CICS Transaction Server for z/OS
Version 5 Release 4

Internet Guide

‘.II!:




Note

Before using this information and the product it supports, read the information in “Notices” on page
351.

This edition applies to the IBM CICS® Transaction Server for z/0OS® Version 5 Release 4 (product number 5655-Y04) and
to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1974, 2019.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.



Contents

AboUt this PDF......c.ciuiiiiiiiiieiiiiieiiiiiiiiiiietiesietiestatsscssssssssssssssssssssssassssssssssssnnse vii
Chapter 1. CICS Web SUPPOIt....cccciiiiieiiiiiieiiiiniieiieieiiesiitesiecsciesssestesssessessssessesanse 1
Internet, TCP/IP, aNd HTTP CONCEPLS...cuiiiiciiiicciiieccte e ettt eetee e e tee e e te e s e tee e s be e e s abae e easaeesabaeesnsaesensaesnnsnas 2
IOL S o] o (o ol ] £ SRN 2

TP A0AIESSES. e iuieiiieiieiitesit sttt ettt se e st e e bt e s te e s baeste s ba e s st e s be e see st e e beeer b e e baeeabe e beesaae e beenraesateebaens 2
HOST MAIMIES . ettt e s et e e s e bt e e s s e bt e e s e s sre e e e e ssne e e e s s maaeeesennaaeesann 6

RV (U N aTo =) 4 [ o= S SRR 7
POIE NMUMIDEIS .ttt ettt et e s e e e be e st e sbe s baesabe s baesasessbaesssesaseensaesaseenseesasesnseesseesn 7
TANA media types and CharaCter SEtS.......uiiiiiiiiie ettt eee e e e e eree e s rae e s eree e e rae e areas 8
The cOMPONENES OFf @ URL...iiuiiiiciieccee ettt s te e st e e te e e s te e eeate e s naeeeenteeeenaeeennes 8
THE HTTP PrOtOCOL....uuiiiiciie ettt ettt ettt e et e e e e e e be e e e be e e s baeeesbaeeessaeessaeeensaeesnseeeanssaesnseeesnnens 9
Status codes and rEASON PRIASES......cccciei ittt eete e e te e eetee e e eree e s bae e sbee e eseeesraeesnseeesnses 12
Reserved and excluded CharaClers. ... iiiiirieriierie ettt be e sbeesbe e saneenbee e 13

HT ML fOIMNS . .eeitteieeeteete ettt ettt ettt e st e bt e st e e be e sabe e baesab e s beesasessbaesssessseessaesnseenssesaseensaesnseenns 13
ChUuNKed tranSTer-COAING.....viiiiiiiciieeeee ettt e e e e e re e e abe e s abe e e ate e e staesntaesnssaesnenas 14

T 01T Lo 11 = R 15
PErSISTENT CONNECTIONS. ..ciiiiiiiiiiiiie ettt st ettt e st e st e e sbaesabeesbeesateebaesssesnseesssesnsasnnns 15
HTTP basiC aUthenTiCAtiON...c.cuiiiiiiiiiterteceeete sttt e e se e et e saa e s be e aaesaeeesbaesaseensaesane 15
Components Of CICS WED SUPPOI....ccciieieiieccieeecite et et ree e e ee e e re e e tae e e bae e e bee e e beeesbaaesnseeeenseesansens 16
Task structure for CICS WED SUPPOI.....ccuiie ettt ecte e et e e e e eaae e e ve e esaaeessaseesnsaesnraesnneean 18
SEIVEN HT TP PrOCESSING. .. uvtiieiiieeiieeeiteeeiteeeiteeeeteeesaraeesaeeesaseeasssaeasssaeasssaeasssaeesssaeassseessnseesanseessnseessnsees 20
CLIENT HT TP PrOCESSING. ... vtiiiciieeiitiieeitee et e ectte e ettt e eetteeeetteesesseessseeeasseeessaeassaeaassaeasssessseesnsseesssaeansseeans 24
SESSION TOKENS. ..eutiiiieiiieiteeteest et et e et et e st e s bt e sbe e st e e s teesab e e beesase e beesaseesbeesaaeeabaesasesabeesaesaseensaesnseensans 27
URLS fOr CICS WD SUPPOIM . .eiiitiieiiieceieeecitee ettt e eetteeeette e sette e stee e eaee e seseesssaessbaeessaessnseessseessnseessnseessnsens 27
Chunked transfer-coding with CICS WED SUPPOIt......ciiciiiieiiieciee ettt et te e e tee e tee e saaae e 30
How CICS web support handles pipeliNing........ccuee ettt er e e re e e re e s aeessaaeeseavaeeas 30
How CICS web support handles persistent CONNECIONS......cccuiiiciieiciee e 31
Code page conversion for CICS WED SUPPOI......ccciiiicieeiiee ettt ecee e etee e stee e e vee e e tae e saae e e raeseaneas 33
Code page conversion for CICS as an HTTP SEIVET....cccuuiicciieeiieeeiieeeiieeecteeesteeeseveeesaeeeesraeeseaseesnnes 34
Code page conversion for CICS as an HTTP CLI@Nt....c..eieciieeciieeiieccee et 36
OVEIVIEW O AtOM FEEAS...cuuiiiiiiiiirie ettt ettt e s e e st e s be e satesbeesbaesabeesbaesasesnsassasesn 36
ATOM OCUMENES. .eiitiiiierieeiteerte et et este st e s bt st esbe s beesstessbeessaessbeesbeesaseenseesaseesseesasesnseesssesnseenseesseen 37
How Atom feeds WOIK iN CICS......cuiiiiiieirieiieerte st este st et e stessbeesatessbeesaaessbeesbaesaseenbaesasesnsaesssesnsens 39
Chapter 2. Configuring CICS web support components........ccccceceienirecnnniacinciancannes 53
Specifying system initialization parameters for CICS web SUPPOIt.....c.coccieeeciieecccieecee e 53
Reserving ports for CICS WED SUPPOI.....ccuiiicieeccieeecte ettt e ae e te e e aae e e ae e e ae e e neeeeentee e nbeeenes 54
Upgrading entries in the code page conversion table (DFHCNV)......c..oocciiieiiiiccieeccieeecre e 55
Verifying the operation of CICS WED SUPPOIt......uiicciei ettt ve e e re e et bee e 55
CICS web support and NON-HTTP FEQUESTES......uuiiciieeeiteectte et et eeee e tee e rae e e e e e e sbee e e reeesbee e e saeeenneas 56
Handling NON-HT TP FEQUESES.....utiiiieeccte ettt etee e etee e e tee e e tee e s tee e ebaeesbeeesabaessnsaeesnsaeesnsaesnnees 57
Resource definition for NON-HTTP r&QUESES.....cccciiiieiie ettt ettt e e te e e aee e e nteeeenaaeeans 58
Analyzer programs and NON-HTTP rEQUESTS.......ceciiiieiieeciee et et et e e e e sre e e sbee s avee e araeeeaes 59
Application programming for NON-HTTP re@QUESTS.......ccccuiieeciieeciee ettt ree et et te e e etee e 59
Y=Y A [a TR oI Ua I AN do 10 1 =TT o IR S 60
How CICS SUPPOItS AtOM fEEAS.....uiiiiiiiecieeecteeete ettt e e sre e e te e e aae e e nae e e nae e e naeeeenaeas 60
Setting up a resource to supply Atom entry data......cccceeeecieieceecccee e e e 62
Setting up CICS definitions for an Atom fEE.......couiiiiiie e 88
Enabling CICS web support for CICS as an HTTP SEIVET.....c.uiiccieeccieecciteecciteecctteeeeveeesvreeseveeesvaeesvaeeeans 97



Providing dynamic HTTP responses with web-aware application programs........cccceveveeerieerrcveennnne 98

Providing static HTTP responses with a CICS document template or z/OS UNIX file......c.cccevuneenn. 101
Giving web clients access 1o COMMAREA appliCationsS......ccveviveeriieeriieeniieenrieessieessieesseeesseeeens 105
Defining resources for CICS @S an HTTP SEIVET....iccuiiiiiieiriieieieeeeiteeeieeseieesseeesseeessbeessseessseessssaeens 109
Creating TCPIPSERVICE resource definitions for CICS web SUPPOIt......ccvvcveerriieeiiiienrieenieeeneeenns 109
Creating TRANSACTION resource definitions for CICS web SUPPOrt......cccceveceeiriieinieeeniee e 112
Creating a URIMAP resource for CICS as an HTTP SEIVET.....cuiiviiieirieeiiteenieessieesseeeesveeeseee e 113
CICS web support and 3270 display appliCatioNS.....uicccuieee et evree e e ree e e e e 117
Processing for 3270 appliCation PrOZramiS......cccueieciieeriiereiiteeeiteesiteessreeessseeesssneesssseesssaeesssessssseesas 118
URL path components for 3270 display appliCationsS........ceeeecciieeieeciieeecccieee et vee e 119
Initial and CONtINUATION FEOUESTS.....vuiiiieeciiiee ettt ee e e s e etre e e e eeabee e e senbaee e s e nseeeesenanens 120
HTML templates generated from BMS Maps.....cocciiiiiiiiiieiiiieeciee et see s see s siee e sveas 121
HTML pages generated from 3270 data StreamS.....ccueiecieeinieeinieeeeee sttt ste e s see e s 123
Modifying the output from DFHWBTTA.....ciiiiieietteeiie sttt essiee e sieeessiee e sssee e ssaaeessaeeessaeaessseaesnenas 125
Using a converter program With DFHWBTTA....cooiiiiiieiieere ettt siee s siee s sbee s svee e 127
Enabling detectable fleldS. ...t 128
USING deteCtable flelds. . ittt e s sate e s saae e snaeeas 129
Using DFHWBIMG t0 display SraphiCs...c..uiucuiiiiiiiriiieeiieesiieessieessiteessiteessieeesseseessaneessseeessssnessnseess 129
Creating HTML templates from BMS definitionS.......ccoeiiiiiiieiniieiiecieesieessee s ve s ve e 130
BMS-generated tEMPLates.....uui ittt st et s e e st e s e e s aarae s 131
Generating customized HTML temMPlates.......oiiciiiiiieiiieecieccte et see e sie e s ene e 131
Installing the HTML tEMPLates.....ciiciiiiiieiciee ettt ettt e s ste e s ae e s aaeesssbeessseesnnaesas 142
Processing large HTML 1eMPLateS...ciuiiieiieieiiieeite sttt e s ee e s ee e s saee e s saeaessaeas 143
Combining BMS and NON-BMS OULPUL...cciciiiiiiieiiiee it steesite s siee e see s see s sree s siee s sveessneessnaessanees 143
The CICS WD SEIVEN PLUS=IN...ciiiiiiiiiiieeiteect ettt sttt e st e st e e s sabe e s s abeessabeessabeeesabeessnseessaseas 146
Configuring the IBM HTTP SEIVET...ciiciiiiiiieiiiteriiteesiieessitte st e ssreessteessteessbeesssbeessasaessaseesssseessasens 146
Escaped data and the IBM HTTP SEIVET.....cii i cctiee ettt c e e s tee e s e e evae e e e e snbae e e senabaeeesenannns 148
Processing examples for IBM HTTP SEIVEN......uii ittt st site s see e ssiee e s ae e ssee e s senesnaeas 148

Chapter 3. Developing web applications.......ccccoiiiviininciiciciecinieciecinccaccnccsecnenss 149

DLV =T Co oY o= o W M N adr=YoT o 1K Tor= L { o] o [T PR 149
Examining the request Line for an HTTP reqUEST.....cuiiiriiiiiiienrieecrite st ve e s s 150
Examining the HTTP headers for @ MESSaZE.....cuiuiiiiiiiriiieeiteesite ettt e s e s sve e s 151
Retrieving technical and security information about an HTTP request......cccccvvviieinieeiniieesnciee e, 152
Examining form data in an HTTP r@QUEST......cii ittt essaee e siee e ssee e sneeesane 153
Receiving the entity body of an HTTP re@QUEST......ciiciiiiiiiieteeeittcere et 154
Writing HTTP headers fOr @ FESPONSE.....uiiiiiiiiieeecieeseieeeetee st e st e sste e sste e s see e sssteessateessseaessneeesnnes 155
Producing an entity body for an HTTP Fre@SPONSE......uuiiciiiriiieiciee it sciteesireeserteeseeeeesreeesseeesneeesans 157
Sending an HTTP response from CICS as an HTTP SEIVET ...ccicuiiiiiiiiiieeniieencieesieeseeeessvreesneee e 158
Sending an HTTP request or response with chunked transfer-coding........ccccoeceevrvieiniiennieennneenn. 160
Managing application state across an HTTP request SEQUENCE......ccccveeriieirieeeriieeenieeenieeeseee e 162
HTTP client requests from a CICS appliCation .....ccccuieii et e e e e e e e e 163

Introduction to the CICS business logiC iNtErfaCe.......cuciiiiciiiiiiieeiecete et 183
How the CICS business logic iNnterface iS USEd ......ciiviiiriieiiiieiniieecteesee et 183
PrOCESSING EXAMIPLES. .. .iiiiciieiiciiee ittt ste et e e st e e st e e sbe e e sbee e sbeeesabeeesabeeesssaessaseesnnsaeennses 183
Control flOW iN FEQUEST PrOCESSING...iccuuieriiieriiieeiiteeiite st e st e s st e s seeessaeessreessssaessseesssseesssseessnses 184
Data flow iN reQUEST PrOCESSING......uiiiciieiiiieiriieeiiie e ste e sttt s srte e st e e sstee s sbeessbeeesabeessssaesssaessnsaesnsses 186
Offset Mode and POINTEr MOUE......iii ettt ree e e e e e e e e et e e e e snbeeeeesenseeeeeeenseneeanns 190
Code page conversion and the CICS business logiC INterface .....cccvvvvevieiriiiiniieeeiiececiececre e 191
Configuring the CICS business logiC iNtEITACE......civviiiriieeriieeteeete e 191

Chapter 4. Administering web SuUpport........cccccccriririieiiniiniinnincinccnccncnesressecneees 193

AdMiIniStering VIrtUal NOSTING......ciiiiiiiiiieiciee ettt ere e s eree e s see e sbte e sreeessseeesneeesans 193
Redirecting HTTP requests t0 another URL.......c..ii ittt sseeessaeeessaeeessneeessnaee s 194
REJECTING HTTP FEQUESTS. ..iiieuiiiieieeiiiee st e st e st e st e st esste e s saeeessate e s sbeesasbeessabaessssaesasseesanseesnssaesnnseens 194
Providing @ faVorites 100N ... ittt ettt e st e e s bt e e s be e e s baeessaeesasaeesabaeesssaeesnseaenn 196

Providing @ roDOTS. EXE L. ittt ettt e st s e e s st e s s be e s s ae e e s te e s sareeens 198



LA N a1 =3 =T To (=T T PSPPI 200

(6fo] ] =Yoo ] o o -1 - Ta ol o =SSR 200
CICS WED SUPPOIT iN @ CICSPLEX....uuiieeieeciieeeccciiee e ettt e e e ectte e e e eete e e s seateeeesesssteeeeessseeeesenseeeeeenssneesanns 201
Routing a web client request 10 an ADR........uii ittt see e sre e sbee e sbee s sbaessbaeenas 202
VD BITOT PrOBIAMIS. . eiiitieieiieieieeeetteeetee e sttt s steeseteeessteesssteeessteessstaesssseessssaessssaesssseesssseesnsseesssseesssaesnns 205
DFHWBERX, web error appliCation PrOogram........cuieeeeeriieeriieeniieessieesseeesseeesssseessssnessseeesssnessnees 205
DFHWBEPR, WED EITOr PrOSIaM..cciicuieiiciieeiiieeeiteeeiitessieeeesseeessseesssseesssseesssseessssessssseessssessssseesssseesssses 206
AdMINISTENING ATOM FEEAS. . ittt st e s st e e s st e e s s beessssaesssbaeesasaeesssaesnnseens 210
Creating an ATOMSERVICE definition and Atom configuration file for a collection..........ccccuuc....... 211
Creating an Atom SErvICE OCUMENT....ccuiii i ittt estte et e e st e e st e e s ee e e sbeessbeessbaeesasaessssaeens 212
Creating an Atom Category dOCUMENT. ..ottt ittt ettt see e sbe e s s be e s sbe e s sbe e s sbeeesaseas 216
Delivering an Atom service or category document as an Atom configuration file .......ccccceeveernnenn. 218
Delivering an Atom service or category document as a static reSPONSe.....ccceevevveeriieeeeneeeenieeeenneen. 218
Administering Atom feeds and AtOm COLLECTIONS.......uiiiiiiiriiieeiecetecete e 219

Chapter 5. Security for CICS web SUPPOrt.......cccccieiieieiieiiieniececteciceciecscensecennesss 237

CICS as an HTTP server: authentication and identification........ccecvuveriiieriiieniieecieceec e 237
CICS as an HTTP client: authentication and identification.......ccccccevvevieiiiieiiiiiecnece e 238
Password expiry management for HTTP basic authentication.......cccccovvveiiiiiniieiniceineceeseee e, 239
CICS system and resource security for CICS Web SUPPOIt........euiiiiecciiie et e eaees 241
SY=Tol0 g1 AV (o Tal oo 18] a o I o] o €3S 241
Security for CICS SyStem COMPONENTS......uiiiiiecciieeeeectiee e e ectee e e eecreee e eeetre e s e e eareeeesenbeeeeessnsesaessnsnees 242
Resource and transaction security for application-generated reSpPONSeS.......cccvvvveeirvieeinvieersveeennne 243
Resource-level security for static responses using document templates......c.ccccveveerrcieeriieennneen. 245
SSL With CICS WED SUPPOI.....eeiiiee ittt e cettee e ctte e e e e ate e e e e e abe e e e s e abaeeesessseeeeesnsteeeesanssanesssnsssnns 246
Introduction to Application Transparent Transport Layer Security (AT-TLS)...ccccvcveecrieeeceeeecieeennee. 246
Y=ToL ) AV oY AN (o] § TR =T =Y 256

Chapter 6. CICS HTTP support: Performance and tuning........ccccccvvvrecrenincnecnecnes. 257

Storage requirements for CICS WED SUPPOI...ciiiiiiiiiieiiieritecrte sttt ee s e e s bee s sbee e saneas 259
Priorities for CICS web support transactions (CWXN, CWXU, CWBA, CW2A)......cccoveecireeecireeeireeecnnenn. 260
Processing HTTP requests by using directly attached user transactions........ccccevcveercieenieennceeescinennns 261
Relative performance of CICS web support response methods.......cccoccvveeiecciiiei e 262
Performance tUNING STatiSTiCS. ittt e st e s s be e s s be e s beesssbeessssaeesssaens 263
CoNNECtiON PErSISTENCE STATISTICS. cutiiiiiiiiiieeieeciiee e e crre e e e e rer e e s e e abr e e e s e abeeeeeeeaseeeeeeenseneenan 265
Connection pooling for HTTP client performManCe.......ciovuiiieiieiniieiree ettt e s 266
Setting UP CONNECTION POOLING...ciiciiiiciieiecie ettt ettt et e st e s s e e s sbe e e sabeessbaessabeessasaessasaesnssens 268

Appendix A. HTML coded character sets......cccccecierrnienincnciecincecnecencennecesnecncenneeeas 271
Appendix B. HTTP header reference for CICS web support.......ccccceevirirncrennnennann 273
Appendix C. HTTP status code reference for CICS web support......ccccccevecececneees. 279
Appendix D. HTTP method reference for CICS web support......ccccoeeveierrncecieceeee. 291

Appendix E. Elements used in an Atom configuration file......c.cccccvvviinininncnncnnns. 297

<CICS:AtOMSEIVICEDS ELEMEBNT .. uuviiiiiiiii ittt e et e e e e e e abbbbe e e e e eeeeeeeesssssssssaeereeeeseeesannns 297
o (o3 {=T=Te D= L=T 0 01T o) SRRSO 298
=100 1 =T 0L (g N 1 (=T 0= o SR 298
KCICSITESOUICTES BLEIMEBNT...uuviiiiieeiii ettt eeeeee e eeeeeeeeeeessssssasereeeeeeeeesesaasssssssasseeseeseeesennnnses 302
e (ot T d o) g1 4 =Y (=T o 1= o | RSN 303
o [T (Tt (oY =Y (=Y 3 o 1= o | SO PP 304
<CICS:fIEldNAMES > ELEMENT ... eueeiiiiiieeec e e e et e e e bbb e e e e e e e s eeeansrsaarereeeesseesanes 305
e (ot VT g F= Vo D= (=T 0 0= o) SRR 307
ALOMEITEEAD BLEMENT ... e e e et e e et e e e e e e e eseeessssssstaeareeeeeseeeeesnssssnees 308



vi

Atom element referE@nCe FOr CICS. ... e e e e e e e e e e e e e e e e e e e e e e e eeeaa s b b nsanes 310

Appendix F. Reference information for analyzer programs......c.cccceeeeeiecnecnecnecnens 313
Summary of parameters for analyZer ProgramsS....c..uivcieercieeicieeeciee et e sseeesereessreeessreeessreeessseeessreeesans 313
Parameters for analyZer PrOSIramS. .. i ieeeiieeriteeeiteesteesiee e sbee e sbteesbeeessbeeesseeessseeessseeessseessnsenssnnees 314
RESPONSES ANA FEASON COUEBS.....uuutiiieieiiiieeeecciie e e eecrtee e e eettre e e eeteeeesesbaseesesssaeeeessseeeseaanstesessassenasnsnnnes 318

Appendix G. Converter Programs.....ccccccerecrecresiesrsstacacsecsessessessesssssssssssassssssssses 321
Reference information for CONVErter ProgramS.. ... uieirieiriieeeiie ettt esiee e siee e see e s aee e sree e ssaeeesneas 322

Parameter list for converter program decode fUNCHION......coociiiriieiniieinieee e 322
Parameter list for converter program encode fUNCHION......cociiiiiiiiiiieeeecec e 328

Appendix H. Reference information for DFHWBBLI, CICS business logic

(1101 5 - ToL TN 331
SUMMATY Of PArAMEBTEIS. ... iiiiee ettt e eecee e e e e eee e e e eet e e e e sebeeeeeeasbaeeeeessseeseeesseeesssanstasassansssnesssnnnes 331
Parameters for the business logic interface, DFHWBBLIL.......c.ccccviitiiiiieniieennieesieessiee e ssveessveeens 332
BUSINESS l0ZIC INTEITACE MESPONSES. ...iiiiciiiiiciiieecite ettt sttt e s siee e s sae e s sateesssteessbeessssaesnssaesanseesn 336
Appendix I. Reference information for DFHWBEP, web error program................. 339
Appendix J. The DFHWBCLI Web Client Interface.......ccccceeuiinininniieciecnecneciencennes 343
Appendix K. Reference information for DFH$WBST and DFH$WBSR, state
MAaNAgEMeENt SAMPLES....ccccviiiiireiieiieiieiiniiniineiretresrestestestsstsssssssssssssessessessesse 349
1V o =N 351
3 T 1= N 355



About this PDF

This PDF explains how to set up and manage CICS web support to enable CICS regions to act as HTTP
servers and HTTP clients, and how to write CICS application programs that interact with web clients and
servers.

For details of the terms and notation used in this book, see Conventions and terminology used in the CICS
documentation in IBM Knowledge Center.

Date of this PDF
This PDF was created on January 20th 2020.

© Copyright IBM Corp. 1974, 2019 vii


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/documentation/conventions.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/documentation/conventions.html

viii CICS TS for z/OS: Internet Guide



Chapter 1. CICS web support

CICS web support is a collection of CICS services that enable a CICS region to act both as an HTTP server,
and as an HTTP client.

CICS as an HTTP server

When CICS is an HTTP server, a web client can send an HTTP request to CICS and receive a response. The
response can be a static response created by CICS from a document template or static file, or an
application-generated response created dynamically by a user application program.

The actions of CICS as an HTTP server are controlled by:

1. System initialization parameters and resource definitions, including TCPIPSERVICE definitions and
URIMAP definitions, which are used to configure CICS web support and instruct CICS how to process
requests and responses.

2. CICS utility programs, which can be used to analyze and process the HTTP requests and responses.

3. User-written application programs, which are used to receive the HTTP requests and provide material
for HTTP responses. These can be web-aware application programs designed for use with CICS web
support, or non-web-aware CICS application programs that were not originally designed for use with
CICS web support.

The behavior of CICS web support as an HTTP server is conditionally compliant with the HTTP/1.1
specification, as described in RFC 2616.

CICS as an HTTP client

When CICS is an HTTP client, a user application program in CICS can initiate a request to an HTTP server,
and receive a response from it.

The actions of CICS as an HTTP client are controlled by user-written application programs. The EXEC
CICS WEB application programming interface includes commands that an application program can use to
construct and initiate HTTP requests from CICS, and to receive responses sent by servers. URIMAP
resource definitions can be used to provide information such as a URL or a client certificate label.

CICS web support and non-HTTP messages

CICS web support also supports non-HTTP requests from clients. You can use many of the components of
CICS web support, including TCPIPSERVICE definitions, CICS utility programs, and user-written
application programs, to provide request handling for any request format that you have defined. Non-
HTTP messages that are handled by CICS web support use a special protocol (the USER protocol) on the
TCPIPSERVICE resource definition, so that they are not subjected to the checks that CICS carries out for
HTTP messages.

In CICS Transaction Server for z/OS, Version 5 Release 4, this facility is primarily intended to provide
support for requests from user-written clients that use nonstandard request formats. The processing that
takes place for requests is defined by the user. The facility does not provide specific support for any
formally defined protocols which are used for client-server communication.

The support that CICS web support provides for non-HTTP messages is not the same thing as the TCP/IP
Sockets interface for CICS. The IP CICS Sockets interface supplied with z/0S Communications Server has
an application programming interface which allows clients to communicate directly with CICS application
programs over TCP/IP. CICS web support is not involved with this process. z/OS Communications Server:
IP Sockets Application Programming Interface Guide and Reference describes the CICS Sockets
interface.

© Copyright IBM Corp. 1974, 2019 1


https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.hala001/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.hala001/toc.htm

Internet, TCP/IP, and HTTP concepts

Make sure that you are familiar with the relevant key elements of the Transmission Control Protocol/
Internet Protocol (TCP/IP) and the Hypertext Transfer Protocol (HTTP). If necessary, review the HTTP
specifications listed in these topics.

TCP/IP protocols

TCP/IP is a family of communication protocols used to connect computer systems in a network. It is
named after two of the protocols in the family: Transmission Control Protocol (TCP) and Internet Protocol
(IP). Hypertext Transfer Protocol (HTTP) is a member of the TCP/IP family.

The protocols in the TCP/IP family correspond, in many cases, to the layers of the Open Systems
Interconnection (OSI) model. Table 1 on page 2 shows HTTP and the underlying layers of the TCP/IP
family in terms of the OSI model. The Systems Network Architecture (SNA) layers, which approximately
match the OSI layers, are also shown.

Table 1. The layers of the TCP/IP protocol family

Layer 0sI SNA TCP/IP
7 Application Application HTTP
6 Presentation Presentation (empty)
5 Session Data flow (empty)
4 Transport Transmission TCP
3 Network Path control IP
2 Data link Data link Subnetwork
1 Physical Physical Subnetwork

Internet Protocol (IP)
IP is a network-layer protocol that provides a connectionless data transmission service that is used by
TCP. Data is transmitted link by link; an end-to-end connection is never set up during the call. The unit
of data transmission is the datagram.

Transmission Control Protocol (TCP)
TCP is a transport-layer protocol that provides a reliable, full duplex, connection-oriented data
transmission service. Most Internet applications use TCP.

Hypertext Transfer Protocol (HTTP)
HTTP is an application-layer protocol that is used for distributed, collaborative, hypermedia
information systems. HTTP is the protocol used between web clients and web servers.

Many TCP/IP implementations provide an application programming interface to the TCP protocol; that is,
to the transport layer. This interface is commonly known as the Sockets interface. The TCP/IP Sockets
interface for CICS is the z/OS Communications Server IP CICS Sockets interface. It is supplied with z/OS
Communications Server and is an integral part of z/OS. It is not part of CICS web support and does not
use the CICS SO domain. z/OS Communications Server: IP CICS Sockets Guide describes the CICS
Sockets interface.

IP addresses
Each server or client on a TCP/IP internet is identified by a numeric IP (Internet Protocol) address. The
two types of IP address are the IPv4 (IP version 4) address and the IPvé6 (IP version 6) address.

IP addresses are managed and allocated to users by the Internet Assigned Numbers Authority (IANA) and
its delegates. The internet address specifies both the network and the individual host. This specification
varies with the size of the network.

2 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.halc001/toc.htm

IPv6 addresses

IPv6 addresses are 128-bit addresses, usually expressed in hexadecimal notation:

IP address in hexadecimal notation : '000100220333444400000000abcOdefd ' x
Halfword 0: 0001 hexadecimal

Halfword 1: 0022 hexadecimal

Halfword 2: 0333 hexadecimal

Halfword 3: 4444 hexadecimal

Halfword 4: 0000 hexadecimal

Halfword 5: 0000 hexadecimal

Halfword 6: abcO® hexadecimal

Halfword 7: def0® hexadecimal

IP address in colon hexadecimal notation: 1:22:333:4444::abc0:def0

IP address in hexadecimal notation : '00000000000000000000ffff01020304 ' x
Halfword 0: 0000 hexadecimal

Halfword 1: 0000 hexadecimal

Halfword 2: 0000 hexadecimal

Halfword 3: 0000 hexadecimal

Halfword 4: 0000 hexadecimal

Halfword 5: ffff hexadecimal

Halfword 6: 0102 hexadecimal

Halfword 7: 0304 hexadecimal

IP address in colon hexadecimal notation: ::ffff:1.2.3.4 or ::ffff:0102:0304

The address consists of eight halfword fields. Zeros are treated in the following ways in the address
output:

- If a field contains leading zeros, they are ignored; for example, 0001 is represented as 1

- If one or more consecutive fields in the address contain the value 0000, these fields are expressed
using the notation : :

For example, 000000000000ffff is represented as : : ffff

The : : substitution is used once only in an address, to avoid confusion in calculating how many fields
were substituted.

IPv4 addresses

IPv4 addresses are 32-bit addresses, usually expressed in dotted decimal notation:

IP address in hexadecimal notation : '817EB263 ' x
Byte 0: 81 hexadecimal = 129 decimal

Byte 1: 7E hexadecimal 126 decimal

Byte 2: B2 hexadecimal = 178 decimal

Byte 3: 63 hexadecimal 99 decimal

IP address in dotted decimal notation: 129.126.178.99

In this example, 129.126 specifies the network and 178 .99 specifies the host on that network.

IP address formats accepted by CICS
CICS accepts IPv4 and IPv6 addresses in specific formats for processing.

IPv6 address formats
CICS accepts IPv6 addresses in the following format only:

« As a native IPv6 colon hexadecimal address without square brackets or /nn notation; for
example, ::a:b:c:d

IPv6 address syntax is described in more detail in RFC 4291, IP Version 6 Addressing Architecture,
available at https://tools.ietf.org/html/rfc4291.

Double colons in an IPv6 address

The layout of an IPv6 address is defined in RFC 2373, IP Version 6 Addressing Architecture, available at
https://tools.ietf.org/html/rfc2373. This permits the single use of a double colon to mean one or more 0O:
elements sufficient to make an eight element address.

Chapter 1. CICS web support 3


https://tools.ietf.org/html/rfc4291
https://tools.ietf.org/html/rfc2373

For example: 1::7:8 means 1:0:0:0:0:0:7:8
The double colon can:

« Start an IPv6 address, so that ::5:6:7:8 means 0:0:0:0:5:6:7:8
« End an IPv6 address, so that 1:2:3:4:: means 1:2:3:4:0:0:0:0
« Bein the middle of an IPv6 address, so that 1:2::6:7:8 means 1:2:0:0:0:6:7:8

There are two special cases for the use of an initial double colon:

« When using a double colon to specify an IPv4 address in IPv4 compatible format (::1.2.3.4)
« When using a double colon to specify an IPv4 address in IPv4 mapped format (::FFFF:1.2.3.4)

IPv4 address formats
CICS accepts IPv4 addresses in the following formats:

« A native IPv4 dotted decimal address without /nn notation; for example, 1.2.3.4

« An IPv4 address that is migrated to IPv6 format (an IPv4-mapped IPvé6 address); for
example, : :£fff:1.2.3.4

— Internally, CICS translates the address into the binary equivalentof 0:0:0:0:0: ffff:0102:0304
« An IPv6 compatible address (an IPv4-compatible IPv6 address); for example, : :1.2.3.4
— Internally, CICS translates the address into the binary equivalent of 0:0:0:0:0:0:0102:0304
This exception applies:
— CICS does not allow the following entries:
-0.0.0.0
-::0.0.0.0
-0
Whichever format you specified for your IPv4 address, CICS displays all IPv4 addresses as a native IPv4
dotted decimal address; for example, 1.2.3.4

Specifying an IPv4 address in CICS TS

Certain CICS Transaction Server for z/OS (CICS TS) V4.1, and later, objects require the specification of an
IPv4 address in, for example, the HOST field of the object. Here is now to specify different types of IPv4
addresses within CICS TS.

An IPv6 address consists of 8 elements, which are specified in hexadecimal. Each element consists of
two hexadecimal bytes with right zero justification. Use of a double colon permits many 0 elements to be
compressed.

An example IPv6 address is 1:2:3:4:5:6:7:8, which is processed as
00021:0002:0003:0004:0005:0006:0007:0008

In contrast, there are many ways of supplying an IPv4 address to CICS TS as shown in the following table:

Table 2. IPv4 Addresses. Six options of supplying IPv4 addresses to CICS TS.

Type of specification Examples Specification rules
IPv4 native 1234 There must be 4 elements that
955.255.255.255 are delimited by dots. Egch
1.02.003.14 element must be numeric and be
0 - 255. Leading zeros are
acceptable.

4 CICS TS for z/OS: Internet Guide



Table 2. IPv4 Addresses. Six options of supplying IPv4 addresses to CICS TS. (continued)

Type of specification Examples Specification rules

IPv4 compatible (in compressed 1234 Starts with a double colon, and

format) ;;2'55-;‘2'55_255.255 the_n the formatting is as for IPv4
::1.02.003.14 native.

IPv4 compatible

0:0:0:0:0:0:1.2.3.4
0::255.255.255.255
0::00:1.02.003.14

Elements 1,2,3,4,5 and 6 of the
full IPv6 address must evaluate
to O (with right zero justification).
Elements 7 and 8 are formed by
using the IPv4 formatting rules.

IPv4 mapped (in compressed
format)

©:FFFF:1.2.3.4
:ffff:255.255.255.255
:fFfF:1.02.003.14

Starts with a ::FFFF:, and then
the formatting is as for IPv4
native. The FFFF can be in mixed
case.

IPv4 mapped

::0:FFFF:1.2.3.4
0:0:0:0:0:FFFF:255.255.255.255
0::FfFf:1.02.003.14

IPv4 mapped ::0:FFFF:1.2.3.4
0:0:0:0:0:FFFF:255.255.255.255
0::FfFf:1.02.003.14 Elements
1,2,3,4 and 5 of the full IPvé
address must evaluate to 0 (with
right zero justification) and
elements 6 must be FFFF (in
mixed case). Elements 7 and 8
are formed by using the IPv4
native rules.

IPv6 hexadecimal notation

::0:ABCD:EF12
0:0:00:000:0000:0:abCd:eF12
0::aBCD:ef12

Elements 1,2,3,4,5 and 6 must
evaluate to O (with right zero
justification). Elements 7 and 8
are the IPv4 address that is
specified in hexadecimal
notification: element 7 is the first
two elements of the native IPv4
address and element 8 is third
and forth elements of the IPv4
native address. In all of these
cases, the IPv4 native address is
171.205.239.18.

Understanding IPv6 and CICS

IPv6 is the protocol that replaces IPv4. To use IPv6 addressing, the sending and receiving environments
must support dual-mode addressing (IPv4 and IPv6) and your CICS regions must be running at the

correct level of CICS.

Infrastructure requirements for IPv6

A dual-mode TCP/IP implementation is required to allow both IPv4 and IPv6 addressing. A single-mode
(IPv4) environment uses the AF_INET address family when it establishes a connection between an
AF_INET socket and another AF_INET socket in another region. IPv6 addresses are not supported over
AF_INET sockets; these addresses require the AF_INET6 address family and AF_INET6 sockets in the
sending and receiving regions to establish a connection. Dual-mode environments provide both AF_INET
and AF_INET6 sockets. For more information on AF_INET and AF_INET6, see z/OS Communications
Server: IPv6 Network and Application Design Guide.

Chapter 1. CICS web support 5


https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.hale001/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.hale001/toc.htm

This figure shows that a single-mode environment does not have IPvé capability, because it does not
have an AF_INET6 socket.

Dual-mode environment Single-mode environment

IPvE capability IPv4 capability

CICS requirements for IPv6

You need a minimum level of CICS TS 4.1 to communicate using IPv6. The CICS region must be running in
a dual-mode (IPv4 and IPv6) environment and the client or server with which CICS is communicating
must also be running in a dual-mode environment.

The next figure shows CICS-to-CICS communication, where two dual-mode CICS environments can
communicate using either IPv4 or IPv6 addressing. A single-mode CICS environment is also connected,
but can communicate using IPv4 only.

Dual-mode environment Dual-mode environment Single-mode environment

e G e

The next figure shows CICS-to-CICS communication, where two dual-mode CICS environments can
communicate using either IPv4 or IPv6 addressing. A dual-mode pre-CICS TS environment is also
connected, but can communicate using IPv4 only.

Dual-mode environment Dual-mode environment Dual-mode environment

Host hames

A host, or website, on the Internet is identified by a host name, such as www.example.com. Host names
are sometimes called domain names. Host names are mapped to IP addresses, but a host name and an
IP address do not have a one-to-one relationship.

A host name is used when a web client makes an HTTP request to a host. The user making the request
can specify the IP address of the server rather than the host name, but that is now unusual on the
Internet. Host names are more convenient for users than numeric IP addresses. Companies,

6 CICS TS for z/OS: Internet Guide



organizations, and individuals frequently choose host names for their websites that can be easily
remembered by users.

More importantly in modern HTTP implementations, the use of host names in HTTP requests has these
consequences:

« Services in the name of one host can be provided by many servers, which have different IP addresses.

- One server, with one IP address, can provide services in the name of many hosts. This usage is known
as virtual hosting. “Virtual hosting” on page 7 explains this process.

Host names are mapped to IP addresses by a server known as a DNS server or domain name server. In a
large network, many DNS servers collaborate to provide the mapping between host names and IP
addresses.

Virtual hosting

HTTP includes the concept of virtual hosting, where a single HTTP server can represent multiple hosts at
the same IP address. You can use virtual hosting in web support by setting up URIMAP resources.

A DNS server can allocate several different host names to the same IP address. When an HTTP client
makes a request to a particular host, it uses the DNS server to locate the IP address corresponding to that
host name, and sends the request to that IP address.

In HTTP/1.0 the host name does not appear in the HTTP message; it is lost after the IP address has been
resolved. If more than one set of resources is held on the server represented by the IP address, the server
has difficulty distinguishing which resources belong to which host.

However, HTTP/1.1 requests provide the host name in the request, usually in a Host header. The
presence of the host name in the message enables the HTTP server to direct requests containing different
host names to the appropriate resources for each host. This feature of HTTP is known as virtual hosting.
CICS web support provides support for virtual hosting through the use of URIMAP resources.

Port numbers

In a server, more than one user process can use TCP at the same time. To identify the data associated
with each process, port numbers are used. Port numbers are 16-bit, and numbers up to 65535 are
possible, although in practice only a small subset of these numbers is commonly used.

When a client process first contacts a server process, it might use a well-known port number to initiate
communication. Well-known port numbers are assigned to particular services throughout the Internet, by
IANA, the Internet Assigned Numbers Authority. The well-known port numbers are in the range 0 through
1023. Some examples are shown in Table 3 on page 7:

Table 3. Services and their well-known port numbers

Well-known port
Service number
File Transfer Protocol (FTP) 21
Telnet 23
Hypertext Transfer Protocol (HTTP) 80
HTTP with Secure Sockets Layer (SSL) 443

The CICS External Call Interface (ECI) has a registered port number, 1435.

Well-known ports are used only to establish communication between client and server processes. After
that, the server allocates an ephemeral port number for subsequent use. Ephemeral port numbers are
unique port numbers, which are assigned dynamically when processes start communicating. They are
released when communication is complete.

Chapter 1. CICS web support 7



IANA media types and character sets
The Internet Assigned Numbers Authority (IANA) is the international body responsible for assigning
names for protocols used on the Internet. Use these links to find out more about the names.

« IANA media types are names for the types of data that are commonly transmitted over the Internet.
They are described at http://www.iana.org/assignments/media-types/media-types.xhtml

Text media types (such as a type that begins with text/, or a type that contains +xml) are identified
by RFC 3023, which is available at https://www.ietf.org/rfc/rfc3023.txt.

- IANA character sets are the names of character set registries. They are described at http://
www.iana.org/assignments/character-sets

CICS does not support all the IANA character sets for code page conversion. The character sets that
CICS supports are described in HTML coded character sets.

The components of a URL

A URL (Uniform Resource Locator) is a specific type of URI (Universal Resource Identifier). A URL normally
locates an existing resource on the Internet. A URL is used when a web client makes a request to a server
for aresource.

This topic is a summary of URLs and URIs. If you need to know more, the concepts of the URI and the URL
are defined by the Internet Society and IETF (Internet Engineering Task Force) Request for Comments
document RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax (https://www.ietf.org/rfc/
rfc2396.txt).

Briefly, a URI is defined as any character string that identifies a resource. A URL is defined as those URIs
that identify a resource by its location or by the means used to access it, rather than by a name or other
attribute of the resource.

A newer form of resource identifier, the IRI (Internationalized Resource Identifier), permits the use of
characters and formats that are suitable for national languages other than English. An IRI can be used in
place of a URI or URL when the applications involved with the request and response support IRIs. For
more information about IRIs, see Internationalized Resource Identifiers (IRIs).

A URL for HTTP (or HTTPS) is normally made up of three or four components:

1. A scheme. The scheme identifies the protocol to be used to access the resource on the Internet. It
can be HTTP (without SSL) or HTTPS (with SSL).

2. A host. The host name identifies the host that holds the resource. For example, www. example.com. A
server provides services in the name of the host, but hosts and servers do not have a one-to-one
mapping. Refer to Host names.

Host names can also be followed by a port number. Refer to Port numbers. Well-known port numbers
for a service are normally omitted from the URL. Most servers use the well-known port numbers for
HTTP and HTTPS, so most HTTP URLs omit the port number.

3. A path. The path identifies the specific resource in the host that the web client wants to access. For
example, /software/htp/cics/index.html.

4. A query string. If a query string is used, it follows the path component, and provides a string of
information that the resource can use for some purpose (for example, as parameters for a search or as
data to be processed). The query string is usually a string of name and value pairs; for example,
term=bluebird. Name and value pairs are separated from each other by an ampersand (&); for
example, term=bluebird&source=browser-search.

The scheme and host components of a URL are not defined as case-sensitive, but the path and query
string are case-sensitive. Typically, the whole URL is specified in lowercase.

The components of the URL are combined and delimited as follows:

scheme://host:port/path?query

« The scheme is followed by a colon and two forward slashes.

8 CICS TS for z/OS: Internet Guide


http://www.iana.org/assignments/media-types/media-types.xhtml
https://www.ietf.org/rfc/rfc3023.txt
http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhp63l.html
https://www.ietf.org/rfc/rfc2396.txt
https://www.ietf.org/rfc/rfc2396.txt
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_iri.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl28.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl2d.html

« If a port number is specified, that number follows the host name, separated by a colon.
- The path name begins with a single forward slash.
- If a query string is specified, it is preceded by a question mark.

(— :80 ﬁ
»— http:// host name L J | — path component —»
E _J :— port

IP address

»d

] L?—querystring J -

Figure 1. Syntax of an HTTP URL

Here is an example of an HTTP URL:
http://www.example.com/software/index.html
With a port number specified, the URL is:

http://www.example.com:1030/software/index.html

A URL can be followed by a fragment identifier. The separator used between the URL and the fragment
identifier is the # character. A fragment identifier is used to point a web browser to a reference or function
in the item that it has just retrieved. For example, if the URL identifies an HTML page, a fragment identifier
can be used to indicate a subsection within the page, using the ID of the subsection. In this case, the web
browser typically displays the page to the user so that the subsection is visible. The action taken by the
web browser for a fragment identifier differs depending on the media type of the item and the defined
meaning of the fragment identifier for that media type.

Other protocols, such as File Transfer Protocol (FTP) or Gopher, also use URLs. The URLs used by these
protocols might have a different syntax to the one used for HTTP.

The HTTP protocol

The correct format for HTTP requests and responses depends on the version of the HTTP protocol (or
HTTP specification) that is used by the client and by the server.

The versions of the HTTP protocol (or "HTTP versions") commonly used on the Internet are HTTP/1.0,
which is an earlier protocol including fewer functions, and HTTP/1.1, which is a later protocol including
more functions. The client and server might use different versions of the HTTP protocol. Both client and
server must state the HTTP version of their request or response in the first line of their message.

Internet Society and IETF (Internet Engineering Task Force) Request for Comments documents (known
as RFCs) provide the official definitions for the HTTP protocol:

HTTP/1.0
RFC 1945, Hypertext Transfer Protocol - HTTP/1.0, available from https://tools.ietf.org/html/rfc1945

HTTP/1.1
RFC 2616, Hypertext Transfer Protocol - HTTP/1.1, available from https://tools.ietf.org/html/rfc2616

The RFCs state the actions that a client and a server perform to exchange requests and responses in an
appropriate way for each version of the HTTP protocol. An HTTP request is made by a client, to a named
host, which is located on a server. The aim of the request is to access a resource on the server. An HTTP
response is made by a server to a client. The aim of the response is to provide the client with the resource
it requested, or to inform the client that the action it requested has been carried out, or to inform the
client that an error occurred in processing its request. All these actions are described as "requirements".
A client or server that fulfils the requirements for its version of the HTTP protocol is said to be "compliant"
with the HTTP specification.

In the HTTP response that is sent to a client, the status code, which is a 3-digit number, is accompanied
by a reason phrase (also known as status text) that summarizes the meaning of the code. With the HTTP

Chapter 1. CICS web support 9


https://tools.ietf.org/html/rfc1945
https://tools.ietf.org/html/rfc2616

version of the response, these items are placed in the first line of the response, which is therefore known
as the status line.

HTTP requests
An HTTP request is made by a client, to a named host, which is located on a server. The aim of the request
is to access a resource on the server.

To make the request, the client uses components of a URL (Uniform Resource Locator), which includes
the information needed to access the resource. The components of a URL explains URLs.

A correctly composed HTTP request contains the following elements:

1. Arequest line.
2. A series of HTTP headers, or header fields.
3. A message body, if needed.

Each HTTP header is followed by a carriage return line feed (CRLF). After the last of the HTTP headers, an
additional CRLF is used (to give an empty line), and then any message body begins.

Request line
The request line is the first line in the request message. It consists of at least three items:

1. A method. The method is a one-word command that tells the server what it should do with the
resource. For example, the server could be asked to send the resource to the client.

2. The path component of the URL for the request. The path identifies the resource on the server.

3. The HTTP version number, showing the HTTP specification to which the client has tried to make the
message comply.

An example of a request line is:
GET /software/htp/cics/index.html HTTP/1.1

In this example:

« the method is GET
« the pathis /software/htp/cics/index.html
e the HTTP version is HTTP/1.1

A request line might contain some additional items:

« A query string. This provides a string of information that the resource can use for some purpose. It
follows the path, and is preceded by a question mark.

« The scheme and host components of the URL, in addition to the path. When the resource location is
specified in this way, it is known as the absolute URI form. For HTTP/1.1, this form is used when a
request will go through a proxy server. Also for HTTP/1.1, if the host component of the URL is not
included in the request line, it must be included in the message in a Host header.

HTTP headers

HTTP headers are written on a message to provide the recipient with information about the message, the
sender, and the way in which the sender wants to communicate with the recipient. Each HTTP header is
made up of a name and a value. The HTTP protocol specifications define the standard set of HTTP
headers, and describe how to use them correctly. HTTP messages can also include extension headers,
which are not part of the HTTP/1.1 or HTTP/1.0 specifications.

The HTTP headers for a client's request contain information that a server can use to decide how to
respond to the request. For example, the following series of headers can be used to specify that the user
only wants to read the requested document in French or German, and that the document should only be
sent if it has changed since the date and time when the client last obtained it:

10 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_uricomp.html

Accept-Language: fr, de
If-Modified-Since: Fri, 10 Dec 2004 11:22:13 GMT

An empty line (that is, a CRLF alone) is placed in the request message after the series of HTTP headers, to
divide the headers from the message body.

Message body

The body content of any HTTP message can be referred to as a message body or entity body. Technically,
the entity body is the actual content of the message. The message body contains the entity body, which
can be in its original state, or can be encoded in some way for transport, such as by being broken into
chunks (chunked transfer-coding). The message body of a request may be referred to for convenience as
a request body.

Message bodies are appropriate for some request methods and inappropriate for others. For example, a
request with the POST method, which sends input data to the server, has a message body containing the
data. A request with the GET method, which asks the server to send a resource, does not have a message
body.

HTTP responses

An HTTP response is made by a server to a client. The aim of the response is to provide the client with the
resource it requested, or inform the client that the action it requested has been carried out; or else to
inform the client that an error occurred in processing its request.

An HTTP response contains:

1. A status line.
2. A series of HTTP headers, or header fields.
3. A message body, which is usually needed.

As in a request message, each HTTP header is followed by a carriage return line feed (CRLF). After the last
of the HTTP headers, an additional CRLF is used (to give an empty line), and then the message body
begins.

Status line
The status line is the first line in the response message. It consists of three items:

1. The HTTP version number, showing the HTTP specification to which the server has tried to make the
message comply.

2. A status code, which is a three-digit number indicating the result of the request.

3. Areason phrase, also known as status text, which is human-readable text that summarizes the
meaning of the status code.

An example of a response line is:
HTTP/1.1 200 OK

In this example:

e the HTTP version is HTTP/1.1
« the status code is 200
- the reason phrase is 0K

“Status codes and reason phrases” on page 12 explains more about these elements of the status line.

HTTP headers

The HTTP headers for a server's response contain information that a client can use to find out more about
the response, and about the server that sent it. This information can assist the client with displaying the
response to a user, with storing (or caching) the response for future use, and with making further requests

Chapter 1. CICS web support 11



to the server now or in the future. In the case of an unsuccessful request, headers can be used to tell the
client what it must do to complete its request successfully.

An empty line (that is, a CRLF alone) is placed in the response message after the series of HTTP headers,
to divide the headers from the message body.

Message body
The message body of a response may be referred to for convenience as a response body.

Message bodies are used for most responses. The exceptions are where a server is responding to a client
request that used the HEAD method (which asks for the headers but not the body of the response), and
where a server is using certain status codes.

For a response to a successful request, the message body contains either the resource requested by the
client, or some information about the status of the action requested by the client. For a response to an
unsuccessful request, the message body might provide further information about the reasons for the
error, or about some action the client needs to take to complete the request successfully.

Status codes and reason phrases

In the HTTP response that is sent to a client, the status code, which is a three-digit number, is
accompanied by a reason phrase (also known as status text) that summarizes the meaning of the code.
Along with the HTTP version of the response, these items are placed in the first line of the response,
which is therefore known as the status line.

The status codes are classified by number range, with each class of codes having the same basic
meaning.

« The range 100-199 is classed as Informational.

« 200-299 is Successful.

« 300-399 is Redirection.

- 400-499 is Client error.

« 500-599 is Server error.

When describing a range as a whole, it may be named as "1xx", "2xx", and so on. The HTTP protocol
specifications do not define any status codes of 600 or greater.

Only a few status codes in each range are defined by the HTTP/1.0 and HTTP/1.1 specifications. The
HTTP/1.1 specification includes more status codes than the HTTP/1.0 specification.

The reason phrases defined in the HTTP specifications (for example, "Not Found" or "Bad Request") are
recommended but optional. The HTTP/1.1 specification says that the reason phrases for each status code
may be replaced by local equivalents.

The 200 (OK) status code is used for a normal response that provides the full resource requested by the
web client. Most other status codes are used in situations where there is an error that prevents fulfilment
of the request, or where the client needs to do something else in order to complete its request
successfully, such as following a redirection URL, or amending the request so that it is acceptable to the
server.

The HTTP headers for the response, or the response body, or both, may provide further instructions and
information for the client. The HTTP specifications include requirements and suggestions for the content
of responses with each status code. The requirements specify:

« Any HTTP headers that must, or may, be used on the response. For example, if you use the status code
405 (Method not allowed), you must use the Allow header to state the methods which are allowed.

« Whether or not a response body should be used. For example, message bodies are not allowed with
status codes 204, 205, and 304.

« If aresponse body is used, what information it can provide. For example, message bodies for a
redirection can provide a hyperlink for the redirection URL.

12 CICS TS for z/OS: Internet Guide



For full information about the meaning and correct use of status codes, you should consult the HTTP
specification to which you are working. See “The HTTP protocol” on page 9 for more information about
the HTTP specifications.

Reserved and excluded characters

To assist with the correct transmission and interpretation of an HTTP request, the use of certain
characters in a URL is restricted. These characters must be converted to a safe format when the request
is transmitted.

This topic is a summary about reserved and excluded characters. For more information, the Internet
Society and IETF (Internet Engineering Task Force) Request for Comments document RFC 2396, Uniform
Resource Identifiers (URI): Generic Syntax, lists the characters that are reserved or excluded in URIs and
URLs. RFC 2396 is available from https://www.ietf.org/rfc/rfc2396.txt.

In a URI or a URL, characters that have a special purpose in the context of one or more URI or URL
components are known as reserved characters. For example, the characters /, ?, & and : are used as
delimiters for various components. Machine interpreters might misinterpret the URI or URL if the reserved
characters are used for any reason.

Also, certain characters are disallowed, or excluded, from use anywhere in a URI or URL, either because
they are a potential cause of confusion for machine or human users, or because they are known to cause
problems for some machine interpreters. For example, the space character is not permitted in a URL.

If reserved characters are wanted in a URL for any reason other than their special purpose, or if excluded
characters are wanted in a URL, they must be escaped when a request containing components of the URL
is sent to a server. Such characters in data that is sent in a query string must also be escaped.

Characters are escaped by being replaced with a 3-character string of the form %xx where xx is the ASCII
hexadecimal representation of the reserved character. Because of this format, escaping is also known as
percent-encoding.

When the request reaches the server, the server can unescape the escaped characters. Unescaping takes
place only after the information in the URL and query string has been parsed, to avoid the risk of the
parsing application misinterpreting the reserved or excluded characters.

Form data in a request is normally sent with special characters escaped, because the default encoding for
forms (application/x-www-form-urlencoded) escapes reserved or excluded characters. See “HTML
forms” on page 13.

HTML forms

In HTML, forms are areas delimited by a <form> tag, containing text input boxes, buttons, check boxes,
and other features of a graphical user interface. Forms are used by web applications to allow users to
provide data to be sent to the server.

In a form, the elements with which users can interact to provide data are known as form fields. Each form
field is given a name in the HTML, which identifies it to the server application, but is not visible to the user.

Although the various elements of a form appear different to the user, they all transmit information to the
server application as a series of name and value pairs, separated by & characters. Each name is the name
of a form field, and the value is the data produced by the user's actions. For example, here is a form with
two text input boxes for a user to enter first and last name:

firstname=Maria&lastname=Smith

The form data is transmitted to the server in one of two ways, depending on which method (GET or POST)
is specified in the <form> tag:

« When the method is GET, the form data is transmitted in a query string in the URL.
« When the method is POST, the form data is transmitted in the message body.

Chapter 1. CICS web support 13


https://www.ietf.org/rfc/rfc2396.txt

The character set that is required for encoding the form data is specified by the CHARACTERSET option,
and must match the forms encoding determined by the corresponding HTML form. See “How the client
encoding is determined” on page 14 for more information.

Form data is normally transmitted with special characters escaped. “Reserved and excluded characters”
on page 13 explains the purpose of escaping.

If the form is defined with the GET method, because the data is sent as a query string in the URL, reserved
or excluded characters must always be escaped.

If the form is defined with the POST method, the data is sent in the message body. However, as defined in
the HTML 2.0 specification, the default encoding type for all forms is application/x-www-foxrm-
urlencoded. See http://www.w3.org/MarkUp/html-spec/html-spec_8.htm|#SEC8.2.1. When this
encoding is used for a form with the POST method, although the data is sent in the message body,
reserved or excluded characters are escaped, as they would be if they were in a URL.

If the alternative encoding type multipart/form-data is specified for the form (which is done using
the ENCTYPE attribute on the HTML <form> tag), non-ASCII characters in field names must be escaped,
but non-ASCII characters in field values do not need to be escaped. The data is also presented in a series
of individual sections in the message body. Older applications might not support this encoding. CICS does
support it. The multipart/form-data encoding is described in the Internet Society and IETF Request for
Comments document RFC 1867, Form-based File Upload in HTML (https://www.ietf.org/rfc/rfc1867.txt).

How the client encoding is determined
The character encoding (chaxset parameter) used by HTTP clients for forms data (both for the GET and
POST methods) is determined by information in the HTML form.

The HTTP client normally submits forms data using the same character encoding that was used for the
HTML form, specified either by the chaxrset parameter on the Content-Type header or by an equivalent
META tag embedded in the HTML; for example:

<META http-equiv="Content-Type" content="text/html; charset=UTF-8">

You can also use the accept-charset attribute on the HTML FORM element to specify an additional
acceptable character encoding. If you do not specify the code page, CICS obtains this information from
the chaxset parameter. The HTML form character encoding is normally either ISO-8859-1 (CCSID 819)
or UTF-8 (CCSID 1208), but is not restricted to these values.

The character encoding information is not typically present as part of the submitted form request. So, if
the default character set for the internet (IS0-8859-1) is not used, the application reading the form must
specify the encoding using the CHARACTERSET keyword. If CHARACTERSET is omitted, but the HTTP
client provides a charset value in a Content-Type header (not standard practice for HTML forms
submission), the chaxset value is used; otherwise, CICS assumes ISO-8859-1.

Chunked transfer-coding

Chunked transfer-coding, also known as chunking, involves transferring the body of a message as a series
of chunks, each with its own chunk size header. The end of the message is indicated by a chunk with zero
length and an empty line.

This topic briefly summarizes chunked transfer-coding. To use chunked transfer-coding, both the client
and server must be using HTTP/1.1. For details, see the HTTP/1.1 specification (RFC 2616).

This defined process means that an application-generated entity body, or a large entity body, can be sent
in convenient segments. The client or server knows that the chunked message is complete when the zero
length chunk is received.

The body of a chunked message can be followed by an optional trailer that contains supplementary HTTP
headers, known as trailing headers. Clients and servers are not required to accept trailers, so the
supplementary HTTP headers provides only nonessential information, unless a server knows that a client
accepts trailers.

14 CICS TS for z/0S: Internet Guide


http://www.w3.org/MarkUp/html-spec/html-spec_8.html#SEC8.2.1
https://www.ietf.org/rfc/rfc1867.txt

Pipelining
Pipelining involves a client sending multiple HTTP requests to a server without waiting for a response.
Responses must then be returned from the server in the same sequence that the requests were received.

This topic summarizes pipelining. The HTTP/1.1 specification (RFC 2616) defines the rules about
idempotency for HTTP requests. See “The HTTP protocol” on page 9 for more information about the HTTP
specifications.

The requester is responsible for ensuring that the requests are idempotent. Idempotency means that the
same result is always obtained when all, or part, of the series of requests is repeated. Thus, if the
connection to the server fails in some way, the client can retry the series of requests, without knowing if
the server has implemented all, some, or none of the requests.

Most request methods are idempotent if they are used on their own, because the same result is obtained
each time the method is used. (The exception is the POST method, because it changes the resource on
the server.) However, when a sequence of requests is issued during pipelining, the sequence might be
non-idempotent, particularly if resources are being changed.

If you plan to pipeline requests, check that the request sequence can be ended at any point, and
restarted from the beginning, without causing a logical error. Otherwise, make the requests individually
and await confirmation after each request.

Persistent connections
Persistent connections between a web client and a server can be reused for more than one exchange of a
request and a response.

Persistent connections improve network performance because a new connection does not have to be
established for each request. Establishing a new connection consumes significant additional network
resources compared to making a request using an existing connection.

In HTTP/1.0, the default action for the server was to close the connection when it had received a request
from the web client and sent a response. If the web client wanted the server to keep the connection open,
it had to send a Connection: Keep-Alive header on the request.

For HTTP/1.1, persistent connections are the default. When a connection is made between a web client
and a server, the server keeps the connection open by default. The connection is closed only if the web
client requests closure by sending a Connection: close header, if the server timeout setting is reached, or
if the server encounters an error.

HTTP basic authentication
HTTP basic authentication is a simple challenge and response mechanism with which a server can
request authentication information (a user ID and password) from a client. The client passes the
authentication information to the server in an Authorization header. The authentication information is in
base-64 encoding.

This topic summarizes HTTP basic authentication. For details, see RFC 2617, HTTP Authentication: Basic
and Digest Access Authentication, at https://tools.ietf.org/html/rfc2617.

Note: The HTTP basic authentication scheme can be considered secure only when the connection
between the web client and the server is secure. If the connection is insecure, the scheme does not
provide sufficient security to prevent unauthorized users from discovering the authentication information
for a server. If you think that a password might be intercepted, use basic authentication with SSL
encryption to protect the user ID and password.

If a client makes a request for which the server expects authentication information, the server sends an
HTTP response with a 401 status code, a reason phrase indicating an authentication error, and a WWW-
Authenticate header. Most web clients handle this response by requesting a user ID and password from
the user.

The format of a WWW-Authenticate header for HTTP basic authentication is:

WWW-Authenticate: Basic realm="Our Site"

Chapter 1. CICS web support 15


https://tools.ietf.org/html/rfc2617

The WWW-Authenticate header contains a realm attribute, which identifies the set of resources to which
the user ID and password will apply. Web clients display this string to the user. Each realm might require
different authentication information. Web clients can store the authentication information for each realm
so that users do not need to retype the information for every request.

When the web client has obtained a user ID and password, it resends the original request with an
Authorization header. Alternatively, the client can send the Authorization header when it makes its
original request, and this header might be accepted by the server, avoiding the challenge and response
process.

The format of the Authorization header is:

Authorization: Basic userid:password

Components of CICS web support

CICS web support includes some base components that are used for all CICS web support tasks, and
some task-specific components, which you select and configure for individual CICS web support tasks.

Base components

« TCP/IP support in CICS is provided by the CICS SO (sockets) domain, with network services (z/0S
Communications Server and access to a DNS server) supplied by z/0S.

- z/0S UNIX Systems Services are used as part of TCP/IP support, and the CICS region needs to access
these components.

« Secure Sockets Layer (SSL) support is used to provide security for the CICS web support
implementation. For a list of security protocols supported by CICS, see Support for security protocols.

- DOCCODEPAGE system initialization parameter specifies the default host code page that is used by
CICS document template support.

« LOCALCCSID system initialization parameter specifies the coded character set identifier for the local
CICS region (which is the code page that CICS considers as the default for application programs).

« TCPIP system initialization parameter activates CICS TCP/IP services at start.

- WEBDELAY system initialization parameter defines a timeout period for inactive CICS web tasks, only
where the web 3270 bridge facility is involved. Timeout for other CICS web tasks is handled by the
RTIMOUT value for the relevant transaction, or (for CICS as an HTTP server) by the SOCKETCLOSE
attribute on the TCPIPSERVICE definition.

« The Sockets listener task (CSOL) detects inbound TCP/IP connection requests, and starts CICS web
support by attaching the web attach task. CSOL can also identify those inbound requests, which are
qualified to be processed by directly attached user transactions, and bypassing the web attach task. For
more information, see Processing HTTP requests by using directly attached user transactions.

« Web attach tasks (CWXN, CWXU, or an alias) receive data from the web client and deal with initial
processing of requests, including URIMAP matching, code page conversion of the HTTP headers,
analysis of the request, and code page conversion of the message body. The tasks also pre-process
chunked and pipelined messages that are received from a web client. If a static response is delivered
(by using a URIMAP definition), the web attach task handles this processing as well.

Resource definitions

« TCPIPSERVICE resource definitions are used to define each port that you use for CICS as an HTTP
server, including security options for connections on that port, and timeout and maximum size limits for
inbound requests. They are not used for CICS as an HTTP client.

Note: The TCPIPSERVICE resource definitions are for use only with the CICS provided TCP/IP services,
and have nothing to do with the z/OS Communications Server IP CICS Sockets interface. The TCP/IP
socket interface for CICS is supplied with z/OS Communications Server, which is a part of z/0OS and does
not use the CICS SO domain.

16 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/tcpip/dfht5kt.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/csol_bypass_cwxn.html

URIMAP resource definitions match the URLs of requests from web clients, or requests to an HTTP
server, and provide CICS with information on how to process the requests. URIMAP definitions
incorporate, and can replace, the CICS web support processing functions that were provided before
CICS Transaction Server for z/0OS, Version 3 Release 1 by the analyzer program that is associated with
the TCPIPSERVICE definition. URIMAP definitions can also be used to deliver a static response to a
request from a web client, without involving an application program.

TRANSACTION resource definitions are used to define alias transactions for HTTP request processing.
CICS supplies a resource definition for a default alias transaction, CWBA. When the web attach task
completes initial processing for the request, if an application-generated response is to be produced, an
alias transaction handles the remaining stages of processing. These include receiving the request,
running the application's business logic, construction of the HTTP response and code page conversion
of the HTTP response. For those inbound requests that qualify for the option to bypass the web attach
task before the alias transaction logic is started, CICS receives data from the web client and deals with
initial processing of requests, including URIMAP matching, code page conversion of the HTTP headers,
analysis of the request, and code page conversion of the message body.

User application programs

Web-aware application programs can be designed for CICS web support, that uses the EXEC CICS
WEB and EXEC CICS DOCUMENT application programming interfaces. For CICS as an HTTP server,
these programs can receive and analyze HTTP requests and provide application-generated responses to
the web client. For CICS as an HTTP client, a user application program in CICS can initiate an HTTP
request to a server, and receive a response from it.

COMMAREA applications, programs, which are linked to from another program that uses a COMMAREA
interface, can be accessed by using CICS web support with a converter program to convert their output
into HTML for transmission to a web client. Alternatively, you can write a web-aware application
program that links to a COMMAREA application and uses its output to provide HTTP responses.

3270 display applications, programs, which are designed to communicate with 3270 terminals, can be
accessed by using the Web Terminal Translation Application. The HTML output that is created by the
Web Terminal Translation Application can be displayed in a web browser.

Programming interfaces

Use the WEB command to interpret and construct HTTP requests and responses. Some commands are
used for CICS as an HTTP server, some for CICS as an HTTP client, and some are for both forms of CICS
web support.

Use the DOCUMENT command to construct CICS documents to provide the body of a response or
request that is sent out from CICS.

Use the EXTRACT TCPIP command to obtain information about TCP/IP characteristics of the current
transaction.

Use the EXTRACT CERTIFICATE command to obtain information from the client certificate that is
received over a TCP/IP service that specified client authentication.

CICS web support utility programs

Analyzer programs are associated with TCPIPSERVICE definitions. They are used to interpret an HTTP
request if a URIMAP definition specifies the use of an analyzer program, or if no URIMAP definition is
present. CICS supplies a default analyzer program DFHWBAAX, which provides basic error handling,
and a sample analyzer program DFHWBADX, which supports requests that use the URL format that
CICS web support used before CICS TS 3.1. Either of these analyzers can be used as a basis for your
own analyzer program.

Converter programs can be used to decode an HTTP request and construct input to a user application
program. Web-aware application programs do not normally require converter programs, but they might
be needed by non-web-aware applications that were not designed for CICS web support. CICS does not
supply a converter program. You can write a number of converter programs and select any converter
program in your CICS region to process a request.

Chapter 1. CICS web support 17



- Web error programs provide an error response to the web client when a request error or an abend
occurs in the CICS web support process. CICS supplies the web error program DFHWBEP, which is used
in most error situations, and the web error application program DFHWBERX, which is used with the
default analyzer DFHWBAAX when URIMAP matching fails (and can be specified for other situations).
The web error programs are user-replaceable, and they can be modified to customize or change the
error response that is sent to the web client in each error situation.

« The Web Terminal Translation Application DFHWBTTA (and its aliases for alternative processing,
DFHWBTTB and DFHWBTTC) can be used to create HTML output from programs, which are designed to
communicate with 3270 terminals. The program uses the CICS 3270 bridge mechanism. Applications
that do, and applications that do not use BMS, are both supported. No application program changes are
needed to use this feature.

« The password expiry management program DFHWBPW is used when basic authentication is
specified for the connection, and the user's password is expired. The program takes the user through
the process of setting a new password. You can customize or replace the web pages that are presented
to the user by DFHWBPW.

Document construction facilities

« 2/0S UNIX Systems Services files can be served as the body of a response to an HTTP request from a
web client.

« Document template support enables message bodies to be built from fragments of HTML, which are
prepared offline.

« BMS macros construct HTML document templates from BMS map sets.

Code page conversion

CICS provides facilities to convert HTTP messages into a code page that is suitable for a user application
program, or suitable for use on the Internet. CICS handles code page conversion that uses z/0OS
conversion services.

The code page conversion table (DFHCNV), which was required in earlier CICS releases, is not normally
required for CICS web support in CICS Transaction Server for z/OS, Version 5 Release 4. The exception is
if you want to use an analyzer program that you coded in an earlier CICS release to reference DFHCNV. In
this case, you must either continue to supply the code page conversion table, or make an update to the
analyzer program. For more information, see Upgrading entries in the code page conversion table
(DFHCNV).

Task structure for CICS web support

When CICS web support is active in a CICS region, for CICS as an HTTP server, separate tasks are used to
listen for inbound connection requests; to receive data from the socket and perform initial processing;
and to cover work that is carried out by application programs with a request. For CICS as an HTTP client,
only one task applies, which is the task for the application program that is making the HTTP requests.

The Sockets listener task (CSOL)
This is a long running CICS task. There is one instance of the Sockets listener task in a CICS system.

The task detects inbound TCP/IP connection requests on all ports that are defined to CICS, and starts the
CICS service that is associated with the port. When the port is intended for CICS web support (that is,
HTTP or USER is specified as the protocol), the web attach task is defined as the transaction in the
TCPIPSERVICE resource definition for the port. The listener either attaches the web attach task, or if the
request is eligible directly attaches the user transaction for the request. For more information about
which requests are eligible, see Processing HTTP requests by using directly attached user transactions.

18 CICS TS for z/0S: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/web/dfha1cd.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/web/dfha1cd.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/csol_bypass_cwxn.html

web attach tasks (CWXN, CWXU, or an alias)

When the TCPIPSERVICE definition for a port has the protocol HTTP, the default transaction ID for the
web attach task is CWXN. When the protocol is USER, the default is CWXU. An alias can be used instead,
but the transaction always runs program DFHWBXN.

When a web attach task is started by the Sockets listener task, the first thing it does is to issue a SOCKET
RECEIVE request to receive data from the web client. When some data is received, the web attach task
deals with initial processing of the web client's request.

« Foran HTTP request (on the HTTP protocol), the initial processing includes URIMAP matching, code
page conversion of the HTTP headers, analysis of the request, and code page conversion of the
message body. The task also pre-processes chunked and pipelined messages that are received from a
web client. If an analyzer program is used, it is covered by this transaction.

« Foranon-HTTP request (on the USER protocol), no initial processing takes place.

If a static response is delivered to an HTTP request (that uses a URIMAP definition), the web attach task
handles this processing as well. If an application-generated response is required, the web attach task
attaches an alias transaction.

There is a web attach task for each individual request from a web client, which is in the initial stages of
processing. Before CICS Transaction Server for z/OS, Version 3 Release 1, if a web client and CICS had a
persistent connection, the CWXN transaction would remain in the system during the persistent
connection. Now, the CWXN transaction terminates after a request from the web client is passed to the
alias transaction, or after the static response is delivered. The Sockets listener task monitors the socket,
and initiates a new instance of CWXN for each request on the persistent connection. This behavior, which
is known as an asynchronous receive, avoids the possibility of a deadlock in a situation where the
maximum task specification (MXT) is reached, when a CWXN transaction that is remaining in the system
would not be able to attach alias transactions to process further requests.

Alias transactions for application-generated responses

When a web attach task completes initial processing for a request, if an application-generated response is
to be produced, the web attach task attaches the alias transaction, which is specified for the remaining
processing stages of that request. CICS supplies a resource definition for a default alias transaction,
CWBA. Alias transactions are not used where a static response is provided. The alias transaction might be
attached by the listener task. For more information, see Processing HTTP requests by using directly
attached user transactions.

An alias transaction handles the processing stages for an application-generated response, which include
receiving the request, running the application's business logic, constructing the HTTP response and code
page conversion of the HTTP response. If a converter program is used to process the request, it is also
handled by the alias transaction. There is an instance of an alias transaction for each HTTP request, which
is in these stages of processing.

CICS as an HTTP client

For CICS as an HTTP client, all activity that is caused by an application program that makes HTTP client
requests is covered by a single task. This includes the application program's actions, the actions of CICS
in sending requests and receiving responses, and socket activity. If the application program links to other
programs using the EXEC CICS LINK command, these are also covered by the task. The task has the
transaction ID that triggers the application program.

The task remains in the system from the beginning to the end of the application program's activity. The
task might involve more than one request and response, and the application program might open and
maintain more than one connection to a server. When the task ends, any open connections are
automatically closed.

Chapter 1. CICS web support 19


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/csol_bypass_cwxn.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/csol_bypass_cwxn.html

HTTP request and response processing for CICS as an HTTP server

HTTP requests for CICS as an HTTP server are initiated by a web client that makes a request to CICS.
CICS provides the web client with responses to the requests it makes. The responses can be created from
a static document identified by a URIMAP resource definition, or they can be created dynamically by a

user application program.

Figure 2 on page 21 shows the processing that is carried out by CICS web support to receive a request
from a web client and provide a response.

20 CICS TS for z/0S: Internet Guide



Request Ling

Headars

Request
Body

Match to
URIMAP

Weh 'D|iE'I"It | > dafinition
| caue URIMAP
Key: Direct attach used I
for qualifying requests :
_______________ I
1 L4
I
I
I ¥ ¥ ¥
: URIMAP: URIMAP: URIMAP: URIMAP: URIMAP: URIMAP:
| Web Service Application Mo match Stafic response Redirect Atomn Document
! CWXN CWXN CWXN
: E E Request Request Request E Request
1
1
1 ’—t_l
: F ¥
S5 S5L andfor cics S5
! CWXN
| CWXN Analyzer | = o aivzer document | |[z/0S UNIX CWXN
! CWXN :
i j program template file Header
I | CWXN CWXN |
i | I Response
I PIFELINE with new ATOMSERVICE
: Resource il * URL Resource
, CPIH Converter CWBA ‘ CW2A
1 i r
! {opticnal) program
o [Decode] Aesponse
1 Body
! +
User-written Usar-written
application application
[Wab-aware) ) !
CWEA (ol Web-awars)
WEE S5END WEB WRITE Response
WEB SEND HTTPHEADER Body
Converter
program
Response Encode
Body

Web

CICS

Headers
generated

cIcs Headers
generated

Response

Body

Headers

Response

Client”

Figure 2. Processing for CICS as an HTTP server

Processing for CICS as an HTTP server takes place as follows:

1. CICS receives a TCP/IP connection request. The CICS Sockets domain uses the TCPIPSERVICE
resource definition for the port to determine that the request should be processed by CICS web

Chapter 1. CICS web support 21



support. The TCPIPSERVICE definition specifies security attributes to be applied to the request,
specifies the timeout setting for receiving the request message, and limits the maximum amount of
data that can be received for a single request.

2. CICS matches the URL for the request to a URIMAP definition, if available. CICS tries to match the
URL specified in the HTTP request to any URIMAP resource definitions that are related to the
TCPIPSERVICE definition and apply to CICS as an HTTP server. If a successful match is made, the
URIMAP definition tells CICS how to process the request. If no match is found, CICS continues with
the default process, which begins at processing stage 7 with the analyzer program.

3. If the URIMAP definition specifies redirection, CICS redirects the web client to the specified
URL. CICS composes the redirection message and transmits it to the web client. This completes the
processing for that HTTP request.

4. If the URIMAP definition relates to an Atom document, CICS locates the specified
ATOMSERVICE resource to handle the request. Processing for Atom documents is described in
“How Atom feeds work in CICS” on page 39.

5. If the URIMAP definition relates to a web service, CICS locates the specified PIPELINE resource
to handle the request. Processing for web services is described in How CICS supports web services .

6. If the URIMAP definition specifies a static response, CICS forms and supplies the response. CICS
uses a document template or a z/OS UNIX System Services file, together with appropriate HTTP
headers, to form an HTTP response. The response undergoes appropriate code page conversion, and
CICS then transmits the response to the web client. This completes the processing for that HTTP
request.

7. An analyzer program may be run, if the URIMAP definition specifies its use, or if no matching
URIMAP definition is found. The analyzer program can interpret the request dynamically, or it can
be used for monitoring or audit purposes.

The analyzer program for the TCPIPSERVICE definition must be used in the request processing path
if no URIMAP definition has been set up for the request. It might also be needed if you are using a
non-web-aware application program that has special requirements, for code page conversion or for
pre-CICS TS Version 3 compatibility processing. (Analyzer programs in Developing system programs
explains these situations.) Otherwise, the use of an analyzer program is optional, but note that the
analyzer program is called to process the request if the URIMAP definition is not found.

If an analyzer program is being used, the HTTP request and the HTTP headers are passed to the
analyzer program. The analyzer program can interpret the request to determine:

« Which CICS resources are to be used to service the request.
« Which user ID is to be associated with the request.
« Which of the remaining processing stages are required.

8. A converter program may be used to decode the request and construct input to the application
program. Web-aware application programs should accept an HTTP request without any decoding.
However, if you want to service an HTTP request using a non-web aware application program that
requires COMMAREA input, you can use a converter program to decode the request and construct
input that fits the requirements of your application program. A converter program can be specified
using a URIMAP definition, or it can be selected by an analyzer program.

9. An application program is executed to service the request. You can specify the application
program using a URIMAP definition, or using an analyzer program. A web-aware application program,
using the EXEC CICS WEB and EXEC CICS DOCUMENT application programming interfaces, can be
used to handle the request and construct a response. A non-web-aware application program can be
enabled for the web using either a converter program (which translates the web client's request into
acceptable input, and composes an HTTP response based on the program's output), or a web-aware
application program that calls the non-web aware program and uses its output.

The application program runs under an alias transaction.

The application program can perform the following tasks:

22 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web-services/dfhws_support.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfhtl1q.html

10.

11.

12.

13.

- If the application program is web-aware, it can examine the HTTP headers on the request, extract
information (such as a query string) from the request line, receive the body of the request into a
buffer for processing, select a status code and text for the status line of the response, and write
HTTP headers for the response. EXEC CICS WEB API commands such as WEB SEND and WEB
WRITE HTTPHEADER are used to construct the response.

« Whether or not the application is web-aware, it can produce output that forms the body of the
response. Web-aware application programs can produce an entity body formed from a CICS
document template or from a buffer of data. Application programs that are not web-aware can
produce output that can be converted by a web-aware application program or a converter program
into an entity body.

A converter program may be used to encode the output from the application program and
construct an HTTP response. If the application program is not web-aware and its output is not in the
correct form to send to a web client, you can use a converter program to produce an appropriate
HTTP response including a status line and HTTP headers. The converter program can also perform
other types of processing on the output.

The converter program can specify that processing stages 6 (decoding or other processing using
converter program), 7 (application program) and 8 (encoding or other processing using converter
program) should be repeated. Because the converter program can change the name of the
application program, you can use this facility to allow more than one application program to work on
the same request in sequence, and provide a single response.

If a request error or an abend occurs in the CICS web support process, an error response is sent
to the web client, which can be customized using the user-replaceable web error programs.
DFHWBEP or DFHWBERX receives information about the error situation, and the default HTTP
response (including status code and status text) that CICS plans to send to the web client. The user-
replaceable programs can customize the response or build a new one, and return it to CICS for
sending.

The web error programs are not used in all error situations. They are used when problems occur in
initial processing of requests, and for abends or failures in subsequent processing. They are not used
for situations where processing (such as processing by a user-written application program)
completes correctly and an error or redirection response is the designed outcome.

CICS generates some required HTTP headers and adds them to the message. Appropriate
headers are generated depending on the HTTP version for the response. If the response is HTTP/1.1,
CICS adds headers that are required for HTTP/1.1 messages. If the response is HTTP/1.0, CICS adds
the Connection: Keep-Alive header if the client has requested a persistent connection, and a small
number of other headers. The values for some of these headers are generated directly by CICS (such
as the Date header), and the values of others are based on information provided by a web-aware
application program (using the WEB SEND command) or by a URIMAP definition. The headers can be
added both to output from a web-aware application, and to output from a converter program.

CICS transmits the complete HTTP response to the web client. If the web client supports
persistent connections, CICS keeps the connection open for further possible HTTP requests, until the
user application or web client requests closure or the timeout period is reached.

During this process, code page conversion is usually needed when messages enter and leave the CICS
environment, so that CICS web support processing and user-written applications (which typically use an
EBCDIC encoding) can communicate with web clients (which typically use an ASCII encoding). “Code
page conversion for CICS Web support” on page 33 explains when and how this takes place. The type of

code page conversion that is required can be specified using options on the WEB SEND or WEB RECEIVE
commands.

To improve performance, HTTP requests can bypass the web attach task. For further information, see
Processing HTTP requests by using directly attached user transactions.

Chapter 1. CICS web support 23


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/csol_bypass_cwxn.html

HTTP request and response processing for CICS as an HTTP client

For CICS as an HTTP client, CICS is the web client, and it communicates with an HTTP server. A user-
written application program sends requests through CICS to the HTTP server, and receives the responses
from it. CICS maintains a persistent connection with the server. A session token is used on the commands
issued by the application program to identify the connection.

An application program that makes an HTTP request and receives a response must use the EXEC CICS
WEB API commands to explicitly direct the interaction with the server. A web-aware application program
could be used to make an HTTP request, and then process the results to provide information to an
application that is not web-aware.

The application program that initiates the HTTP request should be designed to process whatever CICS
receives from the server in response to that request, which might include error responses, redirection to
another URL, embedded hypertext links, HTML forms, image source, or other items that request an action
from the application program. CICS can perform code page conversion for requests and responses, if
required.

Figure 3 on page 25 shows the process described in this topic.

24 CICS TS for z/0S: Internet Guide



Remote Server CICS Web Support Web application program
: ——  WEB OPEN
Connection KWEB
) ! OPEN

B = Session foken

Acknowledge *
WEE WRITE HTTPHEADER @ ||
Request Line _/"
; {CICS generated) /
[ xwe e >. WEB SEND &

Request Line components
[lsweo
Raquesi T

r

Bod - -
| xwB Y MT—T——  Bogy
ALITH
WEB READ HTTPHEADER@|"
Fleapones - Status Line
Body -
Parsistent
connaction ' .
| betwesn . — JE—
\\\‘ f,f"f CicSand | @ T~ T "‘hﬁ__q__ - :
- remate server. | — — .
I P Further . ] P ____f—_‘:
\“\____da-"" repaat Ma,_____rf ""“m____\___;_ﬂ_f" .
requeasts and ' !
respanses. Connection: close
Connection: close x . header on final
. request
x: WEB CLOSE

Figure 3. Processing for CICS as an HTTP client

Processing for CICS as an HTTP client takes place as follows:

1. The application program initiates a connection to the HTTP server through CICS. The application
program does this by issuing the EXEC CICS WEB OPEN command. A URIMAP resource that you
have created can be referenced to specify the scheme and host name for the connection, or the
application program can provide this information. (See URIMAP resource definitions for more

information about URIMAP resources.) An application can have more than one connection open at a
time.

Chapter 1. CICS web support 25


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/urimap/dfha4_summary.html

2. CICS establishes the connection with the server, or checks for a suitable pooled connection.
Using the information provided by the application program, CICS opens a TCP/IP connection on a
socket and contacts the server. During this process, the XWBOPEN user exit can be used (if it has
been activated using the ENABLE PROGRAM command) to redirect the application program's
requests through a proxy server, if required, and to apply a security policy to connections to the host.
Alternatively, if the application program used a URIMAP resource that specifies connection pooling
(the SOCKETCLOSE attribute), CICS checks whether a dormant connection is available in the pool for
reuse. When the TCP/IP connection is established, or the existing connection is supplied to the
application for reuse, CICS returns a session token to the application program to uniquely identify the
connection during its use. This session token is used on all the remaining commands issued by the
application program concerning that connection. See “Session tokens” on page 27 for more
information about the session token.

3. The application program can write HTTP headers for its request. User-written HTTP headers can
be built using the WEB WRITE HTTPHEADER command and stored ready for sending.

4. The application program specifies components of the request line. The request method, path
information, and query string are specified using the WEB SEND or WEB CONVERSE command. The
HTTP version for the request is supplied by CICS.

5. The application program can produce an entity body for its request. The content of the request is
specified on the WEB SEND or WEB CONVERSE command. It can be formed from a CICS document
(using the DOCUMENT interface), or from the contents of a buffer. If the server is at HTTP/1.1,
chunked transfer-encoding may be used for a request body formed from the contents of a buffer (but
not for a CICS document).

6. The application program initiates transmission of the request. When the application program
issues the WEB SEND or WEB CONVERSE command, the request is passed to CICS for sending across
the connection specified by the session token.

7. CICS generates some required HTTP headers and adds them to the request, then sends the
request to the server. The values for some of the headers are generated directly by CICS (such as
the Date header), and the values of others are based on information provided by the application
program (using the WEB SEND or WEB CONVERSE command) or by a URIMAP resource. During
sending of the request, two user exits can be invoked, if required. XWBSNDO is called to apply a
security policy for the individual request, and XWBAUTH specifies the username and password
details required for Basic Authentication.

8. The server receives and processes the request, and provides a response. CICS passes the
response to the application program.

9. The application program examines the response. The WEB READ HTTPHEADER command, or the
HTTP header browsing commands, can be used to examine the headers of the response. The WEB
RECEIVE or WEB CONVERSE command receives the body of the response (if there is one), which can
be processed by the application program, and the response's status code and status text.

10. The application program can initiate further requests and responses. If the server supports
persistent connections, the connection identified by the session token remains open for further
requests. If the server does not support persistent connections, the server instructs CICS to close the
connection.

11. The application program finishes its use of the connection. When all the requests and responses
are completed, the application program issues a WEB CLOSE command to end its use of the
connection. If the connection was opened using a URIMAP resource that specified connection
pooling, and neither the server nor the application program have made a request to close the
connection, CICS does not close the connection. Instead, CICS checks that the connectionisin a
good state and then places it in a pool of dormant connections. Pooled connections can be reused by
another application program or by another instance of the same application program to connect to
the same server. When a connection is not suitable for connection pooling, because it has been
closed, or it was not opened using a URIMAP resource, or it is not in a good state, CICS closes the
connection.

During this process, code page conversion is usually needed when messages enter and leave the CICS
environment, so that CICS web support processing and user-written applications (which typically use an

26 CICS TS for z/OS: Internet Guide



EBCDIC encoding) can communicate with HTTP servers (which typically use an ASCII encoding). “Code
page conversion for CICS Web support” on page 33 explains when and how this takes place. The type of
code page conversion that is required can be specified using options on the WEB SEND, WEB RECEIVE, or
WEB CONVERSE commands. For CICS as an HTTP client, the default is that code page conversion does
take place when messages are sent and received.

Session tokens

A session token is an 8-byte binary value that uniquely identifies a client HTTP connection that is in use
between CICS as an HTTP client, and an HTTP server. The use of a session token for each active
connection means that CICS web support can distinguish between the connections that are being used by
different application programs, and also means that an application program can control more than one
connection.

A connection begins in response to a WEB OPEN command issued by a user application program. The
session token is returned on successful completion of the WEB OPEN command, and is used on all the
EXEC CICS WEB commands issued by the application program concerning that connection.

By using the connection, the user application program can make HTTP client requests to the server, and
receive responses from it. The connection can persist for more than one exchange of a request and a
response. See “How CICS web support handles persistent connections” on page 31 for more details
about how CICS web support handles persistent connections and how they are terminated.

If the server terminates the connection, the application program cannot send any further requests using
that connection, but it can read the response that the server sent before it terminated the connection. The
session token remains valid for use on commands to access that data, until the application issues the WEB
CLOSE command.

After the WEB CLOSE command is issued, the session token that applies to the connection is no longer
valid. If the application program does not issue a WEB CLOSE command, the session token becomes
invalid at the end of the task. If you have implemented connection pooling for client HTTP connections,
CICS might pool the connection in a dormant state for reuse by another application or another instance of
the same application. The session token does not persist after a connection is pooled, so an application
that reuses the client connection is given a new session token for its use of the connection.

The maximum number of open HTTP client connections, in use with session tokens, that can be present
simultaneously in a CICS region is 32,768.

URLs for CICS web support

In arequest URL for a resource that is provided by CICS web support, the path component of the URL is
up to you. In CICS web support, the URIMAP definition or the analyzer program creates the linkage
between the request URL and the resource provided by CICS, so the URL does not need to have any direct
relationship to the CICS resource. However, you can design the URL to provide information for processing
or administrative purposes.

The components of a URL explains the different components of a request URL and their role.

A newer form of resource identifier, the IRI (Internationalized Resource Identifier), permits the use of
characters and formats that are suitable for national languages other than English. An IRI can be used in
place of a URI or URL where the applications involved with the request and response support this. CICS
supports the use of IRIs in URIMAP resource definitions. For more information about IRIs, see
“Internationalized Resource Identifiers (IRIs)” on page 45.

URLs for application-generated responses

Information in a request URL can be used by analyzer programs and by user-written application
programs.

Chapter 1. CICS web support 27


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_uricomp.html

Where an analyzer program is used in the processing path for the request, you can design a URL that tells
the analyzer program which programs and transaction to specify for further processing. The CICS-
supplied sample analyzer program DFHWBADX analyzes URLs with a path component in the format /
converter/alias/program/other path information, where converter names the converter
program (if any), alias names the alias transaction, program names the user application program, and
other path information gives additional information that is not used by the analyzer.

A Web-aware application program which is providing a response can also use information from the path
component of the URL. The path component can be extracted by the application using the WEB EXTRACT
command, and analyzed to determine the appropriate action. For example, the path component can be
used to specify a particular function provided by the application. Alternatively, if the web-aware
application is providing a front end for more than one other application, the path component of the URL
can identify the application to which the request applies.

For application-generated responses that are managed using URIMAP definitions, the path components
of URLs can be designed to map multiple request URLs to the same application. You can do this by
making the path components of the URLs begin in the same way, and creating a single URIMAP definition
with a wildcard to map all the request URLs to a single resource. For example, all requests whose path
begins with /staffapps/ordering/ could be mapped to a particular CICS application, by creating a
URIMAP definition that specifies the path /staffapps/ordering/* and specifies the relevant
application. The application can then extract and analyze information in the remainder of the URL to
determine the appropriate action for each request.

URLs for static responses

In CICS web support, the URL does not need to have any direct relationship to the CICS resource. For
static responses, this means that the URL does not have to contain the full path to the file that provides
the response. Instead, the URIMAP definition matches the request URL to the appropriate file.

However, where z/OS UNIX files are used as the static responses, you could decide to design the path
components of the request URLs so that they match the directories used on z/OS UNIX. If all the z/OS
UNIX files provided by CICS web support are located in subdirectories of the same directory, such as the
HOME directory of the CICS region userid, you might want to omit this directory and make the request
URLs match the remainder of the paths to the files. For example, if your HOME directory is /u/cts/
CICSHome, and you want to provide the following z/OS UNIX files as static responses:

/u/cts/CICSHome/FAQs/ordering.html
/u/cts/CICSHome/help/directory/viewing.html

you could use request URLs such as:

http://www.example.com/faqs/ordering.html
http://www.example.com/help/directory/viewing.html

Remember that the path components of URLs are case-sensitive, and so are z/OS UNIX names. URLs are
normally specified in lowercase. Take care to use the correct case when specifying each item in the
URIMAP definition, especially if the file name is in mixed case and the URL is in lowercase.

You might want to make your request URLs match your file directory structure:

« To make administration of resources more straightforward.
« To follow standard practice for web servers.
« To reduce the number of URIMAP definitions that you need to create.

You can create a single URIMAP definition with wildcards, to deliver multiple static responses using the
path matching mechanism. This is possible where the path component of the URL for all those static
responses begins in the same way, and where the files for the static responses are stored in the same
z/0S UNIX file directory. Wildcards are used at the end of the path component of the URL, and also at the
end of the file path for the z/OS UNIX file. In the previous example, all the HTML documents stored in the
FAQs directory could be provided by a single URIMAP definition that specifies the path /faqs/* and
specifies the HFSFILE attribute as /u/cts/CICSHome/FAQs/*. A similar technique can be used with
CICS document templates whose names begin in the same way. Note that a URIMAP definition for a static

28 CICS TS for z/0S: Internet Guide



response specifies a media type (for example text/html), so if you need to provide different file types in
this way, ensure that they are stored in separate directories.

Query strings

A query string in a request URL can be used to select alternative URIMAP definitions. To use a query string
for URIMAP matching, the complete and exact query string must be specified in the path attribute of the
URIMAP definition, together with the path itself.

For application-generated responses, the application can extract and analyze information from a query
string, using the WEB EXTRACT command or the WEB READ FORMFIELD command. This can be done
whether or not the query string has been used for URIMAP matching.

If you are providing a static response with a document template, CICS automatically passes the content
of the query string into the named CICS document template as a symbol list. If you want to use the
content of the query string in the document template, you can include appropriate variables in your
document template to be substituted for the content of the query string. This happens only if the query
string has not already been used for URIMAP matching.

URL length: CICS web support
CICS web support has the following limitations on URL length:

« For the URLs of inbound HTTP requests (for CICS as an HTTP server), CICS accepts a length of up to
32K. This length is at least eight times more than that supported by some commonly-used web browser
clients. If CICS does receive a URL that is longer than it can handle, it returns a 414 (Request-URI Too
Long) status code.

- For the URLs of outbound HTTP requests (made by CICS as an HTTP client), CICS supports a path
component of up to 255 characters in a URIMAP resource definition. The user application program that
makes the request may override the URIMAP definition (or not use one at all), and supply a longer path
component. Check the URL length that can be handled by the server.

URL length: URIMAP definitions

When choosing URLs for resources provided using URIMAP definitions, note the following additional
limitations on URL length:

« CICS supports a path component of up to 255 characters in a URIMAP resource definition. Try not to
use longer path components than this. The HTTP/1.1 specification says that servers should be cautious
about URLs with a total length (comprising scheme, host and path components, and delimiters) that is
greater than 255 characters, because older web clients and proxies might not support these properly. If
you are using an IRI that contains percent-encoded Unicode characters, note that a character in this
context means a single ASCII character, not the original Unicode character. For example, the Cyrillic
character that has the percent-encoded representation %D0%B4 counts as 6 characters from the 255—-
character limit.

« If you need to use a longer path component, you usually can, because you do not have to specify the
complete path in the URIMAP resource definition. An asterisk (*) may be used as a wildcard character at
the end of the path. The behavior of the URIMAP definition will be correct if:

— The specified part of the URL is unique to that resource.

— The specified part of the URL is not unique to that resource, but you are providing a static response,
and using the path matching mechanism to complete the URL.

- If you are using a query string for the purpose of URIMAP matching, and specifying it in the path
attribute of the URIMAP definition, the total length must still be within the 255-character limit. (Part of
the path component may be replaced by an asterisk, if the behavior will still be correct, but an asterisk
cannot be used within the query string.) If you are not using the query string for this purpose, then any
length of query string can be accepted, up to CICS web support's overall 32K limit on URL length.

« For aredirection (using the LOCATION and REDIRECTTYPE attributes in the URIMAP definition), CICS
supports a redirection URL of up to 255 characters. This must be a complete URL, including the

Chapter 1. CICS web support 29



scheme, host and path components, and appropriate delimiters. If you plan to use a resource as a
destination for redirected clients, make sure that its complete URL fits within this 255-character limit.

How CICS web support handles chunked transfer-coding

Messages using chunked transfer-coding can be sent and received by CICS.

CICS as an HTTP server can receive a chunked message as a request, or send one as a response. CICS as
an HTTP client can send a chunked message as a request, or receive one as a response. CICS web
support handles these different cases as follows:

« When CICS as an HTTP server receives a chunked message as an HTTP request, CICS web support
recognizes the chunked encoding. It waits until all the chunks are received (indicated by the receipt of a
chunk with zero length), and assembles the chunks to form a complete message. The assembled
message body can be received by a user application program using the WEB RECEIVE command.

— You can limit the total amount of data that CICS accepts for a single chunked message, using the
MAXDATALEN option on the TCPIPSERVICE resource definition that relates to the port on which the
request arrives.

— When CICS is an HTTP server, the timeout value for receiving a chunked message is set by the
SOCKETCLOSE attribute of the TCPIPSERVICE definition.

— Trailing headers from the chunked message can be read using the HTTP header commands. The
Trailer header identifies the names of the headers that were present as trailing headers. If you are
using an analyzer program in the processing path for the request, note that trailing headers are not
passed to the analyzer program along with the main request headers.

« When CICS as an HTTP client receives a chunked message as a response to an application program's
request, the chunks are also assembled before being passed to the application program as an entity
body, and any trailing headers can be read using the HTTP header commands. You can specify how long
the application will wait to receive the response, using the RTIMOUT attribute of the transaction profile
definition for the transaction ID that relates to the application program.

« When CICS sends a chunked message, either as an HTTP server (response) or as an HTTP client
(request), the application program can specify chunked transfer-coding by using the
CHUNKING(CHUNKYES) option on the WEB SEND command for each chunk of the message. The
message can be divided up in whatever way is most convenient for the application program. CICS sends
each chunk of the message, adding appropriate HTTP headers to indicate to the recipient that chunked
transfer-coding is being used. The application program issues WEB SEND with CHUNKING(CHUNKEND),
to indicate the end of the message. CICS then sends an empty chunk (containing a blank line) to end the
chunked message, along with any trailing headers that are wanted.

Sending an HTTP request or response with chunked transfer-coding explains the process to use for
chunked transfer-coding when sending an HTTP message from CICS. This procedure should be followed
in order for your chunked message to be acceptable to the recipient.

How CICS web support handles pipelining

A pipelined request sequence can be sent and received by CICS. CICS as an HTTP server can receive a
pipelined request sequence from a web client, and CICS as an HTTP client can send a pipelined request
sequence to a server.

CICS web support handles pipelined request sequences, and the responses to them, as follows:

« When CICS as an HTTP server receives a pipelined sequence of HTTP requests, the requests are
processed serially. This is to ensure that the responses are returned in the same order that the requests
were sent. CICS treats each message in the pipelined sequence as a separate transaction, either
providing a static response specified in a URIMAP definition, or passing the message to an application
program and waiting for the application program to produce a response. Each transaction handles a
single request and provides a response. The remaining requests in the pipelined message sequence are

30 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/web/dfhtl_chunkusing.html

held by CICS until the response to the previous request is sent, and then a new transaction is initiated
to process each further request.

« When CICS as an HTTP client sends a pipelined request sequence, pipelining is enabled automatically.
Each HTTP request is sent immediately, so the application program can send multiple HTTP requests
before it receives any response. When the last message in the pipelined sequence has been sent, the
application can begin to receive the responses.

« When CICS as an HTTP client receives HTTP responses to a pipelined request sequence, the responses
are returned to the application program in the order that CICS receives them from the server. A server
that supports pipelining provides the responses in the same sequence in which the requests were
received. The application program begins to receive the responses when it has finished sending all its
HTTP requests.

For CICS as an HTTP client, it is the application program's responsibility to ensure that any pipelined
sequence of requests is idempotent. “Pipelining” on page 15 explains idempotency. For the benefit of
your application program's logic as well as for the benefit of the server, if you are not sure that a sequence
of requests is idempotent, it is advisable to make separate requests, and wait for a response to each
request before sending the next one.

How CICS web support handles persistent connections

When a connection is made between a web client and CICS as an HTTP server, or between CICS as an
HTTP client and a server, by default CICS attempts to keep the connection open as a persistent
connection.

When CICS is the HTTP server, a persistent connection is closed in the following situations:

- The user-written application that is handling the request from the web client requests the client to close
the connection (by specifying the CLOSESTATUS(CLOSE) option on the WEB SEND command).

« The web client requests CICS to close the connection (notified by a Connection: close header).
« The web client is an HTTP/1.0 client that does not send a Connection: Keep-Alive header.

« The timeout period is reached (indicating that the connection has failed, or that the web client has
deliberately exited the connection).

« The CICS region has reached a limit that you specified for the maximum number of persistent
connections, and is now requesting web clients to close their connections after they receive each
response. See “CICS as an HTTP server: Connection throttling for inbound HTTP connections” on page
32 for more information about connection throttling.

« The number of tasks in the region has exceeded the limit for persistent connections.

- Periodically, to allow work to be shared more efficiently among regions listening on shared IP
endpoints.

« The TCPIPSERVICE is closed.

Otherwise, CICS leaves the persistent connection open for the web client to send further requests. If
there is a persistent connection with the client, CICS keeps the connection open after an error response is
sent through a web error program. The exception is where CICS selects the 501 (Method Not
Implemented) status code for the response, in which case the connection is closed by CICS. CICS marks
new connections as non-persistent when the number of tasks in the region has exceeded the limit for
persistent connections.

Some TCP/IP statistics indicate how persistent HTTP connections are. For details, see Connection
persistence statistics.

In a TCPIPSERVICE resource definition for CICS web support, the SOCKETCLOSE and MAXPERSIST
attributes of the TCPIPSERVICE definition should not be specified as zero. A zero setting for
SOCKETCLOSE means that CICS as an HTTP server closes the connection immediately after receiving
data from the web client, unless further data is waiting. A zero setting for MAXPERSIST means that CICS
requires every web client to close the connection after they receive each response from CICS. In either of
these situations, persistent connections cannot be maintained. Only use zero settings for these attributes

Chapter 1. CICS web support 31


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/web/tcpip-performance-connection-persistence-statistics.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/web/tcpip-performance-connection-persistence-statistics.html

if you have a special requirement for them in a CICS region that is not currently handling external
requests, for example in a test environment.

When CICS is the HTTP client, a persistent connection is closed in the following situations:

« The server requests CICS to close the connection (notified by an HTTP/1.1 server sending a Connection:
close header, or an HTTP/1.0 server failing to send a Connection: Keep-Alive header).

« The user application program requests the server to close the connection (by specifying the
CLOSESTATUS(CLOSE) option on the WEB SEND or WEB CONVERSE command).

If the user application program needs to test whether the server has requested termination of the
connection, the READ HTTPHEADER command can be used to look for the Connection: close header in
the last message from the server. If the server requests closure of the connection, but the application
program has not yet issued a WEB CLOSE command, CICS closes the connection but maintains the data
relating to the connection (including the last response received from the server and its HTTP headers).
The application program can continue to use that data until it issues a WEB CLOSE command or end of
task is reached.

When the user application program issues the WEB CLOSE command to end its use of the connection, if
the connection is still open CICS does not necessarily close it. If connection pooling was not specified for
the connection, or if the connection is not in a good state for connection pooling, CICS does close the
connection. However, if connection pooling was specified in the URIMAP resource that was used to open
the connection, and the connection is in a good state, CICS does not close the connection. Instead, CICS
places the connection in a pool of dormant connections, and it can be reused by another application
program or by another instance of the same application program to connect to the same server. See
“CICS as an HTTP client: Connection pooling for outbound HTTP connections” on page 33 for more
information about connection pooling.

If CICS as an HTTP client is communicating with an HTTP/1.0 server, CICS automatically sends
Connection: Keep-Alive headers on HTTP messages. The application program that requested the
connection does not need to provide these. Keep-Alive informs the server that a persistent connection is
required.

CICS as an HTTP server: Connection throttling for inbound HTTP connections

If multiple web clients set up long-lived persistent connections to CICS as an HTTP server and use the
connections heavily, it is possible for a CICS region handling the connections to become overloaded and
experience performance problems. If you experience this problem, you can set up connection throttling
to make excess web clients connect to other CICS regions that share the port and provide the same
service.

With connection throttling, you can set a limit on the number of persistent HTTP connections that a CICS
region accepts for a particular port. If the limit is reached and further web clients send requests, CICS
sends Connection: close headers with each response to require the new clients to close their connection.
The web clients that already have persistent connections to the CICS region can maintain their persistent
connections. When the new clients reconnect, if they connect to another CICS region that shares the port
and has not reached its limit, they can maintain a persistent connection there. The CICS region that has
reached its limit begins to accept new persistent connections again when the web clients that have
persistent connections to it close their connections.

Connection throttling is managed by the MAXPERSIST attribute on the TCPIPSERVICE resource definition
for the port. The default setting, MAXPERSIST(NO), means that there is no limit on the number of
persistent connections that the CICS region accepts. To set up connection throttling, specify a suitable
value for the MAXPERSIST attribute based on the number of persistent connections that the CICS region
can handle simultaneously. The setting applies only to the HTTP and HTTPS protocols, not to any other
protocol.

An HTTP/1.1 server should normally allow persistent connections, so only set up connection throttling in
a CICS region that has experienced performance problems due to long-lived persistent connections. A
zero setting for MAXPERSIST, meaning that the CICS region does not allow any persistent connections, is
not compliant with the HTTP/1.1 specification. Only use a zero setting if you have a special requirement

32 CICS TS for z/OS: Internet Guide



foritin a CICS region that is not currently handling external requests, for example, in a test environment.
When you specify a value greater than zero for MAXPERSIST, CICS as an HTTP server is still compliant
with the HTTP/1.1 specification: the default behavior is still to allow persistent connections, and web
clients receive a Connection: close header if they cannot obtain a persistent connection. However, you
should be aware that refusing persistent connections is not recommended as a normal practice for an
HTTP/1.1 server. Also be aware that the performance of web clients can be affected when they fail to
obtain a persistent connection that they expected.

CICS as an HTTP client: Connection pooling for outbound HTTP connections

By default, CICS closes a client HTTP connection after a CICS application has finished using the
connection, or a service requester application has made a web service request and received a response,
or the HTTP EP adapter has emitted a business event. When you set up connection pooling, instead of
closing the connection CICS can place the connection in a pool in a dormant state. The dormant
connection can be reused by the same application or by another application that connects to the same
host and port. Connection pooling can provide performance benefits where multiple invocations of CICS
web support applications, web services applications, or the HTTP EP adapter make connection requests
to a particular host and port, or where a web services application makes multiple requests and responses.

To set up connection pooling, you specify the SOCKETCLOSE attribute on a URIMAP resource definition
for the client HTTP connection. For a client HTTP connection to be pooled, the CICS application program
must specify the URIMAP resource on the INVOKE SERVICE or WEB OPEN command, and CICS web
support applications must issue the WEB CLOSE command to explicitly end their use of the connection. A
connection cannot be pooled if the server has requested CICS to close the connection, or if the
application program has requested the server to close the connection by specifying the
CLOSESTATUS(CLOSE) option on the WEB SEND or WEB CONVERSE command. CICS also checks the state
of an open connection before placing it in the pool; connections are not pooled if they are found or
suspected to be in a poor state, for example, if the last HTTP response was not OK.

When an application uses a URIMAP resource to make a client HTTP connection, CICS checks whether a
dormant connection is available in the pool for that host and port, and if so supplies it to the application
rather than opening a new connection. Applications reuse a pooled connection in exactly the same way as
they use a new connection, and the connection can be pooled again after use. If a connection reaches the
time limit that you specified in the SOCKETCLOSE attribute without being reused, CICS discards it. CICS
also closes dormant connections in the pool if MAXSOCKETS is reached for the CICS region, or if you
discard the URIMAP resource for the connection, or if the server requests CICS to close the connection.

Code page conversion for CICS Web support

When CICS exchanges messages with a Web client or server, character data in the messages normally
needs to undergo code page conversion on entering and leaving the CICS environment.

Code page conversion for text in messages is required for two reasons:

« CICS and user-written applications for CICS typically use an EBCDIC encoding, but Web clients and
servers typically use an ASCII encoding.

- Within each encoding, a number of different code pages are used to support national languages.

Non-text content of messages, such as images or application data, does not require code page
conversion.

In releases of CICS before CICS Transaction Server for z/OS, Version 3 Release 1, code page conversion
for CICS Web support was handled using a code page conversion table (DFHCNV). In CICS Transaction
Server for z/OS, Version 5 Release 4, the code page conversion table is no longer required for CICS Web
support, except in limited circumstances for upgrade purposes. CICS Web support handles code page
conversion using z/OS conversion services.

In CICS Web support, the defaults for code page conversion of text are:

Chapter 1. CICS web support 33



« The default character set is the ASCII Latin-1 character set, ISO-8859-1. In HTTP messages, request or
status lines and HTTP headers are typically in the US-ASCII character set, which is an older subset of
IS0O-8859-1. Message bodies containing text are often in ISO-8859-1.

« The default EBCDIC code page, for data in the CICS environment, is specified by the LOCALCCSID
system initialization parameter for the CICS region. The default for LOCALCCSID is the EBCDIC Latin
character set, code page 037.

Sometimes a more suitable alternative code page can be identified:

« A Web client or a server may specify a character set in the Content-Type header for a request or
response, which is the character set that has been used for the message body.

« A Web client may send an Accept-Charset header on a request, stating which character sets are
acceptable for the response.

« For non-HTTP requests and some older HTTP implementations, the character set used when
transmitting the message might not be identified in the message headers, and you might need to
identify this from your own knowledge of the message's source.

- Application programmers need to identify a suitable code page in which their application can receive
message data, if the default is not suitable.

CICS does not support all the character sets named by IANA. The IANA character sets supported by CICS
for code page conversion are listed in HTML coded character sets.

In most circumstances, the media type for the message can determine whether or not code page
conversion takes place. Request or response bodies with a non-text media type usually do not undergo
code page conversion. An exception is made for compatibility with Web-aware applications coded in
earlier releases; if the options used on a command indicate that the application was coded before CICS
Transaction Server for z/OS, Version 3 Release 1, the media type does not influence code page
conversion.

Depending on the type of message and the processing path, code page conversion information might be
identified automatically by CICS, or specified in the URIMAP definition, or specified by an analyzer
program, or specified in the commands issued by a Web-aware application program. “Code page
conversion for CICS as an HTTP server” on page 34 explains the process for CICS as an HTTP server, and
“Code page conversion for CICS as an HTTP client” on page 36 explains the process for CICS as an HTTP
client.

Code page conversion for CICS as an HTTP server

When CICS as an HTTP server exchanges messages with a web client, code page conversion is normally
required for the message bodies. The method of specifying this depends on whether you are making an
application-generated response or a static response, and whether you are using a web-aware application
or a non-web-aware application.

Request line and HTTP headers
Code page conversion for a request line or status line and for HTTP headers is handled as follows:

= Soon after receiving a request, CICS converts the request line (including any query string) and HTTP
headers, from their character set, into the EBCDIC code page specified by the LOCALCCSID system
initialization parameter (which applies to the whole of the local CICS region, and has a default of 037).
For a successful conversion, you should set the LOCALCCSID system initialization parameter to any
EBCDIC code page into which the ASCII Latin-1 character set ISO-8859-1 (code page 819) can be
converted. If LOCALCCSID is set to an unsuitable code page, CICS uses the default EBCDIC code page
037 instead.

« When an application uses the WEB EXTRACT, WEB READ HTTPHEADER or WEB READ FORMFIELD
commands to extract information from the request line (including any query string) and HTTP headers,
the information is presented in its converted form, in the EBCDIC code page specified by the
LOCALCCSID system initialization parameter (or the default 037).

34 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtldy.html

- When CICS is preparing to send out a response, the status line and HTTP headers may be generated by
CICS, or specified by the application using the WEB WRITE HTTPHEADER command. Before sending, all
the headers and the status line are converted from the EBCDIC code page in which they were specified,
into the US-ASCII character set.

Message bodies: application-generated response

If the request is to have a dynamic response from a user-written application, code page conversion for
message bodies is handled as follows:

- If a web-aware application receives the request, CICS carries out code page conversion if any of the
code page conversion options are used to specify conversion on the WEB RECEIVE command. If none of
the options are present, code page conversion does not take place. You can either supply, or allow CICS
to identify, the character set, and request a code page if the default is not suitable.

- If an analyzer program is used in the processing path for the request, the analyzer program can specify
or suppress code page conversion for the copy of the request which is passed to subsequent processing
stages in a block of storage. You supply both the character set and the application code page that are
used. CICS still holds the original version of the request body. Applications or converter programs which
use the EXEC CICS WEB API commands access the original body, not the block of storage, and they
can specify code page conversion on the EXEC CICS WEB API commands.

« When a converter program is passed the request in a block of storage, if there is no analyzer program in
the processing path, CICS converts the request body in the block of storage, identifying the character
set and converting to the default code page.

- Toidentify the character set that the web client used for the request body, CICS examines the request
headers. If the request headers do not provide this information, or the specified character set is
unsupported, CICS assumes as a default that the message body is in the ISO-8859-1 character set. If
the message body is not in that character set, and there is no information in the headers, you need to
identify the correct character set.

By default, CICS converts the request body into the EBCDIC code page specified by the LOCALCCSID
system initialization parameter (which applies to the whole of the local CICS region, and has a default of
037). If your application requires a different code page (which could be EBCDIC or ASCII), you can
specify this.

« If an application or converter program sends the response using the EXEC CICS WEB API commands,
CICS carries out code page conversion if any of the code page conversion options are used to specify
conversion on the WEB SEND command. If none of the options are present, code page conversion does
not take place.

« If a converter program produces the response in a block of storage and passes it to CICS for sending,
CICS mirrors the code page conversion that was carried out for the request. The character set and host
code page settings from the analyzer program, or the default settings in the absence of an analyzer
program, are used. If the analyzer program suppressed code page conversion for the request, no code
page conversion is carried out for the response body.

Message bodies: static response

If the request is to have a static response determined by a URIMAP definition, code page conversion for
message bodies is handled as follows:

- For a static response, CICS does not examine any message body that is present on a web client's
request, so no code page conversion is required.

« You specify code page conversion for the body of the response in the URIMAP definition that produces
the static response. If the response contains text, the URIMAP definition needs to specify all of the
following:

— Atext media type, using the MEDIATYPE attribute. There is no default for this attribute.
— A character set for the web client, using the CHARACTERSET attribute.

— The code page in which the CICS document template or z/OS UNIX file for the response is encoded,
using the HOSTCODEPAGE attribute.

Chapter 1. CICS web support 35



CICS retrieves the z/OS UNIX file, or retrieves the CICS document template and creates the document,
and then carries out appropriate code page conversion.

Code page conversion for CICS as an HTTP client

When CICS as an HTTP client exchanges messages with a server, code page conversion is normally
required for the message bodies. You specify an application code page when opening the connection. The
character sets can usually be identified by CICS or allowed to default.

Request line and HTTP headers
Code page conversion for a request line or status line and for HTTP headers is handled as follows:

« When CICS is preparing to send out a request, the request line and HTTP headers may be generated by
CICS, or specified by the application using the WEB WRITE HTTPHEADER command. Before sending, all
the headers are converted from the EBCDIC code page in which they were specified, into the US-ASCII
character set.

« Soon after receiving a response, CICS converts the status line and HTTP headers from the US-ASCII
character set, into the EBCDIC code page 037. The application receives the status line and other
information, and examines the HTTP headers, in their converted form, in the EBCDIC code page 037.

Message bodies
Code page conversion for the message bodies is handled as follows:

- The EBCDIC code page used by the application program is specified on the WEB OPEN command that
initiates communication with the server. The default is the EBCDIC code page specified by the
LOCALCCSID system initialization parameter (which applies to the whole of the local CICS region, and
has a default of 037). CICS uses this information for converting the message bodies for requests and
responses on this connection.

« For each request that the application sends out, the CLIENTCONYV option on the WEB SEND or WEB
CONVERSE command specifies whether or not CICS carries out code page conversion for the request
body. The default is that code page conversion does take place. If you are using the WEB CONVERSE
command, you can choose to specify code page conversion for either, both, or neither of the request
body and the response body.

« If you have specified conversion for a request, the default is that CICS converts the request body to the
ISO-8859-1 character set. You can use the CHARACTERSET option on the WEB SEND or WEB
CONVERSE command to select an alternative, if you know that the server prefers a different character
set.

« For each response that the application receives, the CLIENTCONYV option on the WEB RECEIVE or WEB
CONVERSE command specifies whether or not CICS carries out code page conversion for the response
body, into the EBCDIC code page specified when the connection was opened. The default is that code
page conversion does take place. CICS examines the response headers to identify the character set that
the server used for the response body. If the response headers do not provide this information, or the
named character set is unsupported, CICS assumes as a default that the message body is in the
ISO-8859-1 character set.

Overview of Atom feeds

A web feed, sometimes just called a "feed", is a series of related items that a content provider publishes
on the Internet. An Atom feed is a web feed that uses the Atom Syndication Format and the Atom
Publishing Protocol.

Atom comprises an XML-based format that describes an Atom feed and the items of information in it, and
a protocol for publishing and editing Atom feeds. This format and protocol are described in two Internet
Society and IETF (Internet Engineering Task Force) Request for Comments documents (known as RFCs):

RFC 4287, The Atom Syndication Format, available from https://tools.ietf.org/html/rfc4287

36 CICS TS for z/OS: Internet Guide


https://tools.ietf.org/html/rfc4287

RFC 5023, The Atom Publishing Protocol, available from https://tools.ietf.org/html/rfc5023

Content providers often deliver web feeds in an earlier format called RSS (Really Simple Syndication).
CICS supports Atom, but does not support RSS.

The items of information that make up an Atom feed are known as Atom entries. A content provider
publishes, or "syndicates", an Atom feed by making it available through a URL on the Internet and
updating it with new items. Web pages can display the items in the Atom feed, and web users can obtain
the items from the feed using a feed reader or web browser. An Atom feed might be used as part of a
mashup, which is a web application that merges content from a number of data sources so that users can
experience and understand the data in a new way. In a mashup, the data from the Atom feed can be
handled by a widget, which is a script application that runs in a web page.

The Atom Publishing Protocol specifies the way that users can add, delete, edit, or view individual Atom
entries in an Atom feed by making HTTP requests to a server that stores the entries. A GET request
retrieves an entry for viewing, a POST request adds a complete new entry, a PUT request edits an existing
entry, and a DELETE request deletes an entry. The server handles the requested changes in an
appropriate way and responds to the user's client with confirmation of the changes.

Atom documents

Atom documents are one of the following types: entry documents, feed documents, collections, service
documents, or category documents.

Atom entry documents
An Atom entry document is an XML document that contains a single item of information, known as an
entry, for the Atom feed.

An Atom entry document consists of an <atom:entry> element that contains a number of child
elements. The child elements provide the content for the entry and also metadata about the entry,
such as its title or the time when it was first published.

The content of an Atom entry can be plain text, HTML, XHTML, or another IANA (Internet Assigned
Numbers Authority) media type. IANA media types are listed at http://www.iana.org/assignments/
media-types/media-types.xhtml. An Atom entry can also have as its content a link to a media
resource such as a movie or image, in which case it is called a media link entry.

The media type for an Atom entry document is application/atom+xml.

Atom feed documents
An Atom feed document is an XML document that provides metadata about an Atom feed and one or
more entries for the feed. When a client makes a request for information from the feed, the server
generates a feed document that includes a suitable number of Atom entries to fulfil the request.

An Atom feed document consists of an <atom:feed> element that contains a number of child
elements. The <atom:entry> element is the most important child element, but normally the entries for
the feed exist as separate XML documents, and the server adds them when it serves the feed
document. An Atom feed document is still an acceptable document when it does not contain any
<atom:entry> elements.

The other child elements contain metadata about the feed, such as its title and subtitle, or its main
author. Some of the items of metadata in the Atom feed document, such as the author's details and
the information about intellectual property rights, can apply to all the entries in the feed unless an
entry includes its own version of that item of metadata.

The media type for an Atom feed document is application/atom+xml.

Atom collection
An Atom collection is a special kind of Atom feed document that lists the URLs of Atom entries that
are available to be edited. Its format is like that of an ordinary Atom feed document with the addition
of some specialized elements. It is distinguished as a collection by being listed in an Atom service
document.

An Atom collection contains some specialized <atom:link> elements. If the collection is large enough
that more than one feed document is required to return all the entries, the elements <atom:link

Chapter 1. CICS web support 37


https://tools.ietf.org/html/rfc5023
http://www.iana.org/assignments/media-types/media-types.xhtml
http://www.iana.org/assignments/media-types/media-types.xhtml

rel="first">, <atom:link rel="last">, <atom:link rel="next">, and <atom:link rel="previous"> supply
navigation between the feed documents. Entries also have an <atom:link rel="edit"> link to which edit
requests can be directed. The <app:edited> element is added to entries in a collection to state the
time of the last edit for each entry.

When Atom entries are made available as a collection, a client can edit or delete the existing entries
and create new entries for the collection. The client manipulates the entries by sending HTTP
requests to the server as follows:

GET
Retrieve a single Atom entry or a list of Atom entries. GET requests for a list of Atom entries are
sent to the URL of the collection, as stated in the Atom service document. GET requests for a
single Atom entry are sent to the URL of an individual Atom entry in the collection, as stated in the
<atom:link rel="edit"> link for the entry.

POST
Create a new Atom entry. POST requests are sent to the URL of the collection.

PUT
Edit an existing Atom entry that the client has obtained using a GET request. PUT requests are
sent to the URL of an individual Atom entry in the collection.

DELETE
Delete an existing Atom entry. DELETE requests are sent to the URL of an individual Atom entry in
the collection.

The server sends an appropriate HTTP response to the client in each case. A server can change the
metadata that the client provides for the entry, so when a client makes a successful POST or PUT
request, the server also returns a copy of the new entry as the body of the response.

As well as containing standard Atom entries, a collection can also contain media resources, such as a
movie or image. If a server supports media resources, it creates special Atom entries known as media
link entries in the collection to provide links to these resources. CICS does not provide support for
media resources.

Atom service document
An Atom service document is an XML document that lists the collections that are available from a
server.

An Atom service document has the root element <app:service>. (The app: prefix is the namespace
prefix for the Atom Publishing Protocol.) It has one or more <app:workspace> elements that define
workspaces containing a number of <app:collection> elements. A workspace is used only for grouping
collections; you cannot perform any actions on a workspace.

The <app:collection> elements list the URL and title of each collection, and might also state the types
of input that the collection accepts and the categories that can be used for entries.

The media type for an Atom service document is application/atomsvc+xml.

Atom category document
A category document contains lists of categories for the entries in a collection. Categories can also be
specified in a service document. Separate category documents are useful if you want to use the same
categories to define multiple Atom feeds.

An Atom category document has the root element <app:categories>. (The app: prefix is the
namespace prefix for the Atom Publishing Protocol.) The <app:categories> element contains a list of
<atom:category> elements that are permitted for entries in a collection. The list of categories can be
fixed, in which case the server can reject entries with other categories, or it can be open, so that other
categories can be used.

If a separate Atom category document is used in the place of a list of categories in an Atom service
document, the category document is referenced in the service document by its URL.

The media type for an Atom collection is application/atomcat+xml.

38 CICS TS for z/OS: Internet Guide



Related concepts

How Atom feeds work in CICS

To serve an Atom document, CICS must include suitable URLs, identify and obtain the data for the Atom
entries, and determine the arrangement of the Atom entries in the Atom document. When you set up an
Atom feed or collection, you must provide information in your Atom configuration file or your service
routine to help CICS complete these tasks.

How Atom feeds work in CICS

To serve an Atom document, CICS must include suitable URLs, identify and obtain the data for the Atom
entries, and determine the arrangement of the Atom entries in the Atom document. When you set up an
Atom feed or collection, you must provide information in your Atom configuration file or your service
routine to help CICS complete these tasks.

Related concepts

Atom documents

Atom documents are one of the following types: entry documents, feed documents, collections, service
documents, or category documents.

Data processing for Atom feeds from CICS

To produce an Atom feed or collection document containing Atom entries, CICS obtains data for the Atom
entries either directly from a file or temporary storage queue, or from a service routine that extracts data
from another resource.

Figure 4 on page 39 shows how CICS uses an Atom configuration file to identify and extract relevant
data from a record in a file:

CICS Atom processing

Atom feed document Atom configuration file File record

=<cicsiresource name="myfile” type="fila"=
<cicabind root="SAMPBIND"/-
<cicsfieldnames
<atom:entry:=

<atom:title=My firstentrycatnm.-"ﬁtlc;E tithe="Titla" [ "= | Title: My first entry
<atom:content type="text"-

Content for the first entry {— content="Content"/= :_‘_.» Content: Content
=atom:/content= /CiCs Tes0uUrce s for the first entry

=atom:fentry=

|

LYy

Figure 4. Extracting Atom entry data directly from a file

« The record in the file contains fields called "Title" and "Content" that hold data for the Atom entry.

- The Atom configuration file includes a <cics:resource> element that identifies the file, a <cics:bind>
element that refers to the XML binding for the file, and a <cics:fieldnames> element. The title attribute
of the <cics:fieldnames> element identifies the "Title" field in the file record as the field that holds the
data for the title of the Atom entry. The content attribute identifies the "Content" field in the file record
as the field that holds the data for the content of the Atom entry.

« CICS uses the information in the Atom configuration file and the XML binding to locate and extract the
data from the "Title" and "Content" fields in the file record, and uses that data to populate the
<atom:title> and <atom:content> elements of an Atom entry in an Atom feed document.

« When CICS has carried out this processing for a series of records from the file to produce the required
number of Atom entries, CICS sends the Atom feed document containing the Atom entries to the web
client.

Chapter 1. CICS web support 39



Figure 5 on page 40 shows how CICS obtains data from a record in a database through a user-written
service routine program:

Database record Service routine

DFHATOMTITLE
Title: My first entry |::_“:.- Tithe: My first entry |::_“:.- My first entry L ——
Content: Content Content: Content

for the first entry IZE.} for the first entry C—— | DFHATOMCOMNTENT
Content for the first entry

DFHATOMPARMS

<cics:fieldnames=

CICS Atom processing

Atom feed document Atom configuration file
<atom:eniry=> <atom:title> Default title for an
4 =4 o <atom:title My first entry<atom:/title= Atom entry</atom:title=

<atom:author-

<atom:name= Joe Blogos</atom:names| < —1 | <atom:author=-

</atom:author- <atom:names=Jog Bloggs <fatom:name:

- b =atomcontent type="text">-Content <fatom:author=

for the first entry
<atom:/content=

=atomentry=

DFHATOMCONTENT
Content for the first entry

DFHATOMTITLE
My first entry

Figure 5. Using a service routine to supply Atom entry data

« The record in the database contains fields called "Title" and "Content" that hold data for the Atom entry.

« A service routine extracts the data from the "Title" and "Content" fields in the database. If a service
routine is working with a resource that has an XML binding, it can obtain the names of the relevant fields
from information in a <cics:fieldnames> element in an Atom configuration file, which CICS passes to the
service routine as parameters in a container called DFHATOMPARMS. DFHATOMPARMS also contains
other information about the web client's request.

« The service routine creates containers called DFHATOMTITLE and DFHATOMCONTENT, and writes the
data from the "Title" and "Content" fields into the containers. It then returns the containers to CICS
Atom processing.

- The Atom configuration file includes an <atom:title> element that gives a default title for Atom entries,
and an <atom:author> element that contains an <atom:name> element giving the author name Joe
Bloggs.

« CICS composes an Atom entry using the title and content that were supplied by the service routine in
the DFHATOMTITLE and DFHATOMCONTENT containers. The service routine did not supply an author

40 CICS TS for z/OS: Internet Guide



name, so CICS uses the author name from the Atom configuration file. CICS does not need the default
title from the Atom configuration file, because the service routine has supplied that data.

« When CICS has called the service routine a number of times to supply data from different database
records to produce the required number of Atom entries, CICS sends the Atom feed document
containing the Atom entries to the web client.

URLs for Atom feeds from CICS

Atom feed documents, collections, and Atom entry documents within feeds or collections, contain URLs
(Uniform Resource Locators) that web clients can use to interact with the documents. Each URL is
provided in an <atom:link> element in the Atom document. An Atom document can have more than one
<atom:link> element, and the rel attribute of the element, known as the link relation, specifies the
purpose of the different URLs.

An Atom feed document or collection served by CICS contains up to four types of URL:

« A URL that locates the whole of the Atom feed or collection. This feed URL is provided in an <atom:link
rel="self" > element that is a child element of the <atom:feed> element. A web client can use this URL
to obtain an Atom feed document containing multiple entries from the Atom feed or collection.

« Individual URLs to locate each Atom entry in the feed or collection. These entry URLs are provided in
<atom:link rel="self" > elements that are child elements of the <atom:entry> element. A web client can
use these URLs to retrieve single Atom entries from the feed or collection.

- Editing URLs that web clients can use to make requests to edit a collection. These URLs are provided in
<atom:link rel="edit" > elements. CICS provides one editing URL for the whole of a collection, as a child
element of the <atom:feed> element in the collection document, and individual editing URLs for each
Atom entry in a collection, as child elements of the <atom:entry> elements. CICS also provides
<atom:link rel="self" > URLs for collections and Atom entries in collections.

- Navigation URLs that web clients can use to retrieve partial lists of the Atom entries in an Atom feed or
collection. These URLs are provided in <atom:link> elements with rel attributes of "first", "previous",
"next", and "last". These URLs enable web clients to explore the whole of an Atom feed or collection
without having to retrieve all the Atom entries at once. CICS provides an <atom:link rel="next">
element in Atom feed documents with a URL that web clients can use to retrieve the next window of
Atom entries from the feed. In Atom documents that contain partial lists of entries from collections,

CICS adds <atom:link> elements with rel attributes of "first", "previous", "next", and "last", to provide
navigation to the other partial lists of Atom entries from the collection.

For an Atom feed, the URL for the whole feed is typically publicized on the Internet or a company's
intranet. When a web client obtains an Atom feed document by using the feed URL, the Atom entries in
the Atom feed document include their own individual URLs, and a web client can use these to retrieve
single Atom entries.

For a collection, which contains Atom entries that can be edited, the service document that is available
from the server provides the editing URL of each of the collections on the server. A web client can use one
of these URLs to view the Atom entries in the collection and make requests to add further entries to it.
The web client can use the editing URL for an individual Atom entry to make a request to update or delete
the entry.

The Atom Syndication Format allows the use of Internationalized Resource Identifiers (IRIs), which
permit Unicode characters and formats that are suitable for national languages other than English. You
may use IRIs that include Unicode characters as the resource locators for Atom feeds from CICS, in place
of an ordinary URL. In the RFCs for the Atom Syndication Format and the Atom Publishing Protocol, the
resource locators for Atom feeds and Atom entries are referred to as IRIs. “Internationalized Resource
Identifiers (IRIs)” on page 45 explains IRIs and how you can use them for Atom feeds.

How Atom URLs are specified and resolved

In CICS, you use the <atom:link> child elements of the <atom:feed> and <atom:entry> elements in an
Atom configuration file to specify a URL for the whole of the Atom feed or collection, and also a standard
URL for the individual Atom entries. In the Atom configuration file you always specify <atom:link
rel="self"> for these child elements, and when CICS sends out the Atom document, CICS adds an

Chapter 1. CICS web support 41



identical link in an <atom:link rel="edit" > element to collections and Atom entries in collections. You may
omit the scheme and host components of the URL from the Atom configuration file, and specify only the
path component. CICS adds the scheme and host components to the URLs when it returns the feed or
entry document to the client.

You do not need to specify any of the <atom:link> elements for navigation URLs, with rel attributes of

"first", "previous", "next", and "last", in your Atom configuration file. CICS creates these links for you.

The URLs that you specify for the whole feed and as a standard URL for the individual entries must have
path components that begin in the same way. You specify this common part of the path component in the
URIMAP resource definition that CICS uses to handle web client requests for the Atom feed, and use an
asterisk to indicate that the rest of the path is to be used for path matching. The common part of the path
component is what CICS uses to identify the Atom feed or collection, so it must be unique to this Atom
feed or collection among all the Atom feeds or collections that you serve using a given host name.

When a web client makes a request using a URL that includes this common part of the path component,
CICS finds the matching URIMAP resource definition, and uses a number of other resources to map the
request URL to the data for the Atom feed. Figure 6 on page 42 shows this process for a feed URL:

www.example.com/atom/fcicsfile/filea -~ -~ - - -~ -\ -~ —— —(—— —(———____________

!
1
1
URIMAP l
1
1

PATH({atorm/cicsfila/™ )+ -
USAGE(ATOM) =

ATOMSERVICE

i

1

1

1

1

1

1

1

1

1

|

ATOMTYPE{COLLECTION) |
STATUS(ENABLED) !
s RESOURCENAME[FILEA) !
RESOURCETYPE(FILE) I
:

1

1

1

1

1

1

1

:

1

1

1

1

1

BINDFILE
XSDBI <= ConFIGFILE

8 @

<cicsatomservice type="collection”
wmins:cics="http:/ferww.ibm.comfxmins/prod/cics/atom/atomservice”
wminz:atom="httpfaww.wi.org 2005/ Atom "
<atom:feed:
<atomlink rel="self” href="fatom/cicsfile/feed">4 - - - - - - - - - =
<atomtitle=My CICS feed</atom:title=
<atom:authors
<atom:name:=Joa Bloggs-/atom:name:
<fatom:author=
— <atom:entry:
<atom:link rel="self" href="/atom/cicsfile/entry™=
<atom:title=Default title for an entry</atom:title=
Fl <[ ) eatom:content type="text" cics:resource="FILEA" cics:typa="fila"/=
</atom:entry=
</atomfead=
<icics atomseanice

Figure 6. Request URLs for Atom feeds

« To handle incoming requests from web clients, you create a URIMAP resource definition that specifies
the part of the path component that is common to the feed and entry URLs. In this example, the
common part of the path component is atom/cicsfile/. When a web client makes a request using
the URLs that you have defined for an Atom feed or collection or for an Atom entry, CICS finds the
URIMAP resource that matches the common part of the path component. In this example, the web
client requests the Atom feed using the feed URL www .example.com/atom/cicsfile/filea.

42 CICS TS for z/OS: Internet Guide



- The URIMAP resource specifies an ATOMSERVICE resource that names the Atom configuration file, XML
binding (XSDBIND file), and CICS resource that provide the Atom feed. The example ATOMSERVICE
resource names the FILEA file as the resource that holds the data for the Atom entries.

« CICS uses the ATOMSERVICE resource to locate the Atom configuration file, and compares the path
component of the inbound URL used by the web client to the URLs specified in all the <atom:link>
elements in the Atom configuration file. When CICS finds a URL in an <atom:link> element that has a
matching path component, it carries out the appropriate action, either returning the Atom feed or entry
document or implementing the edit request. In this example, the request URL used by the web client
matches the URL specified for the Atom feed in the Atom configuration file, so CICS must return an
Atom feed document.

- The Atom configuration file, like the ATOMSERVICE resource, names the FILEA file as the resource that
holds the data for the Atom entries. As explained in “Data processing for Atom feeds from CICS” on
page 39, CICS might operate directly to extract the data from the file or temporary storage queue that
contains the data for the Atom entries, or pass the request on to a service routine.

In Figure 6 on page 42, the path for the URL for the whole Atom feed, as specified in the <atom:link> child
element of the <atom:feed> element in the Atom configuration file, is /atom/cicsfile/filea. The
<atom:entry> element in the Atom configuration file also has an <atom:link> child element, which
contains the path /atom/cicsfile/entxry. This is a standard path for Atom entries. The standard path
for Atom entries begins with the common part of the path component, atom/cicsfile/. The remainder
of the standard path for Atom entries must be different from the path for the Atom feed that is specified in
the <atom:link> child element of the <atom:feed> element. CICS uses this part of the path for path
matching within the Atom configuration file, to determine whether an Atom feed document or an Atom
entry document is required.

Figure 7 on page 44 shows how CICS handles a request from a web client for a single Atom entry, and
identifies the correct Atom entry:

Chapter 1. CICS web support 43



www.example.comfatom/cicsfilefentryf23 - - - - - —— 1

:
URIMAP l
1
1

PATH{atom/cicsfile™ )+ - ATOMSERVICE

USAGE(ATOM) —
ATOMTYPE(COLLECTION)
STATUS(ENABLED)

— RESOURCENAME(FILEA)
RESOURCETYPE(FILE)
BINDFILE
XSDBI <= CONFIGFILE

}

<cics:atomservice type="collection”
wmins:cics="http:/ferww. ibm.comfxmins/prod/cics/atom/atomservice”
wminz:atom="httpfaww.wi.org 2005/ Atom "=
<atom:feed:
<atom:link rel="sali” href="/atom/cicsfilefead >
<atomtitle=My CICS feed</atom:title=
<atom:author=
<atom:name:=Joa Bloggs-/atom:name:
</atom:author=
— <atom:entry=
1 =atom:link rel="zelf" href="/atom/cicsfile/fentry’'>= + - - - - - - -
<atom:title=Default title for an entry</atom:title=
<atom:content type="text" cics:resource="FILEA" cics:typa="fila"/>
</atom:entry=
</atomfead=
<icics atomsanice

Figure 7. Request URLs for Atom entries

- The web client requests a single Atom entry using the URL www . example.com/atom/cicsfile/
entry/23. The web client obtained this URL from the <atom:link> child element for the Atom entry,
which the web client originally received as part of an Atom feed document.

« The Atom entry URL contains the common part of the path component for the Atom feed, atom/
cicsfile/, soitis handled by the same URIMAP and ATOMSERVICE resources as the feed URL. In
this example, the request URL used by the web client matches the standard path specified for Atom
entries in the Atom configuration file, so CICS must return an Atom entry document.

 CICS identifies the Atom entry to return to the web client by examining the remainder of the request
URL that follows the standard path. In this example, the request URL contains the number "23". This is
the selector value for the entry. The selector value is an identifier, typically a number, that identifies the
record in a file, temporary storage queue, or other resource that contains the data for the Atom entry. In
this example, the selector value chosen for the Atom entries was the record number. When you choose
a selector value, you must make sure that the URL for the whole Atom feed and the standard path for
Atom entries will still be different when the selector value is appended to them. “Selector value for
Atom entries” on page 46 explains in more detail how selector values are chosen and used.

CICS also uses the selector value to build navigation links to partial lists of entries from the Atom feed or
collection, in the <atom:link> elements with rel attributes of "first", "previous", "next", and "last". CICS
builds these navigation links by taking the path that you specified for the whole of the Atom feed or
collection, and appending the selector value for the Atom entry that appears at the beginning of the
partial list. CICS uses this information together with the window setting specified for the Atom feed or
collection to return a partial list to the web client. In the example Atom feed used here, for a partial list of

44 CICS TS for z/OS: Internet Guide



entries that begins with the Atom entry with the selector value "9", CICS creates the link
www . example.com/atom/cicsfile/filea/9.

These examples show the selector value being appended to the URLs in the default format, known as the
"segment" format, where the selector value is placed as the final segment of the path component. As an
alternative, you can choose a URL style that is compatible with applications developed using the CA8K
SupportPac, where the selector value for the Atom entry is placed in a query string. You can specify this
alternative "query" format using the <cics:selector> element in the Atom configuration file. If
<cics:selector style="query"/> is specified for the example Atom feed used here, CICS creates the links
for individual Atom entries in the format www.example.com/atom/cicsfile/entry?s=23. The same
format is used for the navigation links.

Internationalized Resource Identifiers (IRIs)

Internationalized Resource Identifiers (IRIs) are a form of resource identifier for the Internet that permits
the use of characters and formats that are suitable for national languages other than English. IRIs can be
used in place of URIs or URLs where the applications involved with the request and response support
them.

IRIs are described by RFC 3987, Internationalized Resource Identifiers (IRIs), which is available from
https://tools.ietf.org/html/rfc3987. CICS supports the use of IRIs in URIMAP resources for inbound web
client requests to CICS as an HTTP server, and in Atom feed documents.

Host name

To accommodate the requirements of domain name servers, web clients convert the host name in an IRI
into a format called Punycode. Punycode is described by RFC 3492, Punycode: A Bootstring encoding of
Unicode for Internationalized Domain Names in Applications (IDNA), which is available from https://
tools.ietf.org/html/rfc3492. This algorithm encodes the hostname into a string composed only of
alphanumerics, hyphens, and periods.

If you want to use an IRI as the link for a web resource or Atom feed that is served by CICS, in the
URIMAP resource definition that defines the web client's request to CICS, you must specify the host name
in Punycode. CICS does not provide a tool to carry out this conversion, but free applications are available
on the Internet to support the conversion of Unicode to Punycode. If you use a single asterisk in place of
the host name, to make the URIMAP resource match any host name, you do not need to use Punycode.

Path component

Web clients do not convert the path component of an IRI into Punycode, but they do escape, or percent-
encode, Unicode characters in the path.

If you are using an IRI for a web resource that is served by CICS, in the URIMAP resource definition, you
must percent-encode any Unicode characters in the path that you specify. If you do not have an
application that can convert Unicode characters to percent-encoded representations, free applications
are available on the Internet to perform this task. Note that the limits on URL length listed in “URLs for
CICS web support” on page 27 apply also to URLs for Atom feeds, which means that the part of the path
component of the URL that you specify in the URIMAP resource definition must be 255 characters or less.
A character in this context means a single ASCII character, not the original Unicode character. For
example, the Cyrillic character that has the percent-encoded representation %D0%B4 counts as 6
characters from the 255—character limit.

When CICS installs the URIMAP resource definition, CICS stores the path in the canonical form
recommended for URIs and unescapes some of the characters, but the path that is displayed when you
view the URIMAP resource remains as you entered it.

When you use an IRI as a link for an Atom feed or entry document, you specify the IRI in the Atom
configuration file as well as in the URIMAP resource definition. You must percent-encode any Unicode
characters in the IRI in the Atom configuration file.

When CICS issues an Atom document containing the IRI, CICS converts the percent-encoded characters
to XML character references, so that the XML is valid. To use the resulting link in a web client request, you
must convert the XML character references back into percent-encoded characters.

Chapter 1. CICS web support 45


https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc3492
https://tools.ietf.org/html/rfc3492

This example URIMAP resource contains a path that uses Unicode characters to specify the beginning of
an IRI for an Atom feed, with an asterisk at the end to indicate that path matching is used for the
remainder of the IRI:

Urimap : ALEXANDR

Group : IRIMAPS

DEScription

STatus : Enabled Enabled | Disabled

USAge : Atom Server | Client | Pipeline | Atom
UNIVERSAL RESOURCE IDENTIFIER

SCheme : HTTP HTTP | HTTPS

POrt : No No | 1-65535

HOST S

(Mixed Case)

PAth : %D0O%90%D0O%BB%DO%B5%DO%BA%D1%81%D0%B0O%DO%SBD%DO%BA%D1%80%D0O%
(Mixed Case) 1 AL9DOY%BE%DO%BB%D0O%B6%D0%B5%D0%BD%DO%B8%D1%86%D1%8B%DO%BD*

This example Atom entry contains an IRI using the equivalent XML character references for the Unicode
characters that are represented in the example URIMAP resource:

<entry>
<link rel="self" href="http://example.com:5050/&#x0410;&x043B;&#x0435;
&ikxQ43A; &IFx0441 ; &i#x0430 ; &##x043D ; &iFx0434 ; &iFx0440 ; &ix0421 ; &#kxQ43E ; &iFx043B; &i#x0436 ;
&iFx0435; &IFx043D ; &Fx0438; &iIFx0446 ; &IFx044B; &1kx043D; /000100" />
<id>tag:example.com,2009-02-13:file:FILEA:000100</id>
<title>FILEA item 000100</title>
<rights>Copyright (c) 2009, Joe Bloggs</rights>
<published>2008-11-06T12:35:00.000Z</published>
<author>

<name>Joe Bloggs</name>

<email>JBloggs@example.com</email>
</author>
<app:edited>2009-03-11T14:42:38+00:00</app:edited>
<updated>2009-03-11T14:42:38+00:00</updated>

<content type="text/xml">
<DFHOCFIL xmlns="http://www.ibm.com/xmlns/prod/cics/atom/filea">
<filerec>
<numb>000100</numb><name>S. D. BORMAN</name><amount>$0100.11</amount>
</filerec>
</DFHOCFIL>

</content>

</entry>

Selector value for Atom entries

The selector value for an Atom entry is any identifier that CICS or a service routine can use to locate the
record in a file, temporary storage queue, or other resource that contains the data for the Atom entry. A
suitable selector value is any identifier that is unique and always applies to a given record in the resource
that holds the data for the Atom entries, such as an item number or unique key.

When CICS is issuing an Atom document as a response to a web client, CICS uses the selector values for
the individual Atom entries to construct links directly to the Atom entries, and also as part of the
generated Atom IDs for the entries. The web client can use the links to make requests for single Atom
entries. The selector value from each link identifies the correct record in the resource that contains the
data for the Atom entries. “URLs for Atom feeds from CICS” on page 41 explains how a selector value is
appended to a link.

When CICS is delivering Atom entries directly from a file or temporary storage queue, CICS identifies a
suitable selector value depending on the type of resource. For a temporary storage queue, the selector
value is the number that identifies the record in the temporary storage queue, which CICS assumes is a
decimal number. For a file, the selector value is the key for the file, which must be unique. CICS assumes
that the format of the selector value for each file type is as follows:

« A decimal number for RRDS and VRRDS files.
« A binary number for ESDS and extended ESDS files.
A character string for any other type of VSAM file.

46 CICS TS for z/OS: Internet Guide



If the key for your file is not in the format that CICS assumes, you can specify the correct format in the
<cics:selector> element in the Atom configuration file.

When a service routine returns the data for Atom entries, you can choose what the selector value is. The
selector value can be anything that your program can use to locate the correct record in your resource to
provide the data for the Atom entry. For example, if the resource is a database, you might use the unique
identifier that provides a key for the records. If the key is not a character string, you must specify in the
<cics:selector> element in the Atom configuration file that you are using a hexadecimal selector value.

When a service routine returns an Atom entry from a feed or collection, you must use the ATMP_NEXTSEL
parameter in the DFHATOMPARMS container to return a selector value for the next Atom entry that you
have available in the feed. If the web client has requested a number of entries, CICS links to your program
again using this selector value, so that your program can identify and return the next Atom entry that is
held as a record in your resource. This process continues until CICS has enough entries for the feed, or
until your program returns a null value to indicate that no further Atom entries are available from your
resource.

When a service routine returns an Atom entry from a collection, you must use the ATMP_PREVSEL,
ATMP_FIRSTSEL, and ATMP_LASTSEL parameters in the DFHATOMPARMS container to return selector
values for the previous, first, and last Atom entries in the collection. CICS uses these values to construct
<atom:link> elements containing links to other partial lists of entries in the collection. You may return
these values for an Atom entry from a feed, if you think they would be useful to your web clients in order
to retrieve other windows of Atom entries from the feed, but they are not required for a feed. The
processing to produce a link using ATMP_PREVSEL increases response times, so only specify this value
for a feed if your web clients are set up to use this form of navigation.

The identity of the first, previous, next, and last Atom entries in your feed or collection depends on the
order in which you choose to return the Atom entries. “Sequence for Atom entries” on page 47 explains
how CICS determines the order in which to return Atom entries, and suggests the order in which a service
routine can return Atom entries.

Sequence for Atom entries
CICS, or your service routine, must determine the order in which multiple Atom entries are arranged in an
Atom feed document.

RFC 5023, The Atom Publishing Protocol, which is available from https://tools.ietf.org/html/rfc5023,
states that entries in an Atom collection should be returned to a web client according to the order in
which they were edited, as shown by the <app:edited> element in the entry. The Atom entry that was
most recently edited should be returned first, so that it is the first Atom entry to appear in the Atom feed
document. The next most recently edited Atom entry should be returned next, and so on, with the entry
that was least recently edited being returned last. This function is a SHOULD requirement in RFC 5023 for
a full list of Atom entries, where the whole collection is returned in a single feed document, but a MUST
requirement for a partial list of Atom entries. RFC 5023 and RFC 4287 do not make any requirement for
the ordering of Atom entries in an Atom feed that is not defined as a collection, so for entries in an Atom
feed, servers can choose any order that is consistent and logical.

For reasons of performance, CICS does not automatically return Atom entries in a collection in the order
in which they were most recently edited. CICS deviates from this requirement in order to maintain
acceptable response times while still providing the useful function of partial lists. For both Atom feeds
and collections, when CICS is extracting data directly from a resource to produce Atom documents, CICS
returns Atom entries ordered by the time when they were written as records in the resource, as far as
CICS can determine. The Atom entry that was written most recently is returned first, the next most
recently written Atom entry is returned next, and so on. CICS determines the order of writing as follows:

« For temporary storage queues, the Atom entry that has the highest record number is returned first.

« For ESDS and extended ESDS files, the Atom entry that has the highest RBA (relative byte address) or
XRBA (extended relative byte address) is returned first.

« For RRDS and VRRDS files, the Atom entry that has the highest RRN (relative record number) is returned
first.

Chapter 1. CICS web support 47


https://tools.ietf.org/html/rfc5023

« For KSDS and AIX files, which do not have a concept of the order of writing, the Atom entries are
returned in order of their record key, and the Atom entry with the lowest record key is returned first.

If you use a service routine to supply the data for your Atom entries, you can choose the order in which
you return the Atom entries. If you want to return Atom entries in a collection according to when they
were edited, in compliance with RFC 5023, a service routine can do this for Atom entries that are stored in
afile. To return Atom entries in order of editing, take the following actions:

1. In your file, include a field in the records that contains a time stamp in ABSTIME format showing when
the entry was last edited. You can output this information in your Atom entries as the <app:edited>
element.

2. Define the field containing the time stamp as an alternate index for the file.

3. Inyour service routine, use the alternate index to locate the records containing the data for the Atom
entries, and return them with the most recently edited entry first, as indicated by the most recent
timestamp.

You can also use this method if you want to return Atom entries in a feed according to when they were
updated, rather than when they were first written. If you cannot store a suitable time stamp in the file that
holds the data for your Atom entries, or if you find that ordering the entries using that information
produces unacceptable response times, return the Atom entries in any order that is consistent and
logical, such as the order used when CICS extracts data directly from a resource.

The values that your service routine supplies for the ATMP_PREVSEL, ATMP_NEXTSEL, ATMP_FIRSTSEL,
and ATMP_LASTSEL parameters in the DFHATOMPARMS container depend on the order that you have
chosen for returning your Atom entries. If you are returning the Atom entries according to when they were
edited or updated, as indicated by a time stamp, then the values for the parameters are as follows:

« The previous Atom entry is the Atom entry that was edited after the present entry was edited.

« The next Atom entry is the Atom entry that was edited just before the present entry was edited.

The first Atom entry is the Atom entry that was edited the most recently.

The last Atom entry is the Atom entry that was edited the least recently.

If you are returning the Atom entries according to when they were first written, then the values for the
parameters are as follows:

« The previous Atom entry is the Atom entry that was written after the present entry was written.

« The next Atom entry is the Atom entry that was written just before the present entry was written.
« The first Atom entry is the Atom entry that was written the most recently.

« The last Atom entry is the Atom entry that was written the least recently.

Date and time stamps for Atom entries
The metadata for an Atom entry can include date and time stamps to show when the Atom entry was first
published, when it was last updated, and when it was last edited.

The Atom Syndication Format and Atom Publishing Protocol define these date and time stamps as
follows:

<atom:published>
The date and time when the Atom entry was first created or first made available. For example, if your
Atom feed uses records in a database to provide the data for the Atom entries, this date and time
would be the point when the record containing the data was added to the database.

<atom:updated>
The date and time when the Atom entry was last changed in a way that you consider to be significant.
For example, you might record this date and time stamp if the value of a field in the record in the
database was changed.

<app:edited>
The date and time when the Atom entry was last edited. This date and time stamp applies only to
Atom entries that are part of a collection, and in that case it is required (as a SHOULD requirement).

48 CICS TS for z/OS: Internet Guide



If you are setting up a new resource to contain data for Atom entries, you can include fields in the records
in the resource to hold the date and time stamps. A service routine can return this data by overwriting the
ATMP_PUBLISHED, ATMP_UPDATED, and ATMP_EDITED parameters in the DFHATOMPARMS container.
If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_PUBLISHED_FLD, ATMP_UPDATED_FLD, and ATMP_EDITED_FLD parameters have the name and
length of the relevant field in the records in your resource.

If the records in your resource do not contain any fields to hold metadata, CICS provides the current date
and time as a default timestamp for all of these elements. In this case, a service routine returns spaces
for the relevant parameters in the DHFATOMPARMS container. For the <atom:published> element, you
can specify an alternative default timestamp in the prototype Atom entry in your Atom configuration file.
You cannot specify alternative defaults for the <atom:updated> and <app:edited> elements in the
prototype Atom entry in your Atom configuration file.

The date and time stamps that you use for these elements must be in the RFC 3339 format, also known
as the XML dateTime datatype. RFC 3339, Date and Time on the Internet: Timestamps , is a format
specification for date and time stamps in UTC (Coordinated Universal Time), taken from the ISO 8601
standard. You can read this specification at https://www.ietf.org/rfc/rfc3339.txt.

Use the EXEC CICS ASKTIME command followed by the EXEC CICS FORMATTIME command to produce a
date and time stamp in the RFC 3339 format. Alternatively, if your service routine can use the
TRANSFORM DATATOXML command, you can convert a CICS ABSTIME value held in your resource record
into a date and time stamp in this format.

If you are populating a record in your resource with data for a new Atom entry supplied by a web client (a
POST request), or editing the fields in a record in your resource at the request of a web client (a PUT
request), the web client might provide date and time stamps in the <atom:updated>, <atom:published>,
or <app:edited> elements. In the case of the <atom:updated> and <app:edited> elements, it is advisable
to ignore these and generate a new date and time stamp to ensure accuracy and validity. For a PUT
request in particular, the date and time stamps might just be the date and time stamps from the existing
record in the resource, returned unchanged.

Atom IDs for Atom entries
Each Atom entry has a unique Atom ID that must remain the same for the lifetime of the Atom entry.

The Atom ID for an Atom entry is specified in the <atom:id> element. It must be in the form of a valid
Internationalized Resource Identifier (IRI), but it does not need to relate to a real resource location.

Tag URIs

CICS can generate a unique Atom ID for each Atom entry in the tag URI format when it serves the Atom
feed, using information that you specify in the <cics:authority> element in the Atom configuration file. The
tag URI scheme is described in RFC 4151, The ‘tag' URI Scheme.

To produce the tag URI for the Atom ID of an Atom entry, CICS uses the following items in order:

1. A scheme of "tag"

2. An authority name and date that you specify in the <cics:authority> element in the Atom configuration
file

3. A specific consisting of the resource type and resource name that you specify in the <cics:resource>
element in the Atom configuration file, and the selector value for the individual Atom entry

The authority name and date are separated by a comma, and the other elements are separated by a

colon. An example of a tag URI produced by CICS is as follows:

tag:example.com,2009-01-08:tsqueue:WB20TSQ:23

The authority name in the tag URI is a domain name or email address that is registered to you or to your
company, and the date is a date on which the authority name was owned by you or your company.
cics:authority element has details of the requirements for the authority name and date.

Chapter 1. CICS web support 49


https://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc4151.txt
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_atom_cicsauthority.html

For an Atom feed where CICS obtains data directly from a file or temporary storage queue, the resource
type and resource name are those of the file or temporary storage queue. For an Atom feed where a user-
written service routine provides the data, the resource type and resource name are those of the service
routine.

The tag URIs that CICS produces as Atom IDs have the following characteristics:

- The Atom ID remains the same for the lifetime of each Atom entry, as long as you do not change the
name of the file, temporary storage queue, or service routine, change the relevant information in the
Atom configuration file, or move the Atom entry to a different resource.

« The Atom ID remains the same if the same resource is served in the same way from a different CICS
region.

« The Atom ID changes if you rename the file, temporary storage queue, or service routine. To be
compliant with the Atom format, if you rename a resource, you must not continue to serve it as the
same Atom feed (with the same URL), because its Atom IDs are different.

« The Atom ID is unique within a CICS region, but it is not guaranteed to be unique across different CICS
regions. In the situation where you want to set up Atom feeds from resources that have the same name
and type but are in different CICS regions, you can specify a different authority name or a different date
in the <cics:authority> element of the Atom configuration file for each of the feeds. Tag URIs that have
different dates are not equivalent to each other, even if all the other information is the same.

« The Atom ID is unique for Atom entries provided by a user-written service routine that deals with a
single Atom feed, but it is not unique if the user-written service routine provides more than one feed. If
your user-written service routine provides multiple feeds, either choose an alternative format for your
Atom IDs, or use a different authority name or date in the <cics:authority> element of the Atom
configuration file for each of the feeds.

Alternative formats for Atom IDs

Instead of using the tag URI format that is generated by CICS, you may specify an alternative format for
your Atom IDs using the <atom:id> element for the prototype Atom entry in the Atom configuration file.
CICS appends the selector value to your alternative format, to produce a unique Atom ID for each Atom
entry.

If you use an alternative Atom ID format, make sure that the resulting Atom IDs are unique and meet the
requirements of the Atom format specification in RFC 4287.

To ensure correct formatting, CICS ignores any Atom IDs that are supplied by web clients, and instead
uses the format that you specify in the Atom configuration file for the feed.

Storing Atom IDs

Because CICS can produce the same Atom ID for an Atom entry each time it serves the Atom entry, it is
not essential to store the Atom ID with the Atom entry. This function enables you to provide Atom entry
data from a resource that does not contain fields to store metadata, provided that you keep the Atom IDs
the same and do not change the Atom ID in the configuration file, move the Atom entry to a different
resource, or, for tag URIs, change the name of the resource or service routine.

However, RFC 4287 recommends that an Atom ID should be stored with the Atom entry. If you are able to
store Atom IDs in the resource that holds the data for your Atom entries, you can follow this
recommendation. If you are storing your Atom entries in a file, this field can be the unique key for the
records. CICS, or your service routine, stores a complete Atom ID for the Atom entry in the field, and an
Atom ID stored with an Atom entry can differ from and override the Atom ID that CICS would generate for
that Atom entry.

For a service routine, CICS uses the ATMP_ATOMID parameter to send a prototype Atom ID for the Atom
entry, using the information that you specified in either the <cics:authority> element or the <atom:id>
element in the Atom configuration file. To produce a complete Atom ID, your service routine can either
complete the prototype Atom ID by appending the selector value, or ignore it and substitute its own valid
Atom ID. For example, you could generate a URI with the urn:uuid scheme using a hexadecimal
Universally Unique Identifier (UUID), as described in RFC 4122, A Universally Unique IDentifier (UUID)

50 CICS TS for z/OS: Internet Guide


https://www.ietf.org/rfc/rfc4122.txt

URN Namespace. The service routine can store the Atom ID in the resource record, using the field named
in the ATMP_ID_FLD parameter, and then return it using the ATMP_ATOMID parameter.

To ensure accuracy, CICS ignores Atom IDs that are supplied by web clients, and does not store these in
the records in a file or temporary storage queue, or pass them to a service routine.

RFC 4287 requires that the Atom ID remain with the Atom entry if the entry is reused or moved to another
location. If you store Atom IDs with your Atom entries, you can move the Atom entries to another location
and still comply with this requirement. If you do not store Atom IDs with your Atom entries, do not move
the Atom entry to another location.

Atom IDs for Atom feeds

An Atom feed also has a unique identifier. If you use the <cics:authority> element in the Atom
configuration file to make CICS generate tag URIs as Atom IDs, CICS generates an Atom ID for the Atom
feed in the same format as for the Atom entries, but without the selector value or unique identifier that is
appended for the Atom entries. For example:

tag:example.com,2009-01-08:tsqueue:WB20TSQ
If you prefer an alternative Atom ID format, you can use the <atom:id> element for the Atom feed to

specify a complete Atom ID for the Atom feed. Make sure that the Atom ID is unique and meets the
requirements of the Atom format specification in RFC 4287.

Chapter 1. CICS web support 51



52 CICS TS for z/OS: Internet Guide



Chapter 2. Configuring CICS web support
components

These components of CICS web support are needed for all CICS web support tasks. Configure them
before starting to work with CICS web support.

About this task
Components of CICS web support provides a full list of all the components.

If you want to use an analyzer program that you coded in an earlier CICS release to reference the code
page conversion table DFHCNV, you might need to set up some DFHCNV entries. Code page conversion
table entries are not required for new CICS web support development.

Set up these base components as described in the following list. Then work through the subtopics to
complete your setup and to verify the operation of CICS web support.

Procedure
1. Enable TCP/IP support for the CICS region, following the instructions in Enabling TCP/IP in a CICS
region.

This process includes setting up Communications Server and establishing access to a DNS, or domain
name, server through z/0S.

2. Enable CICS to access z/OS UNIX System Services by including an OMVS segment in the user profile of
the CICS region user ID, following the instructions in Giving CICS regions access to z/OS UNIX System
Services.

3. Set up SSL support, following the instructions in Configuring CICS to use SSL.
Support for security protocols also explains the facilities that SSL provides.

4. Optional: To configure the values CICS sets in the HTTP server and user-agent headers, set values for
the HTTPSERVERHDR and HTTPUSRAGENTHDR system initialization parameters.

Specifying system initialization parameters for CICS web support

Specify these system initialization parameters to enable CICS web support.

Procedure

1. Specify TCPIP=YES to activate CICS TCP/IP services.
The default setting is NO. YES must be specified to enable CICS web support.

2. Use the LOCALCCSID system initialization parameter to specify the coded character set identifier for
the local CICS region.

CICS considers this code page as the default for application programs. The default is the EBCDIC code
page 037. If you do not select alternative code page conversion options, CICS translates the data
content of incoming HTTP requests into this code page before passing it to an application program.
CICS assumes that the application has provided HTTP responses in this code page. For more
information, see LOCALCCSID system initialization parameter.

3. If you are planning to use CICS document template support, either to provide a static response to
HTTP requests, or as part of an application-generated response, specify the default host code page for
the document domain using the DOCCODEPAGE system initialization parameter. The default is the
EBCDIC code page 037.

For more information, see DOCCODEPAGE system initialization parameter.

© Copyright IBM Corp. 1974, 2019 53


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtlf1.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/tcpip/dfht560.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/tcpip/dfht5kt.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/sit/dfha2_localccsid.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/sit/dfha2_doccodepage.html

4. If you are planning to give web clients access to 3270 display applications, or if you are using the CICS
business logic interface, specify suitable timeout periods using the WEBDELAY system initialization
parameter.

« The length of time, in minutes, after which a web task and its associated data are marked for
deletion if no activity takes place on it. The default is 5 minutes.

- The frequency, in minutes, with which the garbage collection transaction CWBG is run to delete the
marked tasks and their data. The default is 60 minutes.

WEBDELAY does not apply to CICS web support tasks that do not involve 3270 display applications or
the CICS business logic interface. For more information, see WEBDELAY system initialization
parameter.

5. If you are want to use security with CICS web support, also set values for the following additional
system initialization parameters:

« CRLPROFILE
+ ENCRYPTION
« KEYRING

« MAXSSLTCBS
+ SSLCACHE

For information on how to configure SSL, including specifying these system initialization parameters,
see Configuring CICS to use SSL.

Reserving ports for CICS web support

Reserve as many z/OS Communications Server ports as you need for CICS web support. Ensure that CICS
web support has exclusive use of those ports where possible.

Procedure

« For HTTP, the well-known (or default) port number is 80, and, for HTTPS, the well-known port number
is 443.
Take care to resolve conflicts with any other servers at the same IP address that might use the well-
known ports.

- Application programmers can use port numbers from 1024 to 32 767 for nonstandard servers.

Ports that are less than 1024 are the well known port numbers, which are designed by IANA for
particular functions. So, except for the HTTP port 80 and the HTTPS port 443, do not use these ports
for CICS web support.

SSL and non-SSL requests must use separate ports.

- Toreserve a port on which CICS web support listens for incoming client requests, you can specify the
PORT statement or the CICS job name in the PROFILE.TCPIP data set, as described in z/OS
Communications Server: IP Configuration Reference.

« The maximum length of any queue of requests for a TCP/IP port on which a program is listening is
controlled by the SOMAXCONN parameter in the PROFILE.TCPIP data set. CICS listens on a TCP/IP
port, so you must coordinate the value of this parameter with the value chosen for the BACKLOG
parameter in the TCPIPSERVICE definition.

54 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/sit/dfha2_webdelay.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/sit/dfha2_webdelay.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/tcpip/dfht560.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.halz001/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.halz001/toc.htm

Upgrading entries in the code page conversion table (DFHCNV)

A code page conversion table is not now required for CICS web support. However, you might have existing
request processing structures that include an analyzer program that references entries in the conversion
table. If you do not want to change the analyzer program, you can continue to provide DFHCNV entries.

About this task

In releases of CICS before CICS Transaction Server for z/OS, Version 3 Release 1, the code page
conversion table (DFHCNV) was used to define code page conversions between the code pages used in
CICS and the ASCII code pages used by web clients. For CICS web support in CICS Transaction Server for
z/0S, Version 5 Release 4, you do not have to create any new entries in the code page conversion table.
CICS web support handles code page conversion using z/OS conversion services.

However, if you want to continue to use an analyzer program that you coded in an earlier CICS release to
reference DFHCNV, you must either continue to supply the entries in the code page conversion table, or
change the analyzer program. To change the analyzer program, you code two new output parameters to
specify the client and server code pages, in place of the output parameter that specified the name of a
DFHCNYV entry. If you make this change, you do not have to upgrade your DFHCNV entries. Writing an
analyzer program tells you how to code your output parameters in this way.

Note: As supplied, the CICS-supplied sample analyzer DFHWBADX specifies an entry defined in the
sample code page conversion table DFHCNVW$. The sample conversion table can be used without any
configuration, but you might prefer to modify DFHWBADX to use the new output parameters, to provide
greater control and avoid the use of the sample conversion table.

If you prefer, to continue using DFHCNV:

Procedure

1. Locate your source for the DFHCNV resource definition macros that you used to define the conversion
table in an earlier CICS release.
The sequence of macros includes a DFHCNV TYPE=ENTRY macro for each pair of code pages.

2. Use the macros to set up a DFHCNV conversion table, following the process described in Defining the
conversion table.

You define, assemble, and link-edit the table.

Verifying the operation of CICS web support

Sample programs DFH$WB1A (Assembler) and DFH$WBZ1C (C) help you to test that CICS web support is
working. The sample programs use EXEC CICS WEB and EXEC CICS DOCUMENT commands to receive
your request and construct and send a simple response.

About this task

You can access DFH$WB1A or DFH$WB1C using the supplied sample URIMAP resource DFH$URI1. The
URIMAP resource points to DFH$WB1A, so to access DFH$WB1C, modify the resource to point to DFH
$WB1C. You can also access DFH$WB1A or DFH$WB1C using the CICS-supplied sample analyzer
program DFHWBADX.

If you plan to use CICS as an HTTP client, the CICS-supplied sample programs for pipelining client
requests work with a CICS region that has DFH$WB1A and DFH$URI1 set up.

The sample programs construct HTTP responses in this way:
DFH$WB1A on system applid successfully invoked through CICS web support

where applid is the applid of the CICS system in which CICS web support is running.

Chapter 2. Configuring CICS web support components 55


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfhtlei.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfhtlei.html

To run the sample programs:

Procedure

1. Modify and install the sample TCPIPSERVICE definition HTTPNSSL, which is provided in group DFH
$SOT. The CICS-supplied sample analyzer program DFHWBADX is specified in the TCPIPSERVICE
definition. You might have to change the following options:

a) PORTNUMBER: HTTPNSSL uses port 80, the well-known port number for HTTP. If port 80 is not
reserved for the use of CICS, specify another port belonging to z/OS Communications Server that
you have reserved for the use of CICS.

b) HOST or IPADDRESS: HTTPNSSL does not specify an IP address, so this option defaults to the IP
address corresponding to the default z/OS Communications Server TCP/IP stack. This situation is
the most typical. If you have multiple TCP/IP stacks in your z/OS image, and you want to use a
nondefault stack, specify the IP address corresponding to that stack.

2. Optional: If you want to use the sample program DFH$WB1C:
a) Install the PROGRAM resource for DFH$WBAC, which is provided in the DFH$WEB resource
definition group.
The PROGRAM resource definition for DFH$WB1A is in the DFHWEB resource definition group,
which is already installed as part of DFHLIST.

b) If you want to use a URIMAP resource, modify the sample URIMAP definition DFH$URI1 to point to
DFH$WBIC and install the resource.
The sample resource is in the DFH$WEB group.
3. At a web browser, enter a URL that connects to CICS web support, using the following URL
components:

Scheme
HTTP

Host
The host name assigned to the z/OS image. If you do not know the host name, you can use the
dotted decimal IP address from the HTTPNSSL TCPIPSERVICE definition. If you do not specify the
IP address explicitly, it is filled in by CICS, and you can view it in the installed TCPIPSERVICE
definition.

Port number
The port number specified in the TCPIPSERVICE definition. If the number is 80, you do not have to
specify it explicitly.

Path

» To access DFH$WB1A, use the path /CICS/CWBA/DFH$WB1A

» To access DFH$WBIC, use the path /sample_web_app, if you have installed the sample
URIMAP definition, or the path /CICS/CWBA/DFH$WBIC, if you want to use the sample analyzer
program instead.

4. Optional: When you are satisfied that CICS web support is working, you can discard the sample
TCPIPSERVICE definition HTTPNSSL and disable the URIMAP definition DFH$URI1.

You can replace HTTPNSSL with your own TCPIPSERVICE definition later on.

CICS web support and non-HTTP requests

You can use CICS web support to process inbound TCP/IP client requests that are not in the HTTP format,
primarily to support requests from user-written clients that use nonstandard request formats. You define
the processing and the response. No specific support is provided for any formally defined protocols for
client-server communication.

CICS web support handles non-HTTP messages only when CICS is the server. CICS client requests made
through CICS web support use the HTTP protocol.

56 CICS TS for z/OS: Internet Guide



Note these points about CICS web support when handling non-HTTP requests:

» You can use TCPIPSERVICE resource definitions to control the ports on which requests are received.

« You can use an analyzer program to assemble and parse requests, specify code page conversion, and
determine subsequent request processing. You can code the analyzer program to parse requests in
accordance with any request format that you have defined, but note that CICS does not provide specific
support for any particular protocol for which a formal definition exists.

« You can use either web-aware application programs or non-web-aware applications with a converter
program to provide responses to requests. You can handle requests and responses using certain
elements of the EXEC CICS WEB programming interface or pass them between CICS applications in a
COMMAREA.

« The web error program DFHWBEP provides an error response if an abend occurs in the analyzer
program, converter program, or user-written application program, and also if the analyzer program and
converter program cannot determine which application program will service the request. The standard
HTTP error messages are used by default, but you can tailor them if required.

Some CICS web support facilities are not available for non-HTTP requests:

« Some of the facilities that help you interpret HTTP requests and construct the responses are not
available. For example, message headers cannot be accessed separately.

« The enhancements introduced in CICS TS Version 3, including chunked transfer-coding, are generally
not available to non-HTTP requests.

« Persistent connections are not supported.
« URIMAP definitions are not used for non-HTTP requests.

The support that CICS web support provides for non-HTTP messages is not the same as the TCP/IP
Sockets interface for CICS. The z/OS Communications Server IP CICS Sockets interface provides an
application programming interface to allow clients to communicate directly with CICS application
programs over TCP/IP. CICS web support is not part of this process.

The CICS Sockets interface is supplied with z/OS Communications Server, not with CICS. See z/0S
Communications Server: IP Sockets Application Programming Interface Guide and Reference.

Handling non-HTTP requests

To handle non-HTTP requests using CICS web support, you code an analyzer program to determine
processing for the requests and application programs to provide responses. You must also create some
resource definitions.

Before you begin

Configure the base components of CICS web support, as described in Chapter 2, “Configuring CICS web
support components,” on page 53.

About this task
These components of CICS web support are used for processing non-HTTP requests:

« TCPIPSERVICE resource definitions
« An analyzer program

Converter programs, if required

User-written application programs
« An alias transaction for the application programs
« The web error program DFHWBEP

Processing for HTTP requests and processing for non-HTTP requests are kept separate. Non-HTTP
requests are received using the USER protocol, specified on the TCPIPSERVICE definition. So CICS can
perform basic acceptance checks on HTTP requests and responses, and non-HTTP requests are not

Chapter 2. Configuring CICS web support components 57


https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.hala001/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.hala001/toc.htm

subjected to these checks. The acceptance checks would produce an error response for non-HTTP
requests and the request would not be processed.

To use CICS web support to handle non-HTTP requests:

Procedure

1. Decide on the port to be used.

Because only one active TCPIPSERVICE definition can exist for each port, non-HTTP requests cannot
use the same port as HTTP requests. The well-known port numbers 80 (for HTTP) and 443 (for HTTPS)
cannot accept non-HTTP requests. Web clients making non-HTTP requests must explicitly specify the
port number in the URL for their requests.

2. Set up resource definitions for the requests, using the information in “Resource definition for non-
HTTP requests” on page 58.

3. Code an analyzer program to handle each request, using the information in “Analyzer programs and
non-HTTP requests” on page 59.

4. Design and code one or more application programs to provide a response to each request, using the
information in “Application programming for non-HTTP requests” on page 59.

5. Ensure that the web error program DFHWBEP provides appropriate responses in error situations.

For non-HTTP requests, DFHWBEP is used if an abend occurs in the analyzer program, converter
program, or user-written application program, and also if the analyzer program and converter program
cannot determine which application program will service the request.

By default, DFHWBEP produces the standard HTTP messages that are sent as error responses for
HTTP requests in the same situations, but you can tailor them if required.

Refer to Web error programs.

Resource definition for non-HTTP requests
Non-HTTP requests require TCPIPSERVICE and TRANSACTION resource definitions. TCPIPSERVICE
resource definitions for non-HTTP requests must specify the USER (user-defined) protocol, which is
associated with the CICS-supplied transaction CWXU. URIMAP resource definitions are not used when
requests are received through the USER protocol.

About this task

Procedure

1. Create a TCPIPSERVICE resource definition, with the USER protocol, for each port that you use for
non-HTTP requests.

The attributes that can be used with the USER protocol are the same as the ones that can be used with
the HTTP protocol. Refer to “Creating TCPIPSERVICE resource definitions for CICS web support” on
page 109.

2. For each TCPIPSERVICE resource definition, decide whether to use the CICS-supplied transaction
CWXU, the CICS web user-defined protocol attach transaction, or an alternative.

The DFHCURDI sample includes a sample definition for CWXU. CWXU runs the CICS program
DFHWBXN. You can use an alternative transaction that runs DFHWBXN, except for the other default
transactions that are defined for protocols on the TCPIPSERVICE resource definition.

3. Optional: Create TRANSACTION resource definitions for any alias transactions that you want to use for
request processing. Refer to “Creating TRANSACTION resource definitions for CICS web support” on
page 112.

58 CICS TS for z/0S: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/administering/web/dfhtlh0.html

Analyzer programs and non-HTTP requests

An analyzer program is required for processing non-HTTP requests. It can reconstruct requests that have
been divided up for transmission across the network, specify code page conversion of the requests, and
perform any parsing that is required to determine subsequent request processing.

Reconstructing a non-HTTP request

An incoming request can be divided into several parts for transmission across the network. For non-HTTP
requests, CICS does not reconstruct the request before calling the analyzer program, so you must write
your analyzer code accordingly.

On entry to the analyzer, the user_data pointer addresses a COMMAREA, which contains the first part of
the incoming request. To receive the next part of the request, set the return code to URP_EXCEPTION and
the reason code to URP_RECEIVE_OUTSTANDING. CICS web support calls the analyzer again, and the
user_data pointer addresses the next part of the message. You can repeat this process until the entire
request has been received, up to the maximum supported length of 32,767 bytes.

The results of this process are not visible to the CICS WEB API commands. However, the reconstructed
message can be passed to a converter program.

Specifying code page conversion for non-HTTP requests

For non-HTTP requests, CICS web support does not perform any code page conversion on a request
before the analyzer program is called.

The analyzer can specify code page conversion of non-HTTP requests as it can for HTTP requests, using
either a code page conversion table (DFHCNV) key or the client and server code page output parameters.
Refer to Writing an analyzer program.

Alternatively, a web-aware application program can specify code page conversion of incoming non-HTTP
requests on a WEB RECEIVE command.

Non-HTTP requests are not parsed into the request line, header, and body elements. Any code page
conversion is for the whole request.

Determining non-HTTP request processing

The following input fields, which relate to HTTP requests, are undefined in an analyzer program for non-
HTTP requests:

« The HTTP version

« The method

« The path component of the request
« The request headers

The subsequent processing stages must therefore be determined by examining the content of the
request.

The analyzer program can specify subsequent request processing by a converter program or by a web-
aware application program. Writing an analyzer program explains the inputs and outputs from an analyzer
program, and how they are used to determine request processing.

Application programming for non-HTTP requests

Application programs for non-HTTP requests can use certain elements of the EXEC CICS WEB
programming interface. They can also be non-web-aware applications and produce output that is
encoded by a converter program.

A pseudoconversational programming model is not suitable for non-HTTP requests. Design your
applications to receive a single request and provide a single response.

Chapter 2. Configuring CICS web support components 59


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfhtlei.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfhtlei.html

Web-aware applications

To use a web-aware application to respond to non-HTTP requests, you can use the following CICS API
commands:

« The WEB RECEIVE command can receive a non-HTTP request. If the application is to respond to both
HTTP and non-HTTP requests, the TYPE option on the WEB RECEIVE command can distinguish between
the two request types. CICS does not carry out any parsing for a non-HTTP message. Requests that are
divided up for transmission across the network are not automatically assembled. If an analyzer program
assembles the request, the results are not visible to the CICS WEB API commands.

« The EXEC CICS DOCUMENT commands can compose a CICS document to form the body of a response.

- The WEB SEND command sends a response to a non-HTTP client. However, these options that relate to
HTTP-specific actions are not suitable:

— STATUSCODE and STATUSTEXT are ignored.
— CLOSESTATUS is ignored.
— CHUNKING causes an error on the command.

« The WEB RETRIEVE command retrieves a CICS document sent in an earlier EXEC CICS WEB SEND
command.

Other EXEC CICS WEB commands relate to HTTP requests only, and can result in an INVREQ condition if
used with non-HTTP requests.

An application program can specify code page conversion of non-HTTP requests using the WEB RECEIVE
command.

Non-web-aware applications with converter programs

With non-web-aware applications, you can use a converter program to convert the input from the web
client into a suitable COMMAREA for the application and to convert the output from the application into
HTML to provide the response. If an analyzer program has reconstructed the request after it was divided
up for transmission across the network, the results can be passed to a converter program.

The following input fields that relate to HTTP requests are undefined in a converter program for non-HTTP
requests:

« The HTTP version

« The method

« The path component of the URL
« The request headers

For more information, see Converter programs.

Setting up an Atom feed

You can create Atom feeds from a selection of CICS resources, such as files or temporary storage queues.
To set up Atom feeds, select the resource that supplies the Atom entry data and create the CICS
resources to make the Atom feed available. CICS supplies samples to help you get started.

How CICS supports Atom feeds

CICS supports Atom feeds using the HTTP server functions of CICS web support, and some additional
functions to carry out the actions required of a server that supports the Atom format and protocol. You
must select or set up a resource that provides the data for your Atom feed, and define the feed to CICS.

Before serving an Atom feed from CICS, you must configure the base components of CICS web support to
set CICS up as an HTTP server.

You can create Atom feeds from data held in or produced by existing resources, such as a temporary
storage queue, a file, records in a database application, a web service, or output produced by an existing

60 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl80.html

application program. A single record in the resource holds the data for a single Atom entry. Alternatively,
you can set up a new resource to contain Atom entries.

If your resource is a file or temporary storage queue defined to CICS, and you have a language structure
written in COBOL, C, C++, or PL/I that describes the records in the resource, CICS can extract data
directly from the resource to produce the Atom feed. You use the language structure as input to the CICS
XML assistant program to produce an XML binding that defines the structure of the resource, so that CICS
can map the data to the correct elements in the Atom document.

You can also serve any resource as an Atom feed by writing a program, known as a service routine, that
extracts data from each record in the resource to form an Atom entry, and supplies the data to CICS in a
set of containers. If you are able to produce an XML binding for your resource, the service routine can
make use of the information in the XML binding, but the service routine does not require an XML binding.

When you have identified or created the resource, and produced an XML binding or written a service
routine, you define the Atom feed to CICS by creating the following items:

« An ATOMSERVICE resource definition to specify where CICS obtains the data to produce Atom
documents in response to a web client request.

« A URIMAP resource definition to specify how CICS handles HTTP requests from web clients for the
Atom feed. The URIMAP resource references the ATOMSERVICE resource definition. To support your
URIMAP resource definition, you must have a TCPIPSERVICE definition that defines an inbound port for
CICS web support, on which CICS can receive HTTP requests.

« An Atom configuration file, which contains the XML syntax for the Atom feed document, together with
some elements specific to CICS, such as elements to identify the resource that contains the data for the
feed. CICS uses the information in the Atom configuration file to construct an Atom feed document
containing a number of Atom entries, which CICS produces using the data from your resource.

If you want to enable web clients to manage and edit the Atom entries in the feed, you can take further
steps to set up the Atom feed as a collection. To set up a collection, you create a new URIMAP definition
to make the collection available separately from the feed. You also create a new ATOMSERVICE definition
and Atom configuration file by copying the equivalent files for the Atom feed from the same data,
redefining them to state that they are for a collection, and making minor changes. You then create an
Atom service document and optionally an Atom category document to define your collection, and make
those documents available through CICS. If you are using a service routine, you must code it to handle
web client requests to add, edit, and delete Atom entries from the collection.

Interacting with Atom feeds

When you have set up an Atom feed, web clients can access it to obtain a list of Atom entries. CICS,
together with your service routine if used, acts as a server to receive the web clients' HTTP requests and
return Atom feed documents containing a number of Atom entries. Many free or commercially available
web client applications are able to request, receive and display Atom feeds, including most modern web
browsers, dedicated feed readers, and applications that provide further functions, such as applications
for creating mashups. Check that the application is described as supporting the Atom format. You can
also write your own web client application to make GET requests for Atom feed data.

If you have also set up your Atom feed as a collection, you or others can manage and edit the entries in
the feed through a web client that supports HTTP POST, PUT, and DELETE requests for Atom feeds, as
described in the Atom Publishing Protocol. If you do not have a web client with this capability, you can
use a web client application that lets you compose and send your own HTTP requests and view the
responses. You can also write your own web client applications to make POST, PUT, and DELETE requests
to Atom collections. If CICS is managing your resource directly, CICS applies the web clients' editing
requests to the data that you have made available in the collection, and returns an appropriate response.
If you are using a service routine to provide your data, CICS passes the web clients' requests to the
service routine using the container interface, and you code the service routine to modify the resource in
response to the requests.

Chapter 2. Configuring CICS web support components 61



Atom feeds from the CA8K SupportPac

If you used the CA8K SupportPac in CICS TS for z/0S, Version 3.1 or CICS TS for z/OS, Version 3.2 to set
up Atom feeds, and you want to upgrade to use the support for Atom feeds in CICS Transaction Server for
z/0S, Version 5 Release 4, you can continue to use your service routines. However, instead of PIPELINE
resource definitions, pipeline configuration files, and Resource Layout Mapping structures, you must use
ATOMSERVICE resource definitions, Atom configuration files, and XML bindings. You must also make
changes to your service routine code to rename the containers and to account for new parameters in one
of the containers, then recompile the modules.

Setting up a resource to supply Atom entry data
An Atom feed or collection consists of a series of Atom entries, which are items of data together with
suitable metadata. For an Atom feed served by CICS, the data for the Atom entries is taken from the
records in a resource, which could be a file, a temporary storage queue, or another resource such as a
database table. A single record provides a single Atom entry.

About this task

A record in your resource might hold items of metadata for the Atom entry as well as the content for the
Atom entry, or it might hold only the content for the Atom entry. When you set up your Atom feed, you can
make CICS supply any required items of metadata that are not held in your resource records.

You can use any of these resources to supply the data for the Atom entries in your Atom feed:

« A new VSAM file or temporary storage queue that you create to contain Atom entries.

« An existing VSAM file or temporary storage queue that is defined to CICS, from which CICS can extract
data directly to produce the Atom feed. CICS can extract data for Atom feeds from any type of VSAM
file, except for an alternate index file that has been defined with the NONUNIQUEKEY attribute. The file
must have a unique key for its records. CICS cannot extract data for Atom feeds directly from BDAM
files.

« Any other resource that you can access from a CICS application program. You can deliver a CICS or non-
CICS resource using a CICS application program known as a service routine, which extracts data for
Atom entries from the resource and supplies it to CICS in containers.

Procedure

Follow the appropriate procedure for the resource you want to supply Atom feed data:

- Tocreate a new VSAM file or temporary storage queue to contain Atom entries, follow the instructions
in “Creating a CICS resource to store Atom entries” on page 63.

« Create or reuse an XML binding for the data in the VSAM file or temporary storage queue (TSQ). If
there is an existing XMLTRANSFORM resource that contains an XML binding for the data, this can be
used with the Atom feed. If you do not have an existing XMLTRANSFORM resource:

a) Find, or write, a language structure that describes the structure of the records in the resource.

— You can use a high-level language structure, or copybook, in COBOL, C, C++, or PL/I. The
language structure must be in a partitioned data set. For a file or temporary storage queue that is
used by a CICS application program, a language structure should already exist. You can write a
language structure for the records if you do not already have one.

— Alternatively, you can use an XML schema or WSDL document that describes the structure of the
records in the resource.

b) Use your language structure to produce an XML binding for the resource, as described in
Generating mappings from language structures.

Alternatively, you can use the File Import Wizard in CICS Explorer® to import a source language file
into a CICS bundle project to create an XML binding and an associated schema for Atom feeds. This
bundle project can then be exported to your CICS region. For more information about the File
Import Wizard, see “Creating an XML binding for the Atom feed using CICS Explorer” on page 86.

62 CICS TS for z/OS: Internet Guide



« To deliver any other CICS or non-CICS resource, write a service routine to extract data for each Atom
entry from a record in the resource, and supply the data to CICS in a set of containers.
For instructions about writing a service routine, see “Writing a program to supply Atom entry data” on
page 66.

What to do next

When you have chosen the resource that holds your Atom entry data, and created an XML binding or a
service routine to support the delivery of this data, set up your Atom feed by following the instructions in
“Setting up CICS definitions for an Atom feed” on page 88. If you created and installed a BUNDLE
resource to create an XMLTRANSFORM resource, which defines the location of the XML binding file, it is
possible to reuse this XMLTRANSFORM resource in other Atom feeds.

Creating a CICS resource to store Atom entries
To store data as Atom entries, create a file or temporary storage queue in CICS, and write a language
structure in COBOL, C, C++, or PL/I to explain its structure.

About this task

In your new file or temporary storage queue, each record represents a single Atom entry. Each field in the
record contains the data for a single element in the Atom entry, which can be its content or an item of
metadata such as its title. When you set up your Atom feed, you specify the names of these fields to CICS
using the <cics:fieldnames> element in the Atom configuration file, and CICS will extract the data from
each record to assemble an Atom entry.

The complete listing and description of the possible elements in an Atom entry is in RFC 4287, The Atom
Syndication Format, which is available from https://www.ietf.org/rfc/rfc4287.txt. CICS does not support
all of these elements, and, of the elements that CICS does support, some are not supported in your file or
temporary storage queue, but can only be specified in the Atom configuration file. For a list and
description of the elements that CICS supports in files and temporary storage queues, see
<cics:fieldnames> Atom configuration file element. For a complete list of the elements that CICS does
and does not support in Atom feeds and Atom entries, see Atom element reference for CICS.

Procedure

1. Decide whether to use a temporary storage queue or a file as the resource to store the data for your
Atom entries.

« Atemporary storage queue is suitable if you are experimenting with Atom feeds in CICS, because
you do not have to define a temporary storage queue to CICS before you use it, although you will
have to set up a CICS resource definition if you want to apply security measures. It is also suitable
for an Atom feed where the Atom entries are not of long-term interest; for example, if you are issuing
alerts for events in an application.

« Afile takes longer to set up than a temporary storage queue, because you must define a file to CICS
before you can use it, and it normally requires a physical data set. However, a file provides suitable
long-term storage for any Atom feed, including a feed that you might want to set up as an editable
collection. A file that holds Atom entries must have a unique key for the records, and you cannot use
an alternate index file that has been defined with the NONUNIQUEKEY attribute. You can use any
type of VSAM file to hold Atom entries, but note that ESDS (entry-sequenced data set) files are not a
good choice for a feed that you might want to set up as an editable collection, for the reasons
mentioned in “ESDS files with Atom feeds” on page 66. You cannot use a BDAM file.

2. Plan the content of the records in your file or temporary storage queue.

The content of the Atom entry is the only item that CICS requires in your records, because you can

specify all the metadata in the Atom configuration file. However, when you are setting up a dedicated

file or temporary storage queue to contain Atom entries, you can include fields for metadata in the
records, which you can use to provide metadata specific to each Atom entry.

The following list summarizes the items of data that you can include as fields in your records and
whether they are required or optional:

Chapter 2. Configuring CICS web support components 63


https://www.ietf.org/rfc/rfc4287.txt
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_atom_cicsfieldnames.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_atom_elementref.html

Atom ID

A unique identifier for the Atom entry. For more information about the format of Atom IDs, see
Atom IDs for Atom entries.

Atom entries must have a unique Atom ID. CICS can generate a unique Atom ID for each entry
when it serves the Atom feed, using information that you specify in the Atom configuration file. An
Atom ID created by CICS remains the same for the lifetime of the Atom entry as long as you do not
change the name of the file or temporary storage queue, change the relevant information in the
Atom configuration file, or move the Atom entry to a different resource. You therefore do not have
to include a field in your records to store the Atom ID.

However, to comply fully with the Atom format, an Atom ID must remain with the entry if the entry
is reused or moved to another location. If you think that you might use your Atom entries anywhere
other than in this file or temporary storage queue, or if you just prefer to follow the
recommendation in RFC 4287 that an Atom ID should be stored with the entry, include a field in
your records to hold the Atom ID. If you are storing your Atom entries in a file, this field can be the
unique key for the records.

Author's details
The personal name, email address, and website of the principal author of the Atom entry, in three
separate fields. You must supply an author name either for the Atom feed or for all the Atom
entries, but the other fields are optional. If your Atom entries have different authors, include a field
in your records for the name, and fields for other details if you want. If the name and other details
of the author are the same for all your Atom entries, specify the name and details in the Atom
configuration file instead.

Category
A category term that classifies the entry. This field is optional. If you plan to set up this Atom feed
as an editable collection, and to use categories to describe your collection, include this field. If you
do not plan to set up this feed as a collection, you can still include the field if it might be helpful to
consumers of your feed.

Content
The entire content to be published in the Atom entry. CICS requires content for every Atom entry.
Your content can be plain text, or HTML, XHTML, XML, or another text media type. CICS does not
support nontext content, or Atom entries with no content. If you are including any fields for
metadata, you must have a field, or a substructure of nested fields in the record, that holds the
content. If you are not including any fields for metadata, CICS publishes the whole of the record
from the file or temporary storage queue as the content of the entry.

Content type
The media type for the content of the Atom entry, such as text or XML. This field is optional. If all
your Atom entries have the same type of content, you can specify the media type in the Atom
configuration file instead.

Date last edited
The time stamp that indicates when the record was last edited. You can use time stamps in the
XML dateTime format, as described in RFC 3339, or a CICS ABSTIME value. For more information
about date and time stamps, see Date and time stamps for Atom entries. If you plan to set up this
Atom feed as an editable collection, including this field enables you to return the Atom entries
according to when they were last edited, which is recommended by the Atom Publishing Protocol
for a collection. If you do not plan to set up this feed as a collection, do not include this field.

Date first published
The time stamp or ABSTIME value that indicates when the record was first created or published as
an Atom entry. This field is optional. If you think that it might be helpful to consumers of your feed,
include the field.

Title
The title for the Atom entry. CICS only supports plain text for titles. A title is required for each

Atom entry, so you normally need to include this field. If all your Atom entries have the same title,
you can specify this title in the Atom configuration file instead.

64 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_atomids.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_timestamps.html

Summary
A summary of the Atom entry. CICS only supports plain text for summaries. This field is optional
unless the content of the entry is a nontext media type, in which case a summary is required. CICS
does not provide any support for nontext content in Atom entries.

Date last updated
The time stamp or ABSTIME value that indicates when the record was last updated. An updated
time stamp is required for each Atom entry, so you normally need to include this field. If you
cannot include this time stamp or ABSTIME value in your file or temporary storage queue, you can
omit the field and CICS can supply the current date and time when it issues the entry in an Atom
feed document, or a suitable alternative default that you specify in the Atom configuration file.

. Write a language structure, or copybook, in COBOL, C, C++, or PL/I for your file or temporary storage
queue. A language structure describes the fields in a record in your file or temporary storage queue,
stating the name, content type, and length of each field in the order in which they appear.

If you plan to create records in your file or temporary storage queue using an application in COBOL, C,
C++, or PL/I, the application uses this language structure to write to the file or temporary storage
queue.

You also need this language structure to produce an XML binding for the file or temporary storage
queue, so it is required even if your application is in a different language, or if you are not using an
application, for example, if you are experimenting with Atom feeds in CICS and your record structure is
simple enough that you can use the CECI transaction to write to the file or temporary storage queue.

Note: Make sure that fields that are used to provide metadata for Atom entries are not nested in your
language structure. The metadata fields in your record must all be listed in your language structure at
the same level. You may use structures of nested fields within the field that provides the content for
the Atom entry.

Store your language structure in a partitioned data set that has a fixed record length of 80 bytes.

This example COBOL language structure declares alphanumeric fields of appropriate lengths to
contain the data for each element:

kkkkkkkkkkkkkkkkkhkkhkhkkkhkkkhkhkhkhkhkhkhkkhkkkkhkkhkhkhkhkhkhkhkhkhkkkkkkkkkkkkkkkkkkk

* Name: SAMPBIND.cob *
* *
* *
* This is a COBOL copy book to describe the data record. *
* You can generate a binding file from this. *
* *
*hkkkkkkhkkhkkhkkkhkkhkhkhkhkkhkkhkkhkhhkhkkhhkhkhkhkhkhkkhhhkhkkhhkhkkhhkhkhkkhhhkkhhkhkhkkhhhkkhkkhkhkhkkhhkkkhkkhkhkkhkhkx

03 TITLE-FIELD PIC X(50).

03 SUMMARY-FIELD PIC X(500).

03 ATOMID-FIELD PIC X(20).

03 CONTENT-FIELD PIC X(500).

03 AUTHOR-NAME-FIELD PIC X(30).

03 AUTHOR-EMAIL-FIELD PIC X(256).

03 AUTHOR-URI-FIELD PIC X(256).

03 EDITED-FIELD PIC X(25).

03 UPDATED-FIELD PIC X(25).

03 PUBLISHED-FIELD PIC X(25).

03 CATEGORY-FIELD PIC X(20).

. Use your language structure as input to the CICS XML assistant to create an XML binding, following the
steps in Generate mappings from language structures.

. If you have decided to use a file to store your Atom entries:

a) Set up a suitable VSAM data set, following the procedures in VSAM data sets.

b) Define the file to CICS by creating and installing a FILE resource definition, using the information in
FILE resource definitions.

. If you have decided to use a temporary storage queue to store your Atom entries, and you want to
specify security and recovery settings for it, define a temporary storage model (TSMODEL) using the
information in TSMODEL resource definitions.

Chapter 2. Configuring CICS web support components 65


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/file/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/tsmodel/dfha4_summary.html

What to do next

If you already have an application that can work with the records in your file or temporary storage queue,
test your setup by using your application, or another suitable method, to write at least one record to your
file or temporary storage queue, using the WRITEQ TS command for a temporary storage queue, or the
WRITE command for a file.

ESDS files with Atom feeds

You may use ESDS (entry-sequenced data set) files to hold Atom entry data for an Atom feed, but there
are some restrictions on deleting the Atom entries, which apply if you set up your feed as an editable
collection.

Web clients can delete Atom entries in a collection by making HTTP requests with the DELETE method.
With an ESDS file, HTTP requests with the DELETE method are only supported if the ESDS has no
alternate index defined.

In response to a DELETE request, CICS deletes the relevant record from the ESDS by rewriting it with 'FF'x
as the first byte, to represent a logical deletion. If web clients make subsequent HTTP requests with the
GET method to retrieve the Atom entry that was in the deleted record, CICS returns a "not found"
response to the GET requests.

When you define an ESDS file as an Atom collection, you must use one of the following methods to ensure
that other application programs that use the ESDS file handle the deleted records correctly:

« In the FILE resource definition for the ESDS, set DELETE to NO.
« Alternatively, code the applications to process a record beginning with 'FF'x as being logically deleted.

To avoid these restrictions, if you are setting up a new resource to store Atom entry data for a collection,
choose a VSAM file type other than ESDS.

If the ESDS file is only used for an Atom feed that is not defined as a collection, so web clients cannot
make requests with the DELETE method, these restrictions do not apply. However, if you are setting up a
new resource to store Atom entry data for an Atom feed, avoid using an ESDS file in case you decide to set
up the Atom feed as a collection later on.

Writing a program to supply Atom entry data

You can write a service routine to provide an Atom feed from any data that can be accessed by a CICS
program, such as records from a DB2 database, records in a file, or a COMMAREA. These instructions tell
you how to write a program that responds to HTTP GET requests for an Atom feed.

About this task

Web clients might request a number of Atom entries from a feed, or request a specific entry. CICS
receives the requests from web clients, and links to the program with information about each client
request. CICS links to the program once for each Atom entry that the client requests, and the program
returns a single entry each time.

The program supplies the Atom entry using data that it has extracted from a record in the resource, such
as a database or file, that holds the data for the Atom entries for this feed. For an overview of this process,
see Data processing for Atom feeds from CICS.

CICS uses a container interface to communicate with the service routine. Use the EXEC CICS GET
CONTAINER and EXEC CICS PUT CONTAINER commands to interact with the containers. The C language
sample service routine DFH$W2S1 shows you how to use the containers to respond to HTTP GET
requests. The COBOL sample service routine DFHOW2F1 also shows you how to use the containers, but
be aware that the DFHOW2F1 sample is more complex because it responds to HTTP PUT, POST, and
DELETE requests as well as GET requests.

Because the web client request is an HTTP request, you can also interact with it using the CICS web API
commands, such as the WEB READ HTTPHEADER and WEB READ QUERYPARM commands. If you know
how to use these commands, you may use them in the service routine to obtain information directly from
the web client request, including any information that CICS does not provide in the DFHATOMPARMS
container.

66 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_dataproc.html

If you can create an XML binding for the resource that contains the data for your Atom entries, you can
pass information from CICS to the program in the DFHATOMPARMS container about the name and length
of fields in the resource records that contain data for the Atom entries. Your program can use this
information to locate the metadata fields in the resource records. By using these resource handling
parameters, you can create a generic service routine that can handle multiple resources. However, you do
not have to use the resource handling parameters; if you prefer, you can code information about the
resource structure directly in the program.

To respond to a GET request, your service routine must perform these tasks:

Procedure

1. Use the EXEC CICS GET CONTAINER command to retrieve the data in the DFHATOMPARMS
container.

CICS uses this container to provide the service routine with information about the request.
The sample service routine DFH$W2S1 shows you how to read the parameters in DFHATOMPARMS.

DFHATOMPARMS container has the full documentation for the parameters that CICS passes in this
container.

2. Check the value of the ATMP_HTTPMETH parameter to verify that the request method is GET.

CICS returns an error or makes an appropriate response for methods other than GET, POST, PUT, and
DELETE. For instructions on responding to HTTP PUT, POST, or DELETE requests to an Atom
collection, see Handling Atom collection editing requests in your service routine.

3. Use the values of the ATMP_ATOMTYPE and ATMP_SELECTOR parameters from the DFHATOMPARMS
container to identify the record in the resource that contains the data for the Atom entry that the
program must return to CICS.

The ATMP_SELECTOR parameter might contain a selector value that identifies a particular Atom
entry. Selector value for Atom entries explains what the selector value can be, and how CICS and the
service routine use it.

a) If ATMP_SELECTOR is null and ATMP_ATOMTYPE has the value "feed", the client did not specify a
particular Atom entry, so locate the record in the resource that holds the most recent Atom entry
that was added to the feed.

For example, if the data for your Atom entries is held in a database, use the newest record that
was added to the database.

b) If ATMP_SELECTOR contains a selector value and ATMP_ATOMTYPE has the value "feed", locate
the record in the resource that is identified by the selector value.

This combination of values might indicate that CICS needs a second or subsequent Atom entry
from the feed to complete a client request, and CICS is requesting one of these Atom entries using
a selector value that the service routine supplied in a previous iteration. This combination of
values is also used for the first Atom entry in a request when the client has requested a feed
document containing a specific range of Atom entries, such as a partial list.

c) If ATMP_SELECTOR contains a selector value and ATMP_ATOMTYPE has the value "entry", locate
the record in the resource that is identified by the selector value.

This combination of values indicates that the client is requesting a single, known Atom entry from
the feed.

4. If you have an XML binding for the resource that contains the data for your Atom entries, and you
want to use the resource handling parameters to pass information about the fields in the resource,
code the service routine to use the values of the ATMP_TITLE_FLD parameter and the other
parameters ending in _FLD to identify the name and length of each field that contains data for an
element of an Atom entry.

When you set up an Atom configuration file for the Atom feed that uses data from the resource, you
will need to specify the names of these fields in the <cics:fieldnames> element of the Atom
configuration file, and CICS will pass them to the service routine using the resource handling
parameters.

DFHATOMPARMS container documents the resource handling parameters.

Chapter 2. Configuring CICS web support components 67


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/web/dfhtl_atom_atomparameters.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/administering/web/dfhtl_atom_coll_servroutine.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_selectorvalue.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/web/dfhtl_atom_atomparameters.html

5. Use the PUT CONTAINER command to create a container named DFHATOMCONTENT, with
DATATYPE(CHAR), that contains the content for the Atom entry, as stated in the record that you have
identified from the resource.

This container is required. The sample service routine DFH$W2S1 shows you how to update the
container, and DFHATOMCONTENT container explains what to put in the container.

6. If the record that you have identified from the resource includes any fields that supply metadata for
the Atom entry, such as a title, use optional containers to return this metadata to CICS, following the
steps in Returning Atom entry metadata in containers.

7. If the record that you have identified from the resource includes any fields that supply date and time

stamps for the point when the data was created or updated, return them as new values for the
ATMP_PUBLISHED and ATMP_UPDATED parameters in the DFHATOMPARMS container.

The sample service routine DFH$W2S1 shows you how to return new values for these parameters.
For information about the format of these date and time stamps, see Date and time stamps for Atom
entries.

8. If the ATMP_SELECTOR parameter in the DFHATOMPARMS container was null on input to the service
routine, meaning that the web client did not request a specific Atom entry, replace the null value with
a suitable selector value for the present entry that you are returning.

The sample service routine DFH$W2S1 shows you how to return a selector value if the
ATMP_SELECTOR parameter is null.

Selector value for Atom entries explains how to choose a selector value.

If the ATMP_SELECTOR parameter contained a selector value on input to the service routine, do not
change it.

9. If the ATMP_ATOMTYPE parameter in the DFHATOMPARMS container had the value "feed", indicating
that the client wants multiple entries, check whether the resource contains any more, older, data that
can be used to provide further Atom entries.

a) If older data is present, locate the next data item that provides an Atom entry and return a
suitable selector value for this data item to be used in the ATMP_NEXTSEL parameter.

Sequence for Atom entries explains the order in which you should return the Atom entries.

b) If no more data is available, set the current length of the data in the ATMP_NEXTSEL parameter to
zero to return a null value.

10. Read the ATMP_ATOMID parameter in the DFHATOMPARMS container to see the prototype Atom ID
for the entry. The prototype Atom ID must be completed by appending the selector value for the
Atom entry, as specified in the ATMP_SELECTOR parameter. If you prefer, your service routine can
ignore the prototype Atom ID and substitute its own valid Atom ID for the Atom entry.

For more information about the requirements for Atom IDs, see Atom IDs for Atom entries.

a) If you have stored a complete Atom ID in the resource record for this Atom entry, return this Atom
ID followed by its length in the ATMP_ATOMID parameter.

If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_ID_FLD parameter has the name and length of the relevant field in the resource.

b) If the resource does not store Atom IDs, set the current length of the data for the ATMP_ATOMID
parameter to zero.

CICS appends the selector value to produce the complete Atom ID.

11. Return a suitable response code to be used in the ATMP_RESPONSE parameter in the
DFHATOMPARMS container.

The sample service routine DFH$W2S1 shows you how to do this.
The code is initialized to zero, indicating successful completion.

If an error response is returned, CICS produces a suitable default HTTP error response to send to the
web client. ATMP_RESPONSE parameter in DFHATOMPARMS container lists the available response
codes and the HTTP error response that CICS sends in each case.

The sample service routine DFH$W2S1 returns control to CICS after setting the response code.

68 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/web/dfhtl_atom_atomcontent.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/web/dfhtl_atom_metadatacontainers.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_timestamps.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_timestamps.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_selectorvalue.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_returnorder.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_atomids.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/web/dfhtl_atom_atomparam_response.html

What to do next

When you have written your service routine, create and install a suitable PROGRAM resource definition in
CICS to describe the service routine. In your PROGRAM resource definition, use the EXECKEY(USER)
attribute. The PROGRAM resource must be defined locally. You will need to name this PROGRAM resource
in the ATOMSERVICE resource definition for your Atom feed.

When you have set up CICS definitions that use your service routine to provide data for an Atom feed, you
can use the CEDX transaction to monitor and debug your service routine as it responds to HTTP requests.
CW2A is the default alias transaction for Atom feeds, and your service routine runs under this transaction
unless you set up an alternative alias transaction. CEDX monitors the next instance of the transaction that
you specify, so if other users are working with Atom feeds in this CICS region using the same alias
transaction, set up an alternative alias transaction to use while you are debugging your service routine.

DFHATOMPARMS container
DFHATOMPARMS is a container of DATATYPE(BIT) that contains parameters that CICS uses to
communicate with a service routine that provides data for an Atom feed.

The DFHW2AP series of copybooks map the parameters passed in the DFHATOMPARMS container to the
service routine. The following copybooks are defined:

« DFHW2APD for Assembler
« DFHW2APH for C

« DFHW2APL for PL/1

« DFHW2APO for COBOL

The DFHW2CN series of copybooks contain constant values that are referenced by the DFHW2AP series
of copybooks. The following copybooks are defined:

« DFHW2CND for Assembler
« DFHW2CNO for COBOL

« DFHW2CNH for C

« DFHW2CNL for PL/I

Input-only parameters in DFHATOMPARMS container
CICS uses these parameters to supply information to the service routine about the web client's request.
These parameters include the resource handling parameters such as ATMP_TITLE_FLD.

Each of the input-only parameters in the DFHATOMPARMS container is the address of a double word
containing a pointer to an area and the current length of the data in the area. Your service routine must
not change these pointers, lengths, or storage.

The parameters ending in FLD are used for handling resources. CICS uses these resource handling
parameters to supply information about the fields in resource records to a CICS-supplied service routine
that is handling a CICS resource such as a temporary storage queue. CICS obtains the names of the fields
from the attributes that you specify for the <atom:content> element and the <cics:fieldnames> element
in the Atom configuration file, and from the XML binding for the resource. You can use these parameters if
you want to write a service routine that obtains its information about resource structures from the Atom
configuration file, rather than having this information coded directly in the service routine. If you use
these parameters, you must create an XML binding for the resource that contains the data.

ATMP_RESNAME
The name of the CICS resource that supplies the data for the Atom feed. For your service routine, this
is always the name of the service routine. CICS requires this parameter for the CICS-supplied service
routines that handle various resources directly. CICS obtains this information from the cics:resource
attribute of the <atom:content> element.

ATMP_RESTYPE
The type of the CICS resource in uppercase. The resource type can be PROGRAM, TSQUEUE, or FILE.
For your service routine, the resource type is always PROGRAM. CICS requires this parameter for the

Chapter 2. Configuring CICS web support components 69



CICS-supplied service routines that handle various resources directly. CICS obtains this information
from the cics:type attribute of the <atom:content> element.

ATMP_ATOMTYPE
The type of Atom document being processed, in lowercase. The value of the type string is "feed",
“collection", or "entry". "feed" indicates that the client has requested a number of entries from an
Atom feed. "collection" indicates that the client has requested a listing of entries in a collection.
"entry" indicates that the client has requested a single, specified Atom entry, in either a feed or a

collection.

ATMP_HTTPMETH
The HTTP method for the client request, padded. The HTTP method is one of GET, POST, PUT, or
DELETE.

ATMP_TAG_AUTHORITY
The authority name specified in the name attribute of the <cics:authority> element in the Atom
configuration file. The authority name is a fully qualified domain name or email address that can be
used to construct tag URIs. The authority name forms part of the prototype Atom ID if you have
selected this format.

ATMP_TAG_DATE
The date specified in the date attribute of the <cics:authority> element in the Atom configuration file.
The date is used with the authority name to construct tag URIs. The date forms part of the prototype
Atom ID if you have selected this format.

ATMP_XMLTRANSFORM
The name of an XMLTRANSFORM resource. The XMLTRANSFORM resource is created when you
produce the XML binding for a CICS resource and install an ATOMSERVICE resource definition that
specifies it. The XMLTRANSFORM resource describes the layout of the records in the resource as an
XML structure. If the length of this name is zero, no XML binding was created for the resource, and the
service routine must perform its own mapping between the resource records and the elements of the
Atom entries.

ATMP_ROOT_ELEMENT
The name of the root element of the XML structure that is mapped by the XMLTRANSFORM resource.

ATMP_MTYPEIN
The media type of the body of the web client's HTTP request. A request body is present only when the
HTTP method, as specified by the ATMP_HTTPMETH parameter, is POST or PUT. The media type is
always "application/atom+xml", which indicates an Atom entry. CICS passes the request body to the
service routine in the DFHREQUEST container. GET and DELETE requests have no request body, so for
these HTTP methods the pointer and length are both zero.

ATMP_MTYPEOUT
The media type for the expected content of the Atom entry, as specified in the type attribute of the
<atom:content> element in the Atom configuration file for the Atom feed. As in RFC 4287, the media
type "text" is used for plain text instead of the IANA media type "text/plain", "html" is used instead of
"text/html", and "xhtml" is used instead of "application/xhtml+xml". If the Atom configuration file
does not contain this information, CICS passes the default media type "application/xml" to the service
routine. The service routine can use the media type to determine suitable markup for the data that it
returns in the DFHATOMCONTENT container. If you are using the resource handling parameters and
you have a field in your resource records to store a media type for individual Atom entries, the
ATMP_CONTENT_TYPE_FLD parameter contains the name of this field.

ATMP_WINSIZE
The feed window size. The value is a numeric string that contains either the default number of entries
to be returned in each feed or an alternative number of entries that the web client has requested. This
parameter is for information only, because CICS makes a series of requests to the service routine for
individual entries.

ATMP_ID_FLD
The name of a field in your resource records that contains the Atom ID of the Atom entry. CICS
obtains the name of the field from the atomid attribute of the <cics:fieldnames> element in the Atom
configuration file for the Atom feed. If CICS passes this information to the service routine, the service

70 CICS TS for z/OS: Internet Guide



routine can use this named field to store or locate the Atom ID for the entry, and return it in the
ATMP_ATOMID parameter. This data is used in the <atom:id> element for the entry.

ATMP_PUBLISHED_FLD
The name of a field in your resource records that contains the time when the resource was last
published. CICS obtains the name of the field from the published attribute of the <cics:fieldnames>
element in the Atom configuration file for the Atom feed. If CICS passes this information to the service
routine, the service routine can use this named field to locate the value of the timestamp or ABSTIME
value that can be used to construct the value returned in the ATMP_PUBLISHED parameter. This data
is used in the <atom:published> element for the entry.

ATMP_UPDATED_FLD
The name of a field in your resource records that contains the time when the resource was last
updated. CICS obtains the name of the field from the updated attribute of the <cics:fieldnames>
element in the Atom configuration file for the Atom feed. If CICS passes this information to the service
routine, the service routine can use this named field to locate the value of the timestamp or ABSTIME
value that can be used to construct the value returned in the ATMP_UPDATED parameter. This data is
used in the <atom:updated> element for the entry.

ATMP_EDITED_FLD
The name of a field in your resource records that contains the time when the resource was last edited.
CICS obtains the name of the field from the edited attribute of the <cics:fieldnames> element. If CICS
passes this information to the service routine, the service routine can use this named field to locate
the value of the timestamp or ABSTIME value that can be used to construct the value returned in the
ATMP_EDITED parameter. This data is used in the <app:edited> element for the entry.

ATMP_TITLE_FLD
The name of a field in your resource records that contains the title of the requested Atom entry. CICS
obtains the name of the field from the title attribute of the <cics:fieldnames> element. If CICS passes
this information to the service routine, the service routine can use this named field to locate the title
for the entry and return it in the DFHATOMTITLE container. The data from the DFHATOMTITLE
container is used in the <atom:title> element for the entry.

ATMP_SUMMARY_FLD
The name of a field in your resource records that contains the summary of the requested Atom entry.
CICS obtains the name of the field from the summary attribute of the <cics:fieldnames> element. If
CICS passes this information to the service routine, the service routine can use this named field to
locate the summary for the entry and return it in the DFHATOMSUMMARY container. The data from
the DFHATOMSUMMARY container is used in the <atom:summary> element for the entry.

ATMP_CONTENT_FLD
The name of a field in your resource records that contains the whole content of the requested Atom
entry. CICS obtains the name of the field from the content attribute of the <cics:fieldnames> element.
If CICS passes this information to the service routine, the service routine can use this named field to
locate the content for the entry and return it in the DFHATOMCONTENT container. The data from the
DFHATOMCONTENT container is used in the <atom:content> element for the entry.

ATMP_CONTENT_TYPE_FLD
The name of a field in your resource records that contains the media type for the content of the Atom
entry, such as application/xml or text. As for the ATMP_MTYPEOUT parameter, the media types "text",
"html", and "xhtml" are used in place of the full IANA media types. The media type is specified in the
type attribute of the <atom:content> element for an Atom entry. CICS obtains the name of the field
from the content_type attribute of the <cics:fieldnames> element. If CICS passes this information to
the service routine, the service routine can use this named field to locate the media type for the
content and determine suitable markup for the content in the DFHATOMCONTENT container. If the
resource records do not have a field to store the media type for the content of the Atom entry, the
media type specified in the type attribute of the <atom:content> element in the Atom configuration
file applies. CICS passes this media type to the service routine in the ATMP_MTYPEOUT parameter.

ATMP_CATEGORY_FLD
The name of a field in your resource records that contains a category term that applies to the
requested Atom entry. CICS obtains the name of the field from the category attribute of the
<cics:fieldnames> element. If CICS passes this information to the service routine, the service routine

Chapter 2. Configuring CICS web support components 71



can use this named field to locate the category and return it in the DFHATOMCATEGORY container.
The data from the DFHATOMCATEGORY container is used in the <atom:category> element for the
entry.

ATMP_AUTHOR_FLD
The name of a field in your resource records that contains the name of the principal author of the
Atom entry. CICS obtains the name of the field from the author attribute of the <cics:fieldnames>
element. If CICS passes this information to the service routine, the service routine can use this named
field to locate the author's name and return it in the DFHATOMAUTHOR container. The data from the
DFHATOMAUTHOR container is used in the <atom:name> element for the entry.

ATMP_AUTHORURI_FLD
The name of a field in your resource records that contains the URI of a website associated with the
principal author of the Atom entry. CICS obtains the name of the field from the authoruri attribute of
the <cics:fieldnames> element. If CICS passes this information to the service routine, the service
routine can use this named field to locate the URI and return it in the DFHATOMAUTHORURI
container. The data from the DFHATOMAUTHORURI container is used in the <atom:uri> element for
the entry.

ATMP_EMAIL_FLD
The name of a field in your resource records that contains the email address of the principal author of
the Atom entry. CICS obtains the name of the field from the email attribute of the <cics:fieldnames>
element. If CICS passes this information to the service routine, the service routine can use this named
field to locate the email address and return it in the DFHATOMEMAIL container. The data from the
DFHATOMEMAIL container is used in the <atom:email> element for the entry.

Input-output parameters in DFHATOMPARMS container
The service routine uses these parameters to supply information to CICS about the Atom entry that is
being returned.

Each of the input-output parameters in the DFHATOMPARMS container is the address of a triple word
containing a pointer to an area, the current length of the data in the area, and the maximum length of the
area.

To supply information to CICS using a parameter, the service routine can do either of the following:

- Copy some data into the area indicated by the pointer, and set the current length of the area to the
length of the data. The storage for the values of the input-output parameters in the DFHATOMPARMS
container is in user key, so you can access it when the service routine is defined with EXECKEY(USER).

- Set the pointer to some data in the service routine's own storage, which must last beyond the lifetime of
the program (such as TWA storage), and set the current length of the area to the length of the data. You
might need to do this if you have a value that is longer than the maximum length of the area provided.

If the service routine has no information relating to a particular parameter and CICS must use the default
that it provides for the parameter, the service routine must indicate this to CICS by setting the current
length of the data to zero.

ATMP_ATOMID
The Atom ID for the entry. An Atom ID is a unique identifier for the Atom entry. For more information
about the format of Atom IDs, see Atom IDs for Atom entries.

On input, CICS uses this area to send the prototype Atom ID for the entry to the service routine. You
determine the format of the prototype Atom ID by including either the <cics:authority> element or the
<atom:id> element in the Atom configuration file, depending on whether you want to use the tag URI
format or an alternative format to produce a unique identifier. CICS ignores Atom IDs that are
supplied by web clients, and does not pass these to the service routine.

The Atom format specification in RFC 4287 recommends that you store an Atom ID in the resource
record for the Atom entry. For a POST request, if your resource can store Atom IDs, your service
routine must complete the prototype Atom ID by appending the selector value for the Atom entry, as
specified in the ATMP_SELECTOR parameter, and then store the complete Atom ID in the appropriate
field in the resource record, as specified in the ATMP_ID_FLD parameter. If you prefer, your service
routine can ignore the prototype Atom ID and substitute its own valid Atom ID for the Atom entry. The

72 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_atomids.html

service routine can use the values of the ATMP_TAG_AUTHORITY and ATMP_TAG_DATE parameters as
input to construct an Atom ID.

Note that if you are using the tag URI format, the resulting Atom ID is unique for Atom entries
provided by a user-written service routine that deals with a single Atom feed, but it is not unique if the
user-written service routine provides more than one feed. If your user-written service routine
provides multiple feeds, either choose an alternative format for your Atom IDs, or use a different
authority name or date in the <cics:authority> element of the Atom configuration file for each of the
feeds.

On output, the service routine must use the ATMP_ATOMID parameter as follows:

« If you have stored a complete Atom ID in the resource record for the Atom entry, the service routine
must return the complete Atom ID from the field in the resource record, as specified in the
ATMP_ID_FLD parameter, followed by the length of the Atom ID.

- If your resource does not store Atom IDs, the service routine must set the current length of the data
for the ATMP_ATOMID parameter to zero. In this case, CICS appends the selector value to the
prototype Atom ID to produce a complete Atom ID.

ATMP_ETAGVAL
An entity tag (or Etag) value for the selected resource record. To produce an entity tag, a service
routine can use the EXEC CICS BIF DIGEST command to calculate the SHA-1 digest of the record, or
use another suitable method to produce an entity tag that complies with the HTTP/1.1 protocol
requirements.

On input, CICS uses the ATMP_ETAGVAL parameter to provide any entity tag for the Atom entry to the
service routine. When a web client makes a PUT or DELETE request to edit an Atom entry, CICS
requires the client to supply an If-Match HTTP header on the request containing an entity tag. If CICS
provides an entity tag using this parameter, the service routine must calculate the entity tag for the
existing record and compare it to the web client's entity tag. If the tags do not match, indicating that
the entry has been changed by another agent, the service routine must reject the request with the
response code atmp_resp_etag_no_match. A web client might supply an asterisk in place of an
entity tag to indicate that the entry should be edited or deleted even if it has been changed by another
agent, and the service routine should comply with this request.

On output, the service routine must use the ATMP_ETAGVAL parameter as follows:

- Entity tags are not used for entries in an Atom feed. If the current Atom entry is part of an Atom
feed, the service routine must set the current length of the data to zero.

« CICS requires entity tags for entries in a collection. If the current Atom entry is part of a collection,
the service routine must calculate and return the entity tag. Do not store entity tags in resource
records; calculate them when they are needed.

ATMP_PUBLISHED
The service routine can use this parameter to return the date and time at which the returned Atom
entry was first published. "Published" means the point when the data was first created or first made
available. If your resource does not store this data, the service routine must indicate this by setting
the current length of the data to zero, and in this case CICS provides the default of the current time. If
the service routine returns a date and time stamp, it must be in the RFC 3339 format, also known as
the XML dateTime datatype. You can use the EXEC CICS FORMATTIME command to provide a date
and time stamp in this format, or if your service routine can use the TRANSFORM DATATOXML
command, you can convert a CICS ABSTIME value into a date and time stamp in this format.

ATMP_UPDATED
The service routine can use this parameter to return the date and time at which the returned Atom
entry was last updated. "Updated" means a point when the data was changed in a way that you
consider to be significant. If your resource does not store this data, the service routine must indicate
this by setting the current length of the data to zero, and in this case CICS provides the default of the
current time. If the service routine returns a date and time stamp, it must be in the RFC 3339 format.

Chapter 2. Configuring CICS web support components 73



ATMP_EDITED
The service routine can use this parameter to return the date and time at which the returned Atom
entry was last edited. If your resource does not store this data, the service routine must indicate this
by setting the current length of the data to zero, and in this case CICS provides the default of the
current time. If the service routine returns a date and time stamp, it must be in the RFC 3339 format.

ATMP_SELECTOR
A selector value for the Atom entry that the service routine must provide. Selector value for Atom
entries explains what a selector value is.

« When a client is making a general request for a feed, on input, CICS sends a null value for the
ATMP_SELECTOR parameter, and the input parameter ATMP_ATOMTYPE has the value "feed". On
receiving this combination of values, the service routine must take the following actions:

— Return the data for the most recent Atom entry that was added to the feed.

— Use the ATMP_SELECTOR parameter to return a selector value identifying that entry. If your
resource does not hold Atom IDs for entries, CICS uses this selector value in the generated Atom
ID for the entry.

— Use the ATMP_NEXTSEL parameter to return a selector value for the next entry in the feed.

« When CICS needs a second or subsequent Atom entry from a feed to complete a client request, or a
client has requested a feed document containing a specific range of Atom entries, on input, CICS
uses the ATMP_SELECTOR parameter to send a selector value for one of the Atom entries in the
feed document, and the input parameter ATMP_ATOMTYPE has the value "feed". On receiving this
combination of values, the service routine must take the following actions:

— Return the data for the Atom entry that is represented by the selector value.
— Do not change the data or length that CICS supplied for the ATMP_SELECTOR parameter.
— Use the ATMP_NEXTSEL parameter to return a selector value for the next entry in the feed.

« When a client is requesting a specific entry from a feed, CICS uses the ATMP_SELECTOR parameter
to send the selector value extracted from the URL for the entry, and the input parameter
ATMP_ATOMTYPE has the value "entry". On receiving this combination of values, the service routine
must take the following actions:

— Return the data for the Atom entry that is represented by the selector value.
— Do not change the data or length that CICS supplied for the ATMP_SELECTOR parameter.

— For the ATMP_NEXTSEL parameter, return a null value by setting the current length of the data to
zero.

Note: For a collection, CICS uses the value "collection" for the ATMP_ATOMTYPE parameter in the
situations where the value "feed" would be used for an Atom feed. The value "entry" is the same for
an entry from a collection or an entry from an Atom feed.

ATMP_NEXTSEL
The service routine must use this parameter to return a selector value for the next Atom entry that is
available, if any. Sequence for Atom entries explains the order in which you should return your Atom
entries.

This value must be supplied whether the service routine is handling a feed or a collection. It is not
required when the client requests a single specific entry (with the value "entry" for ATMP_ATOMTYPE),
or when no more data is available to provide Atom entries. When the value is not required, the service
routine must return a null value for this parameter by setting the current length of the data to zero.

CICS uses the value supplied by the service routine to request further Atom entries from the service
routine to complete the Atom document. If the Atom document is complete, CICS uses this value to
produce the <atom:link rel="next"> link in the Atom document, which web clients can use to retrieve
the next window of Atom entries from the feed or the next partial list of Atom entries from the
collection.

74 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_selectorvalue.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_selectorvalue.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_returnorder.html

ATMP_PREVSEL
A service routine that is handling a collection must use this parameter to return a selector value for
the previous Atom entry in the collection, if any. Sequence for Atom entries explains the order in
which you should return your Atom entries.

This value must be supplied when the ATMP_ATOMTYPE parameter has the value "collection". It is not
required when the client requests a single specific entry (with the value "entry" for ATMP_ATOMTYPE),
or when there is no previous Atom entry. When the value is not required, the service routine must
return a null value for this parameter by setting the current length of the data to zero.

When the Atom document is complete, CICS uses this value to carry out a chain of requests to the
service routine to produce the <atom:link rel="previous"> link in the Atom document, which web
clients can use to retrieve the previous partial list of Atom entries from the collection.

This value is not required from a service routine that is handling an ordinary Atom feed. You may
specify it if the <atom:link rel="previous"> link would be useful to your web clients in order to retrieve
the previous window of Atom entries from the feed. However, the processing to produce this link
increases response times, so only specify this value for a feed if your web clients are set up to use this
form of navigation.

ATMP_FIRSTSEL
A service routine that is handling a collection must use this parameter to return a selector value for
the first Atom entry in the collection. Selector value for Atom entries explains the order in which you
should return your Atom entries.

This value must be supplied when the ATMP_ATOMTYPE parameter has the value "collection". On
subsequent calls relating to the same web client request, CICS uses the ATMP_FIRSTSEL parameter
to supply this selector value to the service routine, so the service routine does not need to provide it
again.

The value is not required when the client requests a single specific entry (with the value "entry" for
ATMP_ATOMTYPE). When the value is not required, the service routine must return a null value for this
parameter by setting the current length of the data to zero.

When the Atom document is complete, CICS uses this value to produce the <atom:link rel="first">
link in the Atom document, which web clients can use to retrieve the first (newest) partial list of Atom
entries from the collection.

This value is not required from a service routine that is handling an ordinary Atom feed. You may
specify it if the <atom:link rel="first"> link would be useful to your web clients in order to retrieve the
first (newest) window of Atom entries from the feed. CICS does not carry out any additional
processing to produce this link.

ATMP_LASTSEL
A service routine that is handling a collection must use this parameter to return a selector value for
the last Atom entry in the collection. Sequence for Atom entries explains the order in which you
should return your Atom entries.

This value must be supplied when the ATMP_ATOMTYPE parameter has the value "collection". On
subsequent calls relating to the same web client request, CICS uses the ATMP_LASTSEL parameter to
supply this selector value to the service routine, so the service routine does not need to provide it
again.

The value is not required when the client requests a single specific entry (with the value "entry" for
ATMP_ATOMTYPE). When the value is not required, the service routine must return a null value for this
parameter by setting the current length of the data to zero.

When the Atom document is complete, CICS uses this value to produce the <atom:link rel="last"> link
in the Atom document, which web clients can use to retrieve the last (oldest) partial list of Atom
entries from the collection. CICS issues this last partial list containing only a single entry, that is, the
last entry in the feed. web clients can use the <atom:link rel="previous"> links to retrieve all the
previous partial lists.

Chapter 2. Configuring CICS web support components 75


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_returnorder.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_selectorvalue.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_atom_returnorder.html

This value is not required from a service routine that is handling an ordinary Atom feed. You may
specify it if the <atom:link rel="last"> link would be useful to your web clients in order to retrieve the
last (oldest) Atom entry from the feed. CICS does not carry out any additional processing to produce
this link.

ATMP_OPTIONS parameter in DFHATOMPARMS container

The ATMP_OPTIONS parameter is the address of a double word containing 64 option bits that you use to
indicate that your service routine is supplying optional containers with data such as a title for the Atom
entry. The options string is mapped by the ATMP_OPTIONS_BITS DSECT.

The options bitmap to which ATMP_OPTIONS points is mapped in two ways: ATMP_OPTIONS_BITS and
ATMP_OPTIONS_WORDS. ATMP_OPTIONS_BITS is a series of byte and bit definitions for use in languages
that understand bit values. ATMP_OPTIONS_WORDS is a pair of fullword values, for use in COBOL, where
bit values cannot be easily coded.

ATMP_OPTIONS_BITS

In ATMP_OPTIONS_BITS, the bit values that have meaning are in byte ATMP_OUTOPT_BYTEZ, and they
are as follows:

OPTTITLE
The service routine is using the DFHATOMTITLE container to return a character string to be used as
the title for the entry.

OPTSUMMA
The service routine is using the DFHATOMSUMMARY container to return a character string to be used
as the summary for the entry.

OPTAUTHOR
The service routine is using the DFHATOMAUTHOR container to return a character string to be used as
the name of the author of the entry.

OPTAUTHEML
The service routine is using the DFHATOMEMAIL container to return a character string to be used as
the e-mail address for the author of the entry.

OPTAUTHURI
The service routine is using the DFHATOMAUTHORURI container to return a character string to be
used as the URI of a website associated with the author of the entry.

OPTCATEG
The service routine is using the DFHATOMCATEGORY container to return a character string to be used
as a category term for the entry.

ATMP_OPTIONS_WORDS
ATMP_OPTIONS_WORDS contains these two fullword values:
ATMP_OPTIONS_IN

A fullword of input option values, which is not used.

ATMP_OPTIONS_OUT
A fullword in which to store output option values. The fullword values equivalent to the bit values in
ATMP_OUTOPT_BYTEL are specified in copybook DFHOW2CO. These values can be added together,
as required, to produce a suitable bitmap value.

Copybook DFHOW2CO contains binary integers representing the value of the bits in
ATMP_OUTOPT_BYTE1, for use in ATMP_OPTIONS_OUT, as follows:

OPTTITLE_NUM
Equivalent to OPTTITLE

OPTSUMMA_NUM
Equivalent to OPTSUMMA

76 CICS TS for z/OS: Internet Guide



OPTAUTHOR_NUM
Equivalent to OPTAUTHOR

OPTAUTHEML_NUM
Equivalent to OPTAUTHEML

OPTCATEG_NUM
Equivalent to OPTCATEG

OPTAUTHURI_NUM
Equivalent to OPTAUTHURI

ATMP_RESPONSE parameter in DFHATOMPARMS container

The ATMP_RESPONSE parameter is the address of a double word that you use to return a response code
to CICS indicating success or error. If the service routine sends a response code indicating an error, CICS
produces a suitable default HTTP error response to send to the web client. The service routine can use
the DFHHTTPSTATUS container to return an alternative status code and text to override the default error
response.

Do not change the address of the double word. The first fullword, ATMP_RESPONSE_CODE, contains the
response code. It is initialized to zero, indicating successful completion. The second fullword,
ATMP_REASON_CODE, is also initialized to zero, and the service routine must not change this fullword; it is
reserved for future use.

The symbol values for ATMP_RESPONSE_CODE are defined in the DFHW2CN series of copybooks. The
values are as follows:

atmp_resp_normal constant(0®); ! Normal success response
atmp_resp_not_found constant(4); ! Resource not found
atmp_resp_not_auth constant(8); ! Resource not authorized
atmp_resp_disabled constant(12); ! Resource is disabled
atmp_resp_already_exists constant(16); ! Resource already exists
atmp_resp_etag_no_match constant(20); ! If-Match compare failed
atmp_resp_invalid_request constant(24); ! Request not valid
atmp_resp_access_error constant(32); ! Other resource error
|

atmp_resp_conversion_failed constant(36); XML Conversion error

If the parameter is returned unchanged, CICS sends an HTTP response indicating successful completion
of the request. If the service routine sends a response code indicating an error, CICS produces a suitable
default HTTP error response to send to the web client. The default HTTP error responses are as follows:

Table 4. Default HTTP error responses from service routines for Atom feeds

ATMP_RESPONSE_CODE value HTTP status code HTTP status text
atmp_resp_normal 200 (201 for POST requests) OK (For POST requests,
Created)
atmp_resp_not_found 404 Not found
atmp_resp_not_auth 403 Forbidden
atmp_resp_disabled 503 Service unavailable
atmp_resp_already_exists 409 Duplicate resource
atmp_resp_etag_no_match 412 Precondition failed
atmp_resp_invalid_request 400 Invalid request
atmp_resp_access_error 500 Resource error
atmp_resp_conversion_failed |500 Resource error

When the service routine returns an error, it can use the DFHHTTPSTATUS container to return an
alternative status code and text to replace the default HTTP error response. For a listing of status codes
that you might want to use in your error responses, see HTTP status code reference for CICS web support.
You cannot override the default HTTP response for a successful request (with a zero response code).

Chapter 2. Configuring CICS web support components 77


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_statusref.html

DFHATOMCONTENT container
DFHATOMCONTENT is a container of DATATYPE(CHAR) that you use for your service routine to provide
the content for an Atom entry.

This container is required. CICS returns the data in the container as the <atom:content> element for the
Atom entry.

If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_CONTENT_FLD parameter has the name and length of the field in your resource record that holds
the data for this container. You can use data from a single field or from a structure of nested fields. If you
are not using the resource handling parameters, you can code your service routine either to return the
whole of the resource record as the content for the entry, or to select appropriate fields from the resource
record to assemble the content.

You can supply your content as plain text with no child elements, or you can use XML or another type of
markup, such as HTML or XHTML, to format your data. The ATMP_MTYPEOUT parameter in the
DFHATOMPARMS container contains the media type for the expected content of the Atom entry, as
specified in the type attribute of the <atom:content> element in the Atom configuration file for the Atom
feed. As in RFC 4287, the media type "text" is used for plain text instead of the IANA media type "text/
plain”, "html" is used instead of "text/html", and "xhtml" is used instead of "application/xhtml+xml". If
you do not specify a media type in the Atom configuration file, CICS supplies a default media type of
"application/xml" in this parameter.

You can also store media types for individual Atom entries in your resource records. If you are using the
resource handling parameters, the ATMP_CONTENT_TYPE_FLD parameter has the name and length of the
field containing the media type for the content of the Atom entry.

<content> tags for Atom entry content

If your content is not in the expected media type that CICS supplied to the service routine in the
ATMP_MTYPEOUT parameter in the DFHATOMPARMS container, you must include the tag <content> in the
container at the beginning of your content, and the closing tag </content> at the end. If your content is
anything other than plain text, you must also add a type attribute to the <content> tag to specify the
media type for your content. Some possible type attributes are as follows:

- <content type="html"> specifies HTML.
« <content type="xhtml"> specifies XHTML.

« <content type="text/xml"> is the media type that is normally used for a human-readable XML
document.

You may specify <content type="text"> when you supply plain text, but the recipients of Atom documents
assume this media type if you do not specify any type attribute. If your content is in any other format,
specify the IANA media type that you would normally use for that format on the Internet. A listing of
media types is available at http://www.iana.org/assignments/media-types/. Note that CICS does not
provide support for nontext media types.

For content that is in the expected media type that CICS supplied to the service routine in the
ATMP_MTYPEOUT parameter in the DFHATOMPARMS container, you can omit the <content> and </
content> tags. In this case, CICS supplies the opening and closing tags and specifies the type attribute as
the media type in the ATMP_MTYPEOUT parameter.

Markup for Atom entry content

If you use a format other than plain text for your content, read the processing information in Section
4.1.3.3 of RFC 4287, The Atom Syndication Format, which is available from https:/www.ietf.org/rfc/
rfc4287.txt. These rules explain how you must arrange your markup and how the recipients of Atom
documents (who are known as "Atom Processors") interpret and present the content depending on the
type of markup used. In particular, note that HTML markup must be escaped, for example, the tag "<br>"
must be written as "&lt;br>". CICS does not validate the markup that you use.

78 CICS TS for z/OS: Internet Guide


http://www.iana.org/assignments/media-types/media-types.xhtml
https://www.ietf.org/rfc/rfc4287.txt
https://www.ietf.org/rfc/rfc4287.txt

If you want to produce XML content from the fields in your resource record, and your resource has an XML
binding with an associated XMLTRANSFORM resource, you can use the CICS functions for transforming
application data into XML. If you have a language structure, or copybook, that describes the structure of
the data in your resource in any one of the high-level languages supported by the DFHLS2SC procedure,
that is, COBOL, C, C++, or PL/I, you can create an XML binding. Generate mappings from language
structures explains how to do this. CICS dynamically creates the XMLTRANSFORM resource when you
install an ATOMSERVICE resource definition that names the XML binding.

If an XMLTRANSFORM resource is available, CICS provides its name in the ATMP_XMLTRANSFORM
parameter in the DFHATOMPARMS container. For more information about the TRANSFORM DATATOXML
command and instructions for using the data mapping functions, see Mapping and transforming
application data and XML.

Returning Atom entry metadata in containers

If the resource that contains the data for your Atom entries has fields in its records that supply metadata
for the individual Atom entries, such as a title or a summary, use the optional metadata containers, such
as DFHATOMTITLE, for your service routine to provide this data to CICS.

About this task

The DFHATOMCONTENT container, which holds the content for the Atom entry, is the only container that
the service routine is required to return to CICS. A number of other optional containers are available to
return any metadata that your service routine can extract from the records in the resource that contains
the data for the Atom entries. The records in your resource might not contain any fields to hold metadata,
for example, if you are creating an Atom feed from an existing file that was not originally set up for use as
an Atom feed. If you do not have any metadata in your records, you do not have to return these
containers, but in some cases you will need to supply default metadata when you set up the Atom
configuration file for the Atom feed.

The sample service routine DFH$W2S1 shows you how to create the optional containers using the PUT
CONTAINER command, and how to populate them with data that you extracted from a record in your
resource.

Procedure

1. If the records in your resource contain individual titles for Atom entries, use the PUT CONTAINER
command to create a container named DFHATOMTITLE, with DATATYPE(CHAR), that contains the title
of this Atom entry.

This container is optional, but if you do not provide this data from your service routine, you must
specify a default title in the Atom configuration file. “DFHATOMTITLE container” on page 80 explains
what to put in the container.

2. If the entries in your resource have individual summaries, use the PUT CONTAINER command to
create a container named DFHATOMSUMMARY, with DATATYPE(CHAR), that contains the summary for
the Atom entry.

This container is optional, but the Atom specification requires a summary if the content of an entry is
not text or XML. “DFHATOMSUMMARY container” on page 80 explains what to put in the container.

3. If you want to use your service routine to provide the name of the author of the entry, use the PUT
CONTAINER command to create a container named DFHATOMAUTHOR, with DATATYPE(CHAR), that
contains the author's name.

This container is optional, but if you do not provide this data from your service routine, you must
specify a default name in the Atom configuration file or accept the CICS default. “DFHATOMAUTHOR
container” on page 81 explains what to put in the container.

4. If you want to use your service routine to provide an e-mail address and URI (website address) for the
author of the entry, use the PUT CONTAINER command to create containers named DFHATOMEMAIL
and DFHATOMAUTHORURI, with DATATYPE(CHAR), that contain these items of data.

Chapter 2. Configuring CICS web support components 79


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/web-services/generatemapping_fromls.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/web-services/generatemapping_fromls.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/web-services/datamappings.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/web-services/datamappings.html

These containers are optional, and you can provide either, both, or neither of them. “DFHATOMEMAIL
container” on page 81 and “DFHATOMURI container” on page 81 explain what to put in these
containers.

5. If you want to use your service routine to provide a category for the entry, use the PUT CONTAINER
command to create a container named DFHATOMCATEGORY, with DATATYPE(CHAR), that contains a
category term for the entry.

This container is optional.“DFHATOMCATEGORY container” on page 82 explains what to put in the
container.

6. In the DFHATOMPARMS container, set the appropriate option bit from the ATMP_OPTIONS_OUT
parameter for each optional container that you are returning to CICS.

“DFHATOMPARMS container ” on page 69 documents this parameter. The sample service routine DFH
$W2S1 shows you how to set these option bits.

DFHATOMTITLE container
DFHATOMTITLE is a container of DATATYPE(CHAR) that you may use for your service routine to provide a
title for an Atom entry.

This container is optional. CICS returns the data in the container as the <atom:title> element for the Atom
entry.

If your resource records do not hold individual titles for Atom entries, you can use the Atom configuration
file to specify the same title for every entry in your feed. Atom entries must have a title, so CICS requires a
default title in the Atom configuration file. If there is no suitable default title, you can use a blank default
title, but in this situation you must use the DFHATOMTITLE container to provide a title for every entry, in
order to be compliant with the Atom format specification.

If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_TITLE_FLD parameter has the name and length of the field in your resource record that holds the
data for this container.

Do not put tags around the data in the container, and do not use any markup to format it. CICS only
supports plain text for titles.

When you provide this container to CICS, set the OPTTITLE bit value in the ATMP_OPTIONS parameter in
the DFHATOMPARMS container.

DFHATOMSUMMARY container
DFHATOMSUMMARY is a container of DATATYPE(CHAR) that you may use for your service routine to
provide a summary for an Atom entry.

This container is optional. CICS returns the data in the container as the <atom:summary> element for the
Atom entry.

If your resource records do not hold individual summaries for Atom entries, you can use the Atom
configuration file to specify the same summary for every entry in your feed. The Atom specifications
require a summary if the content of an entry is not text or XML, so if you expect to provide content that
does not fit these categories, you must either provide the DFHATOMSUMMARY container or use the Atom
configuration file to provide this data. CICS does not check that you have provided a summary for a
nontext and non-XML entry, so it is your responsibility to comply with the specification in this respect.

If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_SUMMARY_FLD parameter has the name and length of the field in your resource record that holds
the data for this container.

Do not put tags around the data in the container, and do not use any markup to format it.

When you provide this container to CICS, set the OPTSUMMA bit value in the ATMP_OPTIONS parameterin
the DFHATOMPARMS container.

80 CICS TS for z/0S: Internet Guide



DFHATOMAUTHOR container
DFHATOMAUTHOR is a container of DATATYPE(CHAR) that you may use for your service routine to
provide the name of the author of an Atom entry.

This container is optional. CICS returns the data in the container as the <atom:name> child element of the
<atom:author> element for the Atom entry.

The Atom specification requires an author name for each Atom entry. If the records in your resource have
a field in which individual authors are named, provide this data; otherwise your service routine can
provide the name of the same author for every entry in your feed. As an alternative, you can use the Atom
configuration file for the feed to provide the name of a single author for every entry in your feed. If you do
not provide an author's name by any means, CICS will send the response to the web client, but with a
default author name of "CICS Transaction Server".

If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_AUTHOR_FLD parameter has the name and length of the field in your resource record that holds the
data for this container.

Do not put tags around the data in the container, and do not use any markup to format it.

When you provide this container to CICS, set the OPTAUTHOR bit value in the ATMP_OPTIONS parameter
in the DFHATOMPARMS container.

DFHATOMEMAIL container
DFHATOMEMALIL is a container of DATATYPE(CHAR) that you may use for your service routine to provide
an e-mail address for the author of an Atom entry.

This container is optional. CICS returns the data in the container as the <atom:email> child element of the
<atom:author> element for the Atom entry.

The Atom specification does not require this data, so you can omit it if you do not have it or if you do not
want to distribute it. If the records in your resource include e-mail addresses for individual authors, you
can provide this data. If you are providing the name of a single author for every entry in your feed, either
through the service routine or in the Atom configuration file for the feed, you can do the same for the
email address.

If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_EMAIL_FLD parameter has the name and length of the field in your resource record that holds the
data for this container.

Do not put tags around the data in the container, and do not use any markup to format it.

When you provide this container to CICS, set the OPTEMAIL bit value in the ATMP_OPTIONS parameter in
the DFHATOMPARMS container.

DFHATOMURI container
DFHATOMURI is a container of DATATYPE(CHAR) that you may use for your service routine to provide a
URI (website address) that is relevant to the author of an Atom entry.

This container is optional. CICS returns the data in the container as the <atom:uri> child element of the
<atom:author> element for the Atom entry.

As for the author's e-mail address, the Atom specification does not require this data, so you can omit it if
you do not have it or if you do not want to distribute it. If the records in your resource include websites for
individual authors, you can provide this data. If all the authors are from your company, you could supply
the URI of the home page for your company. If you are providing the name of a single author for every
entry in your feed, either through the service routine or in the Atom configuration file for the feed, you can
do the same for the URL.

If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_AUTHORURI_FLD parameter has the name and length of the field in your resource record that
holds the data for this container.

Do not put tags around the data in the container, and do not use any markup to format it.

Chapter 2. Configuring CICS web support components 81



When you provide this container to CICS, set the OPTAUTHURI bit value in the ATMP_OPTIONS
parameter in the DFHATOMPARMS container.

DFHATOMCATEGORY container
DFHATOMCATEGORY is a container of DATATYPE(CHAR) that you may use for your service routine to
provide a category for an Atom entry.

This container is optional. CICS returns the data in the container as the term attribute of an
<atom:category> element for the Atom entry. CICS does not support the optional scheme and label
attributes for the <atom:category> element.

If your resource records do not include categories for Atom entries, you can use the Atom configuration
file to specify the same category for every entry in your feed, if you know a reason why this would be
helpful. The Atom specifications do not require categories.

If you are using the resource handling parameters in the DFHATOMPARMS container, the
ATMP_CATEGORY_FLD parameter has the name and length of the field in your resource record that holds
the data for this container.

Do not put tags around the data in the container, and do not use any markup to format it.

When you provide this container to CICS, set the OPTCATEG bit value in the ATMP_OPTIONS parameter in
the DFHATOMPARMS container.

DFH$W2S1 C sample service routine for Atom feeds

The sample service routine DFH$W2S1 is a skeleton program in C language that shows you how to read
the parameters in the DFHATOMPARMS container, update the metadata and content containers (such as
DFHATOMTITLE and DFHATOMCONTENT), and update and return the DFHATOMPARMS container.

If you create and install an appropriate RDO definition, which must specify EXECKEY(CICS), for DFH
$W2S51, you can run the sample service routine to supply some data for test purposes in response to GET
requests for an Atom feed. As shipped, the program returns only the default data that is set up by its
code, and it does not handle POST, PUT, or DELETE requests. The process of identifying the required
record from the resource that holds the data for your Atom entries, and extracting the appropriate fields
from the record, or updating the record in response to a POST, PUT, or DELETE request, is specific to your
choice of resource and the structure of the records in that resource. For an example of how your service
routine can interact with your resource, see the description of DFHOW2F1 in DFHOW2F1 - COBOL sample
service routine for Atom feeds. DFHOW2F1 interacts with the CICS sample file FILEA.

The DFH$W2S1 sample service routine performs the following tasks:
« Includes the C header file for the copybook DFHW2APH that contains the parameter list for
DFHATOMPARMS, and the copybook DFHW2CNH that contains the constants for the response codes.

« Defines a structure called "outdata" that will be placed in the temporary work area (TWA). The program
will use this structure to store new data for the DFHATOMPARMS parameters, and will return pointers to
the new data for CICS to replace the existing values of the parameters. The storage for your new data
for the DFHATOMPARMS parameters must be in the TWA so that it can be read by CICS Atom
processing.

typedef struct
)

char atomid??(50?7?);
char published??(30?7?);

éﬁér selector??(20??);
1t outdata;

« Defines a structure called "indata", which is a placeholder that shows you how to extract all the values
from the DFHATOMPARMS parameters. In practice, your service routine can extract the values as it
needs them to perform each processing step.

typedef struct
{

charx resname;
charx restype;

82 CICS TS for z/0S: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/samples/dfhtl_atom_dfhw2fa.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/samples/dfhtl_atom_dfhw2fa.html

charx atomtype;

éﬁér* emailfld;
1t indata;

 Provides a helper method getParameter that you can use to obtain the pointer and length information
from a parameter in DFHATOMPARMS, read the value of the parameter into memory, add a null
terminator (zero byte) so that it can be used as a C string, and return a pointer to the new memory
location.

charx getParameter(atmp_parameterx* ParamPtr)

char* DataPtr;
int Datalen;
DatalLen = ParamPtr->atmp_parameter_len;

EXEC CICS GETMAIN SET(DataPtr) FLENGTH(DatalLen+1)
INITIMG(Ox00);
if (DatalLen != 0) {
memcpy (DataPtr, ParamPtr->atmp_parameter_ptr, Datalen);

return DataPtr;

ky

« Provides a helper method updatedAtomParam that you can use to update the pointer and length that
CICS sent for a DFHATOMPARMS parameter with a pointer to a new string value containing your new
data, and the length of that string.

void updatedAtomParam(char *value, atmp_parameter xParamPtr)

ParamPtr->atmp_parameter_ptr = (unsigned longx)value;
ParamPtr->atmp_parameter_len = strlen(value);

3

« Provides a helper method updateAtomContainer that uses the EXEC CICS PUT CONTAINER command
to update one of the metadata and content containers (such as DFHATOMTITLE and
DFHATOMCONTENT) with data for your Atom entry, taken from a field in the record in the resource that
holds the data for your Atom entries, and set the corresponding option bit to which DFHATOMPARMS
supplied a pointer.

void updateAtomContainer(char *cName, char *cChannel, char *value,
atmp_options_bits %optPtr)

{
int len = strlen(value);
EXEC CICS PUT CONTAINER(cName)
CHANNEL (cChannel)
FROM(value)
FLENGTH(len)
FROMCODEPAGE ("IBMO37") ;
/* work out which option to set x/
if (stxcmp(cName, "DFHATOMTITLE "y == 0) %
(*xoptPtr) .atmp_options_outbit.atmp_outopt_bytel.opttitle = 1;
else if (strcmp(cName, "DFHATOMSUMMARY ") == 0) %
(xoptPtr) .atmp_options_outbit.atmp_outopt_bytel.optsumma = 1;
else if (strcmp(cName, "DFHATOMCATEGORY ") == 0) %
(xoptPtr) .atmp_options_outbit.atmp_outopt_bytel.optcateg = 1;
else if (strcmp(cName, "DFHATOMAUTHOR "y == 0) %
(*xoptPtr) .atmp_options_outbit.atmp_outopt_bytel.optauthor = 1;
else if (strcmp(cName, "DFHATOMAUTHORURI ") == 0) %
(xoptPtr).atmp_options_outbit.atmp_outopt_bytel.optautheml = 1;
else if (strcmp(cName, "DFHATOMEMAIL "y == 0) %
(*xoptPtr) .atmp_options_outbit.atmp_outopt_bytel.optauthuri = 1;
¥

Chapter 2. Configuring CICS web support components 83



« In the main program, sets up variables such as the storage for data that will be placed into the
metadata and content containers (such as DFHATOMTITLE and DFHATOMCONTENT), and the "outdata"
and "indata" structures.

- Issues an EXEC CICS ADDRESS TWA command to set up storage for the "outdata" structure in the TWA,
and populates this structure with default values. These default values are returned if you run the
sample service routine as supplied. By setting the value for the ATMP_NEXTSEL parameter to 0, the
sample service routine makes CICS request the same Atom entry, consisting of this default data, over
and over until the number of entries specified as the window for the Atom feed document are obtained.
When you code your own service routine that supplies real data, do not use default values, because
depending on the request method, you might want to leave a number of data items unchanged.

EXEC CICS ADDRESS TWA(outData);

strcpy(outData->atomid,

"cics-atomservice-sample:2009-02-02T00:00:00Z2");
strcpy(outData->published, "2009-02-02T00:00:00Z2");
strcpy(outData->updated, "2009-02-20T14:54:342");
strcpy(outData->edited, "2009-02-20T14:54:342");
strcpy(outData->etagval, "");

strcpy(outData->selector, "");
strcpy(outData->nextsel, "0");
strcpy(outData->prevsel, "");

strcpy(outData->firstsel, "");
strcpy(outData->lastsel, "");

« Issues EXEC CICS GETMAIN commands to obtain storage to hold the values of the metadata and
content containers (such as DFHATOMTITLE and DFHATOMCONTENT), and populates these containers
with default data. The data in the containers does not need to be in the TWA. The content for the Atom
entry, in the DFHATOMCONTENT container, must be enclosed in <atom:content> opening and closing
tags, that may specify a type attribute giving the type of content. You may abbreviate <atom:content> to
just <content>, as the sample service routine does.

EXEC CICS GETMAIN SET(AtomContent) FLENGTH(512) INITIMG(0x00);
EXEC CICS GETMAIN SET(AtomTitle) FLENGTH(50) INITIMG(Ox00);
EXEC CICS GETMAIN SET (AtomSummary) FLENGTH(100) INITIMG(0x00);
EXEC CICS GETMAIN SET(AtomCategory) FLENGTH(30) INITIMG(0x00);
EXEC CICS GETMAIN SET(AtomAuthor) FLENGTH (40) INITIMG(Ox00);
EXEC CICS GETMAIN SET(AtomAuthorUri) FLENGTH(256) INITIMG(Ox00);
EXEC CICS GETMAIN SET(AtomEmail) FLENGTH(256) INITIMG(0x00);

strcpy (AtomContent,

"<content type='text/xml'>Hello world</content>");
strcpy (AtomTitle, "Sample Service Routine Entry");
strcpy (AtomSummary,

"This is an entry from the sample service routine");
strcpy (AtomCategory, "sample-entry");

strcpy (AtomAuthor, "CICS Sample service routine");
strcpy (AtomAuthorUri, "");
strcpy (AtomEmail, L

« Issues an EXEC CICS ASSIGN CHANNEL command to get the name of the current channel for use on the
later GET and PUT CONTAINER commands.

EXEC CICS ASSIGN CHANNEL (cChannel);

« Checks for the presence of the DFHREQUEST container, which CICS uses to pass the body of a web
client's POST or PUT request to the service routine. The first EXEC CICS GET CONTAINER command
requests the length of the container, and if a nonzero response code is returned, meaning that either
the container does not exist or there is some problem with it, does not proceed. If a request body has
been passed, the sample service routine reads its contents into storage.

EXEC CICS GET CONTAINER("DFHREQUEST ")
CHANNEL (cChannel)
NODATA
FLENGTH(DatalLen)
RESP (Resp) RESP2(Resp2);

if(Resp != 0 || Resp2 != 0)
DatalLen = -1;

84 CICS TS for z/0S: Internet Guide



¥
/* If we have a request body then get it x/

if(DataLen != -1)
]
DatalLen++;
EXEC CICS GETMAIN SET(RequestBody) FLENGTH(DatalLen)
INITIMG(Ox00);
EXEC CICS GET CONTAINER("DFHREQUEST ")
INTO(RequestBody)
FLENGTH (DatalLen) ;
b

« Issues an EXEC CICS GET CONTAINER command to set a pointer ParamList to the beginning of the data
for the DFHATOMPARMS parameters.

EXEC CICS GET CONTAINER("DFHATOMPARMS ")
SET (ParamListData)
FLENGTH (DatalLen) ;

ParamList = (atmp_parameter_listx)ParamListData;

« Goes through the data for the DFHATOMPARMS parameters, and uses the helper method getParameter
to obtain the value of each parameter and set a pointer for it in the "inData" structure.

optPtr = (atmp_options_bits*)ParamList->atmp_options;

ParamPtr = (atmp_parameterx)ParamList->atmp_resname;
inData.resname = getParameter (ParamPtr);

ParamPtr = (atmp_parameterx)ParamList->atmp_restype;
inData.restype = getParameter(ParamPtr);

ParamPtr = (atmp_parameterx)ParamList->atmp_email_f1d;
inData.emailfld = getParameter(ParamPtr);

« Indicates where you must provide code that interacts with the resource that holds the data for your
Atom entries, based on the information in the DFHATOMPARMS parameters and the DFHREQUEST
container. Your service routine needs to locate the required record in the resource and extract the
appropriate fields from the record in response to a GET request, or update the record in response to a
POST, PUT, or DELETE request. The value of the ATMP_HTTPMETH parameter tells your service routine
what the request method is.

« Shows you how to place the data that you have obtained from your resource record into the memory
locations indicated by the pointers in the outData structure, and into the storage for the metadata and
content containers (such as DFHATOMTITLE and DFHATOMCONTENT). The example shows you how to
add a selector value for the current record if the ATMP_SELECTOR parameter was null on input for the
service routine.

* strcpy(outData->atomid, . ");
* strcpy(outData->published, "..... ")
* strcpy(outData->updated, o, e
* strcpy(outData->edited, . ");
* strcpy(outData->etagval, .. ")
* strcpy(outData->nextsel, ST ")
* strcpy(outData->prevsel, . ");
* strcpy(outData->firstsel, "..... ")
* strcpy(outData->lastsel, ST ")
*

x 1if (strlen(inData->selector) == 0) {
* strcpy(outData->selector, "..... ")
*

*

* strcpy(AtomContent, D I

* strcpy(AtomTitle, o),

* strcpy(AtomSummary, R I

* strcpy(AtomCategory, "....");

* strcpy(AtomAuthor, o),

* strcpy(AtomAuthorUri, "....");

* strcpy(AtomEmail, " ")

Chapter 2. Configuring CICS web support components 85



 Uses the updatedAtomParam helper method to update the storage for each DFHATOMPARMS
parameter with the pointers and lengths for your new items of data.

updatedAtomParam(outData->atomid,
(atmp_parameterx)ParamList->atmp_atomid);
updatedAtomParam(outData->published,
(atmp_parameterx)ParamList->atmp_published);
updatedAtomParam(outData->updated,
(atmp_parameterx)ParamList->atmp_updated);
updatedAtomParam(outData->edited,
(atmp_parameterx)ParamList->atmp_edited);
updatedAtomParam(outData->etagval,
(atmp_parameterx)ParamList->atmp_etagval);
updatedAtomParam(outData->nextsel,
(atmp_parameterx)ParamList->atmp_nextsel);
updatedAtomParam(outData->prevsel,
(atmp_parameterx)ParamList->atmp_prevsel);
updatedAtomParam(outData->firstsel,
(atmp_parameterx)ParamList->atmp_firstsel);
updatedAtomParam(outData->lastsel,
(atmp_parameterx)ParamList->atmp_lastsel);

if (strlen(outData->selector) != 0) {
updatedAtomParam(outData->selector,
(atmp_parameterx)ParamList->atmp_selector);

%

« Uses the updateAtomContainer helper method to add your new data to the metadata and content
containers, and set the option bit to indicate the presence of each container.

updateAtomContainer ("DFHATOMTITLE ",cChannel,AtomTitle, optPtr);
updateAtomContainer ("DFHATOMSUMMARY ", cChannel,AtomSummary,optPtr);
updateAtomContainer ("DFHATOMCATEGORY ", cChannel,AtomCategory,optPtr);

updateAtomContainer ("DFHATOMAUTHOR ", cChannel,AtomAuthor, optPtr) ;
updateAtomContainer ("DFHATOMAUTHORURI",cChannel,AtomAuthorUri,optPtr);
updateAtomContainer ("DFHATOMEMAIL ",cChannel,AtomEmail, optPtr);

updateAtomContainer ("DFHATOMCONTENT ",cChannel,AtomContent,optPtr);

» Provides a response code from the selection defined in the DFHW2CNH copybook. The reason code is
ignored by CICS at present and reserved for future use, so its content is arbitrary.

ResponsePtr = (atmp_responses*)ParamList->atmp_response;
ResponsePtr->atmp_response_code = ATMP_RESP_NORMAL;

/*

* ResponsePtr->atmp_response_code
* ResponsePtr->atmp_response_code
* ResponsePtr->atmp_response_code
* ResponsePtr->atmp_response_code
* ResponsePtr->atmp_response_code
*/

ResponsePtr->atmp_reason_code = 0;

ATMP_RESP_NOT_FOUND;
ATMP_RESP_NOT_AUTH;
ATMP_RESP_DISABLED;
ATMP_RESP_ALREADY_EXISTS;
ATMP_RESP_ACCESS_ERROR;

« Returns control to CICS automatically as the main program ends. CICS Atom processing uses the data
from the metadata and content containers, and the data in the TWA for the DFHATOMPARMS
parameters for which the service routine has supplied new pointers and lengths, to construct the Atom
entry. CICS then requests further Atom entries from the service routine in the same way, until the
window of entries to construct the Atom feed document is complete.

Creating an XML binding for the Atom feed using CICS Explorer

Use the File Import Wizard in CICS Explorer to include a source language file into a CICS bundle project to
create an XML binding and an associated schema for Atom feeds. This bundle project can then be
deployed into your CICS system to create an XMLTRANSFORM resource.

Before you begin

You must have a language structure that defines each record in the data source for the Atom feed. For
example, this might be a COBOL copybook that defines the structure of the records stored within a VSAM
file.

86 CICS TS for z/0S: Internet Guide



About this task

The wizard can use a COBOL, C/C++, or PL/I language structure to generate an XML binding and an
associated schema. The wizard imports the XML binding and schema into a bundle project.

Procedure
1. Optional: If you do not already have a project for the XML binding and an associated schema, create a
new CICS bundle project in CICS Explorer.

a) Switch to the Resource perspective by clicking Window > Open Perspective > Other on the main
menu bar. Choose Resource from the Open Perspective window, and click OK.

b) On the main menu bar, click Explorer > New Wizards > Other > CICS Resources > CICS Bundle
project.

The Bundle Project wizard opens.
c) In the Project name field, type a name for your new project.

d) Click Finish.

The new CICS bundle project is listed in the Project Explorer view.

2. Right-click the bundle project in the Project Explorer view of the Resource perspective and click
Import.

3. Expand the General folder and click Import XML Transform Source. The File Import Wizard opens.

4. Click Browse to locate the source language file that you want to associate with the XML transform.
Then navigate to the file that you want to use. This file can be one of the following file types:

File Type Programming language

.C C/C++ source code file

.cpp C/C++ source code file

.h C/C++ header file

.cbl COBOL source code

.cob COBOL source code

.cpy EIOBOL copybooks data
e

.pli PL/I data description file

5. In the Enter or select the parent folder field, overtype the name of the bundle project into which you
want to include the XML binding and schema, or select a bundle project from the list.

6. Specify the name of the XML binding and associated schema in the XML Transform source name in
bundle field. This field is populated with the name of the source language file you specified earlier,
however you can overtype this field with a different name provided that the file extension is
maintained.

7. Set the mapping level. The mapping level defines how much information is converted between the
source language file and the XML schema. To benefit from the most sophisticated mappings available,
set the mapping level to the latest level. For more information on mapping levels, see Mapping levels
for the CICS assistants

8. Click Finish to create the XML binding (.xsdbind) and schema (.xsd) and include them in the bundle
project. These files are included in the xsdbind folder of the bundle project. A copy of the source
language file is also included into the bundle project for reference and the manifest file (cics.xml) in
the META-INF folder is updated with the new XMLTRANSFORM resource.

Results
An XML binding and schema are included into a bundle project.

Chapter 2. Configuring CICS web support components 87



https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/web-services/dfhws_mappinglevels.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/web-services/dfhws_mappinglevels.html

What to do next

You must deploy the bundle project to a CICS region. When the bundle project has been deployed, CICS
automatically generates the XMLTRANSFORM resource for you. For more information about deploying a
bundle project, see “Deploying a CICS bundle project from CICS Explorer” on page 96.

Setting up CICS definitions for an Atom feed

To serve an Atom feed from CICS you can use the CICS Explorer to create an Atom configuration file in a
bundle project and deploy the project to a CICS region. When you install the BUNDLE resource, CICS
creates the ATOMSERVICE and URIMAP resources for you. You can also set up an alias transaction for
your Atom feed.

Before you begin

Before serving an Atom feed from CICS, you must configure the base components of CICS web support, if
you have not already done so. Chapter 2, “Configuring CICS web support components,” on page 53
explains how configure these base components of CICS web support.

Your CICS region must have a TCPIPSERVICE resource definition for the port where you want web clients
to make HTTP requests for your Atom feed. “Creating TCPIPSERVICE resource definitions for CICS web
support” on page 109 explains how to define a TCPIPSERVICE resource.

You must also select the resource that provides the data for your Atom entries, and create either an XML
binding or a service routine to support the delivery of this data. “Setting up a resource to supply Atom
entry data” on page 62 explains how to create an XML binding or a service routine.

About this task

Complete the tasks listed in the following procedure to set up CICS definitions to serve an Atom feed
composed of data from the selected resource, delivered using the XML binding or service routine that you
have created.

Ensure that the configuration file is in EBCDIC and it is assumed that it is provided in code page 1047
unless 'encoding="'has been specified.

Procedure

1. Create a basic Atom configuration file in a bundle project using the Atom configuration wizard in CICS
Explorer.
For more information, see “Creating an Atom configuration file” on page 89.

2. Edit the Atom configuration file using the Atom configuration editor in CICS Explorer, to amend
existing data or add addition XML elements.

For more information, see “Editing an Atom configuration file” on page 92.
3. Optional: Create an alias transaction for the Atom feed.
For more information, see “Creating an alias transaction for an Atom feed” on page 95.
4. Deploy the bundle project to your CICS region.
For more information, see “Deploying a CICS bundle project from CICS Explorer” on page 96.

Results

An Atom feed BUNDLE resource is defined and installed in a CICS region. CICS creates the
ATOMSERVICE, XMLTRANSFORM, and URIMAP resources for you. When the BUNDLE resource is enabled
web clients can access the Atom feed.

What to do next

Many free or commercially available web client applications are able to request, receive, and display
Atom feeds, including dedicated feed readers and also applications that provide further functions, such as
applications for creating mashups. Check that the application is described as supporting the Atom format.
You can also write your own web client application to make GET requests for Atom feed data.

88 CICS TS for z/0S: Internet Guide



Creating an Atom configuration file

You use the Atom configuration wizard in CICS Explorer to create an Atom configuration file. This files is
comprised of a number of XML elements, which provide metadata for the Atom feed. You enter the basic
details to create the file using the New wizard and then add additional information using the editor.

Before you begin

You must have an XMLTRANSFORM resource on z/OS UNIX. The XMLTRANSFORM resource defines the
XML binding and schema to transform application data to XML. The XMLTRANSFORM resource might
already exist or you can create one using the File Import Wizard in CICS Explorer. For further information
on using the File Import Wizard, see “Creating an XML binding for the Atom feed using CICS Explorer” on
page 86.

About this task

When you create an Atom configuration file, you create a bundle project, then you use the Atom
configuration wizard to enter the basic details for the Atom feed. The wizard creates the Atom
configuration file that contains the XML elements associated with the details you enter.

The example Atom configuration file created in this task is based on the filea.xml sample Atom
configuration file. When you install CICS Transaction Server, the sample Atom configuration file is
installed in the directory /usr/1pp/cicsts/cicsts54/samples/web2.0/atom (where /usr/lpp/
cicsts/cicstsb4 is the default install directory for CICS files on z/OS UNIX).

Procedure

1. Optional: If you do not already have a project for the Atom configuration file, create a new CICS bundle
project in the CICS Explorer.

a) Ensure you are in the Resource perspective. To switch to the Resource perspective, on the main
menu bar, click Window > Open Perspective > Other. Choose Resource from the Open
Perspective window, and click OK.

b) On the main menu bar, click File > New > Other > CICS Resources > CICS Bundle project.
The Bundle Project wizard opens.
¢) In the Project name field, type a name for your new project.

d) Click Finish.

The new CICS bundle project is listed in the Project Explorer view.

2. In the Project Explorer view of the Resource perspective, click the bundle project that you want to
contain the new Atom configuration file.

3. Open the New Atom configuration wizard by using one of the following methods:

Ear o

« Click the down arrow on the Newicon =~  on the CICS Explorer toolbar and click Other . Expand
the CICS Resources folder and click Atom Configuration File.

« Onthe main menu bar, click File > New > Other. Expand the CICS Resources folder and click Atom
Configuration File.

« Right-click the project in the Project Explorer view and click New > Atom Configuration File.
Expand the CICS Resources folder and click Atom Configuration File.
4. Complete the fields in the wizard. The following table describes the fields in the Atom configuration

wizard. Figure 8 on page 91 shows the Atom configuration wizard in CICS Explorer with all fields
completed based on the XML elements in the filea.xml sample Atom configuration file

Chapter 2. Configuring CICS web support components 89



Table 5. Atom wizard fields

Field Description

Parent Folder The name of the project. You can overtype this
containing the Atomfield to change the
configuration fileproject.

File name The name of the Atom.
configuration file that
you want to create

Service Type There are two service. A collection supplies
types: collection anddata that the web client
feedcan edit or delete. A feed
supplies read-only data
to the web client.

Feed Title The title for the Atom. CICS only supports
feed that is displayed inplain text for titles.
the web client

Entry Title The title for the Atom. CICS supports only

entryplain text for titles. You
must specify an entry
title even if your CICS
resource provides a title
for Atom entries. Use a
suitable default title that
could apply to any of
your Atom entries.

Resource Type The type of resource.
that you want to use for

your feed

Resource Name The name of the.

resource that you want
to use for your feed

Default URI The partial URI for the. You can omit the

Atom feedscheme and host
components of the URI,
and specify only the path
component. The path
must be unique to the
Atom feed.

XML Transform Name The name of an existing.
XMLTRANSFORM
resource in the CICS
region that points to the
XML binding associated
with the data source

90 CICS TS for z/OS: Internet Guide



* New CICS ATOM Configuration

Atom Configuration File

Create a nevws atom cenfiguration and then edit it

Barent Folder: |,-‘FILEA | [Brnwse...]
Eile name: |ﬁ|ea |

Service Type ) COLLECTION (2 FEED

Feed Title | Sample CICS file FILEA |
Entry Title | FILEA item |
Resource Type ®FILE O PROGRAM O TSQUEUE

Fesource Name | FILEA |

Default URI | http:/ fvovww. example.com/cics/atom/f/filea

XML Transform Name | FILEAXML

@ Next > [ Einish ” Cancel

Figure 8. The Atom configuration wizard in CICS Explorer with all fields completed based on the XML
elements in the filea.xml sample Atom configuration file

5. Click Finish.

Results

The Atom configuration file is created. The attributes of this file are displayed in the Atom configuration
editor.

What to do next

You can edit the Atom configuration file, or add additional XML elements to the file, by using the Atom
configuration editor. The Atom configuration editor is a basic editor and, as such, not all XML elements
can be edited or added using this editor; for more information see “Editing an Atom configuration file” on
page 92. To add XML elements that are not supported by the Atom configuration editor, you must edit
the Atom configuration file directly using an alternative XML editor.

If no further editing is required, you must deploy the bundle project containing the Atom configuration file
to a CICS region.

Chapter 2. Configuring CICS web support components 91



When the bundle project is installed, CICS automatically generates the ATOMSERVICE and URIMAP
resources for you. For more information about deploying a bundle project, see “Deploying a CICS bundle
project from CICS Explorer” on page 96.

Editing an Atom configuration file

You use the Atom configuration editor in CICS Explorer to amend existing data or add additional data to
Atom configuration files. You update or add information in the editor, save the changes, and the XML of
the Atom configuration file is updated.

About this task

The Atom configuration editor is the default editor for editing Atom configuration files. If you use this
editor you have to enter only the attribute values, because the editor creates the XML automatically.
Alternatively, you can use a text editor to edit the XML directly. The following steps describe how to edit
an Atom configuration file using the Atom configuration editor.

Procedure

1. Double-click the Atom configuration file in the Project Explorer in CICS Explorer. By default, the file
opens in the Atom configuration editor.

2. Enter the values for the additional attributes listed in the editor. Alternatively, you can edit the fields
that have been populated by the Atom configuration wizard. The Atom wizard fields table describes
the fields that are populated by the Atom configuration wizard. Table 6 on page 92 describes the
additional fields in the Atom configuration editor. Figure 9 on page 94 shows the Atom configuration
editor in CICS Explorer with all fields completed based on the XML elements in the £ilea.xml sample
Atom configuration file.

Table 6. Atom configuration editor fields

Field Description

Root XML Element The name of the top-. This optional attribute is
level data structure inonly required if there is
the XML bindingmore than one set of
conversions in the XML
binding.

Feed - Link URI The complete path that. The beginning of the

a web client can use topath must match the

retrieve the Atom feedpartial path stated in the
URIMAP resource
definition for the Atom
feed. You can omit the
scheme and host
components of the URI,
and specify only the path
component. CICS adds
the scheme and host
components to the URI
when it returns the Atom
feed to the client, to
comply with the Atom
format specification.

92 CICS TS for z/OS: Internet Guide



Table 6. Atom configuration editor fields (continued)

Field Description

Window Size The default number of. If you leave this field
entries that CICS returnsblank, the default
in the Atom feedwindow size of 8 is used.

The window size applies
only when a web client
makes a request using
the feed link URI, or a
navigation URI for a
partial list of Atom
entries.

Entry - Link URI A standard URI path that. The beginning of the
can be extended topath must match the
apply to any Atom entrypartial path that you
documents, and thatspecified in the URIMAP
enables a web client toresource definition for
retrieve thesethe Atom. The remainder
documents individuallyof the standard path
must be different from
the complete path
specified in the feed link
URI. You can omit the
scheme and host
components of the URI,
and specify only the path
component. CICS adds
the scheme and host
components to the URI
when it returns the Atom
feed to the client, to
comply with the Atom
format specification.

URI

Transaction ID The name of an alias. If you do not specify a
transaction for the Atomtransaction ID, the
feeddefault alias transaction
ID for Atom feeds,
CW2A, is used.

Chapter 2. Configuring CICS web support components 93




Table 6. Atom configuration editor fields (continued)
Field Description
User ID A default user ID under. When authentication is
which the aliasrequired for the
transaction can beconnection, so that CICS
attachedrequests an
authenticated user ID
directly from the client,
the default user ID is not
used. The authenticated
user ID of the client is
used instead, or if
authentication fails, the
request is rejected. If
authentication is not
required and you do not
supply a default user ID,
the CICS default user ID
is used.
- —— -
& Atom Configuration @
Basic &
Service Type ) COLLECTION (3 FEED
XML Transform Name | FILEAXML
Root XML Element | DFHOCFIL
Resource
Type @ FILE O PROGRAM (O TSQUELE
Fesource Mame | FILEA |
Feed
Title | sample CICS file FILEA |
Link URI | http://wiwaw.example.com/cics/atom/f/filea/feed |
Windowe Size |:|
Entry
Title | FILEA item |
Link URI | http://wovavi.example.com/cics/atom/f/filea/entry/ |
URI Map
URI | http:/wwawv.example.com,/ cics/atom/f/filea/™ | —
Transaction ID l:l
b
Atom Configuration

Figure 9. The Atom configuration editor in CICS Explorer with all fields completed based on the XML
elements in the filea.xml sample Atom configuration file

3. Click the Save icon |2 to save your changes.

94 CICS TS for z/OS: Internet Guide



The following code shows the XML elements generated by the Atom configuration editor with all fields
completed based on the filea.xml sample Atom configuration file.

<?xml version="1.0"?>
<cics:atomservice xmlns:atom="http://www.w3.0xrg/2005/Atom"
xmlns:app="http://www.w3.0rg/2007/app"
xmlns:cics="http://www.ibm.com/xmlns/prod/cics/atom/atomservice"
version="2" type="feed">
<cics:feed window="6">
<cics:resource name="FILEA" type="file">
<cics:bind xmltransform="FILEAXML"/>
</cics:resource>
</cics:feed>
<cics:urimap uri="http://www.example.com/cics/atom/f/filea/*"/>
<atom:feed>
<atom:title>Sample CICS file FILEA</atom:title>
<atom:1link rel="self" href="http://www.example.com/cics/atom
/f/filea/feed"/>
<atom:entry>
<atom:title>FILEA item</atom:title>
<atom:1link rel="self" href="http://www.example.com/cics
/atom/f/filea/entry/"/>
<atom:content cics:resource="FILEA" cics:type="£file"/>
</atom:entry>
</atom: feed>
</cics:atomservice>

Results

The Atom configuration file is updated with the changes made using the editor.

What to do next

The Atom configuration editor is only a basic starter editor and does not support all the possible
attributes in an Atom configuration file. If you want to add attributes that are not displayed in the Atom
configuration editor, you must use an XML editor or a text editor. For more information about the XML
elements that can be configured for your Atom feed using an XML editor or text editor, see Atom
elements.

If no further editing is required, you can either export the Bundle project as a .zip file to the local file
system for deployment to a CICS system, or you can export the project directly to z/OS UNIX.

Creating an alias transaction for an Atom feed

An alias transaction handles the later stages of processing for an Atom feed. CICS supplies a resource
definition for a default Atom feed alias transaction, CW2A. Set up a TRANSACTION resource definition if
you want to define an alternative alias transaction.

About this task

For non-Atom HTTP requests handled by CICS web support, you only use an alias transaction when a
user-written application program handles the requests. However, for Atom feeds, an alias transaction is
used for processing all requests, whether or not a user-written service routine is involved.

You might want to use alternative alias transaction names for these purposes:

« Auditing, monitoring or accounting

Modifying resource and command security settings

Allocating initiation priorities

Allocating DB2° resources
« Assigning different runaway values to different CICS application programs
« Transaction class limitation

You can set up as many alias transaction definitions as you want. You can use the URIMAP definition to
specify the alias transaction that is required for a particular request.

Chapter 2. Configuring CICS web support components 95


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_atom_config_elements.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_atom_config_elements.html

CW2A specifies RESSEC(YES) and CMDSEC(YES), meaning that if resource and command security is
active for the CICS region, it is applied to this transaction. If you specify resource and command security
for your alias transaction, you will need to give web clients appropriate permissions to access the
resources and commands used by the transaction. For more information about security for Atom feeds
and collections, see Security for Atom feeds.

Follow the instructions in TRANSACTION resource definitions to create a transaction resource definition.
When you are following these instructions, note these points:

Procedure

« Base your alias transaction definition on the definition of CW2A, making any changes that you require.
Here is the definition of CW2A:

DEFINE TRANSACTION(CW2A) GROUP (DFHWEB2)
PROGRAM (DFHW2A) TWASIZE (512)
PROFILE (DFHCICST) STATUS (ENABLED)
TASKDATALOC (ANY) TASKDATAKEY (CICS)

RUNAWAY (SYSTEM) SHUTDOWN (DISABLED)

PRIORITY (1) TRANCLASS (DFHTCLOO)

DTIMOUT (NO) TPURGE (NO) SPURGE (YES)
RESSEC (YES) CMDSEC (YES)

DESCRIPTION(CICS Web2.0 Atomservice alias transaction)

« Your alias transaction definition must use the CICS-supplied alias program DFHW2A.

The alias program accesses the user-written service routine or CICS resource that is named in the
ATOMSERVICE definition.

« Your alias transaction definition must be a local transaction.
« Your alias transaction must have a transaction work area size (TWASIZE) of at least 512-bytes.

- Make sure the priority of the alias transaction is equal to, or higher than, the priority of the transactions
associated with web attach tasks, such as CWXN.

Priorities for CICS web support transactions (CWXN, CWXU, CWBA, CW2A) explains why this is
important.

- Atom feed requests might qualify for being processed by directly attached user transactions, and
bypassing the web attach task. Performance enhancement is gained by saving the CPU time needed
for processing requests. For more information, see Processing HTTP requests by using directly
attached user transactions.

Deploying a CICS bundle project from CICS Explorer

You can deploy an application as a CICS bundle project from CICS Explorer and use a BUNDLE resource to
create resources dynamically for you. The BUNDLE resource represents the application, so you can also
manage its availability in CICS by enabling and disabling the BUNDLE resource.

About this task

A bundle project is a collection of CICS resources, artifacts, references, and a manifest that you can
deploy into a CICS region to represent all or part of an application. The manifest is a file that describes the
contents of the bundle, including any prerequisite system resources for the application. CICS does not
dynamically create these system resources but can check that they are present in the CICS region. This
separation of resources means that you can install the same application into multiple CICS regions
without repackaging or redeploying the bundle.

When you have created a CICS bundle project in CICS Explorer, you must export it to a CICS region. You
can either export the bundle project as a .zip file to the local file system, transfer the archive file to z/0OS
UNIX, and extract it into a directory, or you can export the project directly to z/OS UNIX. You must also
define and enable a BUNDLE resource for the bundle project. CICS will then create the bundle project
application resources dynamically for you.

Note: You can only export a bundle directly to a z/OS UNIX file system if your network is using Internet
Protocol version 4 (IPv4). The procedure does not work for IPv6 networks. The port can be secured to

96 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/web/dfhtl_atom_security.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/transaction/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/web/dfht3no.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/csol_bypass_cwxn.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/csol_bypass_cwxn.html

accept SSL traffic; if this is done, CICS Explorer detects this and switches to Secure Sockets Layer (SSL)
mode so that no data flows unencrypted. If an SSL connection cannot be established, basic
authentication is used.

Procedure
1. Export your bundle project from CICS Explorer using one of the following methods.
- Exporting to your local file system:
a. Right-click your CICS bundle project in the Project Explorer view and select Export. The Export
window opens.
b. Click Archive File.
c. Click Next.
d. Make sure that all the files in the project are selected. Enter a file name in the To archive file
field, and select Save in .zip format.
e. Click Finish.
« Exporting directly to a z/OS UNIX file system:
a. Right-click your CICS bundle project in the Project Explorer view and select Export to z/0S
UNIX File System. The Export to z/0S UNIX File System window opens. The Bundle project

field contains the name of your bundle project. Alternatively, you can type the name of a bundle
project in the field or click Browse.

b. In the Connection field, either select an existing connection to an FTP port by clicking the
twistie, or click the connection text hyperlink to define a new connection of type z/0OS FTP.

c. In the Directory field, specify the name of a z/OS UNIX file system directory as a target for the
transfer. When you type the name of a directory folder, the directory tree is refreshed and this
folder is shown as the root. If you double-click a folder, this folder becomes the root of the tree.
Alternatively, you can select from the tree and navigate to the directory.

d. Select the Delete existing z/0S Unix Bundle Folder check box to remove the specified folder
and all the child folders and files in the target z/OS UNIX file system directory before the file
transfer. If you do not select the check box and a folder by that name exists, the export does not
take place.

e. Click Finish.

2. Define and enable a BUNDLE resource for the application bundle.
See BUNDLE attributes for details of the attributes to specify.

CICS reads the manifest in the bundle directory and dynamically creates the application resources. It
also checks that any required references, for example to programs or files, outside the application are
present in the CICS region, so that the application can run successfully.

Results
A bundle project is exported to z/OS UNIX and a BUNDLE resource for the bundle project is defined and

enabled.

What to do next
You can manage bundle project application availability in CICS by enabling and disabling the BUNDLE

resource.

Enabling CICS web support for CICS as an HTTP server

The CICS web support architecture for CICS as an HTTP server varies depending on the tasks that you
want it to perform. Some configurable components of CICS web support are required for all tasks, such as

Chapter 2. Configuring CICS web support components 97


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/bundle/dfha4_attributes.html

the TCPIPSERVICE definitions for the ports that receive inbound requests. Other configurable
components are required for specific tasks only.

Before you begin
Read HTTP request and response processing for CICS as an HTTP server so that you understand the
processing stages that can be involved.

About this task

The subtopics tell you how to provide responses to HTTP requests and how to communicate between
web clients and CICS programs that use the COMMAREA. In addition, these topics tell you how to enable
a web client using HTTP to access an existing 3270 display application in CICS and how to receive non-
HTTP requests from a client and provide an application-generated response:

Providing dynamic HTTP responses with web-aware application programs

You can use web-aware application programs to provide application-generated responses to HTTP
requests from a web client.

Before you begin
Configure the base components of CICS web support, as described in Chapter 2, “Configuring CICS web
support components,” on page 53.

About this task
This task involves the following components of CICS web support and includes a number of subtasks.

TCPIPSERVICE resource definitions
« URIMAP resource definitions

- Web-aware application programs, that use the EXEC CICS WEB programming interface

Alias transactions for the application programs
« Analyzer program

« Security facilities

« Web error programs

Figure 10 on page 99 shows the architecture elements for this CICS web support task. HTTP request
and response processing for CICS as an HTTP server explains how the process elements work together.

98 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_inprocess.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_inprocess.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_inprocess.html

Reguest

URIMAP
CICS
Malch to
Reguest Line URIMAP
dafinition
Client : Reagqueast
' Body
URIMAP: URIMAP:
Application Mo match

E Request E Raguest

{ 1
Analyzar Analyzer
specified — &

{optional) program

User-written
application
[Web-awara)
WER SEN D]’ WER WRITE
WEB SEND HTTPHEADER

Status Line

N
: penerated

Headers .

Responze
Body

a5
7

Web |
Client

Response
Figure 10. Dynamic HTTP responses with web-aware application programs

Procedure

1. Design and code one or more web-aware application programs to provide a response to each request
by the web client, by using the information in Developing HTTP applications.

Chapter 2. Configuring CICS web support components 99


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/web/dfhtl_appsweb_intro.html

Web-aware application programs can use EXEC CICS WEB and EXEC CICS DOCUMENT commands to
receive and analyze an HTTP request, and to write and send a response to the request. Each program
handles a single request and response.

Note: Web-aware application programs that use the EXEC CICS WEB commands must run in the
CICS region where the web client request is received. However, they can link to application programs
in other CICS regions.

2. Consider security issues for this CICS web support task.

CICS can implement HTTP basic authentication for a connection, where the user must supply an ID
and password. You can use the user ID to control access to individual resources used for application-
generated responses or static responses. If you need to protect information that is passed over the
Internet (including the user IDs and passwords that are used for basic authentication), consider using
Secure Sockets Layer (SSL). For more information, see Security for CICS web support.

3. Decide on the URL that the web client uses for each request, including the scheme, host and path
components, and any query string.
See The components of a URL. URLs for CICS web support explains the factors and limitations to
consider in choosing a URL.

4. Decide on the port that is used for the requests, referring to
“Reserving ports for CICS web support” on page 54.
For HTTP, the default port number is 80, and, for HTTPS (with SSL), the default port number is 443.
Port numbers that are not the default for a scheme are specified explicitly in the URL of requests.
If you prefer, you can allow a request to use any port that is associated with CICS web support.

5. If you do not yet have a TCPIPSERVICE definition for the port on which the requests are received,

follow the procedure in “Creating TCPIPSERVICE resource definitions for CICS web support” on page
109.

Use this definition to specify the security measures that you have selected for the port (such as the
use of SSL and basic authentication).

The name of the relevant TCPIPSERVICE definition is specified in the URIMAP definition for the

request. Specifying no TCPIPSERVICE definition means that requests matched by the URIMAP
definition can use any port for which a TCPIPSERVICE definition exists.

6. Select an alias transaction ID for the relevant user application programs. The default alias transaction
is CWBA. To create your own alias transaction, see “Creating TRANSACTION resource definitions for
CICS web support” on page 112.

You can use the URIMAP definition or an analyzer program to specify an alias transaction for each
HTTP request.

If you are implementing resource level security using the user IDs of web clients, the user IDs are
applied to this transaction and need permission to access protected CICS resources and commands
that are used by the transaction.

7. Decide whether to use the analyzer program because using this program can disqualify your HTTP
requests being processed by a directly attached user transaction. For more information, see
Processing HTTP requests by using directly attached user transactions. Otherwise, decide how the
analyzer program, described in Analyzer programs in Developing system programs, associated with
the TCPIPSERVICE definition is used, and select an appropriate program.

For web-aware applications, you can choose between the following strategies:

a) Use the CICS supplied default analyzer program DFHWBAAX to provide error handling. DFHWBAAX
is suitable where all of the requests that use this port are handled by using URIMAP definitions.

DFHWBAAX takes no action if a matching URIMAP definition is found. If no match is found, it gives
control to the user-replaceable web error program DFHWBERX to produce an error response.

b) Use the CICS supplied sample analyzer program DFHWBADX to provide basic support for requests
that use URIMAP definitions and for requests following the same process that CICS web support
used before CICS TS 3.1.

DFHWBADX takes no action if a matching URIMAP definition is found. If no match is found, it
analyzes URLs in the format that was required before CICS TS 3.1. If the analysis fails,

100 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/web/dfhtl6v.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_uricomp.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_cwsurl.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/csol_bypass_cwxn.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfhtl1q.html

DFHWBADX gives control to the user-replaceable web error program DFHWBEP to produce an
error response. (If the URLs specified in your URIMAP definitions do not fit the format that was
required before CICS TS 3.1, customize DFHWBADX or DFHWBEP to provide a meaningful
response.)

¢) Use your own analyzer program to provide customized support:

- Make dynamic changes to processing for requests that use URIMAP definitions.
 Provide monitoring or audit actions during processing for requests.
 Support requests following the same process that CICS web support used before CICS TS 3.1.

« Provide error responses that use the user-replaceable web error programs, DFHWBEP and
DFHWBERX.

You can specify a customized analyzer program that uses the ANALYZER(YES) attribute in a
URIMAP definition. It is then involved in the processing path for requests. As supplied, DFHWBAAX
and DFHWBADX take no action if they are called from a URIMAP definition.

8. Decide how you want code page conversion to take place, for the HTTP requests, and for the
responses that the user application programs provide to them.

Code page conversion, described in Code page conversion for CICS Web support, typically consists of
converting the web client request, made by using an ASCII character set, into an EBCDIC code page
for use by the application program; and then reversing this process to return the application program
output to the web client. You can specify code page conversion settings in the EXEC CICS WEB API
commands that are issued by a web-aware application program.

9. Set up a URIMAP definition to handle each request. Follow the procedures in “Creating a URIMAP
resource for CICS as an HTTP server” on page 113.

You can pass HTTP requests directly to an analyzer program without using URIMAP definitions,
following the same process that CICS web support used before CICS TS 3.1. However, using URIMAP
definitions can make it easier to manage HTTP requests. Without URIMAP definitions, if you want to
change how CICS responds to a particular HTTP request, you need to change the logic in the analyzer
program. With URIMAP definitions, you can perform these changes dynamically as a system
management task.

Using URIMAP definitions (without an analyzer program) the listener task can directly attach user
transactions for fast arriving HTTP requests. The web attach task is bypassed, and performance
enhancement is gained by saving the CPU time needed for processing requests. For more
information, see Processing HTTP requests by using directly attached user transactions.

10. Ensure that the user-replaceable web error programs, described in Web error programs, provide
appropriate responses to the web client.

The web error programs are used if an error in initial processing, an abend, or failure occurs in the
CICS web support process. They are not used in all error situations.

Providing static HTTP responses with a CICS document template or z/0S UNIX file

You can use a CICS document template or a z/OS UNIX System Services file to provide a static response
to an HTTP request from a web client.

Before you begin
Configure the base components of CICS web support, described in Chapter 2, “Configuring CICS web
support components,” on page 53.

About this task
This task involves the following components of CICS web support and includes a number of subtasks.

« TCPIPSERVICE resource definitions
« URIMAP resource definitions

« z/OS UNIX files

 CICS document template support

Chapter 2. Configuring CICS web support components 101


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtlt0.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/csol_bypass_cwxn.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/administering/web/dfhtlh0.html

« Security facilities
« Web error programs

Figure 11 on page 102 shows the architecture elements for this CICS web support task. HTTP request
and response processing for CICS as an HTTP server explains how the process elements work together.

Request
Fequest Line URIMAP
CICS
Reguest ' Malch to
Boety ' FlE'E‘IUCEE-[ Line URIMAP
. dafinition
Web ; R Headars
Client : RBquest
' Body

L
URIMAP:
Static response

E Requast

CICS]\;\' | B

document | | z/08 UNIX
template file I

I_I—I

- Status Line . cics

we | o
Client L Response
Body

Response

Figure 11. Static HTTP responses

Procedure

1. Consider security issues for this CICS web support task.

CICS can implement HTTP basic authentication for a connection, where the user must supply an ID
and password. You can use the user ID to control access to individual resources used for application-
generated responses or static responses. If you need to protect information that is passed over the
Internet (including the user IDs and passwords that are used for basic authentication), consider using
Secure Sockets Layer (SSL). For more information, see Security for CICS web support.

2. If you want to use a z/OS UNIX System Services file to provide a response, create the file and place it
in an appropriate location in the z/OS UNIX file system.

When this response is identified by a URIMAP definition that matches the web client request, CICS
retrieves the file and carries out appropriate code page conversion. Note these points:

a) Do not include any HTTP headers or status line information in the z/OS UNIX file.

CICS generates the required information when the response is sent. The z/OS UNIX file provides
only the body of the response.

102 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_inprocess.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_inprocess.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/web/dfhtl6v.html

b) The location of the file is significant if you want to use path matching, as described later in this
task. If you do not want to use path matching, the location of the file does not need to have any
relationship to the URL of the request.

¢) The CICS region must have permissions to access z/OS UNIX, and it must have permission to
access the directory containing the file and the file itself.

See Giving CICS regions access to z/OS UNIX directories and files.
d) If you are implementing access control using the user IDs of web clients, the user IDs must also
have permission to access the directory containing the file, and the file itself.
See CICS system and resource security for CICS web support.
3. If you want to use a CICS document template to provide the response, create the document
template, following the instructions in Creating a document.

The document template is defined using a DOCTEMPLATE resource definition. The document
template can be held in a partitioned data set, a CICS program, a file, a temporary storage queue, a
transient data queue, an exit program or a z/OS UNIX System Services file.

When this response is identified by a URIMAP definition that matches the web client request, CICS
creates a document using the template, retrieves the document, and carries out appropriate code
page conversion.

a) Do not include any HTTP headers or status line information in the document template.
CICS generates the required information when the response is sent. The document template
provides only the body of the response.

b) A query string that consists of name and value pairs can be used as a symbol list and substituted
into a document template.
(The query string cannot be used in this way if it has already been used for URIMAP matching, as
part of the PATH attribute in the URIMAP definition.)
To make the client send a query string of the expected format in the URL, send an HTML form with
the GET method for the user to spcify.

Any of the names in the query string can be coded in the document template as a symbol, and,
when the template is used, CICS substitutes each symbol for the value specified in the query
string. For example, if you have obtained a query string that includes a name and value pair
username=Peter, you can use this in your document template by coding usexrname as a symbol:

Welcome to the finance system, &username;.
The resulting static response delivered to the user will read:

Welcome to the finance system, Peter.

Note: Symbols in document templates are case-sensitive. Specify the name using the same case
as in the original query string.

Any name and value pairs that do not correspond to symbols in the document template are
ignored.
¢) If you are implementing resource level security using the user IDs of web clients, the user IDs
must have permission to access the document template.
See CICS system and resource security for CICS web support. Note that, if the document template
is a z/OS UNIX System Services file, the web clients do not need to be given permissions on the
file, but only on the DOCTEMPLATE resource definition.
4. Identify the media type (type of data content) that is provided by the z/OS UNIX file or CICS
document template.
See The components of a URL.
Note that when you use a URIMAP definition to send a static response, the use of quality factors (the
"q" parameter) is not supported. Use quality factors to choose among a client list of acceptable
media types or character sets, as specified in Accept headers. To carry out this type of analysis, you
can use an application-generated response instead.

Chapter 2. Configuring CICS web support components 103


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/java/dfhpjd8.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/web/dfhtl_ressec.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/web/dfhtl_ressec.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_uricomp.html

5. Identify the information that CICS requires for code page conversion of the static response.

Code page conversion takes place only where a text media type is specified. Refer to Code page
conversion for CICS Web support.

a) Identify the character set into which CICS will convert the static response before sending it to the
web client.

HTML coded character sets lists the IANA character sets supported by CICS for code page
conversion.
b) Identify the IBM® code page (EBCDIC) in which the document template or z/OS UNIX file providing
the response body is encoded.
For a static response, this information is specified in the URIMAP definition for the request.
6. Decide on the URL that the web client uses for each request, including the scheme, host and path
components, and any query string.
See The components of a URL. URLs for CICS web support explains the factors and limitations to
consider in choosing a URL.
7. If you want to use path matching in the URIMAP definition, plan your request URLs and arrange the
names of your CICS document templates or the locations of your z/OS UNIX files to support it.

In path matching, a wildcard character is used in the path component of the URIMAP definition, and
also in the name of the CICS document template or z/OS UNIX file that is specified by the URIMAP
definition. The portion of the path that is covered by the wildcard character is used to select the
document template or z/OS UNIX file to provide the response.

a) For CICS document templates, the portion of the path that is covered by the wildcard character is
substituted as the last part of the template name. You can create a collection of document
templates with names that begin in the same way, and access them using request URLs whose
paths begin in the same way, through a single URIMAP definition.

b) For z/OS UNIX files, the portion of the path that is covered by the wildcard character is substituted
as the last part of the file name. You can store a number of these files in the same directory, and
access them using request URLs with paths that begin in the same way, through a single URIMAP
definition.

Bear in mind that because a URIMAP definition must specify a type of data content (the
MEDIATYPE attribute), a single URIMAP definition can handle only a group of z/OS UNIX files that
produce the same type of data content.

8. Decide on the port that is used for the requests, referring to

“Reserving ports for CICS web support” on page 54.

For HTTP, the default port number is 80, and, for HTTPS (with SSL), the default port number is 443.

Port numbers that are not the default for a scheme are specified explicitly in the URL of requests.

If you prefer, you can allow a request to use any port that is associated with CICS web support.

9. If you do not yet have a TCPIPSERVICE definition for the port on which the requests are received,

follow the procedure in “Creating TCPIPSERVICE resource definitions for CICS web support” on page
1009.

Use this definition to specify the security measures that you have selected for the port (such as the
use of SSL and basic authentication).

The name of the relevant TCPIPSERVICE definition is specified in the URIMAP definition for the
request. Specifying no TCPIPSERVICE definition means that requests matched by the URIMAP
definition can use any port for which a TCPIPSERVICE definition exists.

10. Set up a URIMAP definition to handle each request. Follow the procedures in “Creating a URIMAP
resource for CICS as an HTTP server” on page 113.

The URIMAP definition can identify either a z/OS UNIX file or a document template.
11. Check the error handling procedures for this CICS web support task.

a) Check the behavior of the analyzer program associated with the TCPIPSERVICE definition for the
port on which the requests are received. If URIMAP matching fails for a request, the request is
passed on to the analyzer program.

104 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtlt0.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtlt0.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtldy.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_uricomp.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_cwsurl.html

If the port is used only for static responses, the CICS-supplied default analyzer program
DFHWBAAX provides suitable error handling. Otherwise, the choice of analyzer program is likely
to depend on the requirements of user application programs, and you might need to customize it
to provide suitable error handling for static responses. See Analyzer programs in Developing
system programs.

b) Ensure that the user-replaceable web error programs that are involved in your architecture
provide appropriate responses to the web client.

See Web error programs.

CICS web support resources on z/0S UNIX
When you use z/OS UNIX files to provide static responses to requests from web clients, a CICS region that
receives those requests and provides the responses needs read access to the files and their directories.

If you have stored all the files relevant to each CICS region in a directory structure that is a sub directory
of the home directory for the CICS region, you can make the CICS region the owner of each directory and
file (with the appropriate owner permissions). If some z/0OS UNIX files are used by more than one CICS
region, use group permissions or access control lists (ACLs). The use of "other" permissions, which give
access to every z/OS UNIX user, is probably not suitable for CICS web support in a production
environment.

Giving web clients access to COMMAREA applications

You can use CICS web support to enable web clients to interact with CICS applications that use a
COMMAREA interface to communicate with other programs. A web-aware application program can link to
the application and use its output to provide HTTP responses. Alternatively, a converter program can
convert the input from the web client into a suitable COMMAREA and convert the output from the
application into an HTTP response.

Before you begin
Configure the base components of CICS web support, as described in Chapter 2, “Configuring CICS web
support components,” on page 53.

About this task
This task involves the following components of CICS web support and includes a number of subtasks.

« TCPIPSERVICE resource definitions
« URIMAP resource definitions
- COMMAREA application programs

- Either: Web-aware application programs, using the EXEC CICS WEB programming interface, that link to
the COMMAREA application programs and use their output

« Or: Converter programs that can provide suitable COMMAREA input and convert the output from the
application programs into an HTTP response

« Alias transactions to cover the user application programs involved in this process
« Analyzer program

« Security facilities

« Web error programs

Figure 12 on page 106 shows the architecture elements for this CICS web support task. HTTP request
and response processing for CICS as an HTTP server explains how the process elements work together.

Chapter 2. Configuring CICS web support components 105


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfhtl1q.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfhtl1q.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/administering/web/dfhtlh0.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_inprocess.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_inprocess.html

Request
¢ Line prooTTToTTromTTonrmmnm s URIMAP T

CICS
' Match to
' Request Line URIMAF
! definition
web -
i . *-
Client ' Reguest
' Body
URIMAP: URIMAP:
Application Mo match
E Raguest E Raquest
Analyzer [: Analyzer
ffed —
ﬁcc'\all program
l 1
Convarter Converter
specilied — program
[optianal) [Decode]
Usar-written
application

(not Web-aware)

!

Response
Body

Converter

program  —

[Encode]

Status Line

CICs Headers

generated

Z - ‘—L Headars |+—
WEb . ' Response | |
Client : Body

Response

Figure 12. HTTP responses from a COMMAREA application

Procedure

1. You can write a web-aware application program that handles the HTTP request and links to the
COMMAREA application program. Or you can write a converter program to convert the input from the
web client into a suitable COMMAREA and then convert the output from the application into an HTTP
response. Converter programs can either use the EXEC CICS WEB API commands to read the web

106 CICS TS for z/OS: Internet Guide



client request and produce the response, or they can work with the request and response in blocks of
storage.

a) If you want to use a web-aware application program, follow the steps in “Providing dynamic HTTP
responses with web-aware application programs” on page 98. Code your web-aware application
program to link to the COMMAREA application and use its output.

A web-aware application program cannot receive information that an analyzer program has
created to pass to the next processing stage (in a user token or shared work area). You have to
use a converter program. This limitation is not a concern when you are developing a new CICS
web support application.

b) If you want to use a converter program, follow the steps in this task.
2. Consider security issues for this CICS web support task.

CICS can implement HTTP basic authentication for a connection, where the user must supply an ID
and password. You can use the user ID to control access to individual resources used for application-
generated responses or static responses. If you need to protect information that is passed over the
Internet (including the user IDs and passwords that are used for basic authentication), consider using
Secure Sockets Layer (SSL). For more information, see Security for CICS web support.

3. Decide how the analyzer program associated with the TCPIPSERVICE definition is used, and select an
appropriate program. Refer to Analyzer programs in Developing system programs.

You can use URIMAP definitions or analyzer programs to map requests from web clients to
appropriate converter programs and user-written application programs.

Using URIMAP definitions (without an analyzer program) the listener task can directly attach user
transactions for fast arriving HTTP requests. The web attach task is bypassed, and performance
enhancement is gained by saving the CPU time needed for processing requests. For more
information, see Processing HTTP requests by using directly attached user transactions.

For non-web-aware applications, even if you have URIMAP definitions, you must use a customized
analyzer program in the processing path for the request in the following circumstances:

a) If the converter program is working with the request and response in blocks of storage, and you
require nonstandard code page conversion.

Converter programs do not have a mechanism for specifying code page conversion for blocks of
storage containing HTTP requests and responses. In the absence of an analyzer program, CICS
uses the standard settings described in Writing a converter program to convert the message body
supplied in the block of storage on both input and output. If this behavior is not suitable, you
either use an analyzer program in the processing path to specify alternative settings, or use the
EXEC CICS WEB API commands instead of working with the blocks of storage. See Code page
conversion for CICS Web support for more information.

b) If you need to communicate any information to a converter program in addition to the standard
input.
A user token is provided, which the analyzer and converter programs can use to exchange either a
small amount of information, or the address of a shared work area containing more information.

c¢) If you require monitoring or audit actions, which can be carried out by an analyzer program.

d) If you need to make dynamic changes to elements of the process such as the converter program
that is used, the application program that handles the request, or the alias transaction and user ID
used for the request.

If you do not need any of these functions, you can use the CICS-supplied default analyzer program,
DFHWBAAX, or the CICS-supplied sample analyzer program, DFHWBADX, to provide basic error
handling. DFHWBAAX is suitable where all the requests using this port are handled using URIMAP
definitions. DFHWBADX provides basic support for both requests using URIMAP definitions and
requests following the same process that CICS web support used before CICS TS 3.1.

4. Use the information in Converter programs to create a suitable converter program.

The converter program is called twice, first for the decode function, which examines the web client
request and any additional information supplied by the URIMAP definition or analyzer program, and
creates a suitable COMMAREA to pass to the application program. Next, the converter program is
called for the encode function, which receives the application program output and creates an HTTP

Chapter 2. Configuring CICS web support components 107


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/web/dfhtl6v.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfhtl1q.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/csol_bypass_cwxn.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfhtl1w.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl80.html

response. If more than one application program is to supply data, the converter program can call the
decode function repeatedly. Refer to .

5. Decide on the URL that the web client uses for each request, including the scheme, host and path
components, and any query string.

See The components of a URL. URLs for CICS web support explains the factors and limitations to
consider in choosing a URL.

6. Decide on the port that is used for the requests, referring to
“Reserving ports for CICS web support” on page 54.

For HTTP, the default port number is 80, and, for HTTPS (with SSL), the default port number is 443.
Port numbers that are not the default for a scheme are specified explicitly in the URL of requests.

If you prefer, you can allow a request to use any port that is associated with CICS web support.

7. Select an alias transaction ID for the relevant user application programs. The default alias transaction
is CWBA. To create your own alias transaction, see “Creating TRANSACTION resource definitions for
CICS web support” on page 112.

You can use the URIMAP definition or an analyzer program to specify an alias transaction for each
HTTP request.

If you are implementing resource level security using the user IDs of web clients, the user IDs are
applied to this transaction and need permission to access protected CICS resources and commands
that are used by the transaction.

8. Set up a URIMAP definition to handle each request. Follow the procedures in “Creating a URIMAP
resource for CICS as an HTTP server” on page 113.

You can pass HTTP requests directly to an analyzer program without using URIMAP definitions,
following the same process that CICS web support used before CICS TS 3.1. However, using URIMAP
definitions can make it easier to manage HTTP requests. Without URIMAP definitions, if you want to
change how CICS responds to a particular HTTP request, you need to change the logic in the analyzer
program. With URIMAP definitions, you can perform these changes dynamically as a system
management task.

Using URIMAP definitions (without an analyzer program) the listener task can directly attach user
transactions for fast arriving HTTP requests. The web attach task is bypassed, and performance
enhancement is gained by saving the CPU time needed for processing requests. For more
information, see Processing HTTP requests by using directly attached user transactions.

9. If you do not yet have a TCPIPSERVICE definition for the port on which the requests are received,
follow the procedure in “Creating TCPIPSERVICE resource definitions for CICS web support” on page
109.

Use this definition to specify the security measures that you have selected for the port (such as the
use of SSL and basic authentication).
The name of the relevant TCPIPSERVICE definition is specified in the URIMAP definition for the
request. Specifying no TCPIPSERVICE definition means that requests matched by the URIMAP
definition can use any port for which a TCPIPSERVICE definition exists.

10. Check the error handling procedures for this CICS web support task.

a) Check the behavior of the analyzer program associated with the TCPIPSERVICE definition for the
port on which the requests are received. If URIMAP matching fails for a request, the request is
passed on to the analyzer program.

For more information, see Analyzer programs in Developing system programs.

b) Ensure that the user-replaceable web error programs provide appropriate responses to the web
client.

Refer to Web error programs.

108 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_uricomp.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_cwsurl.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/csol_bypass_cwxn.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfhtl1q.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/administering/web/dfhtlh0.html

Defining resources for CICS as an HTTP server

You create some additional resource definitions for each CICS web support task that you want to perform.

About this task

The CICS-supplied resource definition group DFHWEB contains the following CICS web support
resources:

« Transaction definitions for CICS web support tasks (for example, CWBA and CWXN)
« CICS web support utility programs:

— The default analyzer program DFHWBAAX and the sample analyzer program DFHWBADX
— The web error programs DFHWBEP and DFHWBERX
« A temporary storage model, DFHWEB

The transient data queues for CICS web support messages, CWBO (for most messages) and CWBW (a
separate queue for warning header messages), are in the group DFHDCTG.

The resource definition group DFH$WEB contains most of the PROGRAM resource definitions and
URIMAP definitions for the sample CICS web support applications.

“Enabling CICS web support for CICS as an HTTP server” on page 97 gives guidance about the resource
definitions that you need for each task, and the following topics provide detailed information.

Creating TCPIPSERVICE resource definitions for CICS web support

Use TCPIPSERVICE resource definitions to define the association between ports and CICS services,
including CICS web support. Define and install a TCPIPSERVICE resource definition for each port that you
use for CICS web support.

About this task

Each TCPIPSERVICE definition that is active in a CICS system must specify a unique port number. CICS
uses the TCPIPSERVICE definition for a port to determine which CICS service is invoked when it receives
an inbound TCP/IP connection request on that port. Use the PROTOCOL attribute to identify the service.
Specify HTTP for standard CICS web support, and USER for non-HTTP requests that are handled using
CICS web support.

For CICS web support, create TCPIPSERVICE definitions for the default, or well-known, port numbers that
are used for Internet services. For HTTP, the default port number is 80, and, for HTTPS, the default port
number is 443. You can also use nonstandard port numbers.

Each TCPIPSERVICE definition can specify only one analyzer program and one transaction definition for
the web attach task. If you need to use more than one of these items, you must use different
TCPIPSERVICE definitions and, therefore, different ports.

CICS provides sample TCPIPSERVICE definitions for CICS web support in group DFH$SOT:

HTTPNSSL
CICS web TCPIPSERVICE with no SSL support

HTTPSSL
CICS web TCPIPSERVICE with SSL support

Important: Use the TCPIPSERVICE resource definition to specify the security measures that are applied
for each port. You can choose whether or not to use SSL, and, if you do use SSL, you choose the exact
security measures that are applied; for example, the authentication method, the sending of certificates by
client and server, and the encryption of messages. See Security for CICS web support for more
information about the security features that you can use to keep your CICS web support facility safe.

Chapter 2. Configuring CICS web support components 109


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/tcpipservice/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/web/dfhtl6v.html

Procedure

1. Identify a TCP/IP port to use for CICS web support.

You are recommended to reserve the port number for use by CICS web support. See “Reserving ports
for CICS web support” on page 54 for information on port usage.

2. Create TCPIPSERVICE resource.

When you set up URIMAP definitions for inbound HTTP requests on this port, specify the name of the
TCPIPSERVICE definition.

3. Use the STATUS attribute to specify whether CICS starts listening for this service immediately after
the definition is installed.

If you specify CLOSED, you must set the service open before it can be used. You can set the service
open or closed using the CEMT transaction or the SET TCPIPSERVICE system programming
command.

4. Specify the PORTNUMBER attribute as the number of the TCP/IP port that is covered by this
definition.

5. Use the HOST attribute to specify the dotted decimal or colon hexadecimal IP address on which the
TCPIPSERVICE listens for incoming connections. You can also use the IPADDRESS attribute to
specify the dotted decimal IP address for existing programs.

Alternatively, for configurations with more than one IP stack, you can specify INADDR_ANY to make
CICS try to bind to the port on every stack where it is defined. Or, if you have a multi-stack CINET
environment, and you want to assign affinity only to the default TCP/IP stack, you can specify
DEFAULT to do this.

The reference information about this TCPIPSERVICE resource definition attribute details some
additional considerations, which are important if you want more than one CICS region to share this
TCPIPSERVICE definition, or if you want more than one CICS region to bind to the port number that it
specifies.

6. Use the PROTOCOL attribute to specify that CICS web support handles requests on this port.

a) Specify HTTP for normal HTTP requests. HTTP requests might qualify for being processed by
directly attached user transactions, and bypassing the web attach task. For more information, see
Processing HTTP requests by using directly attached user transactions.

CICS forces HTTP if you specify ports 80 or 443. This option covers both HTTP with SSL and HTTP
without SSL. The SSL option specifies whether SSL is involved.

b) Specify USER for non-HTTP requests that are handled using CICS web support.

When you specify USER, CICS web support is used for handling the request, but no acceptance
checks are carried out for messages sent and received using this protocol. The requests are
flagged as non-HTTP and passed straight to the analyzer program.

URIMAP definitions are not used for these requests.

7. Specify the TRANSACTION attribute as the 4-character ID of the web attach task, which is normally
CWXN for HTTP requests or CWXU for non-HTTP (USER protocol) requests.

This task handles initial processing of a request. CICS provides CWXN as a default if you specify ports
80 or 443. If required for accounting or monitoring purposes, you can specify an alias of CWXN or
CWXU, both of which must run the program DFHWBXN.

8. Specify the URM attribute as the name of the analyzer program that is associated with this
TCPIPSERVICE definition.

For a non-HTTP (USER protocol) request, the analyzer program is always used.

For an HTTP request, the analyzer program is used to interpret the request if a URIMAP definition
specifies the use of an analyzer program, or if no URIMAP definition is present. You must specify an
analyzer program. You can select only one analyzer program for each TCPIPSERVICE definition, but
you can code it to handle any requests.

Analyzer programs in Developing system programs tells you about the basic support that your
analyzer program must provide if you intend to use URIMAP definitions to handle all your HTTP
requests. The architecture guidance in “Enabling CICS web support for CICS as an HTTP server” on
page 97 helps you to decide whether to involve the analyzer program for any particular HTTP request.

410 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/csol_bypass_cwxn.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfhtl1q.html

9.

10.

11.

12.

13.

14.

Use the SOCKETCLOSE attribute to specify how long CICS waits before closing the socket after
issuing a receive for incoming data on that socket.

NO means that the socket is open until data is received or until the web client closes it. To prevent
the socket from being blocked by a slow or broken web client, specify a timeout value rather than
specifying NO. On the first receive command issued by the web attach task after a connection is
made, this timeout value is ignored, and the task waits to receive data from the web client for a
period of time determined by CICS (30 seconds for HTTP). This delay prevents a socket connection
from being closed as soon as it is started, even if no data is immediately available, and so prevents a
connection reset error at the web client.

Note: For CICS web support, a zero setting for SOCKETCLOSE means that a persistent connection
cannot be maintained, even if the web client requests it. This setting is not compliant with the
HTTP/1.1 specification. Only specify SOCKETCLOSE(0) with the HTTP protocol if you have a special
requirement for it in a CICS region that is not currently handling external requests, for example in a
test environment.

Use the BACKLOG attribute to specify the number of connections that can be queued before TCP/IP
starts to reject incoming requests from web clients.

If the value of BACKLOG is less than the value of the TCP/IP attribute SOMAXCONN, the
TCPIPSERVICE is opened with the backlog value specified by the BACKLOG attribute. If the value of
BACKLOG is greater than SOMAXCONN, the TCPIPSERVICE is opened with the backlog value
specified by SOMAXCONN. The default is 0, which means that the TCPIPSERVICE is opened with the
backlog value specified by SOMAXCONN.

The default is 1. A value of zero disables incoming connection requests. If the value of BACKLOG is
greater than the TCP/IP configuration value for SOMAXCONN, TCP/IP uses the value specified by the
SOMAXCONN attribute.

Use the MAXPERSIST attribute if you need to specify a limit on the number of persistent connections
from web clients that the CICS region allows for this port at any one time.

The default is that there is no limit, which is the normal behavior for an HTTP/1.1 server. Only specify
alimit in a region where CICS as an HTTP server has experienced performance problems due to long-
lived persistent connections. When the limit is reached, CICS implements connection throttling. How
CICS web support handles persistent connections explains what happens if you specify a limit.

Note: A zero setting for MAXPERSIST means that no web clients are allowed persistent connections.
This setting is not compliant with the HTTP/1.1 specification. Only specify MAXPERSIST(O) if you
have a special requirement for it in a CICS region that is not currently handling external requests, for
example in a test environment.

Use the MAXDATALEN attribute to specify the maximum length of data that can be received on this
connection.

The default value is 32 KB and the maximum is 524 288 KB. This option helps to guard against denial
of service attacks involving the transmission of large amounts of data.

Use the SSL attribute to specify whether the secure sockets layer (SSL) is used for this port.

YES means that SSL is used, and CICS sends a server certificate to the web client. CLIENTAUTH
means that SSL is used, and that the web client is requested to send a client certificate to CICS, in
addition to CICS sending a server certificate to the web client. ATTLSAWARE means CICS queries the
connection to see whether AT-TLS is active. CICS retrieves the client certificate if the partner
provided one. ATTLSAWARE mandates PROTOCOL(HTTP). CICS provides YES as a default if you
specify port number 443, and forces NO if you specify port number 80.

Security for CICS web support explains what to do if you are using SSL.

HTTP requests received by TCPIPSERVICE with SSL(NO) and SSL(ATTLSAWARE) might qualify for
being processed by directly attached user transactions, and bypassing the web attach task. For more
information, see Processing HTTP requests by using directly attached user transactions.

If you have specified SSL(YES) or SSL(CLIENTAUTH), use the CERTIFICATE attribute to specify the
label of an X.509 certificate that CICS uses as the server certificate during the SSL handshake.

Chapter 2. Configuring CICS web support components 111


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_cwspersistent.html#dfhtl_cwspersistent
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_cwspersistent.html#dfhtl_cwspersistent
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/web/dfhtl6v.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/csol_bypass_cwxn.html

15.

16.

If this attribute is omitted, the default certificate defined in the key ring for the CICS region user ID is
used. The certificate must be stored in a key ring in the external security manager database. Security
for CICS web support has more information about using certificates.

Use the AUTHENTICATE attribute to specify the level of authentication that is used for web clients
making requests on this port.

Security for CICS web support explains authentication and identification.

a) Specify NO if the web client is not required to send authentication or identification information.
If the client sends a valid certificate that is already registered to the security manager, CICS can
use it.

b) Specify BASIC to make CICS attempt HTTP basic authentication, where CICS requests a user ID
and password from the web client.

HTTP basic authentication explains basic authentication in more detail.

c) Specify CERTIFICATE to use SSL client certificate authentication.

The web client must send a valid certificate that is already registered to the security manager and
associated with a user ID. If a valid certificate is not received, or the certificate is not associated
with a user ID, the connection is rejected.

You must specify SSL(CLIENTAUTH) or SSL(ATTLSAWARE) if you use this option.
d) Specify AUTOREGISTER to use SSL client certificate authentication with auto-registration for the
security manager.

The web client must send a valid certificate. If CICS finds that the certificate is not yet registered
to the security manager, HTTP basic authentication is used to request a user ID and password,
and CICS uses this information to register the certificate.

You must specify SSL(CLIENTAUTH) or SSL(ATTLSAWARE) if you use this option.

e) Specify AUTOMATIC to use SSL client certificate authentication with auto-registration for the
security manager (as for the AUTOREGISTER option), or, if no certificate is sent, to use HTTP basic
authentication (as for the BASIC option).

Use the REALM attribute to specify the realm that is used for HTTP basic authentication.

The user sees the realm during the process of basic authentication. It identifies the set of resources
to which the authentication information requested (that is, the user ID and password) apply.

a) If you require different authentication information for resources delivered using different
TCPIPSERVICE definitions, specify different realms to make this requirement clear to the end
user.

b) If users use the same authentication information across your resources, you can specify the same
realm on multiple TCPIPSERVICE definitions.

c) If you do not specify the REALM attribute, the default realm is used.
The default realm is:

realm="CICS application aaaaaaaa"

where aaaaaaaa is the applid of the CICS region.

Creating TRANSACTION resource definitions for CICS web support

TRANSACTION resource definitions define alias transactions for CICS web support. An alias transaction
handles the later stages of processing for an HTTP request, including receiving the request, executing the
application business logic, construction of the HTTP response, and code page conversion of the HTTP
response. Alias transactions can also be used for processing non-HTTP requests.

About this task

CICS supplies a resource definition for a default alias transaction, CWBA. You might want to use
alternative alias transaction names for these purposes:

« Auditing, monitoring, or accounting

112 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/web/dfhtl6v.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/web/dfhtl6v.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/web/dfhtl6v.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl2a.html

Resource and command checking for security

Allocating initiation priorities

Allocating DB2 resources

Assigning different runaway values to different CICS application programs
Transaction class limitation

You can set up any number of alias transaction definitions. You can use the URIMAP definition or an
analyzer program to specify the alias transaction that is required for a particular request.

Important: Make sure that the priorities of the alias transactions used for application-generated
responses (like CWBA) are equal to, or higher than, the priority of the transactions associated with web
attach tasks (like CWXN or CWXU). See Priorities for CICS web support transactions (CWXN, CWXU,
CWBA, CW2A).

TRANSACTION resource definitions has instructions for this type of resource definition. In addition, note
these points:

Procedure

- Base your alias transaction definition on the definition of CWBA, making any changes that you require,
such as changes to priority.

The definition of CWBA is:

DEFINE TRANSACTION(CWBA) GROUP (DFHWEB)
PROGRAM (DFHWBA) TWASIZE(O)
PROFILE (DFHCICST) STATUS (ENABLED)
TASKDATALOC (BELOW) TASKDATAKEY (USER)

RUNAWAY (SYSTEM) SHUTDOWN (ENABLED)
PRIORITY (1) TRANCLASS (DFHTCLOO)
DTIMOUT (NO) INDOUBT (BACKOUT)
SPURGE (YES) TPURGE (NO)

RESSEC (NO) CMDSEC (NO)

« Your alias transaction definition must use the CICS-supplied alias program DFHWBA.
The alias program calls the user application program that you have specified to process the request.
= Your alias transaction definition must be a local transaction.

Creating a URIMAP resource for CICS as an HTTP server

When CICS is processing inbound requests as an HTTP server, URIMAP resources specify how HTTP
requests are processed.

About this task
You can generate a response to an HTTP request in the following ways:

« You can provide a dynamic response by writing a web-aware application program

« You can provide a static response in a CICS document template or a z/OS UNIX file

Whichever method you use, you must create a URIMAP resource. Many of the attributes you specify are
common to both methods; other attributes apply to one method or the other.

Specifying common URIMAP attributes for CICS as an HTTP server
A URIMAP resource definition defines how HTTP requests are processed. Many of the attributes specified
in a URIMAP apply to all configurations is which CICS acts as an HTTP server.

About this task
A URIMAP is a resource that matches the URLs that are received on inbound HTTP requests, to provide
information about how to process the requests.

Chapter 2. Configuring CICS web support components 113


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/web/dfht3no.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/web/dfht3no.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/transaction/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/urimap/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/urimap/dfha4_summary.html

Procedure

1. Use the STATUS attribute to specify whether the URIMAP definition is installed in an enabled or
disabled state.

2. Specify a USAGE attribute of SERVER (CICS as an HTTP server).

3. Identify the URL to be processed by the URIMAP.

The URL represents a resource that you plan to make available to a web client through CICS, and
consists of several components.

For example, in http://www.example.com/software/index.html?n=John&s=Smith:
« The scheme componentis http
« The host component is www . example.com
« The path component is /software/index.html
« The query string is ?2n=John&s=Smith
The components of a URL are described in The components of a URL.
4. Specify the components of the URL in the corresponding attribute of the URIMAP resource.

a) Specify the scheme component in the SCHEME attribute.

You can specify values of HTTP or HTTPS. Do not include the delimiters // following the scheme
component. If you specify SCHEME(HTTP), the URIMAP accepts web client requests made using
either the HTTP scheme or the more secure HTTPS scheme. If you specify SCHEME(HTTPS), the
URIMAP accepts only web client requests made using the HTTPS scheme.

b) If you need to distinguish between URLs containing different host names, specify the host
component in the HOST attribute.

When you specify the host component:

« Do not include a port number.
 You can specify a host name or an IPv4 or IPvé6 address.
 You can specify a single asterisk (*).

Use this option if you are not using multiple host names or if you do not want to distinguish
between hosts names. If you use this option, the URIMAP definition matches any host name on
incoming URLs.

c) Specify the path component in the PATH attribute.

« You can omit the delimiter / (forward slash) at the beginning of the path component, because
CICS automatically provides it.

« You can use an asterisk as a wildcard character at the end of the path. For example:

— If you specify /software/*, the URIMAP resource matches all requests with paths that start
with the string /software/.

— If you specifying /*, the URIMAP resource matches all requests directed to the host named in
the HOST attribute.

If more than one URIMAP resource containing a wildcard matches an HTTP request, the most
specific match is taken.

« If inbound URLs contain a query string, and you want to apply the URIMAP definition to a specific
query, include the query string, with the leading question mark (?) character, in the PATH
attribute. You can specify a query string following a path component that includes an asterisk as a
wildcard, but the query string cannot itself include an asterisk: you must specify the exact query
string. If you do not specify a query string in the URIMAP definition, matching takes place only on
the path, and any query string in the request is ignored.

- For a static response with a CICS document template, you can use a query string to select the
URIMAP definition or it can be substituted into the document template.

5. Optional: In the TCPIPSERVICE attribute, specify the name of the TCPIPSERVICE definition that
defines the inbound port to which this URIMAP definition relates.

114 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_uricomp.html

If you do not specify this attribute, the URIMAP definition applies to a matching HTTP request on any
inbound port.

When a URIMAP that specifies SCHEME( HTTPS) matches an inbound request, CICS checks that the
inbound port used by the request is using SSL. If SSL is not specified for the port, the request is
rejected with a 403 (Forbidden) status code. When the URIMAP definition applies to all inbound ports,
this check ensures that a web client cannot use an unsecured port to access a secured resource. No
check is carried out for a URIMAP definition that specifies HTTP as the scheme, so web clients can use
either unsecured or secured (SSL) ports to access these resources.

What to do next
Specify further attributes, depending on how you intend to provide the response to an inbound HTTP
request.

« You can provide a dynamic response by writing a web-aware application program
» You can provide a static response in a CICS document template or a z/OS UNIX file

Specifying URIMAP attributes for an application response to HTTP requests
Some of the attributes specified in a URIMAP apply only when an application program is used to supply
the response to HTTP requests.

About this task

The URIMAP resource has a number of attributes that you can use when you use an application program
to supply the response to an HTTP request.

Procedure

1. Specify the name of the application program that provides the response, in the PROGRAM attribute.
The HTTP request is passed to the program you specify.

Alternatively, you can specify an analyzer or converter program that supplies the name of the
application program. The analyzer or converter program can also change the name of the application
program that you specify in this attribute.

2. Specify the name of an alias transaction in the TRANSACTION attribute.

The alias transaction is a transaction defined to CICS under which the program that provides the
response is run. The default alias transaction is CWBA.

If you use an analyzer program, it can supply or change the name of the alias transaction.
3. Specify a default user ID under which the alias transaction can be attached, in the USERID attribute.

When authentication is required for the connection, so that CICS requests an authenticated user ID
directly from the client, the default user ID is not used. The authenticated user ID of the client is used
instead, or if authentication fails, the request is rejected. If you use an analyzer program, it can replace
a default user ID or an authenticated user ID with another user ID, or provide one. If no user ID is
specified, the default user ID is the CICS default user.

4. Specifying ANALYZER(NO) is required for HTTP requests to be eligible to be processed by directly
attaching the user transaction. Directly attaching the user transaction removes the web attach task
from the processing and results in a reduction in CPU usage. For more information, see Processing
HTTP requests by using directly attached user transactions.

5. If you want to use an analyzer program, specify ANALYZER(YES). The analyzer program is specified in
the URM attribute of the TCPIPSERVICE resources to which this URIMAP definition relates. If you use
an analyzer program, you can still specify the PROGRAM, TRANSACTION, USERID and CONVERTER
attributes. The values that you specify for these attributes are used as input to the analyzer program,
but they can be overridden by it. Alternatively, you can omit these attributes and let the analyzer
program specify them.

6. If want to use a converter program, specify the name of the program in the CONVERTER attribute.

Chapter 2. Configuring CICS web support components 115


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/urimap/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/csol_bypass_cwxn.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/csol_bypass_cwxn.html

Unlike the analyzer program, the converter program and the TCPIPSERVICE definition are not
associated. If a converter program is used, you can still specify the PROGRAM attribute. The value that
you specify for this attribute is used as input to the converter program. The converter program can
change the PROGRAM attribute to specify a different application program to process the request.

Specifying URIMAP attributes for a static response to HTTP requests
Some of the attributes specified in a URIMAP apply only when you use a CICS document templates or a
z/OS UNIX file to provide a static response to HTTP requests.

Before you begin
If you are using path matching, make sure that you specify an asterisk character (*) when you specify the
PATH attribute in the URIMAP resource.

About this task

The URIMAP resource has a number of attributes that you specify when you provide a static response to
HTTP requests.

The URIMAP resource does not control security for CICS document templates and z/OS UNIX files
delivered as static responses. For information about using basic authentication and resource level
security to secure these items, see Security for CICS Web support.

Procedure

1. Specify the data content of the static response in the MEDIATYPE attribute.
For example, specify text/html or text/xml for HTML and XML data content respectively. See IANA
media types and character sets for more information about media types.

This attribute is required, and there is no default value.
CICS uses the information to create a Content-Type header for the response.
2. If the MEDIATYPE attribute specifies a text type of data content, specify the following attributes which
are required for code page conversion.
a) Specify the target character set in the CHARACTERSET attribute.

The target character set is the character set into which CICS converts the static response before
sending it to the web client. CICS does not support all the character sets named by IANA. HTML
coded character sets lists the IANA character sets that are supported by CICS.

This information is included in the Content-Type header of the response.

b) Specify the IBM code page (EBCDIC) in which the static document is encoded in the
HOSTCODEPAGE attribute.
For other types of content, there is no code page conversion.

3. If you are using a CICS document template to provide the response, specify the name of the document
template in the TEMPLATENAME attribute.
The name you specify is the name of the DOCTEMPLATE resource that defines the attributes of the
document template.
If you want to use path matching, include an asterisk as a wildcard character at the end of the name of
the CICS document template. CICS takes the portion of each HTTP request path that is covered by the
wildcard character and substitutes it as the last part of the template name.

URIMAP attributes has an example showing how path matching works.

If a query string is present on the URL, CICS passes the content of the query string into the named
CICS document template as a symbol list. CICS passes the content only when the query string has not
already been used in the PATH attribute of the URIMAP definition.

4. If you are using a z/OS UNIX file to form the static response, specify the name of the file in the
HFSFILE attribute.

116 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/urimap/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/web/dfhtl6v.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_iana.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_iana.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtldy.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtldy.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/urimap/dfha4_attributes.html

You can specify the z/OS UNIX file as an absolute (fully qualified) path, or as a path relative to the
HOME directory of the CICS region user ID. An absolute path begins with a slash character (/); an
relative path does not.

The CICS region user ID must have permissions to access z/OS UNIX, and the z/OS UNIX directory
containing the file, and the file itself. For more information, see Giving CICS regions access to z/0S
UNIX System Services and HFS directories .

If you want to use path matching, include an asterisk as a wildcard character at the end of the path for
the z/OS UNIX file. CICS takes the portion of each HTTP request path that is covered by the wildcard
character, and substitutes it as the last part of the z/OS UNIX file path. You must explicitly specify at
least one level of the directory structure; you cannot use an asterisk on its own in the HFSFILE
attribute.

URIMAP definition attributes has an example showing how path matching works.

You cannot substitute a query string into a z/OS UNIX file.

CICS web support and 3270 display applications

When a 3270 transaction is accessed by a web client, CICS can display the output as an HTML form. Use
the variants of the Web Terminal Translation Application (DFHWBTTA, DFHWBTTB, or DFHWBTTC) to
provide web clients with access to applications that were originally designed to use the 3270 display
system. CICS web support for 3270 applications supports the SEND, CONVERSE, and RECEIVE terminal
control commands.

You can create an HTML form from the output of a 3270 transaction in one of two ways:

- For applications that use BMS, an HTML template is generated from a BMS map and stored in the
template library. You can customize the generation of the template. However, if the only changes you
need to make to the generated HTML can be accommodated in the heading or footing section, you do
not need to generate a template from the BMS map, because the map can be processed at execution
time to generate the HTML form.

« For applications that do not use BMS, the outbound 3270 data stream is processed at execution time to
generate the HTML form.

You can be use the Web Terminal Translation Application to display the HTML forms to a web browser.

Note: The Web Terminal Translation Application operates at HTTP/1.0 level. It does not make full use of
the facilities available in CICS web support, such as the EXEC CICS WEB API, and so does not comply
with the HTTP/1.1 specification:

- Requests from the web client and responses from the application are not checked against the HTTP
protocol specification.

« CICS does not provide HTTP/1.1 responses, in normal or error situations, even if the client is at
HTTP/1.1 level.

All three variants of the Web Terminal Translation Application support nonconversational, conversational,
and pseudoconversational transactions.

« DFHWBTTA and DFHWBTTB perform the translation between 3270 data streams and HTML and
between templates generated from BMS maps and HTML. Use DFHWBTTA if your HTML templates are
32,767 bytes (32 KB) of data or smaller, and use DFHWBTTB if your HTML templates are larger than 32
KB. (Using DFHWBTTB for smaller HTML templates incurs an unnecessary performance degradation.)

« DFHWBTTC performs the translation between BMS maps and HTML when no template is generated.
BMS maps used in this way must specify TERM=3270 or omit the TERM parameter. DFHWBTTC
supports HTML output of any length. Use DFHWBTTC if you do not need to generate HTML templates.

DFHWBTTB and DFHWBTTC are aliases for DFHWBTTA; DFHWBTTA is called in each case. CICS uses the
name by which the program is called to determine which processing is needed.

Chapter 2. Configuring CICS web support components 117


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/urimap/dfha4_attributes.html

DFHWBTTA, DFHWBTTB, and DFHWBTTC generate HTML that conforms to the HTML 3.2 specification. If
you use a web browser that does not support HTML 3.2, some functions might not work correctly.

HTML generated for terminals having a page size that results in a field position greater than 4095 (x'FFF")
might not function correctly, particularly when using DFHWBTTC. The exception is when using old-style
templates. (Old-style templates are ones generated by DFHWBTLG from CICS TS 1.2 or CICS TS 1.3
before PTF UQ53534). Code has been supplied to tolerate BMS sends of such templates when using
DFHWBTTA or DFHWBTTB, but not DFHWBTTC.

You can create URIMAP definitions that specify DFHWBTTA, DFHWBTTB, or DFHWBTTC as the program
to be called to process a request (PROGRAM attribute). The method that the web client uses to access the
program is similar, but the use of URIMAP definitions gives you an online administration facility that can
be used to prevent or redirect requests. When a URIMAP definition is used, the use of an analyzer
program is optional. Refer to “URL path components for 3270 display applications” on page 119.

CICS web support for 3270 applications supports the SEND, CONVERSE, and RECEIVE terminal control
commands. It also supports minimum function BMS and the SEND TEXT command. The DEFRESP option
on the SEND and CONVERSE commands is ignored. Application recovery might be affected.

CICS web support does not support partitions, logical devices codes, magnetic slot readers, outboard
formatting, or other hardware features. You can use detectable fields with light pen support.

CICS web support processing for 3270 application programs
CICS web support processes a terminal-oriented transaction in this sequence.

Converter:
Decode
- function
3
C|C5 @ QBridge e}iit—@ 3_2?[]_
weh ODFHWETTA program application
support [ 6 DFHWEL T program
user transaction
Converter:
Encode
e function
L 4
Alias transaction

Figure 13. How CICS web support interacts with a 3270 application program

These steps are shown in the figure:

1. Optionally, a converter program constructs the input that is passed to program DFHWBTTA.

2. DFHWBTTA attaches the user's transaction, specifying DFHWBLT as the bridge exit program, and waits
for a response from DFHWBLT. The user's transaction runs in a 3270 bridge environment.

3. The bridge exit sets up a 3270 environment for the user's application program.
4. The application program processes the input and constructs the 3270 output.
5. The bridge exit interprets the 3270 output and passes the HTTP response to DFHWBTTA.

118 CICS TS for z/OS: Internet Guide



6. Optionally, a converter program modifies the output that is passed to the web client.

When you use CICS web support with 3270 applications, the application program runs under its own
transaction, and not under the alias transaction.

URL path components for 3270 display applications

To call a CICS 3270 application from a web browser, you enter a URL with a path component that starts
by calling the application program name DFHWBTTA, DFHWBTTB, or DFHWBTTC, with an appropriate
alias transaction and converter program (if required). This alias transaction does not apply to the 3270
application, which runs under its own transaction.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

Using an analyzer program
If you are using an analyzer program like the CICS-supplied sample analyzer DFHWBADX to handle
requests, the path component of the URL includes the name of the application program (DFHWBTTA,
DFHWBTTB, or DFHWBTTC). It also includes the name of any converter program that you are using
and the name of the alias transaction for request processing, such as the default CICS-supplied alias
transaction CWBA. As explained in CICS-supplied sample analyzer program DFHWBADX, these
elements of the path are extracted by the analyzer program and used to start subsequent processing
stages.

Using a URIMAP definition
If you are using a URIMAP definition to handle requests, the path component of the URL is specified in
the PATH attribute. With URIMAP definitions, the path component of the URL does not need to include
explicit information about the application program, converter program, and alias transaction, although
it can still do so. You can specify all these elements in the URIMAP definition, using the PROGRAM,
CONVERTER, and TRANSACTION attributes. You can then replace this part of the path component by
any path of your choice. To satisfy the requirements of DFHWBTTA, use an asterisk as a wildcard
character at the end of the path that you specify in the URIMAP definition. The wildcard allows the
remainder of the path component to be varied to control DFHWBTTA.

Using both a URIMAP definition and an analyzer program
You can use an analyzer program in the processing path for a request by specifying the
ANALYZER(YES) option in the URIMAP definition. The analyzer program can dynamically modify the
converter program, alias transaction ID, and program name that are specified by the URIMAP
definition. DFHWBTTA can see these changes.

After providing the information needed to call the application program, the next part of the path
component of the URL provides control information to DFHWBTTA:

« A keyword to specify if unformatted mode is used
« The transaction ID of the 3270 application that you want to use
« An input parameter for the specified transaction, using plus signs (+) as a delimiter

»— | — ignored L J | — transactionID —»
/ — UNFORMAT

E < ] L ? — token —J
+ — parameter

Figure 14. Syntax of the path interpreted by DFHWBTTA

DFHWBTTA interprets the path component of the URL as follows:

ignored
The first part of the path is ignored by DFHWBTTA. This part is interpreted by the analyzer or matched
to a URIMAP definition, to provide the information needed to call the application program.

Chapter 2. Configuring CICS web support components 119


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfhtl1s.html

UNFORMAT
The 3270 display can operate in two modes: formatted mode and unformatted mode. If this keyword
is present, DFHWBTTA simulates a 3270 display operating in unformatted mode. If this keyword is
omitted, DFHWBTTA simulates a 3270 display operating in formatted mode.

For more information, see Unformatted mode .

transaction ID
On the initial request, this information specifies the CICS transaction to be run. This element of the
path is ignored on a continuation request.

parameter
Specifies an input parameter for the transaction. Use plus signs (+), not spaces, as a delimiter to
separate the transaction ID and this data, and between elements of this data.

token
This information is ignored by DFHWBTTA. It can be used by an analyzer program.

Always code the URL in this form.

For example, if you are using the CICS-supplied analyzer program DFHWBADX, you can use the following
URL path to issue the CEMT INQ TAS command:

/cics/cwba/dfhwbtta/CEMT+INQ+TAS

« cicsis used toindicate that no converter program is required.

cwba is the name of the alias transaction for request processing.

dfhwbtta is the name of the application program.
CEMT+INQ+TAS tells DFHWBTTA to access the CEMT transaction and issue the INQ TAS command.

Alternatively, you can set up a URIMAP definition that includes the following attributes:

Path: /terminal/*
Transaction: CWBA
Program: DFHWBTTA

With this URIMAP definition enabled, you can use the following URL path to issue the CEMT INQ TAS
command:

/terminal /CEMT+INQ+TAS
« terminal matches the URIMAP definition, which specifies the name of the alias transaction and
application program.

« CEMT+INQ+TAS isignored by the URIMAP definition, but tells DFHWBTTA to access the CEMT
transaction and issue the INQ TAS command.

Initial and continuation requests

DFHWBTTA distinguishes two types of HTTP requests by their context in a transaction: initial requests
and continuation requests.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

Initial requests
The initial request initiates a CICS transaction. Send the initial request in one of these ways:

« Type the URL explicitly.
« Select a link in an HTML page.
« Select a button in an HTML form. Any data entered in the form is ignored.

Continuation requests

Continuation requests continue an existing CICS transaction. Send a continuation request in this way:

120 CICS TS for z/OS: Internet Guide



« Select a button in an HTML form that was displayed as a response to the previous request.

Continuation requests use the HTML POST method; form data is transmitted in the entity body of the
HTML request.

In a conversational or pseudoconversational transaction, with several interactions between a web client
and CICS, one initial request is followed by one or more continuation requests. Simpler transactions, with
just one interaction, have one initial request and no continuation request.

A hidden element (DFH_STATE_TOKEN) in the HTML form displayed by the initial request and returned by
subsequent requests distinguishes between initial requests and continuation requests and associates
continuation requests with the correct transaction.

The transaction ID on continuation requests
On a continuation request, the URL is coded in the form displayed by the previous request. However, the
transaction ID coded in the URL is ignored on a continuation request.

Instead, the transaction is determined in the following way:

« When the continuation request is part of a conversational transaction, the same transaction continues
execution.

« When the continuation request is part of a pseudoconversational transaction, different transaction IDs
are used:

— If the previous transaction ended with an EXEC CICS RETURN command with the TRANSID option,
the specified transaction ID is used.

— If the previous transaction did not specify a transaction ID on its EXEC CICS RETURN command, but
the AID is associated with a transaction ID, that transaction ID is used.

— If no transaction ID was specified on the EXEC CICS RETURN command, and no transaction ID is
associated with the AID, CICS obtains the transaction ID from the HTML form.

The transaction ID in an HTML form
When a transaction is attached from a 3270 display, CICS expects to find the transaction ID in the first
modified field in the 3270 data stream.

The order in which web clients transmit form data is not always predictable, so CICS uses a mapping
between the name of the form field and the corresponding position on the 3270 screen:

« For transactions that do not use BMS maps, the mapping uses the field name directly, because the
name reflects the position of the field on the 3270 screen.

« For transactions that use BMS maps, the field names do not always reflect the positions on the 3270
screen, and an indirect mapping is used. The mapping uses the hidden variables DFH_NEXTTRANSID. n.
When an HTML template is created from a BMS map, up to five variables are created. The value of each
variable is the name of an input field, in sequence of 3270 buffer position.

When CICS receives an HTTP request, it examines each DFH_NEXTTRANSID field in turn, to determine
the name of the input field to which it refers and whether the HTTP request contains a value for the
field. If it does, because the user has modified it, it is therefore assumed to contain the transaction ID of
the next transaction.

When a screen is constructed by merging the output from several BMS and non-BMS SEND commands,
in some situations input fields are suppressed. See “How the footing section is chosen” on page 144 for
more information. So that CICS can correctly identify the transaction ID in the 3270 data stream, ensure
that input fields that might contain the transaction ID are not suppressed in the merged HTML page.

HTML templates generated from BMS maps

The 3270 display system and HTML forms have a number of similarities. BMS map templates can
represent the features of the 3270 display.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

Chapter 2. Configuring CICS web support components 121



The features of the 3270 display system have many parallels with HTML forms:

« In both cases, the display area can contain fixed text and areas where the user can enter data.

« The AID keys on the 3270 keyboard have a similar function to the buttons displayed on an HTML form.
« In both cases, you can detect whether the user has modified the contents of a data entry field.

Templates generated from BMS maps contain a number of elements to represent the features of the
3270 display:
« Protected fields in the map are displayed as typical HTML text.

- Unprotected fields in the map are displayed as text input elements. CICS gives each element a 2-part
name, which can be up to 32 characters long:

— The first part of the name is 11 characters long, and has the following form:
Frrcccllll_

where

- rrisa 2-digit number that denotes the row in which the field is displayed on a 3270 screen.

- cccis a 3-digit number that denotes the column in which the field is displayed on a 3270 screen.
- 1111 is a 4-digit number that denotes the length of the field.

— For BMS fields that are named in the map, the second part consists of the name used in the map,
truncated if necessary to 21 characters.

— For BMS fields that are unnamed, the second part is of the form DFH_nnnn where nnnn is a 4-digit
number. The fields are numbered sequentially as they are encountered in the BMS map.

For example, suppose that the third unnamed and unprotected field is located at row 2 and column 11
of the screen, and has a length of 16 characters. The generated 2-part name is:

F020110016_DFHO003

Now suppose that the same field has a name of TOTAL_MONTHLY_PURCHASES in the BMS map. The
name that CICS generates for the HTML element is:

FO020110016_TOTAL_MONTHLY_PURCHAS

Note: The sequence in which fields are displayed on the 3270 screen might not be the same as the
sequence in which they are coded in a BMS map definition. When the corresponding template is
displayed on a web client, the fields are displayed in the sequence in which they are coded.

- Each attention key supported by the 3270 display is simulated as a submit button. The buttons are
named:

— DFH_PFO1 through DFH_PF24
— DFH_PA1 through DFH_PA3
— DFH_ENTER, DFH_CLEAR

When the user selects one of these buttons, the corresponding variable is transmitted in the HTTP
request. CICS uses the variable to determine which AID to simulate in the 3270 application.

An additional submit button named DFH_PEN is used with detectable fields.

« Detectable fields are simulated as text elements with a preceding check box. Refer to “Using detectable
fields” on page 129.

« A hidden element (DFH_STATE_TOKEN) is used to maintain the display state seen by the application
over a number of interactions with the web client.

« A hidden element (DFH_CURSOR) and a JavaScript function (dfhinqcursox ()) cooperate to return the
cursor position to the application.

« A series of hidden elements (DFH_NEXTTRANSID.1 to DFH_NEXTTRANSID. n) are used to capture a
transaction ID entered in a web client field.

122 CICS TS for z/OS: Internet Guide



HTML pages generated from 3270 data streams

For applications that do not use BMS, CICS web support generates an HTML page in three parts: a
heading section, a screen image section, and a footing section.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

The heading section

CICS web support generates the following heading section:

<!doctype html public "-//W3C//DTD HTML 3.2//EN">
<html>
<STYLE TYPE="text/css">
<l--
TABLE, TR, TD
i padding: Omm 1
TABLE
¥ width: 60% t
-->
.BRIGHT
ifont-weight: bold}
ifont-family: courier?
.INPUT
ffont-family: couriert
</STYLE>
<head>
<title>CICS web support screen emulation - tranid</title>
<meta name="generator" content="CICS Transaction Server/2.2.0">
<script language="JavaScript">
<l--
function dfhsetcursor(n)
ifor (var i=0;i<document.form3270.elements.length;i++)
$if (document.form3270.elements[i].name == n)
$document.form3270.elements[i].focus();
document.form3270.DFH_CURSOR.value=n;
breakttt
function dfhinqcursor(n)
//{document.form3270.DFH_CURSOR.value=n}
-->
</script>
</head>
<body onLoad="dfhsetcursor('&DFH_CURSORPOSN;"')">

You can modify the appearance of the page by providing your own heading section. Refer to “Modifying
the output from DFHWBTTA” on page 125.

The screen image section

This section of the HTML page is generated directly from an internal representation of a 3270 screen
image. Its size is determined from the DEFSCREEN and ALTSCREEN definitions on the FACILITYLIKE
terminal definition associated with your transaction. It contains the following elements:

Normal HTML text
Simulates protected fields

Text input elements
Simulate unprotected fields. Each element is given an 11-character name, and it has the following
form:

Frrcccllll_

where

- rrisa 2-digit number, which denotes the row in which the field is displayed on a 3270 screen
e cccis a 3-digit number, which denotes the column in which the field is displayed on a 3270 screen
e 1111 is a 4-digit number, which denotes the length of the field

For example:

Chapter 2. Configuring CICS web support components 123



- Afield at row 1 and column 1 on a 3270 display, and which has a length of 78 bytes is named:

FO10010078_

Text elements with a check box
Simulate detectable fields. Refer to “Using detectable fields” on page 129.

Hidden elements
A hidden element named DFH_STATE_TOKEN maintains the display state seen by the application over
a number of interactions with the web client.

A hidden element (DFH_CURSOR) and a JavaScript function (dfhingcursor()) cooperate to return
the cursor position to the application. CICS uses the JavaScript focus () method to position the
cursor in the input box or field specified by DFH_CURSOR. Note that focus () cannot position the
cursor over a particular character in the input box or field, but only at the first character position.

<!doctype html public "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<title>CICS web support screen emulation - tranid</title>
<meta name="generator" content="CICS Transaction Server/2.1.0">
<script language="JavaScript">
<=
function dfhsetcursor(n)
ifor (var i=0;i<document.form3270.elements.length;i++)
$if (document.form3270.elements[i].name == n)
idocument.form3270.elements[i].focus();
document.form3270.DFH_CURSOR.value=n;
break}t?t
function dfhingcursoxr(n)
$document.form3270.DFH_CURSOR.value=nt}
/] -->
</script>
</head>
<body onlLoad="dfhsetcursor('&DFH_CURSORPOSN;')">

The HTML generated from the 3270 screen image is similar to the HTML generated in the templates for
BMS maps. The horizontal and vertical alignment of information on the page is achieved using an HTML
table:

« The HTML table contains one column for each different column of the 3270 screen that contains the
start of a field. For example, if the 3270 screen contains fields that start in columns 2, 11, 21, and 55,
the HTML table contains four columns. Thus, all fields with starting positions vertically aligned in the
3270 screen are vertically aligned in the HTML page.

- The HTML table contains one row for each row of the 3270 screen that contains the start of a field.
Thus, all fields with starting positions horizontally aligned in the 3270 screen are horizontally aligned in
the HTML page. Rows on the 3270 screen that do not contain fields are not represented in the HTML
table.

- Inthe table, text is displayed in a proportional font.

Consider a 3270 screen containing the following fields:

Field Row Starting column
Field_1 2 2

Field_2 3 2

Field_3 3 35

Field_4 4 2

Field_5 4 35

Field _6 9 2

Field_7 9 18

124 CICS TS for z/OS: Internet Guide



Field

Row

Starting column

Field_8

9

35

All the fields start in column 2, 18, or 35 of the 3270 screen. Therefore, the resulting HTML table has
three columns. Similarly, all the fields are located on row 2, 3, 4, or 9 of the 3270 screen, so the HTML
table has four rows.

You can use the encode function of a converter program to modify the screen image section. Refer to

“Using a converter program with DFHWBTTA” on page 127.

The footing section

CICS web support generates the following footing section. Each attention key supported by the 3270
display is simulated as a submit button. When the user selects a button, the corresponding variable is
transmitted in the HTTP request. CICS uses the variable to determine which AID to simulate in the 3270
application. An additional submit button named DFH_PEN is used with detectable fields.

<input type="submit" name="DFH_PF1" value="PF1">
<input type="submit" name="DFH_PF2" value="PF2">
<input type="submit" name="DFH_PF3" value="PF3">
<input type="submit" name="DFH_PF4" value="PF4">
<input type="submit" name="DFH_PF5" value="PF5">
<input type="submit" name="DFH_PF6" value="PF6">
<input type="submit" name="DFH_PF7" value="PF7">
<input type="submit" name="DFH_PF8" value="PF8">

<input type="submit" name="DFH_PF9" value="PF9">
<input type="submit" name="DFH_PF10" value="PF10">
<input type="submit" name="DFH_PF11" value="PF11">
<input type="submit" name="DFH_PF12" value="PF12">
<br>

<input type="submit" name="DFH_PF13" value="PF13">
<input type="submit" name="DFH_PF14" value="PF14">
<input type="submit" name="DFH_PF15" value="PF15">
<input type="submit" name="DFH_PF16" value="PF16">
<input type="submit" name="DFH_PF17" value="PF17">
<input type="submit" name="DFH_PF18" value="PF18">
<input type="submit" name="DFH_PF19" value="PF19">
<input type="submit" name="DFH_PF20" value="PF20">
<input type="submit" name="DFH_PF21" value="PF21">
<input type="submit" name="DFH_PF22" value="PF22">
<input type="submit" name="DFH_PF23" value="PF23">
<input type="submit" name="DFH_PF24" value="PF24">
<br>

<input type="submit" name="DFH_PA1" value="PA1">
<input type="submit" name="DFH_PA2" value="PA2">
<input type="submit" name="DFH_PA3" value="PA3">
<input type="submit" name="DFH_CLEAR" value="Clear">
<input type="submit" name="DFH_ENTER" value="Enter">
<input type="submit" name="DFH_PEN" value="Pen">
<input type="reset" value="Reset">

</form>

</body>

</html>

You can modify the appearance of the page by providing your own footing section. Refer to “Modifying the
output from DFHWBTTA” on page 125.

Modifying the output from DFHWBTTA

You can modify the output from DFHWBTTA either by customizing the HTML or by providing your own
heading and footing sections.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.
About this task

For applications that use BMS, you can customize the HTML templates created from BMS maps. See
“Generating customized HTML templates” on page 131.

Chapter 2. Configuring CICS web support components 125



For non-BMS applications, and BMS applications started using DFHWBTTC, you can modify the
appearance of the page by providing your own heading and footing sections. You cannot change the
screen image section directly, although tags that you insert in the heading section might affect the
appearance of the following sections.

Procedure

« To provide your own heading and footing sections, define and install one or more of the following
templates.

Their names are defined in the TEMPLATENAME fields of DOCTEMPLATE definitions.

tranHEAD
This template is inserted at the head of the HTML page that is the output for transaction tran, if it is
installed.

CICSHEAD
This template is inserted at the head of the HTML page that is the output for transactions which do
not have a corresponding tranHEAD template installed.

tranFOOT
This template is inserted at the foot of the HTML page that is the output for transaction tran, if it is
installed. If this template is not installed, CICSFOOT is used instead.

CICSFOOT

This template is inserted at the foot of the HTML page that is the output for transactions that do
not have a corresponding tranFOOT template installed.

For more information about creating document templates, see Programming with documents and
document templates.
The heading section generated by CICS web support, including DFHWBTTC, uses the EBCDIC Latin
character set (code page 037).

« Ifyou use a different code page in your CICS system, you must create a similar heading section, using
your own code page:

a) Create a document template called CICSHEAD containing your heading section.
b) Define and install a DOCTEMPLATE definition for the template.

The following characters used in the CICS-generated heading section have different representations in
code pages other than 037:

N

Supplying your own heading template
If you supply your own heading template, you must provide some of the required elements of an HTML

page.
About this task

A heading template typically contains the following HTML elements:
- Adoctype tag. For example:

<!doctype html public "-//W3C//DTD HTML 3.2//EN>

e An <html> tag.
» A <head> tag.
« A<STYLE> tag, which must contain style sheet rules for the BRIGHT and INPUT classes. For example:

<STYLE TYPE="text/css">
<!--
TABLE, TR, TD
§ padding: Omm ¥
TABLE
§ width: 60% 1

126 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/doctemplate/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/designing/dfhp3_doc_prog.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/designing/dfhp3_doc_prog.html

-->

.BRIGHT

ifont-weight: bold?
{font-family: courier?
.INPUT

{font-family: courier?}
</STYLE>

You can use the width attribute of the TABLE element to fine tune the appearance of the screen image
section.

« A</head> tag.
« A <body> tag. You can use this tag to specify text colors or an image to be used as the background for
the page. For example:

<body background="/dfhwbimg/background2.gif" bgcolor="4#FFFFFF"
text="#000000" link="#OOFFFF" v1ink="#800080" alink="#FFQEE0Q"
onLoad="dfhsetcursor ('&DFH_CURSORPOSN; ') ">

Note: This example uses DFHWBIMG, which is described in “Using DFHWBIMG to display graphics” on
page 129.

« Optionally, any other HTML elements that you need to customize the page.

Supplying your own footing template
If you supply your own footing template, you must provide some of the required elements of an HTML
page.

About this task
A footing template typically contains the following HTML elements:

« Input buttons to represent any programmed function keys or the ENTER key. For example:

<input type="submit" name="DFH_PF1" value="Help">
<input type="submit" name="DFH_PF3" value="Quit">
<input type="submit" name="DFH_ENTER" value="Continue">

These buttons form part of the HTML form begun by CICS. The buttons, when selected by the user,
produce the AID indicator discussed in “HTML pages generated from 3270 data streams” on page 123,
with the names described there. The value parameter specifies the legend that appears on the
generated button. It is not used by DFHWBTTA.

A </form> tag.

Optionally any other HTML elements that you need to customize the page.
A </body> tag to close the page.
An </html> tag.

Using a converter program with DFHWBTTA
You can use the decode function of the converter program to modify requests passed to DFHWBTTA.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

About this task
You can modify requests in these ways:

« When an HTML form is submitted by the client using one of the buttons that represent an attention key,
the request contains a field indicating which button was selected. You can simulate the effect of a
different attention key by modifying the request. Change the value of the field to the intended attention
key, or insert a new field after the one transmitted by the web client.

Chapter 2. Configuring CICS web support components 127



« When an HTML form is submitted by the client, the DFH_CURSOR field contains the name of the field
that contains the cursor. You can simulate the effect of a different cursor position by modifying the
request. Change the value of the DFH_CURSOR field to contain a different field name, or insert a new
DFH_CURSOR field after the one transmitted by the web client.

 You can select the next transaction ID by changing the DFH_NEXTTRANSID. n variables in the
continuation request. You can insert or delete a variable, or change the value of one of them. For more
information about how these fields are used to determine the next transaction ID, see “The transaction
ID in an HTML form” on page 121.

Do not modify the value of DFH_STATE_TOKEN.

You can use the encode function of the converter program to modify the output from DFHWBTTA:

- The response is in a buffer that begins with a 32-bit unsigned number that specifies the length of the
buffer. The rest of the buffer is the HTTP response. The HTML in the response is that corresponding to
the output BMS map or 3270 data stream from the transaction program.

e The HTTP headers in the HTTP response are generated automatically by DFHWBTTA. These headers are
generated by DFHWBTTA:

Content-type: text/html
Content-length: <length of the entity body>

Pragma: no-cache

Connection: Keep-Alive (if this connection is an HTTP 1.0 persistent connection)

If any additional headers are required, use the Encode function of the converter to add them to the
HTTP response.

Enabling detectable fields

To enable detectable field processing over the CICS web support 3270 bridge, define a bridge facility with
light pen support enabled.

Procedure

1. Copy the following definitions to a new group. Unless all applications running on the CICS system
require light pen support, you must also rename both definitions:

« The CICS-supplied bridge facility CBRF, in group DFHTERM

e Its default TYPETERM, DFHLU2, in group DFHTYPE
2. In the TYPETERM definition, change the LIGHTPEN option under DEVICE PROPERTIES to YES.
3. In the TERMINAL definition, change the TYPETERM parameter to point to the new TYPETERM.
4. Install the definitions in the CICS region.

5. If you have created a new bridge facility definition, update the PROFILE definition of the 3270
transaction that you are going to run with CICS web support, so that the bridge facility is modeled on
the new TERMINAL and TYPETERM definitions:

a) Identify the PROFILE that the transaction uses by using CEDA to view the PROFILE parameter of
the TRANSACTION definition.

b) If the profile is a CICS-supplied profile, copy it to your own group and rename it.

c) Alter the new PROFILE and enter the name of your new bridge facility in the FACILITYLIKE
parameter.

d) Alter your TRANSACTION definition to use the new PROFILE definition.

128 CICS TS for z/OS: Internet Guide



Using detectable fields

When CICS generates an HTML page from the 3270 data stream, it simulates detectable fields with a text
input field preceded by a check box.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

Before you begin

To use detectable fields, configure the bridge facility associated with the transaction. Refer to “Enabling
detectable fields” on page 128.

About this task
Detectable fields are as follows:

- The field attribute byte identifies the field as being detectable or intensified.

« The primary character of the 3270 field contains a valid designator character. This character can be an
ampersand (&), a greater then sign (>), a question mark (?), a blank, or a null.

For more information about detectable fields, see BMS field selection features.

When the check box and text input field are displayed on the web client, note these characters:

« The designator character in the 3270 field is not displayed. Accordingly, the field length in the web
client is one character shorter than it is in the 3270 data stream.

- If the designator character is a greater than sign (>), the check box contains a check symbol (V).
Otherwise, the check box is empty.

To use the detectable field on the web client:

Procedure

« Check the check box to simulate setting the modified data tag (MDT) bit in the 3270 data stream.
Uncheck the box to set the modified data tag off.

Entering data in the text field in the HTML page does not change the modified data tag.
« To transmit data to the CICS application, check the check box , and select the DFH_PEN button.

— If only one attention field is checked, the CICS application receives the contents of that field. The
EIBAID field is set to DFHPEN.

— If several attention fields are checked, the CICS application receives the contents of the field
closest to row 1 and column 1 of the 3270 screen. The EIBAID field is set to DFHPEN.

— If no attention fields are checked, CICS receives the contents of all the fields. The EIBAID field is set
to DFHENTER.

Using DFHWBIMG to display graphics

CICS supplies graphics that you can use in your web applications.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

About this task

CICS supplies these graphics:

CICS.GIF
The CICS logo

MASTHEAD.GIF
The CICS logo with the text 'CICS Web Interface'

Chapter 2. Configuring CICS web support components 129


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/designing/dfhp33f.html

BACKGROUND1.GIF
A background containing the characters 'CICS'

BACKGROUND2.GIF
A background containing the characters 'CWT'

TEXTURE1.JPEG
A textured background

TEXTURE2.JPEG
A textured background

TEXTURE3.JPEG
A textured background

TEXTURE4.JPEG
A textured background

TEXTURE5.JPEG
A textured background

TEXTUREG.JPEG
A textured background

To display the graphics on your web browser, enter a URL in which (after translation to uppercase) the
path is in this form:

/DFHWBIMG/filename
where filename is the name of one of the graphics listed. For example:
/DFHWBIMG/Texturel. jpeg

To incorporate any of the graphics in your output, include the path in the appropriate HTML tag. For
example, you can include a textured background with the following tag:

<body background="/DFHWBIMG/backgroundl.gif" ... >

CICS processes HTTP requests in which the path begins with /DFHWBIMG as a special case; the analyzer
is not called, and DFHWBIMG runs as the converter program.

CICS uses some of these graphics in the templates used for CICS-supplied transactions.

The graphics that CICS supplies are hard coded as part of DFHWBIMG and are not available as separate
files; DFHWBIMG does not support the display of graphics apart from the ones named.

Creating HTML templates from BMS definitions

To create an HTML template from an existing BMS map set for which you do not have the source code,
you might be able to reconstruct the source from the corresponding load module.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

About this task
How to re-create BMS macro statements from a mapset load module

Use the BMS macro generation utility program (DFHBMSUP). This utility can re-create the original
BMS macros that were assembled to produce a mapset load module, when the macro statements are
no longer available. DFHBMSUP generates map definition macros that are equivalent to the originals,
and thus can be used to recreate symbolic maps; however, it is not possible to recover the original
field names used. You must edit the field names generated by the utility.

For details, see BMS macro generation utility (DFHBMSUP).

430 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/utilities/dfha6k3.html

How to install HTML templates created from a BMS map set
CICS provides catalogued procedure DFHMAPT for installing HTML templates that have been created
from a BMS map set. See Using the DFHMAPT procedure to install HTML templates from BMS maps
for details.

BMS-generated templates

A template generated from a BMS map contains constants and input fields, buttons, hidden variables, a
JavaScript function and a JavaScript exception handler.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

A template contains these items:

« Constants and input fields from the map.
 Buttons to represent the following:

ENTER and CLEAR keys

PA1, PA2, and PA3 keys

Program function keys PF1 to PF24
HTML reset

« Up to five hidden variables, DFH_NEXTTRANSID.1 to DFH_NEXTTRANSID.5, the values of which are the
names of the first five fields in the map. “CICS web support and 3270 display applications” on page 117
explains the use of these variables.

« A hidden variable DFH_CURSOR, the value of which is the name of the field in which the cursor is set in
the map. If the cursor is located in an unnamed field, DFH_CURSOR is zero.

« A JavaScript function dfhsetcursor (). When DFH_CURSOR contains the name of a field, the function
sets the cursor position to that field.

« A JavaScript exception handler for the onFocus exception. This function calls dfhsetcursor and
tracks the movement of the cursor.

Generating customized HTML templates

You can customize HTML templates generated from BMS maps in several ways. For example, you can
customize the way HTML templates are generated, add HTML text to the generated map, and so on.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

About this task

You can modify the way HTML templates are generated from BMS maps
You can use your customizing macro, instead of the CICS-supplied DFHMSX macro, to create HTML
templates for each of your BMS map definitions. With a customizing macro, you enjoy great flexibility
in defining HTML templates.

For CICS to use your customizing macro, you must specify your macro on the SYSPARM parameter in
the DFHMAPT procedure. For general guidance on how to create your customizing macro, see
“Writing a customizing macro definition” on page 132.

You can code your macro based on the DFHMSX macro, as described in “Customizing with the
DFHMSX macro” on page 133. “Examples of DFHMDX” on page 139 provides examples that show
how you can use DFHMDX macro keyword parameters to customize the HTML templates.

DFHMSX is used when the SYSPARM parameter does not specify a customizing macro name.

You can add HTML text to generated HTML pages
Use the DFHWBOUT macro in the BMS map definitions to add text to the HTML page generated from a
BMS map. The text is displayed only as part of the HTML page. For instructions, see “Customizing
templates with the DFHWBOUT macro” on page 134.

Chapter 2. Configuring CICS web support components 131


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/deploying/dfhp3va.html

You can manually edit the generated HTML templates

- To override the dynamic changes to attributes that take place when a program issues a MAP SEND
command.

« To use the HTML template outside the web 3270 environment.

In both cases, you change the Frrccclll1 variables that are added by the template generation
process.

Important:

Do not edit CICS-generated HTML templates unless all your SEND MAP commands use the ERASE
option. SEND MAP commands without ERASE result in merging of HTML. Runtime logic is expecting to
encounter HTML that was generated by the CICS template generator. In particular, avoid making
changes to <tr> tags.

Considerations for CETR:

CICS provides HTML templates for the CICS-supplied CETR transaction, which uses BMS. The templates
use the EBCDIC Latin character set (code page 037). If you use a different code page in your CICS system,
you must generate your own version of these templates. The following characters used in the CICS-
generated heading section have different representations in code pages other than 037:

V11t
Use the CODEPAGE parameter on the DFHMDX macro to specify the code page.

Writing a customizing macro definition

You can use a customizing macro to create HTML templates for each of your BMS map definitions. Your
customizing macro must be a complete assembly language macro definition that is called by CICS-
supplied assembler macros.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

About this task

You write the definition of a customizing macro according to the rules for assembly language macro
definitions. The macro invocations in the definition must also follow the rules for assembly language
macro statements.

A customizing macro definition contains the following elements:
1. A MACRO statement to begin the definition.

2. The name of the macro.

3. Any number of invocations of the DFHMDX macro.

The syntax of DFHMDX is described in “DFHMDX macro” on page 134, and examples of its use are
described in “Examples of DFHMDX” on page 139.

4. A MEND statement to end the definition.

If you want to create a customizing macro based on DFHMSX, see “Customizing with the DFHMSX macro”
on page 133 for details.

Handling white space
When you customize a macro definition, consider the HTML specifications for white space.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

432 CICS TS for z/OS: Internet Guide



About this task

For 3270 terminals, you can use blanks (EBCDIC X'40") and nulls (EBCDIC X'00") to format screen data
positions. When such a data stream is converted into HTML, the client interpretation generates different
output from that found on a 3270 terminal.

A string of blanks is ignored by a client if it immediately follows a start tag, and any subsequent sequence
of contiguous blanks is interpreted as one blank. To force the rendering of all blanks, use the <pre> and
</pre> tags.

The handling of null characters is unspecified, and clients handle them inconsistently. They might or
might not be displayed.

Customizing with the DFHMSX macro
You can modify the way HTML templates are generated from BMS maps by coding your own version of the
DFHMSX macro.

DFHMSX is used when the SYSPARM parameter in the DFHMAPT procedure does not specify a
customizing macro name. DFHMSX is simply coded as is with no parameters. It invokes DFHMDX.

About this task
When you code your own version of the DFHMSX macro, you can specify these items:

« The 3270 keys that are represented by buttons

« The text or image that is displayed on each button

« The title of the HTML page

- A masthead graphic to be displayed at the start of the HTML page

« The page background as a graphic file or color

« The color of normal text, unvisited links, visited links, and active links

« Whether the page should include an HTML reset button, and the text displayed on it

« A mapping between the colors used in the BMS map and the colors used for the corresponding text in
the HTML template

« Which BMS fields are suppressed from the HTML page
« JavaScript onLoad () and onUnload () exception handlers
« Whether the text in the template is displayed in a proportional or nonproportional font

« The code page to be used when the template is generated, and the code point to be used for the special
characters []i{} and !

- Whether protected fields are right-aligned in the HTML page
Note:

1. The ATTRB=BRT option of a BMS field does not affect an unnamed, unprotected (input) field.

2. DFHBMEOF, a 3270 attribute bit of the attribute byte of a field named in the logical map, is not set if
the field is emptied (for example, with the DEL key), or if the field was already empty (nulls or spaces)
on the previous SEND command and the Modified Data Tag (MDT) of that field was off.

When you code your own version of the DFHMSX macro, you can specify the maps to which the options
apply:

« All maps in all map sets

« All maps in certain map sets

« Individual maps

See “Examples of DFHMDX” on page 139 for customization examples.

Chapter 2. Configuring CICS web support components 133



Customizing templates with the DFHWBOUT macro
Use the DFHWBOUT macro to add text to the HTML page generated from a BMS map. The text is
displayed only as part of the HTML page.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

About this task

If the macro is used before the first occurrence of DFHMDF in a map, the text is placed in the <head>
section of the HTML page. If the macro is used elsewhere in the map, the text is placed immediately
following the text generated by the preceding DFHMDF macro.

Do not use the DFHWBOUT macro when the application program builds the screen display using multiple

BMS maps.

DFHWBOUT

»| DFHWBOUT macro | >«

DFHWBOUT macro

»— DFHWBOUT — '— text —' >«

Lo e

The parameters of this macro are as follows:

text
The text that is to be inserted in the HTML page.

SOSI
Whether the text contains DBCS characters delimited by shift-out (X'OE') and shift-in (X'OF'). The
default is SOSI=NO.

When you use the DFHWBOUT macro, note that the HTML text that you insert might affect the page layout
generated from the BMS map fields. You might have to adjust the inserted text to ensure a correct page
layout.

DFHMDX macro
The DFHMDX macro is called from within DFHMSX or from your customizing macro definitions.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

Its syntax is shown in Figure 15 on page 135.

134 CICS TS for z/OS: Internet Guide



DFHMDX

*
L ame

»— DFHMDX MAPSET= name L J ,MAP=
,MODULE= name

MAPSET=* — ,MAP=*

»d

L ,DOCTYPE= '-//W3C//DTD HTML 3.2//EN' L ,TITLE=" fitle-text '—J

doctype

> »
> »

J L ,BACKGROUND=  ur/ J

L ,MASTHEAD=

url
L url,'alternate text' J
] L,BGCOLOR= color —J A
- L ,TEXT= color —J L ,LINK= color J L,VLINK= color J L ,ALINK= color —J A

) fkew b:ttonjJ L , L bmscolor = color
L YES J
,RESET= L NO _J

'fext !

JRALIGN=( QE)J
,SUPPRESS=( gm/) j )
L.HEAD J L,FOOT J

- L ,ONLOAD=" fext '—J L ,ONUNLOAD=' fext '—J L

¥

A 4

»d
>4

\ 4

>
»

[l J
,PROPFONT= NO

»d

™

»
»

L OPENSQ — =

L char _J
hex-value

L CLOSESQ — = char J L OPENBR — = char J

L hex-value J L hex-value —J

>
>

L CLOSEBR — = T char pter 2. Configuring CICS web support components 135
he:

x-value



The keyword parameters to this macro can be in any order.

MAPSET
Specifies the name of the map set that contains the map to which other options refer. If you specify
an asterisk, the options become the default to all subsequent map sets.

MODULE
Specifies the name of the load module into which the map set is link-edited. You can use this
parameter only if you do not specify MAPSET=*. The name that you specify (which can only be 7
characters) is used to construct the names of the templates by adding a single character suffix. The
default value is the name of the map set.

MAP
Specifies the name of the map within the map set specified in MAPSET to which the options refer. If
you specify an asterisk, the options become the default to all subsequent maps.

DOCTYPE
Specifies the DTD public identifier part of the <!doctype> tag that you want to be displayed in the
HTML template. The defaultis - //W3C//DTD HTML 3.2//EN, which specifies HTML 3.2. Level 3.2 is
required for the color support in certain HTML tags.

TITLE
Specifies the title to be used as the HTML title and as the content of the first <h1> tag.

MASTHEAD
Specifies the URL of a masthead graphic to be displayed at the head of a page before the first <h1>
tag. If you supply alternate-text, the client uses the text if it cannot load the specified graphic.

BACKGROUND

Specifies the URL of a graphic file for the page background.
BGCOLOR

Specifies the color of the page background.
TEXT

Specifies the color of normal text.
LINK

Specifies the color of unvisited hypertext links on the page.
VLINK

Specifies the color of visited hypertext links on the page.
ALINK

Specifies the color of activated hypertext links on the page.
PF1-PF24

Specifies the name or image to be assigned to the simulated button for the corresponding 3270
program function key.

PA1-PA3
Specifies the name or image to be assigned to the simulated button for the corresponding 3270
program attention key.

CLEAR

Specifies the name or image to be assigned to the simulated button for the 3270 Clear key.
ENTER

Specifies the name or image to be assigned to the simulated button for the 3270 Enter key.
PEN

Specifies the name or image to be assigned to the simulated button for pen selection.

BLUE
Specifies the color to be displayed in the HTML page where blue is specified in the BMS map. The
default is #0000FF.

Restriction: DFHMDX overrides the color of unnamed fields only; it leaves named fields unchanged.

136 CICS TS for z/OS: Internet Guide



GREEN
Specifies the color to be displayed in the HTML page where green is specified in the BMS map. The
default is #008000.

Restriction: DFHMDX overrides the color of unnamed fields only; it leaves named fields unchanged.

NEUTRAL
Specifies the color to be displayed in the HTML page where neutral is specified in the BMS map. The
default is #000000.

Restriction: DFHMDX overrides the color of unnamed fields only; it leaves named fields unchanged.

PINK
Specifies the color to be displayed in the HTML page where pink is specified in the BMS map. The
default is #FFOOFF.

Restriction: DFHMDX overrides the color of unnamed fields only; it leaves named fields unchanged.

RED
Specifies the color to be displayed in the HTML page where red is specified in the BMS map. The
default is #FF0000.

Restriction: DFHMDX overrides the color of unnamed fields only; it leaves named fields unchanged.

TURQUOISE
Specifies the color to be displayed in the HTML page where turquoise is specified in the BMS map. The
default is #00FFFF.

Restriction: DFHMDX overrides the color of unnamed fields only; it leaves named fields unchanged.

YELLOW
Specifies the color to be displayed in the HTML page where yellow is specified in the BMS map. The
default is #FFFFOO.

Restriction: DFHMDX overrides the color of unnamed fields only; it leaves named fields unchanged.

RESET
Specifies whether the HTML reset function is to be supported. Specify YES to get a default reset
button with the default legend Reset. Specify NO to get no reset button. Specify your own text for a
reset button with your own legend.

RALIGN
Specifies BMS map fields in which data is to be right-aligned in the HTML page. The values rr and cc
specified must correspond to the POS=(rr,cc) specification on the DFHMDF macro for a field to be
right-aligned. Each pair must be enclosed in parentheses, and the whole list of pairs must be enclosed
in parentheses. If you want to right-align every qualifying field that ends in a particular column,
specify the end column number and put an asterisk for the row specification. Calculate the end
column number for a field by adding its start column number to its LENGTH, as defined in the
DFHMDF macro. Fields are right-aligned only if they are protected, unnamed, and are initialized with
an INITIAL, XINIT, or GINIT value in the DFHMDF macro. The RALIGN parameter is ignored if you
specify it with MAP=* or MAPSET=*.

If you want to specify a list that exceeds the assembly language program limit of 256 characters for a
character string in macro definitions, code extra DFHMDX macros with the same MAPSET and MAP
values, and put more values in the RALIGN parameters.

SUPPRESS
Specifies BMS map fields that are not to be displayed in the HTML page. Specify any number of row
and column pairs for the start positions of the fields to be suppressed. The values rr and cc specified
must correspond to the POS=(rr,cc) specification on the DFHMDF macro for a field to be suppressed.
Each pair must be enclosed in parentheses, and the whole list of pairs must be enclosed in
parentheses. If you want to suppress all the fields in a row, specify the row number and put an
asterisk for the column specification. The SUPPRESS parameter is ignored if you specify it with MAP=*
or MAPSET=".

Chapter 2. Configuring CICS web support components 137



Use the keyword HEAD to suppress the heading section in the template. Use the keyword FOOT to
suppress the footing section in the template.

If you want to specify a list that exceeds the assembly language program limit of 256 characters for a
character string in macro definitions, code extra DFHMDX macros with the same MAPSET and MAP
values, and put more values in the SUPPRESS parameters.

ONLOAD
Specifies the JavaScript text to be used to replace the standard onLoad exception handler for the
HTML page. The text must not contain double quotes ("), and single quotes (') must be doubled (' ')
following the usual assembly language program conventions. If you use this parameter, you suppress
the setting of the cursor to the field indicated by DFH_CURSOR provided by the standard onLoad
exception handler. You can use the function dfhsetcursoxr to set the cursor position.

ONUNLOAD
Specifies the JavaScript text to be used as the onUnload exception handler for the HTML page. The
text must not contain double quotes ("), and single quotes (') must be doubled (' '), following the
usual assembly program language conventions.

PROPFONT
Specifies the font. If YES, the template specifies that text is to be presented in a proportional font, and
consecutive spaces are to be reduced to a single space. If NO, the template specifies that text is to be
specified in a font of fixed pitch, and consecutive spaces are to be preserved.

OPENSQ
The hex value or the character to be used to display an open square bracket. The default is X'BA'

(code page 37).

CLOSESQ
The hex value or the character to be used to display a close square bracket. The default is X'BB' (code
page 37).

OPENBR
The hex value or the character to be used to display an open brace. The default is X'C0O' (code page
37).

CLOSEBR
The hex value or the character to be used to display a close brace. The default is X'D0' (code page 37).

EXCLAM
The hex value or the character to be used to display an exclamation mark. The default is X'5A' (code

page 37).

CODEPAGE
Specifies the IBM code page number in which any text generated by the template generation process
is encoded. This code page must match the code page used when the templates are used by CICS,
either in the HOSTCODEPAGE option of the EXEC CICS DOCUMENT command or in the SRVERCP
option of the DFHCNV macro selected by the analyzer program.

The standard CICS form of a host code page name consists of the code page number (or more
generally CCSID) written using 3 to 5 decimal digits as necessary, then padded with trailing spaces to
8 characters. For code page 37, which is fewer than 3 digits, the standard form is 037. CICS accepts
any decimal number of up to 8 digits (padded with trailing spaces) in the range 1 to 65,535 as a code
page name, even if it is not in the standard form.

The CODEPAGE parameter must specify an EBCDIC-based code page if any symbol processing is
required, as the delimiters used for symbol and symbol list processing are assumed to be in EBCDIC.

The default code page is 037.

NUMALIGN
Specifies how fields that are explicitly defined as numeric in the DFHMDF macro are aligned in the
table cells in the HTML template:

NO
Specifies that numeric fields are not right-aligned in their table cells. This is the default.

138 CICS TS for z/OS: Internet Guide



YES
Specifies that numeric fields are right-aligned in their table cells:

- For a protected field, the generated HTML text is right-aligned in the cell. If the text contains
trailing blanks, they might not be preserved; some clients replace them with a single blank.

Note: The RALIGN parameter preserves trailing blanks; the NUMALIGN parameter does not. If
both parameters apply to a field (that is, if a numeric field is identified by the RALIGN parameter,
and NUMALIGN=YES is specified), trailing blanks are not preserved.

« For an unprotected field, the HTML text input element (but not the text in the element) is right-
aligned in the cell.

color can be an explicit specification #rrggbb, where rr, gg, and bb are 2-digit hexadecimal numbers
giving the intensities of red, green, and blue in the requested color, or it can be any one of the following
color names: AQUA, BLACK, BLUE, FUCHSIA, GRAY, GREEN, LIME, MAROON, NAVY, OLIVE, PURPLE, RED,
SILVER, TEAL, WHITE, YELLOW.

key can be any of PF1 to PF24, PA1 to PA3, CLEAR, ENTER, and PEN.

button can be (IMAGE, url), where url specifies the URL of a graphic image to be used for the button, or
"text', where text is the text to be put in the button, or NO if the button is not to be displayed.

bmscolor can be any of BLUE, GREEN, NEUTRAL, PINK, RED, TURQUOISE, and YELLOW.

Examples of DFHMDX
These examples show how to code DFHMDX keyword parameters to customize the generation of HTML
templates from BMS maps.

You can code your own version of the DFHMSX macro. See “Customizing with the DFHMSX macro” on
page 133 for a summary on how you can customize HTML templates. Refer to the following examples to
help you code DFHMDX in your customizing macro.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

The following example shows a customizing macro definition. DFHMSX is simply coded as is with no
parameters. It invokes DFHMDX. The first invocation of DFHMDX sets defaults for the values to be applied
to subsequent invocations of DFHMDX by specifying * for the map set name and map name. Later
invocations override or add to the parameters for specific maps in the map set. The continuation
characters are in column 72, and the continued text is resumed in column 16.

MACRO

DFHMSX

DFHMDX MAPSET=%,MAP=x, *
Fl='Help',6F3="Exit',f F4='Save',F9="Messages'

DFHMDX MAPSET=DFHWBO,MAP=x, *
TITLE='CICS Web Interface', *
F3="'Messages'

DFHMDX MAPSET=DFHWBO,MAP=DFHWBO2, *
TITLE='CICS Web Interface Enable', *
F3='Save'

MEND

When CICS creates the templates for each of your BMS map definitions, it calls the customizing macro
specified on the SYSPARM parameter in the DFHMAPT procedure. If the SYSPARM parameter does not
specify a customizing macro name, DFHMSX is used. Each macro is processed in sequence, and, if
applicable, the parameter values are stored. Where a duplicate parameter is specified for a particular map
or map set, the new value replaces the previous value for that map or map set only.

« The first DFHMDX macro in this example specifies MAPSET=%, MAP=x and F3="Exit"'. This value of F3
applies to every map set and map for which a different value is not specified in a subsequent DFHMDX
macro.

« The second DFHMDX macro specifies MAPSET=DFHWBO , MAP=x and F3="'Messages'. This value of F3
applies to every map in map set DFHWBO for which a different value is not specified in a subsequent
DFHMDX macro.

Chapter 2. Configuring CICS web support components 139



« The third DFHMDX macro specifies MAPSET=DFHWBO , MAP=DFHWB02 and F3="Save'. This value
applies only to map DFHWBO02 in map set DFHWBO.

The default template generated from the BMS map contains buttons to represent all the following keys:
« ENTER and CLEAR keys

« PA1, PA2, and PA3 keys

Function keys F1 to F24

« HTML reset

However, if you use the DFHMDX macro to specify the buttons that you want in your template, only the
buttons you specify are included in the template. For example, if you code as follows, the template will
contain buttons for the F3 and ENTER keys only:

DFHMDX MAPSET=+,MAP=*,F3='Exit', ENTER='Continue’
Here are further examples showing how you can customize the HTML template generated from a BMS
map.
« Support the application to use keys that are not in the standard output

You can add a button to the map AD0O1 as follows:
DFHMDX MAP=AD0O1,Fxx="'Resubmit'

where Fxx is the new function key number that you want to specify. The web client displays a button
with the legend "Resubmit". If the user clicks this button, it is reported to the application as Fxx.

« Suppress the HTML Reset function

You can suppress the Reset function for the map ADOO1 as follows:
DFHMDX MAP=ADOO1,RESET=NO

The web client displays a page that does not contain a Reset button.
- Change the appearance of the buttons, or the text associated with them

You can change the legend on the F1 button as follows:
DFHMDX F1='Help'

The web client displays a button with the legend "Help". If the user clicks this button, it is presented to
the application as F1.

« Provide an HTML title for the HTML page

You can add a title to a displayed map as follows:
DFHMDX MAP=DFHWBO1,TITLE='CICS web interface'

The web client displays "CICS web interface" as the title of the page.
 Provide a masthead graphic for the HTML page

Write a DFHMDX macro for the map that is to have the masthead. For example:
DFHMDX MASTHEAD=(/dfhwbimg/masthead.gif, 'CWI')

The web client uses the specified masthead, or shows "CWI" as the masthead if it cannot find the
graphic file.

« Change the color of the background, or specify a special background

Write a DFHMDX macro for the map that is to have a special background. For example:

DFHMDX MAP=AD001,BACKGROUND=/dfhwbimg/texture4. jpeg

140 CICS TS for z/OS: Internet Guide



The web client uses the specified file as a background for the page.

To change the color of the background, use the BGCOLOR parameter.
Modify the BMS colors

To modify the BMS colors, write a DFHMDX macro like the following:

DFHMDX MAP=AD001,BLUE=AQUA, YELLOW=#FF8000

The web client shows BMS blue text in HTML aqua (the same as BMS turquoise) and BMS yellow text in
bright orange.

« Suppress parts of the BMS map

You can suppress a field in a map as follows:

DFHMDX MAP=ADO01,SUPPRESS=((5,2),(6,2),(7,%))

The displayed page does not contain the field at row 5 column 2, nor the field at row 6 column 2, nor
any of the fields in row 7 of the map.

« Add web client control functions

If you want a JavaScript function to be called when a page is loaded, use the ONLOAD parameter of the
DFHMDX macro in your customization macro. For example, if you code:

DFHMDX MAP=ADOO1,0NLOAD='jset(''CWI is wonderful'',''Hello there!'')'

JavaScript function jset () is invoked with the given parameters when the page is loaded.

To complete this customization, add the definition of the jset function to the header of the HTML page
with a DFHWBOUT macro. You must put the macro invocation before the first DFHMDF macro in the
BMS map definition. Here is a sample:

DFHWBOUT '<script language="JavaScript">'

DFHWBOUT 'function jset(msg,wng)'

DFHWBOUT ' iwindow.status = msg; alert(wng)i'
DFHWBOUT '</script>'

When the page is loaded, the status area contains the message "CWI is wonderful", and an alert window
opens that contains the message "Hello there!".

« Add text that appears only on the HTML page, but is not part of the BMS map

Put DFHWBOUT macros in the BMS map definition at the point where you want the text to appear. For
example:

DFHWBOUT '<p>This text illustrates the use of the DFHWBOUT macro,'
DFHWBOUT 'which can be used to output text that should only appear'
DFHWBOUT 'in HTML templates, and will never appear in the'

DFHWBOUT 'corresponding BMS map.'

produces the following lines in the HTML template:

<p>This text illustrates the use of the DFHWBOUT macro,
which can be used to output text that should only appear
in HTML templates, and will never appear in the
corresponding BMS map.

« Add HTML header information to the HTML page
Put DFHWBOUT macros in the BMS map definition before the first occurrence of DFHMDF. For example:

DFHWBOUT '<meta name="author" content="E Phillips Oppenheim">'

DFHWBOUT '<meta name="owner" content="epoppenh@xXXXXxX.yyy.co*
I.nll>l

DFHWBOUT '<meta name="review" content="19980101">'

DFHWBOUT '<meta http-equiv="Last-Modified" content="&WBDATE&W*
BTIME GMT">'

Chapter 2. Configuring CICS web support components 141



produces the following lines in the head section of the HTML template:

<meta name="author" content="E Phillips Oppenheim">

<meta name="owner" content="epoppenh@xxxxxxx.yyy.com">

<meta name="review" content="19980101">

<meta http-equiv="Last-Modified" content="23-Dec-1997 12:06:46 GMT">

DFHMSD sets the values of &WBDATE and &WBTIME to the time and date at which the macro is
assembled.

« Use country-specific characters in JavaScript and HTML

You can be modify the default US code page 37, which is used to produce the template, for different
code pages. For example:

DFHMDX OPENSQ=[,CLOSESQ=],0PENBR={,CLOSEBR=},EXCLAM=!

specifies the substitutions needed. You must enter the characters on a terminal on which the code page
corresponds to the SERVERCP on the DFHCNV call.

« Make fields right-aligned in the HTML page

You can align the data in a field as follows:

DFHMDX MAPSET=MAPSETA,MAP=AD001,RALIGN=((3,5),(*,15),(*,3),(6,7),(*,83))

In this example, data will be aligned in all the following fields:

DFHMDF POS=(3,5),LENGTH=4,INITIAL="'TEXT', ATTRB=PROT

DFHMDF P0S=(5,80) ,LENGTH=3, INITIAL="'123"',ATTRB=PROT

DFHMDF P0S=(2,10) ,LENGTH=5,INITIAL="' EXT', ATTRB=ASKIP

DFHMDF POS=(4,8),LENGTH=7,INITIAL="INITEX ', ATTRB=PROT

DFHMDF POS=(1,1),LENGTH=2,XINIT='C1C2"',6ATTRB=ASKIP

DFHMDF POS=(6,7),LENGTH=4,XINIT="'0E44850F ', ATTRB=PROT, SOSI=YES
DFHMDF P0S=(2,9),LENGTH=6,XINIT="'0E448544830F"',SOSI=YES,ATTRB=PROT
DFHMDF P0S=(2,9),LENGTH=6,XINIT="'448544834040"',6PS=8,ATTRB=PROT

« Make numeric fields right-aligned
You can make all fields with the NUMERIC attribute right-aligned in their HTML table cells as follows:

DFHMDX MAPSET=MAPSETA,MAP=AD0O01,NUMALIGN=YES

Installing the HTML templates
Some of your application programs might require customized HTML pages.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

Procedure

1. Review your CICS application programs and their use of BMS to see if customization is necessary.

2. For applications that need customized HTML pages, create a customization macro definition, and store
itin a library in the concatenation of macro libraries specified in the SYSLIB DD statement for the
assembly program. Write appropriate DFHWBOUT macro invocations, and put them in the appropriate
places in your map definitions.

3. Assemble the existing map definitions with TYPE=TEMPLATE on the DFHMSD macro or
SYSPARM=TEMPLATE in the parameters passed to the assembly program. Note that the label on the
DFHMSD macro names the HTML templates produced for each map in the map set being processed.
The HTML template names consist of the label from the DFHMSD macro, followed by a 1- or 2-
character suffix generated with the characters A-Z and 0-9. The 2-character suffix is used when the
map set contains more than 36 maps, and in this case the map set name must be 6 characters or less.
For the bridge exit to match the HTML template with the BMS map when a BMS SEND or RECEIVE is
issued by a program, the HTML template members must match the name of the map set value used on
the SEND and RECEIVE statements. If you are using a customizing macro, add the name of the

142 CICS TS for z/OS: Internet Guide



customizing macro to the TYPE. The assembly program produces IEBUPDTE source statements that
set up one template for each map in a map set.

4. Use IEBUPDTE to store the templates in the template library. If the record format of the template
library is not fixed blocked, you need to store them in another partitioned data set, and then convert
them to the record format of the template library using, for instance, ISPF COPY.

5. If you want to put your templates in a partitioned data set other than the one specified in the
DFHHTML DDname, you must define DOCTEMPLATE definitions for your templates, and specify an
alternative DDname.

You must also specify the alternative DDname in your CICS JCL.

To allocate a partitioned data set containing templates to a specific DD name so that you can install
templates from it, use the ADYN sample transaction. First install the DFH$UTIL group, which contains
ADYN and its related programs, and then run ADYN:

ADYN
ALLOC DDNAME (ddname) DATASET('template-pds') STATUS(SHR)

where ddname is the DDname specified in the DOCTEMPLATE definition, and template-pds is the name
of the partitioned data set containing the template to be installed. For further information on installing
and using ADYN, see Developing CICS compatibility interfaces.

Processing large HTML templates

No restriction applies to the size of templates used by transactions that run using the 3270 Bridge.
However, templates that exceed 32 KB of storage are processed differently from smaller templates.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

About this task

To process templates larger than 32 KB, you specify a path that maps to a program name of DFHWBTTB
in the HTTP request. Refer to “URL path components for 3270 display applications” on page 119.

Templates that require less than 32 KB of storage can expand to greater than 32 KB if symbol
substitution significantly increases the amount of data.

When the template is generated, DFHWBTLG issues a message containing the amount of storage required
for each template to be read from the DFHHTML data set. Use these messages to determine whether to
use a program name of DFHWBTTA or DFHWBTTB.

Combining BMS and non-BMS output

A transaction can issue a series of BMS and non-BMS commands to build the contents of the 3270 display
screen.

Attention: This topic contains Product-sensitive Programming Interface and Associated Guidance
Information.

The output from all the commands is combined to construct the HTML page, which is displayed on the
web browser:

1. When a BMS or non-BMS SEND command is issued, an HTML page (containing a heading section, a
screen image section, and a footing section) is generated, but not sent to the web client.

2. When the transaction issues a RECEIVE command or terminates:
- A heading section is selected from one generated previously.
« A new screen image section is created by merging all the ones that were generated previously.
- Afooting section is selected from one generated previously.

3. The resulting HTML page is sent to the web client.

Chapter 2. Configuring CICS web support components 143


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/doctemplate/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/doctemplate/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfha376.html

How the heading section is chosen
The heading section is chosen from among the HTML pages, based on their starting positions and the
sequence in which they were created.

1. The pages that have a starting position closest to the first row of the screen are selected.

2. If more than one page remains in the selection process, the starting position of the remaining pages is
compared again. This time, the pages that have a starting position closest to the first column of the
screen are selected.

3. Finally, if more than one page remains, the earliest page generated is selected.

The heading section from the remaining selected page is used in the HTML page that is sent to the web
client.

Note:

« The starting position of an HTML page generated from a BMS map is the row and column of the upper-
left corner of the map.

« The starting position of an HTML page generated from a non-BMS command is the upper-left corner of
the screen (row 1, column 1).

How the footing section is chosen
The footing section is chosen from among the HTML pages, based on their ending positions and the
sequence in which they were created.

1. The pages which have an ending position closest to the last row of the screen are selected.

2. If more than one page remains in the selection process, the ending position of the remaining pages is
compared again. This time, the pages that have an ending position closest to the last column of the
screen are selected.

3. Finally, if more than one page remains, the latest page generated is selected.

The footing section from the remaining selected page is used in the HTML page that is sent to the web
client.

Note:

« The ending position of an HTML page generated from a BMS map is the row and column of the lower-
right corner of the map.

- The ending position of an HTML page generated from a non-BMS command is the lower-right corner of
the screen.

How the screen image sections are merged

When the screen image sections created as a result of a series of BMS and non-BMS SEND commands are
merged, a new screen image section is created; it contains, as far as possible, all the fields from all the
screen image sections that were used to construct it.

However, if fields from two or more of the constituent screen images wholly or partly overlap, merging is
not possible, and some of the overlapping fields might be modified or suppressed entirely:

« When fields overlap, fields associated with the earlier BMS or non-BMS SEND commands are modified
or suppressed in favor of fields from later commands.

« Ifaninput field is partially or wholly overlapped, the entire input field is discarded and does not appear
in the final HTML.

- Ifaninput field partially overlaps some normal text, any visible text up to the start of the input field is
visible in the final HTML and the remaining data is discarded, whether or not more text is visible after
the end of the input field on a 3270 device.

« If the table cell contains a horizontal rule tag (<hx>), overlapping the contents of the cell will produce
unpredictable results.

These rules are summarized in Table 7 on page 145.

144 CICS TS for z/OS: Internet Guide



Table 7. Overlapping fields in a merged screen image section

Field from earlier SEND Field from later SEND Result

Input (unprotected) Input (unprotected) or Text The earlier field is entirely
(protected) suppressed

Text (protected) Input (unprotected) Based upon the character

position in the 3270 screen:

« Protected characters before
the input field are retained.

» Protected characters overlaid
by the input field are
suppressed.

« Protected characters after the
input field are suppressed.

Text (protected) Text (protected) Based upon the character
position in the 3270 screen,
characters from the later send
will overwrite characters from
the earlier send.

You can edit HTML templates created from BMS maps before using them in an application program.
However, the algorithm by which the screen image sections are merged requires that the HTML in the
sections has a particular structure. Therefore, when you edit the screen image section in a template, and

t

he section will be merged with others, follow these guidelines:

Each HTML page contains two comments with the strings DFHROW and DFHCOL respectively. The
values that follow these strings are important during the merging process because they are used to
calculate the position of each field on the 3270 screen. If these comments are modified or deleted, the
screen image sections are not merged but are displayed in the final HTML page appended one after the
other.

The closing tags for table cells (</td>) and table rows (</txr>) are optional.

Table cells must either contain a piece of normal text with or without additional attribute tags or they
must contain an input field. Additionally, they can contain a mixture of text and input fields in the same
table cell if the text and input fields follow each other without additional tags between them.

Empty table cells cannot contain null values (X'00') or spaces between the opening and closing tags. In
other words, empty cells must be coded as <td></td>.

You can bound a section of text or an input field with one or more of the following pairs of tags:

emphasis
<em> ... </em>
strong
<strong> ... </strong>
font
<font> ... </font>
underline
<u> ... </u>
blink
<blink> ... </blink>
Each tag must have a corresponding closing tag. You must also ensure that the opening and closing tags
are properly nested. For example, <u><strong> ... </strong></u>is properly nested, but
<u><strong> ... </u></strong>is not.

Chapter 2. Configuring CICS web support components 145




- If you insert other tags into the table cell, they must be before or after the text or input field, but cannot
be both before and after in the same table cell.

« HTML comments are allowed in the table cell and can be before, after, or on both sides of a piece of
normal text or an input field.

« If the cell contains comments, it must also contain either a piece of normal text or an input field.

The CICS web server plug-in

The functions of the CICS web server plug-in are retained for compatibility reasons. You are
recommended to migrate to solutions that make use of CICS web services, CICS web support, or the CICS
Transaction Gateway.

This supplied plug-in enables a passthrough mechanism from the IBM HTTP Server through the external
CICS interface (EXCI) and into CICS web support, using the CICS business logic interface. The maximum
amount of data that can be passed on this interface is 32 KB.

Configuring the IBM HTTP Server

The functions of the CICS web server plug-in are retained for compatibility reasons. You are
recommended to use the CICS Transaction Gateway in new applications.

About this task

You have to change the configuration information in the IBM HTTP Server if it is to use the CICS business
logic interface to provide its service. For details of the configuration statements, see z/OS HTTP Server
Planning, Installing, and Using

Procedure

1. You must set up CICS as follows:
a) Initialize the CICS region with ISC=YES.
b) Install the RDO group DFHWEB.
c¢) Define a generic connection for EXCI; for example, by installing the sample group DFH$EXCI.

d) Ensure that IRC is open.
2. Define the CICSTS54.CICS.SDFHDLL1 load library and CICSTS54.CICS.SDFHEXCI to RACF® program
control.

RACF program control notes the volume serial number of the volume containing the library and does
not allow the use of a different volume. If you later move the load library or the
CICSTS54.CICS.SDFHEXCI library to another volume, you must redefine it to RACF Program Control.

3. Add the CICSTS54.CICS.SDFHDLL1 data set and the CICSTS54.CICS.SDFHEXCI library to the STEPLIB
concatenation in the JCL for the IBM HTTP Server.

SDFHEXCI and SDFHDLL1 are downwardly compatible with all supported releases of CICS.
4. Use the following command in the directory that contains the httpd.conf file for the IBM HTTP Server:

In -e DFHWBAPI dfhwbapi.so

When it is used in the STEPLIB concatenation, this command establishes a link from the IBM HTTP
Server's home directory to the DLL dfhwbapi.so in member DFHWBAPI in the
CICSTS54.CICS.SDFHDLLA1 library.

5. Add one or more service directives to the httpd.conf file.

Service directives map the URL entered by the user to the CICS resources that will satisfy the request.
Service directives for DFHWBAPI have the following format:

Service /sourceurl/* [home/dfhwbapi.so:DFHService/targeturl/*

146 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.dgw/dgw.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.dgw/dgw.htm

where the values are:

home
is the directory that contains the httpd. cont file for the IBM HTTP Server.

sourceurl
is a string of characters that selects an incoming URL to be processed by DFHWBAPI. The asterisk
following it is a wildcard string representing the remaining characters of the incoming URL.
sourceurl can be in any format, so details such as the applid and the transaction can be hidden
from users.

targeturl
targeturl is a string of characters that DFHWBAPI will use to determine which CICS resources will
satisfy the user request. After substitution of the wildcard, targeturl must be in the format:

/applid/converter/tran/program/filename

where the values are:

applid
the application id of the target CICS region
converter

the name of the converter program to be used in the CICS region, or CICS if no converter is to
be used.

tran
the transaction to be executed in the CICS region. Because the transaction is the target of an
EXCI request, it should not be the web alias transaction CWBA, but should be a mirror
transaction, such as CSM3. The transaction receives targeturl/*, not sourceurl/*, as the
incoming URL.

program
the name of the program to be executed in the CICS region.

filename
is any further information that will be examined by program.

If DFHWBAPI is used to access 3270 applications, CICS generates HTML forms which are
displayed on the web client. The URL which CICS inserts in the HTML form matches the fargetur!
used in the previous request. To handle this situation, you must provide a service directive of the
following form, in addition to those previously described:

Service /targeturl/* [home/dfhwbapi.so:DFHService

In this case, the targeturl is passed unchanged to DFHWBAPI.

6. If you want to display the graphic files that are referenced from some of the CICS-supplied template

definitions, include a directive as follows:

Service /dfhwbimg/* /home/dfhwbapi.so:DFHService/applid/DFHWBIMG/CSM3/*

where applid specifies the CICS region that will supply the graphics files (this might not be the same
CICS region that does the bridge work). DFHWBIMG is a special-purpose CICS-supplied converter
program used by the CICS web bridge.

. If you are accessing a CICS web application using both CICS web support and the CICS business logic
interface, you must specify the same host code page for both.

The default host code page for CICS is IBM-037, but for the IBM HTTP Server it is IBM-1047.

- Tochange the default code page for the IBM HTTP Server, use the DefaultFsCp configuration
directive. For example:

DefaultFsCp IBM-1047

« Tochange the default code page used by CICS, specify it in the DOCCODEPAGE system initialization
parameter; for example, DOCCODEPAGE=1047.

Chapter 2. Configuring CICS web support components 147


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/sit/dfha2_doccodepage.html

Documents and document fragments referenced using this default must be encoded in the
specified code page. In particular, if you are using document templates generated from BMS map
definitions, you must use a template customization macro to change the code page in which the
templates are generated. Use the CODEPAGE parameter of the DFHMDX macro to specify this; for

example:

DFHMDX MAPSET=%,MAP=%,CODEPAGE=1047

What to do next

Escaped data and the IBM HTTP Server

If you use the IBM HTTP Server and CICS business logic interface to access the same CICS application

program, you must make sure that escaped data is handled consistently in both cases.

The IBM HTTP Server passes data to the CICS application program in its unescaped form; therefore, you
must ensure that CICS web support does the same.

For more information, see Selecting escaped or unescaped data from an analyzer program

Processing examples for IBM HTTP Server

Figure 16 on page 148 shows how the CICS web support processes a request from a web client that is

connected to the IBM HTTP Server.

Web Network Server
browsers

par (O

< I IEM HTTF Server ClCS Transaction Server

o EXC] CICS
<« p| COmMmunications ol < Business wapplication
» . Server WebServer Logic program
plugin interface

- Lt

Figure 16. Processing a request from the IBM HTTP Server

1. The web client constructs an HTTP request which is passed across the network to Communications

Server.

2. Communications Server relays the request to IBM HTTP Server.

3. IBM HTTP Server calls the CICS web server plug-in.

4. The CICS web server plug-in constructs a request for the CICS business logic interface and passes it to
CICS using the External CICS Interface (EXCI).

5. The CICS business logic interface invokes the requested CICS application program and returns any

output in the COMMAREA.

148 CICS TS for z/OS: Internet Guide



https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfhtld1.html

Chapter 3. Developing web applications

You can develop an application that uses the CICS API to interact with clients or a server over HTTP. CICS
also provides a business logic interface to link to an application instead of calling it through the CICS
HTTP listener.

To develop Java™ EE applications for Liberty in CICS, see Developing Java applications to run in a Liberty
JVM server.

Developing HTTP applications

In CICS, web-aware application programs use EXEC CICS WEB commands to interact with a web client
or a server through CICS. For CICS as an HTTP server, these programs can receive and analyze HTTP
requests and provide application-generated responses to the web client.

Before you begin

Before you start to code web-aware application programs for CICS as an HTTP server, read HTTP request
and response processing for CICS as an HTTP server so that you understand the process.

If you want the service you are providing to web clients to comply with the HTTP protocol specifications,
in particular HTTP/1.1, read HTTP/1.1 compliance for CICS as an HTTP server for more information about
the actions that CICS and your user application can take.

About this task

For each HTTP request that requires an application-generated response, CICS calls the web-aware
application program that is specified on the URIMAP definition for the request, or by the analyzer program
if an analyzer is used. If you use a URIMAP definition to specify the application program, you can select a
single application program to service all requests using a particular URL. If you are using an analyzer
program either instead of, or in addition to, the URIMAP definition, it can analyze the request and decide
on an alternative application program.

Remember: Web-aware application programs that use the EXEC CICS WEB commands must run in the
CICS region where the web client's request is received. However, they can link to application programs in
other CICS regions; for example, to perform business logic.

For CICS as an HTTP server, when an application program has sent a response to a request and returned
control to CICS, it does not wait for further requests from the web client, even when requests form a
logical sequence, or are made using a persistent connection, or are pipelined. If you need to share
information between different programs (or new instances of the same program) across a series of
requests and responses, you can do so using CICS-managed resources or using elements of the requests
sent by the web client.

When EXEC CICS WEB commands are used for CICS as an HTTP server, they do not have the
SESSTOKEN option. The SESSTOKEN option indicates that a command is being used for CICS as an HTTP
client.

You can execute the business logic for the request processing, using the information you have gathered.
You might want to involve other application programs to perform processing. A web-aware application
program can produce a response to the HTTP request based on information that it receives from non-
web-aware programs. You are advised to separate the business logic from the presentation logic. In a
web-aware application, presentation logic controls the interaction with the web client. For more
information, see Separating business and presentation logic.

You can code web-aware application programs to process an HTTP request by following the guidance in
the subtopics.

© Copyright IBM Corp. 1974, 2019 149


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/java/dfhpj_devjavaweb.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/java/dfhpj_devjavaweb.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_inprocess.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_inprocess.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/standards/dfhtl_http11serverintro.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/designing/dfhp3_concepts_buspreslogic.html

Examining the request line for an HTTP request

CICS stores the request line used for each HTTP request, for the application program to access if needed.
An application program can use the WEB EXTRACT command to extract components of the request URL
(including the path, host name, port number, and query string), the method used for the request, or the
HTTP version of the request. Non-HTTP requests can also be identified in this way.

About this task

For information about the items in a request line, see The HTTP protocol . The request URL is a major
element of the request line. The components of a URL explains the different parts of a URL. Your
application program might examine any of the items in the request line so that it can process the request
and provide an appropriate response. Here are some common reasons for extracting information from a
request line:

« To ensure that the same application program is called to handle a number of different requests,
perhaps as part of a logical request sequence, or as different requests that relate to the same resource.

- To see what action is being requested from the application by the HTTP method. HTTP method
reference for CICS web support explains the different methods that a web client might use for a
request, and suggests action that is appropriate in each case.

« To use the path component of the URL, which identifies the resource to which the request applies. In
addition to being used to map the request to the handling application, you can design the path
component of the URL to provide processing information to the application. For example, the path
component can specify a particular function provided by the application. Or, if the web-aware
application is providing a front end for more than one other application, the path component of the URL
can identify the application to which the request applies. URLs for CICS Web support explains how this
can be achieved.

« To obtain a query string for processing by the application.

« Toidentify the HTTP version for the web client, so that the application can provide an appropriate
response. The HTTP version used by the web client can affect the HTTP headers, status code, and
message content for the response. HTTP/1.0 clients might not handle the more advanced features
described in the HTTP/1.1 specification.

« To identify a non-HTTP request. CICS web support and non-HTTP requests has more information about
handling non-HTTP requests.

See WEB EXTRACT full reference information about the options. Use the WEB EXTRACT command to
obtain the following items:

Procedure

« Use the HOST option to obtain the host component of the request URL, as specified either in the Host
header field for the request, or in the request line if the absolute URI form was used for the request.

e Use the HTTPMETHOD option to obtain the HTTP method for the request; for example, GET or PUT.

« Usethe HTTPVERSION option to identify the HTTP version, HTTP/1.1 or HTTP/1.0.

« Use the PATH option to obtain the path component of the URL.

e Use the PORTNUMBER option to obtain the port number that applies to the URL.

Well-known port numbers for a service are typically omitted from the URL. If the port number is not
present in the URL, the WEB EXTRACT command identifies and returns it based on the scheme. For
HTTP, the well-known port number is 80, and, for HTTPS, the well-known port number is 443.

« Use the QUERYSTRING option to obtain the whole of the query string.
The query string is returned in its escaped form, with %xx sequences to represent certain characters
that might prevent correct parsing. See Reserved and excluded characters for an explanation.

Alternatively, if the query string includes form data as name and value pairs, for example,
account=40138025, you can use the WEB READ FORMFIELD command to obtain this data in an
unescaped form. “Examining form data in an HTTP request” on page 153 tells you how to use the
command.

450 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_uricomp.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_methodref.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_methodref.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_cwsurl.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/web/dfhtl30.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webextract.html

« Usethe REQUESTYPE option to identify a non-HTTP request.

Examining the HTTP headers for a message

Each HTTP header for a request or response message consists of a header name and header value. CICS
stores this information for the application to access if required. An application can receive the value of a
specified header, or browse through the names and values of all the headers for a request or response.
You can also convert an architected date and time stamp string taken from a header into the ABSTIME
format.

About this task

Your application might need to examine information in the headers to process a request or response and
to construct subsequent messages.

« The TE header instructs the application whether trailing headers are permitted in a chunked response
message.

- Conditional headers can provide instructions to the application, such as to reply only if the response
document has changed.

Unless you know the exact format of the HTTP request or response, your application must not rely on the
presence of any particular header, because web clients and servers can be inconsistent in the headers
that they send.

Some HTTP headers contain date and time stamps. CICS provides the CONVERTTIME command to
convert common formats for architected date and time stamp strings into the ABSTIME format, for use by
the application.

The standard HTTP headers are described in the HTTP/1.1 specification (RFC 2616) and the HTTP/1.0
specification (RFC 1945). HTTP header reference for CICS web support explains the general use of HTTP
headers in CICS web support, and the actions that CICS web support takes for specific headers received
on messages. CICS ignores some HTTP headers, and the user application must take appropriate action in
response. Check the HTTP specification for detailed guidance and requirements about the meaning and
correct use of each HTTP header.

If the message includes any trailing headers, you can read these using the EXEC CICS WEB commands in
the same way as for standard headers. The Trailer header on the message specifies the names of all the
HTTP headers that were sent as trailing headers.

To examine and work with HTTP headers:

Procedure

« To examine the contents of a particular HTTP header, use the WEB READ HTTPHEADER command.

Your application program must provide a buffer that receives the contents of the header. CICS returns
a NOTFND condition if the header is not present in the request.

« To browse all the headers in a request or response:
a) Use the WEB STARTBROWSE HTTPHEADER command to begin browsing the header lines.

b) Use the WEB READNEXT HTTPHEADER command to retrieve the header name and header value for
each line.
Your application program must provide two buffers: one receives the name of the header, and the
other receives its contents. CICS returns an ENDFILE condition when all headers have been read.

¢) Use the WEB ENDBROWSE HTTPHEADER command to end the browse when your program has
retrieved all the header information of interest.

« Toconvert an architected date and time stamp string that is provided in a HTTP header, receive it into
a buffer using the WEB READ HTTPHEADER command, and then process it using the CONVERTTIME
command.

You do not have to identify the format of the date and time stamp; the CONVERTTIME command
recognizes and converts three different date and time stamp formats that are commonly used on the

Chapter 3. Developing web applications 151


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_headerref.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webreadhttpheader.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webstartbrowsehttpheader.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webreadnexthttpheader.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webendbrowsehttpheader.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_converttime.html

Internet. These are RFC 1123 (the web standard), RFC 850 (an older format), and ASCtime (output
from C function).

The application can convert the ABSTIME to other formats, using the FORMATTIME command.

Retrieving technical and security information about an HTTP request

An application can obtain information about the TCP/IP environment for an HTTP request, including the
security options that are in use, and about a client certificate that has been provided by a web client.

About this task

CICS manages the TCP/IP connection between a web client and server, applies appropriate security
measures, and manages the process of authenticating the identity of a web client. The actions taken by
CICS for each connection are determined by the options that you set in the TCPIPSERVICE definition for
the port on which the web client request is received. A user-written application can examine information
obtained by this process, if this information is useful for determining how to process the request. For
example, you can obtain the host name and IP address of the web client that sent the HTTP request, or
check the level of security and encryption for the connection.

The EXTRACT TCPIP command provides information about the TCP/IP connection and about security
options specified in the TCPIPSERVICE definition. The EXTRACT CERTIFICATE command provides
information taken from any X.509 client certificate that was received from the web client during a Secure
Sockets Layer (SSL) handshake.

Procedure

« To obtain the host name and IP address of the web client that sent the HTTP request, use the
EXTRACT TCPIP command with the CLIENTNAME and CLIENTADDR options.

The IP address is available as a binary number or as a character string containing its colon
hexadecimal or dotted decimal representation.

« To obtain the host name and IP address of the host system on which the application is running (that is,
CICS itself), use the EXTRACT TCPIP command with the SERVERNAME and SERVERADDR options.

Again, the IP address is available as a binary number or as a character string containing its colon
hexadecimal or dotted decimal representation.

« To obtain the number of the port on which the request was received, you can use the EXTRACT TCPIP
command with the PORTNUMBER option.

The port number is available as a binary number or a character string. Alternatively, you can use the
WEB EXTRACT command with the PORTNUMBER option.

« Toobtain the name of the TCPIPSERVICE resource definition associated with the request, use the
EXTRACT TCPIP command with the TCPIPSERVICE option.

- Toidentify the type of authentication (basic authentication, client certificate authentication, or no
authentication) that was specified in the TCPIPSERVICE definition, use the EXTRACT TCPIP command
with the AUTHENTICATE option.

CICS(r) as an HTTP server: authentication and identification explains more about the different types of
authentication.

« Toidentify whether Secure Sockets Layer (SSL) support is specified in the TCPIPSERVICE definition,
and the level of SSL encryption that is used, use the EXTRACT TCPIP command with the SSLTYPE and
PRIVACY options.

SSL with CICS web support explains more about SSL.

- Toretrieve information from an X.509 certificate that was received from the web client during an SSL
handshake, use the EXTRACT CERTIFICATE command.

CICS has already verified the supplied certificate by checking it against the security manager database
and against a certificate revocation list that you can set up.

A certificate contains fields that identify the subject (sometimes called the owner or the user) of the
certificate and fields that identify the Certificate Authority that issued the certificate (the issuer). You

152 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_formattime.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_extracttcpip.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_extractcertificate.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/web/dfhtl_cwsssl.html

can select the information that you require by specifying the OWNER or ISSUER option. You can also
use the SERIALNUM and USERID options to retrieve the serial number of the certificate and the RACF
user ID associated with the certificate.

Support for security protocols explains more about the content of certificates and how they are used.

Examining form data in an HTTP request

Form data is information provided by the user through interaction with an element in a HTML form, such
as a text input box, button, or check box. The information is transmitted as a series of name and value
pairs. CICS can scan an HTTP request to pick out the form fields, so an application can obtain the data
using CICS commands, without needing to receive and analyze the entire body of the request.

About this task
HTML forms explains more about forms and form fields.

An application can receive the value of a specified form field or it can browse through the names and
values of all the form fields contained in a request. You can specify code page conversion options if you
want to convert the data into a different code page for use by your application.

The web client sends form data in a query string when the GET method is used and in the message body
when the POST method is used. CICS can extract the data from either of these locations, so you do not
specify which method was used. As an alternative, if the form data is sent in the query string, you can
retrieve the entire query string using the WEB EXTRACT command. “Examining the request line for an
HTTP request” on page 150 tells you how to do that.

CICS reads form data only when CICS is the HTTP server and not when it is an HTTP client.

Procedure

« To obtain the value of a particular field of an HTML form, use the WEB READ FORMFIELD command.

Your application program can provide a buffer, which will receive the value, or, alternatively, you can
provide a pointer, which CICS sets to the address of the value. CICS returns a NOTFND condition if the
form data does not contain a field with the specified name.

The form data is unescaped by CICS before it is returned, with the %xx sequences converted back to
the original characters. See CICS web support and non-HTTP requests for an explanation of this.

« To browse all the fields in the form data:
a) Use the WEB STARTBROWSE FORMFIELD command to begin browsing the fields.
b) Use the WEB READNEXT FORMFIELD command to retrieve the name and value of each field in turn.

Your application program provides two buffers: one receives the name of the field, and the other
receives its contents. CICS returns an ENDFILE condition when all fields have been read.

¢) Use the WEB ENDBROWSE FORMFIELD command to end the browse when your program has
retrieved all the fields of interest.

« CICS carries out code page conversion on the data you receive.

You can use the CHARACTERSET and HOSTCODEPAGE options on the WEB STARTBROWSE
FORMFIELD and WEB READ FORMFIELD commands to specify the code page used by the web client
and by your application program.

a) The character encoding used by a client application for both the GET and POST methods is
determined by information in the HTML form. However, this information is not typically present as
part of the submitted form request, so it is supplied by the application using the CHARACTERSET
option. This information must match the forms encoding determined by the corresponding HTML
form. See How the client encoding is determined for more information.

b) The HOSTCODEPAGE option specifies the CICS (host) code page used by the application program.
This code page is typically an EBCDIC code page. If the code page is not specified, the data is
returned in the EBCDIC code page specified by the LOCALCCSID system initialization parameter,
provided that the specified code page is supported by the CICS web interface. Otherwise, CICS
returns the data to the default EBCDIC code page 037.

Chapter 3. Developing web applications 153


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/tcpip/dfht5kt.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webreadformfield.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/web/dfhtl30.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webstartbrowseformfield.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webreadnextformfield.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webendbrowseformfield.html

For more information on the CHARACTERSET and HOSTCODEPAGE options, see the WEB READ
FORMFIELD and WEB STARTBROWSE FORMFIELD commands.

Receiving the entity body of an HTTP request

An application can issue the WEB RECEIVE command to receive the entity body of an HTTP request. You
can receive only the first part of the entity body, or use a series of WEB RECEIVE commands to receive the
whole body in smaller sections.

About this task

The WEB RECEIVE command does not set a timeout value. The user application is called only when the
complete request has been successfully received from the web client and is being held by CICS. For CICS
as an HTTP server, the SOCKETCLOSE attribute in the TCPIPSERVICE definition for the port determines
how long the web client has to complete its request send. When this period expires, CICS returns a 408
(Request Timeout) response to the web client.

If arequest message is sent using chunked transfer-coding, CICS assembles the chunks into a single
message before passing it to the application. If a series of pipelined requests is sent, CICS treats each
request as a separate transaction, and requires a response from the user application before making the
next request available to the next user application for processing.

See WEB RECEIVE (Client) for full reference information. Use the WEB RECEIVE command to perform
these actions:

Procedure

1. Identify whether you need to receive an entity body for this request.

a) For certain request methods, such as the GET method, an entity body is not appropriate, and your
application is allowed to ignore any entity body that is present.

HTTP method reference for CICS web support indicates the methods where this applies. If an
inappropriate entity body is present, you may still receive it if you want.

“Examining the request line for an HTTP request” on page 150 tells you how to identify the request
method.

b) For an HTTP/1.1 request, the presence of an entity body is indicated by a nonzero Content-Length
header on the request or a Transfer-Encoding header if the message is chunked.
If the value of the Content-Length header is zero, or if neither the Transfer-Encoding header nor the
Content-Length header is supplied, no entity body is present.

“Examining the HTTP headers for a message” on page 151 tells you how to read the HTTP headers
for the message.

¢) HTTP/1.0 requests are not required to specify a Content-Length header, but they might do so. A
nonzero Content-Length header on the request indicates the presence of an entity body.

If no Content-Length header is present, but the request method (in particular, the POST method)
indicates that an entity body is appropriate, an entity body is probably present.

2. Receive the entity body by specifying either the INTO option (for a data buffer), or the SET option (for a
pointer reference), and the LENGTH option.

On return, the LENGTH option is set to the length of data received.
3. If you want to limit the amount of data received from the entity body, specify the MAXLENGTH option.

a) If you want to receive only the first part of the entity body, and discard any data that exceeds this
length, omit the NOTRUNCATE option.

NOTRUNCATE is the default.

b) If you want to retain, rather than discard, any data that exceeds this length, specify the
NOTRUNCATE option.

You can obtain any remaining data using further WEB RECEIVE commands.

154 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webreadformfield.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webreadformfield.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webstartbrowseformfield.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webreceiveclient.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_methodref.html

If the data has been sent using chunked transfer-coding, CICS assembles the chunks into a single
message before passing it to the application, so the MAXLENGTH option applies to the total length of
the entity body for the chunked message, rather than to each individual chunk. The total amount of
data that CICS accepts for a single message is limited by the MAXDATALEN attribute of the
TCPIPSERVICE definition.

4. Specify any options that you want to set here for code page conversion.

a) The SERVERCONV option provides overall control of code page conversion. Use it to specify
whether or not code page conversion takes place.

For CICS as an HTTP server, for compatibility with web-aware applications coded in earlier
releases, code page conversion is assumed if SERVERCONV is not specified but another code page
conversion option is specified. If you want to prevent code page conversion, either specify
SERVERCONV(NOSRVCONVERT) or omit all the code page conversion options.

If you receive an entity body that has been zipped or compressed, as indicated by a Content-
Encoding header on the message, make sure that you suppress code page conversion. CICS does
not decode these types of message for you, and, if code page conversion is applied, the results
might be unpredictable. If you cannot decipher a zipped or compressed entity body, you can inform
the web client by returning a 415 status code.

b) If you want code page conversion, but CICS cannot determine the character set of the web client,
use the CHARACTERSET option to specify it.

For older web clients, the request headers might not provide this information. In this case, CICS
assumes the IS0-8859-1 character set, so you only need to specify the character set if that
assumption is not correct.

¢) If you want code page conversion, but the default code page for the local CICS region, as specified
in the LOCALCCSID system initialization parameter, is not suitable for your application, use the
HOSTCODEPAGE option to specify an alternative host code page.

Code page conversion does not take place for messages that specify a nontext media type, unless you
do not specify SERVERCONYV, in which case, for compatibility purposes, the media type is not taken
into account. Note that for compatibility purposes, CICS deviates from the HTTP/1.1 requirement to
default to application/octet-streamif inbound messages do not specify a media type. CICS
uses text/plain as the default instead, so that code page conversion can be carried out for the
message.

5. If you specified the MAXLENGTH and NOTRUNCATE options, and you have more data to receive, issue
further WEB RECEIVE commands.

A single RECEIVE command using the SET option and without the MAXLENGTH option receives all the
remaining data, whatever its length. Alternatively, you can use a series of RECEIVE commands with the
NOTRUNCATE option to receive the remaining data in appropriate chunks.

Keep issuing the RECEIVE command until you no longer receive a LENGERR response.

If you receive less than the length requested on the MAXLENGTH option, it might not indicate the end
of the data; this situation might arise if CICS must avoid returning a partial character at the end of the
data.

Writing HTTP headers for a response

For dynamic responses created by application programs, CICS automatically provides the HTTP headers
that are required for basic messages, depending on the HTTP protocol version used for the message. Your
application does not need to write these headers. However, you might want to add further HTTP headers
to your response.

About this task
Here is the full list of headers created by CICS :

« ARM correlator
« Connection

Chapter 3. Developing web applications 155



« Content-Type (written by CICS, but can be supplied by a client application if a complex header is
required)

 Content-Length

« Date

« Expect

» Host

« Server (automatic creation depends on system initialization parameter HTTPSERVERHDR
« TE (written by CICS but further instances may be added)

« Transfer-Encoding

« User-Agent (automatic creation depends on system initialization parameter HTTPUSRAGENTHDR
« WWW-Authenticate

Note that some of these headers are appropriate, and created, only when CICS is an HTTP client. The
circumstances in which these headers are created are described in HTTP header reference for CICS web
support . If you do write these headers on a response, CICS does not overwrite them, but uses the
versions provided by your application.

The headers that CICS provides when a response is sent are the ones that are typically written to make a
basic message comply with the appropriate HTTP protocol specification. You might want to add further
HTTP headers to the response for some purposes:

« Control of caching and document expiry; for example, Cache-Control, Expires, Last-Modified.
- Content negotiation; for example, Accept-Ranges, Vary.
« Information for the web client; for example, Title, Warning, further Content headers.

If your application program is performing complex actions, or if you select certain status codes for your
response, the HTTP specification to which you are working is likely to require the use of particular HTTP
headers for your message. When you add any HTTP headers to a response, check the HTTP specification
to which you are working for any important requirements that apply to those headers. See The HTTP
protocol for more information about the HTTP specifications.

Write additional HTTP headers for a message before you issue the WEB SEND command to send the
message. The exception to this rule is when you write headers to be sent as trailing headers on a chunked
message, in which case the subsequent procedure applies. To write HTTP headers for a response:

Procedure

« Usethe WEB WRITE HTTPHEADER command for each header that you want to add to the message.

Make sure that you specify the name and value for each header in the format described by the HTTP
specification to which you are working. CICS does not validate the content of HTTP headers, because
you might want to use new or user-defined headers.

The command adds a single header, and you can repeat the command to add further headers. If you
write a header that you have already written, CICS adds the new header to the request or response in
addition to the existing header. Rewrite a header only when the HTTP specification states that the
header can be repeated.

CICS stores the headers ready to be added to the request when it is sent.

- Ifanyofthe HTTP headers that you use might be unsuitable for web clients lower than HTTP/1.1 level,
before writing those headers, check the HTTP version information that the web client has supplied to
you.

Use the WEB EXTRACT command to obtain this information.

To allow you to use user-defined (nonstandard) headers, CICS does not remove unsuitable user-
written headers. Some HTTP headers are not understood by servers lower than HTTP/1.1, and might
lead to errors in processing your request.

CICS does not make any special provision for a server or web client that is lower than HTTP/1.0 level.
CICS behaves as though they are at HTTP/1.0 level and returns HTTP/1.0 as the HTTP version.

156 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/sit/dfha2_httpserverhdr.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/sit/dfha2_httpusragenthdr.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_headerref.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_headerref.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl29.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl29.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webwritehttpheader.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webextract.html

« Ifyou want to produce a date and time stamp for use in one of your HTTP headers, for example, the
Last-Modified header, use the FORMATTIME command.

The STRINGFORMAT option on the command converts the current date and time, in ABSTIME format,
or a date and time produced by the application program, into suitable date and time stamp formats for
use on the Web. Other date and time stamp formats might not be accepted by some web clients or
servers with which CICS is communicating.

- If you want to produce a strong entity tag for use in the ETag HTTP header, you can use the SHA-1
digest produced by the BIF DIGEST BIF DIGEST command.

The presence of a strong entity tag enables a client to make conditional requests for a resource using
the entity tag in If-Match, If-None-Match, or If-Range headers, which is a more precise method of
checking the status of a resource than the Last-Modified date and time string. If you want to allow
conditional requests, your application program must provide support for them; CICS does not provide
its own support for If-Match, If-None-Match, or If-Range functions on HTTP GET requests.

- Ifyou are using chunked transfer-coding to send an HTTP request or response, and you want to

include trailing headers at the end of the chunked message, follow the special instructions in “Sending
an HTTP request or response with chunked transfer-coding” on page 160.

You write a Trailer header before sending the first chunk of the message. All the HTTP headers written
after the WEB SEND command for the first chunk are treated as trailing headers.

« Make sure that your application program carries out any actions that are implied by your user-written
headers.
For example, if you have written content-negotiation headers, your application program must provide
different versions of the resource.

Producing an entity body for an HTTP message

Web-aware application programs can produce an entity body formed from a CICS document or from a
buffer of data.

About this task

CICS documents can be used as the entity body of an HTTP message. Use the EXEC CICS DOCUMENT
commands to create them. They can be populated by data specified directly by the application program,
and by document templates, which are portions of documents defined as CICS resources or created by
another CICS program. You can store documents and document templates for reuse.

Alternatively, you can specify a buffer of data created by the application program. You might find this
option more convenient for short or simple entity bodies, and you must use this option for chunked
transfer-coding for the message. However, data created in this way cannot be stored for reuse so easily.

Procedure

1. To create a CICS document, follow the instructions in Creating a document.

Use the EXEC CICS DOCUMENT application programming interface (EXEC CICS DOCUMENT
CREATE, INSERT, and SET commands) to create the document. Use the DOCTOKEN option on the
WEB SEND command to specify the document token for the finished document. CICS retrieves the
document and performs appropriate code page conversion, depending on the options you specify on
the WEB SEND command.

The body of a chunked message cannot be formed from CICS documents.
2. Alternatively, assemble a message body in your application program.
Use the FROM option on the WEB SEND command to specify the buffer of data.

The size of the data buffer has no set maximum limit, but you must consider the following factors that
might limit its size in practice:

« The EDSA limit for the CICS region.

Chapter 3. Developing web applications 157


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_formattime.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_bifdigest.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/designing/dfhp3_doc_create.html

« The number of other message bodies that you might be assembling at the same time in the CICS
region. Scheduling constraints might be imposed by the MAXACTIVE setting for any transaction class
definitions that apply to CICS web support transactions.

« The type of code page conversion used for the message body. For conversion from the EBCDIC code
page 037 to the ASCII code page ISO-8859-1, CICS overwrites the same buffer of data, so no
additional storage is used. For any other type of code page conversion, CICS requires additional
storage to contain the converted message body. Depending on the character sets used, the size of
this additional storage area can range from the same size as the original message body, to a
theoretical maximum of four times the size of the original message body (which is unlikely). For
example, a 2 MB buffer of data sent using the FROM option requires at least 4 MB of storage in total.
Double-byte character sets (DBCS) or multi-byte character sets are likely to require larger storage
areas within this range.

Sending an HTTP response from CICS as an HTTP server

Use the WEB SEND command to make CICS assemble the HTTP headers, entity body, status code, and
reason phrase for an HTTP response, carry out code page conversion, and transmit the response to the
web client.

Before you begin

Write any additional HTTP headers for the response using the WEB WRITE HTTPHEADER command
before issuing the WEB SEND command, as described in “Writing HTTP headers for a response” on page
155 . Also produce any entity body that is needed for the message, as described in “Producing an entity
body for an HTTP message” on page 157.

You specify a status code and reason phrase on the WEB SEND command. Status codes and reason
phrases explains what these are. HTTP status code reference for CICS web support provides an overview
of the status codes that your application might use. To plan your use of status codes and find further
information about them, consult the HTTP specification to which you are working. See The HTTP protocol
for more information about the HTTP specifications.

About this task

If wanted, the response can be sent in chunks (chunked transfer-coding). You cannot send pipelined
responses back to a web client; you must send a single response to each request sent by the web client.

See WEB SEND (Server) for reference information.

Note these points about the command:

Procedure
1. Specify the STATUSCODE option to select an appropriate status code for the response, depending on
the situation, and the STATUSTEXT and STATUSLEN options to provide the reason phrase.

CICS does not validate your choice of status code, and the user application must ensure that the value
is valid and conforms to the rules for HTTP status codes.

Depending on the status code that you select, you might have to complete some or all of the following
steps before issuing the WEB SEND command:

a) Check the HTTP version of the web client's request, to ensure that the status code can be
understood.

The HTTP/1.1 specification includes more status codes than the HTTP/1.0 specification.

b) If the HTTP specification states that the status code must be accompanied by certain HTTP
headers, use the WRITE HTTPHEADER command to create those headers.

¢) If the HTTP specification states that the status code must be accompanied by a message body
giving special information, create an appropriate entity body.

You typically need special information when the status code indicates an error or requests further
action from the client.

458 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_statusref.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_websend.html

Message bodies are not allowed with status codes 204, 205, and 304. If you have selected a status
code that does not allow a message body, and attempt to use a message body, CICS gives an error
response to the WEB SEND command.

. Identify the source of any entity body for the response by specifying either the DOCTOKEN option, for
a CICS document that you have created, or the FROM option, for a body of data that you have
assembled. If you are using the FROM option, specify the FROMLENGTH option to give the length of
the entity body, or of the chunk if chunked transfer-coding is in use.

For chunked transfer-coding, you cannot use the DOCTOKEN option.

. Specify the media type for the body of the response, using the MEDIATYPE option.

CICS does not check the validity of the specification against the data content.

MEDIATYPE has no default. If you do not specify it, CICS does not build a Content-Type header for the
response.

. If you want the message to be sent immediately, rather than at the end of the task (which is the
default), specify IMMEDIATE for the ACTION option.
If you are using chunked transfer-coding, IMMEDIATE is the default, so you do not have to make this
choice.

Only one response can be sent during a task. It can be a standard response using one WEB SEND
command or a chunked response using a sequence of WEB SEND commands.

. If you want to close the connection after sending the response, specify CLOSE for the CONNECTION
option.
CICS writes a Connection: close header on the response, which notifies the web client that the
connection is closed and that no more requests can be sent. For a web client at HTTP/1.0 level, CICS
achieves the same effect by omitting the Connection: Keep-Alive header.

. Specify the appropriate settings for code page conversion of the message body.

a) The SERVERCONV option provides overall control of code page conversion. Use it to specify
whether or not code page conversion takes place.
For CICS as an HTTP server, for compatibility with web-aware applications coded in earlier
releases, code page conversion is assumed if you specify another code page conversion option but
not SERVERCONN. If you want to prevent code page conversion, either specify
SERVERCONV(NOSRVCONVERT) or omit all the code page conversion options.

b) If you want code page conversion, but the character set selected by CICS is not suitable, use the
CHARACTERSET option to specify an alternative.
By default, CICS uses the character set specified in the Content-Type header of the original request
from the web client. If that character set was unsupported or not stated, CICS uses the
ISO-8859-1 character set instead.

A web client might specify alternative acceptable character sets in an Accept-Charset header. If
you want to specify one of these, your application must analyze the header, which might include
quality values to indicate the web client preference, and select an appropriate supported character
set.

CICS does not support all the character sets named by IANA. HTML coded character sets lists the
IANA character sets that are supported by CICS for code page conversion.

¢) If you want code page conversion, and are using the FROM option to specify the message body, use
the HOSTCODEPAGE option to identify the code page for your application, if this is not the default
code page for the local CICS region as specified in the LOCALCCSID system initialization parameter.
If you are using a CICS document (DOCTOKEN option), CICS identifies the host code page from the
CICS document domain's record of the host code pages for the document.

Code page conversion does not take place for messages that specify a nontext media type, unless you

do not specify SERVERCONYV, in which case, for compatibility purposes, the media type is not taken

into account.

The HTTP headers and status line are always converted into the ISO-8859-1 character set by CICS.

Chapter 3. Developing web applications 159


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtldy.html

7. If you are using chunked transfer-coding (or chunking), in addition to the basic instructions in this
topic, follow the special instructions in “Sending an HTTP request or response with chunked transfer-
coding” on page 160.

You must ensure that the procedure described in that topic is followed correctly, so that the chunked
message is acceptable to the recipient. Chunked messages are sent using several instances of the
WEB SEND command, with particular options.

Sending an HTTP request or response with chunked transfer-coding

You can set up chunked transfer-coding for an HTTP request by CICS as an HTTP client or for an HTTP
response from CICS as an HTTP server.

Before you begin
First, consider these attributes of the item that you want to send:

« The HTTP headers to be used at the beginning of the message. CICS supplies its usual message
headers, which are listed in HTTP header reference for CICS web support . For a chunked message,
CICS supplies the proper headers for chunked transfer-coding, including the Transfer-Encoding:
chunked header. If any additional headers are required at the beginning of the message, the application
can write them before the first WEB SEND command.

« Any headers to be sent in the trailer at the end of the message. These headers are known as trailing
headers. The HTTP/1.1 specification sets requirements for the use of trailing headers, including that it
must not matter if the recipient ignores them.

- How the message will be divided. Divide it in whatever way is most convenient for the application
program. For example, the output from a number of other application programs might be sent as it is
produced, or data from each row of a table might be read and sent individually.

« The length of each chunk of data that will be sent. Do not include the length of any trailing headers.

About this task

Use this procedure to create a correctly constructed chunked message, as defined in the HTTP/1.1
specification. See The HTTP protocol for more information. If the chunked message is not correctly
constructed, the recipient might discard it.

“Sending an HTTP response from CICS as an HTTP server ” on page 158 is the main set of instructions for
writing an application program to send a server response. “ Making HTTP requests through CICS as an
HTTP client ” on page 163 is the main set of instructions for writing an application program to make a
client request. You can use the instructions in the present topic with either of those sets of instructions.

You cannot form the body of a chunked message directly from CICS documents, so you cannot use the
DOCTOKEN option. You must use the FROM option to specify data to form the body of a chunked
message.

When you have begun sending the parts of a chunked message, you cannot send any different messages
or receive any items until the final empty chunk is sent and the chunked message is complete.

Procedure

1. Before beginning a chunked message, verify that the web client or server is at HTTP/1.1 version.
AlLLHTTP/1.1 applications must handle chunked transfer-coding. A chunked message cannot be sent
to an HTTP/1.0 recipient.

a) For responses sent by CICS as an HTTP server, use the WEB EXTRACT command to check the HTTP
version specified for the web client request.

b) For requests sent by CICS as an HTTP client, the HTTP version of the server is returned on the WEB
OPEN command for the connection if you specify the HTTPVNUM and HTTPRNUM options on the
command. If you did not specify these options, use the WEB EXTRACT command to check the HTTP
version of the server.

160 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_headerref.html

c) Alternatively, you can omit this check and allow CICS to check the version of the web client or
server when you issue the WEB SEND command to send the first chunk of the message.

If the recipient is HTTP/1.0, you receive an error response.

2. Use the WRITE HTTPHEADER command as many times as necessary to write any HTTP headers that
must be sent before the body of the message.

Do not write the headers for chunked transfer-coding; CICS writes them itself, using the chunk length
information supplied by the application program.

3. If you want to include trailing headers (headers sent out after the body of the message) with the
chunked message, use the WRITE HTTPHEADER command to write a Trailer header. Specify the
names of all the HTTP headers that you plan to send in the trailer, as the value of the Trailer header.

You can send any headers as trailing headers, except the Transfer-Encoding, Trailer, and Content-
Length headers.

a) For responses sent by CICS as an HTTP server, ensure that the web client sent a TE: trailers header
on its request.
This header shows that the client handles trailing headers.

CICS returns an INVREQ response with a RESP2 value of 6 to the WRITE HTTPHEADER command if
you attempt to write the Trailer header when the client did not send TE: trailers. Alternatively, you
can use the READ HTTPHEADER command to check for the presence of the TE: trailers header.

b) For requests sent by CICS as an HTTP client, trailing headers can be included without reference to
the TE header.
The trailing headers themselves are written during the chunked sending process.
4. Use the WEB SEND command to send the first chunk of the message.
a) Specify CHUNKING(CHUNKYES) to tell CICS that it is a chunk of a message.
b) Use the FROM option to specify the first chunk of data from the body of the message.
c) Use the FROMLENGTH option to specify the length of the chunk.

d) For requests by CICS as an HTTP client, specify an appropriate method on the METHOD option.
Chunked transfer-coding is not relevant for requests with no message body, so it is not relevant for
the GET, HEAD, DELETE, OPTIONS, and TRACE methods, but you can use it for the POST and PUT
methods.

e) Specify any other options that apply to both chunked and non-chunked messages, as given in your
main set of instructions.

5. Use the WEB SEND command as many times as necessary to send each of the remaining chunks of the
message. On each WEB SEND command, specify the following items:
a) CHUNKING(CHUNKYES)
b) FROM, giving the chunk of data
¢) FROMLENGTH, giving the length of the chunk
Do not specify any other options for the command. CICS sends each chunk as you issue the command.

6. Optional: At any time after issuing the WEB SEND command for the first chunk, but before issuing the
WEB SEND command for the final empty chunk (see the next step), use the WRITE HTTPHEADER
command to create further HTTP headers that are sent as trailing headers.

If a Trailer header was written on the first chunk of the message, the HTTP headers written during the
chunked sending process are treated by CICS as trailing headers, and they are sent out with the final
empty chunk. (If the Trailer header was not written, CICS does not allow any trailing headers to be
written.)

Note that CICS does not check whether your trailer headers match the names that you specified in the
initial Trailer header on the first chunk of the message.

7. When you have sent the last chunk of the data, specify a further WEB SEND command with
CHUNKING(CHUNKEND) and no FROM or FROMLENGTH option.

CICS then generates and sends an empty chunk to the recipient to end the chunked message. The
empty chunk is sent with the trailer containing any trailing headers that you wrote.

Chapter 3. Developing web applications 161



8. For CICS as an HTTP server, errors are handled as follows:

a) If one of the WEB SEND commands fails during the sequence, an error response is returned, and
subsequent sends also fail. The application must handle this situation appropriately.

b) If all the chunks are sent successfully, but the application does not issue the final WEB SEND
command with CHUNKING(CHUNKEND), the transaction is abended with abend code AWBP.

This abend is necessary because CICS cannot guarantee that the chunked message is complete
and correct, and so cannot issue the final empty chunk on behalf of the application.

An incomplete chunked message is ignored and discarded by the recipient. The web client determines
whether to try the request again.

9. For CICS as an HTTP client, errors are handled as follows:

a) If your application program is informed of an error at any point in the chunked transfer-coding
process, use the WEB CLOSE command to stop the process and close the connection.

The server does not receive the final empty chunk and, therefore, ignores and discards the data
that you have sent so far. You can decide whether to retry the request.

b) If you do not send the final empty chunk or issue the WEB CLOSE command, a warning message is
written at task termination to CWBO, the transient data queue for CICS web support messages.

The server times out the receive and ignores and discards the data that you sent.

Managing application state across an HTTP request sequence

CICS initiates a new alias transaction and a new program for each request made by a web client. This
initiation is for pipelined requests, requests made using a persistent connection, and requests that form a
logical sequence, and for individual stand-alone requests. Consider how the application state will be
managed between requests.

About this task

To share data across the request sequence, between different programs or instances of the same
program, use CICS-managed resources or elements of the requests sent by the web client.

When more than one exchange of a request and response between a web client and CICS is needed to
complete a task successfully, the web client initiates each new step in the sequence. You can design the
response sent by CICS to guide the web client, and any human user of the web client, to the next step. For
example, the entity body can contain controls, such as links or buttons, with which the user can compose
the next request. However, you cannot easily enforce the correct sequence of requests. In particular, the
planned sequence can be disrupted for these reasons:

« Theclient is a web browser, and the user types a known URL to initiate a particular request, rather than
selecting a control in an HTML page provided by a previous response.

- The user abandons the activity, by shutting down the web client or by changing to an alternative activity
with the web client.

The user might also delay initiation of any request in the sequence.

You must design your application programs so that they can cope with delays or disruptions in the
request sequence. For example, if you are sharing data across the request sequence, ensure that the data
is cleaned up if the request sequence does not complete or is delayed excessively. If your application
programs update protected resources, ensure that updates that must be committed or backed out
together are made in the same transaction. So you must design a single request from the web client to
complete the update.

The best situation for an application is that each exchange of a request and response is self-contained
and completes an independent element of the task. However, this design is not always possible,
especially when the task is complex, or when a web client has sent a pipelined sequence of requests. You
might require a pseudoconversational model, in which the application state must be managed between
requests. Use the following techniques:

162 CICS TS for z/OS: Internet Guide



Procedure

« You can design the requests sent by the web client so that application state, or shared data, is
incorporated in the request; for example, as part of a request URL that is used when the web client
submits an HTML form.

The next program can examine the request URL to obtain the shared data.

« You can store small quantities of application state using hidden fields in an HTML form that is returned
to the web client as a response.

When the user performs the next action in the planned sequence, the request that is sent to CICS can
include the hidden fields, which can be located and read by the next application program.

- For larger quantities of state, and state with an extended lifetime, you can create a CICS-managed
resource to maintain the application state, and pass a token that represents the resource.

CICS provides sample state management programs, DFH$WBST and DFH$WBSR, that store
application state in main storage or temporary storage queues, and provide tokens that application
programs can use to access the information.

A token can be conveyed from program to program in a pseudoconversation as a hidden field in an
HTML form, or from interaction to interaction as a query string in a URL.

Use this technique to preserve information throughout a pseudoconversation and also to preserve
information throughout an extended interaction between a user and various CICS application
programs, perhaps over several pseudoconversations.

HTTP client requests from a CICS application

CICS can act as an HTTP client and communicate with an HTTP server on the Internet. A user-written
application program sends requests through CICS to the HTTP server and receives the responses from it.

Your user-written application programs can work in these ways:

- Interact with hardware or software using the HTTP protocol; for example, printers can often be
controlled in this way.

« Access HTTP applications that provide items of information (for example, share prices) and retrieve this
information for use in the application.

The HTTP client facility of CICS web support is not designed for use as a web browser. User application
programs can make requests for individual, known resources that are available from a server, but they
cannot be expected to browse the Internet generally. The range of responses that you might receive from
a server, and the actions that you need to take to handle them, relate only to your preselected resources
and the error responses that might be associated with those resources and with the type of requests that
you are making.

Before writing an application program that makes an HTTP client request, make sure that you understand
the processing stages for these requests, because most of the stages are initiated by the application
program itself. Refer to HTTP request and response processing for CICS(r) as an HTTP client .
TCPIPSERVICE resource definitions, which are used for CICS as an HTTP server, do not apply to CICS as
an HTTP client.

Code page conversion is carried out for the requests CICS makes and the responses it receives. See Code
page conversion for CICS(r) as an HTTP client .

Making HTTP requests through CICS as an HTTP client
HTTP client requests made from CICS to a server on the Internet are initiated by a user-written
application program.

Before you begin

Before writing an application program that makes an HTTP client request, read about the processing
stages for these requests, because most of the stages are initiated by the application program itself.
HTTP request and response processing for CICS(r) as an HTTP client explains what the application
program needs to do, and what actions CICS takes during the process.

Chapter 3. Developing web applications 163



About this task

For CICS as an HTTP client, the application program makes requests to a server and waits for the
responses. An application program can control more than one connection, using a session token to
differentiate between them.

To make HTTP requests and receive responses, write your application program to follow the process
described in the subtopics, followed by samples:

Opening a connection to an HTTP server
When you make an HTTP client request in CICS web support, you must open a connection to the server
before sending the first request. CICS returns a session token that represents the connection.

About this task

When you open the connection to the server, you can specify a URIMAP resource that contains the
information about the host server and port for the connection. You can code this information directly in
your application program instead of using a URIMAP resource. However, using a URIMAP resource has
the following advantages:

- System administrators can manage any changes to the endpoint of the connection, so you do not need
to recompile your applications if the URL for your request changes.

« If you are using SSL, you can specify an SSL client certificate or cipher suite codes in the URIMAP
resource, so that system administrators can manage any changes to these certificates and codes.

 You can choose to make CICS keep the connections that were opened with the URIMAP resource open
after use, and place them in a pool for reuse by another application or another instance of the same
application. Connection pooling is only available when you specify a URIMAP resource that has the
SOCKETCLOSE attribute set. For more information about the performance benefits of connection
pooling, see Connection pooling for HTTP client performance.

Initiate a connection with the server by issuing a WEB OPEN command.

Procedure

1. Specify the host name of the server, the length of the host name, and the scheme that is to be used
(HTTP or HTTPS).
Also specify the port number for the host if it is not the default for the specified scheme.

You can specify the URIMAP option on the WEB OPEN command to use this information directly from
an existing URIMAP resource. Connection pooling is enabled for the connection when you specify the
URIMAP option and name a URIMAP resource that has the SOCKETCLOSE attribute set.
Alternatively, you can supply the information using the SCHEME, HOST, HOSTLENGTH, and
PORTNUMBER options. You can extract these details from a known URL, using the WEB PARSE URL
command, or from an existing URIMAP definition, using the WEB EXTRACT URIMAP command (but
note that extracting information from a URIMAP definition does not enable connection pooling).

2. If required, specify the CODEPAGE option to change the EBCDIC code page for this connection to
something other than the default code page for the local CICS region (set by the LOCALCCSID system
initialization parameter). This page might be the EBCDIC code page for another national language.
When the server returns its response, if conversion is specified CICS converts the response body into
this code page before passing it to the application.

3. If you are using the HTTPS scheme, specify appropriate security options:
a) If you need to supply an SSL client certificate, specify the CERTIFICATE option.

If you specify the URIMAP option on the WEB OPEN command, you can use this information
directly from an existing URIMAP definition.

b) Use the CIPHERS and NUMCIPHERS options to specify a list of cipher suite codes for the
connection.

If you specify the URIMAP option on the WEB OPEN command, you can either accept the setting
from the URIMAP definition or specify your own cipher suite codes as overrides.

164 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/web/dfht3_connpool.html#dfht3_connpool

4. If your first planned request involves actions that are not supported in all versions of the HTTP
protocol, and you want to check the HTTP version of the server to confirm that the actions will work,
specify either or both of the HTTPVYNUM and HTTPRNUM options to return this information.

You might need this information if you do not already know the HTTP version of the server, and you

want to take actions that depend on the HTTP protocol version; for example:

« Writing HTTP headers that request an action that might not be carried out correctly by a server
below HTTP/1.1 level

« Using HTTP methods that might be unsuitable for servers below HTTP/1.1 level

« Using chunked transfer-coding

« Sending a pipelined sequence of requests

You do not always have to check the HTTP version of the server. Consult the HTTP specification to

which you are working to see whether it is acceptable to attempt the action with a server of the wrong

version. For example, some unsuitable HTTP headers might be ignored by the recipient. You might be
able to attempt the request without checking, and handle any error response from the server.

Do not specify the HTTPVNUM and HTTPRNUM options if you do not require this information, because
performance is better without these options.

5. Optional: If you want to make the connection to the server go through a proxy server, or to apply a
security policy to a host name, create a user exit program for the XWBOPEN user exit.

For details see HTTP client open exit XWBOPEN.

Results

If you specified a URIMAP resource with the SOCKETCLOSE attribute set, CICS checks whether a dormant
connection is available in the pool, and if so supplies the connection to the application program for reuse.
If no dormant connection is available, or if you did not specify a suitable URIMAP resource, CICS opens a
new connection to the server. The application program uses a new connection or a reused connection in
exactly the same way.

CICS returns a new session token to the application program to represent this application's use of the
connection.

What to do next
Save the session token and use it on all subsequent commands that relate to this use of the connection.

Writing HTTP headers for a request

For client HTTP requests, CICS automatically provides the HTTP headers that are required for basic
messages, depending on the HTTP protocol version used for the message. You might need to add further
HTTP headers to your request.

About this task

These HTTP headers are created automatically by CICS if the message requires them:
- ARM correlator

 Connection

« Content-Type (written by CICS, but can be supplied by a client application if a complex header is
required)

- Content-Length

« Date

« Expect

« Host

« Server (automatic creation depends on system initialization parameter HTTPSERVERHDR)
 TE (written by CICS but further instances may be added)

Chapter 3. Developing web applications 165


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/user-exits/dfhtl_xwbproxy.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/sit/dfha2_httpserverhdr.html

 Transfer-Encoding
« User-Agent (automatic creation depends on system initialization parameter HTTPUSRAGENTHDR)
« WWW-Authenticate

Some of these headers are appropriate only for CICS as an HTTP server. The circumstances in which
these headers are created are described in HTTP header reference for CICS web support . You cannot
write your own versions of CICS-supplied request headers, except for the Content-Type and TE headers.

Typically, the headers that CICS provides for a request are written for a basic HTTP/1.1 message, to
comply with the HTTP/1.1 specification. (CICS sends your request with HTTP/1.1 given as the HTTP
version.) You might want to add further HTTP headers for purposes such as these:

- Stating preferences to the server; for example, Accept-Encoding, Accept-Language
- Making a conditional request; for example, If-Match, If-Modified-Since
- Providing basic authentication information to a server or proxy; Authorization, Proxy-Authorization

Check the HTTP specification to which you are working for requirements relating to any additional HTTP
headers that you decide to use for your message. Refer to The HTTP protocol.

Write additional HTTP headers for a message before you issue the WEB SEND command to send the
message. However, if you are writing headers to be sent as trailing headers on a chunked message, the
following procedure applies. Note these points:

Procedure

« Forall commands, specify the session token for this use of the connection, using the SESSTOKEN
option.

« Usethe WEB WRITE HTTPHEADER command for each header that you want to add to the message.

Make sure that you specify the name and value for each header in the format described by the HTTP
specification to which you are working.

The command adds a single header, and you can repeat the command to add further headers. If you
write a header that you have already written for the request, CICS adds the new header to the request
in addition to the existing header. Repeat headers only where the HTTP specification states that the
header may be repeated.

CICS stores the headers ready to be added to the request when it is sent.

« Ifyou do not know the HTTP version of the server, and you want to use a header to request an action
that might not be carried out correctly by a server below HTTP/1.1 level, use the WEB EXTRACT
command to check the HTTP version of the server.

You do not always have to check the HTTP version of the server before carrying out actions that
depend on the version. Consult the HTTP specification to which you are working to see whether it is
acceptable to attempt the action with a server of the wrong version. For example, some unsuitable
HTTP headers might be ignored by the recipient. You might be able to attempt the request without
checking, and handle any error response from the server.

- Ifyou want to produce a date and time stamp for use in one of your HTTP headers (for example, the If-
Modified-Since header), you can use the FORMATTIME FORMATTIME command.

The STRINGFORMAT option on the command converts the current date and time (in ABSTIME format),
or a date and time produced by the application program, into suitable date and time stamp formats for
use on the Web. Other date and time stamp formats might not be accepted by some web clients or
servers with which CICS is communicating.

- Ifyou are using chunked transfer-coding to send an HTTP request, and you want to include trailing
headers at the end of the chunked message, refer to “Sending an HTTP request or response with
chunked transfer-coding” on page 160.

You must write a Trailer header before sending the first chunk of the message. All the HTTP headers
written after the WEB SEND command for the first chunk are treated as trailing headers.

« Make sure that your application program carries out any actions that are implied by your user-written
headers.

166 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/sit/dfha2_httpusragenthdr.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_headerref.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl29.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webwritehttpheader.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_formattime.html

Writing an HTTP request

For CICS as an HTTP client, you can use the WEB SEND command or the WEB CONVERSE command to
make a request. The WEB CONVERSE command combines the options available on the WEB SEND
command and the WEB RECEIVE command, so that you can use a single command to issue a request and
receive the response.

Before you begin

Write any additional HTTP headers for the request using the WEB WRITE HTTPHEADER command before
making the request, as described in “Writing HTTP headers for a request” on page 165.

About this task

You can send the request in chunks (chunked transfer-coding), or you can send a pipelined sequence of
requests, described in “Sending a pipelined sequence of requests” on page 168.

For reference information to accompany this task, see WEB SEND (Client) and WEB CONVERSE. Issue the
WEB SEND or WEB CONVERSE command as described in the following procedure.

Procedure

1. Specify the session token for this use of the connection, using the SESSTOKEN option.

2. Specify the HTTP method for the request (OPTIONS, GET, HEAD, POST, PUT, DELETE, or TRACE),
referring to HTTP method reference for CICS web support. The method tells the server what to do
with your request. For more detailed guidance, consult the HTTP specification to which you are
working, indicated in The HTTP protocol . CICS sends your request with HTTP/1.1.

3. Specify the path information for the required resource on the server.

The default is the path given in any URIMAP definition that you referenced on the WEB OPEN
command for this connection. You can specify an alternative path by using the URIMAP option to
name another URIMAP definition from which the path can be taken. (The new URIMAP definition
must specify the correct host name for the current connection.) Alternatively, you can use the PATH
and PATHLENGTH options to provide the path information.

4. Specify any query string for your request, using the QUERYSTRING and QUERYSTRLEN options.

5. Specify any entity body for the HTTP request and its length.

HTTP method reference for CICS web support tells you when the use of a request body is
appropriate.

If a request body is required, the body content can be formed from a CICS document, using the CICS
DOCUMENT interface and specifying the DOCTOKEN option to identify the document, or from the
contents of a buffer, specifying the FROM option. See “Producing an entity body for an HTTP
message” on page 157.

6. Specify the media type for any entity body that you are providing, using the MEDIATYPE option.

For requests with the POST and PUT methods, which require a body, you need to specify the
MEDIATYPE option. For requests with other methods, without body content, the MEDIATYPE option
is not required.

7. If code page conversion is not required for the request body, specify the appropriate conversion
option, depending on whether you are using the WEB SEND command or the WEB CONVERSE
command, so that CICS does not convert the request body.

For CICS as an HTTP client, the default setting is that the request body is converted, unless it has a
nontext media type.

8. If code page conversion is required, and the default ISO-8859-1 character set is not suitable, specify
a character set that is suitable for the server.

1S0-8859-1 is acceptable for most servers.

9. If you want to use the Expect header to test the acceptance by the server of the request, specify
EXPECT for the ACTION option.

Chapter 3. Developing web applications 167


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_websendclient.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webconverse.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_methodref.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/web/dfhtl_methodref.html

This setting makes CICS send an Expect header with the request line and headers for the request,
and await a 100-Continue response before sending the message body to the server. If a response
other than 100-Continue is received, CICS informs the application program and cancels the send. If
no response is received after a period of waiting, CICS sends the message body anyway.

The Expect header is not supported by servers before HTTP/1.1. If CICS does not yet know the HTTP
version of the server, CICS requests the version number before sending your request. If the Expect
header is not suitable, CICS sends your request without it.

10. Optional: If this request is the last one that you want to make to this server, depending on whether or
not you are using connection pooling, you might want to request the server to close the connection:

a) If you are not using connection pooling for this connection, you may specify CLOSE for the
CLOSESTATUS option. With this option, CICS writes a Connection: close header on the request, or,
for a server at HTTP/1.0 level, omits the Connection: Keep-Alive header. Specifying this option
means that the server can close its connection immediately after sending the final response. This
behavior is not a requirement for web clients, but it is best practice if you definitely do not want to
keep the connection available for reuse.

b) If you are using connection pooling for this connection, do not specify the CLOSESTATUS option. If
you specify CLOSESTATUS(CLOSE), the server closes the connection and it cannot be pooled.

Connection pooling is enabled when you open a connection using a URIMAP resource with the
SOCKETCLOSE attribute set.

11. If you want to use chunked transfer-coding to send the request body as a series of chunks, follow the
additional instructions in “Sending an HTTP request or response with chunked transfer-coding” on
page 160 .Chunked transfer-coding is not supported in these circumstances:

a) Servers before HTTP/1.1
b) The WEB CONVERSE command
c¢) CICS documents (the DOCTOKEN option)

Results
CICS assembles the request line, HTTP headers, and request body, and sends the request to the server.

Sending a pipelined sequence of requests

You can send further requests without waiting for a response from the server. This technique is known as
pipelining. The WEB SEND command is used for sending pipelined requests. You cannot use the WEB
CONVERSE command because that command includes waiting for a response.

About this task
How CICS web support handles pipelining has more detailed information.

The HTTP/1.1 specification states that your sequence of pipelined requests must be idempotent; that is,
if you repeat all or part of the sequence, the same results are obtained. Pipelining has more information
about idempotency.

Procedure

1. Make sure that you have a persistent connection with the server.

The HTTP/1.1 specification allows you to make one attempt to send a pipelined sequence without
checking that the connection is persistent. If this attempt fails, you must check before trying the
requests again. To determine the nature of the connection:

a) If you specified the HTTPVNUM and HTTPRNUM options on the WEB OPEN command for the
connection, examine the returned information to determine the HTTP version of the server.

b) If you did not specify those options on the WEB OPEN command, use the WEB EXTRACT command
to determine the HTTP version of the server.

c¢) If you have received a previous response from the server, use the WEB READ HTTPHEADER
command to check whether the server sent a Connection: close or a Connection: Keep-Alive
header.

168 CICS TS for z/OS: Internet Guide


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/web/dfhtl_cwspipelining.html

Servers that are at HTTP/1.1 level and do not send a Connection: close header, and servers that are at
HTTP/1.0 level and do send a Connection: Keep-Alive header, support persistent connections.

CICS does not carry out this check on your behalf, because CICS cannot determine whether a client
application program is sending a pipelined sequence of requests, because a pipelined request has no
special headers to identify it.

2. Do not specify CLOSESTATUS(CLOSE) on any of the requests, except the final request in the pipelined
sequence if you are not using connection pooling and want the server to close the connection.

If you are using connection pooling, do not specify CLOSESTATUS(CLOSE) at all.

Providing credentials for basic authentication

When an HTTP 401 WWW-Authenticate message is received, your application must provide the user
name and password (credentials) required by the server for basic authentication. Your application can
also provide these credentials without waiting for the 401 message.

Procedure

1. Open a web session with the server using the WEB OPEN command, using the SESSTOKEN option.

The SESSTOKEN is returned to you when the session is opened successfully, and the session token
must be used on all CICS WEB commands that relate to this use of the connection.

2. Issue aWEB SEND command, specifying the SESSTOKEN for this use of the connection.
This WEB SEND command retrieves the realm from the server.

3. Issue aWEB RECEIVE command. The server returns a status code. Use the STATUSCODE option on
the WEB RECEIVE command to check for a 401 response.

4. If the status code is 401 (the server requires authentication details), repeat your first WEB SEND
request, but this time add the AUTHENTICATE(BASICAUTH) option. The XWBAUTH global user exit is
called by the client application.

This second WEB SEND command uses the realm received from the first WEB SEND command and the
XWBAUTH exit to determine the required user name and password.

5. You might prefer to specify AUTHENTICATE(BASICAUTH) in your initial WEB SEND command, instead
of waiting for the 401 response. You have a choice:

 Supply your user name and password in the WEB SEND command using the
AUTHENTICATE(BASICAUTH) option.

« Call the XWBAUTH global user exit by specifying the AUTHENTICATE(BASICAUTH) option, but
omitting your credentials. The user exit is called, but the realm passed to the exit is empty, because
the realm has not yet been received from the server. The user exit must derive the required
credentials from other parameters; for example, HOST and PATH.

6. If your application needs to know the realm that was sent in the 401 response, use the WEB EXTRACT
command.

Results
CICS passes the user name and password credentials to the server in an Authentication header.

Receiving an HTTP response

Use the WEB RECEIVE command or the WEB CONVERSE command to receive the response from the
server. Use the WEB READ HTTPHEADER command or the HTTP header browsing commands to examine
the headers.

Before you begin

The time that the application is prepared to wait to receive a response is indicated by the RTIMOUT value
specified on the transaction profile definition for the alias transaction. The timeout limit does not apply to
reading the headers of the response.

When the period specified by RTIMOUT expires, CICS returns a TIMEDOUT response to the application.
An RTIMOUT value of zero means that the application is prepared to wait indefinitely. The default setting
for RTIMOUT on transaction profile definitions is zero, so it is important to check and change that setting.

Chapter 3. Developing web applications 169


https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webopen.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_websendclient.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webreceiveclient.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_webextract.html

About this task
To receive an HTTP response, use the WEB RECEIVE (Client) or WEB CONVERSE command:

Procedure

1. Specify the session token for this use of the connection, using the SESSTOKEN option.

2. Specify data areas to receive the HTTP status code sent by the server and any text returned by the
server to describe the status code.

The data is returned in its unescaped form.
3. Specify a data area to receive the media type of the response body.

4. Receive the response body by specifying eit