
CICS Transaction Server for z/OS
Version 5 Release 4

External Interfaces Guide

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
159.

This edition applies to the IBM CICS® Transaction Server for z/OS® Version 5 Release 4 (product number 5655-Y04) and
to all subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 1974, 2019.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this PDF...v

Chapter 1. CICS external interfaces... 1
Interfaces to CICS transactions and programs...1

The client/server model... 2
Distributed computing..2
TCP/IP protocols...3
ONC and DCE concepts.. 6
EXCI concepts.. 6
3270 bridge concepts.. 7

Chapter 2. Bridging to 3270 transactions..9
Introduction to the 3270 bridge..9

The Link3270 bridge mechanism.. 9
The bridge facility...10
The application data structure (ADS).. 11
Link3270 programming considerations.. 11
Transaction Routing considerations.. 15

Using the Link3270 bridge...17
Establish Link3270 suitability..18
Writing the Link3270 client..18
Using Link3270 messages... 22
Using Link3270 single transaction mode.. 25
Using Link3270 session mode... 26
Calling the Link3270 bridge... 30
Using data conversion with Link3270..31

Managing the Link3270 bridge environment.. 33
Defining Link3270 system initialization parameters...33
Defining the bridge facility .. 33

Administering the Link3270 bridge...39
INQUIRE/SET AUTOINSTALL with the Link3270 bridge...39
INQUIRE/SET BRFACILITY with the Link3270 bridge.. 39
INQUIRE TASK with the Link3270 bridge... 40
INQUIRE/SET TRACETYPE with the Link3270 bridge...40
INQUIRE TRANSACTION with the Link3270 bridge... 40
XPI commands for the Link3270 bridge..40
Using Link3270 bridge load routing...40

Link3270 message formats...42
Link3270 message header (BRIH)...43
Inbound Link3270 vectors...50
Outbound Link3270 vectors.. 55
Link3270 ADS descriptor... 72

Link3270 diagnostics...75
BRIH-RETURNCODE values... 75

Link3270 sample programs...81
About the NACT transaction.. 81
Running the sample client programs...82
Setting up the NACT transaction ...84

Chapter 3. CICS ONC RPC support..87

 iii

Introduction to ONC RPC...87
ONC RPC concepts... 88
ONC RPC facilities.. 89
ONC RPC naming and routing.. 91
CICS ONC RPC concepts ... 92

Setting up CICS ONC RPC ...100
CICS ONC RPC setup tasks.. 101
Defining CICS ONC RPC resources to CICS... 102

Configuring CICS ONC RPC using the connection manager... 104
Starting the connection manager.. 104
Updating CICS ONC RPC status... 107
Enabling CICS ONC RPC...109
Defining, saving, modifying, and deleting 4-tuples...111
Registering the 4-tuples.. 116
Unregistering 4-tuples... 116
Disabling CICS ONC RPC..119
Updating the CICS ONC RPC data set..120
Processing the alias list... 124

Developing CICS ONC RPC applications .. 125
Developing an ONC RPC application for CICS ONC RPC .. 126
Write the CICS ONC RPC converter... 129
Reference information for the converter functions...136

Security for ONC RPC...145
Security in ONC RPC...145
Security in CICS and its effect on CICS ONC RPC operations...145
Writing the resource checker...147

Troubleshooting ONC.. 149
CICS ONC RPC recovery procedures... 150
CICS ONC RPC operational considerations... 150
Troubleshooting CICS ONC/RPC... 150
Using messages and codes for ONC RPC.. 152
CICS ONC RPC trace information...152
ONC RPC dump and trace formatting..153
Debugging the ONC RPC user-replaceable programs...153

Improving ONC RPC performance.. 154

Appendix A. Routing program-link requests... 157

Notices..159

Index.. 163

iv

About this PDF

This PDF describes how you can use the ONC RPC and 3270 bridge interfaces to make the services of
CICS Transaction Server for z/OS available to external programs. Note that the information about using
EXCI that used to be in this PDF is now in a separate PDF called Using EXCI with CICS.

For details of the terms and notation used in this book, see Conventions and terminology used in the CICS
documentation in IBM Knowledge Center.

Date of this PDF

This PDF was created on January 20th 2020.

© Copyright IBM Corp. 1974, 2019 v

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/documentation/conventions.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/documentation/conventions.html

vi CICS TS for z/OS: External Interfaces Guide

Chapter 1. CICS external interfaces
CICS provides a number of interfaces that make transaction processing services available to a variety of
external users.

Interfaces to CICS transactions and programs
This information describes sources of external requests, and the routes that they can use into CICS.

IBM® MQ users
IBM MQ users can use the CICS 3270 bridge to access CICS transactions. See Introduction to the
3270 bridge and About the CICS-WebSphere MQ bridge.

MVS™ applications
Applications running in MVS address spaces can use the External CICS Interface (EXCI) to access
CICS programs. For more information see Introduction to the external CICS interface.

ONC RPC clients
ONC RPC clients can use CICS ONC RPC support to access CICS programs.

The following types of external requests are described in other books:
User socket applications

User socket applications can use the CICS Sockets feature of CICS Transaction Server. For more
information, see z/OS Communications Server: IP Configuration Guide.

Web browsers
Web browsers can use a number of access methods:
CICS web support

The CICS support for web browsers. For more information see the Configuring CICS web support
components

IBM WebSphere®
The IBM WebSphere Application Server for z/OS is an MVS application that supports web
browsers and routes their requests into CICS.

CICS Transaction Gateway
CICS Transaction Gateway is a Gateway component that can accept requests from client
applications and route them into CICS. It uses the EXCI, IPIC, or APPC interconnectivity protocols
to access CICS.

Java-enabled web browsers
Java-enabled web browsers can use applets that communicate with CICS. Writers of applets can use
Java™ classes provided with CICS to construct external call interface (ECI) and external presentation
interface (EPI) requests. The web browsers communicate with web servers, and with the CICS
Transaction Gateway.

CICS client applications
CICS client applications can run on a wide variety of client operating systems and interface with CICS
applications using the ECI, EPI, or ESI interfaces provided by CICS Transaction Gateway. For more
information see CICS Transaction Gateway Programming Guide.

CICS programs
Programs running in CICS servers on any platform can use EXEC CICS LINK to call a CICS program, or
can use transaction routing to send transaction requests to CICS Transaction Server. Programs
running in CICS Transaction Server can use the CICS front-end programming interface (FEPI) to start
transactions in the same or another instance of CICS Transaction Server. For more information see
Introduction to FEPI.

Telnet clients
Telnet clients can use TN3270 to start transactions.

© Copyright IBM Corp. 1974, 2019 1

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm2b.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm2b.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/mq/bridgeplanning.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm4a.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.halz002/toc.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/web/dfhtlbw.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/web/dfhtlbw.html
https://www.ibm.com/support/knowledgecenter/SSZHJ2_9.0.0/progdezos/progde_landing.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/fepi/dfhp715.html

3270 users
Users of the IBM 3270 Display System can start transactions. This mechanism is the most familiar
method of introducing work to CICS Transaction Server.

For further information on connectivity options see IBM Redbooks: CICS and SOA: Architecture and
Integration Choices.

The client/server model
Client/server is a model of interaction in which a program sends a request to another program and awaits
a response. The requesting program is called a client; the answering program is called a server. Although
the client/server model can be used between programs in a single computer, the term typically refers to a
network. In a network, the model provides a convenient way to interconnect programs that are
distributed across different locations.

In CICS, a client is the source of an external request, and the server is the CICS program that services the
request. A client can be a program on another platform that is connected to CICS over a network, or a
program on another CICS region, connected with interregion communication (IRC).

CICS (or another product) provides a transport-specific listener (a long-running task) that starts another
task (a facilitator such as an alias or a mirror), to process the incoming request. The facilitator uses CICS
services to access the application.

The priorities of different alias transactions can be adjusted to determine the service that a client request
receives. There must be enough free tasks to service the alias transactions as they are started by the
listener. The CICS programs that service the client requests are subject to contention for resources in the
CICS system, and to transmission delays if they are remote from the CICS system, or if they request the
use of remote resources by function shipping or distributed program link.

The CICS server is independent of the application model (2/3-tier, 2/3 platforms). The listener/facilitator
deals with the different transports used and sets the rules for which programming models are supported.

Distributed computing
Distributed computing involves the cooperation of two or more machines communicating over a network.
The machines participating in the system can range from personal computers to super computers; the
network can connect machines in one building or on different continents.

The main benefit of distributed computing is that it enables you to optimize your computing resources for
both responsiveness and economy. For example, it enables you to:

• Share the cost of expensive resources, such as a typesetting and printing service, across many
desktops. It also gives you the flexibility to change the desktop-to-server ratio, depending on the
demand for the service.

• Allocate an application’s presentation, business, and data logic appropriately. Often, the desktop is the
best place to perform the presentation logic, as it is nearest to the user and can provide highly
responsive processing for such actions as drag and drop GUI interfaces.

Conversely, you may feel that the best place for the database access logic is close to the actual storage
device - that is, on an enterprise or departmental server. The most appropriate place for the business
logic may be less clear, but there is much to be said for placing this too in the same node as the data
logic, thus allowing a single desktop request to initiate a substantial piece of server work without
intervening network traffic.

Distributed computing enables you to make such trade-offs in a flexible way.

Along with the advantages of distributed computing come new challenges. Examples include keeping
multiple copies of data consistent, keeping clocks in individual machines synchronized, and providing
network-wide security. A system that provides distributed computing support must address these new
issues.

CICS supports distributed computing and the client/server model by means of:

2 CICS TS for z/OS: External Interfaces Guide

http://www.redbooks.ibm.com/abstracts/sg245466.html?Open
http://www.redbooks.ibm.com/abstracts/sg245466.html?Open

Distributed program link (DPL)
A CICS client program passes parameters to a remote CICS server program and waits for the server to
send data in reply. Parameters and data are exchanged by means of a communications area.

The external CICS interface (EXCI)
An MVS client program links to a CICS server program.

The external call interface (ECI)
The ECI enables CICS Transaction Server for z/OS server programs to be called from client programs
running on a variety of operating systems. For information about CICS Clients, see the CICS
Transaction Gateway Programming Guide.

Function shipping
The parameters for a single CICS API request are intercepted by CICS code and sent from the client
system to the server. The CICS mirror transaction in the server executes the request, and returns any
reply data to the client program. This can be viewed as a specialized form of remote procedure call.

Asynchronous transaction processing
A CICS client transaction uses the EXEC CICS START command to initiate another CICS transaction,
and pass data to it. The START request can be intercepted by CICS code, and function shipped to a
server system. The client transaction and started transactions execute independently. This is similar
to a remote procedure call with no response data.

Distributed transaction processing
A program in the client system establishes a conversation with a complementary program in the
server, and exchanges messages. The programs may use the APPC protocols.

Transaction routing
Terminals owned by one CICS system to run transactions owned by another.

The CICS family of products runs on a variety of operating systems, and provides a standard set of
functions to enable members to communicate with each other.

Security support
CICS Transaction Server for z/OS supports: a single network signon, and authentication of the client
system through bind-time security.

Single network signon is supported through the ATTACHSEC option of the DEFINE CONNECTION
command.

RACF® or an equivalent security manager provides mechanisms similar to the DCE access control lists and
login facility.

There is no CICS concept similar to the DCE Directory Service. In all the previous scenarios the client
environment must know which server CICS system to communicate with. This is normally done by
specifying the name of the required remote CICS system in the definition of the relevant remote CICS
resource, or in the client application program.

TCP/IP protocols
TCP/IP is a communication protocol used between physically separated computer systems. TCP/IP can
be implemented on a wide variety of physical networks.

TCP/IP is a large family of protocols that is named after its two most important members, Transmission
Control Protocol and Internet Protocol. Figure 1 on page 4 shows the TCP/IP protocols used by CICS
ONC RPC in terms of the layered Open Systems Interconnection (OSI) model. For CICS users, who may be
more accustomed to SNA, Figure 1 on page 4 shows the SNA layers that correspond very roughly to the
OSI layers.

Chapter 1. CICS external interfaces 3

https://www.ibm.com/support/knowledgecenter/SSZHJ2_9.0.0/progdezos/progde_landing.html
https://www.ibm.com/support/knowledgecenter/SSZHJ2_9.0.0/progdezos/progde_landing.html

Application

Presentation

Data flow

Transmission

Path control

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

7

6

5

4

3

2

1

RPC

XDR

(empty)

TCP or UDP

IP

subnetwork

Sockets

interface

SNA OSI TCP/IP family

Figure 1. TCP/IP protocols compared to the OSI and SNA models

The protocols used by TCP/IP are shown in Figure 1 on page 4.
Internet Protocol (IP)

In terms of the OSI model, IP is a network-layer protocol. It provides a connectionless data
transmission service, and supports both TCP and UDP. Data is transmitted link by link; an end-to-end
connection is never set up during the call. The unit of data transmission is the datagram.

Transmission Control Protocol (TCP)
In terms of the OSI model, TCP is a transport-layer protocol. It provides a connection-oriented data
transmission service between applications, that is, a connection is established before data
transmission begins. TCP has more error checking that UDP.

User Datagram Protocol (UDP)
UDP is also a transport-layer protocol and is an alternative to TCP. It provides a connectionless data
transmission service between applications. UDP has less error checking than TCP. If UDP users want
to be able to respond to errors, the communicating programs must establish their own protocol for
error handling. With high-quality transmission networks, UDP errors are of little concern.

ONC RPC and XDR
XDR and ONC RPC correspond to the sixth and seventh OSI layers.

Sockets interface
The interface between the fourth and higher layers is the sockets interface. In some TCP/IP
implementations, the sockets interface is the API that customers use to write their higher-level
applications.

TCP/IP internet addresses and ports

TCP/IP provides for process-to-process communication, which means that calls need an addressing
scheme that specifies both the physical host connection (Host A and Host B in Figure 2 on page 4) and
the software process or application (C, D, E, F, G, and H). The way this is done in TCP/IP is for calls to
specify the host by an internet address and the process by a port number. You may find internet addresses
also referred to elsewhere as internet protocol (IP) addresses or host IDs.

Host address

Port numbers

Processes

129.126.178.99

21 23 4100

C D E

Host A Host B

123.156.189.2

3300 3301 3302

F G H

Figure 2. How applications are addressed

4 CICS TS for z/OS: External Interfaces Guide

IP addresses
Each server or client on a TCP/IP internet is identified by a numeric IP (Internet Protocol) address. The
two types of IP address are the IPv4 (IP version 4) address and the IPv6 (IP version 6) address.

IP addresses are managed and allocated to users by the Internet Assigned Numbers Authority (IANA) and
its delegates. The internet address specifies both the network and the individual host. This specification
varies with the size of the network.

IPv6 addresses

IPv6 addresses are 128-bit addresses, usually expressed in hexadecimal notation:

IP address in hexadecimal notation : '000100220333444400000000abc0def0'x
Halfword 0: 0001 hexadecimal
Halfword 1: 0022 hexadecimal
Halfword 2: 0333 hexadecimal
Halfword 3: 4444 hexadecimal
Halfword 4: 0000 hexadecimal
Halfword 5: 0000 hexadecimal
Halfword 6: abc0 hexadecimal
Halfword 7: def0 hexadecimal
IP address in colon hexadecimal notation: 1:22:333:4444::abc0:def0

IP address in hexadecimal notation : '00000000000000000000ffff01020304'x
Halfword 0: 0000 hexadecimal
Halfword 1: 0000 hexadecimal
Halfword 2: 0000 hexadecimal
Halfword 3: 0000 hexadecimal
Halfword 4: 0000 hexadecimal
Halfword 5: ffff hexadecimal
Halfword 6: 0102 hexadecimal
Halfword 7: 0304 hexadecimal
IP address in colon hexadecimal notation: ::ffff:1.2.3.4 or ::ffff:0102:0304

The address consists of eight halfword fields. Zeros are treated in the following ways in the address
output:

• If a field contains leading zeros, they are ignored; for example, 0001 is represented as 1
• If one or more consecutive fields in the address contain the value 0000, these fields are expressed

using the notation ::

For example, 000000000000ffff is represented as ::ffff

The :: substitution is used once only in an address, to avoid confusion in calculating how many fields
were substituted.

IPv4 addresses

IPv4 addresses are 32-bit addresses, usually expressed in dotted decimal notation:

IP address in hexadecimal notation : '817EB263'x
Byte 0: 81 hexadecimal = 129 decimal
Byte 1: 7E hexadecimal = 126 decimal
Byte 2: B2 hexadecimal = 178 decimal
Byte 3: 63 hexadecimal = 99 decimal
IP address in dotted decimal notation: 129.126.178.99

In this example, 129.126 specifies the network and 178.99 specifies the host on that network.

Port numbers (for servers)
An incoming connection request specifies the server that it wants by specifying the server’s port number.

For instance, in Figure 2 on page 4, a call requesting port number 21 on host A is directed to process C.

Well-known ports identify servers that carry standard services such as the File Transfer Protocol (FTP) or
Telnet. The same service is always allocated the same port number, so, for example, FTP is always 21 and
Telnet always 23. Networks generally reserve port numbers 1 through 255 for well-known ports.

Chapter 1. CICS external interfaces 5

Port numbers (for clients)
Client applications must also identify themselves with port numbers so that server applications can
distinguish different connection requests.

The method of allocating client port numbers must ensure that the numbers are unique; such port
numbers are termed ephemeral port numbers. For example, in Figure 2 on page 4, process F is shown
with port number 3300 on host B allocated.

ONC and DCE concepts
ONC (Open Network Computing) RPC (Remote Procedure Call) is an open source RPC framework
developed by Sun Microsystems. DCE (Distributed Computing Environment) is an architecture defined by
the Open Software Foundation (OSF). Both technologies support client-server applications in
heterogeneous distributed environments.

DCE RPC is different from ONC RPC in many ways. For example, DCE RPC does not limit the number of
parameters on the call, whereas an ONC RPC call is limited to one input and one output parameter (but
these may be structures that contain many fields, including pointers to other data).

COBOL
CICS
program

Client call

with C parms

Client call

with C parms

parameters

COBOL

Client

Client

ONC:

CICS ONC RPC

CICS
Transaction
Server

DCE:

DCE IDL module

Figure 3. Remote procedures provided for DCE RPC and ONC RPC

Figure 3 on page 6 shows how the two CICS RPC implementations provide the same function.

You provide a definition of the client's parameter list in the interface definition language (IDL) provided as
a part of DCE RPC. The DCE IDL module maps the incoming parameters into a CICS communication area,
so the communication area format is defined by the client's parameter list.

CICS ONC RPC CICS programs can be written in any CICS-supported programming language, and the
conversion from client format to communication area is done by the Decode function of the converter.
With ONC RPC you get more flexibility, but you have more work to do.

CICS programs that are used as servers for DCE RPC clients can also be used as servers for ONC RPC
clients. You need to write a Decode function that converts the incoming data structure into the predefined
communication area, and converts the incoming data from C types to COBOL types.

EXCI concepts
The external CICS interface makes CICS applications more easily accessible from non-CICS
environments.

Programs running in MVS can issue an EXEC CICS LINK PROGRAM command to call a CICS application
programs running in a CICS region. Alternatively, the MVS programs can use the CALL interface when it is
more appropriate to do so.

The provision of this programming interface means that, for example, MVS programs can:

• Update resources with integrity while CICS is accessing them.
• Take CICS resources offline, and back online, at the start and end of an MVS job. For example, you can:

6 CICS TS for z/OS: External Interfaces Guide

– Open and close CICS files.
– Enable and disable transactions in CICS (and so eliminate the need for a master terminal operator

during system backup and recovery procedures).

The external CICS interface opens up a new way to implement client/server applications, where the client
program in a non-CICS environment calls a server program running in the CICS address space. The
external CICS interface benefits not only TSO and batch applications, but allows you to extend the use of
CICS application programs in an open client/server environment.

3270 bridge concepts
The 3270 bridge allows you to introduce new GUI front ends to access existing 3270-based CICS
applications without modifying them.

This means that you can concentrate your efforts on the new user interfaces and avoid, or at least
postpone, rewriting stable mainframe applications. You do not need to restructure your applications to
separate the business logic from the presentation logic; the bridge effectively does this for you.

The same applications can be used both by 3270 terminals, and by the new client applications. This
allows a phased migration of users from the 3270 applications to the new client applications.
Applications written for 3270 terminals can be run on CICS systems without the z/OS Communications
Server.

The bridge can process commands faster than existing front-end methods, such as FEPI and EPI,
because the terminal emulation is part of the same CICS transaction. With the START BREXIT bridge
mechanism, there is only a single unit of work. This means that the bridge can use a recoverable IBM MQ
queue. This greatly simplifies recovery.

For BMS user transactions, there is no need to convert BMS data to 3270 format, because the client
application receives the BMS Application Data Structure, rather than a 3270 datastream. This provides an
easier method for the application programmer to interface with the user transaction compared to FEPI. A
utility program (DFHBMSUP) is provided to re-create map source code from existing load modules, so that
installations that do not have access to the original source code can still exploit the new ADS descriptor
provided by the BMS macros.

The target transaction is unchanged, but because of the way it now executes in the bridge environment,
there are some restrictions on what it can do. These restrictions are described in Link3270 programming
considerations.

CICS provides two types of 3270 bridge mechanism:
The Link3270 mechanism

This mechanism provides a simplified interface using LINK, ECI or EXCI. All messages have a fixed
format and you are not required to provide any user-written supporting programs.

The START BREXIT mechanism
This 3270 bridge mechanism requires a bridge monitor transaction to initiate the bridge environment
by issuing a START BREXIT command, which specifies the target user transaction and also the name
of a user-written bridge exit. The bridge exit is called to intercept 3270 requests and pass them in the
form of messages to the client application. You can write your own bridge exit and also define your
own message formats. Bridge exits are provided to support client applications using Temporary
Storage, the Web and IBM MQ as transport mechanisms for requests, using sample message formats.

The START BREXIT mechanism is still supported, and the sample bridge exits are still provided, but it is
better to use the simpler Link3270 mechanism, and migrate to it where possible.

Chapter 1. CICS external interfaces 7

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm27.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm27.html

The 3270 bridge and FEPI
To help you decide between the 3270 bridge technology and FEPI, the following table summarizes the
major characteristics.

Table 1. Comparision between 3270 bridge technology and FEPI

START Bridge Link3270 Bridge FEPI

Enabling technology Enabling technology An application programming
interface

Based on application data
structure

Based on application data
structure

Based on the 3270 data stream

Enables optimization due to
integral knowledge of the target

Enables optimization due to
integral knowledge of target

Easier to create generic driver
(data structure is designed)

Efficient; no terminal control
involved

Efficient, no terminal control
involved

z/OS Communications Server
managed connection between
source and target

Single COMMAREA API and user
replaceable program

COMMAREA API Requires system programming
and z/OS Communications Server
skills

CICS specific: source and target
must be in the same region

LINK, DPL, EXCI or ECI interface
supported

Ideal for driving remote
applications, not just CICS

Driven exit decides method of
communication with the client

Client interface is LINK, DPL,
EXCI or ECI

Can be freed from the workings
of the target; terminal emulation

Knowledge of UOW Standard CICS LINK coordination No coordination

Ideal when the routing is done
elsewhere

Supports workload balancing Sysplex support requires three
regions

8 CICS TS for z/OS: External Interfaces Guide

Chapter 2. Bridging to 3270 transactions
Using the 3270 bridge you can connect a client application to a 3270-based CICS transaction. In this
configuration, the client application takes the place of the 3270 terminal and the terminal end-user.

CICS provides sample client programs that use the ECI, EXCI and LINK interfaces to call the Link3270
bridge to run the sample transaction NACT. These sample programs provide coded examples that help
you write your own client programs. For more information, see Link3270 sample programs.

• Introduction to the 3270 bridge
• Using the Link3270 bridge
• “Managing the Link3270 bridge environment” on page 33
• Link3270 message formats
• Link3270 diagnostics

Introduction to the 3270 bridge
The 3270 bridge provides an interface so that you can run 3270-based CICS transactions without a 3270
terminal. The 3270 terminal and end-user are replaced by an application program, known as the client
application.

Commands for the 3270 terminal in the CICS 3270 user transaction are intercepted by CICS and replaced
by a messaging mechanism that provides a bridge between the client application and the CICS user
transaction.

CICS provides two types of 3270 bridge mechanism:
The Link3270 mechanism

This mechanism provides a simplified interface using LINK, ECI or EXCI. All messages have a fixed
format and you are not required to provide any user-written supporting programs. This mechanism
supports CICSPlex® SM load balancing; bridge facilities are shared between CICS regions on the
CICSplex

The START BREXIT mechanism
This 3270 bridge mechanism requires a bridge monitor transaction to initiate the bridge environment
by issuing a START BREXIT command, which specifies the target user transaction and also the name
of a user-written bridge exit. The bridge exit is called to intercept 3270 requests and pass them in the
form of messages to the client application. You can write your own bridge exit and also define your
own message formats. Bridge exits are provided to support client applications using Temporary
Storage, the Web and IBM MQ as transport mechanisms for requests, using sample message formats.
This mechanism is single region only: bridge facilities are local to the region.

The START BREXIT mechanism is supported and the sample bridge exits are still provided. However,
consider migrating to use the simpler Link3270 mechanism where possible.

The Link3270 bridge mechanism
The client application uses the Link3270 bridge to run 3270 transactions by linking to the DFHL3270
program in the router region and passing a COMMAREA that identifies the transaction to be run and
contains the data used by the user application.

The response contains the 3270 screen data reply. If the target application used BMS, this is presented in
the form of an application data structure (ADS) , another name for the symbolic map that is generated
by the BMS macros used to define the mapping of the 3270 screen.

The Link3270 bridge is called in the same way for all request mechanisms of the interface: EXEC CICS
LINK, the EXternal CICS Interface (EXCI), and the CICS External Call Interface (ECI).

The following flow describing the Link3270 mechanism is shown also in Figure 4 on page 10 :

© Copyright IBM Corp. 1974, 2019 9

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/samples/dfhtmh7.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm2b.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmek.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/interfaces/dfhtmer.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/interfaces/dfhtmgd.html

1. The client application creates a Link3270 request message.
2. The client application issues an appropriate link request (ECI, EXCI or LINK) to the CICS router

program DFHL3270, passing the Link3270 message as a COMMAREA. Note that CICS takes care of the
code page conversion if necessary.

3. DFHL3270 dynamically routes the request to the bridge driver task, which may be in the same or
another CICS region. Load balancing can be implemented in this step.

4. The driver starts the user application (the target 3270 transaction), running in a bridge environment.
5. The response Link3270 message is returned to the client as a COMMAREA.
6. The client application processes the outbound message .

CICSplex

AORs

User
application

Bridge
Driver

Start
Client

program

Router regions

DFHL3270

Client
program

Client
program

DPL

L
IN

K

E
X

C
I

ECI

Figure 4. Link3270 request flow

The Link3270 mechanism supports non-conversational, pseudoconversational and conversational
applications.

The bridge facility
The 3270 user application was designed to be used with a real 3270 terminal and the CICS commands
that it uses assume that a real 3270 exists.

The 3270 bridge mechanism simulates the presence of a real 3270 by providing internal interfaces for a
virtual 3270, known as the bridge facility.

This replaces the terminal resource definition that you would normally provide for a 3270 application. The
bridge facility emulates a real terminal in the following EXEC CICS interfaces:

• ASSIGN
• Terminal control and some of the BMS API
• EIB
• INQUIRE TASK
• INQUIRE TERMINAL

You do not provide a resource definition for the bridge facility, but you can control some of the terminal
properties used by providing a 3270 TERMINAL resource definition to be used as a template. The name of
this TERMINAL definition, known as the facilitylike , is passed to the bridge on the Link3270 call.

See Defining the bridge facility for further information about the bridge facility.

10 CICS TS for z/OS: External Interfaces Guide

Lifetime of the bridge facility
When simple transactions are run in single transaction mode , the bridge facility is created dynamically by
CICS and deleted at the end of the transaction.

In session mode , multiple transactions or pseudotransactions can be run using the same bridge facility.
In this mode, the client application can request creation and deletion of the bridge facility, and can also
specify a keeptime in BRIH-FACILITYKEEPTIME in the Allocate function. See “Using Link3270 session
mode” on page 26.

The maximum keeptime value can be limited by the BRMAXKEEPTIME system initialization parameter.
Bridge facilities are deleted automatically if they are inactive for the keeptime interval.

For information about system initialization parameters, see Specifying CICS system initialization
parameters.

The application data structure (ADS)
Application data structure (ADS) is another name for the symbolic map that is generated by the BMS
macros used to define the mapping of the 3270 screen.

For BMS programs, terminal data is passed between the client and the bridge in this format, giving the
client application a simplified interface to the terminal data, without the need to understand 3270 data
streams.

See “DFHBMSUP” on page 11 for guidance on creating the ADSD if you have no source.

The ADS descriptor (ADSD)
The ADS descriptor allows interpretation of the BMS application data structure (the symbolic map used by
your application program for the data in SEND and RECEIVE MAP requests) - without requiring your client
program to include the relevant DSECT or copybook at compile time.

The ADS descriptor contains a header with general information about the map, and a field descriptor for
every field that appears in the ADS, corresponding to every named field in the map definition macro. It
can be located in the mapset from an offset field in DFHMAPDS.

The ADS descriptor is available only if the map load module has been reassembled to include the
descriptor, and CICS attempts to locate the descriptor only if the BRIH-ADSDESCRIPTOR indicator is set
to BRIHADSD-YES in the Link3270 message header.

DFHBMSUP
If you cannot reassemble the map set because you do not have the source, you can use the DFHBMSUP
utility to re-create source statements from your map set load module.

For more information about DFHBMSUP, see BMS macro generation utility (DFHBMSUP).

Link3270 programming considerations
The user transaction is unchanged, but because of the way it now executes in the bridge environment,
there are some restrictions on what it can do, and some limitations on how it can use the bridge facility,
because it is not a real terminal.

You can use the Load Module Scanner utility (described in Administering CICS operations), using the
supplied table DFHEIDBR, to identify any CICS commands in your program that are not supported by the
bridge.

Note: The bridge only supports valid documented CICS API interfaces. If either the application or vendor
programs use undocumented interfaces, the results will be unpredictable.

Abend information
The bridge facility name is not used as the TERMID in any diagnostic information produced as the
result of an abend, except in a transaction dump.

Chapter 2. Bridging to 3270 transactions 11

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/cics/dfha2_specify_cics_sysinitparms.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/cics/dfha2_specify_cics_sysinitparms.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/utilities/dfha6k3.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/administering/cics/dfha61e.html

ASSIGN
If the user transaction issues ASSIGN NETNAME, the value returned is the NETNAME if there is one,
or else the TERMID. The name is not visible outside the user transaction, and may contain '}'
characters.

You can only use ASSIGN to request information about BMS attributes such as MAPCOLUMN,
MAPHEIGHT, MAPLINE, and MAPWIDTH if an ADS descriptor is present in the mapset. See “The ADS
descriptor (ADSD)” on page 11.

BMS requests
The Link3270 bridge supports the following BMS commands. If other BMS functions that require a
principal facility are used, they cause the user transaction to abend ABR3.
RECEIVE commands

• RECEIVE MAP TERMINAL
• RECEIVE MAP FROM
• RECEIVE MAP MAPPINGDEV

Note: TERMINAL is implied if neither TERMINAL nor FROM is specified.

SEND commands

• SEND MAP TERMINAL
• SEND TEXT TERMINAL
• SEND TEXT NOEDIT TERMINAL
• SEND TEXT MAPPED TERMINAL
• SEND CONTROL TERMINAL
• SEND MAP SET
• SEND TEXT SET
• SEND TEXT NOEDIT SET
• SEND TEXT MAPPED SET

Note:

1. TERMINAL is implied if none of TERMINAL, SET, or PAGING is specified.

Routing
Routing to real terminals from a transaction running on a bridge facility is supported, but it is not
possible to route to a bridge facility, nor to specify a bridge facility as ERRTERM on ROUTE. If
ERRTERM without a name is specified on a ROUTE request issued in a bridge environment, the
INVERRTERM condition is raised.

PAGING is supported only under routing.

Partitions
Partition related commands and options are supported, but are treated in the same way as they
would be for a real terminal that does not support partitions.
SEND PARTNSET

Supported, but the bridge exit is not invoked.
RECEIVE PARTN

Supported; the bridge exit is invoked with bridge exit area command fields set up for a
terminal control RECEIVE.

INPARTN
Accepted but ignored; not passed to the bridge exit.

OUTPARTN
Accepted but ignored; not passed to the bridge exit.

ACTPARTN
Accepted but ignored; not passed to the bridge exit.

12 CICS TS for z/OS: External Interfaces Guide

CICS-supplied transactions
CEDF, CEDX, CSFE, and CSGM cannot run as user transactions.

DB2® authorization check
Do not use the settings AUTHTYPE(TERM) or AUTHTYPE(OPID) in the DB2CONN definition, because
these security checks fail in a bridge environment.

External security customization
TERMID, OPID, and TCTUA information is not passed in the DFHXSID parameter list.

Global User Exits
The following global user exits (GLUEs) are not driven because the bridge facility is not a real terminal.
XBMIN

to intercept a RECEIVE MAP request.
XBMOUT

to intercept a SEND MAP request.
XTCATT

before a task attach.
XZCATT

before a task attach (z/OS Communications Server SNA).
XZCIN

after an input event (z/OS Communications Server SNA).
XZCOUT

before an output event (z/OS Communications Server SNA).
XZCOUT1

before a message is broken into RUs (z/OS Communications Server SNA).

The XALTENF and XICTENF exits can be driven if a request is made for a bridge facility. The ‘terminal-
not-found' condition is raised because the bridge facility is not a real terminal.

The standard user exit parameter list field UEPTERM that points to the TERMID are not set for exits
invoked under a bridge task.

ISSUE PASS
ISSUE PASS is not supported and results in an INVREQ.

ISSUE PRINT
ISSUE PRINT is not supported and results in a no-op. A NORMAL condition is returned.

Monitoring
A 3270 bridge transaction identifier is present in monitoring records.

Remote DLI requests
No security check of the PSB against the terminal is done for function-shipped DLI requests.

Security Processing
When a bridge facility is created, it is signed on as a preset USERID terminal, with the client's USERID.
As with other preset terminals, the SIGNON and SIGNOFF commands are not permitted, and INVREQ
is raised.

The bridge facility is signed off when it is discarded. It remains signed on in session mode until a
specific delete facility request is sent, or the keeptime interval expires.

START
The user transaction can issue EXEC CICS START requests for its own bridge facility. This allows
existing menu-driven and pseudo-conversational applications that use this interface to work in a
bridge environment. See “ P seudoconversational transactions ” on page 28 for a description of
START TERMID where TERMID specifies the bridge facility.

The time delay options, (INTERVAL, TIME, AFTER, AT, HOURS, MINUTES, SECONDS) are not normally
used in the bridge environment, but the bridge mechanism uses them to put the STARTs for a
particular bridge facility in time order, but the exact delays requested are not implemented. TIME and
AT specifications are ignored completely.

Chapter 2. Bridging to 3270 transactions 13

Other options on the START command are partly supported :
TERMID

You can specify the name of your own bridge facility for this transaction, or for any real terminal.
USERID

USERID and TERMID are mutually exclusive. The CICS translator rejects START requests with
both USERID and TERMID specified.

TRANSID
If the TRANSID cannot be defined as REMOTE, the TERMID will not be found if the request is
shipped to a remote system.

SYSID
Routing of START requests is not possible in a bridge environment. This option is not supported,
unless the value of the SYSID is the local SYSID. If you specify any other value, the request will be
shipped and the TERMID will not be found on the remote system.

NOCHECK
This option only applies to shipped start requests and is ignored.

PROTECT
If you specify the PROTECT option on a START request for a bridge facility, and the starting task
abends before taking a syncpoint, the START request is discarded. PROTECT normally delays the
starting of the new task until a SYNCPOINT has occurred. This happens automatically for a task
issuing a START for its own facility because the START cannot take effect until the starting task
has terminated and freed up its bridge facility.

STARTed transactions
Some menu applications use START to initiate subsequent transactions.

You can specify BRIHSC-START in the BRIH-STARTCODE field of a single transaction mode request
message, or in the first transaction of a session mode pseudoconversation, to return the correct
response to ASSIGN STARTCODE and INQUIRE TASK STARTCODE commands issued by the user
transaction.

User transactions that are initiated by START may issue one or more RETRIEVEs to obtain data
passed on the START. When the bridge has passed all the data provided in the Link3270 request
message, ENDDATA is returned to the user transaction.

Statistics
You cannot use EXEC CICS COLLECT STATISTICS TERMINAL(xxxx) where xxxx is a bridge
facility.

Storage violation counts
No storage violation counts will be kept in a bridge facility.

TCTUA
The TCTUA is available to the user transaction using the EXEC CICS ADDRESS command. You can
modify the contents of the TCTUA using the XFAINTU global user exit. See Initializing the TCTUA. Note
that the TCTUA is NOT available to any programs in other CICS regions that are linked to by the user
transaction using DPL.

Transaction restart
RESTART(NO) is forced for user transactions because CICS has no way of restoring the initial input
message.

Transaction Routing
Transaction Routing is not directly supported, see “Transaction Routing considerations” on page 15
for a technique you can use. The Link3270 bridge supports workload balancing with an affinity.

TWA
The TWA is available to the user transaction.

14 CICS TS for z/OS: External Interfaces Guide

Transaction Routing considerations
Although the 3270 bridge does not directly support transaction routing, you can migrate applications
using the following technique.

Add a wrapper program in the router region to drive initialization and termination routines as shown in
the following table:

Client Router wrapper Bridged tran

Link to wrapper1 wrapper1
ADDRESS COMMAREA(msg)
brih-transaction =
briht-allocate-facility
LINK PROG(DFHL3270)
 COMMAREA(alloc-msg)

brih-transaction = appl1
LINK PROG(DFHL3270)
 COMMAREA(msg)

brih-transaction = term
LINK PROG(DFHL3270)
 COMMAREA(dummy-msg)

brih transaction =
briht-delete-facility
LINK PROG(DFHL3270)
 COMMAREA(del-msg)

READQ TS
INTO(appl-commarea)

RETURN
 COMMAREA(msg+appl-commarea)

app1
..BMS or 3270 commands..
RETURN
 COMMAREA(appl-commarea)

term
ADDRESS
 COMMAREA(appl-commarea)
WRITEQ TS
 FROM(appl-commarea)

Chapter 2. Bridging to 3270 transactions 15

Client Router wrapper Bridged tran

Link to wrapper2
wrapper2
ADDRESS
COMMAREA(msg+appl-commarea)

WRITEQ TS
 FROM(appl-commarea)

brih-transaction =
briht-allocate-facility
LINK PROG(DFHL3270)
 COMMAREA(alloc-msg)

brih-transaction=init
LINK PROG(DFHL3270)
 COMMAREA(dummy-msg)

brih-transaction=appl2
LINK PROG(DFHL3270)
 COMMAREA(msg)

brih-transaction =
briht-delete-facility
LINK PROG(DFHL3270)
 COMMAREA(del-msg)

RETURN
 COMMAREA(msg)

init
READQ TS INTO(appl-commarea)
RETURN
 COMMAREA(appl-commarea)

appl2
ADDRESS
 COMMAREA(appl-commarea)
..BMS or 3270 commands..
RETURN
 COMMAREA(appl-commarea)

Note:

1. This solution could be varied according to the commarea size. If the msg+appl-commarea is greater
than 32K, then rather than returning the appl-commarea to the listener, the init and term
transansactions could write the commarea to a shared TS queue.

2. The same method can be used to initialize a TCTUA, large amounts of start data , or anything other
parameters relating to the transaction environment.

Allocating a bridge facility name for a pseudoconversation when using the Link3270 bridge for
transaction routing
In this example the application is controlled by a bridge client on the host.

About this task

This is described in “Select Link3270 client scenarios” on page 19.

Before running your client program:

1. Set the AIBRIDGE system initialization parameter to "yes" in the router region. This causes CICS to call
the autoinstall user-replaceable program when a terminal ID has been allocated.

2. Ensure that your autoinstall user-replaceable program contains code to change the last character of
the terminal ID in SELECTED-BRFAC-TERMID if it is set to "}". This character must be changed to a
character that is unique to the system and can be an alphanumeric character or one of the following
special characters: ¢@#./_$?!:|"=¬,;<>

16 CICS TS for z/OS: External Interfaces Guide

If you are using NETNAME change it by copying SELECTED-BRFAC-TERMID to SELECTED-BRFAC-
NETNAME.

Your client program should contain the following steps:

Procedure

1. Call the Link3270 bridge with an allocate-facility request. This bridge facility is referred to as the
primary bridge facility in this example.

2. Set BRIH-FACILITYKEEPTIME to the time the application will take to run. If in doubt set it to the
maximum value allowed. The maximum value is given in the description of BRMAXKEEPTIME in
Defining Link3270 system initialization parameters.
CICS calls the autoinstall user-replaceable program when the terminal ID for the bridge facility has
been allocated.

3. When the transaction completes you may want to route to a different AOR:

a. Keep the terminal ID and NETNAME which are returned from the Link3270 call in BRIH-TERMINAL
and BRIH-NETNAME and do not delete the primary bridge facility.

b. Allocate a new bridge facility using a Link3270 allocate-facility request. Before issuing this request,
set BRIH-TERMINAL to the value of the primary bridge facility. Set BRIH-NETNAME also if you need
NETNAME to be the same throughout. The facility allocated by this request is referred to as the
secondary bridge facility in this example.

c. When the autoinstall user-replaceable program is called for the new facility, SELECTED-BRFAC-
TERMID is set to the value in BRIH-TERMINAL. Note that this name does not have "}" as the last
character and the program will accept it.

d. When changing to a third AOR, call Link3270 with a delete-facility request for the secondary bridge
facility.

e. Repeat steps 3a to 3d each time the target AOR changes.
4. When all transaction routing has finished, call Link3270 with a delete-facility request for the primary

bridge facility.

Using the Link3270 bridge
To run transactions using the Link3270 bridge, you must provide a client program that drives the
Link3270 interface using LINK, EXCI LINK, or ECI requests. The message passed on each request
determine the mode of operation, and the service to be performed.

To develop a client program to run an existing CICS 3270 transaction using the Link3270 bridge you need
to:

• Establish the suitability of your applications for use with Link3270.
• Design and write your client programs

CICS provides sample ECI, EXCI and LINK client programs to run the NACT sample transaction. You can
use these as guidance in converting your own applications. See Link3270 sample programs for more
information about the Link3270 samples and NACT.

This section describes:

• “Establish Link3270 suitability” on page 18
• “Writing the Link3270 client” on page 18
• “Using Link3270 messages” on page 22
• “Using Link3270 single transaction mode” on page 25
• “Using Link3270 session mode” on page 26
• “Calling the Link3270 bridge” on page 30
• “Using data conversion with Link3270” on page 31

Chapter 2. Bridging to 3270 transactions 17

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/samples/dfhtmh7.html

Establish Link3270 suitability
You need to establish that your applications are suitable for use with the Link3270 bridge.

This can be done in two ways:

1. Using the load module scanner to identify if the applications use any instructions that are not
supported by the bridge. This involves the following steps:

• Identify the programs used by the application
• Run the load module scanner against the programs (see “Using the Load Module Scanner Utility” on

page 18), using the bridge restrictions table DFHEIDBR. If there are any hits this indicates that
there may be unsupported EXEC CICS commands.

Note: note that the load module scanner can occasionally generate a false hit, so you will need to
investigate the program to ensure that this has not occurred.

• If there are unsupported commands you may be able to change them. If not, then the application is
not supported by Link3270.

2. Using the 3270 Bridge Passthrough SupportPak (See “Using the 3270 Bridge Passthrough
SupportPac” on page 18) to check if the application uses any unsupported interfaces.

The bridge is designed to support applications conforming to the documented CICS API specified in
the Application development reference , subject to the restrictions described in “Link3270
programming considerations” on page 11. To confirm whether the application (and associated vendor
products used on the system) conform to this, the application should be run under the Passthrough
application. There may be various routes through the program which use different EXEC CICS API
commands. Each of these routes should be tested using the Passthrough.

Using the Load Module Scanner Utility
The load module scanner is a batch utility that scans load modules for specified CICS API commands.

The commands to be reported upon are defined as a filter input file. A sample command filter list
(DFHEIDBR) is provided to search for commands that are not supported in the 3270 bridge environment,
and an output report identifies the commands and load module offsets, including EDF information if
available. For information about running the load module scanner utility, see Load module scanner
(DFHEISUP).

Using the 3270 Bridge Passthrough SupportPac
The CA1E SupportPac is a support package providing the CICS 3270 Bridge Passthrough tool.

This allows you to run a CICS 3270 user transaction from a 3270 terminal in the normal way, but
internally CICS uses the Link3270 bridge logic instead of real 3270 terminal support. This allows you to
evaluate whether a CICS 3270 transaction is suitable to be driven using the 3270 bridge.

The Passthrough transactions also allow you to examine the 3270 data streams and log them for further
analysis. You can then use this information to write the client program that will drive the CICS 3270
transaction instead of a real 3270 terminal.

The CA1E SupportPac can be obtained from the Web, at the following URL:

http://www.software.ibm.com/ts/cics/txppacs

Writing the Link3270 client
To design and write a client program to run an existing CICS 3270 transaction using the Link3270 bridge
you need to:

1. select a suitable bridge scenario to decide where code needs to be written
2. analyze the application to understand the business data that flows between the 3270 and the

application, so that you can replace it with messages
3. decide whether you can use the simplified single transaction mode interface or whether you need to

use the full session mode interface

18 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/reference-programming.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/utilities/dfha693.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/utilities/dfha693.html

4. Write you client program using the selected scenario and transaction mode, using Link3270 messages
to communicate with Link3270.

Link3270 has two modes of operation:
Single transaction mode

This is a 'one-shot' type of request. A single transaction is run, and a single response message
returned. The bridge facility is allocated automatically by CICS and deleted at the end of the
transaction. This mode is appropriate for inquiry type applications.

Session mode
This mode is appropriate for sequences of transactions where state data is maintained between
transactions. In this mode, the client program can request:

• allocation of a bridge facility
• running of a transaction
• sending of continuation responses
• recovery from communication failure
• deletion of the bridge facility

Your client program manages the sequence of requests and the creation and deletion of the bridge
facility. Note that this is different from the implementation of the START bridge, where the bridge
facility is created dynamically.

Select Link3270 client scenarios
The following scenarios describe some common client environments.

They show how you can develop your client program to run in the most appropriate environment to make
best use of existing skills and experience. These scenarios demonstrate tiered client applications that
enable you to divide the logic to make best use of skills and experience. They use some common terms:
Business client

The business client is concerned only with the business data and its representation in the client end-
user environment

bridge client
The bridge client builds the bridge messages and manages the communication with the bridge using
the Link3270 interface. You can develop the more complex bridge client to run in CICS , using CICS
commands, and the business client portion can run in any environment that allows communication
with the bridge client. The bridge client can be designed to be reusable.

1. Host CICS Client

In this scenario, shown in Figure 5 on page 20 , the programmer has CICS skills and experience, so it
is more appropriate to write the Link3270 interface code on CICS.

You can separate the client logic into a business client, and a bridge client.

The LINK and EXCI samples show how a client application can be separated in this way and how
common logic can be shared in the bridge client. Note that a business client in another CICS region can
use DPL to access the bridge client.

Chapter 2. Bridging to 3270 transactions 19

CICSplex

AORs

User
application

Bridge
Driver

Start
Business

client

Business
client

Router regions

DFHL3270ECI DPL

Business
client

Bridge
client

LIN
K

E
X

C
I

L
IN

K

Figure 5. Link3270 host CICS client scenario
2. CICS Workstation Client

In this scenario, shown in Figure 6 on page 20 , where a CICS product is installed on the workstation
(such as CICS for Unix) then the client can be a CICS program using LINK to interface with Link3270,
or with a host CICS bridge client. In the three tier model the writer of the bridge client needs to have
CICS skills, but the business client programmer only needs skills on that platform.

Client

CICS

CICSplex

AORs

User
application

Bridge
Driver

Start

Router regions

DFHL3270

Bridge
client

DPL

L
IN

K

DPL

DPL

Figure 6. Link3270 CICS workstation client scenario
3. Non - CICS Workstation Client

In this scenario, shown in Figure 7 on page 21 , the programmer has workstation skills and limited
CICS experience. For the two tier scenario, the programmer must have some CICS experience to
understand the messages (which involve EXEC CICS instructions).

The client program executes on a remote workstation, using ECI to drive the user application. A single
client program is written, combining the business logic in the client environment and the interface to
Link3270.

20 CICS TS for z/OS: External Interfaces Guide

CICSplex

AORs

User
application

Bridge
Driver

Start

Router regions

DFHL3270 DPL

Business /
Bridge
Client

ECI

Figure 7. Link3270 non-CICS workstation client scenario
4. 3–tier Workstation client

In this scenario, shown in Figure 8 on page 21 , the workstation business client calls a bridge client in
another environment, perhaps to utilize existing skills. For example, a Unix program could send a user-
defined XML message to WebSphere on z/OS . A user-written bridge client application in WebSphere
could then parse the XML message and convert it to a Link3270 message and use an EXCI LINK to call
Link3270.

CICSplex

AORs

User
application

Bridge
Driver

Start

Business
Client

Router regions

DFHL3270 DPL
Bridge
Client

WebSphere

Bridge
Client

WebSphere

XML

ECI

X
M

L

E
X

C
I

Figure 8. Link3270 3–tier client scenario

Analyze the 3270 application
You need to analyze the 3270 application programs that form your transaction in order to replace the
3270 input data with messages sent by your client program.

You can use the 3270 Bridge Passthrough SupportPak (See “Using the 3270 Bridge Passthrough
SupportPac” on page 18) to drive your applications and log 3270 commands.

3270 programs fall mainly into the following types:
Minimum function BMS

This includes minimum function, SEND TEXT, and ACCUM. Link3270 supports these applications.
Bridge clients can be written relatively easily by a CICS programmer.

Chapter 2. Bridging to 3270 transactions 21

BMS and little 3270 datastream
A typical example of this type is an application that issues RECEIVE of command line input, and issues
a send MAP as output. Link3270 supports these applications. Client applications can be written
relatively easily by a CICS programmer.

Mixed BMS and 3270 datastream
A typical example of this type is an application that issues RECEIVE and then RECEIVE MAP FROM.
Link3270 supports these applications but the client programs are more difficult to write because MAP
information has to be supplied in 3270 datastream format.

Pure 3270 datastream
Typically user-written 3270 datastream where the user has a well-understood fixed 3270 datastream
structure. This is supported but the client program is more difficult to program than with BMS.
However this is usually the format understood by the programmer of the target application.

Alternative map generators
3270 datastreams are generated dynamically. Link3270 supports these applications but the client
programs are more difficult to write because MAP information has to be supplied in 3270 datastream
format.

Full function BMS
Including ACCUM, PAGE and PARTITION support. These programs are not supported and will be
detected by the load module scanner or the Passthrough tool.

Using Link3270 messages
To run transactions using the Link3270 Bridge, a client program creates an inbound message, links to
DFHL3270 with a COMMAREA containing the message, and interprets the result of the outbound
message.
The inbound message

The inbound message is passed on the LINK, ECI or EXCI call as a COMMAREA. It contains the
following data structures:
Bridge message header (BRIH)

A data structure containing parameters to be passed to the Link3270 bridge mechanism, such as
the name of the user transaction; the facility-like template to be used when the bridge facility is
created, and the termid to be assigned to the bridge facility.

Bridge message vectors (BRIV)s
Zero or more data structures containing data to be passed to the user transaction containing the
data requested by the EXEC CICS command for 3270 terminal input.

For example, if the application issues an EXEC CICS RECEIVE MAP , the inbound message will have
the following form:

Table 2. Message structure for the EXEC CICS RECEIVE MAP command

Message structure for the EXEC CICS RECEIVE MAP command

BRIH BRIV-RM ADS

Where ADS is the application data structure expected by the RECEIVE MAP command.

Sample BRIH and BRIV copybooks are supplied, primed with the default values, to simplify
programming. You can include these in your program and then change only the specific fields relevant
to the request.

The outbound message
The outbound message is passed in the COMMAREA on return from the LINK, ECI or EXCI call. It
contains the following data:
Bridge message header (BRIH)

A data structure containing parameters returned by the Link3270 mechanism, such as return and
response codes; the actual termid assigned to the bridge facility, and the length of the returned
message.

22 CICS TS for z/OS: External Interfaces Guide

Bridge message vectors (BRIV)s
Zero or more data structures containing the data supplied by the EXEC CICS command for a
3270 terminal output request, or requests for more data, to be passed to the client program.

For example, if the application issues several non-terminal EXEC CICS commands, an EXEC CICS
SEND MAP and then an EXEC CICS RETURN , the outbound message will have the following form
where ADS is the application data structure expected by the SEND MAP command.

Table 3. Message structure for the EXEC CICS SEND MAP command

Message structure for the EXEC CICS SEND MAP command

BRIH BRIV-SM ADS

A more complicated example would be one where the application issues several non-terminal EXEC
CICS commands, an EXEC CICS SYNCPOINT , an EXEC CICS SEND CONTROL , an EXEC CICS
SEND MAP , and then an EXEC CICS RETURN . In this case, the outbound message has the following
form:

Table 4. More complicated message structure

More complicated message structure

BRIH BRIV-SP BRIV-SC BRIV-SM ADS

Inbound BRIV vectors
One BRIV vector is required containing the data requested by every EXEC CICS command for 3270
terminal input issued by the user transaction.

The following commands are supported:

• CONVERSE
• RECEIVE
• RECEIVE MAP

Note: If the application issues CONVERSE, and there is an inbound converse vector to satisfy this request,
then the output from the converse is used to build an output SEND vector.

When the user transaction issues the command, the bridge mechanism searches the inbound message
for the first BRIV that matches the command type. For RECEIVE MAP commands it attempts to match the
MAPSET and MAP if these have been supplied by the client. RECEIVE MAP vectors are processed in order,
and those that do not match the current command are discarded until a match is found. Blank names in
the vector match any command.

Where there are several input vectors of different types, the order is not important.

For 'conversational' transactions (see “Conversational transactions” on page 27) when the client is
asked for further input, the previous inbound message vectors (except RETRIEVE vectors) are discarded
when a new inbound message is received. Note that RETRIEVE vectors can only flow in the first message
of the first transaction in a session. See “Using Link3270 session mode” on page 26 for an explanation
of the session programming mode.

Outbound BRIV vectors
One BRIV vector is created containing the data supplied by every EXEC CICS command for 3270
terminal output issued by the user transaction. This passes to the client all the information and data
relating to the command.

The following commands are supported:

• ISSUE ERASEUP
• SEND
• SEND MAP

Chapter 2. Bridging to 3270 transactions 23

• SEND TEXT
• SEND CONTROL
• SYNCPOINT
• SEND PAGE
• PURGE MESSAGE

Note: SEND PAGE and PURGE MESSAGE are only available for the Link3270 bridge with extended
support. See “Link3270 bridge basic and extended support” on page 24 for an explanation of the
differences between Link3270 bridge basic and extended support.

For 'conversational' transactions (see “Conversational transactions” on page 27), the last BRIV vector
can represent an EXEC CICS command that requests more data. This vector is only created if the
previous input message did not contain a BRIV to satisfy all the CICS commands. The following
commands are supported:

• CONVERSE request
• RECEIVE request
• RECEIVE MAP request
• RETRIEVE request

Link3270 bridge basic and extended support
There are two levels of support for the Link3270 bridge.

• Link3270 bridge with extended support provides support for the ACCUM option on EXEC CICS SEND
TEXT, EXEC CICS SEND MAP, and EXEC CICS SEND CONTROL, in addition to the basic support. To
support the ACCUM option, there are two extra outbound vectors, SEND PAGE and PURGE MESSAGE. If
you want to take advantage of extended support, you must recompile any Link3270 programs using the
extended copybooks (listed in Table 6 on page 25), instead of the basic copybooks.

Copybooks and default vectors
To simplify the task of constructing and analyzing Link3270 messages, CICS provides copybooks and
header files containing BRIH and BRIV structures. Sample BRIH and input BRIV structures already
primed with default values are also supplied, so all you need to do is copy them into your COMMAREA and
modify relevant fields.

Default structures and message copybooks

The following default structures are supplied in all supported languages:

• BRIH-DEFAULT
• BRIV-CONVERSE-DEFAULT
• BRIV-RECEIVE-DEFAULT
• BRIV-RECEIVE-MAP-DEFAULT
• BRIV-RETRIEVE-DEFAULT

You will find the copybooks and headers in the files listed in the following tables. Table 5 on page 24
shows the basic copybooks. Table 6 on page 25 shows the extended copybooks.

Table 5. Link3270 message copybooks for basic support

structure COBOL C PLI Assembler

BRIH DFHBRIHO DFHBRIHH DFHBRIHL DFHBRIHD

Inbound BRIVs DFHBRIIO DFHBRIHH DFHBRIHL DFHBRIHD

Outbound BRIVs DFHBRIOO DFHBRIHH DFHBRIHL DFHBRIHD

Defaults and
constants

DFHBRICO DFHBRICH DFHBRICL DFHBRICD

24 CICS TS for z/OS: External Interfaces Guide

Table 6. Link3270 message copybooks for extended support

structure COBOL C PLI Assembler

BRIH DFHBR2HO DFHBR2HH DFHBR2HL DFHBR2HD

Inbound BRIVs DFHBR2IO DFHBR2HH DFHBR2HL DFHBR2HD

Outbound BRIVs DFHBR2OO DFHBR2HH DFHBR2HL DFHBR2HD

Defaults and
constants

DFHBR2CO DFHBR2CH DFHBR2CL DFHBR2CD

Sample client programs are supplied to illustrate the use of the copybooks and defaults. For more
information, see Link3270 sample programs.

Using Link3270 single transaction mode
Single transaction mode allows a client to run a single transaction.

The bridge facility is automatically created, then deleted at the end of the transaction. This mechanism is
more efficient and easier to program than session mode, if only one transaction is being run. It is
particularly suited to inquiry transactions.

To run in single transaction mode, your client program must supply the name of the user transaction in
the BRIH_TRANSACTIONID field of the bridge message header (BRIH). See Link3270 message header
(BRIH) for a description of the BRIH. The following parameters may also be optionally defined:

• BRIH-DATALENGTH (if BRIV vectors are appended to the message)
• BRIH-FACILITYLIKE
• BRIH-TERMINAL
• BRIH-NETNAME
• BRIH-ADSDESCRIPTOR
• BRIH-ATTENTIONID
• BRIH-STARTCODE
• BRIH-CURSORPOSITION

Your client program must also create BRIV vectors for any input commands. If you add data to a BRIV,
you must also update the BRIH-DATALENGTH field. See “Updating data length fields” on page 25.

To use single transaction mode your application must satisfy the following restrictions, otherwise session
mode should be used:

• Only one input and one output message are allowed. To run conversational transactions, you must
provide all the input data in sequential BRIV structures in the input message. The BRIH-
CONVERSATIONALTASK and BRIH-GETWAITINTERVAL parameters in the BRIH are ignored.

• The COMMAREA should be large enough to receive the output message. If it is not, the message is
truncated at the last complete vector, and the rest of the message is discarded. BRIH-
REMAININGDATALENGTH is set to a non zero value to indicate there has been truncation.

• If a communications link breaks, you can not obtain the output using a resend message request. For this
reason it is recommended that single transaction mode is mainly used for inquiry type transactions.

Updating data length fields

If you add data to a BRIV you must update the following fields to include the length of the data:

• The BRIV data length field
• The BRIV header vector length field

If you add a BRIV to a message, you must add the value in the BRIV header vector length field to BRIH-
DATALENGTH.

Chapter 2. Bridging to 3270 transactions 25

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/samples/dfhtmh7.html

Using Link3270 session mode
Session mode allows a client to run a number of transactions using the same bridge facility.

It is more efficient than running each of these transaction in single transaction mode. Session mode
supports the following operations:

• Allocating a bridge facility
• Running transactions
• Deleting a bridge facility
• Delivering large messages
• Recovery in the event of communications failure

Note: The USERID must be the same for the whole session and must be specified in every Link3270
request.

How to create a message
Before sending each message you must perform these steps.

Procedure

1. Move the default bridge message header (BRIH) into a message area.
2. For all messages other than the allocate, set BRIH_FACILITY to the value returned on the allocate.
3. Modify other parameters of the message as required, as described in the following sections.

Allocating a bridge facility
To allocate a bridge facility, your client program must set the value of the BRIH_TRANSACTIONID field of
the bridge message header (BRIH) to BRIHT-ALLOCATE-FACILITY.

See Link3270 message header (BRIH) for a description of the BRIH. The following parameters may also
be optionally defined:

• BRIH-FACILITYKEEPTIME
• BRIH-FACILITYLIKE
• BRIH-TERMINAL
• BRIH-NETNAME

Other fields in the message are ignored.

For example, to allocate a bridge facility using the supplied default BRIH and constants:

Working-Storage Section
...
copy dfhbrico.
...
Linkage Section
01 msg-area
copy DFHBRIHO.
...
Procedure Division.
...
move brih-default to msg-area.
set briht-allocate-facility to true.
EXEC CICS LINK PROGRAM('DFHL3270') COMMAREA(msg-area)
LENGTH(length of brih) DATALENGTH(len)
END-EXEC
...

:

Note: The BRIH-FACILITYLIKE value supplied by your client program is not validated until the first
application transaction is run. It is only when the first application transaction is processed that the AOR
region is determined and the facilitylike value can be validated within the selected AOR.

26 CICS TS for z/OS: External Interfaces Guide

Running transactions
To run transactions in session mode, your client program must supply the name of the user transaction in
the BRIH_TRANSACTIONID field of the bridge message header (BRIH), and set BRIH-FACILITY to the
value returned by the allocate request.

The following parameters may also be optionally defined:

• BRIH-DATALENGTH
• BRIH-CONVERSATIONALTASK
• BRIH-GETWAITINTERVAL
• BRIH-ADSDESCRIPTOR
• BRIH-ATTENTIONID
• BRIH-STARTCODE
• BRIH-CURSORPOSITION

Other fields in the BRIH are ignored.

For example, to run transaction NACT using the supplied default BRIH and constants:

Working-Storage Section..
copy dfhbrico..
Linkage Section.
01 msg-area.
copy DFHBRIHO.
03 msg-vectors pic x(2000)..
Procedure Division.
move brih-default to msg-area
move 'NACT' to brih-transactionid
move facility to brih-facility
move brih-datalength to len
EXEC CICS LINK PROGRAM('DFHL3270') COMMAREA(msg-area)
LENGTH(length of msg-area) DATALENGTH(len)
END-EXEC..

Your client program must also create BRIV vectors for any input commands. For example:

 move briv-receive-map-default to briv-in.
move 'DFH0MNA ' to briv-rm-mapset.
move 'ACCTMNU ' to briv-rm-map.
move '422' to briv-rm-cposn.
move length of acctmnui to briv-rm-data-len.
set address of acctmnui to address of briv-rm-data.
move low-values to acctmnui.
add briv-rm-data-len to briv-input-vector-length.
add briv-input-vector-length to brih-datalength.

Note: When adding a BRIV always remember to increment the BRIH-DATALENGTH

Conversational transactions
A traditionally conversation transaction, making multiple interactions with a terminal, can be run under
the Link3270 bridge as a simple 'non-conversational' transaction by providing all the terminal input in
multiple BRIV vectors in the Link3270 request message.

Here, the term 'conversational' refers to transactions where there are multiple flows between the client
and the user transaction. To enable this conversational interaction, you must set BRIH-
CONVERSATIONALTASK to BRIHCT-YES.

If the user transaction encounters a CONVERSE, RECEIVE or RECEIVE MAP and the Link3270 mechanism
has not received a BRIV to satisfy the request, and the BRIH allows conversations (BRIH-
CONVERSATIONALTASK is set to BRIHCT-YES), a message is returned to the client requesting further
data. The value of BRIH-TASKENDSTATUS is set to the value BRIHTES-CONVERSATION, and a request
BRIV is the last vector in the message.

The client then responds by sending a further input message containing the required 3270 input data. The
client initializes the message to the default BRIH and sets the value of the BRIH-TRANSACTIONID field to

Chapter 2. Bridging to 3270 transactions 27

BRIHT-CONTINUE-CONVERSATION and BRIH-FACILITY to the value returned on the allocate request.
The following parameters may also be optionally defined:

• BRIH-DATALENGTH (if BRIV vectors are appended to the message)
• BRIH-CONVERSATIONALTASK
• BRIH-GETWAITINTERVAL
• BRIH-CANCELCODE

Other fields in the BRIH are ignored.

The client program may also need to create BRIV vectors if appropriate, and it must reply within the time
specified in BRIH-GETWAITINTERVAL

Note: If BRIH-CONVERSATIONALTASK is set to BRIHCT-NO, the bridge will abend the user transaction if
it issues an input command for which no vector has been supplied.

P seudoconversational transactions
A pseudoconversation normally involves a series of transactions, each initiated by the previous
transaction, which may also pass some data. The name of the next transaction to be run can be defined
by the user transaction in different ways.

1. EXEC CICS RETURN TRANSID
2. EXEC CICS RETURN TRANSID IMMEDIATE
3. EXEC CICS START TRANSID TERMID
4. EXEC CICS SET TERMINAL/NETNAME NEXTTRANSID
5. Terminal data

Note: Transactions initiated by START TERMID are not necessarily pseudoconversational. Here we are
considering only those transactions initiated by a START to the principal facility (the bridge facility) where
the STARTING and STARTED applications are associated in a pseudoconversation. In this case, START
TERMID must specify the bridge facility.

Commands 1-4 all cause the bridge mechanism to set the next transaction identifier in the BRIH-
NEXTTRANSACTIONID field to be returned to the client in the next response message.

The client responds by sending a run request for the next transaction, with BRIH-TRANSACTIONID set to
the value from BRIH-NEXTTRANSACTIONID and BRIH-FACILITY set to the value returned on the allocate
request. The following parameters may also be optionally defined:

• BRIH-DATALENGTH (if BRIV vectors are appended to the message)
• BRIH-CONVERSATIONALTASK
• BRIH-GETWAITINTERVAL (if conversational)
• BRIH-ADSDESCRIPTOR
• BRIH-ATTENTIONID
• BRIH-CURSORPOSITION

Other fields in the BRIH are ignored.

Note: The same bridge facility must be used by all transactions in the pseudoconversation.

Deleting a bridge facility
When all session activity is complete, the client can delete the bridge facility.

To do this, your client program must set the value of the BRIH_TRANSACTIONID field of the BRIH to
BRIHT-DELETE-FACILITY, and set BRIH-FACILITY to the value returned by the allocate request. Other
fields in the message are ignored.

For example, to delete a bridge facility using the supplied default BRIH and constants:

Working-Storage Section..
copy dfhbrico.

28 CICS TS for z/OS: External Interfaces Guide

Linkage Section.
01 msg-area.
copy DFHBRIHO..
Procedure Division.
move brih-default to msg-area
set briht-delete-facility to true
move facility to brih-facility
move brih-datalength to len
EXEC CICS LINK PROGRAM('DFHL3270') COMMAREA(msg-area)
LENGTH(length of brih) DATALENGTH(len)
END-EXEC..

If the bridge facility is not explicitly deleted, it is scheduled for deletion automatically by CICS if it is
unused for the time specified in the BRIH-FACILITYKEEPTIME field, or in the BRMAXKEEPTIME system
initialization parameter. The smaller interval is used.

Delivering large messages
If the output message from the user transaction is larger than the size of the COMMAREA passed on the
request, the bridge mechanism returns a BRIH and as many complete BRIV vectors as will fit into the
returned COMMAREA.

If it is not possible to fit the whole of the outbound message into the COMMAREA, the field BRIH-
REMAININGDATALENGTH is set to a non zero value. The client can then issue one or more requests to
obtain the rest of the data. To do this, your client program must set the value of the BRIH-
TRANSACTIONID field to BRIHT-GET-MORE-MESSAGE, and set BRIH-FACILITY to the value returned by
the allocate request. Other fields in the message are ignored.

This is so that CICS can return error information. Clients should follow CICS recommendations regarding
COMMAREA lengths described in LENGTH options in CICS commands.

Recovery from connection failure
If the communications connection fails before a response message is received, the client can reconnect
to the same router and request that the message be sent again.

To do this, your client program must set the value of the BRIH-TRANSACTIONID field to BRIHT-RESEND-
MESSAGE, and set BRIH-FACILITY to the value returned by the allocate request. Other fields in the
message are ignored.

If successful, the outbound Link3270 bridge Message will contain as much of the message as can be
fitted into the COMMAREA. If either the router or the AOR CICS region has failed, the message returned
indicates that the facilitytoken is unknown.

If unsuccessful, the output is the BRIHT-RESEND-MESSAGE message with an appropriate BRIH-
RETURNCODE.

Note:

1. A resend request must be sent before the interval specified in BRIH-FACILITYKEEPTIME on the
allocate request has expired. Otherwise, both the bridge facility and the outstanding message are
deleted.

2. You can use the field BRIH-SEQNO to check whether the previous request has worked.

Validity of Link3270 requests
At any time, the bridge facility is considered to be in a specific state .

Some requests are only valid is the facility is in an appropriate state. If the request is not valid, BRIH-
RETURNCODE is set to the value indicated in Table 7 on page 30.

Possible states are:

• Not Allocated
• Allocated
• Conversational
• Transaction Ended

Chapter 2. Bridging to 3270 transactions 29

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_lengthintro.html

The following table will help you to decide when a request is valid, and what the resulting state will be. If
a request is invalid, the state does not change:

Table 7. Validity of Link3270 requests

Request Not Allocated Allocated Conversational Transaction ended

Allocate Facility valid ->Allocated note⁸ note⁸ note⁸

Run Transaction valid² valid⁴ invalid³ valid⁴

Continue
Conversation

invalid¹ invalid⁵ valid⁴ invalid⁵

Get More Message invalid¹ invalid⁶ valid/invalid⁷ valid/invalid⁷

Resend Message invalid¹ invalid⁶ valid -
>Conversational

valid ->Transaction
ended

Delete Facility invalid¹ valid ->Not
Allocated

invalid³ valid ->Not
Allocated

Note:

1. BRIH-RETURNCODE set to BRIHRC-INVALID-FACILITYTOKEN.
2. This is defined as single transaction mode.
3. BRIH-RETURNCODE set to BRIHRC-FACILITYTOKEN-IN-USE.
4. The resulting stated depends on whether the transaction issues further requests for which there is no

BRIV. Possible new states are Conversational or Transaction-ended
5. BRIH-RETURNCODE set to BRIHRC-TRANSACTION-NOT-RUNNING.
6. BRIH-RETURNCODE set to BRIHRC_NO-DATA.
7. The resulting state depends on whether there is more data to send (indicated by BRIH-

REMAININGDATALENGTH).
8. This state is not relevant, as Allocate always creates a new facility.

Expiry of facilitytoken
If the facilitytoken expires due to inactivity, any subsequent requests are invalid. BRIH-RETURNCODE is
set to BRIHRC-INVALID-FACILITYTOKEN and the resulting state is Not Allocated. Conversational
requests may result in loss of data.

Calling the Link3270 bridge
The Link3270 bridge supports these external request mechanisms.

1. EXEC CICS LINK . This includes both local link and DPL.
2. The External CICS Interface (EXCI). This includes both the EXCI call interface and the EXEC CICS

interface.
3. The External Call Interface (ECI).

Calling Link3270 using LINK
The interface is the standard EXEC CICS LINK interface.

 EXEC CICS LINK PROGRAM('DFHL3270')
COMMAREA(Link3270_message)
DATALENGTH(inbound_message_length)
LENGTH(outbound_message_length)

• PROGRAM must specify DFHL3270.
• The COMMAREA must contain a structured Link3270 message, as described in Link3270 message

formats.

30 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/interfaces/dfhtmer.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/interfaces/dfhtmer.html

If you are using DPL:

• SYSID may be specified. If there are multiple router regions, all calls must be issued to the same region
where the allocate-facility call was sent.

• SYNCONRETURN can be used, but is not required. If it is not used, a mirror task remains in the router
for the duration of the session.

• TRANSID can be used
• INPUTMSG and INPUTMSGLEN are ignored.

The bridge header (BRIH) indicates whether the transaction ran successfully or not. See Link3270
diagnostics for a full description of the return codes from the Link3270 call.

See LINK for a full description of the LINK command.

Calling Link3270 using EXCI
Either form of the EXCI interface can be used to run the bridge.

The EXEC CICS interface is recommended for the single transaction mode. The call interface is
recommended for the session mode. See Using the Link3270 bridge for a description of single transaction
and session modes. See The EXCI programming interfaces for information about using the EXCI interface.

Calling Link3270 using ECI
The interface is the standard ECI interface, passing the ECIPARMS parameter list.

This should contain the following specific fields:

parameter value

eci_call_type synchronous or asynchronous

eci_program_name DFHL3270

eci_userid Userid for security validation. The user transaction
runs with this userid

eci_password Password or Passticket for security validation

eci_tpn User transaction name

eci_commarea Address of the Link3270 message

eci_commarea_length Length of the Link3270 message

The other fields are set according to normal ECI programming. See ECI over TCP/IP for more information
about the using the ECI interface.

The return code from the ECI call indicates whether the request was accepted by CICS . A return code of
ECI_NO_ERROR does not imply that the transaction ran successfully. It implies that the transmission of
the message was successful. The client application should look in the returned bridge header (BRIH) for
the return code and abendcode. See Link3270 diagnostics for a full description of the return codes from
the Link3270 call.

Multiple Router regions
If there are multiple router regions, all calls must be issued to the same region where the allocate-facility
call was sent.

Using data conversion with Link3270
If the code page of your client program is different from the code page used by the CICS user program,
your messages need to be converted.

The BRIH, all BRIV vector headers and RETRIEVE data can be converted using the CICS conversion
program DFHCCNV. See The conversion process for information about the data conversion process.

Chapter 2. Bridging to 3270 transactions 31

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/interfaces/dfhtmgd.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/interfaces/dfhtmgd.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_link.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmek.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm41.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/components/dfhs3ic.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/interfaces/dfhtmgd.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/data-conversion/dfht80z.html

DFHCCNV uses the DFHCNV table to determine the required conversions. You need to supply entries in
this table for each resource that requires conversion. See Defining the conversion table.

Converting BRIH and BRIV header data
If you are using code pages other than the defaults, that is, other than 437 for the client and 037 for the
server, then you must ensure that the correct code page conversion is applied to DFHBRCTD.

You can do this by coding SRVERCP and CLINTCP parameters on the DFHCNV TYPE=INITIAL
statement. The COPY DFHBRCTD statement should follow DFHCNV TYPE=INITIAL.

If the application programs run using the same code pages as those specified on the TYPE=INITIAL
statement, then the TYPE=ENTRY statements do not need to specify the code pages.

If an application program, or programs, need to use different code pages, then the new values must be
specified on the appropriate TYPE=ENTRY statements.

In your DFHCNV, you should include:

COPY DFHBRCTD

Build DFHCNV as described in Assembling and link-editing the conversion programs . This will convert the
BRIH and BRIV vector headers using the code pages described in your conversion template.

DFHCNV example for Link3270
This shows an example of a DFHCNV for a CICS region using code page 939 for the server programs and
code page 943 for most of the clients.

The COPY DFHBRCTD statement follows the DFHCNV TYPE=INITIAL statement, so it will use 939 and
943. This is used in the conversion of BRIHs.

PROG1 uses the same code pages, but PROG2 uses client code page 932 instead of 939. In order to
achieve this, the TYPE=ENTRY statement for PROG2 contains overrides for the client and server code
pages.

DFHCNV TITLE 'EXAMPLE DFHCNV CONVERSION TABLE'
*
DFHCNV TYPE=INITIAL,SRVERCP=939,CLINTCP=943
*
COPY DFHBRCTD
*
DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=PROG1
DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=10018, *
LAST=YES
*
DFHCNV TYPE=ENTRY,RTYPE=PC,RNAME=PROG2, *
SRVERCP=939,CLINTCP=932
DFHCNV TYPE=SELECT,OPTION=DEFAULT
DFHCNV TYPE=FIELD,OFFSET=0,DATATYP=CHARACTER,DATALEN=500, *
LAST=YES
*
DFHCNV TYPE=FINAL
END

Figure 9. DFHCNV example for Link3270

Converting RETRIEVE data
RETRIEVE data is converted using the conversion template for the user transaction. You should provide a
DFHCNV entry with RTYPE=IC RNAME= user tranid.

Converting user data
User data following each BRIV (including the ADSD, but excluding RETRIEVE data) is converted in the
AOR using the GCHARS and GCODES values defined for the facility-like terminal that was used as a
template to build the bridge facility.

You should define these values appropriately for your client program, and specify the facility-like name in
your Link3270 call if you are not using the default. The client code page must be specified in value 2 of
CGCSGID in the AOR as well as in the DFHCNV conversion table in the router region.

32 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/connections/dfht80i.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/connections/dfht80o.html

The code page conversion for user data is based on the code page conversion for EPI emulation.

CGCSGID values 1 and 2 can be retrieved by an application program using EXEC CICS ASSIGN GCHARS
and EXEC CICS ASSIGN GCODES respectively.

Note: SEND TEXT NOEDIT data is always converted as if it were in 3270 data stream format.

Managing the Link3270 bridge environment
Before you can use the Link3270 bridge you must define a DFHBRNSF file.

Defining a DFHBRNSF file is described in “Defining the bridge facility name” on page 34.

Optionally, you can also:

• Allocate specific names to bridge facilities using the autoinstall user replaceable program. See “Defining
the bridge facility ” on page 33.

• Control the keeptime for bridge facilities. See “Defining Link3270 system initialization parameters” on
page 33.

• Use the dynamic transaction routing program to enable load balancing. See Using Link3270 bridge load
balancing.

This section describes the CICS interfaces provided to help you set up and control a Link3270 bridge
environment. It describes:

• “Defining Link3270 system initialization parameters” on page 33
• “Defining the bridge facility ” on page 33
• Administering the Link3270 bridge
• Using Link3270 bridge load balancing

Defining Link3270 system initialization parameters
You can optionally define system initialization parameters to help manage the Link3270 bridge.

About this task
Typically, CICS defines all bridge facilities automatically. However, you can write a user replaceable
module to control the autoinstallation of bridge facilities if required.

Procedure

1. In the bridge router region, define the AIBRIDGE system initialization parameter to specify whether
the autoinstall user replaceable module (URM) is called when bridge facilities are created and deleted.

2. Define the SPCTR and STNTR system initialization parameters if you want standard and special tracing
for the bridge (BR) and partner (PT) domains.

Results
You have configured CICS to use a URM to install bridge facilities and added tracing.

Defining the bridge facility
The bridge facility is an emulated 3270 terminal. It is a virtual terminal, created by DFHL3270 when it
receives a single transaction mode request, or a session mode request to allocate a bridge facility.

You do not provide a TERMINAL resource definition for the bridge facility, but you can control the terminal
properties used by providing a 3270 TERMINAL resource definition to be used as a template. This
TERMINAL definition, is known as the facilitylike.

Chapter 2. Bridging to 3270 transactions 33

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/administering/dfhtmgq.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/administering/dfhtmgq.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/administering/dfhtm2i.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/administering/dfhtmgq.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/sit/dfha2_aibridge.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/sit/dfha2_spctr.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/sit/dfha2_stntr.html

Defining the facility
The facilitylike value is the name of a real terminal resource definition that is used as a template for some
of the properties of the bridge facility.

The name of the facilitylike definition to be used can be passed to CICS in one of three ways (the first non-
blank value found is used):

• From the BRIH-FACILITYLIKE parameter in the Link3270 call.
• From the PROFILE resource definition for the user transaction.
• The default is CBRF, a definition supplied by CICS to support the bridge.

.

Once the bridge facility has been defined, its facilitylike template cannot be changed. Therefore, if the
bridge facility is reused in session mode, CICS ignores the facilitylike value passed in subsequent calls.

Note: If you are running in a CICS system started with the VTAM=NO system initialization parameter, the
resource definition specified by facilitylike must be defined as REMOTE. A default definition of CBRF,
defined as REMOTE, is provided in the group DFHTERM.

Note: VTAM® is now the z/OS Communications Server.

For information about the PROFILE resource definition, see PROFILE resources.

Defining the bridge facility name
When CICS creates a bridge facility, it creates both an eight-byte token to identify it (the facilitytoken)
and a four-character terminal identifier, which is used as both TERMID and NETNAME.

The facilitytoken is returned on the Link3270 allocate call and must be supplied by you on all subsequent
session mode calls (See Using Link3270 session mode).

For bridge facilities created by the Link320 bridge, the token and name are unique across the CICSplex,
and the TERMID and NETNAME are of the form AAA}. Naming occurs in the routing region, at the time of
processing an "allocate" command in session mode, or the internal allocate step in single-transaction
mode. See Using the Link3270 bridge for information about session and single-transaction modes.

Link3270 bridge facility namespace allocation information is recorded in a shared file, DFHBRNSF, to
ensure uniqueness of the names. The router regions that share file DFHBRNSF and their associated AOR's
form the bridge CICSplex. Multi-bridge CICSplexes can be set up within a larger CICSplex , each router
region within a bridge CICSplex sharing the same DFHBRNSF file. The AOR regions of a bridge CICSplex
can only be associated with router regions on one bridge CICSplex.

To improve performance, the Link3270 bridge namespace is split into allocation ranges, so that a 'chunk'
of names is allocated to each router region, and the DFHBRNSF file is only accessed when a namespace
range is allocated or released. Names within the allocated chunks can be reused when keeptimes expire,
and chunks may also be reused in other regions, so you may see the same names appearing in different
regions, but they are only active in one region at any given time.

Message DFHBR0505 is issued when 90% of the DFHBRNSF names have been allocated and is issued for
each percentage point increase in the names being allocated. Message DFHBR0506 is issued for each
percentage point reduction in names allocated until below 90%. When no more names are available,
message DFHBR0507 is issued, and client application new allocation (or one shot) requests receive a
return code of BRIHRC_NO_FREE_NAME.

DFHBRNSF file types
The bridge facility namespace allocation file (DFHBRNSF) can be a local user data table, a local VSAM file,
a coupling facility data table (CFDT), a remote VSAM file or a VSAM RLS file.

If only one router region is used a user maintained data table or local VSAM version of DFHBRNSF is
recommended.

If multi-router regions are used, the DFHBRNSF file can be defined as a local VSAM file in a remote file
owning region (FOR) and as a remote VSAM file in the router regions; as a VSAM RLS in all the router
regions, or as a coupling facility data table in all the router regions.

34 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/profile/dfha4_summary.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmem.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmek.html

If the user maintained data table version of DFHBRNSF is used, the VSAM data set specified in the CICS
file definition must be empty; no records should be loaded from the file to the data table. The data table
should not be closed when the router region is running, because all bridge facility namespace data will be
lost and the next request to allocate or release a range of bridge facilities will fail. For this reason, a user
maintained data table is not recommended for a production environment.

Defining DFHBRNSF
For VSAM files and data tables, you need to use IDCAMS to create file DFHBRNSF.

Figure 10 on page 35 shows a some sample IDCAMS statements that you can modify to create the
DFHBRNSF file. Change the cluster name and volume values to comply with your own standards.

//DEFDS JOB accounting info,name,MSGCLASS=A
//TDINTRA EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE CLUSTER(NAME(CICSTS22.CICS.DFHBRNSF)-
 INDEXED-
 TRK(1 1)-
 RECORDSIZE(384 384)-
 KEYS(13 20)-
 FREESPACE(0 50)-
 SHAREOPTIONS(2 3)-
 LOG(NONE)-
 VOLUME(DISK01)-
 CISZ(512)) -
 DATA (NAME(CICSTS22.CICS.DFHBRNSF.DATA)-
 CISZ(512)) -
 INDEX (NAME(CICSTS22.CICS.DFHBRNSF.INDEX)-
 CISZ(512))
/*
//

Figure 10. Sample IDCAMS job to create the DFHBRNSF file

See Coupling facility data tables for guidance on creating coupling facility data tables.

File DFHBRNSF contains two control records plus 1 record for each router region that accesses the file.
The maximum number of records that can be written to DFHBRNSF is 731 (this includes the 2 control
records).

You need to define file DFHBRNSF to CICS in the Link3270 router regions. Resource definitions have been
provided for all versions of the file. You should include the appropriate group in your startup grouplist, or
copy chosen definitions into a group in the grouplist. You will need to edit the definitions to match your
IDCAMS statements. Change the DSN field to match the cluster name used with IDCAMS to create the
file, unless the CFDT version of the file is to be used. If the CFDT definition is being used, change the
CFDTPOOL value to the name of the pool containing the table defined by the file definition. The table
shows the groups provided that contain the DFHBRNSF definitions.

Table 8. Supplied resource definitions for DFHBRNSF

Group Type

DFHBRVR VSAM RLS

DFHBRVSL Local VSM, non-RLS

DFHBRVSR Remote VSAM, non-RLS

DFHBRCF Coupling facility data table

DFHBRUT User maintained data table

Note:

Chapter 2. Bridging to 3270 transactions 35

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/cics/dfha2_coupling_facility_datatables.html

1. If DFHBRNSF becomes unavailable, only Link3270 requests that do not cause an allocation or release
of a bridge facility namespace range will still complete successfully.

2. If DFHBRNSF file has to be redefined for any reason, all router regions that access the file should be
shut down before the file is redefined, and restarted after the file has been redefined.

DFHBRNSF at CICS termination
During the normal termination of a CICS router region, new Link3270 requests are rejected and existing
Link3270 facilities are released. When all facilities have been released, the DFHBRNSF name ranges
associated with the router region are freed.

It is possible that the freeing of the DFHBRNSF name ranges will fail. For example, if file DFHBRNSF is
remote, the shutdown transaction CESD breaks the connection to the file owning region before the name
ranges have been freed. If this happens an error message will be issued. The name ranges are only freed
when the CICS region is restarted and a Link3270 transaction has run in that region.

If the CICS termination is immediate, the Link3270 request is rejected with return code BRIH-CICS-
TERMINATION, but the Link3270 facilities and DFHBRNSF name ranges associated with the facilities are
not released. The name ranges are only freed when the CICS region is restarted and a Link3270
transaction has run in that region.

Defining a specific bridge facility name
If the name or netname of the 3270 terminal is important to the logic of the 3270 application, you can
supply a specific name in the BRIH-TERMINAL or BRIH-NETNAME parameter on the Link3270 call and
also optionally request that the autoinstall user replaceable module (URM) is called when the bridge
facility is allocated.

The autoinstall URM is called if you specify the system initialization parameter AIBRIDGE=YES at CICS
startup, or use SET AUTOINSTALL to activate this option at a later time.

The AUTOINSTALL URM can accept, reject, or modify the supplied or generated terminal name and
netname. See How bridge facility virtual terminals are autoinstalled for information about the autoinstall
URM.

Initializing the TCTUA
The bridge facility can have a Terminal Control Table User Area (TCTUA), which can be accessed by EXEC
CICS ADDRESS TCTUA in the normal way.

The TCTUA is initialized to nulls when the bridge facility is created. A global user exit (GLUE) called
XFAINTU is called when a bridge facility is created and discarded. XFAINTU is passed the address of the
TCTUA, so you can use this exit to initialize the TCTUA.

Accessing bridge facility properties
The user transaction can retrieve information about its principal facility (the bridge facility) from the EIB
or by using INQUIRE and ASSIGN commands, in exactly the same way that it does when running
normally, where the principal facility is a real 3270.

For example, the TERMID can be obtained from EIBTERMID or from an ASSIGN FACILITY, INQUIRE TASK
FACILITY or INQUIRE NETNAME command, and the NETNAME can be obtained with ASSIGN NETNAME
or INQUIRE TERMINAL.

You can use the INQUIRE BRFACILITY command to obtain information about any bridge facility, identified
by its facilitytoken, but all other INQUIRE commands return only information about the bridge facility that
is the principal facility of the transaction issuing the command. To other transactions, a transaction
running in a bridged environment appears to be a non-terminal transaction, and an INQUIRE TERMID
against a bridge facility TERMID issued by another transaction will result in TERMIDERR. INQUIRE
NETNAME and INQUIRE TASK behave similarly.

Bridge facilities do not appear in response to INQUIRE TERMINAL browses.

All keywords of ASSIGN and INQUIRE are supported and return the values that have been set for the
bridge facility from the FACILITYLIKE terminal definition, or that have been set during the execution of
the transaction.

36 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfha3r2.html

Some keywords return values fixed by CICS for the bridge environment. These are:

Table 9. INQUIRE TERMINAL values

Keyword Returned value

ACQSTATUS ACQUIRED

ACCESSMETHOD VTAM

CORRELID blanks

EXITTRACING NOTAPPLIC

LINKSYSTEM blanks

MODENAME blanks

REMOTENAME blanks

REMOTESYSTEM blanks

REMOTESYSNET blanks

SERVSTATUS INSERVICE

TCAMCONTROL X'FF'

TERMSTATUS ACQUIRED

TTISTATUS YES

ZCPTRACING NOZCPTRACE

Note: VTAM is now the z/OS Communications Server.

Table 10. INQUIRE TASK values

Keyword Returned value

FACILITY the bridge facility name

FACILITYTYPE TERM or TASK

STARTCODE S,SD,TO,TP

Chapter 2. Bridging to 3270 transactions 37

QUERY
The keywords listed represent terminal attributes that can be set by the 3270 Query function at logon
time for a real device.

ALTSCRNHT ALTSCRNWD APLKYBDST APLTEXTST

BACKTRANSST COLORST EXTENDEDDSST GCHARS

GCODES HILIGHTST MSRCONTROLST OUTLINEST

PARTITIONSST PROGSYMBOLST SOSIST VALIDATIONST

If the real FACILITYLIKE terminal is logged on when the bridge facility is created, the QUERY will have
been performed and the values returned will apply to the bridge facility.

If the real FACILITYLIKE terminal is not logged on at the time that the bridge facility is created, the
QUERY will not have been performed and the bridge facility will be created using values from the
FACILITYLIKE resource definition.

SET TERMINAL/NETNAME
The following table shows the effect of each of the SET TERMINAL/NETNAME keywords when issued by a
user transaction for its bridge facility. Unless otherwise specified, the response is DFHRESP(NORMAL).

KEYWORD EFFECT

ACQSTATUS Ignored.

ALTPRINTER Value is SET, and is returned on INQUIRE, but is never used by CICS.

ALTPRTCOPYST Value is SET, and is returned on INQUIRE, but is never used by CICS.

ATISTATUS Works as for normal 3270.

CANCEL Ignored

CREATESESS Ignored.

DISCREQST Value is SET, and is returned on INQUIRE, but is never used by CICS.

EXITTRACING Ignored.

FORCE Ignored.

MAPNAME Works as for normal 3270.

MAPSETNAME Works as for normal 3270.

NEXTTRANSID Works as for normal 3270.

OBFORMATST Works as for normal 3270.

PAGESTATUS Ignored.

PRINTER Value is SET, and is returned on INQUIRE, but is never used by CICS.

PRTCOPYST Value is SET, and is returned on INQUIRE, but is never used by CICS.

PURGE Ignored.

PURGETYPE Ignored.

RELREQST Value is SET, and is returned on INQUIRE, but is never used by CICS.

SERVSTATUS Works as for normal 3270.

38 CICS TS for z/OS: External Interfaces Guide

KEYWORD EFFECT

TCAMCONTROL Returns INVREQ, as for normal 3270.

TERMPRIORITY Value is SET, and is returned on INQUIRE, but is never used by CICS.

TERMSTATUS Ignored.

TRACING Value is SET, and is returned on INQUIRE, but is never used by CICS.

TTISTATUS Ignored.

UCTRANST Works as for normal 3270.

ZCPTRACING Ignored.

Administering the Link3270 bridge
You can use these commands and interfaces to obtain information about the Link3270 bridge
environment and the bridge facility.

• INQUIRE/SET AUTOINSTALL
• INQUIRE/SET BRFACILITY
• INQUIRE TERMINAL/NETNAME
• INQUIRE TASK
• INQUIRE/SET TRACETYPE
• INQUIRE TRANSACTION
• CEMT
• The exit programming interface (XPI)

See the System commands for details of INQUIRE and SET commands, and CEMT - master terminal for
information about the CEMT command.

Note: The BRIDGE option of the ASSIGN command returns the name of the transaction that issued the
Link3270 command. It returns blanks if the transaction is not run in a bridge environment.

INQUIRE/SET AUTOINSTALL with the Link3270 bridge
You can use the AIBRIDGE option of the INQUIRE AUTOINSTALL command and CEMT INQUIRE
AUTOINSTALL to indicate whether the autoinstall URM is called when bridge facilities are allocated. You
can change this setting using the SET AUTOINSTALL command and CEMT SET AUTOINSTALL.

INQUIRE/SET BRFACILITY with the Link3270 bridge
You can use the INQUIRE BRFACILITY command and CEMT INQUIRE BRFACILITY to return
information about a bridge facility.

• The terminal name associated with the bridge facility (TERMID)
• The netname associated with the bridge facility
• The name of the user transaction running with this bridge facility
• The number of the task running the user transaction
• The applid of the AOR
• The sysid of the AOR
• The applid of the router region
• The sysid of the router region
• An indicator showing whether the Link3270 or START BREXIT bridge mechanism is being used
• The length of time this bridge facility will be kept if unused

Chapter 2. Bridging to 3270 transactions 39

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-spi/dfha81j.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/transactions/dfha721.html

• The current status of the bridge facility

You can change the status setting of the bridge facility to RELEASED using the SET BRFACILITY
command and CEMT SET BRFACILITY.

INQUIRE TASK with the Link3270 bridge
You can use the BRFACILITY option of the EXEC CICS INQUIRE TASK or CEMT INQUIRE TASK
command to return an 8-byte field containing the facility token for the bridge facility in use by the task.

Note: The BRIDGE and IDENTIFIER options return information about the START BREXIT bridge
mechanism, and are not used with Link3270.

INQUIRE/SET TRACETYPE with the Link3270 bridge
You can use the INQUIRE TRACETYPE command to indicate whether tracing is enabled for the bridge
(BR) and partner (PT) domains. You can change this setting using the SET TRACETYPE command.

INQUIRE TRANSACTION with the Link3270 bridge
You can use the FACILITYLIKE option of the INQUIRE TRANSACTION command and CEMT INQUIRE
TRANSACTION to return the 4-character name of the terminal defined by the FACILITYLIKE parameter of
the PROFILE associated with the named transaction resource definition.

If FACILITYLIKE is not defined, blanks are returned.

Note: The BREXIT option returns information about the START BREXIT bridge mechanism, and is not
used with Link3270.

XPI commands for the Link3270 bridge
You can use the INQUIRE_CONTEXT function of the DFHBRIQX call to return the following information for
the Link3270 bridge.

The INQUIRE_CONTEXT function returns the following information:

• The name of the bridge exit program used by a task running the START BREXIT bridge mechanism.
• The bridge facility token associated with a user transaction running in a bridge environment.
• The address of the bridge facility. This has the same format as a TCTTE and can be mapped using the

DSECT DFHTCTTE.
• The name of the bridge monitor transaction used to start a user transaction using the START BREXIT

bridge mechanism.
• A token that contains the address of the bridge exit area used by a task running the START BREXIT

bridge mechanism.
• The type of environment in which the transaction is running. This can be :

NORMAL
A transaction that is not running in a bridge environment.

BRIDGE
A user transaction that was started using a bridge.

BREXIT
A bridge exit program.

See Transaction management XPI functions for full details of the INQUIRE-CONTEXT interface.

Using Link3270 bridge load routing
The Link3270 bridge mechanism extends the dynamic routing capability of base CICS to support dynamic
routing of 3270 bridge transactions.

Figure 11 on page 41 shows that the DPL request from the Link3270 bridge program to a remote user
transaction can be sent to any of a number of application owning regions (AORs) where the user
transaction is enabled.

40 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/xpi/dfha32j.html

The dynamic transaction routing user replaceable program (URM) is called when Link3270 bridge
program DFHL3270 needs to identify the AOR to which an eligible transaction should be routed. New
parameters on the interface allow the dynamic transaction routing program to identify Link3270 bridge
requests and obtain the names of the target transaction and the bridge facility token. You can write your
own transaction routing program to exploit these new parameters, use the CICS supplied dynamic routing
program (DFHDYP), or use workload routing services provided by CICSPlex System Manager.

CICSplex

AORs

User
application

Bridge
Attach

TaskPartner

User
application

Bridge
Attach

TaskPartner

User
application

Bridge

Driver

Driver

Driver

Attach

TaskPartner

Client
program

Router regions

DFHL3270

DFHL3270

ECI

DPL

ECI

ECI
DPL

DPL

DPL

Figure 11. Link3270 load balancing

Using the dynamic transaction routing program with Link3270
When the dynamic transaction routing user replaceable program is called in the Link3270 bridge
environment, these input parameters are set.

DYRTYPE
8

DYRBRTK
bridge facilitytoken

DYRTRAN
name of user transaction as known in the router region

When a client links to the bridge routing program (DFHL3270) with the first application transaction for
that facility and that transaction is defined as dynamic, the dynamic transaction routing program is called
to determine if the request should be routed (using DPL) to another server region. The dynamic
transaction routing program is passed the transaction id in the message, and determines the SYSID of the
region (AOR) where the user transaction will be started.

The dynamic transaction routing program is only called if the transaction is defined as DYNAMIC(YES).

Once a bridge transaction has been routed successfully to an AOR, all transactions executing with the
same FACILITYTOKEN are routed to the same AOR. This affinity continues until the bridge facility is
deleted in the AOR.

In session mode, subsequent transactions that are defined as dynamic will cause a notify call to the
dynamic transaction routing program, informing the routing program that the transaction request is being
routed to a specific region.

Chapter 2. Bridging to 3270 transactions 41

See Routing bridge requests dynamically for information about using a dynamic routing program.

Link3270 message formats
This topic contains Product sensitive Programming Interface and Associated Guidance Information.

Link3270 message components

Link3270 messages contain the following components:

• Link3270 message header (BRIH)
• Inbound Link3270 vectors
• Outbound Link3270 vectors
• The application data structure (ADS)

Copybook names and descriptions

To help simplify the programming of clients, CICS provides copybooks and header files defining the BRIH
and BRIV data structures in Assembler, COBOL, PLI and C. Defaults are provided for each inbound vector.
These vectors are used to initialize the input message. There are two versions of the copybooks. When the
basic copybooks are used, the current version is set to indicate basic support. The extended copybooks
provide extended support, and when they are used the current version is set to indicate extended
support.

The copybook names for the basic copybooks are:
DFHBRIHx

BRIH and inbound and outbound BRIVs for C, PLI, and Assembler
DFHBRIIx

Inbound BRIVs for COBOL
DFHBRIOx

Outbound BRIVs for COBOL
DFHBRICx

Constants and default values
The names for the extended copybooks are:
DFHBR2Hx

BRIH and inbound and outbound BRIVs for C, PLI, and Assembler
DFHBR2Ix

Inbound BRIVs for COBOL
DFHBR2Ox

Outbound BRIVs for COBOL
DFHBR2Cx

Constants and default values
where x is the language suffix:
D

Assembler
H

C
L

PLI
O

COBOL

42 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/cics/dfha3r0.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmgi.html

Field names
Field names are shown in this documentation with "-" (dash) separators, as used in earlier versions of
COBOL supported by CICS. Other languages use _ (underscore) separators.

Constants
Constants are provided for all enumerated values (input and output). For COBOL, these are provided
as level 88 in the copybook.

Link3270 message header (BRIH)
The Link3270 bridge message header prefixes all input and output messages.

“Inbound BRIH message header” on page 44 describes the values of fields used for input. “Outbound
BRIH message header” on page 47 describes the values of fields used for output.

Table 11. The BRIH message header on input

Offset
Hex

Type Len Name Default

(0) STRUCTURE 18
0

BRIH

(0) CHARACTER 4 BRIH-STRUCID BRIH-STRUC-ID

(4) FULLWORD 4 BRIH-VERSION BRIH-CURRENT-VERSION

(8) FULLWORD 4 BRIH-STRUCLENGTH BRIH-CURRENT-LENGTH

(C) n/a 36 reserved

(30) FULLWORD 4 BRIH-GETWAITINTERVAL BRIHGWI-MAXWAIT

(34) n/a 4 reserved

(38) FULLWORD 4 BRIH-DATALENGTH BRIH-CURRENT-LENGTH

(3C) FULLWORD 4 BRIH-FACILITYKEEPTIME BRIHKT-DEFAULT

(40) FULLWORD 4 BRIH-ADSDESCRIPTOR BRIHADSD-YES

(44) FULLWORD 4 BRIH-CONVERSATIONALTASK BRIHCT-NO

(48) n/a 4 reserved

(4C) CHARACTER 8 BRIH-FACILITY BRIHFACT-NEW

(54) n/a 40 reserved

(7C) CHARACTER 4 BRIH-TRANSACTIONID

(80) CHARACTER 4 BRIH-FACILITYLIKE BRIHFACL-DEFAULT

Chapter 2. Bridging to 3270 transactions 43

Table 11. The BRIH message header on input (continued)

Offset
Hex

Type Len Name Default

(84) CHARACTER 4 BRIH-ATTENTIONID DFHENTER

(88) CHARACTER 4 BRIH-STARTCODE BRIHSC-TERMINPUT

(8C) CHARACTER 4 BRIH-CANCELCODE blanks

(90) n/a 4 reserved

(94) CHARACTER 8 BRIH-NETNAME BRIHNN-DEFAULT

(9C) CHARACTER 4 BRIH-TERMINAL BRIHTN-DEFAULT

(A0) n/a 4 reserved

(A4) FULLWORD 4 BRIH-CURSORPOSITION BRIHCP-DEFAULT

(A8) n/a 12 reserved

Inbound BRIH message header
The fields that are used in an input message are listed. You can supply values in these fields; other fields
are ignored on input. A BRIH structure primed with input default values (BRIH-DEFAULT) is supplied in
the DFHBRICx copybooks. If a default value is not specified, the field is initialized to nulls.

Fields are valid on all calls, except where indicated. See also Using Link3270 single transaction mode and
Using Link3270 session mode.

BRIH-STRUCID
The identifier for the header structure. You must set this to BRIH-STRUC-ID, which is the default.

BRIH-VERSION
The version number for the header structure. You must set this to BRIH-CURRENT-VERSION, which is
the default. Refer to Link3270 bridge basic and extended support for a description of the different
levels of support for the Link3270 bridge.

BRIH-STRUCLENGTH
The length of the header structure. You must set this to BRIH-CURRENT-LENGTH, which is the
default.

BRIH-DATALENGTH
The length of the input message, including the BRIH. The default is BRIH-CURRENT-LENGTH.

BRIH-TRANSACTIONID
The transaction identifier of the user transaction, as defined in the routing region. In session mode,
this can also specify the following request values:
BRIHT-ALLOCATE-FACILITY

Allocate a new bridge facility
BRIHT-DELETE-FACILITY

Delete an existing bridge facility
BRIHT-CONTINUE-CONVERSATION

Reply to a conversational request message

44 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmel.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmem.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmia.html

BRIHT-GET-MORE-MESSAGE
Obtain the remainder (or next section) of the Link3270 message. This applies if the COMMAREA in
the original request was too small to accommodate the output message.

BRIHT-RESEND-MESSAGE
Resend the previous saved Link3270 message. This is used if the communications connection is
broken in executing the previous request. See Recovery from connection failure for further
information.

Note: A message is not saved if an error occurs before the message starts the user transaction.
The BRIH-SEQNO can be used to determine whether a message returned by the RESEND-
MESSAGE command is from the last Link3270 request issued, or the previous request.

BRIH-FACILITY
The facilitytoken of the bridge facility. For single transaction mode this must be set to BRIHFACT-
NEW. For session mode, on allocation, this is set to BRIHFACT-NEW. For subsequent requests, this
must be set to the value returned on the allocate.

The default is BRIHFACT-NEW.

BRIH-FACILITYLIKE
(Single transaction mode and allocation of a bridge facility in session mode)

The name of an installed terminal that is to be used as a model for the bridge facility. If no value is
supplied in single-transaction mode, and a FACILITYLIKE value has been specified in the PROFILE
definition of the user transaction, this value is used. Otherwise, or if no value is specified in session
mode, a CICS-supplied definition, CBRF, is used.

The default BRIHFACL-DEFAULT means that no value is specified.

BRIH-NETNAME
(Single transaction mode and allocation of a bridge facility in session mode)

The NETNAME to be assigned to the bridge facility.

The default value, BRIHNN-DEFAULT, causes CICS to generate a name. The name is subject to
change or rejection by the autoinstall URM whether specified by the user or generated by CICS. The
name, as modified, is returned in this field in the response from the Link3270 bridge.

If you are specifying your own BRIH-NETNAME, the valid character set is the same as that for the
NETNAME attribute of the CICS TERMINAL definition. See TERMINAL attributes.

BRIH-TERMINAL
(Single transaction mode and allocation of a bridge facility in session mode)

The TERMID to be assigned to the bridge facility.

The default value, BRIHTN-DEFAULT, causes CICS to generate a name. The name is subject to change
or rejection by the autoinstall URM whether specified by the user or generated by CICS. The name, as
modified, is returned in this field in the response from the Link3270 bridge.

If you are specifying your own BRIH-TERMINAL, the valid character set is the same as that for the
TERMINAL attribute of the CICS TERMINAL definition. See TERMINAL attributes.

If you plan to specify your own BRIH-TERMINAL and to allow BRIH-NETNAME to default to this, you
must use the BRIH-NETNAME character set, which is more restricted.

BRIH-FACILITYKEEPTIME
(Allocation of a bridge facility in session mode)

The length of time that the bridge facility is kept after the user transaction has ended (in seconds).
The value used is the smaller of this value, and the value specified in the router region's SIT
parameter BRMAXKEEPTIME.

The default is BRIHKT-DEFAULT.

BRIH-CONVERSATIONALTASK
(Run transaction in session mode)

Chapter 2. Bridging to 3270 transactions 45

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmep.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/terminal/dfha4_attributes.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/resources/terminal/dfha4_attributes.html

An indicator specifying what the Link3270 bridge should do if the user transaction issues an input
command for which no input vector has been provided. Possible values are:
BRIHCT-YES

The Link3270 bridge suspends the transaction and adds a request vector to the end of the output
message. The client is expected to send a CONTINUE-CONVERSATION message containing the
requested vector.

BRIHCT-NO
The Link3270 bridge abends the user transaction.

The default is BRIHCT-NO.

BRIH-GETWAITINTERVAL
(Run transaction in session mode)

The maximum wait interval for message input (in milliseconds). The value used is the smaller of the
BRIH-GETWAITINTERVAL and the RTIMEOUT value for the transaction.

This value is used only when BRIH-CONVERSATIONALTASK is BRIHCT-YES

The default is BRIHGWI-MAXWAIT.

BRIH-CANCELCODE
(Session mode - continue conversation only)

The abend code with which the Link3270 bridge is to terminate a user transaction. This value is
meaningful only in CONTINUE-CONVERSATION messages. If it is non-blank, Link3270 l abends the
suspended user transaction with an abend code of BRIH-CANCELCODE. It should be used only when
the client wants to terminate the transaction rather than supply the requested vector.

BRIH-ADSDESCRIPTOR
(Single transaction mode and run transaction in session mode)

An indicator specifying whether ADS descriptors are sent on outbound SEND MAP and RECEIVE MAP
messages. Possible values are:
BRIHADSD-YES

ADS descriptors are sent.
BRIHADSD-NO

ADS descriptors are not sent.

The default is BRIHADSD-YES.

BRIH-ATTENTIONID
(Single transaction mode and run transaction in session mode)

The initial value of the AID key (EIBAID) when the user transaction is started. This is a 1-byte value,
left justified. EIBAID is reset after each RECEIVE, RECEIVE, or CONVERSE command from the AID
value in the input vector

The default is DFHENTER (The enter key).

BRIH-STARTCODE
(Single transaction mode and first run transaction in a session)

An indicator available to the first transaction in a session to show the type of start that the request is
emulating. The value generated depends on whether there is a RETRIEVE vector present in the input.
Possible values are:
BRIHSC-START

START command
BRIHSC-TERMINPUT

Terminal input

The default is BRIHSC-TERMINPUT.

46 CICS TS for z/OS: External Interfaces Guide

BRIH-CURSORPOSITION
(Single transaction mode and run transaction in session mode)

The initial cursor position, EIBCPOSN, when the transaction is started. EIBCPOSN is reset from the
value in the input vector after every RECEIVE, RECEIVE MAP or CONVERSE command.

The default is BRIHCP-DEFAULT, the top left of the screen.

Outbound BRIH message header

Table 12. The output BRIH message header

Offset
Hex

Type Len Name

(0) STRUCTURE 180 BRIH

(0) CHARACTER 4 BRIH-STRUCID

(4) FULLWORD 4 BRIH-VERSION

(8) FULLWORD 4 BRIH-STRUCLENGTH

(C) n/a 20 reserved

(20) BINARY 4 BRIH-RETURNCODE

(24) BINARY 4 BRIH-COMPCODE

(28) BINARY 4 BRIH-REASON

(2C) n/a 8 reserved

(34) BINARY 4 BRIH-REMAININGDATALENGTH

(38) FULLWORD 4 BRIH-DATALENGTH

(3C) n/a 12 reserved

(48) FULLWORD 4 BRIH-TASKENDSTATUS

(4C) CHARACTER 8 BRIH-FACILITY

(54) CHARACTER 4 BRIH-FUNCTION

(58) CHARACTER 4 BRIH-ABENDCODE

(5C) CHARACTER 4 BRIH-SYSID¹

(60) n/a 28 reserved

(7C) CHARACTER 4 BRIH-TRANSACTIONID

Chapter 2. Bridging to 3270 transactions 47

Table 12. The output BRIH message header (continued)

Offset
Hex

Type Len Name

(80) n/a 16 reserved

(90) CHARACTER 4 BRIH-NEXTTRANSACTIONID

(94) CHARACTER 8 BRIH-NETNAME

(9C) CHARACTER 4 BRIH-TERMINAL

(A0) FULLWORD 8 BRIH-NEXTTRANIDSOURCE

(A8) FULLWORD 4 BRIH-ERROROFFSET

(AC) FULLWORD 4 BRIH-SEQNO

(B0) n/a 4 reserved

Note:

1. BRIH-SYSID is available only for the Link3270 bridge with extended support.

The following fields are returned in an output message. Other fields are not relevant.

BRIH-RETURNCODE
Return code from the Link3270 interface. See “BRIH-RETURNCODE values” on page 75 for a list of
possible return codes, and their associated BRIH-COMPCODE and BRIH-REASON values.

BRIH-COMPCODE
Additional error information. See “BRIH-RETURNCODE values” on page 75 for a list of possible
return codes, and their associated BRIH-COMPCODE and BRIH-REASON values.

BRIH-REASON
Additional error information. See “BRIH-RETURNCODE values” on page 75 for a list of possible
return codes, and their associated BRIH-COMPCODE and BRIH-REASON values.

BRIH-REMAININGDATALENGTH
(Session mode)

The length of the remaining message if the COMMAREA is too small to return the complete outbound
message. The remaining message is prefixed by another BRIH (included in the length). If there is no
more data , this field is set to zero. See Delivering large messages for information about processing
large messages.

BRIH-DATALENGTH
The length of the output message, including the BRIH.

BRIH-TASKENDSTATUS
The status of the user transaction. Possible values are:
BRIHTES-CONVERSATION

The user transaction has issued an input command for which no vector has been supplied, and
BRIH-CONVERSATIONALTASK was specified in the inbound BRIH header.

BRIHTES-ENDTASK
The user transaction has ended (or abended).

48 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmeo.html

BRIH-FACILITY
This value identifies the session. It is set on return from an allocate request and must be supplied on
every subsequent request in the session. On return from a delete-facility request or a run request in
single-transaction mode, it is reset to BRIHFACT-NEW.

BRIH-FUNCTION
Additional error information returned for some return codes. See “BRIH-RETURNCODE values” on
page 75 for details.

BRIH-ABENDCODE
The abend code returned if the transaction abends. If the transaction completed successfully, this is
set to BRIHAC-NONE.

Transaction abends are indicated by the return code BRIHAC-APPLICATION-ABEND. See “BRIH-
RETURNCODE values” on page 75 for details.

BRIH-SYSID
The region in which the transaction ran. This is the system ID of the AOR as it is known by the routing
region. If the transaction ran in the routing region, this field is set to blanks. This field is available only
for the Link3270 bridge with extended support. See Link3270 bridge basic and extended support for a
description of the different levels of support for the Link3270 bridge.

BRIH-TRANSACTIONID
BRIH-TRANSACTIONID is both an input and an output field. Normally the output value is the same as
the input value. The exceptions to this are:

1. When the request is for message recovery and the input BRIH-TRANSACTIONID is set to BRIHT-
RESEND-MESSAGE. See Recovery from connection failure for further information.

2. When the router region resource definition of the transaction is an alias of the definition in the
AOR, the transaction id in the AOR is returned.

BRIH-NEXTTRANSACTIONID
The name of the next transaction returned by the user transaction (usually by EXEC CICS RETURN
TRANSID). If there is no next transaction, this field is set to blanks.

BRIH-NETNAME
(Allocation only)

The NETNAME assigned to the bridge facility.

BRIH-TERMINAL
(Allocation only)

The TERMID assigned to the bridge facility.

BRIH-NEXTTRANIDSOURCE
The source of the next transaction id. Possible values are:
BRIHNTS-NORMAL

Created by the TRANSID option of an EXEC CICS RETURN command, or by SET TERMINAL
NEXTTRANSID.

BRIHNTS-IMMEDIATE
Created by the TRANSID option of an EXEC CICS RETURN IMMEDIATE command.

BRIHNTS-STARTED
Created by the TRANSID option of an EXEC CICS START command.

BRIH-ERROROFFSET
The offset from the start of the message to the location of the invalid data for message validation
errors.

BRIH-SEQNO
(Session mode only)

A sequence number returned on every message. The sequence number is set to 0 on an allocate
facility request and incremented on subsequent requests. The exceptions to this are:

Chapter 2. Bridging to 3270 transactions 49

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmia.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmep.html

1. A successful BRIHT-RESEND-MESSAGE request returns the previous message and its sequence
number.

2. If BRIHRC-INVALID-FACILITY-TOKEN is returned, the sequence number is undefined.

Inbound Link3270 vectors
Inbound Link3270 bridge vectors all have a common header.

Supported inbound vector types

Table “Link3270 inbound vector header” on page 50 shows the common header. One BRIV vector is
required to satisfy each input CICS command issued by the user transaction. The following inbound
vector types are supported:

• “Link3270 INPUT CONVERSE vector” on page 51
• “Link3270 RECEIVE vector” on page 52
• “Link3270 RECEIVE MAP vector” on page 53
• “Link3270 RETRIEVE vector” on page 54

Link3270 inbound vector header
This header precedes all the vectors (both inbound and outbound) in the message.

Offset
Hex

Type Len Name

(0) STRUCTURE 16 BRIV-INPUT-VECTOR-HEADER

(0) FULLWORD 4 BRIV-INPUT-VECTOR-LENGTH

(4) CHARACTER 4 BRIV-INPUT-VECTOR-DESCRIPTOR

(8) CHARACTER 4 BRIV-INPUT-VECTOR-TYPE

(C) n/a 4 reserved

BRIV-INPUT-VECTOR-LENGTH
The length of the vector. This is rounded up to the next multiple of 4, to facilitate full word alignment
of subsequent vectors in the message. The default is the length of the default BRIV with no data.

BRIV-INPUT-VECTOR-DESCRIPTOR
An indicator to define the CICS command associated with this vector. Valid values are:
BRIVDSC-CONVERSE (0406)

CONVERSE
BRIVDSC-RECEIVE (0402)

RECEIVE
BRIVDSC-RECEIVE- MAP (1802)

RECEIVE MAP
BRIVDSC-RETRIEVE (100A)

RETRIEVE
BRIV-INPUT-VECTOR-TYPE

This must be set to BRIVVT-INBOUND. This is the default.

50 CICS TS for z/OS: External Interfaces Guide

Link3270 INPUT CONVERSE vector
This vector is used to supply data to an EXEC CICS CONVERSE command.

See CONVERSE (3270 logical) for details of the command options.

The default vector is BRIV-CONVERSE-DEFAULT

Offset
Hex

Type Len Name

(0) STRUCTURE 36 BRIV-CONVERSE

(0) STRUCTURE 16 INPUT header

(10) CHARACTER 4 BRIV-CO-TRANSMIT-SEND-AREAS

(14) CHARACTER 4 reserved

(18) CHARACTER 4 BRIV-CO-AID

(1C) FULLWORD 4 BRIV-CO-CPOSN

(20) FULLWORD 4 BRIV-CO-DATA-LEN

(24) CHARACTER BRIV-CO-DATA

BRIV-CO-TRANSMIT-SEND-AREAS
This flag is a performance option that allows the client to limit the amount of data returned in the
output message. Valid values are:
BRIVCOTSA-YES

The whole output message is returned.
BRIVCOTSA-NO

All output vectors created before the command that uses this vector are not returned in the
output message.

The default is BRIVCOTSA-YES.

BRIV-CO-AID
The AID key used to transmit the input. This value is used to set EIBAID on completion of the
RECEIVE MAP command. The first byte of this field contains equivalent values to EIBAID, as defined
by DFHAID. The remaining three bytes are ignored. The default is DFHENTER.

BRIV-CO-CPOSN
The position of the cursor in the data. This value is used to set EIBCPOSN on completion of the
RECEIVE MAP command. Valid values are:
BRIVCOCP-DEFAULT

top left of the screen
BRIVCOCP-MAX-CURSORPOSITION

bottom right of the screen
nn

User specified value

The default is BRIVCOCP-DEFAULT.

Chapter 2. Bridging to 3270 transactions 51

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_converse3270logical.html

BRIV-CO-DATA-LEN
The length of the data provided in this vector in BRIV-CO-DATA. This value is copied into the LENGTH
or FLENGTH field specified in the CONVERSE command represented by this vector.

The default is zero (no data).

BRIV-CO-DATA
Character field of length BRIV-CO-DATA-LEN to be copied into the INTO area, or referenced by the
SET option, of the CONVERSE command represented by this vector.

Link3270 RECEIVE vector
This vector is used to supply data to an EXEC CICS RECEIVE command.

See RECEIVE (3270 logical) for details of the command options.

The default vector is BRIV-RECEIVE-DEFAULT

Offset
Hex

Type Len Name

(0) STRUCTURE 36 BRIV-RECEIVE

(0) STRUCTURE 16 INPUT header

(10) CHARACTER 4 BRIV-RE-TRANSMIT-SEND-AREAS

(14) CHARACTER 4 BRIV-RE-BUFFER-INDICATOR

(18) CHARACTER 4 BRIV-RE-AID

(1C) FULLWORD 4 BRIV-RE-CPOSN

(20) FULLWORD 4 BRIV-RE-DATA-LEN

(24) CHARACTER BRIV-RE-DATA

BRIV-RE-TRANSMIT-SEND-AREAS
This flag is a performance option that allows the client to limit the amount of data returned in the
output message. Valid values are:
BRIVRETSA-YES

The whole output message is returned.
BRIVRETSA-NO

All output vectors created before the command that uses this vector are not returned in the
output message.

The default is BRIVRETSA-YES.

BRIV-RE-BUFFER-INDICATOR
A flag indicating whether the data provided in the inbound vector is in a format to be received by a
CICS RECEIVE command with the BUFFER option. Valid values are:
BRIVREBI-YES

Data in BUFFER format.
BRIVREBI-NO

Data not in BUFFER format.

The default is BRIVREBI-NO.

52 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_receive3270logical.html

BRIV-RE-AID
The AID key used to transmit the input. This value is used to set EIBAID on completion of the
RECEIVE MAP command. The first byte of this field contains equivalent values to EIBAID, as defined
by DFHAID. The remaining three bytes are ignored.

The default is DFHENTER.

BRIV-RE-CPOSN
The position of the cursor in the data. This value is used to set EIBCPOSN on completion of the
RECEIVE MAP command. Valid values are:
BRIVRECP-DEFAULT
BRIVRECP-MAX-CURSORPOSITION
nn

User specified value

The default is BRIVRECP-DEFAULT.

BRIV-RE-DATA-LEN
The length of the data provided in this vector in BRIV-RE-DATA. This value is copied into the LENGTH
or FLENGTH field specified in the RECEIVE command represented by this vector.

The default is zero (no data).

BRIV-RE-DATA
Character field of length BRIV-RE-DATA-LEN to be copied into the INTO area, or referenced by the
SET option, of the RECEIVE command represented by this vector.

Link3270 RECEIVE MAP vector
This vector is used to supply data to an EXEC CICS RECEIVE MAP command.

See RECEIVE MAP for details of the command options.

The default vector is BRIV-RECEIVE-MAP-DEFAULT

Offset
Hex

Type Len Name

(0) STRUCTURE 48 BRIV-RECEIVE-MAP

(0) STRUCTURE 16 INPUT header

(10) CHARACTER 4 BRIV-RM-TRANSMIT-SEND-AREAS

(14) CHARACTER 8 BRIV-RM-MAPSET

(1C) CHARACTER 8 BRIV-RM-MAP

(24) CHARACTER 4 BRIV-RM-AID

(28) FULLWORD 4 BRIV-RM-CPOSN

(2C) FULLWORD 4 BRIV-RM-DATA-LEN

(30) CHARACTER BRIV-RM-DATA

Chapter 2. Bridging to 3270 transactions 53

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_receivemap.html

BRIV-RM-TRANSMIT-SEND-AREAS
This flag is a performance option that allows the client to limit the amount of data returned in the
output message. Valid values are:
BRIVRMTSA-YES

The whole output message is returned.
BRIVRMTSA-NO

All output vectors created before the command that uses this vector are not returned in the
output message.

The default is BRIVRMTSA-YES.

BRIV-RM-MAPSET
The name of the MAPSET containing the map used to format the data, or blanks. When the user
transaction issues a RECEIVE MAP command, the Link3270 bridge uses the first remaining RECEIVE
MAP vector in the message in which BRIV-RM-MAPSET matches MAPSET in the command or is blank
and BRIV-RM-MAP matches the MAP in the command or is blank. RECEIVE MAP vectors which do not
match the command are discarded.

The default is blanks.

BRIV-RM-MAP
The name of the MAP containing the map used to format the data, or blanks. When the user
transaction issues a RECEIVE MAP command, the Link3270 bridge uses the first remaining RECEIVE
MAP vector in the message in which BRIV-RM-MAPSET matches MAPSET in the command or is blank
and BRIV-RM-MAP matches the MAP in the command or is blank. RECEIVE MAP vectors which do not
match the command are discarded

The default is blanks.

BRIV-RM-AID
The AID key used to transmit the input. This value is used to set EIBAID on completion of the
RECEIVE MAP command. The first byte of this field contains equivalent values to EIBAID, as defined
by DFHAID. The remaining three bytes are ignored. The default is DFHENTER.

BRIV-RM-CPOSN
The position of the cursor in the data. This value is used to set EIBCPOSN on completion of the
RECEIVE MAP command. Valid values are:
BRIVRMCP-DEFAULT
BRIVRMCP-MAX-CURSORPOSITION
nn

User specified value
The default is BRIVRMCP-DEFAULT.

BRIV-RM-DATA-LEN
The length of the Application Data Structure (ADS) in BRIV-RM-DATA. This value is copied into the
LENGTH or FLENGTH field specified in the RECEIVE MAP command represented by this vector.

BRIV-RM-DATA
The ADS to be copied into the INTO area, or referenced by the SET option, of the RECEIVE MAP
command represented by this vector.

Link3270 RETRIEVE vector
This vector is used to supply data to an EXEC CICS RETRIEVE command.

See RETRIEVE for details of the command options.

The default vector is BRIV-CONVERSE-DEFAULT

54 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_retrieve.html

Offset
Hex

Type Len Name

(0) STRUCTURE 36 BRIV-RETRIEVE

(0) STRUCTURE 16 INPUT header

(10) CHARACTER 4 BRIV-RT-RTRANSID

(14) CHARACTER 4 BRIV-RT-RTERMID

(18) CHARACTER 8 BRIV-RT-QUEUE

(20) FULLWORD 4 BRIV-RT-DATA-LEN

(24) CHARACTER BRIV-RT-DATA

BRIV-RT-RTRANSID
The value to be returned in the RTRANSID field to the program that issued the RETRIEVE. A blank
indicates that there is no RTRANSID. The default is blank.

BRIV-RT-RTERMID
The value to be returned in the RTERMID field to the program that issued the RETRIEVE. A blank
indicates that there is no RTERMID. The default is blank.

BRIV-RT-QUEUE
The value to be returned in the QUEUE field to the program that issued the RETRIEVE. A blank
indicates that there is no QUEUE. The default is blank.

BRIV-RT-DATA-LEN
The length of the data provided in this vector in BRIV-RT-DATA that caused the bridge to be called.
This value is copied into the LENGTH or FLENGTH field specified in the RETRIEVE command
represented by this vector. The default is zero (no data).

data
Character field of length BRIV-RT-DATA-LEN to be copied into the INTO area, or referenced by the
SET option of the RETRIEVE command represented by this vector.

Note: The RETRIEVE vector is only valid in the first inbound message in session mode, or in single
transaction mode. It is ignored in other messages.

Outbound Link3270 vectors
Outbound Link3270 bridge vectors all have a common header.

“Link3270 output vector header” on page 56 shows the common header. One BRIV vector is required
for each output EXEC CICS command issued by the user transaction. The following outbound vector types
are supported:

• “Link3270 ISSUE ERASEAUP vector” on page 57
• “Link3270 SEND vector” on page 57
• “Link3270 SEND CONTROL vector” on page 59
• “Link3270 SEND MAP vector” on page 61
• “Link3270 SEND TEXT vector” on page 64
• “Link3270 SYNCPOINT vector” on page 68
• “Link3270 CONVERSE request vector” on page 69

Chapter 2. Bridging to 3270 transactions 55

• “Link3270 RECEIVE request vector” on page 70
• “Link3270 RECEIVE MAP request vector” on page 71
• “Link3270 SEND PAGE vector” on page 67
• “Link3270 PURGE MESSAGE vector” on page 68

Link3270 output vector header
This header precedes all the vectors in the message.

Offset
Hex

Type Len Name

(0) STRUCTURE 16 BRIV-OUTPUT-VECTOR-HEADER

(0) FULLWORD 4 BRIV-OUTPUT-VECTOR-LENGTH

(4) CHARACTER 4 BRIV-OUTPUT-VECTOR-DESCRIPTOR

(8) CHARACTER 4 BRIV-OUTPUT-VECTOR-TYPE

(C) n/a 4 reserved

BRIV-OUTPUT-VECTOR-LENGTH
The length of the vector. This is rounded up to the next multiple of 4, to facilitate full word alignment
of subsequent vectors in the message.

BRIV-OUTPUT-VECTOR-DESCRIPTOR
An indicator to define the CICS command associated with this vector. Valid values are:
BRIVDSC-ISSUE-ERASEAUP (0418)

ISSUE ERASEAUP
BRIVDSC-SEND (0404)

SEND
BRIVDSC-SEND-MAP (1804)

SEND MAP
BRIVDSC-SEND-TEXT (1806)

SEND TEXT
BRIVDSC-SEND-CONTROL (1812)

SEND CONTROL
BRIVDSC-SYNCPOINT (1602)

SYNCPOINT
BRIVDSC-CONVERSE-REQUEST (0406)

CONVERSE request
BRIVDSC-RECEIVE-REQUEST (0402)

RECEIVE request
BRIVDSC-RECEIVE-MAP-REQUEST (1802)

RECEIVE MAP request
BRIVDSC-SEND-PAGE (1808)

SEND PAGE
BRIVDSC-PURGE-MESSAGE (180A)

PURGE MESSAGE

56 CICS TS for z/OS: External Interfaces Guide

BRIV-OUTPUT-VECTOR-TYPE
This must be set to BRIVVT-OUTBOUND. This is the default.

Link3270 ISSUE ERASEAUP vector
This vector is the data supplied by an EXEC CICS ISSUE ERASEAUP command.

This vector is the data supplied by an EXEC CICS ISSUE ERASEAUP command. See ISSUE ERASEAUP for
details of the command options.

Offset
Hex

Type Len Name

(0) STRUCTURE 20 BRIV-ISSUE-ERASEAUP

(0) STRUCTURE 16 Output header

(10) CHARACTER 4 BRIV-IE-WAIT-INDICATOR

BRIV-IE-WAIT-INDICATOR
The presence of the WAIT option on the ISSUE ERASEAUP command that caused the bridge to be
called. Valid values are:
BRIVIEWI-YES

WAIT specified.
BRIVIEWI-NO

WAIT not specified.

Link3270 SEND vector
This vector is the data supplied by an EXEC CICS SEND command, or the output part of an EXEC CICS
CONVERSE command, for which a RECEIVE vector was supplied.

For more information about these commands, see SEND (3270 logical) and CONVERSE: VTAM options.

Offset
Hex

Type Len Name

(0) STRUCTURE 48 BRIV-SEND

(0) STRUCTURE 16 Output header

(10) CHARACTER 4 BRIV-SE-ERASE-INDICATOR

(14) CHARACTER 4 BRIV-SE-CTLCHAR

(18) CHARACTER 4 BRIV-SE-STRFIELD-INDICATOR

(1C) CHARACTER 4 BRIV-SE-DEFRESP-INDICATOR

(20) CHARACTER 4 BRIV-SE-INVITE-INDICATOR

(24) CHARACTER 4 BRIV-SE-LAST-INDICATOR

(28) CHARACTER 4 BRIV-SE-WAIT-INDICATOR

Chapter 2. Bridging to 3270 transactions 57

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_issueeraseaup.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_send3270logical.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_conversevtam.html

Offset
Hex

Type Len Name

(2C) FULLWORD 4 BRIV-SE-DATA-LEN

(30) CHARACTER BRIV-SE-DATA

BRIV-SE-ERASE-INDICATOR
The type of ERASE specified by the CICS SEND or CONVERSE command. Valid values are:
BRIVSEEI-NOERASE

No ERASE.
BRIVSEEI-ERASE

ERASE.
BRIVSEEI-ERASEALTERNATE

ERASE ALTERNATE.
BRIVSEEI-DEFAULT

ERASE DEFAULT.
BRIV-SE-CTLCHAR

The CTLCHAR value specified by the SEND or CONVERSE command. Valid values are:
cc

The value in CTLCHAR.
BRIVSECC-DEFAULT

X'C3'.
BRIV-SE-STRFIELD-INDICATOR

The presence of STRFIELD on the SEND or CONVERSE command. Valid values are:
BRIVSESI-YES

STRFIELD specified.
BRIVSESI-NO

STRFIELD not specified.
BRIV-SE-DEFRESP-INDICATOR

The presence of DEFRESP on the SEND or CONVERSE command. Valid values are:
BRIVSEDRI-YES

DEFRESP specified.
BRIVSEDRI-NO

DEFRESP not specified.
BRIV-SE-INVITE-INDICATOR

The presence of INVITE on the SEND or CONVERSE command. Valid values are:
BRIVSEII-YES

INVITE specified.
BRIVSEII-NO

INVITE not specified.
BRIV-SE-LAST-INDICATOR

The presence of LAST on the SEND or CONVERSE command. Valid values are:
BRIVSELI-YES

LAST specified.
BRIVSELI-NO

LAST not specified.

58 CICS TS for z/OS: External Interfaces Guide

BRIV-SE-WAIT-INDICATOR
The presence of WAIT on the SEND or CONVERSE command. Valid values are:
BRIVSEWI-YES

WAIT specified.
BRIVSEWI-NO

WAIT not specified.
BRIV-SE-DATA-LEN

The length of the data associated with the FROM option of the SEND or CONVERSE command. This is
explicitly defined in the LENGTH or FLENGTH option, or derived from the length of the field.

BRIV-SE-DATA
Character field of length BRIV-SE-DATA-LEN containing the data addressed by the FROM option of the
SEND or CONVERSE command.

Link3270 SEND CONTROL vector
This vector is the data supplied by an EXEC CICS SEND CONTROL command.

This vector is the data supplied by an EXEC CICS SEND CONTROL command. See SEND CONTROL for
details of the command options.

Offset
Hex

Type Len Name

(0) STRUCTURE 52 BRIV-SEND-CONTROL

(0) STRUCTURE 16 Output header

(10) CHARACTER 4 BRIV-SC-ERASE-INDICATOR

(14) CHARACTER 4 BRIV-SC-ERASEAUP-INDICATOR

(18) CHARACTER 4 BRIV-SC-FREEKB-INDICATOR

(1C) CHARACTER 4 BRIV-SC-ALARM-INDICATOR

(20) CHARACTER 4 BRIV-SC-FRSET-INDICATOR

(24) CHARACTER 4 BRIV-SC-LAST-INDICATOR

(28) CHARACTER 4 BRIV-SC-WAIT-INDICATOR

(2C) FULLWORD 4 BRIV-SC-CURSOR

(30) CHARACTER 4 BRIV-SC-MSR-DATA

(34) CHARACTER 4 BRIV-SC-ACCUM-INDICATOR¹

Note:

1. BRIV-SC-ACCUM-INDICATOR is available only for the Link3270 bridge with extended support.

BRIV-SC-ERASE-INDICATOR
The type of ERASE specified by the CICS SEND CONTROL command. Valid values are:

Chapter 2. Bridging to 3270 transactions 59

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_sendcontrol.html

BRIVSCEI-NOERASE
No ERASE.

BRIVSCEI-ERASE
ERASE.

BRIVSCEI-ERASEALTERNATE
ERASE ALTERNATE.

BRIVSCEI-DEFAULT
ERASE DEFAULT.

BRIV-SC-ERASEAUP-INDICATOR
The presence of ERASEAUP on the SEND CONTROL command. Valid values are:
BRIVSCEUI-YES

ERASEAUP specified.
BRIVSCEUI-NO

ERASEAUP not specified.
BRIV-SC-FREEKB-INDICATOR

The presence of FREEKB on the SEND CONTROL command. Valid values are:
BRIVSCFKI-YES

FREEKB specified.
BRIVSCFKI-NO

FREEKB not specified.
BRIV-SC-ALARM-INDICATOR

The presence of ALARM on the SEND CONTROL command. Valid values are:
BRIVSCAI-YES

ALARM specified.
BRIVSCAI-NO

ALARM not specified.
BRIV-SC-FRSET-INDICATOR

The presence of FRSET on the SEND CONTROL command. Valid values are:
BRIVSCFSI-YES

FRSET specified.
BRIVSCFSI-NO

FRSET not specified.
BRIV-SC-LAST-INDICATOR

The presence of LAST on the SEND CONTROL command. Valid values are:
BRIVSCLI-YES

LAST specified.
BRIVSCLI-NO

LAST not specified.
BRIV-SC-WAIT-INDICATOR

The presence of WAIT on the SEND CONTROL command. Valid values are:
BRIVSCWI-YES

WAIT specified.
BRIVSCWI-NO

WAIT not specified.
BRIV-SC-CURSOR

The presence of CURSOR(data-value) on the SEND CONTROL command. Valid values are:
BRIVSCCRS-DYNAMIC

CURSOR specified with dynamic cursor positioning.

60 CICS TS for z/OS: External Interfaces Guide

BRIVSCCRS-NONE
CURSOR(data-value) not specified.

nn
The value of CURSOR(data-value) specified.

BRIV-SC-MSR-DATA
The value of the MSR option specified on the SEND CONTROL command. Valid values are:
BRIVSCMSR-NONE

MSR option not specified.
other

The value of the MSR option specified.
BRIV-SC-ACCUM-INDICATOR

Indicates whether or not the ACCUM option is specified for EXEC CICS SEND TEXT, EXEC CICS SEND
MAP, or EXEC CICS SEND CONTROL. This parameter is only available for the Link3270 bridge with
extended support. See Link3270 bridge basic and extended support for a description of the different
levels of support for the Link3270 bridge. Values are:
Y

The ACCUM option is specified.
N

The ACCUM option is not specified.

Link3270 SEND MAP vector
This vector is the data supplied by an EXEC CICS SEND MAP command.

See SEND MAP MAPPINGDEV for details of the command options.

Offset
Hex

Type Len Name

(0) STRUCTURE 88 BRIV-SEND-MAP

(0) STRUCTURE 16 Output header

(10) CHARACTER 4 BRIV-SM-ERASE-INDICATOR

(14) CHARACTER 4 BRIV-SM-ERASEAUP-INDICATOR

(18) CHARACTER 4 BRIV-SM-FREEKB-INDICATOR

(1C) CHARACTER 4 BRIV-SM-ALARM-INDICATOR

(20) CHARACTER 4 BRIV-SM-FRSET-INDICATOR

(24) CHARACTER 4 BRIV-SM-LAST-INDICATOR

(28) CHARACTER 4 BRIV-SM-WAIT-INDICATOR

(2C) FULLWORD 4 BRIV-SM-CURSOR

(30) CHARACTER 4 BRIV-SM-MSR-DATA

Chapter 2. Bridging to 3270 transactions 61

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmia.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_sendmapmappingdev.html

Offset
Hex

Type Len Name

(34) CHARACTER 8 BRIV-SM-MAPSET

(3C) CHARACTER 8 BRIV-SM-MAP

(44) CHARACTER 4 BRIV-SM-DATA-INDICATOR

(48) FULLWORD 4 BRIV-SM-DATA-LEN

(4C) FULLWORD 4 BRIV-SM-DATA-OFFSET

(50) FULLWORD 4 BRIV-SM-ADSD-LEN

(54) FULLWORD 4 BRIV-SM-ADSD-OFFSET

(58) FULLWORD 4 BRIV-SM-ACCUM-INDICATOR¹

CHARACTER BRIV-SM-DATA²

Note:

1. BRIV-SM-ACCUM-INDICATOR is available only for the Link3270 bridge with extended support.
2. BRIV-SM-DATA is deprecated. The recommended method for addressing this field is by using BRIV-

SM-DATA-OFFSET. Use BRIV-SM-ADSD-OFFSET to address ADSD data.

BRIV-SM-ERASE-INDICATOR
The type of ERASE specified by the CICS SEND MAP command. Valid values are:
BRIVSMEI-NOERASE

No ERASE.
BRIVSMEI-ERASE

ERASE.
BRIVSMEI-ERASEALTERNATE

ERASE ALTERNATE.
BRIVSMEI-DEFAULT

ERASE DEFAULT.
BRIV-SM-ERASEAUP-INDICATOR

The presence of ERASEAUP on the SEND MAP command. Valid values are:
BRIVSMEUI-YES

ERASEAUP specified.
BRIVSMEUI-NO

ERASEAUP not specified.
BRIV-SM-FREEKB-INDICATOR

The presence of FREEKB on the SEND MAP command. Valid values are:
BRIVSMFKI-YES

FREEKB specified.
BRIVSMFKI-NO

FREEKB not specified.

62 CICS TS for z/OS: External Interfaces Guide

BRIV-SM-ALARM-INDICATOR
The presence of ALARM on the SEND MAP command. Valid values are:
BRIVSMAI-YES

ALARM specified.
BRIVSMAI-NO

ALARM not specified.
BRIV-SM-FRSET-INDICATOR

The presence of FRSET on the SEND MAP command. Valid values are:
BRIVSMFSI-YES

FRSET specified.
BRIVSMFSI-NO

FRSET not specified.
BRIV-SM-LAST-INDICATOR

The presence of LAST on the SEND MAP command. Valid values are:
BRIVSMLI-YES

LAST specified.
BRIVSMLI-NO

LAST not specified.
BRIV-SM-WAIT-INDICATOR

The presence of WAIT on the SEND MAP command. Valid values are:
BRIVSMWI-YES

WAIT specified.
BRIVSMWI-NO

WAIT not specified.
BRIV-SM-CURSOR

The presence of CURSOR or CURSOR(data-value) on the SEND MAP command. Valid values are:
BRIVSMCRS-DYNAMIC

CURSOR specified (dynamic cursor positioning).
BRIVSMCCRS-NONE

Neither CURSOR nor CURSOR(data-value) specified.
nn

The value of CURSOR(data-value) specified.
BRIV-SM-MSR-DATA

The value of the MSR option specified on the SEND MAP command. Valid values are:
BRIVSMMSR-NONE

MSR option not specified.
other

The value of the MSR option specified.
BRIV-SM-MAPSET

The value of the MAPSET option specified by the SEND MAP command.
BRIV-SM-MAP

The value of the MAP option specified by the SEND MAP command.
BRIV-SM-DATA-INDICATOR

The presence of MAPONLY and DATAONLY options on the SEND MAP command. Valid values are:
BRIVSMDI-DATAONLY

DATAONLY specified.
BRIVSMDI-MAPONLY

MAPONLY specified.

Chapter 2. Bridging to 3270 transactions 63

BRIVSMDI-DEFAULT
Neither DATAONLY nor MAPONLY specified.

BRIV-SM-DATA-LEN
The length of the data in BRIV-SM-DATA. This is the length of the symbolic map or ADS (application
data structure).

BRIV-SM-DATA-OFFSET
The offset from the beginning of the SEND MAP vector to the data associated with the FROM option of
the SEND MAP command.

BRIV-SM-ADSD-LEN
The length of the ADS descriptor associated with this map. This length is zero if the ADSD is not
available or was not requested (BRIH-ADSDESCRIPTOR set to BRIHADSD-NONE).

BRIV-SM-ADSD-OFFSET
The offset from the beginning of the SEND MAP vector to the ADSD. This is zero if the ADSD is not
available or was not requested.

BRIV-SM-ACCUM-INDICATOR
Indicates whether or not the ACCUM option is specified for EXEC CICS SEND TEXT, EXEC CICS SEND
MAP, or EXEC CICS SEND CONTROL. This parameter is only available for the Link3270 bridge with
extended support. See Link3270 bridge basic and extended support for a description of the different
levels of support for the Link3270 bridge. Values are:
Y

The ACCUM option is specified.
N

The ACCUM option is not specified.
BRIV-SM-DATA

This field is included only for compatibility with the basic support version of the Link3270 bridge. Use
BRIV-SM-DATA-OFFSET to address this field.

Link3270 SEND TEXT vector
This vector is the data supplied by an EXEC CICS SEND TEXT command.

See SEND TEXT for details of the command options.

Offset
Hex

Type Len Name

(0) STRUCTURE 60 BRIV-SEND-TEXT

(0) STRUCTURE 16 Output header

(10) CHARACTER 4 BRIV-ST-ERASE-INDICATOR

(14) CHARACTER 4 FILLER

(18) CHARACTER 4 BRIV-ST-FREEKB-INDICATOR

(1C) CHARACTER 4 BRIV-ST-ALARM-INDICATOR

(20) CHARACTER 4 BRIV-ST-ACCUM-INDICATOR¹

(24) CHARACTER 4 BRIV-ST-LAST-INDICATOR

64 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmia.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_sendtext.html

Offset
Hex

Type Len Name

(28) CHARACTER 4 BRIV-ST-WAIT-INDICATOR

(2C) FULLWORD 4 BRIV-ST-CURSOR

(30) CHARACTER 4 BRIV-ST-MSR-DATA

(34) CHARACTER 4 BRIV-ST-TEXT-TYPE

(38) FULLWORD 4 BRIV-ST-DATA-LEN

(3C) FULLWORD 4 BRIV-ST-DATA-OFFSET¹

(40) FULLWORD 4 BRIV-ST-HEADER-LEN¹

(44) FULLWORD 4 BRIV-ST-HEADER-OFFSET¹

(48) FULLWORD 4 BRIV-ST-TRAILER-LEN¹

(4C) FULLWORD 4 BRIV-ST-TRAILER-OFFSET¹

50 CHARACTER BRIV-ST-DATA²

Note:

1. The fields in bold type are available only for the Link3270 bridge with extended support.
2. BRIV-ST-DATA is deprecated. The recommended method for addressing this field is by using BRIV-ST-

DATA-OFFSET.

BRIV-ST-ERASE-INDICATOR
The type of ERASE specified by the CICS SEND TEXT command. Valid values are:
BRIVSTEI-NOERASE

No ERASE.
BRIVSTEI-ERASE

ERASE.
BRIVSTEI-ERASEALTERNATE

ERASE ALTERNATE.
BRIVSTEI-DEFAULT

ERASE DEFAULT.
BRIV-ST-FREEKB-INDICATOR

The presence of FREEKB on the SEND TEXT command. Valid values are:
BRIVSTFKI-YES

FREEKB specified.
BRIVSTFKI-NO

FREEKB not specified.
BRIV-ST-ALARM-INDICATOR

The presence of ALARM on the SEND TEXT command. Valid values are:

Chapter 2. Bridging to 3270 transactions 65

BRIVSTAI-YES
ALARM specified.

BRIVSTAI-NO
ALARM not specified.

BRIV-ST-ACCUM-INDICATOR
Indicates whether or not the ACCUM option is specified for EXEC CICS SEND TEXT, EXEC CICS SEND
MAP, or EXEC CICS SEND CONTROL. This parameter is only available for the Link3270 bridge with
extended support. See Link3270 bridge basic and extended support for a description of the different
levels of support for the Link3270 bridge. Values are:
Y

The ACCUM option is specified.
N

The ACCUM option is not specified.
BRIV-ST-LAST-INDICATOR

The presence of LAST on the SEND TEXT command. Valid values are:
BRIVSTLI-YES

LAST specified.
BRIVSTLI-NO

LAST not specified.
BRIV-ST-WAIT-INDICATOR

The presence of WAIT on the SEND TEXT command. Valid values are:
BRIVSTWI-YES

WAIT specified.
BRIVSTWI-NO

WAIT not specified.
BRIV-ST-CURSOR

The presence of CURSOR(data-value) on the SEND TEXT command. Valid values are:
BRIVSTCRS-DYNAMIC

CURSOR specified (dynamic cursor positioning).
BRIVSTCRS-NONE

CURSOR(data-value) not specified.
nn

The value of CURSOR(data-value) specified.
BRIV-ST-MSR-DATA

The value of the MSR option specified on the SEND TEXT command. Valid values are:
BRIVSTMSR-NONE

MSR option not specified.
other

The value of the MSR option specified.
BRIV-ST-TEXT-TYPE

The presence of MAPPED or NOEDIT options on the SEND TEXT command. Valid values are:
BRIVSTTT-MAPPED

MAPPED specified.
BRIVSTTT-NOEDIT

NOEDIT specified.
BRIVSTTT-DEFAULT

Neither MAPPED nor NOEDIT specified.
BRIV-ST-DATA-LEN

The length of the data in BRIV-ST-DATA¹.

66 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmia.html

BRIV-ST-DATA-OFFSET
The offset of the data from the start of the vector. This parameter is only available for the Link3270
bridge with extended support. See Link3270 bridge basic and extended support for a description of
the different levels of support for the Link3270 bridge.

BRIV-ST-HEADER-LEN
The length of the text header. This parameter is only available for the Link3270 bridge with extended
support. See Link3270 bridge basic and extended support for a description of the different levels of
support for the Link3270 bridge.

BRIV-ST-HEADER-OFFSET
The offset of the text header from the start of the vector. Use this value to address the header. This
parameter is only available for the Link3270 bridge with extended support. See Link3270 bridge basic
and extended support for a description of the different levels of support for the Link3270 bridge.

BRIV-ST-TRAILER-LEN
The length of the text trailer. This parameter is only available for the Link3270 bridge with extended
support. See Link3270 bridge basic and extended support for a description of the different levels of
support for the Link3270 bridge.

BRIV-ST-TRAILER-OFFSET
The offset of the text trailer from the start of the vector. Use this value to address the trailer. This
parameter is only available for the Link3270 bridge with extended support. See Link3270 bridge basic
and extended support for a description of the different levels of support for the Link3270 bridge.

BRIV-ST-DATA
This field is included only for compatibility with the basic support version of the Link3270 bridge. Use
BRIV-ST-DATA-OFFSET to access the data contained in the FROM option of the SEND TEXT
command.

Note:

1. If the MAPPED option is used, you must add a 4 byte page control area (PGA) to the end of the data.
See SEND TEXT MAPPEDin the IBM Knowledge Center for a description of the PGA. These 4 bytes are
not included in BRIV-ST-DATA-LEN, but are included in BRIV-OUTPUT-VECTOR-LENGTH and BRIH-
DATALENGTH.

Link3270 SEND PAGE vector
This vector is the data supplied by an EXEC CICS SEND PAGE command.

See SEND PAGE for details of the command options. This vector is only available for the Link3270 bridge
with extended support. See Link3270 bridge basic and extended support for a description of the different
levels of support for the Link3270 bridge.

Offset
Hex

Type Len Name

(0) STRUCTURE 88 BRIV-SEND-PAGE

(0) STRUCTURE 16 Output header

(10) CHARACTER 4 BRIV-PG-RELEASE-INDICATOR

(14) CHARACTER 4 BRIV-PG-RETAIN-INDICATOR

(18) CHARACTER 4 BRIV-PG-LAST-INDICATOR

(1C) CHARACTER 4 BRIV-PG-TRANSID

Chapter 2. Bridging to 3270 transactions 67

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmia.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmia.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmia.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmia.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmia.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmia.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmia.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_sendtextmapped.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_sendpage.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmia.html

Offset
Hex

Type Len Name

(20) FULLWORD 4 BRIV-PG-TRAILER-LEN

(24) FULLWORD 4 BRIV-PG-TRAILER-OFFSET

BRIV-PG-RELEASE-INDICATOR
Indicates whether or not the RELEASE option is specified. Valid values are:
Y

RELEASE is specified.
N

RELEASE is not specified.
BRIV-PG-RETAIN-INDICATOR

Indicates whether or not the RETAIN option is specified. Valid values are:
Y

RETAIN is specified.
N

RETAIN is not specified.
BRIV-PG-LAST-INDICATOR

Indicates whether or not LAST is specified. Valid values are:
Y

LAST is specified.
N

LAST is not specified.
BRIV-PG-TRANSID

The name of the transaction to be used on the next message.
BRIV-PG-TRAILER-LEN

The length of the trailer.
BRIV-PG-TRAILER-OFFSET

The offset of the trailer from the start of the vector.

Link3270 PURGE MESSAGE vector
This vector is the data supplied by an EXEC CICS PURGE MESSAGE command.

This vector is the data supplied by an EXEC CICS PURGE MESSAGE command. See PURGE MESSAGE for
details of the command options. This vector is only available for the Link3270 bridge with extended
support. See Link3270 bridge basic and extended support for a description of the different levels of
support for the Link3270 bridge.

There are no parameters for this vector.

Link3270 SYNCPOINT vector
This vector is the data supplied by an EXEC CICS SYNCPOINT command.

See SYNCPOINT for details of the command options.

This vector is supplied when the application issues one of the following:

• An EXEC CICS SYNCPOINT command
• A CICS command such as EXEC CICS SYNCONRETURN or EXEC CICS CREATE which issues an

implicit syncpoint
• An RMI request which issues an implicit syncpoint

68 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_purgemessage.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmia.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_syncpoint.html

Note: The vector is not supplied on the implicit syncpoint which occurs when a transaction completes.

Offset
Hex

Type Len Name

(0) STRUCTURE 20 BRIV-SYNCPOINT

(0) STRUCTURE 16 Output header

(10) CHARACTER 4 BRIV-SP-ROLLBACK

(14) CHARACTER 4 BRIV-SP-EXPLICIT

(18) FULLWORD 4 BRIV-SP-RESP

BRIV-SP-ROLLBACK
The presence of ROLLBACK on the EXEC CICS SYNCPOINT command. Valid values are:
BRIVSPR-YES

ROLLBACK specified.
BRIVSPR-NO

ROLLBACK not specified.
BRIV-SP-EXPLICIT

Whether the syncpoint was explicit (resulting from a SYNCPOINT command) or implicit (resulting
from a CICS or RMI command which issues an implicit syncpoint). Refer to the description above for
more information. Valid values are:
BRIVSPE-YES

The SYNCPOINT command was issued.
BRIVSPE-NO

The syncpoint was implicit.
BRIV-SP-RESP

The EIBRESP value returned from the SYNCPOINT command.

Link3270 CONVERSE request vector
This vector is the data supplied by an EXEC CICS CONVERSE request that was issued by the user
application, but there was no CONVERSE vector in the input message.

See CONVERSE (3270 logical) for details of the command options.

Offset
Hex

Type Len Name

(0) STRUCTURE 48 BRIV-CONVERSE-REQUEST

(0) STRUCTURE 16 Output header

(10) CHARACTER 4 BRIV-COR-ERASE-INDICATOR

(14) CHARACTER 4 BRIV-COR-CTLCHAR

(18) CHARACTER 4 BRIV-COR-STRFIELD-INDICATOR

Chapter 2. Bridging to 3270 transactions 69

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_converse3270logical.html

Offset
Hex

Type Len Name

(1C) CHARACTER 4 BRIV-COR-DEFRESP-INDICATOR

(20) CHARACTER 12 (reserved)

(2C) FULLWORD 4 BRIV-COR-DATA-LEN

(30) CHARACTER BRIV-COR-DATA

BRIV-COR-ERASE-INDICATOR
The type of ERASE specified by the CICS CONVERSE command. Valid values are:
BRIVCOREI-NOERASE

No ERASE.
BRIVCOREI-ERASE

ERASE.
BRIVCOREI-ERASEALTERNATE

ERASE ALTERNATE.
BRIVCOREI-DEFAULT

ERASE DEFAULT.
BRIV-COR-CTLCHAR

The CTLCHAR value specified by the CONVERSE command. Valid values are:
BRIVCORCC-DEFAULT

X'C3'.
cc

The value in CTLCHAR.
BRIV-COR-STRFIELD-INDICATOR

The presence of STRFIELD on the CONVERSE command. Valid values are:
BRIVCORSI-YES

STRFIELD specified.
BRIVCORSI-NO

STRFIELD not specified.
BRIV-COR-DEFRESP-INDICATOR

The presence of DEFRESP on the CONVERSE command. Valid values are:
BRIVCORDRI-YES

DEFRESP specified.
BRIVCORDRI-NO

DEFRESP not specified.
BRIV-COR-DATA-LEN

The length of the data in BRIV-COR-DATA. This is explicitly defined in the LENGTH or FLENGTH
option, or derived from the length of the field.

BRIV-COR-DATA
Character field of length BRIV-COR-DATA-LEN containing the data addressed by the FROM option of
the CONVERSE command.

Link3270 RECEIVE request vector
This vector is the data supplied by an EXEC CICS RECEIVE request .

See RECEIVE (3270 logical) for details of the command options.

70 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_receive3270logical.html

Offset
Hex

Type Len Name

(0) STRUCTURE 20 BRIV-RECEIVE-REQUEST

(0) STRUCTURE 16 Output header

(10) CHARACTER 4 BRIV-RER-BUFFER-INDICATOR

BRIV-RER-BUFFER-INDICATOR
The presence of BUFFER on the CICS RECEIVE command. Valid values are:
BRIVRERBI-YES

BUFFER specified.
BRIVRERBI-NO

BUFFER not specified.

Link3270 RECEIVE MAP request vector
This vector is the data supplied by an EXEC CICS RECEIVE MAP request.

See RECEIVE MAP for details of the command options.

Offset
Hex

Type Len Name

(0) STRUCTURE 36 BRIV-RECEIVE-MAP-REQUEST

(0) STRUCTURE 16 Output header

(10) CHARACTER 8 BRIV-RMR-MAPSET

(18) CHARACTER 8 BRIV-RMR-MAP

(20) FULLWORD 4 BRIV-RMR-ADSD-LEN

(24) CHARACTER BRIV-RMR-ADSD

BRIV-RMR-MAPSET
The value of the MAPSET option on the RECEIVE MAP command.

BRIV-RMR-MAP
The value of the MAP option on the RECEIVE MAP command.

BRIV-RMR-ADSD-LEN
The length of the ADS descriptor associated with this map. This length is zero if the ADSD is not
available or was not requested (BRIH-ADSDESCRIPTOR set to BRIHADSD-NONE).

BRIV-RMR-ADSD
The ADS descriptor associated with the requested map. No data is sent if BRIV-RMR-ADSD-LEN is
zero.

Chapter 2. Bridging to 3270 transactions 71

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_receivemap.html

Link3270 ADS descriptor
The ADS descriptor contains a header with general information about the map, and a field descriptor for
every field that appears in the ADS, corresponding to every named field in the map definition macro. It
can be located in the mapset from an offset field in DFHMAPDS.

ADS descriptor header
The ADS descriptor header contains general information about the map and a pointer to the first of a
variable number of chained field descriptions.

Offset
Hex

Type Len Name

(0) STRUCTURE 38 ADS-DESCRIPTOR

(0) HALFWORD 2 ADSD-LENGTH

(2) CHARACTER 4 ADSD-EYECATCHER

(6) HALFWORD 2 ADSD-MAP-INDEX

(8) HALFWORD 2 ADSD-FIELD-COUNT

(A) HALFWORD 2 ADSD-STRUCTURE-LENGTH

(C) HALFWORD 2 ADSD-ATTRIBUTE-NUMBER

(E) CHARACTER 12 ADSD-ATTRIBUTE-TYPE-CODES

(1A) CHARACTER 1 ADSD-MAP-JUSTIFY-HOR

(1B) CHARACTER 1 ADSD-MAP-JUSTIFY-VER

(1C) HALFWORD 2 ADSD-MAP-STARTING-LINE

(1E) HALFWORD 2 ADSD-MAP-STARTING-COLUMN

(20) HALFWORD 2 ADSD-MAP-LINES

(22) HALFWORD 2 ADSD-MAP-COLUMNS

(24) CHARACTER 1 ADSD-WRITE-CONTROL-CHARACTER

(25) CHARACTER 1 (reserved)

(26) STRUCTURE ADSD-FIRST-FIELD

ADSD-LENGTH
The length of the ADS descriptor.

ADSD-EYECATCHER
An eye-catcher ('ADSD') to identify this as an ADS descriptor.

72 CICS TS for z/OS: External Interfaces Guide

ADSD-MAP-INDEX
The index number of the map within the mapset.

ADSD-FIELD-COUNT
The number of fields within the ADS; that is, the number of named fields in the map definition. A
separate field is counted for each element of an array defined with the OCCURS parameter, but
subfields of group fields (GRPNAME) are not counted. The field count may be zero, in which case there
are no field descriptors following the header.

ADSD-STRUCTURE-LENGTH
The length of the application data structure.

ADSD-ATTRIBUTE-NUMBER
The number of extended attributes in fields used in the map; that is, the number of attributes
specified in DSATTS in the map definition.

ADSD-ATTRIBUTE-TYPE-CODES
a 1-character code for the attribute types in each field, in order, derived from DSATTS:

• C = COLOR
• P = PS
• H = HILIGHT
• V = VALIDN
• O = OUTLINE
• S = SOSI
• T = TRANSP

ADSD-MAP-JUSTIFY-HOR
The horizontal justification for the map, either L (LEFT) or R (RIGHT) from the JUSTIFY operand on the
map definition.

ADSD-MAP-JUSTIFY-VER
The vertical justification for the map, from the JUSTIFY operand on the map definition. This can have
the values F (FIRST), L (LAST), B (BOTTOM), or blank (no vertical JUSTIFY operand).

ADSD-MAP-STARTING-LINE
The starting line for the map, from the LINE operand on the DFHMDI macro, (LINE = NEXT gives a
value of 255; LINE = SAME gives a value of 254.)

ADSD-MAP-STARTING-COLUMN
The starting column for the map, from the COLUMN operand on the DFHMDI macro. (COLUMN = NEXT
gives a value of 255; COLUMN = SAME gives a value of 254.)

ADSD-MAP-LINES
The number of lines in the map from the SIZE operand.

ADSD-MAP-COLUMNS
The number of columns in the map from the SIZE operand.

ADSD-WRITE-CONTROL-CHAR
The 3270 encoded WCC derived from the CONTROL operand.

ADSD-FIRST-FIELD
The first field descriptor. The address of the first field descriptor in the ADSD (zero if ADSD-FIELD-
COUNT is zero).

ADS field descriptor
After the header, the ADS descriptor contains a variable number of field descriptors.

Each field descriptor has the following format:

Chapter 2. Bridging to 3270 transactions 73

Offset
Hex

Type Len Name

(0) STRUCTURE 42 ADS-FIELD-DESCRIPTOR

(0) CHARACTER 32 ADSD-FIELD-NAME

(20) HALFWORD 2 ADSD-FIELD-NAME-LEN

(22) HALFWORD 2 ADSD-OCCURS-INDEX

(24) HALFWORD 2 ADSD-FIELD-OFFSET

(26) HALFWORD 2 ADSD-FIELD-DATA-LEN

(28) CHARACTER 1 ADSD-FIELD-JUSTIFY

(29) CHARACTER 1 ADSD-FIELD-FILL-CHAR

(2A) CHARACTER ADSD-NEXT-FIELD

ADSD-FIELD-NAME
The unsuffixed field name padded with blanks on the right.

ADSD-FIELD-NAME-LEN
The number of characters in the field name.

ADSD-OCCURS-INDEX
When OCCURS is specified for a field definition there is a separate field descriptor for each element of
the array, and ADSD-OCCURS-INDEX indicates the array index for the particular field. If OCCURS is
not specified, then ADSD-OCCURS-INDEX is 0.

ADSD-FIELD-OFFSET
The offset of the field within the ADS. The offset is to the beginning of the (fullword) length field, and
you must add 2 (for the length field) + 1 (for the 3270 attribute) + ADSD-ATTRIBUTE-NUMBER to
obtain the offset of the data part of the field.

ADSD-FIELD-DATA-LEN
The length of the field in the ADS.

ADSD-FIELD-JUSTIFY
A 1-character field indicating whether the data is to be justified left 'L' or right 'R' if the supplied length
is less than the length in the ADS.

ADSD-FIELD-FILL-CHAR
The character (blank or '0') to be used to pad the remainder of the field in the ADS.

ADSD-NEXT-FIELD
The next field descriptor. The address of ADSD-NEXT-FIELD can be used to update a pointer for the
field descriptor.

74 CICS TS for z/OS: External Interfaces Guide

Link3270 diagnostics
Link3270 messages are subject to a number of validation stages.

Validation error types
Invalid Message

If a COMMAREA is passed to DFHL3270 that is too small to contain a BRIH, or does not have the
appropriate BRIH header, this will result in a transaction abend code:
ABR4

No COMMAREA
ABR5

COMMAREA too small to contain BRIH
ABR6

COMMAREA does not contain BRIH
Invalid BRIH

Only relevant fields are validated on each request. If these are invalid, then BRIH-RETURNCODE is set
to BRIHRC-VALIDATION-ERROR-BRIH and BRIH-ERROROFFSET points to the field in error. The
system state is not changed by a validation error. Therefore user transactions are neither started nor
abended.

Invalid bridge facility
If the facility token is invalid, or has expired, this will result in BRIH-RETURNCODE being set to
BRIHRC-INVALID-FACILITYTOKEN. Facilities which have expired are described by the state errors.

Invalid BRIV
BRIVs are validated as they are used. Therefore if a BRIV is not used, it is not checked. If these are
invalid then BRIH-RETURNCODE is set to BRIHRC-VALIDATION-ERROR-BRIV and BRIH-
ERROROFFSET points to the field in error

The transaction is abended with an ABXF abend code. BRIH-ABENDCODE is set to this value.

Invalid Application data
Application data cannot be checked by the bridge. Incorrect data will give unexpected results that
may result in transaction abends or erroneous processing. You should ensure that your client program
creates the data correctly. If validation of the client data is essential, you can do this by creating a
program in the router region that accepts the COMMAREA, validates the ADS and then passes it to the
bridge with a link to DFHL3270.

Return codes and abend codes for Link3270 message validation errors

Return codes and abend codes are provided to assist in diagnosis of errors. Note that the order in which
checks are made is subject to change, and therefore should not be used as an interface.

“BRIH-RETURNCODE values” on page 75 shows the possible values of BRIH-RETURNCODE and the
contents of any related diagnostic fields (BRIH-COMPCODE and BRIH-REASON). Where no specific value
is shown, these fields are set to 0.

BRIH-RETURNCODE values
BRIHRC-OK (0)

The request completed successfully.
BRIHRC-AI-LINK-FAILED (23)

The link to the autoinstall URM failed.
BRIH-COMPCODE

1
Set by router region code

Chapter 2. Bridging to 3270 transactions 75

BRIHRC-AI-REJECTED (22)
The terminal autoinstall URM rejected the bridge install request.
BRIH-COMPCODE

1
Set by router region code

BRIHRC-AI-NETNAME-INVALID (21)
The netname supplied by the terminal autoinstall URM is invalid.
BRIH-COMPCODE

1
Set by router region code

BRIHRC-AI-TERMID-INVALID (20)
The terminal id returned by the autoinstall URM is invalid.
BRIH-COMPCODE

1
Set by router region code

BRIHRC-APPLICATION-ABEND (160)
The user transaction abended. Additional diagnostics:
BRIH-ABENDCODE

The transaction abend code
BRIHRC-CICS-TERMINATION (66)

The CICS region is terminating and the Link3270 request has been rejected.
BRIH-COMPCODE

1
Set by router region code

BRIHRC-CLIENT-NETNAME-INVALID (24)
The client supplied an invalid netname.
BRIH-COMPCODE

1
Set by router region code

BRIHRC-CLIENT-TERMID-INVALID (25)
The client supplied an invalid terminal id.
BRIH-COMPCODE

1
Set by router region code

BRIHRC-DFHBRNSF-UNAVAILABLE (65)
File DFHBRNSF is unavailable.
BRIH-COMPCODE

1
Set by router region code

BRIHRC-FACILITYLIKE-INVALID (26)
The client supplied an invalid facilitylike.
BRIH-COMPCODE

2
Set by router region code

BRIHRC-FACILITYTOKEN-IN-USE (63)
A transaction is already running with this facilitytoken.

76 CICS TS for z/OS: External Interfaces Guide

BRIH-COMPCODE
1

Set by router region code
2

Set by driver code
BRIHRC-INVALID-BRIH-DATALENGTH (140)

The BRIH datalength value supplied by the client is not valid.
BRIH-COMPCODE

1
Set by router region code

BRIHRC-INVALID-CONTINUE_REQ (143)
The message contained no BRIVs.
BRIH-COMPCODE

1
Set by router region code

BRIHRC-INVALID-FACILITY-TOKEN (61)
The bridge facilitytoken in the BRIH is invalid.
BRIH-COMPCODE

1
Set by router region code

2
Set by driver code

BRIHRC-INVALID-KEEPTIME (142)
A KEEPTIME of zero was set on an allocate request.
BRIH-COMPCODE

1
Set by router region code

BRIHRC-NO-DATA (120)
A BRIHT-GET-MORE-MESSAGE request failed because there was no more data to send.
BRIH-COMPCODE

1
Set by router region code

2
Set by driver code

BRIHRC-NO-FREE-NAME (62)
All bridge facilities are already allocated.
BRIH-COMPCODE

1
Set by router region code

BRIHRC-NO-STORAGE (64)
Insufficient storage in either the router region or AOR to run the request.
BRIH-COMPCODE

2
Set by driver code

BRIHRC-NOT-SHUTDOWN-ENABLED (80)
An attempt was made to run a transaction at shutdown that is not enabled for running at shutdown.

Chapter 2. Bridging to 3270 transactions 77

BRIH-COMPCODE
2

Set by driver code
BRIHRC-PROFILE-NOT-FOUND (87)

The transaction PROFILE for the target transaction was not found.
BRIH-COMPCODE

2
Set by partner code

BRIHRC-RETRIEVE-NOT-SUPPORTED (121)
Retrieve vectors are only supported in the initial request.
BRIH-COMPCODE

2
Set by driver code

BRIHRC-ROUTING-BACKLEVEL-CICS (45)
The Link3270 request was routed to a back level CICS system that does not support Link3270.
Additional diagnostics:
BRIH-COMPCODE

EIBRESP
BRIH-REASON

EIBRESP2
BRIH-FUNCTION

EIBFN
BRIHRC-ROUTING-CONNECTION (43)

The Link3270 request could not be routed to the remote region because of a connection error.
Additional diagnostics:
BRIH-COMPCODE

EIBRESP
BRIH-REASON

EIBRESP2
BRIH-FUNCTION

EIBFN
BRIHRC-ROUTING-TERMERR (44)

The EXEC CICS LINK from the DFHL3270 to the AOR failed with TERMERR. Additional diagnostics:
BRIH-COMPCODE

EIBRESP
BRIH-REASON

EIBRESP2
BRIH-FUNCTION

EIBFN
BRIHRC-ROUTING-TRANDEF-ERROR (42)

The TRANSACTION resource definition in the routing region does not allow the transaction to be
routed to the chosen target region.
BRIH-COMPCODE

1
Set by router region code

BRIHRC-ROUTING-URM-LINK-FAILED (40)
The link to the dynamic routing URM failed. Additional diagnostics:

78 CICS TS for z/OS: External Interfaces Guide

BRIH-COMPCODE
3

URM abended
4

AMODE error
5

No PROGRAM definition
6

Fetch error
7

Disabled
8

Program defined as remote
BRIHRC-ROUTING-URM-REJECTED (41)

The dynamic routing URM rejected the bridge routing request. Additional diagnostics:
BRIH-COMPCODE

3
Select rejected

4
Sysid not found

5
Sysid not in service

6
Allocate rejected

7
Queue purged

8
Function not shipped

9
Netname not found

10
Sysid/netname mismatch

BRIH-REASON
Return code from dynamic routing URM (DYRRETC).

BRIHRC-SECURITY-ERROR (100)
A Link3270 request in session mode has been issued with a different userid than that used in the
request that allocated the bridge facility token.
BRIH-COMPCODE

1
Set by router region code

2
Set by driver code

BRIHRC-STATE-SYSTEM-ATTACH (82)
The user transaction can only be system attached, and so cannot be run under a bridge facility.
BRIH-COMPCODE

2
Set by driver code

Chapter 2. Bridging to 3270 transactions 79

BRIHRC-TRANSACTION-DISABLED (84)
The user transaction to be run under the bridge is disabled.
BRIH-COMPCODE

1
Set by router region code

2
Set by driver code

3
DTRTRAN disabled

BRIHRC-TRANSACTION-NOT-FOUND (85)
The user transaction to be run under the bridge was not found. Additional diagnostics:
BRIH-COMPCODE

1
Set by router region code

2
Set by driver code

3
DTRTRAN rejected by routing program

BRIHRC-TRANSACTION-NOT-RUNNING (86)
The next leg of a pseudoconversation cannot be run because there is no transaction running on the
bridge facility.
BRIH-COMPCODE

1
Set by router region code

2
Set by driver code

BRIHRC-VALIDATION-ERROR-BRIV (141)
A BRIV is invalid. BRIH-ERROROFFSET points to the field in error.
BRIH-COMPCODE

2
Set by driver code

BRIHRC-ROUTER-BACKLEVEL
The router region does not support the version of the Link3270 message.
BRIH-COMPCODE

1
Set by router region code

BRIHRC-AOR-BACKLEVEL
The bridge driver task in the AOR does not support the version of the Link3270 message.
BRIH-COMPCODE

2
Set by driver code

80 CICS TS for z/OS: External Interfaces Guide

Link3270 sample programs
CICS provides sample client programs that use the ECI, EXCI and LINK interfaces to call the Link3270
bridge to run the sample transaction NACT. These sample programs provide coded examples that help
you write your own client programs.

The sample transaction NACT has a well documented BMS interface.

The samples are not written to illustrate how a business client should process the data, so the business
clients do not perform any special formatting of the data extracted from the user application.

The samples are designed to illustrate the two most common scenarios:

Host Client
The client program executes on the host system, using LINK or EXCI to drive the user application. In
this scenario, the sample programs show how you can divide the client logic into a business-client
that is concerned only with the business data and its representation in the client end-user
environment, and a bridge-client that builds the bridge messages and manages the communication
with the bridge. In this way, you can develop the more complex back-end using CICS, and can make it
reusable.

The LINK and EXCI samples show how this common logic can be shared.

See Select Link3270 client scenarios for an illustration of the host client.

Workstation Client
The client program executes on a remote workstation, using ECI to drive the user application. In this
scenario, a single sample program is used, combining the business logic in the client environment and
the interface to the bridge. In this environment, the programmer needs some, but not extensive, CICS
knowledge.

See Select Link3270 client scenarios for an illustration of the workstation client.

About the NACT transaction
The NACT sample transaction demonstrates the design and development of CICS applications. It is a
COBOL pseudoconversational 3270-based CICS application that operates on the customer account file of
a fictitious company, KanDoIT.

The NACT sample transaction is taken from the book Designing and Programming CICS Applications (ISBN
1565926765).

The NACT application provides the following services:

• Access to an account record by account number
• Addition of a new account number and account record
• Modification of an account record
• Deletion of an account record
• Access to an account record by customer name

The logic of the application is divided into the following pseudoconversational steps:

1. A menu is displayed to allow selection of the service required.
2. The updated menu screen is read; the requested record is obtained and displayed
3. If the record is modified, the changes are received and the file updated; the menu is re-displayed.

The Link3270 sample client programs request the record number for customer name JACOB JONES;
retrieve the record and display, or store, the retrieved record.

Chapter 2. Bridging to 3270 transactions 81

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmhm.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtmhm.html

Running the sample client programs
After you set up the NACT transaction, the Link3270 environment, and the clients, you can run the sample
client programs.

Before you begin
Ensure that you complete the setup procedures:

• “Setting up the Link3270 environment” on page 83
• “Setting up the NACT transaction ” on page 84
• “Setting up CICS-based clients” on page 83
• “Setting up the z/OS-based client” on page 83
• “Setting up the workstation client” on page 84

Procedure

• Running the samples from a CICS-based client
a) At a CICS terminal, enter the transaction name BRCO (for the COBOL sample) or BRCH (for the C

sample).
• Running the samples from a z/OS-based client

a) To run the samples, you can use the following sample JCL supplied in file DFH$BRXJ in SDFHINST.
You must edit this JCL as follows:
hlq

Specify your own prefix, which is assigned during CICS installation.
application library

Specify the name of the library that contains the load modules.

Note: Run this job in the z/OS batch environment.

//DFH$BRXJ JOB (accounting information)
// CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1),REGION=12M
//LINK3270 EXEC PGM=DFH0CBRX
//***
//* *
//* JCL NAME = DFH$BRXJ *
//* *
//* DESCRIPTIVE NAME = Link3270 bridge EXCI business client sample *
//* *
//* FUNCTION = *
//* *
//* Sample JCL for running the Link3270 bridge EXCI *
//* business client samples DFH0CBRX and DFH$BRXC. *
//* *
//* The file DSN qualifier hlq must be changed. *
//* This JCL runs the COBOL sample DFH0CBRX *
//* This must be compiled into application library *
//* before the JCL is run. *
//* application library must be changed. *
//* To run the C Sample change DFH0CBRX to DFH$BRXC. *
//* *
//* The CICS External Interface Guide contains a detailed *
//* description of the Link3270 bridge. *
//* *
//***
//STEPLIB DD DSN=application library,DISP=SHR
// DD DSN=hlq.SDFHEXCI,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//

Figure 12. EXCI sample JCL

Result: The output from the NACT sample is returned in the output from this job.
• Running the samples from a workstation client

82 CICS TS for z/OS: External Interfaces Guide

a)

Setting up the Link3270 environment
Use the following procedure to set up the Link3270 environment.

Procedure

Set up the Link3270 environment. Ensure that you have defined:

• Link3270 system initialization parameters
• The DFHBRNSF file

Setting up CICS-based clients
Add the load library containing the load modules to the RPL concatenation of your CICS startup job.

Procedure

1. Install and set up the NACT transaction.
2. Translate, compile, and link the COBOL or C language programs DFH0CBRC, DFH0CBRL, DFH$BRCC,

and DFH$BRLC, using a Language Environment® conforming compiler, ensuring the library containing
the DFH$BRSH and DFH0CBRA copybooks is accessible. See Device dependent support for guidance
on translating and compiling CICS programs.

3. Install resource definitions for the following CICS resources:

Table 13. Resource definitions for sample clients

Resource Description

DFH0CBRC COBOL sample business client

DFH0CBRL COBOL sample bridge client

DFH$BRCC C sample business client

DFH$BRLC C sample bridge client

BRCO Transaction to drive DFHC0BRC

BRCH Transaction to drive DFH$BRCC

Examples of these resource definitions are provided for you in group DFH$BRLK. Install this group, or
add it to the grouplist installed during CICS startup.

What to do next

Run the sample programs from a CICS-based client.

Setting up the z/OS-based client
Use the following procedure to set up the z/OS-based client.

Procedure

1. Install and set up the NACT transaction.
2. Edit the DFH0CBRX or DFH$BRXC sample to pass the netname of the CICS region where the bridge

client program (DFH$BRLC or DFH0CBRL) is installed. Compile and link the COBOL or C language
programs DFH0CBRX or DFH$BRXC, using a Language Environment conforming compile, ensuring the
library containing the DFH$BRSH and DFH0CBRA copybooks is accessible. Ensure also that the CICS
supplied SDFHEXCI data set is concatenated to SYSLIB for your compile step. Place the output load
modules in an appropriate z/OS library.

3. Translate, compile and link the COBOL or C language programs DFH0CBRL, and DFH$BRLC, using a
Language Environment conforming compiler, ensuring the library containing the DFH$BRSH and

Chapter 2. Bridging to 3270 transactions 83

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/designing/dfhp31w.html

DFH0CBRA copybooks is accessible. See Device dependent support for guidance on translating and
compiling CICS programs.

Add the load library containing the load modules to the RPL concatenation of your CICS startup job.
4. Create and install a CONNECTION resource definition to define the interface between CICS and z/OS

that will be used by the EXCI request. See Defining connections to CICS and Introduction to the
external CICS interface for an introduction and guidance on how to use of the EXCI interface.

What to do next

Run the sample programs from a z/OS-based client.

Setting up the workstation client
Use the following procedure to set up the workstation client.

Procedure

1. Install and setup the NACT transaction.
2. Install the CICS Transaction Gateway on your workstation, as described in the relevant CICS

Transaction Gateway product information for your workstation platform. See CICS Transaction
Gateway for Multiplatforms.

3. Download the following programs and header files:

Table 14. Required files

File Source library

dfh$brec.c CICSTS54.CICS.SDFHSAMP

dfh$brxc.h CICSTS54.CICS.SDFHSAMP

dfh$brmh.h CICSTS54.CICS.SDFHSAMP

dfhbrich.h CICSTS54.CICS.SDFHC370

dfhbrihh.h CICSTS54.CICS.SDFHC370

4. Compile DFH$BREC with these header files and DFHAID.h in your path.
5. Set up a TCP/IP or IPIC server connection to CICS as described in CICS Transaction Gateway for

Multiplatforms.

What to do next

Run the sample programs from a workstation client.

Setting up the NACT transaction
You can set up the NACT sample to use with the bridge sample clients.

About this task

The following table shows the components that form the NACT sample application, which are supplied
during CICS installation.

Table 15. NACT sample components

File Type Library

DFH0CNA1 COBOL source SDFHSAMP

DFH0CNA2 COBOL source SDFHSAMP

DFH0CNA3 COBOL source SDFHSAMP

84 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/designing/dfhp31w.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/interfaces/dfhtm4y.dita
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm4a.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm4a.html
https://www.ibm.com/support/knowledgecenter/SSZHFX
https://www.ibm.com/support/knowledgecenter/SSZHFX
https://www.ibm.com/support/knowledgecenter/SSZHFX
https://www.ibm.com/support/knowledgecenter/SSZHFX

Table 15. NACT sample components (continued)

File Type Library

DFH0CNA4 COBOL source SDFHSAMP

DFH0CNA5 COBOL source SDFHSAMP

DFH0MNA Mapset SDFHSAMP

DFH0CNAA Copybook SDFHSAMP

DFH0CNAB Copybook SDFHSAMP

DFH0CNAC Copybook SDFHSAMP

DFH0CNAE Copybook SDFHSAMP

DFH0CNAF Copybook SDFHSAMP

DFH0CNAG Copybook SDFHSAMP

DFH0CNAL Copybook SDFHSAMP

DFH0CNAM Copybook SDFHSAMP

DFH0CNAR Copybook SDFHSAMP

DFH0CNAU Copybook SDFHSAMP

DFH0CNAW Copybook SDFHSAMP

DFH$NACT RDO group CSD

DFHNADEF JCL XDFHINST

To set up the NACT sample to use with the bridge sample clients, use the following procedure.

Procedure

1. Assemble and link the map DFH0MNA. The map copybook can be created in this step, but the map
copybook DFH0CNAM is supplied. See Installing map sets and partition sets for guidance on
assembling CICS maps.

Add the load library containing the load modules to the RPL concatenation of your CICS startup job.
2. Translate, compile, and link the COBOL programs DFH0CNA1–5, ensuring that the copybooks listed in

Table 15 on page 84 are accessible. See Device dependent support for guidance on translating and
compiling CICS programs.

Add the load library containing the load modules to the RPL concatenation of your CICS startup job.
3. Create NACT files. Edit the JCL provided in file DFHNADEF to conform to your own installation naming

conventions, and run it to create the following NACT files:
xxx.ACCTFILE

The account file
xxx.ACCTNAIX

The names alternate index
xxx.ACTINUSE

Record locking file
4. Edit the resource definitions in sample group DFH$NACT to conform to the naming conventions you

used in step 3. Install this group, or add it to the grouplist installed during CICS startup.

Results
You can now test that installation is complete by entering the transaction NACT on a CICS terminal.

Chapter 2. Bridging to 3270 transactions 85

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/deploying/dfhp3o4.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/designing/dfhp31w.html

86 CICS TS for z/OS: External Interfaces Guide

Chapter 3. CICS ONC RPC support
Client applications can use the Open Network Computing Remote Procedure Call (ONC RPC) format to
access CICS programs as remote procedures.

This part contains:

• Introduction to ONC RPC
• CICS ONC RPC concepts
• Setting up CICS ONC RPC
• “Configuring CICS ONC RPC using the connection manager” on page 104
• Developing CICS ONC RPC applications
• Security for ONC RPC
• CICS ONC RPC problem determination
• Improving ONC RPC performance

Introduction to ONC RPC
CICSONC RPC allows client applications to access CICS programs by calling them as remote procedures
using the ONC RPC format.

CICSONC RPC can be used:

• To allow clients to use existing CICS programs and the transaction processing services they provide
• To allow clients to use newly created CICS programs

TCP/IP for MVS is a prerequisite for CICS ONC RPC; it provides the library code for Sun Microsystems ONC
RPC Version 3.9. Hence, CICS ONC RPC servers work with any remote client compatible with ONC RPC
Version 3.9, regardless of operating system or machine type. For information about the function of ONC
RPC Version 3.9 supported by TCP/IP for MVS, see z/OS Communications Server: IP Programmer's Guide
and Reference.

Figure 13 on page 87shows how CICS ONC RPC allows a variety of client applications to communicate
with CICS programs using ONC RPC.
Server Network Clients

OS/390

CICS Transaction Server

CICS
program

TCP/IP
for MVS

CICS
ONC RPC

Figure 13. How CICS ONC RPC might be used

The CICS program called to service a client request is executed by a transaction that has no principal
facility. It is therefore not allowed to use some commands of the CICS application programming interface:

• Terminal control commands that reference the principal facility
• Options of EXEC CICS ASSIGN that return terminal attributes
• BMS commands
• Sign-on and sign-off commands.

The rest of this chapter describes:

© Copyright IBM Corp. 1974, 2019 87

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/interfaces/dfhtm33.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/interfaces/dfhtm3a.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/interfaces/dfhtm3j.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm8g.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/interfaces/dfhtm92.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/troubleshooting/interfaces/dfhtm9s.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/tuning/interfaces/dfhtm9j.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.halx001/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.halx001/toc.htm

• “ONC RPC concepts” on page 88
• “ONC RPC facilities” on page 89
• “ONC RPC naming and routing” on page 91

ONC RPC concepts
This section introduces the basics of ONC RPC operation, its place in TCP/IP networks, and how its main
facilities work. It does not cover all aspects of ONC RPC or TCP/IP, only those that relate to CICS ONC
RPC.

CICS ONC RPC: In the rest of this information, notes like this point out how CICS ONC RPC implements
the area of ONC RPC being described in the text.

RPC
When a process invokes or calls a process on a remote system, that call is a remote procedure call (RPC).

The calling process is a client (that is, a process requesting a service); the remote process is a server (a
process offering a service). As shown in Figure 14 on page 88, the client sends a request for a procedure
to be run, and supplies parameters for that particular run. Once the server has run the procedure, it
returns the reply.

RPC request and parameters

Remote

procedure

Client

application

reply returned

Figure 14. Basic RPC operation

In the RPC model, there is no provision for coordinating changes to recoverable resources in different
servers, nor for coordinating changes to recoverable resources in successive calls to the same server.
Committing changes to recoverable resources is under the control of the remote procedure, not the client
application.

Several RPC implementations have been developed and are now available on a variety of systems. RPC
allows a programmer to network an application by distributing the procedures that make up the
application across different processors. This is done without the programmer becoming involved with the
details of the communication interface required to transmit the parameters to and from the remote
procedures.

ONC
ONC is Open Network Computing, a range of software developed by Sun Microsystems.

ONC is Open Network Computing, a range of software developed by Sun Microsystems. As well as the
ONC RPC routines, Sun provides XDR (eXternal Data Representation) routines, which are used for data
conversion. The ONC RPC and XDR protocols and formats are supported on many different platforms.

CICS ONC RPC: CICS ONC RPC allows users to run only ONC RPC servers under CICS hosts. It does not
support client applications running under CICS.

TCP/IP
ONC RPC applications use the TCP/IP family of protocols.

See TCP/IP protocols for more information about TCP/IP.

88 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/interfaces/dfhtm32.html

ONC RPC facilities
The ONC RPC implementation consists of XDR routines the RPCGEN compiler, and the ONC RPC API
library.

XDR routines
Data exchanged between systems engaged in ONC RPC must always flow in a standard format specified
by XDR, because different machine architectures have different representations of the same information.

Both client and server use XDR routines to convert the input and output parameters between XDR format
and the local data format. You either write these yourself, or specify an XDR library function, as described
below. In Figure 15 on page 89, inproc and outproc are the XDR routines.

ClientServer

remote

procedure

callerinprocinproc

outproc outproc

Figure 15. XDR routines used in a remote procedure call

Notice that in Figure 15 on page 89, the same XDR routine, inproc, is used to encode and decode the data
as it flows from client to server, and similarly for outproc as it flows back to the client. The source for
inproc is the same in the client and server, but XDR library functions in the routines are compiled to
encode or decode as appropriate. Such routines are termed bidirectional, and they help to ensure that the
encoding and decoding is done symmetrically in the two routines.

Using XDR library functions
XDR library functions are a set of C functions supplied with ONC RPC, which application programmers can
use when writing XDR routines.

They can be used as follows, depending on the complexity of the structure pointed to by the call
argument and reply parameters.
For parameters that are simple single-field C data types

Use an XDR library function for inproc and outproc.
For parameters that are C data type vectors, arrays, strings, and so on

Use an XDR library function for inproc and outproc.
For more complex structures

Write an XDR routine, using XDR library functions as required. Alternatively, use the RPCGEN
compiler, described in “RPCGEN compiler” on page 89, to create an XDR routine from an XDR data
description.

CICS ONC RPC: CICS ONC RPC supports the use of the XDR library functions that support data
conversion.

RPCGEN compiler
To use RPCGEN, you write a program definition in RPCL, a language similar to a subset of C, designed for
the definition of ONC RPC distributed programs.

To use RPCGEN, you write a program definition in RPCL, a language similar to a subset of C, designed for
the definition of ONC RPC distributed programs. The definition defines the data to be transferred and
procedures to be used for both client and server. The client application source program is written as
though the remote procedure call were a call to a local program. The code to send the call and get the
reply are part of the client stub, which is generated by RPCGEN. Similarly the code the server needs to
accept the call and send back the reply are part of the server stub, which is also generated by RPCGEN.
Figure 16 on page 90 illustrates the role of RPCGEN in application development.

Chapter 3. CICS ONC RPC support 89

Client
application
source

Client
stub

Server
stub

Server
application
source

Header
files

XDR
routines

RPCL
program

RPCGEN

Client
application

Server
application

Client
object

Client
stub
object

Server
stub
object

Server
object

Link Link

C C C C

Figure 16. Using the RPCGEN compiler

CICS ONC RPC: RPCGEN may only be used for:

• Generating pairs of XDR routines, as described in the previous section
• Generating a client stub to be linked with the application for the client system
• Generating header files

CICS ONC RPC does not use the server stub generated by RPCGEN.

ONC RPC API library
The ONC RPC API library contains two types of call: high level and low level.

The high-level ONC RPC API can be used only with UDP. It enables users to make remote procedure calls
very and with a minimum of library calls, but at a cost of some restriction in available function. The main
function of the API is provided by three calls:
registerrpc

Used in the server to register a procedure to be called as a remote procedure by clients.
svc_run

Used in the server to see if a request has arrived from a client.
callrpc

Used in the client to make a remote procedure call.

The low-level ONC RPC API contains many more calls, which give more control and flexibility. For
example:

• Low-level calls give the user the choice of transport below ONC RPC, including TCP or UDP.
• With low-level calls, user-written network registration services other than the Portmapper (the

Portmapper is described below) can be used.
• Low-level calls allow the variation of ONC RPC timeouts and retry values.
• Low-level calls allow standard ONC RPC authorization to be applied. Only UNIX authorization is

available in ONC RPC Version 3.9.

90 CICS TS for z/OS: External Interfaces Guide

CICS ONC RPC: CICS ONC RPC provides all the server function. You don’t specify any server RPC calls.

The client can make its request with the high-level call callrpc, or can use low-level calls. CICS ONC RPC
is implemented using low-level ONC RPC calls. The implementation allows concurrent dispatching of
individual procedures and allows TCP to be supported as well as UDP.

ONC RPC naming and routing
Remote procedures in ONC RPC are identified by the 3-tuple: program number, version number, and
procedure number.

It is usual to package several related procedures together into a single program. When changes are made
to the procedures, a new version of the program is created, but the new version usually contains the same
procedure numbers as the previous version.

Procedure zero
Users define procedure numbers for each program, conventionally starting at 1 and proceeding in
sequence.

Procedure 0 is usually defined as a procedure with no parameters and no processing that returns an
empty reply. This is useful for clients, who can call procedure 0 to see if a particular service exists and to
test performance on a null call.

Registration and the Portmapper
Servers on a host need to let clients know their logical addresses and which services they offer.

In ONC RPC, servers generally do this by registering with a utility service called the Portmapper. This
maintains a list of mappings from program/version numbers (also qualified by protocol used) to TCP/IP
port numbers on a host.

The Portmapper itself can always be located by clients because it is always on well-known port 111 on a
given host. If using low-level calls, the client first asks the Portmapper for the port number for the
particular remote procedure, and then calls that port directly. The high-level call, callrpc, performs the
same function transparently to the user.

CICS ONC RPC: Registration is done by CICS ONC RPC automatically, or under operator control.

Routing
Before calling a procedure, a client asks the Portmapper at the host for the port number of the program
and version that the client wants to call.

Before calling a procedure, a client asks the Portmapper at the host for the port number of the program
and version that the client wants to call. (The protocol is determined when the connection between
TCP/IP systems is set up.) In the remote procedure call, the client supplies only the IP address, port
number, and procedure number. Figure 17 on page 91 shows how the IP address, port number, and
procedure number identify the server procedure.

Procedure number

IP address

Port number

Program number

Version number

Protocol

Figure 17. TCP/IP and RPC routing

Chapter 3. CICS ONC RPC support 91

Types of remote procedure call
These are the five types of remote procedure call.
Synchronous

This is the normal method of operation. The client makes a call and does not continue until the server
returns the reply.

Nonblocking
The client makes a call and continues with its own processing. The server does not reply.

Batching
This is a facility for sending several client nonblocking calls in one batch.

Broadcast RPC
RPC clients have a broadcast facility, that is, they can send messages to many servers and then
receive all the consequent replies.

Callback RPC
The client makes a nonblocking client/server call, and the server signals completion by calling a
procedure associated with the client.

CICS ONC RPC: CICS ONC RPC cannot support callback RPC, because callback requires that both
ends contain both client and server procedures.

CICS ONC RPC concepts
This section describes the CICS ONC RPC components and control flow.

It describes:

• “ONC RPC remote procedures and CICS programs” on page 92
• “CICS ONC RPC transactions” on page 93
• “CICS ONC RPC user-replaceable programs” on page 94
• “CICS ONC RPC control flow” on page 96
• “CICS ONC RPC data flow” on page 97

ONC RPC remote procedures and CICS programs
In CICS ONC RPC, the CICS programs are identified by a 4-tuple.

• Program number - same as the ONC RPC program number
• Version number - same as the ONC RPC version number
• Procedure number - same as the ONC RPC procedure number
• Protocol - determined by the protocol used to communicate between the client system and z/OS

Communications Server.

When a client request arrives, the CICS program chosen to service it is the one associated with the 4-
tuple just described. Figure 18 on page 93 shows a state of CICS ONC RPC in which five 4-tuples are
associated with three CICS programs.

92 CICS TS for z/OS: External Interfaces Guide

24127AC0

24127AC0

CE00457F

CE00457F

CE00457F

5

5

3

3

3

1

1

1

1

2

U

T

U

T

T

PROGA

PROGB

PROGC

4-tuples CICS programs

Figure 18. Remote procedures and CICS programs

The program numbers are given in hexadecimal. The protocols are U for UDP and T for TCP.

• If a client request arrives for program 24127AC0, version 5, procedure 1, the CICS program PROGA is
used to service it whether the protocol is TCP or UDP.

• If a request arrives for program CE00457F, version 3, procedure 1, and the protocol is UDP, the CICS
program PROGB is used to service it. But if the same request arrives and the protocol is TCP, PROGC is
used to service it.

It is, however, usual to use the same program, version, and procedure irrespective of the protocol used
to transmit the request.

• The CICS program PROGC is also used for procedure 2 of the same program and version if the protocol
is TCP.

How you set up and control the relationship between 4-tuples and CICS programs is described in Lengths
of the CICS program input and output data.

Where the CICS program might be
The CICS program might be in one of three places.

• In the same CICS region as CICS ONC RPC
• In a different CICS region on the same host
• On a different host that supports CICS and inbound DPL

The CICS programs can reside on any CICS system accessible with DPL from the CICS region running
CICS ONC RPC. DPL operation is described in the Overview of DPL.

CICS ONC RPC transactions
Three CICS transactions are supplied with CICS ONC RPC: connection manager, server controller, and
alias.

Connection manager (CRPC)
The connection manager is a transaction that allows you to enable and disable CICS ONC RPC, and
configure and inquire on it.

You run the connection manager transaction as required, and several instances of it can be active at the
same time. The connection manager is described in Lengths of the CICS program input and output data.

Server controller (CRPM)
The server controller monitors the z/OS Communications Server interface for client requests, and starts
instances of the alias transaction, using EXEC CICS START, to service them.

The server controller is a transaction of long duration. It is started by the connection manager when CICS
ONC RPC is enabled, and stopped when CICS ONC RPC is disabled. Only one instance of the server
controller can be active in a CICS system.

Chapter 3. CICS ONC RPC support 93

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm8t.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm8t.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/connections/dfht1kd.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm8t.html

Alias (CRPA)
CICS ONC RPC supplies one alias program. Multiple instances of the alias transaction can be run in
parallel, each in response to a client request.

An alias is started by the server controller for each client request that arrives to be processed, as shown in
Figure 19 on page 94. This allows CICS ONC RPC to process many client requests concurrently.

The alias program uses EXEC CICS LINK to transfer control to the CICS program.

Alias
transactions

CICS
programs

Server
controller

EXEC CICS START

EXEC CICS LINK

Client requests
from
TCP/IP

Figure 19. The server controller and alias transactions

CICS ONC RPC user-replaceable programs
Servicing a client request involves not only a CICS program, but a converter program and XDR routines.
For compatibility with earlier releases of CICS you can use a resource checker program to validate
incoming client requests, or you can use CICS security facilities.

XDR routines
You need to provide one or two XDR routines for each 4-tuple. You always need an inbound XDR routine,
and unless the client call is nonblocking, you need an outbound XDR routine as well.

XDR (eXternal Data Representation) is described in “XDR routines” on page 89.

The XDR routines for each 4-tuple are specified by using the connection manager.

Resource checker module
CICS ONC RPC provides an interface to a resource checker (which you write).

Converters
You can also supply a converter for each program-version-procedure-protocol 4-tuple.

Each converter can contain up to three functions.

• Getlengths function. The Getlengths function might be called by the connection manager when a 4-
tuple is registered. Getlengths can supply the following information:

– The length of the input and output data for the CICS program
– Whether the output data overlays the input data in the communication area

Because its processing is done before any client requests are received, It is appropriate to use
Getlengths to provide the values of data lengths that do not vary from call to call. Refer to Lengths of
the CICS program input and output data for a fuller description of when Getlengths should be used for
this purpose.

• Decode function. The Decode function is called by the server controller on receipt of a client request.
Decode can do the following:

94 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm8t.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm8t.html

– Supply the length of the input and output data for the CICS program. If the parameter lengths vary
from call to call, Decode should return them for the current call.

– Reconstruct the data from the client as a communication area for the CICS program. “CICS ONC RPC
data flow” on page 97 illustrates the kinds of data that Decode might have to handle. The incoming
data might include pointers, and Decode must gather up the incoming data into the communication
area.

– Convert data structures from C format to the format appropriate to the programming language in
which the CICS program is written.

– Process data from the client that is not intended for the CICS program. For example the data from the
client might include the name of the CICS program to be called, and Decode can feed this
information back to the server controller.

• Encode function. The Encode function is called by the alias when the CICS program ends. Encode can
do the following:

– Reconstruct the data from the communication area into the form expected by the client. “CICS ONC
RPC data flow” on page 97 illustrates the kinds of data that Encode might have to handle. The client
might expect to receive data accessed by pointers, and Encode must build this structure from the
data in the communication area.

– Convert data structures from the format appropriate to the programming language in which the CICS
program is written into C format.

Not all 4-tuples need a converter with all three functions. You use the connection manager to specify the
converter and the use of Getlengths, Decode, and Encode for each 4-tuple.

The way that particular language data structures are stored is documented in the appropriate language
manuals, and a correspondence between C data types and those in other languages is given in the z/OS
Language Environment Programming Guide.

For detailed instructions on the writing of converters, refer to Write the CICS ONC RPC converter.

Chapter 3. CICS ONC RPC support 95

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ceea200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.ceea200/toc.htm
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm8l.html

CICS ONC RPC control flow
This shows the components involved in processing a typical client ONC RPC request.

OS/390

CICS Transaction Server

Request from

client

Reply to

client

TCP/IP for MVSServer
controller

XDR
inbound

XDR
outbound

Converter
(Decode)

Converter
(Encode)

Alias

CICS
program

Resource
checker

Figure 20. Call processing

Client requests are processed in the following steps:

1. A request from a client arrives in z/OS Communications Server.
2. The server controller monitors the z/OS Communications Server interface for incoming client

requests, and the client request is passed to it. (From the 4-tuple for the request, the server
controller can find the corresponding XDR routine and converter to call.)

3. The server controller invokes the inbound XDR routine.
4. The server controller calls the converter, requesting the Decode function, if it is required for the 4-

tuple. If Decode is not required, the server controller allocates storage for the CICS program
communication area.

5. The server controller then starts an alias to deal with all further processing of the request within
CICS.

6. The server controller returns to monitor the z/OS Communications Server interface for client
requests.

7. The alias optionally calls a user-written resource checker.
8. The alias issues an EXEC CICS LINK to the CICS program for the 4-tuple. The communication area set

up by Decode is passed in the LINK command.
9. The CICS program processes the request and returns its output to the alias program in the

communication area.

96 CICS TS for z/OS: External Interfaces Guide

10. The alias calls the Encode function, if it is required for the 4-tuple.
11. The alias invokes the outbound XDR routine.
12. The alias returns the reply to z/OS Communications Server, and ends.
13. The reply is sent back to the client.

Updating recoverable resources
After Decode processing, the server controller uses EXEC CICS SYNCPOINT to commit any changes to
recoverable resources that Decode might have made.

If the CICS program makes updates to recoverable resources, whether the changes are committed or
backed out depends on the location of the CICS program, and on whether it uses the EXEC CICS
SYNCPOINT command.

• If the CICS program is in a CICS region different from the one in which CICS ONC RPC is operating, the
updates are committed when the CICS program returns control to the alias.

• If the CICS program is in the same CICS region as CICS ONC RPC, and it uses EXEC CICS SYNCPOINT,
the updates are committed when the syncpoint is processed.

• If the CICS program is in the same CICS region as CICS ONC RPC, but it does not use EXEC CICS
SYNCPOINT, the updates are committed when the alias transaction ends normally, or are backed out
when the alias transaction abends.

CICS ONC RPC data flow
This section describes data flow from a client to a CICS program, and from a CICS program back to the
client.

Chapter 3. CICS ONC RPC support 97

From client to CICS program
This diagram shows the progress of data from the client to the CICS program during a remote procedure
call.

Data in host

Parameter

Parameter

pointer Data in client

XDR in host (inbound)

XDR in client (outbound)

Decode

Communication area
for CICS program

Data as transmitted

pointer

etc

etc

... int

... double

... int

... double

Figure 21. Data flow from client to CICS program

In this example the processing is as follows:

1. The client call has a parameter which includes a pointer to data that is to be passed to the CICS
program. The client's outbound XDR routine packages the parameter and the indirect data for
transmission to the host.

2. The data is transmitted over the network to the host.
3. In the host, the inbound XDR routine rebuilds the data as it was in the client.
4. The Decode function of the converter reorganizes the data into a communication area for the CICS

program.

Data format in the CICS program communication area
If the call is a blocking call, the position in the CICS program's communication area of data to be returned
to the client has to be specified. The data in the CICS program's communication area can be organized in
two ways.

• Contiguous—the data to be returned to the client does not start at the beginning of the communication
area, but at some offset into it.

• Overlaid—the data to be returned starts at the beginning of the communication area. The CICS program
overwrites the inbound client data in this area with any data to be returned to the client.

Figure 22 on page 99 illustrates these two possibilities.

98 CICS TS for z/OS: External Interfaces Guide

Contiguous Overlaid

input output
output

input

Figure 22. Use of communication area according to data format

From CICS program to client
This shows the progress of data from the CICS program back to the client.

Data as transmitted

pointer

pointer

pointer

pointer

Communication area
from CICS program

Data in host

Data in client

XDR in host (outbound)

XDR in client (inbound)

Encode

Parameter

Parameter

Parameter

Figure 23. Data flow from CICS program to client

The processing is as follows:

1. The CICS program's output is in the communication area that was created by the Decode function. The
Encode function reorganizes the data in the manner that the client expects. In this case the client is
expecting to get back a structure including two pointers to indirect data. The Encode function puts the
data in a single area of storage to simplify storage management processing when the area is to be
freed.

2. The outbound XDR routine packages the data for transmission.
3. The data is transmitted over the network to the client.
4. In the client, the inbound XDR routine rebuilds the data as it was in the host.

Chapter 3. CICS ONC RPC support 99

Setting up CICS ONC RPC
CICSONC RPC allows client applications to access CICS programs by calling them as remote procedures
using the ONC RPC format. Follow this information to set up CICS ONC RPC.
Clients

Clients must access servers on CICS ONC RPC over a TCP/IP network.

Client systems must use a library compatible with the library for ONC RPC Version 3.9, as this is the
ONC RPC version supported by TCP/IP for MVS (Versions 2.2.1 and 3.1). To communicate over a
TCP/IP network, appropriate hardware and software must be in place.

MVS

The following items are prerequisite, that is, must be installed on the MVS system for CICS ONC RPC
to run.

• TCP/IP for MVS Version 2.2.1 or above. TCP/IP for MVS ports must be made available for use by the
CICS region involved.

• Language Environment. This provides the C runtime libraries that are a prerequisite for running CICS
ONC RPC.

• If you are using RPCGEN, or writing your own XDR routines, you need a C compiler to compile
RPCGEN output and your XDR routines.

CICS

CICS must be set up for Language Environment support.

Note: TCP/IP for MVS CICS Sockets is not a prerequisite for CICS ONC RPC.

TCP/IP for MVS

CICS ONC RPC and TCP/IP for MVS CICS Sockets Version 2.2.1 cannot operate together from one
CICS region to one TCP/IP for MVS region. You are advised to run CICS Sockets and CICS ONC RPC in
different CICS regions.

TCP/IP for MVS Version 3.1 users do not have this problem; CICS Sockets and CICS ONC RPC can both
be run from the same CICS region.

TCP/IP for MVS 2.2.1

There are no prerequisites for running CICS ONC RPC.

Note: CICS ONC RPC and TCP/IP for MVS CICS Sockets Version 2.2.1 cannot operate together from
one CICS region to one TCP/IP for MVS region. You are advised to run CICS Sockets and CICS ONC
RPC from different CICS regions.

TCP/IP for MVS 3.1

The following PTF is a prerequisite for running CICS ONC RPC:

• A PTF, number UN79963, related to the use of the xdr_text_char XDR library function.

Note: CICS ONC RPC and TCP/IP for MVS CICS Sockets Version 2.2.1 cannot operate together from
one CICS region to one TCP/IP for MVS region. You are advised to run CICS Sockets and CICS ONC
RPC from different CICS regions.

Storage requirements

Except where otherwise noted, the storage used by CICS ONC RPC is obtained from CICS subpools.

When CICS ONC RPC is enabled, its storage requirements are as follows:

• 40 KB base storage

100 CICS TS for z/OS: External Interfaces Guide

• 100 bytes for each registered 4-tuple.

For each client request being processed the following storage is required:

• MVS-controlled storage used by the inbound XDR routine for internal data structures
• Storage used by the inbound XDR routine for the data structure it builds for the Decode function
• Storage for the CICS program communication area
• Storage used by the alias transaction while running the CICS program
• Storage used by the Encode function to create a data structure for the outbound XDR routine
• MVS-controlled storage used by the outbound XDR routine

CICS ONC RPC setup tasks
There are tasks associated with the CICS ONC RPC data set, dump formatting, and a warning about
migration.

Creating the CICS ONC RCP data set
JCL is provided in the DFHCOMDS job to create the CICS ONC RPC data set.

The data set is defined as a VSAM key-sequenced data set by a DEFINE CLUSTER command like the
following:

DEFINE CLUSTER (-
 NAME(xxxxxxxx.CICSONC.RESOURCE) -
 CYL (2 1) -
 KEYS(19 0) -
 INDEXED -
 VOLUME (vvvvvv) -
 RECORDSIZE(150 150) -
 FREESPACE(5 5) -
 SHAREOPTIONS(1) -
)

The job to define the data set must be run before you start the connection manager for the first time.

JCL entry for dump formatting
To switch dump formatting on for CICS ONC RPC (and for all running features), change the IPCS
VERBEXIT control statement.

IPCS VERBEXIT DFHPD710 FT=2

The VERBEXIT provides a formatted dump of CICS ONC RPC control blocks.

Migrating between CICS versions
CICS ONC RPC is part of the CICS Transaction Server base. None of the IBM-supplied programs for CICS
ONC RPC can be moved to CICS Transaction Server from earlier releases.

Modifying z/OS Communications Server data sets
You can define the CICS Transaction Server region to z/OS Communications Server in the TCPIP.PROFILE.
data set to reserve specific ports for ONC RPC applications.

This is described in z/OS Communications Server: IP Configuration Guide.

Chapter 3. CICS ONC RPC support 101

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.halz002/toc.htm

Defining CICS ONC RPC resources to CICS
CICS ONC RPC provides two RDO groups defining CICS resources used by CICS ONC RPC: DFHRP and
DFHRPF.

Transaction definitions for CICS ONC RPC transactions
These CICS ONC RPC transactions are defined in the locked group DFHRP.

CRPA
Alias

CRPC
Connection manager

CRPM
Server controller

These definitions cannot be changed.

Transaction definitions for extra alias transactions
You may want to use other alias transaction names for various reasons.

• Auditing purposes
• Resource and command checking
• Allocating initiation priorities
• Allocating database plan selection
• Assigning different runaway values for different CICS programs

If you do, you must also define these to CICS, copying the definition from CRPA, and making amendments
as necessary. The CRPA definition is as follows:

DEFINE TRANSACTION(CRPA) GROUP(DFHRP)
 PROGRAM(DFHRPAS) TWASIZE(0)
 PROFILE(DFHCICST) STATUS(ENABLED)
 TASKDATALOC(BELOW) TASKDATAKEY(USER)
 RUNAWAY(SYSTEM) SHUTDOWN(ENABLED)
 PRIORITY(1) TRANCLASS(DFHTCL00)
 DTIMOUT(NO) INDOUBT(BACKOUT)
 SPURGE(YES) TPURGE(NO)
 RESSEC(NO) CMDSEC(NO)

If you want a CICS program to run under an alias with a name other than CRPA, you can enter this in the
connection manager when defining the attributes of the 4-tuple associated with the CICS program, as
described in “Defining the attributes of a 4-tuple” on page 112. The name of the alias can also be
changed by the Decode function, as described in Changing the alias and CICS program.

Changing the CMDSEC and RESSEC values
You might want to define new alias transactions with CMDSEC(YES) or RESSEC(YES) in order to enforce
security checking on the programs run under the alias transaction, including the CICS program that
services the client request.

None of the IBM-supplied programs used by the alias use any of system programmer interface (SPI)
commands, so CMDSEC need not be changed. However, if you want to oversee the use of SPI commands
by the CICS program, resource checker, or Encode function of the converter, CMDSEC(YES) is required.

Program definitions for CICS ONC RPC programs
All the CICS ONC RPC programs are defined in the locked group DFHRP.

Program definitions for user-written programs
You need to make definitions for: CICS programs, converters, user-written XDR routines, and a resource
checker.

102 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm8u.html

LANGUAGE option
User-written XDR routines should be defined with LANGUAGE(C). Converters and CICS programs should
be defined with an appropriate LANGUAGE.

CEDF option
Program definitions for CICS programs must include CEDF(YES) if EDF is required for debugging.

If you want to use EDF, you must enter a terminal ID in the connection manager when defining the
attributes of the 4-tuple associated with the CICS program, as described in “Defining the attributes of a 4-
tuple” on page 112.

EXECKEY option
CICS programs should be defined as EXECKEY(USER), unless there is some reason for defining them as
CICS-key in your CICS system. Defining programs as EXECKEY(USER) prevents them from overwriting
CICS.

Converters and the resource checker should not be regarded as application programs when defining
storage. You are recommended to define them as EXECKEY(CICS). This allows them to modify CICS-key
storage.

When the Decode and Encode functions allocate storage to hold the converted data, that storage should
be allocated as CICS-key.

User-written XDR routines must be defined as EXECKEY(CICS).

If you specify EXECKEY(USER) for the CICS program, ensure that TASKDATAKEY(USER) is specified for
the alias. USER is the default TASKDATAKEY setting in the alias definition in the supplied group DFHRP.

If you have CICS programs that need to be specified with EXECKEY(CICS), you are advised to specify
TASKDATAKEY(CICS) for the alias that will execute them.

CICS operates with storage protection when the system initialization parameter STGPROT is set to YES, or
allowed to default to YES.

RELOAD option
You should specify RELOAD(YES) for any user-written XDR routines to prevent errors in CICS ONC RPC
disable processing.

Definitions for remote CICS programs
If a CICS program that is to service a remote procedure call runs in a different CICS system from CICS
ONC RPC, a program definition is required on both the local system and the remote system.

The program resides on the remote system, so its definition there is straightforward. The program
definition on the local system:

• Must include a REMOTESYSTEM parameter to specify the system on which the program resides.
• Can optionally include a REMOTENAME parameter if you want the names on the local system and

remote system to be different.
• Can optionally include a TRANSID parameter:

– If TRANSID is not specified, the CICS program runs under the CICS mirror transaction on the remote
CICS system.

– If TRANSID is specified, the program in the remote CICS system runs under the transaction name
given. See “Transaction definitions for extra alias transactions” on page 102 for reasons why you may
want a different name.

If the remote transaction ID is specified, you must provide a matching transaction definition in the
remote CICS system. This definition must specify the appropriate mirror program for the remote
system (DFHMIRS for CICS for MVS/ESA and CICS Transaction Server for z/OS systems).

If a CICS program is running on a CICS platform other than CICS for MVS/ESA or CICS Transaction Server
for z/OS similar considerations apply, but you should refer to the DPL details for that platform.

Chapter 3. CICS ONC RPC support 103

Mapset definition
Mapset definitions are supplied in the group DFHRP for the connection manager mapsets. The definitions
cannot be changed.

Transient data definitions
CICS provides a resource definition for the CICS ONC RPC message transient data queue CRPO. The
resource definition is in group DFHDCTG, which is part of DFHLIST.

Group DFHDCTG is not protected by a lock, so the definitions it contains can be modified if required.
CRPO is defined as an extrapartition queue, but you can make the destination intrapartition or indirect if
you prefer.

If you leave CRPO defined as an extrapartition queue, you must add a suitable DD statement for the
extrapartition queue in the CICS JCL, for example:

//CRPO DD SYSOUT=A

XLT definitions
The XLT system initialization parameter and its associated transaction list should allow the connection
manager, CRPC, to be started during normal CICS shutdown. If CICS ONC RPC is delaying shutdown, the
connection manager can be used to force an immediate disable of CICS ONC RPC.

Configuring CICS ONC RPC using the connection manager
The connection manager has four main functions.

• Enabling CICS ONC RPC
• Disabling CICS ONC RPC
• Controlling the operating options and 4-tuple information stored in the CICS ONC RPC data set
• Controlling the operating options and 4-tuple information in current use when CICS ONC RPC is enabled

Starting the connection manager
You can start the connection manager in various ways.

• From a terminal that supports BMS maps. You can work with the connection manager panels described
in this section.

• From a CICS console.
• Using an EXEC CICS START command.
• From a sequential terminal.

The effect of starting the connection manager depends on:

• Whether CICS ONC RPC is enabled or disabled
• Whether you start the connection manager from a terminal that permits the use of BMS
• Whether you enter additional data with the transaction name
• Whether the Automatic Enable option in the CICS ONC RPC definition record is set to YES

When CICS ONC RPC is disabled, the effect of entering the transaction name (and optional additional
data) on a terminal that supports BMS is as follows:
CRPC

• If Automatic Enable is YES, automatic enable processing occurs.
• If Automatic Enable is NO, a BMS panel (DFHRP01) is shown.
• If there is no CICS ONC RPC definition record yet, a BMS panel (DFHRP01) is shown.

104 CICS TS for z/OS: External Interfaces Guide

CRPC E A(N)

• A BMS panel (DFHRP01) is shown.

CRPC E A(Y)

• Automatic enable processing occurs. If there is no CICS ONC RPC definition record, one is created
using default values for the options, but no 4-tuples are registered.

If you start the connection manager in a way that does not allow panels to be shown (EXEC CICS START,
or non-BMS terminal, for example) and the action is to show a panel, error message DFHRP1505 is
produced.

When CICS ONC RPC is enabled, the effect of entering the transaction name (and optional additional data)
is as follows:

• CRPC displays panel DFHRP04, or produces error message DFHRP1505 if panels cannot be shown.
• CRPC D(N) causes normal disable processing.
• CRPC D(I) causes immediate disable processing.

The forms CRPC E A(N), CRPC E A(Y), CRPC D(N), and CRPC D(I) are called fast-path commands.

z/OS Communications Server should be started before you try to enable CICS ONC RPC with the
connection manager, otherwise you cannot register 4-tuples, and you have to reenable CICS ONC RPC
after starting z/OS Communications Server.

CRPC CICS ONC RPC for MVS/ESA DFHRP01

Select one of the following. Then press Enter.

_ 1. Enable CICS ONC RPC
 2. View or modify the CICS ONC RPC data set

Current Status: Disabled

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF9=Messages PF12=Return

Figure 24. Panel DFHRP01

Chapter 3. CICS ONC RPC support 105

CRPC CICS ONC RPC for MVS/ESA DFHRP04

Select one of the following. Then press Enter.

_ 1. Disable CICS ONC RPC
 2. View or modify the CICS ONC RPC data set
 3. View or modify CICS ONC RPC status

Current Status: Enabled

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF9=Messages

Figure 25. Panel DFHRP04

Using the connection manager BMS panels
All leading and trailing blanks are ignored on BMS input.

At the top of all panels is a panel identifier in the right corner (for example, DFHRP02) and CRPC in the left
corner.

On the bottom of all panels, the fourth line from the bottom gives the status of CICS ONC RPC, the third
line from the bottom is a prompt line, while the bottom line lists the available PF keys, which can include:
PF1

Help information (all panels)
PF2

Delete definition from the CICS ONC RPC data set (only where shown)
PF3

Exit CRPC (you are prompted to confirm by using PF3 again)
PF4

Write fields to the CICS ONC RPC data set (only where shown)
PF7

Scroll up (only where shown)
PF8

Scroll down (only where shown)
PF9

Display messages relating to current input
PF12

Cancel this panel and return to the previous panel

Connection manager error message output
The destination of connection manager messages depends on the nature of the message.

• Severe errors requiring operator intervention are sent to the console. No other messages go to the
console.

• Messages relating to invalid input on the panel can be displayed by pressing PF9.
• Messages reporting internal errors are sent to CRPO, and in most cases they can be displayed on the

terminal by pressing PF9.

106 CICS TS for z/OS: External Interfaces Guide

Using PF9 to display messages
During the operation of the connection manager, error messages might be issued.

These are not displayed immediately on the screen, but a prompt appears on the prompt line to say that
messages are waiting to be viewed. To see the messages, press PF9. The number and text of the
messages is displayed.

When you have read the messages, you can press Enter, PF3, or PF12 to return to the input panel.

Starting the connection manager when CICS ONC RPC is disabled
If CICS ONC RPC is disabled, panel DFHRP01 is shown.

(See Figure 24 on page 105.)

Select an option, then press Enter.
Option

For more information see:
1

“Enabling CICS ONC RPC” on page 109
2

“Updating the CICS ONC RPC data set” on page 120

Starting the connection manager when CICS ONC RPC is enabled
If CICS ONC RPC is enabled, panel DFHRP04 is shown.

(See Figure 25 on page 106.)

Select an option, then press Enter.
Option

For more information see:
1

“Disabling CICS ONC RPC” on page 119
2

“Updating the CICS ONC RPC data set” on page 120
3

“Updating CICS ONC RPC status” on page 107

Updating CICS ONC RPC status
If you select option 3 on panel DFHRP04, panel DFHRP10 is shown.

Chapter 3. CICS ONC RPC support 107

CRPC CICS ONC RPC for MVS/ESA Update Status DFHRP10

Select one of the following. Then press Enter.

_ 1. Change CICS ONC RPC settings
 2. Register procedure(s)
 3. Unregister procedure(s)
 4. View or modify alias list

Current Status: Enabled

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF9=Messages PF12=Return

Figure 26. Panel DFHRP10

Select an option, then press Enter.
Option

For more information see:
1

“Changing the CICS ONC RPC status” on page 108
2

“Defining, saving, modifying, and deleting 4-tuples” on page 111
3

“Unregistering 4-tuples” on page 116
4

“Processing the alias list” on page 124

Changing the CICS ONC RPC status
If you select option 1 on panel DFHRP10, panel DFHRP16 is shown.

You can type over any of the entries except CRPM Userid to change the values currently used by CICS
ONC RPC. CRPM Userid is displayed only for information. CRPM Userid cannot be changed without first
disabling CICS ONC RPC.

108 CICS TS for z/OS: External Interfaces Guide

CRPC CICS ONC RPC for MVS/ESA Status DFHRP16

 Trace(STARTED) Trace Level(1)
 Resource Checker(NO) CRPM Userid(CICSUSER)

Current Status: Enabled

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF9=Messages PF12=Return

Figure 27. Panel DFHRP16

Enabling CICS ONC RPC
You can enable CICS ONC RPC in two ways: operator-assisted enable, or automatic enable.

When CICS ONC RPC is disabled, the connection manager allows you to:

• Create or update the CICS ONC RPC definition record in the data set
• Add, delete, and change 4-tuple records in the data set
• Enable CICS ONC RPC

You can use the connection manager to enable CICS ONC RPC in two ways:

• Operator-assisted enable—before you enable CICS ONC RPC, you can:

– Modify any or all of the options
– Select which 4-tuples are to be registered
– Modify the attributes of 4-tuples before registration

When you enable CICS ONC RPC, options to control its operation come into play, and 4-tuples can be
registered.

The changes you make during an operator-assisted enable can be temporary, lasting only until the next
time you disable CICS ONC RPC, or you can store them into the CICS ONC RPC data set, and use them
the next time you enable CICS ONC RPC.

• Automatic enable—the contents of the CICS ONC RPC definition record determine the options to control
the operation of CICS ONC RPC until the next time you disable it. Some 4-tuples might be registered,
depending on an attribute in the 4-tuple definition.

The CICS ONC RPC data set is a store of operating environment information. It contains two kinds of
records: the CICS ONC RPC definition record contains the operating options, and 4-tuple records contain
the 4-tuple information.

Setting and modifying options
If you start the connection manager when CICS ONC RPC is disabled, and select option 1 on panel
DFHRP01, panel DFHRP02 is shown.

Chapter 3. CICS ONC RPC support 109

CRPC CICS ONC RPC for MVS/ESA Enable DFHRP02

Overtype to Modify
 Choice Possible Options

Trace ===> STARTED STArted | STOpped

Trace Level ===> 1 1 | 2

Resource Checker ===> NO Yes | No

CRPM Userid ===> CICSUSER

Automatic Enable ===> NO Yes | No

Current Status: Disabled

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF4=Save PF9=Messages PF12=Return

Figure 28. Panel DFHRP02

The values displayed in the Choice column are those stored in the CICS ONC RPC data set. The data set is
initialized with the values shown in Figure 28 on page 110, except that the value displayed for CRPM
Userid is the default CICS user ID for the CICS system in which CICS ONC RPC is operating.

You can make entries in the following fields. Entries may be in lowercase or uppercase. Where entries to a
field are restricted (for example, YES or NO) you can enter the whole option (YES) or the minimum (Y). In
the panels, the minimum entry is shown in uppercase in the Possible Options column. In the reference
material in this manual, the minimum entry is given in parentheses after the full entry.
Trace

Specifies whether CICS ONC RPC tracing is active. STARTED (STA) means it is active, STOPPED (STO)
means it is not. The default value is STARTED.

CICS ONC RPC exception trace entries are always written to CICS internal trace whatever the setting
of this option. To get non-exception trace entries written, CICS trace must be started, and this option
must be set to STARTED.

Trace Level
Specifies the trace level for CICS ONC RPC. The value 1 means that level 1 trace points are traced,
and 2 means that both level 1 and 2 are traced. The default value is 1.

Resource Checker
YES (Y) means that CICS ONC RPC is to call the user-written resource-checking module on receipt of
every incoming RPC request. NO (N) means the resource checker is not to be called. The default is
NO.

CRPM Userid
Specifies the CICS user ID under which the server controller is to run. The default is the default user
ID for the CICS system in which CICS ONC RPC is operating.

Automatic Enable
Enter YES (Y) or NO (N). If YES is stored in the CICS ONC RPC data set, you can enable CICS ONC RPC
by just typing CRPC; all values are defaulted from the CICS ONC RPC data set, CICS ONC RPC
becomes enabled without further user input, and all the 4-tuples with YES for their Register from Data
Set option are registered. The default value is NO.

Setting this field has an effect only when you enable CICS ONC RPC. If you use PF4 to save the values
to the CICS ONC RPC data set, this value will be effective the next time you enable, unless you
override it. A YES in this field in the CICS ONC RPC data set may be overridden by the fast path
command CRPC E A(N).

110 CICS TS for z/OS: External Interfaces Guide

Validating, saving, and activating options
After you have made your changes on panel DFHRP02, press Enter to get them validated by the
connection manager.

If you want to save the new values in the CICS ONC RPC data set, press PF4.

If you press Enter a second time, CICS ONC RPC becomes enabled, and panel DFHRP03 is shown, as
described in “Defining, saving, modifying, and deleting 4-tuples” on page 111.

When CICS ONC RPC is enabled

When CICS ONC RPC is enabled, the connection manager allows you to:

• Update the CICS ONC RPC definition record in the data set
• Add, delete, and change 4-tuple records in the data set
• Change the options being used to control the operation of CICS ONC RPC
• Register 4-tuple definitions from the data set
• Create temporary 4-tuple definitions and register them
• Unregister 4-tuple definitions
• Disable CICS ONC RPC

There are two ways of disabling CICS ONC RPC: normal, and immediate. The effects of disable processing
are described in “Disabling CICS ONC RPC” on page 119.

Defining, saving, modifying, and deleting 4-tuples
The first panel for defining, saving, modifying, and deleting 4-tuples is DFHRP03.

The first panel for defining, saving, modifying, and deleting 4-tuples is DFHRP03. (See Figure 29 on page
111.) This panel is shown as soon as you have enabled CICS ONC RPC, or if you choose option 2 on panel
DFHRP10.

CRPC CICS ONC RPC for MVS/ESA DFHRP03
 Remote Procedure Registration

Select one of the following. Then press Enter.

_ 1. Register procedures from the data set
 2. List procedures sequentially
 3. Register a new procedure
 4. Retrieve a specified procedure from the data set (Enter required data)
 Program Number ===> ________ 0-FFFFFFFF
 Version Number ===> ________ 0-FFFFFFFF
 Procedure Number ===> ________ 1-FFFFFFFF
 Protocol ===> UDP Udp | Tcp

Current Status: Enabled

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF9=Messages PF12=Return

Figure 29. Panel DFHRP03

Option
For more information see:

1
See information later in this section.

Chapter 3. CICS ONC RPC support 111

2
“Defining the attributes of a 4-tuple” on page 112

3
“Unregistering 4-tuples” on page 116

4
See information later in this section.

If you select option 1, the 4-tuples in the CICS ONC RPC data set that have YES for their Register from
Data Set attribute are all registered.

If you specify a 4-tuple for which there is no definition in the CICS ONC RPC data set, a message is issued
when you press Enter, and panel DFHRP03 remains on the screen.

Defining the attributes of a 4-tuple
When you select option 3 or option 4 on panel DFHRP03, panel DFHRP5 is shown. If you chose option 3,
some of the fields are empty, but if you chose option 4, the details of the selected 4-tuple are shown. You
have to supply more information on panel DFHRP5B.

112 CICS TS for z/OS: External Interfaces Guide

CRPC CICS ONC RPC for MVS/ESA Remote Procedure Registration DFHRP5

Overtype to Modify. Then press Enter to Validate

 ONC RPC ATTRIBUTES
 ONC RPC Program Number ===> ________ 0-FFFFFFFF
 ONC RPC Version Number ===> ________ 0-FFFFFFFF
 ONC RPC Procedure Number ===> ________ 1-FFFFFFFF
 Protocol ===> UDP Udp | Tcp
 RPC Call Type ===> BLOCKING Blocking | Nonblocking
 Inbound XDR Routine ===> ______________
 Outbound XDR Routine ===> ______________
 CICS ATTRIBUTES
 ALIAS Transaction ID ===> CRPA
 EDF Terminal ID ===> ____
+ Program Name ===> ________

Current Status: Enabled

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF4=Save PF8=Forward PF9=Messages PF12=Return

CRPC CICS ONC RPC for MVS/ESA Remote Procedure Registration DFHRP5B

Overtype to Modify. Then press Enter to Validate

+ CICS ONC RPC ATTRIBUTES
 Converter Program Name ===> ________
 Encode ===> NO Yes | No
 Decode ===> YES Yes | No
 Getlengths ===> YES Yes | No
 Server Input Length ===> _____ 0 - 32767 Bytes
 Server Output Length ===> _____ 0 - 32767 Bytes
 Server Data Format ===> CONTIGUOUS Contiguous | Overlaid
 Register from Data set ===> YES Yes | No

Current Status: Enabled

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF4=Save PF7=Back PF9=Messages PF12=Return

Figure 30. Panels DFHRP5 and DFHRP5B

After you have made your modifications to panel DFHRP5, you should press PF8 to move to panel
DFHRP5B. From panel DFHRP5B you can press PF7 if you want to go back to panel DFHRP5. After you
have made your modifications to the panels, you press Enter to get all the modifications validated.

The attributes of a 4-tuple are divided into three categories:

• ONC RPC attributes
• CICS attributes
• CICS ONC RPC attributes

ONC RPC attributes
The first four options establish the 4-tuple whose attributes are being defined.

ONC RPC Program Number
Specifies the program number of the 4-tuple as a hexadecimal string of 1 through 8 characters. You
are advised not to use numbers in the range 0 through 1FFFFFFF, as these numbers are reserved for
public network services and are allocated by Sun Microsystems.

Chapter 3. CICS ONC RPC support 113

ONC RPC Version Number
Specifies the version number of the 4-tuple as a hexadecimal string of 1 through 8 characters.

ONC RPC Procedure Number
Specifies the procedure number of the 4-tuple as a hexadecimal string of 1 through 8 characters.
Procedure 0 is reserved by z/OS Communications Server for a procedure with no parameters and no
processing that returns an empty reply.

Protocol
Specifies the protocol of the 4-tuple. UDP (U) for UDP, or TCP (T) for TCP.

The remaining options specify the attributes of the 4-tuple.
RPC Call Type

Specifies whether CICS ONC RPC is to treat calls from clients as BLOCKING (B) or NONBLOCKING (N).
If NONBLOCKING is specified, the outbound XDR routine cannot be specified, and no reply is sent to
the client. The default is BLOCKING.

Inbound XDR Routine
Specifies the name of the inbound XDR routine. If an XDR library function is used, its full name is
specified. See Step 3—Write the XDR routines to find out which library routines can be specified here.
If a user-defined routine is used, its name (maximum 8 characters) is specified.

Outbound XDR Routine
Specifies the name of the outbound XDR routine, if RPC Call Type is BLOCKING. If an XDR library
function is used, its full name is specified. See Step 3—Write the XDR routines to find out which library
routines can be specified here. If a user-defined routine is used, its name (maximum 8 characters) is
specified. A blank input is valid only if RPC Call Type is NONBLOCKING.

CICS attributes
The alias transaction ID, EDF terminal ID, and program name are the attributes you must specify for CICS.

ALIAS Transaction ID
Specifies the transaction ID to be used for the alias. If this is omitted, and not provided by the Decode
function, the alias transaction ID is CRPA. For reasons why you might want a different name from
CRPA, see “Transaction definitions for extra alias transactions” on page 102.

EDF Terminal ID
Specifies the terminal ID to be used for the alias. You need a terminal ID only if you want to use
execution diagnostic facility (EDF) to debug the resource checker, CICS program, or Encode function
of the converter. A blank means that you cannot use EDF. EDF setup is described in Using EDF.

Program Name
Specifies the name of the CICS program that is to be called to service a request for this 4-tuple.

CICS ONC RPC attributes

Converter Program Name
Specifies the name of the converter program. This name must be specified.

Encode
YES (Y) means that CICS ONC RPC must call the Encode function of the converter when servicing a
client request for this 4-tuple; NO (N) means that it must not. The default is NO.

Decode
YES (Y) means that CICS ONC RPC must call the Decode function of the converter when servicing a
client request for this 4-tuple; NO (N) means that it must not. The default is YES.

Getlengths
YES (Y) means that the connection manager must call the Getlengths function of the converter before
registering this 4-tuple. NO (N) means that it must not. If you specify YES here, you should ignore the
next two attributes, but you can set Server Data Format. If you specify NO here, you must specify the
next three attributes. The default is YES.

Server Input Length
For the use of this option, see the description of Server Data Format.

114 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm8k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/dfhtm8k.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/troubleshooting/interfaces/dfhtm9i.html

If you specified YES for the Getlengths option, leave this field blank.

Server Output Length
For the use of this option, see the description of Server Data Format.

If you specified YES for the Getlengths option, leave this field blank.

Server Data Format
A value that controls:

• How the input data pointer for Encode will be set up
• How the communication area length to be checked by the connection manager is calculated

The values you can specify are as follows:
CONTIGUOUS

The value of the data pointer that will be passed to Encode, or to the outbound XDR routine if
Encode is not used for this 4-tuple, is the address of the CICS program communication area plus
the value of Server Input Length, though Decode can modify this offset.

The connection manager calculates a communication area length by adding the values of Server
Input Length and Server Output Length. If this length exceeds 32␠767 bytes, message
DFHRP1965 is issued. If this length is different from the actual length of the communication area
passed from Decode to the CICS program, errors might occur in the processing of client requests.

OVERLAID
The value of the data pointer that will be passed to Encode, or to the outbound XDR routine if
Encode is not used for this 4-tuple, is the address of the CICS program communication area.

The connection manager calculates a communication area length by taking the larger of the
output values of Server Input Length and Server Output Length. If this length is different from the
actual length of the communication area passed to the CICS program, errors might occur in the
processing of client requests.

If you specified YES for the Getlengths option, the value in this field is used as an input to the
Getlengths function of the converter.

Register from Data Set
YES (Y) means that the 4-tuple is to be registered:

• During automatic enable processing
• When option 1 is selected on panel DFHRP03, as described in “Registering the 4-tuples” on page

116

NO (N) means that it is not. The default is YES. Entries specified as NO can be stored in the CICS ONC
RPC data set and you can register them at any time when CICS ONC RPC is enabled.

Saving new 4-tuple definitions
There are five ways of saving new 4-tuple definitions.

• On panel DFHRP03, select option 3. Complete panels DFHRP5 and DFHRP5B, and validate your input as
described in “Defining the attributes of a 4-tuple” on page 112. Press PF4 to save the definition in the
CICS ONC RPC data set.

• On panel DFHRP03, select option 4. Modify the panels DFHRP5 and DFHRP5B, and validate your input
as described in “Defining the attributes of a 4-tuple” on page 112. Press PF4 to save the definition in
the CICS ONC RPC data set.

• On panel DFHRP20, select option 3. Complete panels DFHRP21 and DFHRP2B, and validate your input
as described in “Changing the attributes of a 4-tuple” on page 123. Press Enter to save the definition in
the CICS ONC RPC data set.

• On panel DFHRP20, select option 4. Modify the panels DFHRP21 and DFHRP2B, and validate your input
as described in “Changing the attributes of a 4-tuple” on page 123. Press Enter to save the definition in
the CICS ONC RPC data set.

Chapter 3. CICS ONC RPC support 115

• On panel DFHRP03, select option 2. Then on panel DFHRP14, enter command M against a 4-tuple.
Modify the panels DFHRP21 and DFHRP2B, and validate your input as described in “Changing the
attributes of a 4-tuple” on page 123. Press Enter to save the definition in the CICS ONC RPC data set.

Modifying existing 4-tuple definitions
To change some of the attributes of a 4-tuple that already has a definition in the CICS ONC RPC data set,
select option 4 on panel DFHRP03 or panel DFHRP20.

Deleting existing 4-tuple definitions
You can delete existing 4-tuple definitions from the CICS ONC RPC data set in two ways.

• On panel DFHRP03, select option 2. Then on panel DFHRP14 you can enter D against 4-tuples in the
list, and they are deleted from the data set when you press Enter.

• On panel DFHRP21, by using key PF2, as described in “Changing the attributes of a 4-tuple” on page
123.

Registering the 4-tuples
You can register 4-tuples in any of the following ways.

• You can register all the 4-tuples in the CICS ONC RPC data set that are defined with YES specified for
Register from Data Set. To do this, select option 1 on panel DFHRP03, and press Enter. After these 4-
tuples have been registered, panel DFHRP03 is still displayed, so you can make other selections.

• You can register 4-tuple definitions one at a time. To do this, you use option 3 or option 4 on panel
DFHRP03. Make changes, if you need any, to panels DFHRP5 and DFHRP5B and get them validated as
described in “Defining the attributes of a 4-tuple” on page 112. To register the definition, press Enter.

• You can register 4-tuples from a list. See “Working with a list of 4-tuples” on page 122.
• When CICS ONC RPC is disabled, you can register all the 4-tuples in the CICS ONC RPC data set that

have YES for their Register from Data Set attribute by initiating automatic enable processing.

When a 4-tuple is registered, two things happen:

• If the program-version-protocol 3-tuple has not yet been registered with TCP/IP for MVS, it is
registered. The Portmapper assigns a port number to this combination, and that port number is the one
that clients use to request the service represented by this 4-tuple. Procedure 0 for the program,
version, and protocol becomes available to callers.

• The resources associated with the 4-tuple become available to service client requests. When a client
request arrives in CICS ONC RPC, the resources used to service it are those of the 4-tuple whose
program, version, and procedure numbers match those of the request, and whose protocol matches the
protocol used to transmit the request from the client to the server.

Limits on registration
CICS ONC RPC makes a total of 252 sockets available for use. One socket is used by each program/
version/protocol 3-tuple from the time the first 4-tuple for that program, version and protocol is
registered. This socket remains in use until the last 4-tuple with that program and version is unregistered.
One socket is used by each TCP call for the duration of the call.

If you register too many 4-tuples, you reduce the service that CICS ONC RPC can give to incoming client
requests. If you attempt to register more than 252 program-version-protocol 3-tuples with z/OS
Communications Server, the results are unpredictable.

Unregistering 4-tuples
You can unregister 4-tuples that have previously been registered with CICS ONC RPC only when CICS
ONC RPC is already enabled.

From panel DFHRP10, if you select option 3, panel DFHRP11 is shown. (See Figure 31 on page 117.)

116 CICS TS for z/OS: External Interfaces Guide

CRPC CICS ONC RPC for MVS/ESA DFHRP11
 Remote Procedure Unregister

Select one of the following. Then press Enter.

_ 1. Unregister procedures from a list
 2. Unregister a specified procedure (Enter required data)
 Program Number ===> ________ 0-FFFFFFFF
 Version Number ===> ________ 0-FFFFFFFF
 Procedure Number ===> ________ 1-FFFFFFFF
 Protocol ===> UDP Udp | Tcp

Current Status: Enabled

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF9=Messages PF12=Return

Figure 31. Panel DFHRP11

Select an option, then press Enter.
Option

For more information see:
1

“Unregistering 4-tuples from a list” on page 117
2

“Unregistering 4-tuples one by one” on page 117

Unregistering 4-tuples one by one
Before you select option 2 on panel DFHRP11, you must supply the program number, version number,
procedure number, and the protocol.

Program Number
The program number of the 4-tuple to be unregistered.

Version Number
The version number of the 4-tuple to be unregistered.

Procedure Number
The procedure number of the 4-tuple to be unregistered.

Protocol
The protocol of the 4-tuple to be unregistered.

If you specify a 4-tuple that is registered, it is unregistered when you press Enter, and panel DFHRP11
remains on the screen.

If you specify a 4-tuple that is not registered, a message is issued when you press Enter, and panel
DFHRP11 remains on the screen.

Unregistering 4-tuples from a list
If you select option 1 on panel DFHRP11, the panel DFHRP12 is shown.

This panel presents a list of 4-tuples currently registered with CICS ONC RPC. If you enter U against 4-
tuples in the list, they are unregistered when you press Enter. You can display the attributes of a 4-tuple
by entering ? against it, and pressing Enter. Panel DFHRP13 is shown. (See Figure 33 on page 118.)

Chapter 3. CICS ONC RPC support 117

CRPC CICS ONC RPC for MVS/ESA DFHRP12
 Registered Procedures List

Enter 'U' to Unregister, or '?' to display details of a procedure
 _ Prog(20000002) Vers(00000001) Proc(00000006) Prot(UDP)
 _ Prog(20000002) Vers(00000001) Proc(00000007) Prot(TCP)
 _ Prog(20000002) Vers(00000001) Proc(00000007) Prot(UDP)
 _ Prog(20000002) Vers(00000001) Proc(00000008) Prot(TCP)
 _ Prog(20000002) Vers(00000001) Proc(00000009) Prot(UDP)
 _ Prog(20000002) Vers(00000001) Proc(0000000A) Prot(TCP)
 _ Prog(20000002) Vers(00000001) Proc(0000000B) Prot(TCP)
 _ Prog(20000002) Vers(00000001) Proc(0000000B) Prot(UDP)
 _ Prog(20000002) Vers(00000001) Proc(0000000C) Prot(TCP)
 _ Prog(20000002) Vers(00000001) Proc(0000000C) Prot(UDP)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
Current Status: Enabled

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF2=Refresh PF3=Exit PF7=Back PF8=Forward PF9=Messages PF12=Return

Figure 32. Panel DFHRP12

CRPC CICS ONC RPC for MVS/ESA DFHRP13
 Display Registered Procedure

 Program Number(20000002) Version Number(00000001)
 Procedure Number(00000006) Protocol(UDP)
 RPC Call Type(Blocking) Inbound XDR(XDR_WRAPSTRING)
 Outbound XDR(XDR_WRAPSTRING) Alias Transid(CRPA)
 Alias Termid() Server Program Name(STRING6)
 Converter Program Name(RINGCVNY) Getlengths(NO)
 Decode(YES) Encode(NO)
 Server Input Length(00001) Server Output Length(00001)
 Server Data Format(CONTIGUOUS)

Current Status: Enabled

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF12=Return

Figure 33. Panel DFHRP13

118 CICS TS for z/OS: External Interfaces Guide

Disabling CICS ONC RPC
From panel DFHRP04, select option 1; panel DFHRP06 is shown.

CRPC CICS ONC RPC for MVS/ESA Disable DFHRP06

Select the type of disable required. Then press Enter.

 Type of Disable ===> _________ Normal | Immediate

Current Status: Enabled

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF9=Messages PF12=Return

Figure 34. Panel DFHRP06

In this panel there is only one field to enter.
Type of Disable

NORMAL (N)
Normal disable processing is started.

• All program-version pairs are unregistered from z/OS Communications Server.
• All work that has already entered CICS ONC RPC is allowed to run to completion, and replies are

sent to the relevant client.

IMMEDIATE (I)
Immediate disable processing is started.

• Aliases not yet started do not start at all.
• CICS programs running under aliases are allowed to end, and then the alias abends. If the CICS

program ends normally, and was called using DPL, the changes it makes to recoverable
resources are committed. If the CICS program is a local program, the changes it makes to
recoverable resources are backed out unless the CICS program takes a sync point with EXEC
CICS SYNCPOINT.

• All the program-version pairs are unregistered from z/OS Communications Server.
• No replies are sent to clients, so they do not know whether the CICS program has run or not.

Pressing Enter causes the entry you have made to be validated. Pressing Enter a second time begins
disable processing. The Current Status is changed to Disabling or Disabled, depending on the progress of
disable processing. When disable processing is complete, pressing Enter changes the Current Status to
Disabled.

The panel is displayed until you use PF3 or PF12.

On CICS normal shutdown
CICS normal shutdown starts normal disable processing for CICS ONC RPC.

Chapter 3. CICS ONC RPC support 119

On CICS immediate shutdown
On CICS immediate shutdown, all transactions are terminated. Clients are not informed of the shutdown
or its effects. The program-version-protocol 3-tuples that are registered with z/OS Communications
Server might remain registered.

Updating the CICS ONC RPC data set
If you select option 2 on panel DFHRP01, or option 2 on panel DFHRP04, panel DFHRP20 is shown.

CRPC CICS ONC RPC for MVS/ESA DFHRP20
 Update CICS ONC RPC Data set

Select one of the following. Then press Enter.

_ 1. View or modify the CICS ONC RPC definition record
 2. Display a list of remote procedure definitions
 3. Define a new procedure
 4. Retrieve a specified procedure from the data set (Enter required data)
 Program Number ===> ________ 0-FFFFFFFF
 Version Number ===> ________ 0-FFFFFFFF
 Procedure Number ===> ________ 1-FFFFFFFF
 Protocol ===> UDP Udp | Tcp

Current Status:

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF9=Messages PF12=Return

Figure 35. Panel DFHRP20

The Current Status field in this panel might show Enabled or Disabled, depending on which panel you
came from.

Before selecting option 4, you must supply the following information:

Program Number
The program number of the 4-tuple whose definition is to be retrieved.

Version Number
The version number of the 4-tuple whose definition is to be retrieved.

Procedure Number
The procedure number of the 4-tuple whose definition is to be retrieved.

Protocol
The protocol of the 4-tuple whose definition is to be retrieved.

Select an option, then press Enter.
Option

For more information see:
1

“Updating the CICS ONC RPC definition record” on page 121
2

“Working with a list of 4-tuples” on page 122
3

“Changing the attributes of a 4-tuple” on page 123
4

“Changing the attributes of a 4-tuple” on page 123

120 CICS TS for z/OS: External Interfaces Guide

If you specify a 4-tuple which is not defined in the CICS ONC RPC data set, a message is issued when you
press Enter, and panel DFHRP20 remains on the screen.

Updating the CICS ONC RPC definition record
If you select option 1 on panel DFHRP20, panel DFHRP22 is shown.

CRPC CICS ONC RPC for MVS/ESA DFHRP22
 Update CICS ONC RPC Definition Record
Overtype to Modify
 Choice Possible Options

Trace ===> STARTED STArted | STOpped

Trace Level ===> 1 1 | 2

Resource Checker ===> NO Yes | No

CRPM Userid ===> CICSUSER

Automatic Enable ===> NO Yes | No

Current Status:

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF9=Messages PF12=Return

Figure 36. Panel DFHRP22

The values displayed in the Choice column are those stored in the CICS ONC RPC data set.

After you have made your changes you should press Enter to get them validated. You can then press Enter
again to update the CICS ONC RPC data set with the values you have supplied. The next time you start the
connection manager, the saved options are used to set up panel DFHRP02
Trace

Specifies whether CICS ONC RPC tracing is active. STARTED (STA) means it is active, STOPPED (STO)
means it is not. The default value is STARTED.

CICS ONC RPC exception trace entries are always written to CICS internal trace whatever the setting
of this option. To get non-exception trace entries written, CICS trace must be started, and this option
must be set to STARTED.

Trace Level
Specifies the trace level for CICS ONC RPC. The value 1 means that level 1 trace points are traced, 2
means that both level 1 and level 2 are traced. The default value is 1.

Resource Checker
YES (Y) means that CICS ONC RPC is to call the user-written resource-checking module on receipt of
every incoming RPC request. NO (N) means the resource checker is not to be called. The default is
NO.

CRPM Userid
Specifies the CICS user ID under which the server controller is to operate. The default is the default
user ID for the CICS system in which CICS ONC RPC is operating.

Automatic Enable
Enter YES (Y) or NO (N). If YES is stored in the CICS ONC RPC data set, you can enable CICS ONC RPC
by just typing CRPC; all values are defaulted from the CICS ONC RPC data set, CICS ONC RPC
becomes enabled without further user input, and all the 4-tuples with YES for their Register from Data
Set option are registered. The default value is NO.

Chapter 3. CICS ONC RPC support 121

Setting this field has an effect only when you enable CICS ONC RPC. If you save the values to the CICS
ONC RPC data set, this value will be effective the next time you enable, unless you override it. The
value of this field in the CICS ONC RPC data set may be overridden by the fast path command CRPC E
A(N).

Working with a list of 4-tuples
If you select option 2 on panel DFHRP03, or option 2 on panel DFHRP20, panel DFHRP14 is shown.

CRPC CICS ONC RPC for MVS/ESA DFHRP14
 Remote Procedure Definition List

Enter a command (press PF1 to view the list of valid commands).
 _ Prog(20000002) Vers(00000001) Proc(00000006) Prot(UDP)
 _ Prog(20000002) Vers(00000001) Proc(00000007) Prot(TCP)
 _ Prog(20000002) Vers(00000001) Proc(00000007) Prot(UDP)
 _ Prog(20000002) Vers(00000001) Proc(00000008) Prot(TCP)
 _ Prog(20000002) Vers(00000001) Proc(00000009) Prot(UDP)
 _ Prog(20000002) Vers(00000001) Proc(0000000A) Prot(TCP)
 _ Prog(20000002) Vers(00000001) Proc(0000000B) Prot(TCP)
 _ Prog(20000002) Vers(00000001) Proc(0000000B) Prot(UDP)
 _ Prog(20000002) Vers(00000001) Proc(0000000C) Prot(TCP)
 _ Prog(20000002) Vers(00000001) Proc(0000000C) Prot(UDP)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
Current Status:

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF2=Refresh PF3=Exit PF7=Back PF8=Forward PF9=Messages PF12=Return

Figure 37. Panel DFHRP14

This panel presents a list of 4-tuples currently defined in the CICS ONC RPC data set. If CICS ONC RPC is
enabled, the 4-tuples that are currently registered are shown highlighted. You can put a command against
a 4-tuple, and it takes effect when you press Enter. The following commands can be entered against a 4-
tuple:
D

Deletes the definition from the data set.
R

If CICS ONC RPC is enabled, registers the 4-tuple with CICS ONC RPC. If CICS ONC RPC is disabled,
this command produces an error message.

M
Shows panel DFHRP21. See “Changing the attributes of a 4-tuple” on page 123 for details.

?
Shows panel DFHRP15, which displays the attributes of a 4-tuple, but does not allow changes.

122 CICS TS for z/OS: External Interfaces Guide

CRPC CICS ONC RPC for MVS/ESA DFHRP15
 Display Registered Procedure

 Program Number(20000002) Version Number(00000001)
 Procedure Number(00000006) Protocol(UDP)
 RPC Call Type(Blocking) Inbound XDR(XDR_WRAPSTRING)
 Outbound XDR(XDR_WRAPSTRING) Alias Transid(CRPA)
 Alias Termid() Server Program Name(STRING6)
 Converter Program Name(RINGCVNY) Getlengths(NO)
 Decode(YES) Encode(NO)
 Server Input Length(00000) Server Output Length(00000)
 Server Data Format(CONTIGUOUS) Register from Data set(Yes)

Current Status:

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF12=Return

Figure 38. Panel DFHRP15

Changing the attributes of a 4-tuple
If you select option 3 or 4 on panel DFHRP20, or if you enter the M command on panel DFHRP14, panel
DFHRP21 is shown.

The attributes of a 4-tuple are divided into three categories:

• ONC RPC attributes—see “ONC RPC attributes” on page 113.
• CICS attributes—see EDF Terminal ID.
• CICS ONC RPC attributes—see “CICS ONC RPC attributes” on page 114.

Chapter 3. CICS ONC RPC support 123

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/interfaces/dfhtm88.html

CRPC CICS ONC RPC for MVS/ESA Remote Procedure Definition DFHRP21

Overtype to Modify. Then press Enter to Validate

 ONC RPC ATTRIBUTES
 ONC RPC Program Number ===> ________ 0-FFFFFFFF
 ONC RPC Version Number ===> ________ 0-FFFFFFFF
 ONC RPC Procedure Number ===> ________ 1-FFFFFFFF
 Protocol ===> UDP Udp | Tcp
 RPC Call Type ===> BLOCKING Blocking | Nonblocking
 Inbound XDR Routine ===> ______________
 Outbound XDR Routine ===> ______________
 CICS ATTRIBUTES
 ALIAS Transaction ID ===> CRPA
 EDF Terminal ID ===> ____
+ Program Name ===> ________

Current Status:

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF2=Delete PF3=Exit PF8=Forward PF9=Messages PF12=Return

CRPC CICS ONC RPC for MVS/ESA Remote Procedure Registration DFHRP2B

Overtype to Modify. Then press Enter to Validate

+ CICS ONC RPC ATTRIBUTES
 Converter Program Name ===> ________
 Encode ===> NO Yes | No
 Decode ===> YES Yes | No
 Getlengths ===> YES Yes | No
 Server Input Length ===> _____ 0 - 32767 Bytes
 Server Output Length ===> _____ 0 - 32767 Bytes
 Server Data Format ===> CONTIGUOUS Contiguous | Overlaid
 Register from Data set ===> YES Yes | No

Current Status:

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF2=Delete PF3=Exit PF7=Back PF9=Messages PF12=Return

Figure 39. Panels DFHRP21 and DFHRP2B

You can use these panels to delete a 4-tuple definition from the CICS ONC RPC data set by pressing PF2.

If you want to modify the 4-tuple definition, you should first make modifications to panel DFHRP21, and
then press PF8 to move to panel DFHRP2B. From panel DFHRP2B you can press PF7 if you want to go
back to panel DFHRP21. After you have made your modifications to the panels, you should press Enter to
get all the modifications validated, and then press Enter again to get the definition changed.

Processing the alias list
If you select option 4 on panel DFHRP10, panel DFHRP17 is shown.

This panel gives a list of the aliases that have been started, or scheduled, by the server controller, but
have not yet ended. Each alias has two lines on the panel.

• The first line shows the 4-tuple for the client request.
• The second line shows the CICS task number of the alias that is processing the client request.

If the alias is scheduled, but not yet started, the task number is blank. If the alias has started, a task
number is given and the line is highlighted.

124 CICS TS for z/OS: External Interfaces Guide

You can enter the following commands against an alias:
P

Purges the alias.
?

Shows panel DFHRP18, which displays details of the alias and the associated client request. (See
Figure 41 on page 125.)

If the alias is scheduled, but not yet started, the task number and start time are blank. If the alias has
started, a task number and start time are given.

CRPC CICS ONC RPC for MVS/ESA DFHRP17
 Alias List

Enter 'P' to Purge, or '?' to display details of an alias task
 _ Prog(00000103) Vers(00000114) Proc(00000001) Prot(UDP)
 Task Number(00000033)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
 Task Number(________)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
 Task Number(________)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
 Task Number(________)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
 Task Number(________)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
 Task Number(________)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
 Task Number(________)
 _ Prog(________) Vers(________) Proc(________) Prot(___)
 Task Number(________)
Current Status: Enabled

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF2=Refresh PF3=Exit PF7=Back PF8=Forward PF9=Messages PF12=Return

Figure 40. Panel DFHRP17

CRPC CICS ONC RPC for MVS/ESA DFHRP18
 Display Alias Task Details

 Program Number(00000103) Version Number(00000114)
 Procedure Number(00000001) Protocol(UDP)
 Task Number(00000033) Client IP Addr(9.20.2.19)
 CICS Program Name(RPROC103) Transid(CRPA)
 Port Number(000007BC) Socket Descriptor(00000003)
 Task Start Time(14:38:19) Termid()

Current Status: Enabled

 SYSID= CI41 APPLID= IYK1ZFL1
PF1=Help PF3=Exit PF12=Return

Figure 41. Panel DFHRP18

Developing CICS ONC RPC applications
Important: This information contains Product-sensitive Programming Interface and Associated Guidance
Information.

Chapter 3. CICS ONC RPC support 125

This section tells you how to write CICS ONC RPC user-replaceable programs. It describes the general
process of development, including details of the interfaces to the converter functions.

Developing an ONC RPC application for CICS ONC RPC
ONC RPC applications are always developed as client/server pairs.

The process described in this section takes account of this, but concentrates on the server, because CICS
ONC RPC affects this and not the client. For details of the client development process, read the
documentation of the ONC RPC system running on the client machine.

The process of developing all the material needed for an ONC RPC application using CICS ONC RPC is
summarized in Figure 42 on page 126 , which showed the process for ONC RPC without CICS ONC RPC.

Client
application
source

Client
stub

Header
files

Converter
application
source

XDR
routines

RPCL
program

RPCGEN

Client
application

XDR
program

Client
object

Client
stub
object

XDR
object

Converter
object

C C C C

Link Link Link

Converter

Figure 42. Program development with CICS ONC RPC

The figure shows the development process when RPCGEN is used to create source text from the interface
definition in the RPCL program. If you do not use RPCGEN, you must supply some of its output - XDR
routines and header files - yourself. The development of the CICS program to service client requests is
not shown.

The sequence of development of an ONC RPC application is summarized in the following steps. Each step
is described in detail in the sections following the summary.

1. Decide what data is to be sent from client to server and what is to be returned. If the data structures
the client uses are not simple, you might choose to use RPCGEN to help with managing the data. If you
choose to use RPCGEN, some of its output is useful for writing the user-replaceable programs for CICS
ONC RPC.

2. Decide the format of the communication area to be used by the CICS program. If the client is to use an
existing CICS program, the format is already decided.

3. Write the XDR routines. If the translations you need can be done by an XDR library function supported
by the connection manager (see Table 16 on page 127), you do not need to write an XDR routine. If
you used RPCGEN, it has generated source for XDR routines. In any other case you must write the XDR
routines yourself.

XDR routines must be written in C.

126 CICS TS for z/OS: External Interfaces Guide

4. Write the converter. If you used RPCGEN, and you are going to write your converter in C, the header
files produced by RPCGEN describe the data structures that Decode receives and Encode returns. The
format of the CICS program communication area is also used by Decode and Encode.

5. Write the resource checker, if required. You may want to write your own resource checker to validate
incoming client requests. Security for ONC RPC tells you about this and other security facilities
available for use with CICS ONC RPC. Writing the resource checker gives you details on writing a
resource checker.

6. Compile and link the user-replaceable programs. If you used RPCGEN, the header files are needed for
the compilation of the XDR routines and the converter if it is in C.

7. Define the server application set to CICS. This means defining programs for the CICS program, any
XDR routines that are not just XDR library functions, and the converter. One or more alias transaction
definitions may also be required, see Defining CICS(r) ONC RPC resources to CICS(r) .

8. Use the connection manager to define a 4-tuple and save it in the CICS ONC RPC data set. The
definition specifies the CICS program, XDR routines, and converter, as described in Defining the
attributes of a 4-tuple.

Step 1—Decide what data is to be sent
This step is outside the scope of this manual.

What you do depends on the nature of the data to be sent with the request and with the reply. Defining
data with RPCL and the use of RPCGEN are described in Sun Microsystems’ publication Network
Programming.

Step 2—Decide the format of the communication area
This step is also outside the scope of this manual.

You are reminded that if the CICS program that services a client request is not in the same CICS region as
CICS ONC RPC, the maximum communication area length is 35 000 bytes. If the CICS program resides in
a server other than CICS Transaction Server for z/OS , other restrictions might also apply.

Step 3—Write the XDR routines
If you used RPCGEN in Step 1, you use the XDR source programs generated by RPCGEN. If the XDR
source uses the xdr_char or xdr_u_char XDR library functions, you must use the C #define directive to
make the compiler use the xdr_text_char function instead.

If the translations you need can be done by an XDR library function supported by the connection manager
(see Table 16 on page 127), you do not need to write an XDR routine. Instead you specify one of the XDR
library functions described later when you register a 4-tuple with the connection manager.

If you write your own XDR routine, you need to use the XDR library functions. The full C definitions of
these functions are documented in z/OS Communications Server: IP Programmer's Guide and Reference .

CICS ONC RPC supports only the functions listed in the following table. You should use only these
functions in your own XDR routines. These functions convert C data types to XDR formats, and XDR
formats to C data types.

Some of these function names cannot be used in the connection manager when specifying XDR library
functions for the inbound and outbound XDR routines for a 4-tuple. In the column headed CM , an asterisk
means that the XDR library routine can be specified in the connection manager, while a blank means that
it cannot.

Table 16. Supported XDR library functions

XDR library function CM C type

xdr_int * int

xdr_u_int * unsigned int

xdr_long * long

xdr_u_long * unsigned long

Chapter 3. CICS ONC RPC support 127

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/interfaces/dfhtm92.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.halx001/toc.htm

Table 16. Supported XDR library functions (continued)

XDR library function CM C type

xdr_short * short int

xdr_u_short * unsigned short int

xdr_float * float

xdr_bool * bool_t (see note)

xdr_double * double

xdr_enum enum

xdr_void * void

xdr_array variable-length array

xdr_opaque fixed-length uninterrupted data

xdr_bytes variable-length array of bytes

xdr_pointer object references, including null pointers

xdr_reference object references

xdr_char * character

xdr_u_char * unsigned character

xdr_text_char * text character

xdr_string null-terminated character arrays

xdr_vector fixed-length array with arbitrary element size

xdr_wrapstring * variable-length null-terminated character arrays

xdr_union discriminated union

Note: bool_t is not a built-in C data type; it is defined in an ONC RPC header (as a C int).

Names of user-written XDR routines are subject to the same restrictions as CICS programs.

You must take care when writing your own XDR routines. These run in the CICS address space and can
overwrite CICS code and other user application storage, because they are defined with EXECKEY(CICS).

Code page conversions
Conversion between ASCII and EBCDIC (or vice versa) is done by XDR library functions supplied as part of
z/OS Communications Server.

The relevant XDR routines are xdr_text_char , xdr_string , and xdr_wrapstring . These routines use
EBCDIC-to-ASCII and ASCII-to-EBCDIC translate tables, which are loaded at z/OS Communications
Server initialization from a data set containing one of the possible translate tables provided with z/OS
Communications Server.

Thus all ONC RPC requests from all clients use the same translate table. There is no provision for ONC
RPC data from different client workstations or from different client users to have different character sets.

Various single-byte character set (SBCS) translate tables are provided with z/OS Communications Server,
one of which is generated during z/OS Communications Server customization. If none of these is suitable,
you could provide your own, as described in z/OS Communications Server: IP Configuration Reference.

z/OS Communications Server provides several code pages for double-byte character sets (DBCS). If you
want to include DBCS in ONC RPC data, you have to write your own XDR routines to convert the double-
byte characters.

128 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.halz001/toc.htm

Step 4: Write the converter

Write the converter as described in “Write the CICS ONC RPC converter” on page 129 , using reference
information supplied in “Reference information for the converter functions” on page 136.

Step 5: Write a resource checker
This step is optional.

See Writing the resource checker for details.

Step 6—Compile and link
This step puts the programs you have written into CICS load libraries.

Converter

The header files needed to compile the converter are discussed in “Organizing the converter” on page
131.

The program is linked into a CICS load library, since it is a normal CICS program.

XDR routines
If your XDR routines are not just XDR library functions, you must compile each XDR routine separately and
link it into a CICS load library. If you used RPCL to define the data, the XDR source and header files for the
compilation have been generated by RPCGEN.

Resource checker
If you need a resource checker, you must link it into a CICS load library. It must be called DFHRPRSC.

Step 7: Make CICS definitions
You must define the CICS program, converter program, resource checker, and any XDR routines that are
not just library routines to CICS .

See Defining CICS(r) ONC RPC resources to CICS(r) .

Step 8: Make a connection manager entry
Use the connection manager to define each 4-tuple. Completing an entry for a 4-tuple in the connection
manager ensures that you provide CICS ONC RPC with all the information that it needs to service the
client request.

The fields used to define each 4-tuple are described in Defining the attributes of a 4-tuple.

Write the CICS ONC RPC converter
This section describes how you can write a converter to perform various tasks. Some of these tasks are
required for all 4-tuples, others only for some.

The section describes in turn each of the tasks, indicating the converter function (Getlengths , Decode ,
or Encode) used.

The parameter details and responses of each of the converter functions are given at the end of the section
in “Getlengths” on page 136 , “Decode” on page 138 , and “Encode” on page 143.

Tasks that can be performed by a converter

The tasks to be performed are:

• Telling the connection manager or the server controller the lengths of the input and output data for the
CICS program

• Telling the connection manager the CICS program data format
• Mapping data between client and CICS program formats
• Telling the server controller which alias and CICS program are to be used to service a request, if those
specified when the 4-tuple was defined are to be changed

Chapter 3. CICS ONC RPC support 129

Lengths of the CICS program input and output data
CICS ONC RPC needs to know the length of the CICS program input and output data for each 4-tuple.

For each 4-tuple, the lengths may be defined in one of three places:

• In the connection manager if the lengths do not vary from call to call. You specify the lengths in the
connection manager and specify NO for the Getlengths attribute of the 4-tuple. In this case Getlengths
is not called.

• In Getlengths if the lengths do not vary from call to call, returning the values in the
glength_server_input_data_len and glength_server_output_data_len output fields. In the connection
manager you specify YES for the Getlengths attribute of the 4-tuple, and leave the length fields blank.

In either of these first two cases, if Decode is specified for the 4-tuple, the Decode function can change
the lengths.

• In Decode , if the lengths of the data structures vary from call to call. You return the lengths on each call
by using the decode_server_input_data_len and decode_server_output_data_len output fields. The
lengths specified with the connection manager or Getlengths are supplied as inputs to Decode in these
fields.

Setting the CICS program data format
CICS ONC RPC needs to know the CICS program data format for each 4-tuple.

You can set this either in Getlengths or in the connection manager. If you choose Getlengths , use the
output field glength_server_data_format. The value specified with the connection manager is supplied
as input to Getlengths in this field.

Mapping data between client and CICS program formats
You need to map the incoming data intended for the CICS program only if it is not in the format required
by the CICS program.

This is typically for:

• Client data structures that contain pointers to other data. These are rebuilt by the inbound XDR routine
in the same form as they existed in the client. The data for the CICS program must be copied into a
single area of storage to be passed to the CICS program as its communication area.

• CICS programs that are written in a language other than C. The incoming client request always has a C
data structure. If your CICS program is written in COBOL, for example, you need to perform a C-to-
COBOL mapping in Decode.

The mapping is always done by Decode for the input data for the CICS program. In most cases, the output
data needs to be mapped in the opposite direction by Encode.

On input, the client data is pointed to by the Decode input field decode_client_data_ptr. Decode maps
this data into the form which the CICS program requires.

To achieve the mapping, Decode must allocate an area of CICS storage, using EXEC CICS GETMAIN
SHARED. Decode must set the output field decode_returned_data_ptr to the address returned by the
GETMAIN command, and put the input data passed from the client into the storage, making changes
where applicable.

Changing the alias and CICS program
You can use Decode to redirect a client request to another CICS program.

CICS ONC RPC then ignores the original program name that was defined in the connection manager for
the requested 4-tuple. To reroute a client request, specify a new CICS program name in the
decode_server_program field in Decode . This facility allows a client to pass a CICS program name in the
data it sends in the remote procedure call. The new CICS program must work with the same
communication area format, converter, and XDR output routine as the original program.

You can use Decode to change the name of the alias transaction to run the CICS program by setting the
decode_alias_transid output field. CICS ONC RPC then ignores the transaction ID that was defined in the
connection manager for the requested 4-tuple. This facility allows a client to pass the alias transaction ID
in the data it sends with the remote procedure call.

130 CICS TS for z/OS: External Interfaces Guide

Changing security information
You may want your CICS ONC RPC system to implement security checking on incoming client requests.
Such checking usually involves checks on the client user ID and password. One of the ways the client can
provide these is by including them in the data structure it sends.

Decode can retrieve this information from the incoming data, and return it in the output fields. The user
ID should be returned in the output field decode_userid ; the password should be returned as part of the
data pointed to by the decode_returned_data_ptr field. These outputs can either be passed by the client
or generated by Decode in whatever way you want. For instance, Decode can derive the CICS user ID and
password for the client request by using the decode_client_address field, or the authentication fields
decode_aup_… that identify the client.

Organizing the converter
You can write converters for any CICS-supported compiler. If you choose a language other than C or
COBOL, you must write your own header files to define the CICS ONC RPC data structures and constants.

A converter is passed a communication area that contains a parameter that specifies which of the three
functions Getlengths , Decode , or Encode is required, and parameters for the particular function, as
described in the reference material: “Getlengths” on page 136 , “Decode” on page 138 , and “Encode” on
page 143.

The following C header files (in the SDFHC370 target library) and COBOL copybooks (in the SDFHCOB
target library) are provided to help with writing the converter:

• DFHRPUCH for C (DFHRPUCO for COBOL)—contains definitions of the constants that are used in the
interface between CICS ONC RPC and the converter.

• DFHRPCDH for C (DFHRPCDO for COBOL)—defines the format of the communication area that is
presented to the converter. The communication area is in two parts. The format of the first part is
independent of the function that the converter is being asked to perform, and it contains:

– The eyecatcher for the requested function
– The function code for the requested function
– A response to be supplied by the converter
– A reason code to be supplied by the converter

The format of the rest of the communication area depends on the converter function requested.

You need a header file produced by RPCGEN only if you used RPCL to define the data structures, and you
are writing Decode or Encode . If you are writing your converter in a language other than C, you need to
rewrite the header file in your chosen language, since RPCGEN produces its output only in C.

You need definitions of the CICS structures that you use, and the definition of the CICS program
communication area.

Writing a converter in C

The following discussion is based on a converter that consists of four main parts:

• A routing part that consults the function code in the communication area, and then calls the appropriate
function

• A function for Getlengths processing
• A function for Decode processing
• A function for Encode processing

Figure 43 on page 132 shows how you can route control to the appropriate function.

Chapter 3. CICS ONC RPC support 131

 EXEC CICS ADDRESS EIB(dfheiptr); /*Get addressability of
EIB*/

EXEC CICS ADDRESS COMMAREA(converter_parms_ptr);

switch(converter_parms_ptr->converter_function) {

case URP_GETLENGTHS:
{
converter_getlengths();
break;
}
case URP_DECODE:
{
converter_decode();
break;
}
case URP_ENCODE:
{
converter_encode();
break;
}

default:
{
converter_parms_ptr->converter_response = URP_INVALID;
}

} /* end switch */

EXEC CICS RETURN;

} /* end main */

Figure 43. Routing control to the functions in C

In this program fragment, converter_parms_ptr is a locally declared pointer to the
converter_parms structure declared in DFHRPCDH. All the other names beginning converter_ are
names from this structure.

The processing is as follows:

1. The converter_parms_ptr pointer is set by using EXEC CICS ADDRESS COMMAREA.
2. The switch statement is used to select the function to be called. If you are not providing all the

functions, you need fewer case statements.
3. If the function is not valid, the response URP_INVALID is returned from the converter. This test is

always advised, especially if the converter does not provide all three functions.

Figure 44 on page 133 is an example of a Decode function.

132 CICS TS for z/OS: External Interfaces Guide

 void converter_decode(void)
{
decode_parms *decode_parms_ptr;

decode_parms_ptr = (decode_parms *)converter_parms_ptr;

if (strncmp
(decode_parms_ptr->decode_eyecatcher,DECODE_EYECATCHER_INIT,8)
== 0)
{
EXEC CICS GETMAIN
SET(decode_parms_ptr->decode_returned_data_ptr)
FLENGTH(sizeof(rem_proc_parms_103) + PW_LEN)
SHARED
NOSUSPEND
CICSDATAKEY
RESP(response)
RESP2(response2);

if (response != DFHRESP(NORMAL))
{
memcpy(outline,errmsg1,strlen(errmsg1));
EXEC CICS WRITEQ TD QUEUE(tdq) FROM(outline) LENGTH(30);
decode_parms_ptr->decode_response = URP_EXCEPTION;
decode_parms_ptr->decode_reason = NO_STORAGE;
}
else
{
/* move password and data to decode_password and
decode_server_input_data */

decode_parms_ptr->decode_response = URP_OK;
};
}
else
decode_parms_ptr->decode_response = URP_INVALID;
}

Figure 44. Example of a Decode function in C

In this program fragment, names beginning decode_ , except decode_parms_ptr , are names from the
decode_parms structure defined in DFHRPCDH.

The processing is as follows:

1. The pointer decode_parms_ptr is set from converter_parms_ptr.
2. The eyecatcher is checked to see if it agrees with the function code. If it does:

a. EXEC CICS GETMAIN is used to get storage for the password and for the communication area to be
passed to the CICS program. The value of PW_LEN is set elsewhere in the program to 8 by
#define . The output parameter decode_returned_data_ptr is used directly in the GETMAIN.
In this case there is no conversion of data to be done, and the communication area size is the same
as the size of the client data structure. (rem_proc_parms_103 is a structure that defines the
input data after XDR conversion.)

b. If the response to the EXEC CICS GETMAIN is not NORMAL, an error message is directed to a
transient data queue, the converter response is set to URP_EXCEPTION, and the reason code is set
to NO_STORAGE, which is locally declared.

c. If the response to the EXEC CICS GETMAIN is NORMAL, the data and password are transferred to
the storage acquired by GETMAIN (not shown), and the converter response is set to URP_OK.

3. If the eyecatcher is not the one for the function being called, the converter response is set to
URP_INVALID.

Writing a converter in COBOL
In the working storage section of the data division, you should use the COPY statement to copy the
copybook DFHRPUCO, and any other copybooks you need. You should also define any other data items
you need in working storage.

You use the COPY statement to include the definition of the communication area in the linkage section of
the data division.

Chapter 3. CICS ONC RPC support 133

Figure 45 on page 134 shows the layout of the data division. Comments, which would be part of a well-
documented converter, are omitted.

The following discussion is based on a converter that consists of four main parts:

• A routing part that consults the function code in the communication area, and then calls the appropriate
function

• A function for Getlengths processing
• A function for Decode processing
• A function for Encode processing

Figure 46 on page 135 shows how you can route control to the appropriate function.

 DATA DIVISION.

WORKING-STORAGE SECTION.

COPY DFHRPUCO.

01 RESP PIC S9(8) COMP.
01 RESP2 PIC S9(8) COMP.
01 REM-PROC-COMMSIZE PIC S9(8) COMP VALUE +12.
01 CLIENT-OUT-SIZE PIC S9(8) COMP VALUE +8.

LINKAGE SECTION.

01 DFHCOMMAREA.
02 COMM-PARMLIST PIC X(1).

01 CONVERTER-PARMS REDEFINES DFHCOMMAREA.
02 CONVERTER-EYECATCHER PIC X(8).
02 CONVERTER-FUNCTION PIC 9(8) COMP.
02 CONVERTER-RESPONSE PIC 9(8) COMP.
02 CONVERTER-REASON PIC 9(8) COMP.
02 CONVERTER-PARMLIST PIC X(1).

01 GLENGTH-PARMS REDEFINES DFHCOMMAREA.
02 GLENGTH-EYECATCHER PIC X(8).
02 GLENGTH-FUNCTION PIC 9(8) COMP.
02 GLENGTH-RESPONSE PIC 9(8) COMP.
02 GLENGTH-REASON PIC 9(8) COMP.
02 GLENGTH-SERVER-INPUT-DATA-LEN PIC S9(8) COMP.
02 …

01 DECODE-PARMS REDEFINES DFHCOMMAREA.
02 …

01 DECODE-RETURNED-DATA.
02 DECODE-PASSWORD PIC X(8).
02 DECODE-SERVER-INPUT-DATA PIC X(1).

01 ENCODE-PARMS REDEFINES DFHCOMMAREA.
02 …

Figure 45. Layout of data division in COBOL

134 CICS TS for z/OS: External Interfaces Guide

 PROCEDURE DIVISION.

A-CONTROL SECTION.

A-0000-MAIN-TASK.

MOVE URP-INVALID TO DECODE-RESPONSE.

IF CONVERTER-FUNCTION = URP-GETLENGTHS
PERFORM B-0000-GETLENGTHS END-IF.

IF CONVERTER-FUNCTION = URP-DECODE THEN
PERFORM C-0000-DECODE END-IF.

IF CONVERTER-FUNCTION = URP-ENCODE THEN
PERFORM D-0000-ENCODE END-IF.

A-9999-EXIT.

EXEC CICS RETURN END-EXEC.
GOBACK.

Figure 46. Routing control to the functions in COBOL

In this program fragment:

1. The response URP-INVALID is set.
2. The IF statements examine the function code in the communication area, and pass control to the

appropriate function.
3. The converter returns to the program that called it. (If the IF statements selected a function, the

DECODE-RESPONSE value returned is the response from that function.)

Figure 47 on page 135 is an example of a Decode function.

 C-0000-DECODE.

IF DECODE-EYECATCHER IS NOT = DECODE-EYECATCHER-INIT
MOVE URP-INVALID TO DECODE-RESPONSE
ELSE
SET ADDRESS OF CLIENT-IN-DATA TO DECODE-CLIENT-DATA-PTR
ADD 8 TO REM-PROC-COMMSIZE
EXEC CICS GETMAIN
SET(DECODE-RETURNED-DATA-PTR)
FLENGTH(REM-PROC-COMMSIZE)
SHARED
NOSUSPEND
CICSDATAKEY
RESP(RESP)
RESP2(RESP2)
END-EXEC
SET ADDRESS OF DECODE-RETURNED-DATA
TO DECODE-RETURNED-DATA-PTR
MOVE "PASSWD" TO DECODE-PASSWORD
SET ADDRESS OF REM-PROC-DATA
TO ADDRESS OF DECODE-SERVER-INPUT-DATA
MOVE CLIENT-IN-U-CHAR TO REM-PROC-U-CHAR
MOVE CLIENT-IN-CHAR TO REM-PROC-CHAR
MOVE URP-OK TO DECODE-RESPONSE.

Figure 47. Example of a Decode function in COBOL

In this program fragment, the names beginning DECODE- (except DECODE-PASSWORD) are fields in the
communication area for the Decode function. DECODE-PASSWORD is the field at the beginning of the
returned data. The processing is as follows:

1. The eyecatcher is checked to see if it agrees with the function code. If it does not, the URP-INVALID
response is returned.

2. If it does:

a. The structure CLIENT-IN-DATA is overlaid on the data coming from the inbound XDR routine
addressed by DECODE-CLIENT-DATA-PTR.

Chapter 3. CICS ONC RPC support 135

b. The communication area size is increased by 8 to allow for the password field.
c. EXEC CICS GETMAIN is used to get storage for the password and for the communication area.

REM-PROC-COMMSIZE is the size of the structure REM-PROC-DATA, which defines the format of
the communication area. The address of the storage is put directly into DECODE-RETURNED-DATA-
PTR.

d. The structure DECODE-RETURNED-DATA is overlaid on the newly-acquired storage addressed by
DECODE-RETURNED-DATA-PTR.

e. The password is moved into DECODE-PASSWORD.
f. The data is moved from CLIENT-IN-DATA to REM-PROC-DATA, and the response is set to URP-OK.

Using converters
Converters run as CICS programs under the connection manager, server controller, and aliases.
Converters must reside in the same CICS system as CICS ONC RPC.

Preparation

Before using a converter, you must:

1. Translate the converter using the appropriate CICS translator. If it is a COBOL program, you must use
the QUOTE translator directive.

2. Compile the output from the translator.
3. Link the converter as a standard CICS application program into a CICS load library used by the CICS

system on which CICS ONC RPC is installed.
4. Define the converter to CICS as a program.
5. Use the connection manager to specify the converter in one of the 4-tuple definitions, and define

which of the converter functions are required for that 4-tuple.

Reference information for the converter functions
This section contains reference material for each of the three functions of a converter.

Each function is documented in the same way:

• A summary table of parameters, showing which are for input only, which for input and output, and
which for output only.

– Input is for parameters that your function may consult, but not change.
– Inout is for parameters that your function may consult, and change.
– Output is for parameters that your function must not consult, but may change.

• A description of the processing that the function is expected to do.
• A list of parameters in alphabetical order, with a description of how CICS ONC RPC sets up the inputs,

and what use it makes of the outputs.
• A list of the responses and reason codes that the converter can return, with a description of the action

that CICS ONC RPC takes for each response and reason code.

The descriptions give the names of the program elements as they appear in C. In COBOL the names are all
in uppercase, and the underscores are replaced by hyphens.

Getlengths
Getlengths is called when the definition of the 4-tuple is being registered.

Getlengths is called when the definition of the 4-tuple is being registered, provided that the definition of
the 4-tuple specified that Getlengths was to be called. It is not called to process client requests.
Getlengths is responsible for providing CICS ONC RPC with:

• The size of the data that is passed to and from the CICS program
• The data format (contiguous or overlaid) of the CICS program data

136 CICS TS for z/OS: External Interfaces Guide

Summary of parameters

The names of the parameters are given in abbreviated form: each name in the table must be prefixed with
glength_ to give the name of the parameter.

To find the C type of each parameter, consult the header file DFHRPCDH provided with CICS ONC RPC.
For COBOL, consult the copybook DFHRPCDO.

Input glength_ Inout glength_ Output glength_

 eyecatcher
 function

server_data_format

server_input_data_len

server_output_data_len
 response
 reason

Parameters
glength_eyecatcher

(Input only)

A string of length 8. (The values of the eyecatchers are defined in the DFHRPUCH header file and the
DFHRPUCO copybook.)

glength_function
(Input only)

A code indicating that Getlengths is being called. The value is URP_GETLENGTHS.

glength_reason
(Output only)

A reason code—see “Response and reason codes” on page 138.

glength_response
(Output only)

A response code—see “Response and reason codes” on page 138.

glength_server_data_format
(Input and output)

On input, that value specified for Server Data Format for the 4-tuple in the connection manager.

On output, the value is to control:

• How the input data pointer for Encode will be set up
• How the communication area length to be checked by the connection manager is calculated

The values you can supply are as follows:
URP_CONTIGUOUS

The value of the data pointer that will be passed to Encode , or to the outbound XDR routine if
Encode is not used for this 4-tuple, is the address of the CICS program communication area plus
the output value of glength_server_input_data_len , though Decode can modify this offset.

The connection manager calculates a communication area length by adding the output values of
glength_server_input_len and glength_server_output_len. If this length is different from the
actual length of the communication area passed to the CICS program, errors might occur in the
processing of client requests.

Chapter 3. CICS ONC RPC support 137

URP_OVERLAID
The value of the data pointer that will be passed to Encode , or to the outbound XDR routine if
Encode is not used for this 4-tuple, is the address of the CICS program communication area.

The connection manager calculates a communication area length by taking the larger of the
output values of glength_server_input_len and glength_server_output_len. If this length is
different from the actual length of the communication area passed to the CICS program, errors
might occur in the processing of client requests.

glength_server_input_data_len
(Output only)

For the use of this field, see the description of glength_server_data_format. If you do not set a value
in this field, a default value of zero is used.

glength_server_output_data_len
(Output only)

For the use of this field, see the description of glength_server_data_format. If you do not set a value
in this field, a default value of zero is used.

Response and reason codes

You must return one of the following values in the glength_response field:
URP_OK

The connection manager checks that the communication area length does not exceed 32 767. If it
does not, the information is saved and used to process incoming client requests, and the 4-tuple is
registered. If it does, the connection manager writes an exception trace entry (trace point 9EE6),
sends a message (DFHRP1991) describing the error to the terminal from which the connection
manager was started, and does not register the 4-tuple.

URP_EXCEPTION
The connection manager writes an exception trace entry (trace point 9EE5), sends a message
(DFHRP1988) to the terminal from which the connection manager was started, and does not register
the 4-tuple.

URP_INVALID
The connection manager writes an exception trace entry (trace point 9EE5), sends a message
(DFHRP1989) to the terminal from which the connection manager was started, and does not register
the 4-tuple.

URP_DISASTER
The connection manager writes an exception trace entry (trace point 9EE5), sends a message
(DFHRP1990) to the terminal from which the connection manager was started, and does not register
the 4-tuple.

If you return any other value in glength_response , it is treated as URP_DISASTER.

You can supply a 32-bit reason code in conjunction with the response value to provide further information
in error cases. CICS ONC RPC does not take any action on the reason code returned by Getlengths . The
reason code is output in any trace that results from the invocation of Getlengths , and you may use it as a
debugging aid.

See Numeric values of response and reason codes for the numeric values of the response codes in trace
output.

Decode
Decode is invoked by the server controller after the inbound XDR routine. Decode processing must avoid
making the server controller wait for resources, because waiting prevents the server controller from
dealing efficiently with other requests.

Decode has four main responsibilities:

• To set data lengths for the CICS program when the lengths are not the same for all requests.

138 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/troubleshooting/interfaces/dfhtm9r.html

• To map the input data passed from the inbound XDR routine to the input data format required by the
CICS program.

• To set the user ID and password that are used to control subsequent processing.
• To set the name of the alias and CICS program for the request if those specified for the 4-tuple need to

be changed.

Summary of parameters

The names of the parameters are given in abbreviated form; each name in the table must be prefixed with
decode_ to give the name of the parameter.

To find the C type of each parameter, consult the header file DFHRPCDH provided with CICS ONC RPC.
For COBOL, consult the copybook DFHRPCDO.

Input decode_ Inout decode_ Output decode_

eyecatcher
function
client_address
client_data_ptr
server_data_format
program_number
version_number
procedure_number
aup_time
aup_machname_ptr
aup_machlen
aup_uid
aup_gid
aup_len
aup_gids_ptr

server_program
alias_transid
server_input_data_len
server_output_data_len

returned_data_ptr
userid
user_token
response
reason

Decode must issue an EXEC CICS GETMAIN command to allocate storage for the communication area
to be passed to the CICS program. Note the following points about GETMAIN options:

• You must use the SHARED option, because the storage is acquired under the server controller, but is
used under the alias.

• You must use the FLENGTH option.
• You must use the NOSUSPEND option to prevent the server controller from being made to wait for

storage, because waiting prevents the server controller from attending to incoming requests.
• To prevent overwriting by user-key programs, consider using the CICSDATAKEY option in the following

circumstances:

– The CICS program to be called by the alias is in another CICS system.
– The CICS program to be called by the alias is defined as EXECKEY(CICS).
– The CICS program to be called by the alias is defined as EXECKEY(USER), but the amount of data to

be copied is small.

If an overlaid data format is specified, the requested length must be the greater of the output values of
decode_server_input_data_len and decode_server_output_data_len plus 8 for DECODE-PASSWORD .
If the data format is not overlaid, this length must be the sum of the output values of
decode_server_input_data_len and decode_server_output_data_len plus 8 for DECODE-PASSWORD.

Because Decode specifies the SHARED option, the data remains available to CICS ONC RPC modules and
to CICS programs. CICS ONC RPC frees the storage when it is no longer required.

Chapter 3. CICS ONC RPC support 139

Parameters
decode_alias_transid

(Input and output)

On input, the name of the alias associated with the 4-tuple for the client request.

On output, the name of the transaction to be started by the server controller to process this client
request.

See “ Changing the alias and CICS program ” on page 130.

decode_aup_gid
(Input only)

The UNIX group id of the client.

decode_aup_gids_ptr
(Input only)

A pointer to an array of 32-bit integers that are the UNIX group IDs of which the client is a member.

decode_aup_len
(Input only)

The number of elements in the array of UNIX group identifiers pointed to by decode_aup_gids_ptr.

decode_aup_machlen
(Input only)

The number of characters in the machine name.

decode_aup_machname_ptr
(Input only)

A pointer to a variable-length character string representing the name of the machine on which the
client is running.

decode_aup_time
(Input only)

The time at which the client created the credentials. The time is measured in seconds since 00h00m
GMT on 1 January 1970.

decode_aup_uid
(Input only)

The UNIX user ID of the client.

decode_client_address
(Input only)

The 32-bit internet address of the client from which the request was received.

decode_client_data_ptr
(Input only)

A pointer to the data passed from the client. If no data exists, this pointer points to a null string.

Note: The data area pointed to by this pointer must not be changed by Decode , because CICS
storage management errors are likely to occur.

decode_eyecatcher
(Input only)

A string of length 8. The values of the eyecatchers are defined in the DFHRPUCH header file and the
DFHRPUCO copybook.

decode_function
(Input only)

140 CICS TS for z/OS: External Interfaces Guide

A code indicating that Decode is being called. The value is URP_DECODE.

decode_procedure_number
(Input only)

The procedure number of the 4-tuple to which the client request was made.

decode_program_number
(Input only)

The program number of the 4-tuple to which the client request was made.

decode_reason
(Output only)

A reason code; see “Response and reason codes” on page 142.

decode_response
(Output only)

A response code; see “Response and reason codes” on page 142.

decode_returned_data_ptr
(Output only)

A pointer to an area of storage allocated by the converter that contains these fields:

• decode_password : the password to be used for user authentication
• decode_server_input_data : the data that is to be passed to the CICS program as input.

The pointer might be null if no password exists and if no data is to be passed to the CICS program.

decode_server_data_format
(Input only)

A value that controls these operations:

• How the input data pointer for Encode will be set up
• How the communication area length to be checked by the connection manager is calculated

URP_CONTIGUOUS
The value of the data pointer that will be passed to Encode , or to the outbound XDR routine if
Encode is not used for this 4-tuple, is the address of the CICS program communication area plus
the output value of decode_server_input_data_len.

The server controller calculates a communication area length by adding the output values of
decode_server_input_data_len and decode_server_output_data_len. If this length is different
from the actual length of the communication area passed to the CICS program, errors might occur
in the processing of client requests.

URP_OVERLAID
The value of the data pointer that will be passed to Encode , or to the outbound XDR routine if
Encode is not used for this 4-tuple, is the address of the CICS program communication area.

The server controller calculates a communication area length by taking the larger of the output
values specified of decode_server_input_data_len and decode_server_output_data_len. If this
length is different from the length of the communication area passed to the CICS program, errors
might occur in the processing of client requests.

decode_server_input_data_len
(Input and output)

On input, the output value of glength_server_input_data_len , or the value specified for Server Input
Length for this 4-tuple in the connection manager.

On output, see the description of decode_server_data_format.

Chapter 3. CICS ONC RPC support 141

decode_server_output_data_len
(Input and output)

On input, the output value of glength_server_output_data_len , or the value specified for Server
Output Length for this 4-tuple in the connection manager.

On output, see the description of decode_server_data_format.

decode_server_program
(Input and output)

On input, the name of the CICS program associated with the 4-tuple for the client request.

On output, the name of the CICS program to be linked to by the alias.

Use this field if you want to direct the client call to a different CICS program.

decode_userid
(Output only)

An 8-character field, the user ID known to CICS that correlates to the requesting client ID. If you store
no value in this field, the user ID used in subsequent processing is the default CICS user ID.

decode_user_token
(Output only)

A fullword that can be used to pass information to the Encode function that is subsequently invoked
for the client request.

decode_version_number
(Input only)

The version number of the 4-tuple to which the client request was made.

Response and reason codes

You must return one of the following values in the decode_response field:
URP_OK

The server controller checks that the communication area length does not exceed 32 767. If it does
not, the alias is started using the information supplied as output. If it does, the server controller writes
an exception trace entry (trace point 9FC2) and issues a message (DFHRP0516) describing the error.
The alias is not started, and an svcerr_systemerr call is used to send a reply to the client.

URP_EXCEPTION
The server controller writes an exception trace entry (trace point 9FAA), and issues a message that
depends on the reason code:

• URP_CORRUPT_CLIENT_DATA: message DFHRP0626

An svcerr_decode call is used to send a reply to the client.
• URP_AUTH_BADCRED: message DFHRP0628

An svcerr_auth call with a why-value of AUTH_BADCRED is used to send a reply to the client.
• URP_AUTH_TOOWEAK: message DFHRP0629

An svcerr_auth call with a why-value of AUTH_TOOWEAK is used to send a reply to the client.
• Any other value: message DFHRP0631

An svcerr_systemerr call is used to send a reply to the client.

URP_INVALID
The server controller writes an exception trace entry (trace point 9FAA) and issues a message
(DFHRP0632).

An svcerr_systemerr call is used to send a reply to the client.

142 CICS TS for z/OS: External Interfaces Guide

URP_DISASTER
The server controller writes an exception trace entry (trace point 9FAA) and issues a message
(DFHRP0635).

An svcerr_systemerr call is used to send a reply to the client.

If you return any other value in decode_response , the server controller writes an exception trace entry
(trace point 9FAA) and issues a message (DFHRP0625). An svcerr_systemerr call is used to send a reply
to the client.

You can supply a 32-bit reason code with the response value to provide further information in error cases.
CICS ONC RPC does not take any action on the reason code returned by Decode , except as indicated for
URP_EXCEPTION. The reason code is included in any trace that results from the invocation of Decode ,
and you can use it as a debugging aid.

See Numeric values of response and reason codes for the numeric values of the response and CICS-
defined reason codes in trace output.

Encode
Encode is called by the alias after the CICS program ends. Encode is responsible for taking the data
returned from the CICS program and changing its format so that it is suitable to be passed to the
outbound XDR routine for return to the client. If no restructuring of outbound data is required, you can
specify to the connection manager that Encode is not to be called. The reference to the CICS program
data to be returned to the client is passed to Encode in the encode_input_data_ptr input field. This data
is in CICS program format, which is a communication area structure in any CICS supported language. The
CICS program data may be mapped from this format into the format required by the client, which is likely
to be C, and might include pointer references, by allocating an area of storage and mapping the server
data into it. Encode must set encode_output_data_ptr to point to the start of the allocated storage.

Summary of parameters

The names of the parameters are given in abbreviated form: each name in the table must be prefixed with
encode_ to give the name of the parameter.

To find the C type of each parameter, consult the header file DFHRPCDH provided with CICS ONC RPC.
For COBOL, consult the copybook DFHRPCDO.

Input encode_ Inout encode_ Output encode_

 eyecatcher
 function

input_data_ptr

input_data_len

user_token

none

output_data_ptr

output_data_len
 response
 reason

Encode must issue EXEC CICS GETMAIN to allocate storage for the data that it returns. Note the following
points about GETMAIN options:

• You do not need to use the SHARED option.
• You must use the FLENGTH option.
• If your CICS system is using storage protection, you can use the CICSDATAKEY option to prevent

overwriting by user-key programs.

Chapter 3. CICS ONC RPC support 143

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/troubleshooting/interfaces/dfhtm9r.html

Parameters

encode_eyecatcher
(Input only)

A string of length 8. (The values of the eyecatchers are defined in the DFHRPUCH header file and the
DFHRPUCO copybook.)

encode_function
(Input only)

A code indicating that Encode is being called. The value is URP_ENCODE.

encode_input_data_len
(Input only)

The length in bytes of the data returned from the CICS program. The value is determined as follows:

1. It is the output value of decode_server_output_data_len , if Decode set it.
2. If Decode did not set the value, it is the output value of glength_server_output_data_len , if

Getlengths was called when the 4-tuple was registered.
3. Otherwise, it is the value specified for Server Output Length in the connection manager when the

4-tuple was defined.

encode_input_data_ptr
(Input only)

A pointer to the data returned from the CICS program. The setting of this pointer depends on the
definition of the 4-tuple in the connection manager, Getlengths processing when the 4-tuple was
registered, and Decode processing for the client request.

encode_output_data_len
(Output only)

The length in bytes of the data to be passed to the outbound XDR routine.

encode_output_data_ptr
(Output only)

A pointer to an area of allocated storage that contains the data that is to be passed to the outbound
XDR routine.

encode_reason
(Output only)

A reason code—see “Response and reason codes” on page 144.

encode_response
(Output only)

A response code—see “Response and reason codes” on page 144.

encode_user_token
(Input only)

A fullword containing information which was output from Decode for this client request.

Response and reason codes

You must return one of the following values in the encode_response field:
URP_OK

The alias passes the output data to the outbound XDR routine.
URP_EXCEPTION

The alias writes an exception trace entry (trace point 9F17), and issues a message (DFHRP0161). An
svcerr_systemerr call is used to send a reply to the client.

144 CICS TS for z/OS: External Interfaces Guide

URP_INVALID
The alias writes an exception trace entry (trace point 9F17), and issues a message (DFHRP0162). An
svcerr_systemerr call is used to send a reply to the client.

URP_DISASTER
The alias writes an exception trace entry (trace point 9F17), and issues a message (DFHRP0169). An
svcerr_systemerr call is used to send a reply to the client.

If you return any other value in encode_response , the alias writes an exception trace entry (trace point
9F17), and issues a message (DFHRP0163). An svcerr_systemerr call is used to send a reply to the
client.

You can supply a 32-bit reason code in conjunction with the response value to provide further information
in error cases. CICS ONC RPC does not take any action on the reason code returned by Encode . The
reason code is output in any trace that results from the invocation of Encode , and you may use it as a
debugging aid.

See Numeric values of response and reason codes for the numeric values of the response in trace output.

Security for ONC RPC
Important: This information contains Product-sensitive Programming Interface and Associated Guidance
Information.

Security is an important concern in the provision of ONC RPC support in the CICS environment, because
CICS ONC RPC provides an Open Systems communications interface into CICS.

ONC RPC has its own security methods (called authentication in RPC) with dedicated fields in the ONC
RPC call and reply message headers. There are three types of RPC authentication:

• UNIX authentication, which is used to transmit the client's UNIX user ID, group ID, and other
identification information.

• Data Encryption Standard (DES) authentication, which is not available at ONC RPC Version 3.9, and so
cannot be used with CICS ONC RPC.

• Null authentication, which offers no security checking.

This section describes how CICS ONC RPC interacts with the security facilities of ONC RPC and CICS.

Security in ONC RPC
ONC RPC has its own security methods (called authentication in RPC) with dedicated fields in the ONC
RPC call and reply message headers.

There are three types of RPC authentication:

• UNIX authentication, which is used to transmit the client’s UNIX user ID, group ID, and other
identification information.

• Data Encryption Standard (DES) authentication, which is not available at ONC RPC Version 3.9, and so
cannot be used with CICS ONC RPC.

• Null authentication, which offers no security checking.

Security in CICS and its effect on CICS ONC RPC operations
During the operation of CICS ONC RPC, various CICS commands are used to make security checks with an
external security manager (ESM).

The checks will always give positive results if SEC=NO is specified as a system initialization parameter.
The checks will always give negative results if SEC=YES was specified, but the ESM abended while CICS
was operating. The following discussion of the use made of CICS security commands assumes that
SEC=YES is specified, and that the ESM is active.

Chapter 3. CICS ONC RPC support 145

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/troubleshooting/interfaces/dfhtm9r.html

• When a transaction whose user ID is userid1 issues EXEC CICS START USERID(userid2), a surrogate-
user check is made with the ESM to see that userid1 is authorized to use userid2. The check is made
only if XUSER=YES is specified as a system initialization parameter.

This command is issued when the connection manager starts the server controller, and each time the
server controller starts an alias transaction. In the first case, the user ID used is the one supplied to the
connection manager as CRPM Userid on panel DFHRP02. In the second case, the user ID used is the
one output from Decode.

• EXEC CICS VERIFY PASSWORD is issued by the alias before it links to the CICS program that services
the client request. A check is made with the ESM that the user ID and password are an acceptable
combination.

• EXEC CICS QUERY SECURITY is used by the alias to check that the user ID under which it is executing is
authorized to use the CICS program. The check is made only if XPPT=YES is specified as a system
initialization parameter.

• During the operation of the CICS program, security checks are made each time the program tries to
access a protected resource. The check is made only if RESSEC(YES) is specified in the definition of the
alias transaction, and the system initialization parameter controlling security checking for the resource
type is set to YES.

• During the operation of the CICS program, security checks are made each time the program tries to use
a command from the CICS SPI (system programming interface). The check is made only if
CMDSEC(YES) is specified in the definition of the alias transaction, and if XCMD=YES is specified as a
system initialization parameter.

Figure 48 on page 146 shows how CICS security interacts with the operation of CICS ONC RPC.
CRPC

CRPM

CRPA

EXEC CICS VERIFY PASSWORD

EXEC CICS QUERY SECURITY

EXEC CICS START() USERID()

EXEC CICS START() USERID()

Resource checker

CICS program

Figure 48. How CICS security interacts with CICS ONC RPC operations

The figure shows that the alias will link to the user-supplied resource checker program if one is
configured, but the use of the resource checker program is not recommended. You should use the CICS
security facilities, and make the appropriate definitions in the ESM.

RACF Secured Sign-on for ONC RPC clients
RACF Secured Sign-on support allows RPC clients to gain security access to CICS facilities by sending a
PassTicket. This avoids the security hazard of a password being transmitted across the network in clear
text.

For further information, see z/OS Security Server RACF System Programmer's Guide. This includes details
of the algorithm that the RPC client must use to generate the PassTicket. This algorithm includes the DES
algorithm.

146 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.1.0/com.ibm.zos.v2r1.icha200/toc.htm

PassTicket generation for ONC RPC clients

The algorithm that generates the PassTicket for an ONC RPC client is a function of the following items:

• The CICS user ID of the client.
• The CICS application ID of the CICS region running CICS ONC RPC.
• A secured sign-on application key, known to both sides.
• A time and date stamp.

To generate the PassTicket, the RPC client must:

• Know its CICS user ID, the server CICS application ID, and the application key.
• Synchronize its clock to within ten minutes of the server.
• Have access to the encryption algorithm on its machine. Only the DES algorithm may be used.

Writing the resource checker
Your resource checker program must be called DFHRPRSC. There can be only one resource checker in a
CICS region.

The resource checker allows you to check the credentials of inbound client requests.

The resource checker can check the client address, passed as an input parameter, against a list of known
clients for the host on which the request has been received. The password passed to the resource
checker is blank.

Reference information for the resource checker
The resource checker is optionally invoked by the alias before it attempts to link to the CICS program that
is to service the client request. It must say whether the client request is allowed to proceed.

The reference information for the resource checker is presented as follows:

• A summary table of parameters, showing which are for input only, and which for output only.

– Input is for parameters that your resource checker may consult, but not change.
– Output is for parameters that your resource checker must not consult, but may change.

• A description of the processing that the resource checker is expected to do.
• A list of parameters in alphabetical order, with a description of how CICS ONC RPC sets up the inputs,

and what use it makes of the outputs.
• A list of the responses and reason codes that the resource checker can return, with a description of the

action that CICS ONC RPC takes for each response and reason code.

The descriptions give the names of the program elements as they appear in C. In COBOL the names are all
in uppercase, and the underscores are replaced by hyphens.

Summary of parameters

The format of the communication area containing the resource checker parameters is in the C header file
DFHRPRDH, and the COBOL copybook DFHRPRDO. You will also need values defined in the C header file
DFHRPUCH, or in the COBOL copybook DFHRPUCO.

Chapter 3. CICS ONC RPC support 147

Input Output

res_check_alias_transid
res_check_cics_password_ptr
res_check_cics_userid
res_check_client_ip_address
res_check_eyecatcher
res_check_host_ip_address
res_check_server_program_name

res_check_reason
res_check_response

Parameters
res_check_alias_transid

(Input only)

The 4-character name of the alias transaction that has linked to the resource checker.

res_check_cics_password_ptr
(Input only)

A pointer to the 8-character password passed from the requesting client or supplied by Decode. The
value of this field is blank, and it is provided for compatibility with earlier versions of CICS ONC RPC.

res_check_cics_userid
(Input only)

The 8-character CICS user ID under which the alias is running.

res_check_client_ip_address
(Input only)

The fullword internet address of the client.

res_check_eyecatcher
(Input only)

A string of length 8. (Its value is defined in the header file DFHRPUCH and the copybook DFHRPUCO).

res_check_host_ip_address
(Input only)

The fullword internet address of the z/OS Communications Server host with which the server
controller is in communication.

res_check_reason
(Output only)

The reason to be returned to the alias.

res_check response
(Output only)

The response to be returned to the alias.

res_check_server_program_name
(Input only)

The 8-character name of the CICS program that is to be invoked to perform the server function
requested by the client.

Response and reason codes

You must return one of the following values in the res_check_response field.
URP_OK

The alias will continue to process the client request.

148 CICS TS for z/OS: External Interfaces Guide

URP_EXCEPTION
The alias writes an exception trace entry (trace point 9F0E), and issues a message that depends on
the reason code:

• URP_AUTH_BADCRED—message DFHRP0130

An svcerr_auth call with a why-value of AUTH_BADCRED is used to send a reply to the client.
• URP_AUTH_TOOWEAK—message DFHRP0184

An svcerr_auth call with a why-value of AUTH_TOOWEAK is used to send a reply to the client.
• Any other value—message DFHRP0185

An svcerr_systemerr call is used to send a reply to the client.

URP_INVALID
The alias writes an exception trace entry (trace point 9F0E), and issues a message (DFHRP0186).

An svcerr_systemerr call is used to send a reply to the client.

URP_DISASTER
The alias writes an exception trace entry (trace point 9F0E), and issues a message (DFHRP0187).

An svcerr_systemerr call is used to send a reply to the client.

If you return any other value in res_check_response, the alias writes an exception trace entry (trace point
9F0E), and issues a message (DFHRP0188). An svcerr_systemerr call is used to send a reply to the
client.

You can supply a 32-bit reason code in conjunction with the response value to provide further information
in error cases. CICS ONC RPC does not take any action on the reason code returned by the resource
checker, except as indicated previously under URP_EXCEPTION. The reason code is output in any trace or
messages that result from the resource checker, and you may use it as a debugging aid.

See Numeric values of response and reason codes for the numeric values of the response and CICS-
defined reason codes in trace output.

Troubleshooting ONC
This section helps you debug problems in CICS ONC RPC user-replaceable programs, the IBM-supplied
parts of CICS ONC RPC, and in the system setup of CICS ONC RPC.

The formats of messages and trace outputs in CICS ONC RPC are also described.

Diagnostic information is designed to provide first failure data capture, so that if an error occurs, enough
information about the error is available directly without having to reproduce the error situation. The
information is presented in the following forms:

Messages
CICS ONC RPC provides CICS messages. The CICS ONC RPC messages are listed in CICS messages.

Trace
CICS ONC RPC outputs system trace entries containing all the important information required for
problem diagnosis.

Dump
Dump formatting is provided for data areas relating to CICS ONC RPC.

Abend codes
Transaction abend codes are standard 4-character names. The abend codes output by CICS ONC RPC
are listed in CICS messages.

Chapter 3. CICS ONC RPC support 149

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/troubleshooting/interfaces/dfhtm9r.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/messages/cics-messages/DFHmessages.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/messages/cics-messages/DFHmessages.html

CICS ONC RPC recovery procedures
Software errors within the server controller may cause it to perform an immediate disable (if this is not
prevented by the nature of the error). After an immediate disable of CICS ONC RPC, CICS continues to
run.

CICS ONC RPC is not included in CICS recovery. Registration details are not saved on the CICS catalog. If
CICS abends and is then restarted, RPC interface registrations from the previous run are not preserved.
After a CICS abend, you must enable CICS ONC RPC as described in Enabling CICS ONC RPC. However, 4-
tuple definitions can be stored in the CICS ONC RPC data set. Each time you enable CICS ONC RPC, the
definitions can be retrieved from the CICS ONC RPC data set.

If z/OS Communications Server abends, CICS ONC RPC enters immediate disable processing, but CICS
continues to run.

The abending of an alias transaction might cause changes to recoverable resources to be backed out.

CICS immediate shutdown might leave 3-tuples registered with z/OS Communications Server. These 3-
tuples can be registered again when CICS ONC RPC is enabled without loss of z/OS Communications
Server resources, since CICS ONC RPC always unregisters a 3-tuple before it registers it.

CICS ONC RPC operational considerations
The server controller uses EXEC CICS START to start the aliases that run the CICS programs.

CICS limits on the numbers of tasks that can be started may prevent aliases from running as soon as they
are started by the server controller. This leads to delays in servicing the client requests, and this may lead
to timeouts in the client.

In the XDR routines, storage allocation is done using MVS facilities, not CICS facilities. The storage is
owned by the RP TCB. If an XDR routine abends, the storage is not freed by the server controller or the
alias, nor is it freed by MVS, since the RP task does not end. Repeated abends in XDR routines may lead to
shortage of storage that can only be corrected by stopping CICS.

MVS task control blocks (TCBs) used by ONC RPC
The TCB that interacts with z/OS Communications Server goes into a wait as a result of that interaction.

This is avoided by using an extra TCB, the RP TCB, for issuing calls to z/OS Communications Server.

The RP TCB is used for some processing for every client request, but most of the call processing done by
CICS ONC RPC takes place under the QR TCB. The split between the two TCBs is transparent to you for
most of your work, but you need to be aware of it for problem determination.

ONC RPC task-related user exit (TRUE)
CICS ONC RPC includes a task-related user exit; this is used to anchor shared storage and to improve
CICS ONC RPC's response to CICS shutdown. CICS ONC RPC does not use a TRUE to pass commands and
data to and from z/OS Communications Server.

Troubleshooting CICS ONC/RPC
This section provides some hints on troubleshooting.

About this task

It follows the general outline:

1. Define the problem.
2. Obtain information (documentation) on the problem.

150 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/interfaces/dfhtm3x.html

Defining the problem
When you have a problem, first try to define the circumstances that gave rise to it.

About this task

If you need to report the problem to the IBM software support center, this information is useful to the
support personnel.

1. What is the system configuration?

• CICS Transaction Server release
• z/OS Communications Server release
• Language Environment release

2. What is the connection manager configuration?

• Operating options
• Registered 4-tuples

3. When did the problem first occur?
4. What were you trying to accomplish at the time the problem occurred?
5. What changes were made to the system before the occurrence of the problem?

• To CICS ONC RPC
• To the CICS program being called by the client
• To the converter being used in the call
• To the XDR routines being used in the call
• To the client
• To CICS Transaction Server
• To z/OS Communications Server

6. What is the problem?

• Incorrect output
• Hang/Wait: If you suspect that CICS ONC RPC aliases may be in a hung state, you can use the

connection manager to display a list of alias transactions and can display associated details. See
Processing the alias list.

• Loop: Use CEMT INQUIRE to display the details of the transaction.
• Abend in user-replaceable program
• Abend in a CICS program
• Abend in the IBM-supplied part of CICS ONC RPC
• Performance problem
• Storage violation
• Logic Error

7. At what point in the processing did the problem occur?
8. What was the state of z/OS Communications Server? (Try the rpcinfo command.)

Documentation about the problem
To investigate most problems, you must look at the dumps, traces, and logs provided with MVS and CICS.

• System Dump: This contains the CICS internal trace
• CICS auxiliary trace, if enabled
• z/OS Communications Server trace
• GTF trace, if enabled
• Console log

Chapter 3. CICS ONC RPC support 151

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/interfaces/dfhtm83.html

• CSMT log
• CRPO log
• CICS job log

To identify which are likely to be useful for your problem, try to work out the area of CICS ONC RPC giving
rise to the problem, and read the relevant section in the rest of this section.

Using messages and codes for ONC RPC
CICS ONC RPC messages have identifiers of the form DFHRPnnnn, where nnnn are four numeric
characters.

They are sent to the CICS ONC RPC message transient data queue CRPO, or the terminal user, or both,
depending on the event that is being reported. If you define CRPO as an indirect destination for CSMT, the
CICS ONC RPC messages appear in CSMT. Some messages are sent to the console.

When CICS ONC RPC issues a message as a result of an error, it also makes an exception trace entry.
CICS ONC RPC also generates information messages, for instance during enable processing and disable
processing.

CICS ONC RPC messages are supplied in English, Kanji, and Chinese.

CMAC (online help facility for messages and codes)
You can use utilities supplied as part of CICS to update your base CMAC file with the CICS ONC RPC CMAC
file.

The CICS ONC RPC abend codes are listed in CICS messages.

CICS ONC RPC trace information
CICS ONC RPC outputs CICS system trace, which is formatted using software supplied as part of CICS
ONC RPC.

Exception trace entries produced by CICS ONC RPC are written to CICS internal trace even when the
Trace operating option is set to NO. See Setting and modifying options for information about the Trace
option.

If selected, level 2 trace gives a full trace of the data being transmitted between the client and the CICS
program. CICS trace output is described in Trace entries overview.

Feature trace points
Trace points with domain identifier FT are feature trace points.

The format of these entries is slightly different from standard trace points in that the Module identifier
contains the short name of the feature and a full module name. Feature trace point IDs are not globally
defined. This means that a feature can reuse the trace point IDs of another feature. You should obtain
information about the trace points of any other product from that product's documentation.

Numeric values of response and reason codes
The response codes from the converter and resource checker appear in the trace output as numeric
values.

• URP_OK (0)
• URP_EXCEPTION (4)
• URP_INVALID (8)
• URP_DISASTER (12)

The CICS-defined reason codes from the converter and resource checker appear in the trace output as
numeric codes as follows:

• URP_AUTH_BAD_CRED (1)
• URP_AUTH_TOO_WEAK (2)

152 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/messages/cics-messages/DFHmessages.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/interfaces/dfhtm85.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/trace/trace-entries.html

• URP_CORRUPT_CLIENT_DATA (3)

ONC RPC dump and trace formatting
To switch dump formatting on and off for CICS ONC RPC, you change the CICS VERBEXIT in the JCL for
dump formatting.

IPCS VERBEXIT DFHPD710 FT=0|1|2|3,TR=1|2

The parameters have these meanings:
FT=0

Suppress system dump for all features
FT=1

Produce system dump summary listing for all registered features
FT=2

Produce system dump for all registered features
FT=3

Produce system dump summary listing and a system dump for all registered features
TR=1

Produce abbreviated trace (includes trace for all registered features)
TR=2

Produce full trace (includes trace for all registered features)

Full details of these and other parameters are described in the Starting up CICS regions in Administering.

CICS ONC RPC output in the formatted dump consists of the major control blocks of CICS ONC RPC, with
interpretation of some of the fields. The CICS ONC RPC output can be found in the IPCS output by
searching for ===RP. It is under the heading CICS ONC RPC Feature for z/OS.

Each trace entry for CICS ONC RPC has a comment ONC RPC to distinguish it from other trace points with
the FT prefix.

Debugging the ONC RPC user-replaceable programs
The user-replaceable programs are:

• The user-written XDR routines
• The converters
• The resource checker
• The CICS programs that service the client requests

The debugging of the CICS programs is not dealt with in this manual.

XDR routines
The XDR routines, inbound and outbound, run under the RP TCB.

The CICS application programming interface is not available under the RP TCB, so you cannot use EDF,
CICS abend handling, or CICS trace to diagnose problems. The printf function must not be used. If an
XDR routine has a program check, a C run-time message is written to the CICS job log.

Converter and resource checker
The converter and resource checker run under the QR TCB, and the CICS application programming
interface is available.

Using EDF
EDF is available for debugging the resource checker and the Encode function.

If you want to use EDF, you must:

Chapter 3. CICS ONC RPC support 153

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/cics/dfha62b.html

• Ensure that the alias is terminal-attached. To do this, you must set the EDF Terminal ID field in the
connection manager, as described in EDF Terminal ID. The chosen terminal must be a local terminal
that is either logged on, or predefined.

• Define CEDF(YES) in the program definition of converter, or resource checker. The resource checker
must run in the same CICS region as CICS ONC RPC if you want to use EDF to debug it.

Using trace entries
Diagnostic information can be output to the CICS trace by the use of the EXEC CICS ENTER TRACENUM
command.

The amount of trace information and the information contained within trace entries is at your discretion.
See ENTER TRACENUM for more information about this command.

Writing messages
Diagnostic messages can be output by using EXEC CICS WRITEQ TD.

Message information content, message format, frequency, and destination are at your discretion.

Abends
You are recommended to use EXEC CICS HANDLE ABEND to trap abends. You should collect the
diagnostic information you need by tracing, and other forms of diagnostic output, and then return a
URP_DISASTER response.

Improving ONC RPC performance
Important: This information contains Diagnosis, Modification, or Tuning Information.

The performance of a single client request is affected by various aspects of the client, the network, CICS
ONC RPC, the user-replaceable programs, and CICS.
The client

The client timeout interval must take account of the possible delays in dealing with a client request in
CICS ONC RPC and in CICS.

If a client request cannot be processed, an error reply is sent to the client.

The network

This manual does not deal with performance problems of TCP/IP networks.

z/Os Communications Server resources

If, while registering 4-tuples, you cause the connection manager to register too many 3-tuples with
z/OS Communications Server, you might reduce the service that CICS ONC RPC can give to incoming
client requests.

CICS ONC RPC
The allocation of different alias transaction names to different 4-tuples must be coordinated with the
priorities given to the transactions in CICS.

The converter URM

Getlengths is called only by the connection manager, and has no effect on the performance of a
single client request, or on throughput.

Decode is called by the server controller. Delays here can reduce the throughput of CICS ONC RPC as
well as reducing the performance of a single client request. The following recommendations are
made:

• Do not use CICS trace here except to solve specific problems.
• Use NOSUSPEND on EXEC CICS GETMAIN. If GETMAIN errors occur because there is not enough

storage, look for solutions that do not involve using the SUSPEND option.

154 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/configuring/interfaces/dfhtm88.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/commands-api/dfhp4_entertracenum.html

Encode is called by the alias. Delays here reduce the performance of single client requests, but not
the throughput of CICS ONC RPC.

The resource checker URM

The resource checker is called by the alias, so delays here affect the performance of a single client
request, but have no effect on throughput.

Chapter 3. CICS ONC RPC support 155

156 CICS TS for z/OS: External Interfaces Guide

Appendix A. Routing program-link requests
"Traditional" CICS-to-CICS distributed program link (DPL) calls, instigated by EXEC CICS LINK PROGRAM
commands, can be daisy-chained from region to region by defining the program as remote in each region
except the last (server) region, where it is to execute.

Important: For detailed information about routing program-link requests, see CICS distributed program
link. This appendix is an overview of how program-link requests received from outside CICS can be routed
to other regions.

The same applies to program-link requests received from outside CICS. For example, all of the following
types of program-link request can be routed:

• Calls received from:

– CICS Web support
– The CICS Transaction Gateway

• Calls from external CICS interface (EXCI) client programs
• External Call Interface (ECI) calls from any of the CICS Client workstation products
• ONC/RPC calls.

© Copyright IBM Corp. 1974, 2019 157

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/connections/dfht10u.html#dfht10u
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/fundamentals/connections/dfht10u.html#dfht10u

158 CICS TS for z/OS: External Interfaces Guide

Notices

This information was developed for products and services offered in the U.S.A. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property rights may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 1974, 2019 159

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or
any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Programming interface information

CICS supplies some documentation that can be considered to be Programming Interfaces, and some
documentation that cannot be considered to be a Programming Interface.

Programming Interfaces that allow the customer to write programs to obtain the services of CICS
Transaction Server for z/OS, Version 5 Release 4 are included in the following sections of the online
product documentation:

• Developing applications
• Developing system programs
• Securing overview
• Developing for external interfaces
• Reference: application developmenth
• Reference: system programming
• Reference: connectivity

Information that is NOT intended to be used as a Programming Interface of CICS Transaction Server for
z/OS, Version 5 Release 4, but that might be misconstrued as Programming Interfaces, is included in the
following sections of the online product documentation:

• Troubleshooting and support
• Reference: diagnostics

If you access the CICS documentation in manuals in PDF format, Programming Interfaces that allow the
customer to write programs to obtain the services of CICS Transaction Server for z/OS, Version 5 Release
4 are included in the following manuals:

• Application Programming Guide and Application Programming Reference
• Business Transaction Services
• Customization Guide

160 Notices

https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/developing.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/system-programming/developing_sysprogs.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/security/security.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/applications/developing/interfaces/externalInterfaces.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/reference-programming.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/reference-systemprogramming.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/reference-connections.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/troubleshooting/troubleshooting.html
https://www.ibm.com/support/knowledgecenter/SSGMCP_5.4.0/reference/reference-diagnostics.html

• C++ OO Class Libraries
• Debugging Tools Interfaces Reference
• Distributed Transaction Programming Guide
• External Interfaces Guide
• Front End Programming Interface Guide
• IMS Database Control Guide
• Installation Guide
• Security Guide
• Supplied Transactions
• CICSPlex SM Managing Workloads
• CICSPlex SM Managing Resource Usage
• CICSPlex SM Application Programming Guide and Application Programming Reference
• Java Applications in CICS

If you access the CICS documentation in manuals in PDF format, information that is NOT intended to be
used as a Programming Interface of CICS Transaction Server for z/OS, Version 5 Release 4, but that might
be misconstrued as Programming Interfaces, is included in the following manuals:

• Data Areas
• Diagnosis Reference
• Problem Determination Guide
• CICSPlex SM Problem Determination Guide

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.
Applicability

These terms and conditions are in addition to any terms of use for the IBM website.
Personal use

You may reproduce these publications for your personal, noncommercial use provided that all
proprietary notices are preserved. You may not distribute, display or make derivative work of these
publications, or any portion thereof, without the express consent of IBM.

Notices 161

https://www.ibm.com/legal/copytrade.shtml

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications,
or reproduce, distribute or display these publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted,
either express or implied, to the publications or any information, data, software or other intellectual
property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are
not being properly followed.

You may not download, export or re-export this information except in full compliance with all
applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM online privacy statement

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below:

For the CICSPlex SM Web User Interface (main interface):
Depending upon the configurations deployed, this Software Offering may use session and persistent
cookies that collect each user’s user name and other personally identifiable information for purposes
of session management, authentication, enhanced user usability, or other usage tracking or functional
purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface (data interface):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect each user's user name and other personally identifiable information for purposes of session
management, authentication, or other usage tracking or functional purposes. These cookies cannot be
disabled.

For the CICSPlex SM Web User Interface ("hello world" page):
Depending upon the configurations deployed, this Software Offering may use session cookies that
collect no personally identifiable information. These cookies cannot be disabled.

For CICS Explorer®:
Depending upon the configurations deployed, this Software Offering may use session and persistent
preferences that collect each user’s user name and password, for purposes of session management,
authentication, and single sign-on configuration. These preferences cannot be disabled, although
storing a user's password on disk in encrypted form can only be enabled by the user's explicit action
to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you, as customer, the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM Privacy Policy and IBM Online Privacy Statement, the section entitled "Cookies, Web Beacons and
Other Technologies" and the IBM Software Products and Software-as-a-Service Privacy Statement.

162 CICS TS for z/OS: External Interfaces Guide

https://www.ibm.com/privacy
https://www.ibm.com/privacy/details
https://www.ibm.com/software/info/product-privacy

Index

Numerics
3270 bridge

benefits 7
bridge facility properties 36
mechanism 9
Transaction routing 15

4-tuple 92
4-tuple records 109

A
ADS 11
ADSD 11
AIBRIDGE 33
alias (CICS ONC RPC)

definition 102
role in call processing 96
specifying 114
specifying EDF terminal ID 114
transaction definition 102

alias transaction 94
ANYNET software 100
Application data structure (ADS) 11
Application data structure descriptor (ADSD) 11
authentication, RPC 145
Automatic Enable option 110, 121

B
batched RPC requests 92
benefits of external CICS interface 6
BMS ACCUM option 12
BMS and the Link 3270 bridge 12
BMS support 12
bridge

ADS 11
ADSD 11
bridge facility definition 33
BRIH copybooks 42
BRIV copybooks 42
conversational transactions 27
driver 9
dynamic routing 41
inbound vectors 50
INQUIRE AUTOINSTALL 39
INQUIRE BRFACILITY 39
INQUIRE TASK 40
INQUIRE TRACETYPE 40
INQUIRE TRANSACTION 40
load routing 40
mechanism 9
message formats 42
message header (BRIH) 43
outbound vectors 55
pseudoconversational transactions 28
router 9

bridge (continued)
SET BRFACILITY 39
SET TRACETYPE 40
system initialization parameters 33

bridge (3270)
benefits 7
BMS ACCUM option 12
BMS support 12
bridge facility definition 33
bridge facility properties 36
CEDF 13
CEDX 13
CSFE 13
CSGM 13
DLI 13
FACILITYLIKE 34
global user exits 13
inbound vectors 50
INQUIRE AUTOINSTALL 39
INQUIRE BRFACILITY 39
INQUIRE TASK 40
INQUIRE TRACETYPE 40
INQUIRE TRANSACTION 40
ISSUE PASS 13
ISSUE PRINT 13
mechanism 9
message header (BRIH) 43
Monitoring 13
outbound vectors 55
programming restrictions 11
security 13
SET BRFACILITY 39
SET TRACETYPE 40
START 13
STARTed transactions 14
system initialization parameters 33
TCTUA 14
use of ASSIGN 12

BRIH
inbound parameters 44
outbound message header 48

BRIV outbound 55
BRIV- inbound 50
BRMAXKEEPTIME 33
broadcast RPC 92

C
callback RPC 92
CEDF 13
CEDX 13
CICS external interfaces 1
CICS ONC RPC data set 109
CICS ONC RPC definition record 109
CICS ONC RPC options 109
CICS program

API restrictions 87

Index 163

CICS system initialization parameters
SEC 145
XCMD 146
XPPT 146
XUSER 146

CICS TCP/IP Socket Interface 100
CICS-key storage 103
CICSDATAKEY option on GETMAIN 139, 143
client stub 89
clients supported by CICS ONC RPC 100
CMDSEC 102, 146
code page conversions 128
command security 102
compiling 129
connection manager 93
connection manager (CICS ONC RPC)

definition 102
panel format 106

connection manager panels
DFHRP01 104
DFHRP02 109
DFHRP03 111
DFHRP04 104
DFHRP06 119
DFHRP10 107
DFHRP11 116
DFHRP12 117
DFHRP13 117
DFHRP14 122
DFHRP15 122
DFHRP16 108
DFHRP17 124
DFHRP18 124
DFHRP20 120
DFHRP21 123
DFHRP22 121
DFHRP2B 124
DFHRP5 112
DFHRP5B 113

connection-oriented data transmission 4
connectionless data transmission 4
contiguous communication area 137, 141
converter 94
converter (CICS ONC RPC)

defining functions provided 114
role in call processing 96
writing 129

CRPA transaction 94
CRPC transaction 93, 104
CRPM transaction 93
CRPO transient data queue 104, 106
CSFE 13
CSGM 13

D
data format 98, 115, 137, 141
datagram 4
DCE RPC servers 6
Decode function 94
decode_alias_transid field 140
decode_aup_gid field 140
decode_aup_gids_ptr field 140
decode_aup_len field 140

decode_aup_machlen field 140
decode_aup_machname_ptr field 140
decode_aup_time field 140
decode_aup_uid field 140
decode_client_address field 140
decode_client_data_ptr field 140
decode_eyecatcher field 140
decode_function field 140
decode_procedure_number field 141
decode_program_number field 141
decode_reason field 141
decode_response field 141
decode_returned_data_ptr field 141
decode_server_data_format field 141
decode_server_input_data_len field 130, 141
decode_server_output_data_len field 130, 142
decode_server_program field 142
decode_user_token field 142
decode_userid field 142
decode_version_number field 142
DES authentication 145
disable processing

types 119
disabling CICS ONC RPC 119
DLI 13
driver

bridge 9
dumps 153

E
EDF 153
enabling CICS ONC RPC 111
Encode (CICS ONC RPC)

whether required 143
Encode function 95
encode_eyecatcher field 144
encode_function field 144
encode_input_data_len field 144
encode_input_data_ptr field 144
encode_output_data_len field 144
encode_output_data_ptr field 144
encode_reason field 144
encode_response field 144
encode_user_token field 144
ENTER TRACENUM command 154
ephemeral port numbers 6
EXEC CICS GETMAIN

CICSDATAKEY option in Decode 139
CICSDATAKEY option in Encode 143
FLENGTH option in Decode 139
FLENGTH option in Encode 143
NOSUSPEND option in Decode 139
SHARED option in Decode 139
SHARED option in Encode 143

EXEC CICS QUERY SECURITY 146
EXEC CICS START USERID 146
EXEC CICS SYNCPOINT 97
EXEC CICS VERIFY PASSWORD 146
EXEC CICS WRITEQ TD 154
EXECKEY option 103
external CICS interface (EXCI)

benefits 6
external interfaces 1

164 CICS TS for z/OS: External Interfaces Guide

F
FACILITYLIKE 34
fast-path commands 105
File Transfer Protocol 5
FLENGTH option on GETMAIN 139, 143

G
Getlengths function

whether required 130
glength_eyecatcher field 137
glength_function field 137
glength_reason field 137
glength_response field 137
glength_server_data_format field 130, 137
glength_server_input_data_len field 130, 138
glength_server_output_data_len field 130, 138
global user exits 13

I
inbound XDR routine 94, 96, 98
internet address 4
Internet address 5
Internet Protocol (IP) 4
IP address 5
IPCS VERBEXIT 101
IPv4 addresses and IPv6 addresses 5
ISSUE PASS 13
ISSUE PRINT 13

J
JCL for dump formatting

CICS ONC RPC 101

L
Language Environment 100
Link3270

Transactuion routing 15
linking 129

M
mapset definition 104
messages 152
migrating between CICS versions 101
Monitoring 13

N
nonblocking call type

specifying 114
nonblocking RPC call 92
NOSUSPEND option on GETMAIN 139
Null authentication 145

O
ONC 88

ONC RPC 88
open system interface (OSI) 7
OSI (open system interface) 7
outbound XDR routine 94, 97, 99
overlaid communication area 138, 141

P
PassTicket 147
performance 154
port number 4
Portmapper 91
prerequisites for CICS ONC RPC 100
procedure number 91
procedure zero 91
program number 91
programs for CICS ONC RPC

defining in CICS 102
protocol 92

Q
QR TCB 150

R
RACF Secured Sign-on 146
Register from Data Set option 115
registering 4-tuples 116
registration

with CICS ONC RPC 116
with TCP/IP for MVS 116

remote procedures
procedure number 91
procedure zero 91
program number 91
version number 91

REMOTENAME parameter 103
REMOTESYSTEM parameter 103
resource checker (CICS ONC RPC)

specifying option 110, 121
writing 147

resource definition in CICS 102
resource security 102
RESSEC 102, 146
restrictions

bridge 11
router

bridge 9
RP TCB 150
RPC 88
RPC library calls 90
RPCGEN compiler 89
RPCL specification

definition 89

S
SBCS translate tables 128
SEC system initialization parameter 145
Secured Sign-on 146
security 13, 145
server application set 127

Index 165

server controller
user ID 110, 121

server controller (CICS ONC RPC)
definition 102
role in call processing 96

server stub 89
SHARED option on GETMAIN 139, 143
sockets interface 4
START 13
STARTed transactions 14
starting the connection manager 104
STGPROT parameter 103
storage (CICS ONC RPC)

user-key/CICS-key 103
XDR routines overwriting 128

storage protection 103
storage requirements (CICS ONC RPC) 100
synchronous RPC call 92

T
task control blocks 150
task-related user exit (TRUE) 150
TASKDATAKEY option 103
TCP/IP 3, 88
TCP/IP for MVS

CICS TCP/IP Socket Interface 100
TCTUA 14
Telnet 5
trace (CICS ONC RPC)

information 152
setting trace level 110, 121
setting trace option 110, 121

Transaction routing
Link3270 15

transient data definitions 104
Transmission Control Protocol (TCP) 4

U
UNIX authentication 145
URP_DISASTER response

to resource checker 149
URP_DISASTER response (CICS ONC RPC)

to Decode 143
to Encode 145
to Getlengths 138

URP_EXCEPTION response
to resource checker 149

URP_EXCEPTION response (CICS ONC RPC)
to Decode 142
to Encode 144
to Getlengths 138

URP_INVALID response
to resource checker 149

URP_INVALID response (CICS ONC RPC)
to Decode 142
to Encode 145
to Getlengths 138

URP_OK response
to resource checker 148

URP_OK response (CICS ONC RPC)
to Decode 142

URP_OK response (CICS ONC RPC) (continued)
to Encode 144
to Getlengths 138

use of ASSIGN 12
User Datagram Protocol (UDP) 4
user-key storage 103

V
vector

default vectors 24
inbound BRIV vectors 23
outbound BRIV vectors 23

version number 91

W
well-known ports 5

X
XCMD system initialization parameter 146
XDR 88, 89
XDR routines

inbound 94, 96, 98
library functions 127
outbound 94, 97, 99
specifying 114
writing 127

XLT definitions 104
XPPT system initialization parameter 146
XUSER system initialization parameter 146

Z
z/OS Communications Server 150

166 CICS TS for z/OS: External Interfaces Guide

IBM®

	Contents
	About this PDF
	Chapter 1. CICS external interfaces
	Interfaces to CICS transactions and programs
	The client/server model
	Distributed computing
	Security support

	TCP/IP protocols
	TCP/IP internet addresses and ports
	IP addresses
	Port numbers (for servers)
	Port numbers (for clients)

	ONC and DCE concepts
	EXCI concepts
	3270 bridge concepts
	The 3270 bridge and FEPI

	Chapter 2. Bridging to 3270 transactions
	Introduction to the 3270 bridge
	The Link3270 bridge mechanism
	The bridge facility
	Lifetime of the bridge facility

	The application data structure (ADS)
	The ADS descriptor (ADSD)
	DFHBMSUP

	Link3270 programming considerations
	Transaction Routing considerations
	Allocating a bridge facility name for a pseudoconversation when using the Link3270 bridge for transaction routing

	Using the Link3270 bridge
	Establish Link3270 suitability
	Using the Load Module Scanner Utility
	Using the 3270 Bridge Passthrough SupportPac

	Writing the Link3270 client
	Select Link3270 client scenarios
	Analyze the 3270 application

	Using Link3270 messages
	Inbound BRIV vectors
	Outbound BRIV vectors
	Link3270 bridge basic and extended support
	Copybooks and default vectors

	Using Link3270 single transaction mode
	Updating data length fields

	Using Link3270 session mode
	How to create a message
	Allocating a bridge facility
	Running transactions
	Conversational transactions
	P seudoconversational transactions

	Deleting a bridge facility
	Delivering large messages
	Recovery from connection failure
	Validity of Link3270 requests
	Expiry of facilitytoken

	Calling the Link3270 bridge
	Calling Link3270 using LINK
	Calling Link3270 using EXCI
	Calling Link3270 using ECI
	Multiple Router regions

	Using data conversion with Link3270
	Converting BRIH and BRIV header data
	DFHCNV example for Link3270

	Converting RETRIEVE data
	Converting user data

	Managing the Link3270 bridge environment
	Defining Link3270 system initialization parameters
	Defining the bridge facility
	Defining the facility
	Defining the bridge facility name
	DFHBRNSF file types
	Defining DFHBRNSF
	DFHBRNSF at CICS termination

	Defining a specific bridge facility name
	Initializing the TCTUA
	Accessing bridge facility properties
	QUERY
	SET TERMINAL/NETNAME

	Administering the Link3270 bridge
	INQUIRE/SET AUTOINSTALL with the Link3270 bridge
	INQUIRE/SET BRFACILITY with the Link3270 bridge
	INQUIRE TASK with the Link3270 bridge
	INQUIRE/SET TRACETYPE with the Link3270 bridge
	INQUIRE TRANSACTION with the Link3270 bridge
	XPI commands for the Link3270 bridge
	Using Link3270 bridge load routing
	Using the dynamic transaction routing program with Link3270

	Link3270 message formats
	Link3270 message header (BRIH)
	Inbound BRIH message header
	Outbound BRIH message header

	Inbound Link3270 vectors
	Link3270 inbound vector header
	Link3270 INPUT CONVERSE vector
	Link3270 RECEIVE vector
	Link3270 RECEIVE MAP vector
	Link3270 RETRIEVE vector

	Outbound Link3270 vectors
	Link3270 output vector header
	Link3270 ISSUE ERASEAUP vector
	Link3270 SEND vector
	Link3270 SEND CONTROL vector
	Link3270 SEND MAP vector
	Link3270 SEND TEXT vector
	Link3270 SEND PAGE vector
	Link3270 PURGE MESSAGE vector
	Link3270 SYNCPOINT vector
	Link3270 CONVERSE request vector
	Link3270 RECEIVE request vector
	Link3270 RECEIVE MAP request vector

	Link3270 ADS descriptor
	ADS descriptor header
	ADS field descriptor

	Link3270 diagnostics
	BRIH-RETURNCODE values

	Link3270 sample programs
	About the NACT transaction
	Running the sample client programs
	Setting up the Link3270 environment
	Setting up CICS-based clients
	Setting up the z/OS-based client
	Setting up the workstation client

	Setting up the NACT transaction

	Chapter 3. CICS ONC RPC support
	Introduction to ONC RPC
	ONC RPC concepts
	RPC
	ONC
	TCP/IP

	ONC RPC facilities
	XDR routines
	Using XDR library functions

	RPCGEN compiler
	ONC RPC API library

	ONC RPC naming and routing
	Procedure zero
	Registration and the Portmapper
	Routing
	Types of remote procedure call

	CICS ONC RPC concepts
	ONC RPC remote procedures and CICS programs
	Where the CICS program might be

	CICS ONC RPC transactions
	Connection manager (CRPC)
	Server controller (CRPM)
	Alias (CRPA)

	CICS ONC RPC user-replaceable programs
	XDR routines
	Resource checker module
	Converters

	CICS ONC RPC control flow
	Updating recoverable resources

	CICS ONC RPC data flow
	From client to CICS program
	Data format in the CICS program communication area
	From CICS program to client

	Setting up CICS ONC RPC
	CICS ONC RPC setup tasks
	Creating the CICS ONC RCP data set
	JCL entry for dump formatting
	Migrating between CICS versions
	Modifying z/OS Communications Server data sets

	Defining CICS ONC RPC resources to CICS
	Transaction definitions for CICS ONC RPC transactions
	Transaction definitions for extra alias transactions
	Changing the CMDSEC and RESSEC values

	Program definitions for CICS ONC RPC programs
	Program definitions for user-written programs
	LANGUAGE option
	CEDF option
	EXECKEY option
	RELOAD option
	Definitions for remote CICS programs

	Mapset definition
	Transient data definitions
	XLT definitions

	Configuring CICS ONC RPC using the connection manager
	Starting the connection manager
	Using the connection manager BMS panels
	Connection manager error message output
	Using PF9 to display messages

	Starting the connection manager when CICS ONC RPC is disabled
	Starting the connection manager when CICS ONC RPC is enabled

	Updating CICS ONC RPC status
	Changing the CICS ONC RPC status

	Enabling CICS ONC RPC
	Setting and modifying options
	Validating, saving, and activating options
	When CICS ONC RPC is enabled

	Defining, saving, modifying, and deleting 4-tuples
	Defining the attributes of a 4-tuple
	ONC RPC attributes
	CICS attributes
	CICS ONC RPC attributes

	Saving new 4-tuple definitions
	Modifying existing 4-tuple definitions
	Deleting existing 4-tuple definitions

	Registering the 4-tuples
	Limits on registration

	Unregistering 4-tuples
	Unregistering 4-tuples one by one
	Unregistering 4-tuples from a list

	Disabling CICS ONC RPC
	On CICS normal shutdown
	On CICS immediate shutdown

	Updating the CICS ONC RPC data set
	Updating the CICS ONC RPC definition record
	Working with a list of 4-tuples
	Changing the attributes of a 4-tuple

	Processing the alias list

	Developing CICS ONC RPC applications
	Developing an ONC RPC application for CICS ONC RPC
	Step 1—Decide what data is to be sent
	Step 2—Decide the format of the communication area
	Step 3—Write the XDR routines
	Code page conversions

	Step 4: Write the converter
	Step 5: Write a resource checker
	Step 6—Compile and link
	Converter
	XDR routines
	Resource checker

	Step 7: Make CICS definitions
	Step 8: Make a connection manager entry

	Write the CICS ONC RPC converter
	Tasks that can be performed by a converter
	Lengths of the CICS program input and output data
	Setting the CICS program data format
	Mapping data between client and CICS program formats
	Changing the alias and CICS program
	Changing security information

	Organizing the converter
	Writing a converter in C
	Writing a converter in COBOL
	Using converters
	Preparation

	Reference information for the converter functions
	Getlengths
	Decode
	Encode

	Security for ONC RPC
	Security in ONC RPC
	Security in CICS and its effect on CICS ONC RPC operations
	RACF Secured Sign-on for ONC RPC clients
	PassTicket generation for ONC RPC clients

	Writing the resource checker
	Reference information for the resource checker

	Troubleshooting ONC
	CICS ONC RPC recovery procedures
	CICS ONC RPC operational considerations
	MVS task control blocks (TCBs) used by ONC RPC
	ONC RPC task-related user exit (TRUE)

	Troubleshooting CICS ONC/RPC
	Defining the problem
	Documentation about the problem

	Using messages and codes for ONC RPC
	CMAC (online help facility for messages and codes)

	CICS ONC RPC trace information
	Feature trace points
	Numeric values of response and reason codes

	ONC RPC dump and trace formatting
	Debugging the ONC RPC user-replaceable programs
	XDR routines
	Converter and resource checker
	Using EDF
	Using trace entries
	Writing messages
	Abends

	Improving ONC RPC performance

	Appendix A. Routing program-link requests
	Notices
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

