CICS Transaction Server for z/OS
Version 5 Release 4

CICSPlex SM Managing Resource Usage

IBM
Note
Before using this information and the product it supports, read the information in “Notices” on page 147.

This edition applies to the IBM CICS® Transaction Server for z/OS® Version 5 Release 4 (product number 5655-Y04) and to all subsequent releases and modifications until otherwise indicated in new editions.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

About this PDF

1. Chapter 1. Introduction
 - Using real-time analysis and resource monitoring views
 - Views for managing real-time analysis definitions
 - Views for managing resource monitoring administrative definitions

2. Chapter 2. Real-time analysis
 - Preparing to perform real-time analysis
 - Defining real-time analysis attributes
 - System availability monitoring
 - MAS resource monitoring
 - Analysis point monitoring
 - Setting intervals and controlling oscillations
 - Identifying primary CMASs
 - Modifying resources with real-time analysis
 - Real-time analysis definitions and their related views
 - Working with real-time analysis administration views
 - Action definitions
 - Primary CMAS analysis point specifications
 - Secondary CMAS analysis point specifications
 - RTA analysis point specifications
 - Evaluation definitions
 - RTA definitions
 - RTA groups
 - RTA group in analysis point specifications
 - RTA definitions in RTA groups
 - RTA groups in RTA specifications
 - RTA specifications to CICS system links
 - RTA specifications to CICS system group links
 - RTA specifications
 - Status definitions in RTA groups
 - Status probe definitions
 - Working with real-time analysis environment views
 - Deactivating or discarding an analysis definition
 - Deactivating or discarding a status definition
 - Example tasks: real-time analysis
 - Switching system availability monitoring (SAM) on for a MAS
 - Changing the default actions for system availability monitoring (SAM)
 - Monitoring resources temporarily
 - Monitoring resources permanently
 - Reusing analysis specifications and analysis groups
 - Monitoring a resource type in a single CICS system
 - Monitoring a resource type throughout the CICSPlex
 - Monitoring multiple resource types in a CICS system group (1)
 - Monitoring multiple resource types in a CICS system group (2)
 - Updating analysis and evaluation definitions
 - Deactivating an analysis definition
 - Using data gathered by the resource monitoring function

Chapter 1. Introduction

Using real-time analysis and resource monitoring views

Chapter 2. Real-time analysis

Preparing to perform real-time analysis

Using data gathered by the resource monitoring function
About this PDF

This PDF describes how to set up and maintain CICSPlex SM definitions necessary to perform real-time analysis and resource monitoring.

For details of the terms and notation used in this book, see Conventions and terminology used in the CICS documentation in IBM Knowledge Center.

Date of this PDF

This PDF was created on April 13th 2020.
Chapter 1. Introduction

This part provides an introduction to the real-time analysis and resource monitoring administration tasks described in the remainder of the book.

Using real-time analysis and resource monitoring views

This section identifies the administration views that you can use to establish and maintain the real-time analysis, and resource monitoring activity at your enterprise.

Views for managing real time analysis definitions

When a CICS system is active, a number of views are available to create and manage real time analysis administration definitions. They also indicate the information you can display and the actions you can perform using these views.

The views are identified in Table 1 on page 1, Table 2 on page 2, and Table 3 on page 3. To access these views from the Web User Interface (WUI) main menu, click Administration views. The resource monitoring view menus are listed under the heading Real Time Analysis (RTA) views.

Table 1. Views to create and maintain RTA system availability monitoring

<table>
<thead>
<tr>
<th>Views</th>
<th>Menu</th>
<th>Actions Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>CICS system definitions - CSYSDEF</td>
<td>System availability monitoring</td>
<td>• Display, create, update, and remove a CICS system definition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add the CICS system definition to a CICS system group.</td>
</tr>
<tr>
<td>RTA specifications - RTASPEC</td>
<td>System availability monitoring</td>
<td>• Display, create, remove, or update an analysis specification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add an association between an analysis specification and a CICS system or CICS system group.</td>
</tr>
<tr>
<td>Action definitions</td>
<td>System availability monitoring</td>
<td>• Display, create, update, and remove an action definition.</td>
</tr>
<tr>
<td>Time periods - PERIODEF</td>
<td>System availability monitoring</td>
<td>• Display, create, remove, or update a time period definition.</td>
</tr>
<tr>
<td>RTA specifications to CICS system links</td>
<td>System availability monitoring</td>
<td>• Display, create or remove the association between an analysis specification and a CICS system.</td>
</tr>
<tr>
<td>RTA specifications to CICS system group links</td>
<td>System availability monitoring</td>
<td>• Display, create or remove the association between an analysis specification and a CICS system group.</td>
</tr>
<tr>
<td>Views</td>
<td>Menu</td>
<td>Actions Supported</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>RTA specifications</td>
<td>MAS resource monitoring</td>
<td>• Display, create, remove, or update an analysis specification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add an association between an analysis specification and a CICS system or CICS system group.</td>
</tr>
<tr>
<td>RTA groups</td>
<td>MAS resource monitoring</td>
<td>• Display, create, update, remove or install an analysis group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Change the description of an analysis group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add an association between an analysis group and an analysis specification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Install an analysis group in an analysis point specification or in a CICS system or CICS system group.</td>
</tr>
<tr>
<td>RTA definitions</td>
<td>MAS resource monitoring</td>
<td>• Display, create, remove, update and install an analysis definition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add an association between an analysis definition and an analysis group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Install an analysis definition in an analysis point specification or in a CICS system or CICS system group.</td>
</tr>
<tr>
<td>Evaluation definitions</td>
<td>MAS resource monitoring</td>
<td>• Display, create, update, and remove an evaluation definition.</td>
</tr>
<tr>
<td>Status probe definitions</td>
<td>MAS resource monitoring</td>
<td>• Display, create, remove, update or install a status definition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add an association between a status definition and an analysis group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Install a status definition in a CICS system or CICS system group.</td>
</tr>
<tr>
<td>Action definitions</td>
<td>MAS resource monitoring</td>
<td>• Display, create, update, and remove an action definition.</td>
</tr>
<tr>
<td>Time periods - PERIODEF</td>
<td>MAS resource monitoring</td>
<td>• Display, create, remove, or update a time period definition.</td>
</tr>
<tr>
<td>RTA specifications to CICS</td>
<td>MAS resource monitoring</td>
<td>• Display, create or remove the association between an analysis specification and a CICS system.</td>
</tr>
<tr>
<td>system links</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTA specifications to CICS</td>
<td>MAS resource monitoring</td>
<td>• Display, create or remove the association between an analysis specification and a CICS system group.</td>
</tr>
<tr>
<td>system group links</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Views to create and maintain RTA MAS resource monitoring (continued)

<table>
<thead>
<tr>
<th>Views</th>
<th>Menu</th>
<th>Actions Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTA groups in RTA specifications</td>
<td>MAS resource monitoring</td>
<td>• Remove an association between an analysis specification and an analysis group.</td>
</tr>
<tr>
<td>RTA definitions in RTA groups</td>
<td>MAS resource monitoring</td>
<td>• Update or remove the association between an analysis definition and an analysis group.</td>
</tr>
<tr>
<td>Status definitions in RTA groups</td>
<td>MAS resource monitoring</td>
<td>• Update or remove the association between an status definition and an analysis group.</td>
</tr>
</tbody>
</table>

Table 3. Views to create and maintain RTA analysis point monitoring

<table>
<thead>
<tr>
<th>Views</th>
<th>Menu</th>
<th>Actions Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTA analysis point specifications</td>
<td>Analysis point monitoring</td>
<td>• Display, create, update or remove an analysis point specification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add an association between an analysis point specification and a primary CMAS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add an association between an analysis point specification and a secondary CMAS.</td>
</tr>
<tr>
<td>RTA groups</td>
<td>Analysis point monitoring</td>
<td>• Display, create, update, remove or install an analysis group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Change the description of an analysis group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add an association between an analysis group and an analysis specification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Install an analysis group in an analysis point specification or in a CICS system or CICS system group.</td>
</tr>
<tr>
<td>RTA definitions</td>
<td>Analysis point monitoring</td>
<td>• Display, create, remove, update and install an analysis definition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add an association between an analysis definition and an analysis group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Install an analysis definition in an analysis point specification or in a CICS system or CICS system group.</td>
</tr>
<tr>
<td>Evaluation definitions</td>
<td>Analysis point monitoring</td>
<td>• Display, create, update, and remove an evaluation definition.</td>
</tr>
<tr>
<td>Action definitions</td>
<td>Analysis point monitoring</td>
<td>• Display, create, update, and remove an action definition.</td>
</tr>
<tr>
<td>Time periods - PERIODEF</td>
<td>Analysis point monitoring</td>
<td>• Display, create, remove, or update a time period definition.</td>
</tr>
</tbody>
</table>
Table 3. Views to create and maintain RTA analysis point monitoring (continued)

<table>
<thead>
<tr>
<th>Views</th>
<th>Menu</th>
<th>Actions Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary CMAS analysis point specifications</td>
<td>Analysis point monitoring</td>
<td>• Remove an analysis point specification and CMAS association.</td>
</tr>
<tr>
<td>Secondary CMAS analysis point specifications</td>
<td>Analysis point monitoring</td>
<td>• Remove an association between an analysis group and an analysis point specification.</td>
</tr>
<tr>
<td>RTA group in analysis point specifications</td>
<td>Analysis point monitoring</td>
<td>• Update or remove the association between an analysis or status definition and an analysis group.</td>
</tr>
<tr>
<td>Status definitions in RTA groups</td>
<td>Analysis point monitoring</td>
<td>• Update or remove a status definition.</td>
</tr>
</tbody>
</table>

Views for managing the RTA environment

When a CICS system is active, a number of views are available to display information about and control the use of real-time analysis.

The views are described in Table 4 on page 4. To access these views from the Web User Interface main menu, click Real Time Analysis (RTA).

For a detailed description of these views, see Outstanding events - EVENT.

Note: When you discard or deactivate an administration definition, it is removed from the active CICS system. It is not removed from the data repository. The next time the CICS system starts or the appropriate time period is reached, the definition is available for use.

Table 4. Views to manage the real-time analysis environment

<table>
<thead>
<tr>
<th>Views</th>
<th>Menu</th>
<th>Actions supported</th>
</tr>
</thead>
</table>
| Installed analysis definitions associated with an analysis point specification - APACTV | Real Time Analysis (RTA) views | • Display information about analysis definitions associated with an analysis point specification.
• Deactivate or discard installed analysis definitions. |
| Outstanding events - EVENT | Real Time Analysis (RTA) views | • Display information about outstanding changes in the status of a CICSpesh or one of its CICS systems. |
| Real Time Analysis (RTA) installed analysis and status definitions - RTAACTV | Real Time Analysis (RTA) views | • Display information about the analysis and status definitions associated with active CICS systems.
• Deactivate or discard an analysis or status definition. |
Views for managing resource monitoring administrative definitions

A number of views are available to create resource monitoring administration definitions. The views are grouped by CICSplex® SM function. They also indicate the information you can display and the actions you can perform using these views.

To access these views in the Web User Interface (WUI), click Administration > Monitor administration.

<table>
<thead>
<tr>
<th>WUI view name</th>
<th>Menu</th>
<th>Actions supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitions (Monitor definitions - MONDEF)</td>
<td>Monitor administration views</td>
<td>• Display, create, remove, or change a monitor definition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add an association between a monitor definition and a monitor group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Install a monitor definition into a CICS system or CICS system group.</td>
</tr>
<tr>
<td>Groups (Monitor groups - MONGROUP)</td>
<td>Monitor administration views</td>
<td>• Display, create or remove a monitor group definition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Change the description of a monitor group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add an association between a monitor group and a monitor specification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Install monitor definitions associated with the monitor group into a CICS system or CICS system group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Replace all installed monitor definitions with those associated with a monitor group.</td>
</tr>
<tr>
<td>Definitions on groups (Monitor definitions in groups - MONINGRP)</td>
<td>Monitor administration views</td>
<td>• Add or remove a monitor definition to monitor group association.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Change the time period associated with a monitor definition.</td>
</tr>
<tr>
<td>Specifications (Monitor specifications - MONSPEC)</td>
<td>Monitor administration views</td>
<td>• Create, display, remove, or update a monitor specification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add an association between a monitor specification and a CICS system or CICS system group.</td>
</tr>
<tr>
<td>Monitor groups in monitor specifications (Monitor groups in monitor specifications - MONINSPC)</td>
<td>Monitor administration views</td>
<td>• Add and remove a monitor group to monitor specification association.</td>
</tr>
<tr>
<td>Specifications to system links (Monitor specifications to CICS system links - LNKSMSCS)</td>
<td>Monitor administration views</td>
<td>• Add and remove the association between a monitor specification and a CICS system.</td>
</tr>
<tr>
<td>Monitor specifications to system group links - LNKSMSCG</td>
<td>Monitor administration views</td>
<td>• Add and remove the association between a monitor specification and a CICS system group.</td>
</tr>
</tbody>
</table>

To display information about and control the use of resource monitoring, you can use the Active monitor specifications view identified in Table 6 on page 6. To access this and other resource monitoring views, click Monitoring views on the WUI main menu.
Note: When you discard or deactivate an administration definition, it is removed from the active CICS system. It is not removed from the data repository. Thus, the next time the CICS system starts or the appropriate time period is reached, the definition is available for use.

<table>
<thead>
<tr>
<th>WUI view name</th>
<th>Menu</th>
<th>Actions supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active monitor specifications</td>
<td>Monitoring views</td>
<td>• Display information about monitor definitions installed in CICS systems known to the CICSplex identified as the context.</td>
</tr>
<tr>
<td>POLMON</td>
<td></td>
<td>• Deactivate or discard an installed monitor definition.</td>
</tr>
</tbody>
</table>
Chapter 2. Real-time analysis

You can use the real-time analysis (RTA) component of CICSPlex SM to analyze the status of one or more CICS regions and the resource information gathered about those systems. Based on its analysis, you can have CICSPlex SM generate external notifications when a condition occurs that you want to know about. In addition, you can have CICSPlex SM modify the attributes of a resource when it is not in the intended state.

Preparing to perform real-time analysis

You can use CICSPlex SM to analyze the status of one or more CICS systems and gather resource information about those systems. Based on its analysis, CICSPlex SM can generate external notifications when a condition occurs that you want to know about. In addition, CICSPlex SM can modify the attributes of a resource when it is not in the wanted state.

The real-time analysis (RTA) component of CICSPlex SM performs the following types of monitoring and analysis:

System availability monitoring (SAM)
You can be notified when a CICS system is not active during its expected hours of operation. While a CICS system is active, you can also be notified if any of various predefined conditions occur that could affect the systems performance.

MAS resource monitoring (MRM)
You can be notified when CICS resources being monitored at the CICS system level meet the criteria that you establish. You can also request to be notified when the status of a user-written program meets your criteria.

Analysis point monitoring (APM)
You can be notified when CICS resources being monitored at the CICSpexel level meet your criteria.

The notification you receive can be in the form of:

- A record in the CICSPlex SM EVENT view.
- An external MVS WTO message.
- An SNA generic alert transmitted to a NetView® system.

Note: You can also use the real-time analysis functions to produce data that helps in the selection of a target region during workload management, as demonstrated in this example. However, CICSPlex SM Workload Manager (WLM) health is assessed independently and does not require RTA to be active. CICSPlex SM WLM health is not influenced by SAM settings either.

Defining real-time analysis attributes

In order for CICSPlex SM to analyze information about CICS systems and the CICS resources being used by those systems, you must create analysis specifications, groups, and definitions.

- An **analysis specification** associates groups of analysis definitions with a CICS system or CICS system group. Analysis specifications are used for MAS resource monitoring. They can also be used to alter the default system availability monitoring values.

- An **analysis point specification** identifies one or more CMASs involved in managing a CICSpexel that is to be analyzed. Analysis point specifications are used for analysis point monitoring.

- An **analysis group** identifies the analysis definitions and status definitions that are to be associated with an analysis or analysis point specification.

- An **analysis definition** identifies the associated evaluation and action definitions.
 - **Evaluation definitions** identify the resources to be sampled, the criteria to be used in analyzing them, and, optionally, any modifications to be performed.
 - **Action definitions** identify what is to happen if a notifiable condition occurs.
• A status definition identifies user-written programs that are to be evaluated at specific intervals.

Note: You can create real-time analysis definitions to be installed in multiple CICSPlex SM managed CICS systems regardless of the version of the CICS system. CICSPlex SM will determine at installation time whether the resources specified in the definitions are supported by the target system. If not, CICSPlex SM issues a warning message indicating that the definition cannot be installed because the resource is not supported. This message does not require any corrective action.

System availability monitoring

With system availability monitoring (SAM), you can be notified if a CICS system is not active at any point during its expected hours of operation.

You can also be notified if any of the following conditions should start or stop:

• One or more CICS dynamic storage areas become short on storage (SOS).
• A CICS system dump (SYSDUMP) is taken. This condition indicates that an MVS™ SVC dump has been requested.
• A CICS transaction dump (TRANDUMP) is taken.
• The CICS system has reached the maximum number of tasks (MAXTASK) it is allowed at any one time.
• One or more resources have impacted the processing of a CICS application (STALL).

A STALL condition occurs when resource contention impacts the processing of application tasks. Parameters you specify in the startup JCL determine when a CICSPlex SM STALL message is issued. You can set the parameters conservatively, so that you receive notification while the system is still functioning, even though resource contention is having a serious impact.

Resolution of a STALL condition might prevent a more serious situation (such as an SOS or MAXTASK) from occurring. For example, a lack of temporary storage could prevent a task from completing and trigger a STALL condition.

For more information about the STALL parameters and a list of possible stall conditions, see CICSPlex SM system parameters.

If the CICS system becomes unavailable, or if one of the above conditions occurs, a severity level is assigned and the appropriate CICSPlex SM messages are issued.

Default notification values

This section describes the default severity levels and actions associated with each condition for which system availability monitoring produces a notification.

System unavailable

Event

Yes

Event Severity

VHS (very high severe)

Event View

n/a

Priority

255

Event Text

Currently unavailable

External Message

Yes

Enter Text

Currently unavailable

Exit Text

Currently Available
Alert
No

Enter Text
Currently unavailable

Exit Text
Currently Available

Short on storage (SOS)
Event
Yes
Event Severity
HS (high severe)
Event View
CICSDSA
Priority
255
Event Text
dsname SOS at hh:mm:ss
External Message
Yes
Enter Text
dsname SOS at hh:mm:ss
Exit Text
dsname SOS at hh:mm:ss
Alert
No
Enter Text
dsname SOS at hh:mm:ss
Exit Text
dsname SOS at hh:mm:ss

System dumps (SYSDUMP)
Event
Yes
Event Severity
VHS (very high severe)
Event View
SYSDUMP
Priority
255
Event Text
ID=dumpid tranid userid termid
External Message
Yes
Enter Text
ID=dumpid tranid userid termid
Exit Text
ID=dumpid tranid userid termid
Alert
No
Transaction dumps (TRANDUMP)

- **Event**: Yes
- **Event Severity**: HW (high warning)
- **Event View**: TRANDUMP
- **Priority**: 128
- **Event Text**: ID=dumpid tranid userid termid
- **External Message**: Yes
- **Enter Text**: ID=dumpid tranid userid termid
- **Exit Text**: ID=dumpid tranid userid termid
- **Alert**: No

Maximum number of tasks (MAXTASK)

- **Event**: Yes
- **Event Severity**: HS (high severe)
- **Event View**: TASK
- **Priority**: 255
- **Event Text**: MAXTASK at hh:mm:ss
- **External Message**: Yes
- **Enter Text**: MAXTASK at hh:mm:ss
- **Exit Text**: MAXTASK at hh:mm:ss
- **Alert**: No

Enter Text

ID=dumpid tranid userid termid

Exit Text

ID=dumpid tranid userid termid

CICS TS for z/OS: CICSPlex SM Managing Resource Usage
Activating system availability monitoring

Depending on the level of system availability monitoring you want to activate, you can monitor system activity, monitor a CICS system for predefined conditions, or do both.

• To monitor system activity, use the CICS system definition view. To open this view from the main menu click Administration > RTA system availability monitoring > CICS system definitions. This view allows you to change permanently the CICSPlex SM definition of the CICS system. You must identify:
 – The primary CMAS. This is the CMAS that is assigned the task of monitoring the availability of the CICS system. (For additional information, see “Identifying primary CMASs” on page 15.)
 – The time period definition that identifies the hours during which you expect the CICS system to be running.

• To monitor a CICS system for the predefined conditions, use the CICS system definition detailed view to set the Real time analysis status field to either SAM or YES.

If any of the severity levels or actions shown in “Default notification values” on page 8 is not appropriate for your use, you can change it for a specific CICS system using the CICSSYS or MAS view. If you want the new default to apply to multiple CICS systems, you can, instead, modify the analysis specification with which the CICS systems are associated.

Example of system availability monitoring

As illustrated in the example shown in Figure 1 on page 12, you can implement system availability monitoring by modifying the appropriate CICSPlex SM definition of a CICS system.
In this example, the definition of the CICS system named EYUMAS1A shows that:

- System activity monitoring is to occur because a primary CMAS (EYUCMS1A) and a time period definition (PRIME) are identified.
- Monitoring of predefined conditions is to occur because the Analysis Active field is set to YES.
- If the predefined condition short-on-storage (SOS) occurs, the default action and severity level are to be used.

This example also illustrates how other predefined conditions might be handled:

- For system dumps (SYSDUMP), the severity level is to be set to VHS (very high severe) and an action identified as SYSDEF1 is to be performed.
- For transaction dumps (TRANDUMP), no action is to be taken and no severity level is to be set.

MAS resource monitoring

With MAS resource monitoring (MRM), you can analyze the status of resources and one or more user-written programs.

- Resources.

 You can use CICSPlex SM to sample and evaluate specific resource occurrences against criteria that you define. You can also control the action taken when the criteria is met.

 When analyzing a resource occurrence, CICSPlex SM resource monitoring does not need to be active. CICSPlex SM internally generates any needed monitor definitions based on the sample interval specified in the associated evaluation definitions.

- One or more user-written programs.

 You can also use MAS resource monitoring to identify one or more programs in use within your enterprise that are to be called on a regular basis to evaluate specific conditions.

 These programs must be written to respond to a CICSPlex SM status reporting call, where the programs return a value indicating their status. For more information, see “Customizing programs that monitor status” on page 69.
To use MAS resource monitoring, you must establish analysis definitions, analysis groups, and analysis specifications.

Figure 2 on page 13 illustrates the type of definitions you need in order to be notified if a specific condition occurs.

![Diagram](image)

Figure 2. MAS resource monitoring (MRM)

In this illustration, all transactions starting with AB are to be evaluated. If the average response time of these transactions should be greater than 90 seconds, a CICSPlex SM event is to be generated and a record is added to the EVENT view.

Analysis point monitoring

When you are using MAS resource monitoring to monitor multiple CICS systems and the same condition occurs in those systems, notification is generated for each system. There may be certain conditions, however, for which you do not want multiple notifications to be generated.

By using analysis point monitoring (APM), you can evaluate the resources being monitored in one or more CICS systems within a CICSplex and be notified when a condition meets your specified criteria. Should a condition then occur in multiple systems, a single notification message is generated for the CICSplex.

To use the analysis point monitoring facility, you must define analysis point specifications, analysis groups, and analysis definitions. Note that you can use the same analysis groups and analysis definitions with both analysis point monitoring and MAS resource monitoring.

Although you would probably not use analysis point monitoring and MAS resource monitoring to perform the same type of resource analysis, Figure 3 on page 14 illustrates that changing the analysis specification to an analysis point specification is all that is required to change the preceding example of MAS resource monitoring to analysis point monitoring.
Setting intervals and controlling oscillations

Information about the resources you are analyzing is gathered at specific intervals that are set when you create an evaluation definition.

You can set very short evaluation intervals, frequently updating your picture of the status of a system or program, or longer intervals, smoothing out your picture of the status of the system or program.

Although short intervals might give you a clearer picture of the dynamics of the attributes you are tracking, they consume more processor time than less frequent intervals. Depending on the condition being evaluated, however, you might want to have short intervals to ensure you are notified every time a given condition should occur. For example, you might want to be notified whenever a specific connection is out of service.

In other cases, you may receive an excessive number of notifications about nonrecurring conditions when using a short interval. To prevent this from happening, CICSPlex SM uses entry and exit intervals to even out rapid activity oscillations, where:

- Entry intervals define the number of consecutive times a condition must be true before notification occurs. That is, if a condition is not true the specified number of times, no notification is generated.
- Exit intervals define the number of times, following the resolution of a condition, that the condition must be false before the notification is removed. That is, once notification is generated, it remains active until the condition causing the notification has disappeared for a specific number of intervals.

For example, assume that a condition with a severity of HW (high warning) occurs. In order for this condition to cause notification to occur, you decide that the condition must remain true for two consecutive intervals. And the notification must remain in effect until the condition has been false for three consecutive intervals. Notice that the entry and exit intervals need not be the same.
Identifying primary CMASs

You must identify a primary CMAS to enable system availability monitoring and analysis point monitoring.

- To enable system availability monitoring.

To do this, you must change the CICS system definition to identify the CMAS to which the CICS system normally connects. This primary CMAS is used to assist in distributing real-time analysis processing. That is, when the first CMAS involved in managing a CICSpelix is started, it monitors all CICS systems comprising the CICSpelix. As subsequent CMASs start, they begin monitoring the systems for which they are the primary CMAS. Over time, this helps to distribute monitoring across all of the CMASs involved in the CICSpelix.

- To enable analysis point monitoring.

To do this, you can identify a primary CMAS and one or more secondary CMASs.

- The existence of an analysis point specification causes analysis point processing to be activated when the CMAS identified as its primary CMAS is started.

When you identify one primary CMAS, all CICSpelix-level processing occurs within that CMAS. As an alternative, you can partition the CICSpelix at the CMAS level. That is, each CMAS participating in the management of a CICSpelix may process one or more analysis point specifications. This mode of operation allows greater flexibility when managing a CICSpelix being managed by multiple CMASs. Note that this partitioning does not preclude any CMAS from acting on CICS systems attached to other CMASs.

- Optionally, you can associate the analysis point specification with one or more secondary CMASs. This identifies the CMAS that is to take over if the primary CMAS becomes unavailable. When the primary CMAS is inactive, the active secondary CMAS with the lowest alphabetical SYSID will take control of the analysis point specification.

Modifying resources with real-time analysis

In addition to analyzing and reporting the status of CICS resources, CICSpelix SM can also modify the attributes of a resource. You can tell the real-time analysis component what modifications to perform when it determines that a resource is not in the intended state.

To have real-time analysis modify a resource, you must:

1. Define the resource attributes you want to modify and their values in an evaluation definition (EVALDEF), as described in “Evaluation definitions” on page 20.

2. Tell real-time analysis to perform the modifications when the evaluation condition becomes true in an analysis definition (RTADEF), as described in “RTA analysis point specifications” on page 20.

real-time analysis performs any resource modifications that you request in addition to generating the usual external notifications for a condition. So when a notifiable condition occurs, you can have real-time analysis tell you about the condition, or tell you and attempt to correct it by modifying the affected resource.

Note: Using real-time analysis to modify resources is most effective for evaluations that involve a single operational value, such as ENABLED/DISABLED or OPEN/CLOSED. For evaluations that involve resource thresholds, you cannot specify different modifications for different severity levels.

Real-time analysis definitions and their related views

You can use the real-time analysis administration views to define a variety of real-time analysis attributes.

In addition to the views shown here, you can use the views described in RTA views to display information about and manage the real-time analysis activity in an active CICS system. You can also display a visual map of your real-time analysis definitions by using the Map button.

Figure 4 on page 16 illustrates the relationship between the views used for administration of real-time analysis. (The WUI view set names are followed by the object names in parentheses.)
Figure 4. Views for creating real-time analysis objects and associations

Figure 5 on page 17 illustrates the relationship between system availability monitoring (SAM) and the views used to establish that type of real-time analysis in a CICSp lex (object names are in parentheses). In this case, the **CICS system definition** (CICSSYS) view is used to change the CICS system definition. The **RTA specification** (RTASPEC) view and **Link RTA specification to CICS system** and **Link RTA...**
specification to CICS system group (RTASCOPE) views are used to allow multiple CICS systems to use customized action definitions, severity levels, or both.

Figure 5. The relationship between SAM, the CICS system definition (CICSSYS) view, and the real-time analysis views

Figure 6 on page 18 illustrates the relationship between MAS resource monitoring (MRM) and the WUI views used to establish that type of real-time analysis (object names are in parentheses).
Figure 6. The relationship between MRM and the real-time analysis views

Figure 7 on page 19 illustrates the relationship between analysis point monitoring (APM) and the WUI views used to establish that type of real-time analysis (object names are in parentheses).
Working with real-time analysis administration views

This section contains descriptions of tasks used to create and maintain real-time analysis definitions. For detailed descriptions of these views see Administering CICSplex SM.

Unless noted otherwise, only the context setting is recognized when you are creating and maintaining real-time analysis definitions. For information about setting the context, see Setting the context and scope.

Action definitions

An action definition designates the type of external notification that is to occur when the condition or conditions identified in an analysis definition are true.

Examples of how to use this view can be found in “Example tasks: real-time analysis” on page 37.

Creating an action definition

To create an action definition:
• From the main menu, click **Administration > RTA system availability monitoring**.
• From the **RTA system availability monitoring** menu, click **Actions**.
• On the **Action definitions** tabular view (ACTION object), click the **Create...** button. To base the new definition on an existing one, click the Record check box before clicking the **Create...** button. The **Action definitions** create view is displayed.
• When you have completed the fields, click the **Yes** button to create the definition. Otherwise, click **No** to abandon the process.

Primary CMAS analysis point specifications
During real-time analysis initialization, the association between analysis point specifications and primary CMASs is used to determine which specification should be installed within the CMAS in which real-time analysis is activated.

Secondary CMAS analysis point specifications
During real-time analysis initialization, the association between analysis point specifications and CMASs is used to determine which specification should be installed within the CMAS in which real-time analysis is activated.

Control of the analysis definitions associated with the analysis point specification are to be passed to a secondary CMAS only when the primary CMAS is unavailable.

RTA analysis point specifications
The **RTA analysis point specifications** (APSPEC) views display information about RTA analysis point specifications.

An analysis point specification identifies one or more CMASs that are to be responsible for analyzing CICS systems within the CICSPlex identified as the context. An example of how to use this view can be found in “Issuing one notification for multiple conditions(1)” on page 61.

Creating an analysis point specification
Using the analysis point specification tabular view to create an evaluation definition.

To create an evaluation definition:
• From the main menu, click **Administration > RTA analysis point monitoring**.
• From the **RTA analysis point monitoring** menu, click **Analysis point specifications**.
• On the **Analysis point specifications** tabular view (APSPEC object), click the **Create...** button. To base the new definition on an existing one, click the Record check box before clicking the **Create...** button. The **Analysis point specifications** create view is displayed.
• When you have completed the fields, click the **Yes** button to create the specification. Otherwise, click **No** to abandon the process.

Evaluation definitions
The **Evaluation definitions** views (EVALDEF objects) display information about the resources in CICS systems that are to be sampled and evaluated.

When the result of the evaluation is true, an associated analysis definition is used to determine if a notifiable condition has occurred. Examples of how to use this view can be found in “Example tasks: real-time analysis” on page 37.

Filter expressions in evaluation definitions
A filter expression can be made up of one or more attribute expressions in the form:
logic_expr

attr_expr

where:

attr
Is the name of an attribute in the resource table. You can name the same attribute more than once in a filter expression.

oper
Is one of the following comparison operators:

- `<` Less than
- `<=` Less than or equal to
- `=` Equal to
- `>=` Greater than or equal to
- `>` Greater than
- `¬=` Not equal to

value
Is the value for which the attribute is being tested. The value must be a valid one for the attribute. The value must be a valid output value if the attribute is a CVDA datatype.

If the attribute accepts character data, this value can be a generic. Generic values can contain:

- An asterisk (*), to represent any number of characters, including zero. The asterisk must be the last or only character in the specified value. For example:

 | TRANID=PAY* |

- A plus sign (+), to represent a single character. A + can appear in one or more positions in the specified value. For example:

 | TRANID=PAY++96 |

If the value contains imbedded blanks or special characters (such as periods, commas, or equal signs), the entire value string must be enclosed in single quotes. For example:

| TERMID='Z AB' |

To include a single quote or apostrophe in a value, you must repeat the character, like this:

| DESCRIPTION='October''s Payroll' |
AND/OR

Combines attribute expressions into compound logic expressions using the logical operators AND and OR, like this:

```
attr_expr AND attr_expr.
```

Filter expressions are evaluated from left to right. You can use parentheses to vary the meaning of a filter expression. For example, this expression:

```
attr_expr AND (attr_expr OR attr_expr).
```

has a different meaning than this one:

```
(attr_expr AND attr_expr) OR attr_expr.
```

NOT

Negates one or more attribute expressions.

You can negate a single attribute expression, like this:

```
NOT attr_expr
```

You can also negate multiple attribute expressions or even a whole filter expression, like this:

```
NOT (attr_expr OR attr_expr).
```

Note that you must place parentheses around the attribute expressions (or the filter expression) to be negated.

Modification expressions in evaluation definitions

A modification expression can be made up of one or more attribute expressions in the form:

```
attr = value
```

where:

- **attr** is the name of a modifiable attribute in the resource table.
- **value** is the value to which you want the attribute set. The following restrictions apply:
 - The value must be a valid one for the attribute.
 - If the value contains imbedded blanks or special characters (such as periods, commas, or equal signs), the entire value string must be enclosed in single quotes, like this:
    ```
    DESCRIPTION='Payroll.OCT'
    ```
 - To include a single quote or apostrophe in a value, you must repeat the character, like this:
    ```
    DESCRIPTION='October''s Payroll'
    ```
 - The value must be a valid output value if the attribute is a CVDA datatype.

Creating an evaluation definition

To create an evaluation definition:

- From the main menu, click *Administration > RTA MAS resource monitoring*.
- From the *RTA MAS resource monitoring* menu, click *Evaluations*.
• On the Evaluation definitions tabular view (EVALDEF object), click the Create... button. To base the new definition on an existing one, click the Record check box before clicking the Create... button. The Evaluation definitions create view is displayed.

• When you have completed the fields, click the Yes button to create the definition. Otherwise, click No to abandon the process.

RTA definitions

The RTA definitions (RTADEF) views display information about evaluations to be performed on a periodic basis and the actions to be taken should a notifiable condition occur.

Examples of how to use this view can be found in “Example tasks: real-time analysis” on page 37.

Resource modifications

Resource modifications are defined as part of the evaluation definitions (EVALDEFS) associated with this analysis definition (RTADEF).

If the modification executes without a CICS exception condition or CICSPlex SM error, and the condition generates a CICSPlex SM event, the event is cancelled. If the modification does not cause the condition to become false for any other reason (for example, the resource is in use or is not available, or the modification was not designed to modify the resource to cause a false condition), it is retried. The retry will occur at the next analysis interval, and will continue until the condition described by the evaluation definition is false.

If the modification executes with a CICS exception condition or CICSPlex SM error, it is not retried. If the condition generates a CICSPlex SM event and the modification cannot be made, the event remains displayed on the EVENT view.

For the Execute evaluation modification string field, the Always option should be used where the modification string includes an expression that will cause the evaluated condition to become false, for example:

<table>
<thead>
<tr>
<th>Resource table: LOCTRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation : STATUS NE ENABLED</td>
</tr>
<tr>
<td>Modification : STATUS=ENABLED</td>
</tr>
</tbody>
</table>

The Always option would work well with this example because the modification will cause the evaluation to become false. The Always option should not be used if that is not the case, for example:

<table>
<thead>
<tr>
<th>Resource table: LOCTRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation : STATUS NE ENABLED</td>
</tr>
<tr>
<td>Modification : PRIORITY=255</td>
</tr>
</tbody>
</table>

The Always option would not work well with this example because the modification will not cause the evaluation to become false.

The actions requested in an action definition (such as events or external messages) are always performed, regardless of whether any resource modification is requested.

Adding an RTA definition to an analysis group

You can add an RTA definition to an existing analysis group.

To add an RTA definition to an RTA analysis group:

• Click Administration > RTA analysis point monitoring > Definitions to open the RTA definitions view.
• Select an RTA definition by clicking the Record check box.
• Click the Add to RTA group... button to display the Add to RTA group view.
• Provide the following information:

 Analysis Group
 Enter the specific or generic name of an existing analysis group. If you specify a generic value, a list of valid analysis groups is displayed.
Active Period
(Optional) Enter the specific or generic name of a period definition that identifies the range of hours during which the analysis definition is to be active. If you specify a generic value, a list of valid period definitions is displayed.

If the name you specify is not an existing period definition, you can create that period definition later. If you leave this field blank, the analysis definition remains active for as long as the CICS system is running or until you discard it.

• Click Yes to add the RTA definition to the RTA group. Otherwise, click No to abandon the process.

If the appropriate analysis group does not currently exist, you must first create the group, as described in “Creating an analysis group” on page 25.

Installing an analysis definition
You can install an analysis definition for one or more active CICS systems that are within the CICSplex identified as the context. An analysis definition can be automatically installed for a CICS system when that system starts.

To install an analysis definition, associate the definition with an analysis group. Then associate that group with an analysis specification that is defined to the CICS system.

To install an analysis definition:
• From the main menu, click Administration views.
• From the Administration views menu, click either RTA MAS resource monitoring or RTA analysis point monitoring.
• Click Definitions to display the RTA definitions tabular view (RTADEF object).
• Select an analysis definition by clicking the Record check box.
• Click the Install... button to display the Install view.
• Provide the following information:

Scope value
Enter the specific or generic name of a CICS system or CICS system group for which the definition is to be installed. The CICS system or CICS system group must be within the CICSplex identified as the current context. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed.

Period definition name
(Optional) Enter the specific or generic name of an existing period definition that identifies the range of hours during which the analysis definition is to be active. If you specify a generic value, a list of valid period definitions is displayed.

• Click Yes to install the definition in the designated CICS systems. Otherwise, click No to abandon the process.

For an installation to succeed, the CICS system must be running and real-time analysis must be active. Additionally, associated evaluation definitions must refer to resource tables that are supported in the target CICS system. If CICSPlex SM detects otherwise, it issues a message indicating that the definitions are not installed in those systems that do not support the specified resource table.

The analysis definition becomes active either:
• Immediately, if no period definition is associated with it and the CICS system is running
• At the time designated by the associated period definition

The analysis definition remains active as long as the CICS system is running, until you discard it, or until the time designated by an associated period definition is reached.

To discard an analysis definition installed in a CICS system, use the Real time analysis (RTA) installed analysis and status definitions view (RTAACTV object) as described in RTA views.
Installing an analysis specification
You can install an analysis specification, and create an association between an analysis definition and an analysis specification.

• From the main menu, click Administration views.
• From the Administration views menu, click either RTA MAS resource monitoring or RTA analysis point monitoring.
• Click Definitions to display the RTA definitions tabular view (RTADEF object).
• Select an analysis definition by clicking the Record check box.
• Click the Install analysis specification... button to display the Install analysis specification view.
• Provide the following information:

 Scope value
 (Optional.) Enter the specific or generic name of a CICS system or CICS system group that is to be evaluated by the analysis point specification when processing analysis definitions. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed. If you leave this field blank, all CICS systems in the CICSplex are evaluated.

 Analysis point specification name
 Enter the specific or generic name of an analysis point specification to which this definition is to be added. If you specify a generic value, a list of valid analysis point specifications is displayed.

 Period definition name
 (Optional) Enter the specific or generic name of an existing period definition that identifies the range of hours during which the analysis definition is to be active. If you specify a generic value, a list of valid period definitions is displayed.

• Click Yes to install the definition in the designated CICS systems. Otherwise, click No to abandon the process.

If an analysis definition is associated with an evaluation definition that refers to a resource table that is not supported in the target CICS system, CICSPlex SM issues a message indicating that the definitions are not installed because the resource is not supported.

RTA groups
The RTA groups (RTAGROUP) views display information about the associations between related analysis definitions, and status definitions.

For examples of how to use these views, see:

• “Monitoring resources permanently” on page 43
• “Monitoring multiple resource types in a CICS system group (2)” on page 54
• “Issuing one notification for multiple conditions(1)” on page 61

Creating an analysis group
You can create analysis groups to which real-time analysis definitions are added.

To create an analysis group:

• From the main menu, click Administration > RTA MAS resource monitoring.
• From the RTA MAS resource monitoring menu, click Evaluations.
• On the Evaluation definitions tabular view (EVALDEF object), click the Create... button. To base the new definition on an existing one, click the Record check box before clicking the Create... button. The Evaluation definitions create view is displayed.
• When you have completed the fields, click the Yes button to create the definition. Otherwise, click No to abandon the process.
Adding an association to an analysis point specification
You can add an RTA group to an RTA analysis point specification, and create an association between the two.

To do this:

• Display the RTA groups tabular view (RTAGROUP object).
• Select an RTA group by clicking the Record check box and click the Add to RTA analysis point specification... button. The Add to RTA analysis point specification add view is displayed.
• Provide the following information:

 APSPEC name
 Enter the specific or generic name of an existing analysis point specification. If you specify a generic value, a list of valid analysis point specifications is displayed.

 Scope name
 (Optional.) Enter the specific or generic name of a CICS system or CICS system group that is to be evaluated by the analysis point when processing analysis definitions. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed. If you leave this field blank, the scope will be set to the current CICSplex name, which causes all CICS systems in the CICSplex to be evaluated.

• Click Yes to create the association. Otherwise click No to abandon the process.

Adding an RTA group to an analysis specification
To add an RTA group to an RTA analysis point specification, and create an association between the two:

• Display the RTA groups tabular view (RTAGROUP object).
• Select an RTA group by clicking the Record check box and click the Add to RTA specification... button. The Add to RTA specification add view is displayed.
• Provide the following information:

 RTA spec name
 Enter the specific or generic name of an existing analysis specification. If you specify a generic value, a list of valid analysis specifications is displayed.

• Click Yes to create the association. Otherwise click No to abandon the process.

If the appropriate analysis specification does not currently exist, you must first create it, as described in topic page “Creating an RTA specification” on page 30.

Installing an analysis group
When you install an analysis group, all of the analysis definitions associated with that group are installed in the CICS systems that are using the analysis specification to which the analysis group is associated.

The analysis definitions associated with an analysis group can be automatically installed in a CICS system when that system starts. For this to occur, the analysis group must be associated with an analysis specification that is defined to the CICS system.

To install an analysis group:

• Display the RTA groups tabular view.
• Select an RTA group by clicking the Record check box and click the Install... button. The Install view is displayed.
• Provide the following information:

 Scope value
 Enter the specific or generic name of an active CICS system or CICS system group into which the analysis definitions associated with this analysis group are to be installed. The CICS system or CICS system group must be within the CICSplex identified as the current context. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed.

• Click Yes to install the RTA group. Otherwise click No to abandon the process.
For an installation to succeed, the CICS system must be running and real-time analysis must be active. The analysis definition becomes active either:

- Immediately, if no period definition is associated with it and the CICS system is running.
- At the time designated by the associated period definition.

The analysis definition remains active as long as the CICS system is running, until you discard it, or until the time designated by an associated period definition is reached.

To discard an analysis definition installed in a CICS system, use the **Real time analysis (RTA) installed analysis and status definition** view (RTAACTV object) as described in RTA view: Real Time Analysis (RTA) installed analysis and status definitions - RTAACTV.

Installing an analysis group into an analysis specification

To install an analysis group into an analysis point specification:

- Display the **RTA groups** tabular view.
- Select an RTA group by clicking the Record check box and click the **Install into analysis specification...** button. The **Install** view is displayed.
- Provide the following information:
 - **Scope value**
 Enter the specific or generic name of an active CICS system or CICS system group into which the analysis definitions associated with this analysis group are to be installed. The CICS system or CICS system group must be within the CICSplex identified as the current context. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed.
 - **Analysis point specification value**
 Enter the specific or generic name of the analysis point specification to which the analysis definitions in this group are to be added. If you specify a generic value, a list of valid analysis point specifications is displayed.
- Click **Yes** to install the RTA group into the analysis specification. Otherwise click **No** to abandon the process.

RTA group in analysis point specifications

The **RTA group in analysis point specifications** (RTAINAPS) views display information about RTA groups associated with analysis point specifications.

Adding an analysis group to an analysis point specification

To add an analysis group to an analysis point specification:

- From the main menu, click **Administration > RTA analysis point monitoring**.
- From the **RTA analysis point monitoring** menu, click **Group in analysis point specification**.
- On the **Group in analysis point specification** tabular view (RTAINSP object), click the Record check box beside the group entry to be added to an analysis point specification. The **Group in analysis point specification** detailed view is displayed.
- Provide the following information:
 - **Analysis Group Name**
 Enter the specific or generic name of an existing analysis group. If you specify a generic value, a list of valid analysis groups is displayed.
 - **Analysis Specification Name**
 Enter the specific or generic name of an existing analysis point specification to which the analysis group is to be added. If you specify a generic value, a list of valid analysis point specifications is displayed.
 - **Scope name**
 (Optional) Enter the specific or generic name of CICS system or CICS system group that is to be evaluated by the analysis point specification when processing analysis definitions. If you specify a
generic value, a list of valid CICS systems and CICS system groups is displayed. If you leave this field blank, all CICS systems in the CICSplex are evaluated.

- Click **Yes** to add the analysis group to the analysis specification. Otherwise, click **No** to abandon the process.

RTA definitions in RTA groups

The **RTA definitions in RTA groups** (RTAINGRP) views display information about the about RTA definitions that are associated with RTA groups.

Adding a definition to an analysis group

To add an analysis definition to an analysis group:

- From the main menu, click **Administration views**.
- From the **Administration views** menu, click either **RTA MAS resource monitoring** or **RTA analysis point monitoring**.
- Click **Definitions** to display the **RTA definitions** tabular view (RTADEF object).
- Click the Record check box beside the definition entry to be added to an analysis group and click the **Add to RTA group...** button. The Add **RTA definition to RTA group** view is displayed.
- Provide the following details:

 Analysis Group

 Enter the specific or generic name of an existing analysis group to which you are adding a definition. If you specify a generic value, a list of valid analysis groups is displayed.

 RTA or Status Definition

 Enter the specific or generic name of an existing analysis or status definition. If you specify a generic value, a list of valid analysis and status definitions is displayed.

 Definition Type

 Specify RTADEF or STATDEF to indicate the type of definition you are associating with the analysis group.

 Active Period

 (Optional.) Enter the specific or generic name of a period definition that identifies the range of hours during which the analysis or status definition is to be active. If you specify a generic value, a list of valid period definitions is displayed.

 If the name you specify is not an existing period definition, you can create that period definition later. If you leave this field blank, the analysis definition remains active for as long as the CICS system is running or until you discard it.

- Click **Yes** to add the definition to the RTA group. Otherwise, click **No** to abandon the process.

RTA groups in RTA specifications

The **RTA groups in RTA specifications** (RTAINSPC) views display information about the about RTA groups that are associated with RTA specifications.

Removing an analysis group in specification association

To remove an analysis group in analysis specification association:

- Display the **RTA groups in RTA specifications** tabular view (RTAINSP object).
- Select an RTA specification by clicking the Record check box and click the **Remove...** button. The **Remove** view is displayed.
- Click **Yes** to remove the association between the RTA group and RTA specification. Otherwise click **No** to abandon the process.
RTA specifications to CICS system links

The **RTA specifications to CICS system links** (LNKSRSCS) views display information about RTA specifications that are associated with CICS systems.

Creating an RTA specification to CICS system link
You can create an RTA specification to CICS system link.

To create a link:
- Display the **RTA specifications to CICS system links** tabular view (LNKSRSCS object).
- Click the **Create...** button. The **RTA specifications to CICS system links** create view is displayed.
- Provide the following information:

 RTA specification
 CICS system
 - Click **Yes** to create the link between the RTA specification and the CICS system. Otherwise click **No** to abandon the process.

Removing an RTA specification to CICS system link
To remove an analysis group in analysis specification association:

- Display the **RTA specifications to CICS system links** tabular view (LNKSRSCS object).
- Select an RTA specification by clicking the Record check box and click the **Remove** button. The **Remove** view is displayed.
- Click **Yes** to remove the link between the RTA specification and the CICS system. Otherwise click **No** to abandon the process.

Updating a link between an RTA specification and a CICS system

Procedure
1. From the main menu, click **Administration > RTA MAS resource monitoring**.
2. From the **RTA MAS resource monitoring views** menu, click **Specification to system links**.
 - The **RTA specifications to CICS system links** view (LNKSRSCS object) is displayed.
3. Check the box for the RTA specification to be updated.
 - You can check more than one box.
4. Click the **Change Spec Association** button to display the **Change Spec Association (EYUSTARTLNKSRSCS.CHGSPEC)** view.
5. Type the new name in the **New RTA specification name** field and select an appropriate inherit option.
 - Click **Yes** to update the link between an RTA specification and a CICS system.
 - Click **No** to abandon the process.

RTA specifications to CICS system group links
The **RTA specifications to CICS system group links** (LNKSRSCG) views display information about RTA specifications that are associated with CICS system groups.

Creating an RTA specification to CICS system group link
You can remove an analysis group in analysis specification association.

To remove an analysis group:
- Display the **RTA specifications to CICS system group links** tabular view (LNKSRSCG object).
- Click the **Create...** button. The **RTA specifications to CICS system group links** create view is displayed.
- Provide the following information:

RTA specification

System group

• Select one of the following options by clicking the radio button:

 Force

 All current members of the CICS system group should have implicit links established to the named specification. When a link exists, it is replaced with the newly created link.

 Null

 Current members of the CICS system group should have implicit links established to the named specification only if no link already exists.

 None

 No implicit links should be established.

• Click **Yes** to create the link between the RTA specification and the CICS system group. Otherwise click **No** to abandon the process.

Removing an RTA specification to CICS system group link

To remove an analysis group in analysis specification association:

• Display the **RTA specifications to CICS system group links** tabular view (LNKSRSRG object).
• Select an RTA specification by clicking the Record check box and click the **Remove...** button. The **Remove** view is displayed.
• Select either **Keep** or **None** by clicking the radio button.
• Click **Yes** to remove the link between the RTA specification and the CICS system group. Otherwise click **No** to abandon the process.

Updating a link between an RTA specification and a CICS system group

Procedure

1. From the main menu, click **Administration > RTA MAS resource monitoring**.
2. From the **RTA MAS resource monitoring views** menu, click **Specification to system group links**.

 The **RTA specifications to CICS system group links** view (LNKSRSRG object) is displayed.
3. Check the box for the RTA specification to be updated.

 You can check more than one box.
4. Click the **Change Spec Association** button to display the **Change Spec Association (EYUSTARTLNKSRSRG.CHGSPC)** view.
5. Type the new name in the **New RTA specification name** field and select an appropriate inherit option.

 • Click **Yes** to update the link between an RTA specification and a CICS system group.
 • Click **No** to abandon the process.

RTA specifications

An RTA specification identifies the default control attributes that are used for system availability monitoring and provides an anchor for all analysis definitions and status definitions associated with a CICS system.

Examples of how to use this view can be found in:

• “Monitoring resources permanently” on page 43
• “Monitoring multiple resource types in a CICS system group (2)” on page 54

Creating an RTA specification

You can create a real-time analysis specification based on an existing record, or create a new specification.

To create an RTA specification:
• Display the **RTA specifications** tabular view (RTASPEC object).

• Click the **Create...** button. To base the new specification on an existing one, click a Record check box before clicking the **Create...** button. The **RTA specifications** create view is displayed.

• When you have completed the fields, click **Yes** to create the specification. Otherwise click **No** to abandon the process.

Provide the following information, as appropriate:

RTA Spec Name
Specify a 1- to 8-character name for the analysis specification. The name can contain alphabetic, numeric, or national characters. However, the first character must be alphabetic,

Description
(Optional.) Specify a 1- to 30-character description of the specification.

Action
Enter the specific or generic name of an action definition to be used when a predefined system availability monitoring condition occurs. If you specify a generic value, a list of valid action definitions is displayed. If you leave this field blank, the default action definition is used, as described in “Default notification values” on page 8.

Severity
Indicate how the predefined condition is to be handled. Specify:

- **severity**
 Identify the severity level that is to be associated with the designated condition. The severity codes are:
 - **VLS**
 Very low severe
 - **LS**
 Low severe
 - **LW**
 Low warning
 - **HW**
 High warning
 - **HS**
 High severe
 - **VHS**
 Very high severe
 - **NO**
 Exclude this condition from monitoring.

Press Enter to add the analysis specification to the data repository.

The severity, if not specified or N/A, will default to the default event security as described in “Default notification values” on page 8.

Adding a scope to an analysis specification
Associating an analysis specification with a scope causes the specification to be automatically installed when a CICS system associated with the scope is started. Any definitions associated with the specification through analysis groups are also automatically installed.

To add a scope to an analysis specification:

• From the main menu, click **Administration views > RTA system availability monitoring > Specifications**.

• From the **Specifications** tabular view, click the Record check box beside the specification and click **Associate with CICS system...** button. The **Associate with CICS system** view is displayed.

• Provide the following information:
Scope name
Enter the specific or generic name of an existing CICS system or CICS system group that is not associated with any other analysis specification. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed.

A CICS system or CICS system group can be associated with only one analysis specification at a time. A specification, however, can be associated with any number of CICS systems and CICS system groups.

Option
(Required only when the scope is a CICS system group.) Indicate how the CICS systems comprising the CICS system group are to handle analysis specifications. Specify:

FORCE
All CICS systems in the CICS system group are to use the analysis specification. (The analysis specification attribute for each CICS system changes to INHERIT, indicating that the CICS system acquired the specification from a CICS system group.)

NULL
Those CICS systems within the CICS system group that are not associated with an analysis specification are to use this specification. (The analysis specification attribute for those CICS systems changes to INHERIT.)

NONE
Only the CICS system group is to be associated with the analysis specification. The CICS systems in the CICS system group are not affected. That is, if there is not association between a CICS system and an analysis specification, none is established; if there is an association, either explicitly established or inherited from another CICS system group, it is unchanged.

When the CICS system group includes other CICS system groups, all of the CICS systems, including those in the subordinate CICS system groups, are affected by the value specified in this field.

- Click **Yes** to add the scope to the analysis specification. Otherwise, click **No** to abandon the process.

However, if you associate the analysis specification with a CICS system that is already active, the new specification is not immediately available. To reset real-time analysis, you must display the **MASs known to CICSPlex** tabular view and do one of the following:

- If real-time analysis is not already active (as indicated by NO in the **RTA Active** field):
 - Click the record check box beside the MAS entry and click the **Update...** button.
 - On the **MASs known to CICSPlex** detailed view, change the **RTA Active** field to **YES**.
 - Click **Yes** to turn real-time analysis on.
- If real-time analysis is active (as indicated by YES or SAM in the **RTA Active** field),
 - Click the record check box beside the MAS entry and click the **Update...** button.
 - On the **MASs known to CICSPlex** detailed view, change the **RTA Active** field to **NO**.
 - Click **Yes** to turn real-time analysis off. The **MASs known to CICSPlex** tabular view is displayed.
 - Click the record check box beside the MAS entry and click the **Update...** button.
 - On the **MASs known to CICSPlex** detailed view, change the **RTA Active** field to **YES**.
 - Click **Yes** to turn real-time analysis on.

Real-time analysis becomes active using the new analysis specification.

To remove the scope association, see topicpage “Removing scope-to-analysis specification associations” on page 33.

Updating scope-to-analysis specification associations
To update a scope-to-analysis specification association:

- From the main menu, click **Administration > RTA system availability monitoring > Specifications**.
• From the **Specifications** tabular view (APSPEC object), click the Record check box beside the specification you want to change and click the **Add to CICS system...** button. The **Add to CICS system** view is displayed.

• Change the following fields as necessary:

 Specification Name
 Enter the specific or generic name of an existing analysis specification. If you specify a generic value, a list of valid analysis specifications is displayed.

 Option
 When the scope of the analysis specification is a CICS system group, you must indicate how the CICS systems comprising the CICS system group are to use the specification. To do this, specify one of the following:

 FORCE
 All CICS systems in the CICS system group are to inherit the new specification.

 KEEP
 Any CICS system that inherited a specification from the CICS system group is to be explicitly assigned the old specification; all other CICS systems in the group are to be unaffected.

 NAME
 Any CICS system that inherited a specification from the CICS system group is to be explicitly assigned the new specification; all other CICS systems in the group are to be unaffected.

 NULL
 Any CICS system in the CICS system group that is not explicitly associated with a specification is to inherit the new specification; all other CICS systems in the group are to be unaffected.

 If the CICS system group includes other CICS system groups, all of the CICS systems, including those in the subordinate CICS system groups, are affected by the value specified in the **Option** field.

 Note: The **Option** field does not appear on this view when the scope is a CICS system (CICSSYS).

• Click **Yes** to update the scope to analysis specification association. Otherwise, click **No** to abandon the process.

Change the following information, as appropriate: If you update the analysis specification for a CICS system that is already active, the new specification is not immediately available. To reset real-time analysis, you must display the **MASs known to CICSpool** tabular view and do one of the following:

• If real-time analysis is not already active (as indicated by NO in the **RTA Active** field):
 – Click the record check box beside the MAS entry and click the **Update...** button.
 – On the **MASs known to CICSpool** detailed view, change the **RTA Active** field to **YES**.
 – Click **Yes** to turn real-time analysis on.

• If real-time analysis is active (as indicated by **YES** or **SAM** in the **RTA Active** field),
 – Click the record check box beside the MAS entry and click the **Update...** button.
 – On the **MASs known to CICSpool** detailed view, change the **RTA Active** field to **NO**.
 – Click **Yes** to turn real-time analysis off. The **MASs known to CICSpool** tabular view is displayed.
 – Click the record check box beside the MAS entry and click the **Update...** button.
 – On the **MASs known to CICSpool** detailed view, change the **RTA Active** field to **YES**.
 – Click **Yes** to turn real-time analysis on.

Real-time analysis becomes active using the new analysis specification.

Removing scope-to-analysis specification associations
To remove a scope-to-analysis specification association:

• From the main menu, click **Administration > RTA system availability monitoring > Specifications**.

• On the **Specifications** tabular view (APSPEC object), click the Record check box beside the specification to be changed and click the **Remove...** button.
• Provide the following information:

Option
Indicate how the CICS systems comprising the CICS system group are to use the analysis specification associated with that CICS system group. Specify:

KEEP
Those CICS systems that inherited the specification from the CICS system group are explicitly assigned that specification.

Blank
Those CICS systems that inherited the specification from the CICS system group are not to use that specification.

If the CICS system group includes other CICS system groups, all of the CICS systems, including those in the subordinate CICS system groups, are affected by the value specified in this field.

Note: The **Option** field does not appear on this view when the scope is a CICS system (CICSSYS).

• Click **Yes** to remove the association. Otherwise, click **No** to abandon the process.

Status definitions in RTA groups
The **Status definitions in RTA groups** (STAINGRP) views display information about the about status definitions that are associated with RTA groups.

Status probe definitions
A status probe definition identifies a user-program that is to be called by CICSPlex SM at specific intervals.

Creating a status probe definition
You can create a status probe definition by basing it on an existing definition, or by creating a new definition.

To create a status probe definition:

• Display the **Status probe definitions** tabular view (STATDEF object).

• Click the **Create...** button. To base the new definition on an existing one, click a Record check box before clicking the **Create...** button. The **Status probe definitions** create view is displayed.

• When you have completed the fields, click **Yes** to create the definition. Otherwise click **No** to abandon the process.

Adding a status probe definition to an RTA group
You can add a status probe definition to an RTA group:

• Display the **Status probe definitions** tabular view (STATDEF object).

• Select a status probe definition by clicking on the Record check box and click the **Add to RTA group...** button. The **Add to RTA group** view is displayed.

• Provide the following information:

 Resource group name
 Enter the specific or generic name of an analysis group with which this definition is to be associated. If you specify a generic value, a list of valid analysis groups is displayed.

 Period Definition name
 (Optional) Enter the specific or generic name of a period definition that identifies the range of hours during which the status definition is to be active. If you specify a generic value, a list of valid period definitions is displayed. If the name you specify is not an existing period definition, you can create that period definition later. If you leave this field blank, the status definition remains active for as long as the CICS system is running or until you discard it.

• Click **Yes** to add the status probe definition to the RTA group. Otherwise click **No** to abandon the process.
Installing a status probe definition
You can install a status probe definition in one or more active CICS systems that are within the CICSpix identified as the context.

Before you begin
The RTA status probe program must be available for execution before installation of a status probe definition.

About this task
A status probe definition can be automatically installed in a CICS system when that system starts. For this to occur, associate the definition with an analysis group. Then, associate that group with an analysis specification that is defined to the CICS system.

To install a status probe definition, complete the following procedure.

Procedure
1. Display the Status probe definitions tabular view (STATDEF object).
2. Select a status probe definition by clicking the Record check box and click Install.
 The Install view is displayed.
3. Provide the following information:
 - **Scope value**: Enter the specific or generic name of a CICS system or CICS system group into which the definition is to be installed. The CICS system or CICS system group must be within the CICSpix identified as the current context. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed.
 - **Period definition name**: (Optional) Enter the specific or generic name of an existing period definition that identifies the range of hours during which the status definition is to be active. If you specify a generic value, a list of valid period definitions is displayed.
4. Click Yes to install the status probe definition. Otherwise, click No to abandon the process.

Results
For an installation to succeed, the CICS system must be running and real-time analysis must be active. The status probe definition becomes active either:
- Immediately, if no period definition is associated with it and the CICS system is running
- At the time designated by the associated period definition

The status probe definition remains active as long as the CICS system is running, until you discard it, or until the time designated by an associated period definition is reached.

What to do next
To discard a status probe definition installed in a CICS system, use the Real time analysis (RTA) installed analysis and status definitions view (RTAACTV object).

Working with real-time analysis environment views
You can use the real-time analysis (RTA) views to analyze the activity in a CICSpix.
For a description of the RTA views, see RTA views.
Deactivating or discarding an analysis definition
When an analysis definition is installed in an analysis point, its status is either ACTIVE or PENDING.
The status is available in the Status field in the view for the APACTV object. For more information, see APACTV Resource Table. The status can have the following values:

ACTIVE
The analysis definition is installed and active.

PENDING
The analysis definition is installed and ready to become active.

An analysis definition is active during the time period identified in the Period field. (When this field is blank, the definition is active as long as the analysis point in which it is installed is active.)

To change the status of an installed analysis definition:

- To deactivate a definition with an ACTIVE status for which a time period is defined:
 - Access the RTA definitions tabular view (RTADEF object).
 - Click the Record check box beside the RTA definition to be deactivated and click the Deactivate... button. The Confirm view is displayed.
 - Click Yes to deactivate the selected RTA definition. Otherwise, click No to abandon the process.

The definition remains installed; its status is changed to PENDING. The next time the end of the associated time period is reached, the definition will become active again.

- To discard a definition with an ACTIVE or PENDING status and to remove the definition from the analysis point in which it is installed:
 - Access the RTA definitions tabular view (RTADEF object).
 - Click the Record check box beside the RTA definition to be discarded and click the Discard... button. The Confirm view is displayed.
 - Click Yes to discard the selected RTA definition. Otherwise, click No to abandon the process.

Deactivating or discarding a status definition
When an analysis definition is installed in an analysis point, its status is either ACTIVE or PENDING. You can change the status of an installed status definition.

About this task
The status is available in the Status field in the view for the RTAACTV object. For more information, see RTAACTV Resource Table. The status can have the following values:

ACTIVE
The definition is installed and active.

PENDING
The definition is installed and ready to become active.

A status definition is active during the time period identified in the Period field. (When this field is blank, the definition is to be active as long as the CICS system in which it is installed is active.)

Procedure

- To deactivate a definition with an ACTIVE status for which a time period is defined:
 a) Access the Status definitions tabular view (STATDEF object).
 b) Click the Record check box beside the status definition to be deactivated.
 c) Click Deactivate.
 The Confirm view is displayed.
 d) Click Yes to deactivate the selected status definition. Otherwise, click No to abandon the process.
The definition remains installed; its status is changed to PENDING. The next time the end of the associated time period is reached, the definition will become active again.

- To discard a definition with an ACTIVE or PENDING status and to remove the definition from the analysis point in which it is installed:
 a) Access the **Status definitions** tabular view (STATDEF object).
 b) Click the Record check box beside the status definition to be discarded.
 c) Click **Discard**.
 The **Confirm** view is displayed.
 d) Click **Yes** to discard the selected status definition. Otherwise, click **No** to abandon the process.

Example tasks: real-time analysis

This section includes several examples of typical real-time analysis setup tasks.

Switching system availability monitoring (SAM) on for a MAS

System availability monitoring issues warnings when problems occur in monitored CICS systems. CICSPlex SM’s system availability monitoring is easy to set up and is extremely useful. When system availability monitoring is active for a particular CICS system, CICSPlex SM warns you if the system becomes unavailable, or if any of the following conditions occur:

<table>
<thead>
<tr>
<th>Condition</th>
<th>SAM event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOS</td>
<td>!!SAMSOS</td>
<td>Short on storage</td>
</tr>
<tr>
<td>SYSDUMP</td>
<td>!!SAMSROM</td>
<td>System dump</td>
</tr>
<tr>
<td>TRANDUMP</td>
<td>!!SAMTDM</td>
<td>Transaction dump</td>
</tr>
<tr>
<td>MAXTASK</td>
<td>!!SAMMAX</td>
<td>Maximum number of tasks</td>
</tr>
<tr>
<td>NON Responsive MAS</td>
<td>!!SAMNRM</td>
<td>Nonresponsive MAS detected by CMAS</td>
</tr>
<tr>
<td>STALL</td>
<td>!!SAMSTL</td>
<td>System busy</td>
</tr>
</tbody>
</table>

You activate monitoring of system availability (!!SAMOPS) by telling CICSPlex SM the hours of the day that you expect the CICS system to be available. To do this, specify the name of a valid time-period definition in the **Period definition name** field of the **CICS system definitions** detail view.

You activate monitoring of the conditions by switching on real-time analysis for the CICS system.

The following example tells CICSPlex SM that CICS system CICSPA01, in CICSpex PLXPROD1, should run problem-free between 09:00 and 17:30 and, if it doesn't, to issue a warning. The example switches system availability monitoring on permanently for CICSPA01, and takes effect immediately. The time-period definition PDFSHFTA, which specifies the hours from 09:00 to 17:30, has already been created.

1. Update the CICS system definition.
 a. From the main menu, click **Administration > RTA system availability monitoring > CICS system definitions** to open the **CICS system definitions** tabular view.
 b. If the current context is not PLXPROD1, specify PLXPROD1 in the **Context** field and click **Refresh**.
 c. Select the entry for CICSPA01 and click **Update**. A **CICS system definitions** detail view is displayed.
 d. In the **Primary CMAS name** field, type in the name of the CMAS to which CICS normally connects. For this example, type CMSSYS1.
 e. In the **Period definition name** field, type PDFSHFTA.
 f. Scroll down to the **Real time analysis status** field and select YES from the drop-down menu.
If you want to monitor only system availability (and not the SOS, SYSDUMP, TRANDUMP, MAXTASK, LOSTMAS, and STALL conditions), specify SAM rather than YES for this field.

g. Click Yes.

The CICS system definitions tabular view is displayed again. The change takes effect immediately.

2. Look at the CICSPlex SM event notifications.

Now that system availability monitoring is switched on for CICS system CICSPA01, you can check the system's availability by clicking Real Time Analysis (RTA) Outstanding Events in the General views section of the WUI main menu. If CICSPA01 is not active, or is not problem-free, during the period defined in time-period definition PDFSHFTA, there will be a corresponding entry displayed in the view.

If you decide later to switch system availability monitoring off for CICS system CICSPA01, update the CICS system definition again (as described in step “1” on page 37), and specify NO in the Real time analysis status field.

Changing the default actions for system availability monitoring (SAM)

If you turn on system availability monitoring (SAM) for a particular CICS system, CICSPlex SM issues the default notifications when one of the predefined conditions occurs. That is, CICSPlex SM generates an external message and an event notification. You can customize the external message and the event notification to suit local requirements.

The default values for these messages are shown in “Default notification values” on page 8. For example, you might want to change the message text for a particular condition, or change the severity of a condition, or selectively turn off parts of system availability monitoring.

This example shows you how to use the Web User Interface to modify the default system availability monitoring notifications you requested in the previous example (“Switching system availability monitoring (SAM) on for a MAS” on page 37) for CICS system CICSPA01. The changes you want to make are as follows:

• If CICSPA01 is not available between 09:00 and 17:30, an alert is to be sent to NetView by CMAS CMSSYS1, and an event notification, with a severity of HW, is to be issued. However, no external message is to be generated.

• If the system becomes short on storage (SOS), the default actions should be taken, but the priority of the event should be Very High Severe (VHS).

• No notification of system or transaction dumps is required.

1. Create an action definition.

 a. From the WUI main menu, click Administration views > RTA system availability monitoring > Actions to open the Action definitions tabular view.

 b. If the current context is not PLXPROD1, specify PLXPROD1 in the Context field and click Refresh.

 c. Click the Create... button at the bottom of the screen.

 Note: If you want to use an existing definition as a template, select a definition from the list first.

 d. Provide the following information:

 Action
 RTAPAY01

 Description
 CICSPA01 unavailable

 Generate event
 YES

 Action priority
 255

 Message to send when event occurs
 AOR CICSPA01 is unavailable
Monitoring resources temporarily

Often, your reasons for monitoring a CICS resource are temporary. For example, a problem might arise with a particular MRO connection that you solve using real-time analysis for a limited period of time. Also, even if you know that you want monitoring of a resource to be regular and permanent, you are recommended to start by monitoring the resource temporarily, so that you can fine-tune the real-time analysis definitions and assess their results.

This example shows you how to use the Web User Interface to create real-time analysis definitions to temporarily monitor the number of DB2® thread aborts associated with particular transactions (those whose names begin with the letters AB) in particular CICS systems (CICSPA01 and CICSPA02). An external message and an event notification will be issued when the number of DB2 thread aborts goes above the number you specify.

1. Create a CICS system group.
 a. From the WUI main menu, click Administration views > Topology administration views > System groups to open the System group definitions tabular view.
 b. If the current context is not PLXPROD1, specify PLXPROD1 in the Context field and click Refresh.
 c. Click the Create... action button.
 d. Type in the following information:

 System group name

 CSGAORS1
e. Click Yes to confirm. The System group definitions tabular view is redisplayed showing an entry for the new group, CSGAORS1. At this point, the group exists, but is empty.

2. Add CICS systems to the CICS system group

a. Open the CICS system definitions tabular view (Administration views > Topology administration views > System definitions) and select the entries for CICSPA01 and CICSPA02.

b. Click Add to CICS system group..., and in the Group which member will join field, type in CSGAORS1.

c. Click the Yes to 2 remaining button to confirm.

3. Create an evaluation definition.

This step, and the two that follow, show which definitions you have to create to tell CICSPlex SM about the resource condition you're interested in, and what to do when it occurs. The order in which you create the definitions isn't particularly important, though the order shown here is probably the most logical.

Start with the evaluation definition which tells CICSPlex SM about the resource you're interested in. Then define the action definition, which tells CICSPlex SM how to notify you when the condition you've identified occurs. Finish with the analysis definition, which is basically a link between the evaluation definition and the action definition.

a. From the main menu, click Administration views > RTA MAS resource monitoring > Evaluations to open the Evaluation definitions tabular view.

b. Click the Create... button and provide the following information:

 Name
 RTEPAY02

 Description
 DB2 thread aborts (TRANID AB*)

 Sample interval
 300

 Resource table
 DB2THRD

 Instance identifier of evaluated resource
 AB*

 Method of evaluating results in result set
 MAX

 Separate task indicator
 NO

 Field being evaluated
 ABORTCNT

 Evaluation type
 Threshold

 Lower bound of range for HW
 20

 Lower bound of range for HS
 40

 Lower bound of range for VHS
 80

You can leave the remaining fields blank.

The Sample interval value is the interval at which CICSPlex SM must check the state of the resource. In this example, the number of DB2 thread aborts is to be checked every 300 seconds.
The evaluation threshold values (Lower bound of range for HW, and so on) tell CICSPlex SM which severity to apply to the event notification. In this example, when the number of DB2 thread aborts reaches 20, the severity value of the event will be HW; when it reaches 40, the severity value of the event will be HS; and when it reaches 80, the severity value of the event will be VHS.

4. Create an action definition.
 a. From the main menu, click Administration views > RTA MAS resource monitoring > Actions to open the Action definitions tabular view.
 b. Click the Create... button and provide the following information:

 Action
 RTAPAY02

 Description
 DB2 thread aborts — High

 Generate event
 YES

 Name of view that may provide useful information
 DB2THRD

 Action priority
 100

 Message to send when event occurs
 DB2 thread aborts too high

 Generate external message
 YES

 External message sent when event occurs
 DB2 thread aborts too high

 Generate SNA generic alert
 NO

 MVS Automatic restart
 NO

 You can leave the other fields blank.

 You will see the message “DB2 thread aborts too high” when any of the threshold values you have specified is reached. Notice that the field External message sent when event is cleared is left empty. This is because there is no “reverse” condition of a DB2 thread abort.

 c. Click Yes to confirm. The Action definitions tabular view is redisplayed and includes an entry for the new definition RTAPAY02.

5. Create an analysis definition.
 a. From the main menu, click Administration views > RTA MAS resource monitoring > Definitions to open the RTA definitions tabular view.
 b. Click the Create.. button and provide the following information:

 Name
 RTDPAY02

 Description
 DB2 thread aborts

 Execute evaluation modification string
 NO

 Analysis interval
 300

 Action definition name
 RTAPAY02
Evaluation expression

RTEPAY02

The evaluation count fields (Count of true evaluations before VLS raised and so on) should all contain the default value of 1. You can leave the other fields blank.

The **Analysis interval** (300 seconds in this example) controls how often CICSPlex SM looks at the results of the evaluation definition to determine whether the condition has occurred. This interval should not be smaller than the sample interval you specify in the evaluation definition itself, because there is nothing to be gained by assessing the results of the evaluation more frequently than the evaluation itself occurs.

c. Click **Yes** to confirm. The RTA definitions tabular view is redisplayed and includes an entry for the new definition RTDPAY02.

At this point, all the definitions you need have been created, but they must be activated by installing the analysis definition RTDPAY02 in the CICS system group CSGAORS1.

6. Determine whether or not CICS system CICSPAO1 is already associated with an analysis specification.

To do this; from the WUI main menu, click Administration views > RTA system availability monitoring > Specifications to system links. This opens the RTA specifications to CICS system links tabular view, which lists the associations between CICS systems and RTA specifications.

If CICSPAO is not associated with an analysis specification, complete steps 7 and 8. If CICSPAO1 is associated with an analysis specification, go to step 9.

7. Create an analysis specification.

 a. From the WUI main menu, click Administration views > RTA system availability monitoring > Specifications to open the RTA specifications tabular view

 b. Click the Create... button and type in the following information

 RTA specification name

 RTSPAY02

 Description

 DB2 thread aborts

 You can leave the remaining fields blank.

 c. Click **Yes** to confirm. The RTA specifications tabular view is redisplayed and includes an entry for RTSPAY02.

8. Set the scope of the analysis specification.

 The next step is to identify the CICS systems that are to use this specification.

 a. Select the entry for RTSPAY02 in the RTA specifications tabular view and click the Associate CICS group... button.

 b. In the CICS system group field, type CSGAORS1, and select **Force** to make all systems in CICS system group CSGAORS1 use this analysis specification.

 c. Click **Yes** to confirm.

9. Verify that real-time analysis is active.

 Before you install the definitions, verify that the CICS systems defined in the CICS system group CSGAORS1 have real-time analysis active.

 a. From the main menu, click Administration views > RTA system availability monitoring > CICS system definitions to open the CICS system definitions tabular view.

 b. Click the entry for for CICSPAO1:

 • If the **Real time analysis status** field specifies YES or MRM, skip the next step.
• If the **Real time analysis status** field specifies NO or SAM, return to the **CICS system definitions** tabular view, select the CICS system and click the **Update...** button. In the **Real time analysis status** field, type YES or MRM and click **Yes** to confirm.

Repeat this step for system CICSPAO2.

10. Install the analysis definition manually.

a. From the WUI main menu, click **Administration views > RTA MAS resource monitoring > Definitions** to open the **RTA definitions** tabular view.

b. Select the entry for RTDPAY02 and click the **Install...** button.

c. In the **Scope value** field type in the name of the CICS system group (CSGAORS1, in this example). The analysis definition takes immediate effect in any of the CICS systems in the group that are currently running.

If you want to check where the analysis definition is currently active, go back to the WUI main menu and click **Real Time Analysis (RTA) views > Real Time Analysis (RTA) installed analysis and status definitions**. This view lists the analysis definitions that are currently installed in the CICS systems of the current scope.

The analysis definition you've just installed will remain active until you deactivate it, or until the CICS systems stop. If you decide, perhaps after some fine-tuning of intervals, that you're happy with the output you're getting from this analysis definition, you might want to install it automatically, so that it takes effect at CICS system-startup time and you don't have to install it manually again. How to do this is described in the next example.

Monitoring resources permanently

In this example, you will use the WUI to create the real-time analysis definitions required to make this monitoring regular and permanent.

This example is a development of the previous example (“Monitoring resources temporarily” on page 39) in which you saw how to monitor the number of DB2 thread aborts in a CICS system group on a temporary basis.

Assume that you want the analysis definition RTDPAY02 to be in effect every day in CICS system group CSGAORS1, but only during prime shift (09:00 through 17:30). You have decided this because, outside of prime shift, you have few problems with DB2.

1. Create a time period definition.

a. From the main menu, click **Administration > RTA system availability monitoring > Time periods** to open the **Time period definitions** tabular view.

b. Click the **Create...** button and type in the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>PDFPRIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Prime shift (0900 — 1730)</td>
</tr>
<tr>
<td>Start time</td>
<td>09:00</td>
</tr>
<tr>
<td>End time</td>
<td>17:30</td>
</tr>
<tr>
<td>Time zone</td>
<td>U</td>
</tr>
<tr>
<td>Time zone adjustment factor</td>
<td>0</td>
</tr>
</tbody>
</table>

You have to give the time period definition a name (PDFPRIME, in this example), say when it starts and when it ends, and specify the time zone. The description isn't mandatory, but you'll probably find it useful when you're looking at a list of period definitions and need to distinguish one from another. You can reuse this definition within the CICSPlex any number of times, and for any of the CICSPlex SM functions.

c. Click **Yes** to confirm.
2. Create an analysis specification.

To get an analysis definition installed in a CICS system automatically, you have to create both an analysis specification and an analysis group. Begin with the analysis specification, though the order isn't important.

a. From the main menu, click Administration > RTA system availability monitoring > Specifications to open the RTA specifications tabular view.
b. Click the Create... button and type in the following information:

<table>
<thead>
<tr>
<th>RTA specification name</th>
<th>RTSPAY02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Install RTDPAY02 in CSGAORS1</td>
</tr>
</tbody>
</table>
You can leave the remaining fields blank.

c. Click Yes to confirm. The RTA specification tabular view is redisplayed and includes an entry for RTSPAY02.

3. Set the scope of the analysis specification.

The next step is to identify the CICS systems that are to use this specification.

a. Select the entry for RTSPAY02 in the RTA specifications tabular view and click the Associate CICS group... button.
b. In the CICS system group field, type CSGAORS1, and select Force to make all systems in CICS system group CSGAORS1 use this analysis specification.
c. Click Yes to confirm.

4. Create an analysis group.

a. From the main menu, click Administration > RTA MAS resource monitoring > Groups to open the RTA groups tabular view.
b. Click the Create... button and type in the following:

<table>
<thead>
<tr>
<th>RTA group</th>
<th>RTGPAY02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Install RTDPAY02</td>
</tr>
</tbody>
</table>
c. Click Yes to confirm.

5. Associate the analysis group with the analysis specification.

a. Select the for RTGPAY02 entry in the RTA groups view, and click the Add to RTA specification... button.
b. In the RTA specname field, type in RTSPAY02.

If you want to check that the analysis group has been added to the analysis specification, from the main menu click Administration views > RTA MAS resource monitoring > Groups in Specifications to open the RTA groups in RTA specifications tabular view. This view shows an entry for analysis specification RTSPAY02 with analysis group RTGPAY02.

6. Associate the analysis definition with the analysis group.

a. From the main menu click Administration > RTA MAS resource monitoring > Definitions to open the RTA definitions tabular view.
b. Select the entry for RTDPAY02 entry, and click the Add to RTA group... button.
c. In the Resource group name field, type in RTGPAY02. In the Period Definition name field, type in PDFPRIME.
d. Click Yes to confirm.

Note: For a description of the RTA definitions view, see “RTA definitions” on page 23.
If you want to check that the analysis definition has been successfully added to the analysis group, from the main menu click Administration views > RTA MAS resource monitoring > Definitions in groups to open the RTA definitions in RTA groups tabular view. An entry is listed for RTA group RTGPAY02 with RTA definition RTDPAY02 for period PDFPRIME.

The newly installed analysis definition takes effect in any CICS system that belongs to group CSGAORS1 when that CICS system next starts. (You can also activate a new analysis definition immediately from the MAS view by switching real-time analysis off and back on again.)

Reusing analysis specifications and analysis groups

In this example you will use the WUI to see how to use an analysis specification and an analysis group for more than one type of resource checking.

This example is an extension of the previous example (“Monitoring resources permanently” on page 43), in which you saw how to monitor the number of DB2 thread aborts in CICS system group CSGAORS1 on a regular basis. In this example, you’ll be monitoring files in the same CICS system group, CSGAORS1. The details are as follows:

• Files PAYFILA1, PAYFILA2, and PAYFILB1 are all used by an application that must be available during prime shift, which starts at 09:00. The application can run in either of the regions CICSPA01 and CICSPA02. The files are owned by region CICSPF01.

Files PAYFILA1 and PAYFILA2 are the only remote files with names of the format PAYFILA* defined to CICSPA01 and CICSPA02. However, a local file PAYFILA9 and a remote file PAYFILB9 are also defined in CICSPA02. Because of this, two evaluation definitions will be required:

– The first evaluation definition will check on remote files whose names begin with the characters PAYFILA. The file PAYFILA9 will not be checked by this definition because it is a local file in CICSPA02, and CICSPlex SM distinguishes between local and remote files.

– The second evaluation definition will check on the single remote file PAYFILB1. A generic name cannot be used in this definition, because the file PAYFILB9, which you do not want to monitor, is also remote.

• To ensure that the application can be used when required, CICSPlex SM will check that the files are available in CICSPA01 and CICSPA02 from 08:00, one hour before prime shift starts. The checking will continue for the first 30 minutes of prime shift.

• An external message and an event notification (severity VHS) are to be issued if any of the files is not ENABLED between 08:00 and 09:30.

1. Create a time period definition.

 a. From the main menu, click Administration views > RTA system availability monitoring > Time period definitions to open the Time period definitions tabular view.

 b. Click the Create... button and type in the following information:

 Name
 PDFCHECK

 Description
 Prime shift lead in

 Start time
 08:00

 End time
 09:30

 Time zone
 U

 Time zone adjustment factor
 0

 c. Click Yes to confirm.

2. Create the first evaluation definition.
a. From the main menu, click **Administration > RTA MAS resource monitoring > Evaluations** to open the **Evaluation definitions** tabular view.

b. Click the **Create...** button and provide the following information:

 Name
 RTEPAY12

 Description
 REMFILE PAYFILA* enabling

 Sample interval
 60

 Resource table
 REMFILE

 Instance identifier of evaluated resource
 PAYFILA*

 Method of evaluating results in result set
 ANY

 Separate task indicator
 NO

 Field being evaluated
 ENABLESTATUS

 Evaluation logical operator
 NE

 Evaluation data value
 ENABLED

 Severity assigned when result meets criteria
 VHS

 You can leave the remaining fields blank.

3. Create the second evaluation definition.

 a. In the **Evaluation definitions** tabular view, select the entry for RTEPAY12 and click the **Create...** button. This opens the **Evaluation definitions** create panel showing the values you entered when creating RTEPAY12.

 b. Update the name, description, and instance values as follows:

 Name
 RTEPAY13

 Description
 REMFILE PAYFILB1* enabling

 Instance identifier of evaluated resource
 PAYFILB1

 The other fields can remain the same as for RTEPAY12.

4. Create an action definition.

 a. From the main menu, click **Administration views > RTA MAS resource monitoring > Definitions** to open the **Action definitions** tabular view.

 b. Click the **Create...** button and provide the following information:

 Action
 RTAPAY12

 Description
 Prime shift files not ENABLED

 Generate event
 YES
Name of view that may provide useful information
REMFILE
Action priority
255
Message to send when event occurs
Prime shift files not ready
Generate external message
YES
External message sent when event occurs
Prime shift files not ready
External message sent when event is cleared
Prime shift files now ENABLED
Generate SNA generic alert
NO
MVS automatic restart
NO
You can leave the other fields blank.
c. Click Yes to confirm. The Action definitions tabular view is redisplayed and includes an entry for the new definition RTAPAY12.

5. Create the analysis definition.

a. From the main menu, click Administration views > RTA MAS resource monitoring > Definitions to open the RTA definitions tabular view.
b. Click the Create... button and provide the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>RTDPAY12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Application file check</td>
</tr>
<tr>
<td>Execute evaluation modification string</td>
<td>NO</td>
</tr>
<tr>
<td>Analysis interval</td>
<td>60</td>
</tr>
<tr>
<td>Action definition name</td>
<td>RTAPAY12</td>
</tr>
<tr>
<td>Evaluation expression</td>
<td>RTEPAY12</td>
</tr>
</tbody>
</table>

The evaluation count fields (Count of true evaluations before VLS raised and so on) should all contain the default value of 1. You can leave the other fields blank.
c. Click Yes to confirm. The RTA definitions tabular view is redisplayed and includes an entry for the new definition RTDPAY12.

The evaluation expression causes CICSPlexSM to issue a notification if either evaluation returns a true condition.

Note: For a description of the RTA definitions view, see “RTA definitions” on page 23.

6. Associate the new analysis definition with the existing analysis group.

a. In the RTA definitions tabular view, select the entry for RTDPAY12, and click the Add to RTA group... button.
b. In the Resource group name field, type in RTGPAY02, and in the Period Definition name field, type PDFCHECK.
c. Click Yes to confirm.

The Analysis Group RTGPAY02 already exists (you created it in the previous example) and it has already been associated with the analysis specification RTSPAY02. Therefore, analysis definition RTDPAY12 is
Monitoring a resource type in a single CICS system

In this example, you’ll see how to get CICSPlex SM to monitor the LU 6.2 connections in CICS system CICSPT02, which has recently been experiencing LU 6.2 problems. Both an external message and an event notification are to be issued whenever any connection is found to be in RELEASED status. The monitoring will not be limited to specific hours of the day, but will be continuous.

The task is fundamentally the same as the one shown in the example “Monitoring resources permanently” on page 43. The interesting differences arise in the creation of the evaluation definition, the action definition, and the analysis definition. Those steps are shown here:

1. Create an evaluation definition.
 - From the main menu, click Administration > RTA MAS resource monitoring > Evaluations to display the Evaluation definitions tabular view (EVALDEF object).
 - Click the Create... button. To base the new definition on an existing one, click the Record check box before clicking the Create... button. The Evaluation definitions create view is displayed.
 - Complete the fields as follows:

Name	RTEPAY03
Description	Connections in CICSPT0
Sample interval	30
Resource name	CONNECT
Instance identifier of evaluated resource	*
Method of evaluating results in result set	Any
Separate task indicator	NO
Field being evaluated	CONNSTATUS
Evaluation logical operator	EQ
Evaluation data value	RELEASED
Severity assigned when result meets criteria	VHS
View that may provide extra information	CONNECT
Filter string	TYPE=LU62.

 - Click Yes to create the definition.

 In this example:
 - The evaluation values define the type of check to be made.
 - The Method of evaluating results in result set field value ensures that, if the condition is true of any single connection that’s being monitored, the evaluation returns a severity of VHS.
 - The filter string limits the checking to LU 6.2 connections.

 Note: For a complete description of the Evaluation definitions view, see “Evaluation definitions” on page 20.

2. Create an action definition:
 - From the main menu, click Administration > RTA MAS resource monitoring > Actions to display the Action definitions tabular view (ACTION object).
 - Click the Create... button. The Action definitions create view is displayed.
 - Complete the fields as follows:
Name | RTAPAY03
Description | Connections lost in CICSPT02
Generate event | YES
Name of view that may provide useful information | CONNECT
Action priority | 255
Message sent when event occurs | Connections lost in CICSPT02
Generate external message | YES
External message sent when event occurs | Connections lost in CICSPT02
External message sent when event is cleared | CICSPT02 connections now OK
Generate generic SNA alert | NO
MVS automatic restart | NO

• Click Yes to create the definition.

This action definition tells CICSPlex SM that you want both an event notification and an external message to be issued.

Note: For a complete description of the Action definitions view, see “Action definitions” on page 19.

3. Create an analysis definition:

• From the main menu, click Administration > RTA MAS resource monitoring > Definitions to display the RTA definitions tabular view (RTA object).

• Click the Create... button. The RTA definitions create view is displayed.

• Complete the fields as follows:

| Name | RTDPAY03
| Description | Connections in CICSPT02
| Analysis interval | 30
| Evaluation expression | RTEPAY03
| Execute evaluation modification string | NO
| Action definition name | RTAPAY03

Use the default value of 1 in the Count of true evaluations and Count of false evaluations fields.

• Click Yes to create the definition.

CICSPlex SM will evaluate the results of the evaluation definition (defined in RTEPAY03) every 30 seconds.

You would install the analysis definition in the CICS system CICSPT02 by specifying CICSPT02 in the Scope value field of the Install view.

Note: For a complete description of the RTA definitions view, see “RTA definitions” on page 23.

Monitoring a resource type throughout the CICSPlex

In this example, you will see how to monitor the availability of all MRO connections throughout CICSPlex PLXPROD1.

Whenever such a connection goes out of service, an event notification (but no external message) is to be generated, and its severity is to be VHS. Thus, if three connections are lost, three event notifications will be issued. The monitoring is to be continuous. A CICS system group (CSGPLX01), which includes every CICS system in PLXPROD1, has already been created.
As in the previous example, the steps involved in the creation of the evaluation definition, the action definition, and the analysis definition are of most interest:

1. Create an evaluation definition:
 - From the main menu, click Administration > RTA MAS resource monitoring > Evaluations to display the Evaluation definitions tabular view (EVALDEF object). Click Evaluations
 - Click the Create... button. The Evaluation definitions create view is displayed.
 - Complete the fields as follows:

Field	Value
Name	RTEPAY04
Description	All MRO connections in PLXPROD1
Sample interval	30
Resource name	CONNECT
Instance identifier of evaluated resource	*
Method of evaluating results in result set	Any
Separate task indicator	NO
Field being evaluated	SERVSTATUS
Evaluation logical operator	NE
Evaluation data value	INSERVICE
Severity assigned when result meets criteria	VHS
View that may provide extra information	CONNECT
Filter string	TYPE=MRO.
 - Click Yes to create the definition. Otherwise, click No to abandon the process.

 In this example:
 - The evaluation values define the type of check to be made.
 - The Result Set Action value ensures that, if the condition is true of any connection that's being monitored, the evaluation returns a severity of VHS.
 - The filter string limits the checking to MRO connections.

 Note: For a complete description of the Evaluation definition view, see “Evaluation definitions” on page 20.

2. Create an action definition:
 - From the main menu, click Administration views and one of RTA system availability monitoring, RTA MAS resource monitoring and RTA analysis point monitoring.
 - Click Actions to display the Action definitions tabular view (ACTION object).
 - Click the Create... button. To base the new definition on an existing one, click the Record check box before clicking the Create... button. The Action definitions create view is displayed.
 - Complete the fields as follows:

Field	Value
Name	RTAPAY04
Description	Connections lost in PLXPROD1
Generate event	YES
Name of view that may provide useful information	CONNECT
Action priority	120
Message sent when event occurs
Connections lost in PLXPROD1
Generate external message
NO
Generate generic SNA alert
NO
MVS automatic restart
NO

- Click Yes to create the definition. Otherwise, click No to abandon the process.

The Priority value of 120 means that other VHS events with a priority greater than 120 will appear higher in the Outstanding events view.

Note: For a complete description of the RTA definitions view, see “Action definitions” on page 19.

3. Create an analysis definition:

- From the main menu, click Administration > RTA MAS resource monitoring > Definitions to display the RTA definitions tabular view (RTA object).
- Click the Create... button. The RTA definitions create view is displayed.
- Complete the fields as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTDPAY04</td>
<td>MRO connections in PLXPROD1</td>
</tr>
<tr>
<td>Analysis interval</td>
<td>30</td>
</tr>
<tr>
<td>Evaluation expression</td>
<td>RTEPAY04</td>
</tr>
<tr>
<td>Execute evaluation modification string</td>
<td>NO</td>
</tr>
<tr>
<td>Action definition name</td>
<td>RTAPAY04</td>
</tr>
</tbody>
</table>

Use the default value of 1 in the Count of true evaluations and Count of false evaluations fields.
- Click Yes to create the definition.

Note: For a complete description of the RTA definitions view, see “RTA definitions” on page 23.

You would install the analysis definition in the CICS system group CSGPLX01 by specifying CSGPLX01 in the Scope name field of the Install view.

Monitoring multiple resource types in a CICS system group (1)

This example shows how to monitor both the CDSA and the UDSA free sizes for two CICS systems, CICSPA01 and CICSPA02, which have already been defined as the only members of CICS system group CSGAORS1.

When either the CDSA or UDSA free size falls below a specified value, an external message and an event notification are to be issued. The severity of the event notification will increase as the DSA free size reduces.

Because you are monitoring two resources in this example (UDSA and CDSA), two evaluation definitions are required. Here are the relevant steps:

1. Create the first evaluation definition:
 - From the main menu, click Administration > RTA MAS resource monitoring > Evaluations to display the Evaluation definitions tabular view (EVALDEF object).
 - Click the Create... button. The Evaluation definitions create view is displayed.
 - Complete the fields as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTEPAY05</td>
<td>Check CDSA free size</td>
</tr>
</tbody>
</table>
Sample interval: 60
Resource table: CICSDSA
Instance identifier of evaluated resource: CDSA
Result set action: No
Field being evaluated: STGFSIZE
Upper bound of range for VLS: 70000
Upper bound of range for LS: 85000
Upper bound of range for LW: 95000

- Click Yes to create the definition.

The evaluation threshold values are based on a CDSA cushion size of 64KB. Increasingly severe conditions will be flagged as the free storage drops closer to the cushion value. (An alternative approach would have been to use percentage measurements (PCTFREE) rather than absolute measures (STGFSIZE).) The resource will be sampled once every 60 seconds.

When you click Yes, the Evaluation definitions tabular view is redisplayed, showing an entry for RTEPAY05.

Note: For a complete description of the Evaluation definition view, see “Evaluation definitions” on page 20.

2. Create the second evaluation definition:
- On the Evaluation definitions tabular view (EVALDEF object), click the Record check box beside the entry for RTEPAY05.
- Click the Create... button. The Evaluation definitions create view is displayed showing the values entered for RTEPAY05.
- Overtype the Name, Description, Instance identifier of evaluated resource and the evaluation threshold fields, as follows:

 Name: RTAPAY06
 Description: Check USDA free size
 Instance identifier of evaluated resource: CDSA
 Upper bound of range for VLS: 70000
 Upper bound of range for LS: 80000
 Upper bound of range for LW: 90000

 Leave the other fields with the values used for RTEPA05.
- Click Yes to create the definition.

As for the CDSA evaluation definition, the evaluation threshold values are based on a cushion size of 64KB.

3. Create an action definition:
- From the main menu, click Administration > RTA MAS resource monitoring > Actions to display the Action definitions tabular view (ACTION object).
- Click the Create... button. The Action definitions create view is displayed.
- Complete the fields as follows:
 Name: RTAPAY05
 Description: DSA free size low below 16MB
Generate event: Yes
Name of view that might provide useful information: CICSDSA
Action priority: 255
Message to send when event occurs: Free DSA below 16MB dropping
Generate external message: Yes
External message sent when event occurs: Free DSA below 16MB dropping
External message sent when event is cleared: Free DSA below 16MB climbing
Generate SNA generic alert: No
MVS automatic restart: No

- Click Yes to create the definition.

Note: For a complete description of the Action definitions view, see “Action definitions” on page 19.

4. Create an analysis definition:
 - From the main menu, click Administration > RTA MAS resource monitoring > Definitions to display the RTA definitions tabular view (RTA object).
 - Click the Create... button. The RTA definitions create view is displayed.
 - Complete the fields as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>RTDPAY05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>DSA free below 16MB</td>
</tr>
<tr>
<td>Analysis interval</td>
<td>300</td>
</tr>
<tr>
<td>Evaluation expression</td>
<td>RTEPAY05</td>
</tr>
<tr>
<td>Execute evaluation modification string</td>
<td>No</td>
</tr>
<tr>
<td>Action definition name</td>
<td>RTAPAY05</td>
</tr>
<tr>
<td>Count of true evaluations before VLS raised</td>
<td>2</td>
</tr>
<tr>
<td>Count of false evaluations before VLS resolved</td>
<td>2</td>
</tr>
<tr>
<td>Count of true evaluations before LS raised</td>
<td>2</td>
</tr>
<tr>
<td>Count of false evaluations before LS resolved</td>
<td>2</td>
</tr>
<tr>
<td>Count of true evaluations before LW raised</td>
<td>2</td>
</tr>
<tr>
<td>Count of false evaluations before LW resolved</td>
<td>2</td>
</tr>
<tr>
<td>Count of true evaluations before HW raised</td>
<td>1</td>
</tr>
<tr>
<td>Count of false evaluations before HW resolved</td>
<td>1</td>
</tr>
<tr>
<td>Count of true evaluations before HS raised</td>
<td>1</td>
</tr>
<tr>
<td>Count of false evaluations before HS resolved</td>
<td>1</td>
</tr>
<tr>
<td>Count of true evaluations before VHS raised</td>
<td>1</td>
</tr>
<tr>
<td>Count of false evaluations before VHS resolved</td>
<td>1</td>
</tr>
</tbody>
</table>

- Click Yes to create the definition.

The counts of true and false evaluations are used to smooth out fluctuations in the values being seen. For example, an LW condition is not flagged until a severity of at least LW has been seen for two consecutive samples. Each condition is cleared after two, less severe samples have been seen in succession.
The evaluation expression value tells CICSp lex SM that either of the two evaluation definitions can identify a condition that is to be flagged. The action is the same for both evaluation definitions, and is defined in RTAPAY05.

Note: For a complete description of the RTA definitions view, see “RTA definitions” on page 23.

You would install the analysis definition RTDPAY05 in the CICS system group CSGAORS1 by specifying CSGAORS1 as the scope of the analysis specification.

Monitoring multiple resource types in a CICS system group (2)

The first example showed you how to monitor two types of resource (CDSA and UDSA) in a group of CICS systems. This example shows you how to monitor those same resources (CDSA and UDSA), but with differences in the number of action definitions required and the activation period.

In the first example (“Monitoring multiple resource types in a CICS system group (1)” on page 51), you created a single action definition, so that the same notifications were issued, regardless of which of the two types of resource was having problems. This example shows you how to monitor those same resources (CDSA and UDSA), but with these differences:

- The message text of the external message and the event notification identifies whether UDSA or CDSA is having problems. To do this, two action definitions are required, rather than one.
- The monitoring must be activated every day, from 10:00 through 11:30 and from 14:00 to 16:00, but not outside those times. This will require two analysis groups to be created, one of which will be installed from 10:00 through 11:00, and one of which will be installed from 14:00 through 16:00.

The CICS system group CSGAORS1, containing CICS systems CICSPA01 and CICSPA02, has already been created, as have the two time-period definitions PDFBUSY1 (for the period 10:00 through 11:30) and PDFBUSY2 (for the period 14:00 through 16:00). You can reuse the two evaluation definitions (RTEPAY05 and RTEPAY06) from the previous example.

1. Create the first action definition:
 - From the main menu, click **Administration > RTA MAS resource monitoring > Actions** to display the **Action definitions** tabular view (ACTION object).
 - Click the Create... button. The **Action definitions** create view is displayed.
 - Complete the fields as follows:

   ```
   Name: RTAPAY07  
   Description: CDSA free size low below 16MB  
   Generate event: Yes  
   Name of view that might provide useful information: CICSDSA  
   Action priority: 255  
   Message to send when event occurs: Free CDSA below 16MB dropping  
   Generate external message: Yes  
   External message sent when event occurs: Free CDSA below 16MB dropping  
   External message sent when event is cleared: Free CDSA below 16MB climbing  
   Generate SNA generic alert: No  
   MVS automatic restart: No  
   ```
 - Click Yes to create the definition.

 The **Action** tabular view is redisplayed, showing the new definition.

2. Create the second action definition:
 - From the **Action definitions** tabular view (ACTION object), click the Record check box by the entry for RTAPAY07.
• Click the Create... button. The Action definitions create view is displayed, showing the values you entered for RTAPAY07.
• Complete the fields as follows:

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>RTAPAY08</td>
</tr>
<tr>
<td>Description</td>
<td>UDSA free size low below 16MB</td>
</tr>
<tr>
<td>Generate event</td>
<td>Yes</td>
</tr>
<tr>
<td>Name of view that might provide useful information</td>
<td>CICSDSA</td>
</tr>
<tr>
<td>Action priority</td>
<td>255</td>
</tr>
<tr>
<td>Message to send when event occurs</td>
<td>Free UDSA below 16MB dropping</td>
</tr>
<tr>
<td>Generate external message</td>
<td>Yes</td>
</tr>
<tr>
<td>External message sent when event occurs</td>
<td>Free UDSA below 16MB dropping</td>
</tr>
<tr>
<td>External message sent when event is cleared</td>
<td>Free UDSA below 16MB climbing</td>
</tr>
<tr>
<td>Generate SNA generic alert</td>
<td>No</td>
</tr>
<tr>
<td>MVS automatic restart</td>
<td>No</td>
</tr>
</tbody>
</table>

• Click Yes to create the definition.

Notice that the messages generated by action definitions RTAPAY07 and RTAPAY08 differentiate between problems with CDSA and problems with UDSA.

3. Create the first analysis definition:
• From the main menu, click Administration > RTA MAS resource monitoring > Definitions to display the RTA definitions tabular view (RTA object).
• Click the Create... button. The RTA definitions create view is displayed.
• Complete the fields as follows:

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>RTDPAY07</td>
</tr>
<tr>
<td>Description</td>
<td>CDSA free size</td>
</tr>
<tr>
<td>Analysis interval</td>
<td>60</td>
</tr>
<tr>
<td>Evaluation expression</td>
<td>RTEPAY05</td>
</tr>
<tr>
<td>Execute evaluation modification string</td>
<td>No</td>
</tr>
<tr>
<td>Action definition name</td>
<td>RTAPAY07</td>
</tr>
<tr>
<td>Count of true evaluations before VLS raised</td>
<td>2</td>
</tr>
<tr>
<td>Count of false evaluations before VLS resolved</td>
<td>2</td>
</tr>
<tr>
<td>Count of true evaluations before LS raised</td>
<td>2</td>
</tr>
<tr>
<td>Count of false evaluations before LS resolved</td>
<td>2</td>
</tr>
<tr>
<td>Count of true evaluations before LW raised</td>
<td>2</td>
</tr>
<tr>
<td>Count of false evaluations before LW resolved</td>
<td>2</td>
</tr>
<tr>
<td>Count of true evaluations before HW raised</td>
<td>1</td>
</tr>
<tr>
<td>Count of false evaluations before HW resolved</td>
<td>1</td>
</tr>
<tr>
<td>Count of true evaluations before HS raised</td>
<td>1</td>
</tr>
<tr>
<td>Count of false evaluations before HS resolved</td>
<td>1</td>
</tr>
<tr>
<td>Count of true evaluations before VHS raised</td>
<td>1</td>
</tr>
</tbody>
</table>
Count of false evaluations before VHS resolved

• Click Yes to create the definition.

The RTA definitions view is redisplayed.

This analysis definition is basically the same as the one you created in the previous example ("Monitoring multiple resource types in a CICS system group (1)” on page 51), except that it names only one evaluation definition in the Evaluation expression field, has a shorter analysis interval, and triggers the CDSA-specific action definition, RTAPAY07.

4. Create the second analysis definition:
 • From the RTA definitions tabular view (RTA object), click the Record check box beside the entry for RTDPAY07.
 • Click the Create... button. The RTA definitions create view is displayed showing the values you entered for RTDPAY07.
 • Change the Name, Description, Analysis interval, Evaluation expression, and Action definition fields as follows:

 - Name: RTDPAY08
 - Description: UDSA free size
 - Analysis interval: 60
 - Evaluation expression: RTEPAY06
 - Action definition name: RTAPAY08

 • Click Yes to create the definition.

The RTA definitions view is redisplayed.

5. Create the first analysis group:
 • From the main menu, click Administration > RTA MAS resource monitoring > Groups to display the RTA groups tabular view (RTAGROUP object).
 • Click the Create... button. The RTA definitions create view is displayed.
 • Complete the fields as follows:

 - RTA group: RTGPAY07
 - Description: Peak time DSA health - a.m.

 • Click Yes to create the group.

 Note: For a complete description of the RTA groups view, see “RTA groups” on page 25.

6. Create the second analysis group.
 • From the RTA groups tabular view (RTAGROUP object), click the Create... button to display the RTA definitions create view.
 • Complete the fields as follows:

 - RTA group: RTGPAY08
 - Description: Peak time DSA health - p.m.

 • Click Yes to create the group.

7. Add analysis definitions to analysis group RTGPAY07:
 • From the main menu, click Administration > RTA MAS resource monitoring > Definitions to display the RTA definitions tabular view (RTADEF object).
 • Click the Record check box next to the entry for RTDPAY07, and click the Add the RTA group... button. The Add to RTA Group view is displayed.
• Complete the panel as follows:

<table>
<thead>
<tr>
<th>Resource group name</th>
<th>RTGPAY07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period definition name</td>
<td>PDFBUSY1</td>
</tr>
</tbody>
</table>

• Click **Yes** to add the definition to the group.

The **RTA definitions** view is redisplayed.

In the same way,

• Add analysis definition RTDPAY08 to analysis group RTGPAY07, specifying **Period definition name** PDFBUSY1.
• Add analysis definitions RTDPAY07 and RTDPAY08 to analysis group RTGPAY08, specifying **Period definition name** PDFBUSY2.

8. To check that analysis definitions have been added successfully to both analysis groups:

• From the main menu, click **Administration views > RTA MAS resource monitoring > Definitions in groups** to display the **RTA definitions in RTA groups** tabular view (RTAINGRP object).
• The **RTA definitions in RTA groups** view shows entries for analysis definitions RTDPAY07 and RTDPAY08 in each of the analysis groups RTGPAY07 and RTGPAY08.

9. Create an analysis specification:

• From the main menu, click **Administration > RTA MAS resource monitoring > Specifications** to display the **RTA specifications** tabular view (RTASPEC object).
• Click the **Create...** button to display the **RTA specifications create view**.
• Complete the fields as follows:

<table>
<thead>
<tr>
<th>RTA specification name</th>
<th>RTSPAY07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>General health checks</td>
</tr>
</tbody>
</table>

• Click **Yes** to create the specification.

The **RTA specifications** view is redisplayed.

Note: For a complete description of the **RTA specifications** view, see “RTA specifications ” on page 30.

10. Set the scope of the analysis specification:

• From the **RTA specifications** view, click the Record check box beside the entry for RTSPAY07.
• Click the **Associate CICS group system...** button to display the **Associate CICS system group** add view.
• Enter CSGAORS1 in the **CICS system group** field.
• Click **Yes** to set the scope for this analysis specification.

The **RTA specifications** view is redisplayed.

11. Add the analysis groups to the analysis specification:

• From the main menu, click **Administration > RTA MAS resource monitoring > Groups** to display the **RTA groups** tabular view (RTAGROUP object).
• Click the Record box beside the entry for RTGPAY07, and click the **Add to RTA specification...** button. The **Add to RTA specification** view is displayed.
• Enter RTSPAY07 in the **RTA specname** field and click **Yes** to add the group to the specification.

The **RTA groups** view is redisplayed.

Repeat this step to add analysis group RTGPAY08 to analysis specification RTSPAY07. The analysis definitions take effect for any CICS system in group CSGAORS1 when that system is next started. If
any of the CICS systems in group CSGAORS1 is already active, you can make the analysis definitions take immediate effect as described in “Adding a scope to an analysis specification” on page 31.

Updating analysis and evaluation definitions

This example shows how to update the evaluation definition and the analysis definition you used for the CDSA resource in the previous example.

Assume that you want to reduce the sample intervals in both definitions from 60 seconds to 30 seconds.

1. If the current context isn't PLXPROD1, change the Context field on the main menu and click the Refresh button.

2. To update the evaluation definition RTEPAY05:
 - From the main menu, click Administration > RTA MAS resource monitoring > Evaluations to display the Evaluations definitions tabular view (EVALDEF object).
 - Click the record check box beside the entry for RTEPAY05 and click the Update... button. The Evaluation definitions update view is displayed.
 - Change the Sample interval field (currently set to 60) to 30, and click the Yes button.

 The Evaluation definitions tabular view is redisplayed.

 Note: For a complete description of the Evaluation definitions view, see “Evaluation definitions” on page 20.

3. Update the analysis definition RTDPAY07:
 - From the main menu, click Administration > RTA MAS resource monitoring > Definitions to display the RTA definitions tabular view.
 - Click the Record check box beside the entry for RTDPAY07 and click the Update... button. The RTA definitions create view is displayed.
 - Change the Sample Interval field (currently set to 60) to 30, and click Yes.

 The RTA definitions tabular view is redisplayed.

 Note: For a complete description of the RTA definitions view, see “RTA definitions” on page 23.

 Although you have updated the relevant definitions, any active CICS system in which those definitions are installed will not pick up the changes until those systems are next started. If you want to make the changes take effect immediately, you must reinstall the analysis definition "manually".

4. Install the changed analysis definition:
 - From the RTA definitions tabular view, click the Record check box beside the entry for RTDPAY07.
 - Click the Install... button. The RTA definitions install view is displayed.
 - In the Scope value field, enter CSGAORS1.
 - Click Yes to install the changed analysis definition.

 The RTA definitions tabular view is redisplayed.

To check that the updated definition has been installed:

- From the main menu, click Real Time Analysis (RTA) > Real Time Analysis (RTA) installed analysis and status definitions.

 The Real Time Analysis (RTA) installed analysis and status definitions tabular view (RTAACTV object) shows the current interval between evaluations.

Deactivating an analysis definition

This example shows you how to deactivate an analysis definition, installed for a specific period of time, before that time has elapsed.

Assume that the analysis definition RTDPAY02 (from the example “Monitoring resources permanently” on page 43) is now being installed automatically from 09:00 through 17:30 every day in CICS systems
CICSPA01 and CICSPA02. The time-period definition that controls installation of RTDPAY02 is PDFPRIME. The current time is 14:45, and you want to deactivate the definition in CICSPA02.

- If the current context isn't PLXPROD1, change the **Context** field on the main menu and click **Refresh**.
- From the main menu, click **Real Time Analysis (RTA) > Real Time Analysis (RTA) installed analysis and status definitions**. The **Real Time Analysis (RTA) installed analysis and status definitions** tabular view is displayed.
- Click the Record check box beside the entry for RTDPAY02 and click the **Deactivate...** button.
- The **Deactivate** view is displayed. Click **Yes** to deactivate the analysis definition.

The analysis definition RTDPAY02 will become active again in CICSPA02 when the start of time-period PDFPRIME is next reached.

Using data gathered by the resource monitoring function

This example shows you how the real-time analysis functions of CICSPlex SM can interpret data from another CICSPlex SM function—resource monitoring—and issue appropriate notifications when problems occur.

Assume that a key transaction (PAY8) is experiencing poor response times, and that the cause is unclear. Transaction PAY8 is initiated from TOR CICSPT02 in CICSplex PLXPROD1. Appropriate monitoring definitions have been created to monitor the response time of transaction PAY8 at 5-minute intervals. (An example of how to do this is provided in “Monitoring transaction response times” on page 91.) CICSPlex SM’s real-time analysis function will examine the data gathered by the resource monitoring function, and will issue an event notification and an external message when the response time is poor. The severity of the event notification will increase in line with the degradation in response times.

Analysis of PAY8's response times is not a permanent requirement, but is necessary only until the problem is solved. Because of this, the analysis definition is installed manually in TOR CICSPT02 on request.

1. If the current context isn't PLXPROD1, change the **Context** field on the main menu and click **Set**.
2. Create an evaluation definition:
 - From the main menu, click **Administration > RTA MAS resource monitoring > Evaluations** to display the **Evaluation definitions** tabular view (EVALDEF object).
 - Click the **Create...** button. The **Evaluation definitions** create view is displayed.
 - Complete the fields as follows:

```
Name                  RTEPAY09
Description           PAY8 response times check
Sample interval       300
Resource table        MREMTRAN
Instance identifier of evaluated resource PAY8
Result set action     MAX
Field being evaluated CURAVGRESP
Upper bound of range for HW 1.5
Upper bound of range for HS 3
Upper bound of range for VHS 4
```
 - Click **Yes** to create the definition.

The evaluation threshold values are response times in seconds. Thus, an average response time of 4 in any one sampling, for example, will be flagged as VHS. (Note that, although a **Result Set Action** value has been specified, it has no particular effect in this example. It is most useful when multiple resources are being evaluated, rather than one. For example, if you had specified an instance pattern
of PAY* and a **Result Set Action** value of MAX, the *maximum* average response time of transactions PAY* would be used by CICSPlex SM in determining whether to flag a condition.

Note: This example does not make use of the second Create Evaluation Definition panel. For a complete description of the **Evaluation definitions** view and the panels you use to create one, see “Evaluation definitions” on page 20.

3. Create an analysis definition:

- From the main menu, click **Administration > RTA MAS resource monitoring > Definitions** to display the **RTA definitions** tabular view (RTA object).
- Click the **Create...** button. The **RTA definitions** create view is displayed.
- Complete the fields as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>RTDPAY09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>PAY8 response times high</td>
</tr>
<tr>
<td>Analysis interval</td>
<td>300</td>
</tr>
<tr>
<td>Evaluation expression</td>
<td>RTEPAY09</td>
</tr>
<tr>
<td>Execute evaluation modification string</td>
<td>No</td>
</tr>
<tr>
<td>Action definition name</td>
<td>RTAPAY09</td>
</tr>
<tr>
<td>Count of true evaluations before VLS raised</td>
<td>1</td>
</tr>
<tr>
<td>Count of false evaluations before VLS resolved</td>
<td>1</td>
</tr>
<tr>
<td>Count of true evaluations before LS raised</td>
<td>2</td>
</tr>
<tr>
<td>Count of false evaluations before LS resolved</td>
<td>1</td>
</tr>
<tr>
<td>Count of true evaluations before LW raised</td>
<td>1</td>
</tr>
<tr>
<td>Count of false evaluations before LW resolved</td>
<td>1</td>
</tr>
<tr>
<td>Count of true evaluations before HW raised</td>
<td>1</td>
</tr>
<tr>
<td>Count of false evaluations before HW resolved</td>
<td>1</td>
</tr>
<tr>
<td>Count of true evaluations before HS raised</td>
<td>1</td>
</tr>
<tr>
<td>Count of false evaluations before HS resolved</td>
<td>1</td>
</tr>
<tr>
<td>Count of true evaluations before VHS raised</td>
<td>1</td>
</tr>
<tr>
<td>Count of false evaluations before VHS resolved</td>
<td>1</td>
</tr>
</tbody>
</table>

- Click **Yes** to create the definition.

Note: For a complete description of the **RTA definitions** view, see “RTA definitions” on page 23.

4. Create an action definition:

- From the main menu, click **Administration > RTA MAS resource monitoring > Actions** to display the **Action definitions** tabular view (ACTION object).
- Click the **Create...** button. The **Action definitions** create view is displayed.
- Complete the fields as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>RTAPAY09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>PAY8 response times high</td>
</tr>
<tr>
<td>Generate event</td>
<td>Yes</td>
</tr>
<tr>
<td>Name of view that might provide useful information</td>
<td>MREMTRAN</td>
</tr>
<tr>
<td>Action priority</td>
<td>255</td>
</tr>
</tbody>
</table>
Message to send when event occurs: Free DSA below 16MB dropping
Generate external message: Yes
External message sent when event occurs: PAY8 response times climbing
External message sent when event is cleared: PAY8 response times dropping
Generate SNA generic alert: No
MVS automatic restart: No

Click Yes to create the definition.

Note: For a complete description of the Action definitions view, see “Action definitions” on page 19.

5. Explicitly install the analysis definition:

- From the main menu, click Administration > RTA MAS resource monitoring > Definitions to display the RTA definitions tabular view.
- Click the Record check box beside the entry for RTDPAY09 and click the Install... button. The Install view is displayed.
- Type CICST02 into the Scope value field and click Yes to install the analysis definition.

The RTA definitions tabular view is redisplayed.

Issuing one notification for multiple conditions(1)

In the real-time analysis examples you've seen so far, CICSpex SM has monitored one or more instances of a resource in one or more CICS systems, and each occurrence of a notifiable condition has caused an external message or an event notification to be issued.

So, for example, if the CDSA falls too low in three AORs, you see three sets of notifications. However, there are occasions when a single notification for a group of CICS systems, or even for the entire CICSpex, would be preferable.

To implement this "consolidated" reporting, you create an analysis point specification, in which you identify a single CMAS as the primary CMAS for analysis point monitoring (APM). The primary CMAS consolidates results from all the systems being checked to give a single result.

In this example, you will see how to monitor the number of current tasks throughout the CICSpex PLXPROD1. When the average number of current tasks in PLXPROD1 goes above a specified number, a single event notification will be issued, and an alert will be issued to NetView. The checking will occur from 09:30 through 11:30, for which period a time-period definition (PDFEARLY) has already been created. Also, the CICS system group CSGPLX01, which contains every CICS system in PLXPROD1, has been created.

1. If the current context isn't PLXPROD1, change the Context field on the main menu and click Set.
2. Create an evaluation definition:

- From the main menu, click Administration > RTA MAS resource monitoring > Evaluations to display the Evaluation definitions tabular view (EVALDEF object).
- Click the Create... button. The Evaluation definitions create view is displayed.
- Complete the fields as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>RTEPAY10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Current tasks in PLXPROD1</td>
</tr>
<tr>
<td>Sample interval</td>
<td>60</td>
</tr>
<tr>
<td>Resource table</td>
<td>CICSRGN</td>
</tr>
<tr>
<td>Instance identifier of evaluated resource</td>
<td>*</td>
</tr>
<tr>
<td>Result set action</td>
<td>AVG</td>
</tr>
</tbody>
</table>

Chapter 2. Real-time analysis 61
Field being evaluated CURRTASKS
Upper bound of range for HW 50
Upper bound of range for HS 65
Upper bound of range for VHS 70

- Click Yes to create the definition.

The current number of tasks is to be checked every 60 seconds. An average of 50 or higher will be notified, and the severity of the notification will increase as the average number of current tasks increases.

Note: For a complete description of the Evaluation definitions view, see “Evaluation definitions” on page 20.

3. Create an action definition:

- From the main menu, click Administration > RTA MAS resource monitoring > Actions to display the Action definitions tabular view (ACTION object).
- Click the Create... button. The Action definitions create view is displayed.
- Complete the fields as follows:

 - Name: RTAPAY10
 - Description: High task load in PLXPROD1
 - Generate event: Yes
 - Name of view that might provide useful information: CICSRGN
 - Action priority: 255
 - Message to send when event occurs: High task load in PLXPROD1
 - Generate external message: No
 - Generate SNA generic alert: Yes
 - CMAS to which NetView attached: CMSSYS1
 - Message text when alert raised: Task load climbing in PLXPROD1
 - Message text when alert cleared: Task load falling in PLXPROD1
 - MVS automatic restart: No

- Click Yes to create the definition.

The Action definitions tabular view is redisplayed.

Note: For a complete description of the Action definitions view, see “Action definitions” on page 19.

4. Create an analysis definition:

- From the main menu, click Administration > RTA MAS resource monitoring > Definitions to display the RTA definitions tabular view (RTA object).
- Click the Create... button. The RTA definitions create view is displayed.
- Complete the fields as follows:

 - Name: RTDPAY10
 - Description: Average current tasks
 - Analysis interval: 60
 - Evaluation expression: RTEPAY10
 - Execute evaluation modification string: No
Action definition name | RTAPAY10
---|---
Count of true evaluations before VLS raised | 1
Count of false evaluations before VLS resolved | 1
Count of true evaluations before LS raised | 1
Count of false evaluations before LS resolved | 1
Count of true evaluations before LW raised | 1
Count of false evaluations before LW resolved | 1
Count of true evaluations before HW raised | 4
Count of false evaluations before HW resolved | 2
Count of true evaluations before HS raised | 3
Count of false evaluations before HS resolved | 2
Count of true evaluations before VHS raised | 2
Count of false evaluations before VHS resolved | 2

- Click **Yes** to create the definition.

CICSplex SM will sample the results of its evaluations every 60 seconds. An HW condition will be flagged when a severity of at least HW has been seen in four successive samples. An HS condition will be flagged when a severity of at least HS has been seen in three successive samples. A VHS condition will be flagged when a severity of VHS has been seen in two successive samples. Each of the conditions will be cleared only when two, less severe samples are seen in succession.

Note: For a complete description of the RTA definitions view, see “RTA definitions” on page 23.

5. Create an analysis group:

- From the main menu, click **Administration > RTA MAS resource monitoring > Groups** to display the RTA groups tabular view (RTA object).
- Click the Create... button. To base the new definition on an existing one, click the Record check box before clicking the Create... button. The RTA groups create view is displayed.
- Complete the fields as follows:

 | Name | RTGPAY10 |
 | Description | AP - CICSplex health checks |

- Click **Yes** to create the definition.

The RTA group tabular view is redisplayed.

Note: For a complete description of the RTA groups view, see “RTA groups” on page 25.

6. Add the analysis definition to the analysis group:

- From the main menu, click **Administration > RTA MAS resource monitoring > Definitions** to display the RTA definitions tabular view.
- Click the Record check box beside the entry for RTDPAY10 and click the Add to RTA group... button. The Add to RTA group view is displayed.
- Type RTGPAY10 in the Resource group name field and PDFEARLY in the Period Definition name field.
- Click **Yes** to add the definition to the resource group.

The RTA definitions tabular view is redisplayed.

You can check that this step has worked by looking at the RTA definitions in RTA groups view (RTAINGRP object).
7. Create an analysis point specification:

- From the main menu, click **Administration > RTA analysis point monitoring > Analysis point specifications** to display the **RTA analysis point specifications** tabular view (APSPEC object).
- Click the **Create...** button to display the **RTA analysis point specifications** create view.
- Complete the fields as follows:

<table>
<thead>
<tr>
<th>RTA analysis point specification</th>
<th>RAPPAY10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Analysis point for PLXPROD1</td>
</tr>
</tbody>
</table>

- Click **Yes** to add the definition to the resource group.

The **RTA analysis point specifications** tabular view is redisplayed.

Note: For a complete description of the **RTA analysis point specifications** view, see “**RTA analysis point specifications**” on page 20.

8. Add the analysis group to the analysis point specification:

- From the main menu, click **Administration > RTA MAS resource monitoring > Groups** to display the **RTA groups** tabular view.
- Click the Record check box beside the entry for RTGPAY10 and click the **Add to analysis point specification...** button.
- On the **Add to analysis point specification...** view, complete the fields as follows:

<table>
<thead>
<tr>
<th>APSPEC name</th>
<th>RAPPAY10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope name</td>
<td>CSGPLX01</td>
</tr>
</tbody>
</table>

- Click **Yes** to add the group to the analysis point specification.

The **RTA groups** tabular view is redisplayed.

You can check that this step has succeeded by looking at the **Groups in analysis point specifications** view (RTAINAPS object).

9. Identify the primary CMAS:

- From the main menu, click **Administration > RTA analysis point monitoring > Specifications** to display the **RTA specifications** tabular view (APSPEC object).
- Click the Record check box beside the entry for RAPPAY10 and click the **Add primary CMAS...** button. The **Add primary CMAS** view is displayed.
- Type CMSSYS1 in the **CMAS name** field and click **Yes** to make this system the primary CMAS.

The **RTA specifications** tabular view is redisplayed.

When you identify the primary CMAS, the analysis point specification, and any analysis groups and analysis definitions associated with it, are installed automatically. For this reason, you should create the analysis definitions and analysis groups before you identify the primary CMAS. You can check that primary CMASs have been successfully identified by looking at the **Primary CMAS analysis point specifications** tabular view (CMDMPAPS object).

10. Identify a secondary CMAS (optional):

- From the main menu, click **Administration > RTA analysis point monitoring > Specifications** to display the **RTA specifications** tabular view (APSPEC object).
- Click the Record check box beside the entry for RAPPAY10 and click the **Add secondary CMAS...** button. The **Add secondary CMAS** view is displayed.
- Type CMSSYS2 in the **CMAS name** field and click **Yes** to make this system the secondary CMAS.

The **RTA specifications** tabular view is redisplayed.
When you identify a secondary CMAS (which is optional), that CMAS assumes the role of the primary CMAS if it ever loses contact with the primary CMAS. That is, the secondary CMAS monitors resources in those CICS systems it can communicate with until its contact with the primary CMAS is restored.

You can check that secondary CMASs have been successfully identified by looking at the **Primary CMAS analysis point specifications** tabular view (CMDMSAPS object).

Issuing one notification for multiple conditions (2)

This example shows you how to monitor the availability of transactions whose names begin with the letters ETR throughout the CICSplex. (A transaction is not available if its status is DISABLED in any AOR in which it is locally defined.) An event notification and an alert is issued if any ETR* transaction is unavailable in one or more AORs.

This example is a variation on the previous example ("Issuing one notification for multiple conditions(1) “ on page 61), in which you saw how to obtain a single set of notifications when the average number of current tasks in a CICSplex is high.

How to create the evaluation definition, the action definition, and the analysis definition is described here. The remaining steps (such as creating an analysis group and creating the analysis point specification) are as described in step “5” on page 63 through step “9” on page 64 of the previous example.

1. Create an evaluation definition:
 - From the main menu, click **Administration > RTA MAS resource monitoring > Evaluations** to display the **Evaluation definitions** tabular view (EVALDEF object).
 - Click the **Create...** button. The **Evaluation definitions** create view is displayed.
 - Complete the fields as follows:
 - Name: RTEPAY11
 - Description: Key transaction check
 - Sample interval: 300
 - Resource table: LOCTRAN
 - Instance identifier of evaluated resource: ETR*
 - Result set action: ANY
 - Field being evaluated: STATUS
 - Evaluation logical operator: EQ
 - Evaluation data value: Disabled
 - Severity assigned when result meets criteria: VLS
 - View that may provide extra information: LOCTRAN
 - Click **Yes** to create the definition.

2. Create an action definition:
 - From the main menu, click **Administration > RTA MAS resource monitoring > Actions** to display the **Action definitions** tabular view (ACTION object).
 - Click the **Create...** button. The **Action definitions** create view is displayed.
 - Complete the fields as follows:
 - Name: RTAPAY11
 - Description: Key application unavailable
 - Generate event: Yes
 - Name of view that might provide useful information: LOCTRAN
<table>
<thead>
<tr>
<th>Action priority</th>
<th>255</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message to send when event occurs</td>
<td>Key application unavailable</td>
</tr>
<tr>
<td>Generate external message</td>
<td>No</td>
</tr>
<tr>
<td>Generate SNA generic alert</td>
<td>Yes</td>
</tr>
<tr>
<td>CMAS to which NetView attached</td>
<td>CMSSYS1</td>
</tr>
<tr>
<td>Message text when alert raised</td>
<td>Key application unavailable</td>
</tr>
<tr>
<td>Message text when alert cleared</td>
<td>Key application available again</td>
</tr>
<tr>
<td>MVS automatic restart</td>
<td>No</td>
</tr>
</tbody>
</table>

- Click **Yes** to create the definition.

Notice that the **Name of view that might provide useful information** value is LOCTRAN. Although the event notification issued in this example is not specific (that is, it does not identify the transactions, nor does it tell you in which AORs they are unavailable), you can look at the **Local or dynamic transactions** tabular view (LOCTRAN object) to find out which transactions are DISABLED, and in which AORs they are locally defined.

3. Create an analysis definition:

- From the main menu, click **Administration > RTA MAS resource monitoring > Definitions** to display the **RTA definitions** tabular view (RTA object).
- Click the **Create...** button. To base the new definition on an existing one, click the Record check box before clicking the **Create...** button. The **RTA definitions** create view is displayed.
- Complete the fields as follows:

 | **Name** | RTDPAY11 |
 | **Description** | Key application check |
 | **Analysis interval** | 300 |
 | **Evaluation expression** | RTEPAY11 |
 | **Execute evaluation modification string** | No |
 | **Action definition name** | RTAPAY11 |
 | **Count of true evaluations before VLS raised** | 1 |
 | **Count of false evaluations before VLS resolved** | 1 |
 | **Count of true evaluations before LS raised** | 1 |
 | **Count of false evaluations before LS resolved** | 1 |
 | **Count of true evaluations before LW raised** | 1 |
 | **Count of false evaluations before LW resolved** | 1 |
 | **Count of true evaluations before HW raised** | 1 |
 | **Count of false evaluations before HW resolved** | 1 |
 | **Count of true evaluations before HS raised** | 1 |
 | **Count of false evaluations before HS resolved** | 1 |
 | **Count of true evaluations before VHS raised** | 1 |
 | **Count of false evaluations before VHS resolved** | 1 |

- Click **Yes** to create the definition.
Modifying the state of a resource

You can use an evaluation definition and an analysis definition to modify a CICS resource when it is not in the intended state.

This example is an extension of the example in “Reusing analysis specifications and analysis groups” on page 45, which described how to monitor files in the CICS system group called CGSAORS1. This task uses the time period definition (PDFCHECK) and the action definition (RTAPAY12) from that example.

1. Create the evaluation definition:
 - From the main menu, click **Administration > RTA MAS resource monitoring > Evaluations** to display the **Evaluation definitions** tabular view (EVALDEF object).
 - Click the **Create...** button. The **Evaluation definitions** create view is displayed.
 - Complete the fields as follows:
     ```
     Name                  RTEPAY12  
     Description           REMFILE PAYFILA* enabling  
     Sample interval       60  
     Resource table        REMFILE  
     Instance identifier of evaluated resource  PAYFILA*  
     Method of evaluating results in a result set  ANY  
     Separate task indicator  NO  
     Field being evaluated  ENABLESTATUS  
     Severity assigned when results meet criteria  VHS  
     View that may provide extra information  REMFILE  
     Modification string   ENABLESTATUS=ENABLED, OPENSTATUS=OPEN.  
     ```
 - Click **Yes** to create the definition.

 In this example, the modification string expression modifies the ENABLESTATUS and OPENSTATUS attributes to make the specified files available.

2. Create the analysis definition:
 - From the main menu, click **Administration > RTA MAS resource monitoring > Definitions** to display the **RTA definitions** tabular view (RTA object).
 - Click the **Create...** button. The **RTA definitions** create view is displayed.
 - Complete the fields as follows:
     ```
     Name                  RTDPAY14  
     Description           Appl file check and modify  
     Analysis interval     60  
     Evaluation expression  RTEPAY12  
     Execute evaluation modification string  Yes  
     Action definition name  RTAPAY12  
     Count of true evaluations before VLS raised  1  
     Count of false evaluations before VLS resolved  1  
     Count of true evaluations before LS raised  1  
     Count of false evaluations before LS resolved  1  
     ```
Count of true evaluations before LW raised 1
Count of false evaluations before LW resolved 1
Count of true evaluations before HW raised 1
Count of false evaluations before HW resolved 1
Count of true evaluations before HS raised 1
Count of false evaluations before HS resolved 1
Count of true evaluations before VHS raised 1
Count of false evaluations before VHS resolved 1

- Click Yes to create the definition.

The **Execute evaluation modification string** field indicates that the resource modification defined in the evaluation definition should be performed when the evaluation condition is true.

Note: For a complete description of the **RTA definitions** view, see “RTA definitions” on page 23.

3. Associate the new analysis definition with the existing analysis group:

- From the **RTA definitions** tabular view, click the Record check box beside the entry for RTDPAY14 and click the **Add to RTA group...** button.
- On the **Add to RTA group** view, complete the fields as follows:

<table>
<thead>
<tr>
<th>Resource group name</th>
<th>RTGPAY02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period definition name</td>
<td>PDFCHECK</td>
</tr>
</tbody>
</table>

 - Click Yes to add the definition to the RTA group.

The Analysis Group RTGPAY02 already exists and it has already been associated with the analysis specification RTSPAY02. Therefore, analysis definition RTDPAY14 is installed automatically in the CICS systems in group CSGAORS1 when those systems are next started, for the period of time defined in PDFCHECK.

Finding out why a CICSPlex SM event occurred

This example shows you how to investigate what caused a real-time analysis event notification RTDPAY01 to be issued.

1. If the current context isn't PLXPROD1, change the **Context field** on the main menu to PLXPROD1 and click **Set**.
2. From the main menu, click **Real Time Analysis (RTA) outstanding events** to display the **RTA outstanding events** tabular view.
3. This view will show you that the CONNSTATUS value of the connection has triggered the event and that its current value is RELEASED. This might tell you all you need to know. If it doesn't, you can investigate further as described in the remaining steps of this example.
4. Look at the associated evaluation definition. To access this:

 - From the main menu, click **Administration > RTA analysis point monitoring > Evaluations** to display the **Evaluation definitions** tabular view.
 - Click the **Name** field of the entry you are interested in to display **Evaluation definitions** detailed view.

 From this view, you can see that event RTDPAY01 is triggered when the value of the **CONNSTATUS** field in the CONNECT resource table is not ACQUIRED. (The **Field being evaluated** field is **CONNSTATUS**, the **Evaluation logical operator** field is **NE** (meaning "not equal to"); and the **Evaluation data value** field is ACQUIRED).

5. Next, you could look at the **ISC/MRO connections** view (CONNECT object):
• From the main menu, click **ISC/MRO connections** to display the **ISC/MRO connections** tabular view.

• If necessary, change the **Scope** field to CICSPT01 and click **Refresh**.

• The **ISC/MRO connections** tabular view displays a list of connections for CICS system CICSPT01.

Customizing programs that monitor status

User-written programs can be invoked by real-time analysis (RTA) to determine the status of CICS user applications.

You create status definitions using the **Status definition** view. To get to this view from the main menu, click **Administration > MAS resource monitoring administration views > User status probe definitions**. Status probe definitions establish the interval between calls from CICSPlex SM to a status monitoring program. When the user-written program determines that an abnormal condition exists for an application or resource, an RTA event notification can be issued. The user-written program can run in a local MAS on any supported CICS system.

Creating a status program

Once RTA determines (by issuing an EXEC CICS INQ) that your program is available, RTA issues a status call to the program.

When RTA invokes your program, the DFHEICAP field of the DFHEISTG DSECT contains the address of the COMMAREA. The COMMAREA contains data mapped by the CICSPlex SM EYURPESC DSECT.

Assembler EYURPESC format

The EYURPESC format is as follows:

```assembly
RTA STATUS CALL DFHCOMMAREA
PESC_HEADER     DS   CL20    EYURPESC block header
PESC_CONTEXT    DS   CL8     CICSpelx name
PESC_SCOPE      DS   CL8     CICS system name
PESC_COUNT      DS   F       Number of NAME/STATUS pairs (between 1 and 64)
PESC_NAME       DS   CL8     Name of status definition (STATDEF)
PESC_STATUS     DS   F       Status token of:
    PESC-NORMAL     EQU  0000      Normal
    PESC_VLS        EQU  0001      Very low severe
    PESC_LS         EQU  0002      Low severe
    PESC_LW         EQU  0003      Low warning
    PESC_HW         EQU  0004      High warning
    PESC_HS         EQU  0005      High severe
    PESC_VHS        EQU  0006      Very high severe
```

C language EYURPESC format

The EYURPESC format for the C language is:

```c
typedef struct
{
    char    HEADER[20];    /* EYU block header (fixed length) */
    char    CONTEXT[8];    /* CICSpelx name (fixed length) */
    char    SCOPE[8];      /* MAS name (fixed length) */
    int     COUNT;         /* Number of elements; 1-64 (32 bit) */
    struct
    {
        char   NAME[8];       /* Name of STATDEF (fixed length) */
        int    STATUS;        /* RTA Status token (32 bit) */
    } ELEMENT[64];
} EYURPESC;
/* - - - Defined values for element STATUS field - - - - - - - - - - - - - - - */
#define EYURPESC_STATUS_NORMAL  0   /* Normal */
#define EYURPESC_STATUS_VLS     1   /* Very low severe */
#define EYURPESC_STATUS_LS      2   /* Low severe */
#define EYURPESC_STATUS_LW      3   /* Low warning */
#define EYURPESC_STATUS_HW      4   /* High warning */
#define EYURPESC_STATUS_HS      5   /* High severe */
#define EYURPESC_STATUS_VHS     6   /* Very high severe */
```

Chapter 2. Real-time analysis 69
The character arrays within EYURPESC are fixed length strings, filled to the right with spaces. They are not terminated with a null character.

Explanation
For each status definition for which you want to return status, your program must enter into the appropriate fields of EYURPESC both the NAME and the associated STATUS value.

The value provided in the STATUS field indicates that the condition of the application or resource is normal or, if it is abnormal, it indicates the severity of the condition. The number of status definition entries in EYURPESC can be between 1 and 64; the number must be specified in the COUNT field as a fullword binary integer value.

The name of the status definition which caused the status call is supplied by RTA in the NAME field of the first entry to be returned. Therefore, NAME need not be supplied for the first entry in the table. The associated STATUS must be provided by your program. All subsequent status definition NAMES (and the STATUS for each) must also be specified by your program.

Note: The CICSPlex SM API cannot be used from within a program that is invoked through the Status definition or STATDEF view. Where access to the API is required, you must start another task and invoke the API from the new task.

Installing a status program

390 Assembler

Procedure

1. Assemble and link edit the status program. Ensure that the program resides in a DFHRPL or dynamic LIBRARY concatenation.
2. Define (using either BAS PROGDEF or CEDA DEFINE PROGRAM) a PROGRAM resource definition for your program in each MAS that will contain installed status definitions.
 Note: Ensure that the Data location field in the PROGRAM definition specifies the correct addressing mode for the program. The Execkey field in the PROGRAM definition must be set to 'CICS'.
3. If a transaction ID other than CORT or blanks is specified in the Transaction ID field of the RTA status definition, define (using either BAS TRANDEF or CEDA DEFINE TRANSACTION) a TRANSACTION resource definition for the transaction in each MAS that will have this status definition installed.
 The program name in the TRANSACTION definition must be EYU9XLOP.
4. Ensure that the TASKDATALOC field in the TRANSACTION definition specifies the correct addressing mode for the task. The TASKDATAKEY field must be set to 'CICS'.
5. Install the following into the active MASs, using either BAS or the CEDA transaction:
 - Your program
 - The transaction specified in the Transaction ID field of the status definition (only if specified)

Defining a status definition to CICSPlex SM

Follow this procedure to define a status definition to CICSPlex SM.

Procedure

1. From CICSPlex SM, access the Status definitions tabular view.
2. Click **Create** to define an RTA status definition. Specify the following information:
 - The name of a status definition
 - The name of the program to be called
- A valid transaction ID (Optional)
- A valid user ID (Optional)
- The interval at which the user-written program is to be called
- Entry and exit clock values

Note:

a. If the Transaction ID field is left blank, the user-written program runs as part of the CICSPlex SM CORT transaction.

b. For CICS TS for z/OS, Version 4.2, the User ID field is optional; in earlier releases of CICS TS, the User ID field is not processed by RTA.

3. Use the Install button to install the appropriate status definitions into their respective MASs.

4. Use the Add status definition to RTA group button to add the status definition to an RTA group that is associated with a MAS by an RTA specification.

This allows the status definition to be installed automatically during MAS initialization.
Chapter 3. Resource monitoring

CICSPlex SM provides facilities and views that you can use to monitor the resources in a CICSpex. It also includes sample tasks to help you establish resource monitoring at your enterprise.

Preparing to monitor resources

You can use CICSPlex SM to monitor the resources in a CICSpex. The primary purpose of these resource monitoring facilities is to provide data to the real-time analysis component. As part of real-time analysis processing, monitor definitions are automatically created to support the types of analysis you request. The data is used by real-time analysis to evaluate the status of a resource. Data can be collected for any or all resource types.

You can request additional monitoring of specific resources in your CICSpex. However, be aware that resource monitoring is implemented by a periodic sampling process that can add significant overhead to your environment.

When resource monitoring is active, either because real-time analysis requires it or you requested it, you can use the WUI monitoring views to display the collected data. To access these views, open the Monitoring views menu by clicking on Monitoring views on the WUI main menu.

Defining resource monitoring attributes

When you define the attributes of resource monitoring, you are telling CICSPlex SM exactly which occurrences of one or more resource types are to be monitored and when this monitoring is to occur.

The resource monitoring attributes are based on information provided in monitor specifications, monitor definitions, and, optionally, monitor groups.

• A *monitor specification* identifies the types of resources to be monitored and how frequently information about these resources is to be gathered. After you associate a monitor specification with a CICS system, that specification is automatically installed every time the CICS system starts.

• A *monitor definition* qualifies the resource type identified by a monitor specification. For example, after creating a monitor specification that indicates the program resource type is to be monitored, you might create a monitor definition that causes all programs to be monitored or only those programs with names starting with PAY.

A monitor definition also indicates which resources should be identified to the resource status facility.

You can install a monitor definition either manually or automatically. To be automatically installed, a monitor definition must be part of a monitor group. Monitor definitions that are not part of a monitor group must be manually installed.

• A *monitor group* is a collection of monitor definitions that are treated as a single entity. This means that you can install all of the monitor definitions associated with a monitor group either by:
 - Associating the monitor group with a monitor specification. When a CICS system using that specification starts, the specification and all monitor definitions associated with it through the monitor group are automatically installed.
 - Manually installing the monitor group. Monitor definitions installed this way are known to the CICS system as long as the CICS system is running or until you discard the definitions.

You might want to create a monitor group that is not associated with a monitor specification for those resource types that you want to monitor only occasionally.

Note: A monitor definition can be installed in variety of CICSPlex SM managed CICS systems. However, not all resource types are supported in all of those systems. Therefore, CICSPlex SM verifies that the resource to be monitored is supported in the target system before installing the definition. If it is not, CICSPlex SM issues a message indicating the definition cannot be installed because the resource is not supported. This message is informative in nature and does not require any corrective action.
Figure 8 on page 75 illustrates the attributes of resource monitoring. In this example:

- Monitor specification EYUMOS01 designates that the CICS region, program, and transaction resource types are to be monitored, using the monitor definitions associated with the monitor groups EYUMOG01, EYUMOG02, and EYUMOG03.

- Monitor groups, such as EYUMOG01, activate resource monitoring during the designated range of hours identified by the time period definition.

- Monitor definitions, such as EYUMOD01 and EYUMOD02, qualify the specific resource information to be gathered. That is, the monitor definition EYUMOD01 indicates that only the program named PAYX is to be monitored; while EYUMOD02 indicates that any transaction identifiers starting with PAY are to be monitored.

Monitor definitions such as EYUMOD09 are not associated with any monitor group and must, therefore, be manually installed. These definitions are useful when you have a very specific resource occurrence you want to monitor occasionally.
Activating resource monitoring

For resource monitoring to occur for a particular CICS system, you must associate a monitor specification, activate resource monitoring, and set the resource sample interval. When resource monitoring is active, monitor definition changes are noted in the data repository.

For resource monitoring to occur for a particular CICS system, you must:

1. Associate a monitor specification with the CICS system, using the Monitor specifications view. To open this view from the main menu, click Administration > Monitor administration > Specifications.

2. Activate resource monitoring for the CICS system. There are two ways you can do this:
- Use the CICS system definitions WUI view (click Administration > Topology administration > System definitions).

- Use the MASs known to CICSpex view (click CICSPlex SM operations > MASs known to CICSpex).

3. Set the resource sample interval greater than 0. The sample interval can be set from the associated monitor specification or from the CICS system definition.

Monitor definitions that are associated with a monitor specification via monitor groups are automatically installed when that CICS system starts. As long as the CICS system remains active, additional monitor definitions can be manually installed in the CICS system.

Installed monitor definitions become active:

- At the time designated by the associated period definition.

- Immediately, when no period definition is associated with the definition, or if the CICS system is activated during the defined time period.

Monitor definitions remain active as long as the CICS system is running, until you discard them, or until the end of the time designated by the period definition is reached. To determine the current status of installed monitor definitions, you use the Active monitor specifications view (click Monitoring views > Active monitor specifications).

When resource monitoring is active, any changes you make to monitor definitions are noted in the data repository. To apply these changes to an active CICS system, you must manually install or discard the definitions.

Historical data

CICSpex SM provides the ability to save and view data for completed tasks, that is historical task data.

When an active task completes, provided that CICS performance class data monitoring is active, its data is stored in a historical data store. The data store is made up of a number of VSAM KSDS data sets. There must be a minimum of two data sets and a maximum of 26 data sets. See .

Support for historical task data builds upon CICSpex SM resource monitoring. It uses all the same definitional entities, for example monitor specifications (MONSPEC objects), monitor definitions (MONDEF objects), and monitor groups (MONGROUP objects). In particular, it uses monitor definitions with a Monitoring resource class of MTRAN to specify the IDs of the transactions for which you want to save historical task data. Whereas, for example, with resource monitoring, monitor definitions with a Monitoring resource class of MTRAN and a resource name of FRED causes data to be accumulated and totalled for multiple instances of transaction FRED into one record, historical task data support provides the ability to separately save the entire CICS monitoring data for each instance of transaction FRED.

Existing users of CICSpex SM monitoring can start using historical task data support. Simply define the history VSAM data sets, and allocate them to the MAS region by means of DD cards. CICSpex SM will then start collecting historical task data for all transaction IDs named on installed monitor definitions.

For more information on how to define the CICSpex SM history data sets refer to Preparing the MAS for history recording .

For those users who want only to collect historical task data without collecting CICSpex SM monitoring data as well, an EYUPARM called HISTORYONLY is provided. This should be set to a value of YES. The default is HISTORYONLY(NO) which means that both CICSpex SM monitoring data and history data will be collected, assuming the appropriate monitor definitions have been installed and the VSAM data sets have been allocated to the MAS region.

Historical task data saved in the historical data store can be viewed using the Web User Interface Completed tasks views or retrieved using the CICSpex SM API on the HTASK resource table. The following parameters are supported for the GET operation:

STARTDATE

Retrieve information for all tasks that were completed on or after the date specified. The date must be in the form MM/DD/YYYY. The default is today's date. If you specify STARTDATE with the RECENT parameter on a GET operation, the request will fail with a TABLEERROR response and a DATAERROR
reason. A FEEDBACK operation for the failing command will result in a FEEDBACK error code of INV_COMB_RECENT.

STARTTIME
Retrieve information for all tasks that were completed at or after the time specified. The time must be in the form HH:MM:SS. The default is the previous midnight (00:00:00). If you specify STARTTIME with the RECENT parameter on a GET operation, the request will fail with a TABLEERROR response and a DATAERROR reason. A FEEDBACK operation for the failing command will result in a FEEDBACK error code of INV_COMB_RECENT.

ENDDATE
Retrieve information for all tasks that were completed on or before the date specified. The date must be in the form MM/DD/YYYY. The default is today's date. If you specify ENDDATE with either of the RECENT or INTERVAL parameters on a GET operation, the request will fail with a TABLEERROR response and a DATAERROR reason. A FEEDBACK operation for the failing command will result in a FEEDBACK error code of either INV_COMB_RECENT or INV_COMB_INTV_ED.

ENDTIME
Retrieve information for all tasks that were completed at or before the time specified. The time must be in the form HH:MM:SS. The default is one second to midnight (23:59:59).

If you specify ENDTIME with either of the RECENT or INTERVAL parameters on a GET operation, the request will fail with a TABLEERROR response and a DATAERROR reason. A FEEDBACK operation for the failing command will result in a FEEDBACK error code of either INV_COMB_RECENT or INV_COMB_INTV_ET.

If you specify an earlier ENDDATE and ENDTIME than the specified STARTDATE and STARTTIME on a GET operation, the request will fail with a TABLEERROR response and a DATAERROR reason. A FEEDBACK operation for the failing command will result in a FEEDBACK error code of INV_COMB_START_END.

INTERVAL
Retrieve information for all tasks that were completed within n seconds of the STARTDATE and STARTTIME where n is the value specified for INTERVAL. The maximum value is 99,999,999. You can also use two special values for INTERVAL:

HISTSECS
Use the number of seconds specified by the HISTSECS EYUPARM.

NOLIMIT
Retrieve information for all tasks that were completed after STARTDATE and STARTTIME.

If you specify INTERVAL with any of the ENDDATE, ENDTIME, or RECENT parameters on a GET operation, the request will fail with a TABLEERROR response and a DATAERROR reason. A FEEDBACK operation for the failing command will result in a FEEDBACK error code of either INV_COMB_INTV_ED, INV_COMB_INTV_ET, or INV_COMB_RECENT.

If you specify a value for the INTERVAL parameter which is not a numeric value or one of its special values, on a GET operation, the request will fail with a TABLEERROR response and a DATAERROR reason. A FEEDBACK operation for the failing command will result in a FEEDBACK error code of INV_INTERVAL.

RECENT
Retrieve information for all tasks that were completed within the last n seconds, where n is the value specified for RECENT. The maximum value is 99,999,999. You can also use three special values for RECENT:

HISTSECS
Use the number of seconds specified by the HISTSECS EYUPARM.

NOLIMIT
Retrieve information for all completed tasks that CICSPlex SM has recorded on its history data sets.
Retrieve history data that is being accumulated for tasks that are still active. This data has not yet been written to the VSAM history data sets. It is monitoring data that is being written to CICS performance records for active tasks, where monitoring options have been specified.

If you specify the RECENT parameter with any of the STARTDATE, STARTTIME, ENDDATE, ENDTIME, or INTERVAL parameters on a GET operation, the request will fail with a TABLEERROR response and a DATAERROR reason. A FEEDBACK operation for the failing command will result in a FEEDBACK error code of INV_COMB_RECENT.

If you specify a value for the RECENT parameter which is not a numeric value or one of its special values, on a GET operation, the request will fail with a TABLEERROR response and a DATAERROR reason. A FEEDBACK operation for the failing command will result in a FEEDBACK error code of INV_RECENT.

Note: The CICSPlex SM API requires the formats of STARTDATE, STARTTIME, ENDDATE and ENDTIME to be as given in the above definitions, but when these dates and times are displayed on the Web User Interface, or input directly via the Web User Interface, the DATEFORMAT, DATESEPARATOR, TIMESEPARATOR and DECIMALSEPARATOR EYUWUI parameters in force for the Web User Interface Server are used.

Deactivating history collection

History collection in a MAS can be deactivated by the following method:

1. From the CICSPlex SM main menu, click History > Task history collection to open the CICS region "Task history collection" view.
 This view displays information about the status of CICSPlex SM history recording for CICS regions.
2. Select the CICS system, for which you want to stop history collection, by selecting the adjacent check box in the Record column.
3. Click the Suspend action button.
 History recording is suspended for that CICS region. Recording is resumed by selecting the CICS system, and clicking the Resume action button.

Overriding resource monitoring attributes

The monitor specifications associated with a CICS system determines whether resource monitoring is to be active when the CICS system starts, how long collected data is to be retained after monitoring stops, and the sample interval to be used for one or more resource types.

You can override any of the attributes defined in a monitor specification by changing the definition of the CICS system that is to use that specification. This might occur when, for example, multiple CICS systems are using the same monitor specification and you want the data retention period to be different for one of those systems. To override the monitor specification for a specific CICS system, you can use the views:

CICS system definitions (CSYSDEF object)
 To permanently override part or all of a monitor specification. Values changed using this view are stored in the data repository and used every time the CICS system starts.

MASs known to CICSPlex (MAS object)
 To temporarily override all or part of the monitor specification currently being used by an active CICS system. Values affected by this view remain in effect as long as the CICS system is running or until you change them. For additional information about the MASs known to CICSPlex views, see Working with MAS topology definitions.

Understanding resource monitoring times

When you define your resource monitoring attributes, you must identify a monitor interval, period definition, and sample interval.

Monitor interval
 The number of minutes during which data is to be collected and accumulated. At the end of an interval, the statistics counters are automatically reset.
A monitor interval is associated with a CICSplex and applies to all CICS system and CICS system groups comprising that CICSplex. To create or display the monitor intervals associated with the CICSplex, use the CICSplex definition view.

When a CICS system starts, it determines how much of the current interval has elapsed for its CICSplex and begins from there. Thus, the interval for a CICS system may be less than the defined interval. For example, if the monitor interval for a CICSplex is 60 minutes and a CICS system associated with that CICSplex starts at 09:15:00, the first monitor interval for that CICS system is 45 minutes. Subsequent intervals will be 60 minutes in length.

Period definition
The range of hours during which resource monitoring is to be active for a CICS system.

A time period definition can be associated with a monitor definition when you assign the monitor definition to a monitor group, as illustrated in Figure 8 on page 75. If no time period definition is associated with the monitor group, resource monitoring is active as long as the CICS system using the monitor definitions in that monitor group is active.

When a monitor definition is not associated with a monitor group, no period definition is associated with the monitor definition. In this case, the monitor definition becomes active when you manually install it in a CICS system. It remains active as long as the CICS system is active or until you discard the definition. To display information about existing time period definitions or create new ones, use the Time period definition view.

Sample interval
The number of seconds between the collection of sample data for a resource type; the data is reported in monitoring views as the current sample.

A sample interval is associated with a resource type via a monitor specification, as illustrated in Figure 8 on page 75.

Note: One full sample interval must elapse before information about the resources being monitored is included in a monitoring view. This ensures that enough time has elapsed for meaningful data to be collected. Depending on when a CICS system starts, more than a full interval may elapse.

Figure 9 on page 79 identifies the monitor-related time periods and illustrates their relationship to each other. In this case, the period during which resource monitoring is to be active (the period definition), is between 09:00:00 and 12:00:00. Resource data is to be collected every 15 minutes (900 seconds) (the sample interval). During each monitor interval of 60 minutes, resource data is to be accumulated and reported as an average. After each 60 minute interval, the statistics counters containing the accumulated statistics are to be reset to zero.

![Figure 9. Resource monitoring time periods](image-url)
Understanding resource monitoring statistics

When resource monitoring is active, CICSPlex SM collects data about the specified resources as frequently as indicated by the sample interval.

This data reflects:

• The type of information available via the CICS COLLECT STATISTICS command.
• CICSPlex SM derived values. A derived value is a rate, average, or percentage that results from CICSPlex SM processing of CICS statistics.

All of the data collected about the monitored resources is available by using the monitoring views.

Important

In order for CICSPlex SM to gather certain task-related data shown in the WUI transaction monitoring views (LOCTRAN objects) and task monitoring views (TASK objects), the CICS monitoring facility (CMF) must be active and you must be collecting performance class data. For an active system, you can open the CICS system definition view and change the Monitoring status field to ON. This has the same effect as issuing the following EXEC CICS commands:

• EXEC CICS SET MONITOR STATUS(ON)
• EXEC CICS SET MONITOR PERFCLASS(PERF)

However, these changes remain in effect only while the CICS system is active. To permanently activate CICS performance class data monitoring, use the CICS system initialization parameters MN=ON and MNPER=ON. You can choose to collect this data for use by CICSPlex SM, but not have it written to an SMF data set. For information on suppressing CMF records, see the discussion of system parameters in CICSPlex SM system parameters.

Data retention

When resource monitoring of a particular resource type is active, data is collected and accumulated. Collection and accumulation stops when:

• The current monitor interval ends. At that time, the statistics counters are reset.
• The retention period has expired. A retention period is associated with a monitor specification. The period indicates the number of minutes accumulated data is to be retained after either the CICS system using that specification stops or you manually stop resource monitoring for that CICS system. At that time, the statistics counters are cleared.
• You explicitly initialize the statistics counters or remove the accumulated data. You can do this using the monitoring views.

A comparison of CICSPlex SM and CICS monitoring

With CICS, you can collect data about the performance of all user- and CICS-supplied transactions. These records are written to an MVS System Management Facility (SMF) data set as type 110 records. These records can then be used for offline analysis. (If statistics records are also to be written to the SMF data set, you can process the statistics and monitoring records together to obtain resource and system information that complements the transaction data produced by CICS monitoring.)

With CICSPlex SM, you can collect data about all resource types. That is, you can obtain information about one or more:

• Transactions
• Terminals
• Files
• Transient data queues
• Journals
• Connections
• Programs
You can also get information about CICS systems, dynamic storage areas (DSAs), transaction classes, local shared resource (LSR), and temporary storage.

Resource monitoring definitions and their related views
You can use the resource monitoring administration views to define a variety of resource monitoring attributes.

Figure 10 on page 81 provides an overview of the resource monitoring views based on the CICSplex SM object model.

![Diagram of resource monitoring views based on CICSplex SM object model]

Figure 10. Views for creating resource monitoring objects and associations
In addition to the views shown here, you can use the **Active monitor specifications** view to display information about and manage the resource monitoring activity in an active CICS system. You can also display a visual map of your resource monitoring definitions by using the **Map** button.

Figure 11 on page 82 illustrates the relationship between resource monitoring in a CICSpelix and the views used to define resource monitoring attributes.

![Diagram showing relationship between resource monitoring definitions and their views]

Figure 11. The relationship between resource monitoring definitions and their views

Default monitor definitions

When you specify a sample rate for the Region, Global, or DB2/DBCTL resource type in a monitor specification, CICSpelix SM automatically creates a corresponding monitor definition.

It is important to note that:

- The **Name** field contains a unique name that begins with an asterisk (*) and is followed by seven digits.
- The **Name or generic name of resource being monitored** field contains *, which means all occurrences of this resource type are to be monitored.
- The **Monitoring resource class** field contains MCICS for the resource type Region, MGBL for the resource type Global, or MDBX for the resource type DB2/DBCTL.
• The **Inclusion in CPSM monitoring option** field contains YES, which means the specified resource occurrences are to be included in monitoring.

• For the Region and Global resource types, the **Resource status facility population** field contains YES, which means the specified resource occurrences are to be tracked for the resource status facility.

Monitor definitions created by CICSPlex SM are automatically installed when a CICS system using the associated specification is started. You cannot update or remove these monitor definitions.

Using resource monitoring views

This section contains guidance on using the WUI views used to create and maintain resource monitoring definitions.

Active monitor specifications - POLMON

The **Active monitor specifications** (POLMON) views display information about monitor specifications installed in CICS systems known to the CICSpesx identified as the current context.

Deactivating or discarding a monitor specification

When a monitor specification is installed, the **Definition status** field is either of the following:

ACTIVE

The specification is installed and active.

PENDING

The specification is installed and ready to become active.

The specification is active during the time period identified in the **Activation period** field. (When this field is blank, the monitor specification is to be active as long as the CICS system in which it is installed is running.)

To change the status of an installed monitor specification:

• To deactivate a monitor specification with an ACTIVE status for which a time period is defined:
 - Access the **Active monitor specifications** tabular view (POLMON object).
 - Click the Record check box beside the monitor specification to be deactivated and click the **Deactivate...** button. The **Deactivate** view is displayed.
 - Click **Yes** to deactivate the selected monitor specification. Otherwise, click **No** to abandon the process.

The specification remains installed; its status is changed to PENDING. The next time the end of the associated time period is reached, the specification will become active again.

• To discard a specification with an ACTIVE or PENDING status and to remove the definition from the CICS system in which it is installed:
 - Access the **Active monitor specifications** tabular view (POLMON object).
 - Click the Record check box beside the monitor definition to be discarded and click the **Discard...** button. The **Discard** view is displayed.
 - Click **Yes** to discard the selected monitor definition. Otherwise, click **No** to abandon the process.

Note:

1. You cannot deactivate or discard a monitor definition created by CICSPlex SM. These definitions have names that consist of an asterisk (*) followed by seven digits.

2. Changes that you make to monitor definitions may be overridden by RTA. If RTA needs a definition that you are attempting to deactivate or had previously deactivated, an error message to that effect is issued and your deactivation is overridden.

3. Deactivating a monitor specification does not remove the data that has been collected and accumulated up to this point in the current monitor interval. The data continues to be displayed in the
appropriate monitor views, whether or not the data is being updated. If you know that the data will not be updated by any other active monitor definitions, you can remove it from the view by using the Remove... button.

4. If there are multiple monitor definitions, the data for discarded definitions continues to be displayed unless and until all of the definitions are discarded.

5. While deactivating and discarding prevent monitoring of the specific resource occurrence identified in the monitor definition, other active monitor definitions may continue to cause information about that resource occurrence to be gathered. To illustrate, suppose the following monitor definitions are active:
 • EYUMOD01, which identifies all file names beginning with PAY
 • EYUMOD02, which identifies all file names beginning with P

Discarding EYUMOD01 has no affect on monitoring since EYUMOD02 includes all file names beginning with P. However, discarding EYUMOD02 means that file names beginning with PAY continue to be monitored.

6. Issuing a DSC or DEA command for a MONDEF for the MTRAN class will result in no more history collection for those transactions.

Monitor specifications - MONSPEC

The Monitor specifications (MONSPEC) views display information about CICS resource types that are to be monitored by CICSPlex SM. A monitor specification identifies the types of resources to be monitored and how frequently information about these resources is to be gathered. After you associate a monitor specification with a CICS system, that specification is automatically installed every time the CICS system starts.

Examples of how to use these views can be found in:
 • “Monitoring transaction response times” on page 91
 • “Monitoring programs in multiple CICS systems” on page 93

Creating a monitor specification
To create a monitor specification:

 • From the main menu, click Administration > Monitor administration.
 • From the Monitor administration views menu, click Monitor specifications.
 • From the Monitor specifications tabular view, click the Create... button. To create a specification based on an existing one, click the record check box beside an entry before clicking the Create... button.
 • Complete the fields and click Yes to create the specification. Click No to abandon the process.

Adding a scope to a monitor specification
Associating a monitor specification with a scope causes the specification to be automatically installed when a CICS system associated with the scope is started. Any monitor definitions associated with the specification through monitor groups are also automatically installed.

However, if you associate the monitor specification with a CICS system that is already active, the new specification is not immediately available. To turn resource monitoring on, you must display the MASs known to CICSPlex view and use the Update... button. Specify YES in the Monitoring Active field and click Yes; resource monitoring becomes active using the new monitor specification.

To add a scope to a monitor specification:

 • From the main menu, click Administration > Monitor administration > Specifications.
 • On the Monitor specifications tabular view, click the Record check box beside the specification entry and click either the Associate CICS system... button or the Associate CICS group... button.
 • Provide the following information, as appropriate.
CICS system or CICS system group
Enter the specific or generic name of an existing CICS system or CICS system group that is not associated with any other monitor specification. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed.

A CICS system or CICS system group can be associated with only one monitor specification at a time. A specification, however, can be associated with any number of CICS systems and CICS system groups.

Option
(This field is not displayed on the Associate CICS system view but is required when the scope is a CICS system group.) Indicate how the CICS systems comprising the CICS system group are to handle monitor specifications. Specify:

FORCE
All CICS systems in the CICS system group are to use the monitor specification. (The monitor specification attribute for each CICS system changes to INHERIT, indicating that the CICS system acquired the specification from a CICS system group.)

NULL
Those CICS systems within the CICS system group that are not associated with a monitor specification are to use this specification. (The monitor specification attribute for those CICS systems changes to INHERIT.)

NONE
Only the CICS system group is to be associated with the monitor specification. The CICS systems in the CICS system group are not affected. That is, if there is no association between a CICS system and monitor specification, none is established; if there is an association, either explicitly established or inherited from another CICS system group, it is unchanged.

When the CICS system group includes other CICS system groups, all of the CICS systems, including those in the subordinate CICS system groups, are affected by the value specified in this field.

Monitor groups - MONGROUP
The Monitor groups (MONGROUP) views display information about monitor groups. A monitor group is a collection of monitor definitions that are treated as a single entity.

An example of how to use these views can be found in “Monitoring programs in multiple CICS systems” on page 93.

Creating a monitor group
To create a monitor group:

• From the main menu, click Administration > Monitor administration.
• From the Monitor administration views menu, click Monitor groups.
• From the Monitor groups tabular view, click the Create... button. To create a group based on an existing one, click the record check box beside the entry before clicking the Create... button.
• Complete the fields and click Yes to create the group. Click No to abandon the process.

Adding a monitor group to a monitor specification
To add a monitor group to a monitor specification:

• From the main menu, click Administration > Monitor administration > Groups.
• On the Monitor group definitions tabular view, click the Record check box beside the required monitor group entry and click the Add to Monitor specification... button.
• Provide the following information:

Specification name
Enter the specific or generic name of an existing monitor specification. If you specify a generic value, a list of valid monitor specifications is displayed.
Click Yes to add the monitor group to the named monitor specification. Otherwise, click No to abandon the process.

If a monitor specification appropriate for this monitor group does not currently exist, you must first create one, as described in topic page “Creating a monitor specification” on page 84.

Installing a monitor group

When you install a monitor group, all of the monitor definitions associated with that group are installed in the CICS systems that are using the monitor specification to which the monitor group is associated.

Before attempting to install a monitor group, review the requirements described in “Activating resource monitoring” on page 75.

The monitor definitions associated with a monitor group can be automatically installed in a CICS system when that system starts. For this to occur, the monitor group must be associated with a monitor specification that is defined to the CICS system.

To install a monitor group:

- Access the Monitor groups tabular view (MONGROUP object).
- Click the Record check box beside the entry for the group to be installed.
- Click the Install... button to display the Install view.
- On the Install view, in the Scope value field, enter the specific or generic name of a CICS system or CICS system group for which the monitor group is to be installed. The CICS system or CICS system group must be within the CICSPlex identified as the current context. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed.
- Click Yes to install the monitor group. Otherwise, click No to abandon the process.

If one or more monitor definitions associated with the monitor group you install:

- Have the same names as previously installed definitions, the new definitions will take the place of the old definitions.
- Identify the same resource occurrence names and resource types as previously installed definitions, the new definitions will take the place of the old ones.
- Specify a resource type that is not supported in a target CICS system, CICSPlex SM will issue a message indicating that the definition cannot be installed because the resource is not supported.

Finally, you can use the Active monitor specifications view (POLMON object), as indicated in RTA views, to deactivate an installed monitor group.

Monitor definitions - MONDEF

The Monitor definitions (MONDEF object) views display information about the resource types identified in a monitor specification that are to be included in or excluded from monitoring. A monitor definition also identifies which resources are to be reported to the resource status facility.

Examples of how to use this view can be found in:

- “Monitoring transaction response times” on page 91
- “Monitoring programs in multiple CICS systems” on page 93

Creating a monitor definition

There must be one or more monitor definitions for each resource type identified in a monitor specification. You create the appropriate monitor definitions for all resource types except Region, Global, and DB2/DBCTL. CICSPlexSM automatically generates and maintains monitor definitions for the Region, Global, and DB2/DBCTL resource types.

To create a monitor definition:

- From the main menu, click Administration > Monitor administration.
- From the Monitor administration views menu, click Definitions to display the Monitor definitions tabular view (MONDEF object).
• Click the Create... button to display the Monitor definitions create view.
• Complete the fields and click Yes to create the definition. Otherwise, click No to abandon the process.

Adding an association to a monitor group
To create an association between a monitor definition and a monitor group:
• From the Monitor definitions tabular view, click the Record check box beside the monitor definition.
• Click the Add to Monitor group... button. The Add to Monitor group view is displayed.
• On the Add to Monitor group view, complete the fields as follows:

 | Resource group name | The name of the group to which this definition is to be added. If you type a generic name, a list of possibilities is displayed from which you can choose. |
 | Period Definition name | (Optional) Enter the specific or generic name of a period definition that identifies the range of hours during which the monitor definition is to be active. If you specify a generic value, a list of valid period definitions is displayed. If the name you specify does not belong to an existing period definition, you can create that period definition later. If you leave this field blank, the monitor definition remains active for as long as the CICS system is running, or until you discard it. |

• Click Yes to create the association. Otherwise, click No to abandon the process.

You can use the Monitor definitions in monitor groups view (MONINGRP object), as described in topic on page “Monitor definitions in groups - MONINGRP ” on page 90, to remove a monitor definition from a monitor group.

If an appropriate monitor group does not currently exist, you must first create the group, as described in topic on page “Creating a monitor group” on page 85.

Installing a monitor definition
A monitor definition can be automatically installed in a CICS system when that system starts. For this to occur, associate the definition with a monitor group. Then associate that monitor group with a monitor specification that is associated with the CICS system.

You can install a monitor definition into one or more active CICS systems that are within the CICSpex identified as the context. You can do this whether or not the monitor definition is associated with a monitor group that is also associated with a monitor specification. However, before attempting to install a monitor definition, you should review the requirements described in “Activating resource monitoring” on page 75.

To install a monitor definition:
• Access the Monitor definitions tabular view (MONDEF object).
• Click the Record check box beside the entry for the definition to be installed.
• Click the Install... button to display the Install view.
• On the Install view, complete the fields as follows:

 | Scope value | Enter the specific or generic name of a CICS system or CICS system group for which the monitor definition is to be installed. The CICS system or CICS system group must be within the CICSpex identified as the current context. If you specify a generic value, a list of valid CICS systems and CICS system groups is displayed. |
 | Period definition name | (Optional) Enter the name of an existing period definition or a generic name that identifies the range of hours during which the monitor definition is to be active. If you specify a generic value, a list of valid period definitions is displayed. If you leave this field blank, the monitor definition remains active for as long as the CICS system is running, or until you discard it. |

• Click Yes to install the monitor definition. Otherwise, click No to abandon the process.
If the monitor definition you install:

- Has the same name as a previously installed definition, the new definition will replace the old definition,
- Identifies the same occurrence names and resource types as a previously installed definition, the new definition will replace the old one,
- Specifies a resource type that is not supported in a target CICS system,

CICSPlex SM will issue a message indicating that the definition cannot be installed. If you install a monitor definition that specifies a 1- to 8-character journal name (for use in a system running the CICS TS) in a system that does not support such journal names, monitoring will not occur, as the specified journal will not exist.

You can use the Active monitor specifications view (POLMON object), as described in "Active monitor specifications - POLMON" on page 83, to deactivate an installed monitor definition.

Monitor specifications to CICS system links - LNKSMCS

The Monitor specifications to CICS system links (LNKSMCS) views display information about the CICS systems that are associated with monitor specifications.

Creating a link between a monitor specification and a CICS system

To create a link between a monitor specification and a CICS system:

- From the main menu, click Administration > Monitor administration.
- From the Monitor administration views menu, click Monitor specifications to system links. The Monitor specifications to system links view (LNKSMCS object) is displayed.
- Click the Create... button. To base the new association on an existing one, click the Record check box beside an entry.
- Complete the fields and click Yes to create the link between a monitor specification and a CICS system. Otherwise, click No to abandon the process.

Updating a link between a monitor specification and a CICS system

To update the link between a monitor specification and a CICS system:

- From the main menu, click Administration > Monitor administration.
- From the Monitor administration views menu, click Monitor specifications to CICS system links. The Monitor specifications to CICS system links view (LNKSMCS object) is displayed.
- Click the Monitor specification field of the entry to be updated. The Monitor specifications detailed view is displayed.
- Click the Associate with CICS system button to display the Associate CICS system view.
- Type the new name into the CICS system field.
- Click Yes to update the link between a monitor specification and a CICS system. Otherwise, click No to abandon the process.

Updating a link between a monitor specification and a CICS system and changing an association

Procedure

1. From the main menu, click Administration > Monitor administration.
2. From the Monitor administration views menu, click Specifications to system links.
 The Monitor specifications to CICS system links view (LNKSMCS object) is displayed.
3. Check the box for the Monitor specification to be updated.
 You can check more than one box.
4. Click the Change Spec Association button to display the Change Spec Association (EYUSTARTLNKSMCS.CHGSPEC) view.
5. Type the new name in the New monitor specification name field and select an appropriate inherit option.
• Click **Yes** to update the link between a monitor specification and a CICS system.
• Click **No** to abandon the process.

Removing a monitor specification to CICS system association
To remove the association between a monitor specification and a CICS system:

• From the main menu, click **Administration > Monitor administration**.
• From the **Monitor administration views** menu, click **Monitor specifications to CICS system links**. The **Monitor specifications to CICS system links** view (LNKSMSCS object) is displayed.
• Click the Record check box beside the required entry and click the **Remove...** button. The **Remove** view is displayed.
• Click **Yes** to remove the link between a monitor specification and a CICS system. Otherwise, click **No** to abandon the process.

Monitor specifications to system group links - LNKSMSCG
The **Monitor specifications to CICS system links** (LNKSMSCG) views display information about the CICS system groups that are associated with monitor specifications.

Creating a link between a monitor specification and a CICS system group
To create a link between a monitor specification and a CICS system:

• From the main menu, click **Administration > Monitor administration**.
• From the **Monitor administration views** menu, click **Monitor specifications to system group links**. The **Monitor specifications to system group links** view (LNKSMSCG object) is displayed. For more information about the LNKSmxSCG parameters, see Special attribute and resource table considerations: LNKSmxSCG Records (LNKSMSCG, LNKSRSCG, LNKSWSCG).
• Click the **Create...** button. To base the new association on an existing one, click the Record check box beside an entry.
• Complete the fields and click **Yes** to create the link between a monitor specification and a CICS system group. Otherwise, click **No** to abandon the process.

Updating a link between a monitor specification and a CICS system group
To update the link between a monitor specification and a CICS system group:

• From the main menu, click **Administration > Monitor administration**.
• From the **Monitor administration views** menu, click **Specifications to system group links**. The **Monitor specifications to system group links** view (LNKSMSCG object) is displayed.
• Click the **Monitor specification** field to display the **Monitor specifications** detailed view.
• Click the **Associate CICS group...** button to display the **Associate CICS group** view.
• Type in the new CICS system group name and select one of the Force, Null or None options.
• Click **Yes** to update the link between a monitor specification and a CICS system group. Otherwise, click **No** to abandon the process.

Updating a link between a monitor specification and a CICS system group and changing an association

Procedure
1. From the main menu, click **Administration > Monitor administration**.
2. From the **Monitor administration views** menu, click **Specifications to system group links**. The **Monitor specifications to CICS system group links** view (LNKSMSCG object) is displayed.
3. Check the box for the Monitor specification to be updated.
 You can check more than one box.
4. Click the Change Spec Association button to display the Change Spec Association (EYUSTARTLNKSMSCG.CHGSPEC) view.

5. Type the new name in the New monitor specification name field and select an appropriate inherit option.
 - Click Yes to update the link between a monitor specification and a CICS system group.
 - Click No to abandon the process.

Removing a monitor specification to CICS system group association
To remove the association between a monitor specification and a CICS system group:

- From the main menu, click Administration > Monitor administration.
- From the Monitor administration views menu, click Monitor specifications to CICS system group links. The Monitor specifications to CICS system group links view (LNKSMSCG object) is displayed.
- Click the Remove... button. The Remove view is displayed.
- Click Yes to remove the link between a monitor specification and a CICS system group. Otherwise, click No to abandon the process.

Monitor groups in monitor specifications - MONINSPC
The Monitor groups in monitor specifications (MONINSPC) views display the names of monitor specifications and the monitor groups associated with them.

Adding a monitor group to a monitor specification
To add a monitor group to a monitor specification:

- From the main menu, click Administration > Monitor administration > Groups.
- On the Monitor group definitions tabular view, click the Record check box beside the required group entry and click the Add to Monitor specification... button.
- On the Add to Monitor specification view, type in the specification name.
- Click Yes to add the monitor group to the specification. Otherwise, click No to abandon the process.

Monitor definitions in groups - MONINGRP
The Monitor definitions in groups (MONINGRP) views display the names of monitor groups, the monitor definitions associated with them, and the time period during which the monitor definitions are to be active.

Updating a monitor definitions to a monitor group association
To change time-period definition that was associated with the monitor definition and monitor group:

- From the main menu, click Administration > Monitor administration.
- From the Monitor administration views menu, click Definitions in groups to display the Monitor definitions in groups tabular view (MONINGRP object).
- Click the record check box beside the entry to be updated and click the Update... button.
- Enter a new time-period definition name and click Yes to update the association. Otherwise, click No to abandon the process.

Removing a monitor definitions to a monitor group association
To remove monitor definition to monitor group association:

- From the main menu, click Administration > Monitor administration.
- From the Monitor administration views menu, click Definitions in groups to display the Monitor definitions in groups tabular view (MONINGRP object).
- Click the record check box beside the entry to be updated and click the Remove... button. The Remove... view is displayed.
• Click **Yes** to remove the association. Otherwise, click **No** to abandon the process.

Example tasks: resource monitoring

This section provides some examples of typical tasks you perform to set up CICSPlex SM resource monitoring.

Monitoring transaction response times

This example shows you how to use the WUI to monitor the response times of a particular transaction (PAY1), in a single CICS system (CICSPA01), which is a local MAS in CICSpelx PLXPROD1.

In this example, the monitoring is temporary: that is, it is started in response to a particular problem, and stopped again when enough monitor data has been gathered. The CICS system CICSPA01 is currently running.

1. Ensure that both CICS monitoring and CICS performance class monitoring are active in CICS system CICSPA01.

 CICSpelx SM can gather detailed, transaction-related monitor data only if CICS monitoring and performance class monitoring are switched on. You can check whether they are active using the **CICS region** view as follows:

 a. From the WUI main menu, click **CICS regions** to open the **CICS regions** tabular view.
 b. If the current context is not PLXPROD1, specify PLXPROD1 in the **Context** field and click **Set**.
 c. Click CICSSPA01 to open a detailed view showing the current trace, dump, and statistics settings for of this region. Scroll down to the **Monitor status** field and ensure that it is set to ON. If it is not, change the setting using the drop down menu.
 d. Scroll to the bottom of this screen and click **Monitoring, dump and trace details**. Scroll down to the **Performance class monitoring status** field, which you will find in the **Monitoring values** section, and ensure that it is set to PERF. If it is not, change it.
 e. If you have changed either of the values, click the **Apply changes** button at the bottom of the screen.

2. Create a monitor definition.

 a. From the main menu, click **Administration views > Monitor administration view > Monitor definitions** to open the **Monitor definition** tabular view.
 b. Click the **Create** button at the bottom of the screen.

 Note: If you want to use an existing definition as a template, select a definition from the list first.

 c. Provide the following information:

 Monitor definition name
 MODPAY01

 Description
 Transaction PAY1

 Name or generic name of resource being monitored
 PAY1

 Monitoring resource class
 MTRAN

 Inclusion in CPSM monitoring option
 YES

 Resource status facility population
 NO

 d. Click **Yes** to confirm. The **Monitor definition** tabular view is redisplayed showing an entry for the monitor definition MODPAY01.

3. Create a monitor specification.
a. From the main menu, click Administration views > Monitor administration views > Monitor specifications to open the Monitor specification tabular view.

b. Click the Create button at the bottom of the screen.

Note: If you want to use an existing definition as a template, select a definition from the list first.

c. Provide the following information:

<table>
<thead>
<tr>
<th>Specification name</th>
<th>MOSPAY01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Payroll resources</td>
</tr>
<tr>
<td>Monitor activation status</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>Data retention period</td>
<td>30</td>
</tr>
<tr>
<td>Sample for transaction monitoring</td>
<td>120</td>
</tr>
</tbody>
</table>

You can leave the remaining fields blank or accept the defaults.

Transactions are to be sampled every 120 seconds. The resource sample interval (that is, 120 seconds), when converted to minutes, should be evenly divisible into the monitor interval for the CICSplex.

Note: You can look at the monitor interval for the CICSplex by opening the CICSpelx definitions view (Administration views > CMAS configuration administration views > CICSpelx definitions) and clicking on the entry for PLXPROD1.

d. Click Yes to confirm. The Monitor specification tabular view is redisplayed, showing an entry for monitor specification MOSPAY01.

4. Associate the monitor specification with the CICS system.

a. In the Monitor specifications view, select the entry for MOSPAY01, and click Associate CICS system.

b. In the CICS system field, type in CICSPA01, and click Yes to confirm.

5. Ensure that CICSpelx SM monitoring is switched on in the CICS system.

a. From the WUI main menu, click CICSpelx SM operations views > MASs known to CICSpelx to open the MASs known to CICSpelx tabular view.

b. Check the value in the Monitoring status field for the entry for CICSPA01:

- If this field is set to YES, you need to deactivate and then reactivate monitoring so that the new monitor specification takes effect. To do this, click CICSPA01 to display the MASs known to CICSpelx detailed view. Change the Monitoring status field to NO and click the Apply changes button. Then repeat the process, setting the field back to YES.
- If this field is set to NO, you need activate monitoring. To do this, set the field to YES and click the Apply changes button.

If you don't set the Monitoring status field to YES, no monitoring will occur because the CICS system's Monitoring status field value overrides the Monitoring status value in the monitor specification.

6. Look at the monitor data.

After a short time has elapsed (for this example, at least two minutes, which is the resource sample interval), you can look at the data that CICSpelx SM is gathering. To do this, from the WUI main menu, click Monitoring views > Transaction monitoring views > Monitor data for transactions and click on the entry for PAY1. This opens a detailed view showing information (including response times) for transaction PAY1 in CICS system CICSPA01.
Whenever you click **Refresh**, the view is redisplayed, though the frequency with which the data changes is determined by the resource sample interval. The monitor data is also written to an SMF data set (unless production of CMF records has been suppressed).

7. Deactivate monitoring of transaction PAY1.

 Monitoring of transaction PAY1 continues until CICSPA01 stops, unless you switch it off before then.

 If you want to stop monitoring at any time, click **Monitoring views > Active monitor specifications**, select the entry for MODPAY01 and click the **Remove...** button. The monitor definition MODPAY01 is removed from CICS system CICSPA01, though it still exists in the data repository, and can be reinstalled at any time. The data gathered during monitoring of transaction PAY1 in CICSPA01 is kept for 30 minutes after you deactivate MODPAY01. (Remember that 30 minutes is the length of the retention period you specified in the monitor specification MOSPAY01.)

Monitoring programs in multiple CICS systems

This example uses the WUI to shows how to monitor the activity of a set of programs (programs whose names begin with the letters PAY) as they are used in a group of CICS systems (AORs CICSPA01, CICSPA02, and CICSPA03) in CICSplex PLXPROD1.

In this example, the monitoring is to be regular: that is, it will be activated, for each CICS system, from 0800 hours to 1700 hours. CICS systems CICSPA01 and CICSPA03 are running. For none of the three CICS systems is monitoring currently switched on.

1. Create a CICS system group.

 a. From the WUI main menu, click **Administration views > Topology administration views > System groups** to open the **System group definitions** tabular view.

 b. If the current context is not PLXPROD1, specify PLXPROD1 in the **Context** field and click **Refresh**.

 c. Click the **Create...** button and type in the following information:

 System group name
 CSGAORS1

 Description
 AORs PA01, PA02, PA03

 d. Click **Yes** to confirm. The **System group definitions** tabular view is redisplayed and includes an entry for CSGAORS1.

2. Add CICS systems to the CICS system group.

 a. Click **Administration views > Topology administration views > System definitions** to open the **CICS system definitions** tabular view.

 b. Select the entries for CICSPA01, CICSPA02 and CICSPA03 and click **Add to CICS system group**.

 c. In the **Group which member will join** field, type in CSGAORS1 and click the **Yes to 3 remaining** button to add all three systems to the group.

3. Create a time period definition.

 Create a time period definition.

 a. From the main menu, click **Administration views > Topology administration views > Time periods** to open the **Time period definitions** tabular view.

 b. Click the **Create** button and type in the following information:

 Name
 PDFPRIME

 Description
 Prime shift

 Start time
 08:00
4. Create a monitor definition.
 a. From the main menu, click **Administration views > Monitor administration views > Definitions** to open the **Monitor definitions** tabular view showing any monitor definitions already created in CICSpix PLXPRD01.
 b. Click the **Create** button at the bottom of the screen.

 Note: If you want to use an existing definition as a template, select a definition from the list first.
 c. Provide the following information:

 Name
 MODPAY02

 Description
 Programs PAY*

 Name or generic name of resource being monitored
 PAY*

 Monitoring resource class
 MPROG

 Inclusion in CPSM monitoring option
 YES

 Resource status facility population
 NO

 d. Click **Yes** to confirm. The **Monitor definitions** tabular view is redisplayed showing an entry for the monitor definition MODPAY02.

5. Create a monitor group.
 a. From the main menu, click **Administration views > Monitor administration views > Groups** to open the **Monitor group definitions** tabular view showing any monitor definitions already created in CICSpix PLXPRD01.
 b. Click the **Create** button and type in the following:

 Monitor group name
 MOGPAY01

 Description
 Payroll resources

 c. Click **Yes** to confirm. The **Monitor group definitions** tabular view is redisplayed and includes an entry for MOGPAY01.

6. Add the monitor definition to a monitor group.

 Because you want the monitor definition MODPAY01 to be installed automatically whenever any of the CICS systems in group CSGAORS1 starts, you must add MODPAY01 to a monitor group.

 a. Open the **Monitor definitions** tabular view, select the entry for MODPAY02 and click the **Add to Monitor group...** button.

 b. In the **Resource group name** field, type MOGPAY01. In the **Period Definition name** field, type PDFPRIME (the name of the time-period definition you created in step “3” on page 93).

 c. Click **Yes** to confirm.
7. Add the monitor group to a monitor specification.
 a. Open the Monitor group definitions screen, select the entry for MOGPAY01, and click the Add to Monitor specification... button.
 b. In the Specification name field, type in MOSPAY01.
 c. Click Yes to confirm.

You’ll notice that the monitor specification MOSPAY01 is the one you created in the previous example (“Monitoring transaction response times” on page 91). Instead of creating a new monitor specification for this example, you can reuse an existing specification. (This is important, because a CICS system or CICS system group can be associated with only one monitor specification at a time.) However, you still need to update monitor specification MOSPAY01.

8. Update the monitor specification.
 a. From the main menu, click Administration views > Monitor administration views > Specifications to open the Monitor specifications tabular view.
 b. Select the entry for MOSPAY01 and click the Update... button.
 c. In the Sample interval for program monitoring field, type in a value of 300. Programs are to be sampled every 300 seconds. Leave the other fields unchanged. You do not have to alter the transaction sample interval, because it takes effect only when a monitor definition, identifying which transactions are to be monitored, is installed in a CICS system. If no such definition is installed, no monitoring of transactions occurs.
 d. Click Yes to confirm. The Monitor specifications tabular view is redisplayed.

9. Associate the monitor specification with the CICS system group.
 a. In the Monitor specifications tabular view, select the entry for MOSPAY01, and click the Associate CICS group... button.
 b. Type in CSGAORS1 in the CICS system group field and select the FORCE option. (The option value FORCE means that all CICS systems in the group CSGAORS will use this monitor specification.)
 c. Click Yes to confirm.

10. Switch CICSPlex SM monitoring on in the CICS systems.
 a. From the WUI main menu, click Administration views > Topology administration views > System definitions to open the CICS system definitions view showing CICS systems in CICSpex PLXPROD1.
 b. Select the entries for CICSPA01, CICSPA02 and CICSPA03 and click the Update... button. This opens a detailed view for system CICSPA01.
 c. Scroll down to the Monitoring status field and change the value to YES.
 d. Click the button Yes to 3 remaining button to change the monitoring status of all three systems to YES.

Any change you make to the CICS system definitions with the CICS system definitions view takes effect when those CICS systems are next started. However, CICS systems CICSPA01 and CICSPA03 are currently running. To switch monitoring on for those systems immediately, you must also update their definitions with the MASs known to CICSpex view. (How to do this is shown in the previous example, in step “5” on page 92).

Note: when you switch monitoring on using the MASs known to CICSpex view, it remains on until the CICs system stops or until you switch monitoring off. The time-period definition PDFPRIME has no effect.

11. Look at the monitor data.
 You can look at the data that CICSpex SM is gathering by looking at the Program monitoring views. From the main menu, click Monitoring views > Program monitoring views > Monitor data for programs and clicking on the entry for PAY*. This opens a view showing detailed information (such as usage counts and average fetch times), about programs PAY* in CICS system group CSGAORS1. Whenever you click Refresh, the data in the view is redisplayed. However the frequency with which
the data changes is dictated by the resource sample interval. In this example, the data changes at most every five minutes.

Finding out which resources are being monitored in a CICS system

This example shows you how to use the WUI to find out which types of resource are being monitored in CICS system CICSPA01.

1. From the WUI main menu, click **Monitoring views > Active monitor specifications**.
2. If the current context is not PLXPROD1, specify PLXPROD1 in the **Context** field.
3. In the scope field type in CICSPA01 and click **Refresh**.

 The **Active monitor specifications** tabular view now displays the active monitor definitions in CICS system CICSPA01.
Appendix A. Real Time Analysis (RTA) views

The Real Time Analysis (RTA) views allow you to analyze the activity in a CICSplex.

Installed analysis definitions associated with an analysis point specification - APACTV

The **Installed analysis definitions associated with an analysis point specification** (APACTV) views display information about RTA definitions associated with an analysis point specification.

Supplied views

To access from the main menu, click:

Real Time Analysis (RTA) views > Installed analysis definitions associated with an analysis point specification

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed analysis definitions associated with an analysis point specification EYUSTARTAPACTV.DEACTIVATE</td>
<td>Deactivate an active analysis definition for which a time period is defined. The status of the definition changes to pending.</td>
</tr>
<tr>
<td>Installed analysis definitions associated with an analysis point specification EYUSTARTAPACTV.DETAILED</td>
<td>Detailed information about the association between a selected RTA definition and an analysis point specification.</td>
</tr>
<tr>
<td>Installed analysis definitions associated with an analysis point specification EYUSTARTAPACTV.DISCARD</td>
<td>Discard an active or pending analysis definition from the CICS system in which it is installed.</td>
</tr>
<tr>
<td>Installed analysis definitions associated with an analysis point specification EYUSTARTAPACTV.REACTIVATE</td>
<td>Reactivate a pending analysis definition for which a time period is defined. The status of the definition changes to active.</td>
</tr>
<tr>
<td>Installed analysis definitions associated with an analysis point specification EYUSTARTAPACTV.TABULAR</td>
<td>Tabular information about RTA definitions associated with an analysis point specification for the CICSplex identified as the context.</td>
</tr>
</tbody>
</table>

Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEACTIVATE</td>
<td>Deactivate an active analysis definition for which a time period is defined. The status of the definition changes to pending.</td>
</tr>
<tr>
<td>DISCARD</td>
<td>Discard an active or pending analysis definition from the CICS system in which it is installed.</td>
</tr>
<tr>
<td>REACTIVATE</td>
<td>Reactivate a pending analysis definition for which a time period is defined. The status of the definition changes to active.</td>
</tr>
</tbody>
</table>
Fields

Table 9. Fields in APACTV views

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated action</td>
<td>ACTION</td>
<td>The name of an action definition that is associated with the analysis definition.</td>
</tr>
<tr>
<td>Period definition</td>
<td>ACTIVETIME</td>
<td>The time period for which the analysis definition will be active. If this field is blank, the analysis definition remains active as long as the CICS system in which it is installed is running. You cannot deactivate this type of analysis definition, but you can discard it from the system using the Discard action.</td>
</tr>
<tr>
<td>Analysis point specification</td>
<td>APSPEC</td>
<td>The name of the analysis point specification with which the analysis definition is associated.</td>
</tr>
<tr>
<td>CMAS</td>
<td>CMAS</td>
<td>The name of the CMAS that is currently responsible for processing the analysis point specification.</td>
</tr>
<tr>
<td>CMAS type</td>
<td>CMASTYPE</td>
<td>Indicates whether the CMAS that is currently responsible for analysis point processing is the primary CMAS (PRIMARY) or a secondary CMAS (SECONDARY). As long as the primary CMAS for an analysis point specification is available, it handles analysis point processing. A secondary CMAS takes over only when the primary CMAS is not available.</td>
</tr>
<tr>
<td>Analysis definition</td>
<td>DEFNAME</td>
<td>The name of an installed analysis definition.</td>
</tr>
<tr>
<td>Interval between analysis activations (seconds)</td>
<td>RATE</td>
<td>Indicates how often, in seconds, CICSPlex SM is evaluating the analysis definition.</td>
</tr>
<tr>
<td>Analysis scope</td>
<td>SCOPE</td>
<td>The name of the CICS system or CICS system group that is associated with the analysis definition. This scope represents the system or system group that is being evaluated by the analysis point.</td>
</tr>
<tr>
<td>Definition status</td>
<td>STATUS</td>
<td>The status of the analysis definition as one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Active - The definition is active and the specified analysis is being done.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Pending - The definition will become active at the time specified in its period definition.</td>
</tr>
</tbody>
</table>

Outstanding events - EVENT

The RTA outstanding events (EVENT) views display information about significant outstanding changes in the status of a CICSplesx or one of its CICS systems.

Supplied views

To access from the main menu, click:

Real Time Analysis (RTA) views > Outstanding events

Table 10. Views in the supplied RTA outstanding events (EVENT) view set

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTA outstanding events</td>
<td>Detailed information about a selected RTA event.</td>
</tr>
<tr>
<td>EYUSTARTEVENT.DETAILED</td>
<td></td>
</tr>
<tr>
<td>RTA outstanding events</td>
<td>Tabular information about RTA events for the CICSpplex identified as the context.</td>
</tr>
<tr>
<td>EYUSTARTEVENT.TABULAR</td>
<td></td>
</tr>
</tbody>
</table>

Actions

None.
Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action name</td>
<td>ACTION</td>
<td>The name of the action definition associated with the analysis or status definition that generated the event.</td>
</tr>
<tr>
<td>CMAS in which event was raised</td>
<td>CMAS</td>
<td>The name of the CMAS in which the event was generated. Depending on what type of event it is, the named CMAS is one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• APM - The CMAS associated with the analysis point specification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MRM - The CMAS to which the target CICS system is connected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SAM - The primary CMAS for the target CICS system.</td>
</tr>
<tr>
<td>Name of context to which event applies</td>
<td>CONTEXT</td>
<td>The CICSplex identified as the context to which the event applies.</td>
</tr>
<tr>
<td>Current HS true evaluation count</td>
<td>CURHSENTRY</td>
<td>The current number of consecutive evaluations for which a condition with a severity of HS (high severe) has been true. This value is compared</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to the Defined HS Entry to determine whether an event should be raised, or the severity of an existing event should be updated. If the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>condition is determined to be false, then the Current HS Entry value is reset to zero. When the Current HS Entry is equal to the Defined</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HS Entry, then an event is raised or the severity of an existing event is increased to HS, and the Current HS Entry value is reset to zero.</td>
</tr>
<tr>
<td>Current HS false evaluation count</td>
<td>CURHSEXIT</td>
<td>The current number of consecutive evaluations for which a condition with a severity of HS (high severe) has been false. This value is compared</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to the Defined HS Exit to determine whether an event should be cancelled, or the severity of an existing event should be updated. If the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>condition is determined to be true, then the Current HS Exit value is reset to zero. When the Current HS Exit is equal to the Defined</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HS Exit, then the event is cancelled or (for a Threshold Event) the severity is decreased to LW, and the Current HS Exit value is reset to zero.</td>
</tr>
<tr>
<td>Current HW true evaluation count</td>
<td>CURHWENTRY</td>
<td>The current number of consecutive evaluations for which a condition with a severity of HW (high warning) has been true. This value is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>compared to the Defined HW Entry to determine whether an event should be raised, or the severity of an existing event should be updated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the condition is determined to be false, then the Current HW Entry value is reset to zero. When the Current HW Entry is equal to the Defined</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HW Entry, then an event is raised and the Current HW Entry value is reset to zero.</td>
</tr>
<tr>
<td>Current HW false evaluation count</td>
<td>CURHWEXIT</td>
<td>The current number of consecutive evaluations for which a condition with a severity of HW (high warning) has been false. This value is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>compared to the Defined HW Exit to determine whether an event should be cancelled, or the severity of an existing event should be updated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the condition is determined to be true, then the Current HW Exit value is reset to zero. When the Current HW Exit is equal to the Defined</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HW Exit, then the event is cancelled or (for a Threshold Event) the severity is decreased to VLS, and the Current HW Exit value is reset to zero.</td>
</tr>
<tr>
<td>Current LS true evaluation count</td>
<td>CURLSENTRY</td>
<td>The current number of consecutive evaluations for which a condition with a severity of LS (low severe) has been true. This value is compared</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to the Defined LS Entry to determine whether an event should be raised, or the severity of an existing event should be updated. If the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>condition is determined to be false, then the Current LS Entry value is reset to zero. When the Current LS Entry is equal to the Defined</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LS Entry, then an event is raised or the severity of an existing event is increased to LS, and the Current LS Entry value is reset to zero.</td>
</tr>
<tr>
<td>Current LS false evaluation count</td>
<td>CURLSEXIT</td>
<td>The current number of consecutive evaluations for which a condition with a severity of LS (low severe) has been false. This value is compared</td>
</tr>
<tr>
<td></td>
<td></td>
<td>to the Defined LS Exit to determine whether an event should be cancelled, or the severity of an existing event should be updated. If the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>condition is determined to be true, then the Current LS Exit value is reset to zero. When the Current LS Exit is equal to the Defined LS Exit,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the event is canceled or (for a Threshold Event) the severity is decreased to VLS, and the Current LS Exit value is reset to zero.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Current LW true evaluation count</td>
<td>CURLWENTRY</td>
<td>The current number of consecutive evaluations for which a condition with a severity of LW (low warning) has been true. This value is compared to the Defined LW Entry to determine whether an event should be raised, or the severity of an existing event should be updated. If the condition is determined to be false, then the Current LW Entry value is reset to zero. When the Current LW Entry is equal to the Defined LW Entry, then an event is raised and the Current LW Entry value is reset to zero.</td>
</tr>
<tr>
<td>Current LW false evaluation count</td>
<td>CURLWEXIT</td>
<td>The current number of consecutive evaluations for which a condition with a severity of LW (low warning) has been false. This value is compared to the Defined LW Exit to determine whether an event should be cancelled, or the severity of an existing event should be updated. If the condition is determined to be true, then the Current LW Exit value is reset to zero. When the Current LW Exit is equal to the Defined LW Exit, then the event is cancelled or (for a threshold event) the severity is decreased to LS and the current LW Exit value is reset to zero.</td>
</tr>
<tr>
<td>Current VHS true evaluation count</td>
<td>CURVHSENTRY</td>
<td>The current number of consecutive evaluations for which a condition with a severity of VHS (very high severe) has been true. This value is compared to the Defined VHS Entry to determine whether an event should be raised, or the severity of an existing event should be updated. If the condition is determined to be false, the Current VHS Entry value is reset to zero. When the Current VHS Entry is equal to the Defined VHS Entry, then an event is raised or the severity of an existing event is increased to VHS, and the Current VHS Entry value is reset to zero.</td>
</tr>
<tr>
<td>Current VHS false evaluation count</td>
<td>CURVHSEXIT</td>
<td>The current number of consecutive evaluations for which a condition with a severity of VHS (very high severe) has been false. This value is compared to the Defined VHS Exit to determine whether an event should be cancelled, or the severity of an existing event should be updated. If the condition is determined to be true, then the Current VHS Exit value is reset to zero. When the Current VHS Exit is equal to the Defined VHS Exit, then the event is cancelled or (for a Threshold Event) the severity is decreased to HS, and the Current VHS Exit value is reset to zero.</td>
</tr>
<tr>
<td>Current VLS true evaluation count</td>
<td>CURVLSENTRY</td>
<td>The current number of consecutive evaluations for which a condition with a severity of VLS (very low severe) has been true. This value is compared to the Defined VLS Entry to determine whether an event should be raised, or the severity of an existing event should be updated. If the condition is determined to be false, then the Current VLS Entry value is reset to zero. When the Current VLS Entry is equal to the Defined VLS Entry, then an event is raised or the severity of an existing event is increased to VLS, and the Current VLS Entry value is reset to zero.</td>
</tr>
<tr>
<td>Current VLS false evaluation count</td>
<td>CURVLSEXIT</td>
<td>The current number of consecutive evaluations for which a condition with a severity of VLS (very low severe) has been false. This value is compared to the Defined VLS Exit to determine whether an event should be cancelled, or the severity of an existing event should be updated. If the condition is determined to be true, then the Current VLS Exit value is reset to zero. When the Current VLS Exit is equal to the Defined VLS Exit, then the event is cancelled or (for a Threshold Event) the severity is decreased to LS, and the Current VLS Exit value is reset to zero.</td>
</tr>
<tr>
<td>Date and time when event was created</td>
<td>DATETIME</td>
<td>The local date and time when the event was created.</td>
</tr>
<tr>
<td>Event description</td>
<td>DESC</td>
<td>A description of the event, as specified in the action definition associated with the analysis or status definition that generated the event.</td>
</tr>
<tr>
<td>Detailed information availability</td>
<td>DETAIL</td>
<td>For events generated by analysis definitions, indicates whether detailed information about the event is available. The detailed information includes information from the evaluation definition that caused the event to be raised. A value of NO means the event was generated automatically by CICSPlex SM, rather than by an analysis definition.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Event type</td>
<td>EVALTYPE</td>
<td>The type of analysis that generated the event:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• APM - Analysis point monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MRM - MAS resource monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SAM - System availability monitoring</td>
</tr>
<tr>
<td>SNA generic alert generation</td>
<td>GENALERT</td>
<td>Indicates whether a SNA generic alert was sent to NetView for the event.</td>
</tr>
<tr>
<td>External message generation</td>
<td>GENEXTMSG</td>
<td>Indicates whether external messages were generated for the event.</td>
</tr>
<tr>
<td>Evaluation count with HS true before event</td>
<td>HSENTRY</td>
<td>The number of consecutive evaluations during which a condition with a severity of HS (high severe) must be true before an event is generated. This entry value was specified in the analysis or status definition that generated the event.</td>
</tr>
<tr>
<td>Evaluation count with HS false before resolution</td>
<td>HSEXIT</td>
<td>The number of consecutive evaluations during which a condition with a severity of HS (high severe) must be false before the event is considered resolved. This exit value was specified in the analysis or status definition that generated the event.</td>
</tr>
<tr>
<td>Evaluation count with HW true before event</td>
<td>HWENTRY</td>
<td>The number of consecutive evaluations during which a condition with a severity of HW (high warning) must be true before an event is generated. This entry value was specified in the analysis or status definition that generated the event.</td>
</tr>
<tr>
<td>Evaluation count with HW false before resolution</td>
<td>HWEXIT</td>
<td>The number of consecutive evaluations during which a condition with a severity of HW (high warning) must be false before the event is considered resolved. This exit value was specified in the analysis or status definition that generated the event.</td>
</tr>
<tr>
<td>Name of specific resource that caused event</td>
<td>KEY</td>
<td>The specific resource (such as a program or file) that caused the event to be generated.</td>
</tr>
<tr>
<td>Evaluation count with LS true before event</td>
<td>LSENTRY</td>
<td>The number of consecutive evaluations during which a condition with a severity of LS (low severe) must be true before an event is generated. This entry value was specified in the analysis or status definition that generated the event.</td>
</tr>
<tr>
<td>Evaluation count with LS false before resolution</td>
<td>LSEXIT</td>
<td>The number of consecutive evaluations during which a condition with a severity of LS (low severe) must be false before the event is considered resolved. This exit value was specified in the analysis or status definition that generated the event.</td>
</tr>
<tr>
<td>Evaluation count with LW true before event</td>
<td>LWENTRY</td>
<td>The number of consecutive evaluations during which a condition with a severity of LW (low warning) must be true before an event is generated. This entry value was specified in the analysis or status definition that generated the event.</td>
</tr>
<tr>
<td>Evaluation count with LW false before resolution</td>
<td>LWEXIT</td>
<td>The number of consecutive evaluations during which a condition with a severity of LW (low warning) must be false before the event is considered resolved. This exit value was specified in the analysis or status definition that generated the event.</td>
</tr>
<tr>
<td>Event name</td>
<td>NAME</td>
<td>The name of the event. For events generated as a result of evaluating an analysis or status definition, the event name is the same as the definition name. For events generated automatically by CICSplex SM, the name is one of the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• !!SAMOPS - System unavailable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• !!SAMSMD - System dump</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• !!SAMTDM - Transaction dump</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• !!SAMSOS - Short-on-storage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• !!SAMMAX - Maximum tasks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• !!SAMDNRM - Non-responsive-MAS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• !!SAMSTL - System stall</td>
</tr>
<tr>
<td>CMAS to which NetView attached</td>
<td>NETVIEW</td>
<td>Indicates whether an interface to NetView is available from the CMAS in which the event was generated.</td>
</tr>
</tbody>
</table>

Appendix A. Real Time Analysis (RTA) views 101
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event priority</td>
<td>PRIORITY</td>
<td>The priority of the event, as specified in the action definition associated with the analysis or status definition that generated the event. The priority of an event can range from 1 to 255, with 255 being the highest priority.</td>
</tr>
<tr>
<td>Interval between evaluations</td>
<td>RATE</td>
<td>The interval, in seconds, between evaluations of the the analysis or status definition that generated the event.</td>
</tr>
<tr>
<td>Resource type</td>
<td>RESTYPE</td>
<td>The type of resource for which the event was generated.</td>
</tr>
<tr>
<td>Event sequence number</td>
<td>SEQUENCE</td>
<td>The event sequence number.</td>
</tr>
<tr>
<td>Event severity</td>
<td>SEVERITY</td>
<td>The severity associated with the event:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VHS - Very high severe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• HS - High severe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• HW - High warning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• LW - Low warning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• LS - Low severe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• VLS - Very low severe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For events generated as a result of evaluating an analysis definition, the severity is assigned as part of the associated evaluation definition. For events generated automatically, the severity is assigned by CICSPlex SM.</td>
</tr>
<tr>
<td>Current event target</td>
<td>TARGET</td>
<td>The name of the CICS system or CICS system group that is the target of the event. Note: The target will be a CICS system group only for events whose type is APM.</td>
</tr>
<tr>
<td>Evaluation count with VHS true before event</td>
<td>VHSENTRY</td>
<td>The number of consecutive evaluations during which a condition with a severity of VHS (very high severe) must be true before an event is generated. This entry value was specified in the analysis or status definition that generated the event.</td>
</tr>
<tr>
<td>Evaluation count with VHS false before resolution</td>
<td>VHSEXIT</td>
<td>The number of consecutive evaluations during which a condition with a severity of VHS (very high severe) must be false before the event is considered resolved. This exit value was specified in the analysis or status definition that generated the event.</td>
</tr>
<tr>
<td>Associated user data</td>
<td>VIEW</td>
<td>A string of up to 8 characters that allows you to provide additional site-specific data about the event.</td>
</tr>
<tr>
<td>Evaluation count with VLS true before event</td>
<td>VLSENTRY</td>
<td>The number of consecutive evaluations during which a condition with a severity of VLS (very low severe) must be true before an event is generated. This entry value was specified in the analysis or status definition that generated the event.</td>
</tr>
<tr>
<td>Evaluation count with VLS false before resolution</td>
<td>VLSEXIT</td>
<td>The number of consecutive evaluations during which a condition with a severity of VLS (very low severe) must be false before the event is considered resolved. This exit value was specified in the analysis or status definition that generated the event.</td>
</tr>
</tbody>
</table>

Real Time Analysis (RTA) installed analysis and status definitions - RTAACTV

The **RTA installed analysis and status definitions** (RTAACTV) views display information about analysis and status definitions installed in CICS systems known to the CICSPlex identified as the current context.

Supplied views

To access from the main menu, click:
Real Time Analysis (RTA) views > Real Time Analysis (RTA) installed analysis and status definitions
Table 12. Views in the supplied Real Time Analysis (RTA) installed analysis and status definitions (RTAACTV) view set

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Time Analysis (RTA) installed analysis and status definitions</td>
<td>Deactivate an active analysis or status definition for which a time period is defined. The status of the definition changes to pending.</td>
</tr>
<tr>
<td>EYUSTARTRTAACTV.DEACTIVATE</td>
<td></td>
</tr>
<tr>
<td>Real Time Analysis (RTA) installed analysis and status definitions</td>
<td>Detailed information about analysis and status definitions installed in a selected CICS system.</td>
</tr>
<tr>
<td>EYUSTARTRTAACTV.DETAILED</td>
<td></td>
</tr>
<tr>
<td>Real Time Analysis (RTA) installed analysis and status definitions</td>
<td>Discard an active or pending analysis or status definition from the CICS in which it is installed.</td>
</tr>
<tr>
<td>EYUSTARTRTAACTV.DISCARD</td>
<td></td>
</tr>
<tr>
<td>Real Time Analysis (RTA) installed analysis and status definitions</td>
<td>Reactivate a pending analysis or status definition for which a time period is defined. The status of the definition changes to active.</td>
</tr>
<tr>
<td>EYUSTARTRTAACTV.REACTIVATE</td>
<td></td>
</tr>
<tr>
<td>Real Time Analysis (RTA) installed analysis and status definitions</td>
<td>Tabular information about analysis and status definitions installed in CICS systems</td>
</tr>
<tr>
<td>EYUSTARTRTAACTV.TABULAR</td>
<td></td>
</tr>
</tbody>
</table>

Actions

Table 13. Actions available for RTAACTV views

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEACTIVATE</td>
<td>Deactivate an active analysis or status definition for which a time period is defined. The status of the definition changes to pending.</td>
</tr>
<tr>
<td>DISCARD</td>
<td>Discard an active or pending analysis or status definition from the CICS in which it is installed.</td>
</tr>
<tr>
<td>REACTIVATE</td>
<td>Reactivate a pending analysis or status definition for which a time period is defined. The status of the definition changes to active.</td>
</tr>
</tbody>
</table>

Fields

Table 14. Fields in RTAACTV views

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated action name</td>
<td>ACTION</td>
<td>The name of an action definition that is associated with the analysis or status definition.</td>
</tr>
<tr>
<td>Period definition name</td>
<td>ACTIVETIME</td>
<td>The time period for which the analysis or status definition will be active. If this field is blank, the analysis or status definition remains active as long as the CICS system in which it is installed is running. You cannot deactivate this type of definition, but you can discard it from the system using the Discard action.</td>
</tr>
<tr>
<td>CICS system name</td>
<td>CICSSYS</td>
<td>The name of the CICS system that is associated with the analysis or status definition.</td>
</tr>
<tr>
<td>Definition name</td>
<td>NAME</td>
<td>The name of an installed analysis or status definition.</td>
</tr>
<tr>
<td>Interval between evaluations (seconds)</td>
<td>RATE</td>
<td>The interval, in seconds, between evaluations of the analysis or status definition.</td>
</tr>
<tr>
<td>Definition status</td>
<td>STATUS</td>
<td>The status of the analysis or status definition as one of the following: • ACTIVE - The definition is active and the specified analysis is being done. • PENDING - The definition will become active at the time specified in its period definition.</td>
</tr>
<tr>
<td>Analysis definition type (analysis or status)</td>
<td>TYPE</td>
<td>The type of definition (analysis or status)</td>
</tr>
</tbody>
</table>
Appendix B. History Views

The history views allow you to work with CICS historical data.

Recent - HTASK

The **completed tasks (history)** (HTASK) views display information about completed tasks; that is tasks that previously ran in a system managed by CICSPlex SM, but have now been completed. Once a task completes, information can be obtained by the HTASK resource, provided CICSPlex SM history recording has been activated for that task.

Supplied views

To access from the main menu, click:

History views > History Views > Recent

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed task (history)</td>
<td>Identification details of a selected task.</td>
</tr>
<tr>
<td>EYUSTARTHTASK.DETAIL1</td>
<td></td>
</tr>
<tr>
<td>Completed task (history)</td>
<td>Program storage information about a selected task.</td>
</tr>
<tr>
<td>EYUSTARTHTASK.DETAIL10</td>
<td></td>
</tr>
<tr>
<td>Completed task (history)</td>
<td>JVM usage information about a selected task.</td>
</tr>
<tr>
<td>EYUSTARTHTASK.DETAIL11</td>
<td></td>
</tr>
<tr>
<td>Completed task (history)</td>
<td>Shared storage information about a selected task.</td>
</tr>
<tr>
<td>EYUSTARTHTASK.DETAIL12</td>
<td></td>
</tr>
<tr>
<td>Completed task (history)</td>
<td>Web and Document request information about a selected task.</td>
</tr>
<tr>
<td>EYUSTARTHTASK.DETAIL13</td>
<td></td>
</tr>
<tr>
<td>Completed task (history)</td>
<td>FEPI communications information about a selected task.</td>
</tr>
<tr>
<td>EYUSTARTHTASK.DETAIL14</td>
<td></td>
</tr>
<tr>
<td>Completed task (history)</td>
<td>Enterprise bean usage information about a selected task.</td>
</tr>
<tr>
<td>EYUSTARTHTASK.DETAIL15</td>
<td></td>
</tr>
<tr>
<td>Completed task (history)</td>
<td>Resource manager interface (RMI) usage information about a selected task.</td>
</tr>
<tr>
<td>EYUSTARTHTASK.DETAIL16</td>
<td></td>
</tr>
<tr>
<td>Completed task (history)</td>
<td>Task association data</td>
</tr>
<tr>
<td>EYUSTARTHTASK.DETAIL17</td>
<td></td>
</tr>
<tr>
<td>Completed task (history)</td>
<td>Clocks and timings information about a selected task.</td>
</tr>
<tr>
<td>EYUSTARTHTASK.DETAIL12</td>
<td></td>
</tr>
<tr>
<td>Completed task (history)</td>
<td>Settings information about a selected task.</td>
</tr>
<tr>
<td>EYUSTARTHTASK.DETAIL13</td>
<td></td>
</tr>
<tr>
<td>Completed task (history)</td>
<td>Request count information about a selected task.</td>
</tr>
<tr>
<td>EYUSTARTHTASK.DETAIL14</td>
<td></td>
</tr>
<tr>
<td>Completed task (history)</td>
<td>Communications requests information about a selected task.</td>
</tr>
<tr>
<td>EYUSTARTHTASK.DETAIL15</td>
<td></td>
</tr>
</tbody>
</table>
Table 15. Views in the supplied Completed task (history) (HTASK) view set (continued)

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed task (history) EYUSTARTHTASK.DETAIL6</td>
<td>Storage usage information about a selected task. Note: For the GETMAIN requests table below, GETMAIN requests have no meaning with regard to GCDSA and will remain blank.</td>
</tr>
<tr>
<td>Completed task (history) EYUSTARTHTASK.DETAIL7</td>
<td>TCP/IP communications information about a selected task.</td>
</tr>
<tr>
<td>Completed task (history) EYUSTARTHTASK.DETAIL8</td>
<td>CICS BTS requests information about a selected task.</td>
</tr>
<tr>
<td>Completed task (history) EYUSTARTHTASK.DETAIL9</td>
<td>CPU and TCB information about a selected task.</td>
</tr>
<tr>
<td>Completed task (history) EYUSTARTHTASK.DETAILED</td>
<td>Detailed general information about a selected task.</td>
</tr>
<tr>
<td>Completed task (history) EYUSTARTHTASK.TABULAR</td>
<td>Tabular information about tasks completed within a specified number of seconds from the present time.</td>
</tr>
<tr>
<td>Completed task (history) EYUSTARTHTASK.TABULAR1</td>
<td>Tabular information about tasks completed within a time period (in seconds) from a specified start time.</td>
</tr>
<tr>
<td>Completed task (history) EYUSTARTHTASK.TABULAR2</td>
<td>Tabular information about tasks completed from a start time to an end time.</td>
</tr>
<tr>
<td>Completed task (history) EYUSTARTHTASK.TABULAR3</td>
<td>Tabular information about association data for completed tasks.</td>
</tr>
</tbody>
</table>

Actions

None.

Fields

Table 16. Fields in HTASK views

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current ABEND code</td>
<td>ABCODEC</td>
<td>The identifier of the current abend code.</td>
</tr>
<tr>
<td>Original ABEND code</td>
<td>ABCODEO</td>
<td>The name of the original abend code.</td>
</tr>
<tr>
<td>Initial Application Name</td>
<td>ACAPPLNAME</td>
<td>The name of the initial application associated with this task.</td>
</tr>
<tr>
<td>Initial Application Major Version</td>
<td>ACMAJORVER</td>
<td>The major version of the initial application associated with this task.</td>
</tr>
<tr>
<td>Initial Application Micro Version</td>
<td>ACMICROVER</td>
<td>The micro version of the initial application associated with this task.</td>
</tr>
<tr>
<td>Initial Application Minor Version</td>
<td>A低碳</td>
<td>The minor version of the initial application associated with this task.</td>
</tr>
<tr>
<td>Initial Application Operation</td>
<td>ACOPERNAME</td>
<td>The operation being performed by the initial application associated with this task.</td>
</tr>
<tr>
<td>Initial Platform</td>
<td>ACPLATNAME</td>
<td>The name of the initial platform associated with this task.</td>
</tr>
<tr>
<td>BTS activity ID</td>
<td>ACTVTYID</td>
<td>The CICS Business Transaction Services activity ID that this task represents.</td>
</tr>
<tr>
<td>BTS activity name</td>
<td>ACTVTYNM</td>
<td>The CICS Business Transaction Services activity name that this task represents.</td>
</tr>
<tr>
<td>Number of ALLOCATE requests</td>
<td>ALLOCATES</td>
<td>The total number of allocate requests by this task.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Application naming - program name</td>
<td>APPLNAMEPROG</td>
<td>Application naming program name.</td>
</tr>
<tr>
<td>Application naming - transaction name</td>
<td>APPLNAMETRAN</td>
<td>Application naming transaction name.</td>
</tr>
<tr>
<td>Number of EXEC CICS FREE CHILD commands</td>
<td>ASFREECT</td>
<td>The number of EXEC CICS FREE CHILD commands that have been issued by the user task.</td>
</tr>
<tr>
<td>Number of EXEC CICS FETCH commands</td>
<td>ASFTCHCT</td>
<td>The number of EXEC CICS FETCH commands that have been issued by the user task.</td>
</tr>
<tr>
<td>EXEC CICS FETCH wait time</td>
<td>ASFTCHWT</td>
<td>This is a composite field displaying one of the following elements: • The elapsed time that the user task waited for a child task as a result of issuing an EXEC CICS FETCH CHILD command. • The count of times the EXEC CICS FETCH API had to suspend for a child task which was not completed.</td>
</tr>
<tr>
<td>EXEC CICS RUN TRANSID delayed time</td>
<td>ASRNATWT</td>
<td>This is a composite field displaying one of the following elements: • The elapsed time that the user task was delayed because of child task limits managed by the asynchronous services domain • The count of times the user task was delayed because of child task limits managed by the asynchronous services domain.</td>
</tr>
<tr>
<td>Number of EXEC CICS RUN TRANSID commands</td>
<td>ASRUNCT</td>
<td>The number of EXEC CICS RUN TRANSID commands that have been issued by the user task.</td>
</tr>
<tr>
<td>Number of asynchronous API commands</td>
<td>ASTOTCT</td>
<td>The total number of EXEC CICS asynchronous API commands that have been issued by the user task.</td>
</tr>
<tr>
<td>BTS activity data container requests</td>
<td>BAACDCCT</td>
<td>The number of activity data container requests issued by this task.</td>
</tr>
<tr>
<td>BTS acquire requests</td>
<td>BAACQPCT</td>
<td>The number of CICS Business Transaction Server (BTS) acquire process and acquire activity requests issued by this task.</td>
</tr>
<tr>
<td>BTS define activity requests</td>
<td>BADACTCT</td>
<td>The number of define activity requests issued by this task.</td>
</tr>
<tr>
<td>BTS delete activity and cancel requests</td>
<td>BADCPACT</td>
<td>The number of delete activity and cancel process/activity requests issued by this task.</td>
</tr>
<tr>
<td>BTS define input event requests</td>
<td>BADFIECT</td>
<td>The number of define input event requests issued by this task.</td>
</tr>
<tr>
<td>BTS define process requests</td>
<td>BADPROCT</td>
<td>The number of define process requests issued by this task.</td>
</tr>
<tr>
<td>BTS link requests</td>
<td>BALKPACT</td>
<td>The number of link process/activity requests issued by this task.</td>
</tr>
<tr>
<td>BTS process data container requests</td>
<td>BAPRDCCT</td>
<td>The number of process data container requests issued by this task.</td>
</tr>
<tr>
<td>BTS run asynchronous requests</td>
<td>BARASYYCT</td>
<td>The number of run process/activity requests issued by this task in asynchronous mode.</td>
</tr>
<tr>
<td>BTS retrieve reattach event requests</td>
<td>BARATECT</td>
<td>The number of retrieve reattach event requests issued by this task.</td>
</tr>
<tr>
<td>BTS resume requests</td>
<td>BARMPACT</td>
<td>The number of resume process/activity requests issued by this task.</td>
</tr>
<tr>
<td>BTS reset requests</td>
<td>BARSPACT</td>
<td>The number of reset process/activity requests issued by this task.</td>
</tr>
<tr>
<td>BTS run synchronous requests</td>
<td>BARSYNCT</td>
<td>The number of run process/activity requests issued by this task in synchronized mode.</td>
</tr>
<tr>
<td>BTS suspend requests</td>
<td>BASUPACT</td>
<td>The number of suspend process/activity requests issued by this task.</td>
</tr>
</tbody>
</table>

Appendix B. History Views 107
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTS timer associated event requests</td>
<td>BATIAECT</td>
<td>The number of timer associated event requests issued by this task. This field includes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DEFINE TIMER EVENT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CHECK TIMER EVENT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DELETE TIMER EVENT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FORCE TIMER EVENT</td>
</tr>
<tr>
<td>BTS total data container requests</td>
<td>BATOTCCT</td>
<td>The total number of data container requests issued by this task.</td>
</tr>
<tr>
<td>BTS total event requests</td>
<td>BATOTECT</td>
<td>The total number of event requests issued by this task.</td>
</tr>
<tr>
<td>BTS total requests</td>
<td>BATOTPCT</td>
<td>The total number of process/activity requests issued by this task.</td>
</tr>
<tr>
<td>Total number of BMS requests</td>
<td>BMSCOUNT</td>
<td>The number of terminal control, or basic mapping support (BMS), requests issued by this user task, including MAP, IN, and OUT requests.</td>
</tr>
<tr>
<td>Number of BMS map in requests</td>
<td>BMSINCNT</td>
<td>The number of BMS map in requests by this task.</td>
</tr>
<tr>
<td>Number of BMS map requests</td>
<td>BMSMAPCNT</td>
<td>The number of BMS map requests by this task.</td>
</tr>
<tr>
<td>Number of BMS map out requests</td>
<td>BMSOUTCNT</td>
<td>The number of BMS map out requests by this task.</td>
</tr>
<tr>
<td>Transaction ID started by bridge</td>
<td>BRDGTRAN</td>
<td>Indicates whether or not this transaction was started by the 3270 bridge facility. The field will indicate 'No' if CICS monitoring is not switched on.</td>
</tr>
<tr>
<td>Bridge transaction ID</td>
<td>BRIDGE</td>
<td>The original transaction ID of this transaction as initiated by the 3270 bridge.</td>
</tr>
<tr>
<td>Workload manager begin-to-end phase complete</td>
<td>BTECOMP</td>
<td>The total begin-to-end phase of the work request (transaction) is complete.</td>
</tr>
<tr>
<td>Number of GETMAIN requests in CDSA</td>
<td>CDSAGETM</td>
<td>The total number of CDSA GETMAIN requests.</td>
</tr>
<tr>
<td>Maximum program storage in CDSA</td>
<td>CDSAPSHWM</td>
<td>The high-water-mark number of bytes used by this task for programs in the CDSA.</td>
</tr>
<tr>
<td>Peak number of bytes used by task in CDSA</td>
<td>CDSASHWM</td>
<td>The peak number of bytes used by this task in the CDSA.</td>
</tr>
<tr>
<td>Average CDSA storage usage</td>
<td>CDSASOCC</td>
<td>The average storage occupancy in the CDSA. This measures the area under the curve of storage in use against elapsed time.</td>
</tr>
<tr>
<td>CEC machine type</td>
<td>CECMCHTP</td>
<td>CEC machine type number in EBCDIC.</td>
</tr>
<tr>
<td>CEC model number</td>
<td>CECMDLID</td>
<td>CEC model identification number in EBCDIC.</td>
</tr>
<tr>
<td>CFDT wait time</td>
<td>CFDTWAIT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The elapsed time in which the task waited for CFDT file I/O.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task waited for CFDT file I/O.</td>
</tr>
<tr>
<td>Number of primary TC characters received</td>
<td>CHARIN</td>
<td>The number of primary terminal control characters received.</td>
</tr>
<tr>
<td>Number of secondary TC characters received</td>
<td>CHARINSEC</td>
<td>The number of secondary terminal control characters received by this task.</td>
</tr>
<tr>
<td>Number of primary TC characters sent</td>
<td>CHAROUT</td>
<td>The number of primary terminal control characters sent.</td>
</tr>
<tr>
<td>Number of secondary TC characters sent</td>
<td>CHAROUTSEC</td>
<td>The number of secondary terminal control characters sent by this task.</td>
</tr>
<tr>
<td>Number of CICS dispatcher change modes</td>
<td>CHMODECT</td>
<td>The number of CICS Dispatcher TCB Change Mode requests issued by this task.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>CICS event wait time</td>
<td>CICSWAIT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The total CICS event wait time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task waited for an event.</td>
</tr>
<tr>
<td>Client IP address</td>
<td>CLIPADDR</td>
<td>The IPv4 or IPv6 address of the client that initiated this task.</td>
</tr>
<tr>
<td>Give-up-control wait time</td>
<td>CONTROLWAIT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The average time spent waiting after the task gave up control to other transactions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task waited as a result of giving up control to other transactions.</td>
</tr>
<tr>
<td>Correlation UOW ID</td>
<td>CORREUOW</td>
<td>The ID of the correlation unit of work.</td>
</tr>
<tr>
<td>User task CPU time</td>
<td>CPUSUSNOW</td>
<td>The CPU time, in seconds, used by this task. If monitoring is inactive, the value 0000:00:00.000000 is returned.</td>
</tr>
<tr>
<td>Total CPU time on a CP</td>
<td>CPUONCP</td>
<td>Total task CPU time on a standard CP</td>
</tr>
<tr>
<td>Current tasks</td>
<td>CURTASKS</td>
<td>Current number of tasks value at the time the user task was attached.</td>
</tr>
<tr>
<td>DB2 connection(TCB) wait time</td>
<td>DB2CONWT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The amount of time that this task has spent waiting for DB2 connections.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task waited for DB2 connections.</td>
</tr>
<tr>
<td>DB2 ready queue wait time</td>
<td>DB2RDYQW</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The amount of time that this task has spent waiting on the DB2 ready queue.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task waited on the DB2 ready queue.</td>
</tr>
<tr>
<td>Total number of DB2 requests</td>
<td>DB2REQCT</td>
<td>The number of DB2 Database requests (SQL and IFI) issued by this task.</td>
</tr>
<tr>
<td>DB2 request wait time</td>
<td>DB2WAIT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The amount of time that this task has spent waiting for DB2 Database Requests to complete.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task waited for DB2 Database Requests to complete.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This attribute is obsolete from CICS Transaction Server 5.1 onwards.</td>
</tr>
<tr>
<td>Transaction type details</td>
<td>DETTRANTYPE</td>
<td>The details of the transaction type. Valid values are: BRIDGE, CICSBTS, DPL, MIRROR, NONE, ONCRCPC, SYSTEM, WEB</td>
</tr>
<tr>
<td>Number of DOCUMENT CREATE</td>
<td>DHCRECT</td>
<td>The number of document create requests issued by this task.</td>
</tr>
<tr>
<td>requests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of DOCUMENT INSERT</td>
<td>DHINSCT</td>
<td>The number of document insert requests issued by this task.</td>
</tr>
<tr>
<td>requests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of DOCUMENT RETRIEVE</td>
<td>DHRETCT</td>
<td>The number of document retrieve requests issued by this task.</td>
</tr>
<tr>
<td>requests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of DOCUMENT SET</td>
<td>DHSETCT</td>
<td>The number of document set requests issued by this task.</td>
</tr>
<tr>
<td>requests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total number of document</td>
<td>DHTOTCT</td>
<td>The total number of document handling requests issued by this task.</td>
</tr>
<tr>
<td>requests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total length of documents</td>
<td>DHTOTDCL</td>
<td>The total length of documents created by this task.</td>
</tr>
<tr>
<td>created</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User task dispatch time</td>
<td>DISPTIME</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The elapsed time since the task was dispatched.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times this task was dispatched.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Dispatcher allocate pthread wait time</td>
<td>DSAPTHWT</td>
<td>The total time this task has waited for the CICS Dispatcher to allocate a pthread.</td>
</tr>
</tbody>
</table>
| First dispatch delay time | DSPDELAY | This is a composite field displaying one of the following elements:
• The elapsed time waiting for the first dispatch This time includes the time waiting for MAXT or TRANCCLASS limits.
• The number of delays during the first dispatch. |
| Number of GETMAIN requests in ECDSA | ECDSAGETM | The total number of ECDSA GETMAIN requests. |
| Maximum program storage in ECDSA | ECDSAPSHWM | The high-water-mark number of bytes used by this task for programs in the ECDSA. |
| Peak number of bytes used by task in ECDSA | ECDSASHWM | The peak number of bytes used by this task in the ECDSA. |
| Average ECDSA storage usage | ECDSASOCC | The average storage occupancy in the ECDSA. This measures the area under the curve of storage in use against elapsed time. |
| Local enqueue delay time | ENQDELAY | This is a composite field displaying one of the following elements:
• The elapsed time waiting for a task control enqueue.
• The number of times this task waited for a task control enqueue. |
| Workload manager execution phase complete | EXECOMP | The entire execution phase of the work request (transaction) is complete. |
| External wait time | EXTERNWAIT | This is a composite field displaying one of the following elements:
• The average time spent waiting for resources external to CICS.
• The number of times the task waited for resources external to CICS.
These waits can arise as a result of issuing WAIT EXTERNAL commands or as a result of CICS waiting for external events. |
| Exception wait time | EXWAIT | This is a composite field displaying one of the following elements:
• The total elapsed time the task has waited on exception conditions.
• The number of times this task waited on exception conditions. |
| Principal facility | FACILITY | The name of the facility associated with initiation of this task, if that facility is a transient data queue or a terminal or system. If the task was initiated otherwise, the facility value is blanks. The FACILITYTYPE field tells you what type of facility caused task initiation, and therefore what FACILITY represents. |
| Facility type | FACILITYTYPE | Identifies the type of facility that initiated this task. Values are:
• TDQUEUE - CICS initiated the task to process a transient data queue that had reached trigger level; the FACILITY field returns the name of queue.
• START - Another task initiated the task with a START command that did not specify a terminal, or CICS created the task internally; the FACILITY field returns blanks in this case.
• TERMINAL - Either the task was initiated to process unsolicited input or another task initiated the task with a START command with the TERMD option. In the first case the FACILITY field returns the name of the terminal that sent the input, and in the second, it returns the terminal named in TERMD. |
<p>| Number of file control ADD requests | FCADDCNT | The total number of file control add/new record write requests issued by this task. |
| Number of file control access method requests | FCAMCNT | The total number of file control access method requests issued by this task. |
| Number of file control BROWSE requests | FCBRWCT | The total number of file control browse requests issued by this task. |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of file control requests</td>
<td>FCCOUNT</td>
<td>The number of file control requests issued by this user task, excluding OPEN, CLOSE, ENABLE, and DISABLE requests.</td>
</tr>
<tr>
<td>Number of file control DELETE requests</td>
<td>FCDELCNT</td>
<td>The total number of file control delete requests issued by this task.</td>
</tr>
<tr>
<td>Number of file control READ requests</td>
<td>FCGETCNT</td>
<td>The total number of file control read requests issued by this task.</td>
</tr>
<tr>
<td>File control I/O wait time</td>
<td>FCIOTIME</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The total file control I/O wait time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times this task waited for file control I/O.</td>
</tr>
<tr>
<td>Number of file control WRITE requests</td>
<td>FCPUTCNT</td>
<td>The total number of file control write requests issued by this task.</td>
</tr>
<tr>
<td>File control VSAM string wait time</td>
<td>FCVSWTT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The total file control VSAM string wait time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times this task waited for file control VSAM strings. If tasks are waiting for strings consider increasing the number of VSAM strings.</td>
</tr>
<tr>
<td>File control exclusive control wait time</td>
<td>FCXCWTT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The total file control exclusive control wait time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times this task waited for exclusive control of a control interval.</td>
</tr>
<tr>
<td>First program name</td>
<td>FJIRSTPRGM</td>
<td>The name of the first program invoked at task-attach time.</td>
</tr>
<tr>
<td>Number of GETMAIN requests in GCDSA</td>
<td>GCDSAGETM</td>
<td>The total number of GCDSA GETMAIN requests.</td>
</tr>
<tr>
<td>Peak number of bytes used by task in GCDSA expressed in 4k pages</td>
<td>GCDSASHWM</td>
<td>Maximum amount (high-water mark) of user-storage (rounded up to the next 4K) allocated to the user task above the bar, in the CICS dynamic storage area (GCDSA).</td>
</tr>
<tr>
<td>Global enqueue delay time</td>
<td>GNQDELAY</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The amount of time spent by this task waiting for a Global enqueue.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times that this task waited for a Global enqueue.</td>
</tr>
<tr>
<td>Number of GETMAIN requests in GUDA</td>
<td>GUDSAGETM</td>
<td>The total number of GUDSA GETMAIN requests.</td>
</tr>
<tr>
<td>Peak number of bytes used by task in GUDA expressed in 4k pages</td>
<td>GUDSASHWM</td>
<td>Maximum amount (high-water mark) of user-storage (rounded up to the next 4K) allocated to the user task above the bar, in the user dynamic storage area (GUDA).</td>
</tr>
<tr>
<td>Number of Interval Control requests</td>
<td>ICCOUNT</td>
<td>The number of interval control START or INITIATE requests issued by this task. This includes the number of transactions started with EXEC CICS START transid commands, the number of Automatic Transaction Initiations, and the number of internally issued interval control initiates.</td>
</tr>
<tr>
<td>Total number of IMS requests</td>
<td>IMSREQCT</td>
<td>The number of IMS database requests issued by this task.</td>
</tr>
<tr>
<td>IMS request wait time</td>
<td>IMSWAIT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The amount of time that this task has spent waiting for IMS Database Requests to complete.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task waited for IMS Database Requests to complete.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Transaction indoubt option | INDOUBT | Indicates the action taken when a CICS region fails, or loses connectivity with its coordinator, during two-phase commit processing, and the UOW has entered an in-doubt state. If WAIT is specified in the Wait Option field, this field has no effect until the wait time expires. The valid values are:
 • BACKWARD - All changes made to recoverable resources are backed out and the resources are returned to the state they were in before the start of the UOW.
 • FORWARD - All changes made to recoverable resources are committed and the in-flight UOW is marked as completed. |
| Recovery manager UOW indoubt failure | INDOUBTFAIL | Indicates whether an in-doubt UOW is to wait pending recovery from a failure that occurs after the UOW has entered the in-doubt state. The valid values are WAIT and NOWAIT. |
| Indoubt wait time | INDOUBTWAIT | Indicates whether an in-doubt UOW is to wait pending recovery from a failure that occurs after the UOW has entered the in-doubt state. The valid values are WAIT and NOWAIT. |
| Interval control count | INTVLC | Interval control request count. The number of START, DELAY, CANCEL, RETRIEVE and DELAY requests issued by this task (excluding DELAY INTERVAL(0) requests). |
| Interval control delay time | INTVLWAIT | This is a composite field displaying one of the following elements:
 • The total interval control delay time.
 • The number of times the task waited as a result of interval control services. |
| Interregion communication (MRO) I/O wait time | IRIOTIME | This is a composite field displaying one of the following elements:
 • The total inter-region communication I/O wait time.
 • The number of times this task waited for inter-region communication I/O. |
| Delay time waiting for IPIC session allocation | ISALWTT | The amount of time that this task has spent waiting for an IPIC session to be allocated. |
| Data isolation type | ISOLATEST | Identifies whether the user key task-lifetime storage is isolated from the user-key programs of other transactions:
 • YES - Storage is isolated.
 • NO - Storage is not isolated. |
| J8 TCB mode CPU time | J8CPUT | This is a composite field displaying one of the following elements:
 • The amount of CPU time that this task has used when dispatched on the J8 TCB Mode.
 • The number of times this task was dispatched on the J8 TCB Mode.
 This mode is used by Java applications. This attribute is obsolete from CICS Transaction Server 5.1 onwards. |
| Journal control I/O wait time | JCIOTIME | This is a composite field displaying one of the following elements:
 • The total journal control I/O wait time.
 • The number of times this task waited for journal control I/O. |
| Number of journal output requests | JCUSRWCNT | The number of journal output requests issued by this task. |
| Number of journal write requests | JRNLWRITREQ | The number of journal write requests issued by this task. |
| Total JVM suspend time | JVMSUSP | This is a composite field displaying one of the following elements:
 • The amount of elapsed time this task was suspended back in CICS while executing as a Java Virtual Machine (JVM).
 • The number of times that this task was suspended back in CICS while executing as a Java virtual machine (JVM). |
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total JVM elapsed time</td>
<td>JVMTIME</td>
<td>This is a composite field displaying one of the following elements:• The amount of elapsed time this task spent executing as a Java virtual machine (JVM), including time suspended (see JVM suspend time).• The number of times that this task executed as a Java virtual machine (JVM).</td>
</tr>
<tr>
<td>L8 TCB mode CPU time</td>
<td>L8CPUT</td>
<td>This is a composite field displaying one of the following elements:• The amount of CPU time that this task has used when dispatched on the L8 TCB Mode.• The number of times this task was dispatched on the L8 TCB Mode. This mode is used by programs that are defined to be CONCURRENCY=THREADSAFE when they issue DB2 requests.</td>
</tr>
<tr>
<td>Lock manager wait time</td>
<td>LOCKMGRWAIT</td>
<td>This is a composite field displaying one of the following elements:• The elapsed time in which the user task waited to acquire a lock on a resource. • The number of times the user task waited to acquire a lock on a resource. A user task cannot explicitly acquire a lock on a resource, but many CICS modules lock resources on behalf of user tasks using the CICS lock manager (LM) domain</td>
</tr>
<tr>
<td>Number of CICS logger write requests</td>
<td>LOGGRWRTREQ</td>
<td>The number of CICS Logger write requests issued by this task.</td>
</tr>
<tr>
<td>Logical partition name</td>
<td>LPARNAME</td>
<td>The logical partition name in EBCDIC.</td>
</tr>
<tr>
<td>LU61 I/O wait time</td>
<td>LU61WTT</td>
<td>This is a composite field displaying one of the following elements:• The total LU6.1 I/O wait time. • The number of times this task waited for LU6.1 I/O.</td>
</tr>
<tr>
<td>LU62 I/O wait time</td>
<td>LU62WTT</td>
<td>This is a composite field displaying one of the following elements: • The total LU6.2 I/O wait time. • The number of times this task waited for LU6.2 I/O.</td>
</tr>
<tr>
<td>VTAM LU name</td>
<td>LUNAME</td>
<td>The name of the VTAM logical unit of the terminal associated with this transaction</td>
</tr>
<tr>
<td>Maximum tasks</td>
<td>MAXTASKS</td>
<td>Maximum number of tasks value at the time the user task was attached.</td>
</tr>
<tr>
<td>Number of actions triggered by policy task rules</td>
<td>MPPRTXCD</td>
<td>The number of actions (message, event or abend) that have been triggered by policy task rules.</td>
</tr>
<tr>
<td>Number of actions triggered by policy system rules</td>
<td>MPSRACT</td>
<td>The number of actions (message or event) that have been triggered by policy system rules.</td>
</tr>
<tr>
<td>Number of times policy system rules evaluated</td>
<td>MPSRECT</td>
<td>The number of times policy system rules have been evaluated.</td>
</tr>
<tr>
<td>Other TCB mode CPU time</td>
<td>MSCPUT</td>
<td>This is a composite field displaying one of the following elements: • The amount of CPU time that this task has used when dispatched on the CO, D2, EP, FO, JM, RO, RP, SL, SO, SP, SZ and TP TCB Modes. • The number of times that this task was dispatched on the CO, D2, EP, FO, JM, RO, RP, SL, SO, SP, SZ and TP TCB Modes. JM mode is obsolete from CICS Transaction Server 5.1 onwards.</td>
</tr>
<tr>
<td>Other TCB mode dispatch time</td>
<td>MSDISPT</td>
<td>This is a composite field displaying one of the following elements: • The amount of time that this task has spent dispatched on the CO, D2, EP, FO, JM, RO, RP, SL, SO, SP, SZ and TP TCB Modes. • The number of times that this task was dispatched on the CO, D2, EP, FO, JM, RO, RP, SL, SO, SP, SZ and TP TCB Modes. JM mode is obsolete from CICS Transaction Server 5.1 onwards.</td>
</tr>
</tbody>
</table>

Appendix B. History Views 113
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of primary TC messages received</td>
<td>MSGIN</td>
<td>The number of primary terminal control messages received.</td>
</tr>
<tr>
<td>Number of secondary TC messages received</td>
<td>MSGINSEC</td>
<td>The number of secondary terminal control messages received by this task.</td>
</tr>
<tr>
<td>Number of primary TC messages sent</td>
<td>MSGOUT</td>
<td>The number of primary terminal control messages sent.</td>
</tr>
<tr>
<td>Number of secondary TC messages sent</td>
<td>MSGOUTSEC</td>
<td>The number of secondary terminal control messages sent by this task.</td>
</tr>
</tbody>
</table>
| First dispatch delay time caused by MXT | MXTDELAY | This is a composite field displaying one of the following elements:
• The elapsed time waiting for first dispatch which was delayed because of the limits set by the system parameter, MXT, being reached.
• The number of delays during the first dispatch due to the limits set by the system parameter, MXT, being reached. |
| Maximum open TCB delay time | MXTOTDLY | This is a composite field displaying one of the following elements:
• Delay incurred by this task due to waiting on the MAXOPENTCBS Open TCB limit (including that there may be free Open TCBs but they cannot be used by this task).
• The number of times the task waited on the MAXOPENTCBS Open TCB limit (including that there may be free Open TCBs but they cannot be used by this task). |
<p>| Number of named counter get requests | NCGETCNT | The number of named counter get requests. |
| LU 6.2 network-wide UOW netname | NETNAME | The network name of the originating system. |
| LU6.2 network-wide UOW ID | NETUOWID | Network ID of the unit of work. |
| Originating adapter data 1 | OADATA1 | The first section of the data that was added to the origin data by the adapter. |
| Originating adapter data 2 | OADATA2 | The second section of the data that was added to the origin data by the adapter. |
| Originating adapter data 3 | OADATA3 | The third section of the data that was added to the origin data by the adapter. |
| Originating adapter ID | OADID | The adapter identifier added to the origin data by the adapter. This field is blank if the task was not started via an adapter, or if it was and the adapter did not set this value. |
| Originating Application ID | OAPPLID | The application ID taken from the Origin Descriptor associated with this task. |
| Originating client IP address | OCLIPADR | The IPv4 or IPv6 address of the originating client (or Telnet client). |
| Originating client port number | OCLIPORT | The TCP/IP port number of the originating client (or Telnet client). |
| Originating facility name | OFCTYNME | The facility name of the originating transaction. If the originating transaction is not associated with a facility, this field is null. The transaction facility type, if any, can be identified using byte 0 of the transaction flags, OTRANFLG (370), field. |
| Offload eligible on standard CP | OFFLCPUT | Total task CPU time that was offload eligible but ran on a standard CP |
| Originating network ID | ONETWKID | The network qualifier for the origin region APPLID that the task ran on. |
| Originating portnumber | OPORTNUM | The port number used by the originating TCPIPSERVICE. |
| Transaction origin type | ORIGINTYPE | The source of the transaction. This is an interpretation of the primary transaction client type with which the transaction was attached using the CICS transaction manager. |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Originating task start time</td>
<td>OSTART</td>
<td>The time when the originating task was started. The time is expressed in GMT.</td>
</tr>
<tr>
<td>Originating TCPIPSERVICE</td>
<td>OTCPSVCE</td>
<td>The name of the originating TCPIPSERVICE.</td>
</tr>
<tr>
<td>Originating transaction ID</td>
<td>OTRAN</td>
<td>The name of the transaction under which the originating task ran.</td>
</tr>
<tr>
<td>Originating transaction flags</td>
<td>OTRANFLG</td>
<td>Originating transaction flags, a string of 64 bits used for signaling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>transaction definition and status information</td>
</tr>
<tr>
<td>Originating task ID</td>
<td>OTRANNUM</td>
<td>The task ID of the originating task.</td>
</tr>
<tr>
<td>Originating user correlation data</td>
<td>OUSERCOR</td>
<td>The originating user correlator.</td>
</tr>
<tr>
<td>Originating user ID</td>
<td>OUSERID</td>
<td>The user ID under which the originating task ran.</td>
</tr>
<tr>
<td>Maximum read-only program storage on RDSA</td>
<td>PC24RHWM</td>
<td>Maximum amount (high-water mark) of program storage in use by the user task</td>
</tr>
<tr>
<td></td>
<td></td>
<td>below the 16MB line, in read-only dynamic storage area (RDSA).</td>
</tr>
<tr>
<td>Maximum shared program storage in SDSA</td>
<td>PC24SHWM</td>
<td>Maximum amount (high-water mark) of program storage in use by the user task</td>
</tr>
<tr>
<td></td>
<td></td>
<td>below the 16MB line, in the shared dynamic storage area (SDSA).</td>
</tr>
<tr>
<td>Maximum shared program storage in ESDSA</td>
<td>PC31SHWM</td>
<td>Maximum amount (high-water mark) of program storage in use by the user task</td>
</tr>
<tr>
<td></td>
<td></td>
<td>above the 16MB line, in the extended shared dynamic storage area (ESDSA).</td>
</tr>
<tr>
<td>Distributed program link (DPL) request</td>
<td>PCDPLCT</td>
<td>The total number of times this task has issued a CICS Program Control</td>
</tr>
<tr>
<td>count</td>
<td></td>
<td>Distributed Program Link to another CICS system.</td>
</tr>
<tr>
<td>Number of program LINK requests</td>
<td>PCLINKCNT</td>
<td>The number of program link requests issued by this task.</td>
</tr>
<tr>
<td>Number of program LOAD requests</td>
<td>PCLOADCNT</td>
<td>The total number of program load requests issued by this task.</td>
</tr>
<tr>
<td>Program load time</td>
<td>PCLOADTM</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The elapsed time in which the user task waited for fetches from</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DFHRPL or dynamic LIBRARY concatenations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times this task waited for program fetches from DFHRPL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or dynamic LIBRARY concatenations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Only fetches for programs with installed program definitions or autoinstalled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>as a result of application requests are included in this figure. However,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>installed programs residing in the LPA are not included because they do</td>
</tr>
<tr>
<td></td>
<td></td>
<td>not incur a physical fetch from a LIBRARY.</td>
</tr>
<tr>
<td>Number of user replaceable module link</td>
<td>PCLURMCT</td>
<td>The number of times that this task has issued a link to a user replaceable</td>
</tr>
<tr>
<td>requests</td>
<td></td>
<td>module.</td>
</tr>
<tr>
<td>Number of program transfer control (XCTL)</td>
<td>PCXCTLCNT</td>
<td>The number of program XCTL requests issued by this task.</td>
</tr>
<tr>
<td>requests</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of performance records</td>
<td>PERFRECCNT</td>
<td>The number of performance records written by the CICS Monitoring Facility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(CMF) for this task.</td>
</tr>
<tr>
<td>Maximum container storage allocated to</td>
<td>PGCSTHWM</td>
<td>Maximum amount (high-water mark) of bytes of container storage</td>
</tr>
<tr>
<td>task</td>
<td></td>
<td>allocated to this task.</td>
</tr>
<tr>
<td>Previous hop applid</td>
<td>PHAPPLID</td>
<td>The VTAM application ID of the CICS system of a previous task in another</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CICS system with which this task is associated, or blanks if the CICS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>system on which this command is executed is a point of origin.</td>
</tr>
<tr>
<td>Previous hop count</td>
<td>PHCOUNT</td>
<td>The number of times there has been a request from one CICS system to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>another to initiate a task with which this task is associated, or zero if</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the CICS system on which this command is executed is a point of origin.</td>
</tr>
<tr>
<td>Previous hop network qualifier</td>
<td>PHNTWKID</td>
<td>The network qualifier for the CICS system VTAM application ID of an</td>
</tr>
<tr>
<td></td>
<td></td>
<td>immediately previous task with which this task is associated, or blanks if</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the CICS system on which this command is executed is a point of origin.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Previous hop task start time</td>
<td>PHSTART</td>
<td>The start time of an immediately previous task in another CICS region with which this task is associated. The time is in the form yyyyymmddhhmss.sssss. This option is set as blanks if the CICS system on which this command is executed is a point of origin.</td>
</tr>
<tr>
<td>Previous hop transaction ID</td>
<td>PHTRAN</td>
<td>The transaction ID of an immediately previous task in another CICS region with which this task is associated, or blanks if the CICS system on which this command is executed is a point of origin.</td>
</tr>
<tr>
<td>Previous hop task ID</td>
<td>PHTRANNO</td>
<td>The task ID of an immediately previous task in another CICS region with which this task is associated, or blanks if the CICS system on which this command is executed is a point of origin.</td>
</tr>
<tr>
<td>BTS process ID</td>
<td>PRCSID</td>
<td>The CICS-assigned identifier of the CICS BTS root activity that the user task implemented.</td>
</tr>
<tr>
<td>BTS process name</td>
<td>PRCSNAME</td>
<td>The CICS Business Transaction Services process name that this task represents.</td>
</tr>
<tr>
<td>BTS process type</td>
<td>PRCSTYPE</td>
<td>The CICS Business Transaction Services process type that this task represents.</td>
</tr>
<tr>
<td>Task priority</td>
<td>PRIORITY</td>
<td>The total priority of the task. Total priority is the sum of the priority of the user associated with the task, the priority of the terminal which is the principal facility, and the priority of the transaction being executed.</td>
</tr>
<tr>
<td>Maximum program storage below 16MB</td>
<td>PSTG24HWM</td>
<td>The maximum amount of program storage in use by this user task below the 16MB line.</td>
</tr>
<tr>
<td>Maximum program storage above 16MB</td>
<td>PSTG31HWM</td>
<td>The maximum amount of program storage in use by this user task above the 16MB line.</td>
</tr>
<tr>
<td>Maximum program storage across all DSAs</td>
<td>PSTGHWM</td>
<td>The high-water-mark number of bytes used by this task for programs in all DSAs.</td>
</tr>
<tr>
<td>Previous transaction count</td>
<td>PTCOUNT</td>
<td>The number of times there has been a request from a task in the local CICS region to initiate a task in the same CICS region by either a RUN TRANSID or START command without the TERMID option with which this task is associated, or zero if there have been no such requests.</td>
</tr>
<tr>
<td>Previous transaction task start time</td>
<td>PTSTART</td>
<td>The start time of an immediately previous, or parent, task in the same CICS region with which this task is associated. The time is in the form yyyyymmddhhmss.sssss. This option is set as blanks if the task has no immediate parent task or is the point of origin for this request.</td>
</tr>
<tr>
<td>Previous transaction transaction ID</td>
<td>PTTRAN</td>
<td>The transaction ID of an immediately previous, or parent, task in the same CICS region with which this task is associated, or blanks if the task has no immediate parent task or is the point of origin for this request.</td>
</tr>
<tr>
<td>Previous transaction task ID</td>
<td>PTTRANNO</td>
<td>The task ID of an immediately previous, or parent, task in the same CICS region with which this task is associated, or zero if the task has no immediate parent task or is the point of origin for this request.</td>
</tr>
<tr>
<td>CPU time used while running in QR TCB mode</td>
<td>QRCPUT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The amount of CPU time that this task has used when dispatched on the QR TCB Mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times that this task was dispatched on the QR TCB Mode.</td>
</tr>
<tr>
<td>Dispatch time while running in QR TCB mode</td>
<td>QRDISPT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The amount of time that this task has spent dispatched on the QR TCB Mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times that this task was dispatched on the QR TCB Mode.</td>
</tr>
</tbody>
</table>
Table 16. Fields in HTASK Views (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QR TCB mode delay time</td>
<td>QRMODDLY</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The amount of time that this task has spent waiting while on the QR TCB mode plus the time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>spent waiting to switch back to QR TCB mode from another TCB mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task waited while on the QR TCB mode, including waiting to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>switch back to QR TCB mode from another TCB mode.</td>
</tr>
<tr>
<td>Record type</td>
<td>RECTYPE</td>
<td>The performance record type. Values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• C - Record output for a terminal converse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• D - Record output for a SET MONITOR against a user defined Event Monitoring Point (EMP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>that specifies PERFORM=DELIVER.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• F - Record output for a long-running transaction.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• S - Record output for a syncpoint request.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• T - Record output for a task termination (detach).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For transaction resource class data, this field is always T.</td>
</tr>
<tr>
<td>Recovery manager UOW resolved with indoubt</td>
<td>RESOLVEACT</td>
<td>The total number of units of work that lost connection to their recovery coordinator during</td>
</tr>
<tr>
<td>action</td>
<td></td>
<td>syncpoint processing that were resolved with indoubt action.</td>
</tr>
<tr>
<td>Task response time</td>
<td>RESPTIME</td>
<td>The task response time in milliseconds.</td>
</tr>
<tr>
<td>CPU time used by VSAM Record Level Sharing</td>
<td>RLSCPUT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The total amount of CPU time spent by this transaction performing RLS requests which run</td>
</tr>
<tr>
<td></td>
<td></td>
<td>in SRB mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task performed RLS requests which run in SRB mode.</td>
</tr>
<tr>
<td>VSAM Record Level Sharing wait time</td>
<td>RLSWAITTIME</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The elapsed time in which the task waited for RLS file I/O.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task waited for RLS file I/O.</td>
</tr>
<tr>
<td>CICSplex SM RMI elapsed time</td>
<td>RMICPSTMTIME</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The total elapsed time the task spent in the CICSplex SM Resource Manager Interface (RMI).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task invoked the CICSplex SM Resource Manager Interface (RMI).</td>
</tr>
<tr>
<td>DB2 RMI elapsed time</td>
<td>RMIDB2TIME</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The total elapsed time the task spent in the DB2 Resource Manager Interface (RMI).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task invoked the DB2 Resource Manager Interface (RMI).</td>
</tr>
<tr>
<td>DBCTL RMI elapsed time</td>
<td>RMIDBCTLTIME</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The total elapsed time the task spent in the DBCTL Resource Manager Interface (RMI).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task invoked the DBCTL Resource Manager Interface (RMI).</td>
</tr>
<tr>
<td>DL/I RMI elapsed time</td>
<td>RMIEXECDLITM</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The total elapsed time the task spent in the EXEC DL/I Resource Manager Interface (RMI).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task invoked the EXEC DL/I Resource Manager Interface (RMI).</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| WebSphere MQ RMI elapsed time | RMIMQSERIEST | This is a composite field displaying one of the following elements:
 • The total elapsed time the task spent in the WebSphere MQ Resource Manager Interface (RMI).
 • The number of times the task invoked the WebSphere MQ Resource Manager Interface (RMI). |
| Total other RMI elapsed time | RMIOTHERTIME | This is a composite field displaying one of the following elements:
 • The total elapsed time the task spent in the CICS Resource Manager Interface (RMI) excluding the times listed separately (RMIDB2TIME, RMIDBCCTLTIME, RMIEEXECDLITM, RMIMQSERIEST, RMICPSMTIME and RMITCPIPTIME).
 • The number of times the task invoked the CICS Resource Manager Interface (RMI) excluding the times listed separately (RMIDB2TIME, RMIDBCCTLTIME, RMIEEXECDLITM, RMIMQSERIEST, RMICPSMTIME and RMITCPIPTIME). |
| Total RMI suspend time | RMISUSP | This is a composite field displaying one of the following elements:
 • The elapsed time the task was suspended while in the CICS Resource Manager Interface (RMI).
 • The number of times the task was suspended while in the CICS Resource Manager Interface (RMI). |
| TCP/IP Sockets RMI elapsed time | RMITCPIPTIME | This is a composite field displaying one of the following elements:
 • The total elapsed time the task spent in the z/OS Communications Server IP CICS Sockets Resource Manager Interface (RMI).
 • The number of times the task invoked the z/OS Communications Server IP CICS Sockets Resource Manager Interface (RMI). |
| Total RMI elapsed time | RMITIME | This is a composite field displaying one of the following elements:
 • The total elapsed time the task spent in the CICS Resource Manager Interface (RMI) including time suspended.
 • The number of times the task invoked the CICS Resource Manager Interface (RMI). |
| Total RMI elapsed time | RMITOTALTIME | This is a composite field displaying one of the following elements:
 • The total elapsed time spent in the RMI including time suspended.
 • The total number of requests issued by this task in the RMI. |
| Recovery manager UOW resource owner failure | ROFAIL | The resource owner has failed. |
| RO TCB mode delay time | ROMODDLY | The amount of time that this task has spent waiting while on the RO TCB mode plus the time spent waiting to switch back to RO TCB mode from another TCB mode. |
| Maximum read-only program storage | ROPS31HWM | The high-water-mark number of bytes used by this task for programs in the ERDSA (read-only storage above the 16MB line). |
| RRMS/MVS unit of recovery ID | RRMSURID | The Unit of Recovery ID/token given to CICS by RRMS/MVS. |
| RRMS/MVS syncpoint coordination delay time | RRMSWAIT | This is a composite field displaying one of the following elements:
 • The amount of time spent by this task waiting for syncpoint coordination with RRMS/MVS.
 • The number of times that this task waited for syncpoint coordination with RRMS/MVS. |
<p>| Remote system ID | RSYSID | The name of the remote system where the transaction defined by remotename is defined. |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Run synchronous transaction wait time | RUNTRWTT | This is a composite field displaying one of the following elements:
- The total amount of time that this transaction has spent waiting for a transaction it attached synchronously to complete.
- The number of times the task waited for a transaction it attached synchronously to complete.
For CICS BTS this field will record the times this task spent waiting for a Run Process or Run Activity to execute synchronously. |
| S8 TCB mode CPU time | S8CPUT | This is a composite field displaying one of the following elements:
- The amount of CPU time that this task has used when dispatched on the S8 TCB Mode.
- The number of times this task was dispatched on the S8 TCB Mode.
This mode is used when making secure sockets calls. |
| Shared temporary storage I/O wait time | SHARDETSWAIT | This is a composite field displaying one of the following elements:
- The total shared temporary storage wait time.
- The number of times the task waited for shared temporary storage. |
| FREEMAIN byte count of shared storage above 16M | SHSTGBYTEFMA | The total number of FREEMAIN bytes of shared storage above 16MB. |
| FREEMAIN byte count of shared storage below 16MB | SHSTGBYTEFMB | The total number of FREEMAIN bytes of shared storage below 16MB. |
| The total number of FREEMAIN bytes of shared storage above the bar. | SHSTGBYTEFMG | The total number of GETMAIN bytes of shared storage above the bar. |
| GETMAIN byte count of shared storage above 16MB | SHSTGBYTEGMA | The total number of GETMAIN bytes of shared storage above 16MB. |
| GETMAIN byte count of shared storage below 16MB | SHSTGBYTEGMB | The total number of GETMAIN bytes of shared storage below 16MB. |
| GETMAIN byte count of shared storage above the bar. | SHSTGBYTEGMG | The total number of GETMAIN bytes of shared storage above the bar. |
| Shared storage GETMAIN request count above 16MB | SHSTGGMCABV | The number of GETMAIN requests issued by this task for shared storage above the 16MB line, in the ECDSA or ESDSA. |
| Shared storage GETMAIN request count above the bar | SHSTGGMCBAR | The number of GETMAIN requests issued by this task for shared storage above the bar, in the GCDSA or GSDSA. |
| Shared storage GETMAIN request count below 16MB | SHSTGGMCBEL | The number of GETMAIN requests issued by this task for shared storage below the 16MB line, in the CDSA or SDSA. |
| Recovery manager UOW shunted | SHUNTED | The total number of units of work that lost connection to their recovery coordinator during syncpoint processing and had to be shunted for indoubt failure. |
| Number of socket bytes decrypted | SOBYDECT | The number of bytes decrypted by this task that were passed over the TCP/IP Sockets Interface. |
| Number of socket bytes encrypted | SOBYENCT | The number of bytes encrypted by this task that were passed over the TCP/IP Sockets Interface. |
| Cipher selected | SOCIPHER | The inbound cipher code selected during SSL handshake negotiation. |
| Inbound TCP/IP sockets I/O wait time | SOIOWT | This is a composite field displaying one of the following elements:
- The amount of time spent by this task waiting for socket sends or receives to complete.
- The number of times that this task waited for socket sends or receives to complete.
This includes the times spent by this task on the SO, SL and S8 TCB modes. |
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO TCB mode delay time</td>
<td>SOMODDLY</td>
<td>The amount of time that this task has spent waiting while on the SO TCB mode plus the time spent waiting to switch back to SO TCB mode from another TCB mode.</td>
</tr>
<tr>
<td>CFDT syncpoint wait time</td>
<td>SRVSYWTT</td>
<td>This is a composite field displaying one of the following elements: • The elapsed time in which the task waited for CFDT syncpoints to complete. • The number of times the task waited for CFDT syncpoints to complete.</td>
</tr>
<tr>
<td>Task start time</td>
<td>START</td>
<td>The time when the task started in GMT (Greenwich Mean Time).</td>
</tr>
<tr>
<td>Task stop time</td>
<td>STOP</td>
<td>The time when the task stopped in GMT (Greenwich Mean Time).</td>
</tr>
<tr>
<td>WLM subset of execution phase</td>
<td>SUBEXECOMP</td>
<td>A subset of the execution phase of the work request (transaction) is complete.</td>
</tr>
<tr>
<td>Task history subtype</td>
<td>SUBTYPE</td>
<td>The subtype of this task history resource. The valid values are: • A - Task statistics for a task which was active when the region was shut down. • T - Task statistics for a task which completed normally or abnormally.</td>
</tr>
<tr>
<td>Task suspend time</td>
<td>SUSPTIME</td>
<td>This is a composite field displaying one of the following elements: • The total elapsed time for which the task was suspended. • The number of times this task was suspended.</td>
</tr>
<tr>
<td>Number of syncpoint requests</td>
<td>SYNCCOUNT</td>
<td>The number of syncpoint requests issued by this task.</td>
</tr>
<tr>
<td>Waiting for parent syncpoint delay</td>
<td>SYNCDLY</td>
<td>This is a composite field displaying one of the following elements: • The total amount of time that this transaction has spent waiting for its parent transaction to syncpoint, such that its updates will be committed. • The number of times the task waited for a its parent transaction to syncpoint, such that its updates will be committed. For CICS BTS this field records the times this task spent waiting for a syncpoint from its parent task that started this task by issuing Run Process or Run Activity Synchronously.</td>
</tr>
<tr>
<td>Syncpoint wait time</td>
<td>SYNCPTWAITTM</td>
<td>This is a composite field displaying one of the following elements: • The total elapsed time for which this task was dispatched or suspended while processing syncpoint requests. • The number of times the task was dispatched or suspended while processing syncpoint requests.</td>
</tr>
<tr>
<td>Number of FEPI ALLOCATE timeouts</td>
<td>SZALLCTO</td>
<td>The number of FEPI allocate timeouts issued by this task.</td>
</tr>
<tr>
<td>Number of FEPI ALLOCATE requests</td>
<td>SZALLOCT</td>
<td>The number of FEPI allocate requests issued by this task.</td>
</tr>
<tr>
<td>Number of FEPI characters received</td>
<td>SZCHRIN</td>
<td>The number of FEPI characters received by this task.</td>
</tr>
<tr>
<td>Number of FEPI characters sent</td>
<td>SZCHROUT</td>
<td>The number of FEPI characters sent by this task.</td>
</tr>
<tr>
<td>Number of FEPI RECEIVE requests</td>
<td>SZRCVCT</td>
<td>The number of FEPI receive requests issued by this task.</td>
</tr>
<tr>
<td>Number of FEPI RECEIVE timeouts</td>
<td>SZRCVTO</td>
<td>The number of FEPI receive timeouts issued by this task.</td>
</tr>
<tr>
<td>Number of FEPI SEND requests</td>
<td>SZSENDCT</td>
<td>The number of FEPI send requests issued by this task.</td>
</tr>
<tr>
<td>Number of FEPI START requests</td>
<td>SZSTRTCT</td>
<td>The number of FEPI start requests issued by this task.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Total number of FEPI requests</td>
<td>SZTOTCT</td>
<td>The total number of all FEPI API and SPI requests made by the user task.</td>
</tr>
<tr>
<td>FEPI suspend time</td>
<td>SZWAIT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Total elapsed time for which the user task waited for all FEPI services.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times this task waited for any FEPI service.</td>
</tr>
<tr>
<td>Task ID</td>
<td>TASK</td>
<td>The ID of the task.</td>
</tr>
<tr>
<td>Data storage key</td>
<td>TASKDATAKEY</td>
<td>The storage key of the storage CICS allocates at task initialization for the duration of the task (task-lifetime storage), and which is accessible by the application. These storage areas are the EXEC interface block (EIB) and the transaction work area (TWA). Values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• USER - CICS obtains user-key storage for this transaction. Application programs executing in any key can both read and modify these storage areas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CICS - CICS obtains CICS-key storage for this transaction. Application programs executing in CICS key can both read and modify these storage areas. Application programs executing in user key can only read these storage areas.</td>
</tr>
<tr>
<td>Data location above/below 16MB</td>
<td>TASKDATALOC</td>
<td>Indicates whether task life-time storage acquired by CICS for the duration of the transaction can be located above the 16MB line in virtual storage. These areas, which relate to specific CICS tasks, include the EXEC interface block (EIB) and the transaction work area (TWA). Values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• BELOW - Storage areas that CICS acquires for the transaction must be located below the 16MB line.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ANY - Storage areas that CICS acquires for the transaction can be located above the 16MB line in virtual storage.</td>
</tr>
<tr>
<td>Transaction error flags</td>
<td>TASKFLAG</td>
<td>The transaction error flags for this task.</td>
</tr>
<tr>
<td>Delay time waiting for session allocation</td>
<td>TCALWTT</td>
<td>The amount of time that this task has spent waiting for a session to be allocated.</td>
</tr>
<tr>
<td>Number of CICS dispatcher TCB attaches</td>
<td>TCBATTCT</td>
<td>The number of CICS Dispatcher TCB Attaches issued by this task.</td>
</tr>
<tr>
<td>Number of secondary LU6.2 TC characters received</td>
<td>TCC62IN2</td>
<td>The number of secondary LU6.2 characters received by this task.</td>
</tr>
<tr>
<td>Number of secondary LU6.2 TC characters sent</td>
<td>TCC62OU2</td>
<td>The number of secondary LU6.2 characters sent by this task.</td>
</tr>
<tr>
<td>Terminal control I/O wait time</td>
<td>TCIOTIME</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The total terminal I/O wait time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times this task waited for terminal I/O.</td>
</tr>
<tr>
<td>First dispatch delay time caused by TCL</td>
<td>TCLDELAY</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The elapsed time waiting for the first dispatch which was delayed because of the limits set for this transaction's transaction class.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of delays during the first dispatch due to limits set for this transaction's transaction class.</td>
</tr>
<tr>
<td>Number of secondary LU6.2 TC messages received</td>
<td>TCM62IN2</td>
<td>The number of secondary LU6.2 TC messages received by this task.</td>
</tr>
<tr>
<td>Number of secondary LU6.2 TC messages sent</td>
<td>TCM62OU2</td>
<td>The number of LU6.2 terminal control messages sent by this task.</td>
</tr>
<tr>
<td>Total number of transient data requests</td>
<td>TDCOUNT</td>
<td>The number of transient data requests issued by this user task, including GET, PUT, and PURGE requests.</td>
</tr>
<tr>
<td>TD extrapartition lock wait time</td>
<td>TDELWTT</td>
<td>This is the amount of time the task has waited for the TD extrapartition lock.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Number of transient data GET requests</td>
<td>TDGETCNT</td>
<td>The number of transient data get/read requests issued by this task.</td>
</tr>
<tr>
<td>TD intrapartition lock wait time</td>
<td>TDILWTT</td>
<td>This is the amount of time the task has waited for the TD intrapartition lock.</td>
</tr>
</tbody>
</table>
| Transient data I/O wait time | TDIOTIME | This is a composite field displaying one of the following elements:
 • The total transient data I/O wait time.
 • The number of times this task waited for transient data I/O. |
| Number of transient data PURGE requests | TDPURCNT | The number of transient data purge/delete requests issued by this task. |
| Number of transient data PUT requests | TDPUTCNT | The number of transient data put/write requests issued by this task. |
| Terminal connection name | TERMCONNAME | The name of the terminal session connection. |
| Actual terminal ID or session ID | TERMINALINFO | Information relating to the terminal:
 • byte 0 - Nature:
 – X'00' - Not applicable
 – X'01' - Terminal
 – X'02' - Session
 • byte 1 - Session Type:
 – X'00' - Not applicable
 – X'01' - IRC
 – X'02' - IRC XM
 – X'03' - IRC XCF
 – X'04' - LU61
 – X'05' - LU62 SINGLE
 – X'06' - LU62 PARALLEL
 • byte 2 - Access method:
 – X'01' - VTAM
 – X'03' - BSAM
 – X'04' - TCAM
 – X'06' - BGAM
 – X'07' - CONSOLE
 • byte 3: Device type code. |
<p>| Time key | TIME | The time when the task started. This will be local time or GMT (Greenwich Mean Time), subject to the MNTIME system initialization parameter. If MNTIME is not set, then the default is GMT. It is important to note that the time returned is not in a 'displayable' format; it is a key field that displays the time value in HEX. |
| Atom service name | TMRRATMSN | Atom service name |
| Number of BIF DIGEST requests | TMRBFDGDC | Number of BIF DIGEST requests |
| Total number BIF Requests | TMRBFTC | Total number BIF Requests |
| CorbaServer name | TMRCBRNM | The name of the CorbaServer associated with the task. This attribute is obsolete from CICS Transaction Server 5.1 onwards. |
| Number of OO class library API requests | TMRCFACT | The total number of OO class library API requests |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client IP Port</td>
<td>TMRCIPOR</td>
<td>The port number of the client.</td>
</tr>
</tbody>
</table>
| CICS TCB Change Mode delay time | TMRCMDLY | This is a composite field displaying one of the following elements:
| | | • The elapsed time in which the user task waited for redispach after a CICS Dispatcher change-TCB mode request was issued by or on behalf of the user task.
| | | • The number of times the user task waited for redispach after a CICS Dispatcher change-TCB mode request was issued by or on behalf of the user task.
| | | For example, a change-TCB mode request from a CICS L8 or S8 mode TCB back to the CICS QR mode TCB might have to wait for the QR TCB because another task is currently dispatched on the QR TCB. |
| Number of Document Delete requests | TMRDHDLC | The number of document delete requests issued by this task. |
| Dispatcher MVS storage constraint wait time | TMRDSCWT | This is a composite field displaying one of the following elements:
| | | • The elapsed time which the user task spent waiting because no TCB was available, and none could be created because of MVS storage constraints.
| | | • The number of times the user task waited because no TCB was available, and none could be created because of MVS storage constraints. |
| Dispatcher TCB mismatch wait time | TMRDSMWT | This is a composite field displaying one of the following elements:
| | | • The total amount of TCB mismatch wait time, that is, TCB requests that waited because there was no TCB available matching the request, but there was at least one non-matching free TCB.
<p>| | | • The number of TCB requests that waited because there was no TCB available matching the request, but there was at least one non-matching free TCB. |
| Peak number of CICS dispatcher TCBs | TMRDSTHW | The peak number of CICS dispatcher TCBs in use. |
| Number of events captured | TMRECEVC | Number of EVENTs captured |
| Number of event filter commands | TMRECFOC | Number of event filter commands |
| Number of synchronous emission events captured | TMRECSEC | The number of synchronous emission EVENTs captured. |
| Number of SIGNAL EVENT requests | TMRECSGE | Number of SIGNAL EVENT requests |
| Total number of EXEC CICS requests | TMREICTC | Total number of EXEC CICS requests |
| Number of bean state activation requests | TMREJBAC | The number of bean state activation requests issued by this task. This attribute is obsolete from CICS Transaction Server 5.1 onwards. |
| Number of bean creation requests | TMREJBCC | The number of enterprise bean creation requests issued by this task. This attribute is obsolete from CICS Transaction Server 5.1 onwards. |
| Number of bean state passivation requests | TMREJBPC | The number of bean state passivation requests issued by this task. This attribute is obsolete from CICS Transaction Server 5.1 onwards. |
| Number of bean removal requests | TMREJBRC | The number of enterprise bean removal requests issued by this task. This attribute is obsolete from CICS Transaction Server 5.1 onwards. |
| Total number of Enterprise bean requests | TMREJBTC | The number of enterprise bean requests issued by this task. This attribute is obsolete from CICS Transaction Server 5.1 onwards. |
| Number of Enterprise bean method calls | TMREJMCT | The number of enterprise bean method calls issued by this task. This attribute is obsolete from CICS Transaction Server 5.1 onwards. |
| Maximum hot-pooling TCB delay time | TMRHTDLY | This field is obsolete. |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total local interval control starts with channel</td>
<td>TMRICSCC</td>
<td>The number of local interval control starts with the channel option issued by this task.</td>
</tr>
<tr>
<td>Data length of all local IC starts with channel</td>
<td>TMRICSCD</td>
<td>The data length of all local IC starts with channel.</td>
</tr>
<tr>
<td>Total remote interval control starts with channel</td>
<td>TMRICSRC</td>
<td>The total number of remote interval control starts with channel requests issued by this task.</td>
</tr>
<tr>
<td>Data length of all remote IC starts with channel</td>
<td>TMRICSRD</td>
<td>The data length of all remote IC starts with channel.</td>
</tr>
<tr>
<td>Number of IPCONN allocate requests</td>
<td>TMRISACT</td>
<td>The number of allocate session requests issued by the task for sessions on IP intercommunications connections.</td>
</tr>
<tr>
<td>IPCONN Name</td>
<td>TMRISCNM</td>
<td>The name of the IP interconnectivity entry (IPCONN) that defines an IP intercommunications connection associated with this transaction.</td>
</tr>
<tr>
<td>IPCONN I/O wait time</td>
<td>TMRISWT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The amount of time the task has spent waiting for work on the IP intercommunications connection to complete.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task waited for work on the IP intercommunications connection to complete.</td>
</tr>
<tr>
<td>J9 TCB mode CPU time</td>
<td>TMRJ9CPU</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The amount of CPU time that this task has used when dispatched on the J9 TCB Mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times this task was dispatched on the J9 TCB Mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This attribute is obsolete from CICS Transaction Server 5.1 onwards.</td>
</tr>
<tr>
<td>JVM server thread wait time</td>
<td>TMRJSTWT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The amount of time the task has spent waiting for work on the JVM server thread</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task waited for work on the JVM server thread</td>
</tr>
<tr>
<td>Maximum JVM TCB delay time</td>
<td>TMRJTDLY</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Delay incurred by this task due to waiting on the MAXJVMTCBS limit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task waited on the limit set by the system parameter MAXJVMTCBS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This attribute is obsolete from CICS Transaction Server 5.1 onwards.</td>
</tr>
<tr>
<td>JVM elapsed time - initializing</td>
<td>TMRJVMIT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The elapsed time spent initializing the JVM environment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the JVM environment was initialized.</td>
</tr>
<tr>
<td>JVM elapsed time - resetting</td>
<td>TMRJVMRT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The elapsed time spent resetting the JVM environment.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the JVM environment was reset.</td>
</tr>
<tr>
<td>User task key 8 mode CPU time</td>
<td>TMRKY8CP</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The key 8 mode CPU time used by this task.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times that this task was dispatched in key 8 mode.</td>
</tr>
<tr>
<td>User task key 8 mode dispatch time</td>
<td>TMRKY8DS</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The key 8 mode dispatch time used by this task.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times that this task was dispatched in key 8 mode.</td>
</tr>
</tbody>
</table>
Table 16. Fields in HTASK views (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User task key 9 mode CPU time</td>
<td>TMRKY9CP</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The total CPU time during which the user task was dispatched by the CICS dispatcher on a CICS Key 9 mode TCB.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times this task was dispatched on a key 9 mode TCB.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L9 mode TCBs are used for USERKEY OPENAPI application programs.</td>
</tr>
<tr>
<td>User task key 9 mode dispatch time</td>
<td>TMRKY9DS</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The total elapsed time during which the user task was dispatched by the CICS dispatcher on a CICS Key 9 mode TCB.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times this task was dispatched on a key 9 mode TCB.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L9 mode TCBs are used for USERKEY OPENAPI application programs.</td>
</tr>
<tr>
<td>User task L9 mode CPU time</td>
<td>TMRL9CPU</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The amount of CPU time that this task has used when dispatched on the L9 TCB Mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times this task was dispatched on the L9 TCB Mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L9 mode TCBs are used for USERKEY OPENAPI application programs.</td>
</tr>
<tr>
<td>XML System Services CPU time</td>
<td>TMRMLCTM</td>
<td>XML System Services CPU time</td>
</tr>
<tr>
<td>Total document length</td>
<td>TMRMLTDL</td>
<td>Total document length</td>
</tr>
<tr>
<td>Number of EXEC CICS XML TRANSFORM requests</td>
<td>TMRMLXTC</td>
<td>Number of EXEC CICS XML TRANSFORM requests</td>
</tr>
<tr>
<td>WebSphere MQ API SRB time</td>
<td>TMRMQAST</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The total amount of CPU time spent on an SRB in WebSphere MQ whilst performing the api request.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task accumulated the SRB time.</td>
</tr>
<tr>
<td>WebSphere MQ Getwait wait time</td>
<td>TMRMQGWT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The amount of time the task has spent waiting for WebSphere MQ to service the task's GETWAIT requests.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the task waited for WebSphere MQ to service the task's GETWAIT requests.</td>
</tr>
<tr>
<td>Network ID</td>
<td>TMRNETID</td>
<td>The ID of the network</td>
</tr>
<tr>
<td>LU6.2 network-wide UOW instance and sequence number</td>
<td>TMRNetsx</td>
<td>The name by which the network unit-of-work ID is known within the originating system. This name is assigned at transaction attach time using either a STCK-derived token created by the originating system, or the network unit-of-work passed as part of an IRC (MRO), IPIC (IP interconnectivity) or ISC (APPC) attach function management header (FMH).</td>
</tr>
<tr>
<td>OTS indoubt wait time</td>
<td>TMROIDWT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The object transaction service indoubt wait time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times that this task waited indoubt for object transaction services.</td>
</tr>
<tr>
<td>OTS transaction ID</td>
<td>TMROTSID</td>
<td>The object transaction service transaction identifier.</td>
</tr>
<tr>
<td>Number of DPL program link requests with channel</td>
<td>TMRPCDCC</td>
<td>The number of DPL program link requests issued by this task.</td>
</tr>
<tr>
<td>Data length of all DPL program links with channel</td>
<td>TMRPCDLL</td>
<td>The total length of the data in the containers of all the distributed program link (DPL) requests issued with the CHANNEL option by the user task. This total includes the length of any headers to the data.</td>
</tr>
<tr>
<td>Total data length of all DPL returns with channel</td>
<td>TMRPCDRL</td>
<td>The total length of the data in the containers of all DPL RETURN CHANNEL commands issued by the user task. This total includes the length of any headers to the data.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Number of program link requests with channel</td>
<td>TMRPCLCC</td>
<td>The number of program link requests with channel issued by this task.</td>
</tr>
<tr>
<td>Number of program return requests with channel</td>
<td>TMRPCRCC</td>
<td>The number of program return requests with channel issued by this task.</td>
</tr>
<tr>
<td>Data length of all program returns with channel</td>
<td>TMRPCRCL</td>
<td>The total length of the data in the containers of all the remote pseudoconversational RETURN CHANNEL commands issued by the user task. This total includes the length of any headers to the data.</td>
</tr>
<tr>
<td>Number of program XCTL requests with channel</td>
<td>TMRPCXCC</td>
<td>The number of program XCTL requests with channel issued by this task.</td>
</tr>
<tr>
<td>Number of browse container channel requests</td>
<td>TMRPGBCC</td>
<td>The number of browse container channel requests issued by this task.</td>
</tr>
<tr>
<td>Number of containers created for channel containers</td>
<td>TMRPGCCC</td>
<td>The number of containers created for channel containers by this task.</td>
</tr>
<tr>
<td>Total number of channel data container requests</td>
<td>TMRPGCTC</td>
<td>The total number of channel data container requests issued by this task.</td>
</tr>
<tr>
<td>Number of get container channel requests</td>
<td>TMRPGGCC</td>
<td>The number of GET CONTAINER and GET64 CONTAINER channel requests issued by this task.</td>
</tr>
<tr>
<td>Data length of all get container channel requests</td>
<td>TMRPGGCL</td>
<td>The data length of all GET CONTAINER and GET64 CONTAINER channel requests issued by this task.</td>
</tr>
<tr>
<td>Number of move container channel requests</td>
<td>TMRPGMCC</td>
<td>The number of move container channel requests issued by this task.</td>
</tr>
<tr>
<td>Number of put container channel requests</td>
<td>TMRPGPCC</td>
<td>The number of PUT CONTAINER and PUT64 CONTAINER channel requests issued by this task.</td>
</tr>
<tr>
<td>Data length of all put container channel requests</td>
<td>TMRPGPCL</td>
<td>The data length of all PUT CONTAINER and PUT64 CONTAINER channel requests issued by this task.</td>
</tr>
<tr>
<td>Pipeline name</td>
<td>TMRPIPLN</td>
<td>Pipeline name</td>
</tr>
<tr>
<td>TCP/IP service port number</td>
<td>TMRPORTN</td>
<td>The port number used by the TCP/IP service.</td>
</tr>
<tr>
<td>Partner wait time</td>
<td>TMRPTPWT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The total partner wait time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times that this task waited for the partner transaction to complete.</td>
</tr>
<tr>
<td>Real LU name</td>
<td>TMRRRLUNM</td>
<td>The name of the VTAM logical unit of the terminal associated with this transaction.</td>
</tr>
<tr>
<td>User task read-only mode CPU time</td>
<td>TMRROCPU</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The read only mode CPU time used by this task.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times that this task was dispatched in read only mode.</td>
</tr>
<tr>
<td>User task read-only mode dispatch time</td>
<td>TMRRODSP</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The read only mode dispatch time, in seconds, used by this task.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times that this task was dispatched in read only mode.</td>
</tr>
<tr>
<td>Request processor wait time</td>
<td>TMRQPWT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The elapsed time spent waiting for a request processor I/O operation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times that this task waited for a request processor I/O operation.</td>
</tr>
<tr>
<td>Request receiver wait time</td>
<td>TMRQRWT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The elapsed time spent waiting for a request receiver I/O operation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times that this task waited for a request receiver I/O operation.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Number of characters received</td>
<td>TMRSOCIN</td>
<td>The number of characters received by this task.</td>
</tr>
<tr>
<td>Number of CREATE non-persistent socket requests</td>
<td>TMRSOCNS</td>
<td>The number of Create non-persistent socket requests issued by this task.</td>
</tr>
<tr>
<td>Number of characters sent</td>
<td>TMRSOCOT</td>
<td>The number of characters sent by this task.</td>
</tr>
<tr>
<td>Number of CREATE persistent socket requests</td>
<td>TMRSOCPS</td>
<td>The number of Create persistent socket requests issued by this task.</td>
</tr>
<tr>
<td>EXTRACT TCPIP and EXTRACT CERTIFICATE request count</td>
<td>TMRSOERC</td>
<td>The total number of EXTRACT TCPIP and EXTRACT CERTIFICATE requests.</td>
</tr>
<tr>
<td>Number of inbound socket characters received</td>
<td>TMRSOIIC</td>
<td>The total number of inbound socket characters received by this task.</td>
</tr>
<tr>
<td>Number of inbound socket receive requests</td>
<td>TMRSOIMC</td>
<td>The number of inbound socket receive requests issued by this task.</td>
</tr>
<tr>
<td>Peak number of non-persistent sockets</td>
<td>TMRSONHW</td>
<td>The peak number of non-persistent sockets associated with this task.</td>
</tr>
<tr>
<td>Number of inbound socket characters sent</td>
<td>TMRSOOIC</td>
<td>The number of inbound socket characters sent by this task.</td>
</tr>
<tr>
<td>Number of inbound socket send requests</td>
<td>TMRSOOMC</td>
<td>The number of inbound socket send requests issued by this task.</td>
</tr>
<tr>
<td>Outbound TCP/IP sockets I/O wait time</td>
<td>TMRSOOWT</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The total outbound socket I/O wait time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times that this task waited for outbound socket I/O.</td>
</tr>
<tr>
<td>Peak number of persistent sockets</td>
<td>TMRSOPHW</td>
<td>The peak number of persistent sockets associated with this task.</td>
</tr>
<tr>
<td>Number of socket receive requests</td>
<td>TMRSORCT</td>
<td>The number of socket receive requests issued by this task.</td>
</tr>
<tr>
<td>Number of socket send requests</td>
<td>TMRSOSCT</td>
<td>The number of socket send requests issued by this task.</td>
</tr>
<tr>
<td>Total number of socket requests</td>
<td>TMRSCOTC</td>
<td>The total number of socket requests issued by this task.</td>
</tr>
<tr>
<td>Maximum CICS SSL TCB delay time</td>
<td>TMRSTDLY</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The elapsed time in which the user task waited to obtain a CICS SSL TCB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(S8 mode), because the CICS system had reached the limit set by the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>system initialization parameter MAXSSLTCBS.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the user task waited to obtain a CICS SS TCB (S8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mode), because the CICS system had reached the limit set by the system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>initialization parameter MAXSSLTCBS.</td>
</tr>
<tr>
<td>User task T8 mode cpu time</td>
<td>TMRT8CPU</td>
<td>User task T8 mode cpu time.</td>
</tr>
<tr>
<td>TCP/IP Service name</td>
<td>TMRTCPSV</td>
<td>The name of the TCP/IP service.</td>
</tr>
<tr>
<td>Transaction group ID</td>
<td>TMRTGPID</td>
<td>The identifier of the transaction group associated with this task.</td>
</tr>
<tr>
<td>Number of EXEC CICS ASKTIME requests</td>
<td>TMRTIATC</td>
<td>Number of EXEC CICS ASKTIME requests</td>
</tr>
<tr>
<td>Total number of EXEC xxxTIME Requests</td>
<td>TMRTITC</td>
<td>Total number of EXEC xxxTIME Requests</td>
</tr>
<tr>
<td>Maximum thread TCB delay time</td>
<td>TMRTTDLY</td>
<td>Maximum thread TCB delay time</td>
</tr>
<tr>
<td>URI map name</td>
<td>TMRURIMN</td>
<td>URI map name</td>
</tr>
<tr>
<td>Number of web browse requests</td>
<td>TMRWBBOC</td>
<td>The number of web browse requests issued by this task.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Number of WEB BROWSE requests</td>
<td>TMRWBBRC</td>
<td>The total number of web browse requests issued by this task.</td>
</tr>
<tr>
<td>Number of WEB EXTRACT requests</td>
<td>TMRWBERC</td>
<td>The total number of web extract requests issued by this task.</td>
</tr>
<tr>
<td>Number of bytes received by web requests</td>
<td>TMRWBI1C</td>
<td>The number of bytes received by web requests issued by this task.</td>
</tr>
<tr>
<td>Number of web receive requests</td>
<td>TMRWBIRC</td>
<td>The number of web receive requests issued by this task.</td>
</tr>
<tr>
<td>Number of invoke web service requests</td>
<td>TMRWBIWC</td>
<td>The number of invoke web service requests issued by this task.</td>
</tr>
<tr>
<td>Number of bytes sent by web send requests</td>
<td>TMRWBO1C</td>
<td>The number of bytes sent by web send requests issued by this task.</td>
</tr>
<tr>
<td>Number of web send requests</td>
<td>TMRWBOSC</td>
<td>The number of web send requests issued by this task.</td>
</tr>
<tr>
<td>Number of web parse requests</td>
<td>TMRWBPRC</td>
<td>The number of web parse requests issued by this task.</td>
</tr>
<tr>
<td>Data length of data read from the repository</td>
<td>TMRWBRDL</td>
<td>The data length of data read from the repository.</td>
</tr>
<tr>
<td>Number of web read requests</td>
<td>TMRWBROC</td>
<td>The number of web read requests issued by this task.</td>
</tr>
<tr>
<td>Number of repository reads</td>
<td>TMRWBRPR</td>
<td>The number of repository read requests issued by this task.</td>
</tr>
<tr>
<td>Number of WEB READ requests</td>
<td>TMRWBRRC</td>
<td>The total number of web read requests issued by this task.</td>
</tr>
<tr>
<td>Data length of data written to the repository</td>
<td>TMRWBWDL</td>
<td>The data length of data written to the repository.</td>
</tr>
<tr>
<td>Number of web write requests</td>
<td>TMRWBWOC</td>
<td>The number of web write requests issued by this task.</td>
</tr>
<tr>
<td>Number of WEB WRITE requests</td>
<td>TMRWBWRC</td>
<td>The total number of web write requests issued by this task.</td>
</tr>
<tr>
<td>Total number WebSphere MQ requests</td>
<td>TMRWMQRC</td>
<td>The total number of WebSphere MQ requests for the task.</td>
</tr>
<tr>
<td>Program name</td>
<td>TMRWPBMN</td>
<td>Program name</td>
</tr>
<tr>
<td>Total number of WS Addressing requests</td>
<td>TMRWSATC</td>
<td>Total number of WS Addressing requests</td>
</tr>
<tr>
<td>Number of WSACONTEXT BUILD requests</td>
<td>TMRWSCBC</td>
<td>Number of WSACONTEXT BUILD requests</td>
</tr>
<tr>
<td>Number of WSACONTEXT GET requests</td>
<td>TMRWSCGC</td>
<td>Number of WSACONTEXT GET requests</td>
</tr>
<tr>
<td>Number of WSAEPR CREATE requests</td>
<td>TMRWSEPC</td>
<td>WSAEPCCT - Number of WSAEPR CREATE requests</td>
</tr>
<tr>
<td>Web Services operation name</td>
<td>TMRWSOPN</td>
<td>Web Services operation name</td>
</tr>
<tr>
<td>Webservice name</td>
<td>TMRWSVCN</td>
<td>Webservice name</td>
</tr>
<tr>
<td>User task X8 mode CPU time</td>
<td>TMRX8CPU</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The amount of CPU time that this task has used when dispatched on the X8 TCB Mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times this task was dispatched on the X8 TCB Mode.</td>
</tr>
<tr>
<td>User task X9 mode CPU time</td>
<td>TMRX9CPU</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The amount of CPU time that this task has used when dispatched on the X9 TCB Mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times this task was dispatched on the X9 TCB Mode.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Maximum CICS XPLink TCB delay time</td>
<td>TMRXTDLY</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The maximum CICS XPLink TCB delay time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times the user task waited to obtain a CICS XPLink TCB.</td>
</tr>
<tr>
<td>Transaction class</td>
<td>TRANCLASS</td>
<td>The name of the transaction class to which the task belongs.</td>
</tr>
<tr>
<td>Transaction flags</td>
<td>TRANFLAGS</td>
<td>The CICS transaction definition and status information flags for the transaction.</td>
</tr>
<tr>
<td>Transaction ID</td>
<td>TRANID</td>
<td>The name of the transaction associated with the task.</td>
</tr>
<tr>
<td>Transaction type</td>
<td>TRANTYPE</td>
<td>The transaction start type. Values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• TO - Attached from terminal input</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• S - Attached by automatic transaction initiation (ATI) without data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SD - Attached by automatic transaction initiation (ATI) with data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• QD - Attached by transient data trigger level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• U - Attached by user request</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• TP - Attached from terminal TCTTE transaction ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SZ - Attached by Front End Programming Interface (FEPI).</td>
</tr>
<tr>
<td>Total number of TS requests</td>
<td>TSCOUNT</td>
<td>The number of temporary storage requests issued by this user task, including GET, PUT, and PURGE requests.</td>
</tr>
<tr>
<td>Number of temporary storage GET requests</td>
<td>TSGETCNT</td>
<td>The number of temporary storage get/read requests issued by this task.</td>
</tr>
<tr>
<td>Number of TS GET requests to shared storage</td>
<td>TSGETSCNT</td>
<td>The number of TS gets to shared storage.</td>
</tr>
<tr>
<td>TS I/O wait time</td>
<td>TSIOTIME</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The total temporary storage I/O wait time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The number of times this task waited for temporary storage I/O.</td>
</tr>
<tr>
<td>Number of TS PUT requests to auxiliary storage</td>
<td>TSPUTACNT</td>
<td>The number of TS puts to auxiliary storage.</td>
</tr>
<tr>
<td>Number of TS PUT requests to main storage</td>
<td>TSPUTMCNT</td>
<td>The number of TS puts to main storage.</td>
</tr>
<tr>
<td>Number of TS PUT requests to shared storage</td>
<td>TSPUTSCNT</td>
<td>The number of TS puts to shared storage.</td>
</tr>
<tr>
<td>Recovery manager UOW unshunted</td>
<td>UNSHUNTED</td>
<td>The total number of units of work that lost connection to their recovery coordinator during syncpoint processing but were not shunted for indoubt failure.</td>
</tr>
<tr>
<td>Local unit of work (UOW) ID</td>
<td>UOWID</td>
<td>The local identifier of the unit of work associated with this task.</td>
</tr>
<tr>
<td>LU6.2 network-wide UOW instance and sequence number</td>
<td>UOWINSTSEQ</td>
<td>The total number of LU6.2 network-wide units of work.</td>
</tr>
<tr>
<td>User ID</td>
<td>USERID</td>
<td>The ID of the user associated with the task.</td>
</tr>
<tr>
<td>Maximum program storage in UDSA</td>
<td>USRPS24HWM</td>
<td>The high-water-mark number of bytes used by this task for programs in the UDSA.</td>
</tr>
<tr>
<td>Maximum program storage in UDSAs</td>
<td>USRPS31HWM</td>
<td>The high-water-mark number of bytes used by this task for programs in the EUDSA.</td>
</tr>
<tr>
<td>Number of user storage GETMAIN requests below 16MB</td>
<td>USTG24CNT</td>
<td>The number of user storage GETMAIN requests issued by this user task for storage below the 16MB line.</td>
</tr>
<tr>
<td>Peak number of bytes used by task in UDSA</td>
<td>USTG24HWM</td>
<td>The peak number of bytes used by this task in the UDSA.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Average storage usage below 16MB</td>
<td>USTG24OCC</td>
<td>The average storage occupancy of the user task below the 16MB line. This measures the area under the curve of storage in use against elapsed time.</td>
</tr>
<tr>
<td>Number of user storage GETMAIN requests above 16MB</td>
<td>USTG31CNT</td>
<td>The number of user storage GETMAIN requests issued by this user task for storage above the 16MB line.</td>
</tr>
<tr>
<td>Peak number of bytes used by task in EUDSA</td>
<td>USTG31HWM</td>
<td>The peak number of bytes used by this task in the EUDSA.</td>
</tr>
<tr>
<td>Average storage usage above 16MB</td>
<td>USTG31OCC</td>
<td>The average storage occupancy of the user task above the 16MB line. This measures the area under the curve of storage in use against elapsed time.</td>
</tr>
<tr>
<td>Dispatch wait time</td>
<td>WAITTIME</td>
<td>This is a composite field displaying one of the following elements:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The average time the task spent waiting for redispatch.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The number of times this task waited for redispatch.</td>
</tr>
<tr>
<td>Number of Web characters received</td>
<td>WBCHRIN</td>
<td>The number of characters received via the web as a result of web requests issued by this task.</td>
</tr>
<tr>
<td>Number of Web characters sent</td>
<td>WBCHROUT</td>
<td>The number of characters sent via the web as a result of web sends issued by this task.</td>
</tr>
<tr>
<td>INVOKE SOAP service faults</td>
<td>WBISSFCT</td>
<td>The number of INVOKE xxxSERVICE SOAP faults.</td>
</tr>
<tr>
<td>JSON response body length</td>
<td>WBJSNRPL</td>
<td>The JSON response body length</td>
</tr>
<tr>
<td>JSON request body length</td>
<td>WBJSNRQL</td>
<td>The JSON request body length</td>
</tr>
<tr>
<td>Number of WEB RECEIVE requests</td>
<td>WBRCVCT</td>
<td>The total number of web receive requests issued by this task.</td>
</tr>
<tr>
<td>Number of Web repository writes</td>
<td>WBREPWCT</td>
<td>The number of web repository write requests issued by this task.</td>
</tr>
<tr>
<td>Number of WEB SEND requests</td>
<td>WBSENDCT</td>
<td>The total number of web send requests issued by this task.</td>
</tr>
<tr>
<td>SOAPFAULT CREATE requests</td>
<td>WBSFCRCT</td>
<td>The number of SOAPFAULT CREATE requests.</td>
</tr>
<tr>
<td>Total SOAPFAULT CREATE requests</td>
<td>WBSFTOCT</td>
<td>The total number of SOAPFAULT CREATE requests.</td>
</tr>
<tr>
<td>SOAP request body length</td>
<td>WBSREQBL</td>
<td>The length of the SOAP request body length.</td>
</tr>
<tr>
<td>SOAP response body length</td>
<td>WBSRSPLB</td>
<td>The length of the SOAP response body length.</td>
</tr>
<tr>
<td>Total number of Web requests</td>
<td>WBTOTCT</td>
<td>The total number of WEB requests issued by this task. This does not include the number of repository write requests.</td>
</tr>
<tr>
<td>Workload manager report class name</td>
<td>WLMRPTRCNAME</td>
<td>The MVS Workload Manager (WLM) report class for this transaction.</td>
</tr>
<tr>
<td>Workload manager service class name</td>
<td>WLMSRVCNAME</td>
<td>The MVS Workload Manager (WLM) service class for this transaction.</td>
</tr>
</tbody>
</table>

Task history collection - MASHIST

The CICS region history collection (MASHIST) view displays information about the status of CICSPlex SM history recording for CICS regions. Support for historical task data builds upon CICSPlex SM resource monitoring. It requires monitor definitions to be installed with a monitoring resource class of MTRAN to specify the IDs of the transactions for which you wish to save historical task data. Additionally VSAM data sets must be defined and allocated to the MAS region by means of DD cards, and the desired monitoring facility parameters set.
Supplied views

To access from the main menu, click:

History views > History Views > Task history collection

Table 17. Views in the supplied **MAS history (MASHIST)** view set

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAS history EYUSTARTMASHIST.DETAILED</td>
<td>Detailed information about the current status of history recording for CICS regions.</td>
</tr>
<tr>
<td>MAS history EYUSTARTMASHIST.RESUME</td>
<td>Resume CICSplex SM history recording for the CICS region. If history recording for the CICS region is currently suspended, it will now resume and become active again.</td>
</tr>
<tr>
<td>MAS history EYUSTARTMASHIST.SUSPEND</td>
<td>Suspend CICSplex SM history recording for the CICS region. No further historical task records will be collected until an action is taken to resume history recording for the region.</td>
</tr>
<tr>
<td>MAS history EYUSTARTMASHIST.TABULAR</td>
<td>Tabular information about the current status of history recording for CICS regions.</td>
</tr>
</tbody>
</table>

Actions

Table 18. Actions available for MASHIST views

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUME</td>
<td>Resume CICSplex SM history recording for the CICS region. If history recording for the CICS region is currently suspended, it will now resume and become active again.</td>
</tr>
<tr>
<td>SUSPEND</td>
<td>Suspend CICSplex SM history recording for the CICS region. No further historical task records will be collected until an action is taken to resume history recording for the region.</td>
</tr>
</tbody>
</table>

Fields

Table 19. Fields in MASHIST views

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current data set suffix</td>
<td>CDSSUF</td>
<td>The suffix of the current VSAM KSDS data set containing historical data for the CICS region</td>
</tr>
<tr>
<td>Number of records on current data set</td>
<td>CRECCNT</td>
<td>The number of records in the current history data set.</td>
</tr>
<tr>
<td>Number of times current data set has wrapped</td>
<td>CWRAPCNT</td>
<td>The number of times the current history data set has wrapped. The data set wraps when it is full.</td>
</tr>
<tr>
<td>Number of History data sets</td>
<td>HDSCOUNT</td>
<td>The number of history data sets available.</td>
</tr>
<tr>
<td>History reason code</td>
<td>REASON</td>
<td>Reason code from the historical data recorder task. Values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IOERROR - An unexpected error occurred while reading from the EYUHISTx datasets. This may be because of a problem with the file definitions, or because of a problem with a query to the CICSplex SM EYUPARMS relating to the MAS history recorder function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INVALIDFILE - One or more attributes for the EYUHISTx datasets are unacceptable for the MAS history recorder function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• OK - The MAS history recorder is operational.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NOTAVAILABLE - The MAS history recorder requires at least two EYUHISTx history datasets before becoming available for history recording.</td>
</tr>
</tbody>
</table>
Table 19. Fields in MASHIST views (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>History recorder status</td>
<td>STATUS</td>
<td>Identifies whether or not the historical data recorder task is in any of the following states:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ACTIVE - The MAS history recorder is available to record task records.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INACTIVE - The MAS history recorder is not available to record task records.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SUSPEND - The MAS history recorder has been temporarily prevented from recording task records.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SUSPENDING - The MAS history recorder is going into a SUSPEND status. Task records are no longer being recorded. The recorder STATUS field will change to SUSPEND when the recorder receives the next task record.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• RESUMING - The MAS history recorder is starting to record task records again. The recorder STATUS field will change to ACTIVE when the recorder receives the next task record.</td>
</tr>
</tbody>
</table>

Task ID of Current Recorder | TASKNO | The ID of the history recorder task.

MASs known to CICSpex - MAS

The **MASs known to CICSpex** (MAS) views display information about MASs known to CICSpex.

Supplied views

To access from the main menu, click:

History views > History Views > MASs known to CICSpex

Table 20. Views in the supplied **MASs known to CICSpex** (MAS) view set

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASs known to CICSpex</td>
<td>Capture a CICSpex SM diagnostic dump, including the MAS, the managing CMAS, and the ESSS (Environmental Services Subsystem) address spaces, and selected component data spaces.</td>
</tr>
<tr>
<td>EYUSTARTMAS.CPSMDUMP</td>
<td></td>
</tr>
<tr>
<td>MASs known to CICSpex</td>
<td>Detailed real time analysis information about a selected MAS.</td>
</tr>
<tr>
<td>EYUSTARTMAS.DETAIL1</td>
<td></td>
</tr>
<tr>
<td>MASs known to CICSpex</td>
<td>Detailed monitoring information about a selected MAS.</td>
</tr>
<tr>
<td>EYUSTARTMAS.DETAIL2</td>
<td></td>
</tr>
<tr>
<td>MASs known to CICSpex</td>
<td>Detailed general information about a selected MAS.</td>
</tr>
<tr>
<td>EYUSTARTMAS.DETAILED</td>
<td></td>
</tr>
<tr>
<td>MASs known to CICSpex</td>
<td>Terminates the ESSS connection of the MAS. Note: Abends may occur if ForceDiscon is issued against an active system. ForceDiscon should only be used if the system terminated as a CICS system but remained connected to the ESSS. ForceDiscon can only be issued if a previous StopUncon was issued and did not terminate the system from the ESSS.</td>
</tr>
<tr>
<td>EYUSTARTMAS.FORCEDISCON</td>
<td></td>
</tr>
<tr>
<td>MASs known to CICSpex</td>
<td>Change the attributes of a selected MAS.</td>
</tr>
<tr>
<td>EYUSTARTMAS.SET</td>
<td></td>
</tr>
<tr>
<td>MASs known to CICSpex</td>
<td>Stops the MAS agent code within a CICS system. Note: If a MAS is acting as a routing region for workload management, and the DTR program is EYU9XLOP, you cannot stop the MAS agent code.</td>
</tr>
<tr>
<td>EYUSTARTMAS.STOP</td>
<td></td>
</tr>
</tbody>
</table>
Table 20. Views in the supplied MASs known to CICSpex (MAS) view set (continued)

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASs known to CICSpex EYUSTARTMAS.STOPUNCON</td>
<td>Stops the MAS agent code within a CICS system. Note: If a MAS is acting as a routing region for workload management, and the DTR program is EYU9XLOP, StopUncon will stop the MAS agent code. This may lead to EYUO abends in the MAS if subsequent routes are attempted.</td>
</tr>
<tr>
<td>MASs known to CICSpex EYUSTARTMAS.TABULAR</td>
<td>Tabular information about all MASs associated with the CICSpex identified as the context.</td>
</tr>
</tbody>
</table>

Actions

Table 21. Actions available for MAS views

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPSMDUMP</td>
<td>Capture a CICSpex SM diagnostic dump, including the MAS, the managing CMAS, and the ESSS (Environmental Services Subsystem) address spaces, and selected component data spaces.</td>
</tr>
<tr>
<td>FORCEDISCON</td>
<td>Terminates the ESSS connection of the MAS. Note: Abends may occur if ForceDiscon is issued against an active system. ForceDiscon should only be used if the system terminated as a CICS system but remained connected to the ESSS. ForceDiscon can only be issued if a previous StopUncon was issued and did not terminate the system from the ESSS.</td>
</tr>
<tr>
<td>SET</td>
<td>Change the attributes of a selected MAS.</td>
</tr>
<tr>
<td>STOP</td>
<td>Stops the MAS agent code within a CICS system. Note: If a MAS is acting as a routing region for workload management, and the DTR program is EYU9XLOP, you cannot stop the MAS agent code.</td>
</tr>
<tr>
<td>STOPUNCON</td>
<td>Stops the MAS agent code within a CICS system. Note: If a MAS is acting as a routing region for workload management, and the DTR program is EYU9XLOP, StopUncon will stop the MAS agent code. This may lead to EYUO abends in the MAS if subsequent routes are attempted.</td>
</tr>
</tbody>
</table>

Fields

Table 22. Fields in MAS views

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period definition name</td>
<td>ACTVTIME</td>
<td>The name of the period definition that identifies the hours during which this CICS system is to be running.</td>
</tr>
<tr>
<td>Autoinstall failure action</td>
<td>AINSFAIL</td>
<td>The name of the action definition to be used when generating notification about the named condition. Specify <code>inherit</code> to derive the action definition action from the analysis specification.</td>
</tr>
<tr>
<td>Autoinstall request type</td>
<td>AUTOINST</td>
<td>Indicates whether resources associated with the system through a resource description should be automatically installed when the MAS connects to the CMAS:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ALWAYS - Install resources every time the MAS connects after a CICS startup.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• COLDONLY - Install resources only when the MAS connects after a CICS INITIAL or COLD start.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NEVER - Resources should never be automatically installed in this CICS system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• WARMONLY - Install resources only when the MAS connects after a CICS warm start or emergency restart (AUTO).</td>
</tr>
<tr>
<td>Business Application Services (BAS) trace flags</td>
<td>BASTRACE</td>
<td>Business Application Services trace flag settings. Alter trace flag settings only when asked to by IBM System Support center personnel.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| RS server bottom tier | BOTRSUPD | This attribute applies to CICSPlex SM sysplex optimized workloads. If the MAS is not at a sufficiently high enough release to support sysplex optimized workloads, then this value will contain zero, and will not be changeable to any other value.
If the MAS is at high enough release for optimized workload support, then the following help explanation applies:
For sysplex optimized workloads, this value is converted from a task load percentage to an actual task count. That count will be used to define the bottom tier task load range (from zero up to this value).
The value range is from 1 to 25, or INHERIT.
• A value of INHERIT means assign the value that is specified for this attribute in the parent CICSpex definition (CPLEXDEF) object for this CICS region. This is the default setting for this attribute.
• Values between 1 and 25 are applied as an arithmetic percentage to a region’s MAXTASKS setting. The task count value from zero up to this value is deemed to be the task load bottom tier. If the task load in a region falls into this range, then it will be broadcast to the coupling facility for every change in the load. Once the load reaches this value, then the RS server update frequency task rules will be activated.
The default value is 1%. You may change this value here to dynamically change the value assigned to the current CICS region. If you want the change to be applied to this CICS region after it has been restarted, then you must also change this value in the CICS system definition panel.
You should only change this value after giving consideration to the impact that the change may have on your workload and coupling facility throughput. |
| Cache services trace flags | CHETRACE | The cache services trace flag settings.
Alter trace flag settings only when asked to by IBM System Support center personnel. |
| CICS system name | CICSNAME | The name of a CICS system that is currently known to CICSPlex SM. Once a CICS system makes itself known to CICSPlex SM, it is considered a MAS. |
| Sample interval for CICS region monitoring | CICSSAMP | The number of seconds in the range 1 - 86400 that CICSPlex SM is to wait between requests to collect sample data for the named type of monitoring. A value of 0 means that no resource monitoring is to occur. |
| MAS status | CICSSTATE | The status of the MAS is either **ACTIVE** or **INACTIVE**. CICSPlex SM can only manage MASs that are active.
• **ACTIVE**
 • The CICS system is active and connected to CICSPlex SM.
• **INACTIVE**
 • The CICS system is inactive, or not connected to CICSPlex SM, or communication to the CMAS that manages the MAS is not active.
A MAS can be inactive for one of two reasons:
• The **Stop** action was used to stop the MAS agent
• The CICS system itself is inactive, but is still known
Other valid options are LOSTCONN, LOSTCMAS, and LOSTMAS.
Note:
If this field is blank, the MAS is temporarily between an inactive and active state. |
| CMAS name | CMASNAME | The name of a CMAS that participates in the management of the specified MAS. |
| Communications trace flags | COMTRACE | The communications trace flag settings.
Alter trace flag settings only when asked to by IBM System Support center personnel. |
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample interval for connection monitoring</td>
<td>CONNSAMP</td>
<td>The number of seconds in the range 1 - 86400 that CICSPlex SM is to wait between requests to collect sample data for the named type of monitoring. A value of 0 means that no resource monitoring is to occur.</td>
</tr>
<tr>
<td>CPSM version of MAS</td>
<td>CPSMVER</td>
<td>The CICSPlex SM version of the current MAS.</td>
</tr>
<tr>
<td>Data repository services trace flags</td>
<td>DATTRACE</td>
<td>The data repository services trace flag settings. Alter trace flag settings only when asked to by IBM System Support center personnel.</td>
</tr>
</tbody>
</table>
| Daylight saving time in effect | DAYLGHTSV | Indicates whether you are currently recognizing daylight saving time. Specify:
• YES - Recognize daylight saving time.
• NO - Do not recognize daylight saving time.
• INHERIT - Use the value assigned to the daylight time indicator assigned to the CMAS to which this CICS system is connected, or the primary CMAS, if the CICS system is inactive.
• N_A - Not applicable. |
| Sample interval for DB2/DBCTRL monitoring | DBXSAMP | The number of seconds in the range 1 - 86400 that CICSPlex SM is to wait between requests to collect sample data for the named type of monitoring. A value of 0 means that no resource monitoring is to occur. |
| CICS system description | DESC | A description of the CICS system. |
| Sample interval for file monitoring | FILESAMP | The number of seconds in the range 1 - 86400 that CICSPlex SM is to wait between requests to collect sample data for the named type of monitoring. A value of 0 means that no resource monitoring is to occur. |
| Sample interval for global region monitoring | GLBLSAMP | The number of seconds in the range 1 - 86400 that CICSPlex SM is to wait between requests to collect sample data for the named type of monitoring. A value of 0 means that no resource monitoring is to occur. |
| Host Name | HOST | The 116-character host name of the system (for example, www.example.com), or its dotted decimal IP address (for example, 9.20.181.3). This is used for IPIC SYSLINK connections. |
| Sample interval for journal monitoring | JRNLSAMP | The number of seconds in the range 1 - 86400 that CICSPlex SM is to wait between requests to collect sample data for the named type of monitoring. A value of 0 means that no resource monitoring is to occur. |
| Kernel linkage trace flags | KNLTRACE | The kernel linkage trace flag settings. Alter trace flag settings only when asked to by IBM System Support center personnel. |
| MAS services trace flags | MASTRACE | The MAS services trace flag settings. Alter trace flag settings only when asked to by IBM System Support center personnel. |
| MAS type | MASTYPE | The type of relationship that exists between this MAS and the specified CMAS:
• LOCAL - The MAS resides in the same MVS image as the CMAS and uses the CICSPlex SM ESSS facility to communicate with it.
• REMOTE - The MAS is a stand-alone CICS region (SMSS).
• N_A - The MAS is not currently active; its type cannot be determined. |
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring status</td>
<td>MONSTATUS</td>
<td>Indicates whether resource monitoring is active in this MAS. The valid values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• YES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• N_A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FORCE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: For Monitoring to become fully initialized the MAS must have a Monitoring Specification associated with it.</td>
</tr>
<tr>
<td>Message services trace flags</td>
<td>MSGTRACE</td>
<td>The message services trace flag settings. Alter trace flag settings only when asked to by IBM System Support center personnel.</td>
</tr>
<tr>
<td>Action for CICS-at-maximum-tasks event</td>
<td>MXTACTION</td>
<td>The name of the action definition to be used when generating notification about the named condition. Specify inherit to derive the action definition action from the analysis specification.</td>
</tr>
<tr>
<td>Severity for CICS-at-maximum-tasks event</td>
<td>MXTSEV</td>
<td>The severity level that is to be associated with the named condition. The severity codes are: VLS, LS, LW, HW, HS, or VHS. Specify N_A to exclude this condition from monitoring.</td>
</tr>
<tr>
<td>Network ID</td>
<td>NETWORKID</td>
<td>The network ID of the system. NETWORKID is used in combination with the APPLID option to ensure unique naming for connecting systems via IPIC. This is used for IPIC SYSLINK connections.</td>
</tr>
<tr>
<td>Action for Non-responsive-MAS event</td>
<td>NRMATION</td>
<td>The name of the action definition to be used when generating notification about the named condition. Specify inherit to derive the action definition action from the analysis specification.</td>
</tr>
<tr>
<td>Severity for Non-responsive-MAS event</td>
<td>NRMSEV</td>
<td>The severity level that is to be associated with the named condition. The severity codes are: VLS, LS, LW, HW, HS, or VHS. Specify N_A to exclude this condition from monitoring.</td>
</tr>
<tr>
<td>Port number</td>
<td>PORT</td>
<td>A decimal number, in the range 1 through 65535, specifying the port number to be used for outbound requests on this IPIC connection. That is, the number of the port on which the remote system will be listening. This is used for IPIC SYSLINK connections.</td>
</tr>
<tr>
<td>Primary CMAS name</td>
<td>PRICMAS</td>
<td>The name of the CMAS that is assigned the task of monitoring the availability of this CICS system.</td>
</tr>
<tr>
<td>Sample interval for program monitoring</td>
<td>PROGSAMP</td>
<td>The number of seconds in the range 1 - 86400 that CICSPlex SM is to wait between requests to collect sample data for the named type of monitoring. A value of 0 means that no resource monitoring is to occur.</td>
</tr>
<tr>
<td>Queue services trace flags</td>
<td>QUETRACE</td>
<td>The queue services trace flag settings. Alter trace flag settings only when asked to by IBM System Support center personnel.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| RS server read interval | READRS | This attribute applies to CICSPlex SM Sysplex Optimized Workloads. If the MAS is not at a sufficiently high enough release to support Sysplex Optimized Workloads, then this value will contain zero, and will not be changeable to any other value. If the MAS is at high enough release for Optimized Workload support, then the following help explanation applies: Within a workload running in optimized mode, this value specifies the minimum interval between region status refreshes that a routing region would request from the CICS CFDT server. This is the current value used by this CICS region. The value range is from 0 to 2000, and represents units of milliseconds:
- A value of 0 means that a routing region will request a status update of this region on every occasion that it examines this region’s status.
- Values between 1 and 2000 specify the minimum millisecond time interval that must expire before this region’s status data can be refreshed.
A low value mean that the router will refresh a target’s status from the RS server more often than for a higher value. For workloads in QUEUE mode, this will result in a task load more evenly balanced across the CICS regions in the workload target scope (assuming all other health and link factors are equal). However, the utilization of the RS server will be correspondingly increased, which may consequently result in a higher utilization of your coupling facility. A value of 1000 represents a one second interval. The default value is 200 milliseconds You may change this value here to dynamically change the value assigned to the current CICS region. If you want the change to be applied to this CICS region after it has been restarted, then you must also change this value in the CICS System definition panel. |
| Monitoring data retention period | RETENTION | The number of minutes collected data is to be kept after resource monitoring stops. (Resource monitoring stops when the CICS system stops or when the MAS view command is used to stop resource monitoring for the CICS system.) The retention period can be:
- 1 - 1440
 - Collected data is to be kept the specified number of minutes.
- 0
 - Collected data is not to be kept. |
| Real time analysis status | RTASTATUS | Indicates whether real time analysis (RTA) is active in this MAS. The valid values are:
- YES
 - System availability monitoring and MAS resource monitoring are active.
- NO
 - No RTA monitoring is active. If the MAS has just been initialized or has been updated to turn analysis on, NO is displayed until RTA is fully initialized.
- SAM
 - System availability monitoring is active.
- MRM
 - MAS resource monitoring is active.
- N_A
 - The MAS is not connected to its CMAS (the MAS Status field shows INACTIVE).
Note: For Real time analysis to become fully initialized the MAS must have a Real time analysis Specification associated with it. |
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real time analysis (RTA) trace flags</td>
<td>RTATRACE</td>
<td>The real time analysis trace flag settings. Alter trace flag settings only when asked to by IBM System Support center personnel.</td>
</tr>
<tr>
<td>Action for system availability monitoring event</td>
<td>SAMACTION</td>
<td>The name of the action definition to be used when generating notification about the named condition. Specify inherit to derive the action definition action from the analysis specification.</td>
</tr>
<tr>
<td>Severity for system availability monitoring event</td>
<td>SAMSEV</td>
<td>The severity level that is to be associated with the named condition. The severity codes are: VLS, LS, LW, HW, HS, or VHS. Specify N_A to exclude this condition from monitoring.</td>
</tr>
<tr>
<td>Action for system dump event</td>
<td>SDMACTION</td>
<td>The name of the action definition to be used when generating notification about the named condition. Specify inherit to derive the action definition action from the analysis specification.</td>
</tr>
<tr>
<td>Severity for system dump event</td>
<td>SDMSEV</td>
<td>The severity level that is to be associated with the named condition. The severity codes are: VLS, LS, LW, HW, HS, or VHS. Specify N_A to exclude this condition from monitoring.</td>
</tr>
</tbody>
</table>
| Simulated security exemption check | SECBYPASS | Indicates whether all simulated CICS security checking is to be bypassed for this CICS system:
 • YES - Bypass all simulated CICS security checking for this CICS system.
 • NO - Do not bypass simulated CICS security checking for this CICS system.
 • INHERIT (asterisk) - Use the value assigned to the CICSpix with which this CICS system is associated.
 • N_A - Not applicable. |
| Simulated security command check | SECCMDCHK | Indicates whether or not CICSPlex SM security checking is to simulate CICS command checking for this CICS system. Specify:
 • YES - Simulate CICS security checking for this CICS system.
 • NO - Do not simulate CICS security checking for this CICS system.
 • INHERIT - Use the value assigned to the CICSpix with which this CICS system is associated.
 • N_A - Not applicable. |
| Simulated security resource check | SECRESCHK | Indicates whether CICSPlex SM security checking is to simulate CICS command checking for this CICS system. Specify:
 • YES - Simulate CICS security checking for this CICS system.
 • NO - Do not simulate CICS security checking for this CICS system.
 • INHERIT (asterisk) - Use the value assigned to the CICSpix with which this CICS system is associated.
 • N_A - Not applicable. |
<p>| Action for short on storage (SOS) event | SOSACTION | The name of the action definition to be used when generating notification about the named condition. Specify inherit to derive the action definition action from the analysis specification. |
| Severity for short on storage (SOS) event | SOSSEV | The severity level that is to be associated with the named condition. The severity codes are: VLS, LS, LW, HW, HS, or VHS. Specify N_A to exclude this condition from monitoring. |
| Common services trace flags | SRVTRACE | The external services trace flag settings. Alter trace flag settings only when asked to by IBM System Support center personnel. |
| Action for CICS-stalled event | STLACTION | The name of the action definition to be used when generating notification about the named condition. Specify inherit to derive the action definition action from the analysis specification. |
| Severity for CICS-stalled event | STLSEV | The severity level that is to be associated with the named condition. The severity codes are: VLS, LS, LW, HW, HS, or VHS. Specify N_A to exclude this condition from monitoring. |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action for transaction dump event</td>
<td>TDMACTION</td>
<td>The name of the action definition to be used when generating notification about the named condition. Specify inherit to derive the action definition action from the analysis specification.</td>
</tr>
<tr>
<td>Severity for transaction dump event</td>
<td>TDMSEV</td>
<td>The severity level that is to be associated with the named condition. The severity codes are: VLS, LS, LW, HW, HS, or VHS. Specify N_A to exclude this condition from monitoring.</td>
</tr>
<tr>
<td>Sample interval for TDQ monitoring</td>
<td>TDQSAMP</td>
<td>The number of seconds in the range 1 - 86400 that CICSPlex SM is to wait between requests to collect sample data for the named type of monitoring. A value of 0 means that no resource monitoring is to occur.</td>
</tr>
<tr>
<td>Sample interval for terminal monitoring</td>
<td>TERMSAMP</td>
<td>The number of seconds in the range 1 - 86400 that CICSPlex SM is to wait between requests to collect sample data for the named type of monitoring. A value of 0 means that no resource monitoring is to occur.</td>
</tr>
</tbody>
</table>
| Time zone | TMEZONE | The time zone in which this CICS system is located. Specify:
• A code in the range B through Z.
• INHERIT - Inherit the time zone offset assigned to the CMAS to which this CICS system is connected, or the primary CMAS, if the CICS system is inactive.
Note: If you specify * (asterisk) for any one of the time fields, you must specify asterisk for all three time fields.|
| Time zone offset | TMEZONEO | The adjustment value that is to be applied to the computed time. This value is used to resolve time references in areas that do not use a standard zone. Specify:
• A value between 0 and 59 to identify the number of minutes to be added to the time for that time zone (for areas that do not use a standard time zone).
• INHERIT - Inherit the time zone offset assigned to the CMAS to which this CICS system is connected, or the primary CMAS, if the CICS system is inactive |
| RS server top tier | TOPRSUPD | This attribute applies to CICSPlex SM sysplex optimized workloads. If the MAS is not at a sufficiently high enough release to support sysplex optimized workloads, then this value will contain zero, and will not be changeable to any other value.
If the MAS is at high enough release for optimized workload support, then the following help explanation applies:
For sysplex optimized workloads, this value is converted from a task load percentage to an actual task count. That count will be subtracted from the MAXTASK value for the region to determine top tier task load range.
The value range is from 1 to 25, or INHERIT.
• A value of INHERIT means assign the value that is specified for this attribute in the parent CICSPlex definition (CPLEXDEF) object for this CICS region. This is the default setting for this attribute.
• Values between 1 and 25 are applied as an arithmetic percentage to a region's MAXTASKS setting. The resultant task count value is subtracted from the region's MAXTASKS setting to establish a task load top tier. If the task load in a region runs up to its MAXTASKS limit, then the task load must drop back below this value before the MAXTASKS state for the region is switched off and broadcast to the coupling facility.
The default value is 5%. You may change this value here to dynamically change the value assigned to the current CICS region. If you want the change to be applied to this CICS region after it has been restarted, then you must also change this value in the CICS system definition panel.
You should only change this value after giving consideration to the impact that the change may have on your workload and coupling facility throughput. |

Appendix B. History Views 139
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topology trace flags</td>
<td>TOPTRACE</td>
<td>The topology trace flag settings. Alter trace flag settings only when asked to by IBM System Support center personnel.</td>
</tr>
<tr>
<td>Sample interval for transaction monitoring</td>
<td>TRANSAMP</td>
<td>The number of seconds in the range 1 - 86400 that CICSPlex SM is to wait between requests to collect sample data for the named type of monitoring. A value of 0 means that no resource monitoring is to occur.</td>
</tr>
<tr>
<td>Trace services trace flags</td>
<td>TRATRACE</td>
<td>The trace services trace flag settings. Alter trace flag settings only when asked to by IBM System Support center personnel.</td>
</tr>
<tr>
<td>RS server update frequency</td>
<td>UPDATERS</td>
<td>This attribute applies to CICSPlex SM sysplex optimized workloads. If the MAS is not at a sufficiently high enough release to support sysplex optimized workloads, then this value will contain zero, and will not be changeable to any other value. If the MAS is at high enough release for optimized workload support, then the following help explanation applies: Within a workload running in optimized mode, this value specifies the frequency with which the CICS CFDT (RS) server will be called to modify the value of the task load within a target CICS region. This is the current value used by this CICS region. The value range is from 0 to 25: • A value of 0 means that the RS server is not notified of any task load count changes, which disables the optimized workload function for this CICS region. • Values between 1 and 25 are applied as an arithmetic percentage to a region’s MAXTASKS setting. The resultant task count value is used as a numeric threshold to drive an update call to the RS server. For example, with a MAXTASKS setting of 120, and with this attribute set to 20, the RS server will be called to update the WLM load count when the regions task count changes between: • 23 and 24 tasks - (20%), • 47 and 48 tasks - (40%), • 71 and 72 tasks - (60%), • 95 and 96 tasks - (80%), • 119 and 120 tasks - (100%). The RS server would be updated when a regions task load increments or decrements across these boundaries. If you specify a value that is at the lower end of the 1-25 scale, then that will cause an increase in the frequency of updates to the RS server across its task load range. For workloads in QUEUE mode, this will result in a task load more evenly balanced across the CICS regions in the workload target scope (assuming all other health and link factors are equal). However, the utilization of the RS server will be correspondingly increased, which may consequently result in a higher utilization of your coupling facility. You may change this value here to dynamically change the value assigned to the current CICS region. If you want the change to be applied to this CICS region after it has been restarted, then you must also change this value in the CICS System definition panel.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>WLM optimization enablement</td>
<td>WLMOPTEN</td>
<td>This attribute shows if optimized workload routing is enabled. When set to ENABLED, this region can utilize optimized workload management. If this attribute is set to DISABLED, then optimized workload management is suppressed. The value can be changed to dynamically alter the value assigned to the current CICS region. If this change is to be applied to this CICS region after it has been restarted, then you must also change this value in the CICS System definitions panel.</td>
</tr>
</tbody>
</table>
| Task load queue mode | WLMQMODE | This attribute is used by CICSPlex SM Workload Manager and applies to target regions. This value specifies how the queued task load of a target CICS region is to be evaluated:
 - **MAXTASK** - specifies that both active and MAXTASK queued tasks are to be included in the task load evaluation for the region.
 - **ALL** - specifies that the task load evaluation for the region will include active tasks, tasks queued for the MAXTASK limit and tasks that are queued because of a TRANCLASS limit.
 The default value is **ALL**.
 If this value specifies **N_A**, then the current MAS is not at a high enough CICS release to support this function, and you will not be able to change it to any other value.
 You may change this value here to dynamically change the value assigned to the current CICS region. If you want the change to be applied to this CICS region after it has been restarted, then you must also change this value in the CICS System definition panel. |
| Workload manager status | WLMSTATUS | Indicates whether the workload manager (WLM) is active in this MAS. The valid values are:
 - **YES**
 - The workload manager (WLM) is active in this MAS.
 - **NO**
 - The workload manager (WLM) is inactive in this MAS. If the MAS has just been initialized or has been updated to turn workload management on, this value is displayed until WLM is fully initialized.
 - **N_A**
 - The MAS is not connected to its CMAS (the MAS Status field shows INACTIVE).
 Note: For the workload manager to become fully initialized the MAS must have a workload manager Specification associated with it. |
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task load health threshold</td>
<td>WLMTHRHSH</td>
<td>This attribute is used by CICSPlex SM Workload Manager. It specifies a percentage threshold of the current region's task load, which is calculated by dividing the current task count by the maximum task count. When the load for a target region reaches this threshold, then WLM considers the region to be relatively unhealthy. This will cause higher link weights to be applied to the WLM routing algorithm when evaluating this region. When a target scope covers local and remote regions relative to the router, then WLM will favour local targets over remote ones. The effect of this attribute is that when this load threshold in the local regions is achieved, then WLM will start to favour remote targets instead. When all targets in the scope achieve this load threshold, then WLM will revert to favouring local targets again. The value range is from 1 to 100, and the default value is 60. If this value specifies 0, then the current MAS is not at a high enough CICS release to support this function, and you will not be able to change it to any other value. Note: this value is nullified when applied to the routing factor of link neutral dynamic routing requests. This is because the link weight itself is ignored for the LNQUEUE and LNGOAL algorithms. You may change this value here to dynamically change the value assigned to the current CICS region. If you want the change to be applied to this CICS region after it has been restarted, then you must also change this value in the CICS System definition panel.</td>
</tr>
<tr>
<td>Workload management trace flags</td>
<td>WLMTRACE</td>
<td>The workload management trace flag settings. Alter trace flag settings only when asked to by IBM System Support center personnel.</td>
</tr>
</tbody>
</table>
Appendix C. Generic alert and resolution structures

This appendix describes the structure of SNA generic alerts and resolutions as they are used by CICSplex SM.

The generic alert structure

The CICSplex SM Alert MS major vector contains generic alert information in a number of subvectors. The CICSplex SM Alert MS major vector contains the following subvectors.

"Generic Alert Data" (X'92') MS subvector
This identifies the Alert Description code as "IMPENDING PROBLEM: THRESHOLD HAS BEEN REACHED" (X'4012').

"Probable Causes" (X'93') MS subvector
This identifies a single code point specifying "PERFORMANCE DEGRADED" (X'4000').

"Cause Undetermined" (X'97') MS subvector
This contains:

- A "Recommended Actions" (X'81') common subfield. This identifies one code point specifying "REVIEW" (X'00A1').
- Two "Detailed Data" (X'82') common subfields containing:
 1. Data ID of "THRESHOLD PARAMETER" (X'7111'), with EBCDIC encoding. The contents are dependant on the ALERTVER CMAS System Parameter (EYUPARM) used by the CMAS identified in the ACTNDEF associated with the event.
 ALERTVER(0) and ALERTVER(1) records contain the following characters:
 0-2
 Creator (SAM] MRM] APM)
 3-5
 RTA Event Severity (VLS | VLW | LW | HW | HS | VHS)
 6-13
 RTA Event name (RTADEF name |STATDEF name | !!SAMxxx)
 2. Data ID of "PROBLEM DATA" (X'F511'), with EBCDIC encoding, containing the following characters:
 0-29
 The text of the "Enter Msg" from the action definition (ACTNDEF)
 ALERTVER(1) records also contain the following:
 14-16
 Alert Version (001)
 17-19
 Priority (001-255)
 20-27
 Sequence
 28-29
 Evaluation Logical Operator (GT | GE | EQ | NE | LE | LT)
 – Data is only available for RTADEF events. The field contains spaces for STATDEF and SAM events.
 30-32
 Evaluation Type (VAL | THR) - VALuation or THReshold.
- Data is only available for RTADEF events. The field contains spaces for STATDEF and SAM events.

33-44
Evaluation Resource Table Attribute
- Data is only available for RTADEF events. The field contains spaces for STATDEF and SAM events.

45-88
Evaluation Data
- Data is only available for RTADEF events which have an Evaluation Type of VAL. The field contains spaces for all other events.

89-132
Evaluation Last Evaluated Data
- Data is only available for RTADEF events. The field contains spaces for STATDEF and SAM events.

"**Product Set ID**" (X'10') MS common subvector
- A "Product ID" (X'11') common subvector that identifies the product as IBM® Software (X'04') and contains:
 - A "Product Number" (X'08') Product ID subfield that identifies the product number as 5655S97.
 - A "Product Common Name" (X'06') Product ID subfield that identifies the common name as CICSplex SM.
 - A "Product Common Level" (X'04') Product ID subfield that identifies the version, release, and modification levels.

"**Hierarchy/Resource List**" (X'05') MS common subvector
- This contains:
 - A "Hierarchy Name List" (X'10') Hierarchy/Resource List subfield, which contains the following list elements:

<table>
<thead>
<tr>
<th>Element</th>
<th>Resource Type</th>
<th>Resource Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Service point (X'81')</td>
<td>RTA CONTEXT</td>
</tr>
<tr>
<td>2</td>
<td>Unspecified device (X'00')</td>
<td>RTA SCOPE</td>
</tr>
<tr>
<td>3</td>
<td>Unspecified device (X'00')</td>
<td>RTA RESOURCE TYPE or SAM EVENT NAME</td>
</tr>
</tbody>
</table>

- An "Associated Resource List" (X'11') subfield, which contains a 16-character EBCDIC resource name that identifies either the event name or the instance key from the CICSplex SM resource table associated with the event. For SAM events the "Associated Resource List" is set as follows:

!!SAMMAX, !!SAMOPS or !!SAMNRM
- blank
!!SAMDMM
The 6-character system dump code
!!SAMSOS
The character DSA name or SOS location
!!SAMSTL
The character stall reason
!!SAMDMD

CCCCTTTTUUUUUUUUU, where CCCC is the 4-character transaction dump code, TTTT is the 4-character transaction dump name and UUUUUUUU is the User Id associated with the dumping task.
"Incident Identification" (X'4A') MS common subvector
This contains an "Incident Identification" (X'01') Incident Identification subfield. This uses encoding type X'01'. The fields are as follows:

Field
 Contents; Length

Netid:
 Periods; 8 characters

Network addressable unit:
 APPLID of the originating CMAS; 8 characters

Application name:
 CICSplex name; 8 characters

Unique id:
 CMAS name concatenated with GMT timestamp; 16 characters

The resolution structure
The Resolution (X'0002') MS major vector has the same structure as the Alert MS major vector, except for two "Detailed Data" common subfields of the "Cause Undetermined" MS subvector:

- the first "Detailed Data" common subfield of the "Cause Undetermined" MS subvector always contains spaces in the "Evaluation Last Evaluated Data" (89-132) field of the ALERTVER(1) version of the record.
- the second of the two "Detailed Data" common subfields of the "Cause Undetermined" MS subvector contains the text of the "Exit Msg" from the action definition rather than the "Enter Msg" text.
Notices

This information was developed for products and services offered in the U.S.A. This material might be available from IBM in other languages. However, you may be required to own a copy of the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property rights may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US
Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Programming interface information

CICS supplies some documentation that can be considered to be Programming Interfaces, and some documentation that cannot be considered to be a Programming Interface.

Programming Interfaces that allow the customer to write programs to obtain the services of CICS Transaction Server for z/OS, Version 5 Release 4 are included in the following sections of the online product documentation:

- Developing applications
- Developing system programs
- Securing overview
- Developing for external interfaces
- Reference: application development
- Reference: system programming
- Reference: connectivity

Information that is NOT intended to be used as a Programming Interface of CICS Transaction Server for z/OS, Version 5 Release 4, but that might be misconstrued as Programming Interfaces, is included in the following sections of the online product documentation:

- Troubleshooting and support
- Reference: diagnostics

If you access the CICS documentation in manuals in PDF format, Programming Interfaces that allow the customer to write programs to obtain the services of CICS Transaction Server for z/OS, Version 5 Release 4 are included in the following manuals:

- Application Programming Guide and Application Programming Reference
- Business Transaction Services
- Customization Guide
• C++ OO Class Libraries
• Debugging Tools Interfaces Reference
• Distributed Transaction Programming Guide
• External Interfaces Guide
• Front End Programming Interface Guide
• IMS Database Control Guide
• Installation Guide
• Security Guide
• Supplied Transactions
• CICSPlex SM Managing Workloads
• CICSPlex SM Managing Resource Usage
• CICSPlex SM Application Programming Guide and Application Programming Reference
• Java Applications in CICS

If you access the CICS documentation in manuals in PDF format, information that is NOT intended to be used as a Programming Interface of CICS Transaction Server for z/OS, Version 5 Release 4, but that might be misconstrued as Programming Interfaces, is included in the following manuals:

• Data Areas
• Diagnosis Reference
• Problem Determination Guide
• CICSPlex SM Problem Determination Guide

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Spring Boot is a trademark of Pivotal Software, Inc. in the U.S. and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.
Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices are preserved. You may not distribute, display or make derivative work of these publications, or any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display these publications or any portion thereof outside your enterprise, without the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied, to the publications or any information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM online privacy statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies or other technologies to collect product usage information, to help improve the end user experience, to tailor interactions with the end user or for other purposes. In many cases no personally identifiable information is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect personally identifiable information. If this Software Offering uses cookies to collect personally identifiable information, specific information about this offering’s use of cookies is set forth below:

For the CICSPlex SM Web User Interface (main interface):
Depending upon the configurations deployed, this Software Offering may use session and persistent cookies that collect each user’s user name and other personally identifiable information for purposes of session management, authentication, enhanced user usability, or other usage tracking or functional purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface (data interface):
Depending upon the configurations deployed, this Software Offering may use session cookies that collect each user's user name and other personally identifiable information for purposes of session management, authentication, or other usage tracking or functional purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface ("hello world" page):
Depending upon the configurations deployed, this Software Offering may use session cookies that collect no personally identifiable information. These cookies cannot be disabled.

For CICS Explorer®:
Depending upon the configurations deployed, this Software Offering may use session and persistent preferences that collect each user’s user name and password, for purposes of session management, authentication, and single sign-on configuration. These preferences cannot be disabled, although storing a user's password on disk in encrypted form can only be enabled by the user's explicit action to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you, as customer, the ability to collect personally identifiable information from end users via cookies and other technologies, you should seek your own legal advice about any laws applicable to such data collection, including any requirements for notice and consent.
For more information about the use of various technologies, including cookies, for these purposes, see IBM Privacy Policy and IBM Online Privacy Statement, the section entitled "Cookies, Web Beacons and Other Technologies" and the IBM Software Products and Software-as-a-Service Privacy Statement.
A
accessing views
for real-time analysis 19
for resource monitoring 83
action definition
creating 19, 38, 41, 46
creating and updating 19
Action definition view 19
ACTION object 19
activating real-time analysis 30
activating resource monitoring 75
active monitor specifications view 83
Active tasks detailed view requirement 80
administration views
real-time analysis 19
resource monitoring 83
alerts to NetView
structure of 143
analysis definition
installing into an analysis point 24
analysis definitions
creating 23, 41, 47
analysis definitions in analysis groups 28
analysis group
adding association to analysis specifications 26
in analysis point specifications 27
in analysis specifications 28
installing into an analysis point 27
analysis point specification
creating 20
analysis point specifications
associating with a CMAS 20
associating with a primary CMAS 20
associating with a secondary CMAS 20
analysis specification
adding scope 31
associated CICS system groups 29
associated CICS systems 29
creating 30
analysis specifications
associated with analysis groups 28
associating with an RTA group 25
creating 42, 44
APACTV view 97
APSPEC object 20
associating objects
analysis group with analysis specification 26
monitor definition with monitor group 87, 90
monitor group with monitor specification 85, 90
scope
to monitor specification 84
CICS system (continued)
resource monitoring association (continued)
adding 84
changing 88
displaying 88
removing 89
CICS system group
creating 39
resource monitoring association
adding 84
changing 88, 89
creating 88, 89
displaying 89
removing 89, 90
CICSPlex
monitor interval
description of 78
when retaining data 80
monitoring resources 73
CICSPlex SM
collection with CICS monitoring 80
statistics collection 80
CMAS
primary CMAS analysis point specifications 20
secondary CMAS analysis point specifications 20
CMDMPAPS object 20
CMDMSAPS object 20
collect statistics (CICS command) 80
Completed task (history) views
general (HTASK) 105
creating objects
analysis specification 30
monitor definition 86
monitor definition to group link 87
monitor group 85
monitor group to specification link 85
monitor specification 84
scope association
with monitor specification 88, 89
D
deactivating history collection 78
deactivating history recording 78
derived value
description of 80
discard monitor definitions 83
displaying objects
action definitions 19
analysis groups
associated with analysis definitions 28, 34
associated with analysis point specifications 27
associated with status definitions 28, 34
analysis point specifications 20
analysis specifications
associated with analysis groups 28
monitor definitions

displaying objects (continued)
 monitor definitions (continued)
 associated with monitor groups 90
 monitor groups
 associated with monitor specifications 90
 monitor specifications 84
 RTA definitions 23
 scope
 for analysis specifications 29
 for monitor specifications 88, 89

E

EVALDEF object 20
evaluation definition
 creating 40
evaluation definitions
 creating 20
evaluation definition
 creating 20
 filter expressions 20
 modification expressions 22
EVENT view 98
example tasks
 real-time analysis
 change default actions for SAM 38
deaactivate an analysis definition 58
issue one notification for multiple conditions 61, 65
monitor multiple resource types in CICS system group 51, 54
monitor resource temporarily 39
monitor resource type in single CICS system 48
monitor resource type throughout CICSplex 49
monitor resources permanently 43
reuse analysis specifications and analysis groups 45
switch SAM on for a MAS 37
update analysis and evaluation definitions 58
use data from resource monitoring 59
resource monitoring
 monitor programs in multiple CICS systems 93
 monitor transaction response times 91
 which resources being monitored in a CICS system 96

F
filter expressions 20

G
generic alert
 structure used by CICSPlex SM 143

H
history collection 78
history recording 78
HTASK view 105

I
inheriting specifications (continued)
inheriting specifications (continued)
 when adding scope to
 analysis specification 32
 monitor specification 85
 when changing scope for
 analysis specification 85
 when removing scope from
 analysis specification 34
Installed analysis definitions associated with an analysis point specification views
 general (APACTV) 97
installing objects
 analysis definition into analysis point 24
 analysis group into analysis point 27
 monitor definition 87
 monitor group 86

L
LNKSMSCG object 89
LNKSMSCS view 88
LNKSRSCG object 29
LNKSRSCS object 29

M
managing the RTA environment 4
MAS history views
 general (MASHIST) 130
 MAS view 132
 MASHIST view 130
 MASs known to CICSPlex views
 general (MAS) 132
 modification expression 22
 modifying CICS resources 15
 MONACTV (see POLMON view) 83
 MONGROUP object 85
 MONINGRP object 90
 MONINSPC object 90
 Monitor data for local or dynamic transactions view
data requirement 80
monitor definition
 associating with monitor group 87, 90
 CICSPlex SM created 82
 CICSPlexÂ® SM created 86
 creating 86
 creating using Web User Interface 91, 94
description of 73
discarding 83
displaying
 associated with monitor group 90
default 82
installing
 directly 87
 via monitor groups 86
Monitor definitions in groups view
monitor definitions view 86
monitor group
 adding monitor definitions to 87, 90
 associating with monitor specification 85, 90
 creating 85
 creating using Web User Interface 94
description of 73
removing objects (continued)
association between (continued)
scope and analysis specification 33

resource monitoring
comparison to CICS 80
defining attributes 73
description of 73
example tasks
monitor programs in multiple CICS systems 93
monitor transaction response times 91
which resources being monitored in a CICS system 96

monitor interval
description of 78
when retaining data 80

overriding monitor specification 78
retention period setting
description of 80
for collected data 80
overriding 78
when CICSPlex active 80
sample interval setting
description of 78
overriding 78
requirement 75

resource monitoring views
accessing 83
Active monitor specifications 83
MONDEF object 86
Monitor definitions in groups 90
Monitor groups 85
Monitor groups in monitor specifications 90
Monitor specifications 84
Monitor specifications to CICS system links 88
Monitor specifications to system group links 89
relationship to definitions 81

resources, CICS
modifying the state of 15
retention period
description of 80
for collected data 80
overriding 78

RTA (real-time analysis)
activating
analysis point monitoring 13
MAS resource monitoring 13
system availability monitoring 11
example tasks
change default actions for SAM 38
deactivate an analysis definition 58
issue one notification for multiple conditions 61, 65
monitor multiple resource types in CICS system group 51, 54
monitor resource type in single CICS system 48
monitor resource type throughout CICSpex 49
monitor resources permanently 43
monitor resources temporarily 39
reuse analysis specifications and analysis groups 45
switch SAM on for a MAS 37
update analysis and evaluation definitions 58
use data from resource monitoring 59

status program
creating 69

RTA (real-time analysis) (continued)
status program (continued)
identifying to CICSpex SM 70
installing 70

RTA analysis point specifications view 20
RTA definitions
associated with RTA groups 28
creating 23, 41, 47
RTA definitions in RTA groups view 28
RTA definitions view 23
RTA environment, managing 4
RTA group
in analysis point specifications 27
removing an analysis point specification association 27
RTA group in analysis point specifications view 27
RTA groups
associated with RTA definitions 28
associated with status definitions 34
creating 25
RTA groups in RTA specifications view 28
RTA groups view 25
RTA outstanding events views
general (EVENT) 98

RTA specification
associated CICS system groups 29
associated CICS systems 29
RTA specifications
associated with RTA groups 28
creating 30
RTA specifications to CICS system group links view 29
RTA specifications to CICS system links view 29
RTA specifications view 30
RTA views
Web User Interface 1
RTA ACTV view 102
RTADEF object 23
RTAGROUP object 25
RTAINAPS object 27
RTAINGRP object 28
RTAINSPC object 28
RTASPEC object 30

S

sample interval
description of 78
overriding 78
requirement 75

scope
associating
to analysis specification 31
to monitor specification 84
changing
for monitor specification 88, 89
creating
for monitor specification 88, 89
displaying
for analysis specifications 29
for monitor specifications 88, 89
removing
from analysis specification 33
from monitor specification 89, 90

secondary CMAS analysis point specifications view 20

SET MONITOR (CICS command) 80
STAINGRP object 34
STALL condition 8
STATDEF object 34
statistics collected 80
status definitions
 associated with RTA groups 34
status definitions in analysis groups 34
Status probe definitions
 creating 34
status program
 creating 69
 identifying to CICSPlex SM 70
 installing 70
summary of views
 for creating definitions 1, 5
 for managing the RTA environment 4
switching on monitoring
 using the Web User Interface 95
T
tasks, example
 real-time analysis
 change default actions for SAM 38
 deactivate an analysis definition 58
 issue one notification for multiple conditions 61, 65
 monitor multiple resource types in CICS system group 51, 54
 monitor resource temporarily 39
 monitor resource type in single CICS system 48
 monitor resource type throughout CICSPlex 49
 monitor resources permanently 43
 reuse analysis specifications and analysis groups 45
 switch SAM on for a MAS 37
 update analysis and evaluation definitions 58
 use data from resource monitoring 59
resource monitoring
 monitor programs in multiple CICS systems 93
 monitor transaction response times 91
 which resources being monitored in a CICS system 96
time period definitions
 creating 43
time-period definition
 associating with monitor definition 87, 90
description of 78
U
updating objects
 scope association
 with monitor specification 88, 89
V
view
 summary of
 for creating definitions 1, 5
 for managing the RTA environment 4