CICSPlex SM Managing Workloads

Version 5 Release 4
Contents

About this PDF. ... v

Chapter 1. Configuring workload management. 1

 - Introduction to workload management 1
 - Workload management and dynamic routing ... 1
 - Workload requirements 2

 - Establishing a workload 3
 - Management of the work in a workload 4
 - Separating the work in a workload 7
 - Taking affinity relations into consideration .. 12

 - Activating workload management 15

Chapter 2. Configuring dynamic routing 19

 - Dynamic routing with CICSplex SM 19
 - CICS release requirements for dynamic routing 20
 - Sample source programs and copy books 21
 - Optimized dynamic workload routing
 implementation 21
 - Modifying dynamic routing 30
 - CICSplex SM data areas 38
 - Creating a user-replacement module for
 EYU9WRAM 38
 - Requesting additional dynamic routing support 38
 - How to start CICSplex SM workload
 management 39
 - Processing considerations 40
 - Sample calling sequence 42

Chapter 3. Administering workloads with CICSplex SM. 45

 - Workload management definitions and their related views 45
 - Creating workload management definitions using the WUI 50
 - Creating a workload specification 50
 - Creating a transaction group 52
 - Creating a workload definition 53
 - Creating a workload group 55
 - About workload view route fields 56
 - Managing workloads 58
 - What is workload management? 58
 - Workload management resources 71
 - Planning for WLM 73
 - Implementing WLM 75
 - Example tasks 78
 - Managing a workload 79
 - How to establish an optimized workload 81

 - Adding a region to an existing target region
 scope ... 92
 - Removing a region from a target region scope 92
 - Adding a routing region to an active workload 93
 - Quiescing a target region in an active workload 94
 - Routing a specific transaction to a specific target region 94
 - Routing particular transactions from a given user
 to a specific target region 96
 - Honoring a pseudoconversational transaction 97
 - Deactivating a workload definition 99
 - Updating an active workload definition 99
 - Discarding an active transaction from a workload 100
 - Updating a workload specification 101
 - Using real-time analysis to select a target region
 for workload routing 101
 - Dynamic routing with EXEC CICS START
 TERMID ... 105
 - Dynamic routing of an inbound client DPL
 request ... 107
 - Dynamic routing of a peer-to-peer DPL request 109
 - Routing CICS BTS activities 110
 - Separating CICS BTS activities 111
 - Managing a Link3270 bridge workload 113

Chapter 4. Active workload views. 119

 - Active workloads - WLMAWORK 119
 - Active routing regions - WLMAWTOR 123
 - Active workload target distribution factors
 - WLMAWAOR 125
 - Active target regions - WLMATARG 133
 - Definitions - WLMAWDEF 141
 - Transaction groups - WLMATGRP 142
 - Dynamic transactions - WLMATRAN 145
 - Transaction group affinities - WLMAAFF 146
 - Complete active routing region details
 - WLMAROUT 148

Chapter 5. CICSplex SM API sample programs. 151

 - EYU#API1 .. 151
 - EYUCAPI2 .. 154
 - EYUAAPI3 .. 160
 - EYULAPI4 .. 174

Notices. ... 185

Index. ... 191
About this PDF

This PDF provides administration information for the CICSplex® SM component of CICS® Transaction Server for z/OS®. It describes how to establish and maintain the CICSplex SM definitions necessary to perform workload management.

For details of the terms and notation used, see Conventions and terminology used in the CICS documentation in IBM® Knowledge Center.

Date of this PDF

This PDF was created on June 20th 2019.
Chapter 1. Configuring workload management

CICSPlex SM workload management optimizes processor capacity in your enterprise by dynamically routing transactions and programs to whichever CICS region is the most appropriate at the time, taking into account any transaction affinities that exist.

Introduction to workload management

This section introduces the concepts involved with workload management and the dynamic routing of transactions and programs.

Workload management and dynamic routing

CICSPlex SM workload management optimizes processor capacity in your enterprise.

Workload management achieves this by dynamically routing transactions and programs to whichever CICS region is the most appropriate at the time, taking into account any transaction affinities that exist. Workload management can dynamically route:

- Transactions invoked at a terminal
- Eligible transactions invoked using `EXEC CICS START` commands that are associated with a terminal
- Eligible transactions invoked using `EXEC CICS START` commands that are not associated with a terminal
- Distributed program links (DPL), including:
 - EXCI calls
 - CICS Transaction Gateway ECI calls
 - Open Network Computing (ONC) remote procedure calls (RPCs)
 - Any function that issues an `EXEC CICS LINK PROGRAM` request
 - Link3270 requests
- Transactions associated with CICS business transaction services (BTS) activities.

Alternatively, if you want work to run always in a specified region, you can use static routing.

The CICS systems involved in dynamic routing may act as one of the following:

Requesting region

The CICS system where the request is initiated. For terminal-initiated transactions and for inbound client DPLs, the requesting region is typically a terminal-owning region (TOR); for terminal-related `EXEC CICS START` commands, for non-terminal-related `EXEC CICS START` commands, for peer-to-peer DPLs, for CICS BTS activities, and for Link3270 bridge requests, the requesting region is typically an application-owning region (AOR).

Routing region

The CICS region that decides where to route the transaction or program. For terminal-initiated transactions and terminal-associated `EXEC CICS START` commands, the routing region is typically a TOR; for DPLs, for
non-terminal-related **EXEC CICS START** commands, and CICS BTS activities, and for Link3270 bridge requests, the routing region is typically an AOR.

Target region

The CICS system in which the transaction or program will run. For all dynamically-routed transactions, programs, and BTS activities, the target region is typically an AOR.

The routing can be based on:

- User, terminal, processtype, and affinity attributes associated with the work requests, which may be the transactions, programs, or BTS processes and activities
- The work requests themselves

When you establish a workload, you are associating the work itself and the CICS systems (acting as requesting, routing, and target regions), to form a single, dynamic entity. Within this entity, you can route the work:

- To a target region selected on the basis of its availability. This type of routing, known as **workload balancing**, allows you to balance work activity across all of the target regions associated with a workload. See “Management of the work in a workload” on page 4 for additional information.
- To a subset of the target regions based on specific criteria. This type of routing, known as **workload separation**, allows you to separate transaction and program occurrences and direct them to different target region subsets, where activity is balanced across the target regions within the subset.

 The criteria you use to separate transactions or programs can be based on:
 - The terminal ID and user ID associated with a transaction or program occurrence.
 - The process type associated with the CICS BTS activity.
 - The transaction.

 See “Separating the work in a workload” on page 7 for additional information.

- To a selected target region based on its affinity relationship and lifetime. This type of routing, based on the **transaction affinity** of the target region, allows you to route specific transaction occurrences to the same target region for a designated period of time. For additional information, see “Taking affinity relations into consideration” on page 12.

Workload routing and workload separation can be active concurrently in the same or different workloads associated with a CICSp lex.

Note:

1. You can use the CICSPlex SM real-time analysis functions to produce data that will help in the selection of a target region during workload management. See Using real-time analysis to select a target region for workload routing for details.

2. For additional information about how CICSPlex SM handles dynamic routing and how you can customize this facility, see “Dynamic routing with CICSPlex SM” on page 19.

Workload requirements

Any CICS system can act as a requesting region, a routing region, or a target region, under certain conditions.
• All the CICS systems associated with a workload are either part of the same CICSpix, or, for BTS processes and activities, part of the same BTS-set. They do not have to reside in the same MVS™ image.

• For dynamic routing of both terminal-related and non-terminal-related EXEC CICS START commands, requesting, routing, and target regions must be a supported release of CICS Transaction Server.

• For dynamic routing of DPLs, routing regions must be a supported release of CICS Transaction Server; target regions can be any level of CICS.

• For CICS BTS activities, the routing region (which is also the requesting region) and the target region must be a supported release of CICS Transaction Server. They must also be in the same sysplex.

• For dynamic routing of transactions and static routing, the CICS system acting as the routing region must be running CICS Transaction Server. The CICS systems acting as target regions can be running any version of any CICS platform supported by CICSPlex SM.

• For dynamic routing of enterprise bean-related transactions, the CICS system acting as the routing region and the target region must be running a supported release of CICS Transaction Server.

• The routing region must be defined as local to a CMAS involved in managing the CICSpix. It must use CICSPlex SM facilities to communicate with that CMAS.

• For Link3270 bridge requests the target regions must be a supported release of CICS Transaction Server.

• The regions involved in workload management must have an in-service and ACQUIRED connection to each other.

A CICS system can act as a target region in one or more workloads; however, it can act as a routing region in only one workload.

Note: A CICS system can act as a routing region and a target region in the same workload.

When a CICS system acting as a target region is combined with other target regions to form a CICS system group, each of the target regions must have access to all the resources required by any transactions that might be routed to that CICS system group. In the case of a CICS BTS workload, they must all be in the same sysplex.

Establishing a workload

The criteria used to identify a workload are based on the information provided by a workload specification, one or more workload definitions and their optional transaction groups, and one or more workload groups.

• A workload specification identifies the CICS systems or CICS system groups in a CICSpix that are to be treated as routing regions and the default target regions. You can also use a workload specification to identify a default affinity relationship and lifetime.

A CICS region can be associated with none, or one, workload specification (WLMSPEC). For the CICS region to be a CICSPlex SM routing region, it must be associated with a workload. For the CICS region to be a CICSPlex SM target region, it depends on the type of routing being used:

− For dynamic routing, the target region is not associated with a workload (WLMSPEC). The target region can be a target for one or more workloads.
– For distributed routing, the target region must be associated with a workload (WLMSPEC). The target region can be a target for one workload.

If you currently use only dynamic routing, it is advisable that a target region is a target for only one workload. This simplifies the situation if you decide to implement distributed routing later.

The name of a workload specification becomes the name of the workload itself.

• A workload definition includes specific or generic terminal and user names, or a specific or generic process type, that are used when attempting to match a transaction occurrence to a workload definition. It also identifies the target region to which transaction occurrences matching the criteria are to be routed.

• A transaction group identifies one or more related transaction identifiers and indicates whether the terminal id or the user id specified in the workload definition is to be used as the primary selection criterion in determining which transactions are to be routed to the set of target regions identified in the workload definition. A transaction group is also used to define affinities.

• A workload group is a collection of workload definitions that are to be treated as a single entity.

Note: When no workload definitions are installed in a workload, all transactions and programs are routed to a target region in the default target scope identified by the workload specification. However, when a workload definition is installed in a workload, all transactions and programs that match the criteria in that workload definition are routed to a target region in the target scope identified by the definition itself. A dynamic routing request that is not associated with any workload definition is routed to a target region in the default target scope of the workload specification.

Management of the work in a workload

All dynamic transactions and programs that are initiated from a set of requesting regions can be routed by a routing region to a specific set of target regions in the same CICSp lex.

The specific target region to which each request is routed is determined by the activity and availability of all target regions in that set.

To establish workload routing, you need to define only a workload specification.

The dynamic routing processes are explained using [Figure 1 on page 5](#) which illustrates the Starter Set configuration. For dynamic transaction routing, any transaction initiated from a terminal associated with the requesting region EYUMASIA (a TOR) is routed to the most appropriate target region (an AOR) in the CICS system group EYUCSG01.
For dynamic routing of EXEC CICS START TRANSID TERMID commands, any transaction initiated in the requesting region EYUMAS2A (an AOR) is sent to EYUMAS1A (a TOR), the routing region associated with the terminal identified in the TERMID option of the START command. The routing region sends the transaction to the most appropriate target region (an AOR) in the CICS system group EYUCSG01.

For dynamic program linking, there are two possible scenarios. For an inbound client request, the request is received in TOR EYUMAS1A, which acts as the requesting region and the routing region. The target region is any AOR in the CICS system group EYUCSG01. For a peer-to-peer request, the request is initiated by a transaction running in EYUMAS2A (an AOR). EYUMAS2A acts as the routing region, and the target region may be any AOR in the CICS system group EYUCSG01.

Using the queue algorithm

During workload processing using the queue algorithm, CICSplex SM routes all transactions and programs initiated in the requesting region to the most appropriate target region in the designated set of target regions. See The queue algorithm

Using the link neutral queue algorithm

The link neutral queue (LNQUEUE) algorithm corresponds to the queue algorithm, except that the type of connection between the routing and target region is not considered. See The link neutral queue algorithm
Using the goal algorithm

CICSplex SM supports the z/OS goal algorithm. The goal algorithm selects the target region that is best able to meet the defined, average, or percentile response-time goals for all work in a workload.

The goal is defined by associating transactions, using the z/OS Workload Manager, to a service class. Service classes are assigned on a transaction, LU name, and user ID basis. Service classes can define several types of response-time goals. However, CICSplex SM recognizes average and percentile response-time goals only. If transactions are given velocity or discretionary goals, they are assumed to be meeting their goals. CICSplex SM manages at the service-class level; that is, it has no internal knowledge of the transaction characteristics. By consistently allocating service classes to sets of target regions, it minimizes the amount of resource reallocation by the z/OS Workload Manager.

You can use goal mode to provide efficient routing decisions, where routers and targets are managed by the same CMAS, in the following scenarios:

- Dynamic routing using DTRPGM for dynamic transactions
- Dynamic routing using DTRPGM for EXEC CICS START TERMID over APPC or MRO connections
- Distributed routing using DSRTPGM for business transaction service routing

For additional information about the goal algorithm, see The goal algorithm and z/OS MVS Planning: Workload Management.

The service level administrator must define goals that are realistic for the underlying capacity of the target systems. Transactions of like attributes (for example, transactions that have similar resource consumption, or pseudoconversational transactions) must be assigned to distinct service classes. The response-time goals can be the same for several service classes. Use CICS statistics to help you define these transaction sets. See Improving performance for information about CICS statistics.

Using the link neutral goal algorithm

The link neutral goal (LNGOAL) algorithm corresponds to the goal algorithm, except that the type of connection between the routing and target region is not considered. See The link neutral goal algorithm.

Control level for workload routing

To use workload routing, you must specify a default routing algorithm for the workload at the workload specification (WLMSPEC) level. You can optionally specify a routing algorithm at the transaction group (TRANGRP) level. An algorithm specified in a transaction group overrides the default algorithm that is associated with the workload specification.

The default routing algorithm is applied to every routed dynamic transaction in the workload, except those transactions that are associated with a transaction group that has a routing algorithm specified. You can specify one of the following routing algorithms:

- QUEUE
- LNQUEUE
• GOAL
• LNGOAL

To change the routing algorithm specified at the workload specification level, you must close down all regions that participate in the workload so that workload is refreshed with the new algorithm specification.

At the transaction group level, you can specify a routing algorithm dynamically. The specified dynamic routing algorithm is applied to every routed dynamic transaction that is associated with the transaction group. Therefore, you can apply an alternative routing algorithm to specific transaction codes in the same workload.

If you specify an alternative routing algorithm at the transaction group level, you can change workload routing characteristics for specific target regions dynamically without stopping your routing region. If you modify an installed transaction group, you must discard its associated WLM definition (WLMDEF) and then reinstall it, so that the transaction group named by the WLM definition is also refreshed. To change the routing algorithm type immediately without discarding and reinstalling the associated WLMDEF, you can use the Active workload transaction groups (WLMATGRP) views and the SET command to change the ALGTYPE attribute.

You can specify one of the following routing algorithms:
• INHERIT
• QUEUE
• LNQUEUE
• GOAL
• LNGOAL

INHERIT means that transaction group uses the routing algorithm that is associated with the workload specification for the workload.

Separating the work in a workload

You can separate the work in a workload using the name of the user, the terminal, or both that are associated with a transaction or program, the transaction itself, or the BTS process-type associated with the transaction.

You can separate a workload using either LU name and user ID, or process type. You cannot separate a workload using, for example, a generic process type and a user ID. Separation of enterprise bean workloads may be implemented only through the user ID.

Separating by terminal or user name

You can create a workload that routes requests from a set of requesting regions to different subsets of target regions based on the name of the terminal, user, or both associated with each occurrence of a transaction.

For example, you might want to route all requests initiated by certain individuals from specific terminals to a special subset of target regions.

Figure 2 on page 8 illustrates what such a workload might look like. In this case, if the user and terminal names associated with a transaction begin with SM and NET, respectively, the transaction is routed to the set of target regions identified as EYUCSG05. If either the user or terminal name begins with any other characters, the transaction is routed to the default set of target regions identified as...
During workload processing, CICSPlex SM evaluates the terminal and user names associated with each occurrence of a request to determine where the request should be routed.

- If the terminal and user names associated with the transaction match the selection criteria specified in an installed workload definition, the request is routed to the target regions identified in that definition.

- If either the terminal or user name does not match the selection criteria, the request is routed to the default set of target regions identified in the workload specification.

After determining the appropriate set of target regions, CICSPlex SM selects one based on the status of the active target regions in that set.

Separating by process type

You can create a CICS BTS workload that routes requests associated with a certain process type to a specific target region or set of target regions. For example, you may want to route all the requests associated with the STOCK process type to a special subset of target regions.

[Figure 3 on page 9] illustrates what such a workload might look like, if the process type associated with a CICS BTS transaction is STOCK, the transaction is routed to a set of target regions identified as EYUCSG05. If the process type is anything other than STOCK, the transaction is routed to the default set of target regions identified as EYUCSG01 in the workload specification.
If you choose to separate a workload by process type, you must set the Luname and Userid fields to *. If you separate a workload by LU name and user ID, you must set the Process Type field to *. If you want to separate an enterprise bean workload, the Luname and Process Type fields must be set to *. You can separate a workload only either by process type or by LU name and user ID.

You can specify either a specific or a generic process type. During workload separation processing, CICSPlex SM evaluates the process type supplied by CICS to determine to where the transaction should be routed.

- If the process type matches the selection criteria specified in an installed definition, the request is routed to the target regions identified in the definition.
- If the process type does not match the selection criteria, a match may be found based on the transaction's associated LU name and user ID. If a match is found based on these criteria, the request is routed to the target regions identified in the associated definition.
- If no match is found using the process type, LU name and user ID, the request is routed to the default set of target regions identified in the specification.

Note: Separation by process type takes precedence over separation by LU name and user ID. Thus, if a transaction's associated process type, LU name and user ID mean that it satisfies the selection criteria specified in two workload definitions, one specifying separation by process type and the other separation by LU name and user ID, the transaction is routed to a region in the target scope specified in the workload definition specifying separation by process type.

Separating by transaction

You can also separate the work in a workload based on the transactions themselves. For example, you might want all occurrences of payroll-related...
transactions initiated from terminals in an accounting department to be routed to a specific set of target regions for processing.

Figure 4 on page 1 illustrates how you might separate the work in a workload based on transaction identifiers. In this case, if the user and terminal names associated with any transaction identified in transaction group EYUWMT01 begin with SM and NET, respectively, the transaction is routed to the target regions identified as EYUCSG05. If the transaction identifier, user name, or terminal name does not match the criteria, the transaction is routed to the default target regions identified as EYUCSG01.

During workload processing, CICSPlex SM evaluates the transaction identifier supplied by CICS to determine which transaction group to use.

- If the transaction is defined to a transaction group, CICSPlex SM notes whether the match key for that group is USERID or LUNAME.
- If the transaction is not part of a transaction group, CICSPlex SM uses the match key from the default transaction group for the specification. The match key is the value specified with the associated specification. For additional information, see [Transaction group definitions - TRANGRP](#).

CICSPlex SM uses the match key value to establish the order in which the terminal and user names associated with the transaction are to be evaluated. The evaluation is used to determine where the transaction should be directed:

- If the terminal and user names associated with the transaction match the selection criteria specified in an installed workload definition, the request is routed to the target regions identified in that definition.
- If the terminal and user names do not match the selection criteria, the request is routed to the default set of target regions identified in the workload specification.

After determining the appropriate set of target regions, one is selected based on the status of the active target regions in that set.

Note: If you are adding new transaction codes to a transaction group, or removing transaction codes from a transaction group, you do not need to discard the WLM definition that refers to the transaction group if no other attributes of the transaction group are being changed. New transaction codes added to a transaction group can be dynamically activated within an active workload by reinstalling the WLM definition that refers to the transaction group.

A transaction (a DTRINGRP object) can be associated with one parent transaction group (TRANGRP) only, regardless of any parent workload association and irrespective of whether the transaction group is in active use or not. Changes at the transaction group level, and at the WLM definition (WLMDEF) level, can be dynamically activated without terminating an active workload. Only changes at the WLM specification (WLMSPEC) level normally require an active workload to be terminated.
Separating Link3270 bridge workloads

Link3270 bridge workloads can be separated by user ID, LU name, and transaction group.

For Link3270 bridge workloads the LU name can be produced in three different ways:

1. It can be supplied by the user in the BRIH-NETNAME parameter on the Link3270 call.
2. It can be generated randomly by the Link3270 bridge facility.
3. The CICS autoinstall user replaceable program can be used in conjunction with either of the other two methods to accept, reject or modify the supplied or generated NETNAME.

You can separate Link3270 bridge workloads by LU name only if you are using methods 1 or 3 of those listed, so that the LU name is known in advance. If you are using the method 2, the LU name is not known in advance and cannot be used for workload separation.

To separate by the bridge facility NETNAME and not the name associated with the client program that started the Link3270 bridge, you must modify the EYU9WRAM...
You can use the CICS API commands `EXEC CICS ASSIGN USERID()` and `EXEC CICS ASSIGN BRFACILITY NETNAME()` to assign the user ID and LU name. You can use the NETNAME returned from the `INQUIRE BRFACILITY()` command rather than the NETNAME passed via the DFHDYPDS commarea parameter `DYRNETNM` to separate the workload.

For more information about Link3270 bridge facility definitions, see [Overview of CICS external interfaces](#).

Taking affinity relations into consideration

An affinity is a relationship that you define between two or more transactions for the duration, or lifetime, of that relationship.

When an affinity relationship exists between transactions, those transactions must be processed by the same target region. You can use affinities to route transactions from one or more requesting regions to a specific target region based on the rules applying to a particular combination of an affinity relation and lifetime. For a list of affinity relation and lifetime values, see [Affinity relations and affinity lifetimes](#).

When multiple CMASs in the CICSplex manage affinities for the workload, and one of these CMASs is brought down and the local MASs stay up, the workload becomes frozen. When the workload is frozen, it cannot be changed, however the current workload remains active.

When a CMAS is down, and you have any of the following affinity life times and affinity relationships, a new affinity instance cannot be created, and the transaction cannot be routed to the target MAS associated with the affinity, because the local TORs cannot be informed of the workload changes while the workload is frozen.

<table>
<thead>
<tr>
<th>Affinity relation</th>
<th>Affinity lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAPPL</td>
<td>• SYSTEM</td>
</tr>
<tr>
<td></td>
<td>• PERMANENT</td>
</tr>
<tr>
<td></td>
<td>• ACTIVITY</td>
</tr>
<tr>
<td></td>
<td>• PROCESS</td>
</tr>
<tr>
<td>GLOBAL</td>
<td>• SYSTEM</td>
</tr>
<tr>
<td></td>
<td>• PERMANENT</td>
</tr>
<tr>
<td>LOCKED</td>
<td>• UOW</td>
</tr>
<tr>
<td>LUNAME</td>
<td>• SYSTEM</td>
</tr>
<tr>
<td></td>
<td>• PERMANENT</td>
</tr>
<tr>
<td>USERID</td>
<td>• SYSTEM</td>
</tr>
<tr>
<td></td>
<td>• PERMANENT</td>
</tr>
</tbody>
</table>

When the CMAS is brought back up and reconnects to the MASs, the workload is unfrozen and is able to be changed.

You can use the IBM CICS Interdependency Analyzer for z/OS to detect existing affinities between transactions and between BTS processes and activities. The output from the Reporter component of that utility can be used as input to the CICSPlex SM batched repository-update facility. For more information, see [CICS Interdependency Analyzer for z/OS](#).
Note: You cannot use CICS Interdependency Analyzer to detect affinities between non-terminal-related EXEC CICS START commands, and between DPLs that are not associated with either a user ID or a terminal ID. For these request types, you should try to remove or avoid all affinities, and ensure that your applications can honor any remaining affinities.

CICS BTS considerations
Although BTS itself does not introduce any affinities, and discourages programming techniques that do, it does support existing code that may introduce affinities.

You must define such affinities to workload management. It is particularly important to specify each affinity’s lifetime. Failure to do this may restrict unnecessarily the workload management routing options.

It is important to note that a given activity can be run both synchronously and asynchronously. Workload management is only able to honor invocations that are made asynchronously. Furthermore, you are strongly encouraged not to create these affinities, particularly activity and process affinities, because these affinities are synchronized across the BTS-set. This could have serious performance impacts on your systems.

You should also note that, with CICSPlex SM, the longest time that an affinity can be maintained is while a CMAS involved in the workload is active; that is, an affinity of PERMANENT. If there is a total system failure, or a planned shutdown, affinities will be lost, but activities in CICS will be recovered from the BTS RLS data set.

Link3270 bridge considerations
For Link3270 bridge transactions, affinities are managed by CICS and not by CICSPlex SM. Transaction affinity relation and lifetime fields in the workload management views should be left blank.

Adding affinities into a workload
For non-Link3270 bridge transactions, affinities are managed by CICSPlex SM. Transaction affinity relation and lifetime fields in the workload management views. You specify these fields to isolate transactions to particular systems and to define affinity types and lifetimes.

Figure 5 on page 14 illustrates how you might separate the work in a workload based on transaction identifiers and then associate an affinity relation and lifetime with those transactions. With this example, the first occurrence of a transaction named PAY1, where the associated terminal and user names are NET1 and SMITH, respectively, is directed to the appropriate target region within the set of target regions identified as EYUCSG05. The specific target region receiving the transaction and the affinity relation and lifetime associated with the transaction group to which PAY1 belongs are noted. All subsequent occurrences of any transaction in the transaction group that meet the terminal and user name criteria are directed to the same target region for the designated period of time.

Note: If you do not specify a default affinity relation and lifetime, then you can use the same workload specification for workload routing and separation.
Note: During workload processing, CICSplex SM evaluates the transaction identifier supplied by CICS to determine which transaction group to use.

- If the transaction is defined to a transaction group, CICSplex SM notes the match key for that group.
- If the transaction is not part of a transaction group, CICSplex SM uses the match key from the default transaction group for the workload specification.

CICSplex SM uses this value to establish the order in which the terminal and user names associated with the transaction are to be evaluated. The evaluation is to determine where the transaction is to be directed:

- If the terminal and user names associated with the transaction match the selection criteria specified in an installed workload definition, CICSplex SM checks to see if an affinity relation and lifetime are associated with the transaction group.
 - When an affinity relation and lifetime are associated with the transaction group:
 - If it is the first occurrence, CICSplex SM notes the affinity relation and lifetime. Based on target region availability, CICSplex SM then selects a target region and directs the transaction to it.
 - If it is not the first occurrence, CICSplex SM routes the transaction to the previously selected target region. As long as the affinity relation and
lifetime are applicable, subsequent occurrences of any transaction in the transaction group are directed to the same target region.

- When no affinity relation and lifetime are associated with the transaction group, the transaction is routed to the most appropriate target region in the designated set of target regions.

 • If the terminal and user names do not match the selection criteria, the transaction is routed to the default set of target regions identified in the workload specification. One is selected based on the status of the active target regions in that set.

Note: When transactions in a series of terminal-initiated transactions are associated with separate transaction groups, affinities for each transaction group follow the rules defined for that transaction group.

Abend probabilities and workload management

CICSplex SM can evaluate the health and the activity (or load) of each region identified by the target scope. CICSplex SM uses this information with the acceptable abend load threshold value (ABENDTHRESH) and the acceptable level of abend probability value (ABENDCRIT) that you provide when defining transaction groups to CICSplex SM, in determining to which target region a transaction is routed.

In CICSplex SM, the abend probability for transactions that are associated with a transaction group is calculated either for each transaction individually or for the entire group.

 • If the transaction is associated with a transaction group that either has no defined affinity relation and lifetime, or uses the default values defined in a workload specification, the abend probability is calculated individually for that transaction.

 • If the transaction is associated with a transaction group that has a defined affinity relation and lifetime, the abend probability for that transaction is calculated for the entire group of transactions.

The abend probability for transactions that are not associated with a transaction group is derived from the default abend probability values defined in the workload specification.

The acceptable abend load threshold value (ABENDTHRESH) and the acceptable level of abend probability value (ABENDCRIT) that you provide apply to both the health and the load of a potential target region. You can specify these values either in the workload specification (default rule) or a transaction group definition (associated with a specific rule) by using WUI or CICS® TS Explorer, as shown in the following table:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>WUI</th>
<th>CICS TS Explorer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABENDTHRESH</td>
<td>Acceptable abend load threshold</td>
<td>Threshold</td>
</tr>
<tr>
<td>ABENDCRIT</td>
<td>Acceptable level of abend probability</td>
<td>Critical</td>
</tr>
</tbody>
</table>

When an unhandled abend occurs in a target region:
• For the transaction, or transactions associated with the transaction, that abends, the abend probability percentage is set to 100% in the target region, which is immediately considered unhealthy as a result.

• CICSPlex SM then gradually reduces the abend probability percentage. When the abend probability percentage is below the specified acceptable level of abend probability (ABENDCRTI) yet above the specified acceptable abend load threshold (ABENDTHRESH), the target region is no longer considered unhealthy. However, the region’s perceived load is doubled, making it proportionally less attractive as a target for routing than other equally loaded regions.

• CICSPlex SM continues to reduce the abend probability percentage. When the abend probability percentage falls below the acceptable abend load threshold, the target region’s load is set to normal, making it equally attractive as a target for routing as other equally loaded target regions.

• If a further unhandled abend occurs at any point, the process is reset and the abend probability is recalculated from the initial starting point, where the region is considered unhealthy.

• If the target region is considered unhealthy, CICSPlex SM attempts to avoid routing the transaction to that target region. However, if there is no healthier target region, the transaction might be routed to that target region.

Notes:
1. Abend probabilities are taken into account only if you are using the dynamic routing exit DTRPGM. Abend probabilities are not considered if you are using the distributed routing exit DSRTPGM.

2. If an affinity is active, all subsequent transactions are routed to the same target region for as long as the affinity remains active, regardless of its abend probability.

3. If a transaction abends in a target region where the EXEC CICS HANDLE ABEND command is active, CICSPlex SM does not receive the information that the abend has occurred. Therefore, CICSPlex SM cannot take such abends into account when calculating the abend probability for the transaction in that target region. The abend probability might stay low in this situation, even though abends occurred.

4. If an application avoids making calls to resource managers because it knows the connection to the resource manager is not active, or it processes an error return code as a result of the connection being unavailable, and proceeds to issue an error message and return normally rather than abend, it could delude the workload manager into routing more work to the CICS region. This situation is called the “storm drain effect”. See Avoiding the storm drain effect.

Activating workload management

To activate workload management you must associate a workload specification with the CICS system and update the CICS system to use the dynamic routing or distributed routing program.

Before you begin

You must identify the CICS systems that you want to use for dynamic routing of your workloads. The requesting regions are where the requests are initiated, for example a terminal-owning region; the routing regions decided where to route transactions or programs; the target regions are where the transaction or program run, for example an application-owning region. Together, the requesting, routing,
and target regions form a single entity within which you can route work.

About this task

For more information about dynamic routing, see "Dynamic routing with CICSPlex SM” on page 19.

Procedure

1. Associate a workload specification with the CICS system, using the WLMSPEC view, as described in [Associating a CICS system or system group with a workload specification](#).

2. Identify the dynamic routing program EYU9XLOP to the CICS systems acting as requesting regions and any routing region:

 - If the CICS system is not active, you can make workload management processing available the next time the CICS system starts up. Set the DTRPGM system initialization parameter in the requesting region and in any target region that acts as a routing region:

     ```
     DTRPGM=EYU9XLOP
     ```

 For non-terminal-related **EXEC CICS START** commands, BTS activities, and for all regions in a logical server, set the DSRTPGM system initialization parameter in the region that initiates the request and in all potential target regions:

     ```
     DSRTPGM=EYU9XLOP
     ```

 - If the CICS system is active, you can use the **CICS regions** detailed view, as described in [CICS regions - CICSRGN](#), to set the name of the dynamic routing program and the distributed routing program.

3. Activate workload management for the CICS system. You can do this using the following views:

 - Use the **CICS system definitions** view to change the CICS system definition in the data repository.

 - Use the **MASs known to CICSPlex** view to temporarily activate workload management for an active CICS system.

Results

When either the first routing region associated with a CICSpex is started, or you use the **MASs known to CICSpex** detailed view to activate workload management for the first routing region in a CICSpex, the appropriate workload specifications are installed automatically. All CMASs involved in managing the CICSpex are also notified. All workload definitions and transaction groups, associated with the specification by workload groups, are also installed automatically. As long as the CICS system remains active, additional workload definitions can be installed manually in the CICS system.

Note: When a requesting region associated with a CICSpex, and defined with either DTRPGM=EYU9XLOP or DSRTPGM=EYU9XLOP, is starting, it connects to its target CMAS and workload management is activated. However, if the target CMAS is not active when the routing region is starting, any transactions initiated from that routing region and processed by the EYU9XLOP program wait indefinitely until the CMAS becomes active and the requesting region fully connects to it. After the requesting region connects to the CMAS and workload management is activated, the CMAS can become inactive and workload management remains active.
When a workload is active, subsequent changes to workload definitions and transaction groups are noted in the data repository. To include these changes in an active workload, you must use action commands to install or discard them.

Installed workload definitions become active immediately and remain active as long as the workload is active or until you discard them. To verify that the definition is installed in the workload and that all of the CMASs involved in managing the CICSpex using that workload know about the definition, you can use the **Active workload definitions** view.

How long a workload remains active depends on the affinity lifetime associated with the workload:

- When an affinity lifetime of PERMANENT is in effect, the workload remains active as long as any CMAS involved in managing the workload is active.
- When any other affinity lifetime, or no affinity lifetime, is associated with the workload, the workload remains active as long as any CICS system that is associated with that workload remains connected to a CMAS that manages the CICSpex to which that CICS system belongs.

What to do next

When workload management is active, do not attempt to deactivate it while any workloads are active. When CICSpex SM is routing or separating the work in a workload, unpredictable results might occur if you attempt to deactivate workload management. Unacceptable results occur if you attempt this action when affinity relations are associated with active workloads. For details, see [Discarding an active transaction from a workload](#).
Chapter 2. Configuring dynamic routing

You can define a transaction to CICS as either local or remote. Local transactions always run in the requesting region; remote transactions can be routed to any CICS system connected to the routing region. Routing of remote transactions can be dynamic, static, or ATI-controlled.

Dynamic routing with CICSPlex SM

Use CICSPlex SM to select the most appropriate target region for the execution of a dynamic transaction by using the workload management facility.

When a remote transaction is initiated, the CICS relay program is invoked. The CICS relay program links to the dynamic routing program EYU9XLOP. EYU9XLOP creates the environment necessary for CICSPlex SM-based dynamic routing and sets up the CICSPlex SM runtime environment. You must specify EYU9XLOP in the system initialization table (SIT) parameter.

- For static routing, ATI, and dynamic routing, set the DTRPGM SIT parameter that is associated with the requesting region that initiates the transaction:

 DTRPGM=EYU9XLOP

 Any target region that is also to act as a routing region must also specify DTRPGM in the SIT and must be set up as a routing region as described in [Associating a CICS system or system group with a workload specification](#).

- For non-terminal-related EXEC CICS START commands, BTS activities, or enterprise beans, specify the system initialization parameter DSRTPGM=EYU9XLOP in the requesting region that initiates the request. Also set DSRTPGM=EYU9XLOP in all potential target regions if the DYROPTER field in the communications area or container for the routing program (mapped by the DFHDYPDS copybook) is to be set to Y.

 If you use CICSPlex SM to route non-terminal-related EXEC CICS START commands, the DYROPTER field is always set to Y. You must therefore always specify the system initialization parameter DSRTPGM=EYU9XLOP and ensure that the target region is part of the workload. Failing to ensure that the target region is defined to the workload results in the started transaction waiting for the workload to become available and the transaction hangs.

 Note: If the target region is not going to be set up as a routing region, then do not specify EYU9XLOP in the DTRPGM and DSRTPGM SIT parameters. Specifying this parameter causes an endless loop for routed transactions in EYU9XLOP waiting for the workload, which never arrives.

CICS notifies EYU9XLOP of all routing requests. These requests are as follows:

- Route selection, route selection error, and transaction termination.
- For BTS (all supported releases of CICS), transaction initiation, transaction abend, and routing attempt complete.
- For non-terminal EXEC CICS START requests (all supported releases of CICS), transaction initiation, transaction abend, and routing attempt complete.
When CICS links to EYU9XLOP, it passes the CICS communication area DFHDYPDS to it.

Control then passes to the CICSPlex SM workload management facilities. CICSPlex SM initializes the workload management MAS agent code and engages its routing action process. This process is called internally if any of the following conditions are true:

- The EYU9WRAM user-replaceable module is not defined to CICS
- EYU9WRAM is defined to CICS, but is not available
- EYU9WRAM is defined to CICS, is available, and the load module is the assembly language version of the module as distributed with CICSPlex SM.

The internal routing action process produces the same results as running the assembly language version of EYU9WRAM as it is distributed with CICSPlex SM. If no additional dynamic routing control is required at your enterprise, the internal process provides better performance.

The EYU9WRAM module, or its equivalent internal process, receives the CICSPlex SM-based communication area EYURWCOM. An entry for EYU9WRAM is added to the CICS system definition file, DFHCSD, for each CICS system during installation. As distributed with CICSPlex SM, EYU9WRAM drives CICSPlex SM workload management processing. EYU9WRAM does this by first obtaining the appropriate list of target region candidates, based on the transaction group, and the terminal ID, LU-name, user ID, or process type. Then, EYU9WRAM selects a target region from the list of candidates.

CICS release requirements for dynamic routing

Here are CICS release requirements for regions involved in dynamic routing.

Table 2. Release requirements for regions involved in dynamic routing.

<table>
<thead>
<tr>
<th>Release requirement for:</th>
<th>Routing regions</th>
<th>Target regions</th>
<th>Requesting regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic transaction routing</td>
<td>Any supported release of CICS</td>
<td>Any supported release of CICS</td>
<td>-</td>
</tr>
<tr>
<td>EXEC CICS START commands</td>
<td>Any supported release of CICS</td>
<td>Any supported release of CICS</td>
<td>Any supported release of CICS</td>
</tr>
<tr>
<td>CICS Business Transaction Services (BTS)</td>
<td>Any supported release of CICS</td>
<td>Any supported release of CICS</td>
<td>Any supported release of CICS</td>
</tr>
<tr>
<td>Distributed program link (DPL)</td>
<td>Any supported release of CICS</td>
<td>Any supported release of CICS</td>
<td>-</td>
</tr>
<tr>
<td>Enterprise beans</td>
<td>CICS Transaction Server for z/OS, Version 4 Release 2 or earlier</td>
<td>CICS Transaction Server for z/OS, Version 4 Release 2 or earlier</td>
<td>-</td>
</tr>
<tr>
<td>Link3270 bridge</td>
<td>Any supported release of CICS</td>
<td>Any supported release of CICS</td>
<td>-</td>
</tr>
</tbody>
</table>
Sample source programs and copy books

Following installation, the module EYU9WRAM is loaded into CICSPlex SM.

It is an assembler-language, command-level program; its corresponding copy books are:

EYURWCOM
Defines the communication area

EYURWCOD
Defines literals for EYURWCOM

EYURWSVE
Defines each element of a target region scope list

EYURWSVD
Defines literals for EYURWSVE

To assist you in your customization effort, sample source programs and copy books for assembler, C, COBOL, and PL/I are distributed with CICSPlex SM. Copy books are located in language-specific libraries. All samples programs are located in the SEYUSAMP library. The names of the sample programs and copy books, and the CICSPlex SM libraries in which they can be found are listed in Table 3.

Table 3. Sample programs and copy books

<table>
<thead>
<tr>
<th>Language</th>
<th>Member name</th>
<th>Alias</th>
<th>Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembler:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>EYUAWRAM</td>
<td>EY9WRAM</td>
<td>SEYUSAMP</td>
</tr>
<tr>
<td>Copybook 1</td>
<td>EYUAWCOM</td>
<td>EYURWCOM</td>
<td>SEYUMAC</td>
</tr>
<tr>
<td>Copybook 2</td>
<td>EYUAWCOD</td>
<td>EYURWCOD</td>
<td>SEYUMAC</td>
</tr>
<tr>
<td>Copybook 3</td>
<td>EYUAWSVE</td>
<td>EYURWSVE</td>
<td>SEYUMAC</td>
</tr>
<tr>
<td>Copybook 4</td>
<td>EYUAWSVD</td>
<td>EYURWSVD</td>
<td>SEYUMAC</td>
</tr>
<tr>
<td>COBOL:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>EYULWRAM</td>
<td>EYU9WRAM</td>
<td>SEYUSAMP</td>
</tr>
<tr>
<td>Copybook 1</td>
<td>EYULWCOM</td>
<td>EYURWCOM</td>
<td>SEYUCOB</td>
</tr>
<tr>
<td>Copybook 2</td>
<td>EYULWCOD</td>
<td>EYURWCOD</td>
<td>SEYUCOB</td>
</tr>
<tr>
<td>Copybook 3</td>
<td>EYULWSVE</td>
<td>EYURWSVE</td>
<td>SEYUCOB</td>
</tr>
<tr>
<td>Copybook 4</td>
<td>EYULWSVD</td>
<td>EYURWSVD</td>
<td>SEYUCOB</td>
</tr>
<tr>
<td>PL/I:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>EYUPWRAM</td>
<td>EYU9WRAM</td>
<td>SEYUSAMP</td>
</tr>
<tr>
<td>Copybook 1</td>
<td>EYUPWCOM</td>
<td>EYURWCOM</td>
<td>SEYUPL1</td>
</tr>
<tr>
<td>Copybook 2</td>
<td>EYUPWCOD</td>
<td>EYURWCOD</td>
<td>SEYUPL1</td>
</tr>
<tr>
<td>Copybook 3</td>
<td>EYUPWSVE</td>
<td>EYURWSVE</td>
<td>SEYUPL1</td>
</tr>
<tr>
<td>Copybook 4</td>
<td>EYUPWSVD</td>
<td>EYURWSVD</td>
<td>SEYUPL1</td>
</tr>
<tr>
<td>C:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program</td>
<td>EYUCWRAM</td>
<td>EYU9WRAM</td>
<td>SEYUSAMP</td>
</tr>
<tr>
<td>Copybook 1</td>
<td>EYUCWCOM</td>
<td>EYURWCOM</td>
<td>SEYUC370</td>
</tr>
<tr>
<td>Copybook 2</td>
<td>EYUCWCOD</td>
<td>EYURWCOD</td>
<td>SEYUC370</td>
</tr>
<tr>
<td>Copybook 3</td>
<td>EYUCWSVE</td>
<td>EYURWSVE</td>
<td>SEYUC370</td>
</tr>
<tr>
<td>Copybook 4</td>
<td>EYUCWSVD</td>
<td>EYURWSVD</td>
<td>SEYUC370</td>
</tr>
</tbody>
</table>

Optimized dynamic workload routing implementation

CICSPlex SM provides dynamic workload management for CICS. CICSPlex SM can augment its workload management decisions using current status information posted directly from CICS by using a region status (RS) server.
To optimize workload routing in a sysplex, you must configure and monitor a region status (RS) server, as part of a coupling facility data table. Full workload optimization takes place automatically when all workload regions are migrated to CICS TS for z/OS, Version 4.1 and later, and when a region status (RS) server is started in the same z/OS image as each region in the workload in the CICSp lex.

For further details, see Setting up and running a region status server and Security for coupling facility data tables.

You can mix CICS TS for z/OS, Version 4.1 and later regions in a workload with regions using a previous version of CICS TS. However, workloads will run in a nonoptimized state because full workload optimization is achieved only when all regions in the workload are migrated to CICS TS for z/OS, Version 4.1 or later.

You define and modify CICSp lexes using the EYUSTARTCPELEXDEF view set. Using the CPLEXDEF detail view, you can modify the coupling facility (CF) tuning parameters for the region status (RS) server, which provide sysplex optimized workload routing.

Note: You can also modify the default region status (RS) pool name that will be used by all regions in the CICSp lex. When you do not use the default name DFHRSTAT, you must change the name before starting any other regions in the CICSp lex. CICSp lex SM will not prevent you from changing the pool name while the CICSp lex is active. If you make a change while the CICSp lex is active, all CMAS and MAS regions in the CICSp lex must be restarted as soon as possible. Failure to do so can result in inconsistent data in the CICSp lex SM WLM views and WLM optimization is deactivated until all the regions in the CICSp lex are restarted.

Sysplex optimized workload routing overview

In CICS TS for z/OS, Version 4.1 and later, workload throughput is improved through a more efficient workload management optimization function. This function is most effective for distributed workloads, for which the routing and target regions are managed by different CMASs. With new CICSp lex SM WUI views, you can monitor the distribution of dynamic workloads through your CICSp lex.

Sysplex optimized workload routing is enabled at the z/OS coupling facility level by a region status (RS) server.

When a target region is running in optimized mode, the target region maintains the task count using the CICS transaction manager. The count includes all tasks in the CICS region, not just those that are dynamically routed. The load value for the CICS region, with its basic health status, is periodically broadcast to the coupling facility, where it is available for interrogation by other CICS regions and CMASs and by other CICS address spaces. If region status data is available, CICSp lex SM uses the data when it makes its dynamic routing decision.

For sysplex optimized workloads, routing regions review the same status data in the coupling facility for a potential target region regardless of which CMAS manages it. As a result, the routing region is using status data that might be updated many times a second to evaluate a target region, rather than status data that might be up to 15 seconds old. The refresh interval can vary from 2 seconds down to 1 millisecond. As the scale of this value is reduced, the usage effect on the coupling facility increases. Choose a value that provides a balance between workload throughput and the effect on the coupling facility. The default refresh
value is 200 milliseconds. In an environment in which all routing targets are in a similar health and connectivity state, the spread of work across the workload target scope is more evenly balanced than in nonoptimized mode.

If the coupling facility is not available, workload routing is managed by CICSPlex SM Workload Manager using z/OS data spaces owned by a CMAS to share cross-region load and status data.

Benefits of sysplex optimized workload routing

A sysplex optimized workload is a workload that is best suited to workloads contained in a single sysplex. For a workload that runs in a CICSpelix that spans more than one sysplex, the benefits of optimized routing are reduced because region status data stored in the z/OS coupling facility is not shared across sysplexes.

Sysplex optimized workload routing is beneficial in the following scenarios:

- When a workload consists of routers and targets managed by different CMASs and the bulk of the dynamic traffic flows through the DSRTPGM exit. For example, if you use MQ triggers to feed transactional data into CICSpelixes, where the trigger regions tend to be managed by different CMASs to the processing regions. In these instances, the benefit of running workloads in optimized state is that no workload batching occurs, and the overall workload runs through faster. Fewer, if any, routed transactions are waiting in the queue of a CICS region already at its MAXTASKS limit.
- When the topology of a CICSpelix is such that regions in a workload can be managed by the same CMAS, and nondynamic throughput is a high proportion of the workload.

Impact of sysplex optimized workload routing on the coupling facility

Caching mechanisms are built into the coupling facility (CF) to reduce the number of I/O operations. CICS region status data is broadcast to the CF by target regions, and the data is subsequently read back by the routing regions when a route decision is being made. If CICS status data is broadcast at every change instance, and read back on every occasion that a route decision is made, the impact to the coupling facility might be considerable.

To reduce the impact to the coupling facility, CICS provides two system management parameters:

- **READRS** controls how long region status data is cached by a routing region before requesting a refresh.
- **UPDATERS** controls how often the CF is updated with task throughput data.

Region status server, read interval parameter (READRS)

You use the region status server read interval parameter in the CPLEXDEF, CSYSDEF, and MAS views to control how long region status data is cached by a routing region before requesting a refresh for sysplex optimized workload routing.

READRS=(200|number)

In a workload running in optimized mode, the **READRS** value specifies the minimum interval, in milliseconds, between refreshes of a target region status from a CICS region status (RS) server. These refresh requests are issued by a routing region that is evaluating a target region for a dynamic routing request.
Note: You should only change the **READRS** value after considering the impact that the change might have on your workload and coupling facility throughput.

The value range is from 0 - 2000:
- A value of 0 means that a routing region requests a status update of a target region on every occasion that it examines the status of the target region.
- Values from 1 - 2000 specify the minimum time interval that must expire before the status of a target region can be refreshed.

A low interval value means that the RS server is polled more often for a status update. For workloads in QUEUE mode, this low value results in a smoother task load spread across the CICS regions in the workload target scope, *assuming all other health and link factors are equal*. However, the utilization of the RS server is correspondingly increased, which might result in higher utilization of your z/OS coupling facility.

The default value of the **READRS** parameter is 200 milliseconds.

The value specified in the EYUSTARTCPLEXDEF view set sets the read interval at the CICSpex level. However, you can override the interval at the CICS definition level to allow fine tuning of the value on an individual CICS target region basis.

You specify both the UPDATERS and the READRS parameters at the CICSpex definition (CPLEXDEF) level to establish default values for all regions in the CICSpex. You can override these values at the CICS system definition (CSYSDEF) level or at the MAS agent runtime (MAS) level.

At the CICS definition level, the value for **UPDATERS** and **READRS** is INHERIT, so that the values are adopted from the CICS system definition. By changing these values to explicit numeric values, the CICS system adopts the values specified on each successive restart. To implement a change to a running CICS region, the values must be applied using the MAS base tables or view sets. When the target region is restarted, it reemploys the specification from its CSYSDEF.

Region status server, update frequency parameter (UPDATERS)
You use the region status server update frequency parameter in the CPLEXDEF, CSYSDEF, and MAS views to control how often the coupling facility is updated with task throughput data for sysplex optimized workload routing.

UPDATERS=\{15\|number\}

In a workload running in optimized mode, the **UPDATERS** value indicates the frequency that the CICS region status (RS) server is called to modify the value of the task load in a target CICS region. This value is the default frequency value for all target CICS regions in the current CICSpex definition.

Note: You should only change the **UPDATERS** value after considering the impact that the change might have on your workload and coupling facility throughput.

The value range is from 0 - 25:
- A value of 0 means that the RS server is not notified of any task load count changes, because the optimized workload function for target regions in this CICSpex is not enabled.
Note: A value of 0 does not suppress optimization of the workload routing function; a value of 0 suppresses only the target region RS domain broadcasting process.

- Values from 1 - 25 are applied as an arithmetic percentage to the MAXTASKS setting for a target. The resulting task count value is used as a numeric threshold to drive an update call to the RS server.

Specifying a value of zero effectively disables the optimized routing function for the target regions. For an optimized routing decision to be made, both the router and target must be in optimized mode.

For example, with a MAXTASKS setting of 120, and the UPDATERS set to 20, the RS server is called to update the WLM load count when the task count for a target region changes between these numbers of tasks:

- 23 and 24 tasks (20\% of 120)
- 47 and 48 tasks (40\% of 120)
- 71 and 72 tasks (60\% of 120)
- 95 and 96 tasks (80\% of 120)
- 119 and 120 tasks (100\% of 120)

The RS server is updated when the task load for a target region increments or decrements across these boundaries.

If you set the **UPDATERS** parameter to a low value, the frequency of updates to the RS server increases across the task load range. For workloads in QUEUE mode, this low value results in a smoother task load spread across the target CICS regions in the workload scope, *assuming all other health and link factors are equal*. However, the utilization of the RS server is correspondingly increased, which might result in higher utilization of your z/OS coupling facility.

The default value for the **UPDATERS** parameter is 15.

The value specified in the EYUSTARTCplexDEF view set sets the update interval at the CICSpex level. However, you can override the interval at the CICS definition level to allow fine tuning of the value on an individual CICS target region basis.

You specify both the **UPDATERS** and the **READRS** parameters at the CICSpex definition (CplexDEF) level to establish default values for all target regions in the CICSpex. You can override these values at the CICS system definition (CSYSDEF) level or at the MAS agent runtime (MAS) level.

At the CICS definition level, the value for **UPDATERS** and **READRS** is INHERIT, so that the values are adopted from the CICS system definition. By changing these values to explicit numeric values, the CICS system adopts the values specified on each successive restart. To implement a change to a running CICS region, the values must be applied using the MAS base tables or view sets. When the target region is restarted, it uses the specification from its CSYSDEF.

Region status server, bottom-tier parameter (BOTRSUPD)

You use the region status server bottom-tier tuning parameter in the CPLEXDEF, CSYSDEF, and MAS views to control the workload distribution updates to the coupling facility (CF) during periods of low throughput.
BOTRSUPD={1|number}

For sysplex optimized workloads, the **BOTRSUPD** value is converted from a task load percentage to a real task count. That count is used to define the bottom-tier task load range, from zero up to this value.

Note: You should only change the **BOTRSUPD** value after considering the impact that the change might have on your workload and coupling facility throughput.

The value range is from 1 - 25. When the task load for a region falls within this range, the task load is then broadcast to the coupling facility (CF) for every change in the task load. When the load reaches this value, the RS server update frequency task rules are activated.

The default value of the **BOTRSUPD** parameter is 1%.

Change this value only after considering the impact that the change might have on your workload and coupling facility throughput. The **BOTRSUPD** parameter provides a smoother distribution of the workload during periods of low throughput. When your CICSpinxplex consists of many target regions and you increase this value too much, you risk overloading the CF with update requests, which can result in degraded WLM and general z/OS subsystem performance.

When you need to modify the **BOTRSUPD** value, ensure that you monitor the performance of your coupling facility and WLM throughput capabilities for at least several days after modification.

Region status server, top-tier parameter (TOPRSUPD)

You use the region status server top-tier tuning parameter in the CPLEXDEF, CSYSDEF, and MAS views. It controls the workload when the workload management (WLM) max task health indicator is switched off for a target region, to limit updates to the coupling facility (CF) when the region is close to the MAXTASKS (MXT) setting during periods of high throughput.

TOPRSUPD={5|number}

For sysplex optimized workloads, the **TOPRSUPD** value is converted from a task load percentage to a real task count. That count is subtracted from the **MAXTASKS** value for the region to determine the top-tier task load range.

Note: You should only change the **TOPRSUPD** value after considering the impact that the change might have on your workload and coupling facility throughput.

The value range is from 1 - 25. The value is applied as an arithmetic percentage to the **MAXTASKS** setting for a region. The task count value is then subtracted from the **MAXTASKS** setting for the region to establish a task load top tier. When the task load in a region runs up to its **MAXTASKS** limit, the task load must then drop back below this value before the **MAXTASKS** state for the region is switched off and broadcast to the coupling facility.

The default value of the **TOPRSUPD** parameter is 5%.

Change the **TOPRSUPD** value only after considering the impact that the change might have on your workload and coupling facility throughput. When you increase this value too much, you see a workload batching effect in the upper load range of the
workload. When you decrease the value too much, the upper-tier batching effect is reduced, but updates to the coupling facility can be significantly increased.

When you need to modify the TOPRSUPD value, ensure that you monitor the performance of your coupling facility and WLM throughput capabilities for at least several days after modification.

Optimization status
You can use the Active workloads list view in the CICSPlex SM Web User Interface (WUI) to view the status of workloads.

Optimization status of the workload
You can use the Active workloads list view in the CICSPlex SM Web User Interface (WUI) to view the status of each workload active in the CICSpex.

The Optimization status attribute reports the sysplex optimization status of the current workload. The value is a combination of all of the workload router optimization statuses and all of the workload target optimization statuses.

These values are possible:

- **ACTIVE:** All targets and routers in the workload are running in optimized workload state.
- **PARTIAL:** At least one target and one router are running in optimized workload mode. Use the Active routing regions and Active target regions hyperlinks to determine which regions are not running in optimized state.
- **INACTIVE:** The workload is not running in an optimized state, for one or more of the following reasons:
 - No routing regions in the workload are running in an optimized state.
 - No target regions in the workload are running in an optimized state.
 - No regions in the workload are running in an optimized state.
 - The workload is designated as being nonoptimized by specifying a value of 0 for the RS server update frequency on the CICSpex definition or on all target CICS system definitions for this workload.

Optimization status for a CICS region
You can use the Routing regions or Target regions views located in the Active workloads menu to view the optimization status for the region.

The Optimization status attribute reports the status of the current target region for the optimized workload routing function.

These values are possible:

- **ACTIVE:** This target region is running in an optimized workload state.
- **INACTIVE:** This region can run in an optimized workload state; however, it is not currently optimized for one or more of the following reasons:
 - The region has no connection to an RS server.
 - The region is connected to an RS server; however, the server cannot connect to the z/OS coupling facility.
 - The optimization enablement setting for the region is set to Disabled. The enablement setting for the region must be set to Enabled before any optimized routing functions can be activated.
Note: You can reset the optimization enablement setting in the CICS system definition view to change the value in preparation for the next region startup. The enablement setting can also be changed in an active region using the MAS view, but will revert to the setting in the CICS system definition when the region is restarted.

- The RS server update frequency value for this region is 0, which means that the optimization capabilities for this region when acting as a routing target are not enabled.

Note: You can set the UPDATERS value to 0 for regions that are used as dynamic routers only. Setting this value to 0 prevents the region from making unnecessary region status broadcasts to the Region Status (RS) server.

- N/A: The target region is not at a CICS release that supports region status recording. Only nonoptimized WLM routing decisions can be made.

Nonoptimized workload routing
In releases before CICS TS for z/OS, Version 4.1, for nonoptimized workload management, and when a coupling facility is not available, workload routing is managed by CICSPlex SM Workload Manager using a data space owned by a CMAS to share cross-region load and status data.

Every CMAS manages a single WLM data space that it shares with every user CICS region (MAS) that it directly manages. When the CMAS initializes, it verifies and formats the data space with the structures necessary for all workloads associated with the CICS regions that it manages. When the user CICS regions begin routing dynamic traffic, the state of those CICS regions is recorded in this data space. Every 15 seconds, the CICSPlex SM agent in the user CICS region determines the task count at that time and reports to its owning CMAS. The CMAS updates the load count in the target region descriptor of its WLM data space and broadcasts that value to other CMASs participating in workloads associated with the user CICS region.

In an environment in which all user CICS regions are managed by the same CMAS, all routing and target regions refer to the same physical structures in the WLM data space. Dynamic routing decisions are based on the most current load data for a potential routing target region. A routing decision is based on a combination of factors. For details, see Factors that contribute to dynamic workload routing decisions.

Workloads are spread across multiple z/OS images, so additional CMASs are configured to manage the user CICS regions on the disparate LPARs. Each WLM data space must maintain a complete set of structures to describe every CICS region in the workload, not just the CICS regions for which each CMAS is responsible. The WLM data space owned by each CMAS must be periodically synchronized with the WLM data spaces owned by other CMASs that are participating in the workload. This synchronization occurs every 15 seconds from the MASs to their CMASs, and then out to all other CMASs in the workload.

The behavior of CICSPlex SM is different for DTRPGM and DSRTPGM requests:
- For DTRPGM requests, the routing region calls, from CICS, to decide if the target regions are synchronized with the execution of the request at the selected target, which is then followed by a call back from CICS on completion of the dynamic request. This call allows the router to increment the task load count before informing CICS of the target region system ID, and also to decrement the count on completion of the request.
For DSRTPGM requests, the routing region calls, from CICS, to decide if targets are not synchronized with the selected target. Typically, these dynamic requests are asynchronous CICS starts. The router has no notification of when the routed transaction starts or finishes. Because of a lack of notification, CICSPlex SM stipulates that a DSRTPGM target region must also have the workload associated with the region, which transforms the targets into logical routing regions. This call allows the CICSPlex SM routing processes to determine that they are being called at the DSRTPGM target and, therefore, allows the task load count to be adjusted at transaction start and finish.

CICSPlex SM routing regions count the dynamic transaction throughput in a CICSplex, introducing an additional problem in that transactions started locally on the target regions remain unaccountable by the routing regions until a heartbeat occurs. The router transaction counts are not accurately synchronized until two heartbeats have occurred, the first to increment the count, and the second to decrement it again. This discrepancy, however, is not considered as severe as when a router and target are managed by different CMASs.

For multiple CMASs, the router regions evaluate status data for a target region as described in its local WLM data space. If that target region is managed by a different CMAS to that owned by the router, status data describing that target region can be up to 15 seconds old. For DTRPGM requests, this latency does not have a severe effect. For DSRTPGM requests, however, the effect can be significant, particularly when the workload throughput increases. The effect is known as workload batching.

For more information, see “Workload batching.”

Workload batching

Workload batching occurs in heavily used workloads in multiple CMAS environments, where dynamic distributed (DSRTPGM) routing requests are being processed.

A target region and its routing regions can be managed by different CMASes. This is always the case when the router runs in a different LPAR to the targets. In this scenario, the router is using a different descriptor structure to evaluate the target status from the real descriptor structure employed by the target itself.

The target descriptor reviewed by the router is synchronized with the real descriptor at 15-second intervals by the CICSPlex SM heartbeat. The task count for the target region, as seen by the router, is refreshed at the same time. During a 15-second heartbeat interval, the router regards the target as being relatively busy, or relatively quiet, when compared to other potential target regions in the workload. Therefore, for that 15-second duration, the router continues to divert work towards, or away from, the target, depending on how busy it seems to be, because the current task count in the target is not seen to change until the next heartbeat. This routing, based on the previous status, can make the target very busy or unused. The router reacts to this situation by more actively routing work towards, or away from, the target, so the batching cycle continues. This state continues until activity in the workload throughput declines, which settles down the batching cycle until the throughput activity increases.

If you are monitoring the task load across the CICSpex, you see some regions running at their MAXTASKS limit and being continually given dynamically routed
traffic, and others remain unused. A snapshot taken 15 seconds later might show a reversal of utilization; the busy regions might be idle and the idle regions might now be at the MAXTASKS limit.

When you start your region status servers and optimize workloads, the effects of workload batching are removed.

Modifying dynamic routing

You can customize CICSPlex SM workload management processing by modifying the module EYU9WRAM.

EYU9WRAM uses the CICSPlex SM dynamic routing application programming interface (API), which is a special-purpose, call-level interface that provides the mechanism needed to request workload management actions. All calls are constructed using standard CALL statements. The CALL statement generates the linkage between the EYU9WRAM module and the CICSPlex SM Workload Manager component. The format of the CALL statement is shown here:

```
CALL WAPIENPT(DA_TOKEN,function)
```

where:

DA_TOKEN

Identifies the dynamic routing API token supplied via the EYURWCOM communication area. This token is used by EYU9WAPI and must not be altered.

function

Is the function to be performed, specified as:

- **SM_SCOPE**
 Returns a list of eligible target regions.

- **SM_BALANCE**
 Selects a target region from the list of eligible target regions.

- **SM_ROUTE**
 Routes a transaction to a specific target region.

- **SM_CREAFF**
 Creates an affinity.

- **SM_DELAFF**
 Deletes an active affinity.

You can use SM_SCOPE and SM_BALANCE together to obtain a list of target regions and then select the target region to which a transaction is to be routed.

If you know that a transaction is always to be directed to a specific target region, you can use just SM_ROUTE.

As distributed, EYU9WRAM issues SM_SCOPE and SM_BALANCE calls. It does not include any SM_ROUTE calls. It includes unexecuted calls to SM_CREAFF and SM_DELAFF. You can modify the program to issue these calls.

Although all the examples use the assembler language form of the dynamic routing API verbs, you can also use these verbs in programs written in C, COBOL, and PL/I. Sample programs distributed with CICSPlex SM contain examples of the CALL statements for each of these languages.
Note: If you are modifying dynamic routing, be aware that:

- If they are not set, the values for application context are either zero (for the version) or nulls/low-values (for platform, application, and operation).
- String fields are padded with nulls, not spaces.

Important: As distributed, EYU9WRAM handles the workload routing and separation established via the workload management definitions by using the API verbs. Any changes you make to EYU9WRAM, therefore, might adversely impact the CICSPlex SM workload management facilities. For example, if you do not use SM_SCOPE, SM_BALANCE, or SM_ROUTE, each transaction occurrence is routed to the default target region identified when the transaction was defined to CICS. Thus, all CICSPlex SM workload management definitions are bypassed.

Nondynamic transaction considerations
You do not have to include any calls through the API if a transaction is statically routed or is started by ATI. In these cases, the target region cannot be changed.
The routing function is route notify. The route notify function is intended to notify the EYU9WRAM program that such a transaction is being routed.

If you do include any of these functions, the following occurs:

- An SM_SCOPE call returns a single entry in the SCOP_VECT. The entry is the target region associated with the statically defined transaction when it was defined, or with the destination specified on the EXEC CICS START command for ATI transactions.
- An SM_BALANCE call selects the target region associated with the transaction when it was defined to CICS. The CICSPlex SM Workload Manager will not create any affinity for the transaction.
- An SM_ROUTE call returns an exception response.

When EYU9WRAM is called for:

- Notification, any existing affinity relations are ignored and none are created.
- Route selection error, any existing affinity relations are ignored and none are created. In addition, the EYU9WRAM program as delivered will write a terminal message and terminate.
- Routing attempt complete, for CICS BTS transactions only. Any existing affinities are ignored. Any dynamic routing API function call results in a bad response. See "Non-terminal-related STARTs and CICS BTS considerations."
- Transaction initiation, for CICS BTS transactions only. Any existing affinities are ignored. Any dynamic routing API function call results in a bad response. See "Non-terminal-related STARTs and CICS BTS considerations."
- Transaction termination, any existing affinities are ignored. Any dynamic routing API function call results in an error response.
- Transaction abend, any existing affinities are ignored. Any dynamic routing API function call results in an error response.

Non-terminal-related STARTs and CICS BTS considerations
When routing a transaction associated with either a CICS BTS activity or a non-terminal-related EXEC CICS START command, the routing program, identified in the DSRTPGM SIT parameter, is invoked for both static and dynamic routing.

In the case of statically routed transactions, the EYU9WRAM program cannot alter the target region; see "Nondynamic transaction considerations." In the case of dynamically routed transactions, the EYU9WRAM program may alter the target
As distributed, EYU9WRAM uses SM_SCOPE and SM_BALANCE to select a target region from the list of target regions defined for a transaction. The options that you set affect the way that the target region is chosen.

- SM_SCOPE returns a list of target regions for the current transaction occurrence. The target regions are those that are explicitly or implicitly associated with the requesting region by a workload specification.
- SM_BALANCE selects a target region from the list of candidate target regions returned by SM_SCOPE.

After an SM_SCOPE or SM_BALANCE call, the result of the operation is indicated in the response and reason fields of the EYURWCOM communication area.

Actions during route selection

A dynamic route selection occurs when a transaction or program is scheduled for routing.

- When SM_SCOPE is issued, the EYURWCOM communication area Scope Vector pointer is updated with the address of the target region scope list description area, SCOP_VECT. Also, the element count field is updated to contain the count of elements in the scope vector. Each element in the scope vector identifies a candidate target region and indicates its current status.

 During SM_BALANCE processing, the target region appearing first in the ordered list is selected for routing, unless the scope vector element EYURWSVE is marked ignore.

- When no affinity is associated with the current transaction occurrence, an SM_SCOPE call sorts the SCOP_VECT elements so that the target region that is the best candidate is placed first in the list.

 During SM_BALANCE processing, the APPLID and SYSID of the most suitable target region are placed in the fields WCOM_SEL_AOR and WCOM_SEL_SYSID, respectively. Typically, this will be the first target region represented in the scope vector. However, if the EYU9WRAM program has marked the WSVE-IGNORE field on some of the SCOP_VECT elements to deno that the target region is to be ignored, the first target region in the scope vector that is not marked to be ignored will be selected.

Note:
1. If the transaction identifier and the ids of the terminal and user associated with that transaction match a transaction group to which an affinity is defined, the affinity is made active during SM_BALANCE processing.

2. With DPL, you can update the transaction id before the SM_SCOPE call.
 - When an affinity is associated with the current transaction occurrence, an SM_SCOPE call normally causes only the target region with which the affinity exists to be identified in SCOP_VECT. An SM_BALANCE call then selects that target region. If the target region is not available for routing, the SM_BALANCE function will set a warning indicator. It will not attempt to select another target region.
 - If the transaction is defined as a DTRTRAN, the EYURWCOM communication area will contain indicators denoting that the transaction is a DTRTRAN and that it will not be rejected by the Workload Manager. Processing is generally identical to the normal, non-DTRTRAN, case. Issuing SM_SCOPE returns a SCOP_VECT. Issuing SM_BALANCE selects a target region.

The EYU9WRAM module might opt to reject the transaction before issuing the SM_SCOPE call. In this case, the Workload Manager returns to CICS with the reject indicator set to Y in the DFHDYPDS communication area. The sample EYU9WRAM program causes a DTRTRAN transaction to be rejected only if the transaction identifier is all blanks.

Actions during notification

Notification occurs when a static transaction or ATI transaction is being scheduled for routing.

- For statically routable transactions, ATI transactions, and BTS static routing requests, issuing SM_SCOPE causes the scope vector to contain a single target region. This is the target region associated with the transaction.

Actions during routing attempt complete

None, but you can tidy up and release any resources at this stage.

Actions during route selection error

A route selection error call occurs if the CICS link between the requesting region and target region is not available or is not defined.

- When no affinity is active: issue SM_SCOPE again. The candidate target regions identified by the SCOP_VECT it returns will not include the target region that caused the error. You can then use SM_BALANCE to select a new target region.

- When affinity became active as a result of the previous route selection:
 - If the lifetime associated with the affinity is PERMANENT, SYSTEM, ACTIVITY, or PROCESS, the target region causing the error will be included in scope list returned by SM_SCOPE. SM_BALANCE is required by affinity rules to select that target region. It also returns a warning to EYU9WRAM. EYU9WRAM should then notify the user that an error has occurred.
 - If the lifetime associated with the affinity is SIGNON, LOGON, DELIMIT, or PCONV, the active affinity status is removed before control returns to EYU9WRAM. When you reissue SM_SCOPE, the target region causing the error will not be included in the scope list. If the workload specification is defined with Create Affinity YES for the transaction group, EYU9WRAM is notified that an affinity is defined and will be activated when you issue SM_BALANCE.
• When affinity was activated by a previous transaction instance, and you issue SM_SCOPE again, the scope list returned contains the previously selected target region. Since SM_BALANCE is required by affinity rules to select that target region, a warning is returned to EYU9WRAM. EYU9WRAM should then notify the user that an error has occurred.

Actions during transaction termination

Transaction termination occurs when a transaction has terminated normally.
• EYU9WRAM should release any resources it may have acquired.
• Issuing SM_SCOPE or SM_BALANCE or SM_ROUTE causes an exception response to be returned.

Actions during transaction abend

Transaction abend occurs when a transaction has terminated abnormally.
• EYU9WRAM should release any resources it may have acquired.
• Issuing SM_SCOPE or SM_BALANCE or SM_ROUTE causes an exception response to be returned.

Actions during transaction initiation

Transaction initiation occurs when a CICS BTS-related transaction, or an enterprise bean-related transaction, has been routed to the target region. No specific action is taken. The call is issued for information purposes only.

Selecting a specific target region

SM_ROUTE requests that a specific target region is selected for routing. Use SM_ROUTE when you have application- or data-dependent requirements for explicit routing. For example, you might want to route a transaction associated with a specific user ID to a specific target region.

After an SM_ROUTE call, the result of the operation is stored in the response and reason fields of the EYURWCOM communication area.

A sample SM_ROUTE call is show here:

```
CALL WAPIENPT(DA_TOKEN,SM_ROUTE)
```

DA_TOKEN identifies the dynamic routing API token supplied via the EYURWCOM communication area. This token is used by EYU9WAPI and must not be altered.

Actions during route selection

The actions during route selection are:
• If there is only one connection between a requesting region and the target region, you can supply either the SYSID or the APPLID of the target region (CICSPlex SM will determine the appropriate, corresponding ID). Place the APPLID in the WCOM_SEL_AOR field of the EYURWCOM communication area. Place the SYSID in the WCOM_SEL_SYSID field.

If there are multiple connections between a requesting region and the target region, supply both the SYSID and the APPLID, as described previously, to ensure that the correct target region is selected. Note that when both the SYSID and APPLID are supplied, they are not validated.
The target region need not be defined to CICSPlex SM. The affinity status is not checked. Thus, no affinity is established as a result of this call and, if an affinity was in effect, it is ignored.

- Issuing SM_ROUTE during Route Notify processing causes an exception response to be returned.

Actions during routing attempt complete

None, but you can tidy up and release any resources at this stage.

Actions during route selection error

The EYU9WRAM program may issue a message and terminate. You may then issue SM_ROUTE again specifying a different target region, or issue SM_SCOPE and SM_BALANCE.

Actions during transaction termination

- EYU9WRAM should terminate any resources it may have acquired.
- Calling any API function causes an exception response to be returned.

Actions during transaction abend

- Calling any API function causes an exception response to be returned.

Actions during transaction initiation

At transaction initiation:

- EYU9WRAM should terminate any resources it may have acquired.
- Calling any API function causes an exception response to be returned.

Creating an affinity

You can use SM_CREAFF to create an affinity if one does not already exist in the transaction group established for the transaction.

The transaction group must be defined with an affinity type and lifetime. The affinity created will have the same affinity type and lifetime as defined in the transaction group.

You should review “Affinity considerations” on page 36 before using SM_CREAFF.

Before calling SM_CREAFF, you must first call SM_SCOPE to obtain a scope list. SM_CREAFF will not create an affinity to an target region that is not in the scope list. In addition, you should set the EYUWRCOM communication area fields WCOM_SEL_AOR and WCOM_SEL_SYSID to the APPLID and SYSID, respectively, of the target region for which you want the affinity created.

EYU9WRAM contains a fragment of unexecuted code that you can use as a template for implementing the SM_CREAFF function.

The SM_CREAFF function cannot be called during:

- Route termination
- Route abend
- Route notify
- Route initiate
• Route complete

Deleting an affinity
You can use SM_DELAFF to delete an active affinity.

You should review "Affinity considerations" before using SM_DELAFF.

Before calling SM_DELAFF, you must first call SM_SCOPE to obtain a scope list. The WCOM_AFF_STAT field in the EYURWCOM communication area contains a value indicating whether an affinity is active or committed. An active affinity can be deleted using SM_DELAFF. A committed affinity has a lifetime of SYSTEM or PERMANENT and cannot be deleted using SM_DELAFF.

EYU9WRAM contains a fragment of unexecuted code that you can use as a template for implementing the SM_DELAFF API function.

The SM_DELAFF function cannot be called during:
• Route notify
• Route initiate
• Route complete

Affinity considerations
When you define an affinity, you must specify its lifetime. The affinity normally persists until its specified lifetime expires.

You can define one of the following types of lifetime:

Activity
Expires when the CICS BTS activity ends

Delimit
Expires when the PCONV mode of the transaction is END

Logon
Expires when the terminal user logs off.

Pconv
Expires when a transaction uses EXEC CICS RETURN specifying no NEXTTRANSID or the PCONV mode of the transaction is END. CICS does not support pseudoconversations for APPC (LUTYPE6.2) devices.

Permanent
Expires when the workload of which the target region is a part terminates

Process
Expires when the CICS BTS process ends

Signon
Expires when the terminal user signs off.

System
Expires when the target region terminates

UOW
Expires when the unit of work associated with the transaction ends. The unit of work ends either when a CICS SYNCPOINT or ROLLBACK request is run, or when the originating task terminates.

There are circumstances when SM_SCOPE generates a scope list containing a single affinity target region, but the target region is not available for routing. This happens when:
• The target region is down.
• The CICS link to the target region is down.
• The target region is currently active but it was shutdown and restarted after the affinity was created.

In these cases, the EYU9WRAM default processing issues a terminal message indicating that the affinity target region is not available and causes the transaction to terminate. If the affinity lifetime is PCONV (pseudoconversation), CICSplex SM automatically deletes the affinity because it has expired (there is no NEXTTRANSID). However, the default EYU9WRAM processing does not delete any other affinities because the characteristics of the actual affinity to the target region are unknown. For example, a LOGON affinity may involve the use of the TCTUA to pass information to the target region. If the affinity is deleted when the target region is not available, the next transaction for the transaction group would cause a new target region to be selected. The transaction might fail upon using the TCTUA contents when routed to the new target region.

The sample EYU9WRAM program, which implements the default processing, contains a subroutine that checks on affinity status after a call to SM_SCOPE. When an affinity is active to a target region, but not committed, and the affinity target region status is not OK, the subroutine sends a message to the terminal user and then exits so that the EYU9WRAM program terminates. The subroutine contains an unexecuted code fragment that can be used to delete the affinity using the SM_DELAFF call. Before the unexecuted code fragment is a series of tests for the affinity lifetime of the active affinity. One or more of the branches can be changed to jump to the code fragment. The code fragment itself deletes the affinity, issues a message, and then returns so that the EYU9WRAM program exits, thereby causing the transaction to terminate. This processing can be modified so that the affinity is deleted, no message is issued, and the subroutine exits causing the mainline process to reexecute the SM_SCOPE call. In that case, a new set of target regions is received for use by SM_BALANCE.

The same subroutine also contains an unexecuted code fragment that can be enabled to create an affinity. In this case, the subroutine has determined that an affinity is defined but not active. It then checks the WCOM_AFF_AUTO indicator to determine whether CICSplex SM should automatically create affinities during SM_BALANCE. The subroutine exits normally no matter what the answer is. You can enable the SM_CREAFF fragment in order to cause an affinity to be created. The SM_CREAFF call may be used regardless of whether WCOM_AFF_AUTO does or does not indicate the automatic creation of affinities during SM_BALANCE. The SM_CREAFF call can therefore be used to:
• Create an affinity when CICSplex SM will not.
• Create an affinity to a target region that CICSplex SM would ordinarily not select.

The SM_CREAFF code fragment creates an affinity to the target region that appears first in the scope list returned by SM_SCOPE.

The following fields in the EYURWCOM communication area provide information regarding CICSplex SM affinity processing.
• WCOM_AFF_STAT
• WCOM_AFFAOR_STAT
• WCOM_AFF_TYPE
• WCOM_AFF_LIFE
CICSplex SM data areas

The EYU9WRAM program uses two data areas, communication area EYURWCOM and scope vector element EYURWSVE.

Literals for EYURWCOM are defined in EYURWCOD and literals for EYURWSVE are defined in EYURWSVD.

The names of the copy books that you can use to map these data areas are identified in Sample programs and copy books.

The scope vector element, EYURWSVE, contains information about the individual target regions associated with the list of candidate target regions returned by SM_SCOPE.

Creating a user-replacement module for EYU9WRAM

You can use the sample procedures provided in CICSTS54.CPSM.SEYUPROC to create replacement modules for EYU9WRAM.

The procedure members are as follows:

Assembler EYUEITAL
C EYUEITDL
PL/I EYUEITPL
COBOL EYUEITVL

1. Copy these procedures to a cataloged system procedure library. You can use the samples in Sample user-replacement modules.

2. Use the JCL samples to run the procedure and create the replacement module for EYU9WRAM. Replace the lower case values shown in the sample JCL with the appropriate values for your site. Also, you cannot use the CICSplex SM API in EYU9WRAM.

Requesting additional dynamic routing support

This section contains Product-sensitive Programming Interface Information.

You can access the CICSplex SM workload management facilities directly from an application program.

Note: If you are running CICS Transaction Server for OS/390® Version 1 Release 3 and later, it is recommended that you use the CICSplex SM-supplied program EYU9XLOP for all your dynamic routing requirements. You need the information in this section only if you want to continue to use this function during migration to CICS Transaction Server for OS/390 Version 1 Release 3.

If your routing regions are CICS Transaction Server for OS/390 Version 1 Release 3 and later, or if you are using CICS BTS or enterprise beans, you do not need the information in this section. You should use the distributed routing facilities described in “Dynamic routing with CICSplex SM” on page 19.
To write such a program, you should be familiar with:

- The interface between the CICS relay program and the defined dynamic routing program.
- CICSPlex SM workload management processing, as described in [Introduction to workload management](#).
- The CICSPlex SM workload management routing action module, EYU9WRAM, as described in “Dynamic routing with CICSPlex SM” on page 19.

The primary method of invoking CICSPlex SM workload management is by defining module EYU9XLOP to CICS as the dynamic routing program. This causes EYU9XLOP to be invoked by the CICS relay program, allowing CICSPlex SM workload management to make a routing decision about each work request that can be sent to another CICS system.

If necessary, CICSPlex SM workload management can be invoked directly from an application program, without going through the CICS relay program. For CICS releases prior to CICS Transaction Server for OS/390 Version 1 Release 3, you can use CICSPlex SM Workload Management to determine the best target region for a distributed program link (DPL) from a requesting region. The application program you write must follow certain guidelines:

- The program must run in a CICS system that is defined and running as a routing region. You cannot access CICSPlex SM workload management from a target region.
- The program must issue its INIT and TERM calls from the same task. CICSPlex SM expects the program to imitate the processing done by the CICS relay program, which always calls at route initiation and route termination.

Note: Accessing workload management through a program that issues an EXEC CICS START command is not recommended with an asynchronous transaction start. Furthermore, EXEC CICS START commands that are not related with either a terminal or a user should not be used for transactions that have affinity relationships, as those relationships cannot be correctly resolved using this interface.

Accessing workload management from a program using a dynamic program load is not supported. CICSPlex SM workload management uses the CICS application programming interface to gather information about the current environment in which it is running. Due to DPL restrictions some of that information is not available, and unpredictable results may occur.

In order to make a routing decision, CICSPlex SM workload management needs certain information that is normally supplied by the CICS relay program. The CICS relay program derives the information from data available to CICS for the instance of the transaction being relayed. When you invoke CICSPlex SM workload management directly, you need to provide this information, including terminal-oriented data and the equivalent of a transaction name to identify the work to be routed.

How to start CICSPlex SM workload management

To start the CICSPlex SM workload management facilities, use an EXEC CICS LINK command, specifying EYU9XLOP as the program and identifying EYURWTRA as the communication area.

The format of the command is:
EXEC CICS LINK
 PROGRAM(EYU9XLOP)
 COMMAREA(EYURWTRA)
 LENGTH(*AL2(WTRA_LENGTH))

Much of the data normally passed from the CICS relay program to the dynamic routing program in the DFHDYPDS communication area must be generated by your program and passed to CICSPlex SM workload management. Other data that is normally derived by CICSPlex SM workload management from a transaction-and terminal-oriented environment must also be provided by your program. The assembler copy book EYURWTRA provides a map of the communication area to be passed to CICSPlex SM workload management.

The corresponding copy books and the CICSPlex SM libraries in which they can be found are:

<table>
<thead>
<tr>
<th>Language</th>
<th>Member name</th>
<th>Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembler</td>
<td>EYUAWTRA</td>
<td>SEYUMAC</td>
</tr>
<tr>
<td>COBOL</td>
<td>EYULWTRA</td>
<td>SEYUCOB</td>
</tr>
<tr>
<td>PL/I</td>
<td>EYUPWTRA</td>
<td>SEYUPL1</td>
</tr>
<tr>
<td>C</td>
<td>EYUCWTRA</td>
<td>SEYUC370</td>
</tr>
</tbody>
</table>

Before invoking CICSPlex SM workload management, you must initialize the EYURWTRA communication area.

For a list of the possible response and reason code values that can be returned in WTRA_API_RESP and WTRA_API_REAS, refer to the assembler copy book member EYURWCOD.

Processing considerations

After CICSPlex SM workload management processing, the WTRA_RESPONSE field contains a return code of either zero (0) or 8.

If the return code is 0, WTRA_SYSID contains the SYSID of the selected target region, and WTRA_APPLID contains its APPLID. With that information, you can proceed to route the unit of work to the target region.

If the return code is 8, you should inspect the WTRA_API_RESP and WTRA_API_REAS fields for more information. These fields contain the last response and reason codes returned to the CICSPlex SM workload management routing action module (EYU9WRAM). In most cases, the response and reason codes describe what caused CICSPlex SM workload management to generate the return code of 8. Based on that information, you can decide how to proceed.

In some cases, however, the WTRA_RESPONSE field may contain a return code of 8, while the WTRA_API_RESP and WTRA_API_REAS fields have not been set by CICSPlex SM workload management. In those cases, an error was detected before invoking the routing action process. CICSPlex SM user trace records are written to the CICS trace data set for those types of errors. When this happens, your program should terminate processing.

When the return code is 8, you should also inspect the WTRA_OPTER field. If its value is WTRA_CALLYES:

1. Set the WTRA_FUNC field to WTRA_FUNCTRM for route termination.
2. Reinvoke CICSPlex SM workload management.
3. Terminate processing for the proposed unit of work.

If the WTRA_OPTER field contains a value of WTRA_CALLNO, terminate further processing for the proposed unit of work.

After the unit of work has completed in the target region, set the WTRA_FUNC field according to how the unit of work completed. If the unit of work completed successfully:
1. Set the WTRA_FUNC field to WTRA_FUNCTRM for route termination.
2. Optionally, set the WTRA_NEXTTRAN field to the ID of the next transaction to be used in the process. If there is no next transaction, set the field to all blanks.
3. Reinvoke CICSPlex SM workload management to request termination processing for the transaction.

If the unit of work abended or generated an error that you consider abnormal:
1. Set the WTRA_FUNC field to WTRA_FUNCABD to notify CICSPlex SM workload management that the routed transaction abended.
2. Reinvoke CICSPlex SM workload management to request abnormal termination processing for the transaction.

Route error considerations

After you receive the SYSID and APPLID of a target region, you can attempt to route the unit of work to the target region.

However, the routing attempt may result in an error condition if the system is unavailable. When this happens, you should:
1. Set the WTRA_FUNC field to WTRA_FUNCERR to indicate a routing error.
2. Specify the reason for the error in the WTRA_ERR field.
3. Reinvoke CICSPlex SM workload management.

CICSPlex SM workload management provides another target from the scope list, if possible. If no other systems are available, the WTRA_RESPONSE field is set to 8 and the WTRA_API_RESP and WTRA_API_REAS fields describe the reason for the failure. You may have to invoke CICSPlex SM workload management more than once for routing errors until you receive a valid target region.

Transaction affinity considerations

If the WTRA_TRANID, WTRA_USERID and WTRA_LUNAME fields cause CICSPlex SM workload management to select a transaction group that includes an affinity, the rules of transaction affinities are obeyed.

In this case, you should ensure that the WTRA_NEXTTRAN field is initialized with the ID of the next transaction before calling the route termination function.

If your units of work, or any subset of them, have an affinity relation defined, be careful in how you define that affinity. Since your program cannot provide SIGNOFF or LOGOFF processing, an affinity lifetime of SIGNON or LOGON, though valid, may cause an affinity relation to be built that is not removed until either the requesting region or the target region terminates.

The WTRA_NEXTTRAN field is most useful for pseudo-conversation affinities. For this affinity lifetime, CICSPlex SM workload management normally issues the EXEC CICS ASSIGN NEXTTRANSID command to retrieve the next transaction ID,
if any, for the facility. Since that command is not available when CICSplex SM workload management is invoked by your program, it is your responsibility to provide the ID of the next transaction.

For a description of CICSplex SM workload management affinity processing, see [Taking affinity relations into consideration](#). For details on specifying affinity relation and lifetime values, see [Creating a transaction group](#).

Abend compensation considerations

If the target region is running CICS TS, transactions initiated by your program can participate in abend compensation processing, provided that the active CICSplex SM workload specifies it.

You should note that, if the work requests are either non-terminal-related EXEC CICS START commands, or BTS activities, the routing and target regions must be within the same MVS image for the routing region to detect that an abend has occurred.

Your program should notify CICSplex SM workload management that a particular unit of work abended by specifying WTRX_FUNCABD in the WTRA_FUNC field. Then, if possible, CICSplex SM workload management will tend to avoid selecting the same target region for the transaction (or set of transactions, if an affinity is defined) on subsequent route select functions.

For a description of CICSplex SM workload management abend compensation processing, see [Abend probabilities and workload management](#). For details on requesting abend compensation, see [Creating a workload specification](#).

CMAS availability considerations

If your program issues an EXEC CICS LINK for the EYU9XLOP program, but the requesting region in which your program is running has not yet fully connected to its target CMAS, you see message EYUXL0020I, indicating that an ESSS connection is in progress.

Your program waits indefinitely until the CMAS becomes available and the requesting region is joined to a workload. If you have connected successfully to the CMAS and the MAS, but the CMAS has not installed any workload definitions to the MAS, you see a message indicating that the requesting region is waiting for a workload. You may need to set up and install workloads to rectify this situation.

Note: Once the requesting region has successfully connected to the CMAS, the CMAS can become inactive and workload management remains active.

Sample calling sequence

This code example illustrates a sample calling sequence for a program that accesses CICSplex SM workload management facilities. It is not intended to be used as a sample program and is, therefore, not complete in every detail.

```assembly
*---------------------------------------------------------------------*
DFHEISTG , Define Workarea
WRK_WTRA DS CL(WTRA_LENGTH)
    DS 0D
WRK_UOWCOMM DS 0C
WRK_UOW_RESP DS F
WRK_UOWCOMM_L EQU *-WRK_UOWCOMM
COPY EYURWTRA Include DSECT to map WTRA
SRVPGM DFHEIENT EIBREG=R11,DATAREG=R13,CODEREG=R12
```
* Initialize the WTRA COMMAREA. *

```assembly
LA R8,WRK_WTRA --> WTRA
USING EYURWTRA,R8 *** USING WTRA ***
MVC WTRA_LENGTH,=AL2(WTRA_LENGTH)  
   Set length of block.
MVI WTRA_ARROW,C>'
   Set arrow.
MVC WTRA_NAME,=C'EYURWTRA'  
   Set the name.
MVI WTRA_BLANK,C' '
   Set blank delimit.
MVC WTRA_PGMNAME,=CL8'SRVPGM'
   Set program name.
MVC WTRA_TERMID,=CL4'TRM1'
   Set TermID.
MVC WTRA_USERID,=CL8'USR1'
   Set USERID.
MVC WTRA_LUNAME(8),=CL8'.NET1'
   Set LUNAME.
MVC WTRA_TRANID,=CL8'TRN1'
   Set TRANID.
MVC WTRA_SYSID,=C'SYS1'
   Set SYSID.
MVC WTRA_APPLID,=C'APPLID1'
   Set AppId.

* Set Application Context *

MVC WTRA_PLATFORM,=CL64'PLATFORM_1.0.0'
MVC WTRA_APPLICATION,=CL64'APPLICATION_1.0.2'
MVC WTRA_MAJORVER,=F'1'
MVC WTRA_MINORVER,=F'1'
MVC WTRA_MICROVER,=F'1'
MVC WTRA_OPERATION,=CL64'PLEASE_ROUTE'
MVI WTRA_FUNC,=CL8'SRVPGM'
   Set the Route Select Function.
MVI WTRA_DYRTYPE,=CL8'SRVPGM'

* Invoke the WLM MAS Agent for Route Select. *

ROUTE_SELECT DS 0H
  BAS R5,=LINK_WLM  
  Go do it.
  CLC WTRA_RESPONSE,=F'0'  
  Call go OK?
  BNE CHECK_OPTER  
  .no.
  BAS R5,=START_UOW  
  Go Start the UOW.
  LTR R15,R15  
  Work Completed?
  BZ ROUTE_TERM  
  .yes.
  BP ROUTE_ABND  
  UOW gave non zero return code.
  C R15,=F'-4'  
  SYSID error?
  BNE ROUTE_ABND  
  .no.

* Invoke the WLM MAS Agent for Route Error. *

ROUTE_ERROR DS 0H
  MVI WTRA_FUNC,=CL8'SRVPGM'
  Set the Termination Function.
  MVI WTRA_ERR,=CL8'SRVPGM'
  Say out of service.
  R  ROUTE_SELECT  
  Go Get another system.

* Invoke the WLM MAS Agent for Route Abend. *

ROUTE_ABND DS 0H
  MVI WTRA_FUNC,=CL8'SRVPGM'
  Set the Abend function.
  BAS R5,=LINK_WLM  
  Go terminate.
  CLC WTRA_RESPONSE,=F'0'  
  OK?
  BE EXIT_ABD  
  .yes.
  CHECK_OPTER DS 0H
  CLI WTRA_OPTER,=CL8'SRVPGM'
  Call WLM for Term?
  BNE WLM_CALLERR  
  .no.

* Invoke the WLM MAS Agent for Route Termination *

ROUTE_TERM DS 0H
```

Chapter 2. Configuring dynamic routing 43
MVI WTRA_FUNC,WTRA_FUNCTRM Set the Termination Function.
MVC WTRA_NEXTTRAN,=CL8'TRN2' Set the next TRANID.
BAS R5,=LINK_WLM Go terminate.
CLC WTRA_RESPONSE,=F'0' OK?
BE EXIT_TERMOK ..yes.

* The WLM MAS AGENT returned an 8 in WTRA_RESPONSE

WLM_CALLERR DS OH

* Process completed successfully

EXIT_TERMOK DS OH

* Route Abend Call returned a 0

EXIT_ABD DS OH
EXIT
EXEC CICS RETURN

* LINK_WLM : Link to the WLM MAS AGENT

LINK_WLM DS OH
EXEC CICS LINK PROGRAM(EYU9XLOP) X
COMMAREA(EYURWTRA) LENGTH(=AL2(WTRA_LENGTH)) X
BR R5 Exit routine.

* START_UOW : Start the Unit Work.

START_UOW DS OH
EXEC CICS LINK PROGRAM(UOWPGM) X
COMMAREA(WRK_UOWCOMM) LENGTH(=AL2(WRK_UOWCOMM_L)) X
SYSID(WTRA_SYSID) X
RESP(WRK_EIBRESP) X
CLC WRK_EIBRESP,DFHRESP(NORMAL) Did call go ok?
BE START_UOWL ..yes.
L R15,=F'-4' Assume SYSIDERR
CLC WRK_EIBRESP,DFHRESP(SYSIDERR) X
BE START_UOWX ..yes.
L R15,=F'-8' Load Failure code.
B START_UOWX Go exit.
START_UOWL DS OH
L R15,WORK_UOW_RESP Load Response Code.
START_UOWX DS OH
BR R5 Exit routine.
Chapter 3. Administering workloads with CICSPlex SM

CICSPlex SM workload management optimizes processor capacity in your enterprise. Workload management dynamically routes transactions and programs to whichever CICS region is the most appropriate at the time, taking into account any transaction affinities that exist.

Workload management definitions and their related views

You use the Web User Interface (WUI) workload management administration views to define a variety of workload management attributes.

Figure 6 on page 46 provides an overview of the workload management views from the perspective of the CICSPlexSM object model. In addition to these views, you can use the views to display information about and manage active workloads. You can also display a visual map of your workload management definitions by using the MAP button.

Figure 7 on page 47 illustrates the relationship between the components of a workload in a CICSPlex and the views used to establish the workload.
Figure 6. Views for creating workload management objects and associations
Table 4 on page 48 shows the views you can use to create workload management definitions. It also indicates the information you can display and the actions you can perform using these views. To access these views in the Web User Interface, from the main menu, click Administration > Workload manager administration. For details of these views, see CPSM administration views.

Figure 7. The relationship between a workload and the workload management views

Transactions in transaction groups (DTRINGRP) - to associate transactions with transaction groups
Transaction groups (TRANGRP) - to define and maintain transaction groups
Workload definitions in groups (WLMINGRP) - to associate workload definitions and workload groups
Workload definitions (WLMDEF) - to define and maintain workload definitions
Workload specifications with their workload groups (WLMINSPEC) - to associate workload groups with workload specifications
Workload groups (WLMGROUP) - to define and maintain workload groups
CICS systems/system groups associated with workload specifications (WLMSCOPE) - to maintain the association of workload specifications with CICS systems identified as routing regions
Workload specifications (WLMSPEC) - to define and maintain workload specifications
<table>
<thead>
<tr>
<th>WUI view</th>
<th>Object name</th>
<th>Tasks Supported</th>
</tr>
</thead>
</table>
| Transactions in transaction groups | DTRINGRP | • Display all transaction groups within the current context.
• Remove a transaction from a transaction group.
• Display a map of workload definitions using the designated transaction group as a starting point. |
| CICS system groups associated with workload specifications | LNKSWSCG | • Display, create or remove the association between a workload specification and a CICS system group. |
| CICS systems associated with workload specifications | LNKSWSCS | • Display, create, update or remove a link between a workload specification and a CICS system.
• Display a map of workload definitions using the designated definition as a starting point. |
| Transaction groups | TRANGRP | • Display, create, display, update, remove, or update a transaction group.
• Add a transaction to a transaction group.
• Install
• Display a map of workload definitions using the designated transaction group as a starting point. |
| Workload definitions | WLMDEF | • Create, change, or remove a workload definition.
• Add an association between a workload definition and a workload group.
• Install a workload definition into a workload. |
| Workload groups | WLMGROUP | • Display, create, update, or remove a workload group.
• Add an association between a workload group and a workload specification.
• Install workload definitions associated with a workload group into a workload.
• Display a map of workload definitions using the designated workload group as the starting point. |
| Workload definitions in groups | WLMINGRP | • Add or remove the association between a workload definition and a workload group. |

Table 4. Views to create and maintain workload management definitions
Table 4. Views to create and maintain workload management definitions (continued)

<table>
<thead>
<tr>
<th>WUI view</th>
<th>Object name</th>
<th>Tasks Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload specifications</td>
<td>WLMSPEC</td>
<td>• Display, create, update, or remove a workload specification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add an association between a workload specification and a CICS system.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Add an association between a workload specification and a CICS system group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Display a map of workload definitions using the designated workload specification as a starting point.</td>
</tr>
<tr>
<td>Workload groups in workload specifications</td>
<td>WLMINSPEC</td>
<td>• Remove the association between a workload group and a workload specification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Display a map of workload definitions using the designated definition as a starting point.</td>
</tr>
</tbody>
</table>

Table 5 shows the views you can use to manage active workloads. It also indicates the information you can display and the actions you can perform using these views. To access these views in the Web User Interface, from the main menu, click **Active workloads (WLM)**.

Table 5. Views to manage active workloads

<table>
<thead>
<tr>
<th>WUI view</th>
<th>Object name</th>
<th>Tasks Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active workloads</td>
<td>WLMAWORK</td>
<td>• Display active workloads within the current context.</td>
</tr>
<tr>
<td>Routing regions in an active workload</td>
<td>WLMAWTOR</td>
<td>• Display active routing regions that are associated with a workload.</td>
</tr>
<tr>
<td>Active workload target distribution factors</td>
<td>WLMAWAOR</td>
<td>• Display target regions that are associated with a workload.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Activate a target region associated with an active workload.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Quiesce a target region associated with an active workload.</td>
</tr>
<tr>
<td>Active workload definitions</td>
<td>WLMAWDEF</td>
<td>• Display active workload definitions associated with a workload.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Discard an active workload definition.</td>
</tr>
<tr>
<td>Active workload transaction groups</td>
<td>WLMATGRP</td>
<td>• Display active transaction groups associated with a workload.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Change the status of a transaction group to active.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Change the status of an active transaction group to dormant.</td>
</tr>
</tbody>
</table>
Table 5. Views to manage active workloads (continued)

<table>
<thead>
<tr>
<th>WUI view</th>
<th>Object name</th>
<th>Tasks Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active workload dynamic transactions</td>
<td>WLMATRAN</td>
<td>• Display active transactions associated with a workload.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Discard a transaction from a transaction group.</td>
</tr>
<tr>
<td>Active workload transaction group affinities</td>
<td>WLMATAFF</td>
<td>• Display the active affinities for a transaction group associated with a workload.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Discard an affinity entity.</td>
</tr>
</tbody>
</table>

Creating workload management definitions using the WUI

This section contains examples of the tasks involved in creating and managing workload management definitions using the WUI. Unless noted otherwise, only the context is recognized when you are creating and maintaining workload management definitions.

Creating a workload specification

A WLM specification identifies a workload and one or more CICS systems acting as target regions. The specification also defines the attributes of the default transaction group. You can use the WUI WLM specifications view to create a workload specification.

To create a workload specification and add it to the data repository:

• From the WUI main menu, click Administration > Workload manager administration > Specifications to open the WLM specifications tabular view. This view displays a list of existing workload specifications. It has action buttons that allow you to create, update, and remove workload specifications, and to associate CICS systems and CICS system groups with a workload specification.

• Click the Create... button. To use some of the information from an existing definition in the creation of your new definition, select an existing definition by selecting an adjacent check box in the Record column.

• Click the Create... button.

• Complete the fields and click the Yes button to create the new specification. Otherwise, click No to abandon the process.

The WLM specification view is redisplayed and includes an entry for the new definition.

Associating a CICS system or system group with a workload specification

Each workload specification has a default target scope and one or more CICS systems or CICS system groups associated with it.

These associated CICS systems or groups are known as the routing scope. The default target scope is identified when you create the specification. Associated CICS systems and system groups are identified when you add the routing region to the specification.

Follow this procedure to associate a CICS system group to an existing workload specification:
1. Click Administration > Workload manager administration—>Specifications to open the WLM specifications view.
 This view displays a list of existing workload specifications.

2. Select a workload specification and click the Associate CICS group... button. This opens the Associate CICS group... view.

3. In the CICS system group field, enter the specific or generic name of an existing CICS system group that represents one or more routing regions.

 Note: A CICS system or CICS system group acting as a routing region can be associated with only one workload specification at a time. A specification, however, can be associated with any number of CICS systems and CICS system groups.

4. Select one of the following options to indicate how the CICS systems that make up the CICS system group are to use the workload specification associated with the CICS system group:

 FORCE
 All CICS systems currently associated with the CICS system group are to use the workload specification. (The workload specification attribute for each CICS system changes to INHERIT, indicating that the specification was acquired from the CICS system group). If you add a new CICS system to the CICS system group, it does not automatically inherit the FORCE option. You must specify NULL or FORCE when adding a CICS system to a CICS system group.

 NULL Those CICS systems in the CICS system group that are not associated with a workload specification are to use this workload specification. (The workload specification attribute for those CICS systems changes to INHERIT, indicating that the specification was acquired from the CICS system group.)

 NONE
 Only the CICS system group is to be associated with the workload specification. The CICS systems in the CICS system group are not affected. That is, if there is no association between a CICS system and a workload specification, none is established; if there is an association, either explicitly established or inherited from another CICS system group, it is unchanged.

 Note:
 a. If the CICS system group includes other CICS system groups, all of the CICS systems, including those in subordinate CICS system groups, are affected by the value specified in this field.

 b. The CICS systems designated as the default target scope when you created the workload specification must be accessible to the CICS systems identified as the routing scope. Therefore, you should verify that the appropriate CICS connections exist between each routing region and all of the CICS systems in the target scope identified here.

5. Click Yes to update the workload specification in the data repository. Otherwise, click No to abandon the process.

 Once you associate a CICS system or system group to a workload specification, the specification is automatically installed whenever an associated CICS system is started. Any workload definitions associated with the specification through workload groups are also automatically installed.
However, if you associate the workload specification with a CICS system that is already active, the new specification is not immediately available. To turn workload management on:

1. Click **Administration > Topology administration > System definitions** to display a list of active CICS systems.
2. Select the CICS system and click the **Update...** button.
3. In the **Workload manager status** field, specify **YES**, and click the **Yes** button to turn on workload management. Otherwise, click **No** to abandon the process.

Updating a link between a WLM specification and a CICS system

Procedure

1. From the main menu, click **Administration > Workload manager administration**.
2. From the Workload manager administration views menu, click **Specifications to system links**. The WLM specifications to CICS system links view (LNKSWSCS object) is displayed.
3. Check the box for the WLM specification to be updated. You can check more than one box.
4. Click the **Change Spec Association** button to display the Change Spec Association (EYUSTARTLNKSWSCS.CHGSPEC) view.
5. Type the new name in the **New WLM specification name** field and select an appropriate inherit option.
 - Click **Yes** to update the link between a monitor specification and a CICS system group.
 - Click **No** to abandon the process.

Updating a link between a WLM specification and a CICS system group

Procedure

1. From the main menu, click **Administration > Workload manager administration**.
2. From the Workload manager administration views menu, click **Specifications to system group links**. The WLM specifications to CICS system links view (LNKSWSCG object) is displayed. For more information about the LNKxSCG parameters, see [LNKxSCG Records (LNKSMSCG, LNKSRSCG, LNKSWSCG)](https://www.ibm.com/support/knowledgecenter/SSECG2_11.2.0/com.ibm.cics.cicsplesm.doc/structure/lnkxscg.html).
3. Check the box for the WLM specification to be updated. You can check more than one box.
4. Click the **Change Spec Association** button to display the Change Spec Association (EYUSTARTLNKSWSCG.CHGSPEC) view.
5. Type the new name in the **New WLM specification name** field and select an appropriate inherit option.
 - Click **Yes** to update the link between a monitor specification and a CICS system group.
 - Click **No** to abandon the process.

Creating a transaction group

A transaction group is an association of logically similar transactions. The similarity can be based on workload management (WLM) or affinity requirements, common shared processing requirements, or any other user-determined characteristic.
About this task

For workload management, any WLM information you specify in the transaction group, including the routing algorithm type, overrides the defaults supplied in the associated workload specification (WLMSPEC). If you specify alternative WLM attributes in a transaction group, you can change workload routing characteristics for the associated transactions dynamically without stopping your routing region.

Procedure

1. Click Administration > Workload manager administration > Transaction group definitions to open the Transaction group definitions view. This view displays a list of existing transaction group definitions. You can create, update, and remove transaction group definitions, and add a transaction to a transaction group.

2. Optional: To use information from an existing definition when you create a new definition, select the check box in the Record column next to the required existing definition.

3. Click Create.

4. Provide the appropriate information to create your transaction group definition. See Transaction group definitions - TRANGRP for a description of the fields in this view.

5. Click Yes to create the new definition and add it to the data repository. The Transaction group definitions view is displayed again with an entry for the new definition.

What to do next

If you modify the WLM information for an installed transaction group, you must discard its associated WLM definition (WLMDEF) then reinstall it, so that the transaction group named by the WLM definition is also refreshed. However, if you want to change the routing algorithm type (the ALGTYPE attribute), you can change it immediately without discarding and reinstalling the associated WLMDEF by using the Active workload transaction groups (WLMA TGRP) views and the SET command.

Creating a workload definition

You can use workload definitions to route work requests to a specific set of target regions based on the terminal and user names, or the process types, associated with those work requests. This section describes how to create a workload definition and add it to the data repository.

The terminal and user names may be either specific or generic. For example, you can create a workload definition that causes all transactions initiated by any user from terminals with logical unit names starting with NET to be routed to the target scope identified as EYUCSG01.

The transaction match criteria that CICSPlex SM uses to determine if a transaction should be routed are as follows:

- Is the transaction identifier part of a transaction group associated with the workload definition?
- Is there a definition specifying separation by process type? Is there a match? If so, use this definition. If not, is there a definition specifying separation by terminal logical unit name and user ID?
In what order should the terminal and user names associated with the transaction be evaluated; that is, which name is to be used as the primary filter?

Do the user and terminal names associated with the transaction match the name patterns specified with the workload definition?

The rules for establishing terminal and user name patterns are:

- When there are multiple workload definitions, the field containing the name identified as the primary filter can contain the same specific or generic pattern; the contents of the field used as the secondary filter must always be unique. For example, the following definitions are valid when USERID is the primary filter and LUNAME is the secondary filter. They are not valid, however, when LUNAME is the primary filter because the user identifiers are not unique.

<table>
<thead>
<tr>
<th>Entry Name</th>
<th>EYUWMD01</th>
<th>EYUWMD02</th>
<th>EYUWMD03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trangroup Name</td>
<td>EYUTNG01</td>
<td>EYUTNG01</td>
<td>EYUTNG01</td>
</tr>
<tr>
<td>Terminal Luname</td>
<td>LUR*</td>
<td>LUL*</td>
<td>LUT*</td>
</tr>
<tr>
<td>User ID</td>
<td>PIE*</td>
<td>PIE*</td>
<td>PIE*</td>
</tr>
</tbody>
</table>

- When a generic name is specified, the pattern with the most matching leading characters has precedence. For example, with the following patterns:

 - Pattern A37AR* is selected when the input is A37AR123. Pattern A37+R* is selected when the input is A37TRAP.

 - Terminal LU name patterns are matched on the concatenated values of network name and logical unit name. The following are valid terminal LU name patterns:

 - NETWORK1.LUI2345678 - A specific luname
 - NETWORK1.LUI* - Generic lunames in the network
 - NETWORK1.* - All lunames in the network
 - NET* - All lunames in a generic network
 - .LU12345678 - A specific luname within all networks
 - * or * - All lunames within all networks

To create a workload definition and add it to the data repository:

1. Click Administration > Workload manager administration > Definitions to open the Workload management definition view.
 This view displays a list of existing workload management definitions. It has action buttons that allow you to create, update, remove and install workload definitions, and to add a workload definition to a workload group.

2. If you want to use some of the information from an existing definition in the creation of your new definition, select an existing definition by selection by selecting an adjacent check box in the Record column.

3. Click the Create action button.

4. Provide the following information, as appropriate:

 Workload management definition name
 Specify a 1- to 8-character name for the workload definition. The name can contain alphabetic, numeric, or national characters. However, the first character must be alphabetic.

 Description
 (Optional) Specify a 1- to 30-character description of the definition.

 Trangroup group name
 (Optional) Enter the specific or generic name of a transaction group. If you enter a generic value, a list of valid transaction groups is displayed.
If you do not identify a transaction group, the default transaction group for the specification is assumed.

Terminal LU name

Enter a specific logical unit name or a pattern, using the format:

```
[network_qualifier_name][.luname]
```

where both the `network_qualifier_name` and the `luname` are between 1 and 8 characters in length. Both the `network_qualifier_name` and the `luname` are optional, however one must be specified. If the `luname` is specified it must be prefixed by a period sign.

A pattern can include the characters + (plus sign), * (asterisk), or both; where the plus sign represents any non-blank character and can be specified anywhere in the pattern and the asterisk represents a range of zero or more characters that may include blanks. The asterisk must only be used at the end of the pattern.

User ID

Enter a specific user ID or a pattern. A pattern can include the characters + (plus sign), * (asterisk), or both.

Note: The Terminal Luname and User ID values are used when CICSPlex SM attempts to match a transaction with this definition.

BTS process type

Enter a specific process type or a pattern. A pattern may include + (plus sign), * (asterisk), or both.

Note: If you specify anything other than an * in this field, the luname and user id fields must be set to an *. Similarly, if there is anything other than an * in either luname and user id, this field must be set to *.

You cannot separate a workload by process type, luname and user id.

Scope name of set of target systems

Enter the specific or generic name of a CICS system or CICS system group to be used as target regions for dynamic routing requests. If you enter a generic value, a list of valid CICS systems and CICS system groups is displayed.

Note: The specified CICS system or CICS system group must be accessible to the CICS systems identified as the routing scope with the workload specification to which this definition is associated. Therefore, you should verify that the appropriate CICS connections exist between each routing region and all of the CICS systems identified here as the target scope.

5. Click Yes to create the new definition.

The **Workload management definition** view is redisplayed and includes an entry for the new definition.

Creating a workload group

A workload group is used to associate one or more related workload definitions.

An example of how to use this view can be found in "Routing a specific transaction to a specific target region" on page 94. This section describes how to create a workload group definition and add it to the data repository.
• Click Administration views—>Workload manager administration views—>Groups to open the WLM groups view.

This view displays a list of your existing workload management group definitions. It has action buttons that allow you to create, update, remove and install workload groups, and to add a group to a workload specification.

• If you want to use some of the information from an existing definition in the creation of your new definition, select an existing definition by selecting an adjacent check box in the Record column.

• Click the Create action button.

Provide the following information, as appropriate:

Workload management group name

Specify a 1- to 8-character name for the workload group. The name can contain alphabetic, numeric, or national characters. However, the first character must be alphabetic.

Description

(Optional.) Specify a 1- to 30-character description of the workload group.

• Click Yes to create the new definition.

The Workload management group view is redisplayed and includes an entry for the new definition.

About workload view route fields

Use the "Active workload target distribution factors" and "Summarized active target region distribution trends" views together with route fields statistics displayed in the active workload views to understand what is happening in workload management.

You can use the route fields statistics information in the "Summarized active target region distribution trends" view to verify that your existing workload is running correctly, and that it is not losing transactions. The "Summarized active target region distribution trends" view also provides a new perspective on events inside WLM during the routing process.

Using the "Active workload views", you can highlight potential issues with your setup. For example, if routing is called and continually retrying to discover other available targets.

You can see counts of what is happening inside WLM; for example, the number of Route completes versus the number of Route selects. An example of this is the Route notifies field which shows you when you are linking to a program that is defined as DYNAMIC(YES) and you have provided a SYSID.

Using the "Summarized active target region distribution trends" view with the "Active workload target distribution factors" view can help you understand WLM routing decisions and behavior of CICSPlex SM. You might want to understand why some regions are receiving more work than others, and an analysis of Route Selections shows which regions are receiving more work than others.

Figure 8 on page 57 illustrates the route field processes involved in distributed routing.
Figure 9 illustrates the route field processes involved in dynamic routing.

These definitions describe the route fields:

Route select
Route select is updated when this region is selected as a target by CICSPlex SM workload management.

Route initiate
Route initiate is updated when a task routed using the distributed workload model starts on a target system.
Route error
Route error is updated when the region selected by CICSPlex SM is unreachable; for example, the connection is out of service, or no sessions are available. CICSPlex SM then attempts to select another region. This reselection is not counted as a Route select, and the Route select count for any subsequent region is not updated. A high number of route errors can indicate that there are insufficient sessions to run the workload. The lack of sessions can cause increased response time and CPU time because CICSPlex SM must try the routing again, potentially several times.

Route complete
Route complete is updated when a task that is routed using the distributed workload model starts on the target system. Route complete indicates to the routing system that its responsibility for this task is complete.

Route notify
Route notify is updated when a task is routed to a target region that is selected by the SYSID option on the LINK or START command. Route notify informs CICSPlex SM of the routing; CICSPlex SM does not choose the region. Route notify is a variant of static routing, in which the program or transaction is defined as Dynamic, but the API that calls it specifies a SYSID.

Route abend
Route abend is updated when a task is routed to a target region and subsequently abends; for example, because the transaction is not defined in that system or the program is unavailable.

Route terminate
Route terminate is updated when a task has completed in a target region, whether at the end of a distributed program link (DPL) or a dynamic transaction routing (DTR) request, or when a task that is routed using the distributed workload model finishes.

Managing workloads
CICSPlex SM workload management optimizes processor capacity in your enterprise. Workload management achieves this by dynamically routing transactions and programs to whichever CICS region is the most appropriate at the time, taking into account any transaction affinities that exist.

When you have identified your workload management requirements, define them to CICSPlex SM as described in Configuring workload management.

What is workload management?
The workload management (WLM) function provides the capability to control where your work requests are run, in order to optimize performance and workload throughput. WLM uses the CICSPlex SM dynamic routing program EYU9XLOP to route work requests to the most suitable target region from a predefined set of target regions.

In a CICSplex or BTS-set, resources such as transactions and programs required in one region may be owned by another. For example, you may have a terminal-owning region (TOR) that requires access to transactions owned by an application-owning region (AOR).
You can specify the location of a resource when you are designing your system. Then, requests of a specific resource are always routed to the same region. Typically, the location of the resource is specified in the installed resource definition. This is known as static routing.

With dynamic routing, the decision on where to run a piece of work is made by the user-replaceable dynamic routing program (called the dynamic transaction routing program in previous releases). The user-replaceable program EYU9XLOP creates the environment necessary for CICSplex SM dynamic routing, and sets up the runtime environment.

The CICSplex SM dynamic routing program supports:

- **Workload separation**
- **Workload routing**
- **Inter-transaction affinity**

The dynamic routing program can route:

- Transactions initiated at a terminal
- Eligible EXEC CICS START requests that are associated with a terminal
- Eligible EXEC CICS START requests that are not associated with a terminal
- Dynamic program link (DPL) requests that are received using:
 - The CICS Web Interface
 - CICS Transaction Gateway
 - External CICS interface (EXCI) client programs
 - Any CICS client workstation products using the External Call Interface (ECI)
 - Open Network Computing (ONC) RPCs
 - The Link3270 bridge
 - Any function that issues an EXEC CICS LINK PROGRAM request
- CICS business transaction services (BTS) processes and activities

In CICSplex SM, dynamic routing is managed by the Workload Manager component of CICSplex SM.

The CICS regions involved in dynamic routing may act as one or more of the following:

Requesting region

The CICS region in which the work request originates.

Routing region

The CICS region in which the decision is taken on where the work will run.

Target region

The CICS region where the request is actioned.

For dynamic transaction routing, the requesting region and the routing region are typically TORs, and the target region is typically an AOR.

For inbound DPL client requests, the requesting region and the routing region are typically TORs, and the target region is typically an AOR.
For **EXEC CICS START** commands associated with a terminal, the requesting region is typically an AOR, the routing region is typically a TOR, and the target region is typically an AOR.

For peer-to-peer DPL requests, for EXEC CICS START commands that are not associated with a terminal, for CICS business transaction services processes and activities, and for Link3270 bridge requests, the requesting region, routing region, and target region are typically AORs.

Advantages of WLM

The WLM function in CICSPlex SM is of particular benefit in those enterprises that are running CICS on Parallel Transaction Servers (PTSs), because CICSPlex SM can route work throughout the sysplex.

With WLM in your enterprise, you have:

- The ability to route all types of program link request dynamically to improve the performance and reliability of inbound client and peer-to-peer DPLs.
- The ability to route **EXEC CICS START TRANSID TERMID** commands dynamically to improve the performance and reliability of the applications using these commands.
- The ability to integrate workload routing for terminal-initiated transactions, non-terminal-initiated transactions, EXCI clients, CICS clients, CICS web support, CICS Transaction Gateway, and started tasks.
- The ability to integrate BTS processes and activities fully into the workload separation and workload routing functions.
- The ability to integrate enterprise bean invocations into the workload routing and workload separation functions.
- The ability to perform workload routing and separation for Link3270 bridge requests.
- Optimum performance and response times for a variable and unpredictable workload.
- Work routed away from a failing target region to an active target region.
- Opportunities for increased throughput and improved performance.
- Reduced risk of bottlenecks
- Individual target regions taken out of service without impact to the end-user.
- Less operator intervention.

For full details, see [Configuring workload management](#).

Dynamic routing models

You can implement dynamic routing using one of two possible models: the *hub model*, in which routing is controlled by a single routing region; and the *distributed model*, in which every CICS region can operate as a routing region.

The traditional hub model:

The traditional hub model is the model used for the dynamic routing of transactions, **EXEC CICS START** commands associated with a terminal, and inbound client DPL requests. The request is initiated in the requesting region, typically a TOR, which also acts as the routing region. The request is routed to a target region, selected from the specified target group, where the program is executed.

The traditional hub model is shown in [Figure 10 on page 61](#).
The “hub” model is hierarchical, in which routing is controlled by one region (the routing region, that is, the TOR). Normally, a routing program runs only in the routing region. This model has the advantage of being relatively simple to implement. For example, compared with the distributed model, there are few inter-region connections to maintain. The disadvantages of the hub model are:

- If you use only one hub to route transactions and program-link requests across your target regions, the hub routing region is a single point-of-failure.
- If you use more than one hub to route transactions and program-link requests across the same set of target regions, you may have problems with distributed data. For example, if the routing program keeps a count of routed transactions for load balancing purposes, each hub routing region will need access to this data, which may be maintained in a local temporary storage queue.

The distributed model:

The distributed model is used for the dynamic routing of EXEC CICS START requests that are not related to a terminal, BTS activities, and Link3270 bridge requests. Each CICS system in the target group may act as a requesting region, routing region, and target region. A distributed routing program runs in each region.

The distributed model is shown in Figure 10 on page 62.
The advantage of the distributed model is that there is no single point of failure. The disadvantages are:

- Compared with the hub model, there are a great many inter-region connections to maintain.
- You may have problems with distributed data. For example, any data used to make routing decisions must be available to all regions. With CICSplex SM, this problem is solved by the use of data spaces.

Workload routing

Workload routing is the directing of transactions or programs among a group of target regions according to the availability, health, and activity levels of those target regions. You can use workload routing in addition to, or in place of, workload separation.

CICSplex SM can route a workload among a defined group of target regions by selecting, when each transaction is initiated, the target region that is likely to deliver the best performance.

Figure 11. Dynamic routing using a distributed routing model. Note that, for CICSplex SM, the dynamic routing program EYU9XLOP performs also the distributed routing function.
Workload routing is statistical. CICSPlex SM uses one of the following four algorithms to determine which target region processes the work:

- Goal
- Queue
- Link neutral goal
- Link neutral queue

If any transaction affinities are outstanding for the transaction being routed, the affinity target region is selected, regardless of the algorithm used.

With the goal and link neutral goal algorithms, the appropriate target region is selected based on the ability of that region to achieve the expected response time. With the queue and link neutral queue algorithms, the appropriate target region is selected such that the load is distributed across a set of target regions.

If the goal or link neutral goal algorithm does not identify a specific target region, the queue or link neutral queue algorithm, respectively, is applied to the remaining set of target regions.

If all the available target regions are equally capable of handling the work, a target region is selected randomly from the group. Therefore, in systems that are lightly loaded, there is no predetermined order in which work is allocated to equally capable target regions.

The queue algorithm and the goal algorithm allow for the type of connection between a target region and its routing region. A weighting factor is allocated to each type of connection, such that links are put in the following order of priority:

- Local
- MRO/IRC and MRO/XM (local LPAR)
- MRO/XCF (remote LPAR)
- IPIC (local LPAR)
- IPIC (remote LPAR)
- LU6.2
- Indirect

CICSPlex SM uses the weighting factor of the link as a multiplier against the task load and other factors to determine an overall routing weight. At the end of the evaluation, the region with the lightest weight is usually selected as the target region.

For example, if all other factors are equal, a target region that is connected to its requesting region by using MRO/XCF is preferred to a target region that is connected by using IPIC. IPIC connections between routing and target regions in the same LPAR have a lower weighting than IPIC connections to target regions in a different LPAR, so that if other factors are equal, local IPIC connections are preferred to remote IPIC connections.

Control level for workload routing

To use workload routing, you must specify a default routing algorithm for the workload at the workload specification (WLMSPEC) level. You can optionally specify a routing algorithm at the transaction group (TRANGRP) level. An
algorithm specified in a transaction group overrides the default algorithm that is associated with the workload specification.

The default routing algorithm is applied to every routed dynamic transaction in the workload, except those transactions that are associated with a transaction group that has a routing algorithm specified. You can specify one of the following routing algorithms:

- QUEUE
- LNQUEUE
- GOAL
- LNGOAL

To change the routing algorithm specified at the workload specification level, you must close down all regions that participate in the workload so that workload is refreshed with the new algorithm specification.

At the transaction group level, you can specify a routing algorithm dynamically. The specified dynamic routing algorithm is applied to every routed dynamic transaction that is associated with the transaction group. Therefore, you can apply an alternative routing algorithm to specific transaction codes in the same workload.

If you specify an alternative routing algorithm at the transaction group level, you can change workload routing characteristics for specific target regions dynamically without stopping your routing region. If you modify an installed transaction group, you must discard its associated WLM definition (WLMDEF) and then reinstall it, so that the transaction group named by the WLM definition is also refreshed. To change the routing algorithm type immediately without discarding and reinstalling the associated WLMDEF, you can use the Active workload transaction groups (WLMATGRP) views and the SET command to change the ALGTYPE attribute.

You can specify one of the following routing algorithms:

- INHERIT
- QUEUE
- LNQUEUE
- GOAL
- LNGOAL

INHERIT means that transaction group uses the routing algorithm that is associated with the workload specification for the workload.

Link neutral workload routing

In some situations, link weighting has a strong impact on the routing behavior and can prevent CICS transaction routing across system boundaries in a single-site parallel sysplex environment. To use workload routing without link weighting, you can use the link neutral goal and link neutral queue algorithms. These algorithms are identical to the goal and queue algorithms, respectively, except that the type of connection between the routing and target region is not considered.

Link neutral algorithms can be useful to route dynamic transactions, for example those that might require services from MVS subsystems. With queue and goal algorithms, routers focus dynamic traffic on the systems with the fastest links, which probably reside in the same LPAR. This behavior might overload
subsystems in the local MVS image, and under use the remote MVS images that participate in the workload. If you assign these transactions to a transaction group that uses a link neutral algorithm, the routed dynamic traffic is routed more evenly between the local and remote LPARs, and the load on those subsystems is spread.

However, remember that with a link neutral algorithm, if other factors are equal, all target regions have equal preference. The most remote target regions, connected with the slowest telecommunications links, might have equal preference with a locally connected MRO region, or the routing region itself if it is part of the routing target scope. Therefore, consider carefully whether to specify a link neutral algorithm at the workload specification (WLMSPEC) level, because it might affect every dynamically routed transaction. As a result, the workload manager might not select the best target region for dynamic routing traffic and the overall workload throughput might deteriorate.

If you require a link neutral algorithm for a specific transaction set, assign the algorithm to the workload management transaction group (TRANGRP) that identifies those transactions.

The queue algorithm:

When CICSplex SM uses the queue algorithm, if the transaction being routed has no active affinities, the load is distributed across a set of target regions. Selection criteria include the current task load, the health state, and the type of connection between the router and the target region.

If the transaction being routed has no active affinities, the queue algorithm causes CICSplex SM to select the target region that conforms to the following set of criteria:

- The region has the shortest queue of work waiting to be processed, relative to the maximum number of tasks permitted in the target region. This queue of work, also called the load count, is the count of all active and queued user tasks. By default, tasks queued for both MAXTASKS and TRANCLASS attributes are included in the load count. Use of the "Task load queue mode" attribute in the CSYSDEF resource table allows sites to exclude tasks queued for the TRANCLASS attribute from the load count. For more information about the "Task load queue mode" attribute in the CSYSDEF resource table, see CICS system definitions - CSYSDEF.
- The region is the least affected by conditions such as short-on-storage, SYSDUMP, and TRANDUMP.
- The region is the least likely to cause the transaction to stop.
- The region is the shortest path for interregion communication.
- The region has a z/OS WLM health value in the range 1-100.

The queue algorithm maximizes work throughput and standardizes response times across the CICSplex. This algorithm is very robust; it can accommodate differences in processor power, different maximum task values in the target regions, asymmetric target region configurations, and an unpredictable workload.

The link neutral queue algorithm:

The link neutral queue (LNQUEUE) algorithm corresponds to the queue algorithm, except that the type of connection between the routing and target region is not considered.
If a transaction being routed has no active affinities, the link neutral queue algorithm causes CICSPlex SM to select the target region that conforms the following set of criteria:

- The region has the shortest queue of work waiting to be processed, relative to the maximum number of tasks permitted in the target region. This queue of work, also called the load count, is the count of all active and queued user tasks. By default, tasks queued for both MAXTASKS and TRANCLASS attributes are included in the load count. Use of the "Task load queue mode" attribute in the CSYSDEF resource table allows sites to exclude tasks queued for the TRANCLASS attribute from the load count. For more information about the "Task load queue mode" attribute in the CSYSDEF resource table, see CICS system definitions - CSYSDEF.
- The region is the least affected by conditions such as short-on-storage, SYSDUMP, and TRANDUMP.
- The region is the least likely to cause the transaction to stop.
- The region has a z/OS WLM health value in the range 1-100.

The link neutral queue algorithm provides efficient work throughput and response times across the CICSPlex. Similarly to the queue algorithm, this algorithm can accommodate differences in processor power and different maximum task values in the target regions. However, it does not allow for communications link speeds between the router and a target. Compared to the queue algorithm, this algorithm might spread a workload across a target scope more evenly, but the workload might not complete as quickly.

The goal algorithm:

The Goal algorithm may be used when dynamic routing decisions are primarily concerned with the ability of a region to achieve response time targets.

Goal mode routing should only be employed where routers and targets are managed by the same CMAS in the following scenarios:
- Dynamic routing using DTRPGM for dynamic transactions.
- Dynamic routing using DTRPGM for EXEC CICS START TERMID over APPC or MRO connections.
- Distributed routing using DSRTPMG for business transaction service routing.

In any other dynamic routing scenario, the QUEUE or LNQUEUE algorithms should be used.

If a transaction being routed has no active affinities then the goal algorithm causes CICSPlex SM to select the target region that conforms to the following set of criteria:
- Is the least affected by conditions such as short-on-storage, SYSDUMP, and TRANDUMP.
- Is the least likely to cause the transaction to stop.
- Is the most likely to meet the transaction response-time goals (either average or percentile) set for it (and for other transactions in its class) using the Workload Manager component of z/OS.
- Is the shortest path for interregion communication.
- Is the AOR with the shortest queue of transactions, relative to MAXTASK, waiting to be processed.
- Has a z/OS WLM health value in the range 1 - 100.
The link neutral goal algorithm:

The link neutral goal (LNGOAL) algorithm corresponds to the goal algorithm, except that the type of connection between the routing and target region is not considered.

If a transaction being routed has no active affinities, the link neutral goal algorithm causes CICSPlex SM to select the target region that conforms the following set of criteria:

- The region is the least affected by conditions such as short-on-storage, SYSDUMP, and TRANDUMP.
- The region is the least likely to cause the transaction to stop.
- The region is the most likely to meet the transaction response-time goals, either average or percentile, set for it (and for other transactions in its class) using the Workload Manager component of z/OS.
- The region is the AOR with the shortest queue of transactions, relative to MAXTASK, waiting to be processed.
- The region has a z/OS WLM health value in the range 1-100.

Effect of the z/OS WLM health service on CICSPlex SM workload routing:

In a CICS region, if the z/OS Workload Manager (z/OS WLM) health service is active, CICSPlex SM WLM takes account of the region’s z/OS WLM health state in the routing decision.

Prerequisite:

For CICSPlex SM WLM to take into account the z/OS WLM health state of the target regions, the following conditions apply:

- Both the routing and target regions must be at a minimum of CICS TS V5.4 (CICS and CICSPlex SM libraries); otherwise, the z/OS WLM health state will be ignored, and the target regions are deemed as ready to receive work.
- The z/OS WLM health service must be enabled in the CICS region. It is enabled by default. If the service is disabled, the region is also deemed as ready to receive work. To activate this service, you must set the WLMHEALTH system initialization parameter.

How the z/OS WLM health state of CICS regions affects CICSPlex SM routing decisions

The z/OS WLM health state of a region is reflected by a z/OS WLM health value in the range 0 - 100. When deciding where to route work, CICSPlex SM WLM might assign a penalizing weight in the routing algorithm for the target region, based on its health value:

- If the target region has a z/OS WLM health value of zero, it is not eligible to receive work. CICSPlex SM WLM will not route work to this region. Any workload affinities that are associated with this region will remain and be honored; however, workload routing based on those affinities will fail while the health value is zero, and will result in either message EYUWR0003W or a SYSIDERR condition. Message EYUWR0003W indicates that the EYU9WRAM program was in effect and the affinity AOR was not available. To resolve such routing failures, initiate a warm-up for the region so that the health value is non-zero, and then rerun your workload. See "Initiating a CICS system warm-up"
For target regions with a health value between 1 and 99, penalizing weights are assigned in the routing algorithm. The greater the health value, the lower the penalizing weight. This means that target regions with a greater health value are more favorable in the routing decision. Note that a region that is assigned a high penalizing weight remains active and might still receive work if no other healthier regions are available in the same scope.

When a target region has a health value of 100, no penalizing weight is assigned.

During the CICS warm-up or cool-down process, CICS adjusts the z/OS WLM health value of the region. As a result, this affects the routing decision of CICSPlex SM WLM, which restricts workload into the region during that process. In general, when a region is warming up, its health value increases periodically, and the region might gradually receive a larger workload; when a region is cooling down, its health value decreases periodically, and the region might gradually receive less work until it becomes ineligible as a target. For more information about what happens during CICS warm-up or cool-down, see the CICS warm-up and cool-down by use of z/OS Workload Manager health service.

Making a region ineligible as a workload routing target

You can deliberately make a region ineligible as a workload routing target in CICSPlex SM routing decisions by setting its z/OS WLM health open status to CLOSE in the MVS workload management (MVSWLM) view. This will gradually make the region less favorable until the region’s z/OS WLM heath value drops to 0, indicating that the region becomes ineligible. Additionally, you can change a region’s z/OS WLM health value to zero immediately, by setting its z/OS WLM health open status to IMMCLSE.

Workload separation

Workload separation routes work from a requesting or routing region among a set of target regions, but the requirements of users, terminals, the transactions themselves, and their BTS process type, can influence which target region set is used.

The routing of particular transactions or programs to a particular group of target regions is based on any combination either of user ID, terminal ID, and transaction group. For BTS processes, routing is based on a combination of transaction group and process type. For enterprise bean-related transactions, routing is based on transaction group. For Link3270 bridge requests, separating by terminal luname is subject to some restrictions. See the Separating Link3270 bridge workloads for more information.

For example, you can specify that:

- Any transaction initiated by users whose user IDs begin with the characters “PAY” must be routed to a target region in CICS system group AORPAY1.
- Any transaction initiated from a terminal whose LU name begins with the characters “NYORK” must be routed to a target region in CICS system group AORNYSRK.
- Any transaction belonging to the transaction group ACCOUNTS must be routed to a target region in CICS system group AORACCNT.
- All processes associated with a BTS process type TRAVEL are routed to a target region in one BTS-set, and all processes associated with BTS process-type PAYROLL are routed to another BTS-set.
All enterprise bean-related transactions belonging to transaction group STOCK are routed to any target region in CICS system group STOCKTG, if the user id matches that in the workload definition.

The decision as to which region is selected from the group of target regions that meet the workload separation criteria is based on the same routing criteria as described in "Workload routing" on page 62. The algorithm that is applied when making the routing decision can either be specified at the individual workload separation level or can be left to default to the algorithm used by basic workload routing.

Inter-transaction affinity

An inter-transaction affinity is a relationship between transactions, of a specified duration, that requires them to be processed by the same target region. For example, you might have a pseudoconversation made up of three separate transactions, and each transaction passes data to the next transaction in the sequence via a temporary storage queue (which may be shared in the distributed model). You would then specify that all three transactions must be processed by the same target region, and that this affinity lasts for the duration of the pseudoconversation.

(If you did not define this affinity to CICSplex SM, each transaction could be routed to a different target region and would therefore be unable to access temporary-storage data left by the previous transaction.) The target region itself is selected by CICSplex SM from the specified target scope.

Workload management and the IBM CICS Interdependency Analyzer for z/OS understand affinities between BTS processes and activities. BTS itself does not introduce affinities, and discourages programming techniques that do, but it does handle existing code that may introduce affinities. You should define such affinities to workload management, so that it can make sensible routing decisions. It is particularly important to specify each affinity’s lifetime; failure to do so may restrict unnecessarily workload management’s routing options.

Workload management and the IBM CICS Interdependency Analyzer for z/OS do not understand affinities between routable non-terminal-related EXEC CICS START commands, or between DPLs not associated with a user id or a terminal. You should take steps either to remove any affinities from your applications, or to ensure that your applications honor any affinities.

Note that, if data is passed between transactions via the COMMAREA on the EXEC CICS RETURN command, no such affinity exists: the COMMAREA is passed back to the requesting region, and so can be passed to the target selected to process the next transaction in the sequence.

How inter-transaction affinities are honored:

When the first transaction from a group of related transactions is started, CICSplex SM selects an appropriate region from the specified target scope.

If there is more than one suitable region in the target scope, CICSplex SM selects one using the current workload routing algorithm. Subsequent transactions in the same group that meet the affinity criteria are directed to the same region as the first transaction. If subsequent transactions do not meet the affinity criteria (for example, if the same pseudoconversation is started from a different user ID), the selection process for a suitable region starts again.
Factors that contribute to dynamic workload routing decisions
CICSPlex SM workload routing makes a routing decision based on a combination of factors.

The following factors are taken into consideration in the routing decisions:

The number of tasks in the region
Factored as a percentile value, calculated by dividing the target region MAXTASKS setting with the current task count.

The health status of the region
Factored by assigning arithmetic weights, depending on whether the region is short-on-storage, taking a transaction dump, taking a system dump, running at its MAXTASKS limit, in a non-responsive state, or in a CICSPlex SM stall.

Note: Health is assessed independently of system availability monitoring (SAM) and is not influenced by SAM settings.

The speed of the link between the router and the target
Factored by assigning arithmetic weights, depending on whether the target region is linked to the target by an MRO connection, an XCF connection, an LU6.2 connection, an IPIC connection, or if the target region is the router itself.

Note: The link speed is not used for link-neutral algorithms.

The z/OS WLM health state of the region
Factored by assigning penalizing weights, depending on the z/OS WLM health value (in the range 0 - 100) of a region provided by the z/OS WLM health service. The z/OS WLM health state is factored in only when the z/OS WLM health service is on.

- A region with a health value of zero is not eligible to receive work. Any workload affinities that are associated with this region will remain and be honored; however, workload routing based on those affinities will fail while the health value is zero, and will result in either message EYUWR0003W or a SYSIDERR condition. Message EYUWR0003W indicates that the EYU9WRAM program was in effect and the affinity AOR was not available. To resolve such routing failures, initiate a warm-up for the region so that the health value is non-zero, and then rerun your workload. See [Initiating a CICS system warm-up](#).

- A region with a health value of 100 is not assigned with penalizing weights and is fully capable of receiving work.

- For regions with a health value in the range 1 - 99, the greater the health value, the lower the penalizing weights assigned. Therefore, as the health value of a region increases, the region might gradually receive a larger workload.

Outstanding CICSPlex SM Realtime Analysis (RTA) Events associated with the workload, if any
Factored by assigning arithmetic weights depending on the severity of the events outstanding. These events are factored in only when Event name is specified in the WLM specification for the workload or any Transaction Group definitions associated with it.
Any transaction affinities, if any, that are outstanding to override the dynamic routing decision

Regardless of any other factors, if the routing request has an outstanding affinity associated with it, that affinity always overrides the route decision.

Workload management resources
You can set up and manage your workload environment using the workload management WUI view sets and resource objects.

Table 6. WUI view sets and resource objects for managing workloads

<table>
<thead>
<tr>
<th>WUI view set</th>
<th>Object name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transactions in transaction groups</td>
<td>DTRINGRP</td>
<td>This object displays information about the transactions associated with one or more transaction groups.</td>
</tr>
<tr>
<td>WLM specifications to system group links</td>
<td>LNKSWSCG</td>
<td>CICS system groups associated with workload specifications</td>
</tr>
<tr>
<td>WLM specifications to CICS system links</td>
<td>LNKSWSCS</td>
<td>CICS systems associated with workload specifications</td>
</tr>
<tr>
<td>Transaction groups</td>
<td>TRANGRP</td>
<td>A transaction group is an association of logically similar transactions. The similarity may be based on affinity requirements, common shared processing requirements, or any other user-determined characteristics. The transaction group is included as part of the workload definition, which in turn defines the CICS system group to be used as the target region. Any transaction that is not specifically associated with a transaction group is assigned to the default transaction group.</td>
</tr>
<tr>
<td>Active workload transaction group affinities</td>
<td>WLMATAFF</td>
<td>This object shows information about the active affinities for a transaction group associated with a workload within the CICSpix identified as the context. An affinity becomes active when the first transaction associated with the transaction group is dynamically routed to a target region.</td>
</tr>
<tr>
<td>Active workload transaction groups</td>
<td>WLMATGRP</td>
<td>This object shows information about transaction groups associated with a workload that is within the CICSpix identified as the context.</td>
</tr>
<tr>
<td>Active workload dynamic transactions</td>
<td>WLMATTRAN</td>
<td>This object shows information about all active transactions associated with a workload that is within the CICSpix identified as the context.</td>
</tr>
<tr>
<td>Active workload target distribution factors</td>
<td>WLMAWAOR</td>
<td>This object shows information about all target regions that are associated with a workload that is within the CICSpix identified as the context.</td>
</tr>
<tr>
<td>Active workload definitions</td>
<td>WLMAWDEF</td>
<td>This object shows information about active workload definitions associated with a workload that is within the CICSpix identified as the context.</td>
</tr>
<tr>
<td>Active workloads</td>
<td>WLMAWORK</td>
<td>This object shows information about active workloads within the CICSpix identified as the context. A workload is active within a CICSpix as long as:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A CICS system that is acting as a routing region or target region, and is participating in the workload, is connected to that CICSpix.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Any transaction causes an affinity lifetime of PERMANENT to be established.</td>
</tr>
</tbody>
</table>
Table 6. WUI view sets and resource objects for managing workloads (continued)

<table>
<thead>
<tr>
<th>WUI view set</th>
<th>Object name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing regions in an active workload</td>
<td>WLMAWTOR</td>
<td>This object shows information about routing regions that are associated with a workload that is within the CICSpex identified as the context.</td>
</tr>
<tr>
<td>Workload definitions</td>
<td>WLMDEF</td>
<td>This object identifies which transactions are to be routed to which CICS system group. You identify the transactions by transaction group, and within the group either by LU name and user id, or by process type.</td>
</tr>
<tr>
<td>Workload groups</td>
<td>WLMGROUP</td>
<td>This object is used to associate one or more workload definitions.</td>
</tr>
<tr>
<td>Workload definitions in groups</td>
<td>WLMINGRP</td>
<td>This object displays the names of workload groups and the workload definitions associated with them.</td>
</tr>
<tr>
<td>Workload groups in workload specifications</td>
<td>WLMINSPC</td>
<td>This object displays the names of workload specifications and the workload groups associated with them.</td>
</tr>
<tr>
<td>Workload specifications</td>
<td>WLMSPEC</td>
<td>A workload specification identifies a workload and one or more CICS system groups acting as target regions. It also defines the attributes of the default transaction group.</td>
</tr>
</tbody>
</table>

The WLM object model is shown in Figure 12 on page 73. For each object, the name of the WUI view is followed by the resource name in parentheses.
Planning for WLM

This section provides some instructions to help you determine the extent to which you can use CICSPlex SM workload management in your enterprise.

Workload routing or workload separation?
Use workload routing wherever possible because it makes the best use of the available CICS systems, and provides opportunities for increased throughput and improved performance. Implement workload separation (by process type, user,
terminal, and transaction) only where strictly necessary because it prevents full exploitation of CICSPlex SM workload routing functions.

If you have defined more than one CICSpex, and have made the division to reflect use of CICS systems by different groups of users, for example, it is possible that you will be able to use simple workload routing rather than workload separation in the CICSpex. For example, if you have separated the CICS systems used by group A from the CICS systems used by group B by defining two CICSpexes, you can implement workload routing in each CICSpex. If you have not taken this approach, you might consider it necessary to recognize such groupings by implementing workload separation.

There are two major activities in your planning for WLM:
- Identifying the workloads in your enterprise.
- Identifying inter-transaction affinities and trying to remove them.

Identifying the workloads

To plan for WLM, you shall begin by identifying the workloads processed in your enterprise. The workloads are certain to be apparent in any underlying TOR–AOR–FOR configurations. Next, confirm that the current CICSpex SM configuration of CICS systems supports the identified workloads.

In particular:
- Routing regions and target regions from a single workload must be in the same CICSpex. That is, the supplied dynamic routing program cannot route transactions beyond the confines of the CICSpex. (It is possible to route transactions outside of the CICSpex by customizing the supplied dynamic routing program. Customization of the supplied dynamic routing program is described in [Modifying dynamic routing](#)).
- A routing region must be:
 - A CICS TS region.
 - A local MAS, that is, the routing region cannot be running on an MVS image on which there is no CMAS.
 - In only one workload, that is, the routing region can be associated with only one active workload specification at a time.
- A target region can be:
 - a local MAS
 - in multiple workloads
 - any CICS system managed by CICSPlex SM

Identifying inter-transaction affinities

Inter-transaction affinities, which require related transactions to be processed by the same target region, prevent optimum workload distribution. In general, they arise either because of the way in which one transaction passes data to another, or because of a requirement to coordinate the processing of two or more transactions. Identifying affinities isn't always easy, but there are some methods you can use.

For example, you can review application design documentation or source code; you can run CICS traces; or you can use the IBM CICS Interdependency Analyzer for z/OS.
Having identified any affinities in a workload, you should make every attempt to remove them. If you cannot remove them completely, gauge the duration of the affinity and try to minimize it. You can define an inter-transaction affinity to CICSPlex SM as lasting:

- While the user's session is active
- For the duration of the terminal session
- While the target region remains active
- While the workload is active
- For the duration of a pseudoconversation
- While the BTS activity is active
- While the BTS process is active

Be aware that CICSPlex SM must honor an active affinity: if an affinity is active but the target region becomes unavailable, the transaction isn't routed. In the case of a BTS transaction, BTS will wait for the region to start.

Implementing WLM

What you have to do to use CICSPlex SM workload management functions varies depending on whether you want to implement workload routing only, or whether you also want to implement some workload separation, and possibly define one or more transaction affinities in the same CICSplex.

You will get the best results if you follow this process:
1. Identify candidates for dynamic routing
2. Implement workload routing for each workload in the CICSplex where dynamic routing is possible.
3. Add any necessary workload separation requirements.
4. Define any inter-transaction affinities.

Each step is described in the remainder of this section.

Identifying dynamic routing candidates

Not all work requests are candidates for dynamic routing.

The conditions that have to apply for a work request to be eligible are listed in Dynamic Routing.

For further details:

- See EXEC CICS LINK and EXEC CICS START commands.
- See EXEC CICS RUN ASYNCHRONOUS command.
- See Resource definitions and Administering BAS for information about CICS and CICSPlex SM resources.
- See Deploying applications to a JVM server for information about Java™.
- See Overview of CICS external interfaces for more information about the Link3270 bridge.

Implementing workload routing

To implement workload routing for a group of target regions, you must associate a routing region or a routing system group with a workload specification. Optionally, you can apply alternative routing to a specified group of transaction in the workload.
About this task

To use workload routing, you specify routing characteristics in the workload specification (WLMSPEC object). These characteristics apply to all of the transactions in the workload.

However, you can override these routing characteristics by supplying associated pairs of WLM definitions and transaction group definitions (WLMDEF and TRANGRP objects) that specify a specialized routing evaluation to be applied to one or more transactions. For workload routing, you specify a different routing algorithm in a transaction group definition. If you specify an alternative routing algorithm at the transaction group level, you can change workload routing characteristics dynamically without stopping routing regions.

Procedure

1. If there is more than one routing region in a single workload, create a CICS system group of those routing regions, using the CICS system group (CSYSGRP) object.
2. Create a CICS system group of the target regions to which the routing regions can route transactions, again using CSYSGRP. This group could include every CICS system in the CICSpool.
3. Create one workload specification for each workload in the CICSpool, using the workload management specification (WLMSPEC) object. In the workload specification:
 a. Specify the name of the target system group as the target scope value.
 b. Identify which routing algorithm to use for workload routing. You can use one of the following algorithms:
 - QUEUE
 - LNQUEUE
 - GOAL
 - LNGOAL
4. Associate the routing region, or the routing system group, with the workload specification. You can have multiple workloads in a single CICSpool, but a routing region or group of routing regions can belong to only one active workload specification at a time.
5. Optional: Override the routing algorithm for specific transactions in the workload by specifying a different routing algorithm in a transaction group definition. See [Creating a transaction group](#). If you modify an installed transaction group, you must discard its associated WLM definition (WLMDEF) and then reinstall it, so that the transaction group named by the WLM definition is also refreshed. To change the routing algorithm type immediately without discarding and reinstalling the associated WLMDEF, you can use the Active workload transaction groups (WLMATGRP) views and the SET command to change the ALGTYPE attribute.

Adding workload separation requirements

To implement workload separation in the same workload, by any combination either of user id, terminal id, and transaction group, or of process type and transaction group, do the following:

1. Create a CICS system group for each set of target regions, using the System group definitions view (CSYSGRP object). For example, if:
 - Transactions initiated by users ABC* from terminals NETA* must be routed to target regions 2 through 7
and

- Transactions initiated by users HIJ* from any terminal must be routed to target regions 5 through 9

two target system groups must be defined: one group includes target regions 2 through 7, and one group includes target regions 5 through 9.

2. Define a transaction group, using the **Transaction groups** view (TRANGRP object), if workload separation by transaction is to be implemented. For example, if transactions EFG1, EFG2, and EFG3 must be routed to a specific group of target regions, you must define a transaction group to include those transactions.

3. Create one workload definition, using the **Workload definitions** view (WLMDEF object), for each user, terminal, and transaction group combination. For the example in item [1] on page 76 (above):
 - One workload definition would be required for the combination of any transaction, users ABC*, and terminals NETA*.
 - One workload definition would be required for the combination of any transaction, users HIJ*, and any terminal.

A third workload definition would be required to support the workload separation by transaction described in item [2]. In each workload definition, include the name of the appropriate target region system group to which eligible transactions are to be routed.

4. If the workload definitions are to be installed automatically when the first requesting region in the workload starts, you should use the **Workload groups** view (WLMGROUP object) to:
 a. Create a workload group.
 b. Add the workload definitions to the workload group.
 c. Associate the workload group with the workload specification.

Automatic installation of the workload definitions is likely to be required, because workload separation is usually a regular and consistent requirement. However, you can also install a workload group or individual workload definitions manually for immediate effect.

Defining inter-transaction affinities

If there is a requirement for multiple transactions in the workload to be processed by the same target region, then do the following:

1. Create a transaction group, using the **Transaction groups** view (TRANGRP object), for each set of transactions within the workload that share an affinity. For example, if transactions MNO1, MNO2, and MNO3 must be processed by the same target region (perhaps because they run in sequence and leave data for the next transaction), define a transaction group to include those three transactions specifying the affinity type and its duration.

2. If you want to implement workload separation, create a workload definition for each transaction group and user or terminal pattern, using the **Workload definitions** view (WLMDEF object). For example, if the inter-transaction affinity described in item [1] (above) applies to any user from terminals NYORK*, the workload definition must include that information. In addition, the workload definition identifies the set of target regions from which CICSPlex SM can select one. This could be every target region in the CICSpex, or some subset of target regions.

Note that you can define an inter-transaction affinity to CICSPlex SM without also implementing workload separation. In this case, no workload definition is required and CICSPlex SM routes the first transaction in the group to a suitable
target region from the set identified in the workload specification. Subsequent transactions in the transaction group are routed to the same target region while the affinity is active.

3. If the workload definitions are to be installed automatically when the first routing region in the workload starts, you should use the Workload groups view (WLMGROUP object) to:
 a. Create a workload group.
 b. Add the workload definitions to the workload group.
 c. Associate the workload group with the workload specification.

You can also install a workload group or individual workload definitions manually for immediate effect.

Note: It's important that you define routing regions and target regions in groups, to ensure that changes to the composition of those groups are automatically reflected in CICSPlex SM workload management.

A recommended approach
You can click the Map button to display a visual map of the WLM definitions in your data repository. When you decide to implement WLM functions in your enterprise, you should begin by defining the appropriate objects.

You should:
• Use the WLM definitions view to create a workload definition (WLMDEF object).
• Use the WLM groups view to create a workload group (WLMGROUP object).
• Use the WLM specifications view to create a workload specification (WLMSPEC object).

Then, to create associations between these objects:
• Use the WLM definitions view to add the workload definition to the workload group (WLMINGRP object).
• Use the Workload groups view to add the workload group to the workload specification (WLMINSPC object).
• Use the Workload specifications view to associate the workload specification with a CICS system (LNKSWSCS object) or CICS system group (LNKSWSCG object). For more information about the LNKSxSCG parameters, see [LNKSxSCG Records (LNKSMSCG, LNKSRSCG, LNKSWSCG)].

If you want to see a list of the objects and associations you have already defined, use one of the following views:
• The Workload definitions in groups view (WLMINGRP object)
• The Workload groups in workload specifications view (WLMINSPC object)
• The WLM specifications to CICS system links view (LNKSWSCS object)
• The WLM specifications to CICS system group links view (LNKSWSCG object).

Example tasks
All the workload management examples are based on the same configuration. The CICSpelix, PLXPROD1 consists of one TOR, CICSPT01, and three AORs, CICSPA01, CICSPA02, and CICSPA03. You will see how the roles played by these CICS regions vary, depending on the nature of the individual task.
These sections include a number of typical workload management example tasks and illustrates how these tasks can be carried out using the Web User Interface (WUI).

For any task, you must be aware of the scope, that is, of the CICS systems, with which you are working. If the scope is a single CICS system, any data you retrieve from CICSPlex SM relates to that single system. If the scope is a group of CICS systems, the data relates to all of the systems in the group. If the scope is a CICSpex, the data relates to every system in that CICSpex. For all of the examples in these sections, the initial scope is CICSpex PLXPROD1.

Managing a workload

This example describes how to use the Web User Interface (WUI) to get CICSPlex SM to manage a workload: that is, to route all work from a single routing region to a suitable target region.

For this task, a “suitable” target region is the one with the shortest queue of work requests, relative to the maximum number of tasks permitted in the target region. This queue of work, also called the load count, is the queue of all active and queued user tasks. By default, tasks queued for both MAXTASKS and TRANCLASS are included in the load count. Use of the “Task load queue mode” attribute in the CSYSDEF resource table allows sites to exclude tasks queued for TRANCLASS from the load count. For more information about the “Task load queue mode” attribute in the CSYSDEF resource table, see .

The TOR (CICSP0T01) is the requesting region and the routing region, and the three AORs (CICSPA01, CICSPA02, and CICSPA03) are all target regions. None of the CICS regions are currently running.

If some of your work requests can’t be routed freely (perhaps you want work requests from a particular user always to go to the same target region, for example), don’t worry. You’ll see how to add that requirement in a later example task “Routing a specific transaction to a specific target region” on page 94.

1. Create a CICS system group that will include all of the target regions among which the work requests (“the workload”) can be routed dynamically.
 • From the main menu, click Administration > Topology administration > System groups to open the System group definitions tabular view.
 If the current context is not PLXPROD1, specify PLXPROD1 in the Context field and click Refresh.
 • Click Create to open the System group definitions create view.
 • Type the following:

 System group name: CSGTGT51
 Description: All target regions in CICSpex PLXPROD1

 • Click Yes to create the system group.
 The System group definitions tabular view is redisplayed, this time showing an entry for CICS system group CSGTGT51.
 At this point, the group CSGTGT51 exists, but is empty.

2. Specify to CICSpex SM which target regions belong to the group. To add target regions to CICS system group CSGTGT51:
 • From the main menu click Administration > Topology administration > System definitions to open the CICS system definitions tabular view.
 • Select the entries for the CICS systems CICSPA01, CICSPA02 and CICSPA03 and click Add to CICS system group.
• In the **Group which member will join** field, type CSGTGTS1 and click **Yes to 3 remaining**. This adds the three selected systems to your new group.

3. **Create a workload specification:**
 • From the main menu click **Administration > Workload manager administration > Specifications** to open the **WLM specifications** tabular view.
 • Click **Create**, and type the following information:

<table>
<thead>
<tr>
<th>WLM specification name</th>
<th>WLSPAY01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Manage payroll workload in PLXPROD1</td>
</tr>
<tr>
<td>Primary search criterion</td>
<td>USERID</td>
</tr>
<tr>
<td>Default target scope</td>
<td>CSGTGTS1</td>
</tr>
<tr>
<td>Algorithm type</td>
<td>QUEUE</td>
</tr>
</tbody>
</table>

Leave the remaining fields empty or accept the defaults.

Note:
- A **Primary search criterion** value of USERID is shown in this example, though in fact it does not matter whether you specify USERID or LUNAME, because the **Primary search criterion** value has no effect on simple workload searching. It is used only for some kinds of workload separation, which is the subject of a later example. You must supply a value because CICSPlex SM doesn't know, at this stage, that you aren't going to use this workload specification for workload separation.
- The **Default target scope** value is the name of the single target region, or group of target regions, to which work requests can be routed.
- The **Algorithm type** value, QUEUE, tells CICSPlex SM to select the target region that has the shortest queue of work requests.
- The **Description** is optional, but is worth providing. (When you are confronted with a list of specification names, and have no way of telling one from another, you will appreciate its value.)

Click **Yes**. The **WLM specification** tabular view is redisplayed, this time showing an entry for the new WLM Specification, WLSPAY01.

4. **Tell CICSPlex SM about the region that is going to be routing the work requests to the target regions in group CSGTGTS1.** To associate the workload specification with a routing region:
 • In the **WLM specifications** view, select the entry for the WLSPAY01 specification, and click **Associate CICS system**.
 • In the **CICS system** field, enter the name of the routing region (CICSPT01, in this example) and click **Yes**.

To check that the association between the routing region and the workload specification has worked:
 • On the **WLM specifications** tabular view, click the name **WLSPAY01** to show the details of this specification.
 • Click the link **CICS systems associated with this workload specification** to show the **WLM specifications to CICS system links** tabular view (LNKSWSCS object).

Note: You can also access this view from the main menu by clicking **Administration > Workload manager administration > Specifications to system links**.

5. **Activate workload management in the routing region:**
 • From the main menu click **Administration > Topology administration > System definitions** to open the **CICS system definitions** tabular view.
• Select the entry for CICSPT01 and click **Update**, to open a detail view of CICSPT01.
• Change the **AOR dynamic routing mode** field to **YES**. Click **Yes** to return to the **CICS system definition** tabular view.

 This change takes effect when the target region CICSPT01 is next started.

6. **Activate workload management in the target regions:**
 • From the **CICS system definitions** tabular view, select the entry for CICSPA01 and click **Update** to open a detail view of CICSPA01.
 • Change the **Workload manager status** field to **YES**. Click **Yes** to return to the **CICS system definitions** tabular view.

 This change takes effect when the target region CICSPT01 is next started.

Repeat this step for target regions CICSPA02 and CICSPA03.

When the routing region and the target regions have been started, you can check that the workload is active from the main menu by clicking **Active workloads (WLM) > Active workloads**. This opens the **Active workloads** tabular view, showing the workload specification WLSPAY01 as active.

To see which target regions are being routed to, click **Active workloads (WLM) > Active workload target distribution factors**. The displayed view shows all active target regions being routed to by workload WLSPAY01. All of the target regions listed belong to the CICS system group CSGTGTS1.

How to establish an optimized workload

You can use a CICS region status server to share CICS region status data in a sysplex rapidly to support optimized workload management. A region status server services only region status requests, rather than region status and user application requests.

About this task

CICS region status data is broadcast to the sysplex using a data table that is named after the hosting CICSpinx for the region. Each region in the CICSpinx is described by a single record in the CICSpinx data table. The data tables are held in coupling facility structures, with access controlled by a coupling facility data table (CFDT) server. You must set up one CFDT server for each pool in an MVS image.

You can put related groups of region status tables in separate pools. For example, you might have one pool for production and another for test. A pool is defined as a list structure in the coupling facility resource management (CRFM) policy. The pool name is used to form the server name with the prefix DFHCF and is specified in the startup JCL for the server.

Note:

• You must use different pool names for your region status server if you have two separate CICSpinxes of the same name in the sysplex.
• **Ensure that the relevant authorization is provided.** See [Security for coupling facility data tables](#).

To set up and manage a region status server, use the following procedure.

Procedure

1. Ensure that you have a list structure for a region status server pool.
For the best performance, define a new dedicated list structure for a region status server pool. For more information, see “Defining a list structure for a region status server.”

Optionally, you can use an existing CFDT pool to store your CICSpelix data tables. However, the throughput of your optimized workloads might be impeded by any user application activity to the specified pool name, and any application throughput to the pool might be affected by the sysplex optimized workloads.

Note: You must use a different pool name from the pool name that you use for the RS server if you already have a CFDT with the same name as your CICSpelix.

2. Define and start a region status server job to run in an MVS batch region. For more information, see Defining and starting a region status server region.

What to do next

After you have successfully started your region status server, you can issue commands to manage the region status server and delete it if required. For more information, see Controlling region status servers and Deleting region status server pools.

Defining a list structure for a region status server

The region status server pool is defined in the list structure for a coupling facility data table. You define the list structure in a coupling facility resource manager (CFRM) policy.

About this task

You must allocate storage in the coupling facility to store CICS status.

CICS records the status of a CICS region in a coupling facility data table named after the CICSpelix to which the region belongs. That table must belong to a CFDT pool that is named in the CICSpelix definition for that CICSpelix. The default name is DFHRSTAT. In each z/OS image, there must be a region status server for each region status pool that will serve the CICS regions belonging to that CICSpelix. A CICSpelix data table contains one region status record for each region in that CICSpelix.

Define the structure in the current coupling facility resource management (CFRM) policy by using the IXCMIA PU utility. For an example of this utility, see member IXCCFRMP in the SYS1.SAMPLIB library. An example of a policy statement for a region status server pool is shown in Figure 14 on page 84.

You must authorize server access to the list structure. For details, see Authorizing server access to a list structure.

Procedure

1. Specify the name of the list structure. The name is formed by adding the prefix DFHCFLS_ to your chosen pool name, giving DFHCFLS_poolname. The default pool name as implemented by CICSpelix SM is DFHRSTAT.

You define and modify CICSpelixes using the EYUSTARTCPE XDEF view set. Using the CPE XDEF detail view, you can modify the coupling facility (CF) tuning parameters for the region status (RS) server, which provide sysplex optimized workload routing.
Note: You can also modify the default region status (RS) pool name that will be used by all regions in the CICSpex. When you do not to use the default name DFHRSTAT, you must change the name before starting any other regions in the CICSpex. CICSpex SM will not prevent you from changing the pool name while the CICSpex is active. If you make a change while the CICSpex is active, all CMAS and MAS regions in the CICSpex must be restarted as soon as possible. Failure to do so can result in inconsistent data in the CICSpex SM WLM views and WLM optimization is deactivated until all the regions in the CICSpex are restarted.

2. Specify the size of the list structure. Although the record size and calculations shown in Figure 13 can be useful for your own information, you must use the IBM CFSizer tool to calculate the INITSIZE and SIZE parameters. The CFSizer tool takes minimums into consideration, but the calculations in Figure 13 do not. Failure to get valid sizing parameters using the CFSizer tool could result in a CICS runtime failure and DFHCF0403, DFHCF0409, and DFHCF0481 messages.

When using the CFSizer tool, select CICS Data Tables list structure and specify the following values:

Maximum number of tables
Specify the number of CICSpuxes that you have defined in CICSpex SM and that will be using Sysplex Optimized Workloads. This is usually a very low number.

Average rounded record size
40

Total records
Specify the total number of CICS regions that will connect to all CICSpuxes.

Target usage percent
Use the default.

Maximum expansion percent
Use the default.

You can also specify ALLOWAUTOALT(YES), which enables automatic changes in the ratio of elements to entries, to make better use of the space within the structure.

A region status record is approximately 40 bytes long.

If PLEX1 contains 100 regions, PLEX2 contains 300 regions, and PLEX3 contains 1000 regions, the required structures are as follows:
- Poolname = DFHRSTAT, Table name = PLEX1, 100 regions x 40 bytes = 4 000 bytes total
- Poolname = DFHRSTAT, Table name = PLEX2, 300 regions x 40 bytes = 12 000 bytes total
- Poolname = DFHRSTAT, Table name = PLEX3, 1000 regions x 40 bytes = 40 000 bytes total

Figure 13. Example: Calculations of required structures

3. Specify the preference list of coupling facilities in which the policy can be stored.

4. When you have updated the CFRM new policy with the new structure definition, activate the policy using the following MVS command:

```
SETXCF START, POLICY, POLNAME=policyname, TYPE=CFRM
```
Where *policyname* is the CFRM policy being started, for example, DFHCFLS_DFHRSTAT. Note that defining the CFRM policy statements for a list structure does not create the list structure. The structure is created the first time an attempt is made to connect to it, which occurs when the first coupling facility data table (CFDT) server that refers to the corresponding pool is started.

Example

```plaintext
STRUCTURE NAME(DFHCFLS_DFHRSTAT)
   SIZE(7168)
   INITSIZE(6144)
   PREFLIST(FACIL01,FACIL02)
```

Figure 14. Example definition of a list structure for region status servers

Defining and starting a region status server region

When you start a region status server, you activate a pool in an MVS image for that server.

Before you begin

Before you start a region status server region, you must define the region status server structure to be used for the pool. For information about defining a region status server list structure, see "Defining a list structure for a region status server" on page 82.

About this task

You can start the server as a started task, started job, or as a batch job. This task explains how to start a region status server job, to run in an MVS batch region. The job or task must start the region status server program, DFHCFMN, from the CICS authorized library, CICSTS54.CICS.SDFHAUTH.

Procedure

1. Specify the DFHCFMN program either in a SYSIN data set defined in the JCL, or in the PARM parameter on the EXEC statement.
2. Specify the mandatory and optional startup parameters for the DFHCFMN program. If you specify a startup parameter in both the SYSIN data set and the PARM parameter, the PARM value overrides the SYSIN value because the MVS START command can override the PARM value.
 a. You must specify a SYSPRINT DD statement for the print file.
 b. You must specify a SYSIN DD statement for the server parameters.

 Tip: To ensure that all pool-related parameters are consistent across MVS images, you must use the same SYSIN parameter data set, or an identical copy of it, for all servers accessing the same pool, and to specify in the PARM field any parameters that vary between servers.
 c. You must specify the region status pool name.
 d. You must concatenate the license activation data set (the SDFHLIC library) to the STEPLIB DD statement.
 e. You can specify the `REGION` parameter. This parameter ensures that the coupling facility data table server region has enough storage to process the maximum number of data table requests that can run concurrently.
 f. You can specify `TIME=NOLIMIT`. The server task remains in a wait, during most normal processing, because server processing is performed under the
TCB of the client CICS region. If you omit this parameter, your server job might fail with abend S522 (wait limit exceeded), depending on the JWT value specified in the SMFPRMxx member of SYS1.PARMLIB.

g. Specify additional parameters as required. For example, you might want to control the maximum number of queues that are to be supported in the pool and the number of buffers that the server is to allocate. You might also need to add the required security access. See Authorizing a CICS region to a coupling facility data table.

Results

The region status server is running, ready to receive and broadcast region status data to the CICS regions connected to it. The CICS regions connect through the poolname that is specified in the CICSp lex definition.

Region status server JCL example

```
//PRODRSS1 JOB ...
//RSSERVER EXEC PGM=DFHCFMN,REGION=40M,TIME=NOLIMIT CICS CFDT Server for RS
//STEPLIB DD DSN=CICSTS54.CICS.SDFHAUTH,DISP=SHR Authorized library
// SYSPRINT DD DSN=CICSTS54.CICS.SDFHLIC,DISP=SHR License activation data set
//SYSIN DD *
POOLNAME=DFHRSTAT Pool name
MAXTABLES=100 Allow up to 100 tables
/*
```

Figure 15. Sample JCL to start a region status server address space

For an example of security parameters, see Authorizing a CICS region to a coupling facility data table.

Controlling region status servers

You can issue commands to control a region status server, using the MVS MODIFY (F) command to specify the job or started task name of the server region, followed by the server command.

About this task

The general form of an MVS modify command, using the short form F, is as follows:

```
F job_name,command parameters... comments
```

You use the MODIFY command to pass information to a job or started task. In this task, you use the following commands to control the region status servers.

Procedure

- To modify the server initialization parameters, use the MVS SET command:

```
SET keyword=operand[,keyword=operand,...]
```

The SET command can be abbreviated to T, as for the MVS SET command. See "The SET command options" on page 86 for details.

- To display the values of one or more parameter values or statistics summary information on the console, use the DISPLAY command:

```
DISPLAY keyword=operand[,keyword=operand,...]
```
The valid keywords for **DISPLAY** are all the initialization parameters, plus an additional set described under “DISPLAY and PRINT command options” on page 88.

The **DISPLAY** command can be abbreviated to **D**, as for the MVS **DISPLAY** command.

- To print the output that the **DISPLAY** command produces, use the MVS **PRINT** command:

  ```
  PRINT keyword[=operand][,keyword[=operand,]...]
  ```

 The **PRINT** command produces the same output as **DISPLAY**, supporting the same keywords, but on the print file only.

- To delete a table, use the **DELETE TABLE=name** command. The table must not be in use for this command to succeed. You can abbreviate the command to **DEL**.

- To stop the server normally, use the **STOP** command. The server waits for any active connections to end first, and prevents any new connections while it is waiting. You can abbreviate the command to **P**. You can also use the MVS **STOP** command, which is equivalent to issuing the server **STOP** command through the MVS **MODIFY** command. The syntax of the **STOP** command is:

  ```
  STOP|P [jobname.]identifier[,A=asid]
  ```

- To terminate the server immediately, use the **CANCEL** command. You can also specify whether the server automatically restarts with the **RESTART** option. For information about **CANCEL** **RESTART** see “The **CANCEL** command options” on page 91.

- The server also responds to Cross System Extended Services (XES) events such as an operator **SETXCF** command to alter the structure size. If the server can no longer access the coupling facility, it automatically issues a server **CANCEL** command to close itself down immediately.

The SET command options:

You can use the **SET** command to modify groups of server initialization parameters.

These system initialization parameter groups are:

- The statistics parameters
- The debug trace parameters
- The lock wait parameters
- The warning parameters
- The automatic ALTER parameters.

The following **SET** keywords are used to modify the server's recovery status of an inactive CICS region that had unresolved units of work when it last terminated:

RESTARTED=applid

Establish a temporary recoverable connection for the given APPLID. This resolves any units of work that were in commit or backout processing when the region last terminated, and indicates whether there are any remaining indoubt units of work.

This keyword can be abbreviated to **RESTART** or **REST**.
COMMITTED={applid|applid.uowid}
Establish a temporary recoverable connection for the specified APPLID and commit all indoubt units of work, or, if uowid is also specified, commit that specific unit of work.

This command should be used only when it is not possible to restart the original CICS region to resolve the work normally, because it can result in inconsistency between coupling facility data table resources and other CICS resources updated by the same unit of work.

This keyword can be abbreviated to COMMIT or COMM.

BACKEDOUT={applid|applid.uowid}
Establish a temporary recoverable connection for the specified APPLID and back out all indoubt units of work, or, if uowid is also specified, back out that specific unit of work.

This command should be used only when it is not possible to restart the original CICS region to resolve the work normally, because it can result in inconsistency between coupling facility data table resources and other CICS resources updated by the same unit of work.

This keyword can be abbreviated to BACKOUT or BACK.

Use the following SET parameters to modify options relating to a specific table:

TABLE=name
specifies the table to which the following table-related parameters in the same command are to be applied. This parameter is required before any table-related parameters.

MAXRECS=number
Modify the maximum number of records that can be stored in the table specified by the preceding TABLE parameter.

If the maximum number is set to a value less than the current number of records in the table, no new records can be stored until records have been deleted to reduce the current number to within the new maximum limit. For a recoverable table, this also means that records cannot be updated, because the recoverable update process adds a new record on the rewrite operation then deletes the original record when the transaction completes.

This keyword can also be specified as MAXNUMRECS.

AVAILABLE={YES|NO}
Specify whether the table named by the preceding TABLE parameter is available for new OPEN requests. If the table is made unavailable, a CICS region that subsequently issues an OPEN request for the table receives a response indicating that it is unavailable, but regions that currently have the table open are not affected. Even when a table is marked as unavailable, a server can implicitly open it on behalf of a CICS region to allow recoverable work to be resolved during restart processing.

This keyword can also be specified as AVAIL.

Examples of the SET command: The following example changes the statistics options:
SET STATSOPT=BOTH,EOD=21:00,STATSINT=06:00

The following example modifies the maximum number of records allowed in the specified table:
DISPLAY and PRINT command options:

You can use the DISPLAY (and PRINT) commands to display the values of any initialization parameters plus some additional information.

Some of the parameters that provide additional information support generic names. You specify generic names using the following wildcard characters:

- An * (asterisk symbol). Use this anywhere in the parameter value to represent from 0 to 8 characters of any value. For example, CICSH* to represent all the CICS APPLIDs in a CICSpex identified by the letter H.
- A % (per cent symbol). Use this anywhere in the parameter value to represent only one character of any value. For example, CICS%T* to represent all the TOR APPLIDs in all CICSpexes.

The parameters supported by the DISPLAY and PRINT commands are as follows:

APPLIDS
Display the APPLID and MVS system name for every CICS region that currently has a recoverable connection to the pool. This command returns information not only for the server to which the MODIFY command is issued, but for all other servers connected to the same pool.

This keyword can be abbreviated to APPLID, APPLS or APPL.

APPLID={applid|generic}
Display the APPLID and MVS system name for each region that currently has a recoverable connection to the server’s pool, and whose APPLID matches applid or generic. This command returns information not only for the server to which the MODIFY command is issued, but for all other servers connected to the same pool.

applid Use this for a specific APPLID, which should match only one region in the sysplex.

generic Use a suitable generic value when you want to obtain information about several regions.

If applid or generic is not specified, the server treats this as equivalent to the command DISPLAY APPLIDS.

This keyword can also be specified as APPLIDS, APPLS or APPL.

ARMREGISTERED
Shows whether ARM registration was successful (YES or NO).

CONNECTIONS
Display the jobnames and applids of the regions currently connected to the server to which the command is issued.

This keyword can be abbreviated to CONN.

TABLES
Display the names of all tables currently allocated in the pool.

TABLE={name|generic_name}
Display information about the attributes and status of a specific table, or of a set of tables whose names match the generic name.

If no table name is specified, this is treated as equivalent to DISPLAY TABLES.
TABLEUSERS
Display the CICS APPLIDs of the regions that are currently using each of the tables currently defined in the pool.

This keyword can be abbreviated to **TABLEU**.

TABLEUSERS={name|generic_name}
Display the CICS APPLIDs of the regions that are currently using the specified table, or using each of the set of tables whose names match the generic name.

If no table name is specified, this is treated as equivalent to DISPLAY TABLEUSERS.

This keyword can be abbreviated to **TABLEU**

UOWIDS
Display the applids of all regions that currently have unresolved recoverable units of work, together with the number of units of work that are currently in doubt, or are in the process of being committed or backed out. The information displayed does not include units of work that have not yet started the resolution process; that is, units of work that are still in flight.

This keyword can be abbreviated to **UOWS**.

UOWIDS={applid|generic_applid}v{applid.*|generic_applid.*}
Display, for the specified regions if they currently have unresolved recoverable units of work, information about those units of work. The information displayed does not include units of work that have not yet started the resolution process; that is, units of work that are still in flight. The information returned depends on the form of operand used.

applid|generic_applid
This form of operand displays the number of units of work that are currently in doubt, or are in the process of being committed or backed out.

If you specify **applid**, the server displays UOW information for a specific APPLID, which should correspond to only one region in the sysplex.

If you specify **generic_applid** the server displays UOW information for all the APPLIDs that match the generic APPLID specified.

applid.*|generic_applid.*
This form of operand displays:
- The state and local UOWID of each individual unit of work, followed by
- A summary of the number of units of work that are currently in doubt, or are in the process of being committed or backed out.

If you specify **applid.***, the server displays the UOW information for a specific APPLID, which should correspond to only one region in the sysplex.

If you specify **generic_applid.***, the server displays UOW information for all the APPLIDs that match the generic APPLID specified.

This keyword can be abbreviated to **UOWS**.

UOWID=applid.uowid
Display the state of an individual unresolved unit of work, identified by its applid and local unit of work ID (UOWID). Enter the local UOWID as 16 hexadecimal digits.

Chapter 3. Administering workloads with CICSPlex SM 89
This keyword can be abbreviated to **UOW**.

DISPLAY and PRINT options for statistics summaries:

Use the following parameters to display or print statistics:

CFSTATS
Display statistics for coupling facility interface accesses and responses from the server.

This keyword can also be specified as **CFST** or **STATSCF**.

POOLSTATS
Display usage statistics for the pool list structure as a whole. This is based on information returned by coupling facility access requests, therefore it is only as current as the most recent request made through the server to which the command is issued.

This keyword can be abbreviated to **POOLST**.

TABLESTATS
Display statistics for requests, processed by the server to which the command is issued, for each table plus a summary of all requests processed, including those that are not table-specific, such as unit of work control.

Note that only tables with a non-zero number of requests since the start of the current statistics interval are shown.

This keyword can also be specified as **TABLEST**.

TABLESTATS(name | generic_name)
Display request statistics for the specified table or tables.

name
A specific table name in the pool accessed by the server. Returns statistics for this table only.

generic_name
A generic name that you can use to obtain statistics about a number of tables. Returns statistics for any table name that matches the generic name.

This keyword can be abbreviated to **TABLEST**.

STORAGESTATS
Display main storage allocation statistics for the server address space.

This keyword can be abbreviated to **STORAGEST** or **STGST**.

DISPLAY and PRINT options for combined lists of information:

These keywords represent combined lists of information:

PARAMETERS
Display the main parameter values. These are POOLNAME, SECURITY, SECURITYPREFIX, statistics options, and list structure options.

This keyword can be abbreviated to **PARM** or **PARMS**.

ALLPARAMETERS
Display all parameter values.

This keyword can be abbreviated to **ALLPARMS**.

STATISTICS
Display all available statistics.
This keyword can be abbreviated to **STAT** or **STATS**.

INITIALIZED
Display the parameters and statistics that are usually displayed when initialization is complete. This is equivalent to **PARM**, **POOLSTATS**, **STGSTATS**.

This keyword can be abbreviated to **INIT**.

ARM
Display all ARM-related parameter values:
- **ARMELEMENTNAME**
- **ARMELEMENTTYPE**
- **ARMREGISTERED**

This keyword can be coded as **ARMSTATUS**.

The CANCEL command options:

You can use the **CANCEL** command to request an automatic restart.

Specify the following parameter:

RESTART={NO,YES}
Terminate the server immediately, specifying whether or not automatic restart should be requested. The default is **RESTART=NO**.

If the server encounters an unrecoverable problem with the coupling facility connection, consisting either of lost connectivity or a structure failure, it cancels itself using the **CANCEL** **RESTART=YES** command. This terminates the existing connection and shuts down the server. A new instance of the server job is then started.

A server can also be restarted explicitly using either the server command **CANCEL** **RESTART=YES** or the **MVS** command **CANCEL** **jobname,ARMRESTART**.

You can also enter **RESTART** on its own for **RESTART=YES**, **NORESTART** for **RESTART=NO**.

Deleting region status server pools
You can delete a region status server pool by deleting its coupling facility list structure. You might do this for a service upgrade, or when a clean sysplex restart is required.

Before you begin

You can delete a structure only when no servers are connected to the pool; otherwise, **MVS** rejects the command.

About this task

For example:

```shell
SETXCF FORCE,STRUCTURE,STRNAME=DFHCFLS_poolname
```

You can verify that the pool has been successfully deleted by issuing the **XCF** command shown here:

```shell
D XCF STRUCTURE,STRNAME=DFHCFLS_poolname
```
Note that if you delete a region status server structure while CICS regions and workload are running, you disable CICSplex SM WLM optimized functions.

What to do next

When you attempt to start a server for a pool that has been deleted (or attempt to reload the pool), it is allocated as a new structure. The newly allocated structure uses size and location attributes specified by the currently active CFRM policy and other values determined by the server initialization parameters (in particular, MAXTABLES).

Adding a region to an existing target region scope

This example describes how to use the Web User Interface (WUI) to increase the number of regions in an existing target scope without disrupting an existing workload.

Assume that you have implemented workload routing in CICSplex PLXPROD1, via workload specification WLSPAY01, and that work requests are being routed among target regions CICSPA01, CICSPA02, and CICSPA03. These target regions all belong to CICS system group CSGTGTS1. Now you want to add a fourth region CICSPA04 to group CSGTGTS1. Region CICSPA04 has been defined to CICSplex PLXPROD1 and is running and is linked to the routing region CICSPRT01.

1. Add target region CICSPA04 to CICS system group CSGTGTS1:
 a. From the Web User Interface main menu click Administration > Topology administration > System definitions to open the CICS system definitions tabular view.
 If the current context is not PLXPROD1, specify PLXPROD1 in the Context field and click Refresh.
 b. Select the entry for CICSPA04, and click the Add to CICS system group button. The Add to CICS system group view is displayed.
 c. In the Group which member will join field, enter the name CSGTGTS1 and click Yes.

2. Update the CICSplex SM definition of target region CICSPA04:
 a. From the CICS system definitions tabular view, select the entry for CICSPA04 and click Update.
 b. Change the Workload manager status field to YES from the menu. Click Yes to confirm the update.

 This change takes effect when the target region CICSPA04 is next started.

When the target region CICSPA04 has been started, you can check that the workload is active by clicking Active workloads (WLM) > Active workload target distribution factors. This opens the Active workload target distribution factors view showing all target regions (including CICSPA04) to which work requests in this workload can be routed.

Removing a region from a target region scope

CICS system group CSGTGTS1 contains four target regions (CICSPA01, CICSPA02, CICSPA03, and CICSPA04) in CICSplex PLXPROD1. Work requests are routed among these target regions, and the routing is controlled by workload specification WLSPAY01.

This example describes how to use the Web User Interface (WUI) to remove region CICSPA04 from the group CSGTGTS1, without disrupting the active workload.

1. Remove target region CICSPA04 from CICS system group CSGTGTS1:
From the Web User Interface main menu click Administration > Topology administration > System groups to open the System group definitions tabular view.

If the current context is not PLXPROD1, specify PLXPROD1 in the Context field and click Refresh.

- Click CSGTGTS1 in the System group name field to open a detail view and click the CICS systems in this CICS system group link. This opens the CICS system to CICS system group links tabular view.
- Click the Record check box beside the entry for CICSPA04 and click the Remove... button. This opens the Remove confirmation view.
- Click Yes to confirm the update.

2. To check that CICSPA04 has been removed, from the main menu click Active workloads (WLM) > Active workload target distribution factors. This opens the Active workload target distribution factors view showing all target regions to which the workload can be routed. CICSPA04 should not appear in the list.

Adding a routing region to an active workload

Use the Web User Interface (WUI) to add a second routing region to an active workload, without disrupting that workload.

Assume that you are still routing the workload in CICSpexus PLXPROD1, via workload specification WLSPAY01, and that work requests are being routed by CICSPT01 among the target regions in CICS system group CSGTGTS1. Now you want to add a second routing region - CICSPT02 - to the workload. Region CICSPT02 has been defined to CICSpexus PLXPROD1 (using the CICS system definitions views), is running, and is linked to the target regions CICSPA01, CICSPA02, and CICSPA03.

1. Update the CICSpexus SM definition for CICS system CICSPT02:
 - From the Web User Interface main menu click Administration > Topology administration > System definitions to open the CICS system definitions tabular view.

2. Associate CICSPT02 with workload specification WLSPAY01:
 - From the main menu, click Administration > Workload manager administration > Specifications.

When CICSPT02 has been restarted, you can verify that it has been added to WLSPAY01 as follows:

- Open the WLM specification tabular view and click the entry for WLSPAY01. This opens a detail view.
- Click the CICS systems associated with this workload specification link. Both CICSPT01 and CICSPT02 should be listed in the WLM specifications to CICS system links tabular view.
To check that CICSPT02 is part of the active workload, from the main menu, click Active workloads (WLM) > Routing regions in an active workload. This opens a tabular view showing entries for both CICSPT01 and CICSPT02.

Quiescing a target region in an active workload

This example describes how to use the Web User Interface (WUI) to quiesce the target region CICSP03, which belongs to the active workload WLSPAY01.

You might need to do this so that you can apply maintenance to a region, for example. The regions CICSPT01 and CICSPT02 are routing work requests among three target regions (CICSPA01, CICSPA02, and CICSPA03) when you perform this task.

If you want to prevent work routing to a region, regardless of whether work is already running there, you can set the region's z/OS WLM health open status to CLOSE or IMMCLOSE. For more information, see "Effect of the z/OS WLM health service on CICSPlex SM workload routing" on page 67.

1. List the target regions associated with workload WLSPAY01.
 - From the Web User Interface main menu click Active workloads (WLM) > Active workload target distribution factors to open the Active workload target distribution factors view.
 If the current context is not PLXPROD1, specify PLXPROD1 in the Context field and click Refresh.
 - In the Workload name field type WLSPAY01 and click Refresh. This redisplays the Active workload target distribution factors view. The three CICS regions CICSPA01, CICSPA02 and CICSPA03 are listed. Their status is active.

2. Quiesce target region CICSPA03:
 - On the Active workload target distribution factors view, select the entry for target region CICSPA03 and click the Quiesce... button. This opens the Quiesce confirmation view.
 - Click Yes to confirm the action. The Active workload target distribution factors view is redisplayed, showing the Target region status value for CICSPA03 changed to QUIESCED. No new work requests are routed to the target region, though any work already running there is allowed to complete.

Routing a specific transaction to a specific target region

Use the Web User Interface (WUI) to define some workload separation requirements to CICSPlex SM.

This example describes how to use the Web User Interface (WUI) to always route the transaction PAY1 to the target region CICSPA02, which belongs to CICS system group CSGTGT0S1. You are still working in CICSpex PLXPROD1, and workload routing, from a single CICSPT01 among target regions in the group CSGTGT0S1, is in effect.

1. If the transaction to be routed is to be started with EXEC CICS START, it should be defined as ROUTABLE.

2. Create a transaction group:
 - From the main menu, click Administration > Workload manager administration > Transaction group definitions. This opens the Transaction group definitions view.
 - If the current context is not PLXPROD1, specify PLXPROD1 in the Context field and click Refresh.
• Click the Create... button, and provide the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>TRGPAY01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Send PAY1 to CICSPA02</td>
</tr>
<tr>
<td>Affinity relation and lifetime checking status</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>Primary search criterion</td>
<td>USERID</td>
</tr>
</tbody>
</table>

You can leave the remaining fields blank or accept the defaults.

Click Yes. The Transaction group definitions view is redisplayed, now showing the name of the transaction group TRGPAY01.

3. Add transaction PAY1 to transaction group TRGPAY01:
 • In the Transaction group definitions view, select the entry for TRGPAY01, and click the Add transaction... button.
 • In the Transaction name field, type the name PAY1 and click Yes to confirm. The Transaction group definitions view is redisplayed.

4. Create a workload definition:
 • From the main menu, click Administration > Workload manager administration > Definitions. This opens the WLM definitions view, listing any workload definitions already created in PLXPROD1.
 • Click the Create... button, and provide the following information:

<table>
<thead>
<tr>
<th>Workload management definition</th>
<th>WLDPAY01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Separate TRGPAY01 to CICSPA02</td>
</tr>
<tr>
<td>Transaction group name</td>
<td>TRGPAY01</td>
</tr>
<tr>
<td>Scope name of set of target systems</td>
<td>CICSPA02</td>
</tr>
</tbody>
</table>

 • Click Yes to confirm.

5. Create a workload group. (A workload group is essential if you want a workload definition to be installed automatically when the routing region that’s routing the transactions is started.)
 • From the main menu, click Administration > Workload manager administration > Groups. This open the WLM groups view, listing any workload groups already created in PLXPROD1.
 • Click the Create... button, and type in the following:

 | Workload management group | WLGPAY01 |
 | Description | Workload group for WLDPAY01 |

 • Click Yes to confirm. The WLM groups view is redisplayed.

6. Add the workload group WLGPAY01 to the existing workload specification WLSPAY01:
 • In the WLM groups view, select the entry for WLGPAY01, and click the Add to WLM specification... button.
 • In the Specification name field, enter the name of the existing workload specification, WLSPAY01 and click Yes. The WLM groups view is redisplayed.

7. Add the workload definition to the workload group:
 • From the main menu, click Administration > Workload manager administration > Definitions to open the WLM definitions view.
 • Select the entry for WLDPAY01, and click the Add to WLM group... button.
 • In the Resource group name field, type WLGPAY01 and click Yes. The WLM definition view is redisplayed.

8. Install the workload group into the active workload.

Because the workload WLSPAY01 is already active, you have to install the new workload group WLGPAY01 explicitly. If you did not install WLGPAY01, it
would not take effect until the routing region CICSPT01 and the target regions in CICS system group CSGTGT01 were next started.

- From the main menu, click Administration > Workload manager administration > Groups to open the WLM groups tabular view.
- Select the entry for WLGPAY01 and click the Install... button.
- In the Workload name field, type WLSPAY01, and, in the Workload owner field, type in the SYSID of the system on which the workload specification WLSPAY01 was created.

Click Yes to confirm

Because you are reusing a workload specification that is already active in CICSplex PLXPROD1, and have installed the workload group, the workload separation you have defined in this example takes immediate effect.

You can check that the new workload definition WLDPAY01 is active by opening the WLM definitions view. This should include an entry for WLDPAY01 in workload WLSPAY01. When transaction PAY1 is next started, by any user and from any terminal, CICSplex SM will route it to target region CICSP02.

Routing particular transactions from a given user to a specific target region

This example describes how to use the Web User Interface (WUI) to route particular transactions from a given user to a specific target region.

This example task again describes how to use the Web User Interface in a refinement of the previous example (“Routing a specific transaction to a specific target region” on page 94). This time, the user ID value is to be an additional factor in determining where transactions are to be routed: transactions PAY6, PAY7, PAY8, and PAY9, when started from user ID USRPAY03, must be routed to target region CICSPA03 in CICSplex PLXPROD1.

1. Create a transaction group.
 - From the Web User Interface main menu, click Administration > Workload manager administration > Transaction group definitions. This opens the Transaction group definitions tabular view.
 If the current context is not PLXPROD1, specify PLXPROD1 in the Context field and click Refresh.
 - Click the Create... button, and provide the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>TRGPAY02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Send USRPAY03’s transactions to CICSPA03</td>
</tr>
<tr>
<td>Affinity relation and lifetime checking status</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>Primary search criterion</td>
<td>USERID</td>
</tr>
</tbody>
</table>

You can leave the remaining fields or accept the defaults.
- Click Yes to confirm. The Transaction group definitions tabular view is redisplayed.

2. Identify the transactions that belong to group TRGPAY02:
 - In the Transaction group definitions tabular view, select the entry for TRGPAY02, and click the Add transaction... button.
 - In the Transaction name field, type in the name of the first transaction PAY6, and click Yes to confirm.

Repeat this step for three more transactions: PAY7, PAY8, and PAY9.
3. Create a workload definition:
 - From the main menu, click Administration > Workload manager administration > Definitions. This opens the WLM definitions tabular view, listing any workload definitions already created in PLXPROD1.
 - Click the Create... button, and provide the following information:

<table>
<thead>
<tr>
<th>Workload management definition</th>
<th>WLDPAY02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Separate TRPAY02 to CICSPA03</td>
</tr>
<tr>
<td>Transaction group name</td>
<td>TRPAY02</td>
</tr>
<tr>
<td>User ID</td>
<td>USRPAY03</td>
</tr>
<tr>
<td>Scope name of set of target systems</td>
<td>CICSPA03</td>
</tr>
</tbody>
</table>

 - Click Yes to confirm.

4. Add the workload definition to the existing workload group:
 - From the main menu, click Administration > Workload manager administration—>Definitions to open the WLM definitions view.
 - Select the entry for WLDPAY0 and click the Add to WLM group button.
 - In the Resource group name field, type WLGPAY01 (the name of the workload group you created in the previous example). Workload group WLGPAY01 is already associated with the active workload specification WLSPAY01.
 - Click Yes to confirm.

5. Install the new workload definition into the active workload:
 Because group WLGPAY01 is already associated with the active workload WLSPAY01, changes you make to that group will not take effect until the routing region CICSPT01, and the target regions in CICS system group CSGTGTS1, are next started. To make the new workload definition take effect immediately, you must install it explicitly in WLSPAY01:
 - Open the WLM definitions view again, select the entry for WLDPAY02, and click the Install... button.
 - In the Workload name field, type in WLSPAY01 and in the Workload owner field, type in the SYSID of the system on which the workload specification WLSPAY01 was created.

Because you have explicitly installed the workload definition WLDPAY02 in the active workload WLSPAY01, the workload separation requirements you have defined in this example take immediate effect.

Honoring a pseudoconversational transaction

This example describes how to use the Web User Interface (WUI) to ensure that multiple transactions, among which there is an affinity, are routed to the same target region.

As before, you are working in CICSpex PLXPROD1 and are routing transactions from CICSPT01 to the target regions in CICS system group CSGTGTS1.

1. Create a transaction group:
 - From the main menu, click Administration > Workload manager administration > Transaction group definitions. This opens the Transaction group definitions tabular view.
 - If the current context is not PLXPROD1, specify PLXPROD1 in the Context field and click Refresh.
 - Click the Create... button, and provide the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>TRPAY03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Pseudoconversational transaction</td>
</tr>
</tbody>
</table>
Affinity relation and lifetime checking status: ACTIVE
Primary search criterion: USERID
Affinity relationship: USERID
Affinity lifetime: PCONV

Notice that the Affinity relationship and Affinity lifetime fields must be completed. These values tell CICSPlex SM that the transactions in this group constitute a pseudoconversational transaction (PCONV), and that this affinity lasts while those transactions are coming from the same user ID (USERID). If one of them is initiated from a different user ID, CICSPlex SM can select a different target region. Of course, the same type of affinity will then come into play in that second target region. You can ignore any fields that have been left blank or accept the defaults.

- Click Yes to confirm. The Transaction group definitions tabular view is redisplayed.

2. Identify the transactions that belong to group TRGPAY03:
 - In the Transaction group definitions tabular view, select the entry for TRGPAY03 and click the Add transaction... button.
 - In the Transaction name field, type in the name of the first transaction PAY2 and click Yes to confirm.

Repeat this step for three more transactions: PAY3, PAY4, and PAY5.
You can see that PAY2 starts the pseudoconversation and PAY5 ends it.

3. Create a workload definition:
 - From the main menu, click Administration > Workload manager administration > Definitions. This opens the WLM definitions view, listing any workload definitions already created in PLXPROD1.
 - Click the Create... button, and provide the following information:

 | Workload management definition | WLDPAY03 |
 | Description | TRGPAY03 to the same target region |
 | Transaction group name | TRGPAY03 |
 | Scope name of set of target systems | CSGTGT51 |

 - Click Yes to confirm.

4. Add the workload definition to the workload group:
 - From the main menu, click Administration > Workload manager administration > Definitions to open the WLM definitions tabular view.
 - Select the entry for WLDPAY03 and click the Add to WLM group... button.
 - In the Resource group name field, type WLGPAY01.
 - Click Yes to confirm.

5. Because group WLGPAY01 is already associated with the active workload WLSPAY01, changes you make to that group will not take effect until the routing region CICSPR01, and the target regions in CICS system group CSGTGT51, are next started. To make the new workload definition take effect immediately, you must install it explicitly in WLSPAY01. To install the new workload definition into the active workload:
 - Open the WLM definitions view again, select the entry for WLDPAY03, and click the Install... button.
 - In the Workload name field, type in WLSPAY01, and in the Workload owner field, type in the SYSID of the system on which the workload specification WLSPAY01 was created.

Because you have explicitly installed the workload definition WLDPAY03 in the active workload WLSPAY01, CICSPlex SM is able to honor this
pseudoconversational transaction immediately. Be aware that you are able to use the single workload specification WLSPAY01 for both workload routing and workload separation because you did not specify default Affinity relationship and Affinity lifetime values in WLSPAY01. Had you done so, you would have had to create different workload specifications for workload routing and workload separation.

Deactivating a workload definition

This example describes how to use the Web User Interface (WUI) to deactivate a workload definition.

This example describes how to use the Web User Interface (WUI) to deactivate the workload definition WLDPAY02 created in the example “Routing particular transactions from a given user to a specific target region” on page 96.

1. Display active workload definitions:
 - From the main menu, click **Active workloads (WLM) > Definitions**. This opens the **Active workload definitions** view.
 If the current context is not PLXPROD1, specify PLXPROD1 in the **Context** field and click **Refresh**.
 - In the **Active workload definitions** view, type WLSPAY01 and click **Refresh**. The active workload definitions associated with workload specification WLSPAY01 are listed.

2. Discard workload definition WLDPAY02:
 a. Select the entry for WLDPAY02, and click the **Discard...** button. This opens the **Discard** confirmation view.
 b. Click **Yes** to confirm the action.

Be aware that, when you deactivate an active workload definition, you also deactivate any transaction groups associated with it if they aren't referenced by another workload definition in the same workload.

Updating an active workload definition

This example describes how to use the Web User Interface (WUI) to update an active workload definition and then reinstall it in the active workload.

In the example “Routing particular transactions from a given user to a specific target region” on page 96, you created the transaction group TRGPAY02 and named it in the workload definition WLDPAY02. In this example, you'll see how to remove TRGPAY02 and replace it with a new transaction group, TRGPAY04, which has already been created.

1. Display active workload definitions:
 - From the main menu, click **Active workloads (WLM) > Definitions**. This opens the **Active workload definitions** tabular view.
 If the current context is not PLXPROD1, specify PLXPROD1 in the **Context** field and click **Refresh**.
 - In the **Active workload definitions** view, type WLSPAY01 and click **Refresh**. The active workload definitions associated with workload specification WLSPAY01 are listed.

2. Update workload definition WLDPAY02:
 - From the main menu, click **Administration > Workload manager administration > Definitions** to open the **WLM definition** tabular view.
• Select the entry for WLDPAY02 and click the Update... button. The WLM definitions create view is displayed.
• In the WLM definitions create view, change the Transaction group name to TRGPAY04 and change the Description text to “Separate TRGPAY04 to CICSPA03”
• Click Yes. The WLM definitions tabular view is displayed.

3. Install the updated workload definition in WLSPAY01:
 In the WLM definitions tabular view, select the entry for WLDPAY02 and click the Install... view. The Install view is displayed. In the Workload name field, type WLSPAY01. In the Workload owner field, type the 4-character ID of the workload owner that you made a note of in step 1 on page 99. Click Yes. The updated workload definition is installed in workload WLSPAY01.

4. Check that the updated workload definition has been installed:
 • From the main menu, click Active workloads (WLM) > Definitions. This opens the Active workload definitions tabular view showing the updated definition. Check that TRGPAY02 has been replaced by TRGPAY04.

5. Check that transaction group TRGPAY02 is inactive and that transaction group TRGPAY04 is now active:
 • From the main menu, click Active workloads (WLM) > Transaction groups to view the status of the two transaction groups.

Note:

Updating the User ID, Terminal LU name, BTS process type, or Scope name of set of target systems fields in a workload definition prevents the workload definition from being reinstalled dynamically. To reinstall the workload definition into an active workload, you must:
• From the Active workload definitions tabular view, click the Discard... button to discard the active workload definition
• From the workload management Definitions view, click the Install... button to install the workload definition into the workload.

Alternatively, to reinstall workload definitions with changed attributes, use a batch API program to disable access to the affected application, discard the Active workload definitions view, install the WLM definitions view, and re-enable the affected application.

Discarding an active transaction from a workload

This example describes how to use the Web User Interface (WUI) to discard an active transaction from a workload.

1. Display active transactions.
 • From the main menu, click Active workloads (WLM) > Dynamic transactions.
 If the current context is not PLXPROD1, specify PLXPROD1 in the Context field and click Refresh.
 • The Active workload dynamic transactions tabular view shows the active transactions associated with workload specification EYUWLS02

2. Discard transaction PAY2:
 • From the Active workload dynamic transactions view, select transaction PAY2, and click the Force... button. The Force confirmation view is displayed.
 • Click Yes to confirm the action.
Updating a workload specification

This example describes how to use the Web User Interface to update a workload specification.

About this task

In this example, the workload specification to be updated is WLSPAY01, which you created in the example “Managing a workload” on page 79.

Consider the effects of this task carefully. In particular, the updated workload specification cannot take effect immediately. For the update to take immediate effect, you must stop and then restart both the routing region with which the workload specification is associated and the target regions to which the routing region routes transactions.

Procedure

1. Update workload specification WLSPAY01.
 a. From the Web User Interface main menu, click Administration > Workload manager administration > Specifications to open the WLM specifications (WLMSPEC) tabular view.

 If the current context is not PLXPROD1, specify PLXPROD1 in the Context field and click Refresh.

 b. Select the entry for WLSPAY01 and click the Update button.

 c. Change the Algorithm type field from QUEUE to GOAL.

 d. Click Yes. The view is redisplayed showing the updated entry for WLSPAY01.

2. Display the Active workload view:
 a. From the main menu, click Active workloads (WLM) > Active workloads.

 b. In the Active workloads tabular view, type in the workload name WLSPAY01 and click Refresh.

 The Active workloads tabular view is redisplayed. You will see that the algorithm type for WLM specification WLSPAY01 is still QUEUE. This is because region CICSPT01 doesn’t know about the changes you’ve made.

What to do next

If you want the updated workload specification to take effect immediately, use the CICS regions view to stop the routing regions and the target regions to which they route, and then restart them. The regions must all be shut down together and not restarted until each CMAS that had CICS elements participating in the named workload issues message EYUWM0410I confirming that the workload specification has terminated successfully. If CICS regions that are members of the workload restart before receiving message EYUWM0410I, the existing workload specification will continue to be used and the updates to the workload specification will not be in effect. After the routing regions are restarted, display the Active workloads tabular view and you will see that the Algorithm type field has been updated to GOAL.

Using real-time analysis to select a target region for workload routing

Use CICSplex SM’s real-time analysis functions to produce data that will help in the selection of a target region during workload routing.
The number of items on the temporary storage queue will be monitored for each target region to which work can be routed. When the number of items rises above 50, a real-time analysis event notification (severity HS) and an external message will be issued. When an event notification is issued, CICSPlex SM’s workload-routing function is notified and uses the information, in addition to the standard queue algorithm criteria, in selecting the best target region.

A CICS system group CSGTGTS3 has already been created and contains four target regions (CICSPA01, CICSPA02, CICSPA03, and CICSPA04). The target regions are currently running. Work is currently being routed among these target regions by the routing region CICSPFT03.

1. Create a real-time analysis evaluation definition:
 - From the main menu, click **Administration > RTA MAS resource monitoring > Evaluations**. This opens the **Evaluation definitions** tabular view, listing any evaluation definitions already created in PLXPROD1.
 - If the current context is not PLXPROD1, specify PLXPROD1 in the **Context** field and click **Refresh**.
 - Click the **Create...** button, and provide the following information:

Name	RTEPAY15
Description	TSQ NUMITEMS > 50
Sample interval	300
Resource table name	MTSQGBL
Instance identifier of evaluated resource	*
Method of evaluating results in result set	ANY
Separate task indicator	NO
Name of field being evaluated	PUTQAUX
Evaluation type	VALUE
Evaluation logical operator	GT
Evaluation data value	50
Severity assigned when result meets criteria	HS
Name of a view that may provide extra information	MTSQGBL

 - Click **Yes** to create the new evaluation definition.

2. Create a real-time analysis action definition:
 - From the main menu, click **Administration > RTA MAS resource monitoring > Actions**. This opens the **Action definitions** view.
 - Click the **Create...** button, and provide the following information:

Action	RTAPAY15
Description	NUMITEMS IN TSQ > 50
Generate event option	YES
Name of view that may provide useful information	TSQ
Action priority	255
Message to send when event occurs	AUX TSQUEUE PUTQ ITEMS > 50
Generate external message option	YES
External message sent when event occurs	AUX TSQUEUE PUTQ ITEMS > 50
External message sent when event is cleared	AUX TSQUEUE PUTQ ITEMS < 50
Generate SNA generic alert option	NO
MVS automatic restart	NO

 - Click **Yes** to create the new RTA action definition. The **Action definitions** tabular view is redisplayed.

3. Create an analysis definition:
• From the main menu, click Administration > RTA MAS resource monitoring > Definitions. This opens the RTA definitions view.
• Click the Create... button, and provide the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>RTDPAY15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>TSQ NUMITEMS FOR WLM /RTA</td>
</tr>
<tr>
<td>Execute evaluation modification string</td>
<td>NO</td>
</tr>
<tr>
<td>Analysis interval</td>
<td>300</td>
</tr>
<tr>
<td>Action definition name</td>
<td>RTAPAY15</td>
</tr>
<tr>
<td>Count of true evaluations before VLS raised</td>
<td>0001</td>
</tr>
<tr>
<td>Count of false evaluations before VLS resolved</td>
<td>0001</td>
</tr>
<tr>
<td>Count of true evaluations before LS raised</td>
<td>001</td>
</tr>
<tr>
<td>Count of false evaluations before LS resolved</td>
<td>001</td>
</tr>
<tr>
<td>Count of true evaluations before LW raised</td>
<td>001</td>
</tr>
<tr>
<td>Count of false evaluations before LW resolved</td>
<td>001</td>
</tr>
<tr>
<td>Count of true evaluations before HW raised</td>
<td>001</td>
</tr>
<tr>
<td>Count of false evaluations before HW resolved</td>
<td>001</td>
</tr>
<tr>
<td>Count of true evaluations before HS raised</td>
<td>001</td>
</tr>
<tr>
<td>Count of false evaluations before HS resolved</td>
<td>0001</td>
</tr>
<tr>
<td>Count of true evaluations before VHS raised</td>
<td>0001</td>
</tr>
<tr>
<td>Count of false evaluations before VHS resolved</td>
<td>0001</td>
</tr>
<tr>
<td>Count of false evaluations before VHS resolved</td>
<td>0001</td>
</tr>
<tr>
<td>Evaluation expression</td>
<td>RTEPAY15</td>
</tr>
</tbody>
</table>

• Click Yes to create the new analysis definition. The Analysis definitions tabular view is redisplayed.

4. Create an analysis group:
• From the main menu, click Administration > RTA MAS resource monitoring > Groups. This opens the RTA groups tabular view.
• Click the Create... button, and provide the following information:

<table>
<thead>
<tr>
<th>RTA group</th>
<th>RTGPAY09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>RTA/WLM Group</td>
</tr>
</tbody>
</table>

• Click Yes to create the new analysis group. The RTA groups tabular view is redisplayed.

5. Add the analysis definition to the analysis group:
• From the main menu, click Administration > RTA MAS resource monitoring > Definitions. This opens the RTA definitions view.
• Click the record check box beside the entry for RTDPAY15 and click the Add to RTA group... button. The Add to RTA group view is displayed
• In the Resource group name field type RTGPAY09 and click Yes. The RTA definitions tabular view is redisplayed

6. Create an analysis specification:
• From the main menu, click Administration > RTA MAS resource monitoring > Specifications. This opens the RTA specifications tabular view.
• Click the Create... button, and provide the following information:

<table>
<thead>
<tr>
<th>RTA specification name</th>
<th>RTSPAY09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Workload routing with RTA</td>
</tr>
</tbody>
</table>

• Click Yes and the RTA specifications tabular view is redisplayed, listing the new RTA specification.

7. Add the analysis group to the analysis specification:
• From the main menu, click Administration > RTA MAS resource monitoring > Groups. This opens the RTA groups tabular view.
• Click the record check box beside the entry for RTGSPAY09 and click the Add to RTA specification... button. The Add to RTA specification view is displayed
• In the RTA specname field, type RTSPAY09 and click Yes. The RTA groups tabular view is redisplayed.

8. Set the scope of the analysis specification:
• From the main menu, click Administration > RTA MAS resource monitoring > Specifications. This opens the RTA specifications tabular view.
• Click the record check box beside the entry for RTGSPAY09 and click the Associate CICS group... button. The Associate CICS group view is displayed
• In the CICS system group field, type CSGTGT3 and select the Force option. Click Yes and the RTA specifications tabular view is redisplayed.

9. Activate real-time analysis in the target regions in CSGTGT3:
• From the main menu, click Administration > RTA system availability monitoring > CICS system definitions. This opens the CICS system definitions tabular view.
• Click the record check box beside the entry for CICS system CICSPA01, click the Update... button, and provide the following information:

<table>
<thead>
<tr>
<th>CICS system definition name</th>
<th>CICSPA01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Target region 1 on System A</td>
</tr>
<tr>
<td>Real time analysis status</td>
<td>YES</td>
</tr>
<tr>
<td>Severity for system availability monitoring event</td>
<td>NO</td>
</tr>
<tr>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>Severity for transaction dump event</td>
<td>NO</td>
</tr>
<tr>
<td>Severity for CICS-stalled event</td>
<td>NO</td>
</tr>
</tbody>
</table>

• Click Yes to confirm the change. The CICS system definition is updated and the change, which is permanent, takes immediate effect. You do not have to restart CICS system CICSPA01. Repeat this step for the target regions CICSPA02, CICSPA03, and CICSPA04.

10. The workload specification WLSPAY02 is already being used for workload routing among the target regions in CSGTGT3. You must update the specification to add the real-time analysis data to the standard target region selection criteria. To update the workload specification:
From the main menu, click Administration > Workload manager administration > Specifications. This opens the WLM specifications tabular view.

Click the record check box beside the entry for WLSPAY02, click the Update... button, and provide the following information:

Name: WLSPAY02
Description: Workload using RTA for target region selection
Primary search criterion: USERID
Default target scope: CSGTGT3
RTA event name: RTDPAY15
Acceptable level of abend probability: 0
Acceptable abend load threshold: 0
Algorithm type: QUEUE

Click Yes to update the specification.

Notice that the RTA event field value is the name of the analysis definition you created in step 3 on page 102.

When the routing region CICSPRT03 and the target regions in CICS system group CSGTGT3 are next started, the routing region routes transactions among the target regions using both the standard queue algorithm criteria and the analysis definition RTDPAY15 to select a target region.

Dynamic routing with EXEC CICS START TERMID

Use the Web User Interface (WUI) to set up dynamic routing capability for a transaction started with EXEC CICS START, that specifies a terminal ID and a transaction ID, and to use the GOAL algorithm to select the target region.

Note: You should check the system requirements before trying to route EXEC CICS START TERMID dynamically. See CICSPlex SM workload requirements.

In this example, a program running in CICSPA01 begins with EXEC CICS START, which is associated with terminal TRM1, to run transaction PAY1, for which you require a 2-second response time. Terminal TRM1 is associated with region CICSPRT01. Transaction PAY1 may execute in any region connected to CICSPRT01, that is, in CICSPA01, CICSPA02, or CICSPA03.

This example uses the environment that has already been created as part of earlier examples. You are working in CICSpex PLXPROD1, which comprises TOR CICSPRT01 and AORs CICSPA01, CICSPA02, and CICSPA03 in CICS system group CSGTGT3. Transaction group TRGPAY03 has transactions PAY1, PAY2, PAY3, and PAY4 associated with it. Workload definition WLDPA03 was defined to tell CICSpex SM that transactions in group TRGPAY03 must be routed to a target region in CICS system group CSGTGT3.

As you want to use the GOAL algorithm, you need to define, in MVS Workload Manager, a Service Class with the required response time and allocate that Service Class to transaction PAY1. For example, you could specify:

- A Service Class of Fast that has an average response time of 2 seconds.
- A classification rule that associates Classification Subsystem CICS with transaction ID PAY1 and Service Class Fast.

For more information about Service Classes, see the information about the goal algorithm in Management of the work in a workload.
In CICSPlex SM:

1. Create a workload specification.
 - From the main menu, click Administration > Workload manager administration > Specifications. This opens the WLM specifications tabular view.
 If the current context is not PLXPROD1, specify PLXPROD1 in the Context field and click Refresh.
 - Click the Create button, and provide the following information:

```
<table>
<thead>
<tr>
<th>Name</th>
<th>WLSDYN01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Dynamic routing START</td>
</tr>
<tr>
<td>Primary search criterion</td>
<td>USERID</td>
</tr>
<tr>
<td>Default target scope</td>
<td>CSGTGTGTS1</td>
</tr>
<tr>
<td>Acceptable level of abend probability</td>
<td>0</td>
</tr>
<tr>
<td>Acceptable abend load threshold</td>
<td>0</td>
</tr>
<tr>
<td>Algorithm type</td>
<td>GOAL</td>
</tr>
</tbody>
</table>
```

 - Click Yes to create the specification.

You must supply:
 - A name for the specification (WLSDYN01 in this example).
 - A Primary search criterion value. USERID is shown in this example, though in fact it doesn't matter whether you specify USERID or LUNAME, because the Primary search criterion value has no effect on simple workload routing. It is used only for some kinds of workload separation, but you have to supply a value because CICSPlex SM doesn't know, at this stage, that you aren't going to use this workload specification for workload separation.
 - A Default target scope value, which is the name of the single target region, or group of target regions, to which transactions can be routed.
 - An Algorithm type value. For this example, use GOAL, because the criteria for selecting the target region are based on the requirement that the transaction has a response time of 2 seconds.

When you click Yes, the WLM specifications tabular view is redisplayed, this time showing an entry for the new workload specification, WLSDYN01.

2. The next step is to tell CICSPlex SM about the region that's going to be routing the work requests to the target regions in group CSGTGTGTS1. To associate the workload specification with a routing region:
 - On the WLM specifications tabular view, click the Record check box beside the entry for the WLSDYN01 specification and click the Associate CICS system button.
 - Type WLSDYN01 in the CICS system field and click Yes. The WLM specifications tabular view is redisplayed and you can check that the association between the routing region and the workload specification has been created.

3. Activate workload routing in the routing region:
 - From the main menu, click Administration > Topology administration > System definitions. This opens the CICS system definitions tabular view.
 - Click the Record check box beside the entry for CICSP0T01 and click the Update button.
 - In the Workload manager status field, select YES from the drop-down menu. This change takes effect when CICSP0T01 is next started.

4. Activate workload routing in the target regions:
 - From the main menu, click Administration > Topology administration > System definitions. This opens the CICS system definitions tabular view.
Click the Record check box beside the entry for CICSPA01 and click the Update button.

In the AOR dynamic routing mode field, select YES from the drop-down menu. This change takes effect when the target region CICSPA01 is next started.

Repeat this step for target regions CICSPA02 and CICSPA03.

5. Install program definitions:
 - From the main menu, click Administration > Basic CICS resource administration > Resource definitions > Program definitions. This opens the Program definitions tabular view.
 - Click the Record check box beside the entry for CICSPA01 and click the Update button.
 - Set the Dynamic routing status field to NO from the drop-down box.
 - Click Yes to confirm. The Program definitions tabular view is redisplayed.
 - Click the Record check box beside the entry for CICSPA01 and click the Install button.
 - Type CICSPA01 in the Target scope value field and click Yes to confirm.
 - Repeat this step for CICSPA02 and CICSPA03.

6. Install transaction definitions:
 - From the main menu, click Administration > Basic CICS resource administration > Resource definitions > Transaction definitions. This opens the Transaction definitions tabular view.
 - From the Transaction definitions view, select PAY1 and click the Install button. Type CICSPA01 in the Target scope value field.
 - Click Yes to confirm.

You can either update the transaction definitions to specify these field values, or you can specify override values when you install the transaction definitions.

In this example task, a program running in CICSPA01, the requesting region, issues an EXEC CICS START command that specifies a transaction ID of PAY1 and a terminal ID TRM1. The START command is function shipped to CICSPT01, the TOR that owns the specified terminal. CICSPT01 acts as the routing region and invokes the dynamic routing exit, which selects the target region. All the AORS in CICS system group CSGTGS1 are possible target regions; the actual target region is selected on the basis of the GOAL criterion of a response time of 2 seconds. CICSPlex SM obtains the Service Class of transaction PAY1 and the identity of the target region to which that Service Class is allocated, from a CICSPlex SM-maintained table.

Dynamic routing of an inbound client DPL request

This example describes how to use the Web User Interface (WUI) to set up dynamic routing capability for a DPL request from a CICS client, and to use the GOAL algorithm to select the target region.

Before you begin

You should check the system requirements before trying to dynamically route inbound client DPL requests. See CICSPlex SM workload requirements.
About this task

In this example, a request is received to run transaction PAY1 to invoke client program PAYPROG1. PAYPROG1 issues an **EXEC CICS LINK** command to server program PAYPROG2. You require transaction PAY1 to have a 2-second response time.

This example uses the environment that was used for "Dynamic routing with **EXEC CICS START TERMD**" on page 105.

As you want to use the GOAL algorithm, you need to define, in MVS Workload Manager, a Service Class with the required response time and allocate that Service Class to the transaction. For example, you could specify:

- A Service Class of Fast with an average response time of 2 seconds.
- A classification rule that associates Classification subsystem CICS with transaction ID PAY1 and Service Class Fast.

For more information about Service Classes, see the information about the goal algorithm in Management of the work in a workload.

Perform the following procedure in CICSplex SM.

Procedure

1. Set the dynamic routing status value for program PAYPROG1.
 a. From the main menu, click **Administration > Basic CICS resource administration > Resource definitions > Program definitions**. This opens the **Program definitions** tabular view.
 b. If the current context is not PLXPROD1, specify PLXPROD1 in the **Context** field and click **Refresh**.
 c. Click the Record check box beside the entry for PAYPROG1 and click the **Update** button. From the drop-down box, set the **Dynamic routing status** field to NO.
 d. Click **Yes** to confirm.

2. Install program definitions.
 a. From the **Program definitions** tabular view, click the Record check box beside the entry for PAYPROG1 and click the **Install** button.
 b. Type CICSPA01 in the **Target scope value** field.
 c. Click **Yes** to confirm.

 Repeat this step to install PAYPROG1 in target scopes CICSPA02 and CICSPA03.

 For details of defining and installing program definitions, see Creating resources with BAS: PROGRAM resource definitions

3. Install the transaction definition.
 a. From the main menu, click **Administration > Basic CICS resource administration > Resource definitions > Transaction definitions**. This opens the **Transaction definitions** tabular view.
 b. If the current context is not PLXPROD1, specify PLXPROD1 in the **Context** field and click **Refresh**.
 c. From the **Transaction definitions** view, click the Record check box beside the entry for PAY1 and click the **Install** button.
 d. Type CICSPA01 in the **Target scope value** field.
 e. Click **Yes** to confirm.
Repeat this step to install PAY1 in target scopes CICSPA02 and CICSPA03. The transaction definition should point to the mirror program DFHMIRS. For details of defining and installing transaction definitions, see Creating resources with BAS: Transaction resource definitions.

Dynamic routing of a peer-to-peer DPL request

This example describes how to use the Web User Interface (WUI) to set up dynamic routing for a peer-to-peer DPL request, and to use the GOAL algorithm to select the target region.

Note: You should check the system requirements before trying to dynamically route peer-to-peer DPL requests. See CICSpex SM workload requirements.

In this example, transaction PAY1 runs program PAYPROG1, which issues an EXEC CICS LINK command to program PAYPROG2. You require transaction PAY1 to have a response time of 4 seconds.

This example uses the environment that was used for “Dynamic routing with EXEC CICS START TERMID” on page 105. However, because this is a peer-to-peer dynamic linking request, only the AORs are involved and each AOR may act as a requesting, routing, or target region.

As you want to use the GOAL algorithm, you need to define, in MVS Workload Manager, a Service Class with the required response time and allocate that Service Class to the transaction. For example, you could specify:

- A Service Class of Medium with an average response time of 4 seconds.
- A classification rule associating Classification Subsystem CICS with transaction ID PAY1 and Service Class Medium.

For more information about Service Classes, see the information about the goal algorithm in Management of the work in a workload.

In CICSpex SM:

1. The first step is to set the dynamic routing status value for program PAYPROG1. To do this:
 - From the main menu, click Administration > Basic CICS resource administration > Resource definitions > Program definitions. This opens the Program definitions tabular view.
 - If the current context is not PLXPROD1, specify PLXPROD1 in the Context field and click Refresh.
 - Click the Record check box beside the entry for PAYPROG1 and click the Update... button.
 - Set the Dynamic routing status field to NO from the drop-down box.
 - Click Yes to confirm.

2. Install program definitions:
 - From the Program definitions tabular view, click the Record check box beside the entry for PAYPROG1 and click the Install... button.
 - Type CICSPA01 in the Target scope value field.
 - Click Yes to confirm.

Repeat this step to install PAYPROG1 in target scopes CICSPA02 and CICSPA03.

For details of defining and installing program definitions, see Creating resources with BAS: PROGRAM resource definitions.
You don't need to install program definition PAYPROG2 in the regions, but if you do, PAYPROG2 should be defined as dynamic.

3. Install the transaction definition:
 - From the main menu, click **Administration > Basic CICS resource administration > Resource definitions > Transaction definitions**. This opens the **Transaction definitions** tabular view.
 If the current context is not PLXPROD1, specify PLXPROD1 in the **Context** field and click **Refresh**.
 - From the **Transaction definitions** tabular view, Click the **Record** check box beside the entry for PAY2 and click the **Install...** button.
 - Type CICSPA01 in the **Target scope value** field.
 - Click **Yes** to confirm.

The transaction definition should point to the mirror program DFHMIRS.
Repeat this step to install PAY2 in target scopes CICSPA02 and CICSPA03.

Routing CICS BTS activities

Use the Web User Interface (WUI) to route a CICS BTS-related workload.

This example uses the configuration that has been used for earlier examples. You are working in CICSp lex PLXPROD1, which comprises AORs CICSPA01, CICSPA02, and CICSPA03 in CICS system group CSGTGTS1. These three systems may act as routing and target regions. In addition, it is assumed that the RLS file for the BTS process type is accessible to all CICS system in CICS system group CSGTGTS1, and that all the systems in CICS system group CSGTGTS1 are interconnected.

Note: You should check the system requirements before trying to dynamically route CICS BTS activities. See “Separating CICS BTS activities” on page 111 and **CICS release requirements for dynamic routing**

1. Activate workload routing for the systems in CSGTGTS1.
 - From the main menu, click **Administration > Topology administration > System definitions**. This opens the **System Definitions** tabular view.
 If the current context is not PLXPROD1, specify PLXPROD1 in the **Context** field and click **Refresh**.
 - Click the record check box beside the entry for CICSPA01 and click the **Update...** button.
 - Select **YES** from the drop-down box for both the **Workload manager status** field and in the **AOR dynamic routing mode** field. These changes takes effect when the target region CICSPA01 is next started.

Repeat this step for target regions CICSPA02 and CICSPA03.

2. Create a workload specification:
 - From the main menu, click **Administration > Workload manager administration > Specifications**. This opens the **WLM specifications** tabular view.
 - Click the **Create...** button, and provide the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Primary search criterion</th>
<th>Default target scope</th>
<th>Acceptable level of abend probability</th>
<th>Acceptable abend load threshold</th>
<th>Algorithm type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Description</td>
<td>Primary search criterion</td>
<td>Default target scope</td>
<td>Acceptable level of abend probability</td>
<td>Acceptable abend load threshold</td>
<td>Algorithm type</td>
</tr>
<tr>
<td>WLSCBTS</td>
<td>Routing CICS BTS activity</td>
<td>USERID</td>
<td>CSGTGTS1</td>
<td>0</td>
<td>0</td>
<td>LNQUEUE</td>
</tr>
</tbody>
</table>

110 CICS TS for z/OS: CICSPlex SM Managing Workloads
• Click Yes to confirm. The WLM specifications tabular view is redisplayed.

You must supply:
• A name for the specification (WLSCBTS in this example).
• A primary search criterion value. USERID is shown in this example, though in fact it does not matter whether you specify USERID or LUNAME, because the primary search criterion value has no effect on simple workload routing. It is used only for some kinds of workload separation, but you have to supply a value because CICSPlex SM cannot determine, at this stage, that you are not going to use this workload specification for workload separation.
• A default target scope value, which is the name of the single target region, or group of target regions, to which transactions can be routed. In this example, use CSGTGTS1.
• An algorithm Type value. For this example, use LNQUEUE. The LNQUEUE (link neutral queue) algorithm ignores the type of link between routing and target regions but otherwise uses the same routing criteria as the QUEUE algorithm.

3. Associate the workload specification with routing region scope CSGTGTS1.
• Click the Record check box beside the entry for WLSCBTS and click the Associate CICS system... button.
• In the CICS system field, type CSGTGTS1.
• Click Yes to confirm. The WLM specifications tabular view is redisplayed.

4. Specify the system initialization parameter DSRTPGM is set to EYU9XLOP. You can do this either in the system initialization parameter of each region in the CICS system group, or by using the CICS system definitions view.

5. Activate workload management:
• From the main menu, click CICSPlex SM operations > MASs known to CICSPlex. This opens the MASs known to CICSPlex tabular view.
• Click CICS system name CICSPA01 open the MASs known to CICSPlex detailed view for CICSPA01.
• In the Workload manager status field, select YES from the drop-down list to start managing workloads for this CICS system.
• Click Apply changes. Repeat this step to activate workload management for CICSPA02 and CICSPA03.

6. Program your BTS activities to run asynchronously.

When the routing and target regions in system group CSGTGTS1 are next started, BTS activities are routed among the target regions.

Separating CICS BTS activities
This example describes how to use the Web User Interface (WUI) to separate a CICS BTS-related workload.

In this example, BTS activity BTSACT1 has an affinity of LIFETIME and runs under transaction ID BTS1 and process type SALES. This example uses the configuration that has been used for the example in "Routing CICS BTS activities" on page 110. Similarly, the system initialization parameter DSRTPGM must be set to EYU9XLOP.

Note: You should check the system requirements before trying to dynamically route CICS BTS activities. See CICS release requirements for dynamic routing.

1. Create a transaction group:
• From the main menu, click Administration views > Workload manager
administration views > Transaction groups definitions. This opens the
Transaction group definitions tabular view.

If the current context is not PLXPROD1, specify PLXPROD1 in the Context
field and click Refresh.

• Click the Create... and provide the following information:

<table>
<thead>
<tr>
<th>Name</th>
<th>TRGCBTS1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>CICS BTS transaction group</td>
</tr>
<tr>
<td>Affinity relation and lifetime checking status</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>Primary search criterion</td>
<td>USERID</td>
</tr>
<tr>
<td>Affinity relationship</td>
<td>BAPPL</td>
</tr>
<tr>
<td>Affinity lifetime</td>
<td>ACTIVITY</td>
</tr>
<tr>
<td>Acceptable level of abend probability</td>
<td>0</td>
</tr>
<tr>
<td>Acceptable abend load threshold</td>
<td>0</td>
</tr>
<tr>
<td>Algorithm type</td>
<td>QUEUE</td>
</tr>
</tbody>
</table>

You can ignore any fields that have been left blank.

• Click Yes to redisplay the Transaction group definitions tabular view, now
showing the name of the transaction group TRGCBTS1.

Notice that the Affinity relationship and Affinity lifetime fields must be
completed. These values tell CICSPlex SM that the transactions in this group
constitute a BTS affinity, and that this affinity lasts while those transactions
are coming from the same BTS application. If one of them is initiated from a
different BTS application, CICSPlex SM can select a different target region.

Of course, the same type of affinity will then come into play in that second
target region.

2. Identify the transactions in group TRGCBTS1:

• From the Transaction group definitions view select the entry for TRGCBTS1
and click the Add transaction... to open the Add transaction tabular view.

• In the Transaction name field, type BTS1 and click Yes to add the transaction
to the Transaction group. The Transaction group definition view is
redisplayed.

3. Create a workload definition:

• From the main menu, click Administration > Workload manager
administration > Definitions. This opens the WLM definitions tabular view.

• Click the Create... button and provide the following information:

<table>
<thead>
<tr>
<th>Workload management definition</th>
<th>WLDCBTS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Separate CICS BTS activities</td>
</tr>
<tr>
<td>Transaction group name</td>
<td>TRGCBTS1</td>
</tr>
<tr>
<td>BTS process type</td>
<td>SALES</td>
</tr>
<tr>
<td>Scope name of set of target systems</td>
<td>CSGTGTS1</td>
</tr>
</tbody>
</table>

• Click Yes and the WLM definitions tabular view is redisplayed.

These values tell CICSPlex SM that transactions in group TRGCBTS1, and of
process type SALES, must go to a target region in group CSGTGTS1.
CICSPlex SM can select the most appropriate target region at the time the
transaction is initiated.

4. Add the workload definition to the workload group:

• In the WLM definition tabular view, click the Record check box beside the
entry for the WLDCBTS1 and click the Add to WLM group... button. The
Add to WLM group view is displayed.

• In the Resource group name field, type WLGCBTS1 and click Yes. The WLM
definitions tabular view is redisplayed.
5. Add the workload group to a workload specification:
 - From the main menu, click **Administration views > Workload manager administration views > Groups**. This opens the **WLM group** tabular view.
 - In the **WLM group** view, click the Record check box beside the entry for the WLDCBTS1 and click the **Add to WLM specification...** button. The **Add to WLM specification** view is displayed.
 - In the **Specification name** field, type WLGCBTS1 and click **Yes**. The **WLM groups** tabular view is redisplayed.

Managing a Link3270 bridge workload

These examples describe how to use the Web User Interface (WUI) to manage a Link3270 bridge workload.

In the case of Link3270 bridge requests, the client application in the requester region calls the Link3270 bridge using **EXEC CICS LINK**, EXCI or ECI, and passes a communication area to the bridge router program, DFHL3270, which runs in the router region. The transaction ID that is used for Link3270 bridge workload routing is the name that is passed to DFHL3270 in the communication area and is not necessarily the same as the transaction name entered at the terminal or workstation. The target regions contain the bridge environment in which the target transaction runs.

When CICSplex SM is in use and the CICSPlex SM routing exit, EYU9XLOP, is specified as the **DTRPGM** system initialization parameter, DFHL3270 uses CICS distributed program linking to pass control to EYU9XLOP. The mirror program, DFHMIRS, passes the following information to EYU9XLOP in the DFHDYPDS communication area:
 - A **DYRTYPE** value of 8, which indicates a Link3270 bridge request type
 - An eight-character bridge token in the **DYRBRTK** field
 - The transaction ID of the transaction that is to run in the target region in the **DYRTRAN** field.

For more information about the Link3270 bridge, see [Introduction to the 3270 bridge](#).

For more information about CICS distributed program linking, see [CICS distributed program link](#).

Routing a Link3270 bridge workload

In this example CICSPT01 is the router region and the target regions are CICSPA01, CICSPA02 and CICSPA03.

1. If the current context is not PLXPROD1, specify PLXPROD1 in the **Context** field and click **Refresh**.
2. Set the **DTRPGM** system initialization parameter to EYU9XLOP in all regions.
3. Update definitions
 a. From the Web User Interface main menu, click **Administration > Topology administration > System definitions** to open the **CICS system definition** tabular view.
 b. Select the entry for CICSPT01 and click **Update** to open a detail view of CICSPT01.
 c. Scroll down to the **Workload manager status** field and select **YES** from the menu.
 d. Scroll down to the **AOR dynamic routing mode** field and select **YES** from the menu.
e. Click Yes at the bottom of the view to return to the **CICS system definitions** tabular view. See [Administering CICSPlex SM](#) for a description of the CICS system definition view.

This change takes effect when the target region CICSPA01 is next started. Repeat this for the regions CICSPA01, CICSPA02 and CICSPA03.

4. Create a CICS system group
 a. From the main menu click **Administration > Topology administration > System groups** to open the **System group definitions** tabular view.
 b. Scroll to the bottom of the view and click **Create**, to create a system group called CSGTGT1

 CSGTGT1, in this example, is to contain the regions that are to act as targets. See [Administering CICSPlex SM](#) for a description of the **System group definitions** view.)

5. Add the target regions to CSGTGT1.

6. Create a workload specification
 a. From the main menu click **Administration > Workload manager administration > Specifications** to open the **WLM specifications** tabular view (WLMSPEC object).
 b. Scroll to the bottom of the view, click **Create**, and provide the following information:

 WLM specification name
 BRSPEC01

 Description
 Link3270 Bridge Workload

 Primary search criterion
 USERID

 Automatic affinity creation option
 N/A

 Default target scope
 BRITGTS1

 Algorithm type
 QUEUE

 Leave the remaining fields empty or accept the defaults.

You must supply:
- The name of the workload specification. In this example it is called BRSPEC01.
- A **Primary search criterion** value. USERID is shown in this example, though in fact it doesn’t matter whether you specify USERID or LUNAME, because the **Primary search criterion** value has no effect on simple workload routing. It is used only for some kinds of workload separation, but you have to supply a value because CICSPlex SM doesn’t know, at this stage, that you aren’t going to use this workload specification for workload separation.
- A **Default target scope**, which is the name of the region or group of regions (BRITGTS1 in this example) to which work is to be routed.
- An **Algorithm type**. This example uses QUEUE but you can specify either QUEUE, LNQUEUE, GOAL, or LNGOAL for Link3270 bridge requests.

7. Associate the workload specification with the routing region scope
 - On the **WLM specifications** tabular view, select the record for BRSPEC01 and click the **Associate CICS system...** button.
 - Enter the routing region scope into the **CICS system** field and click **Yes**.
When the regions are next restarted, the workload will be routed across the target regions. You can use the **Active workloads** view (WLMAWORK object) to check that workload specification BRSPEC01 is active. You can use the **Active workload target distribution factors** view (WLMAWAOR object) to see to which target regions workloads are being routed.

Separating a Link3270 bridge workload

You can separate Link3270 bridge workloads by user ID, transaction group, or LU name.

About this task

You can separate by LU name only if you are overriding the NETNAME that the bridge generates automatically. Be aware of the restrictions on the use of LUNAME when separating Link3270 bridge workloads. For more information, see [Separating Link3270 bridge workloads](#). For Link3270 bridge workloads, the LU name is the eight-character NETNAME of the terminal running the client transaction that started the Link3270 bridge, rather than the NETNAME of the bridge facility itself.

To separate by bridge facility NETNAME, you must modify the EYU9WRAM module. For more information, see [Separating Link3270 bridge workloads](#). CICS routes all transactions running under the same bridge facility to the same target region. You cannot force them to go to different regions.

The following example describes how to separate a bridge workload by userid and transaction group. The example uses the same configuration as that described in “Creating workload management definitions using the WUI” on page 50.

Add the following definitions to the definitions that you created in “Creating workload management definitions using the WUI” on page 50.

Procedure

1. Create a transaction group.
 a. From the Web User Interface main menu, click **Administration > Workload manager administration > Transaction group definitions**. The **Transaction group definition** view opens, listing any transaction groups already defined in PLXPROD1.

 If the current context is not PLXPROD1, specify PLXPROD1 in the **Context** field and click **Refresh**.
 b. Scroll to the bottom of the view, click **Create**, and provide the following information:

 Transaction group name

 TRGBRI01

 Description

 Link3270 bridge transaction group

 Affinity relation and lifetime checking status

 ACTIVE

 Primary search criterion

 User ID

 Automatic affinity creation option

 N/A

 You can leave the remaining fields or accept the defaults.
 c. Click **Yes**. The **Transaction group definition** view is redisplayed, now showing the name of the transaction group TRGBRI01.
Leave the **Affinity relationship** and **Affinity lifetime** fields blank and the **Automatic affinity creation option** field set to N/A because CICSPlex SM does not handle affinities between Link3270 bridge transactions.

Note: If you want to separate by LUNAME, you must enter LUNAME in the **Primary search criterion** field of the **Transaction group definition** create view.

2. Identify the transactions in group TRGBRI01.
 a. In the **Transaction group definition** view, select the entry for TRGPAY01, and click **Add transaction**.
 b. Type the name BRI1 in the **Transaction name** field, and click **Yes** to confirm. The **Transaction group definition** view is redisplayed.

3. Repeat the previous two steps for any further transactions that you want to be routed to different regions.

4. Create a workload definition.
 a. From the main menu, click **Administration > Workload manager administration > Definitions**. The **Workload management definition** view opens.
 b. Scroll to the bottom of the view, click **Create**, and provide the following information:
 Workload management definition name
 WLDBRI01
 Description
 Separate Link3270 bridge activities
 Transaction group name
 TRGBRI01
 Terminal LU name
 *
 User ID
 BRIUSER1
 BTS process type
 *
 Scope name of set of target systems
 CICSPA01
 These values indicate that transactions in group TRGBRI01 entered by BRIUSER1 are to be routed to CICSPA01.
 c. Click **Yes** to confirm.

 Note: If you want to separate by LUNAME, you must enter the LUNAME in the **Terminal LU name** field of the **Workload management definition** create view.

5. Repeat the previous step for any further transaction groups you have created for transactions that are to be routed to different regions.

6. Create a workload group. A workload group is essential if you want a workload definition to be installed automatically when the routing region that is routing the transactions is started.
 a. From the main menu, click **Administration > Workload manager administration > Groups**. The **Workload management group** view opens, listing any workload groups already created in PLXPROD1.
 b. Click **Create** and type in the following information:
 Workload management group name
 WLGBRI01
 Description
 Workload Group for WLDBRI01
c. Click Yes to confirm. The Workload management group view is redisplayed.

7. Add the workload definition WLDBRI01 and any other workload definitions you have created to WLGBRI01.
 a. From the main menu, click Administration > Workload manager administration > Definitions. The Workload management definition view opens.
 b. Select the entry for WLDBRI01, click Add to WLM group, and provide the following information:
 Workload management definition name
 WLDPAY01
 Description
 Link3270 bridge workload definition
 Resource group name
 WLGBRI01
 c. Click Yes to confirm.
 d. Repeat for any additional workload definitions that you created earlier.

8. Add workload group WLGBRI01 to workload specification BRSPEC01.
 a. From the main menu, click Administration > Workload manager administration > Groups. The Workload management (WLM) group view opens.
 b. Select the entry for WLGBRI01, click Add to WLM specification, and type BRSPEC01 in the Specification name field.
 c. Click Yes to confirm.

9. Install definition into the active workload.
 a. From the main menu, click Administration > Workload manager administration > Definitions. The Workload management definition view opens.
 b. Select the entry for WLDBRI01, and click Install to install it into the active workload. Click Yes to confirm. The workload separation definitions you created take effect immediately.
 c. Click Yes to confirm.

What to do next

You can check that the workload definition is active using the Workload definition installed in active workload view.
Chapter 4. Active workload views

The active workload views display information about active workloads and the transactions and transaction groups comprising those workloads. Note: Workload management is performed on a CICSplex-wide basis. These views ignore any scope that may be in effect.

Active workloads - WLMAWORK

The Active workloads (WLMAWORK) views display information about an active workload within the CICSplex identified as the context.

Supplied views

To access from the main menu, click:

Active workload views > Active workloads

Table 7. Views in the supplied Active workloads (WLMAWORK) view set

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active workloads</td>
<td>Detailed information about a selected active workload.</td>
</tr>
<tr>
<td>EYUSTARTWLMAWORK.DETAILED</td>
<td></td>
</tr>
<tr>
<td>Active workloads</td>
<td>Set active workload attributes.</td>
</tr>
<tr>
<td>EYUSTARTWLMAWORK.SET</td>
<td></td>
</tr>
<tr>
<td>Active workloads</td>
<td>Tabular information about all active workloads within the current context.</td>
</tr>
<tr>
<td>EYUSTARTWLMAWORK.TABULAR</td>
<td></td>
</tr>
</tbody>
</table>

Actions

Table 8. Actions available for WLMAWORK views

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GET</td>
<td>Optional parameter.</td>
</tr>
<tr>
<td></td>
<td>YES requests records from every CMAS managing the workload.</td>
</tr>
<tr>
<td></td>
<td>NO requests records from a single CMAS managing the workload.</td>
</tr>
<tr>
<td></td>
<td>NO is the default value if the parameter is not specified.</td>
</tr>
<tr>
<td>SET</td>
<td>Set active workload attributes.</td>
</tr>
</tbody>
</table>

Fields

Table 9. Fields in WLMAWORK views

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptable level of abend probability</td>
<td>ABENDCRIT</td>
<td>The abend probability for a transaction associated with the default transaction group that should cause a target region to be considered unhealthy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A value of 0 means WLM is not calculating abend probabilities for the workload.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Acceptable target region load level</td>
<td>ABENDTHRESH</td>
<td>The abend probability for a transaction associated with the default transaction group that should cause a target region's load level to be doubled. A value of 0 means WLM is not calculating abend loads for the workload.</td>
</tr>
<tr>
<td>Automatic affinity creation</td>
<td>AFFAUTO</td>
<td>Indicates whether CICSPlex SM is to automatically create an affinity relationship for transactions that are not associated with any installed transaction group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• YES – An affinity is created using the values in the Affinity Relation and Affinity Lifetime fields.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NO – An affinity is not automatically created (but can be created by a customized version of the dynamic routing program EYU9WRAM).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• N/A – There are no values in the Affinity Relation and Affinity Lifetime fields, therefore, no affinity is created.</td>
</tr>
<tr>
<td>Default affinity relation</td>
<td>AFFINITY</td>
<td>The default affinity relation applied to transactions not associated with any installed transaction group. The affinity relation values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GLOBAL - All users at all terminals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• LUNAME - Terminal logical unit name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• USERID - User ID</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• BAPPL - Business Application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Locked - LOCKED affinities can arise only between dynamically linked programs. A LOCKED affinity is created when a called program retains state data that is to be preserved after returning to its caller. Programs with this type of affinity are routed to the same target region until end of unit of work occurs. LOCKED can be used only for dynamic program link (DPL) requests with an associated affinity lifetime of UOW.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NONE - No affinity relation was defined</td>
</tr>
<tr>
<td>Default affinity lifetime</td>
<td>AFFLIFE</td>
<td>The default affinity lifetime used with the default affinity relation. This value is applied to transactions that are not associated with any installed transaction group. After the first instance of a transaction, subsequent instances of the transaction are run on the same target region:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DELIMIT - Until the pseudoconversation mode is END</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• LOGON - For the duration of the terminal session</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PCONV - For the duration of the pseudoconversation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PERMANENT - For as long as the workload is active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SIGNON - Until the terminal user signs off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• SYSTEM - Until the target region terminates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ACTIVITY - For as long as the CICS BTS activity is active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PROCESS - For as long as the CICS BTS process is active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• UOW - For as long as the unit-of-work is active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NONE - No affinity lifetime was defined</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Default algorithm type</td>
<td>ALGTYPE</td>
<td>The algorithm to be applied to all transactions that are not associated with any installed transaction group:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• QUEUE - Routes transactions to the target region that has the lowest routing weight at the time of the routing evaluation. The routing weight of a target region is a combination of factors that include:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The current task load</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The current target health state</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The link speed from the router to the target</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The probability of transaction abend at the target</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The effect of any outstanding RTA events at the target</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• LNQUEUE - Routes transactions to the target region that has the lowest routing weight at the time of the routing evaluation. The routing weight of a target region is a combination of factors that include:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The current task load</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The current target health state</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The effect of any outstanding RTA events at the target</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The probability of transaction abend at the target</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note - The link speed from the router to the target is not factored into the routing weight calculation for the LNQUEUE algorithm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• GOAL - Routes transactions to the target region which is best able to meet the transaction’s average response time goal, as predefined using z/OS Workload Manager.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– If a specific target region cannot be resolved from the evaluated GOAL set, then the QUEUE algorithm is applied to the remaining target set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• LNGOAL - Routes transactions to the target region which is best able to meet the transaction’s average response time goal, as predefined using z/OS Workload Manager.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– If a specific target region cannot be resolved from the evaluated LNGOAL set, then the LNQUEUE algorithm is applied to the remaining target set.</td>
</tr>
<tr>
<td>Active target regions</td>
<td>AORCNT</td>
<td>The number of active CICS systems, identified as target region for the workload.</td>
</tr>
<tr>
<td>Default target scope</td>
<td>AORSCOPE</td>
<td>The name of the CICS system or CICS system group that is to be the target for any dynamic transactions or programs not associated with a transaction or program group.</td>
</tr>
<tr>
<td>Description</td>
<td>DESC</td>
<td>The description of the workload.</td>
</tr>
<tr>
<td>Event name</td>
<td>EVENTNAME</td>
<td>The name of a real-time analysis event that will affect the routing of transactions in this workload. If a real-time analysis event is generated, WLM uses the information as part of the target selection criteria.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>An event can optionally be associated with a workload when the workload specification is created. If this field is blank, no event is associated with the workload.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The name of an event is the same as an installed real-time analysis definition (RTADEF) or status definition (STATDEF)</td>
</tr>
</tbody>
</table>
Table 9. Fields in WLMWORK views (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Optimization status | OWSTATE | This field reports the sysplex optimization status of the current workload. The value is an amalgamation of all of the workload router optimization statuses, and all of the workload target optimization statuses.

The possible values are:
- **ACTIVE**
 - All targets and routers in the workload are executing in optimized workload state.
- **PARTIAL**
 - At least one target and one router are executing in optimized workload mode. Use the Active routing regions and Active target regions hyperlinks to determine which regions are not running in an optimized state.
- **INACTIVE**
 - The workload is not running in an optimized state, for one or more of the following reasons:
 - No routing regions in the workload are running in an optimized state
 - No target regions in the workload are running in an optimized state
 - No regions in the workload are running in an optimized state
 - The optimised workload routing function is DISABLED for the current target region
 - The workload was designated as being non optimized by specifying a value of 0 for the RS server update frequency on the CICSpex definition or CICS system definition for this workload. |
| Reporting CMAS | RPTCMAS | The name of the CMAS that provided the information in this record.

If the GET operation optional parameter EXPLODE is not specified or is specified as NO, then this attribute will be set to blanks and only one record will be returned for the workload.

If the GET operation optional parameter EXPLODE is specified as YES, then this attribute will be set with the name of the CMAS that provided the information in this record. A separate record will be returned for the workload from each CMAS that manages the workload.

When the IBM distributed WUI menus and views are used to request the WLMWORK tabular view, the EXPLODE parameter will be set to YES. |
| Shared status | SHARED | Indicates whether the workload has been shared with a pre-CICS TS 1.3 CMAS. If it has, the installation of CICS BTS related definitions are inhibited. |
Table 9. Fields in WLMAWORK views (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload status</td>
<td>STATUS</td>
<td>The status of the workload:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ACTIVE - All the target and routing region connections that this</td>
</tr>
<tr>
<td></td>
<td></td>
<td>workload depends upon are available</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• FROZEN - A target or routing region connection that this</td>
</tr>
<tr>
<td></td>
<td></td>
<td>workload depends upon has been lost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>As long as a workload remains frozen:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Transactions will continue to be routed according to any existing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>affinities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• New affinities can be created as long as they do not involve</td>
</tr>
<tr>
<td></td>
<td></td>
<td>other CMASs. Global or permanent affinities, which require other</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CMASs to be notified, cannot be created</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Install and discard action commands are not allowed for any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aspect of the workload</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The cause of a lost connection could be the target or routing region,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>one of the CMASs that manage the workload or a connection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>between the CMASs. To determine why a workload is frozen:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the contact status in the Target region in active workload</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(WLMAWAOR) and Active workload routing regions (WLMAWTOR) views to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>determine which target or routing region is affected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the MAS view to determine the status of the target or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>routing region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check the status of all connections for the target or routing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Determine which connection(s) were lost and take appropriate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>action to re-establish the connections.</td>
</tr>
<tr>
<td>Active routing regions</td>
<td>TORCNT</td>
<td>The number of active CICS systems, identified as routing regions,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>that are associated with the workload.</td>
</tr>
</tbody>
</table>
| Active transaction group
affinities | WAFFCNT | The number of active transaction group affinities that are associated |
| | | with the workload. |
| Active workload definitions | WDEFCNT | The number of active workload definitions that are associated with the |
| | | workload. |
| Name | WORKLOAD | The name of the workload. This is also the name of the installed |
| | | workload specification definition. |
| Owning system ID | WRKLOWNER | The CICS system ID of the CMAS that created the workload. |
| Active transaction groups | WTGPCNT | The number of active transactions groups that are associated with the |
| | | workload. |
| Active dynamic transactions | WTRNCNT | The number of active dynamic transactions that are associated with the |
| | | workload. |

Active routing regions - WLMAWTOR

The Routing regions in an active workload (WLMAWTOR) views display information about all active routing regions that are associated with a workload that is within the CICSplex identified as the context.

Supplied views

To access from the main menu, click:

Active workload views > Active routing regions
Table 10. Views in the supplied Active workload routing regions (WLMAWTOR) view set

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active workload routing regions</td>
<td>Detailed information about a selected active routing region.</td>
</tr>
<tr>
<td>EYUSTARTWLMAWTOR.DETAILED</td>
<td></td>
</tr>
<tr>
<td>Active workload routing regions</td>
<td>Tabular information about all active routing regions that are associated with a workload.</td>
</tr>
<tr>
<td>EYUSTARTWLMAWTOR.TABULAR</td>
<td></td>
</tr>
</tbody>
</table>

Actions

Table 11. Actions available for WLMAWTOR views

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GET</td>
<td>The name of the workload specification. You can specify a workload name of "+", which returns details of all routing regions in all workloads. No other type of generic workload name may be specified.</td>
</tr>
</tbody>
</table>

Fields

Table 12. Fields in WLMAWTOR views

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing region contact status</td>
<td>CON_STATUS</td>
<td>The status of the connection between the routing region and the CMAS. Values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• LOSTCON - The connection between the routing region and the CMASs has been lost.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• N_A - The connection between the routing region and the CMASes managing the workload is available.</td>
</tr>
<tr>
<td>Optimization status</td>
<td>OWSTATE</td>
<td>This field reports the status of the current routing region for the optimized workload routing function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The possible values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– This router region is executing in an optimized workload state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– This region is capable of executing in an optimized workload state, however, is not currently optimized for one or more of the following reasons:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The region has no connection to an RS Server</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The region is connected to an RS Server, however, the server has not been able to connect to the coupling facility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The optimised workload routing function is DISABLED for the current target region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The RS server update frequency value for this region is 0, which means that the optimization capabilities for this region are not enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• N_A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The router region is not configured to provide optimized workload management. Only non optimized WLM routing decisions can be made.</td>
</tr>
</tbody>
</table>

If the CMAS that your WUI is using is not connected to a Region Status (RS) server, the optimization status for remote regions will not be updated and defaults to INACTIVE. Where this situation occurs, either connect all reporting CMASs to the RS server or use the Active target regions view to check the optimization state.
Table 12. Fields in WLMAWTOR views (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporting CMAS</td>
<td>RPTCMAS</td>
<td>The name of the CMAS that provided the information in this record. If the GET operation optional parameter EXPLODE is not specified or is specified as NO, then this attribute will be set to blanks and only one record will be returned for the routing region. If the GET operation optional parameter EXPLODE is specified as YES, then this attribute will be set with the name of the CMAS that provided the information in this record. A separate record will be returned for the routing region from each CMAS that manages the workload associated with the routing region. When the IBM distributed WUI menus and views are used to request the WLMAWTOR tabular view, the EXPLODE parameter will be set to YES.</td>
</tr>
<tr>
<td>Routing region name</td>
<td>TOR</td>
<td>The name of an active CICS system, acting as a routing region, to which the workload is associated.</td>
</tr>
<tr>
<td>Name of controlling CMAS</td>
<td>TOROWNER</td>
<td>The name of the controlling CMAS.</td>
</tr>
<tr>
<td>Workload name</td>
<td>WORKLOAD</td>
<td>The name of the workload specification.</td>
</tr>
<tr>
<td>System ID of workload owner</td>
<td>WRKLOWNER</td>
<td>The 4-character CICS system ID of the CMAS that created the workload.</td>
</tr>
</tbody>
</table>

Active workload target distribution factors - WLMAWAOR

The **Target regions in an active workload** (WLMAWAOR) views display information about all target regions that are associated with a workload that is within the CICSpixel identified as the context.

Supplied views

To access from the main menu, click:

Active workload views > Active workload target distribution factors

Table 13. Views in the supplied **Target region in active workload** (WLMAWAOR) view set

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target region in active workload</td>
<td>Cause the specified target region to be recognized so that it can participate in workload management.</td>
</tr>
<tr>
<td>EYUSTARTWLMAWAOR.ACTIVATE</td>
<td></td>
</tr>
<tr>
<td>Target region in active workload</td>
<td>Detailed information about a selected target region.</td>
</tr>
<tr>
<td>EYUSTARTWLMAWAOR.DETAILED</td>
<td></td>
</tr>
<tr>
<td>Target region in active workload</td>
<td>Cause the specified target region to be removed from workload management. This means that no further transactions are routed to the target region unless they share an affinity with earlier transactions. For example, if you are engaged in a pseudoconversation when a target region begins quiescing, the transactions that constitute the pseudoconversation continue to be routed to the same target region until the end of the affinity lifetime. When the affinity is no longer active, the target region is fully quiesced and subsequent transactions are routed to a different target region in the target scope.</td>
</tr>
<tr>
<td>EYUSTARTWLMAWAOR.QUIESCE</td>
<td></td>
</tr>
<tr>
<td>Target region in active workload</td>
<td>Tabular information about target regions that are associated with a workload that is within the CICSpixel identified as the context.</td>
</tr>
<tr>
<td>EYUSTARTWLMAWAOR.TABULAR</td>
<td></td>
</tr>
</tbody>
</table>
Table 13. Views in the supplied Target region in active workload (WLMAWOR) view set (continued)

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target region in active workload</td>
<td>Tabular information about target regions that are associated with a workload that is within the CICSpex identified as the context.</td>
</tr>
<tr>
<td>EYUSTARTWLMAWOR,TABULAR2</td>
<td></td>
</tr>
</tbody>
</table>

Actions

Table 14. Actions available for WLMAWOR views

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVATE</td>
<td>Cause the specified target region to be recognized so that it can participate in workload management.</td>
</tr>
<tr>
<td>QUIESCE</td>
<td>Cause the specified target region to be removed from workload management. This means that no further transactions are routed to the target region unless they share an affinity with earlier transactions. For example, if you are engaged in a pseudoconversation when a target region begins quiescing, the transactions that constitute the pseudoconversation continue to be routed to the same target region until the end of the affinity lifetime. When the affinity is no longer active, the target region is fully quiesced and subsequent transactions are routed to a different target region in the target scope.</td>
</tr>
</tbody>
</table>

Fields

Table 15. Fields in WLMAWOR views

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target region name</td>
<td>AOR</td>
<td>The name of an active CICS system, acting as a target region, to which the workload is associated.</td>
</tr>
<tr>
<td>Coupling Facility update count</td>
<td>CFUPDCNT</td>
<td>This is the number of update calls that the RS Server has made to the z/OS Coupling Facility for this target region. This value is reset to zero whenever the RS Server or the CICS region is started.</td>
</tr>
<tr>
<td>Target region contact status</td>
<td>CON_STATUS</td>
<td>The status of the connection between the target region and the CMAS. Values are: • LOSTCON - The connection between the target region and the CMASes has been lost. • N_A - The connection between the target region and the CMASes managing the workload is available.</td>
</tr>
<tr>
<td>CICSPlex SM version</td>
<td>CPSMVER</td>
<td>This is the CICSPlex SM version of the target region.</td>
</tr>
<tr>
<td>RTA event active</td>
<td>EVENTS</td>
<td>This is the indicator of an outstanding RTA event for the current region. It is associated with either the workload specification or if the Transaction name (TRANNAME) parameter is specified and does not have a value of “”, then the TRANGRP in the current workload which manages that specific transaction. This value may vary for each workload that targets the current region, and will cause corresponding variations of the routing weight for that region.</td>
</tr>
<tr>
<td>Region is dumping</td>
<td>HLTHDUMP</td>
<td>This indicates whether the routing target is currently issuing a transaction or system dump.</td>
</tr>
<tr>
<td>Region is at MAXTASKS</td>
<td>HLTHMAXT</td>
<td>This indicates whether the routing target is currently running at a task rate that has reached its maximum tasks threshold.</td>
</tr>
<tr>
<td>MAS non responsive</td>
<td>HLTHNRM</td>
<td>This field indicates the routing target is non responsive at the current time.</td>
</tr>
<tr>
<td>Short on storage</td>
<td>HLTHSOS</td>
<td>This field indicates the SOS status of this routing target at the current time. Note that a CICS region can change from being in and out of SOS status very rapidly.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Region has stalled</td>
<td>HLTHSTALL</td>
<td>This indicates whether the routing target is in a stall condition. If the region is stalled, use the Active task views to determine which tasks are suspended, and determine why. Note: Stall here means a task has been waiting for the same resource for a specific time.</td>
</tr>
<tr>
<td>Maximum task count for region</td>
<td>MAXTASKS</td>
<td>This is the defined maximum number of active tasks that may concurrently execute in this routing target.</td>
</tr>
<tr>
<td>Optimization status</td>
<td>OWSTATE</td>
<td>This field reports the status of the current target region for the optimized workload routing function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The possible values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– This target region is executing in an optimized workload state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– This region is capable of executing in an optimized workload state, however, it is not currently optimized for one or more of the following reasons:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The region has no connection to an RS server</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The region is connected to an RS server, however, the server has not been able to connect to the z/OS coupling facility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The optimised workload routing function is DISABLED for the current target region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The RS server update frequency value for this region is 0, which means that the optimization capabilities for this region are not enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• N_A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– The target region is not configured to provide optimized workload management. Only non optimized WLM routing decisions can be made.</td>
</tr>
</tbody>
</table>

If the CMAS that your WUI is using is not connected to a Region Status (RS) server, the optimization status for remote regions will not be updated and defaults to INACTIVE. Where this situation occurs, either connect all reporting CMASs to the RS server or use the Active target regions view to check the optimization state.
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
</table>
| RS server read interval | READRS | Within a workload running in optimized mode, this value specifies the minimum interval between refreshes of a target region status from a CICS CFDT Server. These refresh requests will be issued by a routing region that is evaluating this region as a possible target for a dynamic routing request.

 The value range is from 0 to 2000, and represents units of milliseconds:
 • When the Optimization status is not set to Active, then this value will be set to 0, and WLM will ignore it. When the Optimization status is set to Active, then a value of 0 means that a routing region will request a status update of a target region on every occasion that it examines this region's status.
 • Values between 1 and 2000 specify the minimum time interval that must expire before the status of this region can be refreshed.

 A low interval value means that the CFDT Server will be polled more often for a status update, than for a higher value. For workloads in QUEUE mode, this will result in a task load more evenly distributed across the CICS regions in the workload target scope (assuming all other health and link factors are equal).

 However, the utilization of the RS server will be correspondingly increased, which may consequently result in a higher utilization of your z/OS Coupling Facility.

 A value of 1000 represents a one second interval. The default value is 200 milliseconds

 This value may be modified for this specific region using the MASs known to CICSpix views, or the CICS system definition views. |
| WLM routing weight for region | ROUTEWGHT | This is the calculated routing weight for the current routing target according to a specified transaction name as specified in the Transaction name (TRANNAME) parameter. If the transaction name has a value of ‘*’, the routing weight is that of the default route suggested by the workload specification. This value will be combined with the link weight from a Router to determine an overall normalized routing weight for this CICS region. This value will be compared with the same value for other potential routing targets. Assuming no affinities are outstanding, then the target with the lowest routing weight will be chosen as the actual route target.

 If the workload associated with this target region specifies that RTA MRM events should influence a route decision for certain transaction codes, then different transaction names will result in different routing weights because of the effects of outstanding RTA events.

 Note: 2147483647 is a special value indicating that the target is quiesced or z/OS WLM health is 0. Target regions with this value have been removed from workload management. This means that no further transactions are routed to the target region.

 Generally speaking, the Link weight is used to prefer faster connections over slower ones. Weighting is as follows:
 • MRO is considered faster than XCF (cross coupling-facility) connections.
 • XCF is considered faster than IPIC.
 • IPIC is considered faster than VTAM.
 • VTAM is considered faster than indirect connections. |
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing Load</td>
<td>ROUTINGLOAD</td>
<td>This is the routing load used by WLM route decision making for the target region. Note that this will not match the real CICS task count at the time of this query. For an ACTIVE System Optimized WLM target region this will be the approximate task load in the target region, taking into account ‘Task Count Increment Value’, ‘RS Server Bottom Tier’ and ‘RS Server Top Tier’. The accuracy of this value is also affected by the RS Read Interval and RS Update frequency settings. For target regions that are not connected to a RS Server, and are therefore in a non-optimized WLM state, this value will appear to be less accurate, when compared to the actual task count. This is because this is the normalized routing load for this region. It should be noted that when running in a non-optimized WLM state, this value can exceed the MAX TASK value, without the MAX TASK flag being set on, and is correct behaviour as the MAX TASK indicator is related to the target region's health status taken from actual task counts. It is possible that a region could be the target for multiple workloads and show different routing weight values. This is not abnormal behaviour - it is a symptom of the synchronization latencies within workload manager. Workload optimization will nullify this effect. The workload manager runtime processes will continue to execute normally in spite of this disparity in the load values. To suppress these observed load differences, try to ensure that all MASes and CAMSees that participate in the workload have a connectable region status server available. Where a workload contains target regions with different CICS TS releases, differences in the default number of active CICSPlex SM tasks in a CICS region when no other tasks are running may cause changes in the distribution of work to the target regions. Target regions at CICS TS V5.4 will have 0 CICSPlex SM tasks by default. This is compared to target regions at CICS TS V5.3 or earlier, which can have anywhere between 3 and 19 CICSPlex SM tasks active by default. This may lead to target regions earlier than the CICS TS V5.4 release being treated as less desirable by the routing algorithm.</td>
</tr>
<tr>
<td>Reporting CMAS</td>
<td>RPTCMAS</td>
<td>The name of the CMAS that provided the information in this record. If the GET operation optional parameter EXPLODE is not specified or is specified as NO, then this attribute will be set to blanks and only one record will be returned for the target region. If the GET operation optional parameter EXPLODE is specified as YES, then this attribute will be set with the name of the CMAS that provided the information in this record. A separate record will be returned for the target region from each CMAS that manages the workload associated with the target region. When the IBM distributed WUI menus and views are used to request the WLMAWAOR tabular view, the EXPLODE parameter will be set to YES.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>RS server pool name</td>
<td>RSPOOLID</td>
<td>For sysplex optimized workloads, region status data is maintained within a coupling facility data table. That table will be contained within a CFDT pool identified by this attribute. For an optimized workload to activate, there must be an active Region Status server which manages data for the pool name identified here. If your CICSp lex identifiers are not unique within your sysplex, you must ensure that the RS server pool names are unique. If your Sysplex comprises unique CICSp lex identifiers, then they may all share the same RS server pool. This attribute is defined in the parent CICSp lex definition of the current target region. The default name is DFHRSTAT. You may choose to employ an existing CFDT pool for containing your CICSp lex data tables. If you do, be aware that the throughput of your optimized workloads may be impeded by any user application activity to the specified pool name. Likewise, any application throughput to the pool may be impacted by sysplex optimized workloads. It is recommended that a discrete RS server and pool name is defined for the optimized workload function.</td>
</tr>
</tbody>
</table>
| Target region status | STATUS | The current status of the target region associated with the workload, as one of the following:
 * ACTIVE - The target is available to participate in workload management.
 * QUIESCEING - The target is being quiesced. No new transactions are routed to this target. Transactions currently being routed to this target are routed to another target, unless an affinity relation exists. If there is an affinity relation, transactions continue to be routed to this target until the affinity lifetime expires. Note that if a target has an affinity lifetime of PERMANENT, it will remain in a QUIESCEING state indefinitely.
 * QUIESCED - The target is not available to participate in workload management.

 Input Values: ACTIVE | QUIESCE |
<p>| Task count increment value | TASKINC | This is the translation of the RS Server update frequency value to an actual task count value for the current target region. Each time the current task count reaches a boundary that is a factor of this value, then an update is sent to the RS server. |
| Task load percentage | TASKLOAD | This is the normalized task load for this target region. It is calculated from dividing the current task routing count by the MAXTASKS value for the region, and multiplying by 100. |</p>
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS Server update frequency</td>
<td>UPDATERS</td>
<td>Within a workload running in optimized mode, this value specifies the frequency with which the CICS CFDT (RS) server will be called to modify the value of the task load within this target region.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The value range is from 0 to 25:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• When the Optimization status is not set to Active, then this value will be set to 0, and WLM will ignore it. When the Optimization status is set to Active, then a value of 0 means that the RS Server is not notified of any task load count changes, which disables the optimized workload function for this target region.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Values between 1 and 25 are applied as an arithmetic percentage to a region’s MAXTASKS setting. The resultant task count value is used as a numeric threshold to drive an update call to the RS Server.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For example, with a MAXTASKS setting of 120, and with this attribute set to 20, the RS Server will be called to update the WLM load count when the regions task count changes between:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 23 and 24 tasks - (20%),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 47 and 48 tasks - (40%),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 71 and 72 tasks - (60%),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 95 and 96 tasks - (80%),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 119 and 120 tasks - (100%).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The RS Server would be updated when the task load increments or decrements across these boundaries.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If a value is specified that is at the lower end of the 1-25 scale, then that will cause an increase in the frequency of updates to the RS Server across the task load range. For workloads in QUEUE mode, this will result in a task load more evenly distributed across the CICS regions in the workload target scope (assuming all other health and link factors are equal). However, the utilization of the RS server will be correspondingly increased, which may consequently result in a higher utilization of your z/OS Coupling Facility.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This value may be modified for this specific region using the MASs known to CICSpex views, or the CICS system definition views.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>z/OS WLM health</td>
<td>WLMHLTH</td>
<td>The percentage value that represents the z/OS WLM health open state for the region. This value may influence the amount of work a CSM WLM routing region will send to the region.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A value of zero (0) means that no work will be routed to the region. Any workload affinities associated with this region will remain and be honored, but routes based upon those affinities will fail while the value is zero. Note that the route failure seen depends upon how the route is attempted and whether a custom WRAM program is in effect. Some users may receive message EYUWR0003W indicating that the affinity AOR is not available, while others may receive a SYSIDERR.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A value of 1 to 99 inclusive means that an additional weight will be added to the region that is inversely proportional to the WLMHLTH value. That is, the lower the WLMHLTH value, the greater the additional weight assigned. This may have the effect of increasing or decreasing workload being received by the region as its WLMHLTH value increases or decreases, depending upon the weight assigned to other regions within the AORSCOPE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A value of 100 means either that a region has now achieved a fully open z/OS WLM health open state, or that the region is running with WLMHEALTH=OFF in the SIT, or that the region is running CICS TS V5.3 or lower. A region with a value of 100 is treated as healthy and no additional weight is added for the region.</td>
</tr>
</tbody>
</table>
| Task load queue mode | WLMQMODE | This attribute specifies how the queued task load of a target CICS region is to be evaluated:
 • MAXTASK - specifies that both active and MAXTASK queued tasks are to be included in the task load evaluation for the region.
 • ALL - specifies that the task load evaluation for the region will include active tasks, tasks queued for the MAXTASK limit and tasks that are queued because of a TRANCLASS limit.
 • N_a - specifies that the current region is not at a high enough level to support the use of this attribute. You will not be able to change it, and the WLM route decision process will ignore it.

The default value is ALL. This value is specified within the CICSPlex SM CICS system definition object. If you want this value to be changed, you must modify the system definition for the current region and then restart it. You may change the value in an active CICS region by using the CICSPlex SM MAS object. When the region restarts it will revert to the value specified in the system definition. |
Table 15. Fields in WLMAWAOR views (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task load health threshold</td>
<td>WLMTHRSH</td>
<td>This specifies a percentage threshold of the current region’s task load, which is calculated by dividing the current task count by the maximum task count. When the load for a target region reaches this threshold, then WLM considers the region to be relatively unhealthy. This will cause higher link weights to be applied to the WLM routing algorithm when evaluating this region. When a target scope covers local and remote regions relative to the router, then WLM will favour local targets over remote ones. The effect of this attribute is that when this load threshold in the local regions is achieved, then WLM will start to favour remote targets instead. When all targets in the scope achieve this load threshold, then WLM will revert to favouring local targets again. The value range is from 1 to 100, and the default value is 60. This value is specified within the CICSPlex SM CICS System Definition object. If you want this value to be changed, you must modify the system definition for the current region and then restart it. You may change the value in an active CICS region by using the CICSPlex SM MAS object. When the region restarts it will revert to the value specified in the system definition. If this value is set to 0, then the current region is not at a high enough level to support the use of this attribute. You will not be able to change it, and the WLM route decision process will ignore it. Note: this value is nullified when applied to the routing factor of link neutral dynamic routing requests. This is because the link weight itself is ignored for the LNQUEUE and LNGOAL algorithms.</td>
</tr>
<tr>
<td>Workload name</td>
<td>WORKLOAD</td>
<td>The name of the workload specification.</td>
</tr>
<tr>
<td>System ID of workload owner</td>
<td>WRKLOWNER</td>
<td>The 4-character CICS system ID of the CMAS that created the workload.</td>
</tr>
</tbody>
</table>

Active target regions - WLMATARG

The **Target regions in an active workload** (WLMATARG) views display information about all target regions that are associated with workloads within the CICSpex identified as the context.

Supplied views

To access from the main menu, click:

Active workload views > Active target regions

Table 16. Views in the supplied Active target region (WLMATARG) view set

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active target region</td>
<td>Detailed information about a selected target region.</td>
</tr>
<tr>
<td>EYUSTARTWLMATARG:DETAILED</td>
<td>Causes the Dynamic Routing statistics for the current target region to be reset to zero. After resetting the statistics, for performance and accuracy purposes, it is recommended that the refresh button on this viewset is used to reflect the changes to the statistics.</td>
</tr>
</tbody>
</table>
Table 16. Views in the supplied Active target region (WLMATARG) view set (continued)

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active target region EYUSTARTWLMATARG.TABULAR</td>
<td>Tabular information about target regions that are associated with a workload that is within the CICSpix identified as the context.</td>
</tr>
<tr>
<td>Active target region EYUSTARTWLMATARG.TABULAR2</td>
<td>Tabular information about target regions that are associated with a workload that is within the CICSpix identified as the context. Routing statistics can only be collected in a region connected to a CICS TS V4.1 CMAS (or greater). For targets or routers that are connected to a pre-CICS TS V4.1 CMAS, some statistics may appear as zero.</td>
</tr>
<tr>
<td>Active target region EYUSTARTWLMATARG.TABULAR3</td>
<td>Tabular information about target regions that are associated with a workload that is within the CICSpix identified as the context. Routing statistics can only be collected in a region connected to a CICS TS V4.1 CMAS (or greater). For targets or routers that are connected to a pre-CICS TS V4.1 CMAS, some statistics may appear as zero.</td>
</tr>
</tbody>
</table>

Actions

Table 17. Actions available for WLMATARG views

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESET</td>
<td>Causes the Dynamic Routing statistics for the current target region to be reset to zero. After resetting the statistics, for performance and accuracy purposes, it is recommended that the refresh button on this viewset is used to reflect the changes to the statistics.</td>
</tr>
</tbody>
</table>

Fields

Table 18. Fields in WLMATARG views

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target region name</td>
<td>AOR</td>
<td>The name of an active CICS system, acting as a WLM target region.</td>
</tr>
<tr>
<td>RS server bottom tier</td>
<td>BOTRSUPD</td>
<td>This is the bottom tier task load range (from zero up to this value). The value range is from 1 to 25. When a region's task load falls within this range, then the task load will be broadcast to the coupling facility for every change in the task load. Once the load reaches this value, then the 'RS server update frequency' task rules will be activated. The value shown here at the CICSpix level may be overridden at the CICS definition level to allow fine tuning of the value on an individual CICS region basis.</td>
</tr>
<tr>
<td>Coupling Facility read count</td>
<td>CFREADCT</td>
<td>This is the number of read calls that have been made by routing regions to the z/OS Coupling Facility for this region's status.</td>
</tr>
<tr>
<td>Coupling Facility update count</td>
<td>CFUPDCNT</td>
<td>This is the number of update calls that the RS Server has made to the coupling facility for this target region. This value is reset to zero whenever the RS Server or the CICS region is started.</td>
</tr>
<tr>
<td>Target region contact status</td>
<td>CON_STATUS</td>
<td>The status of the connection between the target region and the CMAS. Values are: • LOSTCON - The connection between the target region and the CMASes has been lost. • N_A - The connection between the target region and the CMASes managing the workload is available.</td>
</tr>
<tr>
<td>CICSpix SM version</td>
<td>CPSMVER</td>
<td>This is the CICSpix SM version of the target region.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>RTA event count for target region</td>
<td>EVENTS</td>
<td>This is the count of all outstanding RTA events that are associated with the current region. This value is set to zero (0) if the reporting CMAS is not the owning CMAS.</td>
</tr>
<tr>
<td>Region is dumping</td>
<td>HLTHDUMP</td>
<td>This indicates whether the routing target is currently issuing a transaction or system dump.</td>
</tr>
<tr>
<td>Region is at MAXTASKS</td>
<td>HLTHMAXT</td>
<td>This indicates whether the routing target is currently running at a task rate that has reached its maximum tasks threshold.</td>
</tr>
<tr>
<td>MAS non responsive</td>
<td>HLTHNRM</td>
<td>This field indicates the routing target is non responsive at the current time.</td>
</tr>
<tr>
<td>Short on storage</td>
<td>HLTHSOS</td>
<td>This field indicates the SOS status of this routing target at the current time. Note that a CICS region can change from being in and out of SOS status very rapidly.</td>
</tr>
<tr>
<td>Region has stalled</td>
<td>HLTHSTALL</td>
<td>This indicates whether the routing target is in a stall condition. If the region is stalled, use the Active task views to determine which tasks are suspended, and determine why. Note: Stall here means a task has been waiting for the same resource for a specific time.</td>
</tr>
<tr>
<td>Maximum task count for region</td>
<td>MAXTASKS</td>
<td>This is the defined maximum number of active tasks that may concurrently execute in this routing target.</td>
</tr>
<tr>
<td>Owning CMAS name</td>
<td>OWNINGCMAS</td>
<td>The name of a CMAS that participates in the management of the target region.</td>
</tr>
<tr>
<td>Optimization status</td>
<td>OWSTATE</td>
<td>This field reports the status of the current target region for the optimized workload routing function. The possible values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• N.A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This region is not configured to provide optimized workload management. Only non optimized WLM routing decisions can be made.</td>
</tr>
</tbody>
</table>

This value is set to INACTIVE if the reporting CMAS is not connected to a Region Status (RS) server.
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
</table>
| RS server read interval | READRS | Within a region running in optimized mode, this value specifies the minimum interval between refreshes of a target region status from a CICS CFDT Server. These refresh requests will be issued by a routing region that is evaluating this region as a possible target for a dynamic routing request. The value range is from 0 to 2000, and represents units of milliseconds:
• When the Optimization status is not set to ‘Active’, then this value will be set to 0, and WLM will ignore it. When the Optimization status is set to ‘Active’, then a value of 0 means that a routing region will request a status update of a target region on every occasion that it examines this region’s status.
• Values between 1 and 2000 specify the minimum time interval that must expire before the status of this region can be refreshed.
A low interval value means that the CFDT Server will be polled more often for a status update, than for a higher value. For workloads in QUEUE mode, this will result in a task load more evenly balanced across the CICS regions in the workload target scope (assuming all other health and link factors are equal). However, the utilization of the RS server will be correspondingly increased, which may consequently result in a higher utilization of your z/OS Coupling Facility.
A value of 1000 represents a one second interval. The default value is 200 milliseconds. This value may be modified for this specific region using the ‘MASs known to CICSpex’ views, or the ‘CICS system definition’ views. |
| WLM routing weight for region | ROUTEWGHT | This is the calculated routing weight for the current routing target without accounting for outstanding RTA MRM events, router region link speeds and transaction abend probabilities. Only the transaction load and health state of the region are calculated into this value. The health state is a combination of the SOS, Dump, Stall, MAXTASK and z/OS WLM health conditions. The transaction load is the value indicated by the ‘Task load percentage’ attribute. No workload associated parameters are included in this weight value. To determine routing weights for specific workloads, then use the corresponding attribute returned in the WLMAWAOR ‘Target region in active workload’ views.
When no affinities are applicable to a dynamic routing request, then the routing weights of all target regions in the routing scope are compared and the region with the lowest weight value will be the one selected. If several regions have the same lowest weight value, then one of that set is randomly selected as the routing target.
Note: 2147483647 is a special value indicating that the target is quiesced or z/OS WLM health is 0. Target regions with this value have been removed from workload management. This means that no further transactions are routed to the target region. |
Table 18. Fields in WLMATARG views (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing Load</td>
<td>ROUTINGLOAD</td>
<td>This is the routing load used by WLM route decision making for the target region. Note that this will not match the real CICS task count at the time of this query. For an ACTIVE System Optimized WLM target region this will be the approximate task load in the target region, taking into account ‘Task Count Increment Value’, ‘RS Server Bottom Tier’ and ‘RS Server Top Tier’. The accuracy of this value is also affected by the RS Read Interval and RS Update frequency settings. For target regions that are not connected to a RS Server, and are therefore in a non-optimized WLM state, this value will appear to be less accurate, when compared to the actual task count. This is because this is the normalized routing load for this region. It should be noted that when running in a non-optimized WLM state, this value can exceed the MAX TASK value, without the MAX TASK flag being set on, and is correct behaviour as the MAX TASK indicator is related to the target region's health status taken from actual task counts. It is possible that a region could be the target for multiple workloads and show different routing weight values. This is not abnormal behaviour - it is a symptom of the synchronization latencies within workload manager. Workload optimization will nullify this effect. The workload manager runtime processes will continue to execute normally in spite of this disparity in the load values. To suppress these observed load differences, try to ensure that all MASes and CMASes that participate in the workload have a connectable region status server available. Where a workload contains target regions with different CICS TS releases, differences in the default number of active CICSPlex SM tasks in a CICS region when no other tasks are running may cause changes in the distribution of work to the target regions. Target regions at CICS TS V5.4 will have 0 CICSPlex SM tasks by default. This is compared to target regions at CICS TS V5.3 or earlier, which can have anywhere between 3 and 19 CICSPlex SM tasks active by default. This may lead to target regions earlier than the CICS TS V5.4 release being treated as less desirable by the routing algorithm.</td>
</tr>
<tr>
<td>Reporting CMAS name</td>
<td>RPTINGCMAS</td>
<td>The name of a CMAS that provided this record.</td>
</tr>
<tr>
<td>RS server pool name</td>
<td>RSPOOLID</td>
<td>For sysplex optimized workloads, region status data is maintained within a coupling facility data table. That table will be contained within a CFDT pool identified by this attribute. For an optimized workload to activate, there must be an active Region Status server which manages data for the pool name identified here. If your CICSPlex identifiers are not unique within your sysplex, you must ensure that the RS server pool names are unique. If your Sysplex comprises unique CICSPlex identifiers, then they may all share the same RS server pool. This attribute is defined in the parent CICSPlex definition of the current target region. The default name is DFHRSTAT. You may choose to employ an existing CFDT pool for containing your CICSPlex data tables. If you do, be aware that the throughput of your optimized workloads may be impeded by any user application activity to the specified pool name. Likewise, any application throughput to the pool may be impacted by sysplex optimized workloads. It is recommended that a discrete RS server and pool name is defined for the optimized workload function.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Route abends</td>
<td>RTABEND</td>
<td>The number of times that route abend has been returned after selecting this region. This value is the total for all requests processed by routing regions (dynamic routing) and all requests processed by the target region (distributed routing) while they were connected to the reporting CMAS.</td>
</tr>
<tr>
<td>Route completes</td>
<td>RTCOMPLETE</td>
<td>The number of times that route complete has been driven for this region. Route complete occurs after the transaction request is dispatched to the waiting queue of the target region. This value is the total for all requests processed by routing regions while they were connected to the reporting CMAS.</td>
</tr>
<tr>
<td>Route errors</td>
<td>RERROR</td>
<td>The number of times that the selection of the current region has caused a route error to occur. Route errors occur when CICSPlex SM has selected a target region, and CICS has experienced an error in routing the work to it. For example, the connection is out of service, or no sessions are immediately available for an LU 6.2 connection. CICSPlex SM will attempt to select another target when this occurs. This value is the total for all requests processed by routing regions while they were connected to the reporting CMAS.</td>
</tr>
<tr>
<td>Route initiates</td>
<td>RTINITIATE</td>
<td>The number of times that routed transactions have been actually started on the target region. This value is the total for all requests processed by the target region while it was connected to the reporting CMAS.</td>
</tr>
<tr>
<td>Route notifies</td>
<td>RTNOTIFY</td>
<td>The number of times that route notify has been driven for this region. Route notify normally occurs when a static routing starts. This value is the total for all requests processed by routing regions while they were connected to the reporting CMAS.</td>
</tr>
<tr>
<td>Route selections</td>
<td>RTSELECT</td>
<td>The number of times that the current region has been chosen as a routing target by route selection processing. This value is the total for all requests processed by routing regions while they were connected to the reporting CMAS.</td>
</tr>
<tr>
<td>Route terminates</td>
<td>RTTERMINATE</td>
<td>The number of times that route terminate has been driven for this region. Route terminate occurs when a transaction finishes on a target region. This value is the total for all requests processed by routing regions (dynamic routing) and all requests processed by the target region (distributed routing) while they were connected to the reporting CMAS.</td>
</tr>
</tbody>
</table>
| Target region status| STATUS | The current status of the target region associated with the workload, as one of the following:
 - ACTIVE - The target is available to participate in workload management.
 - QUIESCEING - The target is being quiesced. No new transactions are routed to this target. Transactions currently being routed to this target are routed to another target, unless an affinity relation exists. If there is an affinity relation, transactions continue to be routed to this target until the affinity lifetime expires. Note that if a target has an affinity lifetime of PERMANENT, it will remain in a QUIESCEING state indefinitely.
 - QUIESCED - The target is not available to participate in workload management.

Input Values: ACTIVE | QUIESCE
<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task count increment value</td>
<td>TASKINC</td>
<td>This is the translation of the RS Server update frequency value to an actual task count value for the current target region. Each time the current task count reaches a boundary that is a factor of this value, then an update is sent to the RS server.</td>
</tr>
<tr>
<td>Task load percentage</td>
<td>TASKLOAD</td>
<td>This is the normalized task load for this target region. It is calculated from dividing the current task routing count by the MAXTASKS value for the region, and multiplying by 100.</td>
</tr>
<tr>
<td>RS server top tier</td>
<td>TOPRSUPD</td>
<td>This is the arithmetic percentage to a region’s MAXTASKS setting. The resultant task count value is subtracted from the region’s MAXTASKS setting to establish a task load ‘top tier’. If the task load in a region runs up to its MAXTASKS limit, then the task load must drop back below this value before the MAXTASKS state for the region is switched off and broadcast to the coupling facility. The value shown here at the CICSplex level may be overridden at the CICS definition level to allow fine tuning of the value on an individual CICS region basis.</td>
</tr>
<tr>
<td>RS Server update frequency</td>
<td>UPDATERS</td>
<td>Within a region running in optimized mode, this value specifies the frequency with which the CICS CFDT (RS) server will be called to modify the value of the task load within this target region. The value range is from 0 to 25: • When the Optimization status is not set to ‘Active’, then this value will be set to 0, and WLM will ignore it. When the Optimization status is set to ‘Active’, then a value of 0 means that the RS Server is not notified of any task load count changes, which disables the optimized workload function for this target region. • Values between 1 and 25 are applied as an arithmetic percentage to a region’s MAXTASKS setting. The resultant task count value is used as a numeric threshold to drive an update call to the RS Server. For example, with a MAXTASKS setting of 120, and with this attribute set to 20, the RS Server will be called to update the WLM load count when the regions task count changes between: • 23 and 24 tasks - (20%), • 47 and 48 tasks - (40%), • 71 and 72 tasks - (60%), • 95 and 96 tasks - (80%). • 119 and 120 tasks - (100%). The RS Server would be updated when the task load increments or decrements across these boundaries. If a value is specified that is at the lower end of the 1-25 scale, then that will cause an increase in the frequency of updates to the RS Server across the task load range. For workloads in QUEUE mode, this will result in a task load more evenly balanced across the CICS regions in the workload target scope (assuming all other health and link factors are equal). However, the utilization of the RS server will be correspondingly increased, which may consequently result in a higher utilization of your z/OS Coupling Facility. This value may be modified for this specific region using the ‘MASs known to CICSplex’ views, or the ‘CICS system definition’ views.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>z/OS WLM health</td>
<td>WLMHLTH</td>
<td>The percentage value that represents the z/OS WLM health open state for the region. This value may influence the amount of work a CPQM WLM routing region will send to the region.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A value of zero (0) means that no work will be routed to the region. Any workload affinities associated with this region will remain and be honored, but routes based upon those affinities will fail while the value is zero. Note that the route failure seen depends upon how the route is attempted and whether a custom WRAM program is in effect. Some users may receive message EYUWR0003W indicating that the affinity AOR is not available, while others may receive a SYSIDERR.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A value of 1 to 99 inclusive means that an additional weight will be added to the region that is inversely proportional to the WLMHLTH value. That is, the lower the WLMHLTH value, the greater the additional weight assigned. This may have the effect of increasing or decreasing workload being received by the region as its WLMHLTH value increases or decreases, depending upon the weight assigned to other regions within the AORSCOPE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A value of 100 means either that a region has now achieved a fully open z/OS WLM health open state, or that the region is running with WLMHEALTH=OFF in the SIT, or that the region is running CICS TS V5.3 or lower. A region with a value of 100 is treated as healthy and no additional weight is added for the region.</td>
</tr>
<tr>
<td>Optimization enablement state</td>
<td>WLMOPTEN</td>
<td>This field reports whether the current target region will support the optimized workload routing function. The possible values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ENABLED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– This target region will support the optimized workload routing requests.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• DISABLED</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– This region will not allow optimized workload routing requests, and will not contact the Region Status server for querying or broadcasting the current region state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This value may be modified for this specific region using the 'MASs known to CICSpix' views, or the 'CICS system definition' views.</td>
</tr>
<tr>
<td>Task load queue mode</td>
<td>WLMQMODE</td>
<td>This attribute specifies how the queued task load of a target CICS region is to be evaluated:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• MAXTASK - specifies that both active and MAXTASK queued tasks are to be included in the task load evaluation for the region.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ALL - specifies that the task load evaluation for the region will include active tasks, tasks queued for the MAXTASK limit and tasks that are queued because of a TRANCLASS limit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• N_a - specifies that the current region is not at a high enough level to support the use of this attribute. You will not be able to change it, and the WLM route decision process will ignore it.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The default value is ALL. This value is specified within the CICSpix SM CICS system definition object. If you want this value to be changed, you must modify the system definition for the current region and then restart it. You may change the value in an active CICS region by using the CICSpix SM MAS object. When the region restarts it will revert to the value specified in the system definition.</td>
</tr>
</tbody>
</table>
Table 18. Fields in WLMATARG views (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Task load health threshold | WLMTHRSH | This specifies a percentage threshold of the current region’s task load, which is calculated by dividing the current task count by the maximum task count. When the load for a target region reaches this threshold, then WLM considers the region to be relatively unhealthy. This will cause higher link weights to be applied to the WLM routing algorithm when evaluating this region.

When a target scope covers local and remote regions relative to the router, then WLM will favour local targets over remote ones. The effect of this attribute is that when this load threshold in the local regions is achieved, then WLM will start to favour remote targets instead. When all targets in the scope achieve this load threshold, then WLM will revert to favouring local targets again.

The value range is from 1 to 100, and the default value is 60. This value is specified within the CICSpex SM CICS System Definition object. If you want this value to be changed, you must modify the system definition for the current region and then restart it. You may change the value in an active CICS region by using the CICSpex SM MAS object. When the region restarts it will revert to the value specified in the system definition.

If this value is set to 0, then the current region is not at a high enough level to support the use of this attribute. You will not be able to change it, and the WLM route decision process will ignore it.

Note: this value is nullified when applied to the routing factor of link neutral dynamic routing requests. This is because the link weight itself is ignored for the LNQUEUE and LNGOAL algorithms. |
| Workload count | WRKLDCNT | This is a count of the workloads which have designated this region as a dynamic routing target.

The workload count is set to zero (0) if:
- the reporting CMAS is not the owning CMAS.
- the owning CMAS is a version prior to CICS TS 4.1.
- the owning CMAS is participating in a workload but has no routers connecting to it.

Definitions - WLMAWDEF

The Active workload definition (WLMAWDEF) views display information about active workload definitions installed in a workload that is within the CICSpex identified as the context.

Supplied views

To access from the main menu, click:

Active workload views > Definitions

Table 19. Views in the supplied Active workload definitions (WLMAWDEF) view set

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active workload definitions</td>
<td>Detailed information about a selected workload definition.</td>
</tr>
<tr>
<td>EYUSTARTWLMAWDEF.DETAILED</td>
<td></td>
</tr>
<tr>
<td>Active workload definitions</td>
<td>Discard an active workload definition.</td>
</tr>
<tr>
<td>EYUSTARTWLMAWDEF.DISCARD</td>
<td></td>
</tr>
</tbody>
</table>
Table 19. Views in the supplied Active workload definitions (WLMAWDEF) view set (continued)

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active workload definitions</td>
<td>Tabular information about active workload definitions associated with a workload that is within the CICSpix identified as the context.</td>
</tr>
</tbody>
</table>

Actions

Table 20. Actions available for WLMAWDEF views

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISCARD</td>
<td>Discard an active workload definition.</td>
</tr>
</tbody>
</table>

Fields

Table 21. Fields in WLMAWDEF views

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope name of set of target systems</td>
<td>AORSCOPE</td>
<td>The name of the CICS system or CICS system group to which transactions associated with the workload definition are directed.</td>
</tr>
<tr>
<td>Description</td>
<td>DESC</td>
<td>A description of the workload definition.</td>
</tr>
<tr>
<td>Terminal LU name</td>
<td>LUNAME</td>
<td>The logical unit name used in matching a transaction with the workload definition.</td>
</tr>
<tr>
<td>Workload definition</td>
<td>NAME</td>
<td>The name of the workload definition.</td>
</tr>
<tr>
<td>Process type</td>
<td>PROCESSTYPE</td>
<td>The specific or generic process type used in matching a transaction with the workload definition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Terminal LU name and User ID must both be set to "". A Transaction group of blanks or a specific name can be specified. You may only separate a workload by Transaction group and Process type or by Transaction group, Terminal LU name and User ID.</td>
</tr>
<tr>
<td>Transaction group</td>
<td>TRANGRP</td>
<td>The name of the transaction group associated with the workload definition.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If this field is blank, it means no transaction group was defined; the workload definition is using the default transaction group associated with its workload specification.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: The hyperlink to the WLMATGRP view is not valid when this field is blank.</td>
</tr>
<tr>
<td>User ID</td>
<td>USERID</td>
<td>The user ID used in matching a transaction with the workload definition.</td>
</tr>
<tr>
<td>Workload name</td>
<td>WORKLOAD</td>
<td>The name of the workload specification to which the workload definition is associated.</td>
</tr>
<tr>
<td>System ID of workload owner</td>
<td>WRKLOWNER</td>
<td>The 4-character CICS system ID of the CMAS that created the workload.</td>
</tr>
</tbody>
</table>

Transaction groups - WLMATGRP

The Active workload transaction groups (WLMATGRP) views display information about transaction groups installed in a workload that is within the CICSpix identified as the context.

Supplied views

To access from the main menu, click:

Active workload views > Transaction groups
Table 22. Views in the supplied Active workload transaction groups (WLMATGRP) view set

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active workload transaction groups</td>
<td>Set the workload active.</td>
</tr>
<tr>
<td>EYUSTARTWLMATGRP.ACTIVE</td>
<td></td>
</tr>
<tr>
<td>Active workload transaction groups</td>
<td>Detailed information about a selected transaction group.</td>
</tr>
<tr>
<td>EYUSTARTWLMATGRP.DETAILED</td>
<td></td>
</tr>
<tr>
<td>Active workload transaction groups</td>
<td>Set the workload dormant.</td>
</tr>
<tr>
<td>EYUSTARTWLMATGRP.DORMANT</td>
<td></td>
</tr>
<tr>
<td>Active workload transaction groups</td>
<td>Set transaction group attributes.</td>
</tr>
<tr>
<td>EYUSTARTWLMATGRP.SET</td>
<td></td>
</tr>
<tr>
<td>Active workload transaction groups</td>
<td>Tabular information about transaction groups associated with a workload that is within the CICSpex identified as the context.</td>
</tr>
<tr>
<td>EYUSTARTWLMATGRP.TABULAR</td>
<td></td>
</tr>
</tbody>
</table>

Actions

Table 23. Actions available for WLMATGRP views

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVE</td>
<td>Set the workload active.</td>
</tr>
<tr>
<td>DORMANT</td>
<td>Set the workload dormant.</td>
</tr>
<tr>
<td>GET</td>
<td>(Required) The name of an active workload.</td>
</tr>
<tr>
<td>SET</td>
<td>Set transaction group attributes.</td>
</tr>
</tbody>
</table>

Fields

Table 24. Fields in WLMATGRP views

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptable abend level</td>
<td>ABENDCRIT</td>
<td>The abend probability for a transaction associated with the default transaction group that should cause a target region to be considered unhealthy.</td>
</tr>
<tr>
<td>Acceptable target region load level</td>
<td>ABENDTHRESH</td>
<td>The abend probability for a transaction associated with the default transaction group that should cause a target region’s load level to be doubled.</td>
</tr>
<tr>
<td>Automatic affinity creation</td>
<td>AFFAUTO</td>
<td>Indicates whether CICSpex SM is to automatically create an affinity relationship for transactions associated with the transaction group.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• YES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– An affinity is created using the values in the Affinity relationship and Affinity lifetime fields.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– An affinity is not automatically created (but can be created by a customized version of the dynamic routing program EYU9WRAM).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– There are no values in the Affinity relationship and Affinity lifetime fields, therefore, no affinity is created.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Affinity relationship | AFFINITY | The affinity relationship used when processing occurrences of the transaction group. The affinity relationship values are:
 - GLOBAL - All users at all terminals
 - LUNAME - Terminal logical unit name
 - NONE - No affinity was defined
 - N/A - This field is not applicable
 - USERID - User ID
 - BAPPL - CICS BTS Business Application
 - Locked - LOCKED affinities can arise only between dynamically linked programs. A LOCKED affinity is created when a called program retains state data that is to be preserved after returning to its caller. Programs with this type of affinity are routed to the same target region until end of unit of work occurs. LOCKED can be used only for dynamic program link (DPL) requests with an associated affinity lifetime of UOW. |
| Affinity lifetime | AFFLIFE | The affinity lifetime to be used when processing occurrences of the transaction group. The affinity lifetime values are:
 - DELIMIT - Until the pseudoconversation mode is END
 - LOGON - For the duration of the terminal session
 - PCONV - For the duration of the pseudoconversation
 - PERMANENT - As long as the workload is active
 - SIGNON - As long as the user session is active
 - SYSTEM - As long as the AOR to which transactions are routed is active
 - ACTIVITY - As long as the CICS BTS activity is active
 - PROCESS - As long as the CICS BTS process is active
 - UOW - For as long as the unit-of-work is active
 - NONE - No affinity lifetime was defined
 - N/A - This field is not applicable |
| Algorithm type | ALGTYPE | The algorithm to be used when selecting the best target region in the Target Scope to which a transaction in the current transaction group should be routed. Valid options are:
 - QUEUE - Route the transaction to the target region with best combination of:
 - Health (MaxTask, Short-on-storage, Dumping, Stalled)
 - Task queue depth (or load)
 - Link speed from the routing region
 - Abend probability, when calculated
 - RTA event impact, when defined
 - LNQUEUE - Route the transaction to the target region with best combination of:
 - Health (MaxTask, Short-on-storage, Dumping, Stalled)
 - Task queue depth (or load)
 - Abend probability, when calculated
 - RTA event impact, when defined
 - GOAL - Route the transaction to the target region that:
 - Is the most likely to allow the transaction to meet the response time goal set for it and other transactions in its MVS workload management class
 - When a specific target cannot be identified, apply the QUEUE algorithm to the remaining set of target regions
 - LNGOAL - Route the transaction to the target region that:
 - Is the most likely to allow the transaction to meet the response time goal set for it and other transactions in its MVS workload management class
 - When a specific target cannot be identified, apply the LNQUEUE algorithm to the remaining set of target regions
 - INHERIT - Use the algorithm type specified in the WLM specification (WLMSPEC) to which this transaction group is associated.
 Note - The link speed from the router to the target is not factored into the routing weight calculation for the LNQUEUE algorithm |

144 CICS TS for z/OS: CICSPlex SM Managing Workloads
Table 24. Fields in WLMA_GRP views (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event name</td>
<td>EVENTNAME</td>
<td>The name of an analysis definition (RTADEF) or status definition (STATDEF) that may affect the routing of transactions in this workload. If a real-time analysis event is generated by this definition, WLM uses the information as part of the AOR selection criteria. An analysis or status definition can optionally be associated with a workload when the workload specification is created. If this field is blank, no analysis or status definition is associated with the workload. Note: The EVENT view is displayed only if an event of the specified type has occurred.</td>
</tr>
<tr>
<td>Primary search criterion</td>
<td>FILTER</td>
<td>Identifies whether the user name (USERID) or the logical unit name (LUNAME) is to be used as the primary search criteria for transactions associated with the transaction group.</td>
</tr>
<tr>
<td>Transaction group status</td>
<td>STATUS</td>
<td>Indicates how an AOR is to be selected for transactions associated with the transaction group: • ACTIVE - Selects an AOR from the AOR scope identified with the associated workload definition. • DORMANT - Uses the AOR associated with the transaction when it was defined to CICS.</td>
</tr>
<tr>
<td>Active transaction count</td>
<td>TRANCNT</td>
<td>The number of active transactions that are associated with this transaction group.</td>
</tr>
<tr>
<td>Transaction group</td>
<td>TRANGRP</td>
<td>The name of the transaction group.</td>
</tr>
<tr>
<td>Workload</td>
<td>WORKLOAD</td>
<td>The name of the workload in which the transaction group is active.</td>
</tr>
<tr>
<td>Workload owner</td>
<td>WRKLOWNER</td>
<td>The 4-character CICS system ID of the CMAS that created the workload.</td>
</tr>
</tbody>
</table>

Dynamic transactions - WLMA_TRAN

The Active workload dynamic transactions (WLMA_TRAN) views display information about installed dynamic transaction definitions associated with a workload that is within the CICSplex identified as the context.

Supplied views

To access from the main menu, click:

Active workload views > Dynamic transactions

Table 25. Views in the supplied Active workload dynamic transactions (WLMA_TRAN) view set

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active workload dynamic transactions</td>
<td>Detailed information about a selected active transaction.</td>
</tr>
<tr>
<td>EYUSTARTWLTRAN.DETAILED</td>
<td></td>
</tr>
<tr>
<td>Active workload dynamic transactions</td>
<td>Discard a transaction from a transaction group.</td>
</tr>
<tr>
<td>EYUSTARTWLTRAN.FORCE</td>
<td></td>
</tr>
<tr>
<td>Active workload dynamic transactions</td>
<td>Tabular information about active transactions associated with a</td>
</tr>
<tr>
<td>EYUSTARTWLTRAN.TABULAR</td>
<td>workload that is within the CICSplex identified as the context.</td>
</tr>
</tbody>
</table>

Chapter 4. Active workload views 145
Actions

Table 26. Actions available for WLMATRAN views

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORCE</td>
<td>Discard a transaction from a transaction group.</td>
</tr>
</tbody>
</table>

Fields

Table 27. Fields in WLMATRAN views

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start or end of pseudo-conversation</td>
<td>PSEUDOMODE</td>
<td>Indicates whether the transaction is the first (START) or last (END) transaction in a pseudo-conversation. If this field is blank, it means the transaction is neither the first nor the last in a pseudo-conversation.</td>
</tr>
<tr>
<td>Transaction group</td>
<td>TRANGRP</td>
<td>The name of the transaction group.</td>
</tr>
<tr>
<td>Transaction</td>
<td>TRANID</td>
<td>The identifier of an active transaction.</td>
</tr>
<tr>
<td>Workload name</td>
<td>WORKLOAD</td>
<td>The name of the workload in which the transaction group is active.</td>
</tr>
<tr>
<td>System ID of workload owner</td>
<td>WRKLOWNER</td>
<td>The 4-character CICS system ID of the CMAS that created the workload.</td>
</tr>
</tbody>
</table>

Transaction group affinities - WLMATAFF

The Active workload transaction group affinities (WLMATAFF) views display information about the active affinities for a transaction group installed in a workload within the CICSpex identified as the context. An affinity becomes active when the first transaction associated with the transaction group is routed to a target region.

Supplied views

To access from the main menu, click:

Active workload views > Transaction group affinities

Table 28. Views in the supplied Active workload transaction group affinities (WLMATAFF) view set

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active workload transaction group affinities</td>
<td>Detailed information about a selected active affinity.</td>
</tr>
<tr>
<td>EYUSTARTWLMATAFF.DETAILED</td>
<td></td>
</tr>
<tr>
<td>Active workload transaction group affinities</td>
<td>Discard an affinity entry.</td>
</tr>
<tr>
<td>EYUSTARTWLMATAFF.FORCE</td>
<td>The affinity is reestablished when the next transaction within the affected transaction group is encountered.</td>
</tr>
<tr>
<td>Active workload transaction group affinities</td>
<td>Tabular information about the active affinities for a transaction group associated with a workload within the CICSpex identified as the context.</td>
</tr>
<tr>
<td>EYUSTARTWLMATAFF.TABULAR</td>
<td></td>
</tr>
</tbody>
</table>

Actions

Table 29. Actions available for WLMATAFF views

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORCE</td>
<td>Discard an affinity entry. The affinity is reestablished when the next transaction within the affected transaction group is encountered.</td>
</tr>
</tbody>
</table>
Fields

Table 30. Fields in WLMATAFF views

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Affinity relationship | AFFINITY | The affinity relationship used when processing a transaction associated with the transaction group. The affinity relationship values are:
 * GLOBAL - All users at all terminals.
 * LUNAME - Terminal logical unit name.
 * USERID - User ID.
 * BAPPL - CICS BTS Business application.
 * Locked - LOCKED affinities can arise only between dynamically linked programs. A LOCKED affinity is created when a called program retains state data that is to be preserved after returning to its caller. Programs with this type of affinity are routed to the same target region until end of unit of work occurs. LOCKED can be used only for dynamic program link (DPL) requests with an associated affinity lifetime of UOW,
 * NONE - No affinity relation was defined. |
| Key that identifies creator of affinity | AFFKEY | Up to 64 characters identifying who invoked a transaction, comprising the transaction group and their location. Depending on the affinity relation and lifetime values, this key will be some combination of the user ID, logical unit name, routing region name, and terminal ID, in the following format: userid.luname.rtrname.termid. If one or more of these values does not apply to the affinity, that part of the key is left blank.

 For BAPPL affinities, this field contains the Activity ID of the CICS BTS activity.

 For LOCKED affinities, this field contains the combination of the routing region name with the network and local unit-of-work identifiers.

 A value of GA is displayed for global affinities. |
| Target region | AOR | The name of the CICS system to which transactions associated with the transaction group are to be routed. |
| BTS activity ID | CBTSKEY | The hexadecimal representation of the Affinity Key. It is shown in this additional format because part of the key may not be displayable in normal character representation. |
| Affinity lifetime | LIFETIME | The affinity lifetime used when processing a transaction associated with the transaction group. The affinity lifetime values are:
 * DELIMIT - Until the pseudoconversation mode is END.
 * LOGON - For the duration of the terminal session.
 * NONE - No affinity lifetime was defined.
 * PCONV - For the duration of the pseudoconversation.
 * PERMANENT - As long as the workload is active.
 * SIGNON - As long as the user session is active.
 * SYSTEM - As long as the target region is active.
 * ACTIVITY - As long as the CICS BTS activity is active.
 * PROCESS - As long as the CICS BTS process is active.
 * UOW - For as long as the unit-of-work is active. |
| Local unit-of-work ID | LOCUOWID | The hexadecimal representation of the CICS local unit-of-work identifier. It is shown in this additional format because part of the key may not be displayable in normal character representation. |
| Terminal LU name | LUNAME | The logical unit name of the terminal of the CICS system to which transactions associated with the transaction group are to be routed. |
| Network unit-of-work ID | NETUOWID | The hexadecimal representation of the CICS network unit-of-work identifier. It is shown in this additional format because part of the key may not be displayable in normal character representation. |
| The activity ID of the CBTS activity | RESERVD2 | The ID of the CBTS activity. |
Table 30. Fields in WLMAFF views (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing region terminal</td>
<td>TERMID</td>
<td>The terminal ID of the CICS system to which transactions associated with the transaction group are to be routed.</td>
</tr>
<tr>
<td>Routing region</td>
<td>TORNAME</td>
<td>The name of the CICS system to which transactions associated with the transaction group are to be routed.</td>
</tr>
<tr>
<td>Transaction group</td>
<td>TRANGRP</td>
<td>The name of an active transaction group. A value of SIDTGASS represents the default transaction group, which is used for any transactions that are not associated with a transaction group.</td>
</tr>
<tr>
<td>User identifier</td>
<td>USERID</td>
<td>The user identifier ID.</td>
</tr>
<tr>
<td>Workload name</td>
<td>WORKLOAD</td>
<td>The name of the workload in which the transaction group is active.</td>
</tr>
<tr>
<td>System ID of workload owner</td>
<td>WRKLOWNER</td>
<td>The 4-character CICS system ID of the CMAS that created the workload.</td>
</tr>
</tbody>
</table>

Complete active routing region details - WLMAROUT

The **Complete active routing regions** (WLMAROUT) views display information about all active routing regions within the CICSplex identified as the context.

Supplied views

To access from the main menu, click:

Active workload views > Complete active routing region details

Table 31. Views in the supplied **Active routing region** (WLMAROUT) view set

<table>
<thead>
<tr>
<th>View</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>EYUSTARTWLMAROUT.DETAILED</td>
<td>Detailed information about a selected active routing region.</td>
</tr>
<tr>
<td>EYUSTARTWLMAROUT.TABULAR</td>
<td>Tabular information about all active routing regions that are associated with a workload.</td>
</tr>
</tbody>
</table>

Actions

Table 32. Actions available for WLMAROUT views

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GET</td>
<td>The name of the workload specification. You can specify a workload name of ",", which returns details of all routing regions in all workloads. No other type of generic workload name may be specified.</td>
</tr>
</tbody>
</table>
Table 33. Fields in WLMAROUT views

<table>
<thead>
<tr>
<th>Field</th>
<th>Attribute name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abend compensation status</td>
<td>ABDCMPSTATE</td>
<td>This field reports the status of abend compensation for the transaction that the TOR is currently routing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The possible values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• YES - This router region is executing a transaction with abend compensation in effect.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• NO - This router region is executing a transaction without abend compensation in effect.</td>
</tr>
<tr>
<td>Routing region contact status</td>
<td>CON_STATUS</td>
<td>The status of the connection between the routing region and the CMAS. Values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• LOSTCON - The connection between the routing region and the CMASs has been lost.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• N_A - The connection between the routing region and the CMASes managing the workload is available.</td>
</tr>
<tr>
<td>FMID sequence number</td>
<td>FMIDSEQ</td>
<td>The sequence number portion of the FMID value for the operating system version that the current region is executing under.</td>
</tr>
<tr>
<td>MVS system name</td>
<td>MVSSYSNAME</td>
<td>The operating system identifier that this routing region is executing under.</td>
</tr>
<tr>
<td>Optimization status</td>
<td>OWSTATE</td>
<td>This field reports the status of the current routing region for the optimized workload routing function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The possible values are:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• ACTIVE - This router region is executing in an optimized workload state.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• INACTIVE - This router region is capable of executing in an optimized workload state, however, is not currently optimized for one or more of the following reasons:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The region has no connection to an RS Server</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The region is connected to an RS Server, however, the server has not been able to connect to the coupling facility</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The optimised workload routing function is DISABLED for the current target region</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The RS server update frequency value for this region is 0, which means that the optimization capabilities for this region are not enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• N_A - The router region is not configured to provide optimized workload management. Only non optimized WLM routing decisions can be made.</td>
</tr>
<tr>
<td>Reporting CMAS name</td>
<td>RPTINGCMAS</td>
<td>The name of a CMAS that provided this record.</td>
</tr>
<tr>
<td>Unit of work completes</td>
<td>RTUOWEND</td>
<td>The number of times that the calling program of a dynamic program link has completed a unit-of-work. These completions may be a result of a CICS SYNCPOINT command or normal task termination.</td>
</tr>
<tr>
<td>Local time at which router was started</td>
<td>STRTTIME</td>
<td>The time at which this run of CICS started.</td>
</tr>
<tr>
<td>Routing region name</td>
<td>TOR</td>
<td>The name of an active CICS system, acting as a routing region, to which the workload is associated.</td>
</tr>
<tr>
<td>Field</td>
<td>Attribute name</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Name of controlling CMAS</td>
<td>TOROWNER</td>
<td>The name of the controlling CMAS.</td>
</tr>
<tr>
<td>Workload name</td>
<td>WORKLOAD</td>
<td>The name of the workload specification.</td>
</tr>
<tr>
<td>System ID of workload owner</td>
<td>WRKOWNER</td>
<td>The 4-character CICS system ID of the CMAS that created the workload.</td>
</tr>
</tbody>
</table>
Chapter 5. CICSPlex SM API sample programs

CICSPlex SM provides several sample programs.

Each sample program is shown here in one of the languages in which it is distributed. For a list of the sample programs provided in each language and the libraries where they are distributed, see Sample programs.

Note: Additional sample CICSPlex SM API programs are available through the IBM CICS SupportPacs system at http://www.ibm.com/support/docview.wss?uid=swg27007241

EYU#API1

Program EYU#API1 is written in REXX for the TSO environment.

About EYU#API1

This program does the following processing:

- Establishes a connection to the API.
- Creates a result set containing all PROGRAM resource table records that do not begin with DFH, EYU, or IBM.
- Retrieves each record in the result set.
- Translates any CICS CVDA attributes into meaningful character values.
- Displays each record on the terminal, showing the program name, language, enable status, and CEDF status.
- Terminates the API connection.

Commands used: CONNECT, FETCH, GET, TERMINATE, TRANSLATE

/* REXX */
/*****************************/
/*
/* MODULE NAME = EYU#API1 */
/*
/* DESCRIPTIVE NAME = CICSPlex Sample API Program 1 */
/*
/* 5695-081 */
/*
/* COPYRIGHT = NONE */
/*
/* STATUS = %CP00 */
/*
/* FUNCTION = */
/*
/* To provide an example of the use of the following EXEC CPSM */
/* commands: CONNECT, GET, FETCH, TRANSLATE, TERMINATE. */
/*
/* When invoked, the program depends upon the values held in the */
/* W_CONTEXT and W_SCOPE declarations when establishing a */
/* connection with CICSPlex SM. They must take the following */
/* values: */
/*
/* W_CONTEXT = The name of a CMAS or CICSpex. Refer to the */
/* description of the EXEC CPSM CONNECT command for further information regarding the CONTEXT */
/*
option.

W_SCOPE = The name of a CICSpixl, CICS system, or CICS system group within the CICSpixl. Refer to the description of the EXEC CPSM CONNECT command for further information regarding the SCOPE option.

This sample requires no parameters at invocation time.

The sample establishes an API connection and issues a GET command to create a result set containing program resource table records which match the criteria.

Using the FETCH command each record in the result set is retrieved. Once retrieved the TRANSLATE command is used to convert those attributes of each record which are EYUDA or CVDA values into meaningful character representations. A record is then displayed on the terminal showing the program name, language, program status, and CEDF status.

Finally, the API connection is terminated.

--

NOTES:

DEPENDENCIES = S/390, TSO
REstrictions = None
REGISTER CONVENTIONS =
MODULE TYPE = Executable
PROCESSOR = REXX
ATTRIBUTES = Read only, Serially Reusable

--

ENTRY POINT = EYU#API1

PURPOSE = All Functions

LINKAGE = From TSO as a REXX EXEC.

INPUT = None.

--

Address 'TSO'
Parse Value @ 0 With W_RESPONSE W_REASON .

--

CHANGE W_CONTEXT AND W_SCOPE TO MATCH YOUR INSTALLATION

W_CONTEXT = 'RTGA'
W_SCOPE = 'RTGA'

--

OBTAIN A CPSM API CONNECTION.

THE API WILL RETURN A TOKEN IDENTIFYING THE THREAD IN VARIABLE W_THREAD.

--

Say 'Initializing API...'

XX = EYUINIT()
If XX <> 0 Then Signal UNEXPECTED

Say 'Establishing connection...'

XX = EYUAPI('CONNECT',
 'CONTEXT(W_CONTEXT)',
 'SCOPE(W_SCOPE)',
 'VERSION(0310)',
 'THREAD(W_THREAD)',
 'NAME',
 'LANG',
 'PROGRAM_STA

CICS TS for z/OS: CICSPlex SM Managing Workloads
If XX <> 0 Then Signal UNEXPECTED
If W_RESPONSE <> EYURESP(OK) Then Signal NO_CONNECT
/** GET THE PROGRAM RESOURCE TABLE. */
/** CREATE A RESULT SET CONTAINING ENTRIES FOR ALL PROGRAMS */
/** WITH NAMES NOT BEGINNING DFH, EYU or IBM. */
/** THE NUMBER OF ENTRIES MEETING THE CRITERIA IS RETURNED */
/** VARIABLE W_RECCNT. */
Say 'Get the PROGRAM resource table...' W_CRITERIA = 'NOT (PROGRAM=DFH* OR PROGRAM=EYU* OR PROGRAM=IBM*)'
W_CRITERIALEN = LENGTH(W_CRITERIA)
XX = EYUAPI('GET OBJECT(PROGRAM)',
 'CRITERIA(W_CRITERIA)',
 'LENGTH(W_CRITERIALEN)',
 'COUNT(W_RECCNT)',
 'RESULT(W_RESULT)',
 'THREAD(W_THREAD)',
 'RESPONSE(W_RESPONSE)',
 'REASON(W_REASON)')
If XX <> 0 Then Signal UNEXPECTED
If W_RESPONSE <> EYURESP(OK) Then Signal NO_GET
/** RETRIEVE INFORMATION ABOUT EACH PROGRAM. */
/** FETCH EACH ENTRY AND USE TPARSE TO OBTAIN EACH ATTRIBUTE. */
/** DISPLAY DETAILS OF EACH PROGRAM TO THE USER. */
Say 'Fetching ' W_RECCNT ' PROGRAM entries...' Say 'Program Language Status CEDF Status'
W_INTO_OBJECTLEN = 136 /* LENGTH OF PROGRAM TABLE */
Do III = 1 To W_RECCNT
XX = EYUAPI('FETCH INTO(W_INTO_OBJECT)',
 'LENGTH(W_INTO_OBJECTLEN)',
 'RESULT(W_RESULT)',
 'THREAD(W_THREAD)',
 'RESPONSE(W_RESPONSE)',
 'REASON(W_REASON)')
If XX <> 0 Then Signal UNEXPECTED
If W_RESPONSE <> EYURESP(OK) Then Signal NO_FETCH
XX = EYUAPI('TPARSE OBJECT(PROGRAM)',
 'PREFIX(PGM)',
 'STATUS(W_RESPONSE)',
 'VAR(W_INTO_OBJECT.1)',
 'THREAD(W_THREAD)')
If W_RESPONSE <> 'OK' Then Signal UNEXPECTED
W_TEXT = PGM_PROGRAM
W_TEXT = 'OVERLAY'(PGM_LANGUAGE,W_TEXT,10)
W_TEXT = 'OVERLAY'(PGM_STATUS,W_TEXT,23)
W_TEXT = 'OVERLAY'(PGM_CEDFSTATUS,W_TEXT,36)
Say W_TEXT
End III
Signal ENDIT
/** PROCESSING FOR API FAILURES. */
/** UNEXPECTED: */
W_MSG_TEXT = 'UNEXPECTED ERROR.'
Signal SCRNLOG
/** NO_CONNECT: */
W_MSG_TEXT = 'ERROR CONNECTING TO API.'
Signal SCRNLOG
/** NO_GET: */
EYUCAPI1

Program EYUCAPI2 is written in C for the CICS environment.

About EYUCAPI2

This program does the following processing:

• Establishes a connection to the API.
• Defines a filter to identify PROGRAM resource table records with a language attribute of Assembler.
• Creates a result set containing all PROGRAM resource table records that do not begin with DFH, EYU, or IBM.
• Marks those records in the result set that match the specified filter (LANGUAGE=ASSEMBLER).
• Copies the marked records to a new result set.
• Deletes the marked records from the original result set.
• For each result set (LANGUAGE=ASSEMBLER and LANGUAGE≠ASSEMBLER):
 – Retrieves each record.
 – Translates any CICS CVDA attributes.
 – Displays each record on the terminal.
• Terminates the API connection.

Commands used: CONNECT, COPY, DELETE, FETCH, GET, LOCATE, MARK, SPECIFY FILTER, TERMINATE, TRANSLATE

EYUCAPI2

The C/370™, COBOL, and PL/I versions of EYUxAPI1 are written for the CICS environment and can be converted to run in the MVS batch environment by commenting the EXEC CICS SEND commands and uncommenting the preceding language specific output statements.
/ * FUNCTION =
*/
/* To provide an example of the use of the following EXEC CPSM
/* commands: CONNECT, SPECIFY FILTER, GET, MARK, COPY, DELETE,
/* LOCATE, FETCH, TRANSLATE, TERMINATE.
*/
/*
/* When invoked, the program depends upon the values held in the
/* W_CONTEXT and W_SCOPE declarations when establishing a
/* connection with CICSplex SM. They must take the following
/* values:
/*
/* WCONTEXT = The name of a CMAS or CICSplex. Refer to the
/* description of the EXEC CPSM CONNECT command
/* for further information regarding the CONTEXT
/* option.
/*
/* W_SCOPE = The name of a CICSplex, CICS system, or CICS
/* system group within the CICSplex. Refer to the
/* description of the EXEC CPSM CONNECT command
/* for further information regarding the SCOPE
/* option.
/*
/* This sample requires no parameters at invocation time.
/*
/* The sample establishes an API connection and issues a SPECIFY
/* FILTER command to create a filter which will match only
/* specific program resource table records. The filter is used
/* later in the program by the MARK command.
/*
/* A GET command is issued to create a result set containing
/* program resource table records which match the criteria. The
/* result set is then used by the MARK command to flag records
/* meeting the previous filter specification. The marked records
/* are then COPIEd to a new result set, and then DELETED from
/* the original result set. After this sequence of commands we
/* have two results sets; one containing records which did not
/* meet the filter specification (that is, records where the
/* LANGUAGE is not ASSEMBLER), and one containing records
/* which did match the filter (that is, records where the
/* LANGUAGE is ASSEMBLER).
/*
/* Taking each of the two results sets in turn a LOCATE command
/* is used to ensure we start at the top of the result set
/* before a FETCH command is used to retrieve each record in
/* the result set. Once retrieved the TRANSLATE command is used
/* to convert those attributes of each record which are EYUDA
/* or CVDA values into meaningful character representations. A
/* record is then displayed on the terminal showing the program
/* name, language, program status, and CEDF status.
/*
/* Finally, the API connection is terminated.
*/
/*

/*NOTES :
/* DEPENDENCIES = S/390, CICS
/* RESTRICTIONS = None
/* REGISTER CONVENTIONS =
/* MODULE TYPE = Executable
/* PROCESSOR = C
/* ATTRIBUTES = Read only, Serially Reusable
/*
/*------------------------------
/*
/*ENTRY POINT = EYUDA
/*
/* PURPOSE = All Functions
/* LINKAGE = From CICS either with EXEC CICS LINK or as a CICS transaction. */
/* INPUT = None. */

#include <PROGRAM>
void main()
{
/* CHANGE W_CONTEXT AND W_SCOPE TO MATCH YOUR INSTALLATION */
char *W_CONTEXT = "RTGA ";
char *W_SCOPE = "RTGA ";
int W_RESPONSE;
int W_REASON;
int W_THREAD;
char *W_CRITERIA;
int W_CRITERIALLEN;
int W_FILTER_TOKEN;
int W_RESULT = 0;
int W_COUNT;
int W_RESULT2 = 0;
int W_COUNT2;
int III;
int JJJ;
int W_RESULT_TOK;
int W_RECCNT;
PROGRAM W_INTO_OBJECT;
int W_INTO_OBJECTLEN;
char W_TRANSCVDA??(12??);
char W_TEXT??(81??);
char W_MSG_TEXT??(80??) = 0x13;
strcpy(W_TEXT,"Establishing connection...");
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
EXEC CPSM CONNECT
 CONTEXT(W_CONTEXT)
 SCOPE(W_SCOPE)
 VERSION("0310")
 THREAD(W_THREAD)
 RESPONSE(W_RESPONSE)
 REASON(W_REASON);
if (W_RESPONSE != EYUVALUE(OK)) { goto NO_CONNECT; }

strcpy(W_TEXT,"Create a filter...");
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
W_CRITERIA = "LANGUAGE=ASSEMBLER.";
W_CRITERIALLEN = strlen(W_CRITERIA);
EXEC CPSM SPECIFY FILTER(W_FILTER_TOKEN)
CRITERIA(W_CRITERIA)
LENGTH(W_CRITERIALEN)
OBJECT("PROGRAM ")
THREAD(W_THREAD)
RESPONSE(W_RESPONSE)
REASON(W_REASON) ;
if (W_RESPONSE != EYUVALUE(OK)) { goto NO_FILTER; }
/*---*/
/* GET THE PROGRAM RESOURCE TABLE. */
/*---*/
strcpy(W_TEXT,"Get the PROGRAM resource table...");
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
W_CRITERIA = "NOT (PROGRAM=DFH* OR PROGRAM=EYU* OR PROGRAM=IBM*).";
W_CRITERIALEN = strlen(W_CRITERIA);
EXEC CPSM GET OBJECT("PROGRAM ")
 CRITERIA(W_CRITERIA)
 LENGTH(W_CRITERIALEN)
 COUNT(W_COUNT)
 RESULT(W_RESULT)
 THREAD(W_THREAD)
 RESPONSE(W_RESPONSE)
 REASON(W_REASON) ;
if (W_RESPONSE != EYUVALUE(OK)) { goto NO_GET; }
sprintf(W_TEXT,"Total number of entries: %d",W_COUNT);
/* printf(W_TEXT); */
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
/*---*/
/* MARK SELECTED PROGRAM ENTRIES. */
/*---*/
strcpy(W_TEXT,"Mark LANGUAGE=ASSEMBLER entries...");
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
EXEC CPSM MARK FILTER(W_FILTER_TOKEN)
 RESULT(W_RESULT)
 THREAD(W_THREAD)
 RESPONSE(W_RESPONSE)
 REASON(W_REASON) ;
if (W_RESPONSE != EYUVALUE(OK)) { goto NO_MARK; }
strcpy(W_TEXT,"Copy marked entries...");
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
EXEC CPSM COPY FROM(W_RESULT)
 TO(W_RESULT2)
 MARKED
 COUNT(W_COUNT2)
 THREAD(W_THREAD)
 RESPONSE(W_RESPONSE)
if (W_RESPONSE != EYUVALUE(OK)) { goto NO_COPY; }
sprintf(W_TEXT,"Number of entries copied: %d", W_COUNT);
/* printf(W_TEXT); */
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;

strcpy(W_TEXT,"Delete marked entries...");
/* printf("Delete marked entries..."); */
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
EXEC CPSM DELET E MARKED
COUNT(W_COUNT)
RESULT(W_RESULT)
THREAD(W_THREAD)
RESPONSE(W_RESPONSE)
REASON(W_REASON);
if (W_RESPONSE != EYUVALUE(OK)) { goto NO_DELETE; }
sprintf(W_TEXT,"Number of entries remaining: %d", W_COUNT);
/* printf(W_TEXT); */
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;

strcpy(W_TEXT,"Program Language Status CEDF Status");
/* printf("Program Language Status CEDF Status\n"); */
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
for (III = 1; III <= W_RECCNT; III++)
{
 EXEC CPSM FETCH INTO(&W_INTO_OBJECT)
 LENGTH(W_INTO_OBJECTLEN)
 RESULT(W_RESULT_TOK)
}
THREAD(W_THREAD)
RESPONSE(W_RESPONSE)
REASON(W_REASON);
if (W_RESPONSE != EYUVALUE(OK)) { goto NO_FETCH; }
memcpy(W_TEXT,W_INTO_OBJECT.PROGRAM,8);
EXEC CPSM TRANSLATE OBJECT("PROGRAM ")
 ATTRIBUTE("LANGUAGE ")
 FROMCV(W_INTO_OBJECT.LANGUAGE)
 TOCHAR(W_TRANSCVDA)
 THREAD(W_THREAD)
 RESPONSE(W_RESPONSE)
 REASON(W_REASON);
if (W_RESPONSE != EYUVALUE(OK)) { goto NO_TRANSLATE; }
memcpy(W_TEXT+9,W_TRANSCVDA,12);
EXEC CPSM TRANSLATE OBJECT("PROGRAM ")
 ATTRIBUTE("STATUS ")
 FROMCV(W_INTO_OBJECT.STATUS)
 TOCHAR(W_TRANSCVDA)
 THREAD(W_THREAD)
 RESPONSE(W_RESPONSE)
 REASON(W_REASON);
if (W_RESPONSE != EYUVALUE(OK)) { goto NO_TRANSLATE; }
memcpy(W_TEXT+22,W_TRANSCVDA,12);
EXEC CPSM TRANSLATE OBJECT("PROGRAM ")
 ATTRIBUTE("CEDFSTATUS ")
 FROMCV(W_INTO_OBJECT.CEDFSTATUS)
 TOCHAR(W_TRANSCVDA)
 THREAD(W_THREAD)
 RESPONSE(W_RESPONSE)
 REASON(W_REASON);
if (W_RESPONSE != EYUVALUE(OK)) { goto NO_TRANSLATE; }
memcpy(W_TEXT+35,W_TRANSCVDA,12);
/* printf("%s\n",W_TEXT); */
EXEC CICS SEND FROM(W_TEXT) LENGTH(81) WAIT;
}
}
go TO ENDIT;
/*===*/
/* PROCESSING FOR API FAILURES. */
/*===*/
NO_CONNECT:
 strcpy(W_MSG_TEXT,"ERROR CONNECTING TO API.\n");
go TO SCRNLOG;
NO_FILTER:
 strcpy(W_MSG_TEXT,"ERROR CREATING FILTER.\n");
go TO SCRNLOG;
NO_GET:
 strcpy(W_MSG_TEXT,"ERROR GETTING RESOURCE TABLE.\n");
go TO SCRNLOG;
NO_MARK:
 strcpy(W_MSG_TEXT,"ERROR MARKING RESULT SET.\n");
go TO SCRNLOG;
NO_COPY:
 strcpy(W_MSG_TEXT,"ERROR COPYING RESULT SET.\n");
go TO SCRNLOG;
NO_DELETE:
 strcpy(W_MSG_TEXT,"ERROR DELETING FROM RESULT SET.\n");
go TO SCRNLOG;
NO_LOCATE:
 strcpy(W_MSG_TEXT,"ERROR LOCATING TO TOP OF RESULT SET.\n");
go TO SCRNLOG;
NO_FETCH:
 strcpy(W_MSG_TEXT,"ERROR FETCHING RESULT SET.\n");
go TO SCRNLOG;
NO_TRANSLATE:
 strcpy(W_MSG_TEXT,"ERROR TRANSLATING ATTRIBUTE\n");
go TO SCRNLOG;
The C, C++, COBOL, and PL/I versions of EYUxAPI2 are written for the CICS environment and can be converted to run in the MVS batch environment by commenting the `EXEC CICS SEND` commands and uncommenting the preceding language specific output statements.

EYUAAPI3

Program EYUAAPI3 is written in Assembler for the MVS batch environment.

About EYUAAPI3

This program does the following processing:

- Establishes a connection to the API with the context set to an existing CICSpool.
- Verifies that a proposed new CICSpool name is not already defined to CICSPool SM as a CICSpool, CMAS, CICS system, or CICS system group.
- Creates a result set containing the CPLEXDEF resource table record for the existing CICSpool definition and retrieves that record.
- Creates a new CPLEXDEF resource table record using the existing record as a model.
- Creates a result set containing the CICSPLEX resource table records associated with the existing CICSpool and retrieves those records.
- Creates new CICSPLEX resource table records using the existing records as models.
- Sequentially retrieves all the resource table records associated with the existing CICSpool, including CICS systems, CICS system groups, workload management definitions, real-time analysis definitions, and resource monitoring definitions.
- Creates all the necessary resource table records for the new CICSpool using the existing records as models.
- If an error occurs before all the necessary resource table records are created, removes the new CICSpool definition.
- Disconnects the API processing thread.

Commands used: CONNECT, CREATE, DISCARD, DISCONNECT, FETCH, GET, PERFORM OBJECT, QUALIFY, QUERY, REMOVE

* EYUAAPI3 TITLE 'EYUAAPI3 - CICSPLEX SM API PROGRAM 3 - ASSEMBLER'

* MODULE NAME = EYUAAPI3 *
* DESCRIPTIVE NAME = API sample program 3 ASSEMBLER Version *
* 5695-081 *

160 CICS TS for z/OS: CICSpool SM Managing Workloads
* COPYRIGHT = NONE
* STATUS = %CP00
* FUNCTION =
* To mirror an existing PLEX to a new PLEX.
* When invoked, the program depends upon the values held in the
* OLDPLEX, NEWPLEX, and MPCMAS variables. They must be set to
* the following values:
* OLDPLEX = The name of an existing PLEX that will be mirrored.
* NEWPLEX = The name that will be given to the new PLEX.
* MPCMAS = The maintenance point CMAS of the OLDPLEX. This
* will also be the MP for the NEWPLEX.
* This sample requires no parameters at invocation time.
* The sample processes as follows:
* - a CONNECTION is established to CPSM, with the CONTEXT and
 SCOPE of the OLDPLEX.
* - since a PLEX can be either a CONTEXT or SCOPE, we verify
 that the NEWPLEX is not already a valid CONTEXT (i.e., an
 existing CICSPlex or CMAS) or SCOPE in the OLDPLEX (i.e,
 an existing CICS system or CICS system group).
* - we GET the CPLEXDEF record for the OLDPLEX, and use this as
 a module to CREATE the NEWPLEX.
* - we GET the CICSPLEX records for the OLDPLEX, and use these
 to add the CMASs in the OLDPLEX to the NEWPLEX.
* - using a list that contains CICSPlex definitions including
 CICS systems, CICS system groups, workload management
 definitions, real-time analysis definitions and resource
 monitoring definitions, we GET and FETCH the records from
 the OrigPlex, and CREATE them in the NewPlex.
* - we then DISCONNECT from CPSM.
*---
* NOTES :
* DEPENDENCIES = S/370
* RESTRICTIONS = None
* REGISTER CONVENTIONS =
* R0 Workarea / external call parameter pointer
* R1 Workarea / external call parameter pointer
* R2 Resource Table record pointer
* R3 Loop counter
* R4 List pointer
* R5 Loop counter
* R6 Unused
* R7 Unused
* R8 Unused
* R9 Subroutine linkage
* R10 Subroutine linkage
* R11 Base register
* R12 Base register
* R13 Workarea pointer
* R14 External call linkage
* R15 External call linkage

Chapter 5. CICSPlex SM API sample programs 161
* MODULE TYPE = Executable
* PROCESSOR = Assembler
* ATTRIBUTES = Read only, Serially Reusable
 AMODE(31), RMODE(ANY)
* ENTRY POINT = EYUAAP13
* PURPOSE = All Functions
* LINKAGE = Executed as a batch program.
* INPUT = None
* OUTPUT = File for messages.
 DDNAME = SYSPRINT
 DSORG = PS
 RECFM = FB
 LRECL = 80
 BLKSIZE = a multiple of 80

EJECT EYUAAP13 CSECT
STM R14,R12,12(R13)
LR R12,R15
USING EYUAAP13,R12

GETMAIN working storage and set up SA chain.

GETMAIN R,LV=WORKLEN
ST R13,4(,1)
ST R1,8(,R13)
L R1,24(,R13)
L R13,8(,R13)
USING SAVEAREA,R13

* Preset return code to error - will change to 0 if all ok.

MVC RETCODE,'F8'

OPEN file for error messages.

OPEN (SYSPRINT,OUTPUT)

Specify variables: OLDPLEX, NEWPLEX, MPCMAS

MVC OLDPLEX,'plexold' *** SPECIFY AS DESIRED ***
MVC NEWPLEX,'plexnew' *** SPECIFY AS DESIRED ***
MVC MPCMAS,'mpcmas' *** SPECIFY AS DESIRED ***

Connect to CPSM API via OLDPLEX.

MVC CONTEXT,OLDPLEX
EXEC CPSM CONNECT X
 CONTEXT(CONTEXT) X
 VERSION(=CL4'0130') X
 THREAD(THREAD) X
 RESPONSE(RESPONSE) X
 REASON(REASON) X
CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?
BNE ERRCON No - msgs and out
* Verify that the desired NEWPLEX name is not already a CICSplex. *
* CSYSDEF or CSYSGRP in the old, soon to be new, CICSplex. *
* Here we will start issuing EXEC CPSM GET requests, to get result sets of different Resource Tables. We make the call through the GETOBJ subroutine. Variable OBJECT must be set with the Resource Table name. If we only want a subset of the records for a given Resource Table, we also set variable CRITERIA with a selection criteria string. This string can contain references to any fields in the Resource Table, connected by logical operators, and must end with a period Variable CRITLEN must be loaded with the length of the criteria string. *
* We will check the RESPONSE from GET calls inline, instead of in the subroutine. The reason for this is that sometimes a RESPONSE of OK will mean that we have a problem (e.g., the NEWPLEX name already exists as a CICS System name). *
* Ask for a CSYSDEF record equal to the NEWPLEX name. *
MVC OBJECT,=CL8'CSYSDEF'
MVC CRITERIA(5),=CL5'NAME='
MVC CRITERIA+5(B),NEWPLEX
MVI CRITERIA+13,C'.'
MVC CRITLEN,=F'14'
BAS R10,GETOBJ Build result set
CLC RESPONSE,EUVALUE(OK) RESPONSE OK?
BE ERRNISPC Yes - already a CICS system

* Ask for a CSYSGRP record equal to the NEWPLEX name. *
MVC OBJECT,=CL8'CSYSGRP'
MVC CRITERIA(6),=CL6'GROUP='
MVC CRITERIA+6(B),NEWPLEX
MVI CRITERIA+14,C'.'
MVC CRITLEN,=F'15'
BAS R10,GETOBJ Build the result set
CLC RESPONSE,EUVALUE(OK) RESPONSE OK?
BE ERRNISPC Yes - already a system group

* If we have gotten this far, we know that NEWPLEX is not already the name of a CICSplex, CMAS, CICS System, or CICS System group - so we can start building the NEWPLEX. *
Switch CONTEXT to MPCMAS to build NEWPLEX and add CMASs.

Build new plex using OLDPLEX as a model.

The record that defines a CICSPlex is the CPLEXDEF Resource Table. We will GET the OLDPLEX CPLEXDEF record, modify it as needed, and then CREATE the NEWPLEX CPLEXDEF records. This creates the NEWPLEX.

First GET CPLEXDEF record for the OLDPLEX.

Here we start using the GETBUF subroutine. This subroutine GETMAINS a buffer into which we can FETCH the records of the result set that we last issued a GET for.

Get storage to receive recs

Here we start using the FETCH subroutine. This subroutine reads all the records from the result set into the buffer. On return to mainline, R2 points to the first record in the buffer.

Sets R2 to fetched record

Change the OLDPLEX CPLEXDEF record into the NEWPLEX CPLEXDEF record.

Map the record

Set CICSPlex name to NEWPLEX

Modify CICSPlex

.... description

Save NEWPLEX def and len

.... for possible later REMOVE

Here we start using the CREATE subroutine. This subroutine will cause a CPSM Resource Table record to be built. Variable OBJECT needs to be preset to the Resource Table name, the Resource Table record to be built must be pointed to by R2 and must be filled out before called CREATE.

Here we start using the FREEBUF subroutine. This subroutine FREEMAINs the buffer into which we FETCHed the records.

Free record storage
When a result set is built (in our program by either GET or PERFORM) an id is associated with the result set and placed into the variable pointed to by keyword RESULT (for GET we are using variable RESULT - for PERFORM, RESULT2). This is done so that subsequent calls can reference the result set built (e.g., FETCH can retrieve records for GET). When we are done using a result set, we must DISCARD it, so that CPSM frees us resources allocated for the result set.

Note that we have not done this with the 2 previous GETs we did since the object of them was to NOT get a result set.

If any of the previous GETs caused a result set to get built, we DISCONNECT from CPSM - which causes all our resources to be released - and exit.

MVC RESULTD,RESULT Copy GET result set id for X DISCARD
BAS R10,DISCARD Discard the GET result set
DROP R2 Drop mapping to CPLEXDEF rec

Add CMASs in OLDPLEX to NEWPLEX.

There is a CICSplex Resource Table record for each CMAS that participates in the management of a plex. We first ask for all the CICSplex records for OLDPLEX, and use this info to add the CMASs to the NEWPLEX.

Ask for the CICSplex records from the OLDPLEX.

MVC OBJECT,=CL8'CICSplex'
MVC CRITERIA(9),=CL9'PLEXNAME='
MVC CRITERIA+9(B),OLDPLEX
MVI CRITERIA+17,C.
MVC CRITLEN,=F'18'
BAS R10,GETOBJ Build result set
CLC RESPONSE,EUVALUE(OK) RESPONSE OK?
BNE ERRGETO no - msgs and out
BAS R10,GETBUF Get storage for records
BAS R10,FETCH Points R2 to first record
USING CICSplex,R2 Map the Resource Table
L R5,COUNT Will loop the number of X returned CMASs

The MP CMAS is added to the CICSpex when the CPLEXDEF record was CREATED. To add any other CMASs to the CICSpex we issue a PERFORM against the CPLEXDEF record for NEWPLEX, with a parm = CICSplex(newplex) CMAS(cmasname).

MVC ADDCPARM(ADDCLEN),ADDC Build most of parm
MVC PARMLEN,=A(ADDCLEN) Set its length
MVC ADDCPLEX,NEWPLEX Add CICSpex name to parm
MVC OBJECT,=CL8'CPLEXDEF' PERFORM against CPLEXDEF

Note that we already have the CICSpex result set active, with the id in RESULT. So here we will use RESULT2 for result set that is built for each PERFORM.

MVC RESULT2,=F'0' Always build new result set
EXEC CPSM PERFORM X
OBJECT(OBJECT) X
ACTION(=CL12'ASSIGN') X
PARM(ADDCPARM) X
PARMLEN(PARMLEN) X
RESULT(RESULT2) X
CONTEXT(CONTEXT) X
THREAD(THREAD) X
RESPONSE(RESPONSE) X
REASON(REASON) X

CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?
BNE ERRPERF no - msgs and out
MVC RESULTD,RESULT2 Copy PERFORM result set id for X
DISCARD
BAS R10,DISCARD Discard the PERFORM result set

NOADDMP DS 0H

* We need to get to the next CICSPLEX record for the next CMAS.
* The GETBUF subroutine places into variable RECLen the length
* of the Resource Table record. We now add this to the address
* of the current record to point to the next record.
* A R2,RECLen
BCT R5,ADDCMAS Add the next CMAS

* No more CICSPLEX records - discard the CICSPLEX result set
* and continue on.
* BAS R10,FREEBUF Free FETCHed record storage
MVC OBJECT,=CLB'CICSPLEX' For possible DISCARD error msg
MVC RESULTD,RESULT Copy GET result set id for X
DISCARD
BAS R10,DISCARD Discard the GET result set
DROP R2 Drop mapping to CICSPLEX rec

* Take all defs in OLDPLEX and put into NEWPLEX. *
* We have a list of all CICSpex Resource Table names. We *
* loop through this list, getting all the records for a *
* specific Resource Table from the OLDPLEX and adding them *
* to the NEWPLEX. *

MVC CRITLEN,=F0' Want all records from each X
RESOURCE Table - so we don't X
want a CRITERIA for GET.
LA R3,DEFNUM Get number of Resource Tables
LA R4,DEFLIST Point R4 to first Resource X
Table in list
BLDLOOP DS 0H
MVC OBJECT,0(R4) Move in Resource Table name

* Get old data - set CONTEXT to OLDPLEX.
* MVC CONTEXT,OLDPLEX
MVC SCOPE,OLDPLEX
BAS R10,GETOBJ Build result set
CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?
BE GOTDEFS Yes - FETCH and add
CLC RESPONSE,EYUVALUE(NODATA) No records returned?
BE NODATA Yes - on to next Resource Tab
B ERRGETO GET error - msgs and out
GOTDEFS DS 0H
BAS R10,GETBUF Get storage for records
BAS R10,FETCH Point R2 to first record
L R5,COUNT Load number of records for loop

* Add new data - set CONTEXT to NEWPLEX.
* MVC CONTEXT,NEWPLEX
CRELOOP DS 0H
We need to check if the object being created is a RTAINAPS table. If it is, we need to check if the SCOPE is the OLDPLEX name - and if so, change it to the NEWPLEX name. The RTAINAPS table is the only resource table in our list that may have the OLDPLEX specified as a SCOPE.

CLC OBJECT,=CL8'RTAINAPS' Creating an RTAINAPS?
BNE CRELOOP2 No, just CREATE it
USING RTAINAPS,R2 May to the record
CLC RTAINAPS_SCOPE,OLDPLEX Is SCOPE equal to OLDPLEX?
BNE CRELOOP2 No, don't change record
MVC RTAINAPS_SCOPE,NEWPLEX Alter SCOPE to NEWPLEX
DROP R2 Drop mapping to RTAINAPS record

CRELOOP2 DS OH
BAS R10,CREATE CREATE record in NEWPLEX
A R2,RECLEN Point to next record
BCT R5,CRELOOP Loop
BAS R10,FREEBUF Release record storage
MVC RESULTD,RESULT Copy GET result set id for X DISCARD
BAS R10,DISCARD Discard the GET result set

NODATA DS OH
LA R4,8(,R4) Point to next Resource Table
BCT R3,BLDLOOP Do next Resource Table

We have gone through all the Resource Tables ok. Set the return code to 0.

MVC RETCODE,=F'0'

Disconnect the connection and exit the program.

Disconnect the connection and exit the program.

EXITDISC DS OH
EXEC CPSM DISCONNECT X
 THREAD(THREAD) X
 RESPONSE(RESPONSE) X
 REASON(REASON)
EXIT DS OH
CLOSE (SYSPRINT)

Unchain save area, FREEMAIN working storage, and restore registers.

Retrieve return code
L R2,RETCODE
L R13,4(,R13)
L R1,8(,R13)
FREEMAIN R,A=(R1),LV=WORKLEN
L R14,12(,R13)
LR R15,R2
LM R0,R12,20(R13)
LA R15,0
BR R14

Error routines.

Error routines.

ERRCON DS OH
MVC OUTLINE,=CL80'Error: Connecting to the API'
BAS R9,PUTMSG
BAS R10,DORR Format and msg RESPONSE/REASON
B EXIT Exit
ERRNISPC DS OH
MVC OUTLINE,=CL80'Error: NEWPLEX is already defined as a CICX Splex or CMAS'
BAS R9,PUTMSG
B EXITDISC DISCONNECT and exit
ERRNISC DS 0H
MVC OUTLINE,'=CL80' Error: NEWPLEX is already defined as a CICX S system in the OLDPLEX.'
BAS R9,PUTMSG
B EXITDISC DISCONNECT and exit
ERRISS DS 0H
MVC OUTLINE,'=CL80' Error: NEWPLEX is already defined as a CICX S system group in the OLDPLEX.'
BAS R9,PUTMSG
B EXITDISC DISCONNECT and exit
ERRPERF DS 0H
MVC OUTLINE,'=CL80' Error: Adding a CMAS to the NEWPLEX'
BAS R9,PUTMSG
MVC OUTLINE,'=CL80' 'MVC OUTXT1,'=CL10'CMASNAME:'
MVC OUTDAT1,ADDCMAS
BAS R9,PUTMSG
BAS R10,DOORR Format and msg RESPONSE/REASON
B EXITERR
ERRGETO DS 0H
MVC OUTLINE,'=CL80' Error: GETting an object'
BAS R9,PUTMSG
B DOOBJMSG
ERRQUERY DS 0H
MVC OUTLINE,'=CL80' Error: QUERYing a record size.'
BAS R9,PUTMSG
B DOOBJMSG
ERRFETCH DS 0H
MVC OUTLINE,'=CL80' Error: FETCHing an object.'
BAS R9,PUTMSG
B DOOBJMSG
ERRCREATE DS 0H
MVC OUTLINE,'=CL80' Error: CREATEing an object.'
BAS R9,PUTMSG
B DOOBJMSG
ERRDISCARD DS 0H
MVC OUTLINE,'=CL80' Error: DISCARDing object.'
BAS R9,PUTMSG
DOOBJMSG DS 0H
MVC OUTLINE,'=CL80' 'MVC OUTXT1,'=CL10'OBJECT:'
MVC OUTDAT1,OBJECT
BAS R9,PUTMSG
BAS R10,DOORR
EXITERR DS 0H
CLIPLEXBLT,'C'Y' Did we CREATE the NEWPLEX?
BNE EXITDISC No - just DISCONNECT and exit
*
* We had already CREATEd the NEWPLEX when an error occurred
* so we want to delete the NEWPLEX before ending our program.
* EXEC CPSM REMOVE X
 OBJECT('=CL80'Cplexdef') X
 FROM(NEWPLXD) X
 LENGTH(NEWPLXL) X
 CONTEXT(MPCMAS) X
 THREAD(THREAD) X
 RESPONSE(RESPONSE) X
 REASON(REASON)
CLC RESPONSE,EYUVALUE(OK) RESPONSE OK?
BE EXITDISC Yes - DISCONNECT and exit
MVC OUTLINE,'=CL80' Error: REMOVEing NEWPLEX.'
BAS R9,PUTMSG
BAS R10,DOORR
B EXITDISC DISCONNECT and exit

*
End of error routines.
*
* Subroutines. *

PUTMSG

DS 0H

PUT SYS PRINT, OUTLINE

BR R9

DORR

DS 0H

* Subroutine: DORR *

* Entry: Via BAS R10, DORR *

* Function: Put out error messages indicating what function *
* failed and the RESPONSE and REASON from that *
* function. *

* Processing: - Format the EXEC CPSM RESPONSE and move to the *
* OUTLINE. *

* - Format the EXEC CPSM REASON and move to the *
* OUTLINE. *

* - Call the PUTMSG subroutine to send the *
* RESPONSE/REASON data to SYS PRINT. *

* - Return to caller. *

MVC OUTLINE,'CL80' ' clear format area
MVC OUT TXT1, 'CL10' 'RESPONSE: ' move in
L R3, RESPONSE load up the RESPONSE
CVD R3, DOUBLE convert to decimal
MVC OUT DAT1(6), 'XL6' '40202020202120' move in EDIT pattern
ED OUT DAT1(6), DOUBLE+5 EDIT RESPONSE to format area
MVC OUT TXT2, 'CL10' 'REASON: ' constant data
L R3, REASON load up the REASON
CVD R3, DOUBLE convert to decimal
MVC OUT DAT2(6), 'XL6' '40202020202120' move in EDIT pattern
ED OUT DAT2(6), DOUBLE+5 EDIT RESPONSE to format area
BAS R9, PUTMSG SEND it
MVC OUTLINE,'CL80' ' clear out OUTLINE again
BAS R9, PUT MSG put out blank line
BR R10 return to caller

GETOBJ

DS 0H

* Subroutine: GETOBJ *

* Entry: Via BAS R10, GETOBJ *

* Function: Issue the EXEC CPSM GET command to create a *
* result set for a specific object. Note that *
* all operands for GET must be preset in *
* mainline code - except for RESULT. *

* Processing: - Clear out the result set id - RESULT - so *
* that a new result set is always built. It *
* is the responsibility of mainline to DISCARD *
* any previous result set for GET. *

* - Determine if the GET request has a CRITERIA *
* and use the proper EXEC CPSM GET call. *
* - Note that GETOBJ does not check the RESPONSE *
* from CPSM - this is done in mainline. *

* - Return to caller. *

MVC RESULT,'F'0' Always get new result set

CLC CRITLEN,'F'0'

BE GETNO CRT

EXEC CPSM GET

OBJECT (OBJECT) X
CRITERIA (CRITERIA) X
LENGTH (CRITLEN) X
COUNT (COUNT) X
RESULT (RESULT) X
THREAD (THREAD) X
CONTEXT (CONTEXT) X
RESPONSE (RESPONSE) X
REASON (REASON) X

Chapter 5. CICSplex SM API sample programs 169
Subroutine: GETBUF

Entry: Via BAS R10, GETBUF

Function: Get a buffer to hold all the records contained in the last result set we build through GET.

Processing:

- Issue EXEC CPSM QUERY to get the length of the Resource Table record. We use the same OBJECT and RESULT from the GET. Variable RECLEN gets the record length.
- Check the RESPONSE from QUERY and issue msgs and EXIT if not OK.
- Multiple the RECLEN times the COUNT (returned from last GET) to determine the buffer size required and GETMAIN it.
- Save the buffer length (BUFLEN) and buffer address (BUFFER) for the FREEMAIN call in the FREEBUF subroutine.
- Return to caller.

EXEC CPSM QUERY

CLC RESPONSE, EYUVALUE(OK) RESPONSE OK?
BNE ERRQUERY No - msgs and out
L R0, RECLEN
L R1, COUNT
MR R0, R0
GETMAIN R, LV=(R1)
ST R0, BUFLEN
ST R1, BUFFER
BR R10

Subroutine: FREEBUF

Entry: Via BAS R10, FREEBUF

Function: To FREEMAIN the buffer created to hold the records from the last result set we built through GET.

Processing:

- Use BUFLEN and BUFFER from GETBUF, FREEMAIN the buffer area.
- Return to caller.

L R0, BUFLEN
L R1, BUFFER
FREEMAIN R, A=(R1), LV=(R0)
BR R10

Subroutine: FETCH

Entry: Via BAS R10, FETCH
Function: Issue the EXEC CPSM FETCH command to retrieve the result set created by the last GET.
mainline code - except for RESULT.

Processing: - For FETCH we must provide a receiving area and length. We put in the area length into R2 and the area length in variable LENGTH.
Note that we got both the area and length in the GETBUF routine.
- Issue the FETCH request using the result set id - RESULT - from the last GET.
- Check the RESPONSE - if not OK, issue msgs and exit.
- Return to caller.

L R2,BUFFER
MVC LENGTH,BUFLEN
EXEC CPSM FETCH X
 X
 INTO(0(,R2))
 X
 LENGTH(LENGTH)
 X
 COUNT(COUNT)
 X
 RESULTRESULT)
 X
 THREAD(THREAD)
 X
 RESPONSERESPONSE)
 X
 REASON(REASON)
 CLC RESPONSE,EYUVALUE(OK)
 BNE ERRFETCH
 BR R10

CREATE DS OH

Subroutine: CREATE
Entry: Via BAS R10,CREATE
Function: Issue the EXEC CPSM CREATE to build a Resource Table record.
Processing: - Place the length of the record to be build (RECLN from GETBUF) into variable LENGTH.
- R2 should have been set by mainline to point to the record itself.
- When CREATEing a LNKxxCG record (spec to group link) we need to specify a parm - NONE. - to indicate that we only want the CREATE to associate the spec to the group.
- Any systems in the group that need to be added to the spec have already been done by CREATE of LNKxxCS records (spec to system link). If this is a LNKxxCS record, set the PARM and PARMLENth.
- Issue the proper format of EXEC CPSM CREATE (either with PARM/PARMLEN or without).
- Check the RESPONSE - if not OK, issue msgs and exit.
- Return to caller.

MVC LENGTH,RECLN
CLC OBJECT(4),=CL4'LNKS'
BNE CRENOPRM
CLC OBJECT+6(2),=CL2'CG'
BNE CRENOPRM
MVC PARM,=CL5'NONE.'
MVC PARMLEN,'F'5'
EXEC CPSM CREATE X
 OBJECT(OBJECT)
 X
 FROM(0(,R2))
 X
 LENGTH(LENGTH)
 X
 PARM(PARM)
 X
 PARMLEN(PARMLEN)
 X
 THREAD(THREAD)
DISCARD

```
EXEC CPSM DISCARD
RESULT(RESULTD)
THREAD(THREAD)
RESPONSE(RESPONSE)
REASON(REASON)
```

COPY THE CPSM DEFINITIONS FROM ORIGPLEX TO NEWPLEX

```
DEFLIST DS 0C
   DC CL8'PERIODEF' Time period definitions
   DC CL8'ACTION' RTA action definitions
   DC CL8'CSYSDEF' CICS system definitions
   DC CL8'CSYSGRP' CICS system group definitions
   DC CL8'CSGLCGCS' CICS systems in groups links
   DC CL8'CSGLCGCG' CICS groups in groups links
   DC CL8'MONDEF' Monitor definitions
   DC CL8'MONGROUP' MON group definitions
   DC CL8'MONSPEC' MON specification definitions
   DC CL8'MONINGRP' MON def in MON group links
   DC CL8'MONINSPEC' MON spec to MON group links
   DC CL8'LNKSMSCS' MON spec to CICS system links
```
Chapter 5. CICSPlex SM API sample programs 173
Program EYULAPI4 is written in COBOL for the CICS environment.

About EYULAPI4

This program does the following processing:

- Establishes a connect to the API.
- Creates a BAS definition for a TS Model (TSMDEF) specifying a version of 1.
- Creates a result set containing the previously defined TSMDEF.
- Issues a PERFORM OBJECT command to INSTALL the TSMDEF into the target scope.
- Terminates the API connection.
- BAS errors are processed using BINCONS, BINCONSC, and BINSTERR resource table records.

Commands used: CONNECT, CREATE, GET, PERFORM OBJECT, FEEDBACK, FETCH, TERMINATE, TRANSLATE

IDENTIFICATION DIVISION.
PROGRAM-ID. EYULAPI4

**

*
* MODULE NAME = EYULAPI4
*
*
* DESCRIPTIVE NAME = CPSM SAMPLE API PROGRAM 4
*
* (SAMPLE COBOL VERSION)
*
*
* COPYRIGHT = Licensed Materials - Property of IBM
*
* 5695-081
*
TO PROVIDE AN EXAMPLE OF THE USE OF THE FOLLOWING EXEC CPSM COMMANDS: CONNECT, CREATE, FEEDBACK, FETCH, GET, PERFORM OBJECT, TERMINATE.

WHEN INVOKED, THE PROGRAM DEPENDS UPON THE VALUES HELD IN THE W-CONTEXT AND W-SCOPE DECLARATIONS WHEN ESTABLISHING A CONNECTION WITH CICSPLEX SM. THEY MUST TAKE THE FOLLOWING VALUES:

W-CONTEXT = THE NAME OF A CMAS OR CICSPLEX. REFER TO THE DESCRIPTION OF THE EXEC CPSM CONNECT COMMAND FOR FURTHER INFORMATION REGARDING THE CONTEXT OPTION.

W-SCOPE = THE NAME OF A CICSPLEX, CICS SYSTEM, OR CICS SYSTEM GROUP WITHIN THE CICSPLEX. REFER TO THE DESCRIPTION OF THE EXEC CPSM CONNECT COMMAND FOR FURTHER INFORMATION REGARDING THE SCOPE OPTION.

THIS SAMPLE REQUIRES NO PARAMETERS AT INVOCATION TIME.

WHEN CREATING THE BAS DEFINITION THE PROGRAM DEPENDS UPON THE VALUES HELD IN THE W-DEFNAME AND W-DEFPREFIX DECLARATIONS. THEY MUST TAKE THE FOLLOWING VALUES:

W-DEFNAME = THE NAME OF THE CREATED BAS DEFINITION. A 1 TO 8 CHARACTER VALUE.

W-DEFPREFIX = THE MODEL PREFIX OF THE CREATED BAS DEFINITION. A 1 TO 16 CHARACTER VALUE.

WHEN INSTALLING THE BAS DEFINITION THE PROGRAM USES THE VALUE HELD IN THE W-TSCOPE DECLARATION AS THE TARGET FOR THE INSTALL OPERATION. IT MUST TAKE THE FOLLOWING VALUE:

W-TSCOPE = THE NAME OF A CICS SYSTEM, OR CICS SYSTEM GROUP WITHIN THE CICSPLEX. REFER TO THE DESCRIPTION OF THE TARGET PARAMETER OF AN INSTALL ACTION IN THE RESOURCE TABLE REFERENCE FOR FURTHER INFORMATION REGARDING THE TARGET SCOPE VALUE.

THE SAMPLE ESTABLISHES AN API CONNECTION AND ISSUES A CREATE COMMAND TO CREATE A BAS DEFINITION. A GET COMMAND IS ISSUED TO OBTAIN A RESULT SET CONTAINING THE CREATED BAS DEFINITION. USING THE PERFORM OBJECT ACTION(INSTALL) COMMAND EACH RECORD IN THE RESULT SET IS INSTALLED INTO THE TARGET SCOPE IDENTIFIED BY THE W-SCOPE DECLARATION.

FINALLY, THE API CONNECTION IS TERMINATED.
ANY BAS ERRORS ARE REPORTED USING THE BINCONRS, BINCONSC, AND BINSTERR RESOURCE TABLES.

NOTES:
DEPENDENCIES = S/390, CICS
RESTRICTIONS = NONE
REGISTER CONVENTIONS =
MODULE TYPE = EXECUTABLE
PROCESSOR = COBOL
ATTRIBUTES = READ ONLY, SERIALLY REUSABLE

ENTRY POINT = EYULAPI4
PURPOSE = ALL FUNCTIONS.
LINKAGE = FROM CICS EITHER WITH EXEC CICS LINK OR AS A CICS TRANSACTION.
INPUT = NONE.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

CHANGE W-CONTEXT AND W-SCOPE TO MATCH YOUR INSTALLATION
CHANGE W-DEFNAME AND W-DEFPFIX FOR THE CREATE COMMAND.
CHANGE W-TSCOPE FOR THE PERFORM OBJECT COMMAND.

01 W-CONTEXT PIC X(8) VALUE 'RTGA '.
01 W-SCOPE PIC X(8) VALUE 'RTGA '.
01 W-DEFNAME PIC X(8) VALUE 'EYULAPI4'.
01 W-DEFPFIX PIC X(16) VALUE 'EYUL* '.
01 W-TSCOPE PIC X(8) VALUE 'RTGF '.

01 W-RESPONSE PIC S9(8) USAGE BINARY.
01 W-REASON PIC S9(8) USAGE BINARY.
01 W-BUFFER PIC X(32767).
01 W-BUFFERLEN PIC S9(8) COMP.
01 W-FBUFF PIC X(248).
01 W-FBTKN PIC S9(8) COMP.
01 W-THREAD PIC S9(8) USAGE BINARY.
01 W-RESULT PIC S9(8) USAGE BINARY.
01 W-RECNT PIC S9(8) USAGE BINARY.
01 W-CRITERIA PIC X(80) VALUE SPACES.
01 W-CRITERIALEN PIC S9(8) USAGE BINARY.
01 W-TERM PIC X(80) VALUE SPACES.
01 W-TERMLEN PIC S9(8) USAGE BINARY.
01 W-MSG-TEXT.
02 W-TEXT PIC X(80) VALUE SPACES.
02 W-LINECTL PIC X(1) VALUE X'13'.
01 ARRAYS.
02 CH8ARR OCCURS 20 TIMES PIC X(8).
02 FULLARR OCCURS 60 TIMES PIC S9(8) COMP.
01 III PIC S9(8) VALUE ZERO.
01 CODEV PIC S9(8) COMP.
01 CHAV PIC X(12).
01 LASTCMD PIC X(20).
01 LASTTHR PIC S9(8) COMP.
01 LASTRES PIC S9(8) COMP VALUE 0.
01 BINZERO PIC X(1) VALUE X'00'.
01 BLNKPAD PIC X(40) VALUE ' '.
01 FBCH2 PIC X(2).
01 FHALF4 REDEFINES FBCHAR2.
Include the resource table copybooks...
COPY TSMDEF.
COPY FEEDBACK.
COPY BINCONRS.
COPY BINCONSC.
COPY BINSTERR.

* Start of LINKAGE section *

LINKAGE SECTION.
PROCEDURE DIVISION.
EYULAPI4-START SECTION.
EYULAPI4-00.

* OBTAIN A CPSM API CONNECTION. *

MOVE 'Establishing Connection...' TO W-TEXT.
* DISPLAY W-TEXT.
EXEC CICS SEND FROM(W-TEXT) LENGTH(81) ERASE END-EXEC.
EXEC CPSM CONNECT
 CONTEXT(W-CONTEXT)
 SCOPE(W-SCOPE)
 VERSION('0140')
 THREAD(W-THREAD)
 RESPONSE(W-RESPONSE)
 REASON(W-REASON)
END-EXEC.
IF W-RESPONSE NOT = EYUVALUE(OK) GO TO NO-CONNECT.

* CREATE A TS MODEL DEFINITION (TSMDEF) *

A TSMDEF is created with a version of 1.

INITIALIZE TSMDEF.
MOVE X'01' TO DEFVER OF TSMDEF.
MOVE W-DEFNAME TO NAME-R OF TSMDEF.
MOVE W-DEFPFIX TO PREFIX OF TSMDEF.
MOVE DFHVALUE(AUXILIARY) TO LOCATION OF TSMDEF.
MOVE EYUVALUE(NO) TO RECOVERY OF TSMDEF.
MOVE EYUVALUE(NO) TO SECURITY-R OF TSMDEF.
MOVE 'Sample TSMDEF definition' TO DESCRIPTION OF TSMDEF.
* Copy the definition into our buffer...
MOVE TSMDEF TO W-BUFFER.
MOVE TSMDEF-TBL-LEN TO W-BUFFERLEN.
MOVE 'Creating TSMDEF...' TO W-TEXT.
* DISPLAY W-TEXT.
EXEC CICS SEND FROM(W-TEXT) LENGTH(81) WAIT END-EXEC.
EXEC CPSM CREATE
 OBJECT('TSMDEF')
 FROM(W-BUFFER)
LENGTH(W-BUFFERLEN)
THREAD(W-THREAD)
RESPONSE(W-RESPONSE)
REASON(W-REASON)
END-EXEC.
MOVE 'CREATE' TO LASTCMD.
MOVE W-THREAD TO LASTTHR.
MOVE 0 TO LASTRES.
IF W-RESPONSE NOT = EYUVALUE(OK) GO TO UNEXPECTED.

--
* GET THE TSMDEF RESOURCE TABLE. *
* CREATE A RESULT SET CONTAINING ENTRIES FOR ALL TSMDEFS *
* WITH NAMES EQUAL TO THE VALUE OF W-DEFNAME. *
* THE NUMBER OF ENTRIES MEETING THE CRITERIA IS RETURNED *
* IN VARIABLE W-RECCNT. *
--
MOVE 'Get the created TSMDEF Resource Table...' TO W-TEXT.
DISPLAY W-TEXT.
EXEC CICS SEND FROM(W-TEXT) LENGTH(81) WAIT END-EXEC.
STRING 'NAME= ' DELIMITED BY SIZE
W-DEFNAME DELIMITED BY SIZE
'.' DELIMITED BY SIZE
INTO W-CRITERIA.
MOVE LENGTH OF W-CRITERIA TO W-CRITERIALEN.
MOVE BINZERO TO W-RESULT.
EXEC CPSM GET OBJECT('TSMDEF')
CRITERIA(W-CRITERIA)
LENGTH(W-CRITERIALEN)
COUNT(W-RECCNT)
RESULT(W-RESULT)
THREAD(W-THREAD)
RESPONSE(W-RESPONSE)
REASON(W-REASON)
END-EXEC.
IF W-RESPONSE NOT = EYUVALUE(OK) GO TO NO-GET.

--
* INSTALL EACH RECORD INTO THE SCOPE IDENTIFIED BY THE VALUE OF W-TSCOPE. *
--
MOVE W-RECCNT TO PICZZZZZZZZ.
STRING 'Installing ' DELIMITED BY SIZE
PICZZZZZZZZ DELIMITED BY SIZE
'TSMDEF Entri'ES...' DELIMITED BY SIZE
INTO W-TEXT.
DISPLAY W-TEXT.
EXEC CICS SEND FROM(W-TEXT) LENGTH(81) WAIT END-EXEC.
STRING '(USAGE(LOCAL) TARGET(' DELIMITED BY SIZE
W-TSCOPE DELIMITED BY SIZE
')).' DELIMITED BY SIZE
INTO W-PARM.
MOVE LENGTH OF W-PARM TO W-PARMLEN.
EXEC CPSM PERFORM OBJECT('TSMDEF')
ACTION('INSTALL')
PARM(W-PARM)
PARMLEN(W-PARMLEN)
RESULT(W-RESULT)
THREAD(W-THREAD)
RESPONSE(W-RESPONSE)
REASON(W-REASON)
END-EXEC.
MOVE 'PERFORM OBJECT' TO LASTCMD.
MOVE W-THREAD TO LASTTHR.
MOVE W-RESULT TO LASTRES.
IF W-RESPONSE NOT = EYUVALUE(OK) GO TO UNEXPECTED.

MOVE 'Completed. Remove TSMDEF to re-run.' TO W-TEXT.
GO TO SCRNLOG2.

**
* Branch here if an unexpected CPSM error occurs *
**

UNEXPECTED.

MOVE W-RESPONSE TO PICZZZ9.
STRING '*** RESPONSE=' DELIMITED BY SIZE PICZZZ9
DELIMITED BY SIZE BLNKPAD DELIMITED BY SIZE INTO W-TEXT.
PERFORM SCRNLOG2.
MOVE W-REASON TO PICZZZ9.
STRING '*** REASON=' DELIMITED BY SIZE PICZZZ9
DELIMITED BY SIZE BLNKPAD DELIMITED BY SIZE INTO W-TEXT.
PERFORM SCRNLOG2.
MOVE '*** Unexpected error condition arose' TO W-TEXT.
PERFORM SCRNLOG2.

EXEC CICS RETURN END-EXEC.

* Exit from test case
EXEC CICS RETURN END-EXEC.
GOBACK.
EXIT.

**
* This subroutine obtains the FEEDBACK data *
**

GETFB.

* Use exact buffer size
MOVE FEEDBACK-TBL-LEN TO W-BUFFERLEN.
IF LASTRES = 0 GO TO NORESULT.
RESULT.
EXEC CPSM FEEDBACK
 INTO(W-FBBUFF) LENGTH(W-BUFFERLEN)
 RESULT(LASTRES)
 THREAD(LASTTHR)
 RESPONSE(W-RESPONSE)
 REASON(W-REASON)
END-EXEC.

* If command didn't execute, get FEEDBACK no result set
* Command didn't execute?
 IF W-RESPONSE = EYUVALUE(NODATA)
 MOVE 0 TO LASTRES
 GO TO NORESULT
 END-IF.
 GO TO ENDFBACK.

NORESULT.
* Use exact buffer size
 MOVE FEEDBACK-TBL-LEN TO W-BUFFERLEN.
 EXEC CPSM FEEDBACK
 INTO(W-FBBUFF) LENGTH(W-BUFFERLEN)
 THREAD(LASTTHR)
 RESPONSE(W-RESPONSE)
 REASON(W-REASON)
END-EXEC.

ENDFBACK.
EGETFB.
EXIT.

**
* Branch here if FEEDBACK Error Result Token available *
**
GETFERT.
 MOVE ERR-OBJECT OF FEEDBACK TO CHBARR(1).
 STRING '*** Getting ' DELIMITED BY SIZE
 CHBARR(1) DELIMITED BY SIZE
 ' error result set data for FEEDBACK' DELIMITED BY SIZE
 INTO W-TEXT.
 PERFORM SCRNLOG2.
FERTRES.

* Use largest buffer size
 MOVE FEEDBACK-TBL-LEN TO W-BUFFERLEN.
 EXEC CPSM FETCH
 INTO(W-BUFFER) LENGTH(W-BUFFERLEN)
 RESULT(ERR-RESULT OF FEEDBACK)
 THREAD(LASTTHR)
 RESPONSE(W-RESPONSE)
 REASON(W-REASON)
END-EXEC.

* Display FEEDBACK Error Result Token information
* Display information
 IF W-RESPONSE = EYUVALUE(OK)
 IF CHBARR(1)= 'FEEDBACK'
 MOVE W-BUFFER TO W-FBBUFF
 PERFORM DISPFEED
 END-IF
 IF CHBARR(1)= 'BINSTERR'
 PERFORM DISPBIER
 END-IF
 IF CHBARR(1)= 'BINCONRS'
 PERFORM DISPBIERS
 END-IF
 IF CHBARR(1)= 'BINCONSC'
 PERFORM DISPBIISC
 END-IF
 END-IF
GO TO FERTRES
END-IF.
MOVE W-RESPONSE TO PICZZZ9.
MOVE W-REASON TO PYCZZZ9.
STRING '*** FEEDBACK not available' DELIMITED BY SIZE PICZZZ9 DELIMITED BY SIZE ',' DELIMITED BY SIZE PYCZZZ9 DELIMITED BY SIZE ')' DELIMITED BY SIZE BLNKPAD DELIMITED BY SIZE INTO W-TEXT END-STRING.
PERFORM SCRNLOG2.
EGETFER.
EXIT.

**
* This subroutine displays FEEDBACK information *
**

DISPFEED.
MOVE W-FBUFF TO FEEDBACK.
STRING BINZERO COMMAND OF FEEDBACK DELIMITED BY SIZE INTO FBCHAR2.
MOVE FBHALF TO PICZZZ9.
MOVE RESPONSE OF FEEDBACK TO PICZZZ9.
MOVE RSLTRECID OF FEEDBACK TO PYKZZZ9.
MOVE SPACES TO W-TEXT.
STRING 'Cmd=' PICZZZ9 'Attr=' ATTRDATAVAL OF FEEDBACK 'Eib=' CEIBDATAVAL OF FEEDBACK 'Err=' ERRCODEVAL OF FEEDBACK 'Rspn=' PYCZZZ9 'Res=' PIKZZZ9 'ResId=' PYKZZZ9 DELIMITED BY SIZE INTO W-TEXT END-STRING.
PERFORM SCRNLOG2.
MOVE ERROR-CODE OF FEEDBACK TO PICZZZ9.
MOVE CEIBRESP OF FEEDBACK TO PYCZZZ9.
MOVE CEIBRESP1 OF FEEDBACK TO PIKZZZ9.
MOVE CEIBFN OF FEEDBACK TO PYKZZZ9.
MOVE SPACES TO W-TEXT.
STRING 'ECode=' PICZZZ9 'RESP=' PYCZZZ9 'RESP1=' PIKZZZ9 'Eibfn=' PYKZZZ9 'Obj=' OBJECT-A OF FEEDBACK 'OAct=' OBJECT-ACT OF FEEDBACK DELIMITED BY SIZE INTO W-TEXT END-STRING.
PERFORM SCRNLOG2.
MOVE SPACES TO W-TEXT.
STRING 'Att1=' ATTR-NM1 OF FEEDBACK '2=' 'Attr-NM2 OF FEEDBACK '3=' 'Attr-NM3 OF FEEDBACK '4=' 'Attr-NM4 OF FEEDBACK '5=' 'Attr-NM5 OF FEEDBACK DELIMITED BY SIZE INTO W-TEXT END-STRING.
PERFORM SCRNLOG2.
MOVE ERR-COUNT OF FEEDBACK TO PICZZZ9.
MOVE SPACES TO W-TEXT.
STRING 'FObj=' ERR-OBJECT OF FEEDBACK 'FCnt=' PICZZZ9 DELIMITED BY SIZE INTO W-TEXT END-STRING.
PERFORM SCRNLOG2.
MOVE ERR-COUNT OF FEEDBACK TO FULLARR(1).
EXIT.

**
* This subroutine displays BINSTERR information *
**

DISPBIER.
MOVE W-BUFFER TO BINSTERR.
MOVE SPACES TO W-TEXT.
STRING 'CMAS=' CMASNAME OF BINSTERR 'Plex=' PLEXNAME OF BINSTERR 'CSys=' CICSNAME OF BINSTERR 'ResName=' RESNAME OF BINSTERR DELIMITED BY SIZE INTO W-TEXT END-STRING.
PERFORM SCRNLOG2.
MOVE RESVER OF BINSTERR TO PICZZZ9.
MOVE ERRCODE OF BINSTERR TO PYCZZZ9.
MOVE CRESP1 OF BINSTERR TO PIKZZZ9.
MOVE CRESP2 OF BINSTERR TO PYKZZZ9.
MOVE SPACES TO W-TEXT.
STRING ' ResVer=' PICZZZ9 ' ECode=' PYCZZZ9
 ' RESP=' PIKZZZ9 ' RESP1=' PYKZZZ9
DELIMITED BY SIZE INTO W-TEXT END-STRING.
PERFORM SCRNLOG2.
MOVE CEIBFN OF BINSTERR TO PICZZZ9.
MOVE SPACES TO W-TEXT.
STRING ' EibFn=' PICZZZ9
DELIMITED BY SIZE INTO W-TEXT END-STRING.
PERFORM SCRNLOG2.
EXIT.

**
* This subroutine displays BINCONRS information *
**

DISPBIRS.
MOVE W-BUFFER TO BINCONRS.
MOVE ERRPOP OF BINCONRS TO PICZZZ9.
MOVE SPACES TO W-TEXT.
STRING 'CMAS=' CMASNAME OF BINCONRS ' Plex='
PlexNAME OF BINCONRS ' CSys=' CICSNAME OF BINCONRS
 ' ResType=' RESTYPE OF BINCONRS ' EOp=' PICZZZ9
DELIMITED BY SIZE INTO W-TEXT END-STRING.
PERFORM SCRNLOG2.
MOVE CANDVER OF BINCONRS TO CODEV.
MOVE 'BINCONRS' TO CHR8.
MOVE 'CANDUSAGE' TO CHR12.
PERFORM XCV2CH
MOVE CHARV TO CHAR6.
MOVE CANDTYPE OF BINCONRS TO CODEV.
MOVE 'BINCONRS' TO CHR8.
MOVE 'CANDTYPE' TO CHR12.
PERFORM XCV2CH
MOVE CHARV TO CHAR12.
MOVE CANDASGOVR OF BINCONRS TO CODEV.
MOVE 'BINCONRS' TO CHR8.
MOVE 'CANDASGOVR' TO CHR12.
PERFORM XCV2CH
MOVE SPACES TO W-TEXT.
STRING ' CandUsa=' CHAR6
 ' CandSgrp=' CANDGRP OF BINCONRS
 ' CandTyp=' CHAR12 ' CandAssO=' CHARV
DELIMITED BY SIZE INTO W-TEXT END-STRING.
PERFORM SCRNLOG2.
MOVE EXISTVER OF BINCONRS TO PICZZZ9.
MOVE EXISTUSAGE OF BINCONRS TO CODEV.
MOVE 'BINCONRS' TO CHR8.
MOVE 'EXISTUSAGE' TO CHR12.
PERFORM XCV2CH
MOVE SPACES TO W-TEXT.
STRING ' ExistName=' EXISTNAME OF BINCONRS
 ' ExistVer=' PICZZZ9 ' EResSrgrp=' EXISTRGRP OF
 ' EResAss=' EXISTRASG OF BINCONRS
 ' EResDes=' EXISTRDSC OF BINCONRS ' ExistUsa=' CHARV
DELIMITED BY SIZE INTO W-TEXT END-STRING.
PERFORM SCRNLOG2.
MOVE EXISTTYPE OF BINCONRS TO CODEV.
MOVE 'BINCONRS' TO CHR8.
MOVE 'EXISTTYPE' TO CHR12.
PERFORM XCV2CH.
MOVE CHARV TO CHAR12.
MOVE EXISTASGOVR OF BINCONRS TO CODEV.
MOVE 'BINCONRS' TO CHRSB.
MOVE 'EXISTASGOVR' TO CHAR12.
PERFORM XCV2CH.
MOVE SPACES TO W-TEXT.
STRING 'ExistSgrp=' EXISTSGRP OF BINCONRS
' ExisType=' CHAR12 ' ExistAss=' CHARV
DELIMITED BY SIZE INTO W-TEXT END-STRING.
PERFORM SCRNLOG2.
EXIT.

* This subroutine displays BINCON information *

DISPBISC.
MOVE W-BUFFER TO BINSTERR.
MOVE ERROP OF BINCONSC TO PICZZZ9.
MOVE ERRCODE OF BINCONSC TO PYCZZZ9.
MOVE SPACES TO W-TEXT.
STRING 'CMAS=' CMASNAME OF BINCONSC ' Plex=' PLEXNAME OF BINCONSC
' Edp=' PICZZZ9 ' ECode=' PYCZZZ9 ' TScope=' TARGSCOPE OF BINCONSC
' TAssgn=' TARGRASG OF BINCONSC
DELIMITED BY SIZE INTO W-TEXT END-STRING.
PERFORM SCRNLOG2.
MOVE SPACES TO W-TEXT.
STRING ' TDesc=' TARGRDSC OF BINCONSC ' RScope=' RELSCOPE OF BINCONSC
' RAssgn=' RELRASG OF BINCONSC ' CSys=' CICSNAME OF BINCONSC
DELIMITED BY SIZE INTO W-TEXT END-STRING.
PERFORM SCRNLOG2.
EXIT.

* This subroutine converts coded value to character string *

XCV2CH.
* Use new thread for TRANSLATE
EXEC CPSM CONNECT
 VERSION('0140')
 THREAD(W-FBTTKN)
 RESPONSE(W-RESPONSE)
 REASON(W-REASON)
END-EXEC.

* Translate internal coded value to character value
EXEC CPSM TRANSLATE
 OBJECT(CHRSB)
 ATTRIBUTE(CHAR12)
 FROMCV(CODEV) TOCHAR(CHARV)
 THREAD(W-FBTTKN)
 RESPONSE(W-RESPONSE)
 REASON(W-REASON)
END-EXEC.
EXIT.

**
* PROCESSING FOR API FAILURES.
**
* NO-CONNECT.
 MOVE 'ERROR CONNECTING TO API.' TO W-MSG-TEXT.
 GO TO SCRNLOG.
NO-CREATE.
 MOVE 'ERROR CREATING DEFINITION.' TO W-MSG-TEXT.
 GO TO SCRNLOG.

Chapter 5. CICSPlex SM API sample programs 183
The COBOL version of EYUXAPI4 is written for the CICS environment and can be converted to run in the MVS/ESA batch environment by commenting the EXEC CICS SEND commands and uncommenting the preceding language specific output statement.
Notices

This information was developed for products and services offered in the U.S.A. This material might be available from IBM in other languages. However, you may be required to own a copy of the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property rights may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in certain transactions, therefore this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and use of those websites is at your own risk.
IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Programming License Agreement, or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to actual people or business enterprises is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample programs.

Programming interface information

CICS supplies some documentation that can be considered to be Programming Interfaces, and some documentation that cannot be considered to be a Programming Interface.
Programming Interfaces that allow the customer to write programs to obtain the services of CICS Transaction Server for z/OS, Version 5 Release 4 are included in the following sections of the online product documentation:

- Developing applications
- Developing system programs
- Securing overview
- Developing for external interfaces
- Reference: application development
- Reference: system programming
- Reference: connectivity

Information that is NOT intended to be used as a Programming Interface of CICS Transaction Server for z/OS, Version 5 Release 4, but that might be misconstrued as Programming Interfaces, is included in the following sections of the online product documentation:

- Troubleshooting and support
- Reference: diagnostics

If you access the CICS documentation in manuals in PDF format, Programming Interfaces that allow the customer to write programs to obtain the services of CICS Transaction Server for z/OS, Version 5 Release 4 are included in the following manuals:

- Application Programming Guide and Application Programming Reference
- Business Transaction Services
- Customization Guide
- C++ OO Class Libraries
- Debugging Tools Interfaces Reference
- Distributed Transaction Programming Guide
- External Interfaces Guide
- Front End Programming Interface Guide
- IMS Database Control Guide
- Installation Guide
- Security Guide
- Supplied Transactions
- CICSPlex SM Managing Workloads
- CICSPlex SM Managing Resource Usage
- CICSPlex SM Application Programming Guide and Application Programming Reference
- Java Applications in CICS

If you access the CICS documentation in manuals in PDF format, information that is NOT intended to be used as a Programming Interface of CICS Transaction Server for z/OS, Version 5 Release 4, but that might be misconstrued as Programming Interfaces, is included in the following manuals:

- Data Areas
- Diagnosis Reference
- Problem Determination Guide
- CICSPlex SM Problem Determination Guide
Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at Copyright and [trademark information] at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation

Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices are preserved. You may not distribute, display or make derivative work of these publications, or any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display these publications or any portion thereof outside your enterprise, without the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied, to the publications or any information, data, software or other intellectual property contained therein.
IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM online privacy statement

IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies or other technologies to collect product usage information, to help improve the end user experience, to tailor interactions with the end user or for other purposes. In many cases no personally identifiable information is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect personally identifiable information. If this Software Offering uses cookies to collect personally identifiable information, specific information about this offering’s use of cookies is set forth below:

For the CICSPlex SM Web User Interface (main interface):
Depending upon the configurations deployed, this Software Offering may use session and persistent cookies that collect each user’s user name and other personally identifiable information for purposes of session management, authentication, enhanced user usability, or other usage tracking or functional purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface (data interface):
Depending upon the configurations deployed, this Software Offering may use session cookies that collect each user’s user name and other personally identifiable information for purposes of session management, authentication, or other usage tracking or functional purposes. These cookies cannot be disabled.

For the CICSPlex SM Web User Interface ("hello world" page):
Depending upon the configurations deployed, this Software Offering may use session cookies that collect no personally identifiable information. These cookies cannot be disabled.

For CICS Explorer®:
Depending upon the configurations deployed, this Software Offering may use session and persistent preferences that collect each user’s user name and password, for purposes of session management, authentication, and single sign-on configuration. These preferences cannot be disabled, although storing a user's password on disk in encrypted form can only be enabled by the user’s explicit action to check a check box during sign-on.

If the configurations deployed for this Software Offering provide you, as customer, the ability to collect personally identifiable information from end users via cookies and other technologies, you should seek your own legal advice about any laws applicable to such data collection, including any requirements for notice and consent.
For more information about the use of various technologies, including cookies, for these purposes, see IBM Privacy Policy and IBM Online Privacy Statement, the section entitled “Cookies, Web Beacons and Other Technologies” and the IBM Software Products and Software-as-a-Service Privacy Statement.
How to establish an optimized workload, example task 81

installing user-replacement program 38
inter-transaction affinity 59
creating 35
defining to 69
deleting 36
description of 12
identifying 74

LINKSWSC object 71
LINKSWSCG object 71
LINKSWSCS object 71
LNQUEUE routing algorithm 66
LUTYPE62 36

managing a Link3270 bridge workload, example task 113
managing a workload, example task 79
match criteria, transaction 55
models, dynamic routing 60

object model, recommended usage 78
workload management 78

percentile goal 66, 67
process type (BTS) 3
programs, sample listings 151

queue algorithm 65
description 4
quiesce target region in active workload, example task 94

region status server
list structure, defining 82
release requirements 20
remove region from target region scope, example task 92
removing
a transaction affinity 36
routing region scope from specification 20
requesting region
definition of 1
release requirements 20
route fields 56
route selection 34
route selection error 34
route transactions from user to specific target region, example task 96
routing algorithms 76
routing attempt complete 34
routing region
activating workload management
when CICS system active 16
when CICS system not active 16
when CMAS not active 17
assigning to workload
specification 50
definition of 1
Routing regions in an active workload 72
routing specific transaction to specific target region, example task 94
routing workloads 62

sample programs 21
listings 151
scope
associating
as routing region to workload
specification 50
as target region to transaction group 55
selecting a target region
from a set 32
notification (route) 32

separating CICS BTS activities, example task 111
START commands
dynamic routing of 4
START commands, dynamic routing of 3, 31, 39, 40
non-terminal-related 1
release requirements 20
terminal-related 1
static routing 1
summary of views
for creating definitions 47

selecting a target region (continued)
route selection 32
route selection error 32
routing attempt complete 32
specific 34
transaction abend 32
transaction initiation 32
transaction termination 32

separating CICS BTS activities

T

target region
assigning to
transaction group 55
definition of 2
release requirements 20
Target region in active workload views
general (WLMWAOR) 125
tasks, example
add region to existing target region scope 92
add routing region to active workload 93
deactivate a workload definition 99
discard an active transaction from a workload 100
dynamic routing of an inbound client
DPL request 107
dynamic routing with EXEC CICS
START TERMID 105
honor a pseudoconversational
transaction 97
How to establish an optimized workload 81
managing a Link3270 bridge
workload 113
managing a workload 79
quiesce target region in active
workload 94
remove region from target region scope 92
route transactions from user to
specific target region 96
routing CICS BTS activities 110
routing specific transaction to specific
target region 94

separating CICS BTS activities 111
update a workload specification 101
update active workload definition 99
tasks, example (continued)
use dynamic routing of a peer-to-peer
DPL request 109
use real-time analysis to select target
region 102
TRANGRP object 71
transaction abend 34
transaction affinity
creating 35
deleting 36
description of 12
transaction group
associating with target region 55
creating 53
description of 3
match criteria 55
Transaction groups view 71
transaction initiation 34
transaction termination 34
transactions
match criteria 55
Transactions in transaction groups
view 71

U
update a workload specification, example
task 101
update active workload definition,
example task 99
updating scope association
transaction group
description of 3
use real-time analysis to select target
region, example task 102

V
views
summary of
for creating definitions 47

W
Web User Interface
creating a transaction group 53
workload definition 53
workload specifications
scope 50
WLM specifications to CICS system
links 71
WLM specifications to system group
links 71
WLMAROUT view 148
WLMATAFF object 71
WLMATAFF view 146
WLMATARG view 133
WLMATGRP object 71
WLMATGRP view 142
WLMATTRAN object 71
WLMATTRAN view 145
WLMWAOR object 71
WLMWAOR view 125
WLMWADEF object 71
WLMWADEF view 141
WLMWAWORK object 71
WLMWORK view 119
WLMWTOR object 72
WLMWTOR view 123
WLMDDEF object 72
WLMDGROUP object 72
WLMINSPFC object 72
WLMSPEC object 72
workload
description of 2
workload affinity
description of 12
workload definition
creating 53
description of 3
Workload definitions in workload groups
view 72
Workload definitions view 72
workload functions of 58
workload group
description of 3
Workload groups in workload
specifications view 72
Workload groups view 72
workload management
activating in routing region
when CICS system is active 17
when CMAS not available 17
description of 3
workload management (WLM)
inter-transaction affinity 59, 69
introduction to 58
workload balancing
abend compensation 65
goal algorithm 66
queue algorithm 65
workload routing 62, 75
abend compensation 66
link neutral goal algorithm 67
link neutral queue algorithm 66
workload separation 68, 76
workload management views
relationship to definitions 45
workload management, description of 1
workload routing
description of 4
implementing 76
workload separation
description of 7
workload specification 76
Workload specifications view 72
workload view 36