generally

Not
permitted.
INVREQ
response
returned and
request not
sent.

Not
permitted.
INVREQ
response
returned and
request not
sent.

Undefined Not available on WEB API for CICS as an HTTP
client.
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Appendix E. Elements used in an Atom configuration
file

The XML elements used in an Atom configuration file define the type of Atom feed that is being configured
and the location of the CICS resource that provides the Atom feed, and they provide the metadata
required for the Atom feed. These elements can be added to an Atom configuration file using the Atom
configuration wizard in CICS Explorer. They can also be edited using the Atom configuration editor in CICS
Explorer, or by editing the Atom configuration file directly using an XML editor or a text editor.

<cics:atomservice> element
The <cics:atomservice> element is the root element for an Atom configuration file.

Attributes
type=typevalue

The type of Atom document that is being configured. This attribute is required. typevalue must match
the document type specified in the ATOMTYPE attribute of the ATOMSERVICE resource definition that
references this Atom configuration file.
type="feed"

An Atom feed document.
type="service"

An Atom service document.
type="collection"

An Atom collection document.
type="category"

An Atom category document.
version=version

The version of the Atom configuration file format. If this attribute is not specified, the version defaults
to 1.
version="1"

Set this version if the Atom configuration file is compatible with Atom feeds in previous releases of
CICS. This value is the default.

version="2"
Set this version if the Atom configuration file sets any of the following XML elements and
attributes:

• <cics:urimap> element is included
• <cics:bind> element includes an xmltransform attribute
• <cics:bind> element is not included

The Atom feed is supported only in this release of CICS.
xmnls:cics="http://www.ibm.com/xmlns/prod/cics/atom/atomservice"

The namespace declaration to bind the configuration file to the CICS Atom XML namespace. Do not
change this namespace declaration.

xmnls:atom="http://www.w3.org/2005/Atom"
The namespace declaration to bind the configuration file to the Atom XML namespace. Do not change
this namespace declaration.

The namespace declaration xmnls:app="http://www.w3.org/2007/app" is used to bind an Atom
document to the namespace for the Atom Publishing Protocol. However, this namespace declaration does
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not appear in an Atom configuration file for an Atom feed or collection, because those Atom configuration
files do not contain any elements with the app: prefix. When CICS uses the <app:edited> element in an
Atom document that it serves for a collection, CICS adds this namespace declaration automatically. The
namespace declaration is required in an Atom configuration file for an Atom service or category
document.

Contains:

“<cics:feed> element” on page 298
“<cics:urimap> element” on page 307
“<atom:feed> element” on page 308

Example

<cics:atomservice type="feed" version="2"
      xmlns:cics="http://www.ibm.com/xmlns/prod/cics/atom/atomservice"
      xmlns:atom="http://www.w3.org/2005/Atom">
</cics:atomservice>

<cics:feed> element
The <cics:feed> element in an Atom configuration file contains other elements that describe the CICS
resource that is to be published as a feed. It also specifies the window for the number of entries that CICS
is to return in each feed document, and contains elements to specify the style of the request URLs and
Atom IDs for entries.

Contained by:

“<cics:atomservice> element” on page 297

Attributes
window="number"|"8"

The default number of entries that CICS is to return in the Atom feed document. This attribute is
optional, and the default window is 8 entries. A client can specify a different window size. The window
size only applies when the client makes a request using the URL for the whole Atom feed, or a
navigation URL for a partial list of Atom entries. When a client makes a request using the URL of an
individual Atom entry, CICS returns only the single requested Atom entry.

Contains:
“<cics:selector> element” on page 304
“<cics:authority> element” on page 303
“<cics:resource> element” on page 302

Example

 <cics:feed window="10">
 </cics:feed>

<atom:entry> element
The <atom:feed> element in an Atom configuration file contains a single prototype <atom:entry>
element. CICS generates an Atom entry document by populating the child elements of this element with
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data supplied by the CICS resource described in the <cics:resource> element, repeating this process for
as many Atom entries as the client requests.

Contained by:

“<atom:feed> element” on page 308

Child elements

The child elements of the <atom:entry> element are as defined by the Atom format specification in RFC
4287, except that CICS does not support the optional <atom:source> element. Some of the child
elements are required for the Atom entry, and some of them are optional.

Most of the child elements of the <atom:entry> element contain default metadata to provide any data
items for an individual Atom entry that are not supplied by the CICS resource or service routine.

• If your CICS resource or service routine always supplies data for one of these child elements, you can
typically omit it from the <atom:entry> element in your configuration file. The exception is the
<atom:title> element, which CICS requires, although you may use an empty element if your Atom
entries all have a title and no default would be suitable.

• If your Atom entries are held in a resource whose records are lacking fields for some or all of the
possible items of metadata, you can supply these items of metadata by specifying them in the Atom
configuration file. When you provide metadata in the <atom:entry> element, CICS uses this metadata
whenever the corresponding item of data is not supplied by the CICS resource or service routine.

• You can omit any items of metadata that are optional, if you do not want to provide a default for these
items.

Some of the child elements of the <atom:entry> element correspond to the attributes of the
<cics:fieldnames> element. If a child element has a corresponding attribute in the <cics:fieldnames>
element, CICS can deliver that item of data from the resource, or a service routine can deliver it, if it is
present. If a child element has no corresponding attribute in the <cics:fieldnames> element, you can only
specify it in the Atom configuration file.

RFC 4287 permits plain text, HTML, or XHTML content for child elements that are defined as "text
constructs", such as the <atom:title> element. CICS only supports plain text content for these elements,
so you cannot use a "type" attribute to specify an alternative content type. You must supply plain text
content with no child elements. CICS does permit HTML, XHTML, and other text media types (such as
XML) in the <atom:content> element as content for Atom entries, which you specify in the CICS resource
that provides data for the Atom entries.

The child elements for the <atom:entry> element are as follows:

<app:edited>
The time when the Atom entry was last edited. This element applies only to Atom entries that are part
of a collection, and in that case it is required (as a SHOULD requirement). You cannot specify the
<app:edited> element in your prototype Atom entry in the configuration file. The element corresponds
to the edited attribute of the <cics:fieldnames> element. If the CICS resource or service routine does
not provide this data, CICS supplies the current date and time as a default. Although CICS supports
the use of the <app:edited> element, for reasons of performance CICS does not automatically order
Atom entries in a collection by this element when returning them to a client as a list. For more
information about ordering Atom entries in a collection, see Sequence for Atom entries.

<atom:author>
The personal details of the principal author of the Atom element, which might be an individual person
or an organization. You can have more than one <atom:author> element in the configuration file. The
data is provided in child elements as follows:
<atom:name>

The name of the person. This child element is required if you are specifying the <atom:author>
element, and CICS checks that you include it.
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<atom:uri>
An URL associated with the person, such as a blog site or a company website. This child element
is optional. CICS checks that you do not specify more than one <atom:uri> element in an
<atom:author> element. CICS does not attempt to verify that the URL is valid, so you must ensure
that it is correct.

<atom:email>
The e-mail address of the person. This child element is optional. CICS checks that you do not
specify more than one <atom:email> element in an <atom:author> element.

The <atom:author> element is optional. If you choose not to specify the <atom:author> element
anywhere in your configuration file, you must ensure that all the Atom entries in your resource include
this data, in order to be compliant with RFC 4287.

<atom:category term=" ">
The name of a category that classifies the Atom entry. This element is optional. CICS only supports a
single instance of this element. The term attribute specifies the name of the category. The element
corresponds to the category attribute of the <cics:fieldnames> element, so you can omit the element
if your CICS resource always provides suitable data.

<atom:content type=" " cics:resource=" " cics:type=" "/>
The content of the Atom entry. This element is required.

The <atom:content> element as specified in the configuration file does not contain any data, because
CICS supplies the data from the resource when it issues the feed document. You must ensure that
your resource provides content for every Atom entry. CICS does not support the delivery of Atom
entries that contain no data, such as Atom entries that use the "src" attribute to reference remote
content.

type=" "
The type attribute specifies the type of content that CICS expects for the Atom entry, which can
be "text", "html", "xhtml", or an IANA media type. If this attribute is not present, CICS uses a
default media type of "application/xml". As in RFC 4287, use the media type "text" for plain text
instead of the IANA media type "text/plain", "html" instead of "text/html", and "xhtml" instead of
"application/xhtml+xml". If your content is in any other format, specify the IANA media type that
you would normally use for that format on the Internet. A listing of media types is available at
http://www.iana.org/assignments/media-types/media-types.xhtml. Note that CICS does not
provide support for nontext media types.

When CICS delivers Atom entries directly from your resource, the media type or the default must
be appropriate for the data in the resource, because CICS labels the content with this media type
when the Atom document is issued. When you use a service routine to provide content for the
Atom entries, this media type or the default is supplied to the service routine. The service routine
can override it and specify an alternative media type, or allow CICS to label the content with the
media type from the Atom configuration file.

" cics:resource=" and " cics:type=" "
The attributes cics:resource and cics:type state the name and type of the CICS resource that
provides the data for the Atom feed. The values of these attributes must match the values of the
name and type attributes stated for the <cics:resource> element. For a description of the values
of these attributes, see “<cics:resource> element” on page 302.

The <atom:content> element corresponds to the content and content_type attributes of the
<cics:fieldnames> element.

<atom:contributor>
The personal details of a subsidiary author of the Atom entry. This element is optional. The data is
provided in the <atom:name>, <atom:uri>, and <atom:email> child elements as in the <atom:feed>
element. You cannot specify data for <atom:contributor> elements in individual resources, so the
<cics:fieldnames> element has no corresponding attribute, and the data that you provide applies to
all Atom entries. Because the data applies to all Atom entries, you might prefer to specify contributors
under the <atom:feed> element.
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<atom:id>
The unique identifier for the Atom entry. The Atom format specification requires one <atom:id>
element for each Atom entry. Atom IDs for Atom entries explains the requirements for the use of
Atom IDs.

CICS can generate tag URIs to use as unique Atom IDs for Atom entries. The tag URIs include the
attributes that you specify in the <cics:authority> element in the Atom configuration file, the resource
type and resource name that you specify in the <cics:resource> element, and the selector value for
the individual Atom entry. If this format meets your needs, omit the <atom:id> element in the
prototype Atom entry.

Instead of using the tag URI format that is generated by CICS, you may use the <atom:id> element in
the prototype Atom entry to specify a prototype Atom ID in an alternative format. CICS appends the
selector value or a suitable unique identifier to produce a unique Atom ID. If you use an alternative
Atom ID format, make sure that the Atom IDs are unique and meet the requirements of the Atom
format specification in RFC 4287.

<atom:link>
A standard URL that identifies an Atom entry and enables web clients to retrieve it. URLs for Atom
feeds from CICS explains how to construct this URL.

For CICS, you must have a single <atom:link rel="self"> element as a child element of the
<atom:entry> element. For an Atom entry in a collection, the Atom format specification requires a link
relation of "edit" instead of "self", and CICS supplies this link relation automatically when sending out
Atom entries in a collection. You must specify <atom:link rel="self"> in the Atom configuration file,
whether the Atom entries are in an Atom feed or a collection.

In your Atom configuration file, specify the URL in an <atom:link rel="self"> element as a standard
path that can be extended to apply to any Atom entry document. The beginning of the path must
match the partial path that you stated in the URIMAP resource definition for the Atom feed or
collection. The remainder of the standard path must be different from the complete path that you
specified in the <atom:link rel="self"> element for the Atom feed. For example, if you specified /
myatomfeed/* as the path component in the URIMAP resource definition, and <atom:link rel="self"
href="/myatomfeed/feed.atom"> as the link for the whole Atom feed in the Atom configuration file,
you could specify <atom:link rel="self" href="/myatomfeed/entries/"> as the standard path for Atom
entries. The limits on URL length listed in URLs for CICS Web support apply also to URLs for Atom
feeds.

When CICS returns an Atom entry document to the client, CICS appends the selector value for the
Atom entry to this path to create a complete link.Selector value for Atom entries explains what the
selector value is. You use the <cics:selector> element in the Atom configuration file to specify the way
in which the selector value is appended to the path. When you select the default "segment" style or
omit the element, CICS creates links such as <atom:link rel="self" href="/myatomfeed/entries/23">.
The alternative "query" style produces a format that is compatible with applications developed for the
CA8K SupportPac. You can also use the <cics:selector> element if you need to specify that your
selector value is hexadecimal.

In the Atom configuration file, you may omit the scheme and host components of the URL, and specify
only the path component. CICS adds the scheme and host components to the URL when it returns the
Atom feed or Atom entry document to the client, to comply with the Atom format specification.

<atom:published>
The time when the Atom entry was first created or published. This element is optional. This element
corresponds to the published attribute of the <cics:fieldnames> element. If the CICS resource does
not provide this data, CICS supplies the current date and time as a default. You can specify the
<atom:published> element in your Atom configuration file with an alternative default timestamp in
the XML dateTime format, as described in RFC 3339.

<atom:rights>
A text string that contains the claimed intellectual property rights, such as copyright. CICS only
supports plain text for this element. This element is optional, and if it is not provided, the
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<atom:rights> element for the Atom feed applies. The <cics:fieldnames> element has no
corresponding attribute, so the data that you provide applies to all Atom entries.

<atom:summary>
A short description of the content of the Atom entry. CICS only supports plain text for summaries. This
element corresponds to the summary attribute of the <cics:fieldnames> element. This element is
required if the content of the Atom entry is not text, HTML, XHTML or XML, so if you plan to provide
any content that does not fit these categories, and the CICS resource does not always provide a
summary, use this element to provide a default summary. You can also use this element if the CICS
resource does not provide a summary and you want the same summary to appear on all your Atom
entries. Otherwise, you can omit the element. CICS checks that you do not specify more than one
<atom:summary> element for the Atom entry.

<atom:title>
The title for the Atom entry. CICS only supports plain text for titles. This element corresponds to the
title attribute of the <cics:fieldnames> element. You must include an <atom:title> element in the
prototype Atom entry, even if your CICS resource always provides a title for Atom entries, to comply
with RFC 4287. Use a suitable default title that could apply to any of your Atom entries, or use an
empty element if your Atom entries all have a title and no default would be suitable. CICS checks that
you do not specify more than one <atom:title> element.

<atom:updated>
The time when the Atom entry was last updated in a significant way. This element is required by the
Atom specification, but you cannot specify it in the prototype Atom entry in your Atom configuration
file. The element corresponds to the updated attribute of the <cics:fieldnames> element. If the CICS
resource does not provide this data, CICS supplies the current date and time as a default.

Example

      <atom:entry>
          <atom:title>An entry from my feed</atom:title>
          <atom:summary>DEFAULT --- This is the default summary</atom:summary>
          <atom:link rel="self" href="/web20/sample_atom_feed/entry" /> 
          <atom:author>
                <atom:name>Joe Bloggs</atom:name>
                <atom:uri>http://www.hursley.ibm.com/JBloggs/</atom:uri>
                <atom:email>JBloggs@uk.ibm.com</atom:email>
          </atom:author>
          <atom:contributor>
                <atom:name>John Doe</atom:name>
          </atom:contributor>
          <atom:category term="Comments" />
          <atom:published>2008-12-02T15:41:00</atom:published>
          <atom:content type="text" cics:resource="WB20TSQ" cics:type="tsqueue" />
       </atom:entry>

<cics:resource> element
The <cics:resource> element in an Atom configuration file specifies the name and type of the CICS
resource that is to be published as a feed.

Contained by:

“<cics:feed> element” on page 298

Attributes
name="cics-resource-name"

The name of the CICS resource that provides data for the feed. This attribute is required. The name is
case-sensitive, so uppercase is normally correct. The resource name must match the value of the
RESOURCENAME attribute of the ATOMSERVICE resource definition that references this Atom
configuration file.
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type="cics-resource-type"
The type of the CICS resource. This attribute is required. The resource type is specified in lowercase.
The resource type must match the value of the RESOURCETYPE attribute of the ATOMSERVICE
resource definition that references this Atom configuration file.
type="tsqueue"

A temporary storage queue.
type="file"

A file.
type="program"

A program (service routine).
type="notapplic"

The resource type is not applicable.

Contains:
<cics:bind> element

The <cics:bind> element is optional and contains two optional attributes:
root="root-element-name"

Specifies the name of the top-level data structure in the XML binding. Set this attribute if you have
more than one set of conversions in the XML binding.

xmltransform="XMLTRANSFORM"
Specifies the 1-32 character name of an XMLTRANSFORM resource. Set this attribute if you want
to reuse an existing XMLTRANSFORM resource or want to name the resource that is dynamically
created when you install the resources for the Atom feed.

“<cics:fieldnames> element” on page 305

Example

<cics:resource name="feedq" type="tsqueue">
     <cics:bind xmltransform="MYXMLTRANSFORM"/>
</cics:resource>

<cics:authority> element
The <cics:authority> element in an Atom configuration file provides the authority name and associated
date that CICS uses when creating tag URIs to use as Atom IDs for individual Atom entries.

The other elements of the tag URI are a prefix of "tag", and a specific consisting of the resource type and
resource name that you specify in the <cics:resource> element in the Atom configuration file, and the
selector value for the individual Atom entry. Atom IDs for Atom entries explains the tag URI format and
the requirements for the use of Atom IDs.

If you prefer to use an alternative format for the Atom IDs, use the <atom:id> element in the prototype
Atom entry to specify a prototype Atom ID, and omit the <cics:authority> element. If you use an
alternative Atom ID format, make sure that the Atom IDs are unique and meet the requirements of the
Atom format specification in RFC 4287.

The tag URIs are unique within a CICS region, but they are not guaranteed to be unique across different
CICS regions. In the situation where you want to set up Atom feeds from resources that have the same
name and type but reside on different CICS regions, specify a different authority name or a different date
in the <cics:authority> element of the Atom configuration file for each of the feeds. Tag URIs that have
different dates are not equivalent to each other, even if all the other information is the same.

The tag URIs are unique for Atom entries provided by a user-written service routine that deals with a
single Atom feed, but they are not unique if the user-written service routine provides more than one feed,
because the name of the service routine is used as the resource name in the tag URIs. If your user-written
service routine provides multiple feeds, either choose an alternative format for your Atom IDs, or use a
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different authority name or a different date in the <cics:authority> element of the Atom configuration file
for each of the feeds.

Contained by:

“<cics:feed> element” on page 298

Attributes
name="authority-name"

The authority name. To comply with RFC 4151, the authority name must be a fully qualified domain
name or email address that is registered to you or to your company. You must not use a domain name
or email address owned by someone else. RFC 4151 recommends that you specify the authority name
in lowercase, and tag URIs where the same authority name is specified in a different case are not
equivalent to each other. You should ensure that you have your company's agreement to use a
domain name that others in the company might also use to generate tag URIs.

date="YYYY-MM-DD"
A date on which the authority name was owned by you or your company. You can use any date
between the time when you first owned the authority name and the present day, but RFC 4151
recommends that you do not use the first day of ownership or a few days immediately following it.
You must not use a future date. CICS checks that your date is a valid past or present date.

Example

 <cics:authority name="example.com" date="2009-01-08"/> 

<cics:selector> element
The <cics:selector> element in an Atom configuration file identifies the nature and position within the URL
of the selector value for an Atom entry. CICS uses this information to locate and extract the selector value
in an HTTP request for a specific Atom entry, and to generate a URL in the correct format when issuing an
Atom entry as part of an Atom feed document or collection.

Contained by:

“<cics:feed> element” on page 298

Attributes
style="style-type"

The styles are as follows:
"segment"

<cics:selector style="segment"/> represents a standard URL style for individual Atom entries,
where the selector value for the Atom entry is placed as the final segment of the path component
of the URL. In this URL, the selector value is "25":

http://www.example.com/web20/sample_atom_feed/entry/25

"segment" is the default style, so if you require this style and your selector value is in the format
that CICS assumes for the resource type, you may omit the <cics:selector> element from your
Atom configuration file.

"query"
<cics:selector style="query"/> represents a URL style that is compatible with applications
developed using the CA8K SupportPac, where the selector value for the Atom entry is placed in a
query string. In this URL, the selector value is "25":

http://www.example.com/web20/sample_atom_feed/entry?s=25
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name="query-parm-name"
If you select style="query", you may use this attribute to specify the name of the query string keyword
that identifies the selector value. If you omit the name attribute, the default keyword "s" is used. Do
not use this attribute when you select style="segment".

format="format-name"
This attribute identifies the format of the selector value. If your selector value is in the format that
CICS assumes for the type of resource that contains your Atom entries, do not specify this attribute.
Specify the attribute only if your resource contains a nonstandard selector value. The formats are as
follows:
"decimal"

The selector value is a decimal number. CICS assumes this format is used for temporary storage
queues and for RRDS and VRRDS files. Specify this setting if you are using any other type of
resource and it has a decimal number as the selector value.

"hexadecimal"
The selector value is a binary number. CICS assumes this format is used for ESDS and extended
ESDS files. Specify this setting if you are using any other type of resource and it has a binary
number as the selector value.

For any other type of VSAM file, CICS assumes that the format of the selector value is a character
string. You cannot specify character string format explicitly using the attribute.

ccsid="nnnn"
This attribute specifies the coded character set identifier (CCSID, or code page) into which the
selector value must be converted before being passed to the service routine. Do not specify this
attribute if format="decimal" or format="hexadecimal" is specified, or if CICS assumes one of those
formats for your resource. Specify the attribute only if your selector value is in character string format,
and the selector value might contain non-alphanumeric characters that are percent-encoded in the
request URL. "nnnn" is the number of an EBCDIC CCSID into which percent-encoded UTF-8
characters are to be converted. If CICS encounters percent-encoded characters in the selector value
but the ccsid attribute is omitted, CICS uses the value specified in the LOCALCCSID system
initialization parameter. The CCSIDs that CICS supports are referenced in LOCALCCSID system
initialization parameter .

Example

 <cics:selector style="query" name="sel" format="hexadecimal"/>

<cics:fieldnames> element
The <cics:fieldnames> element in an Atom configuration file identifies the field names in records in the
CICS resource that provide items of metadata or content for the Atom entry documents. The attributes of
the element specify the field names that have significance.

Contained by:

“<cics:resource> element” on page 302

Attributes

To support the use of the <cics:fieldnames> element, you must have an XML binding for the resource that
contains the data for your Atom entries. Generate mappings from language structures explains how to
create this. In the <cics:fieldnames> element, specify the names of the fields using the XML names that
are produced by the CICS XML assistant when you create the XML binding, not the original field names as
stated in the high-level language structure, or copybook, that describes the structure of the resource.

For CICS resource types of files or temporary storage queues where CICS extracts the data for the Atom
entries directly from the resource, you must use the <cics:fieldnames> element if the records in your file
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or temporary storage queue include any fields that hold metadata for the Atom entries, such as titles or
time stamps. If your records contain any metadata, add the <cics:fieldnames> element, and use the
attributes of the element to specify the fields in the records in your CICS resource that provide metadata
for the Atom entries. If the records in your CICS resource contain only the content of the entries and do
not have any metadata, omit the <cics:fieldnames> element.

If you are using a program, known as a service routine, to provide the Atom entries, add the
<cics:fieldnames> element if you are using the resource handling parameters in the DFHATOMPARMS
container to pass the field names to the program. Use the attributes of the element to name the fields in
the records in the resource that the program accesses to obtain metadata and content for the Atom
entries. You must have an XML binding for the resource in order to do this. If your program holds its own
information about the resource structure and does not use the resource handling parameters, omit the
<cics:fieldnames> element.

All of the attributes of the <cics:fieldnames> element are optional. If you do not specify a particular
attribute, such as the author's name, CICS either supplies that item of metadata from the corresponding
element in the <atom:entry> element in the configuration file or omits it. If you omit all the attributes, you
can also omit the <cics:fieldnames> element.

atomid="fieldname"
The name of a field in the resource record that contains the unique identifier for the Atom entry.

author="fieldname"
The name of a field in the resource record that contains the personal name of the principal author of
the Atom entry. You cannot provide the details of additional authors or contributors from fields in the
CICS resource record. You can provide these in the <atom:feed> element in the configuration file, but
they apply to all the entries. If you provide author details from the CICS resource using the
<cics:fieldnames> element, and also specify one or more instances of <atom:author> in the
configuration file, the author details from the CICS resource are placed before the author details from
the configuration file.

authoruri="fieldname"
The name of a field in the resource record that contains a URL associated with the principal author of
the Atom entry, such as a blog site or a company website.

category="fieldname"
The name of a field in the resource record that contains a category that classifies the entry.

content="fieldname"
The name of a field in the resource record that contains the entire content to be published in the Atom
entry. The name can be that of a substructure within the record, in which case the whole substructure
is propagated into the published content as an XML element with child elements, if necessary. If you
omit this attribute, CICS publishes the whole of the resource record as the content of the entry.

content_type="fieldname"
The name of a field in the resource record that contains the media type for the content of the Atom
entry.

edited="fieldname"
The name of a field in the resource record that contains the timestamp that indicates when the record
was last edited. The data type of the named field is obtained from the description in the XML binding
specified by the BINDFILE attribute of the ATOMSERVICE resource definition. If the named field is a
character string of length at least 20, CICS assumes that it contains a timestamp in the XML dateTime
format, as described in RFC 3339; for example, "2008-05-20T11:39:50.325Z". If the named field is a
packed decimal field of length 8, and the optional DATETIME=PACKED15 parameter was used when
the XML binding was prepared, CICS assumes that the field contains a CICS ABSTIME value.

email="fieldname"
The name of a field in the resource record that contains the e-mail address of the principal author of
the Atom entry.
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published="fieldname"
The name of a field in the resource record that contains the timestamp or ABSTIME value that that
indicates when the record was first published. CICS identifies the format of the data in the same way
as for the edited attribute.

title="fieldname"
The name of a field in the resource record that contains the title for the Atom entry.

summary="fieldname"
The name of a field in the resource record that contains the summary for the Atom entry.

updated="fieldname"
The name of a field in the resource record that contains the timestamp or ABSTIME value that
indicates when the record was last updated. CICS identifies the format of the data in the same way as
for the edited attribute.

Example

These field names are the XML versions of the field names in the example COBOL language structure
shown in Creating a CICS resource to store Atom entries.

       <cics:fieldnames title="title_field"
                       summary="summary_field"
                       atomid="atomid_field"
                       content="content_field"
                       author="author_name_field"
                       email="author_email_field" 
                       authoruri="author_uri_field"
                       edited="edited_field" 
                       updated="updated_field"
                       published="published_field"
                       category="category_field"/>

<cics:urimap> element
The <cics:urimap> element in an Atom configuration file identifies the URI, the user ID, and the
transaction name for the URIMAP resource. If you use this element, CICS dynamically creates the
URIMAP resource for you.

Contained by:

“<cics:atomservice> element” on page 297

Attributes
uri=value

Specify the common part of the path to the Atom feed. You can extend the path to provide links to
individual entries in the Atom feed. The common part of the path must be unique to the Atom feed or
collection. You do not have to add an asterisk to the path.

transaction=transaction
Specify the name of an alias transaction for the Atom feed. The default alias transaction for Atom
feeds is CW2A.

userid=userid
Specify the default user ID under which the alias transaction can be attached. When authentication is
required for the connection, so that CICS requests an authenticated user ID directly from the client,
the default user ID is not used. The authenticated user ID of the client is used instead, or if
authentication fails, the request is rejected. If authentication is not required and you do not supply a
default user ID, the CICS default user ID is used.
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Example

<cics:urimap uri="/atom/scenario/tsq/dfhfeedq" transaction="TEST" userid="USERABC">
</cics:urimap>

<atom:feed> element
The <atom:feed> element in an Atom configuration file is a prototype for the Atom feed document that
CICS returns. It provides the metadata for the Atom feed, and contains a single prototype <atom:entry>
element.

Contained by:

“<cics:atomservice> element” on page 297

Child elements
The child elements of the <atom:feed> element are as defined by the Atom format specification in RFC
4287. Some of the child elements are required and some of them are optional.

RFC 4287 permits plain text, HTML, or XHTML content for child elements that are defined as "text
constructs", such as the <atom:title> element. CICS only supports plain text content for these elements,
so you cannot use a "type" attribute to specify an alternative content type. You must supply plain text
content with no child elements. CICS does permit HTML, XHTML, and other text media types (such as
XML) in the <atom:content> element as content for Atom entries, which you specify in the CICS resource
that provides data for the Atom entries.

The child elements for the <atom:feed> element are as follows:
<atom:author>

The personal details of the principal author of the Atom feed, which might be an individual person or
an organization. You can have more than one <atom:author> element in the configuration file. The
data is provided in child elements as follows:
<atom:name>

The name of the person. This child element is required if you are specifying the <atom:author>
element, and CICS checks that you include it.

<atom:uri>
An URL associated with the person, such as a blog site or a company website. This child element
is optional. CICS checks that you do not specify more than one <atom:uri> element in an
<atom:author> element. CICS does not attempt to verify that the URL is valid, so you must ensure
that it is correct.

<atom:email>
The e-mail address of the person. This child element is optional. CICS checks that you do not
specify more than one <atom:email> element in an <atom:author> element.

The <atom:author> element is optional. If you choose not to specify the <atom:author> element
anywhere in your configuration file, you must ensure that all the Atom entries in your resource include
this data, in order to be compliant with RFC 4287.

<atom:category term=" ">
The name of a category that classifies the Atom feed. This element is optional. CICS only supports a
single instance of this element. The term attribute specifies the name of the category.

<atom:contributor>
The personal details of a subsidiary author of the Atom feed. This element is optional. You can have
more than one of this element in the configuration file. The data is provided in child elements as
follows:
<atom:name>

The name of the person. This child element is required when you use the <atom:contributor>
element.
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<atom:uri>
An URL associated with the person, such as a blog site or a company website. This child element
is optional.

<atom:email>
The e-mail address of the person. This child element is optional.

<atom:entry>
In an Atom configuration file, you need a single prototype <atom:entry> element. The description of
this element is in <atom:entry> Atom configuration file element.

<atom:generator>
The name of the agent that generates the Atom feed. Do not specify this element in the Atom
configuration file; CICS provides it when composing the Atom feed document. CICS provides an
identification of itself as the generator of the Atom feed.

<atom:icon>
An URL that points to a small icon representing the Atom feed. This element is optional. CICS checks
that you do not specify more than one <atom:icon> element for the Atom feed, but does not check the
aspect ratio of the image, which should be 1 (horizontal) to 1 (vertical).

<atom:id>
The unique identifier for the Atom feed. The Atom format specification requires one <atom:id>
element for the Atom feed. If you specified the <cics:authority> element in the Atom configuration file
to make CICS generate tag URIs as Atom IDs, you can omit the <atom:id> element for the Atom feed,
and CICS generates an Atom ID for the Atom feed in the same format as for the Atom entries, but
without the selector value or unique identifier that is appended for the Atom entries. For example:

tag:example.com,2009-01-08:tsqueue:WB20TSQ

If you prefer an alternative Atom ID format, or if you are using the <atom:id> element in the prototype
Atom entry to specify an Atom ID format and you want to copy this, include the <atom:id> element for
the Atom feed and specify a complete Atom ID for the Atom feed. Make sure that the Atom ID is
unique and meets the requirements of the Atom format specification in RFC 4287.

<atom:link>
A URL that identifies the Atom feed document and enables web clients to retrieve it. URLs for Atom
feeds from CICS explains how to construct this URL.

An Atom feed document must have a single <atom:link rel="self"> element as a child element of the
<atom:feed> element. The href attribute contains a URL that web clients can use to retrieve the Atom
feed document. CICS does not provide support for other types of <atom:link> element for Atom feed
documents.

In your Atom configuration file, the <atom:link rel="self"> element must state the complete path that
web clients can use to retrieve the Atom feed document, with the beginning of the path matching the
partial path that you stated in the URIMAP resource definition for the Atom feed or collection. For
example, if you specified /myatomfeed/* as the path component in the URIMAP resource definition,
you could specify <atom:link rel="self" href="/myatomfeed/feed.atom"> in the Atom configuration
file. The limits on URL length listed in URLs for CICS web support apply also to URLs for Atom feeds.

In the Atom configuration file, you may omit the scheme and host components of the URL, and specify
only the path component. CICS adds the scheme and host components to the URL when it returns the
Atom feed or Atom entry document to the client, to comply with the Atom format specification.

<atom:logo>
An URL that points to a larger logo representing the Atom feed. This element is optional. CICS checks
that you do not specify more than one <atom:logo> element for the Atom feed, but does not check the
aspect ratio of the image, which should be 2 (horizontal) to 1 (vertical).

<atom:rights>
A text string that contains the claimed intellectual property rights, such as copyright. CICS only
supports plain text for this element. This element is optional.

Appendix E. Elements used in an Atom configuration file  309

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_atom_atomentry.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_url.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_url.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_cwsurl.html


<atom:subtitle>
The subtitle for the Atom feed. CICS only supports plain text for subtitles. This element is optional.
CICS checks that you do not specify more than one <atom:subtitle> element for the Atom feed.

<atom:title>
The title for the Atom feed. CICS only supports plain text for titles. You must specify a <atom:title>
element to comply with RFC 4287. CICS checks that you do not specify more than one <atom:title>
element.

<atom:updated>
The time at which the Atom feed was last updated. Do not specify this element in the Atom
configuration file; CICS provides it when composing the Atom feed document. CICS supplies this
timestamp as the most recent of all the <atom:updated> elements of the enclosed <atom:entry>
elements that make up the Atom feed. If the CICS resource containing the Atom entries does not
provide this data, CICS defaults to the current date and time.

Contains:

<atom:entry> Atom configuration file element

Example

   <atom:feed>
       <atom:title>CICS Atom feed</atom:title>
       <atom:subtitle>My first Atom feed from CICS</atom:subtitle>
       <atom:link rel="self" href="/web20/sample_atom_feed" />
       <atom:rights>Copyright (c) 2009, Joe Bloggs</atom:rights>
       <atom:author>
            <atom:name>Joe Bloggs</atom:name>
            <atom:uri>http://www.ibm.com/JBloggs/</atom:uri>
            <atom:email>JBloggs@uk.ibm.com</atom:email>
        </atom:author>
        <atom:contributor>
            <atom:name>John Doe</atom:name>
        </atom:contributor> 
 </atom:feed>

Atom element reference for CICS
These tables provide a reference for the relationships between the elements used in an Atom feed
document; the elements used in an Atom entry element; the attributes of the <cics:fieldnames> element;
and the parameters that CICS can pass to a service routine for resource handling.

When you create an Atom feed document in CICS, you can specify the elements that are defined by the
Atom format specification in RFC 4287. Some of these elements are used as child elements of the
<atom:feed> element to supply metadata for the whole of the Atom feed, such as the title for the feed.
Some of the elements are used as child elements of an <atom:entry> element to supply metadata or
content for an individual entry. The majority of the elements are specified for the feed and specified again
for the individual entries; for example, each entry has a unique identifier specified by the <atom:id>
element, and the feed also has a unique identifier. For the complete descriptions of each element, read
RFC 4287.

In an Atom feed document in CICS, CICS uses a single prototype <atom:entry> element to generate the
individual entries. If you specify child elements in this element, the metadata there applies to all entries
by default. However, if the CICS resource that you are using to supply the content for the Atom feed
contains suitable metadata, you can use attributes of the <cics:fieldnames> element to tell CICS if and
where the data for the child elements is present in the resource record. For example, you can specify a
field in the resource record that supplies the title for the entry that is contained in the resource record. If
your resource records do not contain certain metadata, such as the author's name, you can omit that
attribute for the <cics:fieldnames> element. CICS either supplies that item of metadata from the
corresponding element in the prototype <atom:entry> element in the configuration file or omits it. If your
resource records do not contain any suitable metadata, you can omit the <cics:fieldnames> element
completely, and CICS publishes the whole of the resource record as the content of the entry.
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The parameters that CICS passes to a service routine include parameters corresponding to the attributes
of the <cics:fieldnames> element. You can use these resource handling parameters if you want to write a
service routine that obtains its information about resource structures from the Atom configuration file,
rather than having this information coded directly in the service routine. With this method, you can create
a generic service routine that is capable of handling multiple resources.

Table 31. Child elements of the <atom:feed> and <atom:entry> elements

Element Meaning For feed For entries
<cics:fieldnames>
attribute (for entries)

Service routine
parameter (for
entries)

<app:edited> Time when
entry was last
edited

Not used Required if
in collection,
produced by
CICS

edited ATMP_ EDITED

<atom:author> Principal
author's
details

Required
unless all
entries
have this
element

Optional if
feed has this
element

Not applicable (data is
in child elements)

Not applicable
(data is in child
elements)

<atom:category> Category
classifying
feed or entry

Optional Optional category ATMP_
CATEGORY_ FLD

<atom:content type="
">

Content of
entry

Not used Required content, content_type ATMP_
CONTENT_ FLD
and ATMP_
CONTENT_
TYPE_FLD

<atom:contributor> Subsidiary
author's
details

Optional Optional Not applicable (data is
in child elements)

Not applicable
(data is in child
elements)

<atom:email> Email address
of author or
contributor

Optional Optional email (for author only,
contributors not
supported)

ATMP_ EMAIL_
FLD

<atom:generator> Agent that
generates the
feed

Produced
by CICS

Not used Not applicable (not
used for entries)

Not applicable
(not used for
entries)

<atom:icon> Icon
representing
feed

Optional Not used Not applicable (not
used for entries)

Not applicable
(not used for
entries)

<atom:id> Unique
identifier for
feed or entry

Required,
CICS
produces
if you
specify
<cics:
authority>
element

Required,
CICS
produces if
you specify
<cics:
authority>
element

atomid ATMP_ ID_ FLD

<atom:link rel="self"> URL for
retrieving feed
or entry
document

Required Required by
CICS

Not applicable (not
stored in resource)

Not applicable
(not stored in
resource)
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Table 31. Child elements of the <atom:feed> and <atom:entry> elements (continued)

Element Meaning For feed For entries
<cics:fieldnames>
attribute (for entries)

Service routine
parameter (for
entries)

<atom:link rel="edit"> URL for editing
entry in a
collection
(Member URI)

CICS
produces
for
collection
s

CICS
produces if
entry is in
collection

Not applicable (not
stored in resource)

Not applicable
(not stored in
resource)

<atom:logo> Logo for feed Optional Not used Not applicable (not
used for entries)

Not applicable
(not used for
entries)

<atom:name> Name of
author or
contributor

Required
in author
or
contributo
r element

Required in
author or
contributor
element

author (for author
only, contributors not
supported)

ATMP_ AUTHOR_
FLD

<atom:published> Time when
entry was first
created or
published

Not used Optional published ATMP_
PUBLISHED_ FLD

<atom:rights> Intellectual
property rights
for feed

Optional Optional Not supported in
resource

Not supported in
resource

<atom:source> Metadata from
use of the
entry in
another feed

Not used Optional,
but not
supported
by CICS

Not supported Not supported

<atom:subtitle> Subtitle for
feed

Optional Not used Not applicable (not
used for entries)

Not applicable
(not used for
entries)

<atom:summary> Short
description of
entry content

Not used Required if
content not
text or XML

summary ATMP_
SUMMARY_ FLD

<atom:title> Title for feed Required Required title ATMP_ TITLE_
FLD

<atom:updated> Time when
feed was last
updated

Required,
produced
by CICS

Required,
produced by
CICS

updated ATMP_
UPDATED_ FLD

<atom:uri> URL for author
or contributor
website

Optional Optional authoruri (for author
only, contributors not
supported)

ATMP_
AUTHORURI_
FLD
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Appendix F. Reference information for analyzer
programs

This section provides reference information for analyzer programs, including input and output
parameters, and responses and reason codes.

Summary of parameters for analyzer programs
Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

The names of the parameters and constants for analyzer programs, translated into appropriate forms for
the different programming languages supported, are defined in files supplied as part of CICS.

Language Parameters file Constants file

Assembler DFHWBTDD DFHWBUCD

C DFHWBTDH DFHWBUCH

COBOL DFHWBTDO DFHWBUCO

PL/I DFHWBTDL DFHWBUCL

These files give language-specific information about the data types of the fields in the COMMAREA. If you
use these files, you must specify XOPTS(NOLINKAGE) on the Translator step; if you do not, the
compilation fails.

In the following table, the names of the parameters are given in abbreviated form; each name in the table
must be prefixed with wbra_ to give the name of the parameter.
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Table 32. Parameters for analyzer programs

Input wbra_ Inout wbra_ Output wbra_

client_ip_address
client_ipv6_address
content_length
eyecatcher
function
hostname_length
hostname_ptr
http_version_length
http_version_ptr
method_ptr
method_length
querystring_length
querystring_ptr
request_header_length
request_header_ptr
request_type
resource_escaped_ptr
resource_length
resource_ptr
server_ip_address
server_ipv6_address
urimap
user_data_ptr
version

alias_tranid
converter_program
server_program
user_data_length
userid

application_style
alias_termid
characterset
commarea
dfhcnv_key
hostcodepage
reason
response
unescape
user_token

Parameters for analyzer programs
The names of the parameters for the analyzer program are given with short explanations, including
whether the parameters are input only, output only, or input and output parameters.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

wbra_alias_tranid
(Input and output)

A string of length 4. The transaction ID of the alias transaction that is to cover the remainder of
processing for this request. If a URIMAP definition is involved, this string contains the value of the
TRANSACTION attribute. If you do not set this field, or if you set it to blanks, CWBA is used.

wbra_alias_termid
(Output only)

A string of length 4. The terminal ID to be used on the START request for the alias transaction that is
to cover the remainder of processing for this request.

wbra_characterset
(Output only)

The name of the IANA character set that the client used for the entity body of the request. This
information is used for code page conversion of the entity body of the request and the response. If the
request is not an HTTP request, this character set is used to translate the entire request and
response. wbra_hostcodepage must also be supplied.

wbra_client_ip_address
(Input only)
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A fullword 32-bit field that specifies the binary IPv4 address of the client, if
wbra_client_ipv6_address is not specified. wbra_client_address does not support IPv6
addresses.

If there is a non-zero value in wbra_client_address, this value is used, and any value in
wbra_client_ipv6_address is ignored. Therefore, if you are using IPv6 addressing you must clear
the contents of wbra_client_address to allow the value in wbra_client_ipv6_address to be
used.

wbra_client_ipv6_address
(Input only)

A 16-byte field that must be set if you are using IPv6 addressing, or if you are using IPv4 addressing
and wbra_client_address is not specified. This field supports both IPv4 and IPv6 addresses and
is set to the binary IPv6 address of the client, or the IPv4 address of the client in IPv6 format. For
more information about IP address format, see IP addresses.

wbra_commarea
(Output only)

The flag to indicate that pre-CICS TS Version 3 compatibility processing is required for a response that
uses a non-Web-aware application and a converter program. This flag means that the Web client
receives a response identical with the response it received before CICS TS Version 3.

wbra_content_length
(Input only)

A 32–bit binary representation of the entity body length as specified by the Content-Length HTTP
header in the received data.

wbra_converter_program
(Input and output)

A string of length 8. The name of the converter program that is used to process the request. If a
URIMAP definition is involved, this string contains the value of the CONVERTER attribute. If this field
is not set on output, no converter program is called.

wbra_dfhcnv_key
(Output only)

A string of length 8. The name of a conversion template in the DFHCNV table for code page conversion
of the entity body for the request and the response. If the request is not an HTTP request, this
template is used to translate the entire request and response.

CICS initializes this field to high values. If you use this field to specify a conversion template, the
name you choose must be defined in the DFHCNV table, as described in Upgrading entries in the code
page conversion table (DFHCNV). As an alternative, you can set the wbra_hostcodepage and
wbra_characterset fields to specify the pair of code pages to use for code page conversion. If you set
wbra_dfhcnv_key to nulls or blanks and do not set wbra_hostcodepage and wbra_characterset,
code page conversion is suppressed.

wbra_eyecatcher
(Input only)

A string of length 8. Its value is ">analyze".

wbra_function
(Input only)

A code indicating that an analyzer program is being called. The value is 1.

wbra_hostcodepage
(Output only)

The name of a host code page (IBM EBCDIC code page) suitable for the application program that is
handling the request. This information is used for code page conversion of the entity body of the
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request and the response. If the request is not an HTTP request, this code page is used to translate
the entire request and response. wbra_characterset must also be supplied.

wbra_hostname_length
(Input only)

The length in bytes of the host name specified on the HTTP request. If no host name is specified, the
value is undefined.

wbra_hostname_ptr
(Input only)

A pointer to the host name specified on the HTTP request sent by the client. If an absolute URI is used
for the request, the host name is taken from the URI. Otherwise the host name is as specified in the
Host header for the request. For HTTP/1.1 requests, a host name is required, so this parameter is
always passed to the analyzer. For HTTP/1.0 requests, a host name might not be supplied, in which
case the value is undefined.

wbra_http_version_length
(Input only)

For an HTTP request, the length in bytes of the string identifying the HTTP version of the client
request. If the request is not an HTTP request, the value is zero.

wbra_http_version_ptr
(Input only)

For an HTTP request, a pointer to the string identifying the HTTP version of the client request. If the
request is not an HTTP request, the value is undefined.

wbra_method_length
(Input only)

For an HTTP request, the length in bytes of the string identifying the method specified in the HTTP
request. If the request is not an HTTP request, the value is zero.

wbra_method_ptr
(Input only)

For an HTTP request, a pointer to the method specified in the HTTP request. If the request is not an
HTTP request, the value is undefined.

wbra_querystring_length
(Input only)

The length in bytes of the query string specified on the HTTP request. If no query string was sent, the
value is undefined.

wbra_querystring_ptr
(Input only)

A pointer to the query string specified on the HTTP request sent by the client. If no query string was
sent, the value is undefined.

wbra_reason
(Output only)

The reason code returned by the analyzer program. See “Responses and reason codes” on page 318.

wbra_request_header_length
(Input only)

For an HTTP request, the length of the first HTTP header in the HTTP request. If the request is not an
HTTP request, the value is zero.

wbra_request_header_ptr
(Input only)
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For an HTTP request, a pointer to the first HTTP header in the HTTP request. The other HTTP headers
follow this one in the request buffer. If the request is not an HTTP request, the value is undefined.

wbra_request_type
(Input only)

If this request is an HTTP request, the value is WBRA_REQUEST_HTTP. If it is not an HTTP request,
the value is WBRA_REQUEST_NON_HTTP.

wbra_resource_escaped_ptr
(Input only)

For an HTTP request, a pointer to a copy of the HTTP headers for the request that have not been
unescaped; that is, are still in their escaped form.

wbra_resource_length
(Input only)

For an HTTP request, the length in bytes of the path component of the URL. If the request is not an
HTTP request, the value is zero.

wbra_resource_ptr
(Input only)

For an HTTP request, a pointer to the path component of the URL. If a URIMAP definition is involved,
this pointer contains the value of the PATH attribute. If the request is not an HTTP request, the value
is undefined.

wbra_response
(Output only)

The response value produced by the analyzer program. See “Responses and reason codes” on page
318.

wbra_server_ip_address
(Input only)

A fullword 32-bit field that specifies the binary IPv4 address of the HTTP server, if
wbra_server_ipv6_address is not specified. wbra_server_address does not support IPv6
addresses.

If there is a non-zero value in wbra_server_address, this value is used, and any value in
wbra_server_ipv6_address is ignored. Therefore, if you are using IPv6 addressing you must clear
the contents of wbra_server_address to allow the value in wbra_server_ipv6_address to be
used.

wbra_server_ipv6_address
(Input only)

A 16-byte field that must be set if you are using IPv6 addressing, or if you are using IPv4 addressing
and wbra_server_address is not specified. This field supports both IPv4 and IPv6 addresses and
is set to the binary IPv6 address of the server, or the IPv4 address of the server in IPv6 format. For
more information about IP address format, see IP addresses.

wbra_server_program
(Input and output)

A string of length 8. The name of a CICS application program that is to process the request. If a
URIMAP definition is involved, this string contains the value of the PROGRAM attribute. The program
name is passed to any converter program specified in wbra_converter_program. If you do not set
this field, the value passed is nulls. The program name must be set here or by the converter program;
otherwise, no CICS application program is called.

wbra_unescape
(Output only)
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• To specify that data is to be passed to the CICS application program in its unescaped form, set this
parameter to WBRA_UNESCAPE_REQUIRED.

• To specify that data is be passed to the application in its escaped form, set this parameter to
WBRA_UNESCAPE_NOT_REQUIRED. This value is the default.

Also set the parameter to WBRA_UNESCAPE_NOT_REQUIRED if your analyzer has converted the
data to its escaped form.

wbra_urimap
(Input only)

The name of any matching URIMAP definition that is involved in the processing path for the request. If
this field is nonblank, the CICS-supplied default analyzer DFHWBADX returns without processing the
path component of the URL.

wbra_user_data_length
(Input and output)

A 15-bit integer, representing the length of the entity body in the HTTP request. If the request is non-
HTTP, this value is the length of the request. The length passed to the analyzer includes any trailing
carriage return and line feed (CRLF) characters that might delimit the end of the entity body. If the
analyzer reduces the length of the entity body, the newly redundant bytes are replaced by null
characters, X'00'. The modified value is passed to the CICS business logic interface in field
wbbl_user_data_length, and to the converter program in field decode_user_data_length.

wbra_user_data_ptr
(Input only)

For an HTTP request, a pointer to the entity body in the HTTP request. If the request is not an HTTP
request, this pointer is to the request.

wbra_user_token
(Output only)

A 64-bit token that is passed to the converter program as decode_user_token. If you do not set this
field, the value passed is null. If there is no converter program for this request, the value is ignored.

wbra_userid
(Input and output)

A string of length 8. On input, this string contains a user ID supplied by the client (using basic
authentication or client certificate authentication), or, if a URIMAP definition is involved, the value of
the USERID attribute, if specified. On output, it contains the user ID that is used for the alias
transaction, which can be the supplied user ID or a user ID chosen by the analyzer program. If this
field is blank or null on output, the CICS default user ID is used.

wbra_version
(Input only)

A halfword binary number that indicates which version of the parameter list is currently being used. It
is set using the constant value wbra_current_version.

Responses and reason codes
Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

An analyzer program must return one of the values shown in the table in wbra_response.

Symbolic value Numeric value Explanation

URP_OK 0 The alias transaction is started.
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Symbolic value Numeric value Explanation

URP_EXCEPTION 4 The alias transaction is not started. Web attach
processing writes an exception trace entry (trace point
4510), and issues a message (DFHWB0523).

If the request is an HTTP request, an error response is
sent to the web client. The default status code is 400
(Bad request), and this can be configured using the user-
replaceable web error program DFHWBEP.

If the request is not an HTTP request, no response is
sent, and the socket is closed.

URP_INVALID 8 The alias transaction is not started. The server controller
writes an exception trace entry (trace point 4510), and
issues a message (DFHWB0523).

If the request is an HTTP request, an error response is
sent to the web client. The default status code is 400
(Bad request), and this can be configured using the user-
replaceable web error program DFHWBEP.

If the request is not an HTTP request, no response is
sent, and the socket is closed.

URP_DISASTER 12 The alias transaction is not started. CICS writes an
exception trace entry (trace point 4510), and issues a
message (DFHWB0523).

If the request is an HTTP request, an error response is
sent to the web client. The default status code is 400
(Bad request), and this can be configured using the user-
replaceable web error program DFHWBEP.

If the request is not an HTTP request, no response is
sent, and the socket is closed.

If you return any other value in wbra_response, the server controller writes an exception trace entry
(trace point 4510), and issues a message (DFHWB0523). If the request is an HTTP request, a message
with status code 400 (Bad request) is sent to the web client. If the request is not an HTTP request, no
response is sent, and the socket is closed.

You may supply a 32-bit reason code in wbra_reason to provide further information in error cases. CICS
web support does not take any action on the reason code returned by an analyzer program, but the user-
replaceable web error program DFHWBEP can use it to decide how to modify the default response. The
reason code is output in any trace entry that results from the invocation of an analyzer program, and in
message DFHWB0523.
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Appendix G. Converter programs
Converter programs are primarily for use with application programs that were not originally coded for use
with the Web. They can also be used to combine output from several application programs into a single
HTTP message.

About this task

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

Converter programs are not used when CICS is an HTTP client, or for web service processing; they can
only be invoked when CICS is an HTTP server. The role of converter programs in the CICS web support
process for CICS as an HTTP server is described in HTTP request and response processing for CICS as an
HTTP server. Enabling CICS web support for CICS as a HTTP server has information to help you plan your
architecture for CICS as an HTTP server.

A URIMAP resource can specify a converter program to carry out relevant processing for HTTP requests.
If an analyzer program is used in CICS web Support processing, the analyzer program can also invoke a
converter program. A converter program can be useful in the following circumstances:

• When application programs that were not originally coded for use with the web need to receive input in
the form of a COMMAREA, or need their output to be converted into an HTTP response. Web-aware
application programs, which are coded using the EXEC CICS WEB and EXEC CICS DOCUMENT
application programming interfaces, should not require this conversion to take place. You can use a
converter program to perform this conversion or other processing on the content of the request.

• When you want to make more than one application program work on the same request data in
sequence, and return a single HTTP response to the web client.

If a converter program is invoked directly from a URIMAP definition, the PROGRAM attribute of the
URIMAP definition (which specifies the name of the application program to process the request) can be
passed to the converter program, and the converter program can choose to override it.

A converter program receives the web client's request in a block of storage, together with a parameter list
giving more information about the request. The converter program processes the content of the request
into a format which is suitable for the application program that will provide data for the response, and
passes it to the application program in a COMMAREA. This sequence is called the decode function of the
converter program. If a converter program does not use the decode function to create a COMMAREA for
the application program, the 32 767 byte buffer used to receive the HTTP request is passed to the
application program.

The application program returns its results to the converter program. The converter program can invoke a
further application program or programs, if more than one application program is needed to produce the
data for the response. When the converter program has all the required data from the application
programs, it produces an HTTP response to be sent to the web client. This sequence is called the encode
function of the converter program.

A converter program is not associated with a TCPIPSERVICE definition in the same way as an analyzer
program. You can use any converter program to process any HTTP request, but it must be local to the
CICS system in which the request is received. For a given request, the same converter program is called
for both the decode and encode functions.

All the user-replaceable programs must be local to the system in which CICS web support is operating. If
you do not use autoinstall for programs, you must define and install program definitions for all user-
replaceable programs used by CICS web support, including the analyzer and converter programs. If you
use autoinstall for programs, you must ensure that user-replaceable programs are installed with the
correct attributes.

Converter programs are also used by the CICS business logic interface. The role of the converter program
in the CICS business logic interface is described in Using the CICS(r) business logic interface to call a
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program. The caller of the CICS business logic interface determines whether a converter program is
required, and which converter program should be called.

Reference information for converter programs
This section provides: reference information for the Decode function of a converter program, and,
reference information for the Encode function of a converter program.

The names of the parameters and constants in the COMMAREA passed to a converter program, translated
into appropriate forms for the different programming languages supported, are defined in files supplied as
part of CICS web support. The files for the various languages are listed in the following table.

Language Parameters file Constants file

Assembler DFHWBCDD DFHWBUCD

C DFHWBCDH DFHWBUCH

COBOL DFHWBCDO DFHWBUCO

PL/I DFHWBCDL DFHWBUCL

These files give language-specific information about the data types of the fields in the COMMAREA. If you
use these files you must specify XOPTS(NOLINKAGE) on the Translator step; failure to do this causes the
compilation to fail.

Parameter list for converter program decode function
If the analyzer program, URIMAP definition, or caller of the CICS business logic interface specified a
converter program name for the request, decode is called before the user-written application program
that is to provide data for the request.

Summary of parameters

In the following table, the names of the parameters are given in abbreviated form; each name in the table
must be prefixed with decode_ to give the name of the parameter.
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Table 33. Parameters for decode

Input decode_ Inout decode_ Output decode_

client_address
client_ipv6_address
client_address_string
client_ipv6_address_strin
g
eyecatcher
entry_count
function
http_version_length
http_version_ptr
method_length
method_ptr
request_header_length
request_header_ptr
resource_length
resource_ptr
user_data_length
user_data_ptr
version
volatile

data_ptr
input_data_len
server_program
user_token

output_data_len
reason
response

Parameters
decode_client_address

(Input only)

A fullword 32-bit field that must be set to the binary IPv4 address of the client, if
decode_client_ipv6_address is not specified. decode_client_address does not support
IPv6 addresses.

If there is a non-zero value in decode_client_address, this value is used, and any value in
decode_client_ipv6_address is ignored. Therefore, if you are using IPv6 addressing you must
clear the contents of decode_client_address to allow the value in
decode_client_ipv6_address to be used.

decode_client_ipv6_address
(Input only)

A 16-byte field that must be set if you are using IPv6 addressing, or if you are using IPv4 addressing
and decode_client_address is not specified. This field supports both IPv4 and IPv6 addresses
and is set to the binary IPv6 address of the client, or the IPv4 address of the client in IPv6 format. For
more information on IP address format, see IP addresses.

decode_client_address_string
(Input only)

The IPv4 address of the client in dotted decimal format.

decode_client_ipv6_address_string
(Input only)

The IP address of the client in dotted decimal format for IPv4 addresses or in colon hexadecimal
format for IPv6 addresses. This field can be up to 39 bytes in length.

decode_data_ptr
(Input and output)
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On input, a pointer to the request from the client, which might have been modified by the analyzer
program, or, if this call is a loop back from the encode converter function, a pointer to the response
data of encode_data_ptr.

On output, pointer to the COMMAREA to be passed to the user-written application program. Do not
modify this parameter when decode_volatile has a value of 0.

decode_entry_count
(Input only)

A count to say how many times the decode converter has been entered for the current web request.

decode_eyecatcher
(Input only)

A string of length 8. Its value for decode is ">decode ".

decode_function
(Input only)

A halfword code set to the constant value URP_DECODE, indicating that decode is being called.

decode_http_version_length
(Input only)

The length in bytes of the string identifying the HTTP version supported by the client. If the request is
not an HTTP request, or decode_entry_count is greater than 1, the value is zero.

decode_http_version_ptr
(Input only)

A pointer to the string identifying the HTTP version supported by the client. If the analyzer modified
this part of the request, the changes are visible here. If decode_http_version_length is zero, the
value is undefined.

decode_input_data_len
(Input and output)

On input, the length in bytes of the request data pointed to by decode_data_ptr.

decode_method_length
(Input only)

The length in bytes of the method specified in the HTTP request. If the request is not an HTTP
request, or decode_entry_count is greater than 1, the value is zero.

decode_method_ptr
(Input only)

A pointer to the method specified in the HTTP request. If the analyzer modified this part of the
request, the changes are visible here. If decode_method_length is zero, the value is undefined.

decode_output_data_len
(Output only)

The length in bytes of the COMMAREA that is to be passed to the user-written application program, as
indicated in the pointer decode_data_ptr. The default value if this output is not set is 32 KB.

decode_reason
(Output only)

A reason code; see “Responses and reason codes” on page 326.

decode_request_header_length
(Input only)

The length of the first HTTP header in the HTTP request. If the request is not an HTTP request, or
decode_entry_count is greater than 1, the value is zero.
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decode_request_header_ptr
(Input only)

A pointer to the first HTTP header in the HTTP request. If the analyzer program modified this part of
the request, the changes are visible here. If decode_request_header_length is zero, the value is
undefined.

decode_resource_length
(Input only)

The length in bytes of the path component of the URL in the HTTP request. If the request is not an
HTTP request, or decode_entry_count is greater than 1, the value is zero.

decode_resource_ptr
(Input only)

A pointer to the path component of the URL in the HTTP request. If the analyzer program modified this
part of the request, the changes are visible here. If decode_resource_length is zero, the value is
undefined.

decode_response
(Output only)

A response; see “Responses and reason codes” on page 326.

decode_server_program
(Input and output)

A string of length 8. On input, the value supplied by the analyzer in wbra_server_program, or the
value supplied by the caller of the CICS business logic interface. On output, the name of the user-
written application program that is to service the request. The application program name must be set
here or in the analyzer program; if it is not set, no application program is called.

decode_user_data_length
(Input only)

The length in bytes of the entity body for this HTTP request. If the analyzer program modified this
value, the modified value is visible here. If there is no entity body in the request, the length is zero. If
the request is not an HTTP request, the value is the length of the request. If decode_entry_count is
greater than 1, the value is zero.

decode_user_data_ptr
(Input only)

A pointer to any entity body for this HTTP request. If the analyzer modified this part of the request,
the changes are visible here. If the request has no entity body, the pointer is zero. If the request is not
an HTTP request, this pointer has the same value as decode_data_ptr. If decode_entry_count is
greater than 1, the value is undefined.

decode_user_token
(Input and output)

A 64-bit token. On input, the user token supplied by the analyzer as wbra_user_token, or the user
token supplied by the caller of the CICS business logic interface. On output, a token that is passed to
Encode as encode_user_token.

decode_version
(Input)

A halfword binary number that indicates which version of the parameter list is currently being used. It
is set using the constant value decode_current_version.

decode_volatile
(Input)

A single-character code indicating whether the data area pointed to by decode_data_ptr can be
replaced. Possible values are as follows:
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0
The area is part of another COMMAREA and cannot be replaced.

1
The storage pointed to by decode_data_ptr can be freed and replaced by a work area of a
different size.

Responses and reason codes

You must return one of the following values in decode_response:

Symbolic value Numeric value Explanation

URP_OK 0 Processing continues. If a CICS application program is
requested, it is run. If not, processing continues with the
encode function of the converter program.

URP_EXCEPTION 4 The action taken depends on the reason code:

• CICS web support

– 1 (URP_SECURITY_FAILURE). CICS writes an
exception trace entry (trace point 455A), and issues
a message (DFHWB0121). If the request is an HTTP
request, status code 403 is sent to the web client. If
the request is not an HTTP request, no response is
sent, and the TCP/IP socket is closed.

– 2 (URP_CORRUPT_CLIENT_DATA). CICS writes an
exception trace entry (trace point 4559), and issues
a message (DFHWB0121). If the request is an HTTP
request, status code 400 is sent to the web client. If
the request is not an HTTP request, no response is
sent, and the TCP/IP socket is closed.

– Any other value. CICS writes an exception trace
entry (trace point 455B), and issues a message
(DFHWB0121). If the request is an HTTP request,
status code 501 is sent to the web client. If the
request is not an HTTP request, no response is sent,
and the TCP/IP socket is closed.

• CICS business logic interface

– 2 (URP_CORRUPT_CLIENT_DATA). The CICS
business logic interface writes an exception trace
entry (trace point 4556), issues a message
(DFHWB0120), and returns a response of 400 to its
caller.

– Any other value. CICS writes an exception trace
entry (trace point 455B), issues a message
(DFHWB0121), and returns a response of 501 to its
caller.

The CICS application program and the encode function
of the converter program do not run.
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Symbolic value Numeric value Explanation

URP_INVALID 8 The CICS application program and the encode function
of the converter program do not run.

• CICS web support

– CICS writes an exception trace entry (trace point
455C), and issues a message (DFHWB0121). If the
request is an HTTP request, status code 501 is sent
to the web client. If the request is not an HTTP
request, no response is sent, and the TCP/IP socket
is closed.

• CICS business logic interface

– CICS writes an exception trace entry (trace point
455C), issues a message (DFHWB0121), and returns
a response of 501 to its caller.

URP_DISASTER 12 The CICS application program and the encode function
of the decoder do not run.

• CICS web support

– CICS writes an exception trace entry (trace point
455D), and issues a message (DFHWB0121). If the
request is an HTTP request, status code 501 is sent
to the web client. If the request is not an HTTP
request, no response is sent, and the TCP/IP socket
is closed.

• CICS business logic interface

– CICS writes an exception trace entry (trace point
455D), issues a message (DFHWB0121), and returns
a response of 501 to its caller.

any other value The CICS application program and the encode function
of the decoder do not run.

• CICS web support

– CICS writes an exception trace entry (trace point
455E), and issues a message (DFHWB0121). If the
request is an HTTP request, status code 500 is sent
to the web client. If the request is not an HTTP
request, no response is sent, and the TCP/IP socket
is closed.

•
• CICS business logic interface

– CICS writes an exception trace entry (trace point
455E), issues a message (DFHWB0121), and returns
a response of 501 to its caller.

You can supply a 32-bit reason code in decode_reason to provide further information in error cases.
Neither CICS web support nor the CICS business logic interface takes any action on the reason code
returned by decode, except as indicated on URP_EXCEPTION. The reason code is included in any trace
entry that results from the invocation of decode.
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Parameter list for converter program encode function

Summary of parameters

In the following table, the names of the parameters are given in abbreviated form: each name in the table
must be prefixed with encode_ to give the name of the parameter.

Table 34. Parameters for Encode

Input encode_ Inout encode_ Output encode_

eyecatcher
entry_count
function
input_data_len
user_token

data_ptr reason
response

Function

If the analyzer program, or the caller of the CICS business logic interface, specified a converter program
name for the request, Encode is called after the user-written application program has ended. It
constructs the response using the data in the COMMAREA returned by the application program.

Parameters
encode_data_ptr

(Input and output)

On input, this is a pointer to the COMMAREA returned by the CICS application program. If no
application program was called, this is a pointer to the COMMAREA created by the Decode function of
the converter program.

On output, if the converter program has constructed the HTTP response manually in a buffer of
storage for CICS to send to the web client, this is a pointer to the buffer containing the response. You
must ensure that the pointer points to a valid location, or results can be unpredictable. The buffer
must be doubleword aligned. The first four bytes must be a 32-bit unsigned number specifying the
length of the buffer. (In COBOL, specify this as PIC 9(8) COMP.) The rest of the buffer is the response.

If the converter program has used EXEC CICS WEB API commands to send the response instead,
CICS ignores and discards any block of storage indicated by this pointer. In this situation, the pointer
can be left as a pointer to the COMMAREA returned by the CICS application program; its setting does
not matter.

Do not use this field as output when the converter was called from a CICS business logic interface that
was called in offset mode.

encode_entry_count
(Input only)

A count to say how many times the Encode function of the converter program has been entered for
the current web request.

encode_eyecatcher
(Input only)

A string of length 8. Its value for Encode is ">encode ".

encode_function
(Input only)

A halfword code set to the constant value URP_ENCODE, indicating that Encode is being called.

encode_input_data_len
(Input only)
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The length of the COMMAREA as specified by Decode in decode_output_data_len.

encode_reason
(Output only)

A reason code (see “Responses and reason codes” on page 329).

encode_response
(Output only)

A response (see “Responses and reason codes” on page 329).

encode_user_token
(Input only)

The 64-bit token output by the Decode function as decode_user_token.

encode_version
(Input)

A single-character parameter list version identifier, which changes whenever the layout of the
parameter list changes. Its value can be either binary zero (X'00'), indicating a pre-CICS TS 1.3
version parameter list, or a character zero (X'F0'), indicating a CICS TS 1.3 or later version parameter
list.

encode_volatile
(Input)

A single-character code indicating whether the data area pointed to by encode_data_ptr can be
replaced. Possible values are:
0

The area is part of another COMMAREA and cannot be replaced.
1

The storage pointed to by

encode_data_ptr

can be freed and replaced by a different size work area.

Responses and reason codes

You must return one of the following values in encode_response:

Symbolic value Numeric value Explanation

URP_OK 0 The response in the buffer pointed to by

encode_data_ptr

is sent to the client, unless the EXEC CICS WEB API
commands have already been used to send a response.

URP_DISASTER 12 CICS web support

• CICS writes an exception trace entry (trace point 455D),
and issues a message (DFHWB0122). If the request is an
HTTP request, status code 501 is sent to the web client. If
the request is not an HTTP request, no response is sent,
and the TCP/IP socket is closed.

CICS business logic interface

• CICS writes an exception trace entry (trace point 455D),
issues a message (DFHWB0122), and returns a response of
501 to its caller.
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Symbolic value Numeric value Explanation

URP_OK_LOOP 16 CICS loops back to the start of the

Decode

function. The value stored in encode_user_token is copied
to decode_user_token for the Decode converter function
to use.

any other value CICS web support

• CICS writes an exception trace entry (trace point 455E), and
issues a message (DFHWB0122). If the request is an HTTP
request, status code 501 is sent to the web client. If the
request is not an HTTP request, no response is sent, and
the TCP/IP socket is closed.

CICS business logic interface

• CICS writes an exception trace entry (trace point 455E),
issues a message (DFHWB0122), and returns a response of
501 to its caller.

You can supply a 32-bit reason code in encode_reason to provide further information in error cases.
Neither CICS web support nor the CICS business logic interface takes any action on the reason code
returned by the Encode function. The reason code is output in any trace entry that results from the
invocation of the Encode function.
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Appendix H. Reference information for DFHWBBLI,
CICS business logic interface

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

The business logic interface allows callers to specify what presentation logic is to be executed before and
after a CICS application program. It has two modes of operation:

• Pointer mode: the input data for Decode is in storage allocated separately from the COMMAREA for the
business logic interface. The COMMAREA contains a pointer (wbbl_data_ptr) to the input data for
Decode. When the call to the business logic interface ends, the output from Encode is in storage
allocated separately from the COMMAREA for the business logic interface, and the COMMAREA contains
a pointer (wbbl_outdata_ptr) to the output from Encode.

• Offset mode: the input data for Decode is part of the COMMAREA for the business logic interface. The
COMMAREA contains the offset (wbbl_data_offset) of the input data for Decode. When the call to the
business logic interface ends, the output from Encode is part of the COMMAREA for the business logic
interface, and the COMMAREA contains the offset (wbbl_outdata_offset) of the output from Encode.

The caller of the business logic interface uses wbbl_mode to indicate which mode of operation is to be
used.

For information about writing a converter for the business logic interface, see Writing a converter
program.

Summary of parameters
Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

The names of the parameters and constants, translated into appropriate forms for the different
programming languages supported, are defined in files supplied as part of CICS web support. These files
give language-specific information about the data types of the fields in the COMMAREA.

The files for the various languages are as follows:

Language File

Assembler DFHWBBLD

C DFHWBBLH

COBOL DFHWBBLO

PL/I DFHWBBLL
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Table 35. Parameters for the business logic interface

Input Output

wbbl_client_address
 wbbl_client_ipv6_address
wbbl_client_address_length
wbbl_client_ipv6_address_length
wbbl_client_address_string
wbbl_client_ipv6_address_string
wbbl_converter_program_name
wbbl_eyecatcher
wbbl_header_length
wbbl_header_offset
wbbl_http_version_length
wbbl_http_version_offset
wbbl_indata_length
wbbl_indata_offset
wbbl_indata_ptr
wbbl_length
wbbl_method_length
wbbl_method_offset
wbbl_mode
wbbl_prolog_size
wbbl_resource_length
wbbl_resource_offset
wbbl_server_address
wbbl_server_ipv6_address
wbbl_server_program_name
wbbl_ssl_keysize
wbbl_status_size
wbbl_user_token
wbbl_user_data_length
wbbl_vector_size
wbbl_version

wbbl_outdata_length
wbbl_outdata_offset
wbbl_outdata_ptr

Programs that were written to use an earlier version of the CICS business logic interface (DFHWBA1) are
supported through a compatibility interface, which calls DHWBBLI.

Parameters for the business logic interface, DFHWBBLI
Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

Names and descriptions of the input and output parameters for the business logic interface are listed,
prefixed with wbbl_.

Before inserting the inputs into the COMMAREA, you must clear it to binary zeros.

wbbl_eyecatcher
(Input only)

A 14-character field that must be set to the string >DFHWBBLIPARMS.

wbbl_client_address
(Input only)
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A fullword 32-bit field that must be set to the binary IPv4 address of the client, if
wbbl_client_ipv6_address is not specified. wbbl_client_address does not support IPv6
addresses.

If there is a non-zero value in wbbl_client_address, this value is used, and any value in
wbbl_client_ipv6_address is ignored. Therefore, if you are using IPv6 addressing you must clear
the contents of wbbl_client_address to allow the value in wbbl_client_ipv6_address to be
used.

wbbl_client_ipv6_address
(Input only)

A 16-byte field that must be set if you are using IPv6 addressing, or if you are using IPv4 addressing
and wbbl_client_address is not specified. This field supports both IPv4 and IPv6 addresses and
is set to the binary IPv6 address of the client, or the IPv4 address of the client in IPv6 format. For
more information on IP address format, see IP addresses.

wbbl_client_address_length
(Input only)

A 1-byte binary field that must be set to the length of wbbl_client_address_string.

wbbl_client_ipv6_address_length
(Input only)

A 1-byte binary field that must be set to the length of wbbl_client_ipv6_address_string.

wbbl_client_address_string
(Input only)

A string of up to 15 characters that are the dotted decimal representation of
wbbl_client_address, padded on the right with binary zeros. Use
wbbl_client_ipv6_address_string instead of wbbl_client_address_string for all new
programs.

wbbl_client_ipv6_address_string
(Input only)

A string of up to 39 characters that are the colon hexadecimal or dotted decimal representation of
wbbl_client_ipv6_address, padded on the right with binary zeros.

wbbl_converter_program_name
(Input only)

The 8-character name of the program to be used for converter DECODE and ENCODE functions.

wbbl_header_length
(Input only)

A fullword binary number that must contain the length of the HTTP headers associated with this
request.

wbbl_header_offset
(Input only)

A fullword binary number that must contain the offset, from the start of the request data, of the HTTP
headers associated with this request.

wbbl_http_version_length
(Input only)

A fullword binary number that must contain the length of the version of the HTTP protocol to be used
to process the request.

wbbl_http_version_offset
(Input only)
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A fullword binary number that must contain the offset of the version of the HTTP protocol to be used
to process the request.

wbbl_indata_length
(Input only)

A fullword binary number that must be set to the length of the data located by wbbl_indata_ptr or
wbbl_indata_offset. If the analyzer modified the data length value, it is visible here. If the request
is not an HTTP request, do not set this field.

wbbl_indata_offset
(Input only)

If wbbl_mode is "O" or "D", this is the offset, from the start of the parameter list, of the HTTP request
data to be passed to the application.

wbbl_indata_ptr
(Input only)

If wbbl_mode is "P", this field is the address of the HTTP request data to be passed to the application.

wbbl_length
(Input only)

A halfword binary number that must be set to the total length of the BLI parameter list.

wbbl_method_length
(Input only)

A fullword binary number that must contain the length of the HTTP method to be used to process the
request. The method is one of: GET, POST, HEAD, PUT, DELETE, LINK, UNLINK, or REQUEUE.

wbbl_method_offset
(Input only)

A fullword binary number that must contain the offset, from the start of the request data, of the HTTP
method to be used to process the request. The method is one of: GET, POST, HEAD, PUT, DELETE,
LINK, UNLINK, or REQUEUE.

wbbl_mode
(Input only)

A single character that indicates the addressing mode for wbbl_indata and wbbl_outdata. It must
be set to "P" to indicate that these values are pointers or to "O" to indicate that these values are
offsets from the start of the parameter list.

wbbl_outdata_length
(Input only)

The fullword binary field in which DFHWBBLI returns the length of the response data located by
wbbl_outdata_ptr or wbbl_outdata_offset.

wbbl_outdata_offset
(Input only)

If wbbl_mode is "O" or "D", this is the fullword in which DFHWBBLI returns the offset, from the start
of the parameter list, of the response data from the application. This address in not necessarily the
same as wbbl_indata_offset.

wbbl_outdata_ptr
(Input only)

If wbbl_mode is "P", this field is the fullword address in which DFHWBBLI returns the address of the
response data from the application. This address in not necessarily the same as wbbl_indata_ptr.

wbbl_prolog_size
(Input only)
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A halfword binary number that must be set to 56; that is, the length of the wbbl_prolog
substructure.

wbbl_resource_length
(Input only)

A fullword binary number that must contain the length of the URI resource that is being requested;
that is, the non-network part of the URL, starting at the first / character in the URL.

wbbl_resource_offset
(Input only)

A fullword binary number that must contain the offset, from the start of the request data, of the URI
resource that is being requested; that is, the non-network part of the URL, starting at the first /
character in the URL.

wbbl_response
(Input only)

A fullword binary field in which DFHWBBLI returns its response code.

wbbl_server_address
(Input only)

A fullword 32-bit field that must be set to the binary IPv4 address of the server, if
wbbl_server_ipv6_address is not specified. wbbl_server_address does not support IPv6
addresses.

If there is a non-zero value in wbbl_server_address, this value is used, and any value in
wbbl_server_ipv6_address is ignored. Therefore, if you are using IPv6 addressing you must clear
the contents of wbbl_server_address to allow the value in wbbl_server_ipv6_address to be
used.

wbbl_server_ipv6_address
(Input only)

A 16-byte field that must be set if you are using IPv6 addressing, or if you are using IPv4 addressing
and wbbl_server_address is not specified. This field supports both IPv4 and IPv6 addresses and
is set to the binary IPv6 address of the server, or the IPv4 address of the server in IPv6 format. For
more information on IP address format, see IP addresses.

wbbl_server_program_name
(Input only)

The 8-character name of the CICS application program that is to be used to process the request and
produce the response.

wbbl_ssl_keysize
(Input only)

The size of the encryption key negotiated during the SSL handshake, if secure sockets layer is being
used. It contains zero if SSL is not being used.

wbbl_status_size
(Input only)

A 1-byte binary field that must be set to the length of the wbbl_status substructure.

wbbl_user_data_length
(Input only)

A fullword binary number that must be set to the length of the entity body. If the analyzer modified
the length value, it is visible here. If the request is not an HTTP request, do not set this field.

wbbl_user_token
(Input only)
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An 8-character field in which the caller of DFHWBBLI can pass data which identifies the current
conversational state with the client. It is usually set to the first eight characters of the query-string
portion of the URL; that is, any data following a question mark (?).

wbbl_vector_size
(Input only)

A halfword binary number that must be set to 64 (that is, the length of the wbbl_vector
substructure.

wbbl_version
(Input only)

A halfword binary number that indicates which version of the BLI parameter list is currently being
used. It is set using the constant value wbbl_current_version.

Business logic interface responses
Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

One of the following values is returned in wbbl_response. These values correspond to the intended HTTP
responses to be sent to an HTTP client.

400
One of the converter functions returned a URP_EXCEPTION response with a reason
URP_CORRUPT_CLIENT_DATA. The business logic interface writes an exception trace entry (trace
point 4556) and issues a message (DFHWB0120).

403
A LINK command to the program specified in wbbl_server_program_name received a NOTAUTH
response. The business logic interface writes an exception trace entry (trace point 4556) and issues a
message (DFHWB0120).

404
A LINK command to the program specified in wbbl_server_program_name received a PGMIDERR
response. The business logic interface writes an exception trace entry (trace point 4556) and issues a
message (DFHWB0120).

500
One of the following occurred:

• The business logic interface detected an abend. A message that depends on the program that
abended is issued. For the program specified in wbbl_server_program_name, the message is
DFHWB0125. For the Encode function of the converter, the message is DFHWB0126. For the
Decode function of the converter, the message is DFHWB0127. For any other program, the message
is DFHWB0128. In any case an exception trace entry (trace point 4557) is written.

• A LINK command to the program specified in wbbl_server_program_name received an INVREQ or
a LENGERR or an unexpected response. The business logic interface writes an exception trace entry
(trace point 4556) and issues a message (DFHWB0120).

501
One of the following occurred:

• Decode returned a response of URP_EXCEPTION with an undefined reason code. The business logic
interface writes an exception trace entry (trace point 455B) and issues a message (DFHWB0121).

• Decode returned a response of URP_INVALID. The business logic interface writes an exception
trace entry (trace point 455C) and issues a message (DFHWB0121).

• Decode returned a response of URP_DISASTER. The business logic interface writes an exception
trace entry (trace point 455D) and issues a message (DFHWB0121).

• Decode returned an undefined response. The business logic interface writes an exception trace
entry (trace point 455E) and issues a message (DFHWB0121).
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• Encode returned a response of URP_EXCEPTION with an undefined reason code. The business logic
interface writes an exception trace entry (trace point 455B) and issues a message (DFHWB0122).

• Encode returned a response of URP_INVALID. The business logic interface writes an exception
trace entry (trace point 455C) and issues a message (DFHWB0122).

• Encode returned a response of URP_DISASTER. The business logic interface writes an exception
trace entry (trace point 455D) and issues a message (DFHWB0122).

• Encode returned an undefined response. The business logic interface writes an exception trace
entry (trace point 455E) and issues a message (DFHWB0122).

503
One of the following occurred:

• A LINK command to the program specified in wbbl_server_program_name received a TERMERR
response. The business logic interface writes an exception trace entry (trace point 4555) and issues
a message (DFHWB0120).

• A LINK command to the program specified in wbbl_server_program_name received a SYSIDERR or
ROLLEDBACK response. The business logic interface writes an exception trace entry (trace point
4556) and issues a message (DFHWB0120).
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Appendix I. Reference information for DFHWBEP,
web error program

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

The names of the parameters and constants in the parameter list passed to the web error program
DFHWBEP, translated into appropriate forms for the programming languages supported, are listed in the
following table.

Language Parameters file

Assembler DFHWBEPD

C DFHWBEPH

COBOL DFHWBEPO

PL/I DFHWBEPL

Parameters

All DFHWBEP parameters are input only, except wbep_response_ptr and wbep_response_len, which
are input and output, and wbep_suppress_abend and wbep_close_conn, which are output only.

wbep_abend_code
(Input only)

The 8-character abend code associated with this exception.

wbep_activity
(Input only)

The type of processing that was in progress when the error occurred. 0 indicates server processing
and 2 indicates pipeline processing.

wbep_analyzer_reason
(Input only)

The reason code returned by the analyzer program, if invoked.

wbep_analyzer_response
(Input only)

The response code returned by the analyzer program, if invoked.

wbep_client_address
(Input only)

A 15–character field that must be set to the binary IPv4 address of the client, if
wbep_client_ipv6_address is not specified. wbep_client_address does not support IPv6
addresses.

If there is a non-zero value in wbep_client_address, this value is used, and any value in
wbep_client_ipv6_address is ignored. Therefore, if you are using IPv6 addressing you must clear
the contents of wbep_client_address to allow the value in wbep_client_ipv6_address to be
used.

wbep_client_ipv6_address
(Input only)
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The colon hexadecimal IPv6 or dotted decimal IPv4 address of the client. This field can be up to 39
characters in length.

This field that must be set if you are using IPv6 addressing, or if you are using IPv4 addressing and
wbep_client_address is not specified. This field supports both IPv4 and IPv6 addresses and is set
to the binary IPv6 address of the client, or the IPv4 address of the client in IPv6 format. For more
information on IP address format, see IP addresses.

wbep_client_address_len
(Input only)

The length of the dotted decimal IP address contained in wbep_client_address. This field contains
zeros if the address is IPv6 format.

wbep_client_ipv6_address_len
(Input only)

The length of the IP address contained in wbep_client_ipv6_address or wbep_client_address.

wbep_close_conn
(Output only)

A 1-character field (Y or N) that indicates whether the connection is closed after the response is sent
to the client. The default value of N indicates that the connection is not closed.

wbep_converter_program
(Input only)

The name of the converter program, if one is used, for the failing request.

wbep_converter_reason
(Input only)

The reason code returned by the converter program, if invoked.

wbep_converter_response
(Input only)

The response code returned by the converter program, if invoked.

wbep_error_code
(Input only)

The error code identifying the error detected.

wbep_eyecatcher
(Input only)

A character field containing an eyecatcher to help with diagnostics. DFHWBA sets this to >wbepca
before calling the web error program.

wbep_failing_program
(Input only)

An 8-character field containing the name of the program in which the error occurred.

wbep_http_response_code
(Input only)

The default HTTP status code returned by CICS for this error.

wbep_length
(Input only)

The length of the DFHWBEPC copybook.

wbep_message_len
(Input only)

The length of the CICS message text addressed by wbep_message_ptr.
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wbep_message_number
(Input only)

A fullword number of the CICS WB domain message associated with the error.

wbep_message_ptr
(Input only)

A pointer to the CICS message text associated with this error.

wbep_response_len
(Input and output)

On input, this field is the fullword length of the default HTTP response for this error. CICS provides
only a default response for HTTP requests; for non-HTTP requests, this field is zero. On output, this
field contains the length of the default HTTP response, or of a modified response in the same block of
storage, or of a replacement response in a new block of storage.

wbep_response_ptr
(Input and output)

On input, pointer points to a block of storage containing the default HTTP response for this error. CICS
provides only a default response for HTTP requests. The default response is a complete HTTP
response, including a status line, HTTP headers and message body. On output, this pointer either
points to the same block of storage, containing the original or a modified version of the default
response, or a pointer to a new block of storage containing a replacement response. If DFHWBEP
successfully uses the EXEC CICS WEB SEND command to create a new response and sends it to the
web client, CICS ignores and discards the HTTP response in the block of storage. Otherwise, the
response in the block of storage is sent to the web client.

wbep_server_address
(Input only)

The 15-character IPv4 address of the server (CICS as an HTTP server) that must be set, if
wbep_server_ipv6_address is not specified. wbep_server_address does not support IPv6
addresses.

If there is a non-zero value in wbep_server_address, this value is used, and any value in
wbep_server_ipv6_address is ignored. Therefore, if you are using IPv6 addressing you must clear
the contents of wbep_server_address to allow the value in wbep_server_ipv6_address to be
used.

wbep_server_ipv6_address
(Input only)

A 16-byte field that must be set if you are using IPv6 addressing, or if you are using IPv4 addressing
and wbep_server_address is not specified. This field supports both IPv4 and IPv6 addresses and
is set to the binary IPv6 address of the server (CICS as an HTTP server), or the IPv4 address of the
server in IPv6 format. For more information on IP address format, see IP addresses.

wbep_server_address_len
(Input only)

The length of the dotted decimal IPv4 address contained in wbep_server_address. This field
contains zeros if the address is IPv6 format.

wbep_server_ipv6_address_len
(Input only)

The length of the IP address contained in wbep_server_ipv6_address or wbep_server_address.

wbep_target_program
(Input only)

The target user-written application program that is designated to handle the web client request.
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wbep_tcpipservice_name
(Input only)

The name of the TCPIPSERVICE definition for the port on which the request is received.

wbep_version
(Input only)

A halfword binary number that indicates which version of the parameter list is currently being used. It
is set using the constant value wbep_current_version.

wbep_suppress_abend
(Output only)

A 1-bit flag which, when set on, suppresses the abend AWBM.
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Appendix J. The DFHWBCLI Web Client Interface
DFHWBCLI is a CICS-supplied utility program that you can invoke via EXEC CICS LINK to provide web
client services or outbound HTTP. It is supported in CICS Transaction Server for z/OS, Version 5 Release 4
for upgrade purposes.

The functions of the DFHWBCLI Web Client Interface are retained for compatibility reasons. To gain
enhanced functionality, you can upgrade HTTP client applications that used the DFHWBCLI interface, to
use the EXEC CICS WEB API commands for client requests (with the SESSTOKEN option). One important
difference to note is that in the EXEC CICS WEB API, the use of a proxy server is specified by a user exit
on the WEB OPEN command (XWBOPEN), and the URL of the proxy server is supplied by that user exit.
Making HTTP requests through CICS(r) as an HTTP client describes how HTTP client requests can now be
made.

If you want to use DFHWBCLI, you must set up CICS to use a name server. See Configuring CICS web
support components.

To use DFHWBCLI, you must link to it with a commarea that contains a parameter list whose contents are
mapped by the following copybooks:

• DFHWBCLD for Assembler
• DFHWBCLO for COBOL
• DFHWBCLL for PL/I
• DFHWBCLH for C

The parameters have the following meanings:
WBCLI_VERSION_NO

a one-byte binary number that specifies the version number of this parameter list. It should be set to
the value specified by the symbolic constant WBCLI_VERSION_CURRENT.

WBCLI_FUNCTION
A one-byte binary number that specifies the function that you want DFHWBCLI to execute. It should
be set to one of the following values:
0 (WBCLI_FUNCTION_CONVERSE)

Send an HTTP request to a target server and receive the corresponding response
1 (WBCLI_FUNCTION_SEND)

Send an HTTP request to a target server and return control without waiting for the response
2 (WBCLI_FUNCTION_RECEIVE)

Wait for and receive the response to the HTTP request sent by a previous SEND function
3 (WBCLI_FUNCTION_INQUIRE_PROXY)

Request the name of the proxy server that was specified in the
INITPARM=(DFHWBCLI,'PROXY=http://....') system initialization parameter

4 (WBCLI_FUNCTION_CLOSE)
Close the connection previously established by a SEND function, but without waiting for the HTTP
response

WBCLI_METHOD
A one-byte binary number that specifies the HTTP method to be specified in the HTTP request. It
should be set to one of the following values:

1 (WBCLI_METHOD_GET)
2 (WBCLI_METHOD_POST)

WBCLI_FLAGS
A one-byte binary bitstring that can be used to specify options associated with the HTTP request and
its expected response. The bits in the bitstring may be set to the following values:
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1... .... (WBCLI_OFFSET_MODE)
Pointer values in the parameter list are specified as offset values from the start of the parameter
list. This implies that all the targets of such pointers are contained within the commarea.

.1.. .... (WBCLI_DOCUMENT)
The HTTP request body is a CICS document which was created by the DOCUMENT CREATE
command and is specified by the document token in WBCLI_REQUEST_DOCTOKEN

..1. .... (WBCLI_USE_PROXY)
The HTTP request is to be sent via the proxy server whose URL is specified in
WBCLI_PROXY_URL_PTR

...1 .... (WBCLI_SET_RESP_BUFFER)
CICS is to acquire a suitably sized buffer to contain the HTTP response body, and return its
address in WBCLI_REQUEST_BODY_PTR

Note: This address is not made into an offset, regardless of the setting of WBCLI_OFFSET_MODE

.... ..1. (WBCLI_NATIVE_REQUEST_BODY)
The application will provide the HTTP request body in its native form, and CICS does not need to
translate it from EBCDIC to ASCII

.... ...1 (WBCLI_NATIVE_RESPONSE_BODY)
The application will handle the HTTP response body in its native form, and CICS does not need to
translate it from ASCII to EBCDIC

WBCLI_RESPONSE
A halfword binary number that is set to one of the following values to indicate the outcome of the
function:

0 (WBCLI_RESPONSE_OK)
4 (WBCLI_RESPONSE_EXCEPTION)
8 (WBCLI_RESPONSE_DISASTER)

WBCLI_REASON
A halfword binary number that is set to one of the following values to qualify the response code:
1 (WBCLI_REASON_INVALID_URL)

The format of the URL located by WBCLI_URL_PTR is invalid, or the host location cannot be
resolved by the nameserver

2 (WBCLI_REASON_INVALID_HEADER)
One of the HTTP headers in the list located by WBCLI_HEADER_PTR is not in the correct format

3 (WBCLI_REASON_INVALID_DOCUMENT)
The document token specified in WBCLI_REQUEST_DOCTOKEN does not locate a valid CICS
document

4 (WBCLI_REASON_GETMAIN_ERROR)
An error occurred while DFHWBCLI was attempting to obtain storage for one of its internal
workareas

5 (WBCLI_REASON_PROXY_ERROR)
The proxy server located by WBCLI_PROXY_URL_PTR could not be found or returned an error
response

6 (WBCLI_REASON_SOCKET_ERROR)
An unexpected response was returned when performing a socket operation

7 (WBCLI_REASON_HTTP_ERROR)
An unexpected HTTP response was returned by the server

8 (WBCLI_REASON_TRANSLATE_ERROR)
An error was returned while CICS was translating data between the host code page and the server
code page. This could be because the required translation is not supported by CICS
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9 (WBCLI_REASON_TRUNCATED)
The length of the user-provided response buffer specified in WBCLI_RESPONSE_BODY_LEN is
insufficient to contain the response returned by the server. Data in excess of this length has been
discarded.

10 (WBCLI_REASON_INVALID_HEADER_LENGTH)
The length of the user-provided request header specified in WBCLI_HEADER_LEN was invalid.

11 (WBCLI_REASON_INVALID_BODY_LENGTH)
The length of the user-provided request body specified in WBCLI_REQUEST_BODY_LEN was
invalid.

WBCLI_SESSION_TOKEN
An opaque eight-byte binary token that represents the connection established with the HTTP server.
It is set by the SEND function and is required by the RECEIVE and CLOSE functions. It is not used by
the other functions.

WBCLI_URL_PTR
The address of an EBCDIC character string that contains the URL (Uniform Resource Locator) of the
destination HTTP server. The URL must be fully qualified: that is, it must begin with 'http://' or
'https://'.

WBCLI_URL_LEN
A fullword binary number that contains the length of the URL located by WBCLI_URL_PTR.

WBCLI_PROXY_URL_PTR
The address of an EBCDIC character string that contains the URL (Uniform Resource Locator) of a
proxy server that may be required to access remote sites outside your firewall. The URL must be fully
qualified: that is, it must begin with 'http://'. To use the proxy, you must also set the
WBCLI_USE_PROXY flag.

WBCLI_PROXY_URL_LEN
A fullword binary number that contains the length of the URL located by WBCLI_PROXY_URL_PTR.

WBCLI_HEADER_PTR
The address of list of HTTP headers that are to be sent with the HTTP request. The headers must be
encoded in EBCDIC, in the following form:

headername: headervalue§headername: headervalue§ ...

where
headername

is the name of the header
headervalue

is the value of the header
The colon (:) and space that separate these two should be present as shown; the '§' shown here
should be replaced by one or more of the following delimiters:

carriage return (X'0D')
line feed (X'25')
new line (X'15')
field separator (X'1E')

Note: These delimiters are not used when the headers are sent: CICS uses the architecturally correct
HTTP delimiters.

You may code as many headers in the list as you need. However, you must not include the following
headers, as CICS will provide them:

Host
User-Agent
Content-Length
Content-Type
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You do not need to provide a delimiter following the last header in the list.
WBCLI_HEADER_LEN

A fullword binary number that contains the length of the list of headers located by
WBCLI_HEADER_PTR.

WBCLI_REQUEST_DOCTOKEN
A 16-byte binary document token, created by the DOCUMENT CREATE command, that represents a
CICS document that is to be used as the HTTP request body. You must indicate that you are using this
token by setting the WBCLI_DOCUMENT flag.

WBCLI_REQUEST_BODY_PTR
The address of an EBCDIC character string that contains the entire contents of the HTTP request
body. This parameter is used when the WBCLI_DOCUMENT flag is not set.

WBCLI_REQUEST_BODY_LEN
A fullword binary number that contains the length of the request body that is located by
WBCLI_REQUEST_BODY_PTR.

WBCLI_RESPONSE_BODY_PTR
The address of a buffer in which DFHWBCLI returns the HTTP response body from the server.

• If flag WBCLI_SET_RESP_BUFFER is not set, this address and WBCLI_RESPONSE_BODY_LEN must
be set by the caller. If this buffer is not large enough to contain the response body, it is truncated.

• If flag WBCLI_SET_RESP_BUFFER is set, this address and WBCLI_RESPONSE_BODY_LEN are
ignored. CICS obtains a new buffer which is large enough to contain the entire response, and its
address is returned in this field. This address is never converted into an offset, whatever the value of
the WBCLI_OFFSET_MODE flag.

Normally, CICS frees the storage at this address when the task that invokes DFHWBCLI ends.
Alternatively, you can free the storage earlier by issuing an EXEC CICS FREEMAIN command in your
application program. You are advised to do so when DFHWBCLI is called repeatedly in a long-running
task, in order to prevent CICS going short-on-storage.

WBCLI_RESPONSE_BODY_LEN
A fullword binary number that contains the length of the response buffer located by
WBCLI_RESPONSE_BODY_PTR.

• On input, if WBCLI_SET_RESP_BUFFER is not set, use this parameter to specify the length of the
user-provided buffer.

• On output, it contains the actual length of the response body that was returned.

WBCLI_MEDIATYPE
A 40-byte EBCDIC blank-padded character string that contains the IANA media type (also known as
the MIME type) of the HTTP body.

• On input, use this parameter to specify the media type of the HTTP request body. This media type
will be sent in the HTTP Content-Type header

• On output, it will contain the media type of the HTTP response body, as received in the HTTP
Content-Type header.

The media type must be specified for SEND requests that use the POST method (requests where
WBCLI_FUNCTION_SEND and WBCLI_METHOD_POST are both set).

WBCLI_CHARSET
A 40-byte EBCDIC character string that contains the IANA character set of the HTTP body.

• On input, if WBCLI_NATIVE_REQUEST_BODY is not set, use this parameter to specify the name of
the character set into which you want CICS to translate the HTTP request body. The character set
you specify is used to qualify the media type in the HTTP Content-Type header. If you do not specify
a value, the default of iso-8859-1 is assumed only if WBCLI_MEDIATYPE includes the value TEXT.

• On output, it will contain the character set of the HTTP response body as received in the HTTP
Content-Type header. This character set is used to translate the HTTP response body (unless the
WBCLI_NATIVE_RESPONSE_BODY is set).
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WBCLI_HOST_CODEPAGE
A 10-character EBCDIC blank-padded character string that contains the name of the EBCDIC code
page used by your application. It is used in combination with WBCLI_CHARSET to determine what
translation is to be performed on the HTTP document bodies (unless translation is suppressed by the
WBCLI_NATIVE_REQUEST_BODY or WBCLI_NATIVE_RESPONSE_BODY flags). If it is omitted, CICS
uses code page 037.

WBCLI_HTTP_STATUS_CODE
A three-digit numeric EBCDIC character string in which the HTTP status code is returned. This
indicates whether the HTTP request was successful or not. The 200 status code is used for a normal
response, and other status codes in the 2xx range also indicate success. Other status codes indicate
that there is an error that prevents fulfilment of the request, or that the client needs to do something
else in order to complete its request successfully, such as following a redirection URL.

Appendix J. The DFHWBCLI Web Client Interface  347



348  CICS TS for z/OS: Internet Guide



Appendix K. Reference information for DFH$WBST
and DFH$WBSR, state management samples

Two state management sample programs, DFH$WBST and DFH$WBSR, are supplied with CICS web
support. They allow a transaction to save data for later retrieval by the same transaction, or by another
transaction.

The saved data is accessed by a token that is created by the state management program for the first
transaction. The first transaction must pass the token to the transaction that is to retrieve the data. DFH
$WBST uses a GETMAIN command to allocate storage for the saved data. DFH$WBSR saves the data in
temporary storage queues, one for each token, so that, with appropriate definitions for the temporary
storage queues, the data can be accessed from several CICS systems. The rest of this section applies
equally to either program.

The state management programs provide the following operations:

• Create a new token.
• Store information and associate it with a previously-created token.
• Retrieve information previously associated with a token.
• Destroy information associated with a token, and invalidate the token.

DFH$WBST also removes information and tokens that have expired. You can run this program periodically
to purge state data which has expired:

• To purge all state data which has not been updated for one hour, run the program as transaction CWBT.
• To purge all state data, run the program as transaction CWBP.

The layout of the 268-byte COMMAREA is shown in the following table. You must clear the COMMAREA to
binary zeros before setting the inputs for the function you require.

Table 36. Parameters for the state management program

Offset Length Type Value Notes

0 4 C Eyecatcher

4 1 C 'C'
'R'
'S'
'D'

Create
Retrieve
Store
Destroy

This is the function code. It is a required input to every
call.

5 1 X Return code. This is an output from every call.

6 2 X Reserved.

8 4 F Token. This is an output from a Create call, and an
input to every other call.

12 256 C User data. This is an input to the Create and Store
calls, and an output from a Retrieve call. It is not used
in other calls.

The return codes are as follows:
0

The requested function was performed.
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• If the function was Create, a new token is available at offset 8.
• If the function was Retrieve, the entity body associated with the input token at offset 8 is now in the

entity body area at offset 12.
• If the function was Store, the input entity body at offset 12 is now associated with the input token

and offset 8. Any entity body previously associated with the token is overwritten.
• If the function was Destroy, the data associated with the input token at offset 8 has been discarded,

and the token is no longer valid.

2
The function code at offset 4 was not valid. Correct the program that sets up the COMMAREA.

3
The function was Create, but a GETMAIN command gave an error response.

4
The function was Retrieve, Store, or Destroy, but the input token at offset 8 was not found. Either the
input token is not a token returned by Create, or it has expired.

5
A WRITEQ TS command gave an error response when writing internal data to a temporary storage
queue.

7
An ASKTIME command gave an error response.

8
A READQ TS command gave an error response when reading internal data from a temporary storage
queue.

9
An ASKTIME command gave an error response during timeout processing.

11
The function was Create, but a WRITEQ TS command gave an error response. This return code is
produced only by DFH$WBSR.

12
The function was Retrieve, but a READQ TS command gave an error response. This return code is
produced only by DFH$WBSR.

13
The function was Store, but a WRITEQ TS command gave an error response. This return code is
produced only by DFH$WBSR.

14
The function was Destroy, but a DELETEQ TS command gave an error response. This return code is
produced only by DFH$WBSR.
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Notices

This information was developed for products and services offered in the U.S.A. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing 
IBM Corporation 
North Castle Drive, MD-NC119 
Armonk, NY 10504-1785 
United States of America

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing 
Legal and Intellectual Property Law 
IBM Japan Ltd. 
19-21, Nihonbashi-Hakozakicho, Chuo-ku 
Tokyo 103-8510, Japan 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US
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Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information

CICS supplies some documentation that can be considered to be Programming Interfaces, and some
documentation that cannot be considered to be a Programming Interface.

Programming Interfaces that allow the customer to write programs to obtain the services of CICS
Transaction Server for z/OS, Version 5 Release 4 are included in the following sections of the online
product documentation:

• Developing applications
• Developing system programs
• Securing overview
• Developing for external interfaces
• Reference: application developmenth
• Reference: system programming
• Reference: connectivity

Information that is NOT intended to be used as a Programming Interface of CICS Transaction Server for
z/OS, Version 5 Release 4, but that might be misconstrued as Programming Interfaces, is included in the
following sections of the online product documentation:

• Troubleshooting and support
• Reference: diagnostics

If you access the CICS documentation in manuals in PDF format, Programming Interfaces that allow the
customer to write programs to obtain the services of CICS Transaction Server for z/OS, Version 5 Release
4 are included in the following manuals:

• Application Programming Guide and Application Programming Reference
• Business Transaction Services
• Customization Guide
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• C++ OO Class Libraries
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