

 Note

 Before using this information and the product it supports, read
 the information in Notices.

 This edition applies to:

 	Version 5 Release 3 of the IBM® Engineering
 and Scientific Subroutine Library (ESSL) for AIX® licensed program, program number 5765-H25

 	Version 5 Release 5 of the IBM Engineering and Scientific
 Subroutine Library (ESSL) for Linux on POWER® licensed program, program number 5765-L51

 and to all subsequent releases and modifications until otherwise
 indicated by new edition.

 In this document ESSL refers to both of the above products (unless
 a differentiation between ESSL for AIX and
 ESSL for Linux is explicitly
 specified).

 Significant changes or additions to the text and illustrations
 are marked by a vertical line (|) to the left of the change.

 IBM welcomes your comments.
 see the topic How to Send Your Comments. When you send information to IBM, you grant IBM a
 nonexclusive right to use or distribute the information in any way
 it believes appropriate without incurring any obligation to you.

 Contents

 	 Note

 	

 	Tables

 	 About this information
 	 How to Use This Information

 	 Where to Find Related Publications
 	 Using Bibliography References

 	 IBM Request for Enhancement (RFE) Community

 	 How to Find a Subroutine Description

 	 How to Interpret the Subroutine Names with a Prefix Underscore

 	 Special Terms
 	 Short and Long Precision

 	 Subroutines and Subprograms

 	 Abbreviated Names

 	 Conventions and terminology used
 	 Fonts

 	 Special Notations and Conventions
 	 Scalar Data

 	 Vectors

 	 Matrices

 	 Sequences
 	 One-Dimensional Sequences

 	 Two-Dimensional Sequences

 	 Three-Dimensional Sequences

 	 Arrays
 	 One-Dimensional Arrays

 	 Two-Dimensional Arrays

 	 Three-Dimensional Arrays

 	 Special Characters, Symbols, Expressions, and Abbreviations

 	 How to Interpret the Subroutine Descriptions
 	 Description

 	 Syntax

 	 On Entry

 	 On Return

 	 Notes

 	 Function

 	 Special Usage

 	 Error Conditions

 	 Examples

 	 How to Send Your Comments

 	 Summary of Changes
 	 Future Migration

 	 Guide Information
 	 Introduction and Requirements
 	 Overview of ESSL
 	 Performance and Functional Capability

 	 Usability

 	 The Variety of Mathematical Functions
 	 Areas of Application

 	 What ESSL Provides

 	 Accuracy of the Computations

 	 High Performance of ESSL
 	 Algorithms

 	 Obtaining High Performance

 	 SMT Mode

 	 Mathematical Techniques

 	 The Fortran Language Interface to the Subroutines

 	 Software and Hardware Products That Can Be Used with ESSL
 	 Hardware Products Supported by ESSL

 	 Operating Systems Supported by ESSL

 	 Software Products Required by ESSL
 	 Software Products Required by ESSL for AIX

 	 Software Products Required by ESSL for Linux

 	 Software Products for Installing and Customizing ESSL
 	 Software Products for Installing and Customizing ESSL for AIX

 	 Software Products for Installing and Customizing ESSL for Linux

 	 Software Products for Displaying ESSL Documentation

 	 List of ESSL Subroutines
 	 Linear Algebra Subprograms
 	 Vector-Scalar Linear Algebra Subprograms

 	 Sparse Vector-Scalar Linear Algebra Subprograms

 	 Matrix-Vector Linear Algebra Subprograms

 	 Sparse Matrix-Vector Linear Algebra Subprograms

 	 Matrix Operations

 	 Linear Algebraic Equations
 	 Dense Linear Algebraic Equations

 	 Banded Linear Algebraic Equations

 	 Sparse Linear Algebraic Equations

 	 Linear Least Squares

 	 Eigensystem Analysis

 	 Fourier Transforms, Convolutions and Correlations, and Related Computations
 	 Fourier Transforms

 	 Convolutions and Correlations

 	 Related Computations

 	 Sorting and Searching

 	 Interpolation

 	 Numerical Quadrature

 	 Random Number Generation

 	 Utilities

 	 Planning Your Program
 	 Selecting an ESSL Subroutine
 	 What ESSL Library Do You Want to Use?
 	 Serial and SMP Libraries Provided by ESSL

 	 Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL
 	 SIMD Algorithms on VSX-Enabled Processors

 	 SIMD Algorithms on POWER 6 AltiVec-Enabled Processors

 	 Multithreaded Subroutines Provided by ESSL

 	 Using the ESSL SMP CUDA Library

 	 NVIDIA GPU Power Capping

 	 What Type of Data Are You Processing in Your Program?

 	 How Is Your Data Structured? And What Storage Technique Are You Using?

 	 What about Performance and Accuracy?

 	 Avoiding Conflicts with Internal ESSL Routine Names That are Exported

 	 Setting Up Your Data
 	 How Do You Set Up Your Scalar Data?

 	 How Do You Set Up Your Arrays?

 	 How Should Your Array Data Be Aligned?

 	 What Storage Mode Should You Use for Your Data?

 	 How Do You Convert from One Storage Mode to Another?
 	 Conversion Subroutines

 	 Sample Programs

 	 Setting Up Your ESSL Calling Sequences
 	 What Is an Input-Output Argument?

 	 What Are the General Rules to Follow when Specifying Data for the Arguments?

 	 What Happens When a Value of 0 Is Specified for N?

 	 How Do You Specify the Beginning of the Data Structure in the ESSL Calling Sequence?

 	 Using Auxiliary Storage in ESSL
 	 Dynamic Allocation of Auxiliary Storage

 	 Setting Up Auxiliary Storage When Dynamic Allocation Is Not Used
 	 Who Do You Want to Calculate the Size of Auxiliary Storage? You or ESSL?

 	 How Do You Calculate the Size of Auxiliary Storage Using the Formulas?

 	 How Do You Get ESSL to Calculate the Size of Auxiliary Storage Using ESSL Error Handling?

 	 Providing a Correct Transform Length to ESSL
 	 Who Do You Want to Calculate the Transform Length? You or ESSL?

 	 How Do You Calculate the Transform Length Using the Table or Formula?

 	 How Do You Get ESSL to Calculate the Transform Length Using ESSL Error Handling?
 	 Having ESSL Calculate the Transform Length with Unrecoverable Error 2030

 	 Having ESSL Calculate the Transform Length with Recoverable Error 2030

 	 Example of Input-Argument Error Recovery for Transform Lengths

 	 Coding Your Program to Obtain Transform Lengths

 	 Getting the Best Accuracy
 	 What Precisions Do ESSL Subroutines Operate On?

 	 How does the Nature of the ESSL Computation Affect Accuracy?

 	 What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?

 	 How is Underflow Handled?

 	 Where Can You Find More Information on Accuracy?

 	 What about Bitwise-Identical Results?

 	 Getting the Best Performance
 	 What General Coding Techniques Can You Use to Improve Performance?

 	 Where Can You Find More Information on Performance?

 	 Dealing with Errors when Using ESSL
 	 What Can You Do about Program Exceptions?

 	 What Can You Do about ESSL Input-Argument Errors?
 	 All Input-Argument Errors

 	 Recoverable Errors 2015, 2030 and 2200 Can Return Updated Values in the NAUX, N and NSINFO Arguments

 	 What Can You Do about ESSL Computational Errors?
 	 All Computational Errors

 	 Recoverable Computational Errors Can Return Values Through EINFO

 	 What Can You Do about ESSL Resource Errors?
 	 All Resource Errors

 	 What Can You Do about ESSL Attention Messages?
 	 All Attention Messages

 	 How Do You Control Error Handling by Setting Values in the ESSL Error Option Table?
 	 What Values Are Set in the ESSL Error Option Table?

 	 How Can You Change the Values in the Error Option Table?

 	 When Do You Change the Values in the Error Option Table?

 	 How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?

 	 How does Error Handling Work in a Threaded Environment?

 	 Where Can You Find More Information on Errors?

 	 Setting Up Your Data Structures
 	 Concepts

 	 Vectors
 	 Transpose of a Vector

 	 Conjugate Transpose of a Vector

 	 Vector Storage Representation

 	 How Stride Is Used for Vectors
 	 Positive Stride

 	 Zero Stride

 	 Negative Stride

 	 Sparse Vector
 	 In Storage

 	 Matrices
 	 Transpose of a Matrix

 	 Conjugate Transpose of a Matrix

 	 Matrix Storage Representation

 	 How Leading Dimension Is Used for Matrices

 	 Symmetric Matrix
 	 Symmetric Matrix Storage Representation

 	 Positive Definite or Negative Definite Symmetric Matrix
 	 Positive Definite or Negative Definite Symmetric Matrix Storage Representation

 	 Indefinite Symmetric Matrix
 	 Indefinite Symmetric Matrix Storage Representation

 	 Complex Hermitian Matrix
 	 Complex Hermitian Matrix Storage Representation

 	 Positive Definite or Negative Definite Complex Hermitian Matrix
 	 Positive Definite or Negative Definite Complex Hermitian Matrix Storage Representation

 	 Indefinite Complex Hermitian Matrix
 	 Indefinite Complex Hermitian Matrix Storage Representation

 	 Positive Definite or Negative Definite Symmetric Toeplitz Matrix
 	 Positive Definite or Negative Definite Symmetric Toeplitz Matrix Storage Representation

 	 Positive Definite or Negative Definite Complex Hermitian Toeplitz Matrix
 	 Positive Definite or Negative Definite Complex Hermitian Toeplitz Matrix Storage Representation

 	 Triangular Matrix
 	 Triangular Matrix Storage Representation

 	 Trapezoidal Matrix
 	 Trapezoidal Matrix Storage Representation

 	 General Band Matrix
 	 General Band Matrix Storage Representation

 	 Symmetric Band Matrix
 	 Symmetric Band Matrix Storage Representation

 	 Positive Definite Symmetric Band Matrix
 	 Positive Definite Symmetric Band Matrix Storage Representation

 	 Complex Hermitian Band Matrix
 	 Complex Hermitian Band Matrix Storage Representation

 	 Positive Definite Complex Hermitian Band Matrix

 	 Triangular Band Matrix
 	 Triangular Band Matrix Storage Representation

 	 General Tridiagonal Matrix
 	 General Tridiagonal Matrix Storage Representation

 	 Symmetric Tridiagonal Matrix
 	 Symmetric Tridiagonal Matrix Storage Representation

 	 Positive Definite Symmetric Tridiagonal Matrix
 	 Positive Definite Symmetric Tridiagonal Matrix Storage Representation

 	 Complex Hermitian Tridiagonal Matrix
 	 Complex Hermitian Tridiagonal Storage Representation

 	 Postive Definite Complex Hermitian Tridiagonal Matrix
 	 Positive Definite Complex Hermitian Tridiagonal Matrix Storage Representation

 	 Sparse Matrix
 	 Sparse Matrix Storage Representation

 	 Sequences
 	 Real and Complex Elements in Storage

 	 One-Dimensional Sequences
 	 One-Dimensional Sequence Storage Representation

 	 Two-Dimensional Sequences
 	 Two-Dimensional Sequence Storage Representation

 	 Three-Dimensional Sequences
 	 Three-Dimensional Sequence Storage Representation

 	 How Stride Is Used for Three-Dimensional Sequences

 	 Coding Your Program
 	 Fortran Programs
 	 Calling ESSL Subroutines and Functions in Fortran

 	 Setting Up a User-Supplied Subroutine for ESSL in Fortran

 	 Setting Up Scalar Data in Fortran

 	 Setting Up Arrays in Fortran
 	 Real and Complex Array Elements

 	 One-Dimensional Array

 	 Two-Dimensional Array

 	 Three-Dimensional Array

 	 Creating Multiple Threads and Calling ESSL from Your Fortran Program

 	 Handling Errors in Your Fortran Program
 	 Input-Argument Errors in Fortran

 	 Input-Argument Errors in Fortran Example

 	 Computational Errors in Fortran

 	 Computational Errors in Fortran Example 1

 	 Computational Errors in Fortran Example 2

 	 Computational Errors in Fortran Example 3

 	 Example of Handling Errors in a Multithreaded Application Program

 	 C Programs
 	 Calling ESSL Subroutines and Functions in C
 	 Before You Call ESSL

 	 Coding the Calling Sequences

 	 Passing Arguments in C
 	 About the Syntax Shown in this Documentation

 	 No Optional Arguments

 	 Arguments That Must Be Passed by Value

 	 Arguments That Must Be Passed by Reference

 	 Setting Up a User-Supplied Subroutine for ESSL in C

 	 Setting Up Scalar Data in C

 	 Setting Up Complex Data Types in C
 	 Complex Data on AIX

 	 Complex Data on Linux (little endian mode)

 	 Using Logical Data in C

 	 Setting Up Arrays in C

 	 Creating Multiple Threads and Calling ESSL from Your C Program

 	 Handling Errors in Your C Program
 	 Input-Argument Errors in C

 	 Input-Argument Errors in C Example

 	 Computational Errors in C

 	 Computational Errors in C Example

 	 C++ Programs
 	 Calling ESSL Subroutines and Functions in C++
 	 Before You Call ESSL

 	 Coding the Calling Sequences

 	 Passing Arguments in C++
 	 About the Syntax Shown in this Documentation

 	 No Optional Arguments

 	 Arguments That Must Be Passed by Value

 	 Arguments That Must Be Passed by Reference

 	 Setting Up a User-Supplied Subroutine for ESSL in C++

 	 Setting Up Scalar Data in C++

 	 Using Complex Data in C++
 	 On AIX—Selecting the <complex> or <complex.h> Header File

 	 On AIX—Setting Up Short-Precision Complex Data Types If You Are Using the IBM Open Class Complex Mathematics Library in C++

 	 On Linux (little endian mode) —Selecting the <complex> or <complex.h> Header File

 	 Using Logical Data in C++

 	 Setting Up Arrays in C++

 	 Creating Multiple Threads and Calling ESSL from Your C++ Program

 	 Handling Errors in Your C++ Program
 	 Input-Argument Errors in C++

 	 Input-Argument Errors in C++ Example

 	 Computational Errors in C++

 	 Computational Errors in C++ Example

 	 Processing Your Program
 	 Processing Your Program on AIX
 	 Fortran Program Procedures on AIX

 	 C Program Procedures on AIX

 	 C++ Program Procedures on AIX

 	 Processing Your Program on Linux (little endian mode)
 	 Fortran Program Procedures on Linux (little endian mode)

 	 C Program Procedures on Linux (little endian mode)

 	 C++ Program Procedures on Linux (little endian mode)

 	 Migrating Your Programs
 	 Migrating Programs from ESSL for Linux on Power Version 5 Release 4 to Version 5 Release 5

 	 Migrating Programs from ESSL for Linux on Power Version 5 Release 3.2 to Version 5 Release 4

 	 Migrating Programs from ESSL for Linux on Power Version 5 Release 3.1 to Version 5 Release 3.2

 	 Migrating Programs from ESSL for Linux on Power Version 5 Release 2 or ESSL Version 5 Release 3 to Version 5 Release 3.1

 	 Migrating Programs from ESSL for Linux on Power Version 5 Release 2 to Version 5 Release 3

 	 Migrating Programs from ESSL for AIX 5.1 and ESSL for Linux on Power Version 5 Release 1.1 to Version 5 Release 2

 	 Migrating Programs from ESSL for Linux on Power Version 5 Release 1 to Version 5 Release 1.1

 	 Migrating Programs from ESSL Version 4 Release 4 to Version 5 Release 1

 	 Migrating Programs from ESSL Version 4 Release 3 to Version 4 Release 4

 	 Migrating Programs from ESSL Version 4 Release 2.2 or Later to ESSL Version 4 Release 3

 	 Migrating Programs from ESSL Version 4 Release 2.1 to Version 4 Release 2.2

 	 Migrating Programs from ESSL Version 4 Release 2 to Version 4 Release 2.1

 	 Migrating Programs from ESSL Version 4 Release 1 to Version 4 Release 2

 	 Planning for Future Migration

 	 Migrating From One Hardware Platform to Another
 	 Auxiliary Storage

 	 Bitwise-Identical Results

 	 Migrating from Other Libraries to ESSL
 	 Migrating from ESSL/370

 	 Migrating from Another IBM Subroutine Library

 	 Migrating from LAPACK

 	 Migrating from FFTW Version 3.1.2

 	 Migrating from a Non-IBM Subroutine Library

 	 Handling Problems
 	 Where to Find More Information About Errors

 	 Getting Help from IBM Support

 	 National Language Support

 	 Dealing with Errors
 	 Program Exceptions

 	 ESSL Input-Argument Error Messages

 	 ESSL Computational Error Messages

 	 ESSL Resource Error Messages

 	 ESSL Informational and Attention Messages
 	 Informational Messages

 	 ESSL Attention Messages

 	 Miscellaneous Error Messages

 	 Messages
 	 Message Conventions
 	 About Upper- and Lowercase

 	 Message Format

 	 Input-Argument Error Messages(2001-2099)
 	 2538-2001

 	 2538-2002

 	 2538-2003

 	 2538-2004

 	 2538-2005

 	 2538-2006

 	 2538-2007

 	 2538-2008

 	 2538-2009

 	 2538-2010

 	 2538-2011

 	 2538-2012

 	 2538-2013

 	 2538-2014

 	 2538-2015

 	 2538-2016

 	 2538-2017

 	 2538-2018

 	 2538-2019

 	 2538-2020

 	 2538-2021

 	 2538-2022

 	 2538-2023

 	 2538-2024

 	 2538-2025

 	 2538-2026

 	 2538-2027

 	 2538-2028

 	 2538-2029

 	 2538-2030

 	 2538-2031

 	 2538-2032

 	 2538-2033

 	 2538-2034

 	 2538-2035

 	 2538-2036

 	 2538-2037

 	 2538-2038

 	 2538-2039

 	 2538-2040

 	 2538-2041

 	 2538-2042

 	 2538-2043

 	 2538-2044

 	 2538-2045

 	 2538-2046

 	 2538-2047

 	 2538-2048

 	 2538-2049

 	 2538-2050

 	 2538-2051

 	 2538-2052

 	 2538-2053

 	 2538-2054

 	 2538-2055

 	 2538-2056

 	 2538-2057

 	 2538-2058

 	 2538-2059

 	 2538-2060

 	 2538-2061

 	 2538-2062

 	 2538-2063

 	 2538-2064

 	 2538-2065

 	 2538-2066

 	 2538-2067

 	 2538-2068

 	 2538-2070

 	 2538-2071

 	 2538-2072

 	 2538-2073

 	 2538-2074

 	 2538-2075

 	 2538-2076

 	 2538-2077

 	 2538-2078

 	 2538-2079

 	 2538-2080

 	 2538-2081

 	 2538-2082

 	 2538-2083

 	 2538-2084

 	 2538-2085

 	 2538-2086

 	 2538-2087

 	 2538-2088

 	 2538-2089

 	 2538-2090

 	 2538-2091

 	 2538-2092

 	 2538-2093

 	 2538-2094

 	 2538-2095

 	 2538-2096

 	 2538-2097

 	 2538-2098

 	 2538-2099

 	 Computational Error Messages(2100-2199)
 	 2538-2100

 	 2538-2101

 	 2538-2102

 	 2538-2103

 	 2538-2104

 	 2538-2105

 	 2538-2106

 	 2538-2107

 	 2538-2108

 	 2538-2109

 	 2538-2110

 	 2538-2111

 	 2538-2112

 	 2538-2113

 	 2538-2114

 	 2538-2115

 	 2538-2116

 	 2538-2117

 	 2538-2118

 	 2538-2119

 	 2538-2120

 	 2538-2121

 	 2538-2122

 	 2538-2123

 	 2538-2124

 	 2538-2126

 	 2538-2127

 	 2538-2128

 	 2538-2129

 	 2538-2130

 	 2538-2131

 	 2538-2132

 	 2538-2133

 	 2538-2134

 	 2538-2135

 	 2538-2136

 	 2538-2145

 	 2538-2146

 	 2538-2147

 	 2538-2148

 	 2538-2149

 	 2538-2150

 	 2538-2151

 	 2538-2152

 	 2538-2153

 	 2538-2154

 	 2538-2155

 	 2538-2156

 	 2538-2157

 	 2538-2158

 	 2538-2159

 	 2538-2160

 	 2538-2161

 	 2538-2162

 	 2538-2163

 	 2538-2164

 	 2538-2165

 	 2538-2166

 	 2538-2167

 	 2538-2168

 	 2538-2169

 	 2538-2199

 	 Input-Argument Error Messages(2200-2299)
 	 2538-2200

 	 2538-2201

 	 2538-2207

 	 2538-2208

 	 2538-2209

 	 2538-2210

 	 2538-2211

 	 2538-2212

 	 2538-2213

 	 2538-2214

 	 2538-2215

 	 2538-2216

 	 2538-2217

 	 2538-2218

 	 2538-2219

 	 2538-2220

 	 2538-2221

 	 2538-2222

 	 2538-2223

 	 2538-2224

 	 2538-2225

 	 2538-2226

 	 2538-2227

 	 2538-2228

 	 2538-2229

 	 2538-2230

 	 2538-2231

 	 2538-2232

 	 2538-2233

 	 2538-2234

 	 2538-2235

 	 2538-2236

 	 2538-2237

 	 2538-2238

 	 2538-2239

 	 2538-2240

 	 2538-2241

 	 2538-2242

 	 2538-2243

 	 2538-2244

 	 2538-2245

 	 2538-2246

 	 2538-2247

 	 2538-2248

 	 2538-2249

 	 2538-2250

 	 2538-2251

 	 2538-2252

 	 2538-2253

 	 2538-2254

 	 2538-2255

 	 Resource Error Messages(2400-2499)
 	 2538-2400

 	 Informational and Attention Error Messages(2600-2699)
 	 2538-2600

 	 2538-2601

 	 2538-2602

 	 2538-2603

 	 2538-2604

 	 2538-2605

 	 2538-2606

 	 2538-2607

 	 2538-2608

 	 2538-2609

 	 2538-2610

 	 2538-2611

 	 2538-2612

 	 2538-2613

 	 2538-2614

 	 2538-2615

 	 2538-2616

 	 Miscellaneous Error Messages(2700-2799)
 	 2538-2700

 	 2538-2703

 	 2538-2799

 	 Reference Information
 	 Linear Algebra Subprograms
 	 Overview of the Linear Algebra Subprograms
 	 Vector-Scalar Linear Algebra Subprograms

 	 Sparse Vector-Scalar Linear Algebra Subprograms

 	 Matrix-Vector Linear Algebra Subprograms

 	 Sparse Matrix-Vector Linear Algebra Subprograms

 	 Use Considerations

 	 Performance and Accuracy Considerations

 	 Vector-Scalar Subprograms

 	 ISAMAX, IDAMAX, ICAMAX, and IZAMAX (Position of the First or Last Occurrence of the Vector Element Having the Largest Magnitude)

 	 ISAMIN and IDAMIN (Position of the First or Last Occurrence of the Vector Element Having Minimum Absolute Value)

 	 ISMAX and IDMAX (Position of the First or Last Occurrence of the Vector Element Having the Maximum Value)

 	 ISMIN and IDMIN (Position of the First or Last Occurrence of the Vector Element Having Minimum Value)

 	 SASUM, DASUM, SCASUM, and DZASUM (Sum of the Magnitudes of the Elements in a Vector)

 	 SAXPY, DAXPY, CAXPY, and ZAXPY (Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the Vector Y)

 	 SCOPY, DCOPY, CCOPY, and ZCOPY (Copy a Vector)

 	 SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and ZDOTC (Dot Product of Two Vectors)

 	 SNAXPY and DNAXPY (Compute SAXPY or DAXPY N Times)

 	 SNDOT and DNDOT (Compute Special Dot Products N Times)

 	 SNRM2, DNRM2, SCNRM2, and DZNRM2 (Euclidean Length of a Vector with Scaling of Input to Avoid Destructive Underflow and Overflow)

 	 SNORM2, DNORM2, CNORM2, and ZNORM2 (Euclidean Length of a Vector with No Scaling of Input)

 	 SROTG, DROTG, CROTG, and ZROTG (Construct a Givens Plane Rotation)

 	 SROT, DROT, CROT, ZROT, CSROT, and ZDROT (Apply a Plane Rotation)

 	 SROTMG and DROTMG (Construct a modified Givens Transformation)

 	 SROTM and DROTM

 	 SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and ZDSCAL (Multiply a Vector X by a Scalar and Store in the Vector X)

 	 SSWAP, DSWAP, CSWAP, and ZSWAP (Interchange the Elements of Two Vectors)

 	 SVEA, DVEA, CVEA, and ZVEA (Add a Vector X to a Vector Y and Store in a Vector Z)

 	 SVES, DVES, CVES, and ZVES (Subtract a Vector Y from a Vector X and Store in a Vector Z)

 	 SVEM, DVEM, CVEM, and ZVEM (Multiply a Vector X by a Vector Y and Store in a Vector Z)

 	 SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX (Multiply a Vector X by a Scalar and Store in a Vector Y)

 	 SZAXPY, DZAXPY, CZAXPY, and ZZAXPY (Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in a Vector Z)

 	 Sparse Vector-Scalar Subprograms

 	 SSCTR, DSCTR, CSCTR, ZSCTR (Scatter the Elements of a Sparse Vector X in Compressed-Vector Storage Mode into Specified Elements
 of a Sparse Vector Y in Full-Vector Storage Mode)

 	 SGTHR, DGTHR, CGTHR, and ZGTHR (Gather Specified Elements of a Sparse Vector Y in Full-Vector Storage Mode into a Sparse
 Vector X in Compressed-Vector Storage Mode)

 	 SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ (Gather Specified Elements of a Sparse Vector Y in Full-Vector Mode into a Sparse Vector
 X in Compressed-Vector Mode, and Zero the Same Specified Elements of Y)

 	 SAXPYI, DAXPYI, CAXPYI, and ZAXPYI (Multiply a Sparse Vector X in Compressed-Vector Storage Mode by a Scalar, Add to a Sparse
 Vector Y in Full-Vector Storage Mode, and Store in the Vector Y)

 	 SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI (Dot Product of a Sparse Vector X in Compressed-Vector Storage Mode and
 a Sparse Vector Y in Full-Vector Storage Mode)

 	 Matrix-Vector Subprograms

 	 SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX (Matrix-Vector Product for a General Matrix, Its Transpose,
 or Its Conjugate Transpose)

 	 SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC (Rank-One Update of a General Matrix)

 	 SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV, SSLMX, and DSLMX (Matrix-Vector Product for a Real Symmetric or Complex
 Hermitian Matrix)

 	 SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1 (Rank-One Update of a Real Symmetric or Complex Hermitian
 Matrix)

 	 SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2 (Rank-Two Update of a Real Symmetric or Complex
 Hermitian Matrix)

 	 SGBMV, DGBMV, CGBMV, and ZGBMV (Matrix-Vector Product for a General Band Matrix, Its Transpose, or Its Conjugate Transpose)

 	 SSBMV, DSBMV, CHBMV, and ZHBMV (Matrix-Vector Product for a Real Symmetric or Complex Hermitian Band Matrix)

 	 STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV (Matrix-Vector Product for a Triangular Matrix, Its Transpose,
 or Its Conjugate Transpose)

 	 STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and ZTPSV (Solution of a Triangular System of Equations with a Single Right-Hand
 Side)

 	 STBMV, DTBMV, CTBMV, and ZTBMV (Matrix-Vector Product for a Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose)

 	 STBSV, DTBSV, CTBSV, and ZTBSV (Triangular Band Equation Solve)

 	 Sparse Matrix-Vector Subprograms

 	 DSMMX (Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode)

 	 DSMTM (Transpose a Sparse Matrix in Compressed-Matrix Storage Mode)

 	 DSDMX (Matrix-Vector Product for a Sparse Matrix or Its Transpose in Compressed-Diagonal Storage Mode)

 	 Matrix Operations
 	 Overview of the Matrix Operation Subroutines

 	 Use Considerations
 	 Specifying Normal, Transposed, or Conjugate Transposed Input Matrices

 	 Transposing or Conjugate Transposing:
 	 On Input

 	 On Output

 	 Performance and Accuracy Considerations
 	 In General

 	 For Large Matrices

 	 For Combined Operations

 	 Matrix Operation Subroutines

 	 SGEADD, DGEADD, CGEADD, and ZGEADD (Matrix Addition for General Matrices or Their Transposes)

 	 SGESUB, DGESUB, CGESUB, and ZGESUB (Matrix Subtraction for General Matrices or Their Transposes)

 	 SGEMUL, DGEMUL, CGEMUL, and ZGEMUL (Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes)

 	 SGEMMS, DGEMMS, CGEMMS, and ZGEMMS (Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes
 Using Winograd's Variation of Strassen's Algorithm)

 	 SGEMM, DGEMM, CGEMM, and ZGEMM (Combined Matrix Multiplication and Addition for General Matrices, Their Transposes, or Conjugate
 Transposes)

 	 SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM (Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric or Complex
 Hermitian)

 	 STRMM, DTRMM, CTRMM, and ZTRMM (Triangular Matrix-Matrix Product)

 	 STRSM, DTRSM, CTRSM, and ZTRSM (Solution of Triangular Systems of Equations with Multiple Right-Hand Sides)

 	 SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK (Rank-K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix)

 	 SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K (Rank-2K Update of a Real or Complex Symmetric or a Complex Hermitian
 Matrix)

 	 SGETMI, DGETMI, CGETMI, ZGETMI, CGECMI and ZGECMI (General Matrix Transpose or Conjugate Transpose [In-Place])

 	 SGETMO, DGETMO, CGETMO, ZGETMO, CGECMO, and ZGECMO (General Matrix Transpose or Conjugate Transpose [Out-of-Place])

 	 Linear Algebraic Equations
 	 Overview of the Linear Algebraic Equation Subroutines
 	 Dense Linear Algebraic Equation Subroutines

 	 Banded Linear Algebraic Equation Subroutines

 	 Sparse Linear Algebraic Equation Subroutines

 	 Linear Least Squares Subroutines

 	 Dense and Banded Linear Algebraic Equation Considerations
 	 Use Considerations

 	 Performance and Accuracy Considerations

 	 Sparse Matrix Direct Solver Considerations
 	 Use Considerations

 	 Performance and Accuracy Considerations

 	 Sparse Matrix Skyline Solver Considerations
 	 Use Considerations

 	 Performance and Accuracy Considerations

 	 Sparse Matrix Iterative Solver Considerations
 	 Use Considerations

 	 Performance and Accuracy Considerations

 	 Linear Least Squares Considerations
 	 Use Considerations

 	 Performance and Accuracy Considerations

 	 Dense Linear Algebraic Equation Subroutines

 	 SGESV, DGESV, CGESV, ZGESV (General Matrix Factorization and Multiple Right-Hand Side Solve)

 	 SGETRF, DGETRF, CGETRF and ZGETRF (General Matrix Factorization)

 	 SGETRS, DGETRS, CGETRS, and ZGETRS (General Matrix Multiple Right-Hand Side Solve)

 	 SGEF, DGEF, CGEF, and ZGEF (General Matrix Factorization)

 	 SGES, DGES, CGES, and ZGES (General Matrix, Its Transpose, or Its Conjugate Transpose Solve)

 	 SGESM, DGESM, CGESM, and ZGESM (General Matrix, Its Transpose, or Its Conjugate Transpose Multiple Right-Hand Side Solve)

 	 SGECON, DGECON, CGECON, and ZGECON (Estimate the Reciprocal of the Condition Number of a General Matrix)

 	 SGEFCD and DGEFCD (General Matrix Factorization, Condition Number Reciprocal, and Determinant)

 	 SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and DGEICD (General Matrix Inverse, Condition Number Reciprocal, and Determinant)

 	 SLANGE, DLANGE, CLANGE, and ZLANGE (General Matrix Norm)

 	 SPPSV, DPPSV, CPPSV, and ZPPSV (Positive Definite Real Symmetric and Complex Hermitian Matrix Factorization and Multiple
 Right-Hand Side Solve)

 	 SPOSV, DPOSV, CPOSV, and ZPOSV (Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization and Multiple Right-Hand
 Side Solve)

 	 SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, ZPOF, SPPTRF, DPPTRF, CPPTRF, ZPPTRF, SPPF, and DPPF (Positive Definite
 Real Symmetric or Complex Hermitian Matrix Factorization)

 	 SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM, ZPOSM, SPPTRS, DPPTRS, CPPTRS, and ZPPTRS (Positive Definite Real Symmetric
 or Complex Hermitian Matrix Multiple Right-Hand Side Solve)

 	 SPPS and DPPS (Positive Definite Real Symmetric Matrix Solve)

 	 SPOCON, DPOCON, CPOCON, ZPOCON, SPPCON, DPPCON, CPPCON, and ZPPCON (Estimate the Reciprocal of the Condition Number of a
 Positive Definite Real Symmetric or Complex Hermitian Matrix)

 	 SPPFCD, DPPFCD, SPOFCD, and DPOFCD (Positive Definite Real Symmetric Matrix Factorization, Condition Number Reciprocal, and
 Determinant)

 	 SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, DPOICD, SPPTRI, DPPTRI, CPPTRI, ZPPTRI, SPPICD, and DPPICD (Positive Definite Real
 Symmetric or Complex Hermitian Matrix Inverse, Condition Number Reciprocal, and Determinant)

 	 SLANSY, DLANSY, CLANHE, ZLANHE, SLANSP, DLANSP, CLANHP, and ZLANHP (Real Symmetric or Complex Hermitian Matrix Norm)

 	 SSYSV, DSYSV, CSYSV, ZSYSV, CHESV, ZHESV, SSPSV, DSPSV, CSPSV, ZSPSV, CHPSV, and ZHPSV (Indefinite Real or Complex Symmetric
 or Complex Hermitian Matrix Factorization and Multiple Right-Hand Side Solve)

 	 SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF, and ZHPTRF (Indefinite Real or Complex
 Symmetric or Complex Hermitian Matrix Factorization)

 	 SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, ZHETRS, SSPTRS, DSPTRS, CSPTRS, ZSPTRS, CHPTRS, and ZHPTRS (Indefinite Real or Complex
 Symmetric or Complex Hermitian Matrix Multiple Right-Hand Side Solve)

 	 DBSSV (Symmetric Indefinite Matrix Factorization and Multiple Right-Hand Side Solve)

 	 DBSTRF (Symmetric Indefinite Matrix Factorization)

 	 DBSTRS (Symmetric Indefinite Matrix Multiple Right-Hand Side Solve)

 	 STRTRI, DTRTRI, CTRTRI, ZTRTRI, STPTRI, DTPTRI, CTPTRI, and ZTPTRI (Triangular Matrix Inverse)

 	 SLANTR, DLANTR, CLANTR, ZLANTR, SLANTP, DLANTP, CLANTP, and ZLANTP (Trapezoidal or Triangular Matrix Norm)

 	 Banded Linear Algebraic Equation Subroutines

 	 SGBSV, DGBSV, CGBSV, and ZGBSV (General Band Matrix Factorization and Multiple Right-Hand Side Solve)

 	 SGBTRF, DGBTRF, CGBTRF and ZGBTRF (General Band Matrix Factorization)

 	 SGBTRS, DGBTRS, CGBTRS, and ZGBTRS (General Band Matrix Multiple Right-Hand Side Solve)

 	 SGBS and DGBS (General Band Matrix Solve)

 	 SPBSV, DPBSV, CPBSV, and ZPBSV (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Factorization and Multiple
 Right-Hand Side Solve)

 	 SPBTRF, DPBTRF, CPBTRF, and ZPBTRF (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Factorization)

 	 SPBTRS, DPBTRS, CPBTRS, and ZPBTRS (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Multiple Right-Hand
 Side Solve)

 	 SGTSV, DGTSV, CGTSV, and ZGTSV (General Tridiagonal Matrix Factorization and Multiple Right-Hand Side Solve)

 	 SGTTRF, DGTTRF, CGTTRF, and ZGTTRF (General Tridiagonal Matrix Factorization)

 	 SGTTRS, DGTTRS, CGTTRS, and ZGTTRS (General Tridiagonal Matrix Multiple Right-Hand Side Solve)

 	 SPTSV, DPTSV, CPTSV, and ZPTSV (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Factorization and
 Multiple Right-Hand Side Solve)

 	 SPTTRF, DPTTRF, CPTTRF, and ZPTTRF (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Factorization)

 	 SPTTRS, DPTTRS, CPTTRS, and ZPTTRS (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Multiple Right-Hand
 Solve)

 	 SGBF and DGBF (General Band Matrix Factorization)

 	 SGBS and DGBS (General Band Matrix Solve)

 	 SPBF, DPBF, SPBCHF, and DPBCHF (Positive Definite Symmetric Band Matrix Factorization)

 	 SPBS, DPBS, SPBCHS, and DPBCHS (Positive Definite Symmetric Band Matrix Solve)

 	 SGTF and DGTF (General Tridiagonal Matrix Factorization)

 	 SGTS and DGTS (General Tridiagonal Matrix Solve)

 	 SGTNP, DGTNP, CGTNP, and ZGTNP (General Tridiagonal Matrix Combined Factorization and Solve with No Pivoting)

 	 SGTNPF, DGTNPF, CGTNPF, and ZGTNPF (General Tridiagonal Matrix Factorization with No Pivoting)

 	 SGTNPS, DGTNPS, CGTNPS, and ZGTNPS (General Tridiagonal Matrix Solve with No Pivoting)

 	 SPTF and DPTF (Positive Definite Symmetric Tridiagonal Matrix Factorization)

 	 SPTS and DPTS (Positive Definite Symmetric Tridiagonal Matrix Solve)

 	 Sparse Linear Algebraic Equation Subroutines

 	 DGSF (General Sparse Matrix Factorization Using Storage by Indices, Rows, or Columns)

 	 DGSS (General Sparse Matrix or Its Transpose Solve Using Storage by Indices, Rows, or Columns)

 	 DGKFS (General Sparse Matrix or Its Transpose Factorization, Determinant, and Solve Using Skyline Storage Mode)

 	 DSKFS (Symmetric Sparse Matrix Factorization, Determinant, and Solve Using Skyline Storage Mode)

 	 DSRIS (Iterative Linear System Solver for a General or Symmetric Sparse Matrix Stored by Rows)

 	 DSMCG (Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve Using Compressed-Matrix Storage Mode)

 	 DSDCG (Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve Using Compressed-Diagonal Storage Mode)

 	 DSMGCG (General Sparse Matrix Iterative Solve Using Compressed-Matrix Storage Mode)

 	 DSDGCG (General Sparse Matrix Iterative Solve Using Compressed-Diagonal Storage Mode)

 	 Linear Least Squares Subroutines

 	 SGESVD, DGESVD, CGESVD, ZGESVD, SGESDD, DGESDD, CGESDD, and ZGESDD (Singular Value Decomposition for a General Matrix)

 	 SGEQRF, DGEQRF, CGEQRF, and ZGEQRF (General Matrix QR Factorization)

 	 SGELS, DGELS, CGELS, and ZGELS (Linear Least Squares Solution for a General Matrix)

 	 SGELSD, DGELSD, CGELSD, and ZGELSD (Linear Least Squares Solution for a General Matrix Using the Singular Value Decomposition)

 	 SGESVF and DGESVF (Singular Value Decomposition for a General Matrix)

 	 SGESVS and DGESVS (Linear Least Squares Solution for a General Matrix Using the Singular Value Decomposition)

 	 SGELLS and DGELLS (Linear Least Squares Solution for a General Matrix with Column Pivoting)

 	 Eigensystem Analysis
 	 Overview of the Eigensystem Analysis Subroutines

 	 Performance and Accuracy Considerations

 	 Eigensystem Analysis Subroutines

 	 SGEEV, DGEEV, CGEEV, ZGEEV, SGEEVX, DGEEVX, CGEEVX, and ZGEEVX (Eigenvalues and, Optionally, Right Eigenvectors, Left Eigenvectors,
 Reciprocal Condition Numbers for Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a General Matrix)

 	 SSYEV, DSYEV, CHEEV, ZHEEV, SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX, DSYEVX, CHEEVX, and ZHEEVX (Eigenvalues and, Optionally,
 the Eigenvectors of a Real Symmetric or Complex Hermitian Matrix)

 	 SSPEVD, DSPEVD, CHPEVD, ZHPEVD, SSYEVD, DSYEVD, CHEEVD, and ZHEEVD (Eigenvalues and, Optionally the Eigenvectors, of a Real
 Symmetric or Complex Hermitian Matrix Using a Divide-and-Conquer Algorithm)

 	 SGGEV, DGGEV, CGGEV, ZGGEV, SGGEVX, DGGEVX, CGGEVX, and ZGGEVX (Eigenvalues and, Optionally, Right Eigenvectors, Left Eigenvectors,
 Reciprocal Condition Numbers for Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a General Matrix
 Generalized Eigenproblem)

 	 SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX, DSYGVX, CHEGVX, and ZHEGVX (Eigenvalues and, Optionally, the Eigenvectors of a Positive
 Definite Real Symmetric or Complex Hermitian Generalized Eigenproblem)

 	 Fourier Transforms, Convolutions and Correlations, and Related Computations
 	 Overview of the Signal Processing Subroutines
 	 Fourier Transforms Subroutines

 	 Convolution and Correlation Subroutines

 	 Related-Computation Subroutines

 	 Fourier Transforms, Convolutions, and Correlations Considerations
 	 Use Considerations
 	 Understanding the Terminology and Conventions Used for Your Array Data

 	 Concerns about Lengths of Transforms

 	 Determining an Acceptable Length of a Transform

 	 Acceptable Lengths for the Transforms

 	 Understanding Auxiliary Working Storage Requirements

 	 Initializing Auxiliary Working Storage

 	 Determining the Amount of Auxiliary Working Storage That You Need

 	 Performance and Accuracy Considerations
 	 When Running on the Workstation Processors

 	 Defining Arrays

 	 Fourier Transform Considerations
 	 Setting Up Your Data

 	 Using the Scale Argument

 	 How the Fourier Transform Subroutines Achieve High Performance

 	 Convolution and Correlation Considerations
 	 Performance Tradeoffs between Subroutines

 	 Special Uses of SCORD

 	 Special Uses of _DCON and _DCOR

 	 Accuracy When Direct Methods Are Used

 	 Accuracy When Fourier Methods Are Used

 	 Convolutions and Correlations by Fourier Methods

 	 Related Computation Considerations
 	 Accuracy Considerations

 	 Fourier Transform Subroutines

 	 SCFTD and DCFTD (Multidimensional Complex Fourier Transform)

 	 SRCFTD and DRCFTD (Multidimensional Real-to-Complex Fourier Transform)

 	 SCRFTD and DCRFTD (Multidimensional Complex-to-Real Fourier Transform)

 	 SCFT and DCFT (Complex Fourier Transform)

 	 SRCFT and DRCFT (Real-to-Complex Fourier Transform)

 	 SCRFT and DCRFT (Complex-to-Real Fourier Transform)

 	 SCOSF and DCOSF (Cosine Transform)

 	 SSINF and DSINF (Sine Transform)

 	 SCFT2 and DCFT2 (Complex Fourier Transform in Two Dimensions)

 	 SRCFT2 and DRCFT2 (Real-to-Complex Fourier Transform in Two Dimensions)

 	 SCRFT2 and DCRFT2 (Complex-to-Real Fourier Transform in Two Dimensions)

 	 SCFT3 and DCFT3 (Complex Fourier Transform in Three Dimensions)

 	 SRCFT3 and DRCFT3 (Real-to-Complex Fourier Transform in Three Dimensions)

 	 SCRFT3 and DCRFT3 (Complex-to-Real Fourier Transform in Three Dimensions)

 	 Convolution and Correlation Subroutines

 	 SCON and SCOR (Convolution or Correlation of One Sequence with One or More Sequences)

 	 SCOND and SCORD (Convolution or Correlation of One Sequence with Another Sequence Using a Direct Method)

 	 SCONF and SCORF (Convolution or Correlation of One Sequence with One or More Sequences Using the Mixed-Radix Fourier Method)

 	 SDCON, DDCON, SDCOR, and DDCOR (Convolution or Correlation with Decimated Output Using a Direct Method)

 	 SACOR (Autocorrelation of One or More Sequences)

 	 SACORF (Autocorrelation of One or More Sequences Using the Mixed-Radix Fourier Method)

 	 Related-Computation Subroutines

 	 SPOLY and DPOLY (Polynomial Evaluation)

 	 SIZC and DIZC (I-th Zero Crossing)

 	 STREC and DTREC (Time-Varying Recursive Filter)

 	 SQINT and DQINT (Quadratic Interpolation)

 	 SWLEV, DWLEV, CWLEV, and ZWLEV (Wiener-Levinson Filter Coefficients)

 	 Sorting and Searching
 	 Overview of the Sorting and Searching Subroutines

 	 Use Considerations

 	 Performance and Accuracy Considerations

 	 Sorting and Searching Subroutines

 	 ISORT, SSORT, and DSORT (Sort the Elements of a Sequence)

 	 ISORTX, SSORTX, and DSORTX (Sort the Elements of a Sequence and Note the Original Element Positions)

 	 ISORTS, SSORTS, and DSORTS (Sort the Elements of a Sequence Using a Stable Sort and Note the Original Element Positions)

 	 IBSRCH, SBSRCH, and DBSRCH (Binary Search for Elements of a Sequence X in a Sorted Sequence Y)

 	 ISSRCH, SSSRCH, and DSSRCH (Sequential Search for Elements of a Sequence X in the Sequence Y)

 	 Interpolation
 	 Overview of the Interpolation Subroutines

 	 Use Considerations

 	 Performance and Accuracy Considerations

 	 Interpolation Subroutines

 	 SPINT and DPINT (Polynomial Interpolation)

 	 STPINT and DTPINT (Local Polynomial Interpolation)

 	 SCSINT and DCSINT (Cubic Spline Interpolation)

 	 SCSIN2 and DCSIN2 (Two-Dimensional Cubic Spline Interpolation)

 	 Numerical Quadrature
 	 Overview of the Numerical Quadrature Subroutines

 	 Use Considerations
 	 Choosing the Method

 	 Performance and Accuracy Considerations

 	 Programming Considerations for the SUBF Subroutine
 	 Designing SUBF

 	 Coding and Setting Up SUBF in Your Program

 	 Numerical Quadrature Subroutines

 	 SPTNQ and DPTNQ (Numerical Quadrature Performed on a Set of Points)

 	 SGLNQ and DGLNQ (Numerical Quadrature Performed on a Function Using Gauss-Legendre Quadrature)

 	 SGLNQ2 and DGLNQ2 (Numerical Quadrature Performed on a Function Over a Rectangle Using Two-Dimensional Gauss-Legendre Quadrature)

 	 SGLGQ and DGLGQ (Numerical Quadrature Performed on a Function Using Gauss-Laguerre Quadrature)

 	 SGRAQ and DGRAQ (Numerical Quadrature Performed on a Function Using Gauss-Rational Quadrature)

 	 SGHMQ and DGHMQ (Numerical Quadrature Performed on a Function Using Gauss-Hermite Quadrature)

 	 Random Number Generation
 	 Overview of the Random Number Generation Subroutines

 	 Use Considerations

 	 Random Number Generation Subroutines

 	 INITRNG (Initialize Random Number Generators)

 	 SURNG and DURNG (Generate a Vector of Uniformly Distributed Pseudo-Random Numbers)

 	 SNRNG and DNRNG (Generate a Vector of Normally Distributed Pseudo-Random numbers)

 	 SURAND and DURAND (Generate a Vector of Uniformly Distributed Random Numbers)

 	 SNRAND and DNRAND (Generate a Vector of Normally Distributed Random Numbers)

 	 SURXOR and DURXOR (Generate a Vector of Long Period Uniformly Distributed Random Numbers)

 	 Utilities
 	 Overview of the Utility Subroutines

 	 Use Considerations
 	 Determining the Level of ESSL Installed

 	 Finding the Optimal Stride(s) for Your Fourier Transforms

 	 Converting Sparse Matrix Storage

 	 Utility Subroutines

 	 EINFO (ESSL Error Information-Handler Subroutine)

 	 ERRSAV (ESSL ERRSAV Subroutine)

 	 ERRSET (ESSL ERRSET Subroutine)

 	 ERRSTR (ESSL ERRSTR Subroutine)

 	 IESSL (Determine the Level of ESSL Installed)

 	 SETGPUS (Set the Number of GPUs and Identify Which GPUs ESSL Should Use)

 	 STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines)

 	 DSRSM (Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode)

 	 DGKTRN (For a General Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode)

 	 DSKTRN (For a Symmetric Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode)

 	 Basic Linear Algebra Subprograms (BLAS) and Complex BLAS (CBLAS)

 	 LAPACK and LAPACKE

 	 FFTW Version 3.1.2 to ESSL Wrapper Libraries

 	 Using ESSL with netlib-java and Python

 	 Accessibility Features for ESSL
 	 Accessibility Features

 	 IBM and Accessibility

 	 Notices
 	 Trademarks

 	 Software Update Protocol

 	 Programming Interfaces

 	 Bibiography

 Tables

 	Table 1. Abbreviated names

 	Table 2. Summary of
 typographic conventions

 	Table 3. Syntax for all subroutines

 	Table 4. Syntax for CBLAS subroutines

 	Table 5. Syntax for LAPACKE subroutines

 	Table 6. Translating character argument values to CBLAS enumerated types

 	Table 7. Summary of ESSL
 Subroutines

 	Table 8. Operating systems supported
 by ESSL

 	Table 9. Required Software Products for ESSL for AIX

 	Table 10. Required Software Products for ESSL

 	Table 11. Software needed to display various formats
 of ESSL online information

 	Table 12. List of Vector-Scalar
 Linear Algebra Subprograms

 	Table 13. List of Sparse Vector-Scalar
 Linear Algebra Subprograms

 	Table 14. List of Matrix-Vector
 Linear Algebra Subprograms

 	Table 15. List of Sparse Matrix-Vector Linear Algebra Subprograms

 	Table 16. List of Matrix
 Operation Subroutines

 	Table 17. List of LAPACK Dense Linear Algebraic Equation Subroutines

 	Table 18. List of Dense
 Linear Algebraic Equation Subroutines

 	Table 19. List of LAPACK
 Banded Linear Algebraic Equation Subroutines

 	Table 20. List of non-LAPACK
 Banded Linear Algebraic Equation Subroutines

 	Table 21. List of Sparse Linear Algebraic
 Equation Subroutines

 	Table 22. List of LAPACK Linear
 Least Squares Subroutines

 	Table 23. List of Non–LAPACK
 Linear Least Squares Subroutines

 	Table 24. List of LAPACK Eigensystem Analysis Subroutines

 	Table 25. List of Fourier Transform Subroutines

 	Table 26. List of Convolution and Correlation
 Subroutines

 	Table 27. List of Related-Computation Subroutines

 	Table 28. List of Sorting and Searching Subroutines

 	Table 29. List of Interpolation
 Subroutines

 	Table 30. List of Numerical Quadrature
 Subroutines

 	Table 31. List
 of Random Number Generation Initialization Subroutines

 	Table 32. List of Random Number
 Generation Subroutines

 	Table 33. List of Utility Subroutines

 	Table 34. VSX Alignment Requirements
 for SIMD Algorithms in Linear Algebra Subroutines

 	Table 35. VSX Alignment Requirements
 for SIMD Algorithms in Fourier Transform Subroutines and Convolution
 and Correlation Subroutines

 	Table 36. ESSL Subroutines
 that Automatically Use SIMD Algorithms When Alignment Restrictions
 are Met on VSX-enabled Processors

 	Table 37. AltiVec-Enabled Processor
 Alignment Restrictions for SIMD Algorithms in Linear Algebra Subroutines

 	Table 38. AltiVec-Enabled Processor
 Alignment Restrictions for SIMD Algorithms in Fourier Transform and
 Fourier Method Convolution and Correlation Subroutines

 	Table 39. ESSL
 Subroutines that Automatically Use SIMD Algorithms When Alignment
 Restrictions are Met on POWER 6
 AltiVec-Enabled Processors

 	Table 40. Multithreaded Subroutines

 	Table 41. ESSL Subroutines
 Requiring Auxiliary Working Storage

 	Table 42. Example of Input-Argument Error Recovery for Auxiliary Storage Sizes

 	Table 43. ESSL Subroutines Requiring Transform Lengths

 	Table 44. Example of
 Input-Argument Error Recovery for Transform Lengths

 	Table 45. ESSL Error
 Option Table Default Values

 	Table 46. Scalar Data Types in Fortran Programs

 	Table 47. Scalar Data
 Types in C Programs

 	Table 48. Scalar Data
 Types in C++ Programs

 	Table 49. Fortran
 Compile Commands on AIX

 	Table 50. Fortran Compile Commands on AIX for use with FFTW Wrapper libraries

 	Table 51. C Compile and Link Commands on AIX

 	Table 52. C Compile and Link Commands on AIX for use with FFTW Wrapper Libraries

 	Table 53. C++ Compile and Link Commands on AIX

 	Table 54. C++ Compile and Link Commands on AIX for Use with FFTW Wrapper Libraries

 	Table 55. Fortran Compile Commands
 on Linux (little endian mode)

 	Table 56. Fortran Compile Commands
 on Linux for Use with FFTW
 Wrapper Libraries

 	Table 57. C Compile and Link Commands on Linux (little endian mode)

 	Table 58. C Compile and Link Commands
 on Linux for Use with FFTW
 Wrapper Libraries (little endian mode)

 	Table 59. gcc Compile and Link Commands on Linux (little endian
 mode)

 	Table 60. gcc Compile and Link Commands
 on Linux for Use with FFTW
 Wrapper Libraries (little endian mode)

 	Table 61. C++ Compile and Link Commands on Linux (little endian mode)

 	Table 62. C++ Compile and Link Commands
 on Linux for Use with FFTW
 Wrapper Libraries (little endian mode)

 	Table 63. g++ Compile
 and Link Commands on Linux (little
 endian mode)

 	Table 64. g++ Compile
 and Link Commands on Linux for
 Use with FFTW Wrapper Libraries (little endian mode)

 	Table 65. CBLAS enumerated types changing to type definitions for ESSL Version 5 Release 5

 	Table 66. Replacing
 Non-LAPACK-Conforming subroutines with LAPACK subroutines

 	Table 67. Product
 File Set and Package Names

 	Table 68. List of Vector-Scalar
 Linear Algebra Subprograms

 	Table 69. List of Sparse Vector-Scalar
 Linear Algebra Subprograms

 	Table 70. List of Matrix-Vector
 Linear Algebra Subprograms

 	Table 71. List of Sparse Matrix-Vector Linear Algebra Subprograms

 	Table 72. Data Types

 	Table 73. Data Types

 	Table 74. Data Types

 	Table 75. Data Types

 	Table 76. Data Types

 	Table 77. Data Types

 	Table 78. Data Types

 	Table 79. Data
 Types

 	Table 80. Data Types

 	Table 81. Data Types

 	Table 82. Data Types

 	Table 83. Data Types

 	Table 84. Data Types

 	Table 85. Data
 Types

 	Table 86. Data Types

 	Table 87. Data Types

 	Table 88. Data Types

 	Table 89. Data Types

 	Table 90. Data Types

 	Table 91. Data Types

 	Table 92. Data Types

 	Table 93. Data Types

 	Table 94. Data Types

 	Table 95. Data Types

 	Table 96. Data Types

 	Table 97. Data Types

 	Table 98. Data Types

 	Table 99. Data Types

 	Table 100. Data Types

 	Table 101. Data Types

 	Table 102. Data
 Types

 	Table 103. Data
 Types

 	Table 104. Data
 Types

 	Table 105. Data Types

 	Table 106. Data Types

 	Table 107. Data
 Types

 	Table 108. Data Types

 	Table 109. Data Types

 	Table 110. Data Types

 	Table 111. List of Matrix
 Operation Subroutines

 	Table 112. Data Types

 	Table 113. Data Types

 	Table 114. Data
 Types

 	Table 115. Data
 Types

 	Table 116. Data
 Types

 	Table 117. Data
 Types

 	Table 118. Data
 Types

 	Table 119. Data Types

 	Table 120. Data
 Types

 	Table 121. Data
 Types

 	Table 122. Data Types

 	Table 123. Data Types

 	Table 124. List of LAPACK Dense Linear Algebraic Equation Subroutines

 	Table 125. List of Dense
 Linear Algebraic Equation Subroutines

 	Table 126. List of LAPACK
 Banded Linear Algebraic Equation Subroutines

 	Table 127. List of non-LAPACK
 Banded Linear Algebraic Equation Subroutines

 	Table 128. List of Sparse Linear Algebraic
 Equation Subroutines

 	Table 129. List of LAPACK Linear
 Least Squares Subroutines

 	Table 130. List of Non–LAPACK
 Linear Least Squares Subroutines

 	Table 131. Data Types

 	Table 132. Data Types

 	Table 133. Data Types

 	Table 134. Data Types

 	Table 135. Data Types

 	Table 136. Data Types

 	Table 137. Data Types

 	Table 138. Data Types

 	Table 139. Data Types

 	Table 140. Data Types

 	Table 141. Data Types

 	Table 142. Data Types

 	Table 143. Data Types

 	Table 144. Data Types

 	Table 145. Data
 Types

 	Table 146. Data Types

 	Table 147. Data Types

 	Table 148. Data Types

 	Table 149. Data Types

 	Table 150. Data Types

 	Table 151. Data Types

 	Table 152. Data Types

 	Table 153. Data Types

 	Table 154. Data Types

 	Table 155. Data Types

 	Table 156. Data
 Types

 	Table 157. Data
 Types

 	Table 158. Data
 Types

 	Table 159. Data Types

 	Table 160. Data Types

 	Table 161. Data Types

 	Table 162. Data Types

 	Table 163. Data Types

 	Table 164. Data Types

 	Table 165. Data Types

 	Table 166. Data Types

 	Table 167. Data Types

 	Table 168. Data Types

 	Table 169. Data Types

 	Table 170. Data Types

 	Table 171. Data Types

 	Table 172. Data Types

 	Table 173. Data Types

 	Table 174. Data
 Types

 	Table 175. Data Types

 	Table 176. Data Types

 	Table 177. Data Types

 	Table 178. Data Types

 	Table 179. Data Types

 	Table 180. Data
 Types

 	Table 181. Data Types

 	Table 182. Data Types

 	Table 183. Data Types

 	Table 184. Data
 Types

 	Table 185. Data Types

 	Table 186. Data Types

 	Table 187. Data Types

 	Table 188. Data Types

 	Table 189. List of LAPACK Eigensystem Analysis Subroutines

 	Table 190. Data Types

 	Table 191. Data Types

 	Table 192. Data Types

 	Table 193. Data Types

 	Table 194. Data Types

 	Table 195. List of Fourier Transform Subroutines

 	Table 196. List of Convolution and Correlation Subroutines

 	Table 197. List of Related-Computation Subroutines

 	Table 198. Fourier Transform subroutines
 allowing all lengths between 0 and 1073479680

 	Table 199. Fourier Transform subroutines
 whose lengths are limited to those in
 Figure 1

 	Table 200. Data Types

 	Table 201. Data Types

 	Table 202. Data Types

 	Table 203. Data Types

 	Table 204. Data Types

 	Table 205. Data Types

 	Table 206. Data Types

 	Table 207. Data Types

 	Table 208. Data Types

 	Table 209. Data Types

 	Table 210. Data
 Types

 	Table 211. Data Types

 	Table 212. Data Types

 	Table 213. Data
 Types

 	Table 214. Data Types

 	Table 215. Data Types

 	Table 216. Data Types

 	Table 217. Data Types

 	Table 218. Data Types

 	Table 219. Data Types

 	Table 220. List of Sorting and Searching Subroutines

 	Table 221. Data Types

 	Table 222. Data Types

 	Table 223. Data Types

 	Table 224. Data Types

 	Table 225. Data Types

 	Table 226. List of Interpolation
 Subroutines

 	Table 227. Data Types

 	Table 228. Data Types

 	Table 229. Data Types

 	Table 230. Data Types

 	Table 231. List of Numerical Quadrature
 Subroutines

 	Table 232. Data
 Types

 	Table 233. Data Types

 	Table 234. Data Types

 	Table 235. How to Assign Your
 Variables for x-y Integration Versus y-x Integration

 	Table 236. Data Types

 	Table 237. Data Types

 	Table 238. Data Types

 	Table 239. List
 of Random Number Generation Initialization Subroutines

 	Table 240. List of Random Number
 Generation Subroutines

 	Table 241. Data Types

 	Table 242. Data
 Types

 	Table 243. Data Types

 	Table 244. Data
 Types

 	Table 245. Data Types

 	Table 246. List of Utility Subroutines

 	Table 247. Computational Error Information
 Returned by EINFO

 	Table 248. Level 1 BLAS Included in ESSL

 	Table 249. Level 2 BLAS Included in ESSL

 	Table 250. Level 3 BLAS Included in ESSL

 	Table 251. LAPACK [image: Start of change]and LAPACKE[image: End of change] subroutines included in ESSL

 	Table 252. List of available C and Fortran wrappers

 About this information

 This provides guide and reference information for using ESSL in
 doing application programming. It includes:

 	An overview of ESSL and guidance information for designing, coding,
 and processing your program, as well as migrating existing programs,
 and diagnosing problems

 	Reference information for coding each ESSL calling sequence

 This documentation is written for a wide class of ESSL users: scientists,
 mathematicians, engineers, statisticians, computer scientists, and
 system programmers. It assumes a basic knowledge of mathematics in
 the areas of ESSL computation. It also assumes that users are familiar
 with Fortran, C, and C++ programming.

 	How to Use This Information

 	Where to Find Related Publications

 	IBM Request for Enhancement (RFE) Community

 	How to Find a Subroutine Description

 	How to Interpret the Subroutine Names with a Prefix Underscore

 	Special Terms

 	Abbreviated Names

 	Conventions and terminology used

 	How to Interpret the Subroutine Descriptions

 	How to Send Your Comments

 How to Use This Information

 Guide Information provides
 guidance information for using ESSL. It covers the user-oriented tasks
 of learning, designing, coding, migrating, processing, and diagnosing.
 Refer to the following when performing any of these tasks:

 	Introduction and Requirements gives
 an introduction to ESSL, providing highlights and general information.
 Read this first to determine the aspects of ESSL you want to use.

 	Planning Your Program provides
 ESSL-specific information that helps you design your program. Read
 this before designing your program.

 	Setting Up Your Data Structures describes
 all types of data structures, such as vectors, matrices, and sequences.
 Use this information when designing and coding your program.

 	Coding Your Program tells you
 how to code your scalar and array data, how to code calls to ESSL
 in Fortran, C, and C++ programs, and how to do the coding necessary
 to handle errors. Use this information when coding your program.

 	Processing Your Program describes
 how to process your program under your particular operating system
 on your hardware. Use this information after you have coded your program
 and are ready to run it.

 	Migrating Your Programs explains
 all aspects of migration to ESSL, to this version of ESSL, to different
 processors, and to future releases and future processors. Read this
 before starting to design your program.

 	Handling Problems provides
 diagnostic procedures for analyzing all ESSL problems. When you encounter
 a problem, use the symptom indexes at the beginning to guide you
 to the appropriate diagnostic procedure.

 Reference Information provides
 reference information you need to code the ESSL calling sequences.
 It covers each of the mathematical areas of ESSL, and the utility
 subroutines. The information for each subroutine area begins with
 an introduction, followed by the subroutine descriptions. Each introduction
 applies to all the subroutines in that area and is especially important
 in planning your use of the subroutines and avoiding problems. Use
 the appropriate information when coding your program:

 	Linear Algebra Subprograms

 	Matrix Operations

 	 Linear Algebraic Equations

 	Eigensystem Analysis

 	Fourier Transforms, Convolutions and Correlations, and Related Computations

 	Sorting and Searching

 	Interpolation

 	Numerical Quadrature

 	Random Number Generation

 	Utilities

 Basic Linear Algebra Subprograms (BLAS) and Complex BLAS (CBLAS) provides
 a list of the Level 1, 2, and 3 Basic Linear Algebra Subprograms
 (BLAS) included in ESSL.

 LAPACK and LAPACKE provides
 a list of the LAPACK subroutines included in ESSL.

 FFTW Version 3.1.2 to ESSL Wrapper Libraries provides
 a list of the FFTW subroutines included in ESSL.

 Bibiography provides
 information about publications related to ESSL. Use it when you need
 more information than this documentation provides.

 Parent topic: About this information

 Where to Find Related Publications

 ESSL documentation, as well as other related information,
 can be displayed or downloaded from the Internet at the following
 URL:http://www.ibm.com/support/knowledgecenter/SSFHY8/essl_welcome.html

 Related
 Publications

 The related Web sites listed below may be useful
 to you when using ESSL.

 	Product

 	Web site URL

 	AIX®

 	http://www.ibm.com/servers/aix

 	Linux

 	For general information and documentation on Linux: http://www.tldp.org/

 For
 information about the standard Linux installation procedure
 using the RPM Package Manager (RPM): http://www.rpm.org/

 For
 information about IBM-related offerings for Linux:
 http://www.ibm.com/linux/

 	

 C and C++

 XL Fortran

 	http://www.ibm.com/support/knowledgecenter/,
 under 'Rational' on the left hand pane.

 	NVIDIA

 	http://www.nvidia.comFor
 information about CUDA, see:http://developer.nvidia.com/cuda-toolkit

 For
 the CUDA Toolkit Documentation site, see:http://docs.nvidia.com/cuda/#axzz3VafCSAvr

 	Using Bibliography References

 Parent topic: About this information

 Using Bibliography References

 Special references are made throughout this documentation
 to mathematical background publications and software libraries, available
 through IBM®, publishers, or
 other companies. All of these are described in detail in the bibliography.
 A reference to one of these is made by using a bracketed number. The
 number refers to the item listed under that number in the bibliography.
 For example, reference [1] cites the first
 item listed in the bibliography.

 Parent topic: Where to Find Related Publications

 IBM Request for Enhancement
 (RFE) Community

 The IBM® Requests
 for Enhancements (RFEs) Community provides an opportunity to collaborate
 directly with the IBM product
 development teams and other product users on RFEs.

 You can submit ESSL RFEs at the Servers and Systems Software
 RFE Community:https://www.ibm.com/developerworks/rfe/?BRAND_ID=352

 Parent topic: About this information

 How to Find a Subroutine Description

 If you want to locate a subroutine description and you know the subroutine
 name, you can find it listed individually or under the entry “subroutines,
 ESSL” in the Index.

 Parent topic: About this information

 How to Interpret the Subroutine Names with a Prefix Underscore

 A name specified with an underscore (_) prefix, such as _GEMUL, refers
 to all the versions of the subroutine with that name. To get the entire list
 of subroutines that name refers to, substitute the first letter for each version
 of the subroutine. For example, _GEMUL, refers to all versions of the matrix
 multiplication subroutine: SGEMUL, DGEMUL, CGEMUL, and ZGEMUL. You do not use the underscore in coding the names of the ESSL subroutines
 in your program. You code a complete name, such as SGEMUL. For details about
 these names, see The Variety of Mathematical Functions.

 Parent topic: About this information

 Special Terms

 Standard data processing and mathematical terms are used in this documentation.
 Terminology is generally consistent with that used for Fortran. See the Glossary
 for definitions of terms used.

 	Short and Long Precision

 	Subroutines and Subprograms

 Parent topic: About this information

 Short and Long Precision

 Because ESSL can be used with more than one programming language, the terms short precision and long precision
 are used in place of the Fortran terms single precision and
 double precision.

 Parent topic: Special Terms

 Subroutines and Subprograms

 An ESSL subroutine is a named sequence of instructions
 within the ESSL product library whose execution is invoked by a call. A subroutine
 can be called in one or more user programs and at one or more times within
 each program. The ESSL subroutines are referred to as subprograms in the area of linear algebra subprograms. The term subprograms is used
 because it is consistent with the BLAS. Many of the linear algebra subprograms
 correspond to the BLAS; these are listed in Basic Linear Algebra Subprograms (BLAS) and Complex BLAS (CBLAS).

 Parent topic: Special Terms

 Abbreviated Names

 The abbreviated names used are defined below.

 Table 1. Abbreviated names.

 	Short Name

 	Full Name

 	AIX®

 	Advanced Interactive Executive

 	AltiVec*

 	A tradename, owned solely by Freescale Semiconductor,
 Inc., for a floating point and integer SIMD instruction set designed
 and owned by Apple, IBM®, and
 Freescale (formerly the Semiconductor Products Sector of Motorola).

 	BLAS

 	Basic Linear Algebra Subprograms (see Basic Linear Algebra Subprograms (BLAS) and Complex BLAS (CBLAS))

 	CBLAS

 	C interface to the BLAS (see Basic Linear Algebra Subprograms (BLAS) and Complex BLAS (CBLAS))

 	CUDA

 	Parallel computing platform and programming
 model invented by NVIDIA

 	ESSL

 	IBM Engineering and Scientific
 Subroutine Library

 	FFTW

 	Fastest Fourier Transform in the West (see FFTW Version 3.1.2 to ESSL Wrapper Libraries)

 	GPU

 	Graphics processing unit

 	HTML

 	Hypertext Markup Language

 	LAPACK

 	Linear Algebra Package (see LAPACK and LAPACKE)

 	[image: Start of change]LAPACKE[image: End of change]

 	C Interface to LAPACK (see LAPACK and LAPACKE)

 	OpenMP

 	Open Multi-Processing

 	SL MATH

 	Subroutine Library—Mathematics

 	SMP

 	Symmetric Multi-Processing

 	SSP

 	Scientific Subroutine Package

 	
 *AltiVec is a trademark of Freescale Semiconductor,
 Inc.

 	

 Parent topic: About this information

 Conventions and terminology used

 Table 2 describes the typographic conventions
 used.

 Table 2. Summary of
 typographic conventions.

 	Typographic

 	Usage

 	Bold

 	Bold words or characters
 represent system elements that you must use literally, such as commands, flags,
 and path names.

 	Italic

 	

 	Italic words or characters represent variable
 values that you must supply.

 	Italics are also used for book titles and for
 general emphasis in text.

 	Constant width

 	Examples and information that the system
 displays appear in constant width typeface.

 	[]

 	Brackets enclose optional items in format
 and syntax descriptions.

 	{ }

 	Braces enclose a list from which you must
 choose an item in format and syntax descriptions.

 	|

 	A vertical bar separates items in a list
 of choices. (In other words, it means “or.”)

 	< >

 	Angle brackets (less-than and greater-than)
 enclose the name of a key on the keyboard. For example, <Enter> refers
 to the key on your terminal or workstation that is labeled with the word Enter.

 	…

 	An ellipsis indicates that you can repeat
 the preceding item one or more times.

 	<Ctrl-x>

 	The notation <Ctrl-x> indicates a control character sequence. For example, <Ctrl-c> means that you hold down the control key while pressing <c>.

 	\

 	The continuation character is used in coding examples
 for formatting purposes.

 Conventions that are consistent with traditional mathematical usage are
 followed.

 	Fonts

 	Special Notations and Conventions

 	Special Characters, Symbols, Expressions, and Abbreviations

 Parent topic: About this information

 Fonts

 A variety of special fonts are used to distinguish between many mathematical
 and programming items. These are defined below.

 	Special Font

 	Example

 	Description

 	Italic with no subscripts

 	m, inc1x, aux, iopt

 	Calling sequence argument or mathematical variable

 	Italic with subscripts

 	x1, amn, xj1,j2

 	Element of a vector, matrix, or sequence

 	Bold italic lowercase

 	x, y, z

 	Vector or sequence

 	Bold italic uppercase

 	A, B, C

 	Matrix

 	Gothic uppercase

 	A, B, C, AGB

 IM=ISMAX(4,X,2)

 	Array

 Fortran statement

 Parent topic: Conventions and terminology used

 Special Notations and Conventions

 This explains the special notations and conventions used to describe various
 types of data.

 	Scalar Data

 	Vectors

 	Matrices

 	Sequences

 	Arrays

 Parent topic: Conventions and terminology used

 Scalar Data

 Following are the special notations used in the examples
 for scalar data items. These notations are used to simplify the examples,
 and they do not imply usage of any precision. For a definition of
 scalar data in Fortran, C, and C++, see Coding Your Program.

 	Data Item

 	Example

 	Description

 	Character item

 	'T'

 	Character(s) in single quotation marks

 	Hexadecimal string

 	X'97FA00C1'

 	String of 4-bit hexadecimal characters

 	Logical item

 	.TRUE. .FALSE.

 	True or false logical value, as indicated

 	Integer data

 	1

 	Number with no decimal point

 	Real data

 	1.6

 	Number with a decimal point

 	Complex data

 	(1.0,–2.9)

 	Real part followed by the imaginary part

 	

 Continuation

 	 -
1.6666

 	

 Continue the last digit

 (1.6666666… and so forth)

 Parent topic: Special Notations and Conventions

 Vectors

 A vector is represented as a single row or column of subscripted
 elements enclosed in square brackets. The subscripts refer to the
 element positions within the vector:

 [image: Vector Graphic]

 For a definition of vector, see Vectors.

 Parent topic: Special Notations and Conventions

 Matrices

 A matrix is represented as a block of elements enclosed in square
 brackets. Subscripts refer to the row and column positions, respectively:

 [image: Matrix Graphic]

 For a definition of matrix, see Matrices.

 Parent topic: Special Notations and Conventions

 Sequences

 Sequences are used in the areas of sorting, searching, Fourier transforms,
 convolutions, and correlations. For a definition of sequences, see Sequences.

 	One-Dimensional Sequences

 	Two-Dimensional Sequences

 	Three-Dimensional Sequences

 Parent topic: Special Notations and Conventions

 One-Dimensional Sequences

 A one-dimensional sequence is represented as a series of elements enclosed
 in parentheses. Subscripts refer to the element position within the sequence:

 (

 x

 1

 ,

 x

 2

 ,

 x

 3

 , …,

 x

 n

)

 Parent topic: Sequences

 Two-Dimensional Sequences

 A two-dimensional sequence is represented as a series of columns
 of elements. (They are represented in the same way as a matrix without
 the square brackets.) Subscripts refer to the element positions within
 the first and second dimensions, respectively:

 [image: Two-Dimensional Sequence Graphic]

 Parent topic: Sequences

 Three-Dimensional Sequences

 A three-dimensional sequence is represented as a series of blocks of elements.
 Subscripts refer to the elements positions within the first, second, and third
 dimensions, respectively:

 [image: Three-Dimensional Sequence Graphic]

 Parent topic: Sequences

 Arrays

 Arrays contain vectors, matrices, or sequences. For a definition of array,
 see How Do You Set Up Your Arrays?.

 	One-Dimensional Arrays

 	Two-Dimensional Arrays

 	Three-Dimensional Arrays

 Parent topic: Special Notations and Conventions

 One-Dimensional Arrays

 A one-dimensional array is represented as a single row of numeric elements
 enclosed in parentheses:
 (1.0, 2.0, 3.0, 4.0, 5.0)

 Elements not significant to the computation are usually not shown in the
 array. One dot appears for each element not shown. In the following array,
 five elements are significant to the computation, and two elements not used
 in the computation exist between each of the elements shown:
 (1.0, . , . ,2.0, . , . ,3.0, . , . ,4.0, . , . ,5.0)

 This notation is used to show vector elements inside an array.

 Parent topic: Arrays

 Two-Dimensional Arrays

 A two-dimensional array is represented as a block of numeric elements
 enclosed in square brackets: ┌ ┐
 | 1.0 11.0 5.0 25.0 |
 | 2.0 12.0 6.0 26.0 |
 | 3.0 13.0 7.0 27.0 |
 | 4.0 14.0 8.0 28.0 |
 └ ┘

 Elements not significant to the computation are usually not shown
 in the array. One dot appears for each element not shown. The following
 array contains three rows and two columns not used in the computation:
 ┌ ┐
 | |
 | |
 | . 1.0 2.0 5.0 4.0 . |
 | . 2.0 3.0 6.0 3.0 . |
 | . 3.0 4.0 7.0 2.0 . |
 | . 4.0 5.0 8.0 1.0 . |
 | |
 └ ┘

 This notation is used to show matrix elements inside an array.

 Parent topic: Arrays

 Three-Dimensional Arrays

 A three-dimensional array is represented as a series of blocks
 of elements separated by ellipses. Each block appears like a two-dimensional
 array:

 ┌ ┐ ┌ ┐ ┌ ┐
1.0 11.0 5.0 25.0		10.0 111.0 15.0 125.0		100.0 11.0 15.0 25.0
2.0 12.0 6.0 26.0		20.0 112.0 16.0 126.0	...	200.0 12.0 16.0 26.0
3.0 13.0 7.0 27.0		30.0 113.0 17.0 127.0		300.0 13.0 17.0 27.0
4.0 14.0 8.0 28.0		40.0 114.0 18.0 128.0		400.0 14.0 18.0 28.0
└ ┘ └ ┘ └ ┘

 Elements not significant to the computation are usually not shown
 in the array. One dot appears for each element not shown, just as
 for two-dimensional arrays.

 Parent topic: Arrays

 Special Characters, Symbols, Expressions, and Abbreviations

 The mathematical and programming notations used are consistent
 with traditional mathematical and programming usage. These conventions
 are explained below, along with special abbreviations that are associated
 with specific values.

 	Item

 	Description

 	Greek letters: α, σ, ω, Ω

 	Symbolic scalar values

 	|a|

 	The absolute value of a

 	a• b

 	The dot product of a and b

 	xi

 	The i-th element of vector x

 	cij

 	The element in matrix C at row i and
 column j

 	x1 … xn

 	Elements from x1 to xn

 	i = 1, n

 	i is assigned the values 1 to n

 	y ← x

 	Vector y is replaced by vector x

 	xy

 	Vector x times vector y

 	AX≅B

 	AX is congruent to B

 	ak

 	a raised to the k power

 	ex

 	Exponential function of x

 	AT; xT

 	The transpose of matrix A; the transpose of vector x

 	
 [image: Math Graphic]

 	The complex conjugate of vector x; the complex
 conjugate of matrix A

 	
 [image: Math Graphic]

 	The complex conjugate of the complex vector element xi,
 where:
 [image: Math Graphic]

 The complex conjugate of the complex matrix element cjk

 	xH; AH

 	The complex conjugate transpose of vector x;
 the complex conjugate transpose of matrix A

 	
 [image: Math Graphic]

 	The sum of elements x1 to xn

 	
 [image: Math Graphic]

 	The square root of a+b

 	
 [image: Math Graphic]

 	The integral from a to b of f(x)
 dx

 	
 ∥x∥2

 	The Euclidean norm of vector x, defined as:
 [image: Math Graphic]

 	
 ∥A∥1

 	The one norm of matrix A, defined as:
 [image: Math Graphic]

 	
 ∥A∥2

 	The spectral norm of matrix A, defined as:

 max{∥

 Ax

 ∥

 2

 : ∥

 x

 ∥

 2

 =

 1}

 	
 ∥A∥F

 	The Frobenius or Euclidean norm of matrix A,
 defined as:
 [image: Math Graphic]

 	
 ∥A∥∞

 	The infinity norm of matrix A,
 defined as:
 [image: Math Graphic]

 	
 A-1

 	The inverse of matrix A

 	
 A-T

 	The transpose of A inverse

 	|A|

 	The determinant of matrix A

 	m by n matrix A

 	Matrix A has m rows
 and n columns

 	sin a

 	The sine of a

 	cos b

 	The cosine of b

 	SIGN (a)

 	The sign of a; the result is either
 + or -

 	address {a}

 	The storage address of a

 	max(x)

 	The maximum element in vector x

 	min(x)

 	The minimum element in vector x

 	ceiling(x)

 	The smallest integer that is greater than or equal to x

 	floor(x)

 	The largest integer that is not greater than x

 	int(x)

 	The largest integer that is less than or equal to x

 	x mod(m)

 	x modulo m;
 the remainder when x is divided by m

 	∞

 	Infinity

 	π

 	Pi, 3.14159265...

 Parent topic: Conventions and terminology used

 How to Interpret the Subroutine Descriptions

 This explains how to interpret the information in the subroutine descriptions.

 	Description

 	Syntax

 	On Entry

 	On Return

 	Notes

 	Function

 	Special Usage

 	Error Conditions

 	Examples

 Parent topic: About this information

 Description

 Each subroutine description begins with a brief explanation of
 what the subroutine does. When we combine the description of multiple
 versions of a subroutine, we give enough information to enable you
 to easily tell the differences among the subroutines. Differences
 usually occur in either the function performed or the data types required
 for each subroutine.

 For subroutines with CBLAS [image: Start of change]and LAPACKE[image: End of change] calling sequences, the Data Types
 table lists only the Fortran name. The data types used for the CBLAS [image: Start of change]and
 LAPACKE[image: End of change] are the same as that used for Fortran.

 Parent topic: How to Interpret the Subroutine Descriptions

 Syntax

 This section shows the syntax for subroutines as follows: [image: Start of change]
 	Table 3 shows the syntax for the Fortran, C and C++
 calling sequences. All subroutines will include this information.

 	Table 4 shows the syntax for the CBLAS calling
 sequences, which will appear for BLAS subroutines in addition to the Fortran, C, and C++ calling
 sequences.

 	[image: Start of change]Table 5 shows the syntax for the
 LAPACKE calling sequences, which will appear for LAPACK subroutines in addition to the Fortran, C,
 and C++ calling sequences. [image: End of change]

[image: End of change]

 Note:

 	For information about the CBLAS calling sequence, see [10].

 	For a list of BLAS, see Basic Linear Algebra Subprograms (BLAS) and Complex BLAS (CBLAS).

 	[image: Start of change]For information about the LAPACKE calling sequence see the following URL:
 http://www.netlib.org/lapack/LAPACKE.html

 [image: End of change]

 Table 3. Syntax for all subroutines.

 	Fortran

 	CALL NAME-1 | NAME-2 | ... | NAME-n (arg-1,
 arg-2, ..., arg-m)

 	C and C++

 	 name-1 | name-2 | ... | name-n (arg-1,
 arg-2, ..., arg-m);

 [image: Start of change]
 Table 4. Syntax for CBLAS subroutines.

 	CBLAS

 	 cblas_name-1 | cblas_name-2 | ... | cblas_name-n (arg-1,
 arg-2, ..., arg-m);

 [image: End of change]

 [image: Start of change]
 Table 5. Syntax for LAPACKE subroutines.

 	LAPACKE

 	 LAPACKE_name-1 | LAPACKE_name-2 | ... | LAPACKE_name-n
 (arg-1,arg-2, ...,
 arg-m);

 [image: End of change]

 The syntax indicates:

 	Each possible subroutine or subprogram name that you can code in the calling sequence. Each name
 is separated by the | (or) symbol. You specify only one of these names in your calling sequence.
 (You do not code the | in the calling sequence.)

 	The arguments, listed in the order in which you code them in the calling sequence. You must code
 them all in your calling sequence.
 You can distinguish between input arguments and output
 arguments by looking at "On Entry" and "On Return", respectively. An argument used for
 both input and output is described in both "On Entry" and "On Return". In this case, the
 input value for the argument is overlaid with the output value.

 The names of the arguments give an indication of the type of data that you should specify for the
 argument; for example:

 	Names beginning with the letters i through
 n, such as m, incx, iopt, and
 isign, indicate that you specify integer data.

 	Names beginning with the letters a through h
 and o through z, such as
 b, t, alpha,
 sigma, and omega, indicate that you specify real
 or complex data.

 	Names beginning with cblas_ indicate that you specify enumerated types. These are used
 only for CBLAS.

 Note:

 	If you code a CBLAS calling sequence, there are times when an argument description references a
 character argument. In that situation, you should translate the character argument to its equivalent
 CBLAS enumerated type, as shown in Table 6.

 	The CBLAS_ORDER argument has been renamed to CBLAS_LAYOUT. See Migrating Programs from ESSL for Linux on Power Version 5 Release 4 to Version 5 Release 5 for the required changes to your existing programs.

 	[image: Start of change]Although argument CBLAS_ORDER is still supported, IBM recommends using equivalent
 argument [image: Start of change]CBLAS_LAYOUT[image: End of change] instead.[image: End of change]

 Table 6. Translating character argument values to CBLAS enumerated types

 	Character argument

 	Character Argument Value

 	CBLAS Argument

 	Enumerated Type Value

 	trans, transa, transb

 	

 'N'

 'T'

 'C'

 	cblas_trans, cblas_transa,
 cblas_transb

 	

 CblasNoTrans

 CblasTrans

 CblasConjTrans

 	side

 	

 'L'

 'R'

 	cblas_side

 	

 CblasLeft

 CblasRight

 	uplo

 	

 'U'

 'L'

 	cblas_uplo

 	

 CblasUpper

 CblasLower

 	diag

 	

 'U'

 'N'

 	cblas_diag

 	

 CblasUnit

 CblasNonUnit

 Parent topic: How to Interpret the Subroutine Descriptions

 On Entry

 This lists the input arguments, which are the arguments you pass
 to the ESSL subroutine. Each argument description first gives the
 meaning of the argument, and then gives the form of data required
 for the argument.

 The calling sequences for the Level 2 CBLAS and the Level 3 CBLAS include input
 arguments that are enumerated types defined in essl.h. Argument [image: Start of change]cblas_layout[image: End of change]
 indicates whether the input and output matrices are stored in column-major order or row-major order.
 All other enumerated type arguments replace the character arguments found in the Fortran, C and C++
 calling sequences (see Table 6). Unlike the C and C++
 interfaces to ESSL, complex scalar arguments are passed by reference instead of being passed by
 value.

 Parent topic: How to Interpret the Subroutine Descriptions

 On Return

 This lists the output arguments, which are the arguments passed back to
 your program from the ESSL subroutine. Each argument description first gives
 the meaning of the argument, and then gives the form of data passed back to
 your program for the argument.

 Parent topic: How to Interpret the Subroutine Descriptions

 Notes

 The notes describe any programming considerations and restrictions
 that apply to the arguments or the data for the arguments.

 Parent topic: How to Interpret the Subroutine Descriptions

 Function

 This is a functional, or mathematical, description of the function performed
 by this subroutine. It explains what computation is performed,
 not the implementation. It explains the variations in the computation
 depending on the input arguments. References are made, where appropriate,
 to mathematical background books listed in the bibliography. References appear
 as a number enclosed in square brackets, where the number refers to the item
 listed under that number in the bibliography. For example, reference [1] cites
 the first item listed.

 Parent topic: How to Interpret the Subroutine Descriptions

 Special Usage

 These are unique ways you can use the subroutine in your application.
 In most cases, this does not address applications of the ESSL subroutines;
 however, in special situations where the functional capability of the subroutine
 can be extended by following certain rules for its use, these rules are described.

 Parent topic: How to Interpret the Subroutine Descriptions

 Error Conditions

 These are all the ESSL run-time errors that can occur in the subroutine.
 They are organized under three headings; Computational Errors, Input-Argument
 Errors, and Resource Errors. The return code values resulting from these
 errors are also explained.

 Parent topic: How to Interpret the Subroutine Descriptions

 Examples

 The examples show how you would call the subroutine
 from a Fortran program using 32-bit integers. If you are using
 64-bit integers, you may need to use a larger workspace and therefore
 you may need to increase the size of naux and lwork.
 (See Setting Up Auxiliary Storage When Dynamic Allocation Is Not Used.)

 The examples provided for each subroutine show a variety of uses
 of the subroutine. Except where it is important to show differences
 in use between the various versions of the subroutine, the simplest
 version of the subroutine is used in the examples. In most cases,
 this is the short-precision real version of the subroutine. Each example
 provides a description of the important features of the example, followed
 by the Fortran calling sequence, the input data, and the resulting
 output data.

 Parent topic: How to Interpret the Subroutine Descriptions

 How to Send Your Comments

 Your feedback is important in helping us to produce accurate,
 high-quality information. If you have any comments about this information
 or any other ESSL documentation, send your comments to the following
 e-mail address:

 mhvrcfs@us.ibm.com

 Include
 the publication title and order number, and, if applicable, the specific
 location of the information about which you have comments (for example,
 a page number or a table number).

 Parent topic: About this information

 Summary of Changes

 The following sections summarize changes to ESSL and the
 ESSL documentation for each new release or major service update for
 a given product version. Within each book
 in the library, a vertical line to the left of text and illustrations
 indicates technical changes or additions made to the previous edition
 of the book.

 Summary of changes

 for ESSL for

 AIX®
 , Version 5 Release 3

 and ESSL for

 Linux
 on

 POWER®
 , Version 5 Release 5

 as updated, December 2016

 ESSL 5.5 now supports the following:

 	IBM Power System S822LC (8335-GTB) servers with NVIDIA P100 GPUs and IBM
 Power System S822LC (8335-GTA) servers with NVIDIA K80 GPUs running Red Hat Enterprise Linux 7.3
 (RHEL7.3) (little endian mode).Note: The ESSL SMP CUDA Library is only supported on these
 models.

 	IBM Power8 Servers running RHEL 7.2 or RHEL 7.3 (little endian mode).

 	New BLAS subroutines:

 	SROTMG and DROTMG (Construct a modified Givens Transformation)

 	SROTM and DROTM (Apply a modified Givens Transformation)

 	Multithreaded Versions of Sparse Matrix Vector Product subroutines. see:

 	DSMMX (Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode)

 	DSDMX (Matrix-Vector Product for a Sparse Matrix or Its Transpose in Compressed-Diagonal Storage Mode)

 	New LAPACK subroutines:

 	SGESDD, DGESDD, CGESDD, and ZGESDD; See SGESVD, DGESVD, CGESVD, ZGESVD, SGESDD, DGESDD, CGESDD, and ZGESDD (Singular Value Decomposition for a General Matrix)

 	SGEEV, DGEEV, CGEEV and ZGEEV; See SGEEV, DGEEV, CGEEV, ZGEEV, SGEEVX, DGEEVX, CGEEVX, and ZGEEVX (Eigenvalues and, Optionally, Right Eigenvectors, Left Eigenvectors,
 Reciprocal Condition Numbers for Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a General Matrix)

 	 SSYEV, DSYEV, CHEEV, and ZHEEV; See SSYEV, DSYEV, CHEEV, ZHEEV, SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX, DSYEVX, CHEEVX, and ZHEEVX (Eigenvalues and, Optionally,
 the Eigenvectors of a Real Symmetric or Complex Hermitian Matrix)

 	SGGEVX, DGGEVX, CGGEVX, and ZGGEVX; See SGGEV, DGGEV, CGGEV, ZGGEV, SGGEVX, DGGEVX, CGGEVX, and ZGGEVX (Eigenvalues and, Optionally, Right Eigenvectors, Left Eigenvectors,
 Reciprocal Condition Numbers for Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a General Matrix
 Generalized Eigenproblem)

 	Additional CBLAS (C Interface to the BLAS) Subprograms. See Basic Linear Algebra Subprograms (BLAS) and Complex BLAS (CBLAS).

 	LAPACKE (C Interface to LAPACK) Subroutines corresponding to the ESSL LAPACK subroutines. See
 LAPACK and LAPACKE.

 	Netlib JAVA and python. See Using ESSL with netlib-java and Python.

 Summary of changes

 for ESSL for

 AIX

 , Version 5 Release 3

 and ESSL for

 Linux

 on

 POWER

 , Version 5 Release 4

 as updated, December 2015

 ESSL 5.4 now supports the following:

 	IBM Power System S822LC (8335-GTA) servers with NVIDIA K80 GPUs
 running Red Hat Enterprise Linux 7.2 (RHEL7.2) or later (little endian
 mode).
 Note: The ESSL SMP CUDA library is only supported on this model.

 	Power8 Servers running RHEL 7.2 or later (little endian mode).

 	CBLAS, a C Interface to the Basic Linear Algebra Subprograms (BLAS).

 	Compiling ESSL C++ applications using the g++ compiler.

 ESSL 5.4 does not support the following:

 	Ubuntu (little endian mode)

 	SUSE Linux Enterprise Server
 12 (SLES12) (little endian mode)

 	RHEL7 (big endian mode)

 	IBM Power System S824L server Model 42L with NVIDIA K40 GPUs

 	IBM Power7+ and Power7 servers and blades.

 If you require any of the above support, order ESSL for Linux
 V5.3.2 instead.

 Summary of changes

 for ESSL for

 AIX

 , Version 5 Release 3

 and ESSL for

 Linux

 on

 POWER

 , Version 5 Release 3.2

 as updated, July 2015

 ESSL 5.3.2 provides new support for the ESSL SMP CUDA
 32-bit integer/64-bit pointer environment library. The ESSL SMP CUDA
 Library is supported only on IBM® Power® System S824L server (8247-42L)
 with one or two NVIDIA Tesla K40 GPUs running Ubuntu 14.04.2 or Ubuntu
 14.10.

 You can use the ESSL SMP CUDA Library in two ways for
 the subset of ESSL Subroutines that are GPU-enabled:

 	Using NVIDIA GPUs for the bulk of the computation.

 	Using a hybrid combination of POWER8® CPUs
 and NVIDIA GPUs.

 The ESSL SMP CUDA library leverages ESSL BLAS and NVIDIA cuBLAS
 and blocking techniques to handle problem sizes larger than the GPU
 memory size. The algorithms support multiple GPUs and are designed
 for use in both SMP and MPI applications.

 For information, see Using the ESSL SMP CUDA Library.

 	Subroutines

 	The following new SETGPUS utility subroutine is now included;
 See SETGPUS (Set the Number of GPUs and Identify Which GPUs ESSL Should Use).

 Summary of changes

 for ESSL for

 AIX

 , Version 5 Release 3

 and ESSL for

 Linux

 on

 POWER

 , Version 5 Release 3.1

 as updated, December 2014

 ESSL 5.3.1 (little endian mode) provides the following
 new support:

 	64-bit applications running on Power8 servers in little endian
 mode

 	C99 complex floating point types for complex arithmetic when the
 ESSL header file is used to call ESSL from C and C++ applications

 	Operating systems

 	
 Support has been added for the following operating systems:

 	SUSE Linux Enterprise Server
 12 (SLES12)

 	Ubuntu Server 14.04.01 for IBM Power

 	Ubuntu Server 14.10 for IBM Power

 For a complete list of operating system versions and distributions
 on which this release of ESSL is supported, see Operating Systems Supported by ESSL.

 Summary of changes

 for ESSL for

 AIX

 , Version 5 Release 3

 and ESSL for

 Linux

 on

 POWER

 , Version 5 Release 3

 as updated, August 2014

 This release of ESSL provides the changes described below.

 	Operating systems

 	
 Support has been added for the following operating systems:

 	Red Hat Linux Enterprise
 Server 7 (RHEL7)

 Support is no longer provided for the following operating systems:

 	Red Hat Linux Enterprise
 Server 6 (RHEL6)

 	SUSE Linux Enterprise Server
 11 SP1 (SLES11 SP1)

 For a complete list of operating system versions and distributions
 on which this release of ESSL is supported, see Operating Systems Supported by ESSL.

 	Servers and processors

 	This document has been updated to include support for the IBM Power8 processors.
 For a
 complete list of servers and processors on which this release of ESSL
 is supported, see Hardware Products Supported by ESSL.

 	Subroutines

 	The following new subroutines are now included:
 Dense Linear
 Algebraic Equation Subroutines:

 	SSYSV, DSYSV, CSYSV, ZSYSV, CHESV, ZHESV, SSPSV, DSPSV, CSPSV,
 ZSPSV, CHPSV, and ZHPSV; See SSYSV, DSYSV, CSYSV, ZSYSV, CHESV, ZHESV, SSPSV, DSPSV, CSPSV, ZSPSV, CHPSV, and ZHPSV (Indefinite Real or Complex Symmetric
 or Complex Hermitian Matrix Factorization and Multiple Right-Hand Side Solve).

 	SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF, DSPTRF,
 CSPTRF, ZSPTRF, CHPTRF, and ZHPTRF; See SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF, and ZHPTRF (Indefinite Real or Complex
 Symmetric or Complex Hermitian Matrix Factorization).

 	SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, ZHETRS, SSPTRS, DSPTRS,
 CSPTRS, ZSPTRS, CHPTRS, and ZHPTRS; SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, ZHETRS, SSPTRS, DSPTRS, CSPTRS, ZSPTRS, CHPTRS, and ZHPTRS (Indefinite Real or Complex
 Symmetric or Complex Hermitian Matrix Multiple Right-Hand Side Solve).

 	SLANTR, DLANTR, CLANTR, ZLANTR, SLANTP, DLANTP, CLANTP, and ZLANTP:
 See SLANTR, DLANTR, CLANTR, ZLANTR, SLANTP, DLANTP, CLANTP, and ZLANTP (Trapezoidal or Triangular Matrix Norm).

 Banded Linear Algebraic Equation Subroutines:

 	SGBSV, DGBSV, CGBSV, and ZGBSV; See SGBSV, DGBSV, CGBSV, and ZGBSV (General Band Matrix Factorization and Multiple Right-Hand Side Solve).

 	SGBTTRF, DGBTTRF, CGBTTRF, and ZGBTTRF; See SGBTRF, DGBTRF, CGBTRF and ZGBTRF (General Band Matrix Factorization).

 	SGBTTRS, DGBTTRS, CGBTTRS, and ZGBTTRS; See SGBTRS, DGBTRS, CGBTRS, and ZGBTRS (General Band Matrix Multiple Right-Hand Side Solve).

 	SGTSV, DGTSV, CGTSV, and ZGTSV; See SGTSV, DGTSV, CGTSV, and ZGTSV (General Tridiagonal Matrix Factorization and Multiple Right-Hand Side Solve).

 	SGTTRF, DGTTRF, CGTTRF, and ZGTTRF; See SGTTRF, DGTTRF, CGTTRF, and ZGTTRF (General Tridiagonal Matrix Factorization).

 	SGTTRS, DGTTRS, CGTTRS, and ZGTTRS; See SGTTRS, DGTTRS, CGTTRS, and ZGTTRS (General Tridiagonal Matrix Multiple Right-Hand Side Solve).

 Linear Least Squares Subroutines:

 	SGESVD, DGESVD, CGESVD, and ZGESVD; See SGESVD, DGESVD, CGESVD, ZGESVD, SGESDD, DGESDD, CGESDD, and ZGESDD (Singular Value Decomposition for a General Matrix).

 	SGELSD, DGELSD, CGELSD, and ZGELSD; See SGELSD, DGELSD, CGELSD, and ZGELSD (Linear Least Squares Solution for a General Matrix Using the Singular Value Decomposition).

 Random Number Generation Subroutines:

 	INITRNG; See INITRNG (Initialize Random Number Generators).

 	SURNG and DURNG; See SURNG and DURNG (Generate a Vector of Uniformly Distributed Pseudo-Random Numbers).

 	SNRNG and DNRNG; See SNRNG and DNRNG (Generate a Vector of Normally Distributed Pseudo-Random numbers).

 Summary of changes

 for ESSL for

 AIX

 , Version 5 Release 2

 and ESSL for

 Linux

 on

 POWER

 , Version 5 Release 2

 as updated, February 2013

 This release of ESSL provides the changes described below.

 	Operating systems

 	
 Support is no longer provided for the following operating
 systems:

 	AIX 5.3

 For a complete list of operating system versions and distributions
 on which this release of ESSL is supported, see Operating Systems Supported by ESSL.

 	Servers and processors

 	This document has been updated to include support for the IBM POWER7® processors.
 This support was added to ESSL after the July 2012 publication of
 this document.
 Support is no longer provided for the following servers
 and processors:

 	IBM BlueGene/Q

 For a complete list of servers and processors on which this release
 of ESSL is supported, see Hardware Products Supported by ESSL.

 	Subroutines

 	The following new subroutines are now included:
 Matrix Operations:

 	CGECMI and ZGECMI; See SGETMI, DGETMI, CGETMI, ZGETMI, CGECMI and ZGECMI (General Matrix Transpose or Conjugate Transpose [In-Place]).

 	CGECMO and ZGECMO; See SGETMO, DGETMO, CGETMO, ZGETMO, CGECMO, and ZGECMO (General Matrix Transpose or Conjugate Transpose [Out-of-Place]).

 Banded Linear Algebraic Equation Subroutines:

 	SPBSV, DPBSV, CPBSV, and ZPBSV; See SPBSV, DPBSV, CPBSV, and ZPBSV (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Factorization and Multiple
 Right-Hand Side Solve).

 	SPBTRF, DPBTRF, CPBTRF, and ZPBTRF; See SPBTRF, DPBTRF, CPBTRF, and ZPBTRF (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Factorization).

 	SPBTRS, DPBTRS, CPBTRS, and ZPBTRS; See SPBTRS, DPBTRS, CPBTRS, and ZPBTRS (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Multiple Right-Hand
 Side Solve).

 	SPTSV, DPTSV, CPTSV, and ZPTSV; See SPTSV, DPTSV, CPTSV, and ZPTSV (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Factorization and
 Multiple Right-Hand Side Solve).

 	SPTTRF, DPTTRF, CPTTRF, and ZPTTRF; See SPTTRF, DPTTRF, CPTTRF, and ZPTTRF (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Factorization).

 	SPTTRS, DPTTRS, CPTTRS, and ZPTTRS; See SPTTRS, DPTTRS, CPTTRS, and ZPTTRS (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Multiple Right-Hand
 Solve).

 Eigensystem Analysis Subroutines:

 	SSPEVD, DSPEVD, CHPEVD, ZHPEVD, SSYEVD, DSYEVD, CHEEVD and ZHEEVD;
 See SSPEVD, DSPEVD, CHPEVD, ZHPEVD, SSYEVD, DSYEVD, CHEEVD, and ZHEEVD (Eigenvalues and, Optionally the Eigenvectors, of a Real
 Symmetric or Complex Hermitian Matrix Using a Divide-and-Conquer Algorithm).

 	SGGEV, DGGEV, CGGEV, and ZGGEV; See SGGEV, DGGEV, CGGEV, ZGGEV, SGGEVX, DGGEVX, CGGEVX, and ZGGEVX (Eigenvalues and, Optionally, Right Eigenvectors, Left Eigenvectors,
 Reciprocal Condition Numbers for Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a General Matrix
 Generalized Eigenproblem).

 	SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX, CHEGVX, and ZHEGVX; See SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX, DSYGVX, CHEGVX, and ZHEGVX (Eigenvalues and, Optionally, the Eigenvectors of a Positive
 Definite Real Symmetric or Complex Hermitian Generalized Eigenproblem).

 The ESSL 5.1 non-LAPACK-conforming subroutines, that
 is, those subroutines whose name is the same as an existing LAPACK
 subroutine, but whose calling-sequence arguments and functionality
 are different from that LAPACK subroutine have been removed from ESSL
 5.2. For details, see Migrating Programs from ESSL for AIX 5.1 and ESSL for Linux on Power Version 5 Release 1.1 to Version 5 Release 2.

 Summary of changes

 for ESSL for

 AIX

 , Version 5 Release 1

 and ESSL for

 Linux

 on

 POWER

 , Version 5 Release 1.1

 as updated, July 2012

 This release of ESSL for Linux on POWER provides the following new
 libraries:

 	ESSL Blue Gene® Serial
 Library and ESSL Blue Gene SMP
 Library, which provide versions of the ESSL subroutines for use on Blue Gene®/Q and run in a
 32-bit integer, 64-bit pointer environment on RHEL6.2.
 These libraries
 can also be used with the FFTW Wrappers Support.

 Support has been added for the following compiler levels:

 	IBM XL Fortran for AIX 14.1 and IBM XL C/C++ for AIX 12.1

 	IBM XL Fortran for Linux 14.1 and IBM XL C/C++ for Linux 12.1

 This document has also been updated to include support for RHEL6
 for Power platforms. This
 support was added to ESSL 5.1 after the October 2010 publication
 of this document.

 Summary of changes

 for ESSL for

 AIX

 , Version 5 Release 1

 and ESSL for

 Linux

 on

 POWER

 , Version 5 Release 1

 as updated, October 2010

 The ESSL 5.1 Serial Library and the ESSL SMP Library contain:

 	A VSX (SIMD) version of selected subroutines for use on POWER7 processor-based servers

 	An AltiVec (SIMD) version of selected subroutines for use on POWER6® processor-based servers

 This release of ESSL provides the changes described below.

 	Operating systems

 	
 Support has been added for the following operating system
 version:

 	AIX 7.1

 Support is no longer provided for the following operating
 systems:

 	SUSE Linux Enterprise Server
 10 for POWER (SLES10)

 	Red Hat Enterprise Linux 5
 (RHEL5)

 For a complete list of operating system versions and distributions
 on which this release of ESSL is supported, see Operating Systems Supported by ESSL.

 	Servers and processors

 	Support has been added for the POWER7 processor.
 Support
 is no longer provided for the following servers and processors:

 	IBM BladeCenter JS21, IBM POWERPC 450, IBM POWERPC 450D, IBM POWER5, IBM POWER5+, IBM POWERPC970
 processors, IBM Blue Gene®/P.

 For a complete list of servers and processors on which
 this release of ESSL is supported, see Hardware Products Supported by ESSL.

 	Subroutines

 	
 ESSL 5.1 is the last release to support non-LAPACK-conforming-subroutines;
 that is, those ESSL subroutines whose name is the same as an existing
 LAPACK subroutine, but whose calling-sequence arguments and functionality
 are different from that LAPACK subroutine.

 This new LAPACK
 subroutine is now included:

 	DSYGVX. See SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX, DSYGVX, CHEGVX, and ZHEGVX (Eigenvalues and, Optionally, the Eigenvectors of a Positive
 Definite Real Symmetric or Complex Hermitian Generalized Eigenproblem)

 These new Fourier Transform subroutines are now included:

 	SRCFTD and DRCFTD. See SRCFTD and DRCFTD (Multidimensional Real-to-Complex Fourier Transform)

 	SCRFTD and DCRFTD. See SCRFTD and DCRFTD (Multidimensional Complex-to-Real Fourier Transform)

 	[bookmark: am5gr_soa__fftwbreak]
 FFTW Wrappers

 	
 Support has been added to the ESSL FFTW Wrapper Libraries corresponding
 to the new ESSL Fourier Transform subroutines. See FFTW Version 3.1.2 to ESSL Wrapper Libraries for the list of FFTW subroutines
 supported, restrictions on their use, and instructions on how to build,
 install, and use the ESSL FFTW Wrappers Library.

 Documentation
 for FFTW Version 3.1.2 can be found at: http://www.fftw.org.

 	Future Migration

 Future Migration

 If you are concerned with migration to possible future releases of ESSL
 or possible future hardware, you should read Planning for Future Migration,
 which explains what you can do now to prevent future migration problems.

 Parent topic: Summary of Changes

 Guide Information

 The following types of guidance information about how to
 use ESSL are available:

 	Learning how to use ESSL documentation

 	Learning what is new in ESSL

 	Learning about the ESSL product

 	Designing your program

 	Setting up your data structures

 	Coding your program

 	Processing your program

 	Migrating your programs

 	Handling problems

 	Introduction and Requirements

 	Planning Your Program

 Planning your ESSL program involves several tasks.

 	Setting Up Your Data Structures

 This provides you with information that you need to set up your
 data structures, consisting of vectors, matrices, and sequences. These techniques
 apply to programs in all programming languages.

 	Coding Your Program

 This provides you with information you need to code your Fortran,
 C, and C++ programs.

 	Processing Your Program

 This describes the ESSL-specific changes you need
 to make to your job procedures for compiling, linking, and running
 your program.

 	Migrating Your Programs

 This explains what is required to migrate your application programs
 to the current release of ESSL.

 	Handling Problems

 This provides the following information for your use when
 dealing with errors.

 Introduction and Requirements

 This introduces you to the Engineering and Scientific Subroutine
 Library (ESSL) product.

 	Overview of ESSL

 	Software and Hardware Products That Can Be Used with ESSL

 	List of ESSL Subroutines

 Parent topic: Guide Information

 Overview of ESSL

 IBM® Engineering and Scientific
 Subroutine Library (ESSL) is a state-of-the-art collection of high-performance
 subroutines providing a wide range of mathematical functions for many
 different scientific and engineering applications. Its primary characteristics
 are performance, functional capability, and usability.

 ESSL is provided as run-time libraries that run on the servers
 and processors listed in Hardware Products Supported by ESSL.

 ESSL can be used with Fortran, C, and C++ programs operating under
 the AIX® and Linux operating systems.

 To order ESSL, specify one of the program numbers below:

 	ESSL for AIX

 	5765-H25

 	ESSL for Linux

 	5765-L51

 	Performance and Functional Capability

 	Usability

 	The Variety of Mathematical Functions

 	Accuracy of the Computations

 	High Performance of ESSL

 	The Fortran Language Interface to the Subroutines

 Parent topic: Introduction and Requirements

 Performance and Functional Capability

 The mathematical subroutines, in nine computational areas, are
 tuned for performance. The computational areas are:

 	Linear Algebra Subprograms

 	Matrix Operations

 	Linear Algebraic Equations

 	Eigensystem Analysis

 	Fourier Transforms, Convolutions and Correlations, and Related
 Computations

 	Sorting and Searching

 	Interpolation

 	Numerical Quadrature

 	Random Number Generation

 ESSL runs under the AIX® and Linux operating systems.

 ESSL provides the following run-time libraries (described in detail
 in What ESSL Library Do You Want to Use?):

 	ESSL Serial Libraries and ESSL SMP Libraries, which run in the
 following environments:

 	32-bit integer, 32-bit pointer environment (AIX only)

 	32-bit integer, 64-bit pointer environment

 	64-bit integer, 64-bit pointer environment

 	ESSL SMP CUDA Library which runs in the following environment

 	32-bit integer, 64-bit pointer environment (little
 endian only)

 Notes:

 	For the 32-bit integer, 64-bit pointer environment, in accordance
 with the LP64 data model, all ESSL integer arguments remain 32 bits
 except for the iusadr argument for ERRSET.

 	To avoid 32-bit integer overflow problems (for example,
 matrices of order n where N > 46340), use the ESSL 64-bit integer,
 64-bit pointer environment libraries.

 These libraries contain:

 	a VSX (SIMD) version of selected subroutines for use on VSX enabled
 processor-based servers.

 	an AltiVec version of selected subroutines for use on POWER6® processors (AIX only).

 These ESSL libraries are described in detail in What ESSL Library Do You Want to Use?.

 All these libraries are designed to provide high levels of performance
 for numerically intensive computing jobs. All versions provide mathematically
 equivalent results.

 The ESSL subroutines can be called from application programs written
 in Fortran, C, and C++.

 Parent topic: Overview of ESSL

 Usability

 ESSL is designed for usability:

 	It has an easy-to-use call interface.

 	If your existing application programs use the Serial Libraries,
 you only need to re-link your program to take advantage of the increased performance
 of the SMP Libraries.

 	It has informative error-handling capabilities, enabling you to calculate
 auxiliary storage sizes and transform lengths.

 	Online documentation that can be displayed using a Hypertext
 Markup Language (HTML) document browser is available for use with ESSL.

 Parent topic: Overview of ESSL

 The Variety of Mathematical Functions

 ESSL includes several different types of mathematical functions.

 	Areas of Application

 	What ESSL Provides

 Parent topic: Overview of ESSL

 Areas of Application

 ESSL provides a variety of mathematical functions for many different
 types of scientific and engineering applications. Some of the industries
 using these applications are: Aerospace, Automotive, Electronics,
 Petroleum, Finance, Utilities, and Research. Examples of applications
 in these industries are:

 	Structural Analysis

 	Time Series Analysis

 	Computational Chemistry

 	Computational Techniques

 	Fluid Dynamics Analysis

 	Mathematical Analysis

 	Seismic Analysis Dynamic

 	Systems Simulation Reservoir Modeling

 	Nuclear Engineering Quantitative Analysis

 	Electronic Circuit Design

 Parent topic: The Variety of Mathematical Functions

 What ESSL Provides

 ESSL provides run-time libraries that are designed to provide high
 levels of performance for numerically intensive computing jobs.

 The subroutines provided in ESSL, summarized in Table 7, fall into the following groups:

 	Nine major areas of mathematical computation, providing the computations
 commonly used by the industry applications listed

 	Utilities, performing general-purpose functions

 Most of the subroutine calls are compatible with those in the ESSL/370 product.

 To help you select the ESSL subroutines that fulfill your needs
 for performance, accuracy, storage, and so forth, see Selecting an ESSL Subroutine.

 Table 7. Summary of ESSL
 Subroutines.

 	ESSL Area of Computation

 	Integer Subroutines

 	Short-Precision Subroutines

 	Long-Precision Subroutines

 	Linear Algebra Subprograms:

 	

 	

 	

 	[image: Start of change]Vector-scalar[image: End of change]

 	[image: Start of change]0[image: End of change]

 	[image: Start of change]43[image: End of change]

 	[image: Start of change]43[image: End of change]

 	Sparse vector-scalar

 	0

 	11

 	11

 	Matrix-vector

 	0

 	38

 	38

 	Sparse matrix-vector

 	0

 	0

 	3

 	Matrix Operations:

 	

 	

 	

 	Addition, subtraction, multiplications, triangular solves, rank-k updates, rank-2k updates, and matrix transposes

 	0

 	29

 	30

 	Linear Algebraic Equations:

 	

 	

 	

 	Dense linear algebraic
 equations

 	0

 	82

 	87

 	Banded linear algebraic
 equations

 	0

 	40

 	40

 	Sparse linear algebraic
 equations

 	0

 	0

 	11

 	Linear least squares

 	0

 	[image: Start of change]13[image: End of change]

 	[image: Start of change]13[image: End of change]

 	Eigensystem Analysis:

 	

 	

 	

 	Solutions to
 the algebraic eigensystem analysis problem and the generalized eigensystem
 analysis problem

 	0

 	[image: Start of change]20[image: End of change]

 	[image: Start of change] 20[image: End of change]

 	Signal Processing Computations:

 	

 	

 	

 	Fourier transforms

 	0

 	 18

 	14

 	Convolutions and correlations

 	0

 	10

 	2

 	Related computations

 	0

 	6

 	6

 	Sorting and Searching:

 	

 	

 	

 	Sorting, sorting
 with index, and binary and sequential searching

 	5

 	5

 	5

 	Interpolation:

 	

 	

 	

 	Polynomial
 and cubic spline interpolation

 	0

 	4

 	4

 	Numerical Quadrature:

 	

 	

 	

 	Numerical quadrature
 on a set of points or on a function

 	0

 	6

 	6

 	Random Number Generation:

 	

 	

 	

 	Generating
 vectors of uniformly distributed and normally distributed random numbers

 	1

 	5

 	5

 	Utilities:

 	

 	

 	

 	 General service
 operations

 	9

 	0

 	3

 	Total ESSL Subroutines

 	15

 	[image: Start of change]330[image: End of change]

 	[image: Start of change]341[image: End of change]

 Parent topic: The Variety of Mathematical Functions

 Accuracy of the Computations

 ESSL provides accuracy comparable to libraries using equivalent algorithms
 with identical precision formats. Both short- and long-precision real versions
 of the subroutines are provided in most areas of ESSL. In some areas, short-
 and long-precision complex versions are also provided, and, occasionally,
 an integer version is provided. The data types operated on by the short-precision and long-precision versions of the subroutines
 are ANSI/IEEE 32-bit and 64-bit binary floating-point format. See the ANSI/IEEE Standard
 for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754–1985, for more detail. (There are ESSL-specific rules that
 apply to the results of computations on workstation processors using the ANSI/IEEE
 standards. For details, see What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?.)

 For more information on accuracy, see Getting the Best Accuracy.

 Parent topic: Overview of ESSL

 High Performance of ESSL

 The ESSL subroutines have been designed to provide high performance.
 (See references [38], [49], and [50].)

 	Algorithms

 	Obtaining High Performance

 	SMT Mode

 	Mathematical Techniques

 Parent topic: Overview of ESSL

 Algorithms

 To achieve high performance, the subroutines use state-of-the-art
 algorithms tailored to specific operational characteristics of the
 hardware, such as cache size, Translation Lookaside Buffer (TLB) size,
 and page size.

 Most subroutines use the following techniques to optimize performance:

 	Managing the cache and TLB efficiently so the hit ratios are maximized;
 that is, data is blocked so it stays in the cache or TLB for its computation.

 	Accessing data stored contiguously—that is, using stride-1 computations.

 	Exploiting the large number of available floating-point registers.

 	Using algorithms that minimize paging.

 	Structuring the ESSL subroutines so, where applicable, the compiled
 code fully utilizes the dual floating-point execution units. Because
 two Multiply-Add instructions can be executed each cycle, neglecting
 overhead, this allows four floating-point operations per cycle to
 be performed.

 	Structuring the ESSL subroutines so, where applicable, the compiled
 code takes full advantage of the hardware data prefetching.

 Parent topic: High Performance of ESSL

 Obtaining High Performance

 Obtaining high performance depends on the type of processor you
 are using.

 	Obtaining High Performance on SMP processors with NVIDIA GPUs

 	Obtaining High Performance on SMP Processors

 	Obtaining High Performance on VSX-Enabled Processors

 	Obtaining High Performance on AltiVec-Enabled Processors

 Parent topic: High Performance of ESSL

 Obtaining High Performance on SMP processors with NVIDIA GPUs

 The ESSL SMP CUDA Library is designed to exploit the processing
 power of the NVIDIA GPUs and of the Power8 CPUs for a subset of the
 ESSL subroutines. For a list of these subroutines, see Using the ESSL SMP CUDA Library.

 Parent topic: Obtaining High Performance

 Obtaining High Performance on SMP Processors

 The ESSL SMP Libraries and the ESSL SMP CUDA Library are
 designed to exploit the processing power and shared memory of the
 SMP processor. In addition, a subset of the ESSL SMP subroutines
 have been coded to take advantage of increased performance from multithreaded
 (parallel) programming techniques. For a list of the multithreaded
 subroutines in the ESSL SMP Libraries, see Table 40.

 Choosing the number of threads depends on the problem size, the
 specific subroutine being called, and the number of physical processors
 you are running on. To achieve optimal performance, experimentation
 is necessary; however, picking the number of threads equal to the
 number of online processors generally provides good performance in
 most cases. In some cases, performance may increase if you choose
 the number of threads to be less than the number of online processors.

 You should use either the XL Fortran XLSMPOPTS or the OMP_NUM_THREADS
 environment variable to specify the number of threads you want to
 create.

 Parent topic: Obtaining High Performance

 Obtaining High Performance on VSX-Enabled Processors

 The ESSL Serial Libraries, the ESSL SMP Libraries, and
 the ESSL SMP CUDA Library are designed to exploit the processing
 power of VSX-enabled processors. For details about how to use it to
 achieve optimal performance, see SIMD Algorithms on VSX-Enabled Processors.

 Parent topic: Obtaining High Performance

 Obtaining High Performance on AltiVec-Enabled Processors

 The ESSL Serial Libraries and the ESSL SMP Libraries are designed
 to exploit the processing power of the AltiVec unit on certain PowerPC® processors. For details
 about how to use it to achieve optimal performance, see SIMD Algorithms on POWER 6 AltiVec-Enabled Processors.

 Parent topic: Obtaining High Performance

 SMT Mode

 SMT is a processor technology that allows multiple instruction
 streams (threads) to run concurrently on the same physical processor,
 improving overall throughput. To the operating system, each hardware
 thread is treated as an independent logical processor.

 Not all applications benefit from SMT. Having multiple threads
 executing on the same processor will not increase the performance
 of applications with execution-unit–limited performance or applications
 that consume all the chip's memory bandwidth. For this reason,
 these processors support single-threaded (ST) execution mode. In this
 mode, these processors give all the physical resources to the active
 thread.

 Parent topic: High Performance of ESSL

 Mathematical Techniques

 All areas of ESSL use state-of-the-art mathematical
 techniques to achieve high performance. For example, the matrix-vector linear
 algebra subprograms operate on a higher-level data structure, matrix-vector
 rather than vector-scalar. As a result, they optimize performance directly
 for your program and indirectly through those ESSL subroutines using them.

 Parent topic: High Performance of ESSL

 The Fortran Language Interface to the Subroutines

 The ESSL subroutines follow standard Fortran calling conventions and must
 run in the Fortran run-time environment. When ESSL subroutines are called
 from a program in a language other than Fortran, such as C or C++, the Fortran
 conventions must be used. This applies to all aspects of the interface, such
 as the linkage conventions and the data conventions. For example, array ordering
 must be consistent with Fortran array ordering techniques. Data and linkage
 conventions for each language are given in Coding Your Program.

 Parent topic: Overview of ESSL

 Software and Hardware Products That Can Be Used with ESSL

 This describes the hardware and software products you can use with ESSL,
 as well as those products for installing ESSL and displaying the online documentation.

 	Hardware Products Supported by ESSL

 	Operating Systems Supported by ESSL

 	Software Products Required by ESSL

 	Software Products for Installing and Customizing ESSL

 	Software Products for Displaying ESSL Documentation

 	Hardware Products Supported by ESSL

 	Operating Systems Supported by ESSL

 	Software Products Required by ESSL

 	Software Products for Installing and Customizing ESSL

 	Software Products for Displaying ESSL Documentation

 Parent topic: Introduction and Requirements

 Hardware Products Supported by ESSL

 ESSL for AIX® runs
 on the following hardware platforms:

 	IBM® POWER8® servers

 	IBM POWER7+™ and POWER7® servers
 and blades

 	IBM POWER6+™ and POWER6® servers
 and blades

 ESSL for Linux on POWER® is supported on the following hardware platforms running in little endian mode:

 	IBM
 POWER8 servers

 Note: The ESSL SMP CUDA Library is supported only on IBM Power System S822LC (8335-GTB) servers with NVIDIA P100 GPUs and IBM
 Power System S822LC (8335-GTA) servers with NVIDIA K80 GPUs running Red Hat Enterprise Linux 7.3
 (RHEL7.3) (little endian mode).

 Parent topic: Software and Hardware Products That Can Be Used with ESSL

 Operating Systems Supported by ESSL

 ESSL is supported in the following operating system environments:

 Table 8. Operating systems supported
 by ESSL.

 	Product

 	Supported Environment
big
 endian mode

 	Supported Environment
little
 endian mode

 	ESSL for AIX®

 	

 	AIX 7.1 with the latest
 available Technology Level

 	AIX 6.1 with the latest
 available Technology Level

 	N/A

 	ESSL for Linux on POWER®

 	N/A

 	Red Hat Enterprise Linux [image: Start of change]7.3 (RHEL7.3)[image: End of change] (little
 endian mode) for IBM Power System S822LC (8335-GTB) servers with NVIDIA P100 GPUs and IBM Power
 System S822LC (8335-GTA) servers with NVIDIA K80 GPUs.
 [image: Start of change]Red Hat Enterprise Linux 7.2
 (RHEL7.2) or RHEL7.3 (little endian mode) for other Power8 Servers.[image: End of change]

 Parent topic: Software and Hardware Products That Can Be Used with ESSL

 Software Products Required by ESSL

 This describes the software products that are required
 by ESSL.

 	Software Products Required by ESSL for AIX

 	Software Products Required by ESSL for Linux

 	Software Products Required by ESSL for AIX

 	Software Products Required by ESSL for Linux

 Parent topic: Software and Hardware Products That Can Be Used with ESSL

 Software Products Required by ESSL for AIX

 ESSL for AIX® requires
 the software products shown in Required Software Products on AIX for
 compiling and running.

 To assist C and C++ users, an ESSL header file is provided.
 Use of this file is described in C Programs and C++ Programs.

 	Required Software Products on AIX

 Parent topic: Software Products Required by ESSL

 Required Software Products on AIX

 The following table lists the required software products
 for ESSL for AIX®:

 Table 9. Required Software Products for ESSL for AIX.

 	Required Software
 Products

 	Supported Levels

 	For Compiling

 	IBM® XL Fortran for AIX

 	15.1 or later with
 the latest service

 	IBM XL C/C++ for AIX

 	13.1 or later with
 the latest service

 	For Linking,
 Loading, or Running
 (See Note
 1)

 	IBM XL Fortran Runtime Environment
 for AIX
 (See Note
 2)

 	15.1 or later with
 the latest service
 (See Note 2)

 	IBM XL C libraries

 	(See Note
 3)

 	
 Notes:

 	Optional filesets are required for building applications.
 For details, consult the AIX and compiler documentation.

 	The correct version of IBM XL
 Fortran Runtime Environment for AIX is
 automatically shipped with the compiler. It is also available for
 downloading from the following website: http://www.ibm.com/support/docview.wss?rs=43&uid=swg21156900

 	The AIX product includes the C and math libraries
 in the Application Development Toolkit.

 Parent topic: Software Products Required by ESSL for AIX

 Software Products Required by ESSL for Linux

 ESSL for Linux requires
 the software products listed in Required Software Products on Linux for
 compiling and running.

 To assist C and C++ users, an ESSL header file is provided.
 Use of this file is described in C Programs and C++ Programs.

 	Required Software Products on Linux

 Parent topic: Software Products Required by ESSL

 Required Software Products on Linux

 The following table lists the required software products for ESSL for Linux on POWER®:
 [image: Start of change]
 Table 10. Required Software Products for ESSL.

 	

 	 Required software
 products

 	Supported
 levels
little endian mode

 	For Compiling

 	IBM® XL Fortran for Linux

 	[image: Start of change]15.1.4 or later with the latest service[image: End of change]

 	IBM XL C/C++ for Linux

 	[image: Start of change]13.1.4 or later with the latest service[image: End of change]

 	gcc and g++

 	(See Note 3)

 	For Linking, Loading, or Running(See Note 1)

 	IBM XL Fortran Runtime Environment for
 Linux
 (See Note
 2)

 	[image: Start of change]15.1.4 or later with the latest service
 (See Note 2)

 [image: End of change]

 	gcc and g++ 64-bit libraries

 	(See Note 3)

 	CUDA Toolkit
 (See Note
 4)

 	[image: Start of change]8.0[image: End of change]

 	
 Notes:

 	Additional software packages may be required for building applications. For
 details, consult the Linux and compiler documentation.

 	The correct version of IBM XL Fortran Runtime
 Environment and Addons Library for Linux is automatically
 shipped with the compiler. It is also available for downloading from the following website:
 http://www.ibm.com/support/docview.wss?rs=43&uid=swg21156900

 	Use the compilers and libraries provided with your Linux distribution. The ESSL SMP
 libraries require the XL OpenMP runtime. The gcc OpenMP runtime is not compatible with the XL OpenMP
 runtime. [image: Start of change]Therefore, the ESSL SMP libraries can only be used with other compilers if
 the program calling ESSL is a serial program (does not use OpenMP) because in this case only the XL
 OpenMP runtime is used.[image: End of change]

 	This product is only required in order to use the ESSL SMP CUDA library. The ESSL
 SMP CUDA Library is only supported on IBM Power System S822LC (8335-GTB) servers with NVIDIA P100
 GPUs and IBM Power System S822LC (8335-GTA) servers with NVIDIA K80 GPUs running Red Hat Enterprise
 Linux 7.3 (RHEL7.3) (little endian mode).

 [image: End of change]

 Parent topic: Software Products Required by ESSL for Linux

 Software Products for Installing and Customizing ESSL

 The ESSL licensed program is distributed on a CD. Different
 software products are required for installing and customizing ESSL
 on AIX® or on Linux.

 	Software Products for Installing and Customizing ESSL for AIX

 	Software Products for Installing and Customizing ESSL for Linux

 	Software Products for Installing and Customizing ESSL for AIX

 	Software Products for Installing and Customizing ESSL for Linux

 Parent topic: Software and Hardware Products That Can Be Used with ESSL

 Software Products for Installing and Customizing ESSL for AIX

 The ESSL for AIX Installation
 Guide provides the detailed information you need to install
 ESSL for AIX®.

 Parent topic: Software Products for Installing and Customizing ESSL

 Software Products for Installing and Customizing ESSL for Linux

 The ESSL for Linux Installation
 Guide provides the detailed information you need to install
 ESSL for Linux.

 Parent topic: Software Products for Installing and Customizing ESSL

 Software Products for Displaying ESSL Documentation

 The software products needed to display ESSL online information
 are listed in Table 11.

 Table 11. Software needed to display various formats
 of ESSL online information.

 	Format of online information

 	Software needed

 	HTML

 	HTML document browser (such as Microsoft Internet Explorer)

 	PDF

 	Adobe Acrobat Reader,
 which is freely available for downloading from the Adobe Web site at:
 http://www.adobe.com

 	Manpages

 	No additional software needed.
 Note: In order
 for manpages to be displayed properly on Linux, the LANG environment
 variable must be set to either of the following values: C or en_US.iso885915.

 To
 display a specific manpage, use the man command
 as follows:

 man

 subroutine-name

 Note: These
 manpages will be installed in the following directory:

 /usr/share/man/man3

 The
 manpages provided by LAPACK are installed in the /usr/share/man/manl
 directory. By default, ESSL manpages will be displayed rather than
 BLAS or LAPACK manpages with the same names. If you want to access
 the BLAS or LAPACK manpages, you must set the MANPATH environment
 variable. See the documentation for the man command.

 Parent topic: Software and Hardware Products That Can Be Used with ESSL

 List of ESSL Subroutines

 ESSL provides several different types of subroutines.

 Basic Linear Algebra Subprograms (BLAS) and Complex BLAS (CBLAS) contains a list of Level 1, 2, and 3 Basic Linear
 Algebra Subprograms (BLAS) included in ESSL.

 LAPACK and LAPACKE contains a list of Linear Algebra Package (LAPACK)
 subroutines included in ESSL.

 	Linear Algebra Subprograms

 	Matrix Operations

 	Linear Algebraic Equations

 	Eigensystem Analysis

 	Fourier Transforms, Convolutions and Correlations, and Related Computations

 	Sorting and Searching

 	Interpolation

 	Numerical Quadrature

 	Random Number Generation

 	Utilities

 Parent topic: Introduction and Requirements

 Linear Algebra Subprograms

 There are several types of linear algebra subprograms.

 	Vector-scalar linear algebra subprograms (Vector-Scalar Linear Algebra Subprograms)

 	Sparse vector-scalar linear algebra subprograms (Sparse Vector-Scalar Linear Algebra Subprograms)

 	Matrix-vector linear algebra subprograms (Matrix-Vector Linear Algebra Subprograms)

 	Sparse matrix-vector linear algebra subprograms (Sparse Matrix-Vector Linear Algebra Subprograms)

 Note:

 	The term subprograms is used to be consistent with the
 Basic Linear Algebra Subprograms (BLAS), because many of these subprograms
 correspond to the BLAS.

 	Some of the linear algebra subprograms were designed in accordance
 with the Level 1 and Level 2 BLAS de facto standard. If these subprograms
 do not comply with the standard as approved, IBM® will consider updating them to do so. If IBM updates these subprograms,
 the
 updates could require modifications of the calling application program.

 	Vector-Scalar Linear Algebra Subprograms

 	Sparse Vector-Scalar Linear Algebra Subprograms

 	Matrix-Vector Linear Algebra Subprograms

 	Sparse Matrix-Vector Linear Algebra Subprograms

 Parent topic: List of ESSL Subroutines

 Vector-Scalar Linear Algebra Subprograms

 The vector-scalar linear algebra subprograms include
 a subset of the standard set of Level 1 BLAS. For details on the BLAS,
 see reference [93]. The remainder
 of the vector-scalar linear algebra subprograms are commonly used
 computations provided for your applications. Both real and complex
 versions of the subprograms are provided.

 Table 12. List of Vector-Scalar
 Linear Algebra Subprograms.

 	Short-Precision
 Subprogram

 	Long-Precision Subprogram

 	Descriptive Name and Location

 	

 ISAMAX

 †

 ▪

 ICAMAX

 †

 ▪

 cblas_isamax

 ▪

 cblas_icamax

 ▪

 	

 IDAMAX

 †

 ▪

 IZAMAX

 †

 ▪

 cblas_idamax

 ▪

 cblas_izamax

 ▪

 	ISAMAX, IDAMAX, ICAMAX, and IZAMAX (Position of the First or Last Occurrence of the Vector Element Having the Largest Magnitude)

 	[image: Start of change]
 ISAMIN

 †

 cblas_isamin

 [image: End of change]

 	[image: Start of change][image: Start of change]
 IDAMIN

 †

 cblas_idamin

 [image: End of change][image: End of change]

 	[image: Start of change]ISAMIN and IDAMIN (Position of the First or Last Occurrence of the Vector Element Having Minimum Absolute Value)[image: End of change]

 	[image: Start of change]
 ISMAX

 †

 cblas_ismax

 [image: End of change]

 	[image: Start of change]
 IDMAX

 †

 cblas_idmax

 [image: End of change]

 	ISMAX and IDMAX (Position of the First or Last Occurrence of the Vector Element Having the Maximum Value)

 	[image: Start of change]
 ISMIN

 †

 [image: Start of change]cblas_ismin

 [image: End of change]

 [image: End of change]

 	

 IDMIN

 †

 cblas_idmin

 	ISMIN and IDMIN (Position of the First or Last Occurrence of the Vector Element Having Minimum Value)

 	

 SASUM

 †

 ▪

 SCASUM

 †

 ▪

 cblas_sasum

 ▪

 cblas_scasum

 ▪

 	

 DASUM

 †

 ▪

 DZASUM

 †

 ▪

 cblas_dasum

 ▪

 cblas_dzasum

 ▪

 	SASUM, DASUM, SCASUM, and DZASUM (Sum of the Magnitudes of the Elements in a Vector)

 	

 SAXPY

 ▪

 CAXPY

 ▪

 cblas_saxby

 ▪

 cblas_caxpy

 ▪

 	

 DAXPY

 ▪

 ZAXPY

 ▪

 cblas_daxby

 ▪

 cblas_zaxpy

 ▪

 	SAXPY, DAXPY, CAXPY, and ZAXPY (Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the Vector Y)

 	

 SCOPY

 ▪

 CCOPY

 ▪

 cblas_scopy

 ▪

 cblas_ccopy

 ▪

 	

 DCOPY

 ▪

 ZCOPY

 ▪

 cblas_dcopy

 ▪

 cblas_zcopy

 ▪

 	SCOPY, DCOPY, CCOPY, and ZCOPY (Copy a Vector)

 	

 SDOT

 †

 ▪

 CDOTU

 †

 ▪

 CDOTC

 †

 ▪

 cblas_sdot

 ▪

 cblas_cdotu_sub

 ▪

 cblas_cdotc_sub

 ▪

 	

 DDOT

 †

 ▪

 ZDOTU

 †

 ▪

 ZDOTC

 †

 ▪

 cblas_ddot

 ▪

 cblas_zdotu_sub

 ▪

 cblas_zdotc_sub

 ▪

 	SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and ZDOTC (Dot Product of Two Vectors)

 	SNAXPY

 	DNAXPY

 	SNAXPY and DNAXPY (Compute SAXPY or DAXPY N Times)

 	SNDOT

 	DNDOT

 	SNDOT and DNDOT (Compute Special Dot Products N Times)

 	

 SNRM2

 †

 ▪

 SCNRM2

 †

 ▪

 cblas_snrm2

 ▪

 cblas_scnrm2

 ▪

 	

 DNRM2

 †

 ▪

 DZNRM2

 †

 ▪

 cblas_dnrm2

 ▪

 cblas_dznrm2

 ▪

 	SNRM2, DNRM2, SCNRM2, and DZNRM2 (Euclidean Length of a Vector with Scaling of Input to Avoid Destructive Underflow and Overflow)

 	

 SNORM2

 †

 CNORM2

 †

 	

 DNORM2

 †

 ZNORM2

 †

 	SNORM2, DNORM2, CNORM2, and ZNORM2 (Euclidean Length of a Vector with No Scaling of Input)

 	

 SROTG

 ▪

 CROTG

 ▪

 cblas_srotg

 ▪

 [image: Start of change]cblas_crotg

 ▪

 [image: End of change]

 	

 DROTG

 ▪

 ZROTG

 ▪

 cblas_drotg

 ▪

 cblas_zrotg

 ▪

 	SROTG, DROTG, CROTG, and ZROTG (Construct a Givens Plane Rotation)

 	

 SROT

 ▪

 CROT

 ▪

 CSROT

 ▪

 cblas_srot

 ▪

 [image: Start of change]cblas_crot

 ▪

 [image: End of change]

 [image: Start of change]cblas_csrot

 ▪

 [image: End of change]

 	

 DROT

 ▪

 ZROT

 ▪

 ZDROT

 ▪

 cblas_drot

 ▪

 [image: Start of change]cblas_zrot

 ▪

 [image: End of change]

 [image: Start of change]cblas_zdrot

 ▪

 [image: End of change]

 	SROT, DROT, CROT, ZROT, CSROT, and ZDROT (Apply a Plane Rotation)

 	[image: Start of change]
 SROTMG

 ▪

 cblas_srotmg

 ▪

 [image: End of change]

 	

 DROTMG

 ▪

 cblas_drotmg

 ▪

 	SROTMG and DROTMG (Construct a modified Givens Transformation)

 	[image: Start of change]
 SROTM

 ▪

 cblas_srotm

 ▪

 [image: End of change]

 	

 DROTM

 ▪

 cblas_drotm

 ▪

 	SROTM and DROTM (Apply a modified Givens Transformation)

 	

 SSCAL

 ▪

 CSCAL

 ▪

 CSSCAL

 ▪

 cblas_sscal

 ▪

 cblas_cscal

 ▪

 cblas_csscal

 ▪

 	

 DSCAL

 ▪

 ZSCAL

 ▪

 ZDSCAL

 ▪

 cblas_dscal

 ▪

 cblas_zscal

 ▪

 cblas_zdscal

 ▪

 	SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and ZDSCAL (Multiply a Vector X by a Scalar and Store in the Vector X)

 	

 SSWAP

 ▪

 CSWAP

 ▪

 cblas_sswap

 ▪

 cblas_cswap

 ▪

 	

 DSWAP

 ▪

 ZSWAP

 ▪

 cblas_dswap

 ▪

 cblas_zswap

 ▪

 	SSWAP, DSWAP, CSWAP, and ZSWAP (Interchange the Elements of Two Vectors)

 	[image: Start of change]
 SVEA

 CVEA

 cblas_svea

 cblas_cvea

 [image: End of change]

 	

 DVEA

 ZVEA

 cblas_dvea

 cblas_zvea

 	SVEA, DVEA, CVEA, and ZVEA (Add a Vector X to a Vector Y and Store in a Vector Z)

 	

 SVES

 CVES

 [image: Start of change]cblas_sves

 cblas_cves

 [image: End of change]

 	

 DVES

 ZVES

 [image: Start of change]cblas_dves

 cblas_zves

 [image: End of change]

 	SVES, DVES, CVES, and ZVES (Subtract a Vector Y from a Vector X and Store in a Vector Z)

 	

 SVEM

 CVEM

 [image: Start of change]cblas_svem

 cblas_cvem

 [image: End of change]

 	

 DVEM

 ZVEM

 [image: Start of change]cblas_dvem

 cblas_zvem

 [image: End of change]

 	SVEM, DVEM, CVEM, and ZVEM (Multiply a Vector X by a Vector Y and Store in a Vector Z)

 	[image: Start of change]
 SYAX

 CYAX

 CSYAX

 cblas_syax

 cblas_cyax

 cblas_csyax

 [image: End of change]

 	[image: Start of change]
 DYAX

 ZYAX

 ZDYAX

 cblas_dyax

 cblas_zyax

 cblas_zdyax

 [image: End of change]

 	[image: Start of change]SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX (Multiply a Vector X by a Scalar and Store in a Vector Y)[image: End of change]

 	[image: Start of change]
 SZAXPY

 CZAXPY

 cblas_szaxpy

 cblas_czaxpy

 [image: End of change]

 	

 DZAXPY

 ZZAXPY

 cblas_dzaxpy

 cblas_zzaxpy

 	SZAXPY, DZAXPY, CZAXPY, and ZZAXPY (Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in a Vector Z)

 	
 † This subprogram is
 invoked as a function in a Fortran program.

 ▪
 Level 1 BLAS

 Parent topic: Linear Algebra Subprograms

 Sparse Vector-Scalar Linear Algebra Subprograms

 The sparse vector-scalar linear algebra subprograms operate on
 sparse vectors; that is, only the nonzero elements of the vector are
 stored. These subprograms provide similar functions to the vector-scalar
 subprograms. These subprograms represent a subset of the sparse extensions
 to the Level 1 BLAS described in reference [37]. Both real
 and complex versions of the subprograms are provided.

 Table 13. List of Sparse Vector-Scalar
 Linear Algebra Subprograms.

 	Short-Precision
 Subprogram

 	Long-Precision Subprogram

 	Descriptive Name and Location

 	

 SSCTR

 CSCTR

 	

 DSCTR

 ZSCTR

 	SSCTR, DSCTR, CSCTR, ZSCTR (Scatter the Elements of a Sparse Vector X in Compressed-Vector Storage Mode into Specified Elements
 of a Sparse Vector Y in Full-Vector Storage Mode)

 	

 SGTHR

 CGTHR

 	

 DGTHR

 ZGTHR

 	SGTHR, DGTHR, CGTHR, and ZGTHR (Gather Specified Elements of a Sparse Vector Y in Full-Vector Storage Mode into a Sparse Vector
 X in Compressed-Vector Storage Mode)

 	

 SGTHRZ

 CGTHRZ

 	

 DGTHRZ

 ZGTHRZ

 	SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ (Gather Specified Elements of a Sparse Vector Y in Full-Vector Mode into a Sparse Vector
 X in Compressed-Vector Mode, and Zero the Same Specified Elements of Y)

 	

 SAXPYI

 CAXPYI

 	

 DAXPYI

 ZAXPYI

 	SAXPYI, DAXPYI, CAXPYI, and ZAXPYI (Multiply a Sparse Vector X in Compressed-Vector Storage Mode by a Scalar, Add to a Sparse
 Vector Y in Full-Vector Storage Mode, and Store in the Vector Y)

 	

 SDOTI

 †

 CDOTCI

 †

 CDOTUI

 †

 	

 DDOTI

 †

 ZDOTCI

 †

 ZDOTUI

 †

 	SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI (Dot Product of a Sparse Vector X in Compressed-Vector Storage Mode and a
 Sparse Vector Y in Full-Vector Storage Mode)

 	
 † This subprogram is
 invoked as a function in a Fortran program.

 Parent topic: Linear Algebra Subprograms

 Matrix-Vector Linear Algebra Subprograms

 The matrix-vector linear algebra subprograms operate
 on a higher-level data structure - matrix-vector rather than vector-scalar
 - using optimized algorithms to improve performance. These subprograms
 include a subset of the standard set of Level 2 BLAS. For details
 on the Level 2 BLAS, see [42] and [43]. Both real
 and complex versions of the subprograms are provided.

 Table 14. List of Matrix-Vector
 Linear Algebra Subprograms.

 	Short-Precision
 Subprogram

 	Long-Precision Subprogram

 	Descriptive Name and Location

 	

 SGEMV

 ◄

 CGEMV

 ◄

 SGEMX

 §

 SGEMTX

 §

 cblas_sgemv

 ◄

 cblas_cgemv

 ◄

 	

 DGEMV

 ◄

 ZGEMV

 ◄

 DGEMX

 §

 DGEMTX

 §

 cblas_dgemv

 ◄

 cblas_zgemv

 ◄

 	SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX (Matrix-Vector Product for a General Matrix, Its Transpose, or
 Its Conjugate Transpose)

 	

 SGER

 ◄

 CGERU

 ◄

 CGERC

 ◄

 cblas_sger

 ◄

 cblas_cgeru

 ◄

 cblas_cgerc

 ◄

 	

 DGER

 ◄

 ZGERU

 ◄

 ZGERC

 ◄

 cblas_dger

 ◄

 cblas_zgeru

 ◄

 cblas_zgerc

 ◄

 	SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC (Rank-One Update of a General Matrix)

 	

 SSPMV

 ◄

 CHPMV

 ◄

 SSYMV

 ◄

 CHEMV

 ◄

 SSLMX

 §

 cblas_sspmv

 ◄

 cblas_chpmv

 ◄

 cblas_ssymv

 ◄

 cblas_chemv

 ◄

 	

 DSPMV

 ◄

 ZHPMV

 ◄

 DSYMV

 ◄

 ZHEMV

 ◄

 DSLMX

 §

 cblas_dspmv

 ◄

 cblas_zhpmv

 ◄

 cblas_dsymv

 ◄

 cblas_zhemv

 ◄

 	SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV, SSLMX, and DSLMX (Matrix-Vector Product for a Real Symmetric or Complex
 Hermitian Matrix)

 	

 SSPR

 ◄

 CHPR

 ◄

 SSYR

 ◄

 CHER

 ◄

 SSLR1

 §

 cblas_sspr

 ◄

 cblas_chpr

 ◄

 cblas_ssyr

 ◄

 cblas_cher

 ◄

 	

 DSPR

 ◄

 ZHPR

 ◄

 DSYR

 ◄

 ZHER

 ◄

 DSLR1

 §

 cblas_dspr

 ◄

 cblas_zhpr

 ◄

 cblas_dsyr

 ◄

 cblas_zher

 ◄

 	SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1 (Rank-One Update of a Real Symmetric or Complex Hermitian
 Matrix)

 	

 SSPR2

 ◄

 CHPR2

 ◄

 SSYR2

 ◄

 CHER2

 ◄

 SSLR2

 §

 cblas_sspr2

 ◄

 cblas_chpr2

 ◄

 cblas_ssyr2

 ◄

 cblas_cher2

 ◄

 	

 DSPR2

 ◄

 ZHPR2

 ◄

 DSYR2

 ◄

 ZHER2

 ◄

 DSLR2

 §

 cblas_dspr2

 ◄

 cblas_zhpr2

 ◄

 cblas_dsyr2

 ◄

 cblas_zher2

 ◄

 	SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2 (Rank-Two Update of a Real Symmetric or Complex Hermitian
 Matrix)

 	

 SGBMV

 ◄

 CGBMV

 ◄

 cblas_sgbmv

 ◄

 cblas_cgbmv

 ◄

 	

 DGBMV

 ◄

 ZGBMV

 ◄

 cblas_dgbmv

 ◄

 cblas_zgbmv

 ◄

 	SGBMV, DGBMV, CGBMV, and ZGBMV (Matrix-Vector Product for a General Band Matrix, Its Transpose, or Its Conjugate Transpose)

 	

 SSBMV

 ◄

 CHBMV

 ◄

 cblas_ssbmv

 ◄

 cblas_chbmv

 ◄

 	

 DSBMV

 ◄

 ZHBMV

 ◄

 cblas_dsbmv

 ◄

 cblas_zhbmv

 ◄

 	SSBMV, DSBMV, CHBMV, and ZHBMV (Matrix-Vector Product for a Real Symmetric or Complex Hermitian Band Matrix)

 	

 STRMV

 ◄

 CTRMV

 ◄

 STPMV

 ◄

 CTPMV

 ◄

 cblas_strmv

 ◄

 cblas_ctrmv

 ◄

 cblas_stpmv

 ◄

 cblas_ctpmv

 ◄

 	

 DTRMV

 ◄

 ZTRMV

 ◄

 DTPMV

 ◄

 ZTPMV

 ◄

 cblas_dtrmv

 ◄

 cblas_ztrmv

 ◄

 cblas_dtpmv

 ◄

 cblas_ztpmv

 ◄

 	STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV (Matrix-Vector Product for a Triangular Matrix, Its Transpose,
 or Its Conjugate Transpose)

 	

 STRSV

 ◄

 CTRSV

 ◄

 STPSV

 ◄

 CTPSV

 ◄

 cblas_strsv

 ◄

 cblas_ctrsv

 ◄

 cblas_stpsv

 ◄

 cblas_ctps

 ◄

 	

 DTRSV

 ◄

 ZTRSV

 ◄

 DTPSV

 ◄

 ZTPSV

 ◄

 cblas_dtrsv

 ◄

 cblas_ztrsv

 ◄

 cblas_dtpsv

 ◄

 cblas_ztps

 ◄

 	STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and ZTPSV (Solution of a Triangular System of Equations with a Single Right-Hand
 Side)

 	

 STBMV

 ◄

 CTBMV

 ◄

 cblas_stbmv

 ◄

 cblas_ctbmv

 ◄

 	

 DTBMV

 ◄

 ZTBMV

 ◄

 cblas_dtbmv

 ◄

 cblas_ztbmv

 ◄

 	STBMV, DTBMV, CTBMV, and ZTBMV (Matrix-Vector Product for a Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose)

 	

 STBSV

 ◄

 CTBSV

 ◄

 cblas_stbsv

 ◄

 cblas_ctbsv

 ◄

 	

 DTBSV

 ◄

 ZTBSV

 ◄

 cblas_dtbsv

 ◄

 cblas_ztbsv

 ◄

 	STBSV, DTBSV, CTBSV, and ZTBSV (Triangular Band Equation Solve)

 	
 ◄ Level 2 BLAS

 §
 This subroutine is provided only for migration from earlier releases
 of ESSL and is not intended for use in new programs.

 Parent topic: Linear Algebra Subprograms

 Sparse Matrix-Vector Linear Algebra Subprograms

 The sparse matrix-vector linear algebra subprograms operate on sparse matrices;
 that is, only the nonzero elements of the matrix are stored. These subprograms
 provide similar functions to the matrix-vector subprograms.

 Table 15. List of Sparse Matrix-Vector Linear Algebra Subprograms.

 	Long-Precision Subprogram

 	Descriptive Name and Location

 	DSMMX

 	DSMMX (Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode)

 	DSMTM

 	DSMTM (Transpose a Sparse Matrix in Compressed-Matrix Storage Mode)

 	DSDMX

 	DSDMX (Matrix-Vector Product for a Sparse Matrix or Its Transpose in Compressed-Diagonal Storage Mode)

 Parent topic: Linear Algebra Subprograms

 Matrix Operations

 Some of the matrix operation subroutines
 were designed in accordance with the Level 3 BLAS de facto standard.
 If these subroutines do not comply with the standard as approved, IBM® will consider updating them
 to do so. If IBM updates these
 subroutines, the updates could require modifications of the calling
 application program. For details on the Level 3 BLAS, see reference [40]. The matrix
 operation subroutines also include the commonly used matrix operations:
 addition, subtraction, multiplication, and transposition.

 Table 16. List of Matrix
 Operation Subroutines.

 	Short-Precision
 Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	

 SGEADD

 CGEADD

 	

 DGEADD

 ZGEADD

 	SGEADD, DGEADD, CGEADD, and ZGEADD (Matrix Addition for General Matrices or Their Transposes)

 	

 SGESUB

 CGESUB

 	

 DGESUB

 ZGESUB

 	SGESUB, DGESUB, CGESUB, and ZGESUB (Matrix Subtraction for General Matrices or Their Transposes)

 	

 SGEMUL

 CGEMUL

 	

 DGEMUL

 ZGEMUL

 DGEMLP

 §

 	SGEMUL, DGEMUL, CGEMUL, and ZGEMUL (Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes)

 	

 SGEMMS

 CGEMMS

 	

 DGEMMS

 ZGEMMS

 	SGEMMS, DGEMMS, CGEMMS, and ZGEMMS (Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes
 Using Winograd's Variation of Strassen's Algorithm)

 	

 SGEMM

 ♦

 CGEMM

 ♦

 cblas_sgemm

 ♦

 cblas_cgemm

 ♦

 	

 DGEMM

 ♦

 ZGEMM

 ♦

 cblas_dgemm

 ♦

 cblas_zgemm

 ♦

 	SGEMM, DGEMM, CGEMM, and ZGEMM (Combined Matrix Multiplication and Addition for General Matrices, Their Transposes, or Conjugate
 Transposes)

 	

 SSYMM

 ♦

 CSYMM

 ♦

 CHEMM

 ♦

 cblas_ssymm

 ♦

 cblas_csymm

 ♦

 cblas_chemm

 ♦

 	

 DSYMM

 ♦

 ZSYMM

 ♦

 ZHEMM

 ♦

 cblas_dsymm

 ♦

 cblas_zsymm

 ♦

 cblas_zhemm

 ♦

 	SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM (Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric or Complex
 Hermitian)

 	

 STRMM

 ♦

 CTRMM

 ♦

 cblas_strmm

 ♦

 cblas_ctrmm

 ♦

 	

 DTRMM

 ♦

 ZTRMM

 ♦

 cblas_dtrmm

 ♦

 cblas_ztrmm

 ♦

 	STRMM, DTRMM, CTRMM, and ZTRMM (Triangular Matrix-Matrix Product)

 	

 STRSM

 ♦

 CTRSM

 ♦

 cblas_strsm

 ♦

 cblas_ctrsm

 ♦

 	

 DTRSM

 ♦

 ZTRSM

 ♦

 cblas_dtrsm

 ♦

 cblas_ztrsm

 ♦

 	STRSM, DTRSM, CTRSM, and ZTRSM (Solution of Triangular Systems of Equations with Multiple Right-Hand Sides)

 	

 SSYRK

 ♦

 CSYRK

 ♦

 CHERK

 ♦

 cblas_ssyrk

 ♦

 cblas_csyrk

 ♦

 cblas_cherk

 ♦

 	

 DSYRK

 ♦

 ZSYRK

 ♦

 ZHERK

 ♦

 cblas_dsyrk

 ♦

 cblas_zsyrk

 ♦

 cblas_zherk

 ♦

 	SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK (Rank-K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix)

 	

 SSYR2K

 ♦

 CSYR2K

 ♦

 CHER2K

 ♦

 cblas_ssyr2k

 ♦

 cblas_csyr2k

 ♦

 cblas_cher2k

 ♦

 	

 DSYR2K

 ♦

 ZSYR2K

 ♦

 ZHER2K

 ♦

 cblas_dsyr2k

 ♦

 cblas_zsyr2k

 ♦

 cblas_zher2k

 ♦

 	SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K (Rank-2K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix)

 	

 SGETMI

 CGETMI

 CGECMI

 	

 DGETMI

 ZGETMI

 ZGECMI

 	 SGETMI, DGETMI, CGETMI, ZGETMI, CGECMI and ZGECMI (General Matrix Transpose or Conjugate Transpose [In-Place])

 	

 SGETMO

 CGETMO

 CGECMO

 	

 DGETMO

 ZGETMO

 ZGECMO

 	 SGETMO, DGETMO, CGETMO, ZGETMO, CGECMO, and ZGECMO (General Matrix Transpose or Conjugate Transpose [Out-of-Place])

 	
 ♦ Level 3 BLAS

 § This
 subroutine is provided only for migration from earlier release of
 ESSL and is not intended for use in new programs.

 Parent topic: List of ESSL Subroutines

 Linear Algebraic Equations

 The linear algebraic equations consist of:

 	Dense Linear Algebraic Equations

 	Banded Linear Algebraic Equations

 	Sparse Linear Algebraic Equations

 	Linear Least Squares

 Note: Some of the linear algebraic
 equations were designed in accordance with the LAPACK de facto standard.
 If these subprograms do not comply with the standard as approved, IBM® will consider updating them
 to do so. If IBM updates these
 subprograms, the updates could require modifications of the calling
 application program. For details on LAPACK, see [8].

 	Dense Linear Algebraic Equations

 	Banded Linear Algebraic Equations

 	Sparse Linear Algebraic Equations

 	Linear Least Squares

 Parent topic: List of ESSL Subroutines

 Dense Linear Algebraic Equations

 The dense linear algebraic equation subroutines provide solutions to
 linear systems of equations for both real and complex general matrices and their transposes,
 positive definite real symmetric and complex Hermitian matrices, indefinite real or complex
 symmetric or complex Hermitian matrices, and triangular matrices. Some of these subroutines
 correspond to the LAPACK routines described in reference [
 8].

 Table 17. List of LAPACK Dense Linear Algebraic Equation Subroutines.

 	Short-Precision Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	

 SGESV

 Δ

 CGESV

 Δ

 [image: Start of change]LAPACKE_sgesv

 Δ

 LAPACKE_cgesv

 Δ

 [image: End of change]

 	

 DGESV

 Δ

 ZGESV

 Δ

 [image: Start of change]LAPACKE_dgesv

 Δ

 LAPACKE_zgesv

 Δ

 [image: End of change]

 	SGESV, DGESV, CGESV, ZGESV (General Matrix Factorization and Multiple Right-Hand Side Solve)

 	

 SGETRF

 Δ

 CGETRF

 Δ

 [image: Start of change]LAPACKE_sgetrf

 Δ

 LAPACKE_cgetrf

 Δ

 [image: End of change]

 	

 DGETRF

 Δ

 ZGETRF

 Δ

 [image: Start of change]LAPACKE_dgetrf

 Δ

 LAPACKE_zgetrf

 Δ

 [image: End of change]

 	SGETRF, DGETRF, CGETRF and ZGETRF (General Matrix Factorization)

 	

 SGETRS

 Δ

 CGETRS

 Δ

 [image: Start of change]LAPACKE_sgetrs

 Δ

 LAPACKE_cgetrs

 Δ

 [image: End of change]

 	

 DGETRS

 Δ

 ZGETRS

 Δ

 [image: Start of change]LAPACKE_dgetrf

 Δ

 LAPACKE_zgetrf

 Δ

 [image: End of change]

 	SGETRS, DGETRS, CGETRS, and ZGETRS (General Matrix Multiple Right-Hand Side Solve)

 	

 SGECON

 Δ

 CGECON

 Δ

 [image: Start of change]LAPACKE_sgecon

 Δ

 LAPACKE_cgecon

 Δ

 [image: End of change]

 	

 DGECON

 Δ

 ZGECON

 Δ

 [image: Start of change]LAPACKE_dgecon

 Δ

 LAPACKE_zgecon

 Δ

 [image: End of change]

 	SGECON, DGECON, CGECON, and ZGECON (Estimate the Reciprocal of the Condition Number of a General Matrix)

 	

 SGETRI

 Δ

 CGETRI

 Δ

 [image: Start of change]LAPACKE_sgetri

 Δ

 LAPACKE_cgetri

 Δ

 [image: End of change]

 	

 DGETRI

 Δ

 ZGETRI

 Δ

 [image: Start of change]LAPACKE_dgetri

 Δ

 LAPACKE_zgetri

 Δ

 [image: End of change]

 	SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and DGEICD (General Matrix Inverse, Condition Number Reciprocal, and Determinant)

 	

 SLANGE

 Δ

 CLANGE

 Δ

 [image: Start of change]LAPACKE_slange

 Δ

 LAPACKE_clange

 Δ

 [image: End of change]

 	

 DLANGE

 Δ

 ZLANGE

 Δ

 [image: Start of change]LAPACKE_dlange

 Δ

 LAPACKE_zlange

 Δ

 [image: End of change]

 	SLANGE, DLANGE, CLANGE, and ZLANGE (General Matrix Norm)

 	

 SPPSV

 Δ

 CPPSV

 Δ

 [image: Start of change]LAPACKE_sppsv

 Δ

 LAPACKE_cppsv

 Δ

 [image: End of change]

 	

 DPPSV

 Δ

 ZPPSV

 Δ

 [image: Start of change]LAPACKE_dppsv

 Δ

 LAPACKE_zppsv

 Δ

 [image: End of change]

 	SPPSV, DPPSV, CPPSV, and ZPPSV (Positive Definite Real Symmetric and Complex Hermitian Matrix Factorization and Multiple Right-Hand
 Side Solve)

 	

 SPOSV

 Δ

 CPOSV

 Δ

 [image: Start of change]LAPACKE_sposv

 Δ

 LAPACKE_cposv

 Δ

 [image: End of change]

 	

 DPOSV

 Δ

 ZPOSV

 Δ

 [image: Start of change]LAPACKE_dposv

 Δ

 LAPACKE_zposv

 Δ

 [image: End of change]

 	SPOSV, DPOSV, CPOSV, and ZPOSV (Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization and Multiple Right-Hand
 Side Solve)

 	

 SPOTRF

 Δ

 CPOTRF

 Δ

 SPPTRF

 Δ

 CPPTRF

 Δ

 [image: Start of change]LAPACKE_spotrf

 Δ

 LAPACKE_cpotrf

 Δ

 LAPACKE_spptrf

 Δ

 LAPACKE_cpptrf

 Δ

 [image: End of change]

 	

 DPOTRF

 Δ

 ZPOTRF

 Δ

 DPPTRF

 Δ

 ZPPTRF

 Δ

 [image: Start of change]LAPACKE_dpotrf

 Δ

 LAPACKE_zpotrf

 Δ

 LAPACKE_dpptrf

 Δ

 LAPACKE_zpptrf

 Δ

 [image: End of change]

 	SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, ZPOF, SPPTRF, DPPTRF, CPPTRF, ZPPTRF, SPPF, and DPPF (Positive Definite
 Real Symmetric or Complex Hermitian Matrix Factorization)

 	

 SPOTRS

 Δ

 CPOTRS

 Δ

 SPPTRS

 Δ

 CPPTRS

 Δ

 [image: Start of change]LAPACKE_spotrs

 Δ

 LAPACKE_cpotrs

 Δ

 LAPACKE_spptrs

 Δ

 LAPACKE_cpptrs

 Δ

 [image: End of change]

 	

 DPOTRS

 Δ

 ZPOTRS

 Δ

 DPPTRS

 Δ

 ZPPTRS

 Δ

 [image: Start of change]LAPACKE_dpotrs

 Δ

 LAPACKE_zpotrs

 Δ

 LAPACKE_dpptrs

 Δ

 LAPACKE_zpptrs

 Δ

 [image: End of change]

 	SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM, ZPOSM, SPPTRS, DPPTRS, CPPTRS, and ZPPTRS (Positive Definite Real Symmetric
 or Complex Hermitian Matrix Multiple Right-Hand Side Solve)

 	

 SPOCON

 Δ

 CPOCON

 Δ

 SPPCON

 Δ

 CPPCON

 Δ

 [image: Start of change]LAPACKE_spocon

 Δ

 LAPACKE_cpocon

 Δ

 LAPACKE_sppcon

 Δ

 LAPACKE_cppcon

 Δ

 [image: End of change]

 	

 DPOCON

 Δ

 ZPOCON

 Δ

 DPPCON

 Δ

 ZPPCON

 Δ

 [image: Start of change]LAPACKE_dpocon

 Δ

 LAPACKE_zpocon

 Δ

 LAPACKE_dppcon

 Δ

 LAPACKE_zppcon

 Δ

 [image: End of change]

 	SPOCON, DPOCON, CPOCON, ZPOCON, SPPCON, DPPCON, CPPCON, and ZPPCON (Estimate the Reciprocal of the Condition Number of a Positive
 Definite Real Symmetric or Complex Hermitian Matrix)

 	

 SPOTRI

 Δ

 CPOTRI

 Δ

 SPPTRI

 Δ

 CPPTRI

 Δ

 [image: Start of change]LAPACKE_spotri

 Δ

 LAPACKE_cpotri

 Δ

 LAPACKE_spptri

 Δ

 LAPACKE_cpptri

 Δ

 [image: End of change]

 	

 DPOTRI

 Δ

 ZPOTRI

 Δ

 DPPTRI

 Δ

 ZPPTRI

 Δ

 [image: Start of change]LAPACKE_dpotri

 Δ

 LAPACKE_zpotri

 Δ

 LAPACKE_dpptri

 Δ

 LAPACKE_zpptri

 Δ

 [image: End of change]

 	SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, DPOICD, SPPTRI, DPPTRI, CPPTRI, ZPPTRI, SPPICD, and DPPICD (Positive Definite Real
 Symmetric or Complex Hermitian Matrix Inverse, Condition Number Reciprocal, and Determinant)

 	

 SLANSY

 Δ

 CLANHE

 Δ

 SLANSP

 Δ

 CLANHP

 Δ

 [image: Start of change]LAPACKE_slansy

 Δ

 LAPACKE_clanhe

 Δ

 LAPACKE_slansp

 Δ

 LAPACKE_clanhp

 Δ

 [image: End of change]

 	

 DLANSY

 Δ

 ZLANHE

 Δ

 DLANSP

 Δ

 ZLANHP

 Δ

 [image: Start of change]LAPACKE_dlansy

 Δ

 LAPACKE_zlanhe

 Δ

 LAPACKE_dlansp

 Δ

 LAPACKE_zlanhp

 Δ

 [image: End of change]

 	SLANSY, DLANSY, CLANHE, ZLANHE, SLANSP, DLANSP, CLANHP, and ZLANHP (Real Symmetric or Complex Hermitian Matrix Norm)

 	

 SSYSV

 Δ

 CSYSV

 Δ

 CHESV

 Δ

 SSPSV

 Δ

 CSPSV

 Δ

 CHPSV

 Δ

 [image: Start of change]LAPACKE_ssysv

 Δ

 LAPACKE_csysv

 Δ

 LAPACKE_chesv

 Δ

 LAPACKE_sspsv

 Δ

 LAPACKE_cspsv

 Δ

 LAPACKE_chpsv

 Δ

 [image: End of change]

 	

 DSYSV

 Δ

 ZSYSV

 Δ

 ZHESV

 Δ

 DSPSV

 Δ

 ZSPSV

 Δ

 ZHPSV

 Δ

 [image: Start of change]LAPACKE_dsysv

 Δ

 LAPACKE_zsysv

 Δ

 LAPACKE_zhesv

 Δ

 LAPACKE_dspsv

 Δ

 LAPACKE_zspsv

 Δ

 LAPACKE_zhpsv

 Δ

 [image: End of change]

 	SSYSV, DSYSV, CSYSV, ZSYSV, CHESV, ZHESV, SSPSV, DSPSV, CSPSV, ZSPSV, CHPSV, and ZHPSV (Indefinite Real or Complex Symmetric
 or Complex Hermitian Matrix Factorization and Multiple Right-Hand Side Solve)

 	

 SSYTRF

 Δ

 CSYTRF

 Δ

 CHETRF

 Δ

 SSPTRF

 Δ

 CSPTRF

 Δ

 CHPTRF

 Δ

 [image: Start of change]LAPACKE_ssytrf

 Δ

 LAPACKE_csytrf

 Δ

 LAPACKE_chetrf

 Δ

 LAPACKE_ssptrf

 Δ

 LAPACKE_csptrf

 Δ

 LAPACKE_chptrf

 Δ

 [image: End of change]

 	

 DSYTRF

 Δ

 ZSYTRF

 Δ

 ZHETRF

 Δ

 DSPTRF

 Δ

 ZSPTRF

 Δ

 ZHPTRF

 Δ

 [image: Start of change]LAPACKE_dsytrf

 Δ

 LAPACKE_zsytrf

 Δ

 LAPACKE_zhetrf

 Δ

 LAPACKE_dsptrf

 Δ

 LAPACKE_zsptrf

 Δ

 LAPACKE_zhptrf

 Δ

 [image: End of change]

 	SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF, and ZHPTRF (Indefinite Real or Complex
 Symmetric or Complex Hermitian Matrix Factorization)

 	

 SSYTRS

 Δ

 CSYTRS

 Δ

 CHETRS

 Δ

 SSPTRS

 Δ

 CSPTRS

 Δ

 CHPTRS

 Δ

 [image: Start of change]LAPACKE_ssytrs

 Δ

 LAPACKE_csytrs

 Δ

 LAPACKE_chetrs

 Δ

 LAPACKE_ssptrs

 Δ

 LAPACKE_csptrs

 Δ

 LAPACKE_chptrs

 Δ

 [image: End of change]

 	

 DSYTRS

 Δ

 ZSYTRS

 Δ

 ZHETRS

 Δ

 DSPTRS

 Δ

 ZSPTRS

 Δ

 ZHPTRS

 Δ

 [image: Start of change]LAPACKE_dsytrs

 Δ

 LAPACKE_zsytrs

 Δ

 LAPACKE_zhetrs

 Δ

 LAPACKE_dsptrs

 Δ

 LAPACKE_zsptrs

 Δ

 LAPACKE_zhptrs

 Δ

 [image: End of change]

 	SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, ZHETRS, SSPTRS, DSPTRS, CSPTRS, ZSPTRS, CHPTRS, and ZHPTRS (Indefinite Real or Complex
 Symmetric or Complex Hermitian Matrix Multiple Right-Hand Side Solve)

 	

 STRTRI

 Δ

 CTRTRI

 Δ

 STPTRI

 Δ

 CTPTRI

 Δ

 [image: Start of change]LAPACKE_strtri

 Δ

 LAPACKE_stptri

 Δ

 LAPACKE_ctrtri

 Δ

 LAPACKE_ctptri

 Δ

 [image: End of change]

 	

 DTRTRI

 Δ

 ZTRTRI

 Δ

 DTPTRI

 Δ

 ZTPTRI

 Δ

 [image: Start of change]LAPACKE_dtrtri

 Δ

 LAPACKE_dtptri

 Δ

 LAPACKE_ztrtri

 Δ

 LAPACKE_ztptri

 Δ

 [image: End of change]

 	STRTRI, DTRTRI, CTRTRI, ZTRTRI, STPTRI, DTPTRI, CTPTRI, and ZTPTRI (Triangular Matrix Inverse)

 	

 SLANTR

 Δ

 	

 CLANTR

 Δ

 SLANTP

 Δ

 CLANTP

 Δ

 [image: Start of change]LAPACKE_slantr

 Δ

 	

 LAPACKE_clantr

 Δ

 LAPACKE_slantp

 Δ

 LAPACKE_clantp

 Δ

 [image: End of change]

 	

 DLANTR

 Δ

 ZLANTR

 Δ

 DLANTP

 Δ

 ZLANTP

 Δ

 [image: Start of change]LAPACKE_dlantr

 Δ

 LAPACKE_zlantr

 Δ

 LAPACKE_dlantp

 Δ

 LAPACKE_zlantp

 Δ

 [image: End of change]

 	SLANTR, DLANTR, CLANTR, ZLANTR, SLANTP, DLANTP, CLANTP, and ZLANTP (Trapezoidal or Triangular Matrix Norm)

 	
 Δ LAPACK

 Table 18. List of Dense
 Linear Algebraic Equation Subroutines.

 	Short-Precision
 Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	

 SGEF

 CGEF

 	

 DGEF

 ZGEF

 DGEFP

 §

 	SGEF, DGEF, CGEF, and ZGEF (General Matrix Factorization)

 	

 SGESM

 CGESM

 	

 DGESM

 ZGESM

 	SGESM, DGESM, CGESM, and ZGESM (General Matrix, Its Transpose, or Its Conjugate Transpose Multiple Right-Hand Side Solve)

 	

 SGES

 CGES

 	

 DGES

 ZGES

 	SGES, DGES, CGES, and ZGES (General Matrix, Its Transpose, or Its Conjugate Transpose Solve)

 	SGEFCD

 	DGEFCD

 	SGEFCD and DGEFCD (General Matrix Factorization, Condition Number Reciprocal, and Determinant)

 	

 SGEICD

 	

 DGEICD

 	SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and DGEICD (General Matrix Inverse, Condition Number Reciprocal, and Determinant)

 	

 SPOF

 CPOF

 SPPF

 	

 DPOF

 ZPOF

 DPPF

 DPPFP

 §

 	SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, ZPOF, SPPTRF, DPPTRF, CPPTRF, ZPPTRF, SPPF, and DPPF (Positive Definite
 Real Symmetric or Complex Hermitian Matrix Factorization)

 	

 SPOSM

 CPOSM

 	

 DPOSM

 ZPOSM

 	SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM, ZPOSM, SPPTRS, DPPTRS, CPPTRS, and ZPPTRS (Positive Definite Real Symmetric
 or Complex Hermitian Matrix Multiple Right-Hand Side Solve)

 	SPPS

 	DPPS

 	SPPS and DPPS (Positive Definite Real Symmetric Matrix Solve)

 	

 SPPFCD

 SPOFCD

 	

 DPPFCD

 DPOFCD

 	SPPFCD, DPPFCD, SPOFCD, and DPOFCD (Positive Definite Real Symmetric Matrix Factorization, Condition Number Reciprocal, and
 Determinant)

 	

 SPPICD

 SPOICD

 	

 DPPICD

 DPOICD

 	SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, DPOICD, SPPTRI, DPPTRI, CPPTRI, ZPPTRI, SPPICD, and DPPICD (Positive Definite Real
 Symmetric or Complex Hermitian Matrix Inverse, Condition Number Reciprocal, and Determinant)

 	

 	DBSSV

 	DBSSV (Symmetric Indefinite Matrix Factorization and Multiple Right-Hand Side Solve)

 	

 	DBSTRF

 	DBSTRF (Symmetric Indefinite Matrix Factorization)

 	

 	DBSTRS

 	DBSTRS (Symmetric Indefinite Matrix Multiple Right-Hand Side Solve)

 	

 STRI

 §

 STPI

 §

 	

 DTRI

 §

 DTPI

 §

 	STRTRI, DTRTRI, CTRTRI, ZTRTRI, STPTRI, DTPTRI, CTPTRI, and ZTPTRI (Triangular Matrix Inverse)

 	
 § This
 subroutine is provided for migration from earlier releases of ESSL
 and is not intended for use in new programs. Documentation for this
 subroutine is no longer provided.

 Parent topic: Linear Algebraic Equations

 Banded Linear Algebraic Equations

 The banded linear algebraic equation subroutines provide solutions to linear systems
 of equations for:

 	Real or complex general band matrices

 	Positive definite real symmetric or complex Hermitian band matrices

 	Real or complex general tridiagonal matrices

 	Positive definite real symmetric or complex Hermitian tridiagonal matrices

 Table 19. List of LAPACK
 Banded Linear Algebraic Equation Subroutines.

 	Short-Precision
 Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	

 SGBSV

 Δ

 CGBSV

 Δ

 [image: Start of change]LAPACKE_sgbsv

 Δ

 LAPACKE_cgbsv

 Δ

 [image: End of change]

 	

 DGBSV

 Δ

 ZGBSV

 Δ

 [image: Start of change]LAPACKE_dgbsv

 Δ

 LAPACKE_zgbsv

 Δ

 [image: End of change]

 	SGBSV, DGBSV, CGBSV, and ZGBSV (General Band Matrix Factorization and Multiple Right-Hand Side Solve)

 	

 SGBTRF

 Δ

 CGBTRF

 Δ

 [image: Start of change]LAPACKE_sgbtrf

 Δ

 LAPACKE_cgbtrf

 Δ

 [image: End of change]

 	

 DGBTRF

 Δ

 ZGBTRF

 Δ

 [image: Start of change]LAPACKE_dgbtrf

 Δ

 LAPACKE_zgbtrf

 Δ

 [image: End of change]

 	SGBTRF, DGBTRF, CGBTRF and ZGBTRF (General Band Matrix Factorization)

 	

 SGBTRS

 Δ

 CGBTRS

 Δ

 [image: Start of change]LAPACKE_sgbtrs

 Δ

 LAPACKE_cgbtrs

 Δ

 [image: End of change]

 	

 DGBTRS

 Δ

 ZGBTRS

 Δ

 [image: Start of change]LAPACKE_dgbtrs

 Δ

 LAPACKE_zgbtrs

 Δ

 [image: End of change]

 	SGBTRS, DGBTRS, CGBTRS, and ZGBTRS (General Band Matrix Multiple Right-Hand Side Solve)

 	

 SPBSV

 Δ

 CPBSV

 Δ

 [image: Start of change]LAPACKE_spbsv

 Δ

 LAPACKE_cpbsv

 Δ

 [image: End of change]

 	

 DPBSV

 Δ

 ZPBSV

 Δ

 [image: Start of change]LAPACKE_dpbsv

 Δ

 LAPACKE_zpbsv

 Δ

 [image: End of change]

 	SPBSV, DPBSV, CPBSV, and ZPBSV (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Factorization and Multiple
 Right-Hand Side Solve)

 	

 SPBTRF

 Δ

 CPBTRF

 Δ

 [image: Start of change]LAPACKE_spbtrf

 Δ

 LAPACKE_cpbtrf

 Δ

 [image: End of change]

 	

 DPBTRF

 Δ

 ZPBTRF

 Δ

 [image: Start of change]LAPACKE_dpbtrf

 Δ

 LAPACKE_zpbtrf

 Δ

 [image: End of change]

 	SPBTRF, DPBTRF, CPBTRF, and ZPBTRF (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Factorization)

 	

 SPBTRS

 Δ

 CPBTRS

 Δ

 [image: Start of change]LAPACKE_spbtrs

 Δ

 LAPACKE_cpbtrs

 Δ

 [image: End of change]

 	

 DPBTRS

 Δ

 ZPBTRS

 Δ

 [image: Start of change]LAPACKE_dpbtrf

 Δ

 LAPACKE_zpbtrf

 Δ

 [image: End of change]

 	SPBTRS, DPBTRS, CPBTRS, and ZPBTRS (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Multiple Right-Hand
 Side Solve)

 	

 SGTSV

 Δ

 CGTSV

 Δ

 [image: Start of change]LAPACKE_sgtsv

 Δ

 LAPACKE_cgtsv

 Δ

 [image: End of change]

 	

 DGTSV

 Δ

 ZGTSV

 Δ

 [image: Start of change]LAPACKE_sgtsv

 Δ

 LAPACKE_cgtsv

 Δ

 [image: End of change]

 	SGTSV, DGTSV, CGTSV, and ZGTSV (General Tridiagonal Matrix Factorization and Multiple Right-Hand Side Solve)

 	

 SGTTRF

 Δ

 CGTTRF

 Δ

 [image: Start of change]LAPACKE_sgttrf

 Δ

 LAPACKE_cgttrf

 Δ

 [image: End of change]

 	

 DGTTRF

 Δ

 ZGTTRF

 Δ

 [image: Start of change]LAPACKE_dgttrf

 Δ

 LAPACKE_zgttrf

 Δ

 [image: End of change]

 	SGTTRF, DGTTRF, CGTTRF, and ZGTTRF (General Tridiagonal Matrix Factorization)

 	

 SGTTRS

 Δ

 CGTTRS

 Δ

 [image: Start of change]LAPACKE_sgttrs

 Δ

 LAPACKE_cgttrs

 Δ

 [image: End of change]

 	

 DGTTRS

 Δ

 ZGTTRS

 Δ

 [image: Start of change]LAPACKE_dgttrs

 Δ

 LAPACKE_zgttrs

 Δ

 [image: End of change]

 	SGTTRS, DGTTRS, CGTTRS, and ZGTTRS (General Tridiagonal Matrix Multiple Right-Hand Side Solve)

 	

 SPTSV

 Δ

 CPTSV

 Δ

 [image: Start of change]LAPACKE_sptsv

 Δ

 LAPACKE_cptsv

 Δ

 [image: End of change]

 	

 DPTSV

 Δ

 ZPTSV

 Δ

 [image: Start of change]LAPACKE_dptsv

 Δ

 LAPACKE_zptsv

 Δ

 [image: End of change]

 	SPTSV, DPTSV, CPTSV, and ZPTSV (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Factorization and
 Multiple Right-Hand Side Solve)

 	

 SPTTRF

 Δ

 CPTTRF

 Δ

 [image: Start of change]LAPACKE_spttrf

 Δ

 LAPACKE_cpttrf

 Δ

 [image: End of change]

 	

 DPTTRF

 Δ

 ZPTTRF

 Δ

 [image: Start of change]LAPACKE_dpttrf

 Δ

 LAPACKE_zpttrf

 Δ

 [image: End of change]

 	SPTTRF, DPTTRF, CPTTRF, and ZPTTRF (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Factorization)

 	

 SPTTRS

 Δ

 CPTTRS

 Δ

 [image: Start of change]LAPACKE_spttrs

 Δ

 LAPACKE_cpttrs

 Δ

 [image: End of change]

 	

 DPTTRS

 Δ

 ZPTTRS

 Δ

 [image: Start of change]LAPACKE_dpttrs

 Δ

 LAPACKE_zpttrs

 Δ

 [image: End of change]

 	SPTTRS, DPTTRS, CPTTRS, and ZPTTRS (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Multiple Right-Hand
 Solve)

 	
 Δ LAPACK

 Table 20. List of non-LAPACK
 Banded Linear Algebraic Equation Subroutines.

 	Short-Precision
 Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	SGBF§

 	DGBF§

 	SGBF and DGBF (General Band Matrix Factorization)

 	SGBS§

 	DGBS§

 	SGBS and DGBS (General Band Matrix Solve)

 	

 SPBF

 §

 SPBCHF

 §

 	

 DPBF

 §

 DPBCHF

 §

 	SPBF, DPBF, SPBCHF, and DPBCHF (Positive Definite Symmetric Band Matrix Factorization)

 	

 SPBS

 §

 SPBCHS

 §

 	

 DPBS

 §

 DPBCHS

 §

 	SPBS, DPBS, SPBCHS, and DPBCHS (Positive Definite Symmetric Band Matrix Solve)

 	SGTF§

 	DGTF§

 	SGTF and DGTF (General Tridiagonal Matrix Factorization)

 	SGTS§

 	DGTS§

 	SGTS and DGTS (General Tridiagonal Matrix Solve)

 	

 SGTNP

 CGTNP

 	

 DGTNP

 ZGTNP

 	SGTNP, DGTNP, CGTNP, and ZGTNP (General Tridiagonal Matrix Combined Factorization and Solve with No Pivoting)

 	

 SGTNPF

 CGTNPF

 	

 DGTNPF

 ZGTNPF

 	SGTNPF, DGTNPF, CGTNPF, and ZGTNPF (General Tridiagonal Matrix Factorization with No Pivoting)

 	

 SGTNPS

 CGTNPS

 	

 DGTNPS

 ZGTNPS

 	SGTNPS, DGTNPS, CGTNPS, and ZGTNPS (General Tridiagonal Matrix Solve with No Pivoting)

 	SPTF§

 	DPTF§

 	SPTF and DPTF (Positive Definite Symmetric Tridiagonal Matrix Factorization)

 	SPTS§

 	DPTS§

 	SPTS and DPTS (Positive Definite Symmetric Tridiagonal Matrix Solve)

 	
 § This
 subroutine is provided for migration from earlier releases of ESSL
 and is not intended for use in new programs.

 Parent topic: Linear Algebraic Equations

 Sparse Linear Algebraic Equations

 The sparse linear algebraic equation subroutines provide direct
 and iterative solutions to linear systems of equations both for general
 sparse matrices and their transposes and for sparse symmetric matrices.

 Table 21. List of Sparse Linear Algebraic
 Equation Subroutines.

 	Long-Precision
 Subroutine

 	Descriptive Name and Location

 	DGSF

 	DGSF (General Sparse Matrix Factorization Using Storage by Indices, Rows, or Columns)

 	DGSS

 	DGSS (General Sparse Matrix or Its Transpose Solve Using Storage by Indices, Rows, or Columns)

 	

 DGKFS

 DGKFSP

 §

 	DGKFS (General Sparse Matrix or Its Transpose Factorization, Determinant, and Solve Using Skyline Storage Mode)

 	

 DSKFS

 DSKFSP

 §

 	DSKFS (Symmetric Sparse Matrix Factorization, Determinant, and Solve Using Skyline Storage Mode)

 	DSRIS

 	DSRIS (Iterative Linear System Solver for a General or Symmetric Sparse Matrix Stored by Rows)

 	DSMCG‡

 	DSMCG (Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve Using Compressed-Matrix Storage Mode)

 	DSDCG

 	DSDCG (Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve Using Compressed-Diagonal Storage Mode)

 	DSMGCG‡

 	DSMGCG (General Sparse Matrix Iterative Solve Using Compressed-Matrix Storage Mode)

 	DSDGCG

 	DSDGCG (General Sparse Matrix Iterative Solve Using Compressed-Diagonal Storage Mode)

 	
 § This subroutine is provided
 only for migration from earlier releases of ESSL and is not intended
 for use in new programs. Documentation for this subroutine is no
 longer provided.

 ‡ This subroutine is
 provided only for migration from earlier releases of ESSL and is not
 intended for use in new programs. Use DSRIS instead.

 Parent topic: Linear Algebraic Equations

 Linear Least Squares

 The linear least squares subroutines provide least squares
 solutions to linear systems of equations for general matrices
 using a QR factorization or a singular value decomposition.
 Some of these subroutines correspond to the LAPACK routines described
 in reference [8].

 Table 22. List of LAPACK Linear
 Least Squares Subroutines.

 	Short-Precision Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	

 SGESVD

 Δ

 CGESVD

 Δ

 [image: Start of change]SGESDD

 [image: End of change]
 Δ

 [image: Start of change]CGESDD

 [image: End of change]
 Δ

 [image: Start of change]LAPACKE_sgesvd

 Δ

 LAPACKE_cgesvd

 Δ

 LAPACKE_sgesdd

 Δ

 LAPACKE_cgesdd

 Δ

 [image: End of change]

 	

 DGESVD

 Δ

 ZGESVD

 Δ

 DGESDD

 Δ

 ZGESDD

 Δ

 [image: Start of change]LAPACKE_dgesvd

 Δ

 LAPACKE_zgesvd

 Δ

 LAPACKE_dgesdd

 Δ

 LAPACKE_zgesdd

 Δ

 [image: End of change]

 	SGESVD, DGESVD, CGESVD, ZGESVD, SGESDD, DGESDD, CGESDD, and ZGESDD (Singular Value Decomposition for a General Matrix)

 	

 SGEQRF

 Δ

 CGEQRF

 Δ

 [image: Start of change]LAPACKE_sgeqrf

 Δ

 LAPACKE_cgeqrf

 Δ

 [image: End of change]

 	

 DGEQRF

 Δ

 ZGEQRF

 Δ

 [image: Start of change]LAPACKE_dgeqrf

 Δ

 LAPACKE_zgeqrf

 Δ

 [image: End of change]

 	SGEQRF, DGEQRF, CGEQRF, and ZGEQRF (General Matrix QR Factorization)

 	

 SGELS

 Δ

 CGELS

 Δ

 [image: Start of change]LAPACKE_sgels

 Δ

 LAPACKE_cgels

 Δ

 [image: End of change]

 	

 DGELS

 Δ

 ZGELS

 Δ

 [image: Start of change]LAPACKE_dgels

 Δ

 LAPACKE_zgels

 Δ

 [image: End of change]

 	SGELS, DGELS, CGELS, and ZGELS (Linear Least Squares Solution for a General Matrix)

 	

 SGELSD

 Δ

 CGELSD

 Δ

 [image: Start of change]LAPACKE_sgelsd

 Δ

 LAPACKE_cgelsd

 Δ

 [image: End of change]

 	

 DGELSD

 Δ

 ZGELSD

 Δ

 [image: Start of change]LAPACKE_dgelsd

 Δ

 LAPACKE_zgelsd

 Δ

 [image: End of change]

 	SGELSD, DGELSD, CGELSD, and ZGELSD (Linear Least Squares Solution for a General Matrix Using the Singular Value Decomposition)

 	
 Δ LAPACK

 Table 23. List of Non–LAPACK
 Linear Least Squares Subroutines.

 	Short-Precision Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	SGESVF§

 	DGESVF§

 	SGESVF and DGESVF (Singular Value Decomposition for a General Matrix)

 	SGESVS§

 	DGESVS§

 	SGESVS and DGESVS (Linear Least Squares Solution for a General Matrix Using the Singular Value Decomposition)

 	SGELLS§

 	DGELLS§

 	SGELLS and DGELLS (Linear Least Squares Solution for a General Matrix with Column Pivoting)

 	
 § This
 subroutine is provided only for migration from earlier releases of
 ESSL and is not intended for use in new programs.

 Parent topic: Linear Algebraic Equations

 Eigensystem Analysis

 The eigensystem analysis subroutines provide solutions to the algebraic
 eigensystem analysis problem and the generalized eigensystem analysis
 problem. These subroutines correspond to the LAPACK routines described
 in reference [8].

 Table 24. List of LAPACK Eigensystem Analysis Subroutines.

 	Short-Precision Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	
 [image: Start of change]SGEEV

 Δ

 CGEEV

 [image: End of change]
 Δ

 SGEEVX

 Δ

 CGEEVX

 Δ

 [image: Start of change]LAPACKE_sgeev

 Δ

 LAPACKE_cgeev

 Δ

 LAPACKE_sgeevx

 Δ

 LAPACKE_cgeevx

 Δ

 [image: End of change]

 	
 [image: Start of change]DGEEV

 Δ

 ZGEEV

 [image: End of change]
 Δ

 DGEEVX

 Δ

 ZGEEVX

 Δ

 [image: Start of change]LAPACKE_dgeev

 Δ

 LAPACKE_zgeev

 Δ

 LAPACKE_dgeevx

 Δ

 LAPACKE_zgeevx

 Δ

 [image: End of change]

 	SGEEV, DGEEV, CGEEV, ZGEEV, SGEEVX, DGEEVX, CGEEVX, and ZGEEVX (Eigenvalues and, Optionally, Right Eigenvectors, Left Eigenvectors,
 Reciprocal Condition Numbers for Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a General Matrix)

 	
 [image: Start of change]SSYEV

 Δ

 CHEEV

 Δ

 [image: End of change]

 SSPEVX

 Δ

 CHPEVX

 Δ

 SSYEVX

 Δ

 CHEEVX

 Δ

 LAPACKE_ssyev

 Δ

 LAPACKE_cheev

 Δ

 LAPACKE_sspevx

 Δ

 LAPACKE_chpevx

 Δ

 LAPACKE_ssyevx

 Δ

 LAPACKE_cheevx

 Δ

 	
 [image: Start of change]DSYEV

 Δ

 ZHEEV

 [image: End of change]
 Δ

 DSPEVX

 Δ

 ZHPEVX

 Δ

 DSYEVX

 Δ

 ZHEEVX

 Δ

 [image: Start of change]LAPACKE_dsyev

 Δ

 LAPACKE_zheev

 Δ

 LAPACKE_dspevx

 Δ

 LAPACKE_zhpevx

 Δ

 LAPACKE_dsyevx

 Δ

 LAPACKE_zheevx

 Δ

 [image: End of change]

 	SSYEV, DSYEV, CHEEV, ZHEEV, SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX, DSYEVX, CHEEVX, and ZHEEVX (Eigenvalues and, Optionally,
 the Eigenvectors of a Real Symmetric or Complex Hermitian Matrix)

 	

 SSPEVD

 Δ

 CHPEVD

 Δ

 SSYEVD

 Δ

 CHEEVD

 Δ

 [image: Start of change]LAPACKE_sspevd

 Δ

 LAPACKE_chpevd

 Δ

 LAPACKE_ssyevd

 Δ

 LAPACKE_cheevd

 Δ

 [image: End of change]

 	

 DSPEVD

 Δ

 ZHPEVD

 Δ

 DSYEVD

 Δ

 ZHEEVD

 Δ

 [image: Start of change]LAPACKE_dspevd

 Δ

 LAPACKE_zhpevd

 Δ

 LAPACKE_dsyevd

 Δ

 LAPACKE_zheevd

 Δ

 [image: End of change]

 	SSPEVD, DSPEVD, CHPEVD, ZHPEVD, SSYEVD, DSYEVD, CHEEVD, and ZHEEVD (Eigenvalues and, Optionally the Eigenvectors, of a Real
 Symmetric or Complex Hermitian Matrix Using a Divide-and-Conquer Algorithm)

 	

 SGGEV

 Δ

 CGGEV

 Δ

 [image: Start of change]SGGEVX

 Δ

 CGGEVX

 Δ

 [image: End of change]

 [image: Start of change]LAPACKE_sggev

 Δ

 LAPACKE_cggev

 Δ

 [image: End of change]

 [image: Start of change]LAPACKE_sggevx

 Δ

 LAPACKE_cggevx

 Δ

 [image: End of change]

 	

 DGGEV

 Δ

 ZGGEV

 Δ

 [image: Start of change]DGGEVX

 Δ

 ZGGEVX

 Δ

 [image: End of change]

 [image: Start of change]LAPACKE_dggev

 Δ

 LAPACKE_zggev

 Δ

 [image: End of change]

 [image: Start of change]LAPACKE_dggevx

 Δ

 LAPACKE_zggevx

 Δ

 [image: End of change]

 	SGGEV, DGGEV, CGGEV, ZGGEV, SGGEVX, DGGEVX, CGGEVX, and ZGGEVX (Eigenvalues and, Optionally, Right Eigenvectors, Left Eigenvectors,
 Reciprocal Condition Numbers for Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a General Matrix
 Generalized Eigenproblem)

 	

 SSPGVX

 Δ

 CHPGVX

 Δ

 SSYGVX

 Δ

 CHEGVX

 Δ

 [image: Start of change]LAPACKE_sspgvx

 Δ

 LAPACKE_chpgvx

 Δ

 LAPACKE_ssygvx

 Δ

 LAPACKE_chegvx

 Δ

 [image: End of change]

 	

 DSPGVX

 Δ

 ZHPGVX

 Δ

 DSYGVX

 Δ

 ZHEGVX

 Δ

 [image: Start of change]LAPACKE_dspgvx

 Δ

 LAPACKE_zhpgvx

 Δ

 LAPACKE_dsygvx

 Δ

 LAPACKE_zhegvx

 Δ

 [image: End of change]

 	SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX, DSYGVX, CHEGVX, and ZHEGVX (Eigenvalues and, Optionally, the Eigenvectors of a Positive
 Definite Real Symmetric or Complex Hermitian Generalized Eigenproblem)

 	
 ΔLAPACK

 Parent topic: List of ESSL Subroutines

 Fourier Transforms, Convolutions and Correlations, and Related Computations

 This signal processing area provides:

 	Fourier transform subroutines

 	Convolution and correlation subroutines

 	Related-computation subroutines

 	Fourier Transforms

 	Convolutions and Correlations

 	Related Computations

 Parent topic: List of ESSL Subroutines

 Fourier Transforms

 The Fourier transform subroutines perform mixed-radix transforms
 in one, two, and three dimensions.

 Table 25. List of Fourier Transform Subroutines.

 	Short-Precision
 Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	SCFTD

 	DCFTD

 	SCFTD and DCFTD (Multidimensional Complex Fourier Transform)

 	SRCFTD

 	DRCFTD

 	SRCFTD and DRCFTD (Multidimensional Real-to-Complex Fourier Transform)

 	SCRFTD

 	DCRFTD

 	SCRFTD and DCRFTD (Multidimensional Complex-to-Real Fourier Transform)

 	

 SCFT

 §

 SCFTP

 §

 ,

 ND

 	DCFT§

 	SCFT and DCFT (Complex Fourier Transform)

 	SRCFT§

 	DRCFT§

 	SRCFT and DRCFT (Real-to-Complex Fourier Transform)

 	SCRFT§

 	DCRFT§

 	SCRFT and DCRFT (Complex-to-Real Fourier Transform)

 	

 SCOSF

 SCOSFT

 §

 ,

 ND

 	DCOSF

 	SCOSF and DCOSF (Cosine Transform)

 	SSINF

 	DSINF

 	SSINF and DSINF (Sine Transform)

 	

 SCFT2

 §

 SCFT2P

 §

 ,

 ND

 	DCFT2§

 	SCFT2 and DCFT2 (Complex Fourier Transform in Two Dimensions)

 	SRCFT2§

 	DRCFT2§

 	SRCFT2 and DRCFT2 (Real-to-Complex Fourier Transform in Two Dimensions)

 	SCRFT2§

 	DCRFT2§

 	SCRFT2 and DCRFT2 (Complex-to-Real Fourier Transform in Two Dimensions)

 	

 SCFT3

 §

 SCFT3P

 §

 ,

 ND

 	DCFT3§

 	SCFT3 and DCFT3 (Complex Fourier Transform in Three Dimensions)

 	SRCFT3§

 	DRCFT3§

 	SRCFT3 and DRCFT3 (Real-to-Complex Fourier Transform in Three Dimensions)

 	SCRFT3§

 	DCRFT3§

 	SCRFT3 and DCRFT3 (Complex-to-Real Fourier Transform in Three Dimensions)

 	
 § This subroutine is provided
 only for migration from earlier releases of ESSL and is not intended
 for use in new programs.

 ND Documentation
 for this subroutine is no longer provided.

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 Convolutions and Correlations

 The convolution and correlation subroutines provide the choice
 of using Fourier methods or direct methods. The Fourier-method subroutines
 contain a high-performance mixed-radix capability. There are also
 several direct-method subroutines that provide decimated output.

 Table 26. List of Convolution and Correlation
 Subroutines.

 	Short-Precision
 Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	

 SCON

 §

 SCOR

 §

 	

 	SCON and SCOR (Convolution or Correlation of One Sequence with One or More Sequences)

 	

 SCOND

 SCORD

 	

 	SCOND and SCORD (Convolution or Correlation of One Sequence with Another Sequence Using a Direct Method)

 	

 SCONF

 SCORF

 	

 	SCONF and SCORF (Convolution or Correlation of One Sequence with One or More Sequences Using the Mixed-Radix Fourier Method)

 	

 SDCON

 SDCOR

 	

 DDCON

 DDCOR

 	SDCON, DDCON, SDCOR, and DDCOR (Convolution or Correlation with Decimated Output Using a Direct Method)

 	SACOR§

 	

 	SACOR (Autocorrelation of One or More Sequences)

 	SACORF

 	

 	SACORF (Autocorrelation of One or More Sequences Using the Mixed-Radix Fourier Method)

 	
 § These subroutines are provided
 only for migration from earlier releases of ESSL and are not intended
 for use in new programs.

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 Related Computations

 The related-computation subroutines consist of a group of computations
 that can be used in general signal processing applications. They are
 similar to those provided on the IBM® 3838
 Array Processor; however,
 the ESSL subroutines generally solve a wider range of problems.

 Table 27. List of Related-Computation Subroutines.

 	Short-Precision Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	SPOLY

 	DPOLY

 	SPOLY and DPOLY (Polynomial Evaluation)

 	SIZC

 	DIZC

 	SIZC and DIZC (I-th Zero Crossing)

 	STREC

 	DTREC

 	STREC and DTREC (Time-Varying Recursive Filter)

 	SQINT

 	DQINT

 	SQINT and DQINT (Quadratic Interpolation)

 	

 SWLEV

 CWLEV

 	

 DWLEV

 ZWLEV

 	SWLEV, DWLEV, CWLEV, and ZWLEV (Wiener-Levinson Filter Coefficients)

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 Sorting and Searching

 The sorting and searching subroutines operate on three types of data: integer,
 short-precision real, and long-precision real. The sorting subroutines perform
 sorts with or without index designations. The searching subroutines perform
 either a binary or sequential search.

 Table 28. List of Sorting and Searching Subroutines.

 	Integer Subroutine

 	Short-Precision Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	ISORT

 	SSORT

 	DSORT

 	ISORT, SSORT, and DSORT (Sort the Elements of a Sequence)

 	ISORTX

 	SSORTX

 	DSORTX

 	ISORTX, SSORTX, and DSORTX (Sort the Elements of a Sequence and Note the Original Element Positions)

 	ISORTS

 	SSORTS

 	DSORTS

 	ISORTS, SSORTS, and DSORTS (Sort the Elements of a Sequence Using a Stable Sort and Note the Original Element Positions)

 	IBSRCH

 	SBSRCH

 	DBSRCH

 	IBSRCH, SBSRCH, and DBSRCH (Binary Search for Elements of a Sequence X in a Sorted Sequence Y)

 	ISSRCH

 	SSSRCH

 	DSSRCH

 	ISSRCH, SSSRCH, and DSSRCH (Sequential Search for Elements of a Sequence X in the Sequence Y)

 Parent topic: List of ESSL Subroutines

 Interpolation

 The interpolation subroutines provide the capabilities of doing
 polynomial interpolation, local polynomial interpolation, and both
 one- and two-dimensional cubic spline interpolation (Table 29).

 Table 29. List of Interpolation
 Subroutines.

 	Short-Precision Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	SPINT

 	DPINT

 	SPINT and DPINT (Polynomial Interpolation)

 	STPINT

 	DTPINT

 	STPINT and DTPINT (Local Polynomial Interpolation)

 	SCSINT

 	DCSINT

 	SCSINT and DCSINT (Cubic Spline Interpolation)

 	SCSIN2

 	DCSIN2

 	SCSIN2 and DCSIN2 (Two-Dimensional Cubic Spline Interpolation)

 Parent topic: List of ESSL Subroutines

 Numerical Quadrature

 The numerical quadrature subroutines provide Gaussian quadrature
 methods for integrating a tabulated function and a user-supplied function
 over a finite, semi-infinite, or infinite region of integration.

 Table 30. List of Numerical Quadrature
 Subroutines.

 	Short-Precision
 Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	SPTNQ

 	DPTNQ

 	SPTNQ and DPTNQ (Numerical Quadrature Performed on a Set of Points)

 	SGLNQ†

 	DGLNQ†

 	SGLNQ and DGLNQ (Numerical Quadrature Performed on a Function Using Gauss-Legendre Quadrature)

 	SGLNQ2†

 	DGLNQ2†

 	SGLNQ2 and DGLNQ2 (Numerical Quadrature Performed on a Function Over a Rectangle Using Two-Dimensional Gauss-Legendre Quadrature)

 	SGLGQ†

 	DGLGQ†

 	SGLGQ and DGLGQ (Numerical Quadrature Performed on a Function Using Gauss-Laguerre Quadrature)

 	SGRAQ†

 	DGRAQ†

 	SGRAQ and DGRAQ (Numerical Quadrature Performed on a Function Using Gauss-Rational Quadrature)

 	SGHMQ†

 	DGHMQ†

 	SGHMQ and DGHMQ (Numerical Quadrature Performed on a Function Using Gauss-Hermite Quadrature)

 	
 † This subprogram is
 invoked as a function in a Fortran program.

 Parent topic: List of ESSL Subroutines

 Random Number Generation

 Random number generation subroutines generate uniformly
 distributed random numbers or normally distributed random numbers
 using one of the following algorithms:

 	SIMD-oriented Mersenne Twister algorithm

 	Multiplicative congruential methods

 	Polar methods

 	Tausworthe exclusive-or algorithm

 Table 31. List
 of Random Number Generation Initialization Subroutines.

 	Subroutine

 	Descriptive Name and Location

 	INITRNG

 	INITRNG (Initialize Random Number Generators)

 Table 32. List of Random Number
 Generation Subroutines.

 	Short-Precision Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	SURNG

 	DURNG

 	SURNG and DURNG (Generate a Vector of Uniformly Distributed Pseudo-Random Numbers)

 	SNRNG

 	DNRNG

 	SNRNG and DNRNG (Generate a Vector of Normally Distributed Pseudo-Random numbers)

 	SURAND

 	DURAND

 	SURAND and DURAND (Generate a Vector of Uniformly Distributed Random Numbers)

 	SNRAND

 	DNRAND

 	SNRAND and DNRAND (Generate a Vector of Normally Distributed Random Numbers)

 	SURXOR§

 	DURXOR§

 	SURXOR and DURXOR (Generate a Vector of Long Period Uniformly Distributed Random Numbers)

 	
 § This subroutine is provided
 for migration from earlier releases of ESSL and is not intended for
 use in new programs.

 Parent topic: List of ESSL Subroutines

 Utilities

 The utility subroutines perform general service functions
 that support ESSL, rather than mathematical computations.

 Table 33. List of Utility Subroutines.

 	Subroutine

 	Descriptive Name and Location

 	EINFO

 	EINFO (ESSL Error Information-Handler Subroutine)

 	ERRSAV

 	ERRSAV (ESSL ERRSAV Subroutine)

 	ERRSET

 	ERRSET (ESSL ERRSET Subroutine)

 	ERRSTR

 	ERRSTR (ESSL ERRSTR Subroutine)

 	IVSSET§

 	Set the Vector Section Size (VSS) for the ESSL/370
 Scalar Library

 	IEVOPS§

 	Set the Extended Vector Operations Indicator
 for the ESSL/370 Scalar Library

 	IESSL

 	IESSL (Determine the Level of ESSL Installed)

 	SETGPUS

 	SETGPUS (Set the Number of GPUs and Identify Which GPUs ESSL Should Use)

 	STRIDE

 	STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines)

 	DSRSM

 	DSRSM (Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode)

 	DGKTRN

 	DGKTRN (For a General Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode)

 	DSKTRN

 	DSKTRN (For a Symmetric Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode)

 	
 § This subroutine is provided
 for migration from earlier releases of ESSL and is not intended for
 use in new programs. Documentation for this subroutine is no longer
 provided.

 Parent topic: List of ESSL Subroutines

 Planning Your Program

 Planning your ESSL program involves several tasks.

 	Selecting an ESSL Subroutine

 	Avoiding Conflicts with Internal ESSL Routine Names That are Exported

 	Setting Up Your Data

 	Setting Up Your ESSL Calling Sequences

 	Using Auxiliary Storage in ESSL

 	Providing a Correct Transform Length to ESSL

 	Getting the Best Accuracy

 	Getting the Best Performance

 	Dealing with Errors when Using ESSL

 	Selecting an ESSL Subroutine

 	Avoiding Conflicts with Internal ESSL Routine Names That are Exported

 	Setting Up Your Data

 	Setting Up Your ESSL Calling Sequences

 	Using Auxiliary Storage in ESSL

 	Providing a Correct Transform Length to ESSL

 	Getting the Best Accuracy

 	Getting the Best Performance

 	Dealing with Errors when Using ESSL

 Parent topic: Guide Information

 Selecting an ESSL Subroutine

 Your choice of which ESSL subroutine to use is based mainly
 on the functional needs of your program. However, you have a choice of several
 variations of many of the subroutines. In addition, there are instances where
 certain subroutines cannot be used.

 	What ESSL Library Do You Want to Use?

 	Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL

 	Multithreaded Subroutines Provided by ESSL

 	Using the ESSL SMP CUDA Library

 	NVIDIA GPU Power Capping

 	What Type of Data Are You Processing in Your Program?

 	How Is Your Data Structured? And What Storage Technique Are You Using?

 	What about Performance and Accuracy?

 Parent topic: Planning Your Program

 What ESSL Library Do You Want to Use?

 ESSL provides serial and SMP libraries, as described here.
 (For additional details about using these libraries, see Coding Your Program and Processing Your Program.)

 	Serial and SMP Libraries Provided by ESSL

 Parent topic: Selecting an ESSL Subroutine

 Serial and SMP Libraries Provided by ESSL

 ESSL provides the following serial library:

 	ESSL Serial Libraries, which support the following environments:

 	32-bit integer, 32-bit pointer environment (AIX®
 only)

 	32-bit integer, 64-bit pointer environment

 	64-bit integer, 64-bit pointer environment

 These serial libraries provide thread-safe versions of the ESSL
 subroutines. You may choose to use these libraries if you decide to
 develop your own multithreaded programs that call the thread-safe
 ESSL subroutines.

 ESSL also provides the following SMP libraries:

 	ESSL SMP Libraries, which support the following environments:

 	32-bit integer, 32-bit pointer environment (AIX only)

 	32-bit integer, 64-bit pointer environment

 	64-bit integer, 64-bit pointer environment

 	ESSL SMP CUDA Library, which supports the following environment:

 	[image: Start of change]IBM Power System S822LC (8335-GTB) servers with NVIDIA P100 GPUs and IBM
 Power System S822LC (8335-GTA) servers with NVIDIA K80 GPUs running Red Hat Enterprise Linux 7.3
 (RHEL7.3) (little endian mode).[image: End of change]

 The ESSL SMP CUDA library provides the following options for
 a subset of ESSL subroutines:

 	Use one or more NVIDIA GPUs

 	Use one or more NVIDIA GPUs and POWER8® CPUs

 The GPU enabled subroutines that the ESSL SMP CUDA Library
 contains are listed in Using the ESSL SMP CUDA Library.

 These ESSL SMP libraries and ESSL SMP CUDA library provide thread-safe
 versions of the ESSL subroutines, and in addition, a subset of these
 subroutines are also multithreaded versions; that is, they support
 the shared memory parallel processing programming model.

 The number of threads you choose to use depends on the problem
 size, the specific subroutine being called, and the number of physical
 processors you are running on. To achieve optimal performance, experimentation
 is necessary; however, picking the number of threads equal to the
 number of online processors generally provides good performance in
 most cases. In a few cases, performance may increase if you choose
 the number of threads to be less than the number of online processors.
 The maximum number of threads supported by ESSL is 512.

 You do not have to change your existing application programs that
 call ESSL to take advantage of the increased performance of using
 the SMP processors; you can simply re-link your existing application
 programs.

 The multithreaded subroutines in the ESSL SMP Libraries are listed in Multithreaded Subroutines Provided by ESSL.

 Parent topic: What ESSL Library Do You Want to Use?

 Use of SIMD Algorithms by Some Subroutines in the Libraries
 Provided by ESSL

 Some of the subroutines in the libraries provided by ESSL use SIMD
 algorithms, as explained in the following sections.

 	SIMD Algorithms on VSX-Enabled Processors

 	SIMD Algorithms on POWER 6 AltiVec-Enabled Processors

 Parent topic: Selecting an ESSL Subroutine

 SIMD Algorithms on VSX-Enabled Processors

 A subset of ESSL subroutines use SIMD algorithms that use the VSX
 unit on VSX enabled processors. These subroutines need to use the
 vector load and store instructions to effectively utilize the VSX
 unit. Alignment requirements for the SIMD algorithms are described
 in Table 34 and Table 35.

 See Table 36 for a list of the ESSL subroutines that automatically
 use SIMD algorithms when the appropriate alignment restrictions (as
 described in Table 34 and Table 35) are met.

 Note: For Fourier Transform and Fourier Method Convolution and Correlation
 subroutines, if you choose to have ESSL calculate the size of auxiliary
 storage (see Who Do You Want to Calculate the Size of Auxiliary Storage? You or ESSL?), you
 must pass all array arguments with the same alignment as those passed
 during the initialization and computation calls. Because of this,
 it is recommended that you use the processor-independent formulas.

 Table 34. VSX Alignment Requirements
 for SIMD Algorithms in Linear Algebra Subroutines.

 	Data Type

 	Vector and Matrix Alignment

 	Vector Stride

 	Leading Dimensions

 	Long-precision real

 	Quadword and doubleword

 	Varies depending on the type of subroutine:

 	1

 	For vector-scalar linear algebra subroutines

 	Any

 	For matrix-vector linear algebra subprograms

 	Any

 	Short-precision real

 	Doubleword and singleword

 	Varies depending on the type of subroutine:

 	1

 	For vector-scalar linear algebra subroutines

 	Any

 	For matrix-vector linear algebra subprograms

 	Any

 	Long-precision complex

 	Quadword

 	Any

 	Any

 	Short-precision complex

 	Doubleword

 	Varies depending on the type of subroutine:

 	1

 	For vector-scalar linear algebra subroutines

 	Any

 	For matrix-vector linear algebra subprograms

 	Any

 	
 Note:

 	As long as the alignment requirements described in this table
 are met, you do not have to change your existing application programs
 that call ESSL to take advantage of the increased performance produced
 by the SIMD subroutines. However, you will obtain optimal performance
 for these subroutines when the following additional conditions are
 met:

 	Vectors and matrices are quadword aligned.

 	LDAs are multiples of 2 for real long-precision matrices.

 	LDAs are multiples of 4 for real short-precision matrices.

 	LDAs are multiples of 2 for complex short-precision matrices.

 	Stride is 1 for vectors.

 	If the alignment restrictions in the table are not met, in some
 cases attention message 2610 will be issued. The default behavior
 for message 2610 is for the message to be suppressed. To change the
 default behavior, see ERRSET (ESSL ERRSET Subroutine).

 Table 35. VSX Alignment Requirements
 for SIMD Algorithms in Fourier Transform Subroutines and Convolution
 and Correlation Subroutines.

 	Data Type

 	Vector and Matrix Alignment

 	Stride Between Elements Within Sequence

 	Stride Between Sequences

 	Long-precision real

 	Quadword (see Notes 1 and 2)

 	1 (see Note 3)

 	Multiple of 2 (see Note 3)

 	Short-precision real

 	Doubleword

 	1 (see Note 3)

 	Multiple of 4 (see Note 3)

 	Long-precision complex

 	Quadword

 	Any

 	Any

 	Short-precision complex

 	Doubleword

 	1

 	Multiple of 2 (see Note 3)

 	
 Notes:

 	AUX1 must be aligned on a quadword boundary.

 	AUX and AUX2 must either be aligned on a quadword
 boundary or dynamically allocated.

 	For _COSF and _SINF, the stride between elements
 within a sequence and the stride between sequences can have any value.

 	As long as the alignment requirements described
 in this table are met, you do not have to change your existing application
 programs that call ESSL to take advantage of the increased performance
 produced by the SIMD subroutines. However, some subroutines require
 separate calls for initialization and computation, and it can occur
 that the alignment of an array meets the requirements during initialization
 but does not meet the requirements during computation. When this
 happens, in some cases one of the following happens:

 	Error 2152 will be issued and your program will terminate. If
 you want your program to continue processing, use ERRSET with an ESSL
 error exit routine, ENOTRM, to make error 2152 recoverable

 	Error 2211 will be issued and your program will terminate

 	If the alignment restrictions in this table
 are not met, in some cases one or more of the following attention
 messages will be issued:

 	2610

 	2611

 	2612

 The default behavior for these messages is to be suppressed.
 To change the default behavior, see ERRSET (ESSL ERRSET Subroutine).

 Table 36. ESSL Subroutines
 that Automatically Use SIMD Algorithms When Alignment Restrictions
 are Met on VSX-enabled Processors.

 	Subroutine Names

 	Vector-Scalar Linear Algebra Subprograms
 (See Note):

 ISAMAX, IDAMAX, ICAMAX, IZAMAX

 ISAMIN, IDAMIN

 ISMAX, IDMAX

 ISMIN, IDMIN

 SASUM, DASUM, SCASUM, DZASUM

 SAXPY, DAXPY, CAXPY, ZAXPY

 SCOPY, DCOPY, CCOPY, ZCOPY

 SDOT, DDOT, CDOTU, ZDOTU, CDOTC, ZDOTC

 DNRM2, DZNRM2

 DNORM2, ZNORM2

 SROT, DROT, CROT, ZROT, CSROT, ZDROT

 SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, ZDSCAL

 SSWAP, DSWAP, CSWAP, ZSWAP

 SVEA, DVEA, CVEA, ZVEA

 SVES, DVES, CVES, ZVES

 SVEM, DVEM, CVEM

 SYAX, DYAX, CYAX, ZYAX, CSYAX, ZDYAX

 SZAXPY, DZAXPY, CZAXPY, ZZAXPY

 	Matrix-Vector Linear Algebra Subprograms (See Note):

 SGEMV, DGEMV, CGEMV, ZGEMV

 SGER, DGER, CGERU, ZGERU, CGERC, ZGERC

 SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV

 SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER

 SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2

 STRMV, DTRMV, CTRMV, ZTRMV

 STPMV, DTPMV, CTPMV, ZTPMV

 STRSV, DTRSV, CTRSV, ZTRSV,

 STPSV, DTPSV, CTPSV, ZTPSV

 	Matrix Operations (See Note):

 SGEMUL, DGEMUL, CGEMUL, ZGEMUL

 SGEMM, DGEMM, CGEMM, ZGEMM

 SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, ZHEMM

 STRMM, DTRMM, CTRMM, ZTRMM

 STRSM, DTRSM, CTRSM, ZTRSM

 SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, ZHERK

 SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, ZHER2K

 SGETMI, DGETMI, CGETMI, ZGETMI, CGECMI, ZGECMI

 SGETMO, DGETMO, CGETMO, ZGETMO, CGECMO, ZGECMO

 	Fourier Transforms:

 SCFTD, DCFTD

 SRCFTD, DRCFTD

 SCRFTD, DCRFTD

 SCFT, DCFT

 SRCFT, DRCFT

 SCRFT, DCRFT

 SCOSF, DCOSF

 SSINF, DSINF

 SCFT2, DCFT2

 SRCFT2, DRCFT2

 SCRFT2, DCRFT2

 SCFT3, DCFT3

 SRCFT3, DRCFT3

 SCRFT3, DCRFT3

 	Convolutions and Correlations:

 SCONF, SCORF, SACORF

 	Random Number Generation:

 SURNG, DURNG

 SNRNG, DNRNG

 	
 Note: Many
 of the dense and banded linear algebraic equations and eigensystem
 analysis subroutines make one or more calls to the vector-scalar,
 matrix-vector linear algebra, and matrix operation subroutines listed
 in this table, and therefore they indirectly use SIMD algorithms.

 Parent topic: Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL

 SIMD Algorithms on POWER® 6
 AltiVec-Enabled Processors

 A subset ESSL subroutines use SIMD algorithms that use the AltiVec
 unit on certain processors for short-precision real and short-precision
 complex subroutines. These subroutines need to use the vector load
 and store instructions to use the AltiVec unit effectively. Alignment
 requirements for the SIMD algorithms are described in Table 37 and Table 38.

 See Table 39 for a list
 of the ESSL subroutines that automatically use SIMD algorithms when
 the appropriate alignment restrictions (as described in Table 37 and Table 38) are met.

 Note: For Fourier Transform and Fourier Method Convolution and Correlation
 subroutines, if you choose to have ESSL calculate the size of auxiliary
 storage (see Who Do You Want to Calculate the Size of Auxiliary Storage? You or ESSL?), you
 must pass all array arguments with the same alignment as those passed
 during the initialization and computation calls. Because of this,
 it is recommended that you use the processor-independent formulas.

 Table 37. AltiVec-Enabled Processor
 Alignment Restrictions for SIMD Algorithms in Linear Algebra Subroutines.

 	Data Type

 	Vector and Matrix Alignment

 	Vector Stride

 	Leading Dimensions

 	Short-precision real

 	Singleword

 	Varies depending on the type of subroutine:

 	1

 	For vector-scalar linear algebra subroutines

 	Any

 	For matrix-vector linear algebra subprograms

 	Any

 	Short-precision complex

 	Doubleword

 	Varies depending on the type of subroutine:

 	1

 	For vector-scalar linear algebra subroutines

 	Any

 	For matrix-vector linear algebra subprograms

 	Any

 Note:

 	As long as the alignment requirements described in this table
 are met, you do not have to change your existing application programs
 that call ESSL to take advantage of the increased performance produced
 by the AltiVec-enabled subroutines. However, you will obtain optimal
 performance for these subroutines when the following additional conditions
 are met:

 	Vectors and matrices are quadword aligned.

 	LDAs are multiples of 4 for real matrices.

 	LDAs are multiples of 2 for complex matrices.

 	Stride is 1 for real and complex vectors.

 	If the alignment restrictions in the table are not met, in some
 cases attention message 2610 will be issued. The default behavior
 for message 2610 is for the message to be suppressed. To change the
 default behavior, see ERRSET (ESSL ERRSET Subroutine).

 Table 38. AltiVec-Enabled Processor
 Alignment Restrictions for SIMD Algorithms in Fourier Transform and
 Fourier Method Convolution and Correlation Subroutines.

 	Data Type

 	Vector and Matrix Alignment

 	Stride Between Elements Within Sequence

 	Stride Between Sequences

 	Short-precision real

 	Quadword

 	1 (see Note 3)

 	Multiple of 4 (see Note 3)

 	Short-precision complex

 	Quadword

 	1

 	Multiple of 2 (see Note 3)

 	Long-precision real

 	Quadword (see Notes 1 and 2)

 	1

 	Not applicable

 Note:

 	AUX1 must be aligned on a quadword boundary.

 	AUX and AUX2 must either be aligned on a quadword
 boundary or dynamically allocated.

 	For SCOSF and SSINF, the stride between elements
 within a sequence and the stride between sequences can have any value.

 	As long as the alignment requirements described
 in this table are met, you do not have to change your existing application
 programs that call ESSL to take advantage of the increased performance
 produced by the AltiVec-enabled subroutines. However, some subroutines
 require separate calls for initialization and computation, and it
 can occur that the alignment of an array meets the requirements during
 initialization but does not meet the requirements during computation.
 When this happens, in some cases error 2211 will be issued and your
 program will terminate.

 	If the alignment restrictions in the table
 are not met, one or more of the following attention messages will
 be issued:

 	2610

 	2611

 	2612

 The default behavior for these messages is to be suppressed.
 To change the default behavior, see ERRSET (ESSL ERRSET Subroutine).

 Table 39. ESSL
 Subroutines that Automatically Use SIMD Algorithms When Alignment
 Restrictions are Met on POWER 6
 AltiVec-Enabled Processors.

 	Subroutine Names

 	Vector-Scalar Linear Algebra Subprograms1:

 ISAMAX, ICAMAX

 ISAMIN

 ISMAX

 ISMIN

 SASUM, SCASUM

 SAXPY

 SDOT, CDOTU, CDOTC

 SROT, CROT, CSROT

 SSCAL, CSCAL, CSSCAL

 SSWAP, CSWAP

 SVEA, CVEA

 SVES, CVES

 SVEM,

 SYAX, CYAX, CSYAX

 SZAXPY, CZAXPY

 	Matrix-Vector Linear Algebra Subprograms1:

 SGER, CGERU, CGERC

 SSPMV, SSYMV

 SSPR, CHPR, SSYR, CHER

 SSPR2, CHPR2, SSYR2, CHER2

 	Matrix Operations1:

 SGEADD, CGEADD

 SGESUB, CGESUB

 	Fourier Transforms:

 SCFTD

 SRCFTD

 SCRFTD

 SCFT

 SRCFT

 SCRFT

 SCOSF

 SSINF

 SCFT2

 SRCFT2

 SCRFT2

 SCFT3

 SRCFT3

 SCRFT3

 	Convolutions and Correlations:

 SCONF, SCORF

 SACORF

 	
 Note:

 	Many of the dense and banded linear algebraic
 equations and eigensystem analysis subroutines make one or more calls
 to the vector-scalar, matrix-vector linear algebra, and matrix operation
 subroutines listed in this table, and therefore they indirectly use
 SIMD algorithms.

 Parent topic: Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL

 Multithreaded Subroutines Provided by ESSL

 Table 40 lists the multithreaded
 subroutines provided by ESSL and also indicates which of those subroutines
 use SIMD algorithms.

 Table 40. Multithreaded Subroutines.

 	Subroutine Category

 	Multithreaded Subroutine

 	Does this subroutine also use SIMD algorithms on VSX-enabled processors?

 See SIMD Algorithms on VSX-Enabled Processors.

 	Does this short-precision subroutine also use SIMD algorithms on
 AltiVec-enabled processors?
 (See SIMD Algorithms on POWER 6 AltiVec-Enabled Processors.)

 	Vector-Scalar Linear Algebra
 Subprograms1

 	SASUM, DASUM, SCASUM, DZASUM

 	No

 	No

 	SAXPY, DAXPY, CAXPY, ZAXPY

 	No

 	No

 	SCOPY, DCOPY, CCOPY, ZCOPY

 	No

 	No

 	SDOT, DDOT, CDOTU, ZDOTU, CDOTC, ZDOTC

 	No

 	No

 	SNDOT, DNDOT

 	No

 	No

 	SNORM2, DNORM2, CNORM2, ZNORM2

 	No

 	No

 	SROT, DROT, CROT, ZROT, CSROT, ZDROT

 	No

 	No

 	SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, ZDSCAL

 	No

 	No

 	SSWAP, DSWAP, CSWAP, ZSWAP

 	No

 	No

 	SVEA, DVEA, CVEA, ZVEA

 	No

 	No

 	SVES, DVES, CVES, ZVES

 	No

 	No

 	SVEM, DVEM, CVEM, ZVEM

 	No

 	No

 	SYAX, DYAX, CYAX, ZYAX, CSYAX, ZDYAX

 	No

 	No

 	SZAXPY, DZAXPY, CZAXPY, ZZAXPY

 	No

 	No

 	Matrix-Vector Linear Algebra
 Subprograms1

 	SGEMV, DGEMV, CGEMV, ZGEMV

 	Yes

 	Yes

 	SGER, DGER, CGERU, ZGERU, CGERC, ZGERC

 	Yes

 	Yes

 	SSPMV, DSPMV, CHPMV, ZHPMV

 	Yes

 	Yes

 	SSYMV, DSYMV, CHEMV, ZHEMV

 	Yes

 	Yes

 	SSPR, DSPR, CHPR, ZHPR

 	Yes

 	Yes

 	SSYR, DSYR, CHER, ZHER

 	Yes

 	Yes

 	SSPR2, DSPR2, CHPR2, ZHPR2

 	Yes

 	Yes

 	SSYR2, DSYR2, CHER2, ZHER2

 	Yes

 	Yes

 	SGBMV3, DGBMV3

 	No

 	No

 	CGBMV3, ZGBMV3

 	No

 	No

 	SSBMV3, DSBMV3

 	No

 	No

 	CHBMV3, ZHBMV3

 	No

 	No

 	STRMV, DTRMV, CTRMV, ZTRMV

 	Yes except DTRMV and ZTRMV

 	Yes

 	STPMV, DTPMV, CTPMV, ZTPMV

 	Yes except DTPMV and ZTPMV

 	Yes

 	STRSV, DTRSV, CTRSV, ZTRSV

 	Yes except DTRSV and ZTRSV

 	Yes

 	STPSV, DTPSV, CTPSV, ZTPSV

 	Yes except DTPSV, ZTPSV

 	Yes

 	STBMV3, DTBMV3

 	No

 	No

 	CTBMV3, ZTBMV3

 	No

 	No

 	[image: Start of change]Sparse Matrix Vector Linear Algebra Subprograms [image: End of change]

 	DSMMX, DSDMX

 	No

 	No

 	Matrix Operations1

 	SGEADD, DGEADD, CGEADD, ZGEADD

 	No

 	No

 	SGESUB, DGESUB, CGESUB, ZGESUB

 	No

 	No

 	SGEMUL, DGEMUL, CGEMUL, ZGEMUL

 	Yes

 	Yes

 	SGEMM, DGEMM, CGEMM, ZGEMM

 	Yes

 	Yes

 	SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, ZHEMM

 	Yes

 	Yes

 	STRMM, DTRMM, CTRMM, ZTRMM

 	Yes

 	Yes

 	STRSM, DTRSM, CTRSM, ZTRSM

 	Yes

 	Yes

 	SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, ZHERK

 	Yes

 	Yes

 	SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, ZHER2K

 	Yes

 	Yes

 	SGETMI, DGETMI, CGETMI, ZGETMI, CGECMI, ZGECMI

 	Yes

 	No

 	SGETMO, DGETMO, CGETMO, ZGETMO, CGECMO, ZGECMO

 	Yes

 	No

 	Dense Linear Algebraic Equations

 	SGESV, DGESV, CGESV, ZGESV

 	See Note 1

 	See Note 1.

 	SGEF, DGEF, CGEF, ZGEF

 	See Note 1

 	See Note 1.

 	SGES, DGES, CGES, ZGES

 	See Note 1

 	See Note 1.

 	SGETRF, DGETRF, CGETRF, ZGETRF

 	See Note 1

 	See Note 1.

 	SGETRS, DGETRS, CGETRS, ZGETRS

 	See Note 1

 	See Note 1.

 	SPPSV, DPPSV, CPPSV, ZPPSV

 	See Note 1

 	See Note 1.

 	SPPF, DPPF, SPPTRF, DPPTRF, CPPTRF, ZPPTRF, DPOF, DPOTRF

 	See Note 1

 	See Note 1.

 	SPPTRS, DPPTRS, CPPTRS, ZPPTRS

 	See Note 1

 	See Note 1.

 	SPOSV, DPOSV, CPOSV, ZPOSV

 	See Note 1

 	See Note 1.

 	SPOSM, DPOSM, CPOSM, ZPOSM

 	See Note 1

 	See Note 1.

 	SPPFCD4, DPPFCD4, DPOFCD4

 	See Note 1

 	See Note 1.

 	SPPTRI, DPPTRI, CPPTRI, ZPPTRI, SPPICD4, DPPICD4,
 DPOICD4

 	See Note 1

 	See Note 1.

 	STRI, DTRI, STRTRI, DTRTRI, CTRTRI, ZTRTRI

 	See Note 1

 	See Note 1

 	Banded Linear Algebraic Equations

 	SGBSV, DGBSV, CGBSV, ZGBSV

 	See Note 1

 	See Note 1

 	SGBTRS, DGBTRS, CGBTRS, ZGBTRS

 	See Note 1

 	See Note 1

 	SPBSV, DPBSV, CPBSV, ZPBSV

 	See Note 1

 	See Note 1

 	SPBTRS, DPBTRS, CPBTRS, ZPBTRS

 	See Note 1

 	See Note 1

 	Sparse Linear Algebraic Equations

 	DSRIS5

 	No

 	No

 	Linear Least Squares

 	SGEQRF, DGEQRF, CGEQRF, ZGEQRF

 	See Note 1

 	See Note 1

 	Fourier Transforms

 	SCFTD, SRCFTD, SCRFTD, SCFT, SRCFT, SCRFT, SCFT2, SRCFT2, SCRFT2, SCFT3,
 SRCFT3, SCRFT3

 	Yes

 	Yes

 	DCFTD, DRCFTD, DCRFTD, DCFT, DRCFT, DCRFT, DCFT2, DRCFT2, DCRFT2, DCFT3,
 DRCFT3, DCRFT3

 	Yes

 	No

 	Convolution and Correlation

 	SCOND, SCORD

 	No

 	No

 	SDCON, SDCOR, DDCON, DDCOR

 	No

 	No

 	SCONF, SCORF SACORF

 	Yes

 	Yes

 	
 Note:

 	Many of the dense and banded linear algebraic equations and eigensystem
 analysis subroutines make one or more calls to the vector-scalar, matrix-vector linear algebra, and
 matrix operation subroutines listed in this table, and therefore they indirectly use multiple
 threads and SIMD algorithms.

 	Your performance may be improved by setting the following environment
 variables:

 	ESSL for AIX®

 	export MALLOCMULTIHEAP=true
 —and—

 export XLSMPOPTS="spins=0:yields=0"

 	ESSL for Linux

 	export XLSMPOPTS="spins=0:yields=0"

 For additional information, see the AIX Performance
 Management Guide and the XLF Manuals.

 	The Level 2 Banded BLAS use multiple threads only when the bandwidth is
 sufficiently large.

 	Multiple threads are used for the factor or inverse computation.

 	DSRIS only uses multiple threads when IPARM(4) = 1 or 2.

 Parent topic: Selecting an ESSL Subroutine

 Using the ESSL SMP CUDA Library

 The ESSL SMP CUDA 32-bit integer, 64-bit pointer environment library is supported only on [image: Start of change]IBM Power System S822LC (8335-GTB) servers with NVIDIA P100 GPUs and IBM
 Power System S822LC (8335-GTA) servers with NVIDIA K80 GPUs running Red Hat Enterprise Linux 7.3
 (RHEL7.3) (little endian mode).[image: End of change] You can use the ESSL SMP CUDA Library in
 two ways for the subset of ESSL Subroutines that are GPU-enabled:

 	Using NVIDIA GPUs for the bulk of the computation

 	Using a hybrid combination of POWER8® CPUs and NVIDIA
 GPUs

 The ESSL SMP CUDA library leverages ESSL BLAS, NVIDIA cuBLAS, and
 blocking techniques to handle problem sizes larger than the GPU memory
 size. The algorithms support multiple GPUs and are designed for use
 in both SMP and MPI applications.

 The ESSL SMP CUDA Library contains GPU-enabled versions of the
 following subroutines:

 	SGEMM, DGEMM, CGEMM, and ZGEMM

 	SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM

 	STRMM, DTRMM, CTRMM, and ZTRMM

 	[image: Start of change]STRSM, DTRSM, CTRSM, and ZTRSM [image: End of change]

 	SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK

 	SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K

 Note: In the descriptions that follow host refers to the Power® server and device refers to the GPU

 To use the ESSL SMP CUDA library, [image: Start of change]you must specify only host arrays as arguments
 and[image: End of change] link your applications using -lesslsmpcuda (see Processing Your Program on Linux (little endian mode)). If desired, you can change the default
 behavior of the ESSL SMP CUDA Library using either environment variables or the SETGPUS subroutine,
 see ESSL SMP CUDA Library Options.

 For information on the NVIDIA CUDA support, see the
 following:http://developer.nvidia.com/cuda-toolkit

 ESSL Support for NVIDIA GPU Compute Modes

 NVIDIA allows you to use GPU compute modes to control [image: Start of change]how application threads
 run[image: End of change] on the GPU.

 Restriction: ESSL requires all visible GPUs
 to be set to the same compute mode, except for those in PROHIBITED
 mode, which ESSL ignores.

 The NVIDIA compute modes are as follows:

 	0 DEFAULT

 	Multiple host threads can use the device at the same time.
 ESSL
 can use one or more visible GPUs on the host. See ESSL SMP CUDA Library Options for
 information on the CUDA_VISIBLE_DEVICES environment variable.

 	2 PROHIBITED

 	No host thread can use the device.
 ESSL does not use any GPUs
 in PROHIBITED compute mode; it uses only the GPUs in other compute
 modes. If all GPUs are in PROHIBITED compute mode, ESSL issues attention
 message 2538-2614 and runs using CPUs only, ignoring the setting of
 the ESSL_CUDA_HYBRID environment variable. See ESSL SMP CUDA Library Options for
 information on the ESSL_CUDA_HYBRID environment variable.

 	3 EXCLUSIVE_PROCESS

 	Only one context is allowed per device, usable from multiple threads at a time.
 ESSL can use
 one or more visible GPUs on the host. If the CUDA MPS[bookmark: fnsrc_1]1 is being used with
 more than 1 GPU, you can use the SETGPUS subroutine [image: Start of change]or the environmental variable
 CUDA_VISIBLE_DEVICES with the local rank of the MPI tasks[image: End of change] to select the different GPUs for MPI
 tasks that you want ESSL to use. See ESSL SMP CUDA Library Options for information on the CUDA_VISIBLE_DEVICES environment
 variable.

 ESSL SMP CUDA Library Options
The
 ESSL SMP CUDA Library allows you to control these options:

 	Control how many and which GPUs ESSL uses

 	By default, ESSL uses all devices. Use the CUDA_VISIBLE_DEVICES environment variable or the
 SETGPUS subroutine to change this default. The CUDA applications will see only the devices whose
 index is specified in the CUDA_VISIBLE_DEVICES environmental variable, and the devices are
 enumerated in the order of the sequence specified. For example, if you have three GPUs defined, 0,
 1, 2, you can specify that a CUDA application use only a subset of the GPUs, 1 and 2, using the
 environmental variable as follows:export CUDA_VISIBLE_DEVICES=1,2

 You can also
 specify a new order in which your three GPUs are
 enumerated:export CUDA_VISIBLE_DEVICES=2,1,0

 [image: Start of change]If you need
 different MPI tasks to use different GPUs, you can use the SETGPUS subroutine or the environmental
 variable CUDA_VISIBLE_DEVICES with the local rank of the MPI tasks to ensure each task uses unique
 GPUs. See SETGPUS (Set the Number of GPUs and Identify Which GPUs ESSL Should Use).[image: End of change]

 In some cases ESSL does not use GPUs:

 	The GPU-enabled subroutine is called from within an OpenMP parallel construct (OMP_IN_PARALLEL
 is true).

 	For pre- and post-scaling operations, for example, handling the alpha argument in _TRMM.

 	When the problem size is too small to benefit from using GPUs.

 	Specifying Whether ESSL Runs in Hybrid Mode

 	By default, the ESSL SMP CUDA library runs in hybrid mode. Use
 the ESSL_CUDA_HYBRID environment variable to change this default (valid
 values are yes or no). The default hybrid mode (ESSL_CUDA_HYBRID=yes)
 means that the ESSL SMP CUDA Library subroutines can run on both POWER8 CPUs and NVIDIA GPUs.
 Note: Subroutines
 SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K only use the Power8
 CPUs for scaling operations.

 	Specifying Whether ESSL Pins Host Memory Buffers

 	By default, ESSL does not pin host memory buffers (ESSL_CUDA_PIN=no). Use the ESSL_CUDA_PIN
 environment variable to change this default (valid values are yes, no, or pinned).
 If you want
 ESSL to pin your host memory buffers on entry to gpu-enabled subroutines and unpin them before
 returning, specify ESSL_CUDA_PIN=yes.

 Performance might be improved if you pin your host
 memory buffers used in the ESSL calling sequences once before any calls to ESSL subroutines. [image: Start of change]To pin your host memory buffers use the NVIDIA CUDA subroutine cudaHostRegister.[image: End of change] If
 you pin your own buffers you should specify ESSL_CUDA_PIN=pinned.

 Note: Host memory buffers that are only partially pinned may lead to NVIDIA Error 11 from
 cublasSetMatrixAsync or cublasSetMatrix.

 How ESSL Assigns Threads

 The ESSL SMP CUDA
 Library requires at least one OpenMP thread for each GPU used. If
 the number of OpenMP threads is less than the number of GPUs, ESSL
 issues attention message 2538-2615 and uses the same number of GPUs
 as there are OpenMP threads.

 ESSL SMP CUDA Library uses the
 following priorities to assign threads:

 	ESSL reserves 1 thread for each GPU used

 	Some ESSL subroutines might reserve threads needed to support
 multiple streams

 	The remaining threads are used for the CPU, but a subroutine might
 not run in hybrid mode if there are not enough threads left or if
 the problem size is too small.

 MPI Applications

 There are two ways to
 use the ESSL SMP CUDA Library with MPI Applications depending on how
 the GPUs are used by the local MPI tasks:

 	[image: Start of change]GPUs are not shared, meaning that each MPI task on a node uses unique GPUs. You can
 use the the SETGPUS subroutine or the environmental variable CUDA_VISIBLE_DEVICES with the local
 rank of the MPI tasks to ensure each task uses unique GPUs. See the OMPI_COMM_WORLD_LOCAL_RANK
 description at the following Open MPI URL:https://www.open-mpi.org/

 [image: End of change]

 	GPUs are shared, meaning that the number of MPI tasks per node
 oversubscribe the GPUs. For this case we recommend you run using the
 NVIDIA MPS which is a runtime service designed to let multiple MPI
 processes using CUDA run concurrently on a single GPU in a way that's
 transparent to the MPI program. NVIDIA MPS supports at most 16 MPI
 Tasks per GPU, but if you are using ESSL, it is recommended that you
 use Core Affinity and no more tasks than the number of cores being
 used.
 If you are sharing GPUs, it’s possible that ESSL will
 be unable to allocate work space on the GPU. In that case you can
 reduce the number of MPI tasks per node or, if possible, increase
 the number of GPUs being used per node to eliminate the allocation
 failures.

 If error cudaStreamCreate failed with CUDA
 message: all CUDA-capable devices are busy or unavailable
 occurs when using ESSL with MPI applications and NVIDIA MPS, confirm
 that the NVIDIA MPS Daemons are running on all nodes that the MPI
 job is using.

 [image: Start of change]You can use SETGPUS (see SETGPUS (Set the Number of GPUs and Identify Which GPUs ESSL Should Use)) or the
 environmental variable CUDA_VISIBLE_DEVICES with the local rank of the MPI tasks to inform ESSL
 which GPUs your MPI Tasks should use. [image: End of change]

 For best
 performance, consider increasing the block size you are using to distribute
 your data across the MPI tasks. Consider block sizes in the range
 1024-4096 elements.

 Parent topic: Selecting an ESSL Subroutine

 [bookmark: fntarg_1]1 NVIDIA CUDA Multi Process Service (MPS) is
 a feature that allows multiple CUDA processes to share a single GPU context.

 NVIDIA GPU Power Capping

 The ESSL and NVIDIA library subroutines are highly optimized and
 for some problem sizes your application may exceed the SW Power cap
 for one or more of the GPUs. If this happens your performance will
 be degraded because the frequency of the corresponding GPU clock will
 be reduced because the GPU is consuming too much power.

 You can confirm that this is happening by using nvidia-smi to monitor
 the GPUs while your application is running. nvidia-smi dmon

 If you wish to adjust the Power Cap Limit follow these steps:

 	Determine the current, default and maximum power limit as follows:
 nvidia-smi -q | grep 'Power Limit'

 	[image: Start of change]Ensure that persistence mode is being used. [image: End of change]

 	Increase the SW Power Cap limit for all GPUs as follows, where xxx is
 the desired value in watts: nvidia-smi -pl xxx

 Note: You must increase the power limit and set persistence each
 time the server is booted.

 For additional information, see the following URL: http://international.download.nvidia.com/tesla/pdf/gpu-boost-tesla-k40-app-note.pdf

 Parent topic: Selecting an ESSL Subroutine

 What Type of Data Are You Processing in Your Program?

 The version of the ESSL subroutine you select should agree with the data
 you are using. ESSL provides a short- and long-precision version of most of
 its subroutines processing short- and long-precision data, respectively. In
 a few cases, it also provides an integer version processing integer data or
 returning just integer data. The subroutine names are distinguished by a one-
 or two-letter prefix based on the following letters:

 S for short-precision real

 D for long-precision real

 C for short-precision complex

 Z for long-precision complex

 I for integer

 The precision of your data affects the accuracy of your results. This is
 discussed in Getting the Best Accuracy. For a description of these data
 types, see How Do You Set Up Your Scalar Data?.

 Parent topic: Selecting an ESSL Subroutine

 How Is Your Data Structured? And What Storage Technique Are You Using?

 Some subroutines process specific data structures, such as sparse vectors
 and matrices or dense and banded matrices. In addition, these data structures
 can be stored using various storage techniques. You should select the proper
 subroutine on the basis of the type of data structure you have and the storage
 technique you want to use. If possible, you should use a storage technique
 that conserves storage and potentially improves performance. For more about
 storage techniques, see Setting Up Your Data.

 Parent topic: Selecting an ESSL Subroutine

 What about Performance and Accuracy?

 ESSL provides variations among some of its subroutines. You should
 consider performance and accuracy when deciding which subroutine is
 the best to use. Study "Function" in each subroutine description.
 It helps you understand exactly what each subroutine does, and helps
 you determine which subroutine is best for you. For example, some
 subroutines perform multiple computations of a certain type. This
 might give you better performance than a subroutine that does each
 computation individually. In other cases, one subroutine may do scaling
 while another does not. If scaling is not necessary for your data,
 you get better performance by using the subroutine without scaling.

 Parent topic: Selecting an ESSL Subroutine

 Avoiding Conflicts with Internal ESSL Routine Names That are
 Exported

 Do not use names for your own subroutines, functions, and global
 variables that are the same as the ESSL exported names. Internal ESSL
 routine names that are exported all begin with the ESV prefix.
 Therefore, it is sufficient for you to avoid using this prefix for
 your own names.

 Parent topic: Planning Your Program

 Setting Up Your Data

 There are various items to consider when setting up your scalar
 and array data.

 	How Do You Set Up Your Scalar Data?

 	How Do You Set Up Your Arrays?

 	How Should Your Array Data Be Aligned?

 	What Storage Mode Should You Use for Your Data?

 	How Do You Convert from One Storage Mode to Another?

 Parent topic: Planning Your Program

 How Do You Set Up Your Scalar Data?

 A scalar item is a single item of data, whether it is a constant, a variable,
 or an element of an array. ESSL assumes that your scalar data conforms to
 the appropriate standards. The scalar data types and how you should code them
 for each programming language are listed in “Coding Your Scalar Data”
 specific to each language in Coding Your Program.

 Scalar data passed to ESSL from all types of programs, including Fortran,
 C, and C++, should conform to the ANSI/IEEE 32-bit and 64-bit binary floating-point
 format, as described in the ANSI/IEEE Standard
 for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754–1985.

 Parent topic: Setting Up Your Data

 How Do You Set Up Your Arrays?

 An array represents an area of storage in your program, containing data
 stored in a series of locations. An array has a single name. It is made up
 of one or more pieces of scalar data, all the same type. These are the elements
 of the array. It can be passed to the ESSL subroutine as input, returned to
 your program as output, or used for both input and output, in which case the
 original contents are overwritten.

 Arrays can contain conceptual (mathematical) data structures, such as vectors,
 matrices, or sequences. There are many different types of data structures.
 Each type of data structure requires a unique arrangement of data in an array
 and does not necessarily have to include all the elements of the array. In
 addition, the elements of these data structures are not always contiguous
 in storage within an array. Stride and leading dimension arguments passed
 to ESSL subroutines define the separations in array storage for the elements
 of the vector, matrix, and sequence. All these aspects of data structures
 are described in Setting Up Your Data Structures. You must first understand array
 storage techniques to fully understand the concepts of data structures, stride,
 and leading dimension, especially if you are using them in unconventional
 ways.

 ESSL subroutines assume that all arrays passed to them are stored using
 the Fortran array storage techniques (in column-major order), and they process
 your data accordingly. For details, see Setting Up Arrays in Fortran. On the
 other hand, C, and C++ programs store arrays in row-major order. For details
 on what you can do, see:

 	For C, see Setting Up Arrays in C.

 	For C++, see Setting Up Arrays in C++.

 Parent topic: Setting Up Your Data

 How Should Your Array Data Be Aligned?

 All arrays, regardless of the type of data, should be aligned on
 a doubleword boundary to ensure optimal performance.

 For all subroutines running on VSX enabled processors, see SIMD Algorithms on VSX-Enabled Processors.

 For short-precision real and short-precision complex subroutines
 running on POWER6® AltiVec-enabled
 processors, see SIMD Algorithms on POWER 6 AltiVec-Enabled Processors.

 For information about how your programming language aligns data,
 see your programming language manuals.

 Parent topic: Setting Up Your Data

 What Storage Mode Should You Use for Your Data?

 The amount of storage used by arrays and the storage arrangement
 of data in the arrays can affect overall program performance. As a
 result, ESSL provides subroutines that operate on different types
 of data structures, stored using various storage modes. You should
 chose a storage mode that conserves storage and potentially improves
 performance. For definitions of the various data structures and their
 corresponding storage modes, see Setting Up Your Data Structures.
 You can also find special storage considerations, where applicable,
 in “Notes” in each subroutine description.

 Parent topic: Setting Up Your Data

 How Do You Convert from One Storage Mode to Another?

 ESSL provides conversion subroutines and sample programs to
 help you convert from one storage mode to another.

 	Conversion Subroutines

 	Sample Programs

 Parent topic: Setting Up Your Data

 Conversion Subroutines

 ESSL provides several subroutines that help you convert from one
 storage mode to another:

 	DSRSM is used to migrate your existing program from sparse matrices
 stored by rows to sparse matrices stored in compressed-matrix storage
 mode. This converts the matrices into a storage format that is compatible
 with the input requirements for some ESSL sparse matrix subroutines,
 such as DSMMX.

 	DGKTRN and DSKTRN are used to convert your sparse matrix from
 one skyline storage mode to another, if necessary, before calling
 the subroutines DGKFS/DGKFSP or DSKFS/DSKFSP, respectively.

 Parent topic: How Do You Convert from One Storage Mode to Another?

 Sample Programs

 In addition, sample programs are provided with many of the storage mode
 descriptions in Setting Up Your Data Structures. You can use these sample programs
 to convert your data to the desired storage mode by adapting them to your
 application program.

 Parent topic: How Do You Convert from One Storage Mode to Another?

 Setting Up Your ESSL Calling Sequences

 This gives the general rules for setting up the ESSL calling sequences.
 The information given here applies to all types of programs, running in all
 environments. For a description and examples of how to code the ESSL calling
 sequences in your particular programming language, see the following:

 	Fortran Programs

 	C Programs

 	C++ Programs

 	What Is an Input-Output Argument?

 	What Are the General Rules to Follow when Specifying Data for the Arguments?

 	What Happens When a Value of 0 Is Specified for N?

 	How Do You Specify the Beginning of the Data Structure in the ESSL Calling Sequence?

 Parent topic: Planning Your Program

 What Is an Input-Output Argument?

 Some arguments are used for both input and output. The contents of the
 input argument are overlaid with the output value(s) on return to your program.
 Be careful that you save any data you need to preserve before calling the
 ESSL subroutine.

 Parent topic: Setting Up Your ESSL Calling Sequences

 What Are the General Rules to Follow when Specifying Data for the Arguments?

 You should follow the syntax rules given for each argument in “On Entry”
 in the subroutine description. Input-argument error messages may be issued,
 and your program may terminate when you make an error specifying the input
 arguments. For example:

 	Data passed to ESSL must be of the correct type: 32-bit
 or 64-bit integer, 32-bit or 64-bit logical, character,
 real, complex, short-precision, or long-precision. There is no conversion
 of data. Assuming you are using the ESSL header file with your C and C++ programs,
 you first need to define the following:

 	Complex and logical data in C programs, using the guidelines in Setting Up Complex Data Types in C and Using Logical Data in C.

 	Short-precision complex and logical data in C++ programs, using the guidelines
 in On AIX—Setting Up Short-Precision Complex Data Types If You Are Using the IBM Open Class Complex Mathematics Library in C++ and Using Logical Data in C++.

 	Character values must be one of the specified values. For example, it
 may have to be 'N', 'T', or 'C'.

 	Numeric values must fall within the correct range for that argument.
 For example, a numeric value may need to be greater than or equal to 0, or
 it may have to be a nonzero value.

 	Arrays must be defined correctly; that is, they must have the correct
 dimensions, or the dimensions must fall within the correct range. For example,
 input and output matrices may need to be conformable, or the number of rows
 in the matrix must be less than or equal to the leading dimension specified.
 (ESSL assumes all arrays are stored in column-major order.)

 Parent topic: Setting Up Your ESSL Calling Sequences

 What Happens When a Value of 0 Is Specified for N?

 For most ESSL subroutines, if you specify 0 for the number of elements
 to be processed in a vector or the order of a matrix (usually argument n), no computation is performed. After checking for input-argument errors,
 the subroutine returns immediately and no result is returned. In the other
 subroutines, an error message may be issued.

 Parent topic: Setting Up Your ESSL Calling Sequences

 How Do You Specify the Beginning of the Data Structure in the ESSL
 Calling Sequence?

 When you specify a vector, matrix, or sequence in your
 calling sequence, it does not necessarily have to start at the beginning of
 the array. It can begin at any point in the array. For example, if you
 want vector x to start at element 3 in array A, which is declared A(1:12), specify A(3) in
 your calling sequence for argument x, such as in the following SASUM
 calling sequence in your Fortran program:
 N X INCX
 | | |
 X = SASUM(4 , A(3) , 2)

 Also, for example, if you want matrix A to
 start at the second row and third column of array A, which is declared A(0:10,2:8), specify A(1,4) in your calling sequence for
 argument a, such as in the following SGEADD calling sequence in your
 Fortran program:
 A LDA TRANSA B LDB TRANSB C LDC M N
 | | | | | | | | | |
 CALL SGEADD(A(1,4) , 11 , 'N' , B , 4 , 'N' , C , 4 , 4 , 3)

 For more examples of specifying vectors and matrices, see Setting Up Your Data Structures.

 Parent topic: Setting Up Your ESSL Calling Sequences

 Using Auxiliary Storage in ESSL

 For the ESSL subroutines listed in Table 41, you need to provide extra
 working storage to perform the computation. It is necessary to understand
 the use of dynamic allocation for providing auxiliary storage in ESSL
 and, if dynamic allocation is not an option, how to calculate the
 amount of auxiliary storage you need by use of formulas or error-handling
 capabilities provided in ESSL.

 Auxiliary storage, or working storage, is supplied through one
 or more arguments, such as aux, in the calling
 sequence for the ESSL subroutine. If the working storage does
 not need to persist after the subroutine call, it is suggested you
 use dynamic allocation. For example, in the Fourier Transforms
 subroutines, you may allocate aux2 dynamically,
 but not aux1. See the subroutine descriptions
 for details and variations.

 Table 41. ESSL Subroutines
 Requiring Auxiliary Working Storage.

 	Subroutine Names

 	

 Linear Algebra Subprograms:

 DSMTM

 	

 Matrix Operations:

 _GEMMS

 	

 Dense Linear Algebraic Equations:

 _GEFCD _PPFCD _GEICD _PPICD _POFCD

 _POICD DGEFP

 Δ

 DPPFP

 Δ

 	

 Sparse Linear Algebraic Equations:

 DGSF DGSS DGKFS DGKFSP

 Δ

 DSKFS DSKFSP

 Δ

 DSRIS DSMCG DSDCG DSMGCG DSDGCG

 	

 Linear Least Squares:

 _GESVF _GELLS

 	

 Fourier Transforms:

 _CFTD

 _RCFTD

 _CRFTD

 _CFT _RCFT _CRFT _COSF _SINF

 SCOSFT

 Δ

 _CFT2 _RCFT2 _CRFT2 _CFT3

 _RCFT3 _CRFT3 SCFTP

 Δ

 SCFT2P

 Δ

 SCFT3P

 Δ

 	

 Convolutions and Correlations:

 SCONF SCORF SACORF

 	

 Related Computations:

 _WLEV

 	

 Interpolation:

 _TPINT _CSIN2

 	

 Random Number Generation:

 _NRAND

 	

 Utilities:

 DGKTRN DSKTRN

 	
 Δ Documentation for this subroutine
 is no longer provided. The aux and naux arguments
 for the subroutine are specified the same as for the corresponding
 serial ESSL subroutine.

 	Dynamic Allocation of Auxiliary Storage

 	Setting Up Auxiliary Storage When Dynamic Allocation Is Not Used

 Parent topic: Planning Your Program

 Dynamic Allocation of Auxiliary Storage

 Dynamic allocation for the auxiliary storage is performed when
 error 2015 is unrecoverable and naux = 0. For details on which aux arguments
 allow dynamic allocation, see the subroutine descriptions.

 Parent topic: Using Auxiliary Storage in ESSL

 Setting Up Auxiliary Storage When Dynamic Allocation Is Not Used

 You set up the storage area in your program and pass it to ESSL through
 arguments, specifying the size of the aux work area in the naux argument.

 	Who Do You Want to Calculate the Size of Auxiliary Storage? You or ESSL?

 	How Do You Calculate the Size of Auxiliary Storage Using the Formulas?

 	How Do You Get ESSL to Calculate the Size of Auxiliary Storage Using ESSL Error Handling?

 Parent topic: Using Auxiliary Storage in ESSL

 Who Do You Want to Calculate the Size of Auxiliary Storage?
 You or ESSL?

 You have a choice of two methods for determining how much auxiliary storage
 you should specify:

 	Use the formulas provided in the subroutine description to derive sufficient values for your current and future needs. Use
 them if ease of migration to future machines and future
 releases of ESSL is your primary concern. For details, see How Do You Calculate the Size of Auxiliary Storage Using the Formulas?.

 	Use the ESSL error-handling facilities to return to you a minimum value for the particular processor you are currently running
 on. (Values vary by platform.) Use this approach if conserving
 storage is your primary concern. For details, see How Do You Get ESSL to Calculate the Size of Auxiliary Storage Using ESSL Error Handling?.

 Parent topic: Setting Up Auxiliary Storage When Dynamic Allocation Is Not Used

 How Do You Calculate the Size of Auxiliary Storage Using
 the Formulas?

 The formulas provided for calculating naux indicate a sufficient amount of auxiliary storage required, which, in most cases,
 is larger than the minimum amount, returned by ESSL error handling. There
 are two types of formulas:

 	Simple formulas

 These are given in the naux argument syntax descriptions. In general, these formulas result in the
 minimum required value, but, in a few cases, they provide overestimates.

 	Processor-independent formulas

 These are given
 separately in each subroutine description. In general, these provide overestimates.

 Both types of formulas provide values that are sufficient for all processors.
 As a result, you can migrate to any other processor and to future releases
 of ESSL without being concerned about having to increase the amount of storage
 for aux. You do, of course, need to weigh your storage requirements
 against the convenience of using this larger value.

 To calculate the amount of storage using the formulas, you must substitute
 values for specific variables, such as n, m, n1,
 or n2. These variables are arguments specified in the ESSL calling
 sequence or derived from the arguments in the calling sequence.

 Parent topic: Setting Up Auxiliary Storage When Dynamic Allocation Is Not Used

 How Do You Get ESSL to Calculate the Size of Auxiliary
 Storage Using ESSL Error Handling?

 When getting ESSL to calculate auxiliary storage, ask yourself which of
 the following ways you prefer to obtain the information from ESSL:

 	By leaving error 2015 unrecoverable, you can obtain
 the minimum required value of naux from the input-argument error
 message, but your program terminates.

 	By making error 2015 recoverable, you can obtain
 the minimum required value of naux from the input-argument error
 message and have the updated naux argument returned to your program.

 For both techniques, the amount returned by the ESSL error-handling facility
 is the minimum amount of auxiliary storage required
 to run your program successfully on the particular processor
 you are currently running on. The ESSL error-handling capability usually
 returns a smaller value than you derive by using the formulas listed for the
 subroutine. This is because the formulas provide a good estimate, but ESSL
 can calculate exactly what is needed on the basis of your data.

 The values returned by ESSL error handling may not apply
 to future processors. You should not use them if you plan to run your
 program on a future processor. You should use them only if you are concerned
 with minimizing the amount of auxiliary storage used by your program.

 	Having ESSL Calculate Auxiliary Storage Size with Unrecoverable Error 2015

 	Having ESSL Calculate Auxiliary Storage Size with Recoverable Error 2015

 	Example of Input-Argument Error Recovery for Auxiliary Storage Sizes

 	Coding Your Program to Obtain Auxiliary Storage Sizes

 Parent topic: Setting Up Auxiliary Storage When Dynamic Allocation Is Not Used

 Having ESSL Calculate Auxiliary Storage Size with Unrecoverable Error
 2015

 In this case, you obtain the minimum required value of naux from
 the error message, but your program terminates. The following description
 assumes that dynamic allocation is not selected as an option.

 Leave error 2015 as unrecoverable, without calls to EINFO and ERRSET.
 Run your program with the naux values smaller than required by the
 subroutine for the particular processor you are running on. As a general guideline,
 specify values smaller than those listed in the formulas. However, if a lower
 limit is specified in the syntax (only for several naux1 arguments
 in the Fourier transform, convolution, and correlation subroutines), you should
 not go below that limit. The ESSL error monitor returns the necessary sizes
 of the aux storage areas in the input-argument error message. This
 does, however, terminate your program when the error is encountered. (If you
 accidentally specify a sufficient amount of storage for the ESSL subroutine
 to perform the computation, error handling does not issue an error message
 and processing continues normally.) Figure 1. illustrates
 what happens when error 2015 is unrecoverable.

 Figure 1. How
 to Obtain an NAUX Value from an Error Message, but Terminate[image: Graphic for Error 2015]

 * This check applies only to several NAUX1 arguments in the Fourier transform, convolution, and correlation

 subroutines.

 Parent topic: How Do You Get ESSL to Calculate the Size of Auxiliary Storage Using ESSL Error Handling?

 Having ESSL Calculate Auxiliary Storage Size with Recoverable
 Error 2015

 In this case, you obtain the minimum required value of naux from
 the error message and from the updated naux argument returned to
 your program.

 Use EINFO and ERRSET with an ESSL error exit routine, ENOTRM, to make error
 2015 recoverable. This allows you to dynamically determine in your program
 the minimum sizes required for the auxiliary working storage areas, specified
 in the naux arguments. Run your program with the naux values
 smaller than required by the subroutine for the particular processor you are
 running on. As a general guideline, specify values smaller than those listed
 in the formulas. However, if a lower limit is specified in the syntax (only
 for several naux1 arguments in the Fourier transform, convolution,
 and correlation subroutines), you should not go below that limit. The ESSL
 error monitor returns the necessary sizes of the aux storage areas
 in the input-argument error message and a return code is passed back to your
 program, indicating that updated values are also returned in the naux arguments. You can then react to these updated values during run time
 in your program. ESSL does not perform any computation when this error occurs.
 For details on how to do this, see Coding Your Program. (If you accidentally
 specify a sufficient amount of storage for the ESSL subroutine to perform
 the computation, error handling does not issue an error message and processing
 continues normally.) Figure 2. illustrates what happens
 when error 2015 is recoverable.

 Figure 2. How
 to Obtain an NAUX Value from an Error Message and in Your Program[image: Graphic for Error 2015]

 * This check applies only to several NAUX1 arguments in the Fourier transform, convolution, and correlation

 subroutines.

 Parent topic: How Do You Get ESSL to Calculate the Size of Auxiliary Storage Using ESSL Error Handling?

 Example of Input-Argument Error Recovery for Auxiliary
 Storage Sizes

 The following example illustrates all the actions taken by the ESSL error-handling
 facility for each possible value of a recoverable input argument, naux. A key point here is that if you want to have the updated argument value
 returned to your program, you must make error 2015 recoverable and then specify
 an naux value greater than or equal to 20 and less than 300. For
 values out of that range, the error recovery facility is not in effect. (These
 values of naux, 20 and 300, are used only for the purposes of this
 example and do not relate to any of the ESSL subroutines.)

 	NAUX

 	Meaning of the NAUX Value

 	20

 	Lower limit of naux required for using recoverable input-argument
 error-handling facilities in ESSL. (This applies only to several naux1 arguments in the Fourier transform, convolution, and correlation subroutines.
 You can find the lower limit in the syntax description for the naux1 argument. For a list of subroutines, see Using Auxiliary Storage in ESSL.)

 	300

 	Minimum value of naux, required for successful running (on
 the processor the program is being run on).

 Table 42 describes the actions taken by ESSL in every
 possible situation for the values given in this example.

 Table 42. Example of Input-Argument Error Recovery for Auxiliary Storage Sizes.

 	NAUX Value

 	Action When 2015 Is an Unrecoverable Input-Argument
 Error

 	Action When 2015 Is a Recoverable Input-Argument Error

 	naux < 20

 	An input-argument error message is issued. The value in the error
 message is the lower limit, 20. The application program stops.

 	An input-argument error message is issued. The value in the error
 message is the lower limit, 20. The application program stops.

 	20 ≤ naux < 300

 	An input-argument error message is issued. The value in the error
 message is the minimum required value, 300. The application program stops.

 	ESSL returns the value of naux as 300 to the application program,
 and an input-argument error message is issued. The value in the error message
 is the minimum required value, 300. ESSL does no computation, and control
 is returned to the application program.

 	naux ≥ 300

 	Your application program runs successfully.

 	Your application program runs successfully.

 Parent topic: How Do You Get ESSL to Calculate the Size of Auxiliary Storage Using ESSL Error Handling?

 Coding Your Program to Obtain Auxiliary Storage Sizes

 If you leave error 2015 unrecoverable, you do not code anything in
 your program. You just look at the error messages to get the sizes
 of auxiliary storage. On the other hand, if you want to make error
 2015 recoverable to obtain the auxiliary storage sizes dynamically
 in your program, you need to add some coding statements to
 your program. For details on coding these statements in each programming
 language, see the following examples:

 	For Fortran, see Input-Argument Errors in Fortran Example

 	For C, see Input-Argument Errors in C Example

 	For C++, see Input-Argument Errors in C++ Example

 You may want to provide a separate subroutine to calculate the
 auxiliary storage size whenever you need it. Figure 3. shows how you might code
 a separate Fortran subroutine. Before calling SCFT in your program,
 call this subroutine, SCFTQ, which calculates the minimum size and
 stores it in the naux arguments. Upon return,
 your program checks the return code. If it is nonzero, the naux arguments
 were updated, as planned. You should then make sure adequate storage
 is available and call SCFT. On the other hand, if the return code
 is zero, error handling was not invoked, the naux arguments
 were not updated, and the initialization step was performed for SCFT.

 Figure 3. Sample Fortran Subroutine
 to Calculate Auxiliary Storage Sizes in a 32-bit Integer, 64-bit Pointer
 Environment SUBROUTINE SCFTQ (INIT, X, INC1X, INC2X, Y, INC1Y, INC2Y,
 * N, M, ISIGN, SCALE, AUX1, NAUX1,AUX2,NAUX2)
 REAL*4 X(0:*),Y(0:*),SCALE
 REAL*8 AUX1(7),AUX2(0:*)
 INTEGER*4 INIT,INC1X,INC2X,INC1Y,INC2Y,N,M,ISIGN,NAUX1,NAUX2
 EXTERNAL ENOTRM
 CHARACTER*8 S2015
 CALL EINFO(0)
 CALL ERRSAV(2015,S2015)
 CALL ERRSET(2015,0,-1,1,ENOTRM,0)
C SETS NAUX1 AND NAUX2 TO THE MINIMUM VALUES REQUIRED TO USE
C THE RECOVERABLE INPUT-ARGUMENT ERROR-HANDLING FACILITY
 NAUX1 = 7
 NAUX2 = 0
 CALL SCFT(INIT,X,INC1X,INC2X,Y,INC1Y,INC2Y,
 * N,M,ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)
 CALL ERRSTR(2015,S2015)
 RETURN
10 CONTINUE
 CALL ERRSTR(2015,S2015)
 RETURN 1
 END

 Parent topic: How Do You Get ESSL to Calculate the Size of Auxiliary Storage Using ESSL Error Handling?

 Providing a Correct Transform Length to ESSL

 This describes how to calculate the length of your transform by use of
 formulas or error-handling capabilities provided in ESSL.

 For the ESSL subroutines listed in Table 43, you need
 to provide one or more transform lengths for the computation of a Fourier
 transform. These transform lengths are supplied through one or more arguments,
 such as n, n1, n2, and n3, in the calling
 sequence for the ESSL subroutine. Only certain lengths of transforms are permitted
 in the computation.

 Table 43. ESSL Subroutines Requiring Transform Lengths.

 	Subroutine Names

 	

 Fourier Transforms:

 _CFT _RCFT _CRFT _COSF _SINF

 SCOSFT _CFT2 _RCFT2 _CRFT2 _CFT3

 _RCFT3 _CRFT3 SCFTP SCFT2P SCFT3P

 	Who Do You Want to Calculate the Transform Length? You or ESSL?

 	How Do You Calculate the Transform Length Using the Table or Formula?

 	How Do You Get ESSL to Calculate the Transform Length Using ESSL Error Handling?

 Parent topic: Planning Your Program

 Who Do You Want to Calculate the Transform Length? You
 or ESSL?

 You have a choice of two methods for determining an acceptable length for
 your transform to be processed by ESSL:

 	Use the formula or large table in Acceptable Lengths for the Transforms to determine
 an acceptable length. For details, see How Do You Calculate the Transform Length Using the Table or Formula?.

 	Use the ESSL error-handling facilities to return to you an acceptable
 length. For details, see How Do You Get ESSL to Calculate the Transform Length Using ESSL Error Handling?.

 Parent topic: Providing a Correct Transform Length to ESSL

 How Do You Calculate the Transform Length Using the Table or Formula?

 The lengths ESSL accepts for transforms in the Fourier transform
 subroutines are listed in Acceptable Lengths for the Transforms. You should
 use the information in that table to find the two values your length falls
 between. You then specify the larger length for your
 transform. If you find a perfect match, you can use that value without having
 to change it. The formula provided expresses how to calculate the acceptable
 values listed in the table. If necessary, you can use the formula to dynamically
 check lengths in your program.

 Parent topic: Providing a Correct Transform Length to ESSL

 How Do You Get ESSL to Calculate the Transform Length Using
 ESSL Error Handling?

 This describes how to get ESSL to calculate transform lengths. Ask yourself
 which of the following ways you prefer to obtain the information from ESSL:

 	By leaving error 2030 unrecoverable, you can obtain
 an acceptable value for n from the input-argument error message,
 but your program terminates.

 	By making error 2030 recoverable, you obtain an
 acceptable value for n from the input-argument error message and
 have the updated n argument returned to your program.

 Because the Fourier transform subroutines allow only certain lengths for
 transforms, ESSL provides this error-handling capability to return acceptable
 lengths to your program. It returns them in the transform length arguments.
 The value ESSL returns is the next larger acceptable length for a transform, based on the length you specify in the n argument.

 	Having ESSL Calculate the Transform Length with Unrecoverable Error 2030

 	Having ESSL Calculate the Transform Length with Recoverable Error 2030

 	Example of Input-Argument Error Recovery for Transform Lengths

 	Coding Your Program to Obtain Transform Lengths

 Parent topic: Providing a Correct Transform Length to ESSL

 Having ESSL Calculate the Transform Length with Unrecoverable
 Error 2030

 In this case, you obtain an acceptable value of n from the error
 message, but your program terminates.

 Leave error 2030 as unrecoverable, without calls to EINFO and ERRSET. Run
 your program with a close approximation of the transform length you want to
 use. If this happens not to be an acceptable length, the ESSL error monitor
 returns an acceptable length of the transform in input-argument error message.
 This does, however, terminates your program when the error is encountered.
 (If you do happen to specify an acceptable length for the transform, error
 handling does not issue an error message and processing continues normally.) Figure 4. illustrates what happens when error 2030 is unrecoverable.

 Figure 4. How
 to Obtain an N Value from an Error Message, but Terminate[image: Graphic for Error 2030]

 Parent topic: How Do You Get ESSL to Calculate the Transform Length Using ESSL Error Handling?

 Having ESSL Calculate the Transform Length with Recoverable
 Error 2030

 In this case, you obtain an acceptable value of n from the error
 message and from the updated n argument returned to your program.

 Use EINFO and ERRSET with an ESSL error exit routine, ENOTRM, to make error
 2030 recoverable. This allows you to dynamically determine in your program
 an acceptable length for your transform, specified in the n argument(s).
 Run your program with a close approximation of the transform length you want
 to use. If this happens not to be an acceptable length, the ESSL error monitor
 returns an acceptable length of the transform in the input-argument error
 message and a return code is passed back to your program, indicating that
 updated values are also returned in the n argument(s). You can then
 react to these updated values during run time in your program. ESSL does
 not perform any computation when this error occurs. For details on how to
 do this, see Coding Your Program. (If you do happen to specify an acceptable
 length for the transform, error handling does not issue an error message and
 processing continues normally.) Figure 5. illustrates what
 happens when error 2030 is recoverable.

 Figure 5. How
 to Obtain an N Value from an Error Message and in Your Program[image: Graphic for Error 2030]

 Parent topic: How Do You Get ESSL to Calculate the Transform Length Using ESSL Error Handling?

 Example of Input-Argument Error Recovery for Transform Lengths

 The following example illustrates all the actions taken by the
 ESSL error-handling facility for each possible value of a recoverable
 input argument, n. The values of n used
 in the example are as follows:

 	N

 	Meaning of the N Value

 	7208960

 	An acceptable transform length, required for successful computing
 of a Fourier transform

 	7340032

 	The next larger acceptable transform length, required for successful
 computing of a Fourier transform

 Table 44 describes the actions
 taken by ESSL in every possible situation for the values given in
 this example.

 Table 44. Example of
 Input-Argument Error Recovery for Transform Lengths.

 	N Value

 	Action When 2030 Is an Unrecoverable Input-Argument Error

 	Action When 2030 Is a Recoverable Input-Argument Error

 	n = 7208960
 –or–

 n = 7340032

 	Your application program runs successfully.

 	Your application program runs successfully.

 	7208960 < n < 7340032

 	An input-argument error message is issued. The value in the
 error message is 7340032. The application program stops.

 	ESSL returns the value of n as 7340032
 to the application program, and an input-argument error message is
 issued. The value in the error message is 7340032. ESSL does no computation,
 and control is returned to the application program.

 Parent topic: How Do You Get ESSL to Calculate the Transform Length Using ESSL Error Handling?

 Coding Your Program to Obtain Transform Lengths

 If you leave error 2030 unrecoverable, you do not code anything in
 your program. You just look at the error messages to get the transform
 lengths. On the other hand, if you want to make error 2030 recoverable
 to obtain the transform lengths dynamically in your program, you need
 to add some coding statements to your program. For details
 on coding these statements in each programming language, see the following
 examples:

 	For Fortran, see Input-Argument Errors in Fortran Example.

 	For C, see Input-Argument Errors in C Example.

 	For C++, see Input-Argument Errors in C++ Example.

 You may want to provide a separate subroutine to calculate the
 transform length whenever you need it. Figure 6. shows how you might code
 a separate Fortran subroutine. Before calling SCFT in your program,
 you call this subroutine, SCFTQ, which calculates the correct length
 and stores it in n. Upon return, your program
 checks the return code. If it is nonzero, the n argument
 was updated, as planned. You then do any necessary data setup and
 call SCFT. On the other hand, if the return code is zero, error handling
 was not invoked, the n argument was not
 updated, and the initialization step was performed for SCFT.

 Figure 6. Sample Fortran Subroutine
 to Calculate Transform Length in a 32-bit Integer, 64-bit Pointer
 Environment SUBROUTINE SCFTQ (INIT, X, INC1X, INC2X, Y, INC1Y, INC2Y,
 * N, M, ISIGN, SCALE, AUX1, NAUX1,AUX2,NAUX2)
 REAL*4 X(0:*),Y(0:*),SCALE
 REAL*8 AUX1(7),AUX2(0:*)
 INTEGER*4 INIT,INC1X,INC2X,INC1Y,INC2Y,N,M,ISIGN,NAUX1,NAUX2
 EXTERNAL ENOTRM
 CHARACTER*8 S2030
 CALL EINFO(0)
 CALL ERRSAV(2030,S2030)
 CALL ERRSET(2030,0,-1,1,ENOTRM,0)
 CALL SCFT(INIT,X,INC1X,INC2X,Y,INC1Y,INC2Y,
 * N,M,ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)
 CALL ERRSTR(2030,S2030)
 RETURN
10 CONTINUE
 CALL ERRSTR(2030,S2030)
 RETURN 1
 END

 You might want to combine the request for auxiliary storage sizes
 along with your request for transform lengths. Figure 7. shows how you might code
 a separate Fortran subroutine combining both requests. It combines
 the functions performed by the subroutine shown above and that shown
 in Coding Your Program to Obtain Auxiliary Storage Sizes.

 Figure 7. Sample Fortran Subroutine
 to Calculate Auxiliary Storage Sizes and Transform Length in a 32-bit
 Integer, 64-bit Pointer Environment SUBROUTINE SCFTQ (INIT, X, INC1X, INC2X, Y, INC1Y, INC2Y,
 * N, M, ISIGN, SCALE, AUX1, NAUX1, AUX2, NAUX2)
 REAL*4 X(0:*),Y(0:*),SCALE
 REAL*8 AUX1(7),AUX2(0:*)
 INTEGER*4 INIT,INC1X,INC2X,INC1Y,INC2Y,N,M,ISIGN,NAUX1,NAUX2
 EXTERNAL ENOTRM
 CHARACTER*8 S2015,S2030
 CALL EINFO(0)
 CALL ERRSAV(2015,S2015)
 CALL ERRSAV(2030,S2030)
 CALL ERRSET(2015,0,-1,1,ENOTRM,0)
 CALL ERRSET(2030,0,-1,1,ENOTRM,0)
C SETS NAUX1 AND NAUX2 TO THE MINIMUM VALUES REQUIRED TO USE
C THE RECOVERABLE INPUT-ARGUMENT ERROR-HANDLING FACILITY
 NAUX1 = 7
 NAUX2 = 0
 CALL SCFT(INIT,X,INC1X,INC2X,Y,INC1Y,INC2Y,
 * N,M,ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)
 CALL ERRSTR(2015,S2015)
 CALL ERRSTR(2030,S2030)
 RETURN
10 CONTINUE
 CALL ERRSTR(2015,S2015)
 CALL ERRSTR(2030,S2030)
 RETURN 1
 END

 Parent topic: How Do You Get ESSL to Calculate the Transform Length Using ESSL Error Handling?

 Getting the Best Accuracy

 This explains how accuracy of your results can be affected in various situations
 and what you can do to achieve the best possible accuracy.

 	What Precisions Do ESSL Subroutines Operate On?

 	How does the Nature of the ESSL Computation Affect Accuracy?

 	What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?

 	How is Underflow Handled?

 	Where Can You Find More Information on Accuracy?

 	What about Bitwise-Identical Results?

 Parent topic: Planning Your Program

 What Precisions Do ESSL Subroutines Operate On?

 Both short- and long-precision real versions of the subroutines are provided
 in most areas of ESSL. In some areas, short- and long-precision complex versions
 are also provided, and, occasionally, a 32-bit or 64-bit
 integer version is provided. The subroutine names are distinguished by
 a one- or two-letter prefix based on the following letters:

 S for short-precision real

 D for long-precision real

 C for short-precision complex

 Z for long-precision complex

 I for integer

 For a description of these data types, see How Do You Set Up Your Scalar Data?.
 The scalar data types and how you should code them for each programming language
 are listed under “Coding Your Scalar Data” specific to each programming
 language in Coding Your Program.

 Parent topic: Getting the Best Accuracy

 How does the Nature of the ESSL Computation Affect Accuracy?

 In subroutines performing operations such as copy and swap, the
 accuracy of data is not affected. In subroutines performing computations
 involving mathematical operations on array data, the accuracy of the
 result may be affected by the following:

 	The algorithm, which can vary depending on values or array sizes
 within the computation or the number of threads used, or whether CPUs,
 GPUs, or both are used.

 	The matrix and vector sizes

 For this reason, the ESSL subroutines do not have a closed
 formula for the error of computation. In other words, there is no
 formula with which you can calculate the error of computation in each
 subroutine.

 Many of the short-precision subprograms provide increased accuracy
 by accumulating results in long precision. However, when short-precision
 subroutines use the AltiVec or VSX unit to improve performance, they
 do not accumulate intermediate results in long precision. This is
 noted in the functional description of each subprogram.

 Where applicable, the ESSL subroutines use the Multiply-Add instructions,
 which combine a Multiply and Add operation without an intermediate
 rounding operation.

 The ESSL Serial Libraries and ESSL SMP Libraries allow you to run
 applications in any of the following environments, and results obtained
 in any of these environments using the same ESSL library are mathematically
 equivalent but may not be bitwise-identical:

 	32-bit integer, 32-bit pointer environment (AIX® only)

 	32-bit integer, 64-bit pointer environment

 	64-bit integer, 64-bit pointer environment

 Parent topic: Getting the Best Accuracy

 What Data Type Standards Are Used by ESSL, and What Exceptions Should
 You Know About?

 The data types operated on by the short-precision, long-precision,
 and integer versions of the subroutines are ANSI/IEEE 32-bit and 64-bit binary
 floating-point format, and 32-bit and 64-bit integer. See the ANSI/IEEE Standard
 for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754–1985 for more detail.

 There are ESSL-specific rules that apply to the results of computations
 using the ANSI/IEEE standards. When running your program, the result of a
 multiplication of NaN (“Not-a-Number”) by a scalar zero, under certain
 circumstances, may differ in the ESSL subroutines from the result you expect.

 Usually, when NaN is multiplied by a scalar zero, the result is NaN; however,
 in some ESSL subroutines where scaling is performed, the result may be zero.
 For example, in computing αA, where α is a scalar and A is
 a matrix, if α is zero
 and one (or more) of the elements of A is NaN,
 the scaled result, using that element, may be a zero, rather than NaN. To
 avoid problems, you should consider this when designing your program.

 Parent topic: Getting the Best Accuracy

 How is Underflow Handled?

 ESSL does not mask underflow. If your program incurs a number of unmasked
 underflows, its overall performance decreases. Floating-point exception trapping
 is disabled by default. Therefore, you do not have to mask underflow unless
 you have changed the default.

 Parent topic: Getting the Best Accuracy

 Where Can You Find More Information on Accuracy?

 Information about accuracy can be found in the following places:

 	Migration considerations concerning accuracy of results between
 releases, platforms, and so forth are described in Migrating Your Programs.

 	Specific information on accuracy for each area of ESSL is given
 in “Performance and Accuracy Considerations” associated
 with the subroutine descriptions for that area.

 	The functional description under “Function” for each
 subroutine explains what you need to know about the accuracy of the
 computation. Varying implementation techniques are sometimes used
 to improve performance. To let you know how accuracy is affected,
 the functional description may explain in general terms the different
 techniques used in the computation.

 	For details on accuracy considerations when using
 GPUs see: https://developer.nvidia.com/content/precision-performance-floating-point-and-ieee-754-compliance-nvidia-gpus

 Parent topic: Getting the Best Accuracy

 What about Bitwise-Identical Results?

 There are several circumstances where you may not get bitwise-identical
 results, although the results are mathematically equivalent:

 	Results obtained on different hardware platforms

 	Results obtained using different ESSL releases

 	Results obtained using different ESSL Libraries

 	Results obtained using a different number of threads

 	Results obtained using arrays that are aligned differently. For
 example, the Power® VSX/VMX
 unit require specific data alignments. If a subroutine uses one
 of these units and the input and/or output arrays are not aligned
 as required, some data may be processed using the floating point
 unit before or after the main SIMD loop.

 	Results obtained using the ESSL SMP CUDA Library with
 environment variables ESSL_CUDA_HYBRID=yes and ESSL_CUDA_HYBRID=no.
 See Using the ESSL SMP CUDA Library.

 Parent topic: Getting the Best Accuracy

 Getting the Best Performance

 This describes how you can achieve the best possible performance
 from the ESSL subroutines.

 	What General Coding Techniques Can You Use to Improve Performance?

 	Where Can You Find More Information on Performance?

 Parent topic: Planning Your Program

 What General Coding Techniques Can You Use to Improve Performance?

 There are many ways in which you can improve the performance of
 your program. Here are some of them:

 	Use the basic linear algebra subprograms and matrix operations
 in the order of optimum performance: matrix-matrix computations, matrix-vector
 computations, and vector-scalar computations. When data is presented
 in matrices or vectors, rather than vectors or scalars, multiple operations
 can be performed by a single ESSL subroutine.

 	Where possible, use subroutines that do multiple computations,
 such as SNDOT and SNAXPY, rather than individual computations, such
 as SDOT and SAXPY.

 	Use a stride of 1 for the data in your computations. Not having
 vector elements consecutively accessed in storage can degrade your
 performance. The closer the vector elements are to each other in storage,
 the better your performance. For an explanation of stride, see How Stride Is Used for Vectors.

 	Do not specify the size of the leading dimension of an
 array (lda) or stride of a vector (inc)
 equal to or near a multiple of:

 	128 for a long-precision array

 	256 for a short-precision array

 	On VSX enabled processors, specify the size of the leading dimension
 of a long or short-precision array as follows:

 	Long-precision real arrays - multiple of 2

 	Short-precision real arrays - multiple of 4

 	Short-precision complex arrays - multiple of 2

 Vectors and matrices are quadword aligned.

 	On AltiVec-Enabled Processors, specify the size of the leading
 dimension of a short-precision array as follows:

 	Short-precision real array - multiple of 4

 	Short-precision complex array - multiple of 2

 	Do not specify the individual sizes of your one-dimensional
 arrays as multiples of 128. This is especially important when you
 are passing several one-dimensional arrays to an ESSL subroutine.
 (The multiplicity can cause a performance problem that otherwise
 might not occur.)

 	For small problems, avoid using a large leading dimension (lda)
 for your matrix.

 	In general, align your arrays on doubleword boundaries, regardless
 of the type of data. For short-precision real and short-precision
 complex subroutines running on AltiVec-enabled processors, see SIMD Algorithms on POWER 6 AltiVec-Enabled Processors. For VSX enabled processors,
 see SIMD Algorithms on VSX-Enabled Processors. For information on how
 your programming language aligns data, see your programming language
 manuals.

 	One subroutine may do scaling while another does not. If scaling
 is not necessary for your data, you get better performance by using
 the subroutine without scaling. SNORM2 and DNORM2 are examples of
 subroutines that do not do scaling, versus SNRM2 and DNRM2, which
 do scaling.

 	Use the STRIDE subroutine to calculate the optimal stride values
 for your input or output data when using any of the Fourier transform
 subroutines, except _RCFT and _CRFT. Using these stride values for
 your data allows the Fourier transform subroutines to achieve maximum
 performance. You first obtain the optimal stride values from STRIDE,
 calling it once for each stride value desired. You then arrange your
 data using these stride values. After the data is set up, you call
 the Fourier transform subroutine. For details on the STRIDE subroutine
 and how to use it for each Fourier transform subroutine, see STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines). For additional information,
 see Setting Up Your Data.

 	If you are using the ESSL SMP CUDA library, performance
 might improve if you pin your host memory buffers. See Using the ESSL SMP CUDA Library.

 Parent topic: Getting the Best Performance

 Where Can You Find More Information on Performance?

 Information about performance can be found in the following places:

 	Many of the techniques ESSL uses to achieve the best possible
 performance are described in the High Performance of ESSL.

 	Migration considerations concerning performance are described
 in Migrating Your Programs.

 	Specific information on performance for each area of ESSL is given
 in “Performance and Accuracy Considerations” for each
 grouping of subroutine descriptions.

 	Detailed performance information for selected subroutines can
 be found in reference [38], [49], [50].

 Parent topic: Getting the Best Performance

 Dealing with Errors when Using ESSL

 At run time, you can encounter different types of errors or messages that
 are related to the use of the ESSL subroutines:

 	Program exceptions

 	ESSL input-argument errors

 	ESSL computational errors

 	ESSL resource errors

 	ESSL attention messages

 There are specific ways to handle all these situations.

 	What Can You Do about Program Exceptions?

 	What Can You Do about ESSL Input-Argument Errors?

 	What Can You Do about ESSL Computational Errors?

 	What Can You Do about ESSL Resource Errors?

 	What Can You Do about ESSL Attention Messages?

 	How Do You Control Error Handling by Setting Values in the ESSL Error Option Table?

 	How does Error Handling Work in a Threaded Environment?

 	Where Can You Find More Information on Errors?

 Parent topic: Planning Your Program

 What Can You Do about Program Exceptions?

 The program exceptions you can encounter in ESSL are described in the ANSI/IEEE Standard
 for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754–1985.

 Parent topic: Dealing with Errors when Using ESSL

 What Can You Do about ESSL Input-Argument Errors?

 This gives an overview on how you can handle input-argument errors.

 	All Input-Argument Errors

 	Recoverable Errors 2015, 2030 and 2200 Can Return Updated Values in the NAUX, N and NSINFO Arguments

 Parent topic: Dealing with Errors when Using ESSL

 All Input-Argument Errors

 ESSL checks the validity of most input arguments. If it finds that any
 are invalid, it issues the appropriate error messages. Also, except for the
 three recoverable errors described below, it terminates your program. You
 should use standard programming techniques to diagnose and fix unrecoverable
 input-argument errors, as described in Handling Problems.

 You can determine the input-argument errors that can occur in a subroutine
 by looking under “Error Conditions” in each subroutine description.
 Error messages for all input-argument errors are listed in Input-Argument Error Messages(2001-2099).

 Parent topic: What Can You Do about ESSL Input-Argument Errors?

 Recoverable Errors 2015, 2030 and 2200 Can Return Updated Values
 in the NAUX, N and NSINFO Arguments

 For three input-argument errors, 2015, 2030, and 2200 in Fortran,
 C, and C++ programs, you have the option to continue running and have
 an updated value of the input argument returned to your program for
 subsequent use. These are called recoverable errors. This recoverable
 error-handling capability gives you flexibility in determining the
 correct values for the arguments. You can:

 	Determine the correct size of an auxiliary work area by using
 error 2015. For help in deciding whether you want to use this capability
 and details on how to use it, see Using Auxiliary Storage in ESSL.

 	Determine the correct length of a transform by using error 2030.
 For help in deciding whether you want to use this capability and details
 on how to use it, see Providing a Correct Transform Length to ESSL.

 	Determine the minimal size of the array AP for DBSTRF and DBSSV
 by using error 2200. For help deciding whether you want to use this
 capability, see DBSTRF (Symmetric Indefinite Matrix Factorization) and DBSSV (Symmetric Indefinite Matrix Factorization and Multiple Right-Hand Side Solve)

 If you chose to leave errors 2015, 2030 and 2200 unrecoverable,
 you do not need to make any coding changes to your program. The input-argument
 error message is issued upon termination, containing the updated values
 you could have specified for the program to run successfully. You
 then make the necessary corrections in your program and rerun it.

 If you choose to make errors 2015, 2030 and 2200 recoverable, you
 call the ERRSET subroutine to set up the ESSL error exit routine,
 ENOTRM, and then call the ESSL subroutine. When one or more of these
 errors occurs, the input-argument error message is issued with the
 updated values. In addition, the updated values are returned to your
 program in the input arguments named in the error message, along with
 a nonzero return code and processing continues. Return code values
 associated with these recoverable errors are described under “Error
 Conditions” for each ESSL subroutine in Part 2.

 For details on how to code the necessary statements in your program
 to make 2015, 2030 and 2200 recoverable, see the following:

 	Input-Argument Errors in Fortran

 	Input-Argument Errors in C

 	Input-Argument Errors in C++

 Parent topic: What Can You Do about ESSL Input-Argument Errors?

 What Can You Do about ESSL Computational Errors?

 This gives an overview on how you can handle computational errors.

 	All Computational Errors

 	Recoverable Computational Errors Can Return Values Through EINFO

 Parent topic: Dealing with Errors when Using ESSL

 All Computational Errors

 ESSL computational errors are errors occurring in the computational data,
 such as in your vectors and matrices. You can determine the computational
 errors that can occur in a subroutine by looking under “Error Conditions”
 in each subroutine description. These errors cause your program to terminate
 abnormally unless you take preventive action. A message is also provided in
 your output, containing information about the error. Messages are listed in Computational Error Messages(2100-2199).

 When a computational error occurs, you should assume that the results are
 unpredictable. The result of the computation is valid only if no errors have
 occurred. In this case, a zero return code is returned.

 Figure 8. shows what happens when a computational error
 occurs.

 Figure 8. How
 to Obtain Computational Error Information from an Error Message, but Terminate[image: Graphic for Computational Error]

 Parent topic: What Can You Do about ESSL Computational Errors?

 Recoverable Computational Errors Can Return Values Through
 EINFO

 In Fortran, C, and C++ programs, you have the capability to make
 certain computational errors recoverable and have information returned
 to your program about the errors. Recoverable computational errors are listed
 in EINFO (ESSL Error Information-Handler Subroutine). First, you
 call EINFO in the beginning of your program to initialize the ESSL
 error option table. You then call ERRSET to reset the number of allowable
 errors for the computational error codes in which you are interested.
 When a computational error occurs, a nonzero return code is returned
 for each computational error. Return code values associated with these
 errors are described under “Error Conditions” in each
 subroutine description. Based on the return code, your program can
 branch to an appropriate statement to call the ESSL error information-handler
 subroutine, EINFO, to obtain specific information about the data involved
 in the error. This information is returned in the EINFO output arguments, inf1 and,
 optionally, inf2. You can then check the
 information returned and continue processing, if you choose. The syntax
 for EINFO is described under EINFO (ESSL Error Information-Handler Subroutine).
 You also get a message in your output for each computational error
 encountered, containing information about the error. The EINFO subroutine
 provides the same information in the messages as it provides to your
 program.

 For details on how to code the necessary statements in your program
 to obtain specific information on computational errors, see the following:

 	Computational Errors in Fortran

 	Computational Errors in C

 	Computational Errors in C++

 Figure 9. shows what happens
 if you make a computational error recoverable.

 Figure 9. How to Obtain Computational Error Information
 in an Error Message and in Your Program[image: Graphic for Computational Error]

 Parent topic: What Can You Do about ESSL Computational Errors?

 What Can You Do about ESSL Resource Errors?

 This gives an overview on how you can handle resource errors.

 	All Resource Errors

 Parent topic: Dealing with Errors when Using ESSL

 All Resource Errors

 ESSL returns a resource error and terminates your program when an attempt
 to allocate work area fails. Some ESSL subroutines attempt to allocate work
 area for their internal use. Other ESSL subroutines attempt to dynamically
 allocate auxiliary storage when a user requests it through calling sequence
 arguments, such as aux and naux. For information on how
 you could reduce memory constraints on the system or increase the amount of
 memory available before rerunning the application program, see ESSL Resource Error Messages.

 You can determine the resource errors that can occur in a subroutine by
 looking under “Error Conditions” in each subroutine description. Error
 messages for all resource errors are listed in Resource Error Messages(2400-2499).

 Parent topic: What Can You Do about ESSL Resource Errors?

 What Can You Do about ESSL Attention Messages?

 This gives an overview on how you can handle attention messages.

 	All Attention Messages

 Parent topic: Dealing with Errors when Using ESSL

 All Attention Messages

 ESSL returns an attention message to describe a condition that occurred,
 however, ESSL is able to continue processing. For information on how you could
 reduce memory constraints on the system or increase the amount of memory available,
 see ESSL Resource Error Messages.

 For example, an attention message may be issued when enough work area was
 available to continue processing, but was not the amount initially requested.
 An attention message would be issued to indicate that performance may be degraded.

 For a list of attention messages, see Informational and Attention Error Messages(2600-2699).

 Parent topic: What Can You Do about ESSL Attention Messages?

 How Do You Control Error Handling by Setting Values in the
 ESSL Error Option Table?

 This explains all aspects of using the ESSL error option table.

 	What Values Are Set in the ESSL Error Option Table?

 	How Can You Change the Values in the Error Option Table?

 	When Do You Change the Values in the Error Option Table?

 	How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?

 Parent topic: Dealing with Errors when Using ESSL

 What Values Are Set in the ESSL Error Option Table?

 The ESSL error option table contains information that
 tells ESSL what to do every time it encounters an ESSL-generated error. Table 45 shows the default values
 established in the table when ESSL is installed.

 Table 45. ESSL Error
 Option Table Default Values.

 	Range of Error Messages (From–To)

 	Number of Allowable Errors (ALLOW)

 	Number of Messages Printed
 (PRINT)

 	Modifiable Table Entry (MODENT)

 	2538–2000

 	Unlimited

 	255

 	NO

 	2538–2001 through 2538–2073

 	Unlimited

 	255

 	YES

 	2538–2074

 	Unlimited

 	5

 	YES

 	2538–2075 through 2538–2098

 	Unlimited

 	255

 	YES

 	2538–2099

 	1

 	255

 	YES

 	2538–2100 through 2538–2101

 	1

 	255

 	YES

 	2538–2102

 	Unlimited

 	255

 	YES

 	2538–2103 through 2538–2113

 	1

 	255

 	YES

 	2538–2114

 	Unlimited

 	255

 	YES

 	2538–2115 through 2538–2122

 	1

 	255

 	YES

 	2538–2123 through 2538–2124

 	Unlimited

 	255

 	YES

 	2538–2125 through 2538–2126

 	1

 	255

 	YES

 	2538–2127

 	Unlimited

 	255

 	YES

 	2538–2128 through 2538–2137

 	1

 	255

 	YES

 	2538–2138 through 2538–2143

 	Unlimited

 	255

 	YES

 	2538–2144 through 2538–2145

 	1

 	255

 	YES

 	2538–2146 through 2538–2149

 	Unlimited

 	255

 	YES

 	2538–2150

 	1

 	255

 	YES

 	2538–2151 through 2538–2166

 	Unlimited

 	255

 	YES

 	2538–2167 through 2538–2198

 	1

 	255

 	YES

 	2538–2199

 	1

 	255

 	YES

 	2538–2200 through 2538–2299

 	Unlimited

 	255

 	YES

 	2538–2400 through 2538–2499

 	1

 	255

 	NO

 	2538–2600 through 2538–2609

 	Unlimited

 	255

 	NO

 	2538–2610 through 2538–2612

 	Unlimited

 	-1

 	YES

 	2538–2613 through 2538–2613 	

 	Unlimited

 	255

 	NO

 	2538–2614 through 2538–2615 	

 	Unlimited

 	1

 	NO

 	2538–2616 through 2538–2699

 	Unlimited

 	255

 	NO

 	2538–2700 through 2538–2799

 	1

 	255

 	NO

 Parent topic: How Do You Control Error Handling by Setting Values in the ESSL Error Option Table?

 How Can You Change the Values in the Error Option Table?

 You can change any of the values in the ESSL error option table
 by calling the ERRSET subroutine in your program. This dynamically
 changes values at run time. You can also save and restore entries
 in the table by using the ERRSAV and ERRSTR subroutines, respectively.
 For a description of the ERRSET, ERRSAV, and ERRSTR subroutines see Utilities.

 Parent topic: How Do You Control Error Handling by Setting Values in the ESSL Error Option Table?

 When Do You Change the Values in the Error Option Table?

 Because you can change the information in the error option table, you can
 control what happens when any of the ESSL errors occur. There are a number
 of instances when you may want to do this:

 	To Customize Your Error-Handling Environment

 	To Obtain Auxiliary Storage Sizes and Transform Lengths

 	To Obtain the Minimal Size of the Array AP for DBSTRF and DBSSV

 	To Get More Information About a Computational Error

 	To Allow Parts of Your Application to Have Unique Error-Handling Environments

 Parent topic: How Do You Control Error Handling by Setting Values in the ESSL Error Option Table?

 To Customize Your Error-Handling Environment

 You may simply want to adjust the number of times an error is allowed to
 occur before your program terminates. You can use any of the capabilities
 available in ERRSET.

 Parent topic: When Do You Change the Values in the Error Option Table?

 To Obtain Auxiliary Storage Sizes and Transform Lengths

 You may want to make ESSL input-argument error 2015 or 2030 recoverable,
 so ESSL returns updated auxiliary storage sizes or transform lengths, respectively,
 to your program. For a more detailed discussion, see What Can You Do about ESSL Input-Argument Errors?.
 For how to use ERRSET to do this, see the information specific to your programming
 language in Coding Your Program.

 Parent topic: When Do You Change the Values in the Error Option Table?

 To Obtain the Minimal Size of the Array AP for DBSTRF and DBSSV

 You may want to make ESSL input-argument error 2200 recoverable, so ESSL
 returns an updated size to your program. For a more detailed discussion, see What Can You Do about ESSL Input-Argument Errors?. For how to use ERRSET to do this, see the information
 specific to your programming language in Coding Your Program.

 Parent topic: When Do You Change the Values in the Error Option Table?

 To Get More Information About a Computational Error

 You may want ESSL to return information about a computational error to
 your program. For a more detailed discussion, see What Can You Do about ESSL Computational Errors?.
 For how to do use ERRSET to do this, see the information specific to your
 programming language in Coding Your Program.

 Parent topic: When Do You Change the Values in the Error Option Table?

 To Allow Parts of Your Application to Have Unique Error-Handling Environments

 If your program is part of a large application, you may want to dynamically
 save and restore entries in the error option table that have been altered
 by ERRSET. This ensures the integrity of the error option table when it is
 used by multiple programs within an application. For a more detailed discussion,
 see How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table? For how to use ERRSAV and ERRSTR, see the
 information specific to your programming language in Coding Your Program.

 Parent topic: When Do You Change the Values in the Error Option Table?

 How Can You Control Error Handling in Large Applications by
 Saving and Restoring Entries in the Error Option Table?

 When your program is part of a larger application, you should consider
 that one of the following can occur:

 	If you use ERRSET in your program to reset any of the values in
 the error option table for any of the ESSL input-argument errors or
 computational errors, some other program in the application may be
 adversely affected. It may be expecting its original values.

 	If some other program in the application uses ERRSET to reset
 any of the values in the error option table for any of the ESSL input-argument
 errors or computational errors, your program may be adversely affected.
 You may need a certain value in the error option table, and the application
 may have reset that value.

 These situations can be avoided if every program that uses ERRSET,
 in the large application, also uses the ERRSAV and ERRSTR facilities.
 For a particular error number, ERRSAV saves an entry from the error
 option table in an area accessible to your program. ERRSTR then stores
 the entry back into the error option table from the storage area.
 You code an ERRSAV and ERRSTR for each input-argument error number
 and computational error number for which you do an ERRSET to reset
 the values in the error option table. Call ERRSAV at the beginning
 of your program after you call EINFO, and then call ERRSTR at the
 end of your program after all ESSL computations are completed. This
 saves the original contents of the error option table while your program
 is running with different values, and then restores it to its original
 contents when your program is done. For details on how to code these
 statements in your program, see Coding Your Program.

 Parent topic: How Do You Control Error Handling by Setting Values in the ESSL Error Option Table?

 How does Error Handling Work in a Threaded Environment?

 When your application program or the open MP library first
 creates a thread, ESSL initializes the error option table information to the
 default settings shown in What Values Are Set in the ESSL Error Option Table?. You can
 change the default settings for each thread you created by calling the appropriate
 error handling subroutines (ERRSET, ERRSAV, or ERRSTR) from each thread.
 An example of how to initialize the error option table and change the default
 settings on multiple threads is shown in Example of Handling Errors in a Multithreaded Application Program.

 ESSL issues error messages as they occur in a threaded environment. Error
 messages issued from any of the existing threads are written to standard output
 in the order in which they occur.

 When a terminating condition occurs on any of the existing threads (for
 example, the number of allowable errors was exceeded), ESSL terminates your
 application program. One set of summary information corresponding to the
 terminating thread is always printed. Summary information corresponding to
 other threads may also be printed.

 Parent topic: Dealing with Errors when Using ESSL

 Where Can You Find More Information on Errors?

 Information about errors and how to handle them can be found in the following
 places:

 	How to code your program to use the ESSL error-handling facilities is
 described in Coding Your Program.

 	All ESSL error messages are listed under Messages.

 	The errors and return codes associated with each ESSL subroutine are listed
 under “Error Conditions” in each subroutine description.

 	Complete diagnostic procedures for all types of ESSL programming and documentation
 problems, along with how to collect information and report a problem, are
 provided in Handling Problems.

 Parent topic: Dealing with Errors when Using ESSL

 Setting Up Your Data Structures

 This provides you with information that you need to set up your
 data structures, consisting of vectors, matrices, and sequences. These techniques
 apply to programs in all programming languages.

 	Concepts

 	Vectors

 	Matrices

 	Sequences

 Parent topic: Guide Information

 Concepts

 Vectors, matrices, and sequences are conceptual data structures contained
 in arrays. In many cases, ESSL uses stride or leading dimension to select
 the elements of the vector, matrix, or sequence from an array. In other cases,
 ESSL uses a specific mapping, or storage layout, that identifies the elements
 of the vector, matrix, or sequence in an array, sometimes requiring several
 arrays to help define the mapping. These elements selected from the array(s)
 make up the conceptual data structure.

 When you call an ESSL subroutine, it assumes that the data structure is
 set up properly in the array(s) you pass to it. If it is not, your results
 are unpredictable. ESSL also uses these same storage layouts for data structures
 passed back to your program.

 The use of the terms vector, matrix, and sequence here is consistent with
 standard mathematical definitions, and their representations are consistent
 with conventions used in mathematical texts.

 Overlapping Data Structures: Most of the subroutines
 do not allow vectors, matrices, or sequences to overlap. If this occurs, results
 are unpredictable. This means the elements of the data structure cannot reside
 in the same storage locations as any of the other data structures. It is
 possible, however, to have elements of different data structures in the same
 array, as long as the elements are interleaved through storage using strides
 greater than 1. For example, using vectors x and y with strides of 2, where x starts at A(1) and y starts
 at A(2), the elements reside in array A in the order x1, y1, x2, y2, x3, y3, … and so forth.

 When you use this technique, you should be careful that you specify different
 starting locations for each data structure contained in the array.

 Parent topic: Setting Up Your Data Structures

 Vectors

 A vector is a one-dimensional, ordered collection of numbers. It
 can be a column vector, which represents an n by
 1 ordered collection, or a row vector, which represents a 1 by n ordered
 collection.

 The column vector appears symbolically as follows:

 [image: Column Vector Graphic]

 A row vector appears symbolically as follows:

 [image: Row Vector Graphic]

 Vectors can contain either real or complex numbers. When they contain
 real numbers, they are sometimes called real vectors. When they contain
 complex numbers, they are called complex vectors.

 	Transpose of a Vector

 	Conjugate Transpose of a Vector

 	Vector Storage Representation

 	How Stride Is Used for Vectors

 	Sparse Vector

 Parent topic: Setting Up Your Data Structures

 Transpose of a Vector

 The transpose of a vector changes a column vector to a row vector,
 or vice versa:

 [image: Transpose of a Vector Graphic]

 The ESSL subroutines use the vector as it is intended in the computation,
 as either a column vector or a row vector; therefore, no movement
 of data is necessary.

 In the examples provided with the subroutine descriptions in Reference Information, both types of vectors
 are represented in the same way, showing the elements of the array
 that make up the vector x, as follows: (1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

 Parent topic: Vectors

 Conjugate Transpose of a Vector

 The conjugate transpose of a vector x, containing
 complex numbers, is denoted by xH and is
 expressed as follows:

 [image: Conjugate Transpose of a Vector Graphic]

 Just as for the transpose of a vector, no movement of data is necessary
 for the conjugate transpose of a vector.

 Parent topic: Vectors

 Vector Storage Representation

 A vector is usually stored within a one- or two-dimensional array. Its
 elements are stored sequentially in the array, but not necessarily contiguously.

 The location of the vector in the array is specified
 by the argument for the vector in the ESSL calling sequence. It can be specified
 in a number of ways. For example, if A is an array of length 12,
 and you want to specify vector x as starting
 at the first element of array A, specify A as the argument,
 such as in:
 X = SASUM (4,A,2)

 where the number of elements to be summed in the vector is 4, the location
 of the vector is A, and the stride is 2.

 If you want to specify vector x as starting
 at element 3 in array A, which is declared as A(1:12),
 specify:
 X = SASUM (4,A(3),2)

 If A is declared as A(-1:8), specify the following
 for element 3:
 X = SASUM (4,A(1),2)

 If A is a two-dimensional array and declared as A(1:4,1:10), and you want vector x to start at the
 second row and third column of A, specify the following:
 X = SASUM (4,A(2,3),2)

 The stride specified in the ESSL calling sequence
 is used to step through the array to select the vector elements. The direction
 in which the vector elements are selected from the array—that is, front to back or back to front—is indicated by the sign (+ or -)
 of the stride. The absolute value of the stride gives the spacing between
 each element selected from the array.

 To calculate the total number of elements needed in an array for a vector,
 you can use the following formula, which takes into account the number of
 elements, n, in the array and the stride, inc, specified
 for the vector:

 1+(

 n

 -1)|

 inc

 |

 An array can be much larger than the vector that it contains;
 that is, there can be many elements following the vector in the array, as
 well as elements preceding the vector.

 For a complete description of how vectors are stored within arrays, see How Stride Is Used for Vectors.

 For a complex vector, a special storage arrangement is used to accommodate
 the two parts, a and b, of each complex number (a+bi) in the array. For each complex number, two sequential storage
 locations are required in the array. Therefore, exactly twice as much storage
 is required for complex vectors and matrices as for real vectors and matrices
 of the same precision. See How Do You Set Up Your Scalar Data? for a description
 of real and complex numbers, and How Do You Set Up Your Arrays? for a description
 of how real and complex data is stored in arrays.

 Parent topic: Vectors

 How Stride Is Used for Vectors

 The stride for a vector is an increment that is used to step through array
 storage to select the vector elements from an array. To define exactly which
 elements become the conceptual vector in the array, the following items are
 used together:

 	The location of the vector within the array

 	The stride for the vector

 	The number of elements, n, to be processed

 The stride can be positive, negative, or 0. For positive and negative strides,
 if you specify vector elements beyond the range of the array, your results
 are be unpredictable, and you may get program errors.

 This explains how each of the three types of stride is used to select the
 vector elements from the array.

 	Positive Stride

 	Zero Stride

 	Negative Stride

 Parent topic: Vectors

 Positive Stride

 When a positive stride is specified for a vector, the location
 specified by the argument for the vector is the location of the first
 element in the vector, element x1.
 The vector is in forward order in the array: (x1, x2, …, xn).
 For example, if you specify X(1) for vector x,
 where X is declared as X(0:12) and
 defined as: X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0)

 then processing begins at the second element in X,
 which is 2.0.

 To find each successive element, the stride is added cumulatively
 to the starting point of vector x in the array. In this
 case, the starting point is X(1). If the stride specified
 for vector x is 3 and the number of elements to be processed
 is 4, then the resulting elements selected from X for
 vector x are: X(1),X(4),X(7), and X(10).

 Vector x is then: (2.0, 5.0, 8.0, 11.0)

 As shown in this example, a vector does not have to extend to the
 end of the array. Elements are selected from the second to the eleventh
 element of the array, and the array elements after that are not used.

 This element selection can be expressed in general terms. Using BEGIN as
 the starting point in an array X and inc as
 the stride, this results in the following elements being selected
 from the array:

 X

 (

 BEGIN

)

 X

 (

 BEGIN

 +

 inc

)

 X

 (

 BEGIN

 +(2)

 inc

)

 X

 (

 BEGIN

 +(3)

 inc

)

 .

 .

 .

 X

 (

 BEGIN

 +(

 n

 -1)

 inc

)

 The following general formula can be used to calculate each vector
 element position in a one-dimensional array:

 x

 i

 =

 X

 (

 BEGIN

 + (

 i

 -1)(

 inc

)) for

 i

 =

 1,

 n

 When using an array with more than one dimension, you should understand
 how the array elements are stored to ensure that elements are selected
 properly. For a description of array storage, see Setting Up Arrays in Fortran. You should remember
 that the elements of an array are selected as they are arranged in
 storage, regardless of the number of dimensions defined in the array.
 Stride is used to step through array storage until n elements
 are selected. ESSL processing stops at that point. For example, given
 the following two-dimensional array, declared as A(1:7,1:4).

 Matrix A is: ┌ ┐
 | 1.0 8.0 15.0 22.0 |
 | 2.0 9.0 16.0 23.0 |
 | 3.0 10.0 17.0 24.0 |
 | 4.0 11.0 18.0 25.0 |
 | 5.0 12.0 19.0 26.0 |
 | 6.0 13.0 20.0 27.0 |
 | 7.0 14.0 21.0 28.0 |
 └ ┘

 with A(3,1) specified for vector x,
 a stride of 2, and the number of elements to be processed as 12, the
 resulting vector x is: (3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0, 25.0)

 This is not a conventional use of arrays, and you should be very
 careful when using this technique.

 Parent topic: How Stride Is Used for Vectors

 Zero Stride

 When a zero stride is specified for a vector, the starting point for the
 vector is the only element used in the computation. The starting point for
 the vector is at the location specified by the argument for the vector, just
 as though you had specified a positive stride. For example, if you specify X for vector x, where X is defined
 as:
 X = (5.0, 4.0, 3.0, 2.0, 1.0)

 and you specify the number of elements, n, to be processed as
 6, then processing begins at the first element, which is 5.0. This element
 is used for each of the six elements in vector x.

 This makes the conceptual vector x appear
 as:
 (5.0, 5.0, 5.0, 5.0, 5.0, 5.0)

 The following general formula shows how to calculate each vector position
 in a one-dimensional array:

 x

 i

 =

 X

 (

 BEGIN

) for

 i

 =

 1,

 n

 Parent topic: How Stride Is Used for Vectors

 Negative Stride

 When a negative stride is specified for a vector, the location
 specified for the vector is actually the location of the last element
 in the vector. In other words, the vector is in reverse order in the
 array: (xn, xn-1, …, x1).
 You specify the end of the vector, (xn).
 ESSL then calculates where the starting point (x1)
 is by using the following arguments:

 	The location of the vector in the array

 	The stride for the vector, inc

 	The number of elements, n, to be processed

 If you specify vector x at location X(BEGIN) in
 array X with a negative stride of inc and n elements
 to be processed, then the following formula gives the starting point
 of vector x in the array:

 X

 (

 BEGIN

 + (-

 n

 +1)(

 inc

))

 For example, if you specify X(2) for vector x,
 where X is declared as X(1:9) and
 defined as: X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)

 and
 if you specify a stride of -2, and four elements to be processed,
 processing begins at the following element in X:

 X

 (2+(-4+1)(-2)) =

 X

 (8)

 where element X(8) is 8.0.

 To find each of the n successive element
 positions in the array, you successively add the stride to the starting
 point n-1 times. Suppose the formula calculated
 a starting point of X(SP); the elements selected
 are:

 X

 (

 SP

)

 X

 (

 SP

 +

 inc

)

 X

 (

 SP

 +(2)

 inc

)

 X

 (

 SP

 +(3)

 inc

)

 .

 .

 .

 X

 (

 SP

 +(

 n

 -1)

 inc

)

 In the above example, the resulting elements selected from X for
 vector x are X(8), X(6), X(4), and X(2).
 This makes the resulting vector x appear as follows:
 (8.0, 6.0, 4.0, 2.0)

 The following general formula can be used to calculate each vector
 element position in a one-dimensional array:

 x

 i

 =

 X

 (

 BEGIN

 + (-

 n

 +

 i

)(

 inc

)) for

 i

 =

 1,

 n

 Parent topic: How Stride Is Used for Vectors

 Sparse Vector

 A sparse vector is a vector having a relatively small number of nonzero
 elements.

 Consider the following as an example of a sparse vector x with n elements, where n is 11, and vector x is:
 (0.0, 0.0, 1.0, 0.0, 2.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0)

 	In Storage

 Parent topic: Vectors

 In Storage

 There are two storage modes that apply to sparse vectors: full-vector storage
 mode and compressed-vector storage mode. When a sparse vector is stored in full-vector storage mode, all its elements, including its
 zero elements, are stored in an array.

 For example, sparse vector x is stored in
 full-vector storage mode in a one-dimensional array X, as follows:
 X = (0.0, 0.0, 1.0, 0.0, 2.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0)

 When a sparse vector is stored in compressed-vector storage
 mode, it is stored without its zero elements. It consists of two one-dimensional
 arrays, each with a length of nz, where nz is the number
 of nonzero elements in vector x:

 	The first array contains the nonzero elements of the sparse vector x, stored contiguously within the array.

 Note: The ESSL subroutines do not check that all elements are nonzero. You do not
 get an error if any elements are zero.

 	The second array contains a sequence of integers indicating the element
 positions (indices) of the nonzero elements of the sparse vector x stored in full-vector storage mode. This is referred to as the indices
 array.

 For example, the sparse vector x shown above
 might have its five nonzero elements stored in ascending order in array X of length 5, as follows:
 X = (1.0, 2.0, 3.0, 4.0, 5.0)

 in which case, the array of indices, INDX, also of length 5,
 contains:
 INDX = (3, 5, 6, 8, 10)

 If the sparse vector x has its elements stored
 in random order in the array X as:
 X = (5.0, 3.0, 4.0, 1.0, 2.0)

 then the array INDX contains:
 INDX = (10, 6, 8, 3, 5)

 In general terms, this storage technique can be expressed as follows:

 For each

 x

 j

 ≠

 0, for

 j

 =

 1,

 n

 there exists

 i

 , where 1

 ≤

 i

 ≤

 nz

 ,

 such that

 X

 (

 i

) =

 x

 j

 and

 INDX

 (

 i

)

 =

 j

 .

 where:

 x1, …, xn are
 the n elements of sparse vector x, stored
 in full-vector storage mode.

 X is the array containing the nz nonzero elements of
 sparse vector x; that is, vector x is stored in compressed-vector storage mode.

 INDX is the array containing the nz indices indicating
 the element positions.

 To avoid an error when using the INDX array to access the elements
 in any other target vector, the length of the target vector must be greater
 than or equal to max(INDX(i)) for i = 1, nz.

 Parent topic: Sparse Vector

 Matrices

 A matrix, also referred to as a general matrix, is an m by n ordered
 collection of numbers. It is represented symbolically as:

 [image: General Matrix Graphic]

 where the matrix is named A and has m rows
 and n columns. The elements of the matrix
 are aij,
 where i = 1, m and j = 1, n.

 Matrices can contain either real or complex numbers. Those containing
 real numbers are called real matrices; those containing complex numbers
 are called complex matrices.

 	Transpose of a Matrix

 	Conjugate Transpose of a Matrix

 	Matrix Storage Representation

 	How Leading Dimension Is Used for Matrices

 	Symmetric Matrix

 	Positive Definite or Negative Definite Symmetric Matrix

 	Indefinite Symmetric Matrix

 	Complex Hermitian Matrix

 	Positive Definite or Negative Definite Complex Hermitian Matrix

 	Indefinite Complex Hermitian Matrix

 	Positive Definite or Negative Definite Symmetric Toeplitz Matrix

 	Positive Definite or Negative Definite Complex Hermitian Toeplitz Matrix

 	Triangular Matrix

 	Trapezoidal Matrix

 	General Band Matrix

 	Symmetric Band Matrix

 	Positive Definite Symmetric Band Matrix

 	Complex Hermitian Band Matrix

 	Positive Definite Complex Hermitian Band Matrix

 	Triangular Band Matrix

 	General Tridiagonal Matrix

 	Symmetric Tridiagonal Matrix

 	Positive Definite Symmetric Tridiagonal Matrix

 	Complex Hermitian Tridiagonal Matrix

 	Postive Definite Complex Hermitian Tridiagonal Matrix

 	Sparse Matrix

 Parent topic: Setting Up Your Data Structures

 Transpose of a Matrix

 The transpose of a matrix A is a matrix formed from A by
 interchanging the rows and columns such that row i of
 matrix A becomes column i of
 the transposed matrix. The transpose of A is denoted
 by AT. Each element aij in A becomes
 element aji in AT.
 If A is an m by n matrix,
 then AT is an n by m matrix.
 The following represents a matrix and its transpose:

 [image: Transpose of a Matrix Graphic]

 ESSL assumes that all matrices are stored in untransformed format,
 such as matrix A shown above. No movement of data is
 necessary in your application program when you are processing transposed
 matrices. The ESSL subroutines adjust their selection of elements
 from the matrix when an argument in the calling sequence indicates
 that the transposed matrix is to be used in the computation. Examples
 of this are the transa and transb arguments
 specified for SGEADD, matrix addition.

 Parent topic: Matrices

 Conjugate Transpose of a Matrix

 The conjugate transpose of a matrix A, containing
 complex numbers, is denoted by AH and is
 expressed as follows:

 [image: Conjugate Transpose of a Matrix Graphic]

 Just as for the transpose of a matrix, the conjugate transpose
 of a matrix is stored in untransformed format. No movement of data
 is necessary in your program.

 Parent topic: Matrices

 Matrix Storage Representation

 A matrix is usually stored in a two-dimensional array. Its elements are
 stored successively within the array. Each column of the matrix is stored
 successively in the array. The leading dimension argument is used to select
 the matrix elements from each successive column of the array. The starting
 point of the matrix in the array is specified as the argument for the matrix
 in the ESSL calling sequence. For example, if matrix A is contained in array A and starts at the first element
 in the first row and first column of A, you should specify A as the argument for matrix A, such as
 in:
 CALL SGEMX (5,2,1.0,A,6,X,1,Y,1)

 where, in the matrix-vector product, the number of rows in matrix A is 5, the number of columns in matrix A is
 2, the scaling constant is 1.0, the location of the matrix is A,
 the leading dimension is 6, the vectors used in the matrix-vector product
 are X and Y, and their strides are 1.

 If matrix A is contained in the array BIG, declared as BIG(1:20,1:30), and starts at the second
 row and third column of BIG, you should specify BIG(2,3) as
 the argument for matrix A, such as in:
 CALL SGEMX (5,2,1.0,BIG(2,3),6,X,1,Y,1)

 See How Leading Dimension Is Used for Matrices for a complete description of how matrices
 are stored within arrays.

 For a complex matrix, a special storage arrangement is used to accommodate
 the two parts, a and b, of each complex number (a+bi) in the array. For each complex number, two sequential storage locations
 are required in the array. Therefore, exactly twice as much storage is required
 for complex matrices as for real matrices of the same precision. See How Do You Set Up Your Scalar Data? for a description of real and complex numbers, and How Do You Set Up Your Arrays? for a description of how real and complex data is stored
 in arrays.

 Parent topic: Matrices

 How Leading Dimension Is Used for Matrices

 The leading dimension for a two-dimensional array is an increment
 that is used to find the starting point for the matrix elements in
 each successive column of the array. To define exactly which elements
 become the conceptual matrix in the array, the following items are
 used together:

 	The location of the matrix within the array

 	The leading dimension

 	The number of rows, m, to be processed
 in the array

 	The number of columns, n, to be processed
 in the array

 The leading dimension must always be positive. It must always
 be greater than or equal to m, the number
 of rows in the matrix to be processed. For an array, A,
 declared as A(E1:E2,F1:F2), the leading dimension
 is equal to:

 (

 E2

 -

 E1

 +1)

 The starting point for selecting the matrix elements from the array
 is at the location specified by the argument for the matrix in the
 ESSL calling sequence. For example, if you specify A(3,0) for
 a 4 by 4 matrix A, where A is declared
 as A(1:7,0:4): ┌ ┐
 | 1.0 8.0 15.0 22.0 29.0 |
 | 2.0 9.0 16.0 23.0 30.0 |
 | 3.0 10.0 17.0 24.0 31.0 |
 | 4.0 11.0 18.0 25.0 32.0 |
 | 5.0 12.0 19.0 26.0 33.0 |
 | 6.0 13.0 20.0 27.0 34.0 |
 | 7.0 14.0 21.0 28.0 35.0 |
 └ ┘

 then processing begins at the element at row 3 and column 0 in
 array A, which is 3.0.

 The leading dimension is used to find the starting point for the
 matrix elements in each of the n successive
 columns in the array. ESSL subroutines assume that the arrays are
 stored in column-major order, as described under How Do You Set Up Your Arrays?, and they add the leading
 dimension (times the size of the element in bytes) to the starting
 point. They do this n-1 times. This finds
 the starting point in each of the n columns
 of the array.

 In the above example, the leading dimension is:

 E2

 -

 E1

 +1

 =

 7-1+1

 =

 7

 If
 the number of columns, n, to be processed
 is 4, the starting points are: A(3,0), A(3,1), A(3,2), and A(3,3).
 These are elements 3.0, 10.0, 17.0, and 24.0 for a11, a12, a13,
 and a14, respectively.

 In general terms, this results in the following starting positions
 of each column in the matrix being calculated as follows:

 A

 (

 BEGINI

 ,

 BEGINJ

)

 A

 (

 BEGINI

 ,

 BEGINJ

 +1)

 A

 (

 BEGINI

 ,

 BEGINJ

 +2)

 .

 .

 .

 A

 (

 BEGINI

 ,

 BEGINJ

 +

 n

 -1)

 To find the elements in each column of the array, 1 is added successively
 to the starting point in the column until m elements
 are selected. This is why the leading dimension must be greater than
 or equal to m; otherwise, you go past the
 end of each dimension of the array. In the above example, if the number
 of elements, m, to be processed in each
 column is 4, the following elements are selected from array A for
 the first column of the matrix: A(3,0), A(4,0), A(5,0),
 and A(6,0). These are elements 3.0, 4.0, 5.0, and
 6.0, corresponding to the matrix elements a11, a21, a31,
 and a41, respectively.

 Column element selection can also be expressed in general terms.
 Using A(BEGINI,BEGINJ) as the starting point in the
 array, this results in the following elements being selected from
 each column in the array:

 A

 (

 BEGINI

 ,

 BEGINJ

)

 A

 (

 BEGINI

 +1,

 BEGINJ

)

 A

 (

 BEGINI

 +2,

 BEGINJ

)

 .

 .

 .

 A

 (

 BEGINI

 +

 m

 -1,

 BEGINJ

)

 Combining this with the technique already described for finding
 the starting point in each column of the array, the resulting matrix
 in the example is:

 [image: Matrix Graphic]

 As shown in this example, a matrix does not have to include all
 columns and rows of an array. The elements of matrix A are
 selected from rows 3 through 6 and columns 0 through 3 of the array.
 Rows 1, 2, and 7 and column 4 of the array are not used.

 Parent topic: Matrices

 Symmetric Matrix

 The matrix A is symmetric if it has the property A = AT,
 which means:

 	It has the same number of rows as it has columns; that is, it
 has n rows and n columns.

 	The value of every element aij on
 one side of the main diagonal equals its mirror image aji on
 the other side: aij = aji for
 1 ≤ i ≤ n and
 1 ≤ j ≤ n.

 The following matrix illustrates a symmetric matrix of order n;
 that is, it has n rows and n columns.
 The subscripts on each side of the diagonal appear the same to show
 which elements are equal:

 [image: Symmetric Matrix Graphic]

 	Symmetric Matrix Storage Representation

 Parent topic: Matrices

 Symmetric Matrix Storage Representation

 The four storage modes used for storing symmetric matrices are described
 in the following:

 	Lower-Packed Storage Mode

 	Upper-Packed Storage Mode

 	Lower Storage Mode

 	Upper Storage Mode

 The storage technique you should use depends on the ESSL subroutine you
 are using.

 	Lower-Packed Storage Mode

 	Upper-Packed Storage Mode

 	Lower Storage Mode

 	Upper Storage Mode

 Parent topic: Symmetric Matrix

 Lower-Packed Storage Mode

 When a symmetric matrix is stored in lower-packed storage mode,
 the lower triangular part of the symmetric matrix is stored, including
 the diagonal, in a one-dimensional array. The lower triangle is packed
 by columns. (This is equivalent to packing the upper triangle by rows.)
 The matrix is packed sequentially column by column in n(n+1)/2
 elements of a one-dimensional array. To calculate the location of
 each element aij of
 matrix A in an array, AP, using the
 lower triangular packed technique, use the following formula:

 AP

 (

 i

 + ((2

 n

 -

 j

)(

 j

 -1)/2)) =

 a

 ij

 where

 i

 ≥

 j

 This results in the following storage arrangement for the elements
 of a symmetric matrix A in an array AP:

 	AP(1)

 	= a11 (start the first column)

 	AP(2)

 	= a21

 	AP(3)

 	= a31

 	.

 	.

 	.

 	.

 	.

 	.

 	AP(n)

 	= an1

 	AP(n+1)

 	= a22 (start the second column)

 	AP(n+2)

 	= a32

 	.

 	.

 	.

 	.

 	.

 	.

 	AP(2n-1)

 	= an2

 	AP(2n)

 	= a33 (start the third column
 and so forth)

 	AP(2n+1)

 	= a43

 	.

 	.

 	.

 	.

 	.

 	.

 	AP(n(n+1)/2)

 	= ann

 Following is an example of a symmetric matrix that uses the element
 values to show the order in which the matrix elements are stored in
 the array.

 Given the following matrix A: ┌ ┐
 | 1 2 3 4 5 |
 | 2 6 7 8 9 |
 | 3 7 10 11 12 |
 | 4 8 11 13 14 |
 | 5 9 12 14 15 |
 └ ┘

 the array is: AP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

 Note: Additional
 work storage is required in the array for some ESSL subroutines; for
 example, in the simultaneous linear algebraic equation subroutines
 SPPF, DPPF, SPPS, and DPPS. See the description of those subroutines
 in Reference Information for details.

 Following is an example of how to transform your symmetric matrix
 to lower-packed storage mode: K = 0
 DO 1 J=1,N
 DO 2 I=J,N
 K = K+1
 AP(K)=A(I,J)
 2 CONTINUE
 1 CONTINUE

 Parent topic: Symmetric Matrix Storage Representation

 Upper-Packed Storage Mode

 When a symmetric matrix is stored in upper-packed storage mode,
 the upper triangular part of the symmetric matrix is stored, including
 the diagonal, in a one-dimensional array. The upper triangle is packed
 by columns. (This is equivalent to packing the lower triangle by rows.)
 The matrix is packed sequentially column by column in n(n+1)/2
 elements of a one-dimensional array. To calculate the location of
 each element aij of
 matrix A in an array AP using the upper
 triangular packed technique, use the following formula:

 AP

 (

 i

 +(

 j

 (

 j

 -1)/2)) =

 a

 ij

 where

 j

 ≥

 i

 This results in the following storage arrangement for the elements
 of a symmetric matrix A in an array AP:

 	AP(1)

 	= a11 (start the first column)

 	AP(2)

 	= a12 (start the second column)

 	AP(3)

 	= a22

 	AP(4)

 	= a13 (start the third column)

 	AP(5)

 	= a23

 	AP(6)

 	= a33

 	AP(7)

 	= a14 (start the fourth column)

 	.

 	.

 	.

 	.

 	.

 	.

 	AP(j(j-1)/2+1)

 	= a1j (start
 the j-th column)

 	AP(j(j-1)/2+2)

 	= a2j

 	AP(j(j-1)/2+3)

 	= a3j

 	.

 	.

 	.

 	.

 	.

 	.

 	AP(j(j-1)/2+j)

 	= ajj (end
 of the j-th column)

 	.

 	.

 	.

 	.

 	.

 	.

 	AP(n(n+1)/2)

 	= ann

 Following is an example of a symmetric matrix that uses the element
 values to show the order in which the matrix elements are stored in
 the array. Given the following matrix A: ┌ ┐
 | 1 2 4 7 11 |
 | 2 3 5 8 12 |
 | 4 5 6 9 13 |
 | 7 8 9 10 14 |
 | 11 12 13 14 15 |
 └ ┘

 the array is: AP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

 Following is an example of how to transform your symmetric matrix
 to upper-packed storage mode: K = 0
 DO 1 J=1,N
 DO 2 I=1,J
 K = K+1
 AP(K)=A(I,J)
 2 CONTINUE
 1 CONTINUE

 Parent topic: Symmetric Matrix Storage Representation

 Lower Storage Mode

 When a symmetric matrix is stored in lower storage mode, the lower
 triangular part of the symmetric matrix is stored, including the diagonal,
 in a two-dimensional array. These elements are stored in the array
 in the same way they appear in the matrix. The upper part of the matrix
 is not required to be stored in the array.

 Following is an example of a symmetric matrix A of
 order 5 and how it is stored in an array AL.

 Given the following matrix A: ┌ ┐
 | 1 2 3 4 5 |
 | 2 6 7 8 9 |
 | 3 7 10 11 12 |
 | 4 8 11 13 14 |
 | 5 9 12 14 15 |
 └ ┘

 the array is: ┌ ┐
 | 1 * * * * |
 | 2 6 * * * |
 AL = | 3 7 10 * * |
 | 4 8 11 13 * |
 | 5 9 12 14 15 |
 └ ┘

 where "*" means you do not have to store
 a value in that position in the array. However, these storage positions
 are required.

 Parent topic: Symmetric Matrix Storage Representation

 Upper Storage Mode

 When a symmetric matrix is stored in upper storage mode, the upper
 triangular part of the symmetric matrix is stored, including the diagonal,
 in a two-dimensional array. These elements are stored in the array
 in the same way they appear in the matrix. The lower part of the matrix
 is not required to be stored in the array.

 Following is an example of a symmetric matrix A of
 order 5 and how it is stored in an array AU.

 Given the following matrix A: ┌ ┐
 | 1 2 3 4 5 |
 | 2 6 7 8 9 |
 | 3 7 10 11 12 |
 | 4 8 11 13 14 |
 | 5 9 12 14 15 |
 └ ┘

 the array is: ┌ ┐
 | 1 2 3 4 5 |
 | * 6 7 8 9 |
 AU = | * * 10 11 12 |
 | * * * 13 14 |
 | * * * * 15 |
 └ ┘

 where "*" means you do not have to store
 a value in that position in the array. However, these storage positions
 are required.

 Parent topic: Symmetric Matrix Storage Representation

 Positive Definite or Negative Definite Symmetric Matrix

 A real symmetric matrix A is positive definite
 if and only if xTAx is positive for all nonzero vectors x.

 A real symmetric matrix A is negative definite
 if and only if xTAx is negative for all nonzero vectors x.

 	Positive Definite or Negative Definite Symmetric Matrix Storage Representation

 Parent topic: Matrices

 Positive Definite or Negative Definite Symmetric Matrix Storage Representation

 The positive definite or negative definite symmetric matrix is stored in
 the same way the symmetric matrix is stored. For a description of this storage
 technique, see Symmetric Matrix.

 Parent topic: Positive Definite or Negative Definite Symmetric Matrix

 Indefinite Symmetric Matrix

 A symmetric matrix A is indefinite if
 and only if (xTAx) (yTAy) <
 0 for some non-zero vectors x and y.

 	Indefinite Symmetric Matrix Storage Representation

 Parent topic: Matrices

 Indefinite Symmetric Matrix Storage Representation

 The indefinite symmetric matrix is stored in the same way the symmetric
 matrix is stored. For a description of this storage technique, see Symmetric Matrix.

 Parent topic: Indefinite Symmetric Matrix

 Complex Hermitian Matrix

 A complex matrix is Hermitian if it is equal to its conjugate transpose:

 H

 =

 H

 H

 	Complex Hermitian Matrix Storage Representation

 Parent topic: Matrices

 Complex Hermitian Matrix Storage Representation

 The complex Hermitian matrix is stored using the same four techniques
 used for symmetric matrices:

 	Lower-packed storage mode, as described in Lower-Packed Storage Mode. (The complex Hermitian
 matrix is not symmetric; therefore, lower-packed storage mode is not
 equivalent to packing the upper triangle by rows, as it is for a symmetric
 matrix.)

 	Upper-packed storage mode, as described in Upper-Packed Storage Mode. (The complex Hermitian
 matrix is not symmetric; therefore, upper-packed storage mode is not
 equivalent to packing the lower triangle by rows, as it is for a symmetric
 matrix.)

 	Lower storage mode, as described in Lower Storage Mode.

 	Upper storage mode, as described in Upper Storage Mode.

 Following is an example of a complex Hermitian matrix H of
 order 5.

 Given the following matrix H: ┌ ┐
 | (11, 0) (21, -1) (31, 1) (41, -1) (51, -1) |
 | (21, 1) (22, 0) (32, -1) (42, -1) (52, 1) |
 | (31, -1) (32, 1) (33, 0) (43, -1) (53, -1) |
 | (41, 1) (42, 1) (43, 1) (44, 0) (54, -1) |
 | (51, 1) (52, -1) (53, 1) (54, 1) (55, 0) |
 └ ┘

 it is stored in a one-dimensional array, HP, in n(n+1)/2 = 15
 elements as follows:

 	In lower-packed storage mode: HP = ((11, *), (21, 1), (31, -1), (41, 1), (51, 1),
 (22, *), (32, 1), (42, 1), (52, -1), (33, *),
 (43, 1), (53, 1), (44, *), (54, 1), (55, *))

 	In upper-packed storage mode: HP = ((11, *), (21, -1), (22, *), (31, 1), (32, -1),
 (33, *), (41, -1), (42, -1), 43, -1), (44, *),
 (51, -1), (52, 1), (53, -1), (54, -1), (55, *))

 or it is stored in a two-dimensional array, HP,
 as follows:

 	In lower storage mode: ┌ ┐
 | (11, *) * * * * |
 | (21, 1) (22, *) * * * |
 HP = | (31, -1) (32, 1) (33, *) * * |
 | (41, 1) (42, 1) (43, 1) (44, *) * |
 | (51, 1) (52, -1) (53, 1) (54, 1) (55, *) |
 └ ┘

 	In upper storage mode ┌ ┐
 | (11, *) (21, -1) (31, 1) (41, -1) (51, -1) |
 | * (22, *) (32, -1) (42, -1) (52, 1) |
 HP = | * * (33, *) (43, -1) (53, -1) |
 | * * * (44, *) (54, -1) |
 | * * * * (55, *) |
 └ ┘

 where "*" means you do not have to store
 a value in that position in the array. The imaginary parts of the
 diagonal elements of a complex Hermitian matrix are always 0, so you
 do not need to set these values. The ESSL subroutines always assume
 that the values in these positions are 0.

 Parent topic: Complex Hermitian Matrix

 Positive Definite or Negative Definite Complex Hermitian Matrix

 A complex Hermitian matrix A is positive definite
 if and only if xHAx is positive for all nonzero vectors x.

 A complex Hermitian matrix A is negative definite
 if and only if xHAx is negative for all nonzero vectors x.

 	Positive Definite or Negative Definite Complex Hermitian Matrix Storage Representation

 Parent topic: Matrices

 Positive Definite or Negative Definite Complex Hermitian Matrix Storage
 Representation

 The positive definite or negative definite complex Hermitian matrix is
 stored in the same way the complex Hermitian matrix is stored. For a description
 of this storage technique, see Complex Hermitian Matrix.

 Parent topic: Positive Definite or Negative Definite Complex Hermitian Matrix

 Indefinite Complex Hermitian Matrix

 A complex Hermitian matrix A is indefinite if and only if (xHAx)
 (yHAy) < 0 for some non-zero
 vectors x and y.

 	Indefinite Complex Hermitian Matrix Storage Representation

 Parent topic: Matrices

 Indefinite Complex Hermitian Matrix Storage Representation

 The indefinite complex Hermitian matrix is stored in the same way
 the complex Hermitian matrix 	is stored. For a description of this
 storage technique, see Complex Hermitian Matrix.

 Parent topic: Indefinite Complex Hermitian Matrix

 Positive Definite or Negative Definite Symmetric Toeplitz Matrix

 A positive definite or negative definite symmetric matrix A of
 order n is also a Toeplitz matrix if and
 only if:

 a

 ij

 =

 a

 i

 -1,

 j

 -1

 for

 i

 =

 2,

 n

 and

 j

 =

 2,

 n

 The elements on each diagonal of the Toeplitz matrix have a constant
 value. For the definition of a positive definite or negative definite
 symmetric matrix, see Positive Definite or Negative Definite Symmetric Matrix.

 The following matrix illustrates a symmetric Toeplitz matrix of
 order n; that is, it has n rows
 and n columns:

 [image: Symmetric Toeplitz Matrix Graphic]

 A symmetric Toeplitz matrix of order n is
 represented by a vector x of length n containing
 the elements of the first column of the matrix (or the elements of
 the first row), such that xi = ai1 for i = 1, n.

 The following vector represents the matrix A shown
 above:

 [image: Vector Graphic]

 	Positive Definite or Negative Definite Symmetric Toeplitz Matrix Storage Representation

 Parent topic: Matrices

 Positive Definite or Negative Definite Symmetric Toeplitz Matrix
 Storage Representation

 The elements of the vector x, which represent a positive
 definite symmetric Toeplitz matrix, are stored sequentially in an
 array. This is called packed-symmetric-Toeplitz storage mode. Following
 is an example of a positive definite symmetric Toeplitz matrix A and
 how it is stored in an array X.

 Given the following matrix A: ┌ ┐
 | 99 12 13 14 15 16 |
 | 12 99 12 13 14 15 |
 | 13 12 99 12 13 14 |
 | 14 13 12 99 12 13 |
 | 15 14 13 12 99 12 |
 | 16 15 14 13 12 99 |
 └ ┘

 the array is: X = (99, 12, 13, 14, 15, 16)

 Parent topic: Positive Definite or Negative Definite Symmetric Toeplitz Matrix

 Positive Definite or Negative Definite Complex Hermitian Toeplitz
 Matrix

 A positive definite or negative definite complex Hermitian matrix A of
 order n is also a Toeplitz matrix if and
 only if:

 a

 ij

 =

 a

 i

 -1,

 j

 -1

 for

 i

 =

 2,

 n

 and

 j

 =

 2,

 n

 The real part of the diagonal elements of the Toeplitz matrix must
 have a constant value. The imaginary part of the diagonal elements
 must be zero.

 For the definition of a positive definite of negative definite
 complex Hermitian matrix, see Positive Definite or Negative Definite Complex Hermitian Matrix.

 The following matrix illustrates a complex Hermitian Toeplitz matrix
 of order n; that is, it has n rows
 and n columns:

 [image: Complex Hermitian Toeplitz Matrix Graphic]

 A complex Hermitian Toeplitz matrix of order n is
 represented by a vector x of length n containing
 the elements of the first row of the matrix.

 The following vector represents the matrix A shown
 above.

 [image: Vector Graphic]

 	Positive Definite or Negative Definite Complex Hermitian Toeplitz Matrix Storage Representation

 Parent topic: Matrices

 Positive Definite or Negative Definite Complex Hermitian Toeplitz
 Matrix Storage Representation

 The elements of the vector x, which represent a positive
 definite complex Hermitian Toeplitz matrix, are stored sequentially
 in an array. This is called packed-Hermitian-Toeplitz storage mode.
 Following is an example of a positive definite complex Hermitian Toeplitz
 matrix A and how it is stored in an array X.

 Given the following matrix A: ┌ ┐
 | (10.0, 0.0) (2.0, -3.0) (-3.0, 1.0) (1.0, 1.0) |
 | (2.0, 3.0) (10.0, 0.0) (2.0, -3.0) (-3.0, 1.0) |
 | (-3.0, -1.0) (2.0, 3.0) (10.0, 0.0) (2.0, -3.0) |
 | (1.0, -1.0) (-3.0, -1.0) (2.0, 3.0) (10.0, 0.0) |
 └ ┘

 the array is: X = ((10.0, 0.0), (2.0, -3.0), (-3.0, 1.0), (1.0, 1.0))

 Parent topic: Positive Definite or Negative Definite Complex Hermitian Toeplitz Matrix

 Triangular Matrix

 There are two types of triangular matrices: upper triangular matrix
 and lower triangular matrix. Triangular matrices have the same number
 of rows as they have columns; that is, they have n rows
 and n columns.

 A matrix U is an upper triangular matrix if its nonzero
 elements are found only in the upper triangle of the matrix, including
 the main diagonal; that is:

 u

 ij

 =

 0

 if

 i

 >

 j

 A matrix L is an lower triangular matrix if its nonzero
 elements are found only in the lower triangle of the matrix, including
 the main diagonal; that is:

 l

 ij

 =

 0

 if

 i

 <

 j

 The following matrices, U and L, illustrate
 upper and lower triangular matrices of order n,
 respectively:

 [image: Upper and Lower Triangular Matrices Graphic]

 A unit triangular matrix is a triangular matrix in which all the
 diagonal elements have a value of one; that is:

 	For an upper triangular matrix, uij = 1 if i = j.

 	For an lower triangular matrix, lij = 1 if i = j.

 The following matrices, U and L, illustrate
 upper and lower unit real triangular matrices of order n,
 respectively:

 [image: Upper and Lower Unit Real Triangular Matrices Graphic]

 	Triangular Matrix Storage Representation

 Parent topic: Matrices

 Triangular Matrix Storage Representation

 The four storage modes used for storing triangular matrices are described
 in the following:

 	Upper-Triangular-Packed Storage Mode

 	Lower-Triangular-Packed Storage Mode

 	Upper-Triangular Storage Mode

 	Lower-Triangular Storage Mode

 It is important to note that because the diagonal elements
 of a unit triangular matrix are always one, you do not need to set these values
 in the array for these four storage modes. ESSL always assumes that the values
 in these positions are one.

 	Upper-Triangular-Packed Storage Mode

 	Lower-Triangular-Packed Storage Mode

 	Upper-Triangular Storage Mode

 	Lower-Triangular Storage Mode

 Parent topic: Triangular Matrix

 Upper-Triangular-Packed Storage Mode

 When an upper-triangular matrix is stored in upper-triangular-packed
 storage mode, the upper triangle of the matrix is stored, including
 the diagonal, in a one-dimensional array. The upper triangle is packed
 by columns. The elements are packed sequentially, column by column,
 in n(n+1)/2 elements
 of a one-dimensional array. To calculate the location of each element
 of the triangular matrix in the array, use the technique described
 in Upper-Packed Storage Mode.

 Following is an example of an upper triangular matrix U of
 order 5 and how it is stored in array UP. It uses
 the element values to show the order in which the elements are stored
 in the one-dimensional array.

 Given the following matrix U: ┌ ┐
 | 1 2 4 7 11 |
 | 0 3 5 8 12 |
 | 0 0 6 9 13 |
 | 0 0 0 10 14 |
 | 0 0 0 0 15 |
 └ ┘

 the array is: UP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

 Parent topic: Triangular Matrix Storage Representation

 Lower-Triangular-Packed Storage Mode

 When a lower-triangular matrix is stored in lower-triangular-packed
 storage mode, the lower triangle of the matrix is stored, including
 the diagonal, in a one-dimensional array. The lower triangle is packed
 by columns. The elements are packed sequentially, column by column,
 in n(n+1)/2 elements
 of a one-dimensional array. To calculate the location of each element
 of the triangular matrix in the array, use the technique described
 in Lower-Packed Storage Mode.

 Following is an example of a lower triangular matrix L of
 order 5 and how it is stored in array LP. It uses
 the element values to show the order in which the elements are stored
 in the one-dimensional array.

 Given the following matrix L: ┌ ┐
 | 1 0 0 0 0 |
 | 2 6 0 0 0 |
 | 3 7 10 0 0 |
 | 4 8 11 13 0 |
 | 5 9 12 14 15 |
 └ ┘

 the array is: LP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

 Parent topic: Triangular Matrix Storage Representation

 Upper-Triangular Storage Mode

 A triangular matrix is stored in upper-triangular storage mode
 in a two-dimensional array. Only the elements in the upper triangle
 of the matrix, including the diagonal, are stored in the upper triangle
 of the array.

 Following is an example of an upper triangular matrix U of
 order 5 and how it is stored in array UTA.

 Given the following matrix U: ┌ ┐
 | 11 12 13 14 15 |
 | 0 22 23 24 25 |
 | 0 0 33 34 35 |
 | 0 0 0 44 45 |
 | 0 0 0 0 55 |
 └ ┘

 the array is: ┌ ┐
 | 11 12 13 14 15 |
 | * 22 23 24 25 |
 UTA = | * * 33 34 35 |
 | * * * 44 45 |
 | * * * * 55 |
 └ ┘

 where "*" means you do not have to store
 a value in that position in the array.

 Parent topic: Triangular Matrix Storage Representation

 Lower-Triangular Storage Mode

 A triangular matrix is stored in lower-triangular storage mode
 in a two-dimensional array. Only the elements in the lower triangle
 of the matrix, including the diagonal, are stored in the lower triangle
 of the array.

 Following is an example of a lower triangular matrix L of
 order 5 and how it is stored in array LTA.

 Given the following matrix L: ┌ ┐
 | 11 0 0 0 0 |
 | 21 22 0 0 0 |
 | 31 32 33 0 0 |
 | 41 42 43 44 0 |
 | 51 52 53 54 55 |
 └ ┘

 the array is: ┌ ┐
 | 11 * * * * |
 | 21 22 * * * |
 LTA = | 31 32 33 * * |
 | 41 42 43 44 * |
 | 51 52 53 54 55 |
 └ ┘

 where "*" means you do not have to store
 a value in that position in the array.

 Parent topic: Triangular Matrix Storage Representation

 Trapezoidal Matrix

 There are two types of trapezoidal matrices: upper trapezoidal
 matrix and lower trapezoidal matrix. Trapezoidal matrices have m rows
 and n columns.

 A matrix U is an upper trapezoidal matrix if its
 nonzero elements are found only in the upper triangle of the matrix,
 including the main diagonal; that is:

 u

 ij

 =

 0

 if

 i

 >

 j

 A matrix L is an lower trapezoidal matrix if its
 nonzero elements are found only in the lower triangle of the matrix,
 including the main diagonal; that is:

 l

 ij

 =

 0

 if

 i

 <

 j

 The following matrices, U and L, illustrate
 upper and lower trapezoidal matrices with m rows
 and n columns, respectively:

 If m ≥ n:

 [image: Upper and Lower Trapezoidal Matrices Graphic]

 If m < n:

 [image: Upper and Lower Trapezoidal Matrices Graphic]

 A unit trapezoidal matrix is a trapezoidal matrix in which all
 the diagonal elements have a value of one; that is:

 	For an upper trapezoidal matrix, uij = 1 if i = j.

 	For a lower trapezoidal matrix, lij = 1 if i = j.

 The following matrices, U and L, illustrate
 upper and lower unit real trapezoidal matrices with m and n columns,
 respectively:

 If m ≥ n:

 [image: Upper and Lower Trapezoidal Matrices Graphic]

 If m < n:

 [image: Upper and Lower Trapezoidal Matrices Graphic]

 	Trapezoidal Matrix Storage Representation

 Parent topic: Matrices

 Trapezoidal Matrix Storage Representation

 The storage modes used for storing trapezoidal matrices are described
 in the following:

 	Upper-Trapezoidal Storage Mode

 	Lower-Trapezoidal Storage Mode

 It is important to note that because the diagonal elements of
 a unit trapezoidal matrix are always one, you do not need to set these
 values in the array for these storage modes. ESSL always assumes that
 the values in these positions are one.

 	Upper-Trapezoidal Storage Mode

 	Lower-Trapezoidal Storage Mode

 Parent topic: Trapezoidal Matrix

 Upper-Trapezoidal Storage Mode

 A trapezoidal matrix is stored in upper-trapezoidal storage mode
 in a two-dimensional array. Only the elements in the upper trapezoid
 of the matrix, including the diagonal, are stored in the upper trapezoid
 of the array.

 Following is an example of an upper trapezoidal matrix U of
 order 5 and how it is stored in array UTA.

 Given the following matrix U: ┌ ┐
 | 11 12 13 14 15 |
 | 0 22 23 24 25 |
 | 0 0 33 34 35 |
 | 0 0 0 44 45 |
 | 0 0 0 0 55 |
 | 0 0 0 0 0 |
 | 0 0 0 0 0 |
 └ ┘

 the array is: ┌ ┐
 | 11 12 13 14 15 |
 | * 22 23 24 25 |
 | * * 33 34 35 |
 UTA = | * * * 44 45 |
 | * * * * 55 |
 | * * * * * |
 | * * * * * |
 └ ┘

 where "*" means you do not have to store
 a value in that position in the array.

 Following is an example of an upper trapezoidal matrix U with
 5 rows and 7 columns and how it is stored in array UTA.

 Given the following matrix U: ┌ ┐
 | 11 12 13 14 15 16 17 |
 | 0 22 23 24 25 26 27 |
 | 0 0 33 34 35 36 37 |
 | 0 0 0 44 45 46 47 |
 | 0 0 0 0 55 56 57 |
 └ ┘

 the array is: ┌ ┐
 | 11 12 13 14 15 16 17 |
 | * 22 23 24 25 26 27 |
 UTA = | * * 33 34 35 36 37 |
 | * * * 44 45 46 47 |
 | * * * * 55 56 57 |
 └ ┘

 where "*" means
 you do not have to store a value in that position in the array.

 Parent topic: Trapezoidal Matrix Storage Representation

 Lower-Trapezoidal Storage Mode

 A trapezoidal matrix is stored in lower-trapezoidal storage mode
 in a two-dimensional array. Only the elements in the lower trapezoid
 of the matrix, including the diagonal, are stored in the lower trapezoid
 of the array.

 Following is an example of a lower trapezoidal matrix L of
 order 5 and how it is stored in array LTA.

 Given the following matrix L: ┌ ┐
 | 11 0 0 0 0 |
 | 21 22 0 0 0 |
 | 31 32 33 0 0 |
 | 41 42 43 44 0 |
 | 51 52 53 54 55 |
 | 61 62 63 64 65 |
 | 71 72 73 74 75 |
 └ ┘

 the array is: ┌ ┐
 | 11 * * * * |
 | 21 22 * * * |
 LTA = | 31 32 33 * * |
 | 41 42 43 44 * |
 | 51 52 53 54 55 |
 | 61 62 63 64 65 |
 | 71 72 73 74 75 |
 └ ┘

 where "*" means you do not have to store
 a value in that position in the array.

 Following is an example of an lower trapezoidal matrix U with
 5 rows and 7 columns and how it is stored in array LTA.

 Given the following matrix L: ┌ ┐
 | 11 0 0 0 0 0 0 |
 | 21 22 0 0 0 0 0 |
 | 31 32 33 0 0 0 0 |
 | 41 42 43 44 0 0 0 |
 | 51 52 53 54 55 0 0 |
 └ ┘

 the array is: ┌ ┐
 | 11 * * * * * * |
 | 21 22 * * * * * |
 LTA = | 31 32 33 * * * * |
 | 41 42 43 44 * * * |
 | 51 52 53 54 55 * * |
 └ ┘

 where "*" means you do not have to store
 a value in that position in the array.

 Parent topic: Trapezoidal Matrix Storage Representation

 General Band Matrix

 A general band matrix has its nonzero elements arranged uniformly
 near the diagonal, such that:

 a

 ij

 =

 0

 if (

 i

 -

 j

)

 >

 ml

 or (

 j

 -

 i

)

 >

 mu

 where ml and mu are
 the lower and upper band widths, respectively, and ml+mu+1
 is the total band width.

 The following matrix illustrates a square general band matrix
 of order n, where the band widths are ml = q-1
 and mu = p-1:

 [image: General Band Matrix Graphic]

 Some special types of band matrices are:

 	Tridiagonal matrix: ml = mu = 1

 	9-diagonal matrix: ml = mu = 4

 The following two matrices illustrate m by n rectangular general
 band matrices, where the band widths are ml = q-1
 and mu = p-1. For
 both matrices, the leading diagonal is a11, a22, a33, …, ann.
 Following is a general band matrix with m > n:

 [image: General Band Matrix Graphic]

 Following is a general band matrix with m < n:

 [image: General Band Matrix Graphic]

 	General Band Matrix Storage Representation

 Parent topic: Matrices

 General Band Matrix Storage Representation

 The two storage modes used for storing general band matrices are described
 in the following:

 	General-Band Storage Mode

 	BLAS-General-Band Storage Mode

 	General-Band Storage Mode

 	BLAS-General-Band Storage Mode

 Parent topic: General Band Matrix

 General-Band Storage Mode

 (This storage mode is used only for square matrices.) Only the
 band elements of a general band matrix are stored for general-band
 storage mode. Additional storage must also be provided for fill-
 in. General-band storage mode packs the matrix elements by columns
 into a two-dimensional array, such that each diagonal of the matrix
 appears as a row in the packed array.

 For a matrix A of order n with
 band widths ml and mu,
 the array must have a leading dimension, lda,
 greater than or equal to 2ml+mu+16.
 The size of the second dimension must be (at least) n,
 the number of columns in the matrix.

 Using array AGB, which is declared as AGB(2ml+mu+16, n),
 the columns of elements in matrix A are stored in each
 column in array AGB as follows, where a11 is
 stored at AGB(ml+mu+1,
 1):

 [image: Array AGB Graphic]

 where "*" means you do not store an element
 in that position in the array.

 In the ESSL subroutine computation, some of the positions in the
 array indicated by an "*" are used for fill-
 in. Other positions may not be accessed at all.

 Following is an example of a band matrix A of order
 9 and band widths of ml = 2 and mu = 3.

 Given the following matrix A: ┌ ┐
 | 11 12 13 14 0 0 0 0 0 |
 | 21 22 23 24 25 0 0 0 0 |
 | 31 32 33 34 35 36 0 0 0 |
 | 0 42 43 44 45 46 47 0 0 |
 | 0 0 53 54 55 56 57 58 0 |
 | 0 0 0 64 65 66 67 68 69 |
 | 0 0 0 0 75 76 77 78 79 |
 | 0 0 0 0 0 86 87 88 89 |
 | 0 0 0 0 0 0 97 98 99 |
 └ ┘

 you store it in general-band storage mode in a 23 by 9 array AGB as
 follows, where a11 is stored
 in AGB(6,1): ┌ ┐
 | * * * * * * * * * |
 | * * * * * * * * * |
 | * * * 14 25 36 47 58 69 |
 | * * 13 24 35 46 57 68 79 |
 | * 12 23 34 45 56 67 78 89 |
 | 11 22 33 44 55 66 77 88 99 |
 | 21 32 43 54 65 76 87 98 * |
 | 31 42 53 64 75 86 97 * * |
 | * * * * * * * * * |
 | * * * * * * * * * |
 | * * * * * * * * * |
 AGB = | * * * * * * * * * |
 | * * * * * * * * * |
 | * * * * * * * * * |
 | * * * * * * * * * |
 | * * * * * * * * * |
 | * * * * * * * * * |
 | * * * * * * * * * |
 | * * * * * * * * * |
 | * * * * * * * * * |
 | * * * * * * * * * |
 | * * * * * * * * * |
 | * * * * * * * * * |
 └ ┘

 Following is an example of how to transform your general band matrix,
 of order n, to general-band storage mode:
 MD=ML+MU+1
 DO 1 J=1,N
 DO 1 I=MAX(J-MU,1),MIN(J+ML,N)
 AGB(I-J+MD,J)=A(I,J)
 1 CONTINUE

 Parent topic: General Band Matrix Storage Representation

 BLAS-General-Band Storage Mode

 (This storage mode is used for both square and rectangular matrices.)
 Only the band elements of a general band matrix are stored for BLAS-general-band
 storage mode. The storage mode packs the matrix elements by columns
 into a two-dimensional array, such that each diagonal of the matrix
 appears as a row in the packed array.

 For an m by n matrix A with
 band widths ml and mu,
 the array AGB must have a leading dimension, lda,
 greater than or equal to ml+mu+1.
 The size of the second dimension must be (at least) n,
 the number of columns in the matrix.

 Using the array AGB, which is declared as AGB(ml+mu+1, n),
 the columns of elements in matrix A are stored in each
 column in array AGB as follows, where a11 is
 stored at AGB(mu+1, 1):

 [image: Array AGB Graphic]

 where "*" means you do not store an element
 in that position in the array. These positions are not accessed by
 ESSL. Unused positions in the array always occur in the upper left
 triangle of the array, but may not occur in the lower right triangle
 of the array, as you can see from the examples given here.

 Following is an example where m > n,
 and general band matrix A is 9 by 8 with band widths
 of ml = 2 and mu = 3.

 Given the following matrix A: ┌ ┐
 | 11 12 13 14 0 0 0 0 |
 | 21 22 23 24 25 0 0 0 |
 | 31 32 33 34 35 36 0 0 |
 | 0 42 43 44 45 46 47 0 |
 | 0 0 53 54 55 56 57 58 |
 | 0 0 0 64 65 66 67 68 |
 | 0 0 0 0 75 76 77 78 |
 | 0 0 0 0 0 86 87 88 |
 | 0 0 0 0 0 0 97 98 |
 └ ┘

 you store it in array AGB, declared as AGB(6,8),
 as follows, where a11 is stored
 in AGB(4,1): ┌ ┐
 | * * * 14 25 36 47 58 |
 | * * 13 24 35 46 57 68 |
 AGB = | * 12 23 34 45 56 67 78 |
 | 11 22 33 44 55 66 77 88 |
 | 21 32 43 54 65 76 87 98 |
 | 31 42 53 64 75 86 97 * |
 └ ┘

 Following is an example where m < n,
 and general band matrix A is 7 by 9 with band widths
 of ml = 2 and mu = 3.

 Given the following matrix A: ┌ ┐
 | 11 12 13 14 0 0 0 0 0 |
 | 21 22 23 24 25 0 0 0 0 |
 | 31 32 33 34 35 36 0 0 0 |
 | 0 42 43 44 45 46 47 0 0 |
 | 0 0 53 54 55 56 57 58 0 |
 | 0 0 0 64 65 66 67 68 69 |
 | 0 0 0 0 75 76 77 78 79 |
 └ ┘

 you store it in array AGB, declared as AGB(6,9),
 as follows, where a11 is stored
 in AGB(4,1) and the leading diagonal does not fill
 up the whole row: ┌ ┐
 | * * * 14 25 36 47 58 69 |
 | * * 13 24 35 46 57 68 79 |
 AGB = | * 12 23 34 45 56 67 78 * |
 | 11 22 33 44 55 66 77 * * |
 | 21 32 43 54 65 76 * * * |
 | 31 42 53 64 75 * * * * |
 └ ┘

 and where "*" means you do not store an element
 in that position in the array.

 Following is an example of how to transform your general band matrix,
 for all values of m and n,
 to BLAS-general-band storage mode: DO 20 J=1,N
 K=MU+1-J
 DO 10 I=MAX(1,J-MU),MIN(M,J+ML)
 AGB(K+I,J)=A(I,J)
 10 CONTINUE
 20 CONTINUE

 Parent topic: General Band Matrix Storage Representation

 Symmetric Band Matrix

 A symmetric band matrix is a symmetric matrix whose nonzero elements
 are arranged uniformly near the diagonal, such that:

 a

 ij

 =

 0

 if |

 i

 -

 j

 |

 >

 k

 where k is the half band width.

 The following matrix illustrates a symmetric band matrix of order n,
 where the half band width k = q-1:

 [image: Symmetric Band Matrix Graphic]

 	Symmetric Band Matrix Storage Representation

 Parent topic: Matrices

 Symmetric Band Matrix Storage Representation

 The two storage modes used for storing symmetric band matrices are described
 in the following:

 	Upper-Band-Packed Storage Mode

 	Lower-Band-Packed Storage Mode

 	Upper-Band-Packed Storage Mode

 	Lower-Band-Packed Storage Mode

 Parent topic: Symmetric Band Matrix

 Upper-Band-Packed Storage Mode

 Only the band elements of the upper triangular part of a symmetric
 band matrix, including the main diagonal, are stored for upper-band-packed
 storage mode.

 For a matrix A of order n and
 a half band width of k, the array must have
 a leading dimension, lda, greater than or
 equal to k+1, and the size of the second
 dimension must be (at least) n.

 Using array ASB, which is declared as ASB(lda,n),
 where p = lda = k+1,
 the elements of a symmetric band matrix are stored as follows:

 [image: Array ASB Graphic]

 where "*" means you do not store an element
 in that position in the array.

 Following is an example of a symmetric band matrix A of
 order 6 and a half band width of 3.

 Given the following matrix A: ┌ ┐
 | 11 12 13 14 0 0 |
 | 12 22 23 24 25 0 |
 | 13 23 33 34 35 36 |
 | 14 24 34 44 45 46 |
 | 0 25 35 45 55 56 |
 | 0 0 36 46 56 66 |
 └ ┘

 you store it in upper-band-packed storage mode in array ASB,
 declared as ASB(4,6), as follows. ┌ ┐
 | * * * 14 25 36 |
 ASB = | * * 13 24 35 46 |
 | * 12 23 34 45 56 |
 | 11 22 33 44 55 66 |
 └ ┘

 Following is an example of how to transform your symmetric band
 matrix to upper-band-packed storage mode: DO 20 J=1,N
 M=K+1-J
 DO 10 I=MAX(1,J-K),J
 ASB(M+I,J)=A(I,J)
 10 CONTINUE
 20 CONTINUE

 Parent topic: Symmetric Band Matrix Storage Representation

 Lower-Band-Packed Storage Mode

 Only the band elements of the lower triangular part of a symmetric
 band matrix, including the main diagonal, are stored for lower-band-packed
 storage mode.

 For a matrix A of order n and
 a half band width of k, the array must have
 a leading dimension, lda, greater than or
 equal to k+1, and the size of the second
 dimension must be (at least) n.

 Using array ASB, which is declared as ASB(lda,n),
 where q = lda = k+1,
 the elements of a symmetric band matrix are stored as follows:

 [image: Array ASB Graphic]

 where "*" means you do not store an element
 in that position in the array.

 Following is an example of a symmetric band matrix A of
 order 6 and a half band width of 2.

 Given the following matrix A: ┌ ┐
 | 11 21 31 0 0 0 |
 | 21 22 32 42 0 0 |
 | 31 32 33 43 53 0 |
 | 0 42 43 44 54 64 |
 | 0 0 53 54 55 65 |
 | 0 0 0 64 65 66 |
 └ ┘

 you store it in lower-band-packed storage mode in array ASB,
 declared as ASB(3,6), as follows: ┌ ┐
 | 11 22 33 44 55 66 |
 ASB = | 21 32 43 54 65 * |
 | 31 42 53 64 * * |
 └ ┘

 Following is an example of how to transform your symmetric band
 matrix to lower-band-packed storage mode: DO 20 J=1,N
 DO 10 I=J,MIN(J+K,N)
 ASB(I-J+1,J)=A(I,J)
 10 CONTINUE
 20 CONTINUE

 Parent topic: Symmetric Band Matrix Storage Representation

 Positive Definite Symmetric Band Matrix

 A real symmetric band matrix A is positive
 definite if and only if xTAx is positive for all nonzero vectors x.

 	Positive Definite Symmetric Band Matrix Storage Representation

 Parent topic: Matrices

 Positive Definite Symmetric Band Matrix Storage Representation

 The positive definite symmetric band matrix is stored in the same way a
 symmetric band matrix is stored. For a description of this storage technique,
 see Symmetric Band Matrix.

 Parent topic: Positive Definite Symmetric Band Matrix

 Complex Hermitian Band Matrix

 A complex band matrix is Hermitian if it is equal to its conjugate transpose:

 H

 =

 H

 H

 	Complex Hermitian Band Matrix Storage Representation

 Parent topic: Matrices

 Complex Hermitian Band Matrix Storage Representation

 The complex Hermitian band matrix is stored using the same two
 techniques used for symmetric band matrices:

 	Lower-band-packed storage mode, as described in Lower-Band-Packed Storage Mode

 	Upper-band-packed storage mode, as described in Upper-Band-Packed Storage Mode

 Following is an example of a complex Hermitian band matrix H of
 order 5, having a half band width of 2.

 Given the following matrix H: ┌ ┐
 | (11, 0) (21, -1) (31, 1) (0, 0) (0, 0) |
 | (21, 1) (22, 0) (32, -1) (42, -1) (0, 0) |
 | (31, -1) (32, 1) (33, 0) (43, -1) (53, -1) |
 | (0, 0) (42, 1) (43, 1) (44, 0) (54, -1) |
 | (0, 0) (0, 0) (53, 1) (54, 1) (55, 0) |
 └ ┘

 you store it in a two-dimensional array HP, as
 follows:

 	In lower-band-packed storage mode: ┌ ┐
 | (11, *) (22, *) (33, *) (44, *) (55, *) |
 HP = | (21, 1) (32, 1) (43, 1) (54, 1) * |
 | (31, -1) (42, 1) (53, 1) * * |
 └ ┘

 	In upper-band-packed storage mode: ┌ ┐
 | * * (31, 1) (42, -1) (53, -1) |
 HP = | * (21, -1) (32, -1) (43, -1) (54, -1) |
 | (11, *) (22, *) (33, *) (44, *) (55, *) |
 └ ┘

 where "*" means you do not have to store
 a value in that position in the array. The imaginary parts of the
 diagonal elements of a complex Hermitian band matrix are always 0,
 so you do not need to set these values. The ESSL subroutines always
 assume that the values in these positions are 0.

 Parent topic: Complex Hermitian Band Matrix

 Positive Definite Complex Hermitian Band Matrix

 A complex Hermitian band matrix A is positive definite if and only
 if xHAx is
 positive for all nonzero vectors x.

 Positive Definite Complex Hermitian Band Matrix Storage
 Representation

 The positive definite complex Hermitian band
 matrix is stored in the same way a complex Hermitian band matrix is
 stored. For a description of this storage technique, see Complex Hermitian Band Matrix.

 Parent topic: Matrices

 Triangular Band Matrix

 There are two types of triangular band matrices: upper triangular
 band matrix and lower triangular band matrix. Triangular band matrices
 have the same number of rows as they have columns; that is, they have n rows
 and n columns. They have an upper or lower
 band width of k.

 A band matrix U is an upper triangular band matrix
 if its nonzero elements are found only in the upper triangle of the
 matrix, including the main diagonal; that is:

 u

 ij

 =

 0

 if

 i

 >

 j

 Its band elements are arranged uniformly near the diagonal in the
 upper triangle of the matrix, such that:

 u

 ij

 =

 0

 if

 j

 -

 i

 >

 k

 The following matrix U illustrates an upper triangular
 band matrix of order n with an upper band
 width k = q-1:

 [image: Upper Triangular Band Matrix Graphic]

 A band matrix L is a lower triangular band matrix
 if its nonzero elements are found only in the lower triangle of the
 matrix, including the main diagonal; that is:

 l

 ij

 =

 0

 if

 i

 <

 j

 Its band elements are arranged uniformly near the diagonal in the
 lower triangle of the matrix such that:

 l

 ij

 =

 0

 if

 i

 -

 j

 >

 k

 The following matrix L illustrates an upper triangular
 band matrix of order n with a lower band
 width k = q-1:

 [image: Upper Triangular Band Matrix Graphic]

 A triangular band matrix can also be a unit triangular band matrix
 if all the diagonal elements have a value of 1. For an illustration
 of a unit triangular matrix, see Triangular Matrix.

 	Triangular Band Matrix Storage Representation

 Parent topic: Matrices

 Triangular Band Matrix Storage Representation

 The two storage modes used for storing triangular band matrices are described
 in the following:

 	Upper-Triangular-Band-Packed Storage Mode

 	Lower-Triangular-Band-Packed Storage Mode

 It is important to note that because the diagonal elements
 of a unit triangular band matrix are always one, you do not need to set these
 values in the array for these two storage modes. ESSL always assumes that
 the values in these positions are one.

 	Upper-Triangular-Band-Packed Storage Mode

 	Lower-Triangular-Band-Packed Storage Mode

 Parent topic: Triangular Band Matrix

 Upper-Triangular-Band-Packed Storage Mode

 Only the band elements of the upper triangular part of an upper
 triangular band matrix, including the main diagonal, are stored for
 upper-triangular-band-packed storage mode.

 For a matrix U of order n and
 an upper band width of k, the array must
 have a leading dimension, lda, greater than
 or equal to k+1, and the size of the second
 dimension must be (at least) n.

 Using array UTB, which is declared as UTB(lda,n),
 where p = lda = k+1,
 the elements of an upper triangular band matrix are stored as follows:

 [image: Upper-Triangular-Band-Packed Storage Mode Graphic]

 where "*" means you do not store an element
 in that position in the array.

 Following is an example of an upper triangular band matrix U of
 order 6 and an upper band width of 3.

 Given the following matrix U: ┌ ┐
 | 11 12 13 14 0 0 |
 | 0 22 23 24 25 0 |
 | 0 0 33 34 35 36 |
 | 0 0 0 44 45 46 |
 | 0 0 0 0 55 56 |
 | 0 0 0 0 0 66 |
 └ ┘

 you store it in upper-triangular-band-packed storage mode in array UTB,
 declared as UTB(4,6), as follows: ┌ ┐
 | * * * 14 25 36 |
 UTB = | * * 13 24 35 46 |
 | * 12 23 34 45 56 |
 | 11 22 33 44 55 66 |
 └ ┘

 Following is an example of how to transform your upper triangular
 band matrix to upper-triangular-band-packed storage mode: DO 20 J=1,N
 M=K+1-J
 DO 10 I=MAX(1,J-K),J
 UTB(M+I,J)=U(I,J)
 10 CONTINUE
 20 CONTINUE

 Parent topic: Triangular Band Matrix Storage Representation

 Lower-Triangular-Band-Packed Storage Mode

 Only the band elements of the lower triangular part of a lower
 triangular band matrix, including the main diagonal, are stored for
 lower-triangular-band-packed storage mode.
 Note: As an alternative
 to this storage mode, you can specify your arguments in your subroutine
 in a special way so that ESSL selects the matrix elements properly,
 and you can leave your matrix stored in full-matrix storage mode.

 For a matrix L of order n and
 a lower band width of k, the array must
 have a leading dimension, lda, greater than
 or equal to k+1, and the size of the second
 dimension must be (at least) n.

 Using array LTB, which is declared as LTB(lda,n),
 where q = lda = k+1,
 the elements of a lower triangular band matrix are stored as follows:

 [image: Lower-Triangular-Band-Packed Storage Mode Graphic]

 where "*" means you do not store an element
 in that position in the array.

 Following is an example of a lower triangular band matrix L of
 order 6 and a lower band width of 2.

 Given the following matrix L: ┌ ┐
 | 11 0 0 0 0 0 |
 | 21 22 0 0 0 0 |
 | 31 32 33 0 0 0 |
 | 0 42 43 44 0 0 |
 | 0 0 53 54 55 0 |
 | 0 0 0 64 65 66 |
 └ ┘

 you store it in lower-triangular-band-packed storage mode in array LTB,
 declared as LTB(3,6), as follows: ┌ ┐
 | 11 22 33 44 55 66 |
 LTB = | 21 32 43 54 65 * |
 | 31 42 53 64 * * |
 └ ┘

 Following is an example of how to transform your lower triangular
 band matrix to lower-triangular-band-packed storage mode: DO 20 J=1,N
 M=1-J
 DO 10 I=J,MIN(N,J+K)
 LTB(M+I,J)=L(I,J)
 10 CONTINUE
 20 CONTINUE

 Parent topic: Triangular Band Matrix Storage Representation

 General Tridiagonal Matrix

 A general tridiagonal matrix is a matrix whose nonzero elements
 are found only on the diagonal, subdiagonal, and superdiagonal of
 the matrix; that is:

 a

 ij

 =

 0

 if |

 i

 -

 j

 |

 >

 1

 The following matrix illustrates a general tridiagonal matrix of
 order n:

 [image: General Tridiagonal Matrix Graphic]

 	General Tridiagonal Matrix Storage Representation

 Parent topic: Matrices

 General Tridiagonal Matrix Storage Representation

 The storage modes used for storing trapezoidal matrices are described
 in the following:

 	LAPACK-General Tridiagonal Storage Mode

 	General Tridiagonal Storage Mode

 	LAPACK-General Tridiagonal Storage Mode

 	General Tridiagonal Storage Mode

 Parent topic: General Tridiagonal Matrix

 LAPACK-General Tridiagonal Storage Mode

 This storage mode is for use with LAPACK compatible tridiagonal
 subroutines.

 Only the diagonal, subdiagonal, and superdiagonal elements of the
 general tridiagonal matrix are stored for LAPACK-general-tridiagonal
 storage mode. The diagonal elements of a general tridiagonal matrix, A,
 of order n are stored in a one-dimensional
 array D of length n.

 The subdiagonal and superdiagonal elements of a general tridiagonal
 matrix A of order n are stored
 in one dimensional arrays DL and DU of
 length n-1, respectively. DL, D,
 and DU are stored as follows: DL = (a21, a32, a43 ...an,n-1)

 D = (a11, a22, a33 ...an,n)

 DU = (a12, a23, a34 ...an-1,n)

 Following is an example of a general tridiagonal matrix A of
 order 5: ┌ ┐
 | 11 12 0 0 0 |
 | 21 22 23 0 0 |
 | 0 32 33 34 0 |
 | 0 0 43 44 45 |
 | 0 0 0 54 55 |
 └ ┘

 which you store in LAPACK-general tridiagonal storage mode in arrays DL, D,
 and DU, as follows: DL = (21, 32, 43, 54)

 D = (11, 22, 33, 44, 55)

 DU = (12, 23, 34, 45)

 Parent topic: General Tridiagonal Matrix Storage Representation

 General Tridiagonal Storage Mode

 This storage mode is for use with non-LAPACK compatible
 tridiagonal subroutines.

 Only the diagonal, subdiagonal, and superdiagonal elements of the
 general tridiagonal matrix are stored. This is called tridiagonal
 storage mode. The elements of a general tridiagonal matrix, A,
 of order n are stored in three one-dimensional
 arrays, C, D, and E,
 each of length n, where array C contains
 the subdiagonal elements, stored as follows:

 C

 =

 (

 *

 ,

 a

 21

 ,

 a

 32

 ,

 a

 43

 ,

 …

 ,

 a

 n

 ,

 n

 -1

)

 and array D contains the main diagonal elements,
 stored as follows:

 D

 =

 (

 a

 11

 ,

 a

 22

 ,

 a

 33

 ,

 …

 ,

 a

 nn

)

 and array E contains the superdiagonal elements,
 stored as follows:

 E

 =

 (

 a

 12

 ,

 a

 23

 ,

 a

 34

 ,

 …

 ,

 a

 n

 -1,

 n

 ,

 *

)

 where "*" means you do not store an element
 in that position in the array.

 Following is an example of a general tridiagonal matrix A of
 order 5: ┌ ┐
 | 11 12 0 0 0 |
 | 21 22 23 0 0 |
 | 0 32 33 34 0 |
 | 0 0 43 44 45 |
 | 0 0 0 54 55 |
 └ ┘

 which you store in tridiagonal storage mode in arrays C, D,
 and E, each of length 5, as follows: C = (*, 21, 32, 43, 54)

 D = (11, 22, 33, 44, 55)

 E = (12, 23, 34, 45, *)

 Note: Some
 ESSL subroutines provide an option for specifying at least n additional
 locations at the end of each of the arrays C, D,
 and E. These additional locations are used for
 working storage by the ESSL subroutine. The reasons for choosing this
 option are explained in the subroutine descriptions.

 Parent topic: General Tridiagonal Matrix Storage Representation

 Symmetric Tridiagonal Matrix

 A tridiagonal matrix A is also symmetric if and only
 if its nonzero elements are found only on the diagonal, subdiagonal,
 and superdiagonal of the matrix, and its subdiagonal elements and
 superdiagonal elements are equal; that is:

 (

 a

 ij

 =

 0 if |

 i

 -

 j

 |

 >

 1)

 and

 (

 a

 ij

 =

 a

 ji

 if |

 i

 -

 j

 |

 =

 1)

 The following matrix illustrates a symmetric tridiagonal matrix
 of order n:

 [image: Symmetric Tridiagonal Matrix Graphic]

 	Symmetric Tridiagonal Matrix Storage Representation

 Parent topic: Matrices

 Symmetric Tridiagonal Matrix Storage Representation

 The two storage modes used for storing symmetric tridiagonal matrices
 are described in the following:

 	LAPACK-Symmetric-Tridiagonal Storage Mode

 	Symmetric-Tridiagonal Storage Mode

 	LAPACK-Symmetric-Tridiagonal Storage Mode

 	Symmetric-Tridiagonal Storage Mode

 Parent topic: Symmetric Tridiagonal Matrix

 LAPACK-Symmetric-Tridiagonal Storage Mode

 This storage mode is for use with LAPACK compatible tridiagonal
 subroutines.

 Only the diagonal and subdiagonal elements of the symmetric tridiagonal
 matrix are stored for LAPACK-symmetric-tridiagonal storage mode.
 The diagonal elements of a symmetric tridiagonal matrix A of
 order n are stored in a one dimensional array D length n.
 The subdiagonal elements of a symmetric matrix A are
 stored in a one dimensional array E of length n-1. D and E are
 stored as follows:

 D

 = (

 a

 11

 ,

 a

 22

 ,

 a

 33

 ,

 …

 ,

 a

 nn

)

 E

 = (

 a

 21

 ,

 a

 32

 ,

 a

 43

 ,

 …

 ,

 a

 n

 ,

 n

 -1

)

 Following is an example of a symmetric tridiagonal matrix A of
 order 5: ┌ ┐
 | 10 1 0 0 0 |
 | 1 20 2 0 0 |
 | 0 2 30 3 0 |
 | 0 0 3 40 4 |
 | 0 0 0 4 50 |
 └ ┘

 which you store in LAPACK-symmetric-tridiagonal storage mode in
 arrays D and E, each of length 4,
 as follows: D = (10, 20, 30, 40, 50)
 E = (1, 2, 3, 4)

 Parent topic: Symmetric Tridiagonal Matrix Storage Representation

 Symmetric-Tridiagonal Storage Mode

 This storage mode is for use with non-LAPACK compatible
 tridiagonal subroutines.

 Only the diagonal and subdiagonal elements of the symmetric tridiagonal
 matrix are stored for symmetric-tridiagonal storage mode. The elements
 of a symmetric tridiagonal matrix A of order n are
 stored in two one dimensional arrays C and D,
 each of length n, where C contains
 the subdiagonal elements, stored as follows:

 C

 = (

 *

 ,

 a

 21

 ,

 a

 32

 ,

 a

 43

 ,

 …

 ,

 a

 n

 ,

 n

 -1

)

 where "*" means you do not store an element
 in that position in the array. Then array D contains
 the main diagonal elements, stored as follows:

 D

 =

 (

 a

 11

 ,

 a

 22

 ,

 a

 33

 ,

 …

 ,

 a

 nn

)

 Following is an example of a symmetric tridiagonal matrix A of
 order 5: ┌ ┐
 | 10 1 0 0 0 |
 | 1 20 2 0 0 |
 | 0 2 30 3 0 |
 | 0 0 3 40 4 |
 | 0 0 0 4 50 |
 └ ┘

 which you store in symmetric-tridiagonal storage mode in arrays C and D,
 each of length 5, as follows: C = (*, 1, 2, 3, 4)

 D = (10, 20, 30, 40, 50)

 Note: Some
 ESSL subroutines provide an option for specifying at least n additional
 locations at the end of each of the arrays C and D.
 These additional locations are used for working storage by the ESSL
 subroutine. The reasons for choosing this option are explained in
 the subroutine descriptions.

 Parent topic: Symmetric Tridiagonal Matrix Storage Representation

 Positive Definite Symmetric Tridiagonal Matrix

 A real symmetric tridiagonal matrix A is positive
 definite if and only if xTAx is positive for all nonzero vectors x.

 	Positive Definite Symmetric Tridiagonal Matrix Storage Representation

 Parent topic: Matrices

 Positive Definite Symmetric Tridiagonal Matrix Storage Representation

 The positive definite symmetric tridiagonal matrix is stored in the same
 way the symmetric tridiagonal matrix is stored. For a description of this
 storage technique, see Symmetric Tridiagonal Matrix.

 Parent topic: Positive Definite Symmetric Tridiagonal Matrix

 Complex Hermitian Tridiagonal Matrix

 A complex tridiagonal matrix is Hermitian if it is equal to its
 conjugate transpose: 	H =HH.

 	Complex Hermitian Tridiagonal Storage Representation

 Parent topic: Matrices

 Complex Hermitian Tridiagonal Storage Representation

 Only the diagonal and subdiagonal elements of the complex Hermitian
 tridiagonal matrix are stored for LAPACK-complex-Hermitian-tridiagonal
 storage mode. The diagonal elements of a complex Hermitian tridiagonal
 matrix A of order n are stored in
 a one dimensional array D of length n.
 The subdiagonal elements of a complex Hermitian matrix A are
 stored in a one dimensional array E of length n-1. D and E are
 stored as follows:

 D

 = (

 a

 11

 ,

 a

 22

 ,

 a

 33

 ,

 …

 ,

 a

 nn

)

 E

 = (

 *

 ,

 a

 21

 ,

 a

 32

 ,

 a

 43

 ,

 …

 ,

 a

 n

 ,

 n

 -1

)

 Following is an example of a symmetric tridiagonal matrix A of
 order 5:
 ┌ ┐
 | (10, 0) (1, 1) (1, 2) (1, 3) (1, 4) |
 | (1, -1) (20, 0) (2, 1) (2, 2) (2, 3) |
 | (1, -2) (2, -1) (30, 0) (3, 1) (3, 2) |
 | (1, -3) (2, -2) (3, -1) (40, 0) (4, 1) |
 | (1, -4) (2, -3) (3, -2) (4, -1) (50, 0) |
 └ ┘

 which you store in LAPACK-complex-Hermitian-tridiagonal storage
 mode in arrays D of length 5 and complex array E,
 each of length 4, as follows: D = (10, 20, 30, 40, 50)
 E = ((1,-1), (2, -1), (3, -1), (4, -1))

 Parent topic: Complex Hermitian Tridiagonal Matrix

 Postive Definite Complex Hermitian Tridiagonal Matrix

 A complex Hermitian tridiagonal matrix is positive definite if
 and only if xHAx is
 positive for all nonzero vectors x.

 	Positive Definite Complex Hermitian Tridiagonal Matrix Storage Representation

 Parent topic: Matrices

 Positive Definite Complex Hermitian Tridiagonal Matrix Storage
 Representation

 The positive definite complex Hermitian tridiagonal matrix is stored
 in the same way a complex Hermitian tridiagonal matrix is stored.
 For a description of this storage technique, see Complex Hermitian Tridiagonal Matrix.

 Parent topic: Postive Definite Complex Hermitian Tridiagonal Matrix

 Sparse Matrix

 A sparse matrix is a matrix having a relatively small number of
 nonzero elements.

 Consider the following as an example of a sparse matrix A:
 ┌ ┐
 | 11 0 13 0 0 0 |
 | 21 22 0 24 0 0 |
 | 0 32 33 0 35 0 |
 | 0 0 43 44 0 46 |
 | 51 0 0 54 55 0 |
 | 61 62 0 0 65 66 |
 └ ┘

 	Sparse Matrix Storage Representation

 Parent topic: Matrices

 Sparse Matrix Storage Representation

 A sparse matrix can be stored in full-matrix storage mode or a packed storage
 mode. When a sparse matrix is stored in full-matrix storage
 mode, all its elements, including its zero elements, are stored in an
 array.

 The seven packed storage modes used for storing sparse matrices are described
 in the following:

 	Compressed-Matrix Storage Mode

 	Compressed-Diagonal Storage Mode

 	Storage-by-Indices

 	Storage-by-Columns

 	Storage-by-Rows

 	Diagonal-Out Skyline Storage Mode

 	Profile-In Skyline Storage Mode

 Note: When the elements of a sparse matrix are stored using
 any of these storage modes, the ESSL subroutines do not check that all elements
 are nonzero. You do not get an error if any elements are zero.

 	Compressed-Matrix Storage Mode

 	Compressed-Diagonal Storage Mode

 	Storage-by-Indices

 	Storage-by-Columns

 	Storage-by-Rows

 	Diagonal-Out Skyline Storage Mode

 	Profile-In Skyline Storage Mode

 Parent topic: Sparse Matrix

 Compressed-Matrix Storage Mode

 The sparse matrix A, stored in compressed-matrix
 storage mode, uses two two-dimensional arrays to define the sparse
 matrix storage, AC and KA. See reference [87]. Given the m by n sparse
 matrix A, having a maximum of nz nonzero
 elements in each row:

 	AC is defined as AC(lda,nz),
 where the leading dimension, lda, must be
 greater than or equal to m. Each row of
 array AC contains the nonzero elements of the corresponding
 row of matrix A. For each row in matrix A containing
 less than nz nonzero elements, the corresponding
 row in array AC is padded with zeros. The elements
 in each row can be stored in any order.

 	KA is an integer array defined as KA(lda,nz),
 where the leading dimension, lda, must be
 greater than or equal to m. It contains
 the column numbers of the matrix A elements that are
 stored in the corresponding positions in array AC.
 For each row in matrix A containing less than nz nonzero
 elements, the corresponding row in array KA is padded
 with any values from 1 to n. Because
 this array is used by the ESSL subroutines to access other target
 vectors in the computation, you must adhere to these required values
 to avoid errors.

 Unless all the rows of sparse matrix A contain
 approximately the same number of nonzero elements, this storage mode
 requires a large amount of storage. This diminishes the performance
 you can obtain by using this storage mode.

 Consider the following as an example of a 6 by 6 sparse matrix A with
 a maximum of four nonzero elements in each row. It shows how matrix A can
 be stored in arrays AC and KA.

 Given the following matrix A: ┌ ┐
 | 11 0 13 0 0 0 |
 | 21 22 0 24 0 0 |
 | 0 32 33 0 35 0 |
 | 0 0 43 44 0 46 |
 | 51 0 0 54 55 0 |
 | 61 62 0 0 65 66 |
 └ ┘

 the arrays are: ┌ ┐
 | 11 13 0 0 |
 | 22 21 24 0 |
 AC = | 33 32 35 0 |
 | 44 43 46 0 |
 | 55 51 54 0 |
 | 66 61 62 65 |
 └ ┘

 ┌ ┐
 | 1 3 * * |
 | 2 1 4 * |
 KA = | 3 2 5 * |
 | 4 3 6 * |
 | 5 1 4 * |
 | 6 1 2 5 |
 └ ┘

 where "*" means you can store any value from
 1 to 6 in that position in the array.

 Symmetric sparse matrices use the same storage technique as nonsymmetric
 sparse matrices; that is, all nonzero elements of a symmetric matrix A must
 be stored in array AC, not just the elements of the
 upper triangle and diagonal of matrix A.

 In general terms, this storage technique can be expressed as follows:

 For each

 a

 ij

 ≠

 0, for

 i

 = 1,

 m

 and

 j

 = 1,

 n

 there exists

 k

 , where 1

 ≤

 k

 ≤

 nz

 ,

 such that

 AC

 (

 i

 ,

 k

) =

 a

 ij

 and

 KA

 (

 i

 ,

 k

) =

 j

 .

 For all other elements of

 AC

 and

 KA

 ,

 AC

 (

 i

 ,

 k

)

 ≤

 n

 where:

 	aij are
 the elements of the m by n matrix A that
 has a maximum of nz nonzero elements in
 each row.

 	Array AC is defined as AC(lda,nz),
 where lda ≥ m.

 	Array KA is defined as KA(lda,nz),
 where lda ≥ m.

 Parent topic: Sparse Matrix Storage Representation

 Compressed-Diagonal Storage Mode

 The storage mode used for square sparse matrices stored in compressed-diagonal
 storage mode has two variations, depending on whether the matrix is
 a general sparse matrix or a symmetric sparse matrix. This explains
 both of these variations; however, the conventions used for numbering
 the diagonals in the matrix, which apply to the storage descriptions,
 are explained first.

 Matrix A of order n has
 2n-1 diagonals. Because k = j-i is
 constant for the elements aij along
 each diagonal, each diagonal can be assigned a diagonal number, k,
 having a value from 1-n to n-1.
 Then the diagonals can be referred to as dk,
 where k = 1-n, n-1.

 The following matrix shows the starting position of each diagonal, dk:

 [image: Matrix Graphic]

 For a general (square) sparse matrix A, compressed-diagonal
 storage mode uses two arrays to define the sparse matrix storage, AD and LA.
 Using the above convention for numbering the diagonals, and given
 that sparse matrix A contains nd diagonals
 having nonzero elements, arrays AD and LA are
 set up as follows:

 	AD is defined as AD(lda,nd),
 where the leading dimension, lda, must be
 greater than or equal to n. Each diagonal
 of matrix A that has at least one nonzero element is
 stored in a column of array AD. All of the elements
 of the diagonal, including its zero elements, are stored in n contiguous
 locations in the array, in the same order as they appear in the diagonal.
 Padding with zeros is required as follows to fill the n locations
 in each column of array AD:

 	Each superdiagonal (k > 0), which has n-k elements,
 is padded with k trailing zeros.

 	The main diagonal (k = 0), which has n elements,
 does not require padding.

 	Each subdiagonal (k < 0), which has n-|k|
 elements, is padded with |k| leading zeros.

 The diagonals can be stored in any columns in array AD.

 	LA is a one-dimensional integer array of length nd,
 containing the diagonal numbers k for the
 diagonals stored in each corresponding column in array AD.

 Because this storage mode requires entire diagonals to be stored,
 if the nonzero elements in matrix A are not concentrated
 along a few diagonals, this storage mode requires a large amount of
 storage. This diminishes the performance you obtain by using this
 storage mode.

 Consider the following as an example of how a 6 by 6 general sparse
 matrix A with 5 nonzero diagonals is stored in arrays AD and LA.

 Given the following matrix A: ┌ ┐
 | 11 0 13 0 0 0 |
 | 21 22 0 24 0 0 |
 | 0 32 33 0 35 0 |
 | 0 0 43 44 0 46 |
 | 51 0 0 54 55 0 |
 | 61 62 0 0 65 66 |
 └ ┘

 the arrays are: ┌ ┐
 | 11 13 0 0 0 |
 | 22 24 21 0 0 |
 AD = | 33 35 32 0 0 |
 | 44 46 43 0 0 |
 | 55 0 54 51 0 |
 | 66 0 65 62 61 |
 └ ┘

 LA = (0, 2, -1, -4, -5)

 For a symmetric sparse matrix, where each superdiagonal k is
 equal to subdiagonal -k, compressed-diagonal
 storage mode uses the same storage technique as for the general sparse
 matrix, except that only the nonzero main diagonal and one diagonal
 of each couple of nonzero diagonals, k and
 -k, are used in setting up arrays AD and LA.
 You can store either the upper or the lower diagonal of each couple.

 Consider the following as an example of a symmetric sparse matrix
 of order 6 and how it is stored in arrays AD and LA,
 using only three nonzero diagonals in the matrix.

 Given the following matrix A: ┌ ┐
 | 11 0 13 0 51 0 |
 | 0 22 0 24 0 62 |
 | 13 0 33 0 35 0 |
 | 0 24 0 44 0 46 |
 | 51 0 35 0 55 0 |
 | 0 62 0 46 0 66 |
 └ ┘

 the arrays are: ┌ ┐
 | 11 13 0 |
 | 22 24 0 |
 AD = | 33 35 0 |
 | 44 46 0 |
 | 55 0 51 |
 | 66 0 62 |
 └ ┘

 LA = (0, 2, -4)

 In general terms, this storage technique can be expressed as follows:

 For each

 d

 k

 ≠

 (0,

 …

 , 0), for

 k

 =

 1-

 n

 ,

 n

 -1

 for

 general

 square sparse matrices, or

 for each unique

 d

 k

 ≠

 (0,

 …

 , 0), for

 k

 =

 1-

 n

 ,

 n

 -1

 for

 symmetric

 sparse matrices,

 there exists

 l

 , where 1

 ≤

 l

 ≤

 nd

 ,

 such that

 LA

 (

 l

)

 =

 k

 and column

 l

 in array

 AD

 contains

 dp

 k

 .

 where:

 	Array AD is defined as AD(lda,nd),
 where lda ≥ n,
 and where nd is the number of nonzero diagonals, dk that
 are stored in array AD.

 	Array LA has nd elements.

 	k is the diagonal number of each diagonal, dk,
 where k = i-j.

 	dpk are the
 diagonals, dk,
 with padding, which are constructed from the sparse matrix A elements, aij,
 for i, j = 1, n as
 follows:
 For superdiagonals (k > 0), dpk has k trailing
 zeros: dpk = (a1,k+1, a2,k+2, …, an-k,n,
 01, …,
 0k)

 For the main diagonal
 (k = 0), dp0 has
 no padding: dp0 = (a11, a22, …, ann)

 For
 subdiagonals (k < 0), dpk has
 |k| leading zeros: dpk = (01, …, 0|k|, a|k|+1,1, a|k|+2,2, …, an, n-|k|)

 Parent topic: Sparse Matrix Storage Representation

 Storage-by-Indices

 For a sparse matrix A, storage-by-indices uses three
 one-dimensional arrays to define the sparse matrix storage, AR, IA,
 and JA. Given the m by n sparse
 matrix A having ne nonzero
 elements, the arrays are set up as follows:

 	AR of (at least) length ne contains
 the ne nonzero elements of the sparse matrix A,
 stored contiguously in any order.

 	IA, an integer array of (at least) length ne contains
 the corresponding row numbers of each nonzero element, aij,
 in matrix A.

 	JA, an integer array of (at least) length ne contains
 the corresponding column numbers of each nonzero element, aij,
 in matrix A.

 Consider the following as an example of a 6 by 6 sparse matrix A and
 how it can be stored in arrays AR, IA,
 and JA.:

 Given the following matrix A: ┌ ┐
 | 11 0 13 0 0 0 |
 | 21 22 0 24 0 0 |
 | 0 32 33 0 35 0 |
 | 0 0 43 44 0 46 |
 | 0 0 0 0 0 0 |
 | 61 62 0 0 65 66 |
 └ ┘

 the arrays are: AR = (11, 22, 32, 33, 13, 21, 43, 24, 66, 46, 35, 62, 61, 65, 44)

 IA = (1, 2, 3, 3, 1, 2, 4, 2, 6, 4, 3, 6, 6, 6, 4)

 JA = (1, 2, 2, 3, 3, 1, 3, 4, 6, 6, 5, 2, 1, 5, 4)

 In general terms, this storage technique can be expressed as follows:

 For each

 a

 ij

 ≠

 0, for

 i

 =

 1,

 m

 and

 j

 =

 1,

 n

 there exists

 k

 , where 1

 ≤

 k

 ≤

 ne

 , such that:

 AR

 (

 k

)

 =

 a

 ij

 IA

 (

 k

)

 =

 i

 JA

 (

 k

)

 =

 j

 where:

 a

 ij

 are the elements of the

 m

 by

 n

 sparse matrix

 A

 .

 Arrays

 AR

 ,

 IA

 , and

 JA

 each have

 ne

 elements.

 Parent topic: Sparse Matrix Storage Representation

 Storage-by-Columns

 For a sparse matrix, A, storage-by-columns uses three
 one-dimensional arrays to define the sparse matrix storage, AR, IA,
 and JA. Given the m by n sparse
 matrix A having ne nonzero
 elements, the arrays are set up as follows:

 	AR of (at least) length ne contains
 the ne nonzero elements of the sparse matrix A,
 stored contiguously. The columns of matrix A are stored
 consecutively from 1 to n in AR.
 The elements in each column of A are stored in any order
 in AR.

 	IA, an integer array of (at least) length ne contains
 the corresponding row numbers of each nonzero element, aij,
 in matrix A.

 	JA, an integer array of (at least) length n+1
 contains the relative starting position of each column of matrix A in
 array AR; that is, each element JA(j)
 of the column pointer array indicates where column j begins
 in array AR. If all elements in column j are
 zero, then JA(j) = JA(j+1).
 The last element, JA(n+1),
 indicates the position after the last element in array AR,
 which is ne+1.

 Consider the following as an example of a 6 by 6 sparse matrix A and
 how it can be stored in arrays AR, IA,
 and JA.

 Given the following matrix A: ┌ ┐
 | 11 0 13 0 0 0 |
 | 21 22 0 24 0 0 |
 | 0 32 33 0 0 0 |
 | 0 0 43 44 0 46 |
 | 0 0 0 0 0 0 |
 | 61 62 0 0 0 66 |
 └ ┘

 the arrays are: AR = (11, 61, 21, 62, 32, 22, 13, 33, 43, 44, 24, 46, 66)

 IA = (1, 6, 2, 6, 3, 2, 1, 3, 4, 4, 2, 4, 6)

 JA = (1, 4, 7, 10, 12, 12, 14)

 In general terms, this storage technique can be expressed as follows:

 For each

 a

 ij

 ≠

 0, for

 i

 =

 1,

 m

 and

 j

 =

 1,

 n

 there exists

 k

 , where 1

 ≤

 k

 ≤

 ne

 , such that

 AR

 (

 k

)

 =

 a

 ij

 IA

 (

 k

)

 =

 i

 And for

 j

 =

 1,

 n

 ,

 JA

 (

 j

)

 =

 k

 , where

 a

 ij

 , in

 AR

 (

 k

), is the first element stored in

 AR

 for column

 j

 JA

 (

 j

)

 =

 JA

 (

 j

 +1), where all

 a

 ij

 =

 0 in column

 j

 JA

 (

 n

 +1)

 =

 ne

 +1

 where:

 a

 ij

 are the elements of the

 m

 by

 n

 sparse matrix

 A

 .

 Arrays

 AR

 and

 IA

 each have

 ne

 elements.

 Array

 JA

 has

 n

 +1 elements.

 Parent topic: Sparse Matrix Storage Representation

 Storage-by-Rows

 The storage mode used for sparse matrices stored by rows has three
 variations, depending on whether the matrix is a general sparse matrix
 or a symmetric sparse matrix. This explains these variations.

 For a general sparse matrix A, storage-by-rows
 uses three one-dimensional arrays to define the sparse matrix storage, AR, IA,
 and JA. Given the m by n sparse
 matrix A having ne nonzero
 elements, the arrays are set up as follows:

 	AR of (at least) length ne contains
 the ne nonzero elements of the sparse matrix A,
 stored contiguously. The rows of matrix A are stored
 consecutively from 1 to m in AR.
 The elements in each row of A are stored in any order
 in AR.

 	IA, an integer array of (at least) length m+1
 contains the relative starting position of each row of matrix A in
 array AR; that is, each element IA(i)
 of the row pointer array indicates where row i begins
 in array AR. If all elements in row i are
 zero, then IA(i) = IA(i+1).
 The last element, IA(m+1),
 indicates the position after the last element in array AR,
 which is ne+1.

 	JA, an integer array of (at least) length ne contains
 the corresponding column numbers of each nonzero element, aij,
 in matrix A.

 Consider the following as an example of a 6 by 6 general sparse
 matrix A and how it can be stored in arrays AR, IA,
 and JA.

 Given the following matrix A: ┌ ┐
 | 11 0 13 0 0 0 |
 | 21 22 0 24 0 0 |
 | 0 32 33 0 0 0 |
 | 0 0 43 44 0 46 |
 | 0 0 0 0 0 0 |
 | 61 62 0 0 0 66 |
 └ ┘

 the arrays are: AR = (11, 13, 24, 22, 21, 32, 33, 44, 43, 46, 61, 62, 66)

 IA = (1, 3, 6, 8, 11, 11, 14)

 JA = (1, 3, 4, 2, 1, 2, 3, 4, 3, 6, 1, 2, 6)

 For a symmetric sparse matrix of order m,
 storage-by-rows uses the same storage technique as for the general
 sparse matrix, except that only the upper or lower triangle and diagonal
 elements are used in setting up arrays AR, IA,
 and JA.

 Consider the following as an example of a symmetric sparse matrix A of
 order 6 and how it can be stored in arrays AR, IA,
 and JA using upper-storage-by-rows, which stores
 only the upper triangle and diagonal elements.

 Given the following matrix A: ┌ ┐
 | 11 0 13 0 0 0 |
 | 0 22 23 24 0 0 |
 | 13 23 33 0 35 0 |
 | 0 24 0 44 0 46 |
 | 0 0 35 0 55 0 |
 | 0 0 0 46 0 0 |
 └ ┘

 the arrays are: AR = (11, 13, 22, 24, 23, 33, 35, 46, 44, 55)

 IA = (1, 3, 6, 8, 10, 11, 11)

 JA = (1, 3, 2, 3, 4, 3, 5, 4, 6, 5)

 Using the same symmetric matrix A, consider the following
 as an example of how it can be stored in arrays AR, IA,
 and JA using lower-storage-by-rows, which stores
 only the lower triangle and diagonal elements: AR = (11, 22, 23, 33, 13, 24, 44, 55, 35, 46)

 IA = (1, 2, 3, 6, 8, 10, 11)

 JA = (1, 2, 2, 3, 1, 2, 4, 5, 3, 4)

 In general terms, this storage technique can be expressed as follows:

 	For each aij ≠ 0,

 	for i = 1, m and j =
 1, n for general sparse matrices

 	or

 	for i = 1, m and j = i, m for
 symmetric sparse matrices using the lower triangle

 	 or

 	for i = 1, m and j =
 1, i for symmetric sparse matrices using
 the upper triangle

 	there exists k, where 1 ≤ k ≤ ne,
 such that

 	AR(k) = aij

 	JA(k) = j

 	

 	And for i = 1, m,

 	IA(i) = k,
 where aij,
 in AR(k), is the first
 element stored in AR for row i

 	IA(i) = IA(i+1),
 where all aij =
 0 in row i

 	IA(m+1) = ne+1

 where:

 	aij are
 the elements of sparse matrix A, which is either an m by n general
 sparse matrix or a symmetric sparse matrix of order m containing ne nonzero
 elements.

 	Arrays AR and JA each have ne elements.

 	Array IA has m+1 elements.

 Parent topic: Sparse Matrix Storage Representation

 Diagonal-Out Skyline Storage Mode

 The diagonal-out skyline storage mode used for sparse matrices
 has two variations, depending on whether the matrix is a general sparse
 matrix or a symmetric sparse matrix. Both of these variations are
 explained here.

 For a general sparse matrix A, diagonal-out
 skyline storage mode uses four one-dimensional arrays to define the
 sparse matrix storage, AU, IDU, AL,
 and IDL. Given the sparse matrix A of
 order n, containing nu+nl-n elements
 under the top and left profiles, the arrays are set up as follows:

 	AU of (at least) length nu contains
 the upper triangle of the sparse matrix A, where the
 columns are stored consecutively from 1 to n in AU in
 the following way. For each column, the elements starting at the diagonal
 element and ending at the topmost nonzero element in the column are
 stored contiguously in AU. The elements stored may
 include zero elements along with the nonzero elements. If all elements
 in the column to be stored are zero, the diagonal element, aii,
 having a value of zero, is stored in AU for that
 column. A total of nu elements are stored
 for the upper triangle of A.

 	IDU, an integer array of (at least) length n+1
 contains the relative position of each diagonal element of matrix A in
 array AU; that is, each element IDU(i)
 of the diagonal pointer array indicates where diagonal element aii is
 stored in array AU. One-origin is used, so the first
 element of IDU is always 1. The last element, IDU(n+1),
 indicates the position after the last element in array AU,
 which is nu+1.

 	AL of (at least) length nl contains
 the lower triangle of the sparse matrix A, where the
 rows are stored consecutively from 1 to n in AL in
 the following way. For each row, the elements starting at the diagonal
 element and ending at the leftmost nonzero element in the row are
 stored contiguously in AL. The elements stored may
 include zero elements along with the nonzero elements. If all elements
 in the row to be stored are zero, the diagonal element, aii,
 having a value of zero, is stored in AL for that
 row. A total of nl elements are stored for
 the lower triangle of A. The values of the diagonal
 elements are meaningless, so you can store any values in those positions
 in AL.

 	IDL, an integer array of (at least) length n+1
 contains the relative position of each diagonal element of matrix A in
 array AL; that is, each element IDL(i)
 of the diagonal pointer array indicates where diagonal element aii is
 stored in array AL. One-origin is used, so the first
 element of IDL is always 1. The last element, IDL(n+1),
 indicates the position after the last element in array AL,
 which is nl+1.

 Consider the following as an example of a 6 by 6 general sparse
 matrix A and how it is stored in arrays AU, IDU, AL,
 and IDL.

 Given the following matrix A: ┌ ┐
 | 0 12 13 0 0 0 |
 | 21 22 0 24 0 0 |
 | 31 0 33 34 0 36 |
 | 41 42 43 44 45 0 |
 | 0 0 0 54 55 56 |
 | 0 0 63 0 65 66 |
 └ ┘

 the arrays are: AU = (0, 22, 12, 33, 0, 13, 44, 34, 24, 55, 45, 66, 56, 0, 36)

 IDU = (1, 2, 4, 7, 10, 12, 16)

 where

 nu

 =15

 AL = (*, *, 21, *, 0, 31, *, 43, 42, 41, *, 54, *, 65, 0, 63)

 IDL = (1, 2, 4, 7, 11, 13, 17)

 where

 nl

 =16

 and where "*" means you do not have to store
 a value in that position in the array. However, these storage positions
 are required.

 For a symmetric sparse matrix of order n,
 diagonal-out skyline storage mode uses the same storage technique
 as for the upper triangle and diagonal elements of the general sparse
 matrix; therefore, only the AU and IDU arrays
 are needed.

 Consider the following as an example of a symmetric sparse matrix A of
 order 6 and how it is stored in arrays AU and IDU.

 Given the following matrix A: ┌ ┐
 | 0 12 13 0 0 0 |
 | 12 22 0 24 0 0 |
 | 13 0 33 34 0 36 |
 | 0 24 34 44 45 0 |
 | 0 0 0 45 55 56 |
 | 0 0 36 0 56 66 |
 └ ┘

 the arrays are: AU = (0, 22, 12, 33, 0, 13, 44, 34, 24, 55, 45, 66, 56, 0, 36)

 IDU = (1, 2, 4, 7, 10, 12, 16)

 where

 nu

 =15

 In general terms, this storage technique can be expressed as follows:

 For general sparse matrices and symmetric sparse matrices:

 For each

 a

 ij

 for

 j

 =

 1,

 n

 and

 i

 =

 j

 ,

 k

 ,

 where

 a

 kj

 is the topmost

 a

 ij

 ≠

 0 in each column

 j

 ,

 there exists

 m

 , where 1

 ≤

 m

 ≤

 nu

 , such that

 AU

 (

 m

 +

 j

 -

 i

) =

 a

 ij

 IDU

 (

 j

)

 =

 m

 for each

 a

 jj

 IDU

 (

 n

 +1)

 =

 nu

 +1

 Also, for general sparse matrices:

 For each

 a

 ij

 for

 i

 =

 1,

 n

 and

 i

 =

 j

 ,

 k

 ,

 where

 a

 ik

 is the leftmost

 a

 ij

 ≠

 0 in each row

 i

 ,

 there exists

 m

 , where 1

 ≤

 m

 ≤

 nl

 , such that

 AL

 (

 m

 +

 i

 -

 j

) =

 a

 ij

 IDL

 (

 i

)

 =

 m

 for each

 a

 ii

 IDL

 (

 n

 +1)

 =

 nl

 +1

 where:

 a

 ij

 are the elements of sparse matrix

 A

 , of order

 n

 .

 Array

 AU

 has

 nu

 elements.

 Array

 AL

 has

 nl

 elements.

 Arrays

 IDU

 and

 IDL

 each have

 n

 +1 elements.

 Parent topic: Sparse Matrix Storage Representation

 Profile-In Skyline Storage Mode

 The profile-in skyline storage mode used for sparse matrices has
 two variations, depending on whether the matrix is a general sparse
 matrix or a symmetric sparse matrix. Both of these variations are
 explained here.

 For a general sparse matrix A, profile-in
 skyline storage mode uses four one-dimensional arrays to define the
 sparse matrix storage, AU, IDU, AL,
 and IDL. Given the sparse matrix A of
 order n, containing nu+nl-n elements
 under the top and left profiles, the arrays are set up as follows:

 	AU of (at least) length nu contains
 the upper triangle of the sparse matrix A, where the
 columns are stored consecutively from 1 to n in AU in
 the following way. For each column, the elements starting at the topmost
 nonzero element in the column and ending at the diagonal element are
 stored contiguously in AU. The elements stored may
 include zero elements along with the nonzero elements. If all elements
 in the column to be stored are zero, the diagonal element, aii,
 having a value of zero, is stored in AU for that
 column. A total of nu elements are stored
 for the upper triangle of A.

 	IDU, an integer array of (at least) length n+1
 contains the relative position of each diagonal element of matrix A in
 array AU; that is, each element IDU(i)
 of the diagonal pointer array indicates where diagonal element aii is
 stored in array AU. One-origin is used, so the first
 element of IDU is always 1. The last element, IDU(n+1),
 indicates the position after the last element in array AU,
 which is nu+1.

 	AL of (at least) length nl contains
 the lower triangle of the sparse matrix A, where the
 rows are stored consecutively from 1 to n in AL in
 the following way. For each row, the elements starting at the leftmost
 nonzero element in the row and ending at the diagonal element are
 stored contiguously in AL. The elements stored may
 include zero elements along with the nonzero elements. If all elements
 in the row to be stored are zero, the diagonal element, aii,
 having a value of zero, is stored in AL for that
 row. A total of nl elements are stored for
 the lower triangle of A. The values of the diagonal
 elements are meaningless, so you can store any values in those positions
 in AL.

 	IDL, an integer array of (at least) length n+1
 contains the relative position of each diagonal element of matrix A in
 array AL; that is, each element IDL(i)
 of the diagonal pointer array indicates where diagonal element aii is
 stored in array AL. One-origin is used, so the first
 element of IDL is always 1. The last element, IDL(n+1),
 indicates the position after the last element in array AL,
 which is nl+1.

 Consider the following as an example of a 6 by 6 general sparse
 matrix A and how it is stored in arrays AU, IDU, AL,
 and IDL.

 Given the following matrix A: ┌ ┐
 | 0 12 13 0 0 0 |
 | 21 22 0 24 0 0 |
 | 31 0 33 34 0 36 |
 | 41 42 43 44 45 0 |
 | 0 0 0 54 55 56 |
 | 0 0 63 0 65 66 |
 └ ┘

 the arrays are: AU = (0, 12, 22, 13, 0, 33, 24, 34, 44, 45, 55, 36, 0, 56, 66)

 IDU = (1, 3, 6, 9, 11, 15, 16)

 where

 nu

 =15

 AL = (*, 21, *, 31, 0, *, 41, 42, 43, *, 54, *, 63, 0, 65, *)

 IDL = (1, 3, 6, 10, 12, 16, 17)

 where

 nl

 =16

 and where "*" means you do not have to store
 a value in that position in the array. However, these storage positions
 are required.

 For a symmetric sparse matrix of order n,
 profile-in skyline storage mode uses the same storage technique as
 for the upper triangle and diagonal elements of the general sparse
 matrix; therefore, only the AU and IDU arrays
 are needed.

 Consider the following as an example of a symmetric sparse matrix A of
 order 6 and how it is stored in arrays AU and IDU.

 Given the following matrix A: ┌ ┐
 | 0 12 13 0 0 0 |
 | 12 22 0 24 0 0 |
 | 13 0 33 34 0 36 |
 | 0 24 34 44 45 0 |
 | 0 0 0 45 55 56 |
 | 0 0 36 0 56 66 |
 └ ┘

 the arrays are: AU = (0, 12, 22, 13, 0, 33, 24, 34, 44, 45, 55, 36, 0, 56, 66)

 IDU = (1, 3, 6, 9, 11, 15, 16) where nu=15

 In general terms, this storage technique can be expressed as follows:

 For general sparse matrices and symmetric sparse matrices:

 For each

 a

 ij

 for

 j

 =

 1,

 n

 and

 i

 =

 k

 ,

 j

 ,

 where

 a

 kj

 is the topmost

 a

 ij

 ≠

 0 in each column

 j

 ,

 there exists

 m

 , where 1

 ≤

 m

 ≤

 nu

 , such that

 AU

 (

 m

 -

 j

 +

 i

) =

 a

 ij

 IDU

 (

 j

)

 =

 m

 for each

 a

 jj

 IDU

 (

 n

 +1)

 =

 nu

 +1

 Also, for general sparse matrices:

 For each

 a

 ij

 for

 i

 =

 1,

 n

 and

 j

 =

 k

 ,

 i

 ,

 where

 a

 ik

 is the leftmost

 a

 ij

 ≠

 0 in each row

 i

 ,

 there exists

 m

 , where 1

 ≤

 m

 ≤

 nl

 , such that

 AL

 (

 m

 -

 i

 +

 j

) =

 a

 ij

 IDL

 (

 i

)

 =

 m

 for each

 a

 ii

 IDL

 (

 n

 +1)

 =

 nl

 +1

 where:

 a

 ij

 are the elements of sparse matrix

 A

 , of order

 n

 .

 Array

 AU

 has

 nu

 elements.

 Array

 AL

 has

 nl

 elements.

 Arrays

 IDU

 and

 IDL

 each have

 n

 +1 elements.

 Parent topic: Sparse Matrix Storage Representation

 Sequences

 A sequence is an ordered collection of numbers. It can be a one-, two-,
 or three-dimensional sequence. Sequences are used in the areas of sorting,
 searching, Fourier transforms, convolutions, and correlations.

 	Real and Complex Elements in Storage

 	One-Dimensional Sequences

 	Two-Dimensional Sequences

 	Three-Dimensional Sequences

 	How Stride Is Used for Three-Dimensional Sequences

 Parent topic: Setting Up Your Data Structures

 Real and Complex Elements in Storage

 Sequences can contain either real or complex data. For sequences containing
 complex data, a special storage arrangement is used to accommodate the two
 parts, a and b, of each complex number, a+bi, in the array. For each complex number, two sequential storage locations
 are required in the array. Therefore, exactly twice as much storage is required
 for complex sequences as for real sequences of the same precision. See How Do You Set Up Your Scalar Data? for a description of real and complex numbers, and How Do You Set Up Your Arrays? for a description of how real and complex data is stored
 in arrays.

 Parent topic: Sequences

 One-Dimensional Sequences

 A one-dimensional sequence appears symbolically as follows, where the subscripts indicate the
 element positions within the sequence:

 (

 x

 1

 ,

 x

 2

 ,

 x

 3

 ,

 …

 ,

 x

 n

)

 	One-Dimensional Sequence Storage Representation

 Parent topic: Sequences

 One-Dimensional Sequence Storage Representation

 A one-dimensional sequence is stored in an array using stride in the same
 way a vector uses stride. For details, see How Stride Is Used for Vectors.

 Parent topic: One-Dimensional Sequences

 Two-Dimensional Sequences

 A two-dimensional sequence appears symbolically as a series of
 columns of elements. (They are represented in the same way as a matrix
 without the square brackets.) The two subscripts indicate the element
 positions in the first and second dimensions, respectively:

 [image: Two-Dimensional Sequence Graphic]

 	Two-Dimensional Sequence Storage Representation

 Parent topic: Sequences

 Two-Dimensional Sequence Storage Representation

 A two-dimensional sequence is stored in an array using the stride for the
 second dimension in the same way that a matrix uses leading dimension. In the simplest form, it uses a stride of 1 for the
 first dimension;
 however, certain subroutines may allow you to specify a stride for the first
 dimension that is greater than 1. For details, see How Leading Dimension Is Used for Matrices.
 (In the area of Fourier transforms, a two-dimensional sequence may be stored
 in transposed form in an array. In this case, the stride for the second dimension
 is 1, and the stride for the first dimension is the leading dimension of the
 array.)

 Parent topic: Two-Dimensional Sequences

 Three-Dimensional Sequences

 A three-dimensional sequence is represented as a series of blocks
 of elements. Each block is equivalent to a two-dimensional sequence.
 The number of blocks indicates the length of the third dimension.
 The three subscripts indicate the element positions in the first,
 second, and third dimensions, respectively:

 [image: Three-Dimensional Sequence Graphic]

 	Three-Dimensional Sequence Storage Representation

 Parent topic: Sequences

 Three-Dimensional Sequence Storage Representation

 Each block of elements in a three-dimensional sequence is stored successively
 in an array. The stride for the third dimension is used to select the elements
 for each successive block of elements in the array. The starting point of
 the three-dimensional sequence is specified as the argument for the sequence
 in the ESSL calling statement. For example, if the three-dimensional sequence
 is contained in array BIG, declared as BIG(1:20,1:30,1:10), and starts at the second element in the first dimension, the third
 element in the second dimension, and the first element in the third dimension
 of array BIG, you should specify BIG(2,3,1) as the argument
 for the sequence, such as in:
 CALL SCFT3 (BIG(2,3,1),20,600,Y,32,2056,16,20,10,1,1.0,AUX,30000)

 See How Stride Is Used for Three-Dimensional Sequences for a detailed description of how three-dimensional
 sequences are stored within arrays using strides.

 Parent topic: Three-Dimensional Sequences

 How Stride Is Used for Three-Dimensional Sequences

 The elements of the three-dimensional sequence can be defined as aijk for i = 1, m, j = 1, n,
 and k = 1, p. The
 first two subscripts, i and j,
 define the elements in the first two dimensions of the sequence, and
 the third subscript, k, defines the elements
 in the third dimension. Using this definition of three-dimensional
 sequences, this explains how these elements are mapped into an array
 using the concepts of stride. (Remember that the elements aijk are
 the elements of the conceptual data structure, the three-dimensional
 sequence to be processed by ESSL. The sequence does not have to include
 all the elements in the array. Strides are used by the ESSL subroutines
 to select the desired elements to be processed in the array.)

 The sequence elements in the first two dimensions are mapped into
 an array in the same way a matrix or two-dimensional sequence is mapped
 into an array. It uses all the items listed in How Leading Dimension Is Used for Matrices, such as the starting
 point, the number of rows and columns, and the leading dimension.
 In the simplest form, the stride for the first dimension, inc1,
 of a three-dimensional sequence is assumed to be 1, as for matrices;
 however, certain subroutines may allow you to specify a stride for
 the first dimension that is greater than 1. The stride for the second
 dimension, inc2, of a three-dimensional
 sequence is equivalent to the leading dimension for a matrix.

 The stride for the third dimension, inc3,
 is used to define the array elements that make up the third dimension
 of the three-dimensional sequence. The stride for the third dimension
 is used as an increment to step through the array to find the starting
 point for each of the p successive blocks
 of elements in the array. The stride, inc3,
 must always be positive. It must always be greater than or equal
 to the number of elements to be processed in the first two dimensions;
 that is, inc3 ≥ (inc2)(n).

 A three-dimensional sequence is usually stored in a one-, two-,
 or three-dimensional array; however, for the sake of this discussion,
 a three-dimensional array is used here. For an array, A,
 declared as A(E1:E2,F1:F2,G1:G2), the strides in
 the first, second, and third dimensions are:

 inc1

 =

 1

 inc2

 =

 (

 E2

 -

 E1

 +1)

 inc3

 =

 (

 E2

 -

 E1

 +1)(

 F2

 -

 F1

 +1)

 Given an array A, declared as A(1:7,1:3,0:3),
 where the lengths of the first, second, and third dimensions are 7,
 3, and 4, respectively, the resulting strides are inc1 = 1, inc2 = 7, and inc3 = 21.

 The starting point for a three-dimensional sequence in an array
 is at the location specified by the argument for the sequence in the
 ESSL calling statement. Using the array A, described
 above, if you specify A(2,2,1) for a three-dimensional
 sequence, where A is defined as follows, in four
 blocks, for planes 0 - 3, respectively:
1.0 8.0 15.0 22.0 29.0 36.0 43.0 50.0 57.0 64.0 71.0 78.0
2.0 9.0 16.0 23.0 30.0 37.0 44.0 51.0 58.0 65.0 72.0 79.0
3.0 10.0 17.0 24.0 31.0 38.0 45.0 52.0 59.0 66.0 73.0 80.0
4.0 11.0 18.0 25.0 32.0 39.0 46.0 53.0 60.0 67.0 74.0 81.0
5.0 12.0 19.0 26.0 33.0 40.0 47.0 54.0 61.0 68.0 75.0 82.0
6.0 13.0 20.0 27.0 34.0 41.0 48.0 55.0 62.0 69.0 76.0 83.0
7.0 14.0 21.0 28.0 35.0 42.0 49.0 56.0 63.0 70.0 77.0 84.0

 then processing begins in the second block of elements at row 2
 and column 2 in array A, which is 30.0. The stride
 in the third dimension is then used to find the starting point for
 each of the next p-1 successive blocks of
 elements in the array. The stride, inc3,
 is added to the starting point p-1 times.
 In this example, the stride for the third dimension is 21, and the
 number of blocks of elements, p, to be processed
 is 3, so the starting points in array A are A(2,2,1),
 A(2,2,2), and A(2,2,3). These are elements
 30.0, 51.0, and 72.0. These array elements then correspond to the
 sequence elements a111, a112,
 and a113, respectively.

 In general terms, this results in the following starting positions
 for the blocks of elements in the array:

 A

 (

 BEGINI

 ,

 BEGINJ

 ,

 BEGINK

)

 A

 (

 BEGINI

 ,

 BEGINJ

 ,

 BEGINK

 +1)

 A

 (

 BEGINI

 ,

 BEGINJ

 ,

 BEGINK

 +2)

 .

 .

 A

 (

 BEGINI

 ,

 BEGINJ

 ,

 BEGINK

 +

 p

 -1)

 Using m = 4, n = 2, and p = 3 to
 define the elements of the three-dimensional data structure in this
 example, the resulting three-dimensional sequence is defined as follows,
 in three blocks, for planes 0 - 2, respectively:

 	Plane 0:

 	Plane 1:

 	Plane 2:

 	a000

 	a010

 	a001

 	a011

 	a002

 	a012

 	a100

 	a110

 	a101

 	a111

 	a102

 	a112

 	a200

 	a210

 	a201

 	a211

 	a202

 	a212

 	a300

 	a310

 	a301

 	a311

 	a302

 	a312

 	Plane 0:

 	Plane 1:

 	Plane 2:

 	30.0

 	37.0

 	51.0

 	58.0

 	72.0

 	79.0

 	31.0

 	38.0

 	52.0

 	59.0

 	73.0

 	80.0

 	32.0

 	39.0

 	53.0

 	60.0

 	74.0

 	81.0

 	33.0

 	40.0

 	54.0

 	61.0

 	75.0

 	82.0

 As shown in this example, the three-dimensional sequence does not
 have to include all the blocks of elements in the array. In this case,
 the three-dimensional sequence includes only the second through the
 fourth block of elements in the array. The first block is not used.
 Elements of an array are selected as they are arranged in storage,
 regardless of the number of dimensions defined in the array. Therefore,
 when using a one- or two-dimensional array to store your three-dimensional
 sequence, you should understand how your array elements are stored
 to ensure that elements are selected properly. See Setting Up Arrays in Fortran for a description of
 array storage.
 Note: Three-dimensional sequences are used by the
 three-dimensional Fourier transform subroutines and the Multidimensional
 Fourier transform subroutines. By specifying certain stride values
 for inc1, inc2,
 and inc3 and declaring your arrays to have
 certain number of dimensions, you achieve optimal performance in these
 subroutines. For details, see Setting Up Your Data for each subroutine.

 Parent topic: Sequences

 Coding Your Program

 This provides you with information you need to code your Fortran,
 C, and C++ programs.

 	Fortran Programs

 	C Programs

 	C++ Programs

 Parent topic: Guide Information

 Fortran Programs

 This describes how to code your Fortran program using any of the ESSL run-time
 libraries.

 	Calling ESSL Subroutines and Functions in Fortran

 	Setting Up a User-Supplied Subroutine for ESSL in Fortran

 	Setting Up Scalar Data in Fortran

 	Setting Up Arrays in Fortran

 	Creating Multiple Threads and Calling ESSL from Your Fortran Program

 	Handling Errors in Your Fortran Program

 	Example of Handling Errors in a Multithreaded Application Program

 Parent topic: Coding Your Program

 Calling ESSL Subroutines and Functions in Fortran

 In Fortran programs, most ESSL subroutines are invoked with the CALL statement:

 CALL subroutine-name (argument-1, . . . , argument-n)

 An example of a calling sequence for the SAXPY subroutine might be:

 CALL SAXPY (5,A,X,J+INC,Y,1)

 The remaining ESSL subroutines are invoked as functions by coding a function
 reference. You first declare the type of value returned by the function: short-
 or long-precision real, short- or long-precision complex, or integer. Then
 you code the function reference as part of an expression in a statement. An
 example of declaring and invoking the DASUM function might be:

 DOUBLE PRECISION DASUM,SUM,X
 .
 .
 .
 SUM = DASUM (N,X,INCX)

 Values are returned differently for ESSL subroutines and functions. For
 subroutines, the results of the computation are returned in an argument specified
 in the calling sequence. In the CALL statement above, the result is returned
 in argument Y. For functions, the result is returned as the value
 of the function. In the assignment statement above, the result is assigned
 to SUM.

 See the Fortran publications for details on how to code the CALL statement
 and a function reference.

 Parent topic: Fortran Programs

 Setting Up a User-Supplied Subroutine for ESSL in Fortran

 Some ESSL numerical quadrature subroutines call a user-supplied
 subroutine, subf, identified in the ESSL
 calling sequence. If your program that calls the numerical quadrature
 subroutines is coded in Fortran, there are some coding rules you must
 follow:

 	You must declare subf as EXTERNAL in
 your program.

 	You should code the subf subroutine
 to the specifications given in Programming Considerations for the SUBF Subroutine. For examples of coding
 a subf subroutine in Fortran, see the subroutine
 descriptions there.

 Parent topic: Fortran Programs

 Setting Up Scalar Data in Fortran

 Table 46 lists
 the scalar data types in Fortran that are used for ESSL. Only those
 types and lengths used by ESSL are listed.

 Table 46. Scalar Data Types in Fortran Programs.

 	Terminology Used by ESSL

 	Fortran Equivalent

 	Character item1
 'N', 'T', 'C' or
 'n', 't', 'c'

 	CHARACTER*1
 'N', 'T', 'C'

 	32-bit logical item 4
 .TRUE., .FALSE.

 	LOGICAL or LOGICAL*4
 .TRUE., .FALSE.

 	64-bit logical item 4
 .TRUE., .FALSE.

 	LOGICAL or LOGICAL*8
 .TRUE., .FALSE.

 	32-bit integer 2, 4
 12345, -12345

 	INTEGER or INTEGER*4
 12345, -12345

 	64-bit integer 4
 12345, -12345

 	INTEGER or INTEGER*8
 12345_8, -12345_8

 	Short-precision real number3
 12.345

 	REAL or REAL*4
 0.12345E2

 	Long-precision real number3
 12.345

 	DOUBLE PRECISION, REAL, or REAL*8

 0.12345D2

 	Short-precision complex number3
 (123.45, -54321.0)

 	COMPLEX or COMPLEX*8
 (123.45E0,
 -543.21E2)

 	Long-precision complex number3
 (123.45, -54321.0)

 	COMPLEX or COMPLEX*16
 (123.45D0,
 -543.21D2)

 	
 Note:

 	ESSL accepts character data in either upper-
 or lowercase in its calling sequences.

 	For a 32-bit integer, 64-bit pointer environment,
 in accordance with the LP64 data model, all ESSL integer arguments
 remain 32 bits except for the iusadr argument for ERRSET.

 	Short- and long-precision numbers look the same
 in this documentation.

 	The default size for INTEGER and LOGICAL data
 entities that have no length or kind specified is 32 bits. However,
 the -qintsize=8 compiler option sets the
 size of such INTEGER and LOGICAL data entities to 64 bits.

 Parent topic: Fortran Programs

 Setting Up Arrays in Fortran

 Arrays are declared in Fortran by specifying the array name, the number
 of dimensions, and the range of each dimension in a DIMENSION statement or
 an explicit data type statement, such as REAL, DOUBLE PRECISION, and so forth.

 	Real and Complex Array Elements

 	One-Dimensional Array

 	Two-Dimensional Array

 	Three-Dimensional Array

 Parent topic: Fortran Programs

 Real and Complex Array Elements

 Each array element can be either a real or complex data item of short or
 long precision. The type of the array determines the size of the element storage
 locations. Short-precision data requires 4 bytes, and long-precision data
 requires 8 bytes. Complex data requires two storage locations of either 4
 or 8 bytes each, for short or long precision, respectively, to accommodate
 the two parts of the complex number: c = a+bi.
 Therefore, exactly twice as much storage is required for complex data as for
 real data of the same precision. See How Do You Set Up Your Scalar Data? for a description
 of real and complex numbers.

 Even though complex data items require two storage locations, the same
 number of elements exist in the array as for real data. A reference to an
 element—for example, C(3)—in an array containing
 complex data gives you the whole complex number; that is, it contains both a and b, where the complex number is expressed as follows:

 C(I)

 ←

 (

 a

 i

 ,

 b

 i

) for a one-dimensional array

 C(I,J)

 ←

 (

 a

 ij

 ,

 b

 ij

) for a two-dimensional array

 C(I,J,K)

 ←

 (

 a

 ijk

 ,

 b

 ijk

) for a three-dimensional array

 Parent topic: Setting Up Arrays in Fortran

 One-Dimensional Array

 For a one-dimensional array in Fortran 77, you can code:
 DIMENSION A(E1:E2)

 where A is the name of the array, E1 is the lower
 bound, and E2 is the upper bound of the single dimension in the
 array. If the lower bound is not specified, such as in A(E2), the
 value is assumed to be 1. The upper bound is required.

 A one-dimensional array is stored in ascending storage locations (relative
 to some base storage address) in the following order:

 	Relative Location

 	Array Element

 	1

 	A(E1)

 	2

 	A(E1+1)

 	3

 	A(E1+2)

 	.

 	.

 	.

 	.

 	.

 	.

 	E2–E1+1

 	A(E2)

 For example, the array A of length 4 specified in the DIMENSION
 statement as A(0:3) and containing the following elements:
 A = (1, 2, 3, 4)

 has its elements arranged in storage as follows:

 	Relative Location

 	Array Element Value

 	1

 	1

 	2

 	2

 	3

 	3

 	4

 	4

 Parent topic: Setting Up Arrays in Fortran

 Two-Dimensional Array

 For a two-dimensional array in Fortran 77, you can code:
 DIMENSION A(E1:E2,F1:F2)

 where A is
 the name of the array. E1 and F1 are
 the lower bounds of the first and second dimensions, respectively,
 and E2 and F2 are the upper bounds
 of the first and second dimensions, respectively. If either of the
 lower bounds is not specified, such as in A(E2,F1:F2),
 the value is assumed to be 1. The upper bounds are always required
 for each dimension. For examples of Fortran 77 usage, see SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX (Matrix-Vector Product for a General Matrix, Its Transpose, or
 Its Conjugate Transpose).

 The elements
 of a two-dimensional array are stored in column-major order; that
 is, they are stored in the following ascending storage locations (relative
 to some base storage address) with the value of the first (row) subscript
 expression increasing most rapidly and the value of the second (column)
 subscript expression increasing least rapidly. Following are the locations
 of the elements in the array:

 	Relative Location

 	Array Element

 	1

 	A(E1,F1) (starting column 1)

 	2

 	A(E1+1,F1)

 	.

 	.

 	.

 	.

 	.

 	.

 	E2–E1+1

 	A(E2,F1)

 	(E2–E1+1)+1

 	A(E1,F1+1) (starting column 2)

 	(E2–E1+1)+2

 	A(E1+1,F1+1)

 	.

 	.

 	.

 	.

 	.

 	.

 	(E2–E1+1)(2)

 	A(E2,F1+1)

 	(E2–E1+1)(2)+1

 	A(E1,F1+2) (starting column 3)

 	(E2–E1+1)(2)+2

 	A(E1+1,F1+2)

 	.

 	.

 	.

 	.

 	.

 	.

 	(E2–E1+1)(F2–F1)

 	A(E2,F2-1)

 	(E2–E1+1)(F2–F1)+1

 	A(E1,F2) (starting column F2-F1+1)

 	(E2–E1+1)(F2–F1)+2

 	A(E1+1,F2)

 	.

 	.

 	.

 	.

 	.

 	.

 	(E2–E1+1)(F2–F1+1)

 	A(E2,F2)

 For example, the 3 by 4 array A specified
 in the DIMENSION statement as A(2:4,1:4) and containing
 the following elements: ┌ ┐
 | 11 12 13 14 |
 A = | 21 22 23 24 |
 | 31 32 33 34 |
 └ ┘

 has its elements arranged in storage as follows:

 	Relative Location

 	Array Element Value

 	1

 	11 (starting column 1)

 	2

 	21

 	3

 	31

 	4

 	12 (starting column 2)

 	5

 	22

 	6

 	32

 	7

 	13 (starting column 3)

 	8

 	23

 	9

 	33

 	10

 	14 (starting column 4)

 	11

 	24

 	12

 	34

 Each element A(I,J) of the
 array A, declared A(1:n,
 1:m), containing real or complex data, occupies
 the storage location whose address is given by the following formula:

 address {

 A

 (

 I

 ,

 J

)} = address {

 A

 } + (

 I

 -1 +

 n

 (

 J

 -1))

 f

 for:

 I

 =

 1,

 n

 and

 J

 =

 1,

 m

 where:

 f

 =

 4 for short-precision real numbers

 f

 =

 8 for long-precision real numbers

 f

 =

 8 for short-precision complex numbers

 f

 =

 16 for long-precision complex numbers

 Parent topic: Setting Up Arrays in Fortran

 Three-Dimensional Array

 For a three-dimensional array in Fortran 77, you can
 code: DIMENSION A(E1:E2,F1:F2,G1:G2)

 where A is
 the name of the array. E1, F1, and G1 are
 the lower bounds of the first, second, and third dimensions, respectively,
 and E2, F2, and G2 are
 the upper bounds of the first, second, and third dimensions, respectively.
 If any of the lower bounds are not specified, such as in A(E1:E2,F1:F2,G2),
 the value is assumed to be 1. The upper bounds are always required
 for each dimension. For examples of Fortran 77 usage, see SCFT3 and DCFT3 (Complex Fourier Transform in Three Dimensions).

 The elements
 of a three-dimensional array can be thought of as a set of two-dimensional
 arrays, stored sequentially in ascending storage locations in the
 array. In the three-dimensional array, the value of the first (row)
 subscript expression increases most rapidly, the second (column) subscript
 expression increases less rapidly, and the third subscript expression
 (set of rows and columns) increases least rapidly. Following are the
 locations of the elements in the array:

 	Relative Location

 	Array Element

 	1

 	A(E1,F1,G1) (starting the first set)

 	2

 	A(E1+1,F1,G1)

 	.

 	.

 	.

 	.

 	.

 	.

 	(E2–E1+1)(F2–F1+1)

 	A(E2,F2,G1)

 	(E2–E1+1)(F2–F1+1)+1

 	A(E1,F1,G1+1) (starting the second set)

 	(E2–E1+1)(F2–F1+1)+2

 	A(E1+1,F1,G1+1)

 	.

 	.

 	.

 	.

 	.

 	.

 	(E2–E1+1)(F2–F1+1)(2)

 	A(E2,F2,G1+1)

 	(E2–E1+1)(F2–F1+1)(2)+1

 	A(E1,F1,G1+2) (starting the third set)

 	(E2–E1+1)(F2–F1+1)(2)+2

 	A(E1+1,F1+2)

 	.

 	.

 	.

 	.

 	.

 	.

 	(E2–E1+1)(F2–F1+1)(G2–G1)

 	A(E2,F2,G2–1)

 	(E2–E1+1)(F2–F1+1)(G2–G1)+1

 	A(E1,F1,G2) (starting the last set*)

 	(E2–E1+1)(F2–F1+1)(G2–G1)+2

 	A(E1+1,F1,G2)

 	.

 	.

 	.

 	.

 	.

 	.

 	(E2–E1+1)(F2–F1+1)(G2–G1+1)

 	A(E2,F2,G2)

 * The last set is the G2–G1+1 set.

 For
 example, the 3 by 2 by 4 array A specified in the
 DIMENSION statement as A(1:3,0:1,2:5) and containing
 the following sets of rows and columns of elements: ┌ ┐ ┌ ┐ ┌ ┐ ┌ ┐
 | 111 121 | | 112 122 | | 113 123 | | 114 124 |
A = | 211 221 | | 212 222 | | 213 223 | | 214 224 |
 | 311 321 | | 312 322 | | 313 323 | | 314 324 |
 └ ┘ └ ┘ └ ┘ └ ┘

 has its elements arranged in storage as follows:

 	Relative Location

 	Array Element Value

 	1

 	111 (starting the first set)

 	2

 	211

 	3

 	311

 	4

 	121

 	5

 	221

 	6

 	321

 	7

 	112 (starting the second set)

 	8

 	212

 	9

 	312

 	10

 	122

 	11

 	222

 	12

 	322

 	13

 	113 (starting the third set)

 	14

 	213

 	15

 	313

 	16

 	123

 	17

 	223

 	18

 	323

 	19

 	114 (starting the fourth set)

 	20

 	214

 	21

 	314

 	22

 	124

 	23

 	224

 	24

 	324

 Each element A(I,J,K) of the
 array A, declared A(1:n,
 1:m, 1:p), containing
 real or complex data, occupies the storage location whose address
 is given by the following formula:

 address {

 A

 (

 I

 ,

 J

 ,

 K

)} = address {

 A

 } + (

 I

 -1 +

 n

 (

 J

 -1) +

 mn

 (

 K

 -1))

 f

 for:

 I

 =

 1,

 n

 J

 =

 1,

 m

 K

 =

 1,

 p

 where:

 f

 =

 4 for short-precision real numbers

 f

 =

 8 for long-precision real numbers

 f

 =

 8 for short-precision complex numbers

 f

 =

 16 for long-precision complex numbers

 Parent topic: Setting Up Arrays in Fortran

 Creating Multiple Threads and Calling ESSL from Your Fortran
 Program

 The following example shows how to create up to a maximum
 of eight threads, where each thread calls the DURAND and DGEICD subroutines.

 Note: Be sure to compile this program with the xlf_r command
 and the -qnosave option.

 program matinv_example
 implicit none
!
! program to invert m nxn random matrices
!
 real(8), allocatable :: A(:,:,:), det(:,:), rcond(:)
 real(8) :: dummy_aux, seed=1998, sd
 integer :: rc, i, m=8, n=500, iopt=3, naux=0
!
! allocate storage
!
 allocate(A(n,n,m),stat=rc)
 call error_exit(rc,"Allocation of matrix A")
 allocate(det(2,m),stat=rc)
 call error_exit(rc,"Allocation of det")
 allocate(rcond(m),stat=rc)
 call error_exit(rc,"Allocation of rcond")
!
! Calculate inverses in parallel
!
!SMP$ parallel do private(i,sd), schedule(static),
!SMP$& share(n,a,iopt,rcond,det,dummy_aux,naux)
 do i=1,m

	 sd = seed + 100*i
 call durand(sd,n*n,A(1,1,i))
 call dgeicd(A(1,1,i),n,n,iopt,rcond(i),det(1,i),
 & dummy_aux,naux)
 enddo

 write(*,*)'Reciprocal condition numbers of the matrices are:'
 write(*,'(4E12.4)') rcond
!
 deallocate(A,stat=rc)

 call error_exit(rc,"Deallocation of matrix A")
 deallocate(det,stat=rc)
 call error_exit(rc,"Deallocation of det")
 deallocate(rcond,stat=rc)
 call error_exit(rc,"Deallocation of rcond")
 stop

 contains
 subroutine error_exit(error_code,string)
 character(*) :: string
 integer :: error_code
 if(error_code .eq. 0) return
 write(0,*)string,": failing return code was ",error_code
 stop 1
 end subroutine error_exit
 end

 Parent topic: Fortran Programs

 Handling Errors in Your Fortran Program

 ESSL provides you with flexibilities in handling both input-argument errors
 and computational errors:

 	For input-argument errors 2015, 2030, and 2200 which are optionally-recoverable
 errors, ESSL allows you to obtain corrected input-argument values and react
 at run time.

 Note: In the case where error 2015 is unrecoverable,
 you have the option of dynamic allocation for most of the aux arguments.
 For details see the subroutine descriptions.

 	For computational errors, ESSL provides a return code and additional information
 to help you analyze the problem in your program and react at run time.

 Input-Argument Errors in Fortran and Computational Errors in Fortran explain how
 to use these facilities by describing the additional statements you must code
 in your program.

 For multithreaded application programs, if you want to initialize the error
 option table and change the default settings for input-argument and computational
 errors, you need to implement the steps shown in Input-Argument Errors in Fortran and Computational Errors in Fortran on each thread that calls ESSL. An example is shown
 in Example of Handling Errors in a Multithreaded Application Program.

 	Input-Argument Errors in Fortran

 	Input-Argument Errors in Fortran Example

 	Computational Errors in Fortran

 	Computational Errors in Fortran Example 1

 	Computational Errors in Fortran Example 2

 	Computational Errors in Fortran Example 3

 Parent topic: Fortran Programs

 Input-Argument Errors in Fortran

 To obtain corrected input-argument values in a Fortran program and to avert
 program termination for the optionally-recoverable input-argument errors 2015,
 2030, and 2200 add the statements in the following steps your program. Steps
 3 and 7 for ERRSAV and ERRSTR, respectively, are optional. Adding these steps
 makes the effect of the call to ERRSET temporary.

 	Step 1. Declare ENOTRM as External

 	Step 2. Call EINFO for Initialization

 	Step 3. Call ERRSAV

 	Step 4. Call ERRSET

 	Step 5. Call ESSL

 	Step 6. Perform the Desired Action

 	Step 7. Call ERRSTR

 Parent topic: Handling Errors in Your Fortran Program

 Step 1. Declare ENOTRM as External

 EXTERNAL ENOTRM

 This declares the ESSL error exit routine ENOTRM as an external
 reference in your program. This should be coded in the beginning
 of your program before any of the following statements.

 Parent topic: Input-Argument Errors in Fortran

 Step 2. Call EINFO for Initialization

 CALL EINFO (0)

 This calls the EINFO subroutine with one argument of value 0 to initialize
 the ESSL error option table. It is required only if you call ERRSET in your
 program. It is coded only once in the beginning of your program before any
 calls to ERRSET. For a description of EINFO, see EINFO (ESSL Error Information-Handler Subroutine).

 Parent topic: Input-Argument Errors in Fortran

 Step 3. Call ERRSAV

 CALL ERRSAV (ierno,tabent)

 (This is an optional step.) This calls the ERRSAV subroutine, which stores
 the error option table entry for error number ierno in an 8-byte
 storage area, tabent, which is accessible to your program. ERRSAV
 must be called for each entry you want to save. This step is used, along with
 step 7, for ERRSTR. For information on whether you should use ERRSAV and ERRSTR,
 see How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?. For an example, see Computational Errors in Fortran Example 3,
 as the use is the same as for computational errors.

 Parent topic: Input-Argument Errors in Fortran

 Step 4. Call ERRSET

 CALL ERRSET (ierno,inoal,inomes,itrace,iusadr,irange)

 This calls the ERRSET subroutine, which allows you to dynamically modify
 the action taken when an error occurs. For optionally-recoverable ESSL input-argument
 errors, you need to call ERRSET only if you want to avoid terminating your
 program and you want the input arguments associated with this error to be
 assigned correct values in your program when the error occurs. For one error
 (ierno) or a range of errors (irange), you can specify:

 	How many times each error can occur before execution terminates (inoal)

 	How many times each error message can be printed (inomes)

 	The ESSL exit routine ENOTRM, to be invoked for the error indicated (iusadr)

 ERRSET must be called for each error code you want to indicate as being
 recoverable. For ESSL, ierno should have a value of 2015, 2030 or
 2200. If you want to eliminate error messages, you should indicate a negative
 number for inomes; otherwise, you should specify 0 for this argument.
 All the other ERRSET arguments should be specified as 0.

 For a list of the default values set in the ESSL error option table, see How Do You Control Error Handling by Setting Values in the ESSL Error Option Table?. For a description of the input-argument errors, see Input-Argument Error Messages(2001-2099). For a description of ERRSET, see Utilities.

 Parent topic: Input-Argument Errors in Fortran

 Step 5. Call ESSL

 CALL name (arg-1,...,arg-n,*yyy,*zzz,...)

 This calls the ESSL subroutine and specifies a branch on one or more return
 code values, where:

 	name specifies the ESSL subroutine.

 	arg-1,..., arg-n are the input and output arguments.

 	yyy, zzz, and any other statement numbers preceded by
 an "*" are the Fortran statement numbers indicating where
 you want to branch when you get a nonzero return code. Each corresponds to
 a different ESSL value. Control goes to the corresponding statement number
 when a nonzero return code value is returned for the CALL statement. Return
 code values are described under “Error Conditions” in each ESSL subroutine
 description.

 Parent topic: Input-Argument Errors in Fortran

 Step 6. Perform the Desired Action

 These are the statements at statement number yyy or zzz,
 shown in the CALL statement in Step 5, and preceded by an "*".
 The statement to which control is passed corresponds to the return
 code value for the error.

 These statements perform whatever
 action is desired when the recoverable error occurs. These statements
 may check the new values set in the input arguments to determine whether
 adequate program storage is available, and then decide whether to
 continue or terminate the program. Otherwise, these statements may
 check that the size of the working storage arrays or the length of
 the transform agrees with other data in the program. The program may
 also store this corrected input argument value for future reference.

 Parent topic: Input-Argument Errors in Fortran

 Step 7. Call ERRSTR

 CALL ERRSTR (ierno,tabent)

 (This is an optional step.) This calls the ERRSTR subroutine, which stores
 an entry in the error option table for error number ierno from an
 8-byte storage area, tabent, which is accessible to your program.
 ERRSTR must be called for each entry you want to store. This step is used,
 along with step 3, for ERRSAV. For information on whether you should use ERRSAV
 and ERRSTR, see How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?. For an example, see Computational Errors in Fortran Example 3,
 as the use is the same as for computational errors.

 Parent topic: Input-Argument Errors in Fortran

 Input-Argument Errors in Fortran Example

 This example shows an error code 2015, which resets the size of
 the work area aux, specified in naux,
 if the value specified is too small. It also indicates that no error
 messages should be issued.

 .
 .
 .
C DECLARE ENOTRM AS EXTERNAL
 EXTERNAL ENOTRM
 .
 .
 .

C INITIALIZE THE ESSL ERROR
C OPTION TABLE
 CALL EINFO(0)
 .
 .
 .

C MAKE ERROR CODE 2015 A RECOVERABLE
C ERROR AND SUPPRESS PRINTING ALL
C ERROR MESSAGES FOR IT
 CALL ERRSET(2015,0,-1,0,ENOTRM,2015)
 .
 .
 .

C CALL ESSL ROUTINE SWLEV.
C IF THE NAUX INPUT
C ARGUMENT IS TOO SMALL, ERROR
C 2015 OCCURS. THE MINIMUM VALUE
C REQUIRED IS STORED IN THE NAUX
C INPUT ARGUMENT AND CONTROL GOES
C TO LABEL 400.
 CALL SWLEV(X,INCX,U,INCU,Y,INCY,N,AUX,NAUX,*400)
 .
 .
 .

C CHECK THE RESULTING INPUT ARGUMENT
C VALUE IN NAUX AND TAKE THE
C DESIRED ACTION
400 .
 .
 .

 Parent topic: Handling Errors in Your Fortran Program

 Computational Errors in Fortran

 To obtain information about an ESSL computational error in a Fortran program,
 add the statements in the following steps to your program. Steps 2 and 7 for
 ERRSAV and ERRSTR, respectively, are optional. Adding these steps makes the
 effect of the call to ERRSET temporary. For a list of those computational
 errors that return information and to which these steps apply, see EINFO (ESSL Error Information-Handler Subroutine).

 	Step 1. Call EINFO for Initialization

 	Step 2. Call ERRSAV

 	Step 3. Call ERRSET

 	Step 4. Call ESSL

 	Step 5. Call EINFO for Information

 	Step 6. Check the Values in the Information Receivers

 	Step 7. Call ERRSTR

 Parent topic: Handling Errors in Your Fortran Program

 Step 1. Call EINFO for Initialization

 CALL EINFO (0)

 This calls the EINFO subroutine with one argument of value 0 to initialize
 the ESSL error option table. It is required only if you call ERRSET in your
 program. It is coded only once in the beginning of your program before any
 calls to ERRSET. For a description of EINFO, see EINFO (ESSL Error Information-Handler Subroutine).

 Parent topic: Computational Errors in Fortran

 Step 2. Call ERRSAV

 CALL ERRSAV (ierno,tabent)

 (This is an optional step.) This calls the ERRSAV subroutine, which stores
 the error option table entry for error number ierno in an 8-byte
 storage area, tabent, which is accessible to your program. ERRSAV
 must be called for each entry you want to save. This step is used, along with
 step 7, for ERRSTR. For information on whether you should use ERRSAV and ERRSTR,
 see How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?.

 Parent topic: Computational Errors in Fortran

 Step 3. Call ERRSET

 CALL ERRSET (ierno,inoal,inomes,itrace,iusadr,irange)

 This calls the ERRSET subroutine, which allows you to dynamically
 modify the action taken when an error occurs. For ESSL computational
 errors, you need to call ERRSET only if you want to change the default
 values in the ESSL error option table. For one error (ierno)
 or a range of errors (irange), you can specify:

 	How many times each error can occur before execution terminates
 (inoal)

 	How many times each error message can be printed (inomes)

 ERRSET must be called for each error code for which you
 want to change the default values. For ESSL, ierno should
 be set to one of the eligible values listed in EINFO (ESSL Error Information-Handler Subroutine). To allow your program
 to continue after an error in the specified range occurs, inoal must
 be set to a value greater than 1. For ESSL, iusadr should
 be specified as either 0 or 1 in a 32-bit integer, 32-bit pointer
 environment (0_8 or 1_8 in a 32-bit integer, 64-bit pointer environment
 or a 64-bit integer, 64-bit pointer environment), so a user exit is
 not taken.

 For a list of the default values
 set in the ESSL error option table, see How Do You Control Error Handling by Setting Values in the ESSL Error Option Table?. For a description of
 the computational errors, see Computational Error Messages(2100-2199).
 For a description of ERRSET, see Utilities.

 Parent topic: Computational Errors in Fortran

 Step 4. Call ESSL

 CALL name (arg-1,...,arg-n,*yyy,*zzz,...)

 This calls the ESSL subroutine and specifies a branch on one or more return
 code values, where:

 	name specifies the ESSL subroutine.

 	arg-1,..., arg-n are the input and output arguments.

 	yyy, zzz, and any other statement numbers preceded by
 an "*" are the Fortran statement numbers indicating where
 you want to branch when you get a nonzero return code. Each corresponds to
 a different ESSL value. Control goes to the corresponding statement number
 when a nonzero return code value is returned for the CALL statement. Return
 code values are described under “Error Conditions” in each ESSL subroutine
 description.

 Parent topic: Computational Errors in Fortran

 Step 5. Call EINFO for Information

 nmbr CALL EINFO (icode,inf1)
 -or-
 nmbr CALL EINFO (icode,inf1,inf2)

 This calls the EINFO subroutine, which returns information about certain
 computational errors, where:

 	nmbr is the statement number yyy, zzz, or any
 of the other statement numbers preceded by an "*" in the CALL
 statement in Step 4, corresponding to the return code value for this error
 code.

 	icode is the error code of interest.

 	inf1 and inf2 are the integer variables used to receive
 the information, where inf1 is assigned a value for all errors, and inf2 is assigned a value for some errors. For a description of EINFO,
 see EINFO (ESSL Error Information-Handler Subroutine).

 Parent topic: Computational Errors in Fortran

 Step 6. Check the Values in the Information Receivers

 These statements check the values returned in the output argument information
 receivers, inf1 and inf2, which contain the information
 about the computational error.

 Parent topic: Computational Errors in Fortran

 Step 7. Call ERRSTR

 CALL ERRSTR (ierno,tabent)

 (This is an optional step.) This calls the ERRSTR subroutine, which stores
 an entry in the error option table for error number ierno from an
 8-byte storage area, tabent, which is accessible to your program.
 ERRSTR must be called for each entry you want to store. This step is used,
 along with step 2, for ERRSAV. For information on whether you should use ERRSAV
 and ERRSTR, see How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?.

 Parent topic: Computational Errors in Fortran

 Computational Errors in Fortran Example 1

 This 32-bit integer, 64-bit pointer environment example shows an
 error code 2104, which returns one piece of information: the index
 of the last diagonal with nonpositive value (I1).

 .
 .
 .
C INITIALIZE THE ESSL ERROR
C OPTION TABLE
 CALL EINFO(0)
 .
 .
 .

C ALLOW 100 ERRORS FOR CODE 2104
 CALL ERRSET(2104,100,0,0,0_8,2104)
 .
 .
 .

C CALL ESSL ROUTINE DPPF.
C IF THE INPUT MATRIX IS NOT
C POSITIVE DEFINITE, CONTROL GOES TO
C LABEL 400
 IOPT=0
 CALL DPPF(APP,N,IOPT,*400)
 .
 .
 .

C CALL THE INFORMATION-HANDLER
C ROUTINE FOR ERROR CODE 2104 TO
C RETURN ONE PIECE OF INFORMATION
C IN VARIABLE I1, THE INDEX OF THE
C LAST NONPOSITIVE DIAGONAL FOUND
C BY ROUTINE DPPF
400 CALL EINFO (2104,I1)
 .
 .
 .

 Parent topic: Handling Errors in Your Fortran Program

 Computational Errors in Fortran Example 2

 This 32-bit integer, 64-bit pointer environment example shows an
 error code 2103, which returns one piece of information: the index
 of the zero diagonal (I1) found by DGEF.

 .
 .
 .
C INITIALIZE THE ESSL ERROR
C OPTION TABLE
 CALL EINFO(0)
 .
 .
 .

C ALLOW 100 ERRORS FOR CODE 2103
 CALL ERRSET(2103,100,0,0,0_8,2103)
 .
 .
 .

C CALL ESSL SUBROUTINE DGEF.
C IF THE INPUT MATRIX IS
C SINGULAR, CONTROL GOES TO
C LABEL 400
 CALL DGEF(A,LDA,N,IPVT,*400)
 .
 .
 .

C CALL THE INFORMATION-HANDLER
C ROUTINE FOR ERROR CODE 2103 TO
C RETURN ONE PIECE OF INFORMATION
C IN VARIABLE I1, THE INDEX OF THE
C LAST ZERO DIAGONAL FOUND BY
C SUBROUTINE DGEF
400 CALL EINFO (2103,I1)
 .
 .
 .

 Parent topic: Handling Errors in Your Fortran Program

 Computational Errors in Fortran Example 3

 This 32-bit integer, 64-bit pointer environment example shows an
 error code 2100, which returns two pieces of information: the lower
 range (I1) and the upper range (I2).
 It uses ERRSAV and ERRSTR to insulate the effects of the error handling
 for error 2100 by this program.

 .
 .
C DECLARE AN AREA TO SAVE THE
C ERROR OPTION TABLE INFORMATION
C FOR ERROR CODE 2100
 CHARACTER*8 SAV2100
 .
 .
C INITIALIZE THE ESSL ERROR
C OPTION TABLE
 CALL EINFO(0)
C SAVE THE EXISTING ERROR OPTION
C TABLE ENTRY FOR ERROR CODE 2100
 CALL ERRSAV(2100,SAV2100)
 .
 .
C ALLOW 255 ERRORS FOR CODE 2100
 CALL ERRSET(2100,255,0,0,0_8,2100)
 .
 .
C CALL ESSL SUBROUTINE DQINT.
C IF AN INVALID INDEX IS
C COMPUTED, CONTROL GOES TO LABEL 400
 CALL DQINT(S,G,OMEGA,X,INCX,N,T,INCT,Y,INCY,M,*400)
 .
 .
C CALL THE INFORMATION-HANDLER
C ROUTINE FOR ERROR CODE 2100 TO
C RETURN TWO PIECES OF INFORMATION.
C VARIABLE I1 CONTAINS THE LOWER RANGE
C FOR THE COMPUTED INDEX.
C VARIABLE I2 CONTAINS THE UPPER RANGE
C FOR THE COMPUTED INDEX.
400 CALL EINFO (2100,I1,I2)
 .
 .
C RESTORE THE PREVIOUS ERROR OPTION
C TABLE ENTRY FOR ERROR CODE 2100.
C ERROR PROCESSING RETURNS TO HOW IT
C WAS BEFORE IT WAS ALTERED BY THE ABOVE
C ERRSET STATEMENT.
 CALL ERRSTR(2100,SAV2100)
 .
 .

 Parent topic: Handling Errors in Your Fortran Program

 Example of Handling Errors in a Multithreaded Application Program

 This 32-bit integer, 64-bit pointer environment example shows how
 to modify the MATINV_EXAMPLE program in Creating Multiple Threads and Calling ESSL from Your Fortran Program with calls to the
 ESSL error handling subroutines. The ESSL error handling subroutines
 are called from each thread to: initialize the error option table,
 save the current error option table values for input-argument error
 2015 and computational error 2105, change the default values for errors
 2015 and 2105, and then restore the original default values for errors
 2015 and 2105.

 program matinv_example
 implicit none
!
! program to invert m nxn random matrices
!
 real(8), allocatable :: A(:,:,:), det(:,:), rcond(:)
 real(8) :: dummy_aux, seed=1998, sd
 integer :: rc, i, m=8, n=500, iopt=3, naux=0
 integer :: inf1(8)
 character(8) :: sav2015(8)
 character(8) :: sav2105(8)!
 external ENOTRM
!
! allocate storage
 allocate(A(n,n,m),stat=rc)
 call error_exit(rc,"Allocation of matrix A")
 allocate(det(2,m),stat=rc)
 call error_exit(rc,"Allocation of det")
 allocate(rcond(m),stat=rc)

 call error_exit(rc,"Allocation of rcond")
!
! Calculate inverses in parallel
!
!SMP$ parallel do private(i,sd), schedule(static),
!SMP$& share(n,m,a,iopt,rcond,det,dummy_aux,naux,sav2015,sav2105,inf1)
 do i=1,m
!
! initialize error handling
 call einfo(0)
!
! Save existing option table values for error 2015
 call errsav(2015,sav2015(i))
!
! Set Error 2015 to be non-recoverable so dgeicd will dynamically
! allocate the work area.
 call errset(2015,100,100,0,1_8,2015)
!
! Save existing option table values for error 2105
 call errsav(2105,sav2105(i))
!
! Set Error 2105 to be recoverable
 call errset(2105,100,100,0,ENOTRM,2105)
!
 sd = seed + 100*i
 call durand(sd,n*n,A(1,1,i))
 call dgeicd(A(1,1,i),n,n,iopt,rcond(i),det(1,i),
 & dummy_aux,naux,*10,*20)
10 goto 30
!
! Catch singular matrix returned by dgeicd.
20 CALL EINFO(2105,inf1(i))
 WRITE(*,*) 'ERROR: Zero pivot found at location ',inf1(i)
!
! Restore the error option table entries
30 continue
 call errstr(2015,SAV2015(i))
 call errstr(2105,SAV2105(i))

 enddo

 write(*,*)'Reciprocal condition numbers of the matrices are:'
 write(*,'(4E12.4)') rcond
!
 deallocate(A,stat=rc)
 call error_exit(rc,"Deallocation of matrix A")
 deallocate(det,stat=rc)
 call error_exit(rc,"Deallocation of det")

 deallocate(rcond,stat=rc)
 call error_exit(rc,"Deallocation of rcond")
 stop
 contains
 subroutine error_exit(error_code,string)
 character(*) :: string
 integer :: error_code
 if(error_code .eq. 0) return
 write(0,*)string,": failing return code was ",error_code
 stop 1
 end subroutine error_exit
 end

 Parent topic: Fortran Programs

 C Programs

 This describes how to code your C program.

 	Calling ESSL Subroutines and Functions in C

 	Passing Arguments in C

 	Setting Up a User-Supplied Subroutine for ESSL in C

 	Setting Up Scalar Data in C

 	Setting Up Complex Data Types in C

 	Using Logical Data in C

 	Setting Up Arrays in C

 	Creating Multiple Threads and Calling ESSL from Your C Program

 	Handling Errors in Your C Program

 Parent topic: Coding Your Program

 Calling ESSL Subroutines and Functions in C

 This shows how to call ESSL subroutines and functions from your C program.

 	Before You Call ESSL

 	Coding the Calling Sequences

 Parent topic: C Programs

 Before You Call ESSL

 Before you can call the ESSL subroutines from your C program, you must
 have the appropriate ESSL header file installed on your system. The ESSL header
 file allows you to code your function calls as described here. It contains
 entries for all the ESSL subroutines. The ESSL header file is distributed
 with the ESSL package. The ESSL header file to be used with the C compiler
 is named essl.h. You should check with your system support group
 to verify that the appropriate ESSL header file is installed.

 In the beginning of your program, before you call any of the ESSL subroutines, you must code the following statement for the ESSL header file:
 #include <essl.h>

 If you are planning to create your own threads for the ESSL Thread-Safe
 or SMP Libraries, you must include the pthread.h header file as
 the first include file in your C program. For an example, see Creating Multiple Threads and Calling ESSL from Your C Program.

 Parent topic: Calling ESSL Subroutines and Functions in C

 Coding the Calling Sequences

 In C programs, the ESSL subroutines, not returning a function value, are
 invoked with the following type of statement:

 subroutine-name (argument-1, . . . , argument-n);

 An example of a calling sequence for SAXPY might be:
 saxpy (5,a,x,incx,y,1);

 The ESSL subroutines returning a function value are invoked with the following
 type of statement:

 function-value-name=subroutine-name (argument-1, . . . , argument-n);

 An example of invoking DASUM might be:
 sum = dasum (n,x,incx);

 See the C publications for details about how to code the function calls.

 Parent topic: Calling ESSL Subroutines and Functions in C

 Passing Arguments in C

 This describes how to pass arguments in your C program.

 	About the Syntax Shown in this Documentation

 	No Optional Arguments

 	Arguments That Must Be Passed by Value

 	Arguments That Must Be Passed by Reference

 Parent topic: C Programs

 About the Syntax Shown in this Documentation

 The argument syntax shown assumes that you have installed and are using
 the ESSL header file. For further details, see Calling ESSL Subroutines and Functions in C.

 Parent topic: Passing Arguments in C

 No Optional Arguments

 In the ESSL calling sequences for C, there are no optional arguments, as
 for some programming languages. You must code all the arguments listed in
 the syntax.

 Parent topic: Passing Arguments in C

 Arguments That Must Be Passed by Value

 All scalar arguments that are not modified must be passed by value in the
 ESSL calling sequence. (This refers to input-only scalar arguments, such as incx, m, and lda.)

 Parent topic: Passing Arguments in C

 Arguments That Must Be Passed by Reference

 Following are the instances in which you pass your arguments by reference
 (as a pointer) in the ESSL calling sequence:

 	Arrays

 	Subroutine Names

 	Output Scalar Arguments

 	Character Arguments

 	Altered Arguments When Using Error Handling

 Parent topic: Passing Arguments in C

 Arrays

 Arguments that are arrays are passed by reference, as usual.

 Parent topic: Arguments That Must Be Passed by Reference

 Subroutine Names

 Some ESSL subroutines call a user-supplied subroutine. The name is part
 of the ESSL calling sequence. It must be passed by reference.

 Parent topic: Arguments That Must Be Passed by Reference

 Output Scalar Arguments

 When an output argument is a scalar data item, it must be passed by reference.
 This is true for all scalar data types: real, complex, and so forth. When this occurs, it is listed in the notes of each subroutine description.

 Parent topic: Arguments That Must Be Passed by Reference

 Character Arguments

 Character arguments must be passed as strings, by reference. You specify
 the character, in upper- or lowercase, in the ESSL calling sequence with double
 quotation marks around it, as in "t". Following is an example of how you
 can call SGEADD, specifying the transa and transb arguments
 as strings n and t, respectively:
 sgeadd (a,5,"n",b,3,"t",c,4,4,3);

 Parent topic: Arguments That Must Be Passed by Reference

 Altered Arguments When Using Error Handling

 If you use ESSL error handling in your C program, as described in Handling Errors in Your C Program, you must pass by reference all the arguments that
 can potentially be altered by ESSL error handling. This applies to all your
 ESSL call statements after the point where you code the #define statement,
 shown in step 1 in Input-Argument Errors in C and in step 1 in Computational Errors in C.
 The two types of ESSL arguments are:

 	naux arguments for auxiliary storage

 	n arguments for transform lengths

 Parent topic: Arguments That Must Be Passed by Reference

 Setting Up a User-Supplied Subroutine for ESSL in C

 Some ESSL numerical quadrature subroutines call a user-supplied subroutine, subf, identified in the ESSL calling sequence. If your program that calls
 the numerical quadrature subroutines is coded in C, there are some coding
 rules you must follow for the subf subroutine:

 	You can code the subf subroutine using only C or Fortran.

 	You must declare subf as an external subroutine in your application
 program.

 	You should code the subf subroutine to the specifications given
 in Programming Considerations for the SUBF Subroutine. For an example of coding a subf subroutine
 in C, see Example 1.

 Parent topic: C Programs

 Setting Up Scalar Data in C

 Table 47 lists the scalar
 data types in C that are used for ESSL. Only those types and lengths
 used by ESSL are listed.

 Table 47. Scalar Data
 Types in C Programs.

 	Terminology Used by ESSL

 	C Equivalent

 	Character item1
 'N', 'T', 'C' or
 'n', 't', 'c'

 	char *
 “n”, “t”,
 “c”

 	32-bit logical item5
 .TRUE., .FALSE.

 	int
 For additional information,
 see Using Logical Data in C.2

 	64-bit logical item5
 .TRUE., .FALSE.

 	long
 For additional information, see Using Logical Data in C.2

 	32-bit integer
 12345, -12345

 	int

 	64-bit integer5
 12345l, -12345l

 	long

 	Short-precision real number4
 12.345

 	float

 	Long-precision real number4
 12.345

 	double

 	Short-precision complex number4
 (123.45, -54321.0)

 	Specify it as described in Setting Up Complex Data Types in C.

 	Long-precision complex number4
 (123.45, -54321.0)

 	Specify it as described in Setting Up Complex Data Types in C.

 	
 Note:

 	ESSL accepts character data in either upper-
 or lowercase in its calling sequences.

 	There are no equivalent data types for logical
 data in C. These require special procedures. For details, see Using Logical Data in C.

 	For a 32-bit integer, 64-bit pointer environment,
 in accordance with the LP64 data model, all ESSL integer arguments
 remain 32-bits except for the iusadr argument
 for ERRSET.

 	Short- and long-precision numbers look the same
 in this documentation.

 	If you are using the ESSL hear file in a 64-bit
 integer, 64-bit pointer environment, add -D_ESV6464 to
 your compiler command to define the integer and logical arguments
 as long.

 Parent topic: C Programs

 Setting Up Complex Data Types in C

 You can set up complex data as follows:

 	Complex Data on AIX

 	Complex Data on Linux (little endian mode)

 	Complex Data on AIX

 	Complex Data on Linux (little endian mode)

 Parent topic: C Programs

 Complex Data on AIX®

 ESSL provides identifiers, cmplx and dcmplx, for complex data
 types, defined in the ESSL header file, as well as two macro definitions, RE and IM, for handling
 the real and imaginary parts of complex numbers:
 #ifndef _CMPLX
 #ifndef _REIM
 #define _REIM 1
 #endif
 typedef union { struct { float _re, _im;}
 _data; double _align;} cmplx;
 #endif
 #ifndef _DCMPLX
 #ifndef _REIM
 #define _REIM 1
 #endif
 typedef union { struct { double _re, _im;}
 _data; double _align;} dcmplx;
 #endif
 #ifdef _REIM
 #define RE(x) ((x)._data._re)
 #define IM(x) ((x)._data._im)
 #endif

 You must, therefore, code an include statement for the ESSL header
 file in the beginning of your program to use these definitions. For
 details, see Calling ESSL Subroutines and Functions in C.

 Assuming you are using the ESSL header file, if you declare data
 items to be of type cmplx or dcmplx,
 you can pass them as short- and long-precision complex data to ESSL,
 respectively. You may want to write a CSET macro to initialize complex
 variables, using the RE and IM macros provided in the ESSL header
 file. Following is an example of how to use the CSET macro to initialize
 the complex variable alpha: #include <essl.h>
 #define CSET(x,a,b) (RE(x)=a, IM(x)=b)
 main()
 {
 cmplx alpha,t[3],s[5];
 .
 .
 .
 CSET (alpha,2.0,3.0);
 caxpy (3,alpha,s,1,t,2);
 .
 .
 .
 }

 If you choose to use your own definitions for complex data, instead
 of those provided in the ESSL header file, you can define _CMPLX and
 _DCMPLX in your program for short- and long-precision complex data,
 respectively, using the following #define statements.
 These statements are coded with your global declares in the front
 of your program and must be coded before the #include statement
 for the ESSL header file. #define _CMPLX
 #define _DCMPLX

 If you prefer to define your complex data at compile time, you
 can use the job processing procedures described in Processing Your Program.

 Parent topic: Setting Up Complex Data Types in C

 Complex Data on Linux (little
 endian mode)

 The ESSL header file supports C99 complex floating-point types
 for complex arithmetic (<complex.h>).

 Assuming you are using the ESSL header file, if you declare data
 items to be of type float_Complex or double_Complex,
 you can pass them as short- and long-precision complex data to ESSL,
 respectively.

 Parent topic: Setting Up Complex Data Types in C

 Using Logical Data in C

 Logical data types are not part of the C language; however, some ESSL subroutines
 require arguments of these data types.

 By coding the following simple macro definitions in your program, you can
 then use TRUE or FALSE in assigning values to or specifying
 any logical arguments passed to ESSL:

 	For 32-bit logical arguments

 	Use this macro definition:
 #define FALSE 0
 #define TRUE 1

 	For 64-bit logical arguments

 	Use this macro definition:
 #define FALSE 0l
 #define TRUE 1l

 Parent topic: C Programs

 Setting Up Arrays in C

 C arrays are arranged in storage in row-major order. This means that the
 last subscript expression increases most rapidly, the next-to-the-last subscript
 expression increases less rapidly, and so forth, with the first subscript
 expression increasing least rapidly. ESSL subroutines require that arrays
 passed as arguments be in column-major order. This is the array storage convention
 used by Fortran, described in Setting Up Arrays in Fortran. To pass an array
 from your C program to ESSL, to have ESSL process the data correctly, and
 to get a result that is in the proper form for your C program, you can do
 any of the following:

 	Build and process the matrix, logically transposed from the outset, and
 transpose the results as necessary.

 	Before the ESSL call, transpose the input arrays. Then, following the
 ESSL call, transpose any arrays updated as output.

 	If there are arguments in the ESSL calling sequence indicating whether
 the arrays are to be processed in normal or transposed form, such as the transa and transb arguments in the _GEMM subroutines, use these
 arguments in combination with the matrix equivalence rules to avoid having
 to transpose your data in separate operations. For further detail, see SGEMMS, DGEMMS, CGEMMS, and ZGEMMS (Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes
 Using Winograd's Variation of Strassen's Algorithm).

 Parent topic: C Programs

 Creating Multiple Threads and Calling ESSL from Your C Program

 The 32-bit integer, 64-bit pointer environment example shown below
 shows how to create two threads, where each thread calls the ISAMAX
 subroutine. To use the pthreads library, you must specify the pthread.h header
 file as the first include file in your program.
 Note: Be sure to
 compile this program with the cc_r command.

 #include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

#include <essl.h>

/* Create structure for argument list */
typedef struct {
 int n;
 float *x;
 int incx;
} arg_list;

/* Define prototype for thread routine */
void *Thread(void *v);

int main()
{
 float sx1[9] = { 1., 2., 7., -8., -5., -10., -9., 10., 6. };
 float sx2[8] = { 1.,12., 7., -8., -5., -10., -9., 19.};
 pthread_t first_th;
 pthread_t second_th;
 int rc;
 arg_list a_l,b_l;

 /* Creating argument list for the first thread */
 a_l.n = 9;
 a_l.incx = 1;
 a_l.x = sx1;

 /* Creating argument list for the second thread */
 b_l.n = 8;
 b_l.incx = 1;
 b_l.x = sx2;

 /* Creating first thread which calls the ESSL subroutine ISAMAX */
 rc = pthread_create(&first_th, NULL, Thread, (void *) &a_l);
 if (rc) exit(-1);

 /* Creating second thread which calls the ESSL subroutine ISAMAX */
 rc = pthread_create(&second_th, NULL, Thread, (void *) &b_l);
 if (rc) exit(-1);

 sleep(1);
 exit(0);
}

/* Thread routine which call ESSL routine ISAMAX */
void *Thread(void *v)
{
 arg_list *al;
 float *x;
 int n,incx;
 int i;

 al = (arg_list *)(v);
 x = al->x;
 n = al->n;
 incx = al->incx;

 /* Calling the ESSL subroutine ISAMAX */
 i = isamax(n,x,incx);
 if (i == 8)
 printf("max for sx2 should be 8 = %d\n",i);
 else
 printf("max for sx1 should be 6 = %d\n",i);
 return NULL;
}

 Parent topic: C Programs

 Handling Errors in Your C Program

 ESSL provides you with flexibilities in handling both input-argument errors
 and computational errors:

 	For input-argument errors 2015, 2030, and 2200, which are optionally-recoverable
 errors, ESSL allows you to obtain corrected input-argument values and react
 at run time.

 Note: In the case where error 2015 is unrecoverable,
 you have the option of dynamic allocation for most of the aux arguments.
 For details see the subroutine descriptions.

 	For computational errors, ESSL provides a return code and additional information
 to help you analyze the problem in your program and react at run time.

 Input-Argument Errors in C and Computational Errors in C explain how
 to use these facilities by describing the additional statements you must code
 in your program.

 For multithreaded application programs, if you want to initialize the error
 option table and change the default settings for input-argument and computational
 errors, you need to implement the steps shown in Input-Argument Errors in C and Computational Errors in C on each thread that calls ESSL.

 	Input-Argument Errors in C

 	Input-Argument Errors in C Example

 	Computational Errors in C

 	Computational Errors in C Example

 Parent topic: C Programs

 Input-Argument Errors in C

 To obtain corrected input-argument values in a C program and to avert program
 termination for the optionally-recoverable input-argument errors 2015, 2030,
 and 2200, add the statements in the following steps to your program. Steps
 4 and 8 for ERRSAV and ERRSTR, respectively, are optional. Adding these steps
 makes the effect of the call to ERRSET temporary.

 	Step 1. Code the Global Statements for ESSL Error Handling

 	Step 2. Declare the Variables

 	Step 3. Do Initialization for ESSL

 	Step 4. Call ERRSAV

 	Step 5. Call ERRSET

 	Step 6. Call ESSL

 	Step 7. Perform the Desired Action

 	Step 8. Call ERRSTR

 Parent topic: Handling Errors in Your C Program

 Step 1. Code the Global Statements for ESSL Error Handling

 /* Code two underscores */
/* before the letters ESVERR */
#define __ESVERR
#include <essl.h>
 extern int enotrm();

 These statements are coded with your global declares in the front of your
 program. The #define must be coded before the #include statement
 for the ESSL header file. The extern statement declares the ESSL
 error exit routine ENOTRM as an external reference in your program. After the point where you code these statements in your program, you must
 pass by reference all ESSL calling sequence arguments that can potentially
 be altered by ESSL error handling. This applies to all your ESSL call
 statements. The two types of arguments are:

 	naux arguments for auxiliary storage

 	n arguments for transform lengths

 Parent topic: Input-Argument Errors in C

 Step 2. Declare the Variables

 int (*iusadr) ();
 int ierno,inoal,inomes,itrace,irange,irc,dummy;
 char storarea[8];

 This declares a pointer, iusadr, to be used for the ESSL error
 exit routine ENOTRM. Also included are declares for the variables used by
 the ESSL and Fortran error-handling subroutines. Note that storarea must
 be 8 characters long. These should be coded in the beginning of your program
 before any of the following statements.

 Parent topic: Input-Argument Errors in C

 Step 3. Do Initialization for ESSL

 iusadr = enotrm;
einfo (0,&dummy,&dummy);

 The first statement sets the function pointer, iusadr, to ENOTRM,
 the ESSL error exit routine. The last statement calls the EINFO subroutine
 to initialize the ESSL error option table, where dummy is a declared
 integer and is a placeholder. For a description of EINFO, see EINFO (ESSL Error Information-Handler Subroutine).
 These statements should be coded only once in the beginning of your program
 before calls to ERRSET.

 Parent topic: Input-Argument Errors in C

 Step 4. Call ERRSAV

 errsav (&ierno,storarea);

 (This is an optional step.) This calls the ERRSAV subroutine, which stores
 the error option table entry for error number ierno in an 8-byte
 storage area, storarea, which is accessible to your program. ERRSAV
 must be called for each entry you want to save. This step is used, along with
 step 8, for ERRSTR. For information on whether you should use ERRSAV and ERRSTR,
 see How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?. For an example, see Computational Errors in C Example,
 as the use is the same as for computational errors.

 Parent topic: Input-Argument Errors in C

 Step 5. Call ERRSET

 errset (&ierno,&inoal,&inomes,&itrace,&iusadr,&irange);

 This calls the ERRSET subroutine, which allows you to dynamically modify
 the action taken when an error occurs. For optionally-recoverable ESSL input-argument
 errors, you need to call ERRSET only if you want to avoid terminating your
 program and you want the input arguments associated with this error to be
 assigned correct values in your program when the error occurs. For one error
 (ierno) or a range of errors (irange), you can specify:

 	How many times each error can occur before execution terminates (inoal)

 	How many times each error message can be printed (inomes)

 	The ESSL exit routine ENOTRM, to be invoked for the error indicated (iusadr)

 ERRSET must be called for each error code you want to indicate as being
 recoverable. For ESSL, ierno should have a value of 2015, 2030, or
 2200. If you want to eliminate error messages, you should indicate a negative
 number for inomes; otherwise, you should specify 0 for this argument.
 All the other ERRSET arguments should be specified as 0.

 For a list of the default values set in the ESSL error option table, see How Do You Control Error Handling by Setting Values in the ESSL Error Option Table?. For a description of the input-argument errors, see Input-Argument Error Messages(2001-2099). For a description of ERRSET, see Utilities.

 Parent topic: Input-Argument Errors in C

 Step 6. Call ESSL

 irc = name (arg1,...,argn);
if irc == rc1
 {
 .
 .
 .
 }

 This calls the ESSL subroutine and specifies a branch on one or more return
 code values, where:

 	name specifies the ESSL subroutine.

 	arg1,...,argn are the input and output arguments. As
 explained in step 1, all arguments that can potentially be altered by error
 handling must be coded by reference.

 	irc is the integer variable containing the return code resulting
 from the computation performed by the ESSL subroutine.

 	rc1, rc2, and so forth are the possible return code
 values that can be passed back from the ESSL subroutine to C. The values can
 be 0, 1, 2, and so forth. Return code values are described under “Error
 Conditions” in each ESSL subroutine description.

 Parent topic: Input-Argument Errors in C

 Step 7. Perform the Desired Action

 These are the statements following the test for each
 value of the return code, returned in irc in
 step 6. These statements perform whatever action is desired when the
 recoverable error occurs. These statements may check the new values
 set in the input arguments to determine whether adequate program storage
 is available, and then decide whether to continue or terminate the
 program. Otherwise, these statements may check that the size of the
 working storage arrays or the length of the transform agrees with
 other data in the program. The program may also store this corrected
 input argument value for future reference.

 Parent topic: Input-Argument Errors in C

 Step 8. Call ERRSTR

 errstr (&ierno,storarea);

 (This is an optional step.) This calls the ERRSTR subroutine, which stores
 an entry in the error option table for error number ierno from an
 8-byte storage area, storarea, which is accessible to your program.
 ERRSTR must be called for each entry you want to store. This step is used,
 along with step 4, for ERRSAV. For information on whether you should use ERRSAV
 and ERRSTR, see How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?. For an example, see Computational Errors in C Example,
 as the use is the same as for computational errors.

 Parent topic: Input-Argument Errors in C

 Input-Argument Errors in C Example

 This 32-bit integer, 64-bit pointer environment example shows an
 error code 2015, which resets the size of the work area aux,
 specified in naux, if the value specified
 is too small. It also indicates that no error messages should be issued.

 .
 .
 .
 /*GLOBAL STATEMENTS FOR ESSL ERROR HANDLING*/
 #define __ESVERR
 #include <essl.h>
 extern int enotrm();
 .
 .
 .

 /*DECLARE THE VARIABLES*/
 main ()
 {
 int (*iusadr) ();
 int ierno,inoal,inomes,itrace,irange,irc,dummy;
 int naux;
 .
 .
 .

 /*INITIALIZE THE POINTER TO THE ENOTRM ROUTINE*/
 iusadr = enotrm;
 .
 .
 .

 /*INITIALIZE THE ESSL ERROR OPTION TABLE*/
 einfo (0,&dummy,&dummy);
 .
 .
 .

 /*MAKE ERROR CODE 2015 A RECOVERABLE ERROR AND
 SUPPRESS PRINTING ALL ERROR MESSAGES FOR IT*/
 ierno = 2015;
 inoal = 0;
 inomes = -1;
 itrace = 0;
 irange = 2015;
 errset (&ierno,&inoal,&inomes,&itrace,&iusadr,&irange);
 .
 .
 .

 /*CALL ESSL SUBROUTINE SWLEV. NAUX IS PASSED BY
 REFERENCE. IF THE NAUX INPUT IS TOO SMALL,
 ERROR 2015 OCCURS. THE MINIMUM VALUE REQUIRED
 IS STORED IN THE NAUX INPUT ARGUMENT, AND THE
 RETURN CODE OF 1 IS SET IN IRC.*/
 irc = swlev (x,incx,u,incu,y,incy,n,aux,&naux);
 if irc == 1

{
 . /*CHECK THE RESULTING INPUT ARGUMENT VALUE
 . IN NAUX AND TAKE THE DESIRED ACTION*/
 .
 }

 .
 .
 .
 }

 Parent topic: Handling Errors in Your C Program

 Computational Errors in C

 To obtain information about an ESSL computational error in a C program,
 add the statements in the following steps to your program. Steps 4 and 9 for
 ERRSAV and ERRSTR, respectively, are optional. Adding these steps makes the
 effect of the call to ERRSET temporary. For a list of those computational
 errors that return information and to which these steps apply, see EINFO (ESSL Error Information-Handler Subroutine).

 	Step 1. Code the Global Statements for ESSL Error Handling

 	Step 2. Declare the Variables

 	Step 3. Do Initialization for ESSL

 	Step 4. Call ERRSAV

 	Step 5. Call ERRSET

 	Step 6. Call ESSL

 	Step 7. Call EINFO for Information

 	Step 8. Check the Values in the Information Receivers

 	Step 9. Call ERRSTR

 Parent topic: Handling Errors in Your C Program

 Step 1. Code the Global Statements for ESSL Error Handling

 /* Code two underscores */
/* before the letters ESVERR */
#define __ESVERR
#include <essl.h>

 These statements are coded with your global declares in the front of your
 program. The #define must be coded before the #include statement
 for the ESSL header file. After the point where you code
 these statements in your program, you must pass by reference all ESSL calling
 sequence arguments that can potentially be altered by ESSL error handling. This applies to all your ESSL call statements. The two types of arguments
 are:

 	naux arguments for auxiliary storage

 	n arguments for transform lengths

 Parent topic: Computational Errors in C

 Step 2. Declare the Variables

 int ierno,inoal,inomes,itrace,iusadr,irange,irc;
 int inf1,inf2,dummy;
 char storarea[8];

 These statements include declares for the variables used by the ESSL and
 Fortran error-handling subroutines. Note that storarea must be 8
 characters long. These should be coded in the beginning of your program before
 any of the following statements.

 Parent topic: Computational Errors in C

 Step 3. Do Initialization for ESSL

 einfo (0,&dummy,&dummy);

 This statement calls the EINFO subroutine to initialize the ESSL error
 option table, where dummy is a declared integer and is a placeholder.
 For a description of EINFO, see EINFO (ESSL Error Information-Handler Subroutine). These statements
 should be coded only once in the beginning of your program before calls to
 ERRSET.

 Parent topic: Computational Errors in C

 Step 4. Call ERRSAV

 errsav (&ierno,storarea);

 (This is an optional step.) This calls the ERRSAV subroutine, which stores
 the error option table entry for error number ierno in an 8-byte
 storage area, storarea, which is accessible to your program. ERRSAV
 must be called for each entry you want to save. This step is used, along with
 step 8, for ERRSTR. For information on whether you should use ERRSAV and ERRSTR,
 see How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?. For an example, see Computational Errors in C Example.

 Parent topic: Computational Errors in C

 Step 5. Call ERRSET

 errset (&ierno,&inoal,&inomes,&itrace,&iusadr,&irange);

 This calls the ERRSET subroutine, which allows you to dynamically modify
 the action taken when an error occurs. For ESSL computational errors, you
 need to call ERRSET only if you want to change the default values in the ESSL
 error option table. For one error (ierno) or a range of errors (irange), you can specify:

 	How many times each error can occur before execution terminates (inoal)

 	How many times each error message can be printed (inomes)

 ERRSET must be called for each error code for which you want to change
 the default values. For ESSL, ierno should be set to one of the eligible
 values listed in EINFO (ESSL Error Information-Handler Subroutine). To allow your program to continue
 after an error in the specified range occurs, inoal must be set to
 a value greater than 1. For ESSL, iusadr should be specified as either
 0 or 1 in a 32-bit integer, 32-bit pointer environment (0l or 1l in a 32-bit integer, 64-bit pointer environment or a 64-bit
 integer, 64-bit pointer environment), so a user exit is not taken.

 For a list of the default values set in the ESSL error option table, see How Do You Control Error Handling by Setting Values in the ESSL Error Option Table?. For a description of the computational errors, see Computational Error Messages(2100-2199). For a description of ERRSET, see Utilities.

 Parent topic: Computational Errors in C

 Step 6. Call ESSL

 irc = name (arg1,...,argn);
if irc == rc1
 {
 .
 .
 .
 }
if irc == rc2
 {
 .
 .
 .
 }

 This calls the ESSL subroutine and specifies a branch on one or more return
 code values, where:

 	name specifies the ESSL subroutine.

 	arg1,...,argn are the input and output arguments. As
 explained in step 1, all arguments that can potentially be altered by error
 handling must be coded by reference.

 	irc is the integer variable containing the return code resulting
 from the computation performed by the ESSL subroutine.

 	rc1, rc2, and so forth are the possible return code
 values that can be passed back from the ESSL subroutine to C. The values can
 be 0, 1, 2, and so forth. Return code values are described under “Error
 Conditions” in each ESSL subroutine description.

 The statements following each test of the return code can perform any desired
 action. This includes calling EINFO for more information about the error,
 as described in step 7.

 Parent topic: Computational Errors in C

 Step 7. Call EINFO for Information

 einfo (ierno,&inf1,&inf2);

 This calls the EINFO subroutine, which returns information about certain
 computational errors, where:

 	ierno is the error code of interest.

 	inf1 and inf2 are the integer variables used to receive
 the information, where inf1 is assigned a value for all errors, and inf2 is assigned a value for some errors. You must specify both arguments,
 as there are no optional arguments for C. Both arguments must be passed by
 reference, because they are output scalar arguments. For a description of
 EINFO, see EINFO (ESSL Error Information-Handler Subroutine).

 Parent topic: Computational Errors in C

 Step 8. Check the Values in the Information Receivers

 These statements check the values returned in the output argument information
 receivers, inf1 and inf2, which contain the information
 about the computational error.

 Parent topic: Computational Errors in C

 Step 9. Call ERRSTR

 errstr (&ierno,storarea);

 (This is an optional step.) This calls the ERRSTR subroutine, which stores
 an entry in the error option table for error number ierno from an
 8-byte storage area, storarea, which is accessible to your program.
 ERRSTR must be called for each entry you want to store. This step is used,
 along with step 4, for ERRSAV. For information on whether you should use ERRSAV
 and ERRSTR, see How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?. For an example, see Computational Errors in C Example.

 Parent topic: Computational Errors in C

 Computational Errors in C Example

 This 32-bit integer, 64-bit pointer environment example shows an
 error code 2105, which returns one piece of information: the index
 of the pivot element (i) near zero, causing
 factorization to fail. It uses ERRSAV and ERRSTR to insulate the effects
 of the error handling for error 2105 by this program.

 .
 .
 /*GLOBAL STATEMENTS FOR ESSL ERROR HANDLING*/
 #define __ESVERR
 #include <essl.h>
 .
 .
 /*DECLARE THE VARIABLES*/
 main ()
 {
 int ierno,inoal,inomes,itrace,irange,irc;
 long int iusadr;
 int inf1,inf2,dummy;
 char sav2105[8];
 .
 .
 /*INITIALIZE THE ESSL ERROR OPTION TABLE*/
 einfo (0,&dummy,&dummy);
 /*SAVE THE EXISTING ERROR OPTION TABLE ENTRY
 FOR ERROR CODE 2105*/
 ierno = 2105;
 errsav (&ierno,sav2105);
 .
 .
 /*MAKE ERROR CODES 2101 THROUGH 2105 RECOVERABLE
 ERRORS AND SUPPRESS PRINTING ALL ERROR MESSAGES
 FOR THEM. THIS SHOWS HOW YOU CODE THE
 ERRSET ARGUMENTS FOR A RANGE OF ERRORS. */
 ierno = 2101;
 inoal = 0;
 inomes = 0; /*A DUMMY ARGUMENT*/
 itrace = 0; /*A DUMMY ARGUMENT*/
 iusadr = 0l; /*A DUMMY ARGUMENT*/
 irange = 2105;
 errset (&ierno,&inoal,&inomes,&itrace, &iusadr,&irange);
 .
 .
 /*CALL ESSL SUBROUTINE DGEICD. IF THE INPUT MATRIX
 IS SINGULAR OR NEARLY SINGULAR, ERROR 2105
 OCCURS. A RETURN CODE OF 2 IS SET IN IRC.*/
 irc = dgeicd (a,lda,n,iopt,&rcond,det,aux,&naux);
 if irc == 2
 {
 /*CALL THE INFORMATION-HANDLER ROUTINE FOR ERROR
 CODE 2105 TO RETURN ONE PIECE OF INFORMATION
 IN VARIABLE INF1, THE INDEX OF THE PIVOT ELEMENT
 NEAR ZERO, CAUSING FACTORIZATION TO FAIL.
 INF2 IS NOT USED, BUT MUST BE SPECIFIED.
 BOTH INF1 AND INF2 ARE PASSED BY REFERENCE,
 BECAUSE THEY ARE OUTPUT SCALAR ARGUMENTS.*/
 ierno = 2105;
 einfo (ierno,&inf1,&inf2);
 /*CHECK THE VALUE IN VARIABLE INF1 AND TAKE THE
 DESIRED ACTION*/
 .
 .
 }
 .
 .
 /*RESTORE THE PREVIOUS ERROR OPTION TABLE ENTRY
 FOR ERROR CODE 2105. ERROR PROCESSING
 RETURNS TO HOW IT WAS BEFORE IT WAS ALTERED BY
 THE ABOVE ERRSAV STATEMENT*/
 ierno = 2105;
 errstr (&ierno,sav2105);
 .
 .
 }

 Parent topic: Handling Errors in Your C Program

 C++ Programs

 This describes how to code your C++ program.

 	Calling ESSL Subroutines and Functions in C++

 	Passing Arguments in C++

 	Setting Up a User-Supplied Subroutine for ESSL in C++

 	Setting Up Scalar Data in C++

 	Using Complex Data in C++

 	Using Logical Data in C++

 	Setting Up Arrays in C++

 	Creating Multiple Threads and Calling ESSL from Your C++ Program

 	Handling Errors in Your C++ Program

 Parent topic: Coding Your Program

 Calling ESSL Subroutines and Functions in C++

 This shows how to call ESSL subroutines and functions from your C++ program.

 	Before You Call ESSL

 	Coding the Calling Sequences

 Parent topic: C++ Programs

 Before You Call ESSL

 Before you can call the ESSL subroutines from your C++ program, you must
 have the appropriate ESSL header file installed on your system. The ESSL header
 file allows you to code your function calls as described here. It contains
 entries for all the ESSL subroutines. The ESSL header file is distributed
 with the ESSL package. The ESSL header file to be used with the C++ compiler
 is named essl.h.

 In the beginning of your program, before you call any of the ESSL subroutines, you must code the following statement for the ESSL header file:
 #include <essl.h>

 If you are creating your own threads for the ESSL Thread-Safe or SMP Libraries,
 you must include the pthread.h header file in your C++ program.
 For an example, see Creating Multiple Threads and Calling ESSL from Your C++ Program.

 Parent topic: Calling ESSL Subroutines and Functions in C++

 Coding the Calling Sequences

 In C++ programs, the ESSL subroutines, not returning a function value,
 are invoked with the following type of statement:

 subroutine-name (argument-1, . . . , argument-n);

 An example of a calling sequence for SAXPY might be:
 saxpy (5,a,x,incx,y,1);

 The ESSL subroutines returning a function value are invoked with the following
 type of statement:

 function-value-name=subroutine-name (argument-1, . . . , argument-n);

 An example of invoking DASUM might be:
 sum = dasum (n,x,incx);

 See the C++ publications for details about how to code the function calls.

 Parent topic: Calling ESSL Subroutines and Functions in C++

 Passing Arguments in C++

 This describes how to pass arguments in your C++ program.

 	About the Syntax Shown in this Documentation

 	No Optional Arguments

 	Arguments That Must Be Passed by Value

 	Arguments That Must Be Passed by Reference

 Parent topic: C++ Programs

 About the Syntax Shown in this Documentation

 The argument syntax shown assumes that you have installed and are using
 the ESSL header file. For further details, see Calling ESSL Subroutines and Functions in C++.

 Parent topic: Passing Arguments in C++

 No Optional Arguments

 In the ESSL calling sequences for C++, there are no optional arguments,
 as for some programming languages. You must code all the arguments listed
 in the syntax.

 Parent topic: Passing Arguments in C++

 Arguments That Must Be Passed by Value

 All scalar arguments that are not modified must be passed by value in the
 ESSL calling sequence. (This refers to input-only scalar arguments, such as incx, m, and lda.)

 Parent topic: Passing Arguments in C++

 Arguments That Must Be Passed by Reference

 Following are the instances in which you pass your arguments by reference
 (as a pointer) in the ESSL calling sequence:

 	Arrays

 	Subroutine Names

 	Output Scalar Arguments

 	Character Arguments

 Parent topic: Passing Arguments in C++

 Arrays

 Arguments that are arrays are passed by reference, as usual.

 Parent topic: Arguments That Must Be Passed by Reference

 Subroutine Names

 Some ESSL subroutines call a user-supplied subroutine. The name is part
 of the ESSL calling sequence. It must be passed by reference.

 Parent topic: Arguments That Must Be Passed by Reference

 Output Scalar Arguments

 When an output scalar argument is a scalar data item, it must be
 passed by reference as shown below. This is true for all scalar data
 types: real, complex, and so forth.

 The ESSL header file supports two alternatives:

 	The arguments are declared to be type reference in the function
 prototype. This is the default. Following is an example of how you
 can call DURAND using this alternative: durand (seed, n, x);

 	The arguments are declared as pointers in the function prototype.
 If you wish to use this alternative, you must define _ESVCPTR using
 one of the following methods:

 	Define _ESVCPTR in your program using a #define statement,
 as shown below: #define _ESVCPTR

 This
 statement is coded with your global declares and must be coded before
 the #include statement for the ESSL header
 file.

 	Define _ESVCPTR at compile time by using the job processing procedure
 described in C++ Program Procedures on AIX and C++ Program Procedures on Linux (little endian mode).

 Following is an example of how you can call DURAND using
 this alternative: durand (&seed, n, x);

 Parent topic: Arguments That Must Be Passed by Reference

 Character Arguments

 Character arguments must be passed as strings, by reference. You specify
 the character, in upper- or lowercase, in the ESSL calling sequence with double
 quotation marks around it, as in "t". Following is an example of how you
 can call SGEADD, specifying the transa and transb arguments
 as strings n and t, respectively:
 sgeadd (a,5,"n",b,3,"t",c,4,4,3);

 Parent topic: Arguments That Must Be Passed by Reference

 Setting Up a User-Supplied Subroutine for ESSL in C++

 Some ESSL numerical quadrature subroutines call a user-supplied subroutine, subf, identified in the ESSL calling sequence. If your program that calls
 the numerical quadrature subroutines is coded in C++, there are some coding
 rules you must follow for the subf subroutine:

 	You can code the subf subroutine using only C, C++, or Fortran.

 	You must declare subf as an external subroutine in your application
 program.

 	You should code the subf subroutine to the specifications given
 in Programming Considerations for the SUBF Subroutine. For an example of coding a subf subroutine
 in C++, see Example 1.

 Parent topic: C++ Programs

 Setting Up Scalar Data in C++

 Table 48 lists the scalar
 data types in C++ that are used for ESSL. Only those types and lengths
 used by ESSL are listed.

 Table 48. Scalar Data
 Types in C++ Programs.

 	Terminology Used by ESSL

 	C++ Equivalent

 	Character item1
 'N', 'T', 'C'
 or 'n', 't', 'c'

 	char *
 “n”, “t”, “c”

 	32-bit logical item8
 .TRUE., .FALSE.

 	int
 For additional information,
 see Using Logical Data in C++.2

 	64-bit logical item8
 .TRUE., .FALSE.

 	long
 For additional information, see Using Logical Data in C++.2

 	32-bit integer
 12345, -12345

 	int

 	64-bit integer8
 12345l, -12345l

 	long

 	Short-precision real number4
 12.345

 	float

 	Long-precision real number4
 12.345

 	double

 	Short-precision complex number4
 (123.45, -54321.0)

 	complex <float>5,
 float_Complex7, or as described in On AIX—Setting Up Short-Precision Complex Data Types If You Are Using the IBM Open Class Complex Mathematics Library in C++.

 	Long-precision complex number4
 (123.45, -54321.0)

 	complex <double>5,
 double_Complex7, or complex6

 	
 Note:

 	ESSL accepts character data in either upper-
 or lowercase in its calling sequences.

 	There are no equivalent data types for logical
 data in C++. These require special procedures. For details, see Using Logical Data in C++.

 	For a 32-bit integer, 64-bit pointer environment,
 in accordance with the LP64 data model, all ESSL integer arguments
 remain 32-bits except for the iusadr argument
 for ERRSET.

 	Short- and long-precision numbers look the
 same in this documentation.

 	This data type is defined in file <complex>.

 	This data type is defined in file <complex.h>
 (supported only on AIX®).

 	This data type is defined in <complex.h> (supported only on Linux little endian mode).

 	If you are using the ESSL header file in a
 64-bit integer, 64-bit pointer environment, add -D_ESV6464 to
 your compiler command to define the integer and logical arguments
 as long.

 Parent topic: C++ Programs

 Using Complex Data in C++

 On AIX®, the ESSL header file
 supports both the IBM® Open Class® Complex Mathematics
 Library (<complex.h>)
 and the Standard Numerics Library facilities
 for complex arithmetic (<complex>).

 On Linux (little endian
 mode), the ESSL header file supports both the Standard Numerics Library
 and C99 floating-point types for complex arithmetic (<complex.h>).

 	On AIX—Selecting the <complex> or <complex.h> Header File

 	On AIX—Setting Up Short-Precision Complex Data Types If You Are Using the IBM Open Class Complex Mathematics Library in C++

 	On Linux (little endian mode) —Selecting the <complex> or <complex.h> Header File

 Parent topic: C++ Programs

 On AIX®—Selecting
 the <complex> or <complex.h> Header File

 Although the header files <complex> and <complex.h>
 are similar in purpose, they are mutually incompatible and cannot
 be simultaneously used.

 If you wish to use the Standard Numerics Library facilities
 for complex arithmetic, you must do one of the following:

 	Code the #include statement for the Standard Numerics Library facilities
 for complex arithmetic (#include <complex>) in your program
 prior to coding the #include statement for the ESSL header file.

 	Define _ESV_COMPLEX_, using one of the following methods:

 	Define _ESV_COMPLEX_ in your program using a #define statement,
 as shown below: #define _ESV_COMPLEX_

 This
 statement is coded with your global declares and must be coded before
 the #include statement for the ESSL header file.

 	Define _ESV_COMPLEX_ at compile time by using the job processing
 procedures described in Processing Your Program.

 If you take none of the preceding steps, the ESSL header file will
 use the IBM® Open Class® Complex Mathematics
 Library.
 The ESSL header file will also use the IBM Open Class Complex Mathematics
 Library if you:

 	Code the #include statement for the IBM Open Class Complex Mathematics
 Library (#include<complex.h>)
 in your program prior to coding the #include statement for the ESSL
 header file.

 Parent topic: Using Complex Data in C++

 On AIX®—Setting
 Up Short-Precision Complex Data Types If You Are Using the IBM® Open Class® Complex Mathematics Library
 in C++

 Short-precision complex data types are not part of the C++ language;
 however, some ESSL subroutines require arguments of these data types.

 	Short-Precision Complex Data

 Parent topic: Using Complex Data in C++

 Short-Precision Complex Data

 ESSL provides an identifier, cmplx, for the short-precision
 complex data type, defined in the ESSL header file, as well as two member
 functions, sreal and simag, for handling the real and
 imaginary parts of short-precision complex numbers:
 #ifndef _CMPLX
 class cmplx
 {
 private:
 float _re,_im;
 public:
 cmplx() { _re = 0.0; _im = 0.0; }
 cmplx(float r, float i = 0.0) { _re = r; _im = i; }
 friend inline float sreal(const cmplx& a) { return a._re; }
 friend inline float simag(const cmplx& a) { return a._im; }
 };
 #endif

 You must, therefore, code an include statement for the ESSL header file
 in the beginning of your program to use these definitions. For details, see Calling ESSL Subroutines and Functions in C++.

 Assuming you are using the ESSL header file, if you declare data items
 to be of type cmplx or complex, you can pass them as
 short- or long-precision complex data to ESSL, respectively. Following is
 an example of how you might code your program:
 #include <complex.h>
 #include <essl.h>
 main()
 {
 cmplx alpha,t[3],s[5];
 complex beta,td[3],sd[5];
 .
 .
 .
 alpha = cmplx(2.0,3.0);
 caxpy (3,alpha,s,1,t,2);
 .
 .
 .
 beta = complex(2.0,3.0);
 zaxpy (3,beta,sd,1,td,2);
 .
 .
 .
 }

 If you choose to use your own definition for short-precision complex data,
 instead of that provided in the ESSL header file, your definition must conform
 to the following rules:

 	The definition must have exactly two variables of type float representing
 the real and imaginary parts of the short-precision complex data. For example:

 struct cmplx { float _re, _im; };

 	 The definition cannot include an explicit destructor.

 In addition, you must do one of the following:

 	Define _CMPLX in your program using the #define statement.
 This statement is coded with your global declares in the front of your program
 and must be coded before the #include statement for the ESSL header
 file, as follows:
 #define _CMPLX

 	Use the job processing procedures described in Processing Your Program to
 define your short-precision complex data at compile time.

 Parent topic: On AIX—Setting Up Short-Precision Complex Data Types If You Are Using the IBM Open Class Complex Mathematics Library in C++

 On Linux (little endian
 mode) —Selecting the <complex> or <complex.h> Header
 File

 Although the header files <complex> and <complex.h>
 are similar in purpose, they are mutually incompatible and cannot
 be simultaneously used.

 If you wish to use the C99 complex floating-point types for complex
 arithmetic, you must do one of the following:

 	Code the #include statement for the C99 complex floating point
 types (#include <complex.h>) in your program prior to coding
 the #include statement for the ESSL header file.

 	Define _ESV_COMPLEX99_, using one of the following methods:

 	Define _ESV_COMPLEX99_ in your program using a #define statement,
 as shown below: #define _ESV_COMPLEX99_

 This
 statement is coded with your global declares and must be coded before
 the #include statement for the ESSL header file.

 	Define _ESV_COMPLEX99_ at compile time by using the job processing
 procedures described in Processing Your Program.

 If you take none of the preceding steps, the ESSL header file will
 use the Standard Numerics Library.
 The ESSL header file will also use the Standard Numerics Library if you code
 the #include statement for the Standard Numerics Library (#include<complex.h>)
 in your program prior to coding the #include statement for the ESSL
 header file.

 Parent topic: Using Complex Data in C++

 Using Logical Data in C++

 Logical data types are not part of the C++ language; however, some ESSL
 subroutines require arguments of these data types.

 By coding the following simple macro definitions in your program, you can
 then use TRUE or FALSE in assigning values to or specifying
 any logical arguments passed to ESSL:

 	For 32-bit logical arguments

 	Use this macro definition:
 #define FALSE 0
 #define TRUE 1

 	For 64-bit logical arguments

 	Use this macro definition:
 #define FALSE 0l
 #define TRUE 1l

 Parent topic: C++ Programs

 Setting Up Arrays in C++

 C++ arrays are arranged in storage in row-major order. This means that
 the last subscript expression increases most rapidly, the next-to-the-last
 subscript expression increases less rapidly, and so forth, with the first
 subscript expression increasing least rapidly. ESSL subroutines require that
 arrays passed as arguments be in column-major order. This is the array storage
 convention used by Fortran, described in Setting Up Arrays in Fortran. To pass
 an array from your C++ program to ESSL, to have ESSL process the data correctly,
 and to get a result that is in the proper form for your C++ program, you
 can do any of the following:

 	Build and process the matrix, logically transposed from the outset, and
 transpose the results as necessary.

 	Before the ESSL call, transpose the input arrays. Then, following the
 ESSL call, transpose any arrays updated as output.

 	If there are arguments in the ESSL calling sequence indicating whether
 the arrays are to be processed in normal or transposed form, such as the transa and transb arguments in the _GEMM subroutines, use these
 arguments in combination with the matrix equivalence rules to avoid having
 to transpose your data in separate operations. For further detail, see SGEMMS, DGEMMS, CGEMMS, and ZGEMMS (Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes
 Using Winograd's Variation of Strassen's Algorithm).

 Parent topic: C++ Programs

 Creating Multiple Threads and Calling ESSL from Your C++ Program

 The 32-bit integer, 64-bit pointer environment
 example shown below shows how to create two threads, where each thread
 calls the ISAMAX subroutine. To use the pthreads library, you must
 remember to code the pthread.h header file in your
 C++ program.
 Note: Be sure to compile this program with the xlC_r command.

 #include "essl.h"
#ifdef __linux
#include <iostream>
std::cout;
#else
#include <iostream.h>
#endif

/* Define prototype for thread routine */
void *Thread(void *v);

/* Define prototype for thread library routine, which is in C */
extern "C" {
#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
int pthread_create(pthread_t *tid, const pthread_attr_t *attr,
 void *(*start_routine)(void *), void *arg);
}
/* Create structure for argument list */
struct arg_list {
 int n;
 float *x;
 int incx;
};
int main()
{
 float sx1[9] = { 1., 2., 7., -8., -5., -10., -9., 10., 6. };
 float sx2[8] = { 1.,12., 7., -8., -5., -10., -9., 19.};
 pthread_t first_th;
 pthread_t second_th;
 int rc;
 struct arg_list a_l,b_l;

 a_l.n = 9;
 a_l.incx = 1;
 a_l.x = sx1;

 b_l.n = 8;
 b_l.incx = 1;
 b_l.x = sx2;

 /* Creating argument list for first thread */
 rc = pthread_create(&first_th, NULL, Thread, (void *) &a_l);
 if (rc) exit(-1);

 /* Creating argument list for second thread */
 rc = pthread_create(&second_th, NULL, Thread, (void *) &b_l);
 if (rc) exit(-1);

 sleep(20);
 exit(0);
}
/* Thread routine which calls the ESSL subroutine ISAMAX */
void* Thread(void *v)
{
 struct arg_list *al;
 float *t;
 int n,incx;
 int i;

 al = (struct arg_list *)(v);
 t = al->x;
 n = al->n;
 incx = al->incx;

 /* Calling the ESSL subroutine ISAMAX */
 i = isamax(n,t,incx);
 if (i == 8)
 cout << "max for sx2 should be 8 = " << i << "\n";
 else
 cout << "max for sx1 should be 6 = " << i << "\n";
 return NULL;
}

 Parent topic: C++ Programs

 Handling Errors in Your C++ Program

 ESSL provides you with flexibilities in handling both input-argument errors
 and computational errors:

 	For input-argument errors 2015, 2030, and 2200 which are optionally-recoverable
 errors, ESSL allows you to obtain corrected input-argument values and react
 at run time.

 Note: In the case where error 2015 is unrecoverable,
 you have the option of dynamic allocation for most of the aux arguments.
 For details see the subroutine descriptions.

 	For computational errors, ESSL provides a return code and additional information
 to help you analyze the problem in your program and react at run time.

 Input-Argument Errors in C++ and Computational Errors in C++ explain how
 to use these facilities by describing the additional statements you must code
 in your program.

 For multithreaded application programs, if you want to initialize the error
 option table and change the default settings for input-argument and computational
 errors, you need to implement the steps shown in Input-Argument Errors in C++ and Computational Errors in C++ on each thread that calls ESSL.

 	Input-Argument Errors in C++

 	Input-Argument Errors in C++ Example

 	Computational Errors in C++

 	Computational Errors in C++ Example

 Parent topic: C++ Programs

 Input-Argument Errors in C++

 To obtain corrected input-argument values in a C++ program and to avert
 program termination for the optionally-recoverable input-argument errors 2015,
 2030, and 2200, add the statements in the following steps to your program.
 Steps 4 and 8 for ERRSAV and ERRSTR, respectively, are optional. Adding these
 steps makes the effect of the call to ERRSET temporary.

 	Step 1. Code the Global Statements for ESSL Error Handling

 	Step 2. Declare the Variables

 	Step 3. Do Initialization for ESSL

 	Step 4. Call ERRSAV

 	Step 5. Call ERRSET

 	Step 6. Call ESSL

 	Step 7. Perform the Desired Action

 	Step 8. Call ERRSTR

 Parent topic: Handling Errors in Your C++ Program

 Step 1. Code the Global Statements for ESSL Error Handling

 /* Code one underscore */
 /* before the letters ESVERR */
 #define _ESVERR
 #ifdef __linux
 #include <iostream>
 #else
 #include <iostream.h>
 #endif
 #include <stdio.h>
 #include <essl.h>
 extern “C” int enotrm(int &,int &);
 extern “C” typedef int (*FN) (int &,int &);

 These statements are coded with your global declares in
 the front of your program. The #define must be coded
 before the #include statements for the ESSL header
 file. The extern statements are required to call
 the ESSL error exit routine ENOTRM as an external reference in your
 program.

 Parent topic: Input-Argument Errors in C++

 Step 2. Declare the Variables

 FN iusadr;
 int ierno,inoal,inomes,itrace,irange,irc,dummy;
 char storarea[8];

 This declares a pointer, iusadr, to be used for the ESSL error
 exit routine ENOTRM. Also included are declares for the variables used by
 the ESSL and Fortran error-handling subroutines. Note that storarea must
 be 8 characters long. These should be coded in the beginning of your program
 before any of the following statements.

 Parent topic: Input-Argument Errors in C++

 Step 3. Do Initialization for ESSL

 iusadr = enotrm;
 dummy = 0;
 einfo (0,dummy,dummy);

 The first statement sets the function pointer, iusadr, to ENOTRM,
 the ESSL error exit routine. The last statement calls the EINFO subroutine
 to initialize the ESSL error option table, where dummy is a declared
 integer and is a placeholder. For a description of EINFO, see EINFO (ESSL Error Information-Handler Subroutine).
 These statements should be coded only once in the beginning of your program
 before calls to ERRSET.

 Parent topic: Input-Argument Errors in C++

 Step 4. Call ERRSAV

 errsav (ierno,storarea);

 (This is an optional step.) This calls the ERRSAV subroutine, which stores
 the error option table entry for error number ierno in an 8-byte
 storage area, storarea, which is accessible to your program. ERRSAV
 must be called for each entry you want to save. This step is used, along with
 step 8, for ERRSTR. For information on whether you should use ERRSAV and ERRSTR,
 see How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?. For an example, see Computational Errors in C++ Example,
 as the use is the same as for computational errors.

 Parent topic: Input-Argument Errors in C++

 Step 5. Call ERRSET

 errset (ierno,inoal,inomes,itrace,&iusadr,irange);

 This calls the ERRSET subroutine, which allows you to dynamically
 modify the action taken when an error occurs. For optionally-recoverable
 ESSL input-argument errors, you need to call ERRSET only if you want
 to avoid terminating your program and you want the input arguments
 associated with this error to be assigned correct values in your program
 when the error occurs. For one error (ierno)
 or a range of errors (irange), you can specify:

 	How many times each error can occur before execution terminates
 (inoal)

 	How many times each error message can be printed (inomes)

 	The ESSL exit routine ENOTRM, to be invoked for the error indicated
 (iusadr)

 ERRSET must be called for each error code you want to
 indicate as being recoverable. For ESSL, ierno should
 have a value of 2015, 2030, or 2200. If you want to eliminate error
 messages, you should indicate a negative number for inomes;
 otherwise, you should specify 0 for this argument. All the other ERRSET
 arguments should be specified as 0.

 For a list of the default
 values set in the ESSL error option table, see How Do You Control Error Handling by Setting Values in the ESSL Error Option Table?. For a description of
 the input-argument errors, see Input-Argument Error Messages(2001-2099).
 For a description of ERRSET, see Utilities.

 Parent topic: Input-Argument Errors in C++

 Step 6. Call ESSL

 irc = name (arg1,...,argn);
 if irc == rc1
 {
 .
 .
 .
 }
 if irc == rc2
 {
 .
 .
 .
 }

 This calls the ESSL subroutine and specifies a branch on one or more return
 code values, where:

 	name specifies the ESSL subroutine.

 	arg1,...,argn are the input and output arguments.

 	irc is the integer variable containing the return code resulting
 from the computation performed by the ESSL subroutine.

 	rc1, rc2, and so forth are the possible return code
 values that can be passed back from the ESSL subroutine to C++. The values
 can be 0, 1, 2, and so forth. Return code values are described under “Error
 Conditions” in each ESSL subroutine description.

 Parent topic: Input-Argument Errors in C++

 Step 7. Perform the Desired Action

 These are the statements following the test for each
 value of the return code, returned in irc in
 step 6. These statements perform whatever action is desired when the
 recoverable error occurs. These statements may check the new values
 set in the input arguments to determine whether adequate program storage
 is available, and then decide whether to continue or terminate the
 program. Otherwise, these statements may check that the size of the
 working storage arrays or the length of the transform agrees with
 other data in the program. The program may also store this corrected
 input argument value for future reference.

 Parent topic: Input-Argument Errors in C++

 Step 8. Call ERRSTR

 errstr (ierno,storarea);

 (This is an optional step.) This calls the ERRSTR subroutine, which stores
 an entry in the error option table for error number ierno from an
 8-byte storage area, storarea, which is accessible to your program.
 ERRSTR must be called for each entry you want to store. This step is used,
 along with step 4, for ERRSAV. For information on whether you should use ERRSAV
 and ERRSTR, see How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?. For an example, see Computational Errors in C++ Example,
 as the use is the same as for computational errors.

 Parent topic: Input-Argument Errors in C++

 Input-Argument Errors in C++ Example

 This 32-bit integer, 64-bit pointer environment example shows an
 error code 2015, which resets the size of the work area aux,
 specified in naux, if the value specified
 is too small. It also indicates that no error messages should be issued.

 .
 .
 .
 /*GLOBAL STATEMENTS FOR ESSL ERROR HANDLING*/
 #define _ESVERR
 #include <essl.h>
 #ifdef __linux
 #include <iostream>
 #else
 #include <iostream.h>
 #endif
 #include <stdio.h>
 extern “C” int enotrm(int &,int &);
 extern “C” typedef int (*FN) (int &,int &);
 .
 .
 .
 /*DECLARE THE VARIABLES*/
 int main ()
 {
 FN iusadr;
 int ierno,inoal,inomes,itrace,irange,irc,dummy;
 int naux;
 .
 .
 .
 /*INITIALIZE THE POINTER TO THE ENOTRM ROUTINE*/
 iusadr = enotrm;
 .
 .
 .
/*INITIALIZE THE ESSL ERROR OPTION TABLE*/
 dummy = 0;
 einfo (0,dummy,dummy);
 .
 .
 .
 /*MAKE ERROR CODE 2015 A RECOVERABLE ERROR AND
 SUPPRESS PRINTING ALL ERROR MESSAGES FOR IT*/
 ierno = 2015;
 inoal = 0;
 inomes = -1;
 itrace = 0;
 irange = 2015;
 errset (ierno,inoal,inomes,itrace,&iusadr,irange);
 .
 .
 .
 /*CALL ESSL SUBROUTINE SWLEV. NAUX IS PASSED BY
 REFERENCE. IF THE NAUX INPUT IS TOO SMALL,
 ERROR 2015 OCCURS. THE MINIMUM VALUE REQUIRED
 IS STORED IN THE NAUX INPUT ARGUMENT, AND THE
 RETURN CODE OF 1 IS SET IN IRC.*/
 irc = swlev (x,incx,u,incu,y,incy,n,aux,naux);
 if irc == 1

{
 . /*CHECK THE RESULTING INPUT ARGUMENT VALUE
 . IN NAUX AND TAKE THE DESIRED ACTION*/
 .
 }

 .
 .
 .
 }

 Parent topic: Handling Errors in Your C++ Program

 Computational Errors in C++

 To obtain information about an ESSL computational error in a C++ program,
 add the statements in the following steps to your program. Steps 4 and 9 for
 ERRSAV and ERRSTR, respectively, are optional. Adding these steps makes the
 effect of the call to ERRSET temporary. For a list of those computational
 errors that return information and to which these steps apply, see EINFO (ESSL Error Information-Handler Subroutine).

 	Step 1. Code the Global Statements for ESSL Error Handling

 	Step 2. Declare the Variables

 	Step 3. Do Initialization for ESSL

 	Step 4. Call ERRSAV

 	Step 5. Call ERRSET

 	Step 6. Call ESSL

 	Step 7. Call EINFO for Information

 	Step 8. Check the Values in the Information Receivers

 	Step 9. Call ERRSTR

 Parent topic: Handling Errors in Your C++ Program

 Step 1. Code the Global Statements for ESSL Error Handling

 /* Code one underscore */
 /* before the letters ESVERR */
 #define _ESVERR
 #ifdef __linux
 #include <iostream>
 #else
 #include <iostream.h>
 #endif
 #include <stdio.h>
 #include <essl.h>

 These statements are coded with your global declares in the front of your
 program. The #define must be coded before the #include statement
 for the ESSL header file.

 Parent topic: Computational Errors in C++

 Step 2. Declare the Variables

 int ierno,inoal,inomes,itrace,iusadr,irange,irc;
 int inf1,inf2,dummy;
 char storarea[8];

 These statements include declares for the variables used by the ESSL and
 Fortran error-handling subroutines. Note that storarea must be 8
 characters long. These should be coded in the beginning of your program before
 any of the following statements.

 Parent topic: Computational Errors in C++

 Step 3. Do Initialization for ESSL

 dummy = 0;
 einfo (0,dummy,dummy);

 The last statement calls the EINFO subroutine to initialize the ESSL error
 option table, where dummy is a declared integer and is a placeholder.
 For a description of EINFO, see EINFO (ESSL Error Information-Handler Subroutine). These statements
 should be coded only once in the beginning of your program before calls to
 ERRSET.

 Parent topic: Computational Errors in C++

 Step 4. Call ERRSAV

 errsav (ierno,storarea);

 (This is an optional step.) This calls the ERRSAV subroutine, which stores
 the error option table entry for error number ierno in an 8-byte
 storage area, storarea, which is accessible to your program. ERRSAV
 must be called for each entry you want to save. This step is used, along with
 step 8, for ERRSTR. For information on whether you should use ERRSAV and ERRSTR,
 see How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?. For an example, see Computational Errors in C++ Example.

 Parent topic: Computational Errors in C++

 Step 5. Call ERRSET

 errset (ierno,inoal,inomes,itrace,&iusadr,irange);

 This calls the ERRSET subroutine, which allows you to dynamically
 modify the action taken when an error occurs. For ESSL computational
 errors, you need to call ERRSET only if you want to change the default
 values in the ESSL error option table. For one error (ierno)
 or a range of errors (irange), you can specify:

 	How many times each error can occur before execution terminates
 (inoal)

 	How many times each error message can be printed (inomes)

 ERRSET must be called for each error code for which you
 want to change the default values. For ESSL, ierno should
 be set to one of the eligible values listed in EINFO (ESSL Error Information-Handler Subroutine). To allow your program
 to continue after an error in the specified range occurs, inoal must
 be set to a value greater than 1. For ESSL, iusadr should
 be specified as either 0 or 1 in a 32-bit environment (0l or 1l in
 a 32-bit integer, 64-bit pointer environment or a 64-bit integer,
 64-bit pointer environment), so a user exit is not taken.

 For
 a list of the default values set in the ESSL error option table, see How Do You Control Error Handling by Setting Values in the ESSL Error Option Table?. For a description of
 the computational errors, see Computational Error Messages(2100-2199).
 For a description of ERRSET, see Utilities.

 Parent topic: Computational Errors in C++

 Step 6. Call ESSL

 irc = name (arg1,...,argn);
 if irc == rc1
 {
 .
 .
 .
 }
 if irc == rc2
 {
 .
 .
 .
 }

 This calls the ESSL subroutine and specifies a branch on one or more return
 code values, where:

 	name specifies the ESSL subroutine.

 	arg1,...,argn are the input and output arguments.

 	irc is the integer variable containing the return code resulting
 from the computation performed by the ESSL subroutine.

 	rc1, rc2, and so forth are the possible return code
 values that can be passed back from the ESSL subroutine to C++. The values
 can be 0, 1, 2, and so forth. Return code values are described under “Error
 Conditions” in each ESSL subroutine description.

 The statements following each test of the return code can perform any desired
 action. This includes calling EINFO for more information about the error,
 as described in step 7.

 Parent topic: Computational Errors in C++

 Step 7. Call EINFO for Information

 einfo (ierno,inf1,inf2);

 This calls the EINFO subroutine, which returns information about certain
 computational errors, where:

 	ierno is the error code of interest.

 	inf1 and inf2 are the integer variables used to receive
 the information, where inf1 is assigned a value for all errors, and inf2 is assigned a value for some errors. You must specify both arguments,
 as there are no optional arguments for C. For a description of EINFO, see EINFO (ESSL Error Information-Handler Subroutine).

 Parent topic: Computational Errors in C++

 Step 8. Check the Values in the Information Receivers

 These statements check the values returned in the output argument information
 receivers, inf1 and inf2, which contain the information
 about the computational error.

 Parent topic: Computational Errors in C++

 Step 9. Call ERRSTR

 errstr (ierno,storarea);

 (This is an optional step.) This calls the ERRSTR subroutine, which stores
 an entry in the error option table for error number ierno from an
 8-byte storage area, storarea, which is accessible to your program.
 ERRSTR must be called for each entry you want to store. This step is used,
 along with step 4, for ERRSAV. For information on whether you should use ERRSAV
 and ERRSTR, see How Can You Control Error Handling in Large Applications by Saving and Restoring Entries in the Error Option Table?. For an example, see Computational Errors in C++ Example.

 Parent topic: Computational Errors in C++

 Computational Errors in C++ Example

 This 32-bit integer, 64-bit pointer environment example shows an
 error code 2105, which returns one piece of information: the index
 of the pivot element (i) near zero, causing
 factorization to fail. It uses ERRSAV and ERRSTR to insulate the effects
 of the error handling for error 2105 by this program.

 .
 .
 /*GLOBAL STATEMENTS FOR ESSL ERROR HANDLING*/
 #define _ESVERR
 #include <essl.h>
 #if defined(__linux)
 #include <iostream>
 #else
 #include <iostream.h>
 #endif
 #include <stdio.h>
 .
 .
 /*DECLARE THE VARIABLES*/
 int main ()
 {
 int ierno,inoal,inomes,itrace,irange,irc;
 long int iusadr;
 int inf1,inf2,dummy;
 char sav2105[8];
 .
 .
 /*INITIALIZE THE ESSL ERROR OPTION TABLE*/
 dummy = 0;
 einfo (0,dummy,dummy);
 /*SAVE THE EXISTING ERROR OPTION TABLE ENTRY
 FOR ERROR CODE 2105*/
 ierno = 2105;
 errsav (ierno,sav2105);
 .
 .
 /*MAKE ERROR CODES 2101 THROUGH 2105 RECOVERABLE
 ERRORS AND SUPPRESS PRINTING ALL ERROR MESSAGES
 FOR THEM. THIS SHOWS HOW YOU CODE THE
 ERRSET ARGUMENTS FOR A RANGE OF ERRORS. */
 ierno = 2101;
 inoal = 0;
 inomes = 0; /*A DUMMY ARGUMENT*/
 itrace = 0; /*A DUMMY ARGUMENT*/
 iusadr = 0l; /*A DUMMY ARGUMENT*/
 irange = 2105;
 errset (ierno,inoal,inomes,itrace,&iusadr,irange);
 .
 .
 /*CALL ESSL SUBROUTINE DGEICD. IF THE INPUT MATRIX
 IS SINGULAR OR NEARLY SINGULAR, ERROR 2105
 OCCURS. A RETURN CODE OF 2 IS SET IN IRC.*/
 irc = dgeicd (a,lda,n,iopt,rcond,det,aux,naux);
 if irc == 2
 {
 /*CALL THE INFORMATION-HANDLER ROUTINE FOR ERROR
 CODE 2105 TO RETURN ONE PIECE OF INFORMATION
 IN VARIABLE INF1, THE INDEX OF THE PIVOT ELEMENT
 NEAR ZERO, CAUSING FACTORIZATION TO FAIL.
 INF2 IS NOT USED, BUT MUST BE SPECIFIED.
 BOTH INF1 AND INF2 ARE PASSED BY REFERENCE,
 BECAUSE THEY ARE OUTPUT SCALAR ARGUMENTS.*/
 ierno = 2105;
 einfo (ierno,inf1,inf2);
 /*CHECK THE VALUE IN VARIABLE INF1 AND TAKE THE
 DESIRED ACTION*/
 .
 .
 }

 .
 .
 /*RESTORE THE PREVIOUS ERROR OPTION TABLE ENTRY
 FOR ERROR CODE 2105. ERROR PROCESSING
 RETURNS TO HOW IT WAS BEFORE IT WAS ALTERED BY
 THE ABOVE ERRSAV STATEMENT*/
 ierno = 2105;
 errstr (ierno,sav2105);
 .
 .
 }

 Parent topic: Handling Errors in Your C++ Program

 Processing Your Program

 This describes the ESSL-specific changes you need
 to make to your job procedures for compiling, linking, and running
 your program.

 You can use any procedures you are currently using to
 compile, link, and run your Fortran, C, and C++ programs, as long
 as you make the necessary modifications required by ESSL.

 	Processing Your Program on AIX

 	Processing Your Program on Linux (little endian mode)

 Parent topic: Guide Information

 Processing Your Program on AIX

 The following notes apply to processing your program
 on AIX®.

 Notes:

 	The default search path for the ESSL libraries is: /usr/lib.
 (Note that /lib is a symbolic link to /usr/lib.)
 If the libraries
 are installed somewhere else, add the path name of that directory
 to the beginning of the LIBPATH environment variable, being
 careful to keep /usr/lib in the path. The correct LIBPATH setting
 is needed both for linking and executing the program.

 For
 example, if you installed the ESSL libraries in /home/me/lib you would
 issue ksh commands similar to the following in order
 to compile and link a program: LIBPATH=/home/me/lib:/usr/lib
 export LIBPATH
 xlf -o myprog myprog.f -lessl

 After setting
 the LIBPATH command, the /home/me/lib directory is the directory
 that gets searched first for the necessary libraries. This same search
 criterion is used at both compile and link time and run time.

 	For the ESSL SMP Libraries, you can use the XLSMPOPTS or OMP_NUM_THREADS environment
 variable to specify options which affect SMP execution. For details,
 see the IBM® Compiler publications.

 	If you are accessing ESSL from a 32-bit integer, 64-bit pointer
 environment program or a 64-bit integer, 64-bit pointer environment
 program, you must add the -q64 compiler
 option.

 	If you are accessing ESSL from a 64-bit integer, 64-bit pointer
 environment program, you may want to use the -qintsize=8 compiler
 option.

 	ESSL supports the XL Fortran compile-time option -qextname.
 For details, see the Fortran manuals.

 	Fortran 90 programmers may be interested in the -qessl compiler
 option which allows the use of ESSL routines in place of Fortran 90
 intrinsic procedures. For details, see the Fortran manuals.

 	In your job procedures, you must use only the required software products listed in
 Required Software Products on AIX.

 	Fortran Program Procedures on AIX

 	C Program Procedures on AIX

 	C++ Program Procedures on AIX

 Parent topic: Processing Your Program

 Fortran Program Procedures on AIX

 You do not need to modify your existing Fortran compilation
 procedures when using ESSL.

 When linking and running your
 program, you must modify your existing job procedures for ESSL in
 order to set up the necessary libraries.

 If you are accessing
 ESSL from a Fortran program, you can compile and link using the commands
 shown in the table below.

 Table 49. Fortran
 Compile Commands on AIX.

 	ESSL Library

 	Environment

 	Fortran Compile Command

 	Serial

 	32-bit integer, 32-bit pointer

 	 xlf_r -O -qnosave xyz.f -lessl

 	32-bit integer, 64-bit pointer

 	 xlf_r -O -qnosave -q64 xyz.f -lessl

 	64-bit integer, 64-bit pointer

 	 xlf_r -O -qnosave -q64 xyz.f -lessl6464

 	SMP

 	32-bit integer, 32-bit pointer

 	 xlf_r -O -qnosave xyz.f -lesslsmp

 	32-bit integer, 64-bit pointer

 	 xlf_r -O -qnosave -q64 xyz.f -lesslsmp

 	64-bit integer, 64-bit pointer

 	 xlf_r -O -qnosave -q64 xyz.f -lesslsmp6464

 where xyz.f is
 the name of your Fortran program.

 If you want to use the FFTW
 Wrapper libraries with your Fortran program, the header file fftw3.f
 contains the constant definitions used by the FFTW wrappers. To use
 these definitions, you can do one of the following:

 	Add the following line to your Fortran application:

 include "fftw3.f"

 	Imbed the fftw3.f header file in your application.

 You can compile and link with the FFTW Wrapper libraries using
 the command shown in the table below (assuming that the FFTW Wrapper
 header files were installed in /usr/local/include).

 Table 50. Fortran Compile Commands on AIX for use with FFTW Wrapper libraries.

 	ESSL Library

 	Environment

 	Fortran Compile Command

 	Serial

 	32-bit integer, 32-bit pointer

 	 xlf_r -O -qnosave xyz.f -lessl
 -I/usr/local/include -lfftw3_essl -L/usr/local/lib

 	32-bit integer, 64-bit pointer

 	 xlf_r -O -qnosave -q64 xyz.f -lessl
 -I/usr/local/include -lfftw3_essl_64 -L/usr/local/lib

 	SMP

 	32-bit integer, 32-bit pointer

 	 xlf_r -O -qnosave xyz.f -lesslsmp
 -I/usr/local/include -lfftw3_essl -L/usr/local/lib

 	32-bit integer, 64-bit pointer

 	 xlf_r -O -qnosave -q64 xyz.f -lesslsmp
 -I/usr/local/include -lfftw3_essl_64 -L/usr/local/lib

 For additional information on the FFTW Wrapper libraries,
 see FFTW Version 3.1.2 to ESSL Wrapper Libraries.

 ESSL
 supports the XL Fortran compile-time option -qextname. For
 details, see the Fortran manuals.

 Parent topic: Processing Your Program on AIX

 C Program Procedures on AIX

 The ESSL header file essl.h, used for
 C and C++ programs, is installed in the /usr/include directory.
 If you are using the ESSL header file in a 64-bit integer, 64-bit
 pointer environment, add -D_ESV6464 to your
 compile and link command.

 If you do want to specify your own
 definitions for short- and long-precision complex data, add -D_CMPLX and -D_DCMPLX,
 respectively, to your compile and link command. Otherwise, you automatically
 use the definitions of short- and long-precision complex data provided
 in the ESSL header file (as shown in the table below).

 When
 linking and running your program, you must modify your existing job
 procedures for ESSL, to set up the necessary libraries.

 Table 51. C Compile and Link Commands on AIX.

 	ESSL Library

 	Environment

 	C Compile Command

 	Serial

 	32-bit integer, 32-bit pointer

 	 cc_r -O xyz.c -lessl

cc_r -O -D_CMPLX -D_DCMPLX xyz.c -lessl

 	32-bit integer, 64-bit pointer

 	 cc_r -O -q64 xyz.c -lessl

cc_r -O -D_CMPLX -D_DCMPLX -q64 xyz.c -lessl

 	64-bit integer, 64-bit pointer

 	 cc_r -O -D_ESV6464 -q64 xyz.c -lessl6464

cc_r -O -D_ESV6464 -D_CMPLX -D_DCMPLX -q64 xyz.c -lessl6464

 	SMP

 	32-bit integer, 32-bit pointer

 	 cc_r -O xyz.c -lesslsmp

cc_r -O -D_CMPLX -D_DCMPLX xyz.c -lesslsmp

 	32-bit integer, 64-bit pointer

 	 cc_r -O -q64 xyz.c -lesslsmp

cc_r -O -D_CMPLX -D_DCMPLX -q64 xyz.c -lesslsmp

 	64-bit integer, 64-bit pointer

 	 cc_r -O -D_ESV6464 -q64 xyz.c -lesslsmp6464

cc_r -O -D_ESV6464 -D_CMPLX -D_DCMPLX -q64 xyz.c -lesslsmp6464

 If you want to use the FFTW Wrapper libraries with your
 C program, you must use header file fftw3_essl.h instead of fftw3.h.
 You can compile and link with the FFTW Wrapper libraries using the
 command shown in the table below (assuming that the FFTW Wrapper header
 files were installed in /usr/local/include).

 Table 52. C Compile and Link Commands on AIX for use with FFTW Wrapper Libraries.

 	ESSL Library

 	Environment

 	C Compile Command

 	Serial

 	32-bit integer, 32-bit pointer

 	cc_r -O xyz.c -lessl
 -I/usr/local/include -lfftw3_essl -L/usr/local/lib -lm

 	32-bit integer, 64-bit pointer

 	cc_r -O -q64 xyz.c -lessl
 -I/usr/local/include -lfftw3_essl_64 -L/usr/local/lib -lm

 	SMP

 	32-bit integer, 32-bit pointer

 	cc_r -O xyz.c -lesslsmp
 -I/usr/local/include -lfftw3_essl -L/usr/local/lib -lm

 	32-bit integer, 64-bit pointer

 	cc_r -O -q64 xyz.c -lesslsmp
 -I/usr/local/include -lfftw3_essl_64 -L/usr/local/lib -lm

 For additional information on the FFTW Wrapper libraries,
 see FFTW Version 3.1.2 to ESSL Wrapper Libraries.

 Parent topic: Processing Your Program on AIX

 C++ Program Procedures on AIX

 The ESSL header file essl.h, used for
 C and C++ programs, is installed in the /usr/include directory.
 When using ESSL, the compiler option -qnocinc=/usr/include/essl must
 be specified.

 If you are using the ESSL header file in a 64-bit
 integer, 64-bit pointer environment, add -D_ESV6464 to
 your compile and link command.

 If you are using the IBM® Open Class® Complex Mathematics
 Library, you automatically
 use the definition of short-precision complex data provided in the
 ESSL header file. If you prefer to specify your own definition for
 short-precision complex data, add -D_CMPLX to
 your compile and link commands (as shown in the table below). Otherwise,
 ESSL will use the IBM Open Class Complex Mathematics
 Library or the Standard Numerics Library, as described
 in On AIX—Selecting the <complex> or <complex.h> Header File.

 If
 you prefer to explicitly specify that you want to use the Standard Numerics Library facilities
 for complex arithmetic, add -D_ESV_COMPLEX_ to
 your compile and link command as shown in the table below.

 The
 ESSL header file supports two alternatives for declaring scalar output
 arguments. By default, the arguments are declared to be type reference.
 If you prefer for them to be declared as pointers, add -D_ESVCPTR to
 your compile and link commands as shown in the table below.

 When
 linking and running your program, you must modify your existing job
 procedures for ESSL, to set up the necessary libraries.

 Table 53. C++ Compile and Link Commands on AIX.

 	ESSL Library

 	Environment

 	C++ Compile Command

 	Serial

 	32-bit integer, 32-bit pointer

 	 xlC_r -O xyz.C
 -lessl -qnocinc=/usr/include/essl

xlC_r -O -D_CMPLX xyz.C
 -lessl -qnocinc=/usr/include/essl

xlC_r -O -D_ESV_COMPLEX_ xyz.C
 -lessl -qnocinc=/usr/include/essl

xlC_r -O -D_ESVCPTR xyz.C
 -lessl -qnocinc=/usr/include/essl

 	32-bit integer, 64-bit pointer

 	 xlC_r -O -q64 xyz.C
 -lessl -qnocinc=/usr/include/essl

xlC_r -O -D_CMPLX -q64 xyz.C
 -lessl -qnocinc=/usr/include/essl

xlC_r -O -D_ESV_COMPLEX_ -q64 xyz.C
 -lessl -qnocinc=/usr/include/essl

xlC_r -O -D_ESVCPTR -q64 xyz.C
 -lessl -qnocinc=/usr/include/essl

 	64-bit integer, 64-bit pointer

 	 xlC_r -O -D_ESV6464 -q64 xyz.C
 -lessl6464 -qnocinc=/usr/include/essl

xlC_r -O -D_ESV6464 -D_CMPLX -q64 xyz.C
 -lessl6464 -qnocinc=/usr/include/essl

xlC_r -O -D_ESV6464 -D_ESV_COMPLEX_ -q64 xyz.C
 -lessl6464 -qnocinc=/usr/include/essl

xlC_r -O -D_ESV6464 -D_ESVCPTR -q64 xyz.C
 -lessl6464 -qnocinc=/usr/include/essl

 	SMP

 	32-bit integer, 32-bit pointer

 	 xlC_r -O xyz.C
 -lesslsmp -qnocinc=/usr/include/essl

xlC_r -O -D_CMPLX xyz.C
 -lesslsmp -qnocinc=/usr/include/essl

xlC_r -O -D_ESV_COMPLEX_ xyz.C
 -lesslsmp -qnocinc=/usr/include/essl

xlC_r -O -D_ESVCPTR xyz.C
 -lesslsmp -qnocinc=/usr/include/essl

 	32-bit integer, 64-bit pointer

 	 xlC_r -O -q64 xyz.C
 -lesslsmp -qnocinc=/usr/include/essl

xlC_r -O -D_CMPLX -q64 xyz.C
 -lesslsmp -qnocinc=/usr/include/essl

xlC_r -O -D_ESV_COMPLEX_ -q64 xyz.C
 -lesslsmp -qnocinc=/usr/include/essl

xlC_r -O -D_ESVCPTR -q64 xyz.C
 -lesslsmp -qnocinc=/usr/include/essl

 	64-bit integer, 64-bit pointer

 	 xlC_r -O -D_ESV6464 -q64 xyz.C
 -lesslsmp6464 -qnocinc=/usr/include/essl

xlC_r -O -D_ESV6464 -D_CMPLX -q64 xyz.C
 -lesslsmp6464 -qnocinc=/usr/include/essl

xlC_r -O -D_ESV6464 -D_ESV_COMPLEX_ -q64 xyz.C
 -lesslsmp6464 -qnocinc=/usr/include/essl

xlC_r -O -D_ESV6464 -D_ESVCPTR -q64 xyz.C
 -lesslsmp6464 -qnocinc=/usr/include/essl

 If you want to use the FFTW Wrapper libraries with your
 C++ program, you must use header file fftw3_essl.h instead of fftw3.h.
 You can compile and link with the FFTW Wrapper libraries using the
 compile and link commands shown in the table below (assuming that
 the FFTW Wrapper header files were installed in /usr/local/include).

 Table 54. C++ Compile and Link Commands on AIX for Use with FFTW Wrapper Libraries.

 	ESSL Library

 	Environment

 	C++ Compile Command

 	Serial

 	32-bit integer, 32-bit pointer

 	 xlC_r -O xyz.C -lessl -qnocinc=/usr/include/essl
 -I/usr/local/include -lfftw3_essl -L/usr/local/lib -lm

 	32-bit integer, 64-bit pointer

 	 xlC_r -O -q64 xyz.C -lessl -qnocinc=/usr/include/essl
 -I/usr/local/include -lfftw3_essl_64 -L/usr/local/lib -lm

 	SMP

 	32-bit integer, 32-bit pointer

 	 xlC_r -O xyz.C -lesslsmp -qnocinc=/usr/include/essl
 -I/usr/local/include -lfftw3_essl -L/usr/local/lib -lm

 	32-bit integer, 64-bit pointer

 	 xlC_r -O -q64 xyz.C -lesslsmp -qnocinc=/usr/include/essl
 -I/usr/local/include -lfftw3_essl_64 -L/usr/local/lib -lm

 Parent topic: Processing Your Program on AIX

 Processing Your Program on Linux (little
 endian mode)

 The following notes apply to processing your program
 on Linux.

 Notes:

 	The default search paths for the ESSL shared libraries are as
 follows:

 	Environment

 	Shared Library Default Search
 Path

 	32-bit integer, 64-bit pointer

 	/usr/lib64

 	64-bit integer, 64-bit pointer

 	/usr/lib64

 If the shared libraries are in another location, you
 must set the link-time and run-time library search paths. There are
 two ways to set these search paths:

 	Use one of the following compile/link options:

 	-R (or -rpath)

 	Writes the specified run-time library search paths into the executable
 program.

 	-L

 	Searches the library search paths at link time, but does not write
 them into the executable as run-time library search paths.

 —or—

 	Use one of the following environment variables:

 	LD_LIBRARY_PATH

 	Specifies the directories that are to be searched for libraries
 at run time.

 	LD_RUN_PATH

 	Specifies the directories that are to be searched for libraries
 at both link and run time.

 For example, if you copied the ESSL 32-bit/64-bit
 pointer libraries in /home/me/lib64, you would issue commands similar
 to the following in order to compile and link a program: LD_LIBRARY_PATH=/home/me/lib64:$LD_LIBRARY_PATH
 LD_RUN_PATH=/home/me/lib64:$LD_RUN_PATH
 export LD_LIBRARY_PATH
 export LD_RUN_PATH
 xlf_r -o myprog myprog.f -lessl

 The result would be
 that the /home/me/lib64 directory is the directory that gets searched
 at link time and run time.

 For more information on link options and environment
 variables, see the manpage for the ld command

 	[image: Start of change]The default search path for the ESSL header files is
 /usr/include. If the header files are in another location, you must set
 the compile-time search path by setting the search path with -I.[image: End of change]

 	If you changed Makefile or Makefile.gcc to install the FFTW Wrapper
 libraries in /usr/local/lib instead of /usr/local/lib64 (see FFTW Version 3.1.2 to ESSL Wrapper Libraries), then
 you must specify -L/usr/local/lib instead of -L/usr/local/lib64 in
 the commands in Table 56, Table 58, Table 59,
 and Table 62.

 	For the ESSL SMP and SMP CUDA Libraries, you can use the XLSMPOPTS or OMP_NUM_THREADS environment
 variable to specify options which affect SMP execution. For details,
 see the IBM® Compiler publications.

 	If you are accessing ESSL from a 64-bit integer, 64-bit pointer
 environment program, you may want to use the -qintsize=8 compiler
 option.

 	ESSL supports the XL Fortran compile-time option -qextname.
 For details, see the Fortran publications.

 	Fortran 90 programmers may be interested in the -qessl compiler
 option which allows the use of ESSL routines in place of Fortran 90
 intrinsic procedures. For details, see the Fortran manuals.

 	The commands in the table below assume that you
 installed:

 	The IBM compilers in the
 default directory, /opt/ibm. If you used different
 directories, you need to make the appropriate changes to the -L and -R options.

 	ESSL in the default directory /opt/ibmmath. If
 you used different directories, you need to make the appropriate changes
 to the -I, -L,
 and -R options.

 	[image: Start of change]The CUDA SDK in the default directory, /usr/local/cuda. If you used different
 directories, you need to make the appropriate changes to the -L and -R options.[image: End of change]

 	In your job procedures, you must use only the required software products listed in
 Required Software Products on Linux.

 	Fortran Program Procedures on Linux (little endian mode)

 	C Program Procedures on Linux (little endian mode)

 	C++ Program Procedures on Linux (little endian mode)

 Parent topic: Processing Your Program

 Fortran Program Procedures on Linux (little
 endian mode)

 You do not need to modify your existing Fortran compilation
 procedures when using ESSL.

 When linking and running your
 program, you must modify your existing job procedures for ESSL in
 order to set up the necessary libraries.

 If you are accessing
 ESSL from a Fortran program, you can compile and link using the commands
 shown in the table below.

 Note: ESSL supports the XL Fortran compile-time
 option -qextname. For details, see the Fortran manuals.

 Table 55. Fortran Compile Commands
 on Linux (little endian mode).

 	ESSL Library

 	Environment

 	Fortran Compile Command

 	Serial

 	32-bit integer, 64-bit pointer

 	xlf_r -O -qnosave xyz.f -lessl

 	64-bit integer, 64-bit pointer

 	xlf_r -O -qnosave xyz.f -lessl6464

 	SMP

 	32-bit integer, 64-bit pointer

 	xlf_r -O -qnosave -qsmp xyz.f -lesslsmp
xlf_r -O -qnosave xyz.f -lesslsmp -lxlsmp

 	64-bit integer, 64-bit pointer

 	xlf_r -O -qnosave -qsmp xyz.f -lesslsmp6464
xlf_r -O -qnosave xyz.f -lesslsmp6464 -lxlsmp

 	SMP CUDA

 	32-bit integer, 64-bit pointer

 	xlf_r -O -qnosave -qsmp xyz.f -lesslsmpcuda -lcublas -lcudart
 -L/usr/local/cuda/lib64
 -R/usr/local/cuda/lib64
xlf_r -O -qnosave xyz.f -lesslsmpcuda -lxlsmp -lcublas -lcudart
 -L/usr/local/cuda/lib64
 -R/usr/local/cuda/lib64

 where xyz.f is
 the name of your Fortran program.

 If you want to use the FFTW
 Wrapper libraries with your Fortran program, the header file fftw3.f
 contains the constant definitions used by the FFTW wrappers. To use
 these defintions, you can do one of the following: 	

 	Add the following line to your Fortran application 		

 include "fftw3.f"

 	Imbed the fftw3.f header file in your application.

 You can compile and link with the FFTW Wrapper libraries using
 the command shown in the table below (assuming that the FFTW Wrapper
 header files were installed in /usr/local/include).

 Table 56. Fortran Compile Commands
 on Linux for Use with FFTW
 Wrapper Libraries.

 	ESSL Library

 	Environment

 	Fortran Compile Command

 	Serial

 	32-bit integer, 64-bit pointer

 	xlf_r -O -qnosave xyz.f -lessl
 -I/usr/local/include -lfftw3_essl -L/usr/local/lib64

 	SMP

 	32-bit integer, 64-bit pointer

 	xlf_r -O -qnosave xyz.f -lesslsmp
 -I/usr/local/include -lfftw3_essl -L/usr/local/lib64

 For additional information on the FFTW Wrapper libraries,
 see FFTW Version 3.1.2 to ESSL Wrapper Libraries.

 Parent topic: Processing Your Program on Linux (little endian mode)

 C Program Procedures on Linux (little
 endian mode)

 If you are using the ESSL header file in a 64-bit integer,
 64-bit pointer environment, add -D_ESV6464 to
 your compile and link command.

 When linking
 and running your program, you must modify your existing job procedures
 for ESSL in order to set up the necessary libraries.

 Table 57. C Compile and Link Commands on Linux (little endian mode).

 	ESSL Library

 	Environment

 	C Compile Command

 	Serial

 	32-bit integer, 64-bit pointer

 	cc_r -O xyz.c
 -lessl -lxlf90_r -lxlfmath
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 	64-bit integer, 64-bit pointer

 	cc_r -O -D_ESV6464 xyz.c
 -lessl6464 -lxlf90_r -lxlfmath
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 	SMP

 	32-bit integer, 64-bit pointer

 	cc_r -O xyz.c
 -lesslsmp -lxlf90_r -lxlsmp -lxlfmath
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 	64-bit integer, 64-bit pointer

 	cc_r -O -D_ESV6464 xyz.c
 -lesslsmp6464 -lxlf90_r -lxlsmp -lxlfmath
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 	SMP CUDA

 	32-bit integer, 64-bit pointer

 	cc_r -O xyz.c
 -lesslsmpcuda -lxlf90_r -lxlsmp -lxlfmath -lcublas -lcudart
 -L/usr/local/cuda/lib64
 -R/usr/local/cuda/lib64
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 Note: In the commands listed in the table above, you must
 specify the following values:

 	xlf_version.release

 	[image: Start of change]15.1.4 or later[image: End of change]

 	xlsmp_version.release

 	[image: Start of change]4.1.4[image: End of change] or later

 If you want to use the FFTW Wrapper libraries
 with your C program, you must use header file fftw3_essl.h instead
 of fftw3.h. You can compile and link with the FFTW Wrapper libraries
 using the command shown in the table below (assuming that the FFTW
 Wrapper header files were installed in /usr/local/include).

 Table 58. C Compile and Link Commands
 on Linux for Use with FFTW
 Wrapper Libraries (little endian mode).

 	ESSL Library

 	Environment

 	C Compile Command

 	Serial

 	32-bit integer, 64-bit pointer

 	cc_r -O xyz.c
 -lessl -lxlf90_r -lxlfmath
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib
 -I/usr/local/include -lfftw3_essl -L/usr/local/lib64

 	SMP

 	32-bit integer, 64-bit pointer

 	cc_r -O xyz.c
 -lesslsmp -lxlf90_r -lxlsmp -lxlfmath
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib
 -I/usr/local/include -lfftw3_essl -L/usr/local/lib64

 Note: In the commands listed in the table above, you must
 specify the following values:

 	xlf_version.release

 	[image: Start of change]15.1.4 or later[image: End of change]

 	xlsmp_version.release

 	[image: Start of change]4.1.4 or later[image: End of change]

 For additional information on the FFTW Wrapper
 libraries, see FFTW Version 3.1.2 to ESSL Wrapper Libraries.

 If
 you want to use gcc compile and link commands, use the commands shown
 in Table 59

 Table 59. gcc Compile and Link Commands on Linux (little endian
 mode).

 	ESSL Library

 	Environment

 	C Compile Command

 	Serial

 	32-bit integer, 64-bit pointer

 	gcc xyz.c
 -lessl -lxlf90_r -lxlfmath -lm
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 	64-bit integer, 64-bit pointer

 	gcc -D_ESV6464 xyz.c
 -lessl6464 -lxlf90_r -lxlfmath -lm
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 	SMP*

 	32-bit integer, 64-bit pointer

 	gcc xyz.c
 -lesslsmp -lxlf90_r -lxlsmp -lxlfmath -lm
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 	64-bit integer, 64-bit pointer

 	gcc -D_ESV6464 xyz.c
 -lesslsmp6464 -lxlf90_r -lxlsmp -lxlfmath -lm
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 	SMP CUDA*

 	32-bit integer, 64-bit pointer

 	gcc xyz.c
 -lesslsmpcuda -lxlf90_r -lxlsmp -lxlfmath -lm -lcublas -lcudart
 -L/usr/local/cuda/lib64
 -R/usr/local/cuda/lib64
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 	* The ESSL SMP libraries require XL OpenMP runtime. The gcc OpenMP runtime is not compatible with XL OpenMP
 runtime.

 Note: In the commands listed in Table 59, you must specify the following
 values:

 	xlf_version.release

 	[image: Start of change]15.1.4 or later[image: End of change]

 	xlsmp_version.release

 	[image: Start of change]4.1.4 or later[image: End of change]

 If you want to use the FFTW Wrapper libraries
 with your C program, you must use header file fftw3_essl.h instead
 of fftw3.h. You can compile and link with the FFTW Wrapper libraries
 using the command shown in the table below (assuming that the FFTW
 Wrapper header files were installed in /usr/local/include).

 Table 60. gcc Compile and Link Commands
 on Linux for Use with FFTW
 Wrapper Libraries (little endian mode).

 	ESSL Library

 	Environment

 	C Compile Command

 	Serial

 	32-bit integer, 64-bit pointer

 	gcc xyz.c
 -lessl -lxlf90_r -lxlfmath -lm
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib
 -I/usr/local/include -lfftw3_essl -L/usr/local/lib64

 	SMP*

 	32-bit integer, 64-bit pointer

 	gcc xyz.c
 -lesslsmp -lxlf90_r -lxlsmp -lxlfmath -lm
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib
 -I/usr/local/include -lfftw3_essl -L/usr/local/lib64

 	* The ESSL SMP
 libraries require XL OpenMP runtime. The gcc OpenMP runtime
 is not compatible with XL OpenMP runtime.

 Note: In the commands listed in Table 60, you must specify
 the following values:

 	xlf_version.release

 	[image: Start of change]15.1.4 or later[image: End of change]

 	xlsmp_version.release

 	[image: Start of change]4.1.4 or later[image: End of change]

 Parent topic: Processing Your Program on Linux (little endian mode)

 C++ Program Procedures on Linux (little
 endian mode)

 The ESSL header file supports two alternatives for handling
 complex floating-point arguments. By default the Standard Numerics
 Library complex floating-point types are used. If you prefer to use
 the C99 complex floating-point types, add -D_ESV_COMPLEX99_ to
 your compile and link commands.

 The ESSL header file supports
 two alternatives for declaring scalar output arguments. By default,
 the arguments are declared to be type reference. If you prefer for
 them to be declared as pointers, add -D_ESVCPTR to
 your compile and link commands.

 If you are using the ESSL
 header file in a 64-bit integer, 64-bit pointer environment, add -D_ESV6464 to
 your compile and link command.

 When linking
 and running your program, you must modify your existing job procedures
 for ESSL, to set up the necessary libraries.

 Table 61. C++ Compile and Link Commands on Linux (little endian mode).

 	ESSL Library

 	Environment

 	C++ Compile Command

 	Serial

 	32-bit integer, 64-bit pointer

 	xlC_r -O xyz.C
 -lessl -lxlf90_r -lxlfmath
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 	64-bit integer, 64-bit pointer

 	xlC_r -O -D_ESV6464 xyz.C
 -lessl6464 -lxlf90_r -lxlfmath
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 	SMP

 	32-bit integer, 64-bit pointer

 	xlC_r -O xyz.C
 -lesslsmp -lxlf90_r -lxlsmp -lxlfmath
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 	64-bit integer, 64-bit pointer

 	xlC_r -O -D_ESV6464 xyz.C
 -lesslsmp6464 -lxlf90_r -lxlsmp -lxlfmath
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 	SMP CUDA

 	32-bit integer, 64-bit pointer

 	xlC_r -O xyz.C
 -lesslsmpcuda -lxlf90_r -lxlsmp -lxlfmath -lcublas -lcudart
 -L/usr/local/cuda/lib64
 -R/usr/local/cuda/lib64
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 Note: In the commands listed in the table above, you must
 specify the following values:

 	xlf_version.release

 	[image: Start of change]15.1.4 or later[image: End of change]

 	xlsmp_version.release

 	4.1.4 or later

 If you want to use the FFTW Wrapper libraries
 with your C++ program, you must use header file fftw3_essl.h instead
 of fftw3.h. You can compile and link with the FFTW Wrapper libraries
 using the command shown in the table below (assuming that the FFTW
 Wrapper header files were installed in /usr/local/include).

 Table 62. C++ Compile and Link Commands
 on Linux for Use with FFTW
 Wrapper Libraries (little endian mode).

 	ESSL Library

 	Environment

 	C++ Compile Command

 	Serial

 	32-bit integer, 64-bit pointer

 	 xlC_r -O xyz.C
 -lessl -lxlf90_r -lxlfmath -lm
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib
 -I/usr/local/include -lfftw3_essl -L/usr/local/lib64

 	SMP

 	32-bit integer, 64-bit pointer

 	 xlC_r -O xyz.C
 -lesslsmp -lxlf90_r -lxlsmp -lxlfmath -lm
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib
 -I/usr/local/include -lfftw3_essl -L/usr/local/lib64

 Note: In the commands listed in the table above, you must
 specify the following values:

 	xlf_version.release

 	[image: Start of change]15.1.4 or later[image: End of change]

 	xlsmp_version.release

 	[image: Start of change]4.1.4 or later[image: End of change]

 For additional information on the FFTW Wrapper
 libraries, see FFTW Version 3.1.2 to ESSL Wrapper Libraries.

 If you want to use g++ compile and link commands, use
 the commands shown in Table 63

 Table 63. g++ Compile
 and Link Commands on Linux (little
 endian mode).

 	ESSL Library

 	Environment

 	C++ Compile Command

 	Serial

 	32-bit integer, 64-bit pointer

 	g++ xyz.C
 -lessl -lxlf90_r -lxlfmath -lm
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 	64-bit integer, 64-bit pointer

 	g++ -D_ESV6464 xyz.C
 -lessl6464 -lxlf90_r -lxlfmath -lm
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 	SMP*

 	32-bit integer, 64-bit pointer

 	g++ xyz.C
 -lesslsmp -lxlf90_r -lxlsmp -lxlfmath -lm
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 	64-bit integer, 64-bit pointer

 	g++ -D_ESV6464 xyz.C
 -lesslsmp6464 -lxlf90_r -lxlsmp -lxlfmath -lm
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 	SMP CUDA*

 	32-bit integer, 64-bit pointer

 	g++ xyz.C
 -lesslsmpcuda -lxlf90_r -lxlsmp -lxlfmath -lm -lcublas -lcudart
 -L/usr/local/cuda/lib64
 -R/usr/local/cuda/lib64
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib

 	* The ESSL SMP
 libraries require XL OpenMP runtime. The gcc OpenMP runtime
 is not compatible with XL OpenMP runtime.

 Note: In the commands listed in Table 63, you must specify the following
 values:

 	xlf_version.release

 	[image: Start of change]15.1.4 or later[image: End of change]

 	xlsmp_version.release

 	[image: Start of change]4.1.4 or later[image: End of change]

 If you want to use the FFTW
 Wrapper libraries with your C program, you must use header file fftw3_essl.h
 instead of fftw3.h. You can compile and link with the FFTW Wrapper
 libraries using the command shown in the table below (assuming that
 the FFTW Wrapper header files were installed in /usr/local/include).

 Table 64. g++ Compile
 and Link Commands on Linux for
 Use with FFTW Wrapper Libraries (little endian mode).

 	ESSL Library

 	Environment

 	C++ Compile Command

 	Serial

 	32-bit integer, 64-bit pointer

 	g++ xyz.C
 -lessl -lxlf90_r -lxlfmath -lm
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib
 -I/usr/local/include -lfftw3_essl -L/usr/local/lib64

 	SMP*

 	32-bit integer, 64-bit pointer

 	g++ xyz.C
 -lesslsmp -lxlf90_r -lxlsmp -lxlfmath -lm
 -L/opt/ibm/xlsmp/xlsmp_version.release/lib
 -L/opt/ibm/xlf/xlf_version.release/lib
 -R/opt/ibm/lib
 -I/usr/local/include -lfftw3_essl -L/usr/local/lib64

 	* The ESSL SMP
 libraries require XL OpenMP runtime. The gcc OpenMP runtime
 is not compatible with XL OpenMP runtime.

 Note: In the commands listed in Table 64, you must
 specify the following values:

 	xlf_version.release

 	[image: Start of change]15.1.4 or later[image: End of change]

 	xlsmp_version.release

 	[image: Start of change]4.1.4 or later[image: End of change]

 Parent topic: Processing Your Program on Linux (little endian mode)

 Migrating Your Programs

 This explains what is required to migrate your application programs
 to the current release of ESSL.

 	Migrating Programs from ESSL for Linux on Power Version 5 Release 4 to Version 5 Release 5

 	Migrating Programs from ESSL for Linux on Power Version 5 Release 3.2 to Version 5 Release 4

 	Migrating Programs from ESSL for Linux on Power Version 5 Release 3.1 to Version 5 Release 3.2

 	Migrating Programs from ESSL for Linux on Power Version 5 Release 2 or ESSL Version 5 Release 3 to Version 5 Release 3.1

 	Migrating Programs from ESSL for Linux on Power Version 5 Release 2 to Version 5 Release 3

 	Migrating Programs from ESSL for AIX 5.1 and ESSL for Linux on Power Version 5 Release 1.1 to Version 5 Release 2

 	Migrating Programs from ESSL for Linux on Power Version 5 Release 1 to Version 5 Release 1.1

 	Migrating Programs from ESSL Version 4 Release 4 to Version 5 Release 1

 	Migrating Programs from ESSL Version 4 Release 3 to Version 4 Release 4

 	Migrating Programs from ESSL Version 4 Release 2.2 or Later to ESSL Version 4 Release 3

 	Migrating Programs from ESSL Version 4 Release 2.1 to Version 4 Release 2.2

 	Migrating Programs from ESSL Version 4 Release 2 to Version 4 Release 2.1

 	Migrating Programs from ESSL Version 4 Release 1 to Version 4 Release 2

 	Planning for Future Migration

 	Migrating From One Hardware Platform to Another

 	Migrating from Other Libraries to ESSL

 Parent topic: Guide Information

 [image: Start of change]Migrating Programs from ESSL for Linux on Power® Version 5 Release 4 to Version 5 Release 5

 The calling sequence for all subroutines except the CBLAS subroutines in ESSL Version 5 Release 4
 and Version 5 Release 5 are identical, and therefore no changes to your application programs for
 these subroutines are required. However, if your programs contain calls to CBLAS functions using the
 arguments in Table 65, changes are required. As shown in
 Table 65, CBLAS enumerated types have changed to the
 following type definitions:

 Table 65. CBLAS enumerated types changing to type definitions for ESSL Version 5 Release 5

 	ESSL V5R4 enumerated type

 	ESSL V5R5 definition type

 	enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};

 	

 typedef enum {CblasRowMajor=101, CblasColMajor=102}

 [image: Start of change]CBLAS_LAYOUT

 [image: End of change];

 typedef

 [image: Start of change]CBLAS_LAYOUT

 [image: End of change] CBLAS_ORDER;

 1

 	enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113};

 	 typedef enum {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113} CBLAS_TRANSPOSE;

 	enum CBLAS_UPLO {CblasUpper=121, CblasLower=122};

 	typedef enum {CblasUpper=121, CblasLower=122} CBLAS_UPLO;

 	enum CBLAS_DIAG {CblasNonUnit=131, CblasUnit=132};

 	typedef enum {CblasNonUnit=131, CblasUnit=132} CBLAS_DIAG;

 	enum CBLAS_SIDE {CblasLeft=141, CblasRight=142};

 	typedef enum {CblasLeft=141, CblasRight=142} CBLAS_SIDE;

 	1 You may continue to use the name CLAS_ORDER, but it is
 recommended that you change to CBLAS_LAYOUT.

 For example, in ESSL Version 5 Release 5 the following type of variable definition is no
 longer supported:enum CBLAS_UPLO variable;

 Instead, use something like the
 following:CBLAS_UPLO variable;

 Parent topic: Migrating Your Programs

[image: End of change]

 Migrating Programs from ESSL for Linux on Power® Version 5 Release 3.2 to
 Version 5 Release 4

 The calling sequences for the subroutines in ESSL Version
 5 Release 3.2 and ESSL Version 5 Release 4 are identical; therefore,
 no changes to your application programs are required.

 Parent topic: Migrating Your Programs

 Migrating Programs from ESSL for Linux on Power® Version 5 Release 3.1 to
 Version 5 Release 3.2

 The calling sequences for the subroutines in ESSL Version
 5 Release 3.1 and ESSL Version 5 Release 3.2 are identical; therefore,
 no changes to your application programs are required.

 Parent topic: Migrating Your Programs

 Migrating Programs from ESSL for Linux on Power® Version 5 Release 2 or ESSL
 Version 5 Release 3 to Version 5 Release 3.1

 The following support is not provided for ESSL 5.3.1 (little
 endian mode)

 	32-bit applications

 	C applications that use the ESSL header file and user-defined
 definitions for short- and long-precision complex data. You must change
 these applications to use C99 complex floating point types instead.

 No source code changes to your other application programs are
 required to migrate to ESSL 5.3.1.

 Parent topic: Migrating Your Programs

 Migrating Programs from ESSL for Linux on Power® Version 5 Release 2 to Version
 5 Release 3

 The calling sequences for the subroutines in ESSL Version
 5 Release 3 and ESSL Version 5 Release 2 are identical; therefore,
 no changes to your application programs are required.

 Parent topic: Migrating Your Programs

 Migrating Programs from ESSL for AIX® 5.1
 and ESSL for Linux on Power® Version 5 Release 1.1 to
 Version 5 Release 2

 Source code changes may be required in C or C++ application
 programs that call the cpocon or zpocon subroutines because the prototype
 contained in the ESSL Header Files (essl.h) prior to ESSL 5.2 incorrectly
 specified WORK as real instead of complex. This has
 been corrected in the ESSL 5.2 essl.h file.

 The following non-LAPACK-conforming
 subroutines are no longer provided in ESSL 5.2. To run with ESSL 5.2,
 existing applications using these subroutines require source code
 changes to replace these subroutines as shown in Table 66:

 Table 66. Replacing
 Non-LAPACK-Conforming subroutines with LAPACK subroutines.

 	Non-LAPACK Conforming Subroutines in ESSL 5.1

 	Corresponding ESSL LAPACK Subroutines in ESSL
 5.2

 	SGEEV, DGEEV, CGEEV, ZGEEV

 	SGEEVX, DGEEVX, CGEEVX, ZGEEVX
 See SGEEV, DGEEV, CGEEV, ZGEEV, SGEEVX, DGEEVX, CGEEVX, and ZGEEVX (Eigenvalues and, Optionally, Right Eigenvectors, Left Eigenvectors,
 Reciprocal Condition Numbers for Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a General Matrix)

 	SSPEV, DSPEV, CHPEV, ZHPEEV
 SSPSV, DSPSV,
 CHPSV, ZHPESV

 	SSPEVX, DSPEVX, CHPEVX, ZHPEVX
 See SSYEV, DSYEV, CHEEV, ZHEEV, SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX, DSYEVX, CHEEVX, and ZHEEVX (Eigenvalues and, Optionally,
 the Eigenvectors of a Real Symmetric or Complex Hermitian Matrix)

 	SGEGV, DGEGV	

 	SGGEV, DGGEV
 See SGGEV, DGGEV, CGGEV, ZGGEV, SGGEVX, DGGEVX, CGGEVX, and ZGGEVX (Eigenvalues and, Optionally, Right Eigenvectors, Left Eigenvectors,
 Reciprocal Condition Numbers for Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a General Matrix
 Generalized Eigenproblem)

 	SSYGV, DSYGV	

 	SSYGVX, DSYGVX
 See SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX, DSYGVX, CHEGVX, and ZHEGVX (Eigenvalues and, Optionally, the Eigenvectors of a Positive
 Definite Real Symmetric or Complex Hermitian Generalized Eigenproblem)

 Existing applications that do not use these non_LAPACK-conforming
 subroutines will work without source code changes for migration from
 ESSL 5.1 to ESSL 5.2.

 Parent topic: Migrating Your Programs

 Migrating Programs from ESSL for Linux on Power® Version 5 Release 1 to Version
 5 Release 1.1

 The calling sequences for the subroutines in ESSL Version
 5 Release 1 and ESSL Version 5 Release 1.1 are identical; therefore,
 no changes to your application programs are required.

 Parent topic: Migrating Your Programs

 Migrating Programs from ESSL Version 4 Release 4 to Version
 5 Release 1

 The Processor-Independent Formulas for SCFTD and DCFTD
 for NAUX2 have been corrected. For the corrected formulas, see SCFTD and DCFTD (Multidimensional Complex Fourier Transform).

 Otherwise,
 the calling sequences for the subroutines in ESSL Version 4 Release
 4 and ESSL Version 5 Release 1 are identical; therefore, no changes
 to your application programs are required.

 Parent topic: Migrating Your Programs

 Migrating Programs from ESSL Version 4 Release 3 to Version 4 Release
 4

 The calling sequences for the subroutines in ESSL Version 4 Release 3 and
 ESSL Version 4 Release 4 are identical; therefore, no changes to your application
 programs are required.

 Parent topic: Migrating Your Programs

 Migrating Programs from ESSL Version 4 Release 2.2 or Later to ESSL
 Version 4 Release 3

 For 32-bit integer, 32-bit pointer environments and 32-bit
 integer, 64-bit pointer environments, the calling sequences for the
 subroutines in ESSL Version 4 Release 2.2 or later are identical to those
 in ESSL Version 4 Release 3; therefore, no changes to those in your application
 programs are required.

 If you wish to use the new ESSL Serial and SMP Libraries
 that support a 64-bit integer, 64-bit pointer environment, note
 the following:

 	You must modify your application to use 64-bit integers
 and logicals instead of 32-bit integers and logicals.

 	You may need to increase the size of naux and lwork to
 obtain a larger workspace. (See Setting Up Auxiliary Storage When Dynamic Allocation Is Not Used.)

 	You must add -D_ESV6464 to your C and C++ compile commands. (See Processing Your Program.)

 	You must change the library specified in your compile command to either -lesslsmp6464 or -lessl6464, as appropriate. (See Processing Your Program.)

 Parent topic: Migrating Your Programs

 Migrating Programs from ESSL Version 4 Release 2.1 to Version
 4 Release 2.2

 In the ESSL Blue Gene® Library, the Fourier Transform subroutines and the Convolutions
 and Correlations subroutines require that the alignments of certain
 arrays do not change between initialization and computation. If the
 array alignment does change, in some cases error message 2152 will
 be issued and your program will terminate. If you want your program
 to continue processing with degraded performance, use ERRSET with
 an ESSL error exit routine, ENOTRM, to make error 2152 recoverable.

 For
 all other subroutines, the calling sequences for the subroutines in
 ESSL Version 4 Release 2.1 and ESSL Version 4 Release 2.2 are identical;
 therefore, no changes to your application programs are required.

 Parent topic: Migrating Your Programs

 Migrating Programs from ESSL Version 4 Release 2 to Version 4 Release
 2.1

 The calling sequences for the subroutines in ESSL Version 4 Release 2 and
 ESSL Version 4 Release 2.1 are identical; therefore, no changes to your application
 programs are required.

 Parent topic: Migrating Your Programs

 Migrating Programs from ESSL Version 4 Release 1 to Version
 4 Release 2

 The calling sequences for the subroutines in ESSL Version
 4 Release 1 and ESSL Version 4 Release 2 are identical; therefore,
 no changes to your application programs are required.

 ESSL
 Version 4 Release 2 does not support SLES8. In most cases, binary
 compatibility does not exist between SLES8 and SLES9. Therefore, SLES8
 applications must be recompiled and rebuilt on SLES9.

 On Linux, if you are accessing ESSL
 from a C or C++ program, you must change your compile and link commands
 so that they specify IBM® XL
 Fortran Enterprise EditionVersion 9.1 for Linux.

 Parent topic: Migrating Your Programs

 Planning for Future Migration

 With respect to planning for the future, if working storage does not need
 to persist after the subroutine call, you should use dynamic allocation.
 Otherwise, you should use the processor-independent formulas or simple formulas
 for calculating the values for the naux arguments in the ESSL calling
 sequences. Two things may occur that could cause the minimum values of naux, returned by ESSL error handling, to increase in the future:

 	If changes are made to the ESSL subroutines to improve performance

 	If changes are necessary to support future processors

 The formulas allow you to specify your auxiliary storage large enough to
 accommodate any future improvements to ESSL and any future processors. If
 you do not provide, at least, these amounts of storage, your program may not
 run in the future.

 You should use the following rule of thumb: To protect your application
 from having to be recoded in the future because of possible increased requirements
 for auxiliary storage, use dynamic allocation if possible. If the working
 storage must persists after the subroutine call, then you should provide as
 much storage as possible in your current application. In determining the right
 amount to specify, you should weigh your storage constraints against the inconvenience
 of making future changes, then specify what you think is best. If possible,
 you should provide this larger amount of storage to prevent future migration
 problems.

 Parent topic: Migrating Your Programs

 Migrating From One Hardware Platform to Another

 This describes all the aspects of migrating your ESSL application
 programs from one hardware platform to another.

 	Auxiliary Storage

 	Bitwise-Identical Results

 Parent topic: Migrating Your Programs

 Auxiliary Storage

 The minimum amount of auxiliary storage returned by ESSL error handling
 may vary from one hardware platform to another for the following subroutines:

 	all the Fourier transform subroutines

 	SCONF

 	SCORF

 	SACORF

 Therefore, to guarantee that your application programs always migrate from
 any platform to any other platform, you should use the processor-independent
 formulas to determine the amount of auxiliary storage to use.

 Parent topic: Migrating From One Hardware Platform to Another

 Bitwise-Identical Results

 Because of hardware and ESSL design differences, the results you
 obtain when migrating from one ESSL service level to another, one
 ESSL library to another, or one hardware platform to another may not
 be bitwise-identical. The results, however, are mathematically equivalent.

 Parent topic: Migrating From One Hardware Platform to Another

 Migrating from Other Libraries to ESSL

 This describes some general aspects of moving from an IBM® or non-IBM engineering and scientific library
 to ESSL.

 	Migrating from ESSL/370

 	Migrating from Another IBM Subroutine Library

 	Migrating from LAPACK

 	Migrating from FFTW Version 3.1.2

 	Migrating from a Non-IBM Subroutine Library

 Parent topic: Migrating Your Programs

 Migrating from ESSL/370

 There is a high degree of compatibility between ESSL/370 and ESSL. However
 you may need to make some coding changes for certain subroutines.

 Parent topic: Migrating from Other Libraries to ESSL

 Migrating from Another IBM Subroutine
 Library

 If you are migrating from other IBM® library
 products—such
 as Subroutine Library—Mathematics (SL MATH) or Scientific Subroutine Package (SSP), which have
 some functions similar to ESSL—the ESSL calling sequences differ from the
 calling sequences you are currently using. Your program must be modified
 to add the ESSL calling sequences and make the other ESSL-related
 coding changes.

 If you are migrating from the Basic Linear Algebra Subroutine Library
 provided with AIX®, your calling
 sequences do not need to be changed.

 Parent topic: Migrating from Other Libraries to ESSL

 Migrating from LAPACK

 ESSL contains some subroutines that conform to the LAPACK interface.
 If you are using these subroutines, no coding changes are needed to
 migrate to ESSL.

 Parent topic: Migrating from Other Libraries to ESSL

 Migrating from FFTW Version 3.1.2

 ESSL includes header files and C and Fortran wrappers in source form for
 a subset of the FFTW Version 3.1.2 subroutines. If you want to use these
 wrappers, you must include the header file fftw3_essl.h instead of fftw3.h.
 For additional information on the FFTW Wrapper libraries, see FFTW Version 3.1.2 to ESSL Wrapper Libraries.

 Parent topic: Migrating from Other Libraries to ESSL

 Migrating from a Non-IBM Subroutine Library

 If you are using a non-IBM library, ESSL may provide subroutines
 corresponding to those you are currently using. You may choose to
 migrate your program to benefit from the increased performance offered
 by the ESSL subroutines. In this case, you may have to recode your
 program to use the ESSL calling sequences, because the names and arguments
 used by ESSL may be different from those used by the non-IBM library.
 On the other hand, if you are using any of the standard Level 1, 2,
 and 3 BLAS or LAPACK routines that correspond to ESSL subroutines,
 you do not need to recode the calling sequences. The ESSL calling
 sequences are the same as the public domain code.

 Parent topic: Migrating from Other Libraries to ESSL

 Handling Problems

 This provides the following information for your use when
 dealing with errors.

 	How to obtain IBM® support.

 	What to do about NLS (National Language Support) problems.

 	A description of the different types of errors that can occur
 in ESSL. It explains what happens when an error occurs and, in some
 instances, how you can use error handling to obtain further information.

 	All of the ESSL error messages are categorized into the different
 error types. There is also a description of the error message format.

 	Where to Find More Information About Errors

 	Getting Help from IBM Support

 	National Language Support

 	Dealing with Errors

 	Messages

 Parent topic: Guide Information

 Where to Find More Information About Errors

 Specific errors associated with each ESSL subroutine are listed under "Error
 Conditions" in each subroutine description.

 Parent topic: Handling Problems

 Getting Help from IBM Support

 Should you require help from IBM® in
 resolving an ESSL problem, report it and provide the following information,
 if available and appropriate.

 	Your customer number

 	The ESSL program number:

 	ESSL for AIX®

 	5765-H25

 	ESSL for Linux

 	5765-L51

 This is important information that speeds up the
 correct routing of your call.

 	The version and release of the operating system that you are running
 on.

 	On AIX

 	Enter the following command:

 oslevel -r

 	On Linux

 	Enter the following command:

 uname -a

 This is important information that speeds up the correct
 routing of your call.

 	The names and versions of key products being run.

 	On AIX

 	Enter the following command:

 lslpp -h

 product

 where
 the appropriate values of product are listed
 in Table 67.

 	On Linux

 	Enter the following command:

 rpm -q

 package

 where the appropriate values of package are
 listed in Table 67.

 Table 67. Product
 File Set and Package Names.

 	Descriptive Name

 	Product File Sets
 on AIX

 	Product Packages
 on Linux
little
 endian mode

 	ESSL

 	essl.*

 	

 essl.rte

 essl.3264.rte

 essl.3264.rtecuda

 essl.6464.rte

 	XL Fortran Runtime Environment

 	xlfrte

 	

 libxlf

 	SMP Runtime Environment

 	xlsmp.rte

 	

 libxlsmp

 	XL Fortran compiler

 	xlfcmp.15.1.0

 	[image: Start of change]xlf.15.1.4[image: End of change]

 	XL C compiler

 	xlccmp.13.1.0

 	[image: Start of change]xlc.13.1.4[image: End of change]

 	XL C++ compiler

 	xlCcmp.13.1.0

 	[image: Start of change]xlc.13.1.4[image: End of change]

 	The message that is returned when an error is detected.

 	Any error message relating to core dumps.

 	The compiler listings, including compiler options in effect, and
 any run-time listings produced

 	Program changes made in comparison with a previous successful
 run

 	A small test case demonstrating the problem using the minimum
 number of statements and variables, including input data

 Consult your IBM Service
 representative for more assistance.

 Parent topic: Handling Problems

 National Language Support

 For National Language Support (NLS), all ESSL subroutines display
 messages located in externalized message catalogs. English versions
 of the message catalogs are shipped with the product, but your site
 may be using its own translated message catalogs. The environment
 variable NLSPATH is used by the various ESSL subroutines to
 find the appropriate message catalog. NLSPATH specifies a list
 of directories to search for message catalogs. The directories are
 searched, in the order listed, to locate the message catalog. In
 resolving the path to the message catalog, NLSPATH is affected
 by the value of the environment variables LC_MESSAGES and LANG.

 The ESSL message catalogs are in English, and are located in the
 following directories:

 	On AIX®

 	/usr/lib/nls/msg/C
/usr/lib/nls/msg/En_US
/usr/lib/nls/msg/en_US

 	On Linux (little endian
 mode)

 	[image: Start of change]/opt/ibmmath/essl/5.5/msg/en_US/essl.cat[image: End of change]
/usr/share/locale/en_US.UTF-8/essl.cat
/usr/share/locale/en_US/essl.cat
/usr/share/locale/en/essl.cat
/usr/share/locale/C/essl.cat

 If your site is using its own translations of the message catalogs,
 consult your system administrator for the appropriate value of NLSPATH or LANG.
 For additional information on NLS and message catalogs, see AIX General Programming Concepts:
 Writing and Debugging Programs.

 Parent topic: Handling Problems

 Dealing with Errors

 At run time, you can encounter a number of different types of errors that
 are specifically related to the use of the ESSL subroutines:

 	Program exceptions

 	Input-argument errors (2001-2099) and (2200-2299)

 	Computational errors (2100-2199)

 	Resource errors (2401-2499)

 	Informational and Attention messages (2600-2699)

 	Miscellaneous errors (2700-2799)

 	Program Exceptions

 	ESSL Input-Argument Error Messages

 	ESSL Computational Error Messages

 	ESSL Resource Error Messages

 	ESSL Informational and Attention Messages

 	Miscellaneous Error Messages

 Parent topic: Handling Problems

 Program Exceptions

 The program exceptions you can encounter in ESSL are described in ANSI/IEEE Standard
 for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754–1985.

 Parent topic: Dealing with Errors

 ESSL Input-Argument Error Messages

 If you receive an error message in the form 2538-20nn or 2538–22nn, you have an input-argument error in the calling sequence for an ESSL
 subroutine. Your program terminated at this point unless you did one of the
 following:

 	Specified the ESSL user exit routine, ENOTRM, with ERRSET to determine
 the correct input argument values in your program for the optionally-recoverable
 ESSL errors 2015, 2030 or 2200. For details on how to do this, see Coding Your Program.

 	Reset the number of allowable errors (2099) during ESSL installation or
 using ERRSET in your program. This is not recommended for
 input-argument errors.

 Note: For many of the ESSL subroutines
 requiring auxiliary storage, you can avoid program termination due to error
 2015 by allowing ESSL to dynamically allocate auxiliary storage for you. You
 do this by setting naux = 0 and making error 2015 unrecoverable. For details on which aux arguments allow dynamic allocation and how to specify them, see the
 subroutine descriptions.

 The name of the ESSL subroutine detecting the error is listed as part of
 the message. The argument number(s) involved in the error appears in the message
 text. See Input-Argument Error Messages(2001-2099) for a complete description of the information
 contained in each message and for an indication of which messages correspond
 to optionally-recoverable errors. Regardless of whether the name in the message
 is a user-callable ESSL subroutine or an internal ESSL routine, the message-text
 and its unique parts apply to the user-callable ESSL subroutine. Return code
 values are described under “Error Conditions” for each ESSL subroutine.

 You may get more than one error message, because most of the arguments
 are checked by ESSL for possible errors during each call to the subroutine.
 The ESSL subroutine returns as many messages as there are errors detected.
 As a result, fewer runs are necessary to diagnose your program.

 Fix the error(s), recompile, relink, and rerun your program.

 Parent topic: Dealing with Errors

 ESSL Computational Error Messages

 If you receive an error message in the form 2538-21nn, you have
 a computational error in the ESSL subroutine. A computational error is any
 error occurring in the ESSL subroutine while using the computational data
 (that is, scalar and array data). The name of the ESSL subroutine detecting
 the error is listed as part of the message. Regardless of whether the name
 in the message is a user-callable ESSL subroutine or an internal ESSL routine,
 the message-text and its unique parts apply to the user-callable ESSL subroutine.
 A nonzero return code is returned when the ESSL subroutine encounters a computational
 error. See Computational Error Messages(2100-2199) for a complete description of the information
 in each message. Return code values are described under “Error Conditions”
 for each ESSL subroutine.

 Your program terminates for some computational errors unless you have called
 ERRSET to reset the number of allowable errors for that particular error,
 and the number has not been exceeded. A message is issued for each computational
 error. You should use the message to determine where the error occurred in
 your program.

 If you called ERRSET and you have not reached the limit of errors you had
 set, you can check the return code. If it is not 0, you should call the EINFO
 subroutine to obtain information about the data involved in the error. EINFO
 provides the same information provided in the messages; however, it is provided
 to your program so your program can check the information during run time.
 Depending on what you want to do, you may choose to continue processing or
 terminate your program after the error occurs. For information on how to make
 these changes in your program to reset the number of allowable errors, how
 to diagnose the error, and how to decide whether to continue or terminate
 your program, see Coding Your Program.

 If you are unable to solve the problem, report it and provide the following
 information, if available and appropriate:

 	The message number and the module that detected an error

 	The system dump, system error code, and system log of this job

 	The compiler listings, including compiler options in effect, and any run-time
 listings produced

 	Program changes made in comparison with a previous successful run

 	A small test case demonstrating the problem using the minimum number of
 statements and variables, including input data

 	A brief description of the problem

 Parent topic: Dealing with Errors

 ESSL Resource Error Messages

 If you receive a message in the form 2538-24nn,
 it means that ESSL issued a resource error message.

 A resource error occurs when a buffer storage allocation
 request fails in a ESSL subroutine. In general, the ESSL subroutines
 allocate internal auxiliary storage dynamically as needed. Without
 sufficient storage, the subroutine cannot complete the computation.

 When a buffer storage allocation request fails, a resource
 error message is issued, and the application program is terminated.
 You need to reduce the memory constraint on the system or increase
 the amount of memory available before rerunning the application program.

 The following ways may reduce memory constraints:

 	Investigate the load of your process and run in a more dedicated
 environment.

 	Increase your processor's paging space.

 	Select a machine with more memory.

 	For a 32-bit integer, 32-bit pointer environment application on AIX®, consider specifying the -bmaxdata binder
 option when linking your program. For details see the Fortran publications.

 	Check the setting of your user ID's user limit (ulimit).
 (See the AIX Commands
 Reference).

 Parent topic: Dealing with Errors

 ESSL Informational and Attention Messages

 If you receive a message in the form 2538-26nn, it means that
 ESSL issued an informational or attention message.

 	Informational Messages

 	ESSL Attention Messages

 Parent topic: Dealing with Errors

 Informational Messages

 When you receive an informational message, check your application to determine
 why the condition was detected.

 Parent topic: ESSL Informational and Attention Messages

 ESSL Attention Messages

 An attention message is issued to describe a condition that occurred. ESSL
 is able to continue processing, but performance may be degraded.

 One condition that may produce an attention message is when enough work
 area was available to continue processing, but was not the amount initially
 requested. ESSL does not terminate your application program, but performance
 may be degraded. If you want to reduce the memory constraint on the system
 or increase the amount of memory available to eliminate the attention message,
 see the suggestions in ESSL Resource Error Messages.

 Parent topic: ESSL Informational and Attention Messages

 Miscellaneous Error Messages

 If you receive a message in the form 2538-27nn, it means that
 ESSL issued a miscellaneous error message.

 A miscellaneous error is an error that does not fall under any other categories.

 When ESSL detects a miscellaneous error, you receive an error message with
 information on how to proceed and your application program is terminated.

 Parent topic: Dealing with Errors

 Messages

 This explains the conventions used for the ESSL messages and lists all
 the ESSL messages. For a description of each of the four types of ESSL messages,
 see Dealing with Errors.

 	Message Conventions

 	Input-Argument Error Messages(2001-2099)

 	Computational Error Messages(2100-2199)

 	Input-Argument Error Messages(2200-2299)

 	Resource Error Messages(2400-2499)

 	Informational and Attention Error Messages(2600-2699)

 	Miscellaneous Error Messages(2700-2799)

 Parent topic: Handling Problems

 Message Conventions

 This describes the message conventions for the ESSL product.

 	About Upper- and Lowercase

 	Message Format

 Parent topic: Messages

 About Upper- and Lowercase

 Literals, such as, 'N', 'T', 'U', and so forth, appear in the messages
 in this documentation in uppercase; however, they may be specified in your
 ESSL calling sequence in either upper- or lowercase, for example, 'n', 't',
 and 'u'.

 Parent topic: Message Conventions

 Message Format

 The ESSL messages are issued in your output in the following
 format:

 Figure 10. Message Format
 rtn-name

 : 2538-

 mmnn

 message-text

 The parts of the ESSL message are as follows:

 	rtn-name

 	gives the name of the ESSL subroutine that encountered
 the error. If rtn-name is ESSL, this indicates
 that at least one ESSL subroutine encountered this error.

 	2538

 	is the ESSL component identification number.

 	mm

 	indicates the type of ESSL error message:

 20

 —

 Input-argument error message

 21

 —

 Computational error message

 22

 —

 Input-argument error message

 24

 —

 Resource error message

 26

 —

 Information and attention message

 27

 —

 Miscellaneous error message

 	nn

 	is the message identification number.

 	message-text

 	describes the nature of the error. Where one of several possible
 message-texts can be issued for a particular ESSL error, they are
 listed with an “or” between them. The possible unique
 parts are:

 	The argument number of each argument involved in the error is
 included in the message description as (ARG NO. _)

 	Additional information about the error is included in the message.
 The placement of this information is shown in the messages as (_)

 Parent topic: Message Conventions

 Input-Argument Error Messages(2001-2099)

 Note: There are more input-argument error messages listed in Input-Argument Error Messages(2200-2299)

 	2538-2001

 The number of elements (ARG NO. _) in a vector must be greater
 than or equal to zero.

 	2538-2002

 The stride (ARG NO. _) for a vector must be nonzero.

 	2538-2003

 The number of rows (ARG NO. _) in a matrix must be greater
 than or equal to zero.

 	2538-2004

 The number of columns (ARG NO. _) in a matrix must be greater
 than or equal to zero.

 	2538-2005

 The size of the leading dimension (ARG NO. _) of an array
 must be greater than zero.

 	2538-2006

 The number of rows (ARG NO. _) of a matrix must be less than
 or equal to the size of the leading dimension (ARG NO. _) of its array.

 	2538-2007

 The degree of a polynomial (ARG NO. _) must be greater than
 or equal to zero.

 	2538-2008

 The number of elements (ARG NO. _) to be scanned must be
 greater than or equal to 2.

 	2538-2009

 The number of elements (ARG NO. _) in a vector to be processed
 must be greater than or equal to 3.

 	2538-2010

 The transform length (ARG NO. _) must be a power of 2.

 	2538-2011

 The number of points used in the interpolation (ARG NO. _)
 must be greater than or equal to zero and less than or equal to the
 number of data points (ARG NO. _).

 	2538-2012

 The transform length (ARG NO. _) must be less than or equal
 to (_).

 	2538-2013

 The transform length (ARG NO. _) must be greater than or
 equal to (_).

 	2538-2014

 The routine must be initialized with the present value of
 (ARG NO. _).

 	2538-2015

 The number of elements (ARG NO. _) in a work array must be
 greater than or equal to (_).

 	2538-2016

 The form (ARG NO. _) of a matrix must be 'N' or 'T'. or
 The form (ARG NO. _) of a matrix must be 'N', 'T', or 'C'. or The
 form (ARG NO. _) of a matrix must be 'N' or 'C'.

 	2538-2017

 The dimension (ARG NO. _) of the matrices must be greater
 than or equal to zero.

 	2538-2018

 The matrix form is specified by (ARG NO. _); therefore, the
 leading dimension (ARG NO. _) of its array must be greater than or
 equal to the number of its rows (ARG NO. _).

 	2538-2019

 The number of sequences (ARG NO. _) must be greater than
 zero.

 	2538-2020

 (ARG NO. _) must be nonzero.

 	2538-2021

 The storage control switch (ARG NO. _) must be 1, 2, 3, or
 4.

 	2538-2022

 (ARG NO. _) must be less than (_).

 	2538-2023

 The outer loop increment (ARG NO. _) must be greater than
 or equal to zero.

 	2538-2024

 The stride (ARG NO. _) for a vector must be greater than
 or equal to zero.

 	2538-2025

 The stride (ARG NO. _) for a vector must be greater than
 zero.

 	2538-2026

 The stride (ARG NO. _) for a vector must be greater than
 or equal to (_).

 	2538-2027

 The order (ARG NO. _) of a matrix must be greater than or
 equal to zero.

 	2538-2028

 The job option argument (ARG NO. _) must be [one of the following:
 0, 1, or 2; 0, 1, 2, or 3; 0, 1, 2, 10, 11, or 12; 0, 1, 10, or 11;
 0, 1, 20, or 21; 0, 1, 10, 11, 20, 21, 30, or 31; 0, 1, 2, 3, or 4].

 	2538-2029

 The job option argument (ARG NO. _) must be 0 or 1.

 	2538-2030

 The transform length (ARG NO. _) is not an allowed value.
 The next higher allowed value is (_).

 	2538-2031

 The resulting convolution length obtained from ARG NO. 10
 = (_), ARG NO. 11 = (_), ARG NO. 13 = (_), and ARG NO. 14 = (_) must
 be less than (_).

 	2538-2032

 The size of the leading dimension (ARG NO. _) of the matrix
 must be greater than or equal to (_), the bandwidth constraint.

 	2538-2033

 The lower bandwidth (ARG NO. _) must be greater than or equal
 to zero.

 	2538-2034

 The upper bandwidth (ARG NO. _) must be greater than or equal
 to zero.

 	2538-2035

 The half-band bandwidth (ARG NO. _) must be greater than
 or equal to zero.

 	2538-2036

 The lower bandwidth (ARG NO. _) must be less than the order
 (ARG NO. _) of the matrix.

 	2538-2037

 The upper bandwidth (ARG NO. _) must be less than the order
 (ARG NO. _) of the matrix.

 	2538-2038

 The half-band bandwidth (ARG NO. _) must be less than the
 order (ARG NO. _) of the matrix.

 	2538-2039

 (ARG NO. _) must be greater than zero.

 	2538-2040

 Insufficient storage allocated for positive definite solve.
 (_) additional bytes required.

 	2538-2041

 The resulting correlation length obtained from ARG NO. 8
 = (_) and ARG NO. 10 = (_) must be less than (_).

 	2538-2042

 (ARG NO. _) must be greater than or equal to zero.

 	2538-2043

 (ARG NO. _) must be greater than (_).

 	2538-2044

 The number of initialized coefficients (ARG NO. _) cannot
 exceed the size of the coefficient vector (ARG NO. _).

 	2538-2045

 The order specified (ARG NO. _) is not supported for this
 quadrature method. The nearest supported order is (_).

 	2538-2046

 The scaling parameter (ARG NO. _) must be greater than zero
 for this quadrature method.

 	2538-2047

 The scaling parameter (ARG NO. _) must be nonzero for this
 quadrature method.

 	2538-2048

 The sum of (ARG NO. _) and (ARG NO. _) must be nonzero for
 this quadrature method.

 	2538-2049

 The number of data points (ARG NO. _) must be greater than
 one in order to perform numerical quadrature.

 	2538-2050

 The number of columns specified for the arrays to store the
 matrix in compressed matrix mode (ARG NO. _) must be greater than
 or equal to (_).

 	2538-2051

 The number of columns (ARG NO. _) specified for the matrix
 used to store the sparse matrix in compressed mode must be greater
 than zero.

 	2538-2052

 The total number of non-zero elements of the input sparse
 matrix stored by rows, obtained from element (_) of the row pointers
 array (ARG NO. _), must be greater than or equal to zero.

 	2538-2053

 The number of non-zero elements in row (_) obtained from
 the row pointer array (ARG NO. _) is less than zero.

 	2538-2054

 The number of diagonals (ARG NO. _) specified for the matrix
 used to store the sparse matrix in compressed diagonal mode must be
 greater than zero.

 	2538-2055

 Element (_) of the vector used to store the diagonal numbers
 (ARG NO. _) is incompatible with the order of the sparse matrix (ARG
 NO. _).

 	2538-2056

 The matrix is singular because the number of non-zero entries
 (ARG NO. _) is zero.

 	2538-2057

 Element (_) in the integer parameter vector (ARG NO. _) must
 be greater than or equal to zero.

 	2538-2058

 Element (_) in the integer parameter vector (ARG NO. _) must
 be (_),(_), or (_).

 	2538-2059

 Element (_) in the real parameter vector (ARG NO. _) must
 be greater than zero.

 	2538-2060

 The size of the leading dimension (ARG NO. _) of an array
 must be greater than or equal to the maximum of (ARG NO. _) and (ARG
 NO. _).

 	2538-2061

 Parameter (ARG NO. _), which specifies the number of columns
 of the input sparse matrix (ARG NO. _ and ARG NO. _), must be greater
 than or equal to (_).

 	2538-2062

 The number of random numbers generated (ARG NO. _) must be
 even and greater than or equal to zero.

 	2538-2063

 SIDE (ARG NO. _), which specifies whether the triangular
 input matrix (ARG NO. _) appears on the left or right of the other
 input matrix, must be 'L' or 'R'.

 	2538-2064

 UPLO (ARG NO. _), which specifies whether an input matrix
 (ARG NO. _) is upper or lower triangular, must be 'U' or 'L'.

 	2538-2065

 DIAG (ARG NO. _), which specifies whether an input matrix
 (ARG NO. _) is unit triangular, must be 'U' or 'N'.

 	2538-2066

 Given the value which has been assigned to SIDE (ARG NO.
 _), the leading dimension (ARG NO. _) for the triangular input matrix
 must be greater than or equal to (ARG NO. _).

 	2538-2067

 TRANSA (ARG NO. _) specifies whether an input matrix (ARG
 NO. _), its transpose, or its conjugate transpose should be used.
 TRANSA must be 'N', 'T', or 'C'.

 	2538-2068

 The size of the leading dimension (ARG NO. _) of an array
 must be greater than or equal to zero.

 	2538-2070

 Element (_) in (ARG NO. _) must be [one of the following:
 0 or 1; greater than zero; greater than or equal to zero; greater
 than or equal to zero and less than or equal to 1; greater than
 the preceding element; greater than or equal to 1 and less than
 or equal to n; -1 or 1; nonzero; 0, 1, 2, 10, or 11; 0, 1, 2,
 10, 11, 100, 102, or 110; 0; 1; 0, 1, 2, 10, 11, 100, 101, 102,
 110, or 111; 1, 2, 3, or 4; 1, 2, 3, 4, or 5].

 	2538-2071

 The number of eigenvalues (ARG NO. _) must be less than or
 equal to the order of the matrix (ARG NO. _).

 	2538-2072

 The work area (ARG NO. _) does not contain a valid vector
 seed. The routine must be called with a nonzero value of ISEED (ARG
 NO. _).

 	2538-2073

 (ARG NO. _) must be a double precision whole number greater
 than or equal to 1.0 and less than 2147483647.0.

 	2538-2074

 Performance can be improved by using a larger work array.
 For best performance, specify the number of elements (ARG NO. _) in
 the work array to be greater than or equal to (_).

 	2538-2075

 The data type parameter (ARG NO. _) must be 'S', 'D', 'C',
 or 'Z'.

 	2538-2076

 (ARG NO. _) must be greater than or equal to (_) and smaller
 than (_).

 	2538-2077

 The matrix is singular. Column (_) is empty in the matrix
 specified by (ARG NO. _), (ARG NO. _), and (ARG NO. _).

 	2538-2078

 The matrix is singular. Row (_) is empty in the matrix specified
 by (ARG NO. _), (ARG NO. _), and (ARG NO. _).

 	2538-2079

 The matrix, specified by (ARG NO. _), (ARG NO. _), and (ARG
 NO. _), contains at least one duplicate column index in row (_).

 	2538-2080

 Element (_) in (ARG NO. _) must be [one of the following:
 greater than or equal to (_) and less than or equal to (_); greater
 than or equal to (_) and less than or equal to (ARG NO. _); greater
 than or equal to element (_) and less than or equal to (_); zero
 or must be greater than or equal to (_)].

 	2538-2081

 Element (_) in (ARG NO. _) must be less than or equal to
 (_).

 	2538-2082

 Element (_) in (ARG NO. _) may cause incorrect or misleading
 results. [One of the following: A nonzero number with absolute value
 less than or equal to 1; a positive number less than or equal to 1]
 is recommended.

 	2538-2083

 The pivot tolerance (element (_) in (ARG NO. _)) may cause
 incorrect or misleading results. A number greater than or equal to
 0 and less than or equal to 1 is recommended.

 	2538-2084

 The dimension (ARG NO. _) of the array (ARG NO. _) must be
 greater than or equal to (_).

 	2538-2085

 The number of steps after which the generalized minimum residual
 method is restarted, element (_) in (ARG NO. _), must be greater than
 0.

 	2538-2086

 The acceleration parameter, element (_) in (ARG NO. _), must
 be greater than 0 when using the SSOR preconditioner.

 	2538-2087

 STOR (ARG NO. _), which specifies the storage variation used
 to represent the input sparse matrix, must be 'G', 'L', or 'U'.

 	2538-2088

 INIT (ARG NO. _), which specifies the type of computation
 to be performed, must be 'I' or 'S'.

 	2538-2089

 Element (_) in (ARG NO. _) must be [one of the following:
 greater than or equal to (_); greater than or equal to element (_)].

 	2538-2090

 For level (_), the number of grid points for dimension (_)
 must be an odd number greater than 1.

 	2538-2091

 Since the mesh spacing (ARG NO. _) here is not constant,
 the second order prolongation method must be used. That is, element
 (_) of (ARG NO. _) must be (_).

 	2538-2092

 The index into (ARG NO. _) is out of range. This index is
 element (_,_) of (ARG NO. _).

 	2538-2093

 The index into (ARG NO. _) is out of range. This index is
 element (_,_,_) of (ARG NO. _).

 	2538-2094

 For dimension (_) on level (_), the mesh spacing must be
 changed to a positive value.

 	2538-2095

 Excess space in (ARG NO. _) has been decreased and may be
 inadequate. To avoid this, specify the coarse level matrix as the
 final item in this argument.

 	2538-2096

 For level (_), the matrix type, solver, and preconditioner
 are incompatible.

 	2538-2097

 The solver requested for level (_) requires a square matrix.
 Elements (_,_,_) and (_,_,_) in (ARG NO. _) must be equal.

 	2538-2098

 Element (_,_) of (ARG NO. _) must be greater than or equal
 to (_).

 	2538-2099

 End of input argument error reporting. For more information,
 refer to Engineering and Scientific Subroutine Library Guide and Reference.

 Parent topic: Messages

 2538-2001

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2002

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2003

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2004

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2005

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2006

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2007

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2008

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2009

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2010

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2011

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2012

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2013

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2014

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2015

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2016

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2017

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2018

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2019

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2020

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2021

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2022

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2023

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2024

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2025

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2026

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2027

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2028

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2029

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2030

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2031

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2032

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2033

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2034

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2035

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2036

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2037

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2038

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2039

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2040

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2041

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2042

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2043

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2044

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2045

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2046

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2047

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2048

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2049

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2050

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2051

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2052

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2053

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2054

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2055

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2056

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2057

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2058

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2059

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2060

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2061

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2062

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2063

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2064

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2065

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2066

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2067

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2068

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2070

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2071

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2072

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2073

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2074

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2075

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2076

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2077

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2078

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2079

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2080

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2081

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2082

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2083

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2084

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2085

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2086

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2087

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2088

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2089

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2090

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2091

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2092

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2093

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2094

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2095

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2096

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2097

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2098

 Parent topic: Input-Argument Error Messages(2001-2099)

 2538-2099

 Parent topic: Input-Argument Error Messages(2001-2099)

 Computational Error Messages(2100-2199)

 	2538-2100

 The computed index of a vector is out of the range (_) to
 (_).

 	2538-2101

 Eigenvalue (_) failed to converge after (_) iterations.

 	2538-2102

 Eigenvector (_) failed to converge after (_) iterations.

 	2538-2103

 The matrix (ARG NO. _) is singular. Zero diagonal element
 (_) has been detected.

 	2538-2104

 The matrix (ARG NO. _) is not positive definite. The last
 diagonal element with nonpositive value is (_).

 	2538-2105

 Factorization failed due to near zero pivot number (_).

 	2538-2106

 Vector boundary misalignment detected in ESSL scalar library.

 	2538-2107

 Singular value (_) failed to converge after (_) iterations.

 	2538-2108

 The matrix specified by (ARG NO. _) and (ARG NO. _) is not
 definite because the diagonal is not of constant sign.

 	2538-2109

 The matrix specified by (ARG NO. _) and (ARG NO. _) is not
 definite and the iterative process is stopped at iteration number
 (_).

 	2538-2110

 The maximum allowed number of iterations, element number
 (_) of (ARG NO. _), were performed but the iterative process did not
 converge to a solution according to the stopping procedure.

 	2538-2111

 The factorization matrix (ARG NO. _) is not consistent with
 the sparse matrix specified by (ARG NO. _) and (ARG NO. _).

 	2538-2112

 The incomplete factorization of the sparse matrix specified
 by (ARG NO. _) and (ARG NO. _) is not stable.

 	2538-2113

 Unexpected nonzero vector mask detected in ESSL scalar routine.
 Contact your IBM Service Representative.

 	2538-2114

 Eigenvalue (_) failed to converge after (_) iterations.

 	2538-2115

 The matrix (ARG NO. _) is not positive definite. The leading
 minor of order (_) has a nonpositive determinant.

 	2538-2116

 The matrix specified by (ARG NO. _) and (ARG NO. _) is singular.

 	2538-2117

 The pivot element in column (_) is smaller than the first
 element in (ARG NO. _).

 	2538-2118

 The pivot element in row (_) is smaller than the first element
 in (ARG NO. _).

 	2538-2119

 The storage space, specified by (ARG NO. _), is insufficient.

 	2538-2120

 The matrix is singular. The last row processed in the matrix
 was row (_).

 	2538-2121

 The matrix is singular. the last column processed was column
 (_).

 	2538-2122

 The factorization failed. No pivot element was found in the
 active submatrix.

 	2538-2123

 Performance can be improved by specifying a larger value
 for (ARG NO. _). (_) compressions were performed.

 	2538-2124

 The data contained in AUX1, (ARG NO. _), was computed for
 a different algorithm.

 	2538-2126

 The pivot value at row (_) is not acceptable based on pivot
 criteria ((ARG NO. _) and (ARG NO. _)). No fixup was applicable to
 this pivot. The matrix (ARG NO. _) may be singular or not definite.

 	2538-2127

 The pivot value at row (_) was replaced with element (_)
 in (ARG NO. _). The matrix (ARG NO. _) may be singular or not definite.

 	2538-2128

 Internal ESSL error. contact your IBM service representative.

 	2538-2129

 The matrix specified by (ARG NO. _), (ARG NO. _), and (ARG
 NO. _) is not definite because the diagonal is not of constant sign
 or some diagonal element is zero.

 	2538-2130

 The incomplete factorization of the sparse matrix specified
 by (ARG NO. _), (ARG NO. _), and (ARG NO. _) is not stable.

 	2538-2131

 The matrix specified by (ARG NO. _), (ARG NO. _), and (ARG
 NO. _) is singular.

 	2538-2132

 Element (_) in (ARG NO. _) indicates that factorization was
 done on a previous call. The data passed is not the result of a prior
 valid factorization.

 	2538-2133

 An error occurred on level (_) in the user-supplied subroutine
 specified by (ARG NO. _).

 	2538-2134

 The data contained in (ARG NO. _) is not consistent with
 the sparse matrix specified by (ARG NO. _), (ARG NO. _), and (ARG
 NO. _).

 	2538-2135

 For level (_), loss of orthogonality occurred in a minimum
 residual solver because the input matrix (element (_,_) of (ARG NO.
 _)) is inappropriate. Choose one of the other non-symmetric solvers.

 	2538-2136

 For level (_), the main diagonal element for row (_) of a
 matrix is 0.

 	2538-2145

 The input matrix (ARG NO. _) is singular. The first diagonal
 element found to be exactly zero was in column (_).

 	2538-2146

 The input matrix (ARG NO. _) is singular. The first diagonal
 element found to be exactly zero was in column (_).

 	2538-2147

 The matrix (ARG NO. _) is singular. Zero diagonal element
 (_) has been detected.

 	2538-2148

 The matrix (ARG NO. _) is not positive definite. The leading
 minor of order (_) has a nonpositive determinant.

 	2538-2149

 Factorization failed due to near zero pivot number (_).

 	2538-2150

 The inverse of matrix (ARG NO. _) could not be computed.
 The first diagonal element of the factored matrix found to be exactly
 zero was in column (_).

 	2538-2151

 The inverse of matrix (ARG NO. _) could not be computed.
 The first diagonal element of the factored matrix found to be exactly
 zero was in column (_).

 	2538-2152

 The alignment of (ARG NO. _) changed after initialization.
 Performance may be significantly degraded.

 	2538-2153

 Eigenvalue (_) failed to converge. Arrays WR (ARG NO. _)
 and WI (ARG NO. _) contain the eigenvalues successfully computed.
 For more information, refer to Engineering and Scientific Subroutine
 Library Guide and Reference.

 	2538-2154

 Bisection failed to converge for some eigenvalues. The eigenvalues
 may not be as accurate as the absolute and relative tolerances.

 	2538-2155

 The number of eigenvalues computed (ARG NO. _) does not match
 the number of eigenvalues requested.

 	2538-2156

 No eigenvalues were computed since the Gershgorin interval
 initially used was incorrect.

 	2538-2157

 (_) eigenvectors failed to converge after (_) iterations.
 The indices are stored in IFAIL (ARG NO. _).

 	2538-2158

 Eigenvalue (_) failed to converge. Array W (ARG NO. _) contains
 the eigenvalues successfully computed. For more information, refer
 to Engineering and Scientific Subroutine Library Guide and Reference.

 	2538-2159

 Eigenvalue (_) failed to converge in the QZ iteration. Arrays
 ALPHAR (ARG NO. _), ALPHAI (ARG NO. _) and BETA (ARG NO. _) contain
 the eigenvalues successfully computed. For more information, refer
 to Engineering and Scientific Subroutine Library Guide and Reference.

 	2538-2160

 Eigenvalue (_) failed to converge in the computation of shifts.
 Arrays ALPHAR (ARG NO. _), ALPHAI (ARG NO. _) and BETA (ARG NO. _)
 contain the eigenvalues successfully computed. For more information,
 refer to Engineering and Scientific Subroutine Library Guide and Reference.

 	2538-2161

 An eigenvector failed to converge because the 2-by-2 block
 (_ : _) did not have a complex eigenvalue.

 	2538-2162

 The algorithm failed to converge because (_) off-diagonal
 elements of an intermediate tridiagonal form did not converge to zero.

 	2538-2163

 An eigenvalue failed to converge in the submatrix starting
 at row and column (_) and ending at row and column (_).

 	2538-2164

 Eigenvalue (_) failed to converge in the QZ iteration. Arrays
 ALPHA (ARG NO. _) and BETA (ARG NO. _) contain the eigenvalues successfully
 computed. For more information, refer to Engineering and Scientific
 Subroutine Library Guide and Reference.

 	2538-2165

 Eigenvalue (_) failed to converge in the computation of shifts.
 Arrays ALPHA (ARG NO. _) and BETA (ARG NO. _) contain the eigenvalues
 successfully computed. For more information, refer to Engineering
 and Scientific Subroutine Library Guide and Reference.

 	2538-2166

 The matrix specified by (ARG NO. _) and (ARG NO. _) is not
 positive definite. The leading minor of order (_) has a nonpositive
 determinant.

 	2538-2167

 (_) superdiagonals of an intermediate bidiagonal form B did
 not converge to zero. For more information, refer to Engineering
 and Scientific Subroutine Library Guide and Reference.

 	2538-2168

 The matrix specified by (ARG NO. _), (ARG NO. _), and (ARG
 NO. _) is singular. The first diagonal element found to be exactly
 zero was in column (_).

 	2538-2169

 Singular value decomposition failed to converge.

 	2538-2199

 End of computational error reporting. For more information,
 refer to Engineering and Scientific Subroutine Library Guide and Reference.

 Parent topic: Messages

 2538-2100

 Parent topic: Computational Error Messages(2100-2199)

 2538-2101

 Parent topic: Computational Error Messages(2100-2199)

 2538-2102

 Parent topic: Computational Error Messages(2100-2199)

 2538-2103

 Parent topic: Computational Error Messages(2100-2199)

 2538-2104

 Parent topic: Computational Error Messages(2100-2199)

 2538-2105

 Parent topic: Computational Error Messages(2100-2199)

 2538-2106

 Parent topic: Computational Error Messages(2100-2199)

 2538-2107

 Parent topic: Computational Error Messages(2100-2199)

 2538-2108

 Parent topic: Computational Error Messages(2100-2199)

 2538-2109

 Parent topic: Computational Error Messages(2100-2199)

 2538-2110

 Parent topic: Computational Error Messages(2100-2199)

 2538-2111

 Parent topic: Computational Error Messages(2100-2199)

 2538-2112

 Parent topic: Computational Error Messages(2100-2199)

 2538-2113

 Parent topic: Computational Error Messages(2100-2199)

 2538-2114

 Parent topic: Computational Error Messages(2100-2199)

 2538-2115

 Parent topic: Computational Error Messages(2100-2199)

 2538-2116

 Parent topic: Computational Error Messages(2100-2199)

 2538-2117

 Parent topic: Computational Error Messages(2100-2199)

 2538-2118

 Parent topic: Computational Error Messages(2100-2199)

 2538-2119

 Parent topic: Computational Error Messages(2100-2199)

 2538-2120

 Parent topic: Computational Error Messages(2100-2199)

 2538-2121

 Parent topic: Computational Error Messages(2100-2199)

 2538-2122

 Parent topic: Computational Error Messages(2100-2199)

 2538-2123

 Parent topic: Computational Error Messages(2100-2199)

 2538-2124

 Parent topic: Computational Error Messages(2100-2199)

 2538-2126

 Parent topic: Computational Error Messages(2100-2199)

 2538-2127

 Parent topic: Computational Error Messages(2100-2199)

 2538-2128

 Parent topic: Computational Error Messages(2100-2199)

 2538-2129

 Parent topic: Computational Error Messages(2100-2199)

 2538-2130

 Parent topic: Computational Error Messages(2100-2199)

 2538-2131

 Parent topic: Computational Error Messages(2100-2199)

 2538-2132

 Parent topic: Computational Error Messages(2100-2199)

 2538-2133

 Parent topic: Computational Error Messages(2100-2199)

 2538-2134

 Parent topic: Computational Error Messages(2100-2199)

 2538-2135

 Parent topic: Computational Error Messages(2100-2199)

 2538-2136

 Parent topic: Computational Error Messages(2100-2199)

 2538-2145

 Parent topic: Computational Error Messages(2100-2199)

 2538-2146

 Parent topic: Computational Error Messages(2100-2199)

 2538-2147

 Parent topic: Computational Error Messages(2100-2199)

 2538-2148

 Parent topic: Computational Error Messages(2100-2199)

 2538-2149

 Parent topic: Computational Error Messages(2100-2199)

 2538-2150

 Parent topic: Computational Error Messages(2100-2199)

 2538-2151

 Parent topic: Computational Error Messages(2100-2199)

 2538-2152

 Parent topic: Computational Error Messages(2100-2199)

 2538-2153

 Parent topic: Computational Error Messages(2100-2199)

 2538-2154

 Parent topic: Computational Error Messages(2100-2199)

 2538-2155

 Parent topic: Computational Error Messages(2100-2199)

 2538-2156

 Parent topic: Computational Error Messages(2100-2199)

 2538-2157

 Parent topic: Computational Error Messages(2100-2199)

 2538-2158

 Parent topic: Computational Error Messages(2100-2199)

 2538-2159

 Parent topic: Computational Error Messages(2100-2199)

 2538-2160

 Parent topic: Computational Error Messages(2100-2199)

 2538-2161

 Parent topic: Computational Error Messages(2100-2199)

 2538-2162

 Parent topic: Computational Error Messages(2100-2199)

 2538-2163

 Parent topic: Computational Error Messages(2100-2199)

 2538-2164

 Parent topic: Computational Error Messages(2100-2199)

 2538-2165

 Parent topic: Computational Error Messages(2100-2199)

 2538-2166

 Parent topic: Computational Error Messages(2100-2199)

 2538-2167

 Parent topic: Computational Error Messages(2100-2199)

 2538-2168

 Parent topic: Computational Error Messages(2100-2199)

 2538-2169

 Parent topic: Computational Error Messages(2100-2199)

 2538-2199

 Parent topic: Computational Error Messages(2100-2199)

 Input-Argument Error Messages(2200-2299)

 	2538-2200

 The dimension (ARG NO. _) of the array (ARG NO. _) must be greater than or equal to
 (_).

 	2538-2201

 The number of elements (ARG NO. _) in a work array (ARG NO. _) must be zero, to indicate
 dynamic allocation, minus one, to indicate workspace query, or greater than or equal to (_) if a
 work array is being supplied.

 	2538-2207

 The number of elements in the array (ARG NO. _) must be less than or equal to
 (_).

 	2538-2208

 ANORM (ARG NO. _) must be equal to zero or greater than or equal to (_) and less than or
 equal to (_).

 	2538-2209

 NORM (ARG NO. _), which specifies the computation to be performed, must be 'M', '1', 'O',
 'I', 'F', or 'E'.

 	2538-2210

 NORM (ARG NO. _), which specifies whether to calculate the 1-norm condition number or the
 infinity-norm condition number, must be '1', 'O', or 'I'.

 	2538-2211

 The alignment of (ARG NO. _) changed after initialization.

 	2538-2212

 JOBZ (ARG NO. _), which specifies whether or not to compute eigenvectors, must be 'N' or
 'V'.

 	2538-2213

 RANGE (ARG NO. _), which specifies which eigenvalues to find, must be 'A', 'V', or
 'I'.

 	2538-2214

 VU (ARG NO. _), which specifies the upper bound of the interval to be searched for
 eigenvalues, must be greater than VL (ARG NO. _), which specifies the lower bound of the interval to
 be searched for eigenvalues.

 	2538-2215

 IL (ARG NO. _), which specifies the index of the smallest eigenvalue to be returned, must
 be greater than or equal to 1 and less than or equal to the larger of 1 and the order (ARG NO. _) of
 the matrix (ARG NO. _).

 	2538-2216

 IU (ARG NO. _), which specifies the index of the largest eigenvalue to be returned, must be
 greater than or equal to the smaller of the order (ARG NO. _) of the matrix (ARG NO. _) and IL (ARG
 NO. _) and less than or equal to the order of the matrix.

 	2538-2217

 BALANC (ARG NO. _), which specifies whether or not to diagonally scale the input matrix
 (ARG NO. _) and whether or not to permute the input matrix, must be 'N', 'P', 'S', or 'B'.

 	2538-2218

 JOBVL (ARG NO. _), which specifies whether or not to compute left eigenvectors, must be 'N'
 or 'V'.

 	2538-2219

 JOBVR (ARG NO. _), which specifies whether or not to compute right eigenvectors, must be
 'N' or 'V'.

 	2538-2220

 SENSE (ARG NO. _), which specifies which reciprocal condition numbers are to be computed,
 must be 'N', 'E', 'V', or 'B'.

 	2538-2221

 JOBVL (ARG NO. _) and JOBVR (ARG NO. _) must be 'V' if SENSE (ARG. NO _) is 'E' or
 'B'.

 	2538-2222

 ITYPE (ARG NO. _), which specifies the problem type, must be 1, 2, or 3.

 	2538-2223

 The routine must be initialized with the present value of element (_) of (ARG NO.
 _).

 	2538-2224

 UPLO (ARG NO. _), which specifies whether off-diagonal E (ARG NO. _) is the superdiagonal
 or the subdiagonal of the bidiagonal factorization, must be 'U' or 'L'.

 	2538-2225

 The lower bandwidth (ARG NO. _) must be less than the number of rows (ARG NO. _) of the
 matrix.

 	2538-2226

 The upper bandwidth (ARG NO. _) must be less than the number of columns (ARG NO. _) of the
 matrix.

 	2538-2227

 JOBU (ARG NO. _), which specifies whether or not to compute left singular vectors, must be
 'N', 'A', 'S', or 'O'.

 	2538-2228

 JOBVT (ARG NO. _), which specifies whether or not to compute left singular vectors, must be
 'N', 'A', 'S', or 'O'.

 	2538-2229

 JOBU (ARG NO. _) and JOBVT (ARG NO. _) cannot both be 'O'.

 	2538-2230

 The size of the leading dimension (ARG NO. _) of an array must be greater than or equal to
 the smaller of (ARG NO. _) and (ARG NO. _).

 	2538-2231

 IOPT (ARG NO. _) must be 1 or 2.

 	2538-2232

 IREPEAT (ARG NO. _) must be 0 or 1.

 	2538-2233

 LISEED (ARG NO. _), which depends on IOPT (ARG NO. _), must be greater than or equal to
 (_).

 	2538-2234

 LISTATE (ARG NO. _), which depends on IOPT (ARG NO. _), must be minus one to indicate an
 ISTATE (ARG NO. _) size query, or greater than or equal to (_) if the state vector has been
 supplied.

 	2538-2235

 ISTATE (ARG NO. _) is not initialized.

 	2538-2236

 (ARG NO. _) must be less than (ARG NO. _).

 	2538-2237

 ISTATE (ARG NO. _) must be initialized with IOPT equal to (_).

 	2538-2238

 ESSL_CUDA_HYBRID must be "yes", "no", or unset.

 	2538-2239

 ESSL_CUDA_PIN must be "yes", "no", "pinned", or unset.

 	2538-2240

 Element (_) of array IDS (ARG NO. _) must be greater than or equal to zero or less than the
 number of CUDA devices (_).

 	2538-2241

 This subroutine may be called only once, and it must be called before any ESSL GPU enabled
 subroutines.

 	2538-2242

 The CUDA device corresponding to element (_) in array IDS (ARG NO. _) must be in NVIDIA
 compute mode 0 (DEFAULT) or 3 (EXCLUSIVE_PROCESS).

 	2538-2243

 cblas_layout (ARG NO. _), which specifies whether matrices are stored
 in row major or column major order, must be CblasRowMajor or CblasColMajor.

 	2538-2244

 The form (ARG NO. _) of a matrix must be CblasNoTrans or CblasTrans.

 	2538-2245

 The form (ARG NO. _) of a matrix must be CblasNoTrans, CblasTrans, or
 CblasConjTrans.

 	2538-2246

 The form (ARG NO. _) of a matrix must be CblasNoTrans or CblasConjTrans.

 	2538-2247

 cblas_diag (ARG NO. _), which specifies whether an input matrix (ARG NO. _) is unit
 triangular, must be CblasUnit or CblasNonUnit.

 	2538-2248

 cblas_side (ARG NO. _), which specifies whether the triangular input
 matrix (ARG NO. _) appears on the left or right of the other input matrix, must be CblasLeft or
 CblasRight.

 	2538-2249

 cblas_uplo (ARG NO. _), which specifies whether an input matrix (ARG NO. _) is upper or
 lower triangular, must be CblasUpper or CblasLower.

 	2538-2250

 matrix_layout (ARG NO. _), which specifies whether matrices are stored in row major or
 column major order, must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR.

 	2538-2251

 JOBZ (ARG NO. _), which specifies options for computing all or part of the matrix U, must
 be 'N', 'A', 'S', or 'O'.

 	2538-2252

 The size of a work array (ARG NO. _), specified by (ARG NO. _) or implicitly computed by
 ESSL, must be greater than zero and less than or equal to 2147483647 when 32-bit integers are
 used.

 	2538-2253

 BALANC (ARG NO. _), which specifies whether or not to diagonally scale the input matrices
 (ARG NO. _ and ARG NO. _) and whether or not to permute the input matrices, must be 'N', 'P', 'S',
 or 'B'.

 	2538-2254

 The size of the leading dimension (ARG NO. _) of an array must be greater than or equal to
 (_), computed as (ARG NO. _) minus (ARG NO. _) plus 1.

 	2538-2255

 The number of columns (ARG NO. _) of a matrix must be less than or equal to the size of the
 leading dimension (ARG NO. _) of its array.

 Parent topic: Messages

 2538-2200

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2201

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2207

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2208

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2209

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2210

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2211

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2212

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2213

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2214

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2215

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2216

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2217

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2218

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2219

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2220

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2221

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2222

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2223

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2224

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2225

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2226

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2227

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2228

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2229

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2230

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2231

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2232

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2233

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2234

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2235

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2236

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2237

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2238

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2239

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2240

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2241

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2242

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2243

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2244

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2245

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2246

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2247

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2248

 Parent topic: Input-Argument Error Messages(2200-2299)

 2538-2249

 Parent topic: Input-Argument Error Messages(2200-2299)

 [image: Start of change]2538-2250

 Parent topic: Input-Argument Error Messages(2200-2299)

 [image: End of change]

 [image: Start of change]2538-2251

 Parent topic: Input-Argument Error Messages(2200-2299)

 [image: End of change]

 [image: Start of change]2538-2252

 Parent topic: Input-Argument Error Messages(2200-2299)

 [image: End of change]

 [image: Start of change]2538-2253

 Parent topic: Input-Argument Error Messages(2200-2299)

 [image: End of change]

 [image: Start of change]2538-2254

 Parent topic: Input-Argument Error Messages(2200-2299)

 [image: End of change]

 [image: Start of change]2538-2255

 Parent topic: Input-Argument Error Messages(2200-2299)

 [image: End of change]

 Resource Error Messages(2400-2499)

 	2538-2400

 An internal buffer allocation has failed due to insufficient
 memory.

 Parent topic: Messages

 2538-2400

 Parent topic: Resource Error Messages(2400-2499)

 Informational and Attention Error Messages(2600-2699)

 	2538-2600

 Performance may be degraded due to limited buffer space availability.

 	2538-2601

 Execution terminating due to error count for error number
 (_) Message summary: Message number - Count

 	2538-2602

 User error corrective routine entered. User corrective action
 taken. Execution continuing.

 	2538-2603

 Standard corrective action taken. Execution continuing.

 	2538-2604

 Execution terminating due to error count for error number
 _.

 	2538-2605

 Message summary: _ - _

 	2538-2606

 Serial execution is taking place since the input array is
 equal to the output array and either: INC2X (ARG NO. _) is not equal
 to 2 times INC2Y (ARG NO. _) or INC3X (ARG NO. _) is not equal
 to 2 times INC3Y (ARG NO. _).

 	2538-2607

 Serial execution is taking place since the input array is
 equal to the output array and either: INC2X (ARG NO. _) is not equal
 to INC2Y (ARG NO. _) or INC3X (ARG NO. _) is not equal to INC3Y
 (ARG NO. _).

 	2538-2608

 Performance may be improved by using a larger work array.
 For best performance, specify the number of elements (ARG NO. _) in
 the work array to be greater than or equal to (_).

 	2538-2609

 Performance may be improved by specifying a larger value
 for (ARG NO. _). (_) compressions were performed.

 	2538-2610

 Performance may be degraded due to the alignment of (ARG
 NO. _).

 	2538-2611

 Performance may be improved by specifying an even value for
 (ARG NO. _).

 	2538-2612

 Performance may be improved by specifying a multiple of four
 for (ARG NO. _).

 	2538-2613

 ESSL computed the eigenvalues using multiple algorithms.
 Performance may be degraded.

 	2538-2614

 Performance may be degraded because the number of available
 GPUs is zero.

 	2538-2615

 Performance may be improved by specifying the number of threads
 (_) greater than or equal to the number of available GPUs (_).

 	2538-2616

 _returned with CUDA message: _

 Parent topic: Messages

 2538-2600

 Parent topic: Informational and Attention Error Messages(2600-2699)

 2538-2601

 Parent topic: Informational and Attention Error Messages(2600-2699)

 2538-2602

 Parent topic: Informational and Attention Error Messages(2600-2699)

 2538-2603

 Parent topic: Informational and Attention Error Messages(2600-2699)

 2538-2604

 Parent topic: Informational and Attention Error Messages(2600-2699)

 2538-2605

 Parent topic: Informational and Attention Error Messages(2600-2699)

 2538-2606

 Parent topic: Informational and Attention Error Messages(2600-2699)

 2538-2607

 Parent topic: Informational and Attention Error Messages(2600-2699)

 2538-2608

 Parent topic: Informational and Attention Error Messages(2600-2699)

 2538-2609

 Parent topic: Informational and Attention Error Messages(2600-2699)

 2538-2610

 Parent topic: Informational and Attention Error Messages(2600-2699)

 2538-2611

 Parent topic: Informational and Attention Error Messages(2600-2699)

 2538-2612

 Parent topic: Informational and Attention Error Messages(2600-2699)

 2538-2613

 Parent topic: Informational and Attention Error Messages(2600-2699)

 2538-2614

 Parent topic: Informational and Attention Error Messages(2600-2699)

 2538-2615

 Parent topic: Informational and Attention Error Messages(2600-2699)

 2538-2616

 Parent topic: Informational and Attention Error Messages(2600-2699)

 Miscellaneous Error Messages(2700-2799)

 	2538-2700

 Internal ESSL error number (_). Contact your IBM service representative.

 	2538-2703

 Internal ESSL error: message number requested (_) is outside
 of the valid range. Contact your IBM service
 representative.

 	2538-2799

 Unable to locate message number (_). Please refer to 'Using
 Error Handling' in the ESSL Guide and Reference for the full message
 text.

 Parent topic: Messages

 2538-2700

 Parent topic: Miscellaneous Error Messages(2700-2799)

 2538-2703

 Parent topic: Miscellaneous Error Messages(2700-2799)

 2538-2799

 Parent topic: Miscellaneous Error Messages(2700-2799)

 Reference Information

 This documentation is organized into ten areas, providing reference
 information for coding the ESSL calling sequences. It is organized
 as follows:

 	Linear Algebra Subprograms

 	Matrix Operations

 	Linear Algebraic Equations

 	Eigensystem Analysis

 	Fourier Transforms, Convolutions and Correlations, and Related
 Computations

 	Sorting and Searching

 	Interpolation

 	Numerical Quadrature

 	Random Number Generation

 	Utilities

 	Linear Algebra Subprograms

 The linear algebra subprograms, provided in four areas,
 are described here.

 	Matrix Operations

 The matrix operation subroutines are described here.

 	Linear Algebraic Equations

 The linear algebraic equation subroutines, provided in
 four areas, are described here.

 	Eigensystem Analysis

 	Fourier Transforms, Convolutions and Correlations, and Related Computations

 The signal processing subroutines, provided in three areas,
 are described here.

 	Sorting and Searching

 The sorting and searching subroutines are described here.

 	Interpolation

 The interpolation subroutines are described here.

 	Numerical Quadrature

 The numerical quadrature subroutines are described.

 	Random Number Generation

 The random number generation subroutines are described here.

 	Utilities

 The utility subroutines are described here.

 Linear Algebra Subprograms

 The linear algebra subprograms, provided in four areas,
 are described here.

 	Overview of the Linear Algebra Subprograms

 	Use Considerations

 	Performance and Accuracy Considerations

 	Vector-Scalar Subprograms

 	ISAMAX, IDAMAX, ICAMAX, and IZAMAX (Position of the First or Last Occurrence of the Vector Element Having the Largest Magnitude)

 	ISAMIN and IDAMIN (Position of the First or Last Occurrence of the Vector Element Having Minimum Absolute Value)

 	ISMAX and IDMAX (Position of the First or Last Occurrence of the Vector Element Having the Maximum Value)

 	ISMIN and IDMIN (Position of the First or Last Occurrence of the Vector Element Having Minimum Value)

 	SASUM, DASUM, SCASUM, and DZASUM (Sum of the Magnitudes of the Elements in a Vector)

 	SAXPY, DAXPY, CAXPY, and ZAXPY (Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the Vector Y)

 	SCOPY, DCOPY, CCOPY, and ZCOPY (Copy a Vector)

 	SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and ZDOTC (Dot Product of Two Vectors)

 	SNAXPY and DNAXPY (Compute SAXPY or DAXPY N Times)

 	SNDOT and DNDOT (Compute Special Dot Products N Times)

 	SNRM2, DNRM2, SCNRM2, and DZNRM2 (Euclidean Length of a Vector with Scaling of Input to Avoid Destructive Underflow and Overflow)

 	SNORM2, DNORM2, CNORM2, and ZNORM2 (Euclidean Length of a Vector with No Scaling of Input)

 	SROTG, DROTG, CROTG, and ZROTG (Construct a Givens Plane Rotation)

 	SROT, DROT, CROT, ZROT, CSROT, and ZDROT (Apply a Plane Rotation)

 	SROTMG and DROTMG (Construct a modified Givens Transformation)

 	SROTM and DROTM (Apply a modified Givens Transformation)

 	SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and ZDSCAL (Multiply a Vector X by a Scalar and Store in the Vector X)

 	SSWAP, DSWAP, CSWAP, and ZSWAP (Interchange the Elements of Two Vectors)

 	SVEA, DVEA, CVEA, and ZVEA (Add a Vector X to a Vector Y and Store in a Vector Z)

 	SVES, DVES, CVES, and ZVES (Subtract a Vector Y from a Vector X and Store in a Vector Z)

 	SVEM, DVEM, CVEM, and ZVEM (Multiply a Vector X by a Vector Y and Store in a Vector Z)

 	SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX (Multiply a Vector X by a Scalar and Store in a Vector Y)

 	SZAXPY, DZAXPY, CZAXPY, and ZZAXPY (Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in a Vector Z)

 	Sparse Vector-Scalar Subprograms

 	SSCTR, DSCTR, CSCTR, ZSCTR (Scatter the Elements of a Sparse Vector X in Compressed-Vector Storage Mode into Specified Elements
 of a Sparse Vector Y in Full-Vector Storage Mode)

 	SGTHR, DGTHR, CGTHR, and ZGTHR (Gather Specified Elements of a Sparse Vector Y in Full-Vector Storage Mode into a Sparse Vector
 X in Compressed-Vector Storage Mode)

 	SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ (Gather Specified Elements of a Sparse Vector Y in Full-Vector Mode into a Sparse Vector
 X in Compressed-Vector Mode, and Zero the Same Specified Elements of Y)

 	SAXPYI, DAXPYI, CAXPYI, and ZAXPYI (Multiply a Sparse Vector X in Compressed-Vector Storage Mode by a Scalar, Add to a Sparse
 Vector Y in Full-Vector Storage Mode, and Store in the Vector Y)

 	SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI (Dot Product of a Sparse Vector X in Compressed-Vector Storage Mode and a
 Sparse Vector Y in Full-Vector Storage Mode)

 	Matrix-Vector Subprograms

 	SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX (Matrix-Vector Product for a General Matrix, Its Transpose, or
 Its Conjugate Transpose)

 	SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC (Rank-One Update of a General Matrix)

 	SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV, SSLMX, and DSLMX (Matrix-Vector Product for a Real Symmetric or Complex
 Hermitian Matrix)

 	SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1 (Rank-One Update of a Real Symmetric or Complex Hermitian
 Matrix)

 	SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2 (Rank-Two Update of a Real Symmetric or Complex Hermitian
 Matrix)

 	SGBMV, DGBMV, CGBMV, and ZGBMV (Matrix-Vector Product for a General Band Matrix, Its Transpose, or Its Conjugate Transpose)

 	SSBMV, DSBMV, CHBMV, and ZHBMV (Matrix-Vector Product for a Real Symmetric or Complex Hermitian Band Matrix)

 	STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV (Matrix-Vector Product for a Triangular Matrix, Its Transpose,
 or Its Conjugate Transpose)

 	STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and ZTPSV (Solution of a Triangular System of Equations with a Single Right-Hand
 Side)

 	STBMV, DTBMV, CTBMV, and ZTBMV (Matrix-Vector Product for a Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose)

 	STBSV, DTBSV, CTBSV, and ZTBSV (Triangular Band Equation Solve)

 	Sparse Matrix-Vector Subprograms

 	DSMMX (Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode)

 	DSMTM (Transpose a Sparse Matrix in Compressed-Matrix Storage Mode)

 	DSDMX (Matrix-Vector Product for a Sparse Matrix or Its Transpose in Compressed-Diagonal Storage Mode)

 Parent topic: Reference Information

 Overview of the Linear Algebra Subprograms

 This describes the subprograms in each of the four linear algebra
 subprogram areas:

 	Vector-scalar linear algebra subprograms (Vector-Scalar Linear Algebra Subprograms)

 	Sparse vector-scalar linear algebra subprograms (Sparse Vector-Scalar Linear Algebra Subprograms)

 	Matrix-vector linear algebra subprograms (Matrix-Vector Linear Algebra Subprograms)

 	Sparse matrix-vector linear algebra subprograms (Sparse Matrix-Vector Linear Algebra Subprograms)

 Note:

 	The term subprograms is used to be consistent with the
 Basic Linear Algebra Subprograms (BLAS), because many of these subprograms
 correspond to the BLAS.

 	Some of the linear algebra subprograms were designed in accordance
 with the Level 1 and Level 2 BLAS de facto standard. If these subprograms
 do not comply with the standard as approved, IBM® will consider updating them to do so. If IBM updates these subprograms,
 the
 updates could require modifications of the calling application program.

 	Vector-Scalar Linear Algebra Subprograms

 	Sparse Vector-Scalar Linear Algebra Subprograms

 	Matrix-Vector Linear Algebra Subprograms

 	Sparse Matrix-Vector Linear Algebra Subprograms

 Parent topic: Linear Algebra Subprograms

 Vector-Scalar Linear Algebra Subprograms

 The vector-scalar linear algebra subprograms include
 a subset of the standard set of Level 1 BLAS. For details on the BLAS,
 see reference [93]. The remainder
 of the vector-scalar linear algebra subprograms are commonly used
 computations provided for your applications. Both real and complex
 versions of the subprograms are provided.

 Table 68. List of Vector-Scalar
 Linear Algebra Subprograms.

 	Short-Precision
 Subprogram

 	Long-Precision Subprogram

 	Descriptive Name and Location

 	

 ISAMAX

 †

 ▪

 ICAMAX

 †

 ▪

 cblas_isamax

 ▪

 cblas_icamax

 ▪

 	

 IDAMAX

 †

 ▪

 IZAMAX

 †

 ▪

 cblas_idamax

 ▪

 cblas_izamax

 ▪

 	ISAMAX, IDAMAX, ICAMAX, and IZAMAX (Position of the First or Last Occurrence of the Vector Element Having the Largest Magnitude)

 	[image: Start of change]
 ISAMIN

 †

 cblas_isamin

 [image: End of change]

 	[image: Start of change][image: Start of change]
 IDAMIN

 †

 cblas_idamin

 [image: End of change][image: End of change]

 	[image: Start of change]ISAMIN and IDAMIN (Position of the First or Last Occurrence of the Vector Element Having Minimum Absolute Value)[image: End of change]

 	[image: Start of change]
 ISMAX

 †

 cblas_ismax

 [image: End of change]

 	[image: Start of change]
 IDMAX

 †

 cblas_idmax

 [image: End of change]

 	ISMAX and IDMAX (Position of the First or Last Occurrence of the Vector Element Having the Maximum Value)

 	[image: Start of change]
 ISMIN

 †

 [image: Start of change]cblas_ismin

 [image: End of change]

 [image: End of change]

 	

 IDMIN

 †

 cblas_idmin

 	ISMIN and IDMIN (Position of the First or Last Occurrence of the Vector Element Having Minimum Value)

 	

 SASUM

 †

 ▪

 SCASUM

 †

 ▪

 cblas_sasum

 ▪

 cblas_scasum

 ▪

 	

 DASUM

 †

 ▪

 DZASUM

 †

 ▪

 cblas_dasum

 ▪

 cblas_dzasum

 ▪

 	SASUM, DASUM, SCASUM, and DZASUM (Sum of the Magnitudes of the Elements in a Vector)

 	

 SAXPY

 ▪

 CAXPY

 ▪

 cblas_saxby

 ▪

 cblas_caxpy

 ▪

 	

 DAXPY

 ▪

 ZAXPY

 ▪

 cblas_daxby

 ▪

 cblas_zaxpy

 ▪

 	SAXPY, DAXPY, CAXPY, and ZAXPY (Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the Vector Y)

 	

 SCOPY

 ▪

 CCOPY

 ▪

 cblas_scopy

 ▪

 cblas_ccopy

 ▪

 	

 DCOPY

 ▪

 ZCOPY

 ▪

 cblas_dcopy

 ▪

 cblas_zcopy

 ▪

 	SCOPY, DCOPY, CCOPY, and ZCOPY (Copy a Vector)

 	

 SDOT

 †

 ▪

 CDOTU

 †

 ▪

 CDOTC

 †

 ▪

 cblas_sdot

 ▪

 cblas_cdotu_sub

 ▪

 cblas_cdotc_sub

 ▪

 	

 DDOT

 †

 ▪

 ZDOTU

 †

 ▪

 ZDOTC

 †

 ▪

 cblas_ddot

 ▪

 cblas_zdotu_sub

 ▪

 cblas_zdotc_sub

 ▪

 	SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and ZDOTC (Dot Product of Two Vectors)

 	SNAXPY

 	DNAXPY

 	SNAXPY and DNAXPY (Compute SAXPY or DAXPY N Times)

 	SNDOT

 	DNDOT

 	SNDOT and DNDOT (Compute Special Dot Products N Times)

 	

 SNRM2

 †

 ▪

 SCNRM2

 †

 ▪

 cblas_snrm2

 ▪

 cblas_scnrm2

 ▪

 	

 DNRM2

 †

 ▪

 DZNRM2

 †

 ▪

 cblas_dnrm2

 ▪

 cblas_dznrm2

 ▪

 	SNRM2, DNRM2, SCNRM2, and DZNRM2 (Euclidean Length of a Vector with Scaling of Input to Avoid Destructive Underflow and Overflow)

 	

 SNORM2

 †

 CNORM2

 †

 	

 DNORM2

 †

 ZNORM2

 †

 	SNORM2, DNORM2, CNORM2, and ZNORM2 (Euclidean Length of a Vector with No Scaling of Input)

 	

 SROTG

 ▪

 CROTG

 ▪

 cblas_srotg

 ▪

 [image: Start of change]cblas_crotg

 ▪

 [image: End of change]

 	

 DROTG

 ▪

 ZROTG

 ▪

 cblas_drotg

 ▪

 cblas_zrotg

 ▪

 	SROTG, DROTG, CROTG, and ZROTG (Construct a Givens Plane Rotation)

 	

 SROT

 ▪

 CROT

 ▪

 CSROT

 ▪

 cblas_srot

 ▪

 [image: Start of change]cblas_crot

 ▪

 [image: End of change]

 [image: Start of change]cblas_csrot

 ▪

 [image: End of change]

 	

 DROT

 ▪

 ZROT

 ▪

 ZDROT

 ▪

 cblas_drot

 ▪

 [image: Start of change]cblas_zrot

 ▪

 [image: End of change]

 [image: Start of change]cblas_zdrot

 ▪

 [image: End of change]

 	SROT, DROT, CROT, ZROT, CSROT, and ZDROT (Apply a Plane Rotation)

 	[image: Start of change]
 SROTMG

 ▪

 cblas_srotmg

 ▪

 [image: End of change]

 	

 DROTMG

 ▪

 cblas_drotmg

 ▪

 	SROTMG and DROTMG (Construct a modified Givens Transformation)

 	[image: Start of change]
 SROTM

 ▪

 cblas_srotm

 ▪

 [image: End of change]

 	

 DROTM

 ▪

 cblas_drotm

 ▪

 	SROTM and DROTM (Apply a modified Givens Transformation)

 	

 SSCAL

 ▪

 CSCAL

 ▪

 CSSCAL

 ▪

 cblas_sscal

 ▪

 cblas_cscal

 ▪

 cblas_csscal

 ▪

 	

 DSCAL

 ▪

 ZSCAL

 ▪

 ZDSCAL

 ▪

 cblas_dscal

 ▪

 cblas_zscal

 ▪

 cblas_zdscal

 ▪

 	SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and ZDSCAL (Multiply a Vector X by a Scalar and Store in the Vector X)

 	

 SSWAP

 ▪

 CSWAP

 ▪

 cblas_sswap

 ▪

 cblas_cswap

 ▪

 	

 DSWAP

 ▪

 ZSWAP

 ▪

 cblas_dswap

 ▪

 cblas_zswap

 ▪

 	SSWAP, DSWAP, CSWAP, and ZSWAP (Interchange the Elements of Two Vectors)

 	[image: Start of change]
 SVEA

 CVEA

 cblas_svea

 cblas_cvea

 [image: End of change]

 	

 DVEA

 ZVEA

 cblas_dvea

 cblas_zvea

 	SVEA, DVEA, CVEA, and ZVEA (Add a Vector X to a Vector Y and Store in a Vector Z)

 	

 SVES

 CVES

 [image: Start of change]cblas_sves

 cblas_cves

 [image: End of change]

 	

 DVES

 ZVES

 [image: Start of change]cblas_dves

 cblas_zves

 [image: End of change]

 	SVES, DVES, CVES, and ZVES (Subtract a Vector Y from a Vector X and Store in a Vector Z)

 	

 SVEM

 CVEM

 [image: Start of change]cblas_svem

 cblas_cvem

 [image: End of change]

 	

 DVEM

 ZVEM

 [image: Start of change]cblas_dvem

 cblas_zvem

 [image: End of change]

 	SVEM, DVEM, CVEM, and ZVEM (Multiply a Vector X by a Vector Y and Store in a Vector Z)

 	[image: Start of change]
 SYAX

 CYAX

 CSYAX

 cblas_syax

 cblas_cyax

 cblas_csyax

 [image: End of change]

 	[image: Start of change]
 DYAX

 ZYAX

 ZDYAX

 cblas_dyax

 cblas_zyax

 cblas_zdyax

 [image: End of change]

 	[image: Start of change]SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX (Multiply a Vector X by a Scalar and Store in a Vector Y)[image: End of change]

 	[image: Start of change]
 SZAXPY

 CZAXPY

 cblas_szaxpy

 cblas_czaxpy

 [image: End of change]

 	

 DZAXPY

 ZZAXPY

 cblas_dzaxpy

 cblas_zzaxpy

 	SZAXPY, DZAXPY, CZAXPY, and ZZAXPY (Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in a Vector Z)

 	
 † This subprogram is
 invoked as a function in a Fortran program.

 ▪
 Level 1 BLAS

 Parent topic: Overview of the Linear Algebra Subprograms

 Sparse Vector-Scalar Linear Algebra Subprograms

 The sparse vector-scalar linear algebra subprograms operate
 on sparse vectors using optimized storage techniques; that is, only
 the nonzero elements of the vector are stored. These subprograms provide
 similar functions to the vector-scalar subprograms. These subprograms
 represent a subset of the sparse extensions to the Level 1 BLAS described
 in reference [37]. Both real
 and complex versions of the subprograms are provided.

 Table 69. List of Sparse Vector-Scalar
 Linear Algebra Subprograms.

 	Short-Precision
 Subprogram

 	Long-Precision Subprogram

 	Descriptive Name and Location

 	

 SSCTR

 CSCTR

 	

 DSCTR

 ZSCTR

 	SSCTR, DSCTR, CSCTR, ZSCTR (Scatter the Elements of a Sparse Vector X in Compressed-Vector Storage Mode into Specified Elements
 of a Sparse Vector Y in Full-Vector Storage Mode)

 	

 SGTHR

 CGTHR

 	

 DGTHR

 ZGTHR

 	SGTHR, DGTHR, CGTHR, and ZGTHR (Gather Specified Elements of a Sparse Vector Y in Full-Vector Storage Mode into a Sparse Vector
 X in Compressed-Vector Storage Mode)

 	

 SGTHRZ

 CGTHRZ

 	

 DGTHRZ

 ZGTHRZ

 	SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ (Gather Specified Elements of a Sparse Vector Y in Full-Vector Mode into a Sparse Vector
 X in Compressed-Vector Mode, and Zero the Same Specified Elements of Y)

 	

 SAXPYI

 CAXPYI

 	

 DAXPYI

 ZAXPYI

 	SAXPYI, DAXPYI, CAXPYI, and ZAXPYI (Multiply a Sparse Vector X in Compressed-Vector Storage Mode by a Scalar, Add to a Sparse
 Vector Y in Full-Vector Storage Mode, and Store in the Vector Y)

 	

 SDOTI

 †

 CDOTCI

 †

 CDOTUI

 †

 	

 DDOTI

 †

 ZDOTCI

 †

 ZDOTUI

 †

 	SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI (Dot Product of a Sparse Vector X in Compressed-Vector Storage Mode and a
 Sparse Vector Y in Full-Vector Storage Mode)

 	
 † This subprogram is
 invoked as a function in a Fortran program.

 Parent topic: Overview of the Linear Algebra Subprograms

 Matrix-Vector Linear Algebra Subprograms

 The matrix-vector linear algebra subprograms operate
 on a higher-level data structure - matrix-vector rather than vector-scalar
 - using optimized algorithms to improve performance. These subprograms
 include a subset of the standard set of Level 2 BLAS. For details
 on the Level 2 BLAS, see [42] and [43]. Both real
 and complex versions of the subprograms are provided.

 Table 70. List of Matrix-Vector
 Linear Algebra Subprograms.

 	Short-Precision
 Subprogram

 	Long-Precision Subprogram

 	Descriptive Name and Location

 	

 SGEMV

 ◄

 CGEMV

 ◄

 SGEMX

 §

 SGEMTX

 §

 cblas_sgemv

 ◄

 cblas_cgemv

 ◄

 	

 DGEMV

 ◄

 ZGEMV

 ◄

 DGEMX

 §

 DGEMTX

 §

 cblas_dgemv

 ◄

 cblas_zgemv

 ◄

 	SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX (Matrix-Vector Product for a General Matrix, Its Transpose, or
 Its Conjugate Transpose)

 	

 SGER

 ◄

 CGERU

 ◄

 CGERC

 ◄

 cblas_sger

 ◄

 cblas_cgeru

 ◄

 cblas_cgerc

 ◄

 	

 DGER

 ◄

 ZGERU

 ◄

 ZGERC

 ◄

 cblas_dger

 ◄

 cblas_zgeru

 ◄

 cblas_zgerc

 ◄

 	SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC (Rank-One Update of a General Matrix)

 	

 SSPMV

 ◄

 CHPMV

 ◄

 SSYMV

 ◄

 CHEMV

 ◄

 SSLMX

 §

 cblas_sspmv

 ◄

 cblas_chpmv

 ◄

 cblas_ssymv

 ◄

 cblas_chemv

 ◄

 	

 DSPMV

 ◄

 ZHPMV

 ◄

 DSYMV

 ◄

 ZHEMV

 ◄

 DSLMX

 §

 cblas_dspmv

 ◄

 cblas_zhpmv

 ◄

 cblas_dsymv

 ◄

 cblas_zhemv

 ◄

 	SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV, SSLMX, and DSLMX (Matrix-Vector Product for a Real Symmetric or Complex
 Hermitian Matrix)

 	

 SSPR

 ◄

 CHPR

 ◄

 SSYR

 ◄

 CHER

 ◄

 SSLR1

 §

 cblas_sspr

 ◄

 cblas_chpr

 ◄

 cblas_ssyr

 ◄

 cblas_cher

 ◄

 	

 DSPR

 ◄

 ZHPR

 ◄

 DSYR

 ◄

 ZHER

 ◄

 DSLR1

 §

 cblas_dspr

 ◄

 cblas_zhpr

 ◄

 cblas_dsyr

 ◄

 cblas_zher

 ◄

 	SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1 (Rank-One Update of a Real Symmetric or Complex Hermitian
 Matrix)

 	

 SSPR2

 ◄

 CHPR2

 ◄

 SSYR2

 ◄

 CHER2

 ◄

 SSLR2

 §

 cblas_sspr2

 ◄

 cblas_chpr2

 ◄

 cblas_ssyr2

 ◄

 cblas_cher2

 ◄

 	

 DSPR2

 ◄

 ZHPR2

 ◄

 DSYR2

 ◄

 ZHER2

 ◄

 DSLR2

 §

 cblas_dspr2

 ◄

 cblas_zhpr2

 ◄

 cblas_dsyr2

 ◄

 cblas_zher2

 ◄

 	SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2 (Rank-Two Update of a Real Symmetric or Complex Hermitian
 Matrix)

 	

 SGBMV

 ◄

 CGBMV

 ◄

 cblas_sgbmv

 ◄

 cblas_cgbmv

 ◄

 	

 DGBMV

 ◄

 ZGBMV

 ◄

 cblas_dgbmv

 ◄

 cblas_zgbmv

 ◄

 	SGBMV, DGBMV, CGBMV, and ZGBMV (Matrix-Vector Product for a General Band Matrix, Its Transpose, or Its Conjugate Transpose)

 	

 SSBMV

 ◄

 CHBMV

 ◄

 cblas_ssbmv

 ◄

 cblas_chbmv

 ◄

 	

 DSBMV

 ◄

 ZHBMV

 ◄

 cblas_dsbmv

 ◄

 cblas_zhbmv

 ◄

 	SSBMV, DSBMV, CHBMV, and ZHBMV (Matrix-Vector Product for a Real Symmetric or Complex Hermitian Band Matrix)

 	

 STRMV

 ◄

 CTRMV

 ◄

 STPMV

 ◄

 CTPMV

 ◄

 cblas_strmv

 ◄

 cblas_ctrmv

 ◄

 cblas_stpmv

 ◄

 cblas_ctpmv

 ◄

 	

 DTRMV

 ◄

 ZTRMV

 ◄

 DTPMV

 ◄

 ZTPMV

 ◄

 cblas_dtrmv

 ◄

 cblas_ztrmv

 ◄

 cblas_dtpmv

 ◄

 cblas_ztpmv

 ◄

 	STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV (Matrix-Vector Product for a Triangular Matrix, Its Transpose,
 or Its Conjugate Transpose)

 	

 STRSV

 ◄

 CTRSV

 ◄

 STPSV

 ◄

 CTPSV

 ◄

 cblas_strsv

 ◄

 cblas_ctrsv

 ◄

 cblas_stpsv

 ◄

 cblas_ctps

 ◄

 	

 DTRSV

 ◄

 ZTRSV

 ◄

 DTPSV

 ◄

 ZTPSV

 ◄

 cblas_dtrsv

 ◄

 cblas_ztrsv

 ◄

 cblas_dtpsv

 ◄

 cblas_ztps

 ◄

 	STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and ZTPSV (Solution of a Triangular System of Equations with a Single Right-Hand
 Side)

 	

 STBMV

 ◄

 CTBMV

 ◄

 cblas_stbmv

 ◄

 cblas_ctbmv

 ◄

 	

 DTBMV

 ◄

 ZTBMV

 ◄

 cblas_dtbmv

 ◄

 cblas_ztbmv

 ◄

 	STBMV, DTBMV, CTBMV, and ZTBMV (Matrix-Vector Product for a Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose)

 	

 STBSV

 ◄

 CTBSV

 ◄

 cblas_stbsv

 ◄

 cblas_ctbsv

 ◄

 	

 DTBSV

 ◄

 ZTBSV

 ◄

 cblas_dtbsv

 ◄

 cblas_ztbsv

 ◄

 	STBSV, DTBSV, CTBSV, and ZTBSV (Triangular Band Equation Solve)

 	
 ◄ Level 2 BLAS

 §
 This subroutine is provided only for migration from earlier releases
 of ESSL and is not intended for use in new programs.

 Parent topic: Overview of the Linear Algebra Subprograms

 Sparse Matrix-Vector Linear Algebra Subprograms

 The sparse matrix-vector linear algebra subprograms operate on sparse matrices
 using optimized storage techniques; that is, only the nonzero elements of
 the vector are stored. These subprograms provide similar functions to the
 matrix-vector subprograms.

 Table 71. List of Sparse Matrix-Vector Linear Algebra Subprograms.

 	Long-Precision Subprogram

 	Descriptive Name and Location

 	DSMMX

 	DSMMX (Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode)

 	DSMTM

 	DSMTM (Transpose a Sparse Matrix in Compressed-Matrix Storage Mode)

 	DSDMX

 	DSDMX (Matrix-Vector Product for a Sparse Matrix or Its Transpose in Compressed-Diagonal Storage Mode)

 Parent topic: Overview of the Linear Algebra Subprograms

 Use Considerations

 If your program uses a sparse matrix stored by rows, as defined in Storage-by-Rows, you should first convert your sparse matrix to compressed-matrix
 storage mode by using the subroutine DSRSM (see DSRSM (Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode)).
 DSRSM converts a matrix to compressed-matrix storage mode. To convert your
 sparse matrix to compressed-diagonal storage mode, you need to perform this
 conversion in your application program before calling the ESSL subroutine.

 Parent topic: Linear Algebra Subprograms

 Performance and Accuracy Considerations

 	In ESSL, the SSCAL and DSCAL subroutines provide the fastest way
 to zero out contiguous (stride 1) arrays, by specifying incx = 1
 and α = 0.

 	Where possible, use the matrix-vector linear algebra subprograms,
 rather than the vector-scalar, to optimize performance. Because data
 is presented in matrices rather than vectors, multiple operations
 can be performed by a single ESSL subprogram.

 	Where possible, use subprograms that do multiple computations,
 such as SNDOT and SNAXPY, rather than individual computations, such
 as SDOT and SAXPY. You get better performance.

 	Many of the short-precision subprograms provide increased accuracy
 by accumulating results in long precision. However, when short-precision
 subroutines use the AltiVec or VSX unit to improve performance, they
 do not accumulate intermediate results in long precision. This is
 noted in the functional description of each subprogram.

 	In some of the subprograms, because implementation techniques
 vary to optimize performance, accuracy of the results may vary for
 different array sizes. In the subprograms in which this occurs, a
 general description of the implementation techniques is given in the
 functional description for each subprogram.

 	To select the sparse matrix subroutine that gives you the best
 performance, you must consider the layout of the data in your matrix.
 From this, you can determine the most efficient storage mode for your
 sparse matrix. ESSL provides two versions of each of its sparse matrix-vector
 subroutines that you can use. One operates on sparse matrices stored
 in compressed-matrix storage mode, and the other operates on sparse
 matrices stored in compressed-diagonal storage mode. These two storage
 modes are described in Sparse Matrix.

 Compressed-matrix storage mode is generally applicable. It should
 be used when each row of the matrix contains approximately the same
 number of nonzero elements. However, if the matrix has a special
 form—that
 is, where the nonzero elements are concentrated along a few diagonals—compressed-diagonal
 storage mode gives improved performance.

 	There are some ESSL-specific rules that apply to the results of
 computations on the workstation processors using the ANSI/IEEE standards.
 For details, see What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?.

 Parent topic: Linear Algebra Subprograms

 Vector-Scalar Subprograms

 This contains the vector-scalar subprogram descriptions.

 Parent topic: Linear Algebra Subprograms

 ISAMAX, IDAMAX, ICAMAX, and IZAMAX (Position of the First or
 Last Occurrence of the Vector Element Having the Largest Magnitude)

 Purpose

 ISAMAX and IDAMAX find the position i of
 the first or last occurrence of a vector element having the maximum
 absolute value. ICAMAX and IZAMAX find the position i of
 the first or last occurrence of a vector element having the largest
 sum of the absolute values of the real and imaginary parts of the
 vector elements.

 You get the position of the first or last
 occurrence of an element by specifying positive or negative stride,
 respectively, for vector x. Regardless of the stride,
 the position i is always relative to the location
 specified in the calling sequence for vector x (in argument x).

 Table 72. Data Types.

 	x

 	Subprogram

 	Short-precision real

 	ISAMAX

 	Long-precision real

 	IDAMAX

 	Short-precision complex

 	ICAMAX

 	Long-precision complex

 	IZAMAX

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	ISAMAX | IDAMAX | ICAMAX | IZAMAX (n, x, incx)

 	C and C++

 	isamax | idamax | icamax | izamax (n, x, incx);

 	CBLAS

 	cblas_isamax | cblas_idamax | cblas_icamax | cblas_izamax
 (n, x, incx);

 	On Entry

 	

 	n

 	is the number of elements in vector x. Specified
 as: an integer; n ≥ 0.

 	x

 	is the vector x of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 72.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	On Return

 	

 	Function value

 	is the position i of the element in the array,
 where:
 If incx ≥ 0, i is
 the position of the first occurrence.

 If incx < 0, i is
 the position of the last occurrence.

 Returned as:

 	an integer; 0 ≤ i ≤ n (for
 Fortran, C, and C++)

 	a CBLAS_INDEX; 0 ≤ i ≤ n-1

 Notes

 Declare
 the ISAMAX, IDAMAX, ICAMAX, and IZAMAX functions in your program as
 returning an integer value.

 Function

 ICAMAX and IZAMAX find the first
 element xk, where k is
 defined as the smallest index k, such that:

 |

 a

 k

 |+|

 b

 k

 | = max{|

 a

 j

 |+|

 b

 j

 | for

 j

 =

 1,

 n

 }

 where

 x

 k

 =

 (

 a

 k

 ,

 b

 k

)

 By
 specifying a positive or negative stride for vector x,
 the first or last occurrence, respectively, is found in the array.
 The position i, returned as the value of the function,
 is always figured relative to the location specified in the calling
 sequence for vector x (in argument x).
 Therefore, depending on the stride specified for incx, i has
 the following values:

 For

 incx

 ≥

 0,

 i

 =

 k

 For

 incx

 <

 0,

 i

 =

 n

 -

 k

 +1

 See
 reference [93]. The result
 is returned as a function value. If n is 0, then
 0 is returned as the value of the function.

 Error conditions

 	[bookmark: am5gr_hisamax__am5gr_f108a02]
 Computational Errors

 	None

 	[bookmark: am5gr_hisamax__am5gr_f108a03]
 Input-Argument Errors

 	n < 0

 Examples

 	[bookmark: am5gr_hisamax__am5gr_f108a04]
 Example 1

 	This example shows a vector, x, with a stride of
 1.
 Function Reference and Input: N X INCX
 | | |
IMAX = ISAMAX(9 , X , 1)

X = (1.0, 2.0, 7.0, -8.0, -5.0, -10.0, -9.0, 10.0, 6.0)

 Output: IMAX = 6

 	[bookmark: am5gr_hisamax__am5gr_f108a07]
 Example 2

 	This example shows a vector, x, with a stride greater
 than 1.
 Function Reference and Input: N X INCX
 | | |
IMAX = ISAMAX(5 , X , 2)

X = (1.0, . , 7.0, . , -5.0, . , -9.0, . , 6.0)

 Output: IMAX = 4

 	[bookmark: am5gr_hisamax__am5gr_f108a10]
 Example 3

 	This example shows a vector, x, with a stride of
 0.
 Function Reference and Input: N X INCX
 | | |
IMAX = ISAMAX(9 , X , 0)

X = (1.0, . , . , . , . , . , . , . , .)

 Output: IMAX = 1

 	[bookmark: am5gr_hisamax__am5gr_f108a13]
 Example 4

 	This example shows a vector, x, with a negative
 stride. Processing begins at element X(15), which
 is 2.0.
 Function Reference and Input: N X INCX
 | | |
IMAX = ISAMAX(8 , X , -2)

X = (3.0, . , 5.0, . , -8.0, . , 6.0, . , 8.0, . ,
 4.0, . , 8.0, . , 2.0)

 Output: IMAX = 7

 	[bookmark: am5gr_hisamax__am5gr_f108a16]
 Example 5

 	This example shows a vector, x, containing complex
 numbers and having a stride of 1.
 Function
 Reference and Input: N X INCX
 | | |
IMAX = ICAMAX(5 , X , 1)

X = ((9.0 , 2.0) , (7.0 , -8.0) , (-5.0 , -10.0) , (-4.0 , 10.0),
 (6.0 , 3.0))

 Output:
 IMAX = 2

 Parent topic: Linear Algebra Subprograms

 ISAMIN and IDAMIN (Position of the First or Last Occurrence
 of the Vector Element Having Minimum Absolute Value)

 Purpose

 These subprograms find the position i of
 the first or last occurrence of a vector element having the minimum
 absolute value.

 You get the position of the first or last occurrence
 of an element by specifying positive or negative stride, respectively,
 for vector x. Regardless of the stride, the position i is
 always relative to the location specified in the calling sequence
 for vector x (in argument x).

 Table 73. Data Types.

 	x

 	Subprogram

 	Short-precision real

 	ISAMIN

 	Long-precision real

 	IDAMIN

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	ISAMIN | IDAMIN (n, x, incx)

 	C and C++

 	isamin | idamin (n, x, incx);

 	[image: Start of change][image: Start of change]CBLAS[image: End of change][image: End of change]

 	[image: Start of change][image: Start of change]cblas_isamin | cblas_idamin (n,
 x, incx);[image: End of change][image: End of change]

 	On Entry

 	

 	n

 	is the number of elements in vector x. Specified
 as: an integer; n ≥ 0.

 	x

 	is the vector x of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 73.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	On Return

 	

 	Function value

 	is the position i of the element in the array, where:
 If
 incx ≥ 0,
 i is the position of the first occurrence.

 If incx < 0, i is the position of the last occurrence.

 Returned as: [image: Start of change]
 	an integer; 0 ≤ i ≤ n (for Fortran, C, and
 C++)

 	a CBLAS_INDEX; 0 ≤ i ≤ n-1

[image: End of change]

 Notes

 Declare
 the ISAMIN and IDAMIN functions in your program as returning an integer
 value.

 Function

 These subprograms find the first
 element xk, where k is
 defined as the smallest index k, such that:

 |

 x

 k

 | = min{|

 x

 j

 | for

 j

 =

 1,

 n

 }

 By
 specifying a positive or negative stride for vector x,
 the first or last occurrence, respectively, is found in the array.
 The position i, returned as the value of the function,
 is always figured relative to the location specified in the calling
 sequence for vector x (in argument x).
 Therefore, depending on the stride specified for incx, i has
 the following values:

 For

 incx

 ≥

 0,

 i

 =

 k

 For

 incx

 <

 0,

 i

 =

 n

 -

 k

 +1

 See
 reference [93]. The result
 is returned as a function value. If n is 0, then
 0 is returned as the value of the function.

 Error conditions

 	[bookmark: am5gr_hisamin__am5gr_f108a22]
 Computational Errors

 	None

 	[bookmark: am5gr_hisamin__am5gr_f108a23]
 Input-Argument Errors

 	n < 0

 Examples

 	[bookmark: am5gr_hisamin__am5gr_f108a24]
 Example 1

 	This example shows a vector, x, with a stride of
 1.
 Function Reference and Input: N X INCX
 | | |
IMIN = ISAMIN(6 , X , 1)

X = (3.0, 4.0, 1.0, 8.0, 1.0, 3.0)

 Output IMIN = 3

 	[bookmark: am5gr_hisamin__am5gr_f108a27]
 Example 2

 	This example shows a vector, x, with a stride greater
 than 1.
 Function Reference and Input: N X INCX
 | | |
IMIN = ISAMIN(4 , X , 2)

X = (-3.0, . , -9.0, . , -8.0, . , 3.0)

 Output: IMIN = 1

 	[bookmark: am5gr_hisamin__am5gr_f108a29a]
 Example 3

 	This example shows a vector, x, with a positive
 stride and two elements with the minimum absolute value. The position
 of the first occurrence is returned.
 Function
 Reference and Input: N X INCX
 | | |
IMIN = ISAMIN(4 , X , 2)

X = (2.0, . , -1.0, . , 4.0, . , 1.0)

 Output: IMIN = 2

 	[bookmark: am5gr_hisamin__am5gr_f108a32]
 Example 4

 	This example shows a vector, x, with a negative
 stride and two elements with the minimum absolute value. The position
 of the last occurrence is returned. Processing begins at element X(7),
 which is 1.0.
 Function Reference and Input: N X INCX
 | | |
IMIN = ISAMIN(4 , X , -2)

X = (2.0, . , -1.0, . , 4.0, . , 1.0)

 Output: IMIN = 4

 Parent topic: Linear Algebra Subprograms

 ISMAX and IDMAX (Position of the First or Last Occurrence of
 the Vector Element Having the Maximum Value)

 Purpose

 These subprograms find the position i of
 the first or last occurrence of a vector element having the maximum
 value.

 You get the position of the first or last occurrence
 of an element by specifying positive or negative stride, respectively,
 for vector x. Regardless of the stride, the position i is
 always relative to the location specified in the calling sequence
 for vector x (in argument x).

 Table 74. Data Types.

 	x

 	Subprogram

 	Short-precision real

 	ISMAX

 	Long-precision real

 	IDMAX

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	ISMAX | IDMAX (n, x, incx)

 	C and C++

 	ismax | idmax (n, x, incx);

 	[image: Start of change][image: Start of change]CBLAS[image: End of change][image: End of change]

 	[image: Start of change][image: Start of change]cblas_ismax | cblas_idmax (n,
 x, incx);[image: End of change][image: End of change]

 	On Entry

 	

 	n

 	is the number of elements in vector x. Specified
 as: an integer; n ≥ 0.

 	x

 	is the vector x of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 74.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	On Return

 	

 	Function value

 	is the position i of the element in the array, where:
 If
 incx ≥ 0,
 i is the position of the first occurrence.

 If incx < 0, i is the position of the last occurrence.

 Returned as: [image: Start of change]
 	an integer; 0 ≤ i ≤ n (for Fortran, C, and
 C++)

 	a CBLAS_INDEX; 0 ≤ i ≤ n-1

[image: End of change]

 Notes

 Declare
 the ISMAX and IDMAX functions in your program as returning an integer
 value.

 Function

 These subprograms find the first
 element xk, where k is
 defined as the smallest index k, such that:

 x

 k

 = max{

 x

 j

 for

 j

 =

 1,

 n

 }

 By
 specifying a positive or negative stride for vector x,
 the first or last occurrence, respectively, is found in the array.
 The position i, returned as the value of the function,
 is always figured relative to the location specified in the calling
 sequence for vector x (in argument x).
 Therefore, depending on the stride specified for incx, i has
 the following values:

 For

 incx

 ≥

 0,

 i

 =

 k

 For

 incx

 <

 0,

 i

 =

 n

 -

 k

 +1

 See
 reference [93]. The result
 is returned as a function value. If n is 0, then
 0 is returned as the value of the function.

 Error conditions

 	[bookmark: am5gr_hismax__am5gr_f108a36]
 Computational Errors

 	None

 	[bookmark: am5gr_hismax__am5gr_f108a37]
 Input-Argument Errors

 	n < 0

 Examples

 	[bookmark: am5gr_hismax__am5gr_f108a38]
 Example 1

 	This example shows a vector, x, with a stride of
 1.
 Function Reference and Input: N X INCX
 | | |
IMAX = ISMAX(6 , X , 1)

X = (3.0, 4.0, 1.0, 8.0, 1.0, 8.0)

 Output: IMAX = 4

 	[bookmark: am5gr_hismax__am5gr_f108a41]
 Example 2

 	This example shows a vector, x, with a stride greater
 than 1.
 Function Reference and Input: N X INCX
 | | |
IMAX = ISMAX(4 , X , 2)

X = (-3.0, . , 9.0, . , -8.0, . , 3.0)

 Output: IMAX = 2

 	[bookmark: am5gr_hismax__am5gr_f108a44]
 Example 3

 	This example shows a vector, x, with a positive
 stride and two elements with the maximum value. The position of the
 first occurrence is returned.
 Function Reference
 and Input: N X INCX
 | | |
IMAX = ISMAX(4 , X , 2)

X = (2.0, . , 4.0, . , 4.0, . , 1.0)

 Output: IMAX = 2

 	[bookmark: am5gr_hismax__am5gr_f108a46a]
 Example 4

 	This example shows a vector, x, with a negative
 stride and two elements with the maximum value. The position of the
 last occurrence is returned. Processing begins at element X(7),
 which is 1.0.
 Function Reference and Input: N X INCX
 | | |
IMAX = ISMAX(4 , X , -2)

X = (2.0, . , 4.0, . , 4.0, . , 1.0)

 Output: IMAX = 3

 Parent topic: Linear Algebra Subprograms

 ISMIN and IDMIN (Position of the First or Last Occurrence of
 the Vector Element Having Minimum Value)

 Purpose

 These subprograms find the position i of
 the first or last occurrence of a vector element having the minimum
 value.

 You get the position of the first or last occurrence
 of an element by specifying positive or negative stride, respectively,
 for vector x. Regardless of the stride, the position i is
 always relative to the location specified in the calling sequence
 for vector x (in argument x).

 Table 75. Data Types.

 	x

 	Subprogram

 	Short-precision real

 	ISMIN

 	Long-precision real

 	IDMIN

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	ISMIN | IDMIN (n, x, incx)

 	C and C++

 	ismin | idmin (n, x, incx);

 	[image: Start of change]CBLAS[image: End of change]

 	[image: Start of change]cblas_ismin | cblas_idmin (n,
 x, incx);[image: End of change]

 	On Entry

 	

 	n

 	is the number of elements in vector x. Specified
 as: an integer; n ≥ 0.

 	x

 	is the vector x of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 75.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	On Return

 	

 	Function value

 	

 	

 	is the position i of the element in the array, where:
 If
 incx ≥ 0,
 i is the position of the first occurrence.

 If incx < 0, i is the position of the last occurrence.

 Returned as: [image: Start of change]
 	an integer; 0 ≤ i ≤ n (for Fortran, C, and
 C++)

 	a CBLAS_INDEX; 0 ≤ i ≤ n-1

[image: End of change]

 Notes

 Declare
 the ISMIN and IDMIN functions in your program as returning an integer
 value.

 Function

 These subprograms find the first
 element xk, where k is
 defined as the smallest index k, such that:

 x

 k

 = min{

 x

 j

 for

 j

 =

 1,

 n

 }

 By
 specifying a positive or negative stride for vector x,
 the first or last occurrence, respectively, is found in the array.
 The position i, returned as the value of the function,
 is always figured relative to the location specified in the calling
 sequence for vector x (in argument x).
 Therefore, depending on the stride specified for incx, i has
 the following values:

 For

 incx

 ≥

 0,

 i

 =

 k

 For

 incx

 <

 0,

 i

 =

 n

 -

 k

 +1

 See
 reference [93]. The result
 is returned as a function value. If n is 0, then
 0 is returned as the value of the function.

 Error conditions

 	[bookmark: am5gr_hismin__am5gr_f108a50]
 Computational Errors

 	None

 	[bookmark: am5gr_hismin__am5gr_f108a51]
 Input-Argument Errors

 	n < 0

 Examples

 	Example 1

 	This example shows a vector, x, with a stride of
 1.
 Function Reference and Input: N X INCX
 | | |
IMIN = ISMIN(6 , X , 1)

X = (3.0, 4.0, 1.0, 8.0, 1.0, 3.0)

 Output: IMIN = 3

 	Example 2

 	This example shows a vector, x, with a stride greater
 than 1.
 Function Reference and Input: N X INCX
 | | |
IMIN = ISMIN(4 , X , 2)

X = (-3.0, . , -9.0, . , -8.0, . , 3.0)

 Output: IMIN = 2

 	Example 3

 	
 This example shows a vector, x, with a positive
 stride and two elements with the minimum value. The position of the
 first occurrence is returned. Processing begins at element X(7),
 which is 1.0.

 Function Reference and Input:
 N X INCX
 | | |
IMIN = ISMIN(4 , X , 2)

X = (2.0, . , 1.0, . , 4.0, . , 1.0)

 Output: IMIN = 2

 	Example 4

 	 This example shows a vector, x, with a negative
 stride and two elements with the minimum value. The position of the
 last occurrence is returned. Processing begins at element X(7),
 which is 1.0.
 Function Reference and Input:
 N X INCX
 | | |
IMIN = ISMIN(4 , X , -2)

X = (2.0, . , 1.0, . , 4.0, . , 1.0)

 Output: IMIN = 4

 Parent topic: Linear Algebra Subprograms

 SASUM, DASUM, SCASUM, and DZASUM (Sum of the Magnitudes of
 the Elements in a Vector)

 Purpose

 SASUM and DASUM compute the sum
 of the absolute values of the elements in vector x.
 SCASUM and DZASUM compute the sum of the absolute values of the real
 and imaginary parts of the elements in vector x.

 Table 76. Data Types.

 	x

 	Result

 	Subprogram

 	Short-precision real

 	Short-precision real

 	SASUM

 	Long-precision real

 	Long-precision real

 	DASUM

 	Short-precision complex

 	Short-precision real

 	SCASUM

 	Long-precision complex

 	Long-precision real

 	DZASUM

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	SASUM | DASUM | SCASUM | DZASUM (n, x, incx)

 	C and C++

 	sasum | dasum | scasum | dzasum (n, x, incx);

 	CBLAS

 	cblas_sasum | cblas_dasum | cblas_scasum | cblas_dzasum (n, x, incx);

 	On Entry

 	

 	n

 	is the number of elements in vector x. Specified
 as: an integer; n ≥ 0.

 	x

 	is the vector x of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 76.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	On Return

 	

 	Function value

 	is the result of the summation. Returned as: a number of the data
 type indicated in Table 76.

 Notes

 Declare
 this function in your program as returning a value of the type indicated
 in Table 76.

 Function

 SASUM and DASUM
 compute the sum of the absolute values of the elements of x,
 which is expressed as follows:

 [image: Summation Graphic]

 SCASUM and DZASUM compute the sum of the absolute values
 of the real and imaginary parts of the elements of x,
 which is expressed as follows:

 [image: Summation Graphic]

 See reference [93]. The result
 is returned as a function value. If n is 0, then
 0.0 is returned as the value of the function. For SASUM and SCASUM,
 intermediate results are accumulated in long precision when the AltiVec
 or VSX unit is not used.

 Error conditions

 	[bookmark: am5gr_hsasum__am5gr_f108a66]
 Computational Errors

 	None

 	[bookmark: am5gr_hsasum__am5gr_f108a67]
 Input-Argument Errors

 	n < 0

 Examples

 	[bookmark: am5gr_hsasum__am5gr_f108a68]
 Example 1

 	This example shows a vector, x, with a stride of
 1.
 Function Reference and Input: N X INCX
 | | |
SUMM = SASUM(7 , X , 1)

X = (1.0, -3.0, -6.0, 7.0, 5.0, 2.0, -4.0)

 Output: SUMM = 28.0

 	[bookmark: am5gr_hsasum__am5gr_f108a72]
 Example 2

 	This example shows a vector, x, with a stride greater
 than 1.
 Function Reference and Input: N X INCX
 | | |
SUMM = SASUM(4 , X , 2)

X = (1.0, . , -6.0, . , 5.0, . , -4.0)

 Output: SUMM = 16.0

 	[bookmark: am5gr_hsasum__am5gr_f108a75]
 Example 3

 	This example shows a vector, x, with negative stride.
 Processing begins at element X(7), which is -4.0.
 Function Reference and Input: N X INCX
 | | |
SUMM = SASUM(4 , X , -2)

X = (1.0, . , -6.0, . , 5.0, . , -4.0)

 Output: SUMM = 16.0

 	[bookmark: am5gr_hsasum__am5gr_f108a78]
 Example 4

 	This example shows a vector, x, with a stride of
 0. The result in SUMM is nx1.
 Function Reference and Input: N X INCX
 | | |
SUMM = SASUM(7 , X , 0)

X = (-2.0, . , . , . , . , . , .)

 Output: SUMM = 14.0

 	[bookmark: am5gr_hsasum__am5gr_f108a81]
 Example 5

 	This example shows a vector, x, containing complex
 numbers and having a stride of 1.
 Function Reference
 and Input: N X INCX
 | | |
SUMM = SCASUM(5 , X , 1)

X = ((1.0, 2.0), (-3.0, 4.0), (5.0, -6.0), (-7.0, -8.0),
 (9.0, 10.0))

 Output: SUMM = 55.0

 Parent topic: Linear Algebra Subprograms

 SAXPY, DAXPY, CAXPY, and ZAXPY (Multiply a Vector X by a Scalar,
 Add to a Vector Y, and Store in the Vector Y)

 Purpose

 These subprograms perform the following
 computation, using the scalar α and vectors x and y:

 y

 ←

 y

 +

 α

 x

 Table 77. Data Types.

 	alpha, x, y

 	Subprogram

 	Short-precision real

 	SAXPY

 	Long-precision real

 	DAXPY

 	Short-precision complex

 	CAXPY

 	Long-precision complex

 	ZAXPY

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SAXPY | DAXPY | CAXPY | ZAXPY (n, alpha, x, incx, y, incy)

 	C and C++

 	saxpy | daxpy | caxpy | zaxpy (n, alpha, x, incx, y, incy);

 	CBLAS

 	cblas_saxpy | cblas_daxpy | cblas_caxpy | cblas_zaxpy (n, alpha, x, incx, y, incy);

 	On Entry

 	

 	n

 	is the number of elements in vectors x and y.

 Specified as: an integer; n ≥ 0.

 	alpha

 	is the scalar alpha.
 Specified as: a number
 of the data type indicated in Table 77.

 	x

 	is the vector x of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 77.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	y

 	is the vector y of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incy|,
 containing numbers of the data type indicated in Table 77.

 	incy

 	is the stride for vector y.
 Specified as: an
 integer. It can have any value.

 	On Return

 	

 	y

 	is the vector y, containing the results of the computation y+αx.
 Returned as: a one-dimensional array, containing numbers of the data
 type indicated in Table 77.

 Notes

 	If you specify the same vector for x and y, incx and incy must
 be equal; otherwise, results are unpredictable.

 	If you specify different vectors for x and y,
 they must have no common elements; otherwise, results are unpredictable.
 See Concepts.

 Function

 The computation
 is expressed as follows:

 [image: Multiply and Add Graphic]

 See reference [93]. If alpha or n is
 zero, no computation is performed. For CAXPY, intermediate results
 are accumulated in long precision when the AltiVec or VSX unit is
 not used.

 Error conditions

 	[bookmark: am5gr_hsaxpy__am5gr_cerrs]
 Computational Errors

 	None

 	[bookmark: am5gr_hsaxpy__am5gr_iaerrs]
 Input-Argument Errors

 	n < 0

 Examples

 	[bookmark: am5gr_hsaxpy__am5gr_f108a85]
 Example 1

 	This example shows vectors x and y with
 positive strides.
 Call Statement and Input: N ALPHA X INCX Y INCY
 | | | | | |
CALL SAXPY(5 , 2.0 , X , 1 , Y , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 1.0, . , 1.0, . , 1.0, . , 1.0)

 Output: Y = (3.0, . , 5.0, . , 7.0, . , 9.0, . , 11.0)

 	[bookmark: am5gr_hsaxpy__am5gr_f108a87]
 Example 2

 	This example shows vectors x and y having
 strides of opposite signs. For y, which has negative
 stride, processing begins at element Y(5), which
 is 1.0.
 Call Statement and Input: N ALPHA X INCX Y INCY
 | | | | | |
CALL SAXPY(5 , 2.0 , X , 1 , Y , -1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

 Output: Y = (15.0, 12.0, 9.0, 6.0, 3.0)

 	[bookmark: am5gr_hsaxpy__am5gr_f108a91]
 Example 3

 	This example shows a vector, x, with 0 stride. Vector x is
 treated like a vector of length n, all of whose
 elements are the same as the single element in x.
 Call Statement and Input: N ALPHA X INCX Y INCY
 | | | | | |
CALL SAXPY(5 , 2.0 , X , 0 , Y , 1)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

 Output: Y = (7.0, 6.0, 5.0, 4.0, 3.0)

 	[bookmark: am5gr_hsaxpy__am5gr_f108a93]
 Example 4

 	This example shows how SAXPY can be used to compute a scalar value.
 In this case, vectors x and y contain
 scalar values and the strides for both vectors are 0. The number of
 elements to be processed, n, is 1.
 Call Statement and Input: N ALPHA X INCX Y INCY
 | | | | | |
CALL SAXPY(1 , 2.0 , X , 0 , Y , 0)

X = (1.0)
Y = (5.0)

 Output: Y = (7.0)

 	[bookmark: am5gr_hsaxpy__am5gr_f108a96]
 Example 5

 	This example shows how to use CAXPY, where vectors x and y contain
 complex numbers. In this case, vectors x and y have
 positive strides.
 Call Statement and Input: N ALPHA X INCX Y INCY
 | | | | | |
CALL CAXPY(3 ,ALPHA, X , 1 , Y , 2)

ALPHA = (2.0, 3.0)
X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))
Y = ((1.0, 1.0), . , (0.0, 2.0), . , (5.0, 4.0))

 Y = ((-3.0, 8.0), . , (4.0, 8.0), . , (-4.0, 23.0))

 Parent topic: Linear Algebra Subprograms

 SCOPY, DCOPY, CCOPY, and ZCOPY (Copy a Vector)

 Purpose

 These subprograms copy vector x to
 another vector, y:

 y

 ←

 x

 Table 78. Data Types.

 	x, y

 	Subprogram

 	Short-precision real

 	SCOPY

 	Long-precision real

 	DCOPY

 	Short-precision complex

 	CCOPY

 	Long-precision complex

 	ZCOPY

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SCOPY | DCOPY | CCOPY | ZCOPY (n, x, incx, y, incy)

 	C and C++

 	scopy | dcopy | ccopy | zcopy (n, x, incx, y, incy);

 	CBLAS

 	cblas_scopy | cblas_dcopy | cblas_ccopy | cblas_zcopy (n, x, incx, y, incy);

 	On Entry

 	

 	 n

 	is the number of elements in vectors x and y.

 Specified as: an integer; n ≥ 0.

 	x

 	is the vector x of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 78.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	y

 	See On Return.

 	incy

 	is the stride for vector y. Specified as: an integer.
 It can have any value.

 	On Return

 	

 	y

 	is the vector y of length n.
 Returned as: a one-dimensional array of (at least) length 1+(n-1)|incy|,
 containing numbers of the data type indicated in Table 78.

 Notes

 	If you specify the same vector for x and y, incx and incy must
 be equal; otherwise, results are unpredictable.

 	If you specify different vectors for x and y,
 they must have no common elements; otherwise, results are unpredictable.
 See Concepts.

 Function

 The copy is expressed as follows:

 [image: Copy Graphic]

 See reference [93]. If n is
 0, no copy is performed.

 Error conditions

 	[bookmark: am5gr_hscopy__am5gr_f108a100]
 Computational Errors

 	None

 	[bookmark: am5gr_hscopy__am5gr_f108a101]
 Input-Argument Errors

 	n < 0

 Examples

 	Example 1

 	
 This example shows input vector x and output
 vector y with positive strides.

 Call
 Statement and Input: N X INCX Y INCY
 | | | | |
CALL SCOPY(5 , X , 1 , Y , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

 Output: Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0)

 	Example 2

 	 This example shows how to obtain a reverse copy of the input
 vector x by specifying strides with the same absolute
 value, but with opposite signs, for input vector x and
 output vector y. For y, which has a negative
 stride, results are stored beginning at element Y(5).

 Call Statement and Input: N X INCX Y INCY
 | | | | |
CALL SCOPY(5 , X , 1 , Y , -1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

 Output: Y = (5.0, 4.0, 3.0, 2.0, 1.0)

 	Example 3

 	
 This example shows an input vector, x, with
 0 stride. Vector x is treated like a vector of length n,
 all of whose elements are the same as the single element in x.
 This is a technique for replicating an element of a vector.

 Call Statement and Input: N X INCX Y INCY
 | | | | |
CALL SCOPY(5 , X , 0 , Y , 1)

X = (13.0)

 Output:
 Y = (13.0, 13.0, 13.0, 13.0, 13.0)

 	Example 4

 	
 This example shows input vector x and output
 vector y, containing complex numbers and having positive
 strides.

 Call Statement and Input: N X INCX Y INCY
 | | | | |
CALL CCOPY(4 , X , 1 , Y , 2)

X = ((1.0, 1.0), (2.0, 2.0), (3.0, 3.0), (4.0, 4.0))

 Output: Y = ((1.0, 1.0), . , (2.0, 2.0), . , (3.0, 3.0), . ,
 (4.0, 4.0))

 Parent topic: Linear Algebra Subprograms

 SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and ZDOTC (Dot Product of
 Two Vectors)

 Purpose

 SDOT, DDOT, CDOTU, and ZDOTU compute
 the dot product of vectors x and y:

 [image: Dot Product Graphic]

 CDOTC and ZDOTC compute the dot product of the complex conjugate
 of vector x with vector y:

 [image: Dot Product Graphic]

 Table 79. Data
 Types.

 	x, y, dotu, dotc, Result

 	Subprogram

 	Short-precision real

 	SDOT

 	Long-precision real

 	DDOT

 	Short-precision complex

 	CDOTU and CDOTC

 	Long-precision complex

 	ZDOTU and ZDOTC

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	SDOT | DDOT | CDOTU | ZDOTU | CDOTC | ZDOTC (n, x, incx, y, incy)

 	C and C++

 	sdot | ddot | cdotu | zdotu | cdotc | zdotc (n, x, incx, y, incy);

 	CBLAS

 	cblas_sdot | cblas_ddot (n, x, incx, y, incy);
 cblas_cdotu_sub
 | cblas_zdotu_sub (n, x, incx, y, incy, dotu);

 cblas_cdotc_sub
 | cblas_zdotc_sub (n, x, incx, y, incy, dotc);

 	On Entry

 	

 	n

 	is the number of elements in vectors x and y.

 Specified as: an integer; n ≥ 0.

 	x

 	is the vector x of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 79.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	y

 	is the vector y of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incy|,
 containing numbers of the data type indicated in Table 79.

 	incy

 	is the stride for vector y.
 Specified as: an
 integer. It can have any value.

 	On Return

 	

 	Function value

 	is the result of the dot product computation. Returned as: a number
 of the data type indicated in Table 79.

 	dotu

 	is the result of the dot product computation.
 Returned as:
 a number of the data type indicated in Table 79.

 	dotc

 	is the result of the dot product computation.
 Returned as:
 a number of the data type indicated in Table 79.

 Notes

 Declare
 this function in your program as returning a value of the data type
 indicated in Table 79.

 Function

 SDOT, DDOT, CDOTU, and ZDOTU compute
 the dot product of the vectors x and y,
 which is expressed as follows:

 [image: Dot Product Graphic]

 CDOTC and ZDOTC compute the dot product of the complex conjugate
 of vector x with vector y, which is expressed
 as follows:

 [image: Dot Product Graphic]

 See reference [93]. The result
 is returned as a function value. If n is 0, then
 zero is returned as the value of the function.

 For SDOT, CDOTU,
 and CDOTC, intermediate results are accumulated in long precision
 when the AltiVec or VSX unit is not used.

 Error conditions

 	[bookmark: am5gr_hsdot__am5gr_f108a115]
 Computational Errors

 	None

 	[bookmark: am5gr_hsdot__am5gr_f108a116]
 Input-Argument Errors

 	n < 0

 Examples

 	[bookmark: am5gr_hsdot__am5gr_f108a117]
 Example 1

 	This example shows how to compute the dot product of two vectors, x and y,
 having strides of 1.
 Function Reference and
 Input: N X INCX Y INCY
 | | | | |
DOTT = SDOT(5 , X , 1 , Y , 1)

X = (1.0, 2.0, -3.0, 4.0, 5.0)
Y = (9.0, 8.0, 7.0, -6.0, 5.0)

 Output: DOTT = (9.0 + 16.0 - 21.0 - 24.0 + 25.0) = 5.0

 	[bookmark: am5gr_hsdot__am5gr_f108a120]
 Example 2

 	This example shows how to compute the dot product of a vector, x,
 with a stride of 1, and a vector, y, with a stride greater
 than 1.
 Function Reference and Input: N X INCX Y INCY
 | | | | |
DOTT = SDOT(5 , X , 1 , Y , 2)

X = (1.0, 2.0, -3.0, 4.0, 5.0)
Y = (9.0, . , 7.0, . , 5.0, . , -3.0, . , 1.0)

 Output: DOTT = (9.0 + 14.0 - 15.0 - 12.0 + 5.0) = 1.0

 	[bookmark: am5gr_hsdot__am5gr_f108a124]
 Example 3

 	This example shows how to compute the dot product of a vector, x,
 with a negative stride, and a vector, y, with a stride
 greater than 1. For x, processing begins at element X(5),
 which is 5.0.
 Function Reference and Input: N X INCX Y INCY
 | | | | |
DOTT = SDOT(5 , X , -1 , Y , 2)

X = (1.0, 2.0, -3.0, 4.0, 5.0)
Y = (9.0, . , 7.0, . , 5.0, . , -3.0, . , 1.0)

 Output: DOTT = (45.0 + 28.0 - 15.0 - 6.0 + 1.0) = 53.0

 	[bookmark: am5gr_hsdot__am5gr_f108a127]
 Example 4

 	This example shows how to compute the dot product of a vector, x,
 with a stride of 0, and a vector, y, with a stride of
 1. The result in DOTT is x1(y1+…+yn).
 Function Reference and Input: N X INCX Y INCY
 | | | | |
DOTT = SDOT(5 , X , 0 , Y , 1)

X = (1.0, . , . , . , .)
Y = (9.0, 8.0, 7.0, -6.0, 5.0)

 Output: DOTT = (1.0) × (9.0 + 8.0 + 7.0 - 6.0 + 5.0) = 23.0

 	[bookmark: am5gr_hsdot__am5gr_f108a130]
 Example 5

 	This example shows how to compute the dot product of two vectors, x and y,
 with strides of 0. The result in DOTT is nx1y1.
 Function Reference and Input: N X INCX Y INCY
 | | | | |
DOTT = SDOT(5 , X , 0 , Y , 0)

X = (1.0, . , . , . , .)
Y = (9.0, . , . , . , .)

 Output: DOTT = (5) × (1.0) × (9.0) = 45.0

 	[bookmark: am5gr_hsdot__am5gr_f108a134]
 Example 6

 	This example shows how to compute the dot product of two vectors, x and y,
 containing complex numbers, where x has a stride of
 1, and y has a stride greater than 1.
 Function Reference and Input: N X INCX Y INCY
 | | | | |
DOTT = CDOTU(3 , X , 1 , Y , 2)

X = ((1.0, 2.0), (3.0, -4.0), (-5.0, 6.0))
Y = ((10.0, 9.0), . , (-6.0, 5.0), . , (2.0, 1.0))

 Output: DOTT = ((10.0 - 18.0 - 10.0) - (18.0 - 20.0 + 6.0),
 (9.0 + 15.0 - 5.0) + (20.0 + 24.0 + 12.0))
 = (-22.0, 75.0)

 	[bookmark: am5gr_hsdot__am5gr_f108a137]
 Example 7

 	This example shows how to compute the dot product of the conjugate
 of a vector, x, with vector y, both containing
 complex numbers, where x has a stride of 1, and y has
 a stride greater than 1.
 Function Reference
 and Input: N X INCX Y INCY
 | | | | |
DOTT = CDOTC(3 , X , 1 , Y , 2)

X = ((1.0, 2.0), (3.0, -4.0), (-5.0, 6.0))
Y = ((10.0, 9.0), . , (-6.0, 5.0), . , (2.0, 1.0))

 Output: DOTT = ((10.0 - 18.0 - 10.0) + (18.0 - 20.0 + 6.0),
 (9.0 + 15.0 - 5.0) - (20.0 + 24.0 + 12.0))
 = (-14.0, -37.0)

 Parent topic: Linear Algebra Subprograms

 SNAXPY and DNAXPY (Compute SAXPY or DAXPY N Times)

 Purpose

 These subprograms compute SAXPY
 or DAXPY, respectively, n times:

 y

 i

 ←

 y

 i

 +

 α

 i

 x

 i

 for

 i

 =

 1,

 n

 where
 each αi is
 a scalar value, contained in the vector a, and each xi and yi are
 vectors, contained in vectors (or matrices) x and y,
 respectively. For an explanation of the SAXPY and DAXPY computations,
 see SAXPY, DAXPY, CAXPY, and ZAXPY (Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the Vector Y).

 Table 80. Data Types.

 	a, x, y

 	Subprogram

 	Short-precision real

 	SNAXPY

 	Long-precision real

 	DNAXPY

 Syntax

 	Fortran

 	CALL SNAXPY | DNAXPY (n, m, a, inca, x, incxi, incxo, y, incyi, incyo)

 	C and C++

 	snaxpy | dnaxpy (n, m, a, inca, x, incxi, incxo, y, incyi, incyo);

 	On Entry

 	

 	n

 	is the number of SAXPY or DAXPY computations to be performed and
 the number of elements in vector a.
 Specified as:
 an integer; n ≥ 0.

 	m

 	is the number of elements in vectors xi and yi for
 each SAXPY or DAXPY computation.
 Specified as: an integer; m ≥ 0.

 	 a

 	is the vector a of length n,
 containing the scalar values αi, used
 in each computation of yi + αixi.

 Specified as: a one-dimensional array of (at least) length 1+(n-1)|inca|,
 containing numbers of the data type indicated in Table 80.

 	inca

 	is the stride for vector a.
 Specified as: an
 integer. It can have any value.

 	x

 	is the vector (or matrix) x, containing the xi vectors
 of length m, used in the n computations
 of yi + αixi.
 Specified as: a one- or two-dimensional array of (at least) length
 (1+(n-1)(incxo)) + (m-1)|incxi|,
 containing numbers of the data type indicated in Table 80.

 	incxi

 	is the stride for x in the inner loop—that
 is, the stride identifying the elements in each vector xi.

 Specified as: an integer. It can have any value.

 	incxo

 	is the stride for x in the outer loop—that
 is, the stride identifying each vector xi in x.

 Specified as: an integer; incxo ≥ 0.

 	y

 	is the vector (or matrix) y, containing the yi vectors
 of length m, used in the n computations
 of yi + αixi.
 Specified as: a one- or two-dimensional array of (at least) length
 (1+(n-1)(incyo)) + (m-1)|incyi|,
 containing numbers of the data type indicated in Table 80.

 	incyi

 	is the stride for y in the inner loop—that
 is, the stride identifying the elements in each vector yi in y.
 Specified as: an integer; incyi > 0 or incyi < 0.

 	incyo

 	is the stride for y in the outer loop—that
 is, the stride identifying each vector yi in y.

 Specified as: an integer; incyo ≥ 0.

 	On Return

 	

 	y

 	is the vector (or matrix) y, containing the yi vectors
 of length m, which contain the results of the n SAXPY
 or DAXPY computations, yi + αixi for i = 1, n.
 Returned as: a one- or two-dimensional array, containing numbers of
 the data type indicated in Table 80.

 Notes

 Vector y must
 have no common elements with vector a or vector x;
 otherwise, results are unpredictable. See Concepts.

 Function

 The SAXPY or DAXPY computations:

 y

 ←

 y

 +

 α

 x

 are performed n times.
 This is expressed as follows:

 y

 i

 ←

 y

 i

 +

 α

 i

 x

 i

 for

 i

 =

 1,

 n

 where
 each αi is
 a scalar value, contained in the vector a, and each xi and yi are
 vectors, contained in vectors (or matrices) x and y,
 respectively.

 Each computation of SAXPY or DAXPY (see SAXPY, DAXPY, CAXPY, and ZAXPY (Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the Vector Y)) uses the length of
 the xi and yi vectors, m,
 for its input argument, n. It also uses the strides
 for the inner loop, incxi and incyi,
 for its parameters incx and incy,
 respectively. See Function for a description
 of how the computation is done.

 The outer loop of the SNAXPY
 or DNAXPY computation uses the strides of inca, incxo,
 and incyo to locate the elements in a and
 vectors in x and y for each i-th
 computation. These are:

 For i = 1, n:

 α

 ((

 i

 -1)

 inca

 +1)

 for

 inca

 ≥

 0

 α

 ((

 i

 -

 n

)

 inca

 +1)

 for

 inca

 <

 0

 x

 ((

 i

 -1)

 incxo

 +1)

 y

 ((

 i

 -1)

 incyo

 +1)

 If m or n is
 0, no computation is performed.

 Error conditions

 	[bookmark: am5gr_hsnaxpy__am5gr_f108a141]
 Computational Errors

 	None

 	[bookmark: am5gr_hsnaxpy__am5gr_f108a142]
 Input-Argument Errors

 	

 	n < 0

 	m < 0

 	incxo < 0

 	incyi = 0

 	incyo < 0

 Examples

 	Example 1

 	
 This example shows vectors, contained in matrices, with the
 stride of the inner loops incxi and incyi equal
 to 1.

 Call Statement and Input: N M A INCA X INCXI INCXO Y INCYI INCYO
 | | | | | | | | | |
CALL SNAXPY(3 , 4 , A , 1 , X , 1 , 10 , Y , 1 , 5)

A = (3.0, 2.0, 4.0)

 ┌ ┐
 | 1.0 4.0 3.0 |
 | 2.0 3.0 4.0 |
 | 3.0 2.0 2.0 |
 | 4.0 1.0 1.0 |
X = | . . . |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 ┌ ┐
 | 4.0 1.0 3.0 |
 | 3.0 2.0 4.0 |
Y = | 2.0 3.0 2.0 |
 | 1.0 4.0 1.0 |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | 7.0 9.0 15.0 |
 | 9.0 8.0 20.0 |
Y = | 11.0 7.0 10.0 |
 | 13.0 6.0 5.0 |
 | . . . |
 └ ┘

 	Example 2

 	
 This example shows vectors, contained in matrices, with a
 stride of the inner loop incxi greater than 1.

 Call Statement and Input: N M A INCA X INCXI INCXO Y INCYI INCYO
 | | | | | | | | | |
CALL SNAXPY(3 , 4 , A , 1 , X , 2 , 10 , Y , 1 , 5)

A = (3.0, 2.0, 4.0)

 ┌ ┐
 | 1.0 4.0 3.0 |
 | . . . |
 | 2.0 3.0 4.0 |
 | . . . |
X = | 3.0 2.0 2.0 |
 | . . . |
 | 4.0 1.0 1.0 |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 ┌ ┐
 | 4.0 1.0 3.0 |
 | 3.0 2.0 4.0 |
Y = | 2.0 3.0 2.0 |
 | 1.0 4.0 1.0 |
 | . . . |
 └ ┘

 Output:

 Y =

 (same as output Y in Example 1)

 	Example 3

 	
 This example shows vectors, contained in matrices, with a
 negative stride, incyi, for the inner loop.

 Call Statement and Input: N M A INCA X INCXI INCXO Y INCYI INCYO
 | | | | | | | | | |
CALL SNAXPY(3 , 4 , A , 1 , X , 1 , 10 , Y , -1 , 5)

A = (3.0, 2.0, 4.0)

 ┌ ┐
 | 1.0 4.0 3.0 |
 | 2.0 3.0 4.0 |
 | 3.0 2.0 2.0 |
 | 4.0 1.0 1.0 |
X = | . . . |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 ┌ ┐
 | 1.0 4.0 1.0 |
 | 2.0 3.0 2.0 |
Y = | 3.0 2.0 4.0 |
 | 4.0 1.0 3.0 |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | 13.0 6.0 5.0 |
 | 11.0 7.0 10.0 |
Y = | 9.0 8.0 20.0 |
 | 7.0 9.0 15.0 |
 | . . . |
 └ ┘

 	Example 4

 	
 This example shows vectors, contained in matrices, with a
 negative stride, inca, for vector a.
 For vector a, processing begins at element A(5),
 which is 3.0.

 Call Statement and Input:
 N M A INCA X INCXI INCXO Y INCYI INCYO
 | | | | | | | | | |
CALL SNAXPY(3 , 4 , A , -2 , X , 1 , 10 , Y , 1 , 5)

A = (4.0, . , 2.0, . , 3.0)

 ┌ ┐
 | 1.0 4.0 3.0 |
 | 2.0 3.0 4.0 |
 | 3.0 2.0 2.0 |
 | 4.0 1.0 1.0 |
X = | . . . |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 ┌ ┐
 | 4.0 1.0 3.0 |
 | 3.0 2.0 4.0 |
Y = | 2.0 3.0 2.0 |
 | 1.0 4.0 1.0 |
 | . . . |
 └ ┘

 Output:

 Y =

 (same as output Y in Example 1)

 Parent topic: Linear Algebra Subprograms

 SNDOT and DNDOT (Compute Special Dot Products N Times)

 Purpose

 These subprograms compute one of
 the following special dot products n times:

 	si ← xi • yi

 	Store positive dot product

 	

 	si ← -xi • yi

 	Store negative dot product

 	

 	si ← si+xi • yi

 	Accumulate positive dot product

 	

 	si ← si-xi • yi

 	Accumulate negative dot product

 	

 	

 for

 i

 =

 1,

 n

 	

 	

 where each si is
 an element in vector s, and each xi and yi are
 vectors contained in vectors (or matrices) x and y,
 respectively.

 Table 81. Data Types.

 	s, x, y

 	Subprogram

 	Short-precision real

 	SNDOT

 	Long-precision real

 	DNDOT

 Syntax

 	Fortran

 	CALL SNDOT | DNDOT (n, m, s, incs, isw, x, incxi, incxo, y, incyi, incyo)

 	C and C++

 	sndot | dndot (n, m, s, incs, isw, x, incxi, incxo, y, incyi, incyo);

 	On Entry

 	

 	n

 	is the number of dot product computations to be performed and
 the number of elements in the vector s.
 Specified
 as: an integer; n ≥ 0.

 	m

 	is the number of elements in vectors xi and yi for
 each dot product computation.
 Specified as: an integer; m ≥ 0.

 	s

 	is the vector s, containing the n scalar
 values si, where:
 If isw = 1 or 2, si is
 not used in the computation (no input value specified.)
 If isw = 3
 or 4, si is used
 in the computation (input value specified.)

 Specified as: a
 one-dimensional array of (at least) length 1+(n-1)|incs|,
 containing numbers of the data type indicated in Table 81.

 	incs

 	is the stride for vector s.
 Specified as: an
 integer; incs > 0 or incs < 0.

 	isw

 	indicates the type of computation to perform, depending on the
 value specified:
 If isw = 1, si ← xi • yi

 If isw = 2, si ← -xi • yi

 If isw = 3, si ← si + xi • yi

 If isw = 4, si ← si - xi • yi

 where

 i

 =

 1,

 n

 Specified
 as: an integer. Its value must be 1, 2, 3, or 4.

 	x

 	is the vector (or matrix) x, containing the xi vectors
 of length m, used in the n dot
 product computations. Specified as: a one- or two-dimensional array
 of (at least) length (1+(n-1)(incxo))+(m-1)|incxi|,
 containing numbers of the data type indicated in Table 81.

 	incxi

 	is the stride for x in the inner loop—that
 is, the stride identifying the elements in each vector xi.

 Specified as: an integer. It can have any value.

 	incxo

 	is the stride for x in the outer loop—that
 is, the stride identifying each vector xi in x.

 Specified as: an integer; incxo ≥ 0.

 	y

 	is the vector (or matrix) y, containing the yi vectors
 of length m, used in the n dot
 product computations. Specified as: a one- or two-dimensional array
 of (at least) length (1+(n-1)(incyo))
 + (m-1)|incyi|, containing numbers
 of the data type indicated in Table 81.

 	incyi

 	is the stride for y in the inner loop—that
 is, the stride identifying the elements in each vector yi.

 Specified as: an integer. It can have any value.

 	incyo

 	is the stride for y in the outer loop—that
 is, the stride identifying each vector yi in y.

 Specified as: an integer; incyo ≥ 0.

 	On Return

 	

 	s

 	is the vector s of length n,
 containing the results of the n dot product computations.
 The type of dot product computation depends of the value specified
 for isw.
 If isw = 1, si ← xi • yi

 If isw = 2, si ← -xi • yi

 If isw = 3, si ← si + xi • yi

 If isw = 4, si ← si - xi • yi

 where

 i

 =

 1,

 n

 Returned
 as: a one-dimensional array, containing numbers of the data type indicated
 in Table 81.

 Function

 The four possible computations
 that can be performed by these subprograms are:

 	si ← xi • yi

 	Store positive dot product

 	

 	si ← -xi • yi

 	Store negative dot product

 	

 	si ← si+xi • yi

 	Accumulate positive dot product

 	

 	si ← si-xi • yi

 	Accumulate negative dot product

 	

 	

 for

 i

 =

 1,

 n

 	

 	

 where each si is
 a scalar element in the vector s of length n,
 and each of the n xi and yi vectors
 of length m are contained in vectors (or matrices) x and y,
 respectively. Each computation uses the dot product, which is expressed:

 x

 i

 •

 y

 i

 =

 u

 1

 v

 1

 +

 u

 2

 v

 2

 +

 …

 +

 u

 m

 v

 m

 where ui and vi are
 elements of xi and yi,
 respectively. To find the elements for the computation, it uses:

 	The strides for the inner loops, incxi and incyi,
 to locate the elements in vectors xi and yi,
 respectively.

 	The strides for the outer loops, incs, incxo,
 and incyo, to locate the element si in
 vector s and the vectors xi and yi in
 vectors (or matrices) x and y, respectively.

 If m or n is 0,
 no computation is performed. For SNDOT, intermediate results are accumulated
 in long precision when the AltiVec or VSX unit is not used.

 Error conditions

 	[bookmark: am5gr_hsndot__am5gr_f108a156]
 Computational Errors

 	None

 	[bookmark: am5gr_hsndot__am5gr_f108a157]
 Input-Argument Errors

 	

 	n < 0

 	m < 0

 	incs = 0

 	isw < 1 or isw > 4

 	incxo < 0

 	incyo < 0

 Examples

 	[bookmark: am5gr_hsndot__am5gr_exx]
 Example 1

 	This example shows a store positive dot product computation using
 vectors with positive strides.
 Call Statement
 and Input: N M S INCS ISW X INCXI INCXO Y INCYI INCYO
 | | | | | | | | | | |
CALL SNDOT(3 , 4 , S , 1 , 1 , X , 1 , 4 , Y , 1 , 4)

 ┌ ┐
 | 1.0 2.0 3.0 |
X = | 2.0 3.0 4.0 |
 | 3.0 4.0 5.0 |
 | 4.0 5.0 6.0 |
 └ ┘

 ┌ ┐
 | 4.0 3.0 2.0 |
Y = | 3.0 2.0 1.0 |
 | 2.0 1.0 4.0 |
 | 1.0 4.0 3.0 |
 └ ┘

 Output: S = (20.0, 36.0, 48.0)

 	[bookmark: am5gr_hsndot__am5gr_f108a160]
 Example 2

 	This example shows a store negative dot product computation using
 vectors with positive and negative strides.
 Call
 Statement and Input: N M S INCS ISW X INCXI INCXO Y INCYI INCYO
 | | | | | | | | | | |
CALL SNDOT(3 , 4 , S , -1 , 2 , X , 2 , 10 , Y , -1 , 6)

 ┌ ┐
 | 1.0 2.0 3.0 |
 | . . . |
 | 2.0 3.0 4.0 |
 | . . . |
X = | 3.0 4.0 5.0 |
 | . . . |
 | 4.0 5.0 6.0 |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 ┌ ┐
 | 4.0 3.0 2.0 |
 | 3.0 2.0 1.0 |
Y = | 2.0 1.0 4.0 |
 | 1.0 4.0 3.0 |
 | . . . |
 | . . . |
 └ ┘

 Output: S = (-42.0, -34.0, -30.0)

 	[bookmark: am5gr_hsndot__am5gr_f108a163]
 Example 3

 	This example shows an accumulative positive dot product using
 vectors with positive and negative strides.
 Call
 Statement and Input: N M S INCS ISW X INCXI INCXO Y INCYI INCYO
 | | | | | | | | | | |
CALL SNDOT(3 , 4 , S , 1 , 3 , X , -2 , 10 , Y , 2 , 10)

S = (2.0, 5.0, 8.0)

 ┌ ┐
 | 1.0 2.0 3.0 |
 | . . . |
 | 2.0 3.0 4.0 |
 | . . . |
X = | 3.0 4.0 5.0 |
 | . . . |
 | 4.0 5.0 6.0 |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 ┌ ┐
 | 4.0 3.0 2.0 |
 | . . . |
 | 3.0 2.0 1.0 |
 | . . . |
Y = | 2.0 1.0 4.0 |
 | . . . |
 | 1.0 4.0 3.0 |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 Output: S = (32.0, 39.0, 50.0)

 	[bookmark: am5gr_hsndot__am5gr_f108a166]
 Example 4

 	This example shows an accumulative negative dot product using
 vectors with positive and negative strides.
 Call
 Statement and Input: N M S INCS ISW X INCXI INCXO Y INCYI INCYO
 | | | | | | | | | | |
CALL SNDOT(3 , 4 , S , -1 , 4 , X , 1 , 6 , Y , 2 , 10)

 S = (3.0, 6.0, 9.0)
 ┌ ┐
 | 1.0 2.0 3.0 |
 | 2.0 3.0 4.0 |
X = | 3.0 4.0 5.0 |
 | 4.0 5.0 6.0 |
 | . . . |
 | . . . |
 └ ┘

 ┌ ┐
 | 4.0 3.0 2.0 |
 | . . . |
 | 3.0 2.0 1.0 |
 | . . . |
Y = | 2.0 1.0 4.0 |
 | . . . |
 | 1.0 4.0 3.0 |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 Output: S = (-45.0, -30.0, -11.0)

 Parent topic: Linear Algebra Subprograms

 SNRM2, DNRM2, SCNRM2, and DZNRM2 (Euclidean Length of a Vector
 with Scaling of Input to Avoid Destructive Underflow and Overflow)

 Purpose

 These subprograms compute the Euclidean
 length (l2 norm) of vector x,
 with scaling of input to avoid destructive underflow and overflow.

 Table 82. Data Types.

 	x

 	Result

 	Subprogram

 	Short-precision real

 	Short-precision real

 	SNRM2

 	Long-precision real

 	Long-precision real

 	DNRM2

 	Short-precision complex

 	Short-precision real

 	SCNRM2

 	Long-precision complex

 	Long-precision real

 	DZNRM2

 Note:

 	If there is a possibility that your data will cause the computation
 to overflow or underflow, you should use these subroutines instead
 of SNORM2, DNORM2, CNORM2, and ZNORM2, because the intermediate computational
 results may exceed the maximum or minimum limits of the machine. Notes explains
 how to estimate whether your data will cause an overflow or underflow.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	SNRM2 | DNRM2 | SCNRM2 | DZNRM2 (n, x, incx)

 	C and C++

 	snrm2 | dnrm2 | scnrm2 | dznrm2 (n, x, incx);

 	CBLAS

 	cblas_snrm2 | cblas_dnrm2 | cblas_scnrm2 | cblas_dznrm2 (n, x, incx);

 	On Entry

 	n

 	

 	is the number of elements in vector x. Specified
 as: an integer; n ≥ 0.

 	x

 	is the vector x of length n,
 whose Euclidean length is to be computed.
 Specified as: a one-dimensional
 array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 82.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	On Return

 	

 	Function value

 	is the Euclidean length (l2 norm)
 of the vector x. Returned as: a number of the data type
 indicated in Table 82.

 Notes

 Declare this function in
 your program as returning a value of the data type indicated in Table 82.

 Function

 The Euclidean
 length (l2 norm) of vector x is
 expressed as follows, with scaling of input to avoid destructive underflow
 and overflow:

 [image: Euclidean Length Graphic]

 See reference [93]. The result
 is returned as the function value. If n is 0, then
 0.0 is returned as the value of the function.

 For SNRM2 and
 SCNRM2, the sum of the squares of the absolute values of the elements
 is accumulated in long precision. The square root of this long-precision
 sum is then computed and, if necessary, is unscaled.

 Although
 these subroutines eliminate destructive underflow, nondestructive
 underflows may occur if the input elements differ greatly in magnitude.
 This does not affect accuracy, but it degrades performance. The
 system default is to mask underflow, which improves the performance
 of these subroutines.

 Error conditions

 	[bookmark: am5gr_hsnrm2__am5gr_f108a170]
 Computational Errors

 	None

 	[bookmark: am5gr_hsnrm2__am5gr_f108a171a]
 Input-Argument Errors

 	n < 0

 Examples

 Important Information About the Following Examples: Workstations use workstation architecture precisions:
 ANSI/IEEE 32-bit and 64-bit binary floating-point format. The ranges
 are:

 	For short-precision: 3.37×10-38 to 3.37×1038

 	For long-precision: 1.67×10-308 to 1.67×10308

 	[bookmark: am5gr_hsnrm2__am5gr_f108a173]
 Example 1

 	This example shows a vector, x, whose elements must
 be scaled to prevent overflow.
 N X INCX
 | | |
DNORM = DNRM2(6 , X , 1)

X = (0.68056D+200, 0.25521D+200, 0.34028D+200,
 0.85071D+200, 0.25521D+200, 0.85071D+200)

 Output: DNORM = 0.1469D+201

 	[bookmark: am5gr_hsnrm2__am5gr_f108a176]
 Example 2

 	This example shows a vector, x, whose elements must
 be scaled to prevent destructive underflow.
 Function
 Reference and Input: N X INCX
 | | |
DNORM = DNRM2(4 , X , 2)

X = (0.10795D-200, . , 0.10795D-200, . , 0.10795D-200,
 . , 0.10795D-200)

 Output: DNORM = 0.21590D-200

 	[bookmark: am5gr_hsnrm2__am5gr_f108a179]
 Example 3

 	This example shows a vector, x, with a stride of
 0. The result in SNORM is:

 [image: Math Graphic]

 Function Reference and Input: N X INCX
 | | |
SNORM = SNRM2(4 , X , 0)

X = (4.0)

 Output: SNORM = 8.0

 	[bookmark: am5gr_hsnrm2__am5gr_f108a182]
 Example 4

 	This example shows a vector, x, containing complex
 numbers, and whose elements must be scaled to prevent overflow.
 Function Reference and Input: N X INCX
 | | |
DZNORM = DZNRM2(3 , X , 1)

X = ((0.68056D+200, 0.25521D+200), (0.34028D+200, 0.85071D+200),
 (0.25521D+200, 0.85071D+200))

 Output: DZNORM = 0.1469D+201

 	[bookmark: am5gr_hsnrm2__am5gr_f108a185]
 Example 5

 	This example shows a vector, x, containing complex
 numbers, and whose elements must be scaled to prevent destructive
 underflow.
 Function Reference and Input: N X INCX
 | | |
DZNORM = DZNRM2(2 , X , 2)

X = ((0.10795D-200, 0.10795D-200), . ,
 (0.10795D-200, 0.10795D-200))

 Output: DZNORM = 0.2159D-200

 Parent topic: Linear Algebra Subprograms

 SNORM2, DNORM2, CNORM2, and ZNORM2 (Euclidean Length of a Vector
 with No Scaling of Input)

 Purpose

 These subprograms compute the euclidean
 length (l2 norm) of vector x with
 no scaling of input.

 Table 83. Data Types.

 	x

 	Result

 	Subprogram

 	Short-precision real

 	Short-precision real

 	SNORM2

 	Long-precision real

 	Long-precision real

 	DNORM2

 	Short-precision complex

 	Short-precision real

 	CNORM2

 	Long-precision complex

 	Long-precision real

 	ZNORM2

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	SNORM2 | DNORM2 | CNORM2 | ZNORM2 (n, x, incx)

 	C and C++

 	snorm2 | dnorm2 | cnorm2 | znorm2 (n, x, incx);

 	On Entry

 	

 	n

 	is the number of elements in vector x. Specified
 as: an integer; n ≥ 0.

 	x

 	is the vector x of length n,
 whose euclidean length is to be computed.
 Specified as: a one-dimensional
 array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 83.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	On Return

 	

 	Function value

 	is the euclidean length (l2 norm)
 of the vector x. Returned as: a number of the data type
 indicated in Table 83.

 Notes

 	This subroutine does not underflow or overflow if the values of
 the elements in vector x conform to the following conditions.
 If these conditions are violated, overflow or destructive underflow
 may occur:

 	For short-precision numbers:

 Any valid short-precision number.

 	For long-precision numbers:

 |

 x

 i

 |

 =

 0 or 0.10010E-145

 <

 |

 x

 i

 |

 <

 0.13408E+155 for

 i

 =

 1,

 n

 	Declare this function in your program as returning a value of
 the data type indicated in Table 83.

 Function

 The euclidean length (l2 norm)
 of vector x is expressed as follows with no scaling
 of input:

 [image: Euclidean Length Graphic]

 See reference [93]. The result
 is returned as the function value. If n is 0, then
 0.0 is returned as the value of the function.

 For SNORM2 and
 CNORM2, the sum of the squares of the absolute values of the elements
 is accumulated in long-precision. The square root of this long-precision
 sum is then computed.

 This subroutine should not be used if
 the values in vector x do not conform to the restriction
 given in Notes.

 Error conditions

 	[bookmark: am5gr_hsnorm2__am5gr_f108a188]
 Computational Errors

 	None

 	[bookmark: am5gr_hsnorm2__am5gr_f108a189]
 Input-Argument Errors

 	n < 0

 Examples

 	[bookmark: am5gr_hsnorm2__am5gr_f108a190]
 Example 1

 	This example shows a vector, x, with a stride of
 1.
 Function Reference and Input: N X INCX
 | | |
SNORM = SNORM2(6 , X , 1)

X = (3.0, 4.0, 1.0, 8.0, 1.0, 3.0)

 Output: SNORM = 10.0

 	[bookmark: am5gr_hsnorm2__am5gr_f108a202]
 Example 2

 	This example shows a vector, x, with a stride greater
 than 1.
 Function Reference and Input: N X INCX
 | | |
SNORM = SNORM2(6 , X , 2)

X = (3.0, . , 4.0, . , 1.0, . , 8.0, . , 1.0, . , 3.0)

 Output: SNORM = 10.0

 	[bookmark: am5gr_hsnorm2__am5gr_f108a205]
 Example 3

 	This example shows a vector, x, with a stride of
 0. The result in SNORM is:

 [image: Math Graphic]

 Function Reference and Input: N X INCX
 | | |
SNORM = SNORM2(4 , X , 0)

X = (4.0)

 Output: SNORM = 8.0

 	[bookmark: am5gr_hsnorm2__am5gr_f108a208]
 Example 4

 	This example shows a vector, x, containing complex
 numbers and having a stride of 1.
 Function
 Reference and Input: N X INCX
 | | |
CNORM = CNORM2(3 , X , 1)

X = ((3.0, 4.0), (1.0, 8.0), (-1.0, 3.0))

 Output: CNORM = 10.0

 Parent topic: Linear Algebra Subprograms

 SROTG, DROTG, CROTG, and ZROTG (Construct a Givens Plane Rotation)

 Purpose

 SROTG and DROTG construct a real
 Givens plane rotation, and CROTG and ZROTG construct a complex Givens
 plane rotation. The computations use rotational elimination parameters a and b.
 Values are returned for r, as well as the cosine c and
 the sine s of the angle of rotation. SROTG and
 DROTG also return a value for z.
 Note: Throughout
 this description, the symbols r and z are
 used to represent two of the output values returned for this computation.
 It is important to note that the values for r and z are
 actually returned in the input-output arguments a and b,
 respectively, overwriting the original values passed in a and b.

 Table 84. Data Types.

 	a, b, r, s

 	c

 	z

 	Subprogram

 	Short-precision real

 	Short-precision real

 	Short-precision real

 	SROTG

 	Long-precision real

 	Long-precision real

 	Long-precision real

 	DROTG

 	Short-precision complex

 	Short-precision real

 	(No value returned)

 	CROTG

 	Long-precision complex

 	Long-precision real

 	(No value returned)

 	ZROTG

 Syntax

 	Fortran

 	CALL SROTG | DROTG | CROTG | ZROTG (a, b, c, s)

 	C and C++

 	srotg | drotg | crotg | zrotg (a, b, c, s);

 	CBLAS

 	[image: Start of change]cblas_srotg | cblas_drotg | cblas_crotg | cblas_zrotg (a,
 b, c, s);[image: End of change]

 	On Entry

 	

 	a

 	is the rotational elimination parameter a.

 Specified as: a number of the data type indicated in Table 84.

 	b

 	is the rotational elimination parameter b.

 Specified as: a number of the data type indicated in Table 84.

 	c

 	See On Return.

 	s

 	See On Return.

 	On Return

 	

 	a

 	is the value computed for r.
 For SROTG
 and DROTG:

 [image: Math Graphic]

 where:

 σ

 =

 SIGN(

 a

) if |

 a

 |

 >

 |

 b

 |

 σ

 =

 SIGN(

 b

) if |

 a

 |

 ≤

 |

 b

 |

 For
 CROTG and ZROTG:

 [image: Math Graphic]

 where:

 ψ

 =

 a

 /|

 a

 |

 Returned
 as: a number of the data type indicated in Table 84.

 	b

 	is the value computed for z.
 For SROTG
 and DROTG:

 z

 =

 s

 if |

 a

 |

 >

 |

 b

 |

 z

 =

 1/

 c

 if |

 a

 |

 ≤

 |

 b

 | and

 c

 ≠

 0 and

 r

 ≠

 0

 z

 =

 1

 if |

 a

 |

 ≤

 |

 b

 | and

 c

 =

 0 and

 r

 ≠

 0

 z

 =

 0

 if

 r

 =

 0

 For
 CROTG and ZROTG: no value is returned, and the input value is not
 changed.

 Returned as: a number of the data type indicated
 in Table 84.

 	c

 	is the cosine c of the angle of (Givens) rotation.
 For SROTG and DROTG:

 c

 =

 a

 /

 r

 if

 r

 ≠

 0

 c

 =

 1

 if

 r

 =

 0

 For
 CROTG and ZROTG:

 [image: Math Graphic]

 Returned as: a number of the data type indicated in Table 84.

 	s

 	is the sine s of the angle of (Givens) rotation.

 For SROTG and DROTG:

 s

 =

 b

 /

 r

 if

 r

 ≠

 0

 s

 =

 0

 if

 r

 =

 0

 For
 CROTG and ZROTG:

 [image: Math Graphic]

 where ψ = a/|a|

 Returned
 as: a number of the data type indicated in Table 84.

 Notes

 	In your C program, arguments a, b, c,
 and s must be passed by reference.

 	In your C++ program, for cblas_srotg and cblas_drotg,
 arguments a, b, c,
 and s must be passed by pointer.

 Function

 	[bookmark: am5gr_hsrotg__am5gr_f108a211]
 SROTG and DROTG

 	A real Givens plane rotation is constructed for values a and b by
 computing values for r, c, s, and z,
 where:

 [image: Real Givens Plane Rotation Math Graphic]

 where:

 σ

 =

 SIGN(

 a

)

 if |

 a

 |

 >

 |

 b

 |

 σ

 =

 SIGN(

 b

)

 if |

 a

 |

 ≤

 |

 b

 |

 c = a/r if r ≠ 0

 c = 1
 if r = 0

 s = b/r if r ≠ 0

 s = 0
 if r = 0

 z = s if |a| > |b|

 z = 1/c if |a| ≤ |b|
 and c ≠ 0
 and r ≠ 0

 z = 1 if |a| ≤ |b|
 and c = 0 and r ≠ 0

 z = 0 if r = 0

 See
 reference [93].

 Following
 are some important points about the computation:

 	The numbers for c, s, and r satisfy:

 [image: Real Givens Plane Rotation Math Graphic]

 	Where necessary, scaling is used to avoid overflow and destructive
 underflow in the computation of r, which is expressed
 as follows:

 [image: Real Givens Plane Rotation Math Graphic]

 	σ is
 not essential to the computation of a Givens rotation matrix, but
 its use permits later stable reconstruction of c and s from
 just one stored number, z. See reference [110]. c and s are
 reconstructed from z as follows:

 [image: Real Givens Plane Rotation Math Graphic]

 	[bookmark: am5gr_hsrotg__am5gr_f108a212]

 	A complex Givens plane rotation is constructed for values a and b by
 computing values for r, c, and s,
 where:

 [image: Complex Givens Plane Rotation Math Graphic]

 where:

 ψ

 =

 a

 /|

 a

 |

 [image: Complex Givens Plane Rotation Math Graphic]

 [image: Complex Givens Plane Rotation Math Graphic]

 See reference [93].

 Following
 are some important points about the computation:

 	The numbers for c, s, and r satisfy:

 [image: Complex Givens Plane Rotation Math Graphic]

 	Where necessary, scaling is used to avoid overflow and destructive
 underflow in the computation of r, which is expressed
 as follows:

 [image: Complex Givens Plane Rotation Math Graphic]

 Error conditions

 	[bookmark: am5gr_hsrotg__am5gr_f108a213]
 Computational Errors

 	None

 	[bookmark: am5gr_hsrotg__am5gr_f108a214]
 Input-Argument Errors

 	None

 Examples

 	[bookmark: am5gr_hsrotg__am5gr_f108a215]
 Example 1

 	This example shows the construction of a real Givens plane rotation,
 where r is 0.
 Call Statement
 and Input: A B C S
 | | | |
CALL SROTG(0.0 , 0.0 , C , S)

 Output: A = 0.0
B = 0.0
C = 1.0
S = 0.0

 	[bookmark: am5gr_hsrotg__am5gr_f108a218]
 Example 2

 	This example shows the construction of a real Givens plane rotation,
 where c is 0.
 Call Statement
 and Input: A B C S
 | | | |
CALL SROTG(0.0 , 2.0 , C , S)

 Output: A = 2.0
B = 1.0
C = 0.0
S = 1.0

 	[bookmark: am5gr_hsrotg__am5gr_f108a221]
 Example 3

 	This example shows the construction of a real Givens plane rotation,
 where |b| > |a|.
 Call Statement and Input: A B C S
 | | | |
CALL SROTG(6.0 , -8.0 , C , S)

 Output: A = -10.0
 _
B = -1.666
C = -0.6
S = 0.8

 	[bookmark: am5gr_hsrotg__am5gr_f108a224]
 Example 4

 	This example shows the construction of a real Givens plane rotation,
 where |a| > |b|.
 Call Statement and Input: A B C S
 | | | |
CALL SROTG(8.0 , 6.0 , C , S)

 Output: A = 10.0
B = 0.6
C = 0.8
S = 0.6

 	[bookmark: am5gr_hsrotg__am5gr_f108a227]
 Example 5

 	This example shows the construction of a complex Givens plane
 rotation, where |a| = 0.
 Call Statement
 and Input: A B C S
 | | | |
CALL CROTG(A , B , C , S)

A = (0.0, 0.0)
B = (1.0, 0.0)

 Output: A = (1.0, 0.0)
C = 0.0
S = (1.0, 0.0)

 	[bookmark: am5gr_hsrotg__am5gr_f108a230]
 Example 6

 	This example shows the construction of a complex Givens plane
 rotation, where |a| ≠ 0.
 Call Statement and Input: A B C S
 | | | |
CALL CROTG(A , B , C , S)

A = (3.0, 4.0)
B = (4.0, 6.0)

 Output: A = (5.26, 7.02)
C = 0.57
S = (0.82, -0.05)

 Parent topic: Linear Algebra Subprograms

 SROT, DROT, CROT, ZROT, CSROT, and ZDROT (Apply a Plane Rotation)

 Purpose

 SROT and DROT apply a real plane
 rotation to real vectors; CROT and ZROT apply a complex plane rotation
 to complex vectors; and CSROT and ZDROT apply a real plane rotation
 to complex vectors. The plane rotation is applied to n points,
 where the points to be rotated are contained in vectors x and y,
 and where the cosine and sine of the angle of rotation are c and s,
 respectively.

 Table 85. Data
 Types.

 	x, y

 	c

 	s

 	Subprogram

 	Short-precision real

 	Short-precision real

 	Short-precision real

 	SROT

 	Long-precision real

 	Long-precision real

 	Long-precision real

 	DROT

 	Short-precision complex

 	Short-precision real

 	Short-precision complex

 	CROT

 	Long-precision complex

 	Long-precision real

 	Long-precision complex

 	ZROT

 	Short-precision complex

 	Short-precision real

 	Short-precision real

 	CSROT

 	Long-precision complex

 	Long-precision real

 	Long-precision real

 	ZDROT

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SROT | DROT | CROT | ZROT | CSROT | ZDROT (n, x, incx, y, incy, c, s)

 	C and C++

 	srot | drot | crot | zrot | csrot | zdrot (n, x, incx, y, incy, c, s);

 	CBLAS

 	[image: Start of change]cblas_srot | cblas_drot | cblas_crot | cblas_zrot
 | cblas_csrot | cblas_zdrot (n, x, incx, y, incy, c, s);[image: End of change]

 	On Entry

 	

 	n

 	is the number of points to be rotated—that is, the number of elements in vectors x and y.

 Specified as: an integer; n ≥ 0.

 	x

 	is the vector x of length n,
 containing the xi coordinates
 of the points to be rotated.
 Specified as: a one-dimensional array
 of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 85.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	y

 	is the vector y of length n,
 containing the yi coordinates
 of the points to be rotated.
 Specified as: a one-dimensional array
 of (at least) length 1+(n-1)|incy|,
 containing numbers of the data type indicated in Table 85.

 	incy

 	is the stride for vector y.
 Specified as: an
 integer. It can have any value.

 	c

 	the cosine, c, of the angle of rotation.
 Specified
 as: a number of the data type indicated in Table 85.

 	s

 	the sine, s, of the angle of rotation.
 Specified
 as: a number of the data type indicated in Table 85.

 	On Return

 	

 	x

 	is the vector x of length n,
 containing the rotated xi coordinates,
 where:

 x

 i

 ←

 cx

 i

 +

 sy

 i

 for

 i

 =

 1,

 Returned
 as: a one-dimensional array, containing numbers of the data type indicated
 in Table 85.

 	y

 	is the vector y of length n,
 containing the rotated yi coordinates,
 where:
 For SROT, DROT, CSROT, and ZDROT:

 y

 i

 ←

 -

 sx

 i

 +

 cy

 i

 for

 i

 =

 1,

 n

 For
 CROT and ZROT:

 [image: Plane Rotation Math Graphic]

 Returned as: a one-dimensional array, containing numbers
 of the data type indicated in Table 85.

 Notes

 The
 vectors x and y must have no common elements;
 otherwise, results are unpredictable. See Concepts.

 Function

 Applying a plane rotation to n points,
 where the points to be rotated are contained in vectors x and y,
 is expressed as follows, where c and s are
 the cosine and sine of the angle of rotation, respectively. For SROT,
 DROT, CSROT, and ZDROT:

 [image: Plane Rotation Math Graphic]

 For CROT and ZROT:

 [image: Plane Rotation Math Graphic]

 See references [68] and [93]. No computation
 is performed if n is 0 or if c is
 1.0 and s is zero. For SROT, CROT, and CSROT, intermediate
 results are accumulated in long precision when the AltiVec or VSX
 unit is not used.

 Error conditions

 	[bookmark: am5gr_hsrot__am5gr_f108a234]
 Computational Errors

 	None

 	[bookmark: am5gr_hsrot__am5gr_f108a235]
 Input-Argument Errors

 	n < 0

 Examples

 	[bookmark: am5gr_hsrot__am5gr_f108a236]
 Example 1

 	This example shows how to apply a real plane rotation to real
 vectors x and y having positive strides.
 Call Statement and Input: N X INCX Y INCY C S
 | | | | | | |
CALL SROT(5 , X , 1 , Y , 2 , 0.5 , S)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (-1.0, . , -2.0, . , -3.0, . , -4.0, . , -5.0)

 [image: Example Graphic]

 Output: X = (-0.366, -0.732, -1.098, -1.464, -1.830)
Y = (-1.366, -2.732, -4.098, -5.464, -6.830)

 	[bookmark: am5gr_hsrot__am5gr_f108a239]
 Example 2

 	This example shows how to apply a real plane rotation to real
 vectors x and y having strides of opposite
 sign.
 Call Statement and Input: N X INCX Y INCY C S
 | | | | | | |
CALL SROT(5 , X , 1 , Y , -1 , 0.5 , S)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (-5.0, -4.0, -3.0, -2.0, -1.0)

 [image: Example Graphic]

 Output:

 X =

 (same as output

 X

 in Example 1)

 Y = (-6.830, -5.464, -4.098, -2.732, -1.366)

 	[bookmark: am5gr_hsrot__am5gr_f108a242]
 Example 3

 	This example shows how scalar values in vectors x and y can
 be processed by specifying 0 strides and the number of elements to
 be processed, n, equal to 1.
 Call Statement and Input: N X INCX Y INCY C S
 | | | | | | |
CALL SROT(1 , X , 0 , Y , 0 , 0.5 , S)

X = (1.0)
Y = (-1.0)

 [image: Example Graphic]

 Output: X = (-0.366)
Y = (-1.366)

 	[bookmark: am5gr_hsrot__am5gr_f108a245]
 Example 4

 	This example shows how to apply a complex plane rotation to complex
 vectors x and y having positive strides.
 Call Statement and Input: N X INCX Y INCY C S
 | | | | | | |
CALL CROT(3 , X , 1 , Y , 2 , 0.5 , S)

X = ((1.0, 2.0), (2.0, 3.0), (3.0, 4.0))
Y = ((-1.0, 5.0), . , (-2.0, 4.0), . , (-3.0, 3.0))
S = (0.75, 0.50)

 Output: X = ((-2.750, 4.250), (-2.500, 3.500), (-2.250, 2.750))
Y = ((-2.250, 1.500), . , (-4.000, 0.750), . ,
 (-5.750, 0.000))

 	[bookmark: am5gr_hsrot__am5gr_f108a247a]
 Example 5

 	This example shows how to apply a real plane rotation to complex
 vectors x and y having positive strides.
 Call Statement and Input: N X INCX Y INCY C S
 | | | | | | |
CALL CSROT(3 , X , 1 , Y , 2 , 0.5 , S)

X = ((1.0, 2.0), (2.0, 3.0), (3.0, 4.0))
Y = ((-1.0, 5.0), . , (-2.0, 4.0), . , (-3.0, 3.0))

 [image: Example Graphic]

 Output:

 X = ((-0.366, 5.330), (-0.732, 4.964), (-1.098, 4.598))
Y = ((-1.366, 0.768), . , (-2.732, -0.598), . ,
 (-4.098, -1.964))

 Parent topic: Linear Algebra Subprograms

 [image: Start of change]SROTMG and DROTMG (Construct a modified Givens Transformation)

 Purpose

 SROTMG and DROTMG construct the modified Givens transformation
 matrix H, which zeros the second component of the 2-vector:

 Figure 11. 2-Vector[image: Math Graphic]

 H has one of the following forms:
 Figure 12. The form of matrix H

 SROTM
 and DROTM uses the information in PARAM to apply the modified Givens
 transformation.

 Table 86. Data Types.

 	d1, d2, x1,
 x2

 	Subprogram

 	Short-precision real

 	SROTMG

 	Long-precision real

 	DROTMG

 Syntax

 	Fortran

 	CALL SROTMG | DROTMG | (d1, d2, x1,
 x2, param)

 	C and C++

 	srotmg | drotmg (d1, d2, x1,
 x2, param);

 	CBLAS

 	[image: Start of change]cblas_srotmg | cblas_drotmg | (d1, d2,
 x1, x2, param);[image: End of change]

 	On Entry

 	

 	d1

 	is the value d1 shown in Figure 11..
 Specified as: a number of the data type
 indicated in Table 86.

 	d2

 	is the value d2 shown in Figure 11..
 Specified as: a number of the data type
 indicated in Table 86.

 	x1

 	is the value x1 shown in Figure 11..
 Specified as: a number of the data type
 indicated in Table 86.

 	x2

 	is the value x2 shown in Figure 11..
 Specified as: a number of the data type
 indicated in Table 86.

 	On Return

 	

 	d1

 	d1 is overwritten; that is, the original input is not preserved.
 Returned
 as: a number of the data type indicated in Table 86.

 	d2

 	d2 is overwritten; that is, the original input is not preserved.
 Returned
 as: a number of the data type indicated in Table 86.

 	x1

 	x1 is overwritten; that is, the original input is not preserved.
 Returned
 as: a number of the data type indicated in Table 86.

 	x2

 	x2 is overwritten; that is, the original input is not preserved.
 Returned
 as: a number of the data type indicated in Table 86.

 	param

 	param is a vector of length 5 defining the form and element values of the
 modified Givens transformation matrix H, where:

 	param1 = Form of H, either -1.0, 0.0, 1.0, or -2.0,
 as shown in Figure 12..

 	param2 = H11

 	param3 = H21

 	param4= H12

 	param5= H22

 The matrix H values of 1.0, -1.0, 0.0 implied when
 param1 = 0, 1, -2 are assumed and are not stored in
 param2:5.

 SROTM and DROTM use the information in
 param to apply the modified Givens transformation.

 Returned as: a vector of
 length 5.

 Notes

 	In your C program, arguments d1, d2,
 x1, and x2 must be passed by reference.

 	In your C++ program, for cblas_srotmg and cblas_drotmg, arguments d1,
 d2, x1, and x2 must be passed by
 pointer.

 Function

 SROTMG and DROTMG construct the modified Givens transformation matrix H, which
 zeros the second component of the 2-vector:

 [image: Math Graphic]

 H has one of the following forms:

 SROTM and DROTM uses the information in PARAM to apply the modified Givens
 transformation.

 For more information, see references [[image: Start of change]93[image: End of change]].

 Error conditions

 	[bookmark: am5gr_srotmg__am5gr_f108a213]
 Computational Errors

 	None

 	[bookmark: am5gr_srotmg__am5gr_f108a214]
 Input-Argument Errors

 	None

 Examples
See the combined DROTMG and DROTM example
 shown in Example 1.

 Parent topic: Linear Algebra Subprograms

 [image: End of change]

 [image: Start of change]SROTM and DROTM (Apply a modified Givens Transformation)

 Purpose

 SROTM and DROTM apply a modified GIVENS matrix transformation. For
 I=1,n:

 Where H is a modified Givens transformation returned by a preceding call to SROTMG or DROTMG
 respectively.

 For I =
 1,n: xi = h11xi+h12yi
 yi = h21xi+h22yi

 Table 87. Data Types.

 	x, y

 	Subprogram

 	Short-precision real

 	SROTM

 	Long-precision real

 	DROTM

 Syntax

 	Fortran

 	CALL SROTM | DROTM (n, x, incx,
 y, incy, param)

 	C and C++

 	srotm | drotm (n, x, incx,
 y, incy, param);

 	CBLAS

 	[image: Start of change]cblas_srotm | cblas_drotm (n, x,
 incx, y, incy,
 param);[image: End of change]

 	On Entry

 	

 	n

 	is the number of elements in vectors x and y.
 Specified as: an
 integer; n ≥ 0.

 	x

 	is the vector x of length n.
 Specified as: a one-dimensional
 array of (at least) length 1+(n-1)|incx|, containing numbers
 of the data type indicated in Table 87.

 	incx

 	is the stride for vector x.
 Specified as: an integer. It can have any
 value.

 	y

 	is the vector y of length n.
 Specified as: a one-dimensional
 array of (at least) length 1+(n-1)|incy|, containing numbers
 of the data type indicated in Table 87.

 	incy

 	is the stride for vector y.
 Specified as: an integer. It can have any
 value.

 	param

 	param is a vector of length 5 as returned by a preceding call to SROTMG or
 DROTMG defining the form and element values of the modified Givens transformation matrix
 H, where:

 	param1 = Form of H, either -1.0, 0.0, 1.0, or -2.0,
 as shown in Figure 12..

 	param2 = H11

 	param3 = H21

 	param4= H12

 	param5= H22

 The matrix H values of 1.0, -1.0, 0.0 implied when
 param1 = 0, 1, -2 are assumed and do not need to be stored in
 param2:5.

 Returned as: a vector of length 5.

 	On Return

 	

 	x

 	is the vector x of length n, where:
 xi = h11xi+h12yi

 Returned as: a one-dimensional array, containing numbers of the data type indicated in Table 87.

 	y

 	is the vector y of length n, where:
 yi = h21xi+h22yi

 Returned
 as: a one-dimensional array, containing numbers of the data type indicated in Table 87.

 Notes

 	The vectors x and y must have no common elements; otherwise, results
 are unpredictable. See Concepts.

 	If negative stride is specified for a vector, then the position of the first element accessed is
 (-n+1)inc + 1, where n = vector count and
 inc = vector stride, except when stride of both vectors is -1, in which case both
 vectors are accessed from position 1. For all other strides, the position of the first element
 accessed is 1.

 Function

 SROTM and DROTM apply a modified GIVENS matrix transformation. For
 I=1,n:

 Where H is a modified Givens transformation matrix returned by a preceding call to SROTMG or
 DROTMG respectively.

 For I = 1,n: xi = h11xi+h12yi
 yi = h21xi+h22yi

 For more information, see references [[image: Start of change]93[image: End of change]].

 If n = 0 or if H is the identity matrix
 (param1 = -2), the subroutine returns immediately.

 Error conditions

 	[bookmark: am5gr_srotm__am5gr_f108a234]
 Computational Errors

 	None

 	[bookmark: am5gr_srotm__am5gr_f108a235]
 Input-Argument Errors

 	n < 0

 Examples

 	[bookmark: am5gr_srotm__combo_example]
 Example 1

 	This example illustrates the construction and application of a modified Givens
 transformation.
 Call Statement and Input:
 D1 D2 X1 X2 PARAM
 | | | | |
CALL DROTMG(D1 , D2 , X1 , X2, PARAM)

 D1 = 1000000000.0
D2 = 1.0
X1 = -2.0
X2 = 4.0

 Output:
 PARAM = (-1.0, 4096.0, 2.0, -0.8192D-5, 1.0)

On output, D1, D2, X1, and X2 are overwritten.

 Call
 Statement and Input:
 N X INCX Y INCY PARAM
 | | | | | |
CALL DROTM(5 , X , 1 , Y , 1 , PARAM)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (-1.0, -2.0, -3.0, -4.0, -5.0)
PARAM = output from the call to DROTMG

 Output:
 X = (4096.0, 8192.0, 12288.0, 16384.0, 20480.0)
Y = (1.0, 2.0, 3.0, 4.0, 5.0)

 Parent topic: Linear Algebra Subprograms

 [image: End of change]

 SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and ZDSCAL (Multiply a
 Vector X by a Scalar and Store in the Vector X)

 Purpose

 These subprograms perform the following
 computation, using the scalar α and the vector x:

 x

 ←

 α

 x

 Table 88. Data Types.

 	α

 	x

 	Subprogram

 	Short-precision real

 	Short-precision real

 	SSCAL

 	Long-precision real

 	Long-precision real

 	DSCAL

 	Short-precision complex

 	Short-precision complex

 	CSCAL

 	Long-precision complex

 	Long-precision complex

 	ZSCAL

 	Short-precision real

 	Short-precision complex

 	CSSCAL

 	Long-precision real

 	Long-precision complex

 	ZDSCAL

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SSCAL | DSCAL | CSCAL | ZSCAL | CSSCAL | ZDSCAL (n, alpha, x, incx)

 	C and C++

 	sscal | dscal | cscal | zscal | csscal | zdscal (n, alpha, x, incx);

 	CBLAS

 	cblas_sscal | cblas_dscal | cblas_cscal | cblas_zscal | cblas_csscal
 | cblas_zdscal (n, alpha, x, incx);

 	On Entry

 	

 	n

 	is the number of elements in vector x. Specified
 as: an integer; n ≥ 0.

 	alpha

 	is the scalar α.
 Specified as: a number of the data
 type indicated in Table 88.

 	x

 	is the vector x of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 88.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	On Return

 	

 	x

 	is the vector x of length n,
 containing the result of the computation αx. Returned as: a one-dimensional
 array, containing numbers of the data type indicated in Table 88.

 Notes

 The
 fastest way in ESSL to zero out contiguous (stride 1) arrays is to
 call SSCAL or DSCAL, specifying incx = 1
 and α = 0.

 Function

 The computation is expressed as
 follows:

 [image: Multiply Math Graphic]

 See reference [93]. If n is
 0, no computation is performed. For CSCAL, intermediate results are
 accumulated in long precision when the AltiVec or VSX unit is not
 used.

 Error conditions

 	[bookmark: am5gr_hsscal__am5gr_f108a251]
 Computational Errors

 	None

 	[bookmark: am5gr_hsscal__am5gr_f108a252]
 Input-Argument Errors

 	n < 0

 Examples

 	[bookmark: am5gr_hsscal__am5gr_f108a253]
 Example 1

 	This example shows a vector, x, with a stride of
 1.
 Call Statement and Input: N ALPHA X INCX
 | | | |
CALL SSCAL(5 , 2.0 , X , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

 Output: X = (2.0, 4.0, 6.0, 8.0, 10.0)

 	[bookmark: am5gr_hsscal__am5gr_f108a255]
 Example 2

 	This example shows vector, x, with a stride greater
 than 1.
 Call Statement and Input: N ALPHA X INCX
 | | | |
CALL SSCAL(5 , 2.0 , X , 2)

X = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0)

 Output: X = (2.0, . , 4.0, . , 6.0, . , 8.0, . , 10.0)

 	[bookmark: am5gr_hsscal__am5gr_f108a258]
 Example 3

 	This example illustrates that when the strides for two similar
 computations (Example 1 and Example 3) have the same absolute value
 but have opposite signs, the output is the same. This example is the
 same as Example 1, except the stride for x is negative
 (-1). For performance reasons, it is better to specify the positive
 stride. For x, processing begins at element X(5),
 which is 5.0, and results are stored beginning at the same element.
 Call Statement and Input: N ALPHA X INCX
 | | | |
CALL SSCAL(5 , 2.0 , X , -1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

 Output: X = (2.0, 4.0, 6.0, 8.0, 10.0)

 	[bookmark: am5gr_hsscal__am5gr_f108a261]
 Example 4

 	This example shows how SSCAL can be used to compute a scalar value.
 In this case, input vector x contains a scalar value,
 and the stride is 0. The number of elements to be processed, n,
 is 1.
 Call Statement and Input: N ALPHA X INCX
 | | | |
CALL SSCAL(1 , 2.0 , X , 0)

X = (1.0)

 Output: X = (2.0)

 	[bookmark: am5gr_hsscal__am5gr_f108a264]
 Example 5

 	This example shows a scalar, α, and a vector, x, containing
 complex numbers, where vector x has a stride of 1.
 Call Statement and Input: N ALPHA X INCX
 | | | |
CALL CSCAL(3 ,ALPHA, X , 1)

ALPHA = (2.0, 3.0)
X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))

 Output: X = ((-4.0, 7.0), (4.0, 6.0), (-9.0, 19.0))

 	[bookmark: am5gr_hsscal__am5gr_f108a267]
 Example 6

 	This example shows a scalar, α, containing a real number, and a vector, x,
 containing complex numbers, where vector x has a stride
 of 1.
 Call Statement and Input: N ALPHA X INCX
 | | | |
CALL CSSCAL(3 , 2.0 , X , 1)

X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))

 Output: X = ((2.0, 4.0), (4.0, 0.0), (6.0, 10.0))

 Parent topic: Linear Algebra Subprograms

 SSWAP, DSWAP, CSWAP, and ZSWAP (Interchange the Elements of
 Two Vectors)

 Purpose

 These subprograms interchange the
 elements of vectors x and y:

 y

 ←

 →

 x

 Table 89. Data Types.

 	x, y

 	Subprogram

 	Short-precision real

 	SSWAP

 	Long-precision real

 	DSWAP

 	Short-precision complex

 	CSWAP

 	Long-precision complex

 	ZSWAP

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SSWAP | DSWAP | CSWAP | ZSWAP (n, x, incx, y, incy)

 	C and C++

 	sswap | dswap | cswap | zswap (n, x, incx, y, incy);

 	CBLAS

 	cblas_sswap | cblas_dswap | cblas_cswap | cblas_zswap (n, x, incx, y, incy);

 	On Entry

 	

 	n

 	is the number of elements in vectors x and y.

 Specified as: an integer; n ≥ 0

 .

 	x

 	is the vector x of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 89.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	y

 	is the vector y of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incy|,
 containing numbers of the data type indicated in Table 89.

 	incy

 	is the stride for vector y.
 Specified as: an
 integer. It can have any value.

 	On Return

 	

 	x

 	is the vector x of length n,
 containing the elements that were swapped from vector y.
 Returned as: a one-dimensional array, containing numbers of the data
 type indicated in Table 89.

 	y

 	is the vector y of length n,
 containing the elements that were swapped from vector x.
 Returned as: a one-dimensional array, containing numbers of the data
 type indicated in Table 89.

 Notes

 	If you specify the same vector for x and y,
 then incx and incy must be equal;
 otherwise, results are unpredictable.

 	If you specify different vectors for x and y,
 they must have no common elements; otherwise, results are unpredictable.
 See Concepts.

 Function

 The elements of vectors x and y are
 interchanged as follows:

 [image: Interchange Math Graphic]

 See reference [93]. If n is
 0, no elements are interchanged.

 Error conditions

 	[bookmark: am5gr_hsswap__am5gr_f108a271]
 Computational Errors

 	None

 	[bookmark: am5gr_hsswap__am5gr_f108a272]
 Input-Argument Errors

 	n < 0

 Examples

 	[bookmark: am5gr_hsswap__am5gr_f108a273]
 Example 1

 	This example shows vectors x and y with
 positive strides.
 Call Statement and Input: N X INCX Y INCY
 | | | | |
CALL SSWAP(5 , X , 1 , Y , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (-1.0, . , -2.0, . , -3.0, . , -4.0, . , -5.0)

 Output: X = (-1.0, -2.0, -3.0, -4.0, -5.0)
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0)

 	[bookmark: am5gr_hsswap__am5gr_f108a276]
 Example 2

 	This example shows how to obtain output vectors x and y that
 are reverse copies of the input vectors y and x.
 You must specify strides with the same absolute value, but with opposite
 signs. For y, which has negative stride, processing
 begins at element Y(5), which is -5.0, and the results
 of the swap are stored beginning at the same element.
 Call Statement and Input: N X INCX Y INCY
 | | | | |
CALL SSWAP(5 , X , 1 , Y , -1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (-1.0, -2.0, -3.0, -4.0, -5.0)

 Output: X = (-5.0, -4.0, -3.0, -2.0, -1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

 	[bookmark: am5gr_hsswap__am5gr_f108a279]
 Example 3

 	This example shows how SSWAP can be used to interchange scalar
 values in vectors x and y by specifying
 0 strides and the number of elements to be processed as 1.
 Call Statement and Input: N X INCX Y INCY
 | | | | |
CALL SSWAP(1 , X , 0 , Y , 0)

X = (1.0)
Y = (-4.0)

 Output X = (-4.0)
Y = (1.0)

 	[bookmark: am5gr_hsswap__am5gr_f108a282]
 Example 4

 	This example shows vectors x and y,
 containing complex numbers and having positive strides.
 Call Statement and Input: N X INCX Y INCY
 | | | | |
CALL CSWAP(4 , X , 1 , Y , 2)

X = ((1.0, 6.0), (2.0, 7.0), (3.0, 8.0), (4.0, 9.0))
Y = ((-1.0, -1.0), . , (-2.0, -2.0), . , (-3.0, -3.0), . ,
 (-4.0, -4.0))

 Output: X = ((-1.0, -1.0), (-2.0, -2.0), (-3.0, -3.0), (-4.0, -4.0))
Y = ((1.0, 6.0), . , (2.0, 7.0), . , (3.0, 8.0), . ,
 (4.0, 9.0))

 Parent topic: Linear Algebra Subprograms

 SVEA, DVEA, CVEA, and ZVEA (Add a Vector X to a Vector Y and
 Store in a Vector Z)

 Purpose

 These subprograms perform the following
 computation, using vectors x, y, and z:

 z

 ←

 x

 +

 y

 Table 90. Data Types.

 	x, y, z

 	Subprogram

 	Short-precision real

 	SVEA

 	Long-precision real

 	DVEA

 	Short-precision complex

 	CVEA

 	Long-precision complex

 	ZVEA

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SVEA | DVEA | CVEA | ZVEA (n, x, incx, y, incy, z, incz)

 	C and C++

 	svea | dvea | cvea | zvea (n, x, incx, y, incy, z, incz);

 	[image: Start of change]CBLAS[image: End of change]

 	[image: Start of change]cblas_svea | cblas_dvea | cblas_cvea | cblas_zvea (n,
 x, incx, y, incy,
 z, incz);[image: End of change]

 	On Entry

 	

 	n

 	is the number of elements in vectors x, y, and z.

 Specified as: an integer; n ≥ 0.

 	x

 	is the vector x of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 90.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	y

 	is the vector y of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incy|,
 containing numbers of the data type indicated in Table 90.

 	incy

 	is the stride for vector y.
 Specified as: an
 integer. It can have any value.

 	z

 	See On Return.

 	incz

 	is the stride for vector z.
 Specified as: an
 integer. It can have any value.

 	On Return

 	

 	z

 	is the vector z of length n,
 containing the result of the computation. Returned as: a one-dimensional
 array of (at least) length 1+(n-1)|incz|,
 containing numbers of the data type indicated in Table 90.

 Notes

 	If you specify the same vector for x and z,
 then incx and incz must be equal;
 otherwise, results are unpredictable. The same is true for y and z.

 	If you specify different vectors for x and z,
 they must have no common elements; otherwise, results are unpredictable.
 The same is true for y and z. See Concepts.

 Function

 The computation is expressed as
 follows:

 [image: Adding Vectors Math Graphic]

 If n is 0, no computation is performed.

 Error conditions

 	[bookmark: am5gr_hsvea__am5gr_f108a286]
 Computational Errors

 	None

 	[bookmark: am5gr_hsvea__am5gr_f108a287]
 Input-Argument Errors

 	n < 0

 Examples

 	Example 1

 	
 This example shows vectors x, y,
 and z, with positive strides.

 Call
 Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVEA(5 , X , 1 , Y , 2 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 1.0, . , 1.0, . , 1.0, . , 1.0)

 Output: Z = (2.0, 3.0, 4.0, 5.0, 6.0)

 	Example 2

 	
 This example shows vectors x and y having
 strides of opposite sign, and an output vector z having
 a positive stride. For y, which has negative stride,
 processing begins at element Y(5), which is 1.0.

 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVEA(5 , X , 1 , Y , -1 , Z , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

 Output: Z = (2.0, . , 4.0, . , 6.0, . , 8.0, . , 10.0)

 	Example 3

 	
 This example shows a vector, x, with 0 stride
 and a vector, z, with negative stride. x is
 treated like a vector of length n, all of whose
 elements are the same as the single element in x. For
 vector z, results are stored beginning in element Z(5).

 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVEA(5 , X , 0 , Y , 1 , Z , -1)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

 Output: Z = (2.0, 3.0, 4.0, 5.0, 6.0)

 	Example 4

 	
 This example shows a vector, y, with 0 stride. y is
 treated like a vector of length n, all of whose
 elements are the same as the single element in y.

 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVEA(5 , X , 1 , Y , 0 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

 Output:
 Z = (6.0, 7.0, 8.0, 9.0, 10.0)

 	Example 5

 	
 This example shows the output vector, z, with
 0 stride, where the vector x has positive stride, and
 the vector y has 0 stride. The number of elements to
 be processed, n, is greater than 1.

 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVEA(5 , X , 1 , Y , 0 , Z , 0)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

 Output:
 Z = (10.0)

 	Example 6

 	
 This example shows the output vector z, with
 0 stride, where the vector x has 0 stride, and the vector y has
 negative stride. The number of elements to be processed, n,
 is greater than 1.

 Call Statement and
 Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVEA(5 , X , 0 , Y , -1 , Z , 0)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

 Output: Z = (6.0)

 	Example 7

 	
 This example shows how SVEA can be used to compute a scalar
 value. In this case, vectors x and y contain
 scalar values. The strides of all vectors, x, y,
 and z, are 0. The number of elements to be processed, n,
 is 1.

 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVEA(1 , X , 0 , Y , 0 , Z , 0)

X = (1.0)
Y = (5.0)

 Output:
 Z = (6.0)

 	Example 8

 	
 This example shows vectors x and y,
 containing complex numbers and having positive strides.

 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL CVEA(3 , X , 1 , Y , 2 , Z , 1)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
Y = ((7.0, 8.0), . , (9.0, 10.0), . , (11.0, 12.0))

 Output: Z = ((8.0, 10.0), (12.0, 14.0), (16.0, 18.0))

 Parent topic: Linear Algebra Subprograms

 SVES, DVES, CVES, and ZVES (Subtract a Vector Y from a Vector
 X and Store in a Vector Z)

 Purpose

 These subprograms perform the following
 computation, using vectors x, y, and z:

 z

 ←

 x

 -

 y

 Table 91. Data Types.

 	x, y, z

 	Subprogram

 	Short-precision real

 	SVES

 	Long-precision real

 	DVES

 	Short-precision complex

 	CVES

 	Long-precision complex

 	ZVES

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SVES | DVES | CVES | ZVES (n, x, incx, y, incy, z, incz)

 	C and C++

 	sves | dves | cves | zves (n, x, incx, y, incy, z, incz);

 	[image: Start of change]CBLAS[image: End of change]

 	[image: Start of change]cblas_sves | cblas_dves | cblas_cves | cblas_zves
 (n, x, incx, y, incy, z, incz);[image: End of change]

 	On Entry

 	

 	n

 	is the number of elements in vectors x, y, and z.

 Specified as: an integer; n ≥ 0.

 	x

 	is the vector x of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 91.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	y

 	is the vector y of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incy|,
 containing numbers of the data type indicated in Table 91.

 	incy

 	is the stride for vector y.
 Specified as: an
 integer. It can have any value.

 	z

 	See On Return.

 	incz

 	is the stride for vector z.
 Specified as: an
 integer. It can have any value.

 	On Return

 	

 	z

 	is the vector z of length n,
 containing the result of the computation. Returned as: a one-dimensional
 array of (at least) length 1+(n-1)|incz|,
 containing numbers of the data type indicated in Table 91.

 Notes

 	If you specify the same vector for x and z,
 then incx and incz must be equal;
 otherwise, results are unpredictable. The same is true for y and z.

 	If you specify different vectors for x and z,
 they must have no common elements; otherwise, results are unpredictable.
 The same is true for y and z. See Concepts.

 Function

 The computation is expressed as
 follows:

 [image: Subtracting Vectors Math Graphic]

 If n is 0, no computation is performed.

 Error conditions

 	[bookmark: am5gr_hsves__am5gr_f108a314]
 Computational Errors

 	None

 	[bookmark: am5gr_hsves__am5gr_f108a315]
 Input-Argument Errors

 	n < 0

 Examples

 	Example 1

 	
 This example shows vectors x, y,
 and z, with positive strides.

 Call
 Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVES(5 , X , 1 , Y , 2 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 1.0, . , 1.0, . , 1.0, . , 1.0)

 Output: Z = (0.0, 1.0, 2.0, 3.0, 4.0)

 	Example 2

 	
 This example shows vectors x and y having
 strides of opposite sign, and an output vector z having
 a positive stride. For y, which has negative stride,
 processing begins at element Y(5), which is 1.0.

 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVES(5 , X , 1 , Y , -1 , Z , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

 Output: Z = (0.0, . , 0.0, . , 0.0, . , 0.0, . , 0.0)

 	Example 3

 	
 This example shows a vector, x, with 0 stride,
 and a vector, z, with negative stride. x is
 treated like a vector of length n, all of whose
 elements are the same as the single element in x. For
 vector z, results are stored beginning in element Z(5).

 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVES(5 , X , 0 , Y , 1 , Z , -1)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

 Output: Z = (0.0, -1.0, -2.0, -3.0, -4.0)

 	Example 4

 	
 This example shows a vector, y, with 0 stride. y is
 treated like a vector of length n, all of whose
 elements are the same as the single element in y.

 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVES(5 , X , 1 , Y , 0 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

 Output:
 Z = (-4.0, -3.0, -2.0, -1.0, 0.0)

 	Example 5

 	
 This example shows the output vector z, with
 0 stride, where the vector x has positive stride, and
 the vector y has 0 stride. The number of elements to
 be processed, n, is greater than 1.

 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVES(5 , X , 1 , Y , 0 , Z , 0)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

 Output:
 Z = (0.0)

 	Example 6

 	
 This example shows the output vector z, with
 0 stride, where the vector x has 0 stride, and the vector y has
 negative stride. The number of elements to be processed, n,
 is greater than 1.

 Call Statement and
 Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVES(5 , X , 0 , Y , -1 , Z , 0)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

 Output: Z = (-4.0)

 	Example 7

 	
 This example shows how SVES can be used to compute a scalar
 value. In this case, vectors x and y contain
 scalar values. The strides of all vectors, x, y,
 and z, are 0. The number of elements to be processed, n,
 is 1.

 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVES(1 , X , 0 , Y , 0 , Z , 0)

X = (1.0)
Y = (5.0)

 Output:
 Z = (-4.0)

 	Example 8

 	
 This example shows vectors x and y,
 containing complex numbers and having positive strides.

 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL CVES(3 , X , 1 , Y , 2 , Z , 1)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
Y = ((7.0, 8.0), . , (9.0, 10.0), . , (11.0, 12.0))

 Output: Z = ((-6.0, -6.0), (-6.0, -6.0), (-6.0, -6.0))

 Parent topic: Linear Algebra Subprograms

 SVEM, DVEM, CVEM, and ZVEM (Multiply a Vector X by a Vector
 Y and Store in a Vector Z)

 Purpose

 These subprograms perform the following
 computation, using vectors x, y, and z:

 z

 ←

 x

 y

 Table 92. Data Types.

 	x, y, z

 	Subprogram

 	Short-precision real

 	SVEM

 	Long-precision real

 	DVEM

 	Short-precision complex

 	CVEM

 	Long-precision complex

 	ZVEM

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SVEM | DVEM | CVEM | ZVEM (n, x, incx, y, incy, z, incz)

 	C and C++

 	svem | dvem | cvem | zvem (n, x, incx, y, incy, z, incz);

 	[image: Start of change]CBLAS[image: End of change]

 	[image: Start of change]cblas_svem | cblas_dvem | cblas_cvem | cblas_zvem (n,
 x, incx, y, incy,
 z, incz);[image: End of change]

 	On Entry

 	

 	n

 	is the number of elements in vectors x, y, and z.

 Specified as: an integer; n ≥ 0.

 	x

 	is the vector x of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 92.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	y

 	is the vector y of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incy|,
 containing numbers of the data type indicated in Table 92.

 	incy

 	is the stride for vector y.
 Specified as: an
 integer. It can have any value.

 	z

 	See On Return.

 	incz

 	is the stride for vector z.
 Specified as: an
 integer. It can have any value.

 	On Return

 	

 	z

 	is the vector z of length n,
 containing the result of the computation. Returned as: a one-dimensional
 array of (at least) length 1+(n-1)|incz|,
 containing numbers of the data type indicated in Table 92.

 Notes

 	If you specify the same vector for x and z,
 then incx and incz must be equal;
 otherwise, results are unpredictable. The same is true for y and z.

 	If you specify different vectors for x and z,
 they must have no common elements; otherwise, results are unpredictable.
 The same is true for y and z. See Concepts.

 Function

 The computation is expressed as
 follows:

 z

 i

 ←

 x

 i

 y

 i

 for

 i

 =

 1,

 n

 If n is
 0, no computation is performed. For CVEM, intermediate results are
 accumulated in long precision when the AltiVec or VSX unit is not
 used.

 Error conditions

 	[bookmark: am5gr_hsvem__am5gr_f108a345]
 Computational Errors

 	None

 	[bookmark: am5gr_hsvem__am5gr_f108a346]
 Input-Argument Errors

 	n < 0

 Examples

 	[bookmark: am5gr_hsvem__am5gr_f108a347]
 Example 1

 	This example shows vectors x, y, and z,
 with positive strides.
 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVEM(5 , X , 1 , Y , 2 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 1.0, . , 1.0, . , 1.0, . , 1.0)

 Output: Z = (1.0, 2.0, 3.0, 4.0, 5.0)

 	[bookmark: am5gr_hsvem__am5gr_f108a350]
 Example 2

 	This example shows vectors x and y having
 strides of opposite sign, and an output vector z having
 a positive stride. For y, which has negative stride,
 processing begins at element Y(5), which is 1.0.
 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVEM(5 , X , 1 , Y , -1 , Z , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

 Output: Z = (1.0, . , 4.0, . , 9.0, . , 16.0, . , 25.0)

 	[bookmark: am5gr_hsvem__am5gr_f108a353]
 Example 3

 	This example shows a vector, x, with 0 stride, and
 a vector, z, with negative stride. x is
 treated like a vector of length n, all of whose
 elements are the same as the single element in x. For
 vector z, results are stored beginning in element Z(5).
 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVEM(5 , X , 0 , Y , 1 , Z , -1)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

 Output: Z = (1.0, 2.0, 3.0, 4.0, 5.0)

 	[bookmark: am5gr_hsvem__am5gr_f108a356]
 Example 4

 	This example shows a vector, y, with 0 stride. y is
 treated like a vector of length n, all of whose
 elements are the same as the single element in y.
 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVEM(5 , X , 1 , Y , 0 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

 Output: Z = (5.0, 10.0, 15.0, 20.0, 25.0)

 	[bookmark: am5gr_hsvem__am5gr_f108a359]
 Example 5

 	This example shows the output vector, z, with 0
 stride, where the vector x has positive stride, and
 the vector y has 0 stride. The number of elements to
 be processed, n, is greater than 1.
 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVEM(5 , X , 1 , Y , 0 , Z , 0)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

 Output: Z = (25.0)

 	[bookmark: am5gr_hsvem__am5gr_f108a362]
 Example 6

 	This example shows the output vector z, with 0 stride,
 where the vector x has 0 stride, and the vector y has
 negative stride. The number of elements to be processed, n,
 is greater than 1.
 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVEM(5 , X , 0 , Y , -1 , Z , 0)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

 Output: Z = (5.0)

 	[bookmark: am5gr_hsvem__am5gr_f108a365]
 Example 7

 	This example shows how SVEM can be used to compute a scalar value.
 In this case, vectors x and y contain
 scalar values. The strides of all vectors, x, y,
 and z, are 0. The number of elements to be processed, n,
 is 1.
 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL SVEM(1 , X , 0 , Y , 0 , Z , 0)

X = (1.0)
Y = (5.0)

 Output: Z = (5.0)

 	[bookmark: am5gr_hsvem__am5gr_f108a368]
 Example 8

 	This example shows vectors x and y,
 containing complex numbers and having positive strides.
 Call Statement and Input: N X INCX Y INCY Z INCZ
 | | | | | | |
CALL CVEM(3 , X , 1 , Y , 2 , Z , 1)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
Y = ((7.0, 8.0), . , (9.0, 10.0), . , (11.0, 12.0))

 Output: Z = ((-9.0, 22.0), (-13.0, 66.0), (-17.0, 126.0))

 Parent topic: Linear Algebra Subprograms

 SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX (Multiply a Vector
 X by a Scalar and Store in a Vector Y)

 Purpose

 These subprograms perform the following
 computation, using the scalar α and vectors x and y:

 y

 ←

 α

 x

 Table 93. Data Types.

 	α

 	x, y

 	Subprogram

 	Short-precision real

 	Short-precision real

 	SYAX

 	Long-precision real

 	Long-precision real

 	DYAX

 	Short-precision complex

 	Short-precision complex

 	CYAX

 	Long-precision complex

 	Long-precision complex

 	ZYAX

 	Short-precision real

 	Short-precision complex

 	CSYAX

 	Long-precision real

 	Long-precision complex

 	ZDYAX

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SYAX | DYAX | CYAX | ZYAX | CSYAX | ZDYAX (n, alpha, x, incx, y, incy)

 	C and C++

 	syax | dyax | cyax | zyax | csyax | zdyax (n, alpha, x, incx, y, incy);

 	[image: Start of change]CBLAS[image: End of change]

 	[image: Start of change]cblas_syax | cblas_dyax | cblas_cyax | cblas_zyax | cblas_csyax | cblas_zdyax
 (n, alpha, x, incx,
 y, incy);[image: End of change]

 	On Entry

 	

 	n

 	is the number of elements in vector x and y.

 Specified as: an integer; n ≥ 0.

 	alpha

 	is the scalar α.
 Specified as: a number of the data
 type indicated in Table 93.

 	x

 	is the vector x of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 93.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	y

 	See On Return.

 	incy

 	is the stride for vector y.
 Specified as: an
 integer. It can have any value.

 	On Return

 	

 	y

 	is the vector y of length n,
 containing the result of the computation αx. Returned as: a one-dimensional
 array of (at least) length 1+(n-1)|incy|,
 containing numbers of the data type indicated in Table 93.

 Notes

 	If you specify the same vector for x and y,
 then incx and incy must be equal;
 otherwise, results are unpredictable.

 	If you specify different vectors for x and y,
 they must have no common elements; otherwise, results are unpredictable.
 See Concepts.

 Function

 The computation is expressed as
 follows:

 [image: Multiply Math Graphic]

 See reference [93]. If n is
 0, no computation is performed. For CYAX, intermediate results are
 accumulated in long precision when the AltiVec or VSX unit is not
 used.

 Error conditions

 	[bookmark: am5gr_hsyax__am5gr_f108a372]
 Computational Errors

 	None

 	[bookmark: am5gr_hsyax__am5gr_f108a373]
 Input-Argument Errors

 	n < 0

 Examples

 	[bookmark: am5gr_hsyax__am5gr_f108a374]
 Example 1

 	This example shows vectors x and y with
 positive strides.
 Call Statement and Input: N ALPHA X INCX Y INCY
 | | | | | |
CALL SYAX(5 , 2.0 , X , 1 , Y , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

 Output: Y = (2.0, . , 4.0, . , 6.0, . , 8.0, . , 10.0)

 	[bookmark: am5gr_hsyax__am5gr_f108a377]
 Example 2

 	This example shows vectors x and y that
 have strides of opposite signs. For y, which has negative
 stride, results are stored beginning in element Y(5).
 Call Statement and Input: N ALPHA X INCX Y INCY
 | | | | | |
CALL SYAX(5 , 2.0 , X , 1 , Y , -1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)

 Output: Y = (10.0, 8.0, 6.0, 4.0, 2.0)

 	[bookmark: am5gr_hsyax__am5gr_f108a380]
 Example 3

 	This example shows a vector, x, with 0 stride. x is
 treated like a vector of length n, all of whose
 elements are the same as the single element in x.
 Call Statement and Input: N ALPHA X INCX Y INCY
 | | | | | |
CALL SYAX(5 , 2.0 , X , 0 , Y , 1)

X = (1.0)

 Output: Y = (2.0, 2.0, 2.0, 2.0, 2.0)

 	[bookmark: am5gr_hsyax__am5gr_f108a383]
 Example 4

 	This example shows how SYAX can be used to compute a scalar value.
 In this case both vectors x and y contain
 scalar values, and the strides for both vectors are 0. The number
 of elements to be processed, n, is 1.
 Call Statement and Input: N ALPHA X INCX Y INCY
 | | | | | |
CALL SYAX(1 , 2.0 , X , 0 , Y , 0)

X = (1.0)

 Output: Y = (2.0)

 	[bookmark: am5gr_hsyax__am5gr_f108a386]
 Example 5

 	This example shows a scalar, α, and vectors x and y,
 containing complex numbers, where both vectors have a stride of 1.
 Call Statement and Input: N ALPHA X INCX Y INCY
 | | | | | |
CALL CYAX(3 ,ALPHA, X , 1 , Y , 1)

ALPHA = (2.0, 3.0)
X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))

 Output: Y = ((-4.0, 7.0), (4.0, 6.0), (-9.0, 19.0))

 	[bookmark: am5gr_hsyax__am5gr_f108a389]
 Example 6

 	This example shows a scalar, α, containing a real number, and vectors x and y,
 containing complex numbers, where both vectors have a stride of 1.
 Call Statement and Input: N ALPHA X INCX Y INCY
 | | | | | |
CALL CSYAX(3 , 2.0 , X , 1 , Y , 1)

X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))

 Output: Y = ((2.0, 4.0), (4.0, 0.0), (6.0, 10.0))

 Parent topic: Linear Algebra Subprograms

 SZAXPY, DZAXPY, CZAXPY, and ZZAXPY (Multiply a Vector X by
 a Scalar, Add to a Vector Y, and Store in a Vector Z)

 Purpose

 These subprograms perform the following
 computation, using the scalar α and vectors x, y,
 and z:

 z

 ←

 y

 +

 α

 x

 Table 94. Data Types.

 	α, x, y, z

 	Subprogram

 	Short-precision real

 	SZAXPY

 	Long-precision real

 	DZAXPY

 	Short-precision complex

 	CZAXPY

 	Long-precision complex

 	ZZAXPY

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SZAXPY | DZAXPY | CZAXPY | ZZAXPY (n, alpha, x, incx, y, incy, z, incz)

 	C and C++

 	szaxpy | dzaxpy | czaxpy | zzaxpy (n, alpha, x, incx, y, incy, z, incz);

 	[image: Start of change]CBLAS[image: End of change]

 	cblas_szaxpy | cblas_dzaxpy | cblas_czaxpy | cblas_zzaxpy (n,
 alpha, x, incx, y,
 incy, z, incz);

 	On Entry

 	

 	n

 	is the number of elements in vectors x, y, and z.

 Specified as: an integer; n ≥ 0.

 	alpha

 	is the scalar α.
 Specified as: a number of the data
 type indicated in Table 94.

 	x

 	is the vector x of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 94.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	y

 	is the vector y of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incy|,
 containing numbers of the data type indicated in Table 94.

 	incy

 	is the stride for vector y.
 Specified as: an
 integer. It can have any value.

 	z

 	See On Return.

 	incz

 	is the stride for vector z.
 Specified as: an
 integer. It can have any value.

 	On Return

 	

 	z

 	is the vector z of length n,
 containing the result of the computation y+αx .
 Returned as: a one-dimensional array of (at least) length 1+(n-1)|incz|,
 containing numbers of the data type indicated in Table 94.

 Notes

 	If you specify the same vector for x and z,
 then incx and incz must be equal;
 otherwise, results are unpredictable. The same is true for y and z.

 	If you specify different vectors for x and z,
 they must have no common elements; otherwise, results are unpredictable.
 The same is true for y and z. See Concepts.

 Function

 The computation is expressed as
 follows:

 [image: Multiply and Add Math Graphic]

 See reference [93]. If n is
 0, no computation is performed. For CZAXPY, intermediate results are
 accumulated in long precision when the AltiVec or VSX unit is not
 used.

 Error conditions

 	[bookmark: am5gr_hszaxpy__am5gr_f108a392]
 Computational Errors

 	None

 	[bookmark: am5gr_hszaxpy__am5gr_f108a393]
 Input-Argument Errors

 	n < 0

 Examples

 	[bookmark: am5gr_hszaxpy__am5gr_f108a394]
 Example 1

 	This example shows vectors x and y with
 positive strides.
 Call Statement and Input: N ALPHA X INCX Y INCY Z INCZ
 | | | | | | | |
CALL SZAXPY(5 , 2.0 , X , 1 , Y , 2 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 1.0, . , 1.0, . , 1.0, . , 1.0)

 Output: Z = (3.0, 5.0, 7.0, 9.0, 11.0)

 	[bookmark: am5gr_hszaxpy__am5gr_f108a397]
 Example 2

 	This example shows vectors x and y having
 strides of opposite sign, and an output vector z having
 a positive stride. For y, which has negative stride,
 processing begins at element Y(5), which is 1.0.
 Call Statement and Input: N ALPHA X INCX Y INCY Z INCZ
 | | | | | | | |
CALL SZAXPY(5 , 2.0 , X , 1 , Y , -1 , Z , 2)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

 Output: Z = (3.0, . , 6.0, . , 9.0, . , 12.0, . , 15.0)

 	[bookmark: am5gr_hszaxpy__am5gr_f108a400]
 Example 3

 	This example shows a vector, x, with 0 stride, and
 a vector, z, with negative stride. x is
 treated like a vector of length n, all of whose
 elements are the same as the single element in x. For
 vector z, results are stored beginning in element Z(5).
 Call Statement and Input: N ALPHA X INCX Y INCY Z INCZ
 | | | | | | | |
CALL SZAXPY(5 , 2.0 , X , 0 , Y , 1 , Z , -1)

X = (1.0)
Y = (5.0, 4.0, 3.0, 2.0, 1.0)

 Z = (3.0, 4.0, 5.0, 6.0, 7.0)

 	[bookmark: am5gr_hszaxpy__am5gr_f108a403]
 Example 4

 	This example shows a vector, y, with 0 stride. y is
 treated like a vector of length n, all of whose
 elements are the same as the single element in y.
 Call Statement and Input: N ALPHA X INCX Y INCY Z INCZ
 | | | | | | | |
CALL SZAXPY(5 , 2.0 , X , 1 , Y , 0 , Z , 1)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (5.0)

 Output: Z = (7.0, 9.0, 11.0, 13.0, 15.0)

 	[bookmark: am5gr_hszaxpy__am5gr_f108a406]
 Example 5

 	This example shows how SZAXPY can be used to compute a scalar
 value. In this case, vectors x and y contain
 scalar values. The strides of all vectors, x, y,
 and z, are 0. The number of elements to be processed, n,
 is 1.
 Call Statement and Input: N ALPHA X INCX Y INCY Z INCZ
 | | | | | | | |
CALL SZAXPY(1 , 2.0 , X , 0 , Y , 0 , Z , 0)

X = (1.0)
Y = (5.0)

 Output: Z = (7.0)

 	[bookmark: am5gr_hszaxpy__am5gr_f108a409]
 Example 6

 	This example shows vectors x and y,
 containing complex numbers and having positive strides.
 Call Statement and Input: N ALPHA X INCX Y INCY Z INCZ
 | | | | | | | |
CALL CZAXPY(3 ,ALPHA, X , 1 , Y , 2 , Z , 1)

ALPHA = (2.0, 3.0)
X = ((1.0, 2.0), (2.0, 0.0), (3.0, 5.0))
Y = ((1.0, 1.0), . , (0.0, 2.0), . , (5.0, 4.0))

 Output: Z = ((-3.0, 8.0), (4.0, 8.0), (-4.0, 23.0))

 Parent topic: Linear Algebra Subprograms

 Sparse Vector-Scalar Subprograms

 This contains the sparse vector-scalar
 subprogram descriptions.

 Parent topic: Linear Algebra Subprograms

 SSCTR, DSCTR, CSCTR, ZSCTR (Scatter the Elements of a Sparse
 Vector X in Compressed-Vector Storage Mode into Specified Elements
 of a Sparse Vector Y in Full-Vector Storage Mode)

 Purpose

 These subprograms scatter the elements
 of sparse vector x, stored in compressed-vector storage
 mode, into specified elements of sparse vector y, stored
 in full-vector storage mode.

 Table 95. Data Types.

 	x, y

 	Subprogram

 	Short-precision real

 	SSCTR

 	Long-precision real

 	DSCTR

 	Short-precision complex

 	CSCTR

 	Long-precision complex

 	ZSCTR

 Syntax

 	Fortran

 	CALL SSCTR | DSCTR | CSCTR | ZSCTR (nz, x, indx, y)

 	C and C++

 	ssctr | dsctr | csctr | zsctr (nz, x, indx, y);

 	On Entry

 	

 	nz

 	is the number of elements in sparse vector x, stored
 in compressed-vector storage mode. Specified as: an integer; nz ≥ 0.

 	x

 	is the sparse vector x, containing nz elements,
 stored in compressed-vector storage mode in an array, referred to
 as X. Specified as: a one-dimensional array of (at
 least) length nz, containing numbers of the data
 type indicated in Table 95.

 	indx

 	is the array, referred to as INDX, containing
 the nz indices that indicate the positions of the
 elements of the sparse vector x when in full-vector
 storage mode. They also indicate the positions in vector y into
 which the elements are copied.
 Specified as: a one-dimensional
 array of (at least) length nz, containing integers.

 	y

 	See On Return.

 	On Return

 	

 	y

 	is the sparse vector y, stored in full-vector storage
 mode, of (at least) length max(INDX(i))
 for i = 1, nz, into which nz elements
 of vector x are copied at positions indicated by the
 indices array INDX.
 Returned as: a one-dimensional
 array of (at least) length max(INDX(i))
 for i = 1, nz, containing
 numbers of the data type indicated in Table 95.

 Notes

 	Each value specified in array INDX must be unique;
 otherwise, results are unpredictable.

 	Vectors x and y must have no common
 elements; otherwise, results are unpredictable. See Concepts.

 	For a description of how sparse vectors are stored, see Sparse Vector.

 Function

 The copy is expressed as follows:

 y

 INDX

 (

 i

)

 ←

 x

 i

 for

 i

 =

 1,

 nz

 where:

 x

 is a sparse vector, stored in compressed-vector storage mode.

 INDX

 is the indices array for sparse vector

 x

 .

 y

 is a sparse vector, stored in full-vector storage mode.

 See
 reference [37]. If nz is
 0, no copy is performed.

 Error conditions

 	[bookmark: am5gr_hssctr__am5gr_f108b002]
 Computational Errors

 	None

 	[bookmark: am5gr_hssctr__am5gr_f108b003]
 Input-Argument Errors

 	nz < 0

 Examples

 	[bookmark: am5gr_hssctr__am5gr_f108b004]
 Example 1

 	This example shows how to use SSCTR to copy a sparse vector x of
 length 5 into the following vector y, where the elements
 of array INDX are in ascending order: Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

 Call Statement and Input: NZ X INDX Y
 | | | |
CALL SSCTR(5 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
INDX = (1, 3, 4, 7, 10)

 Output: Y = (1.0, 2.0, 2.0, 3.0, 6.0, 10.0, 4.0, 8.0, 9.0, 5.0)

 	[bookmark: am5gr_hssctr__am5gr_f108b007]
 Example 2

 	This example shows how to use SSCTR to copy a sparse vector x of
 length 5 into the following vector y, where the elements
 of array INDX are in random order: Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

 Call Statement and Input: NZ X INDX Y
 | | | |
CALL SSCTR(5 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
INDX = (4, 3, 1, 10, 7)

 Output: Y = (3.0, 2.0, 2.0, 1.0, 6.0, 10.0, 5.0, 8.0, 9.0, 4.0)

 	[bookmark: am5gr_hssctr__am5gr_f108b010]
 Example 3

 	This example shows how to use CSCTR to copy a sparse vector x of
 length 3 into the following vector y, where the elements
 of array INDX are in random order: Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))

 Call Statement and Input: NZ X INDX Y
 | | | |
CALL CSCTR(3 , X , INDX , Y)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
INDX = (4, 1, 3)

 Output: Y = ((3.0, 4.0), (-2.0, 3.0), (5.0, 6.0), (1.0, 2.0))

 Parent topic: Linear Algebra Subprograms

 SGTHR, DGTHR, CGTHR, and ZGTHR (Gather Specified Elements of
 a Sparse Vector Y in Full-Vector Storage Mode into a Sparse Vector
 X in Compressed-Vector Storage Mode)

 Purpose

 These subprograms gather specified
 elements of vector y, stored in full-vector storage
 mode, into sparse vector x, stored in compressed-vector
 storage mode.

 Table 96. Data Types.

 	x, y

 	Subprogram

 	Short-precision real

 	SGTHR

 	Long-precision real

 	DGTHR

 	Short-precision complex

 	CGTHR

 	Long-precision complex

 	ZGTHR

 Syntax

 	Fortran

 	CALL SGTHR | DGTHR | CGTHR | ZGTHR (nz, y, x, indx)

 	C and C++

 	sgthr | dgthr | cgthr | zgthr (nz, y, x, indx);

 	On Entry

 	

 	nz

 	is the number of elements in sparse vector x, stored
 in compressed-vector storage mode. Specified as: an integer; nz ≥ 0.

 	y

 	is the sparse vector y, stored in full-vector storage
 mode, of (at least) length max(INDX(i))
 for i = 1, nz, from which nz elements
 are copied from positions indicated by the indices array INDX.

 Specified as: a one-dimensional array of (at least) length max(INDX(i))
 for i = 1, nz, containing
 numbers of the data type indicated in Table 96.

 	x

 	See On Return.

 	indx

 	is the array, referred to as INDX, containing
 the nz indices that indicate the positions of the
 elements of the sparse vector x when in full-vector
 storage mode. They also indicate the positions in vector y from
 which elements are copied.
 Specified as: a one-dimensional array
 of (at least) length nz, containing integers.

 	On Return

 	

 	x

 	is the sparse vector x, containing nz elements,
 stored in compressed-vector storage mode in an array, referred to
 as X, into which are copied the elements of vector y from
 positions indicated by the indices array INDX.
 Returned
 as: a one-dimensional array of (at least) length nz,
 containing numbers of the data type indicated in Table 96.

 Notes

 	Vectors x and y must have no common
 elements; otherwise, results are unpredictable. See Concepts.

 	For a description of how sparse vectors are stored, see Sparse Vector.

 Function

 The copy is expressed as follows:

 x

 i

 ←

 y

 INDX

 (

 i

)

 for

 i

 =

 1,

 nz

 where:

 x

 is a sparse vector, stored in compressed-vector storage mode.

 INDX

 is the indices array for sparse vector

 x

 .

 y

 is a sparse vector, stored in full-vector storage mode.

 See
 reference [37]. If nz is
 0, no copy is performed.

 Error conditions

 	[bookmark: am5gr_hsgthr__am5gr_f108b014]
 Computational Errors

 	None

 	[bookmark: am5gr_hsgthr__am5gr_f108b015]
 Input-Argument Errors

 	nz < 0

 Examples

 	[bookmark: am5gr_hsgthr__am5gr_f108b016]
 Example 1

 	This example shows how to use SGTHR to copy specified elements
 of a vector y into a sparse vector x of
 length 5, where the elements of array INDX are in
 ascending order.
 Call Statement and Input: NZ Y X INDX
 | | | |
CALL SGTHR(5 , Y , X , INDX)

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
INDX = (1, 3, 4, 7, 9)

 Output: X = (6.0, 4.0, 7.0, -2.0, 9.0)

 	[bookmark: am5gr_hsgthr__am5gr_f108b019]
 Example 2

 	This example shows how to use SGTHR to copy specified elements
 of a vector y into a sparse vector x of
 length 5, where the elements of array INDX are in
 random order. (Note that the element 0.0 occurs in output vector x.
 This does not produce an error.)
 Call Statement
 and Input: NZ Y X INDX
 | | | |
CALL SGTHR(5 , Y , X , INDX)

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
INDX = (4, 3, 1, 10, 7)

 Output: X = (7.0, 4.0, 6.0, 0.0, -2.0)

 	[bookmark: am5gr_hsgthr__am5gr_f108b032]
 Example 3

 	This example shows how to use CGTHR to copy specified elements
 of a vector, y, into a sparse vector, x,
 of length 3, where the elements of array INDX are
 in random order.
 Call Statement and Input: NZ Y X INDX
 | | | |
CALL CGTHR(3 , Y , X , INDX)

Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))
INDX = (4, 1, 3)

 Output: X = ((9.0, 0.0), (6.0, 5.0), (15.0, 4.0))

 Parent topic: Linear Algebra Subprograms

 SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ (Gather Specified Elements
 of a Sparse Vector Y in Full-Vector Mode into a Sparse Vector X in
 Compressed-Vector Mode, and Zero the Same Specified Elements of Y)

 Purpose

 These subprograms gather specified
 elements of sparse vector y, stored in full-vector storage
 mode, into sparse vector x, stored in compressed-vector
 storage mode, and zero the same specified elements of vector y.

 Table 97. Data Types.

 	x, y

 	Subprogram

 	Short-precision real

 	SGTHRZ

 	Long-precision real

 	DGTHRZ

 	Short-precision complex

 	CGTHRZ

 	Long-precision complex

 	ZGTHRZ

 Syntax

 	Fortran

 	CALL SGTHRZ | DGTHRZ | CGTHRZ | ZGTHRZ (nz, y, x, indx)

 	C and C++

 	sgthrz | dgthrz | cgthrz | zgthrz (nz, y, x, indx);

 	On Entry

 	

 	nz

 	is the number of elements in sparse vector x, stored
 in compressed-vector storage mode. Specified as: an integer; nz ≥ 0.

 	y

 	is the sparse vector y, stored in full-vector storage
 mode, of (at least) length max(INDX(i))
 for i = 1, nz, from which nz elements
 are copied from positions indicated by the indices array INDX.

 Specified as: a one-dimensional array of (at least) length max(INDX(i))
 for i = 1, nz, containing
 numbers of the data type indicated in Table 97.

 	x

 	See On Return.

 	indx

 	is the array, referred to as INDX, containing
 the nz indices that indicate the positions of the
 elements of the sparse vector x when in full-vector
 storage mode. They also indicate the positions in vector y from
 which elements are copied then set to zero.
 Specified as: a one-dimensional
 array of (at least) length nz, containing integers.

 	On Return

 	

 	y

 	is the sparse vector y, stored in full-vector storage
 mode, of (at least) length max(INDX(i))
 for i = 1, nz, whose elements
 are set to zero at positions indicated by the indices array INDX.

 Returned as: a one-dimensional array, containing numbers of the
 data type indicated in Table 97.

 	x

 	is the sparse vector x, containing nz elements
 stored in compressed-vector storage mode in an array, referred to
 as X, into which are copied the elements of vector y from
 positions indicated by the indices array INDX.
 Returned
 as: a one-dimensional array of (at least) length nz,
 containing numbers of the data type indicated in Table 97.

 Notes

 	Each value specified in array INDX must be unique;
 otherwise, results are unpredictable.

 	Vectors x and y must have no common
 elements; otherwise, results are unpredictable. See Concepts.

 	For a description of how sparse vectors are stored, see Sparse Vector.

 Function

 The copy is expressed as follows:

 x

 i

 ←

 y

 INDX

 (

 i

)

 y

 INDX

 (

 i

)

 ←

 0.0

 (for SGTHRZ and DGTHRZ)

 y

 INDX

 (

 i

)

 ←

 (0.0,0.0)

 (for CGTHRZ and ZGTHRZ)

 for

 i

 =

 1,

 nz

 where:

 x

 is a sparse vector, stored in compressed-vector storage mode.

 INDX

 is the indices array for sparse vector

 x

 .

 y

 is a sparse vector, stored in full-vector storage mode.

 See reference [37]. If nz is
 0, no computation is performed.

 Error conditions

 	[bookmark: am5gr_hsgthrz__am5gr_f108b036]
 Computational Errors

 	None

 	[bookmark: am5gr_hsgthrz__am5gr_f108b037]
 Input-Argument Errors

 	nz < 0

 Examples

 	[bookmark: am5gr_hsgthrz__am5gr_f108b038]
 Example 1

 	This example shows how to use SGTHRZ to copy specified elements
 of a vector y into a sparse vector x of
 length 5, where the elements of array INDX are in
 ascending order.
 Call Statement and Input: NZ Y X INDX
 | | | |
CALL SGTHRZ(5 , Y , X , INDX)

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
INDX = (1, 3, 4, 7, 9)

 Output: Y = (0.0, 2.0, 0.0, 0.0, 6.0, 10.0, 0.0, 8.0, 0.0, 0.0)
X = (6.0, 4.0, 7.0, -2.0, 9.0)

 	[bookmark: am5gr_hsgthrz__am5gr_f108b041]
 Example 2

 	This example shows how to use SGTHRZ to copy specified elements
 of a vector y into a sparse vector x of
 length 5, where the elements of array INDX are in
 random order. (Note that the element 0.0 occurs in output vector x.
 This does not produce an error.)
 Call Statement
 and Input: NZ Y X INDX
 | | | |
CALL SGTHRZ(5 , Y , X , INDX)

Y = (6.0, 2.0, 4.0, 7.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)
INDX = (4, 3, 1, 10, 7)

 Output: Y = (0.0, 2.0, 0.0, 0.0, 6.0, 10.0, 0.0, 8.0, 9.0, 0.0)
X = (7.0, 4.0, 6.0, 0.0, -2.0)

 	[bookmark: am5gr_hsgthrz__am5gr_f108b044]
 Example 3

 	This example shows how to use CGTHRZ to copy specified elements
 of a vector y into a sparse vector x of
 length 3, where the elements of array INDX are in
 random order.
 Call Statement and Input: NZ Y X INDX
 | | | |
CALL CGTHRZ(3 , Y , X , INDX)

Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))
INDX = (4, 1, 3)

 Output: Y = ((0.0, 0.0), (-2.0, 3.0), (0.0, 0.0), (0.0, 0.0))
X = ((9.0, 0.0), (6.0, 5.0), (15.0, 4.0))

 Parent topic: Linear Algebra Subprograms

 SAXPYI, DAXPYI, CAXPYI, and ZAXPYI (Multiply a Sparse Vector
 X in Compressed-Vector Storage Mode by a Scalar, Add to a Sparse Vector
 Y in Full-Vector Storage Mode, and Store in the Vector Y)

 Purpose

 These subprograms multiply sparse
 vector x, stored in compressed-vector storage mode,
 by scalar α,
 add it to sparse vector y, stored in full-vector storage
 mode, and store the result in vector y.

 Table 98. Data Types.

 	α, x, y

 	Subprogram

 	Short-precision real

 	SAXPYI

 	Long-precision real

 	DAXPYI

 	Short-precision complex

 	CAXPYI

 	Long-precision complex

 	ZAXPYI

 Syntax

 	Fortran

 	CALL SAXPYI | DAXPYI | CAXPYI | ZAXPYI (nz, alpha, x, indx, y)

 	C and C++

 	saxpyi | daxpyi | caxpyi | zaxpyi (nz, alpha, x, indx, y);

 	On Entry

 	

 	nz

 	is the number of elements in sparse vector x, stored
 in compressed-vector storage mode. Specified as: an integer; nz ≥ 0.

 	alpha

 	is the scalar α. Specified as: a number of the data type
 indicated in Table 98.

 	x

 	is the sparse vector x, containing nz elements,
 stored in compressed-vector storage mode in an array, referred to
 as X. Specified as: a one-dimensional array of (at
 least) length nz, containing numbers of the data
 type indicated in Table 98.

 	indx

 	is the array, referred to as INDX, containing
 the nz indices that indicate the positions of the
 elements of the sparse vector x when in full-vector
 storage mode. They also indicate the positions of the elements in
 vector y that are used in the computation.
 Specified
 as: a one-dimensional array of (at least) length nz,
 containing integers.

 	y

 	is the sparse vector y, stored in full-vector storage
 mode, of (at least) length max(INDX(i))
 for i = 1, nz. Specified
 as: a one-dimensional array of (at least) length max(INDX(i))
 for i = 1, nz, containing
 numbers of the data type indicated in Table 98.

 	On Return

 	

 	y

 	is the sparse vector y, stored in full-vector storage
 mode, of (at least) length max(INDX(i))
 for i = 1, nz containing
 the results of the computation, stored at positions indicated by the
 indices array INDX.
 Returned as: a one-dimensional
 array, containing numbers of the data type indicated in Table 98.

 Notes

 	Each value specified in array INDX must be unique;
 otherwise, results are unpredictable.

 	Vectors x and y must have no common
 elements; otherwise, results are unpredictable. See Concepts.

 	For a description of how sparse vectors are stored, see Sparse Vector.

 Function

 The computation is expressed as
 follows:

 y

 INDX

 (

 i

)

 ←

 y

 INDX

 (

 i

)

 +

 α

 x

 i

 for

 i

 =

 1,

 nz

 where:

 x

 is a sparse vector, stored in compressed-vector storage mode.

 INDX

 is the indices array for sparse vector

 x

 .

 y

 is a sparse vector, stored in full-vector storage mode.

 See
 reference [37]. If α or nz is
 zero, no computation is performed. For SAXPYI and CAXPYI, intermediate
 results are accumulated in long-precision.

 Error conditions

 	[bookmark: am5gr_hsaxpyi__am5gr_f108b048]
 Computational Errors

 	None

 	[bookmark: am5gr_hsaxpyi__am5gr_f108b049]
 Input-Argument Errors

 	nz < 0

 Examples

 	[bookmark: am5gr_hsaxpyi__am5gr_f108b050]
 Example 1

 	This example shows how to use SAXPYI to perform a computation
 using a sparse vector x of length 5, where the elements
 of array INDX are in ascending order.
 Call Statement and Input: NZ ALPHA X INDX Y
 | | | | |
CALL SAXPYI(5 , 2.0 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
INDX = (1, 3, 4, 7, 10)
Y = (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

 Output: Y = (3.0, 5.0, 8.0, 9.0, 6.0, 10.0, 6.0, 8.0, 9.0, 10.0)

 	[bookmark: am5gr_hsaxpyi__am5gr_f108b053]
 Example 2

 	This example shows how to use SAXPYI to perform a computation
 using a sparse vector x of length 5, where the elements
 of array INDX are in random order.
 Call Statement and Input: NZ ALPHA X INDX Y
 | | | | |
CALL SAXPYI(5 , 2.0 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
INDX = (4, 3, 1, 10, 7)
Y = (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

 Output: Y = (7.0, 5.0, 8.0, 5.0, 6.0, 10.0, 8.0, 8.0, 9.0, 8.0)

 	[bookmark: am5gr_hsaxpyi__am5gr_f108b056]
 Example 3

 	This example shows how to use CAXPYI to perform a computation
 using a sparse vector x of length 3, where the elements
 of array INDX are in random order.
 Call Statement and Input: NZ ALPHA X INDX Y
 | | | | |
CALL CAXPYI(3 , ALPHA , X , INDX , Y)

ALPHA = (2.0, 3.0)
X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
INDX = (4, 1, 3)
Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))

 Output: Y = ((0.0, 22.0), (-2.0, 3.0), (7.0, 31.0), (5.0, 7.0))

 Parent topic: Linear Algebra Subprograms

 SDOTI, DDOTI, CDOTUI, ZDOTUI, CDOTCI, and ZDOTCI (Dot Product
 of a Sparse Vector X in Compressed-Vector Storage Mode and a Sparse
 Vector Y in Full-Vector Storage Mode)

 Purpose

 SDOTI, DDOTI, CDOTUI, and ZDOTUI
 compute the dot product of sparse vector x, stored in
 compressed-vector storage mode, and full vector y, stored
 in full-vector storage mode.

 CDOTCI and ZDOTCI compute the
 dot product of the complex conjugate of sparse vector x,
 stored in compressed-vector storage mode, and full vector y,
 stored in full-vector storage mode.

 Table 99. Data Types.

 	x, y, Result

 	Subprogram

 	Short-precision real

 	SDOTI

 	Long-precision real

 	DDOTI

 	Short-precision complex

 	CDOTUI

 	Long-precision complex

 	ZDOTUI

 	Short-precision complex

 	CDOTCI

 	Long-precision complex

 	ZDOTCI

 Syntax

 	Fortran

 	SDOTI | DDOTI | CDOTUI | ZDOTUI | CDOTCI | ZDOTCI (nz, x, indx, y)

 	C and C++

 	sdoti | ddoti | cdotui | zdotui | cdotci | zdotci (nz, x, indx, y);

 	On Entry

 	

 	nz

 	is the number of elements in sparse vector x, stored
 in compressed-vector storage mode. Specified as: an integer; nz ≥ 0.

 	x

 	is the sparse vector x, containing nz elements,
 stored in compressed-vector storage mode in an array, referred to
 as X. Specified as: a one-dimensional array of (at
 least) length nz, containing numbers of the data
 type indicated in Table 99.

 	indx

 	is the array, referred to as INDX, containing
 the nz indices that indicate the positions of the
 elements of the sparse vector x when in full-vector
 storage mode. They also indicate the positions of elements in vector y that
 are used in the computation.
 Specified as: a one-dimensional array
 of (at least) length nz, containing integers.

 	y

 	is the sparse vector y, stored in full-vector storage
 mode, of (at least) length max(INDX(i))
 for i = 1, nz. Specified
 as: a one-dimensional array of (at least) length max(INDX(i))
 for i = 1, nz, containing
 numbers of the data type indicated in Table 99.

 	On Return

 	

 	Function value

 	is the result of the dot product computation.
 Returned as:
 a number of the data type indicated in Table 99.

 Notes

 	Declare this function in your program as returning a value of
 the data type indicated in Table 99.

 	For a description of how sparse vectors are stored, see Sparse Vector.

 Function

 For SDOTI, DDOTI, CDOTUI, and
 ZDOTUI, the dot product computation is expressed as follows:

 [image: Dot Product Graphic]

 For CDOTCI and ZDOTCI, the dot product computation is expressed
 as follows:

 [image: Dot Product Graphic]

 where:

 x is a sparse vector, stored
 in compressed-vector storage mode.

 [image: Complex Conjugate of Sparse Vector Graphic]

 INDX is the indices array for sparse vector x.

 y is
 a sparse vector, stored in full-vector storage mode.

 See reference [37]. The result
 is returned as the function value. If nz is 0,
 then zero is returned as the value of the function.

 For SDOTI,
 CDOTUI, and CDOTCI, intermediate results are accumulated in long-precision.

 Error conditions

 	[bookmark: am5gr_hsdoti__am5gr_f108b060]
 Computational Errors

 	None

 	[bookmark: am5gr_hsdoti__am5gr_f108b061]
 Input-Argument Errors

 	nz < 0

 Examples

 	[bookmark: am5gr_hsdoti__am5gr_f108b062]
 Example 1

 	This example shows how to use SDOTI to compute a dot product using
 a sparse vector x of length 5, where the elements of
 array INDX are in ascending order.
 Function Reference and Input: NZ X INDX Y
 | | | |
DOTT = SDOTI(5 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
INDX = (1, 3, 4, 7, 10)
Y = (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

 Output: DOTT = (1.0 + 8.0 + 9.0 -8.0 + 0.0) = 10.0

 	[bookmark: am5gr_hsdoti__am5gr_f108b065]
 Example 2

 	This example shows how to use SDOTI to compute a dot product using
 a sparse vector x of length 5, where the elements of
 array INDX are in random order.
 Function
 Reference and Input: NZ X INDX Y
 | | | |
DOTT = SDOTI(5 , X , INDX , Y)

X = (1.0, 2.0, 3.0, 4.0, 5.0)
INDX = (4, 3, 1, 10, 7)
Y = (1.0, 5.0, 4.0, 3.0, 6.0, 10.0, -2.0, 8.0, 9.0, 0.0)

 Output: DOTT = (3.0 + 8.0 + 3.0 + 0.0 -10.0) = 4.0

 	[bookmark: am5gr_hsdoti__am5gr_f108b068]
 Example 3

 	This example shows how to use CDOTUI to compute a dot product
 using a sparse vector x of length 3, where the elements
 of array INDX are in ascending order.
 Function Reference and Input: NZ X INDX Y
 | | | |
DOTT = CDOTUI(3 , X , INDX , Y)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
INDX = (1, 3, 4)
Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))

 Output: DOTT = (70.0, 143.0)

 	[bookmark: am5gr_hsdoti__am5gr_f108b071]
 Example 4

 	This example shows how to use CDOTCI to compute a dot product
 using the complex conjugate of a sparse vector x of
 length 3, where the elements of array INDX are in
 random order.
 Function Reference and Input: NZ X INDX Y
 | | | |
DOTT = CDOTCI(3 , X , INDX , Y)

X = ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0))
INDX = (4, 1, 3)
Y = ((6.0, 5.0), (-2.0, 3.0), (15.0, 4.0), (9.0, 0.0))

 Output: DOTT = (146.0, -97.0)

 Parent topic: Linear Algebra Subprograms

 Matrix-Vector Subprograms

 This contains the matrix-vector subprogram descriptions.

 Parent topic: Linear Algebra Subprograms

 SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX
 (Matrix-Vector Product for a General Matrix, Its Transpose, or Its
 Conjugate Transpose)

 Purpose

 SGEMV and DGEMV compute the matrix-vector
 product for either a real general matrix or its transpose, using the
 scalars α and
 β,
 vectors x and y, and matrix A or
 its transpose:

 y

 ←

 β

 y

 +

 α

 Ax

 y

 ←

 β

 y

 +

 α

 A

 T

 x

 CGEMV
 and ZGEMV compute the matrix-vector product for either a complex general
 matrix, its transpose, or its conjugate transpose, using the scalars
 α and β, vectors
 x and y, and matrix A,
 its transpose, or its conjugate transpose:

 y

 ←

 β

 y

 +

 α

 Ax

 y

 ←

 β

 y

 +

 α

 A

 T

 x

 y

 ←

 β

 y

 +

 α

 A

 H

 x

 SGEMX
 and DGEMX compute the matrix-vector product for a real general matrix,
 using the scalar α, vectors x and y,
 and matrix A:

 y

 ←

 y

 +

 α

 Ax

 SGEMTX
 and DGEMTX compute the matrix-vector product for the transpose of
 a real general matrix, using the scalar α, vectors x and y,
 and the transpose of matrix A:

 y

 ←

 y

 +

 α

 A

 T

 x

 Table 100. Data Types.

 	α, β, x, y, A

 	Subprogram

 	Short-precision real

 	SGEMV, SGEMX, and SGEMTX

 	Long-precision real

 	DGEMV, DGEMX, and DGEMTX

 	Short-precision complex

 	CGEMV

 	Long-precision complex

 	ZGEMV

 Note:

 	SGEMV and DGEMV are Level 2 BLAS subroutines. It is suggested
 that these subroutines be used instead of SGEMX, DGEMX, SGEMTX, and
 DGEMTX, which are provided only for compatibility with earlier releases
 of ESSL.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SGEMV | DGEMV | CGEMV | ZGEMV (transa, m, n, alpha, a, lda, x, incx, beta, y, incy)

 CALL SGEMX | DGEMX | SGEMTX | DGEMTX (m, n, alpha, a, lda, x, incx, y, incy)

 	C and C++

 	sgemv | dgemv | cgemv | zgemv (transa, m, n, alpha, a, lda, x, incx, beta, y, incy);

 sgemx | dgemx | sgemtx | dgemtx (m, n, alpha, a, lda, x, incx, y, incy);

 	CBLAS

 	cblas_sgemv | cblas_dgemv | cblas_cgemv | cblas_zgemv ([image: Start of change]cblas_layout[image: End of change], cblas_transa, m, n, alpha, a, lda, x, incx, beta, y, incy);

 	On Entry

 	

 	[image: Start of change]cblas_layout[image: End of change]

 	indicates whether the input matrices are stored in row major order
 or column major order, where:

 	If [image: Start of change]cblas_layout[image: End of change] = CblasRowMajor,
 the matrices are stored in row major order. 			

 	If [image: Start of change]cblas_layout[image: End of change] = CblasColMajor,
 the matrices are stored in column major order.

 Specified as: an object of enumerated type [image: Start of change]CBLAS_LAYOUT[image: End of change]. It
 must be CblasRowMajor or CblasColMajor.

 	transa

 	indicates the form of matrix A to use in the computation,
 where:
 If transa = 'N', A is used in the
 computation.

 If transa = 'T', AT is
 used in the computation.

 If transa = 'C', AH is
 used in the computation.

 Specified as: a single character.
 It must be 'N', 'T', or 'C'.

 	cblas_transa

 	indicates the form of matrix A to use in the computation,
 where:
 If cblas_transa = CblasNoTrans, A is
 used in the computation.

 If cblas_transa = CblasTrans, AT is
 used in the computation.

 If cblas_transa = CblasConjTrans, AH is
 used in the computation.

 Specified as: an object of enumerated
 type CBLAS_TRANSPOSE. It must be CblasNoTrans, CblasTrans, or CblasConjTrans.

 	m

 	is the number of rows in matrix A, and:
 For
 SGEMV, DGEMV, CGEMV, and ZGEMV:

 If

 transa

 =

 'N', it is the length of vector

 y

 .

 If

 transa

 =

 'T' or 'C', it is the length of vector

 x

 .

 For
 SGEMX and DGEMX, it is the length of vector y.

 For
 SGEMTX and DGEMTX, it is the length of vector x.

 Specified
 as: an integer; 0 ≤ m ≤ lda.

 	n

 	is the number of columns in matrix A, and:
 For
 SGEMV, DGEMV, CGEMV, and ZGEMV:

 If

 transa

 =

 'N', it is the length of vector

 x

 .

 If

 transa

 =

 'T' or 'C', it is the length of vector

 y

 .

 For
 SGEMX and DGEMX, it is the length of vector x.

 For
 SGEMTX and DGEMTX, it is the length of vector y.

 Specified
 as: an integer; n ≥ 0.

 	alpha

 	is the scaling constant α.
 Specified as: a number of the data
 type indicated in Table 100.

 	a

 	is the m by n matrix A,
 where:
 For SGEMV, DGEMV, CGEMV, and ZGEMV:

 If

 transa

 =

 'N',

 A

 is used in the computation.

 If

 transa

 =

 'T',

 A

 T

 is used in the computation.

 If

 transa

 =

 'C',

 A

 H

 is used in the computation.

 For
 SGEMX and DGEMX, A is used in the computation.

 For
 SGEMTX and DGEMTX, AT is used in the computation.

 Note: No data should be moved to form AT or AH;
 that is, the matrix A should always be stored in its
 untransposed form.

 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 100.

 	lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ m.

 	x

 	is the vector x, where:
 For SGEMV, DGEMV, CGEMV,
 and ZGEMV:

 If

 transa

 =

 'N', it has length

 n

 .

 If

 transa

 =

 'T' or 'C', it has length

 m

 .

 For
 SGEMX and DGEMX, it has length n.

 For SGEMTX
 and DGEMTX, it has length m.

 Specified
 as: a one-dimensional array, containing numbers of the data type indicated
 in Table 100, where:

 For
 SGEMV, DGEMV, CGEMV, and ZGEMV:

 If

 transa

 =

 'N', it must have at least 1+(

 n

 -1)|

 incx

 | elements.

 If

 transa

 =

 'T' or 'C', it must have at least 1+(

 m

 -1)|

 incx

 | elements.

 For
 SGEMX and DGEMX, it must have at least 1+(n-1)|incx|
 elements.

 For SGEMTX and DGEMTX, it must have at least 1+(m-1)|incx|
 elements.

 	beta

 	is the scaling constant β.
 Specified as: a number of the data
 type indicated in Table 100.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer; It can have any value.

 	y

 	is the vector y, where:
 For SGEMV, DGEMV, CGEMV,
 and ZGEMV:

 If

 transa

 =

 'N', it has length

 m

 .

 If

 transa

 =

 'T' or 'C', it has length

 n

 .

 For
 SGEMX and DGEMX, it has length m.

 For SGEMTX
 and DGEMTX, it has length n.

 Specified
 as: a one-dimensional array, containing numbers of the data type indicated
 in Table 100, where:

 For
 SGEMV, DGEMV, CGEMV, and ZGEMV:

 If

 transa

 =

 'N', it must have at least 1+(

 m

 -1)|

 incy

 | elements.

 If

 transa

 =

 'T' or 'C', it must have at least 1+(

 n

 -1)|

 incy

 | elements.

 For
 SGEMX and DGEMX, it must have at least 1+(m-1)|incy|
 elements.

 For SGEMTX and DGEMTX, it must have at least 1+(n-1)|incy|
 elements.

 	incy

 	is the stride for vector y.
 Specified as: an
 integer; incy > 0 or incy < 0.

 	On Return

 	

 	y

 	is the vector y, containing the result of the computation,
 where:
 For SGEMV, DGEMV, CGEMV, and ZGEMV:

 If

 transa

 =

 'N', it has length

 m

 .

 If

 transa

 =

 'T' or 'C', it has length

 n

 .

 For
 SGEMX and DGEMX, it has length m.

 For SGEMTX
 and DGEMTX, it has length n.

 Returned as:
 a one-dimensional array, containing numbers of the data type indicated
 in Table 100.

 Notes

 	For SGEMV and DGEMV, if you specify 'C' for the transa argument,
 it is interpreted as though you specified 'T'.

 	The SGEMV, DGEMV, CGEMV, and ZGEMV subroutines accept lowercase
 letters for the transa argument.

 	In the SGEMV, DGEMV, CGEMV, and ZGEMV subroutines, incx = 0
 is valid; however, the Level 2 BLAS standard considers incx = 0
 to be invalid. See references [42] and [43].

 	Vector y must have no common elements with matrix A or
 vector x; otherwise, results are unpredictable. See Concepts.

 Function

 Varying implementation techniques
 are used for this computation to improve performance. As a result,
 accuracy of the computational result may vary for different computations.

 For
 SGEMV, CGEMV, SGEMX, and SGEMTX, intermediate results are accumulated
 in long precision when the AltiVec or VSX unit is not used. Occasionally,
 for performance reasons, these intermediate results are stored.

 See
 references [42], [43], [46], [54], and [93]. No computation
 is performed if m or n is 0
 or if α is
 zero and β is
 one.

 	[bookmark: am5gr_hsgemv__am5gr_f108c002]
 General Matrix

 	
 For SGEMV, DGEMV, CGEMV, and ZGEMV, the matrix-vector product
 for a general matrix:

 y

 ←

 β

 y

 +

 α

 Ax

 is expressed
 as follows:

 [image: Matrix-Vector Product Graphic]

 For SGEMX and DGEMX, the matrix-vector product for a real
 general matrix:

 y

 ←

 y

 +

 α

 Ax

 is expressed
 as follows:

 [image: Matrix-Vector Product Graphic]

 In these expressions:

 y

 is a vector of length

 m

 .

 α

 is a scalar.

 β

 is a scalar.

 A

 is an

 m

 by

 n

 matrix.

 x

 is a vector of length

 n

 .

 	[bookmark: am5gr_hsgemv__am5gr_f108c003]
 Transpose of a General Matrix

 	
 For SGEMV, DGEMV, CGEMV and ZGEMV, the matrix-vector product
 for the transpose of a general matrix:

 y

 ←

 β

 y

 +

 α

 A

 T

 x

 is
 expressed as follows:

 [image: Matrix-Vector Product Graphic]

 For SGEMTX and DGEMTX, the matrix-vector product for the
 transpose of a real general matrix:

 y

 ←

 y

 +

 α

 A

 T

 x

 is
 expressed as follows:

 [image: Matrix-Vector Product Graphic]

 In these expressions:

 y

 is a vector of length

 n

 .

 α

 is a scalar.

 β

 is a scalar.

 A

 T

 is the transpose of matrix

 A

 , where

 A

 is an

 m

 by

 n

 matrix.

 x

 is a vector of length

 m

 .

 	[bookmark: am5gr_hsgemv__am5gr_f108c004]
 Conjugate Transpose of a General Matrix

 	
 For CGEMV and ZGEMV, the matrix-vector product for the conjugate
 transpose of a general matrix:

 y

 ←

 β

 y

 +

 α

 A

 H

 x

 is expressed as follows:

 [image: Matrix-Vector Product Graphic]

 where:

 y

 is a vector of length

 n

 .

 α

 is a scalar.

 β

 is a scalar.

 A

 H

 is the conjugate transpose of matrix

 A

 , where

 A

 is an

 m

 by

 n

 matrix.

 x

 is a vector of length

 m

 .

 Error conditions

 	[bookmark: am5gr_hsgemv__am5gr_f108c005]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hsgemv__am5gr_f108c006]
 Computational Errors

 	None

 	[bookmark: am5gr_hsgemv__am5gr_f108c007]
 Input-Argument Errors

 	

 	[image: Start of change]cblas_layout[image: End of change] ≠ CblasRowMajor or
 CblasColMajor

 	transa ≠ 'N', 'T', or 'C'

 	cblas_transa ≠ CblasNoTrans, CblasTrans,
 or CblasConjTrans

 	m < 0

 	m > lda

 	n < 0

 	lda ≤ 0

 	incy = 0

 Examples

 	[bookmark: am5gr_hsgemv__am5gr_f108c008]
 Example 1

 	This example shows the computation for TRANSA equal
 to 'N', where the real general matrix A is used in the
 computation. Because lda is 10 and n is
 3, array A must be declared as A(E1:E2,F1:F2), where E2-E1+1=10 and F2-F1+1 ≥ 3. In this
 example, array A is declared as A(1:10,0:2).
 Call Statement and Input: TRANSA M N ALPHA A LDA X INCX BETA Y INCY
 | | | | | | | | | | |
CALL SGEMV('N' , 4 , 3 , 1.0 , A(1,0) , 10 , X , 1 , 1.0 , Y , 2)

 ┌ ┐
 | 1.0 2.0 3.0 |
 | 2.0 2.0 4.0 |
 | 3.0 2.0 2.0 |
 | 4.0 2.0 1.0 |
A = | . . . |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 X = (3.0, 2.0, 1.0)
Y = (4.0, . , 5.0, . , 2.0, . , 3.0)

 Output: Y = (14.0, . , 19.0, . , 17.0, . , 20.0)

 	[bookmark: am5gr_hsgemv__am5gr_f108c011]
 Example 2

 	This example shows the computation for TRANSA equal
 to 'T', where the transpose of the real general matrix A is
 used in the computation. Array A must follow the
 same rules as given in Example 1. In this example, array A is
 declared as A(-1:8,1:3).
 Call
 Statement and Input: TRANSA M N ALPHA A LDA X INCX BETA Y INCY
 | | | | | | | | | | |
CALL SGEMV('T' , 4 , 3 , 1.0 , A(-1,1) , 10 , X , 1 , 2.0 , Y , 2)

 A =

 (same as input

 A

 in Example 1)

 X = (3.0, 2.0, 1.0, 4.0)

 Y = (1.0, . , 2.0, . , 3.0)

 Output: Y = (28.0, . , 24.0, . , 29.0)

 	[bookmark: am5gr_hsgemv__am5gr_f108c014]
 Example 3

 	This example shows the computation for TRANSA equal
 to 'N', where the complex general matrix A is used in
 the computation.
 Call Statement and Input: TRANSA M N ALPHA A LDA X INCX BETA Y INCY
 | | | | | | | | | | |
CALL CGEMV('N' , 5 , 3 , ALPHA , A , 10 , X , 1 , BETA , Y , 1)

ALPHA = (1.0, 0.0)

 ┌ ┐
 | (1.0, 2.0) (3.0, 5.0) (2.0, 0.0) |
 | (2.0, 3.0) (7.0, 9.0) (4.0, 8.0) |
 | (7.0, 4.0) (1.0, 4.0) (6.0, 0.0) |
 | (8.0, 2.0) (2.0, 5.0) (8.0, 0.0) |
A = | (9.0, 1.0) (3.0, 6.0) (1.0, 0.0) |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0))
BETA = (1.0, 0.0)
Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0), (3.0, 4.0),
 (2.0, 0.0))

 Output: Y = ((12.0, 28.0), (24.0, 55.0), (10.0, 39.0), (23.0, 50.0),
 (22.0, 44.0))

 	[bookmark: am5gr_hsgemv__am5gr_f108c017]
 Example 4

 	This example shows the computation for TRANSA equal
 to 'T', where the transpose of complex general matrix A is
 used in the computation. Because β is zero, the result of the computation
 is αATx
 Call Statement and Input: TRANSA M N ALPHA A LDA X INCX BETA Y INCY
 | | | | | | | | | | |
CALL CGEMV('T' , 5 , 3 , ALPHA , A , 10 , X , 1 , BETA , Y , 1)

 ALPHA = (1.0, 0.0)

 A =

 (same as input

 A

 in Example 3)

 X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0), (3.0, 4.0),

 (2.0, 0.0))

 BETA = (0.0, 0.0)

 Y =

 (not relevant)

 Output: Y = ((42.0, 67.0), (10.0, 87.0), (50.0, 74.0))

 	[bookmark: am5gr_hsgemv__am5gr_f108c019]
 Example 5

 	This example shows the computation for TRANSA equal
 to 'C', where the conjugate transpose of the complex general matrix A is
 used in the computation.
 Call Statement and
 Input: TRANSA M N ALPHA A LDA X INCX BETA Y INCY
 | | | | | | | | | | |
CALL CGEMV('C' , 5 , 3 , ALPHA , A , 10 , X , 1 , BETA , Y , 1)

 ALPHA = (-1.0, 0.0)

 A =

 (same as input

 A

 in Example 3)

 X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0), (3.0, 4.0),

 (2.0, 0.0))

 BETA = (1.0, 0.0)

 Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0))

 Output: Y = ((-73.0, -13.0), (-74.0, 57.0), (-49.0, -11.0))

 	[bookmark: am5gr_hsgemv__am5gr_f108c022]
 Example 6

 	This example shows a matrix, A, contained in a larger
 array, A. The strides of vectors x and y are
 positive. Because lda is 10 and n is
 3, array A must be declared as A(E1:E2,F1:F2), where E2-E1+1=10 and F2-F1+1 ≥ 3. For this
 example, array A is declared as A(1:10,0:2).
 Call Statement and Input: M N ALPHA A LDA X INCX Y INCY
 | | | | | | | | |
CALL SGEMX(4 , 3 , 1.0 , A(1,0) , 10 , X , 1 , Y , 2)

 ┌ ┐
 | 1.0 2.0 3.0 |
 | 2.0 2.0 4.0 |
 | 3.0 2.0 2.0 |
 | 4.0 2.0 1.0 |
A = | . . . |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 X = (3.0, 2.0, 1.0)
Y = (4.0, . , 5.0, . , 2.0, . , 3.0)

 Output: Y = (14.0, . , 19.0, . , 17.0, . , 20.0)

 	[bookmark: am5gr_hsgemv__am5gr_f108c025]
 Example 7

 	This example shows a matrix, A, contained in a larger
 array, A. The strides of vectors x and y are
 of opposite sign. For y, which has negative stride,
 processing begins at element Y(7), which is 4.0.
 Array A must follow the same rules as given in Example
 6. For this example, array A is declared as A(-1:8,1:3).
 Call Statement and Input: M N ALPHA A LDA X INCX Y INCY
 | | | | | | | | |
CALL SGEMX(4 , 3 , 1.0 , A(-1,1) , 10 , X , 1 , Y , -2)

 A =

 (same as input

 A

 in Example 6)

 X = (3.0, 2.0, 1.0)

 Y = (3.0, . , 2.0, . , 5.0, . , 4.0)

 Output: Y = (20.0, . , 17.0, . , 19.0, . , 14.0)

 	[bookmark: am5gr_hsgemv__am5gr_f108c028]
 Example 8

 	This example shows a matrix, A, contained in a larger
 array, A, and the first element of the matrix is
 not the first element of the array. Array A must
 follow the same rules as given in Example 6. For this example, array A is
 declared as A(1:10,1:3).
 Call
 Statement and Input: M N ALPHA A LDA X INCX Y INCY
 | | | | | | | | |
CALL SGEMX(4 , 3 , 1.0 , A(5,1) , 10 , X , 1 , Y , 1)

 ┌ ┐
 | . . . |
 | . . . |
 | . . . |
 | . . . |
A = | 1.0 2.0 3.0 |
 | 2.0 2.0 4.0 |
 | 3.0 2.0 2.0 |
 | 4.0 2.0 1.0 |
 | . . . |
 | . . . |
 └ ┘

 X = (3.0, 2.0, 1.0)
Y = (4.0, 5.0, 2.0, 3.0)

 Output: Y = (14.0, 19.0, 17.0, 20.0)

 	[bookmark: am5gr_hsgemv__am5gr_f108c032]
 Example 9

 	This example shows a matrix, A, and an array, A,
 having the same number of rows. For this case, m and lda are
 equal. Because lda is 4 and n is
 3, array A must be declared as A(E1:E2,F1:F2), where E2-E1+1=4 and F2-F1+1 ≥ 3. For this
 example, array A is declared as A(1:4,0:2).
 Call Statement and Input: M N ALPHA A LDA X INCX Y INCY
 | | | | | | | | |
CALL SGEMX(4 , 3 , 1.0 , A(1,0) , 4 , X , 1 , Y , 1)

 ┌ ┐
 | 1.0 2.0 3.0 |
A = | 2.0 2.0 4.0 |
 | 3.0 2.0 2.0 |
 | 4.0 2.0 1.0 |
 └ ┘

X = (3.0, 2.0, 1.0)
Y = (4.0, 5.0, 2.0, 3.0)

 Output: Y = (14.0, 19.0, 17.0, 20.0)

 	[bookmark: am5gr_hsgemv__am5gr_f108c035]
 Example 10

 	This example shows a matrix, A, and an array, A,
 having the same number of rows. For this case, m and lda are
 equal. Because lda is 4 and n is
 3, array A must be declared as A(E1:E2,F1:F2), where E2-E1+1=4 and F2-F1+1 ≥ 3. For this
 example, array A is declared as A(1:4,0:2).
 Call Statement and Input: M N ALPHA A LDA X INCX Y INCY
 | | | | | | | | |
CALL SGEMTX(4 , 3 , 1.0 , A(1,0) , 4 , X , 1 , Y , 1)

 ┌ ┐
 | 1.0 2.0 3.0 |
A = | 2.0 2.0 4.0 |
 | 3.0 2.0 2.0 |
 | 4.0 2.0 1.0 |
 └ ┘

X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, 2.0, 3.0)

 Output: Y = (27.0, 22.0, 26.0)

 	[bookmark: am5gr_hsgemv__am5gr_f108c038]
 Example 11

 	This example shows a computation in which alpha is
 greater than 1. Array A must follow the same rules
 as given in Example 10. For this example, array A is
 declared as A(-1:2,1:3).
 Call
 Statement and Input: M N ALPHA A LDA X INCX Y INCY
 | | | | | | | | |
CALL SGEMTX(4 , 3 , 2.0 , A(-1,1) , 4 , X , 1 , Y , 1)

 A =

 (same as input

 A

 in Example 10)

 X = (3.0, 2.0, 1.0, 4.0)

 Y = (1.0, 2.0, 3.0)

 Output: Y = (53.0, 42.0, 49.0)

 Parent topic: Linear Algebra Subprograms

 SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC (Rank-One Update
 of a General Matrix)

 Purpose

 SGER, DGER, CGERU, and ZGERU compute
 the rank-one update of a general matrix, using the scalar α,
 matrix A, vector x, and the transpose
 of vector y:

 A

 ←

 A

 +

 α

 xy

 T

 CGERC
 and ZGERC compute the rank-one update of a general matrix, using the
 scalar α,
 matrix A, vector x, and the conjugate
 transpose of vector y:

 A

 ←

 A

 +

 α

 xy

 H

 Table 101. Data Types.

 	α, A, x, y

 	Subprogram

 	Short-precision real

 	SGER

 	Long-precision real

 	DGER

 	Short-precision complex

 	CGERU and CGERC

 	Long-precision complex

 	ZGERU and ZGERC

 Note:

 	For compatibility with earlier releases of ESSL, you can use the
 names SGER1 and DGER1 for SGER and DGER, respectively.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SGER | DGER | CGERU | ZGERU | CGERC | ZGERC (m, n, alpha, x, incx, y, incy, a, lda)

 	C and C++

 	sger | dger | cgeru | zgeru | cgerc | zgerc (m, n, alpha, x, incx, y, incy, a, lda);

 	CBLAS

 	cblas_sger | cblas_dger | cblas_cgeru | cblas_zgeru | cblas_cgerc
 | cblas_zgerc ([image: Start of change]cblas_layout[image: End of change], m, n, alpha, x, incx, y, incy, a, lda);

 	On Entry

 	

 	[image: Start of change]cblas_layout[image: End of change]

 	indicates whether the input and output matrices are stored in
 row major order or column major order, where:

 	If [image: Start of change]cblas_layout[image: End of change] = CblasRowMajor,
 the matrices are stored in row major order. 			

 	If [image: Start of change]cblas_layout[image: End of change] = CblasColMajor,
 the matrices are stored in column major order.

 Specified as: an object of enumerated type [image: Start of change]CBLAS_LAYOUT[image: End of change]. It
 must be CblasRowMajor or CblasColMajor.

 	m

 	is the number of rows in matrix A and the number
 of elements in vector x.
 Specified as: an integer;
 0 ≤ m ≤ lda.

 	n

 	is the number of columns in matrix A and the number
 of elements in vector y.
 Specified as: an integer; n ≥ 0.

 	alpha

 	is the scaling constant α.
 Specified as: a number of the data
 type indicated in Table 101.

 	x

 	is the vector x of length m.

 Specified as: a one-dimensional array of (at least) length 1+(m-1)|incx|,
 containing numbers of the data type indicated in Table 101.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	y

 	is the vector y of length n,
 whose transpose or conjugate transpose is used in the computation.

 Note: No data should be moved to form yT or yH;
 that is, the vector y should always be stored in its
 untransposed form.

 Specified as: a one-dimensional array
 of (at least) length 1+(n-1)|incy|,
 containing numbers of the data type indicated in Table 101.

 	incy

 	is the stride for vector y.
 Specified as: an
 integer. It can have any value.

 	a

 	is the m by n matrix A.
 Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 101.

 	lda

 	is the size of the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ m.

 	On Return

 	

 	a

 	is the m by n matrix A,
 containing the result of the computation.
 Returned as: a two-dimensional
 array, containing numbers of the data type indicated in Table 101.

 Notes

 	In these subroutines, incx = 0 and incy = 0
 are valid; however, the Level 2 BLAS standard considers incx = 0
 and incy = 0 to be invalid. See references [42] and [43].

 	Matrix A can have no common elements with vectors x and y;
 otherwise, results are unpredictable. See Concepts.

 Function

 SGER, DGER, CGERU, and ZGERU compute
 the rank-one update of a general matrix:

 A

 ←

 A

 +

 α

 xy

 T

 where:

 A

 is an

 m

 by

 n

 matrix.

 α

 is a scalar.

 x

 is a vector of length

 m

 .

 y

 T

 is the transpose of vector

 y

 of length

 n

 .

 It
 is expressed as follows:

 [image: Rank-One Update Graphic]

 It can also be expressed as:

 [image: Rank-One Update Graphic]

 CGERC and ZGERC compute a slightly different rank-one update
 of a general matrix:

 A

 ←

 A

 +

 α

 xy

 H

 where:

 A

 is an

 m

 by

 n

 matrix.

 α

 is a scalar.

 x

 is a vector of length

 m

 .

 y

 H

 is the conjugate transpose of vector

 y

 of length

 n

 .

 It
 is expressed as follows:

 [image: Rank-One Update Graphic]

 It can also be expressed as:

 [image: Rank-One Update Graphic]

 See references [42], [43], and [93]. No computation
 is performed if m, n, or α is zero. For CGERU and CGERC, intermediate
 results are accumulated in long precision when the AltiVec or VSX
 unit is not used. For SGER, intermediate results are accumulated in
 long precision on some platforms when the AltiVec or VSX unit is not
 used.

 Error conditions

 	[bookmark: am5gr_hsger1__am5gr_f108c042]
 Resource Errors:

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hsger1__am5gr_f108c043]
 Computational Errors

 	None

 	[bookmark: am5gr_hsger1__am5gr_f108c043a]
 Input-Argument Errors

 	

 	[image: Start of change]cblas_layout[image: End of change] ≠ CblasRowMajor or
 CblasColMajor

 	m < 0

 	n < 0

 	lda ≤ 0

 	m > lda

 Examples

 	[bookmark: am5gr_hsger1__am5gr_f108c045]
 Example 1

 	This example shows a matrix, A, contained in a larger
 array, A. The strides of vectors x and y are
 positive. Because lda is 10 and n is
 3, array A must be declared as A(E1:E2,F1:F2), where E2-E1+1=10 and F2-F1+1 ≥ 3.
 For this example, array A is declared as A(1:10,0:2).
 Call Statement and Input: M N ALPHA X INCX Y INCY A LDA
 | | | | | | | | |
CALL SGER(4 , 3 , 1.0 , X , 1 , Y , 2 , A(1,0) , 10)

X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, . , 2.0, . , 3.0)

 ┌ ┐
 | 1.0 2.0 3.0 |
 | 2.0 2.0 4.0 |
 | 3.0 2.0 2.0 |
 | 4.0 2.0 1.0 |
A = | . . . |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | 4.0 8.0 12.0 |
 | 4.0 6.0 10.0 |
 | 4.0 4.0 5.0 |
 | 8.0 10.0 13.0 |
A = | . . . |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 	[bookmark: am5gr_hsger1__am5gr_f108c048]
 Example 2

 	This example shows a matrix, A, contained in a larger
 array, A. The strides of vectors x and y are
 of opposite sign. For y, which has negative stride,
 processing begins at element Y(5), which is 1.0.
 Array A must follow the same rules as given in Example
 1. For this example, array A is declared as A(-1:8,1:3).
 Call Statement and Input: M N ALPHA X INCX Y INCY A LDA
 | | | | | | | | |
CALL SGER(4 , 3 , 1.0 , X , 1 , Y , -2 , A(-1,1) , 10)

 X = (3.0, 2.0, 1.0, 4.0)

 Y = (3.0, . , 2.0, . , 1.0)

 A =

 (same as input

 A

 in Example 1)

 Output:

 A =

 (same as input

 A

 in Example 1)

 	[bookmark: am5gr_hsger1__am5gr_f108c051]
 Example 3

 	This example shows a matrix, A, contained in a larger
 array, A, and the first element of the matrix is
 not the first element of the array. Array A must
 follow the same rules as given in Example 1. For this example, array A is
 declared as A(1:10,1:3).
 Call
 Statement and Input: M N ALPHA X INCX Y INCY A LDA
 | | | | | | | | |
CALL SGER(4 , 3 , 1.0 , X , 3 , Y , 1 , A(4,1) , 10)

X = (3.0, . , . , 2.0, . , . , 1.0, . , . , 4.0)
Y = (1.0, 2.0, 3.0)

 ┌ ┐
 | . . . |
 | . . . |
 | . . . |
 | 1.0 2.0 3.0 |
A = | 2.0 2.0 4.0 |
 | 3.0 2.0 2.0 |
 | 4.0 2.0 1.0 |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | . . . |
 | . . . |
 | . . . |
 | 4.0 8.0 12.0 |
A = | 4.0 6.0 10.0 |
 | 4.0 4.0 5.0 |
 | 8.0 10.0 13.0 |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 	[bookmark: am5gr_hsger1__am5gr_f108c054]
 Example 4

 	This example shows a matrix, A, and array, A,
 having the same number of rows. For this case, m and lda are
 equal. Because lda is 4 and n is
 3, array A must be declared as A(E1:E2,F1:F2), where E2-E1+1=4 and F2-F1+1 ≥ 3. For
 this example, array A is declared as A(1:4,0:2).
 Call Statement and Input: M N ALPHA X INCX Y INCY A LDA
 | | | | | | | | |
CALL SGER(4 , 3 , 1.0 , X , 1 , Y , 1 , A(1,0) , 4)

X = (3.0, 2.0, 1.0, 4.0)
Y = (1.0, 2.0, 3.0)

 ┌ ┐
 | 1.0 2.0 3.0 |
A = | 2.0 2.0 4.0 |
 | 3.0 2.0 2.0 |
 | 4.0 2.0 1.0 |
 └ ┘

 Output: ┌ ┐
 | 4.0 8.0 12.0 |
A = | 4.0 6.0 10.0 |
 | 4.0 4.0 5.0 |
 | 8.0 10.0 13.0 |
 └ ┘

 	[bookmark: am5gr_hsger1__am5gr_f108c057]
 Example 5

 	This example shows a computation in which scalar value for alpha is
 greater than 1. Array A must follow the same rules
 as given in Example 4. For this example, array A is
 declared as A(-1:2,1:3).
 Call
 Statement and Input: M N ALPHA X INCX Y INCY A LDA
 | | | | | | | | |
CALL SGER(4 , 3 , 2.0 , X , 1 , Y , 1 , A(-1,1) , 4)

 X = (3.0, 2.0, 1.0, 4.0)

 Y = (1.0, 2.0, 3.0)

 A =

 (same as input

 A

 in Example 4)

 Output: ┌ ┐
 | 7.0 14.0 21.0 |
A = | 6.0 10.0 16.0 |
 | 5.0 6.0 8.0 |
 | 12.0 18.0 25.0 |
 └ ┘

 	[bookmark: am5gr_hsger1__am5gr_f108c060]
 Example 6

 	This example shows a rank-one update in which all data items contain
 complex numbers, and the transpose yT is
 used in the computation. Matrix A is contained in a
 larger array, A. The strides of vectors x and y are
 positive. The Fortran DIMENSION statement for array A must
 follow the same rules as given in Example 1. For this example, array A is
 declared as A(1:10,0:2).
 Call
 Statement and Input: M N ALPHA X INCX Y INCY A LDA
 | | | | | | | | |
CALL CGERU(5 , 3 , ALPHA , X , 1 , Y , 1 , A(1,0) , 10)

ALPHA = (1.0, 0.0)
X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0), (3.0, 4.0),
 (2.0, 0.0))
Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0))

 ┌ ┐
 | (1.0, 2.0) (3.0, 5.0) (2.0, 0.0) |
 | (2.0, 3.0) (7.0, 9.0) (4.0, 8.0) |
 | (7.0, 4.0) (1.0, 4.0) (6.0, 0.0) |
 | (8.0, 2.0) (2.0, 5.0) (8.0, 0.0) |
A = | (9.0, 1.0) (3.0, 6.0) (1.0, 0.0) |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | (-2.0, 6.0) (7.0, 13.0) (5.0, 1.0) |
 | (6.0, 11.0) (23.0, 9.0) (8.0, 4.0) |
 | (6.0, 7.0) (5.0, 8.0) (8.0, 0.0) |
 | (3.0, 12.0) (14.0, 21.0) (15.0, 1.0) |
A = | (11.0, 5.0) (11.0, 6.0) (3.0, -2.0) |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 	[bookmark: am5gr_hsger1__am5gr_f108c063]
 Example 7

 	This example shows a rank-one update in which all data items contain
 complex numbers, and the conjugate transpose yH is
 used in the computation. Matrix A is contained in a
 larger array, A. The strides of vectors x and y are
 positive. The Fortran DIMENSION statement for array A must
 follow the same rules as given in Example 1. For this example, array A is
 declared as A(1:10,0:2).
 Call
 Statement and Input: M N ALPHA X INCX Y INCY A LDA
 | | | | | | | | |
CALL CGERC(5 , 3 , ALPHA , X , 1 , Y , 1 , A(1,0) , 10)

 ALPHA = (1.0, 0.0)

 X = ((1.0, 2.0), (4.0, 0.0), (1.0, 1.0), (3.0, 4.0),

 (2.0, 0.0))

 Y = ((1.0, 2.0), (4.0, 0.0), (1.0, -1.0))

 A =

 (same as input

 A

 in Example 6)

 Output: ┌ ┐
 | (6.0, 2.0) (7.0, 13.0) (1.0, 3.0) |
 | (6.0, -5.0) (23.0, 9.0) (8.0, 12.0) |
 | (10.0, 3.0) (5.0, 8.0) (6.0, 2.0) |
 | (19.0, 0.0) (14.0, 21.0) (7.0, 7.0) |
A = | (11.0, -3.0) (11.0, 6.0) (3.0, 2.0) |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 Parent topic: Linear Algebra Subprograms

 SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV, SSLMX,
 and DSLMX (Matrix-Vector Product for a Real Symmetric or Complex Hermitian
 Matrix)

 Purpose

 SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV,
 DSYMV, CHEMV, and ZHEMV compute the matrix-vector product for either
 a real symmetric matrix or a complex Hermitian matrix, using the scalars α and β, matrix A,
 and vectors x and y:

 y

 ←

 β

 y

 +

 α

 Ax

 SSLMX
 and DSLMX compute the matrix-vector product for a real symmetric matrix,
 using the scalar α, matrix A, and vectors x and y:

 y

 ←

 y

 +

 α

 Ax

 The following
 storage modes are used:

 	For SSPMV, DSPMV, CHPMV, and ZHPMV, matrix A is
 stored in upper- or lower-packed storage mode.

 	For SSYMV, DSYMV, CHEMV, and ZHEMV, matrix A is
 stored in upper or lower storage mode.

 	For SSLMX and DSLMX, matrix A is stored in lower-packed
 storage mode.

 Table 102. Data
 Types.

 	α, β, A, x, y

 	Subprogram

 	Short-precision real

 	SSPMV, SSYMV, and SSLMX

 	Long-precision real

 	DSPMV, DSYMV, and DSLMX

 	Short-precision complex

 	CHPMV and CHEMV

 	Long-precision complex

 	ZHPMV and ZHEMV

 Note:

 	SSPMV and DSPMV are Level 2 BLAS subroutines. You should use these
 subroutines instead of SSLMX and DSLMX, which are provided only for
 compatibility with earlier releases of ESSL.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SSPMV | DSPMV | CHPMV | ZHPMV (uplo, n, alpha, ap, x, incx, beta, y, incy)

 CALL SSYMV | DSYMV | CHEMV | ZHEMV (uplo, n, alpha, a, lda, x, incx, beta, y, incy)

 CALL
 SSLMX | DSLMX (n, alpha, ap, x, incx, y, incy)

 	C and C++

 	sspmv | dspmv | chpmv | zhpmv (uplo, n, alpha, ap, x, incx, beta, y, incy);

 ssymv | dsymv | chemv | zhemv (uplo, n, alpha, a, lda, x, incx, beta, y, incy);

 sslmx
 | dslmx (n, alpha, ap, x, incx, y, incy);

 	CBLAS

 	cblas_sspmv | cblas_dspmv | cblas_chpmv | cblas_zhpmv ([image: Start of change]cblas_layout[image: End of change], cblas_uplo, n, alpha, ap, x, incx, beta, y, incy);

 cblas_ssymv | cblas_dsymv | cblas_chemv | cblas_zhemv ([image: Start of change]cblas_layout[image: End of change], cblas_uplo, n, alpha, a, lda, x, incx, beta, y, incy);

 	On Entry

 	

 	[image: Start of change]cblas_layout[image: End of change]

 	indicates whether the input matrices are stored in row major order
 or column major order, where:

 	If [image: Start of change]cblas_layout[image: End of change] = CblasRowMajor,
 the matrices are stored in row major order.

 	If [image: Start of change]cblas_layout[image: End of change] = CblasColMajor,
 the matrices are stored in column major order.

 Specified as: an object of enumerated type [image: Start of change]CBLAS_LAYOUT[image: End of change]. It
 must be CblasRowMajor or CblasColMajor.

 	uplo

 	indicates the storage mode used for matrix A, where:

 If uplo = 'U', A is stored in
 upper-packed or upper storage mode.

 If uplo = 'L', A is
 stored in lower-packed or lower storage mode.

 Specified as:
 a single character. It must be 'U' or 'L'.

 	cblas_uplo

 	indicates the storage mode used for matrix A, where:

 If cblas_uplo = CblasUpper, A is stored
 in upper-packed or upper storage mode.

 If cblas_uplo = CblasLower, A is
 stored in lower-packed or lower storage mode.

 Specified as:
 an object of enumerated type CBLAS_UPLO. It must be CblasUpper or
 CblasLower.

 	n

 	is the number of elements in vectors x and y and
 the order of matrix A.
 Specified as: an integer; n ≥ 0.

 	alpha

 	is the scaling constant α.
 Specified as: a number of the data
 type indicated in Table 102.

 	ap

 	has the following meaning:
 For SSPMV and DSPMV, ap is
 the real symmetric matrix A of order n,
 stored in upper- or lower-packed storage mode.

 For CHPMV and
 ZHPMV, ap is the complex Hermitian matrix A of
 order n, stored in upper- or lower-packed storage
 mode.

 For SSLMX and DSLMX, ap is the real
 symmetric matrix A of order n, stored
 in lower-packed storage mode.

 Specified as: a one-dimensional
 array of (at least) length n(n+1)/2,
 containing numbers of the data type indicated in Table 102.

 	a

 	has the following meaning:
 For SSYMV and DSYMV, a is
 the real symmetric matrix A of order n,
 stored in upper or lower storage mode.

 For CHEMV and ZHEMV, a is
 the complex Hermitian matrix A of order n,
 stored in upper or lower storage mode.

 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 102.

 	lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ n.

 	x

 	is the vector x of length n.

 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 102.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer, where:

 For SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV,
 CHEMV, and ZHEMV, incx < 0 or incx > 0.

 For
 SSLMX and DSLMX, incx can have any value.

 	beta

 	is the scaling constant β.
 Specified as: a number of the data
 type indicated in Table 102.

 	y

 	is the vector y of length n.

 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incy|,
 containing numbers of the data type indicated in Table 102.

 	incy

 	is the stride for vector y.
 Specified as: an
 integer; incy > 0 or incy < 0.

 	On Return

 	

 	y

 	is the vector y of length n,
 containing the result of the computation. Returned as: a one-dimensional
 array, containing numbers of the data type indicated in Table 102.

 Notes

 	All subroutines accept lowercase letters for the uplo argument.

 	The vector y must have no common elements with vector x or
 matrix A; otherwise, results are unpredictable. See Concepts.

 	On input, the imaginary parts of the diagonal elements of the
 complex Hermitian matrix A are assumed to be zero, so
 you do not have to set these values.

 	For a description of how symmetric matrices are stored in upper-
 or lower-packed storage mode and upper or lower storage mode, see Symmetric Matrix. For a description of
 how complex Hermitian matrices are stored in upper- or lower-packed
 storage mode and upper or lower storage mode, see Complex Hermitian Matrix.

 Function

 These subroutines perform the
 calculations described. See references [42], [43], and [93].

 	For SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, and ZHEMV

 	If n is zero or if α is zero and β is one, no computation is performed.

 	For SSLMX and DSLMX

 	If n or α is zero, no computation is performed.

 	For SSLMX, SSPMV, SSYMV, CHPMV, and CHEMV

 	Intermediate results are accumulated in long precision when the
 AltiVec or VSX unit is not used. However, several intermediate stores
 may occur for each element of the vector y.

 	[bookmark: am5gr_hsslmx__am5gr_f108c067]
 For SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, and ZHEMV

 	
 These subroutines compute the matrix-vector product for either
 a real symmetric matrix or a complex Hermitian matrix:

 y

 ←

 β

 y

 +

 α

 Ax

 where:

 y

 is a vector of length

 n

 .

 α

 is a scalar.

 β

 is a scalar.

 A

 is a real symmetric or complex Hermitian matrix of order

 n

 .

 x

 is a vector of length

 n

 .

 It
 is expressed as follows:

 [image: Matrix-Vector Product Graphic]

 	[bookmark: am5gr_hsslmx__am5gr_f108c068]
 For SSLMX and DSLMX

 	
 These subroutines compute the matrix-vector product for a
 real symmetric matrix stored in lower-packed storage mode:

 y

 ←

 y

 +

 α

 Ax

 where:

 y

 is a vector of length

 n

 .

 α

 is a scalar.

 A

 is a real symmetric matrix of order

 n

 .

 x

 is a vector of length

 n

 .

 It
 is expressed as follows:

 [image: Matrix-Vector Product Graphic]

 Error conditions

 	Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hsslmx__am5gr_f108c069]
 Computational Errors

 	None

 	[bookmark: am5gr_hsslmx__am5gr_f108c070]
 Input-Argument Errors

 	

 	[image: Start of change]cblas_layout[image: End of change] ≠ CblasRowMajor or
 CblasColMajor

 	uplo ≠ 'L' or 'U'

 	cblas_uplo ≠ CblasLower or CblasUpper

 	n < 0

 	lda < n

 	lda ≤ 0

 	incx = 0

 	incy = 0

 Examples

 	[bookmark: am5gr_hsslmx__am5gr_f108c071]
 Example 1

 	This example shows vectors x and y with
 positive strides and a real symmetric matrix A of order
 3, stored in lower-packed storage mode. Matrix A is:
 ┌ ┐
 | 8.0 4.0 2.0 |
 | 4.0 6.0 7.0 |
 | 2.0 7.0 3.0 |
 └ ┘

 Call Statement and Input: UPLO N ALPHA AP X INCX BETA Y INCY
 | | | | | | | | |
CALL SSPMV('L' , 3 , 1.0 , AP , X , 1 , 1.0 , Y , 2)

AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)
X = (3.0, 2.0, 1.0)
Y = (5.0, . , 3.0, . , 2.0)

 Output: Y = (39.0, . , 34.0, . , 25.0)

 	[bookmark: am5gr_hsslmx__am5gr_f108c074]
 Example 2

 	This example shows vector x and y having
 strides of opposite signs. For x, which has negative
 stride, processing begins at element X(5), which
 is 1.0. The real symmetric matrix A of order 3 is stored
 in upper-packed storage mode. It uses the same input matrix A as
 in Example 1.
 Call Statement and Input: UPLO N ALPHA AP X INCX BETA Y INCY
 | | | | | | | | |
CALL SSPMV('U' , 3 , 1.0 , AP , X , -2 , 2.0 , Y , 1)

AP = (8.0, 4.0, 6.0, 2.0, 7.0, 3.0)
X = (4.0, . , 2.0, . , 1.0)
Y = (6.0, 5.0, 4.0)

 Output: Y = (36.0, 54.0, 36.0)

 	[bookmark: am5gr_hsslmx__am5gr_f108c077]
 Example 3

 	This example shows vector x and y with
 positive stride and a complex Hermitian matrix A of
 order 3, stored in lower-packed storage mode. Matrix A is:
 ┌ ┐
 | (1.0, 0.0) (3.0, 5.0) (2.0, -3.0) |
 | (3.0, -5.0) (7.0, 0.0) (4.0, -8.0) |
 | (2.0, 3.0) (4.0, 8.0) (6.0, 0.0) |
 └ ┘

 Note: On
 input, the imaginary parts of the diagonal elements of the complex
 Hermitian matrix A are assumed to be zero, so you do
 not have to set these values.

 Call Statement
 and Input: UPLO N ALPHA AP X INCX BETA Y INCY
 | | | | | | | | |
CALL CHPMV('L' , 3 , ALPHA , AP , X , 1 , BETA , Y , 2)

 ALPHA = (1.0, 0.0)
AP = ((1.0, .), (3.0, -5.0), (2.0, 3.0), (7.0, .),
 (4.0, 8.0), (6.0, .))
X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
BETA = (1.0, 0.0)
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))

 Output: Y = ((32.0, 21.0), . , (87.0, -8.0), . , (32.0, 64.0))

 	[bookmark: am5gr_hsslmx__am5gr_f108c080]
 Example 4

 	This example shows vector x and y having
 strides of opposite signs. For x, which has negative
 stride, processing begins at element X(5), which
 is (1.0, 2.0). The complex Hermitian matrix A of order
 3 is stored in upper-packed storage mode. It uses the same input matrix A as
 in Example 3.
 Note: On input, the imaginary parts of the diagonal
 elements of the complex Hermitian matrix A are assumed
 to be zero, so you do not have to set these values.

 Call Statement and Input: UPLO N ALPHA AP X INCX BETA Y INCY
 | | | | | | | | |
CALL CHPMV('U' , 3 , ALPHA , AP , X , -2 , BETA , Y , 2)

 ALPHA = (1.0, 0.0)

 AP = ((1.0, .), (3.0, 5.0), (7.0, .), (2.0, -3.0),

 (4.0, -8.0), (6.0, .))

 X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))

 BETA = (0.0, 0.0)

 Y =

 (not relevant)

 Output: Y = ((31.0, 21.0), . , (85.0, -7.0), . , (30.0, 63.0))

 	[bookmark: am5gr_hsslmx__am5gr_f108c083]
 Example 5

 	This example shows vectors x and y with
 positive strides and a real symmetric matrix A of order
 3, stored in lower storage mode. It uses the same input matrix A as
 in Example 1.
 Call Statement and Input: UPLO N ALPHA A LDA X INCX BETA Y INCY
 | | | | | | | | | |
CALL SSYMV('L' , 3 , 1.0 , A , 3 , X , 1 , 1.0 , Y , 2)

 ┌ ┐
 | 8.0 . . |
A = | 4.0 6.0 . |
 | 2.0 7.0 3.0 |
 └ ┘

X = (3.0, 2.0, 1.0)
Y = (5.0, . , 3.0, . , 2.0)

 Output: Y = (39.0, . , 34.0, . , 25.0)

 	[bookmark: am5gr_hsslmx__am5gr_f108c086]
 Example 6

 	This example shows vector x and y having
 strides of opposite signs. For x, which has negative
 stride, processing begins at element X(5), which
 is 1.0. The real symmetric matrix A of order 3 is stored
 in upper storage mode. It uses the same input matrix A as
 in Example 1.
 Call Statement and Input: UPLO N ALPHA A LDA X INCX BETA Y INCY
 | | | | | | | | | |
CALL SSYMV('U' , 3 , 1.0 , A , 4 , X , -2 , 2.0 , Y , 1)

 ┌ ┐
 | 8.0 4.0 2.0 |
A = | . 6.0 7.0 |
 | . . 3.0 |
 | . . . |
 └ ┘

X = (4.0, . , 2.0, . , 1.0)
Y = (6.0, 5.0, 4.0)

 Output: A = (36.0, 54.0, 36.0)

 	[bookmark: am5gr_hsslmx__am5gr_f108c089]
 Example 7

 	This example shows vector x and y with
 positive stride and a complex Hermitian matrix A of
 order 3, stored in lower storage mode. It uses the same input matrix A as
 in Example 3.
 Note: On input, the imaginary parts of the diagonal
 elements of the complex Hermitian matrix A are assumed
 to be zero, so you do not have to set these values.

 Call Statement and Input:
 UPLO N ALPHA A LDA X INCX BETA Y INCY
 | | | | | | | | | |
CALL CHEMV('L' , 3 , ALPHA , A , 3 , X , 1 , BETA , Y , 2)

ALPHA = (1.0, 0.0)

 ┌ ┐
 | (1.0, .) . . |
A = | (3.0, -5.0) (7.0, .) . |
 | (2.0, 3.0) (4.0, 8.0) (6.0, .) |
 └ ┘

 X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
BETA = (1.0, 0.0)
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))

 Output: Y = ((32.0, 21.0), . , (87.0, -8.0), . , (32.0, 64.0))

 	[bookmark: am5gr_hsslmx__am5gr_f108c092]
 Example 8

 	This example shows vector x and y having
 strides of opposite signs. For x, which has negative
 stride, processing begins at element X(5), which
 is (1.0, 2.0). The complex Hermitian matrix A of order
 3 is stored in upper storage mode. It uses the same input matrix A as
 in Example 3.
 Note: On input, the imaginary parts of the diagonal
 elements of the complex Hermitian matrix A are assumed
 to be zero, so you do not have to set these values.

 Call Statement and Input: UPLO N ALPHA A LDA X INCX BETA Y INCY
 | | | | | | | | | |
CALL CHEMV('U' , 3 , ALPHA , A , 3 , X , -2 , BETA , Y , 2)

ALPHA = (1.0, 0.0)

 ┌ ┐
 | (1.0, .) (3.0, 5.0) (2.0, -3.0) |
A = | . (7.0, .) (4.0, -8.0) |
 | . . (6.0, .) |
 └ ┘

 X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))

 BETA = (0.0, 0.0)

 Y =

 (not relevant)

 Output: Y = ((31.0, 21.0), . , (85.0, -7.0), . , (30.0, 63.0))

 	[bookmark: am5gr_hsslmx__am5gr_f108c095]
 Example 9

 	This example shows vectors x and y with
 positive strides and a real symmetric matrix A of order
 3. Matrix A is: ┌ ┐
 | 8.0 4.0 2.0 |
 | 4.0 6.0 7.0 |
 | 2.0 7.0 3.0 |
 └ ┘

 Call Statement and Input: N ALPHA AP X INCX Y INCY
 | | | | | | |
CALL SSLMX(3 , 1.0 , AP , X , 1 , Y , 2)

AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)
X = (3.0, 2.0, 1.0)
Y = (5.0, . , 3.0, . , 2.0)

 Output: Y = (39.0, . , 34.0, . , 25.0)

 Parent topic: Linear Algebra Subprograms

 SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and
 DSLR1 (Rank-One Update of a Real Symmetric or Complex Hermitian Matrix)

 Purpose

 SSPR, DSPR, SSYR, DSYR, SSLR1,
 and DSLR1 compute the rank-one update of a real symmetric matrix,
 using the scalar α, matrix A, vector x,
 and its transpose xT:

 A

 ←

 A

 +

 α

 xx

 T

 CHPR,
 ZHPR, CHER, and ZHER compute the rank-one update of a complex Hermitian
 matrix, using the scalar α, matrix A, vector x,
 and its conjugate transpose xH:

 A

 ←

 A

 +

 α

 xx

 H

 The
 following storage modes are used:

 	For SSPR, DSPR, CHPR, and ZHPR, matrix A is stored
 in upper- or lower-packed storage mode.

 	For SSYR, DSYR, CHER, and ZHER, matrix A is stored
 in upper or lower storage mode.

 	For SSLR1 and DSLR1, matrix A is stored in lower-packed
 storage mode.

 Table 103. Data
 Types.

 	A, x

 	α

 	Subprogram

 	Short-precision real

 	Short-precision real

 	SSPR, SSYR, and SSLR1

 	Long-precision real

 	Long-precision real

 	DSPR, DSYR, and DSLR1

 	Short-precision complex

 	Short-precision real

 	CHPR and CHER

 	Long-precision complex

 	Long-precision real

 	ZHPR and ZHER

 Note:

 	SSPR and DSPR are Level 2 BLAS subroutines. You should use these
 subroutines instead of SSLR1 and DSLR1, which are only provided for
 compatibility with earlier releases of ESSL.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SSPR | DSPR | CHPR | ZHPR (uplo, n, alpha, x, incx, ap)

 CALL SSYR | DSYR | CHER | ZHER (uplo, n, alpha, x, incx, a, lda)

 CALL
 SSLR1 | DSLR1 (n, alpha, x, incx, ap)

 	C and C++

 	sspr | dspr | chpr | zhpr (uplo, n, alpha, x, incx, ap);

 ssyr | dsyr | cher | zher (uplo, n, alpha, x, incx, a, lda);

 sslr1
 | dslr1 (n, alpha, x, incx, ap);

 	CBLAS

 	cblas_sspr | cblas_dspr | cblas_chpr | cblas_zhpr ([image: Start of change]cblas_layout[image: End of change], cblas_uplo, n, alpha, x, incx, ap);

 cblas_ssyr | cblas_dsyr | cblas_cher | cblas_zher ([image: Start of change]cblas_layout[image: End of change], cblas_uplo, n, alpha, x, incx, a, lda);

 	On Entry

 	

 	[image: Start of change]cblas_layout[image: End of change]

 	indicates whether the input and output matrices are stored in
 row major order or column major order, where:

 	If [image: Start of change]cblas_layout[image: End of change] = CblasRowMajor,
 the matrices are stored in row major order. 			

 	If [image: Start of change]cblas_layout[image: End of change] = CblasColMajor,
 the matrices are stored in column major order.

 Specified as: an object of enumerated type [image: Start of change]CBLAS_LAYOUT[image: End of change]. It
 must be CblasRowMajor or CblasColMajor.

 	uplo

 	indicates the storage mode used for matrix A, where:

 If uplo = 'U', A is stored in
 upper-packed or upper storage mode.

 If uplo = 'L', A is
 stored in lower-packed or lower storage mode.

 Specified as:
 a single character. It must be 'U' or 'L'.

 	cblas_uplo

 	indicates the storage mode used for matrix A, where:

 If cblas_uplo = CblasUpper, A is stored
 in upper-packed or upper storage mode.

 If cblas_uplo = CblasLower, A is
 stored in lower-packed or lower storage mode.

 Specified as:
 an object of enumerated type CBLAS_UPLO. It must be CblasUpper or
 CblasLower.

 	n

 	is the number of elements in vector x and the order
 of matrix A.
 Specified as: an integer; n ≥ 0.

 	alpha

 	is the scaling constant α.
 Specified as: a number of the data
 type indicated in Table 103.

 	 x

 	is the vector x of length n.

 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 103.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer, where:

 For SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER,
 and ZHER, incx < 0 or incx > 0.

 For
 SSLR1 and DSLR1, incx can have any value.

 	ap

 	has the following meaning:
 For SSPR and DSPR, ap is
 the real symmetric matrix A of order n,
 stored in upper- or lower-packed storage mode.

 For CHPR and
 ZHPR, ap is the complex Hermitian matrix A of
 order n, stored in upper- or lower-packed storage
 mode.

 For SSLR1 and DSLR1, ap is the real
 symmetric matrix A of order n, stored
 in lower-packed storage mode.

 Specified as: a one-dimensional
 array of (at least) length n(n+1)/2,
 containing numbers of the data type indicated in Table 103.

 	a

 	has the following meaning:
 For SSYR and DSYR, a is
 the real symmetric matrix A of order n,
 stored in upper or lower storage mode.

 For CHER and ZHER, a is
 the complex Hermitian matrix A of order n,
 stored in upper or lower storage mode.

 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 103.

 	lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ n.

 	On Return

 	

 	ap

 	is the matrix A of order n, containing
 the results of the computation. Returned as: a one-dimensional array,
 containing numbers of the data type indicated in Table 103.

 	a

 	is the matrix A of order n, containing
 the results of the computation. Returned as: a two-dimensional array,
 containing numbers of the data type indicated in Table 103.

 Notes

 	All subroutines accept lowercase letters for the uplo argument.

 	The vector x must have no common elements with matrix A;
 otherwise, results are unpredictable. See Concepts.

 	On input, the imaginary parts of the diagonal elements of the
 complex Hermitian matrix A are assumed to be zero, so
 you do not have to set these values. On output, if α ≠ 0.0, they are set
 to zero.

 	For a description of how symmetric matrices are stored in upper-
 or lower-packed storage mode and upper or lower storage mode, see Symmetric Matrix. For a description of
 how complex Hermitian matrices are stored in upper- or lower-packed
 storage mode and upper or lower storage mode, see Complex Hermitian Matrix.

 Function

 These subroutines perform the
 computations described. See references [42], [43], and [93].

 Note: If n or α is
 0, no computation is performed.

 	For CHPR and CHER

 	Intermediate results are accumulated in long precision when the
 AltiVec or VSX unit is not used.

 	For SSPR, SSYR, and SSLR1

 	Intermediate results are accumulated in long precision on some
 platforms when the AltiVec or VSX unit is not used.

 	[bookmark: am5gr_hsslr1__am5gr_f108c098a]
 For SSPR, DSPR, SSYR, DSYR, SSLR1, and DSLR1

 	
 These subroutines compute the rank-one update of a real symmetric
 matrix:

 A

 ←

 A

 +

 α

 xx

 T

 where:

 A

 is a real symmetric matrix of order

 n

 .

 α

 is a scalar.

 x

 is a vector of length

 n

 .

 x

 T

 is the transpose of vector

 x

 .

 It
 is expressed as follows:

 [image: Rank-One Update Graphic]

 	[bookmark: am5gr_hsslr1__am5gr_f108c099]
 For CHPR, ZHPR, CHER, and ZHER

 	
 These subroutines compute the rank-one update of a complex
 Hermitian matrix:

 A

 ←

 A

 +

 α

 xx

 H

 where:

 A

 is a complex Hermitian matrix of order

 n

 .

 α

 is a scalar.

 x

 is a vector of length

 n

 .

 x

 H

 is the conjugate transpose of vector

 x

 .

 It
 is expressed as follows:

 [image: Rank-One Update Graphic]

 Error conditions

 	[bookmark: am5gr_hsslr1__am5gr_f108c100]
 Computational Errors

 	None

 	[bookmark: am5gr_hsslr1__am5gr_f108c101]
 Input-Argument Errors

 	

 	[image: Start of change]cblas_layout[image: End of change] ≠ CblasRowMajor or
 CblasColMajor

 	uplo ≠ 'L' or 'U'

 	cblas_uplo ≠ CblasLower or CblasUpper

 	n < 0

 	incx = 0

 	lda ≤ 0

 	lda < n

 Examples

 	[bookmark: am5gr_hsslr1__am5gr_f108c102]
 Example 1

 	This example shows a vector x with a positive stride,
 and a real symmetric matrix A of order 3, stored in
 lower-packed storage mode. Matrix A is: ┌ ┐
 | 8.0 4.0 2.0 |
 | 4.0 6.0 7.0 |
 | 2.0 7.0 3.0 |
 └ ┘

 Call Statement and Input: UPLO N ALPHA X INCX AP
 | | | | | |
CALL SSPR('L' , 3 , 1.0 , X , 1 , AP)

X = (3.0, 2.0, 1.0)
AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)

 Output: AP = (17.0, 10.0, 5.0, 10.0, 9.0, 4.0)

 	[bookmark: am5gr_hsslr1__am5gr_f108c105]
 Example 2

 	This example shows a vector x with a negative stride,
 and a real symmetric matrix A of order 3, stored in
 upper-packed storage mode. It uses the same input matrix A as
 in Example 1.
 Call Statement and Input: UPLO N ALPHA X INCX AP
 | | | | | |
CALL SSPR('U' , 3 , 1.0 , X , -2 , AP)

X = (1.0, . , 2.0, . , 3.0)
AP = (8.0, 4.0, 6.0, 2.0, 7.0, 3.0)

 Output: AP = (17.0, 10.0, 10.0, 5.0, 9.0, 4.0)

 	[bookmark: am5gr_hsslr1__am5gr_f108c108]
 Example 3

 	This example shows a vector x with a positive stride,
 and a complex Hermitian matrix A of order 3, stored
 in lower-packed storage mode. Matrix A is: ┌ ┐
 | (1.0, 0.0) (3.0, 5.0) (2.0, -3.0) |
 | (3.0, -5.0) (7.0, 0.0) (4.0, -8.0) |
 | (2.0, 3.0) (4.0, 8.0) (6.0, 0.0) |
 └ ┘

 Note: On
 input, the imaginary parts of the diagonal elements of the complex
 Hermitian matrix A are assumed to be zero, so you do
 not have to set these values. On output, if α ≠ 0.0, they are set
 to zero.

 Call Statement and Input: UPLO N ALPHA X INCX AP
 | | | | | |
CALL CHPR('L' , 3 , 1.0 , X , 1 , AP)

X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
AP = ((1.0, .), (3.0, -5.0), (2.0, 3.0), (7.0, .),
 (4.0, 8.0), (6.0, .))

 Output: AP = ((6.0, 0.0), (7.0, -13.0), (13.0, 1.0), (23.0, 0.0),
 (16.0, 24.0), (31.0, 0.0))

 	[bookmark: am5gr_hsslr1__am5gr_f108c111]
 Example 4

 	This example shows a vector x with a negative stride,
 and a complex Hermitian matrix A of order 3, stored
 in upper-packed storage mode. It uses the same input matrix A as
 in Example 3.
 Note: On input, the imaginary parts of the diagonal
 elements of the complex Hermitian matrix A are assumed
 to be zero, so you do not have to set these values. On output, if α ≠ 0.0, they are set
 to zero.

 Call Statement and Input: UPLO N ALPHA X INCX AP
 | | | | | |
CALL CHPR('U' , 3 , 1.0 , X , -2 , AP)

X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))
AP = ((1.0, .), (3.0, 5.0), (7.0, .), (2.0, -3.0),
 (4.0, -8.0), (6.0, .))

 Output: AP = ((6.0, 0.0), (7.0, 13.0), (23.0, 0.0), (13.0, -1.0),
 (16.0, -24.0), (31.0, 0.0))

 	[bookmark: am5gr_hsslr1__am5gr_f108c114]
 Example 5

 	This example shows a vector x with a positive stride,
 and a real symmetric matrix A of order 3, stored in
 lower storage mode. It uses the same input matrix A as
 in Example 1.
 Call Statement and Input: UPLO N ALPHA X INCX A LDA
 | | | | | | |
CALL SSYR('L' , 3 , 1.0 , X , 1 , A , 3)

X = (3.0, 2.0, 1.0)

 ┌ ┐
 | 8.0 . . |
A = | 4.0 6.0 . |
 | 2.0 7.0 3.0 |
 └ ┘

 Output: ┌ ┐
 | 17.0 . . |
A = | 10.0 10.0 . |
 | 5.0 9.0 4.0 |
 └ ┘

 	[bookmark: am5gr_hsslr1__am5gr_f108c117]
 Example 6

 	This example shows a vector x with a negative stride,
 and a real symmetric matrix A of order 3, stored in
 upper storage mode. It uses the same input matrix A as
 in Example 1.
 Call Statement and Input: UPLO N ALPHA X INCX A LDA
 | | | | | | |
CALL SSYR('U' , 3 , 1.0 , X , -2 , A , 4)

X = (1.0, . , 2.0, . , 3.0)

 ┌ ┐
 | 8.0 4.0 2.0 |
A = | . 6.0 7.0 |
 | . . 3.0 |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | 17.0 10.0 5.0 |
A = | . 10.0 9.0 |
 | . . 4.0 |
 | . . . |
 └ ┘

 	[bookmark: am5gr_hsslr1__am5gr_f108c120]
 Example 7

 	This example shows a vector x with a positive stride,
 and a complex Hermitian matrix A of order 3, stored
 in lower storage mode. It uses the same input matrix A as
 in Example 3.
 Note: On input, the imaginary parts of the diagonal
 elements of the complex Hermitian matrix A are assumed
 to be zero, so you do not have to set these values. On output, if α ≠ 0.0, they are set
 to zero.

 Call Statement and Input: UPLO N ALPHA X INCX A LDA
 | | | | | | |
CALL CHER('L' , 3 , 1.0 , X , 1 , A , 3)

X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))

 ┌ ┐
 | (1.0, .) . . |
A = | (3.0, -5.0) (7.0, .) . |
 | (2.0, 3.0) (4.0, 8.0) (6.0, .) |
 └ ┘

 Output: ┌ ┐
 | (6.0, 0.0) . . |
A = | (7.0, -13.0) (23.0, 0.0) . |
 | (13.0, 1.0) (16.0, 24.0) (31.0, 0.0) |
 └ ┘

 	[bookmark: am5gr_hsslr1__am5gr_f108c126]

 	This example shows a vector x with a negative stride,
 and a complex Hermitian matrix A of order 3, stored
 in upper storage mode. It uses the same input matrix A as
 in Example 3.
 Note: On input, the imaginary parts of the diagonal
 elements of the complex Hermitian matrix A are assumed
 to be zero, so you do not have to set these values. On output, if α ≠ 0.0, they are set
 to zero.

 Call Statement and Input: UPLO N ALPHA X INCX A LDA
 | | | | | | |
CALL CHER('U' , 3 , 1.0 , X , -2 , A , 3)

X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))

 ┌ ┐
 | (1.0, .) (3.0, 5.0) (2.0, -3.0) |
A = | . (7.0, .) (4.0, -8.0) |
 | . . (6.0, .) |
 └ ┘

 Output: ┌ ┐
 | (6.0, 0.0) (7.0, 13.0) (13.0, -1.0) |
A = | . (23.0, 0.0) (16.0, -24.0) |
 | . . (31.0, 0.0) |
 └ ┘

 	[bookmark: am5gr_hsslr1__am5gr_f108c129]
 Example 9

 	This example shows a vector x with a positive stride,
 and a real symmetric matrix A of order 3, stored in
 lower-packed storage mode. It uses the same input matrix A as
 in Example 1.
 Call Statement and Input: N ALPHA X INCX AP
 | | | | |
CALL SSLR1(3 , 1.0 , X , 1 , AP)

X = (3.0, 2.0, 1.0)
AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)

 Output: AP = (17.0, 10.0, 5.0, 10.0, 9.0, 4.0)

 Parent topic: Linear Algebra Subprograms

 SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2,
 and DSLR2 (Rank-Two Update of a Real Symmetric or Complex Hermitian
 Matrix)

 Purpose

 SSPR2, DSPR2, SSYR2, DSYR2, SSLR2,
 and DSLR2 compute the rank-two update of a real symmetric matrix,
 using the scalar α, matrix A, vectors x and y,
 and their transposes xT and yT:

 A

 ←

 A

 +

 α

 xy

 T

 +

 α

 yx

 T

 CHPR2,
 ZHPR2, CHER2, and ZHER2, compute the rank-two update of a complex
 Hermitian matrix, using the scalar α, matrix A, vectors x and y,
 and their conjugate transposes xH and yH:

 [image: Rank-Two Update Graphic]

 The following storage modes are used:

 	For SSPR2, DSPR2, CHPR2, and ZHPR2, matrix A is
 stored in upper- or lower-packed storage mode.

 	For SSYR2, DSYR2, CHER2, and ZHER2, matrix A is
 stored in upper or lower storage mode.

 	For SSLR2 and DSLR2, matrix A is stored in lower-packed
 storage mode.

 Table 104. Data
 Types.

 	α, A, x, y

 	Subprogram

 	Short-precision real

 	SSPR2, SSYR2, and SSLR2

 	Long-precision real

 	DSPR2, DSYR2, and DSLR2

 	Short-precision complex

 	CHPR2 and CHER2

 	Long-precision complex

 	ZHPR2 and ZHER2

 Note:

 	SSPR2 and DSPR2 are Level 2 BLAS subroutines. You should use these
 subroutines instead of SSLR2 and DSLR2, which are only provided for
 compatibility with earlier releases of ESSL.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SSPR2 | DSPR2 | CHPR2 | ZHPR2 (uplo, n, alpha, x, incx, y, incy, ap)

 CALL SSYR2 | DSYR2 | CHER2 | ZHER2 (uplo, n, alpha, x, incx, y, incy, a, lda)

 CALL
 SSLR2 | DSLR2 (n, alpha, x, incx, y, incy, ap)

 	C and C++

 	sspr2 | dspr2 | chpr2 | zhpr2 (uplo, n, alpha, x, incx, y, incy, ap);

 ssyr2 | dsyr2 | cher2 | zher2 (uplo, n, alpha, x, incx, y, incy, a, lda);

 sslr2
 | dslr2 (n, alpha, x, incx, y, incy, ap);

 	CBLAS

 	cblas_sspr2 | cblas_dspr2 | cblas_chpr2 | cblas_zhpr2 ([image: Start of change]cblas_layout[image: End of change], cblas_uplo, n,
 alpha, x, incx, y,
 incy, ap);
 cblas_ssyr2 | cblas_dsyr2 | cblas_cher2 |
 cblas_zher2 ([image: Start of change]cblas_layout[image: End of change], cblas_uplo,
 n, alpha, x, incx,
 y, incy, a,
 lda);

 	On Entry

 	

 	[image: Start of change]cblas_layout[image: End of change]

 	indicates whether the input and output matrices are stored in
 row major order or column major order, where:

 	If [image: Start of change]cblas_layout[image: End of change] = CblasRowMajor,
 the matrices are stored in row major order. 			

 	If [image: Start of change]cblas_layout[image: End of change] = CblasColMajor,
 the matrices are stored in column major order.

 Specified as: an object of enumerated type [image: Start of change]CBLAS_LAYOUT[image: End of change]. It
 must be CblasRowMajor or CblasColMajor.

 	uplo

 	indicates the storage mode used for matrix A, where:

 If uplo = 'U', A is stored in
 upper-packed or upper storage mode.

 If uplo = 'L', A is
 stored in lower-packed or lower storage mode.

 Specified as:
 a single character. It must be 'U' or 'L'.

 	cblas_uplo

 	indicates the storage mode used for matrix A, where:

 If cblas_uplo = CblasUpper, A is stored
 in upper-packed or upper storage mode.

 If cblas_uplo = CblasLower, A is
 stored in lower-packed or lower storage mode.

 Specified as:
 an object of enumerated type CBLAS_UPLO. It must be CblasUpper or
 CblasLower.

 	 n

 	is the number of elements in vectors x and y and
 the order of matrix A.
 Specified as: an integer; n ≥ 0.

 	alpha

 	is the scaling constant α.
 Specified as: a number of the data
 type indicated in Table 104.

 	x

 	is the vector x of length n.

 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 104.

 	incx

 	is the stride for vector x.
 Specified as: an
 integer, where:

 For SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2,
 CHER2, and ZHER2, incx < 0 or incx > 0.

 For
 SSLR2 and DSLR2, incx can have any value.

 	y

 	is the vector y of length n.

 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incy|,
 containing numbers of the data type indicated in Table 104.

 	incy

 	is the stride for vector y.
 Specified as: an
 integer, where:

 For SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2,
 CHER2, and ZHER2, incy < 0 or incy > 0.

 For
 SSLR2 and DSLR2, incy can have any value.

 	ap

 	has the following meaning:
 For SSPR2 and DSPR2, ap is
 the real symmetric matrix A of order n,
 stored in upper- or lower-packed storage mode.

 For CHPR2 and
 ZHPR2, ap is the complex Hermitian matrix A of
 order n, stored in upper- or lower-packed storage
 mode.

 For SSLR2 and DSLR2, ap is the real
 symmetric matrix A of order n, stored
 in lower-packed storage mode.

 Specified as: a one-dimensional
 array of (at least) length n(n+1)/2,
 containing numbers of the data type indicated in Table 104.

 	a

 	has the following meaning:
 For SSYR2 and DSYR2, a is
 the real symmetric matrix A of order n,
 stored in upper or lower storage mode.

 For CHER2 and ZHER2, a is
 the complex Hermitian matrix A of order n,
 stored in upper or lower storage mode.

 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 104.

 	lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ n.

 	On Return

 	

 	ap

 	is the matrix A of order n, containing
 the results of the computation. Returned as: a one-dimensional array,
 containing numbers of the data type indicated in Table 104.

 	a

 	is the matrix A of order n, containing
 the results of the computation. Returned as: a two-dimensional array,
 containing numbers of the data type indicated in Table 104.

 Notes

 	All subroutines accept lowercase letters for the uplo argument.

 	The vectors x and y must have no common
 elements with matrix A; otherwise, results are unpredictable.
 See Concepts.

 	On input, the imaginary parts of the diagonal elements of the
 complex Hermitian matrix A are assumed to be zero, so
 you do not have to set these values. On output, if α ≠ zero, the imaginary
 parts of the diagonal elements are set to zero.

 	For a description of how symmetric matrices are stored in upper-
 or lower-packed storage mode and upper or lower storage mode, see Symmetric Matrix. For a description of
 how complex Hermitian matrices are stored in upper- or lower-packed
 storage mode and upper or lower storage mode, see Complex Hermitian Matrix.

 Function

 These subroutines perform the
 computation described. See references [42], [43], and [93]. If n or α is
 zero, no computation is performed.

 For SSPR2, SSYR2, SSLR2,
 CHPR2, and CHER2, intermediate results are accumulated in long precision
 when the AltiVec or VSX unit is not used.

 	[bookmark: am5gr_hsslr2__am5gr_f108c133]
 SSPR2, DSPR2, SSYR2, DSYR2, SSLR2, and DSLR2

 	
 These subroutines compute the rank-two update of a real symmetric
 matrix:

 A

 ←

 A

 +

 α

 xy

 T

 +

 α

 yx

 T

 where:

 A

 is a real symmetric matrix of order

 n

 .

 α

 is a scalar.

 x

 is a vector of length

 n

 .

 x

 T

 is the transpose of vector

 x

 .

 y

 is a vector of length

 n

 .

 y

 T

 is the transpose of vector

 y

 .

 It
 is expressed as follows:

 [image: Rank-Two Update Graphic]

 	[bookmark: am5gr_hsslr2__am5gr_f108c134]
 CHPR2, ZHPR2, CHER2, and ZHER2

 	
 These subroutines compute the rank-two update of a complex
 Hermitian matrix:

 [image: Rank-Two Update Graphic]

 where:

 A

 is a complex Hermitian matrix of order

 n

 .

 α

 is a scalar.

 x

 is a vector of length

 n

 .

 x

 H

 is the conjugate transpose of vector

 x

 .

 y

 is a vector of length

 n

 .

 y

 H

 is the conjugate transpose of vector

 y

 .

 It
 is expressed as follows:

 [image: Rank-Two Update Graphic]

 Error conditions

 	Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hsslr2__am5gr_f108c135]
 Computational Errors

 	None

 	[bookmark: am5gr_hsslr2__am5gr_f108c136]
 Input-Argument Errors

 	

 	[image: Start of change]cblas_layout[image: End of change] ≠ CblasRowMajor or
 CblasColMajor

 	uplo ≠ 'L' or 'U'

 	cblas_uplo ≠ CblasLower or CblasUpper

 	n < 0

 	incx = 0

 	incy = 0

 	lda ≤ 0

 	lda < n

 Examples

 	[bookmark: am5gr_hsslr2__am5gr_f108c137]
 Example 1

 	This example shows vectors x and y with
 positive strides and a real symmetric matrix A of order
 3, stored in lower-packed storage mode. Matrix A is:
 ┌ ┐
 | 8.0 4.0 2.0 |
 | 4.0 6.0 7.0 |
 | 2.0 7.0 3.0 |
 └ ┘

 Call Statement and Input: UPLO N ALPHA X INCX Y INCY AP
 | | | | | | | |
CALL SSPR2('L' , 3 , 1.0 , X , 1 , Y , 2 , AP)

X = (3.0, 2.0, 1.0)
Y = (5.0, . , 3.0, . , 2.0)
AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)

 Output: AP = (38.0, 23.0, 13.0, 18.0, 14.0, 7.0)

 	[bookmark: am5gr_hsslr2__am5gr_f108c140]
 Example 2

 	This example shows vector x and y having
 strides of opposite signs. For x, which has negative
 stride, processing begins at element X(5), which
 is 3.0. The real symmetric matrix A of order 3 is stored
 in upper-packed storage mode. It uses the same input matrix A as
 in Example 1.
 Call Statement and Input: UPLO N ALPHA X INCX Y INCY AP
 | | | | | | | |
CALL SSPR2('U' , 3 , 1.0 , X , -2 , Y , 2 , AP)

X = (1.0, . , 2.0, . , 3.0)
Y = (5.0, . , 3.0, . , 2.0)
AP = (8.0, 4.0, 6.0, 2.0, 7.0, 3.0)

 Output: AP = (38.0, 23.0, 18.0, 13.0, 14.0, 7.0)

 	[bookmark: am5gr_hsslr2__am5gr_f108c143]
 Example 3

 	This example shows vector x and y with
 positive stride and a complex Hermitian matrix A of
 order 3, stored in lower-packed storage mode. Matrix A is:
 ┌ ┐
 | (1.0, 0.0) (3.0, 5.0) (2.0, -3.0) |
 | (3.0, -5.0) (7.0, 0.0) (4.0, -8.0) |
 | (2.0, 3.0) (4.0, 8.0) (6.0, 0.0) |
 └ ┘

 Note: On
 input, the imaginary parts of the diagonal elements of the complex
 Hermitian matrix A are assumed to be zero, so you do
 not have to set these values. On output, if α ≠ zero, the imaginary
 parts of the diagonal elements are set to zero.

 Call Statement and Input: UPLO N ALPHA X INCX Y INCY AP
 | | | | | | | |
CALL CHPR2('L' , 3 , ALPHA , X , 1 , Y , 2 , AP)

ALPHA = (1.0, 0.0)
X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))
AP = ((1.0, .), (3.0, -5.0), (2.0, 3.0), (7.0, .),
 (4.0, 8.0), (6.0, .))

 Output: AP = ((3.0, 0.0), (7.0, -10.0), (9.0, 4.0), (23.0, 0.0),
 (14.0, 23.0), (26.0, 0.0))

 	[bookmark: am5gr_hsslr2__am5gr_f108c146]
 Example 4

 	This example shows vector x and y having
 strides of opposite signs. For x, which has negative
 stride, processing begins at element X(5), which
 is (1.0,2.0). The complex Hermitian matrix A of order
 3 is stored in upper-packed storage mode. It uses the same input matrix A as
 in Example 3.
 Note: On input, the imaginary parts of the diagonal
 elements of the complex Hermitian matrix A are assumed
 to be zero, so you do not have to set these values. On output, if α ≠ zero, the imaginary
 parts of the diagonal elements are set to zero.

 Call Statement and Input: UPLO N ALPHA X INCX Y INCY AP
 | | | | | | | |
CALL CHPR2('U' , 3 , ALPHA , X , -2 , Y , 2 , AP)

ALPHA = (1.0, 0.0)
X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))
AP = ((1.0, .), (3.0, 5.0), (7.0, .), (2.0, -3.0),
 (4.0, -8.0), (6.0, .))

 Output: AP = ((3.0, 0.0), (7.0, 10.0), (23.0, 0.0), (9.0, -4.0),
 (14.0, -23.0), (26.0, 0.0))

 	[bookmark: am5gr_hsslr2__am5gr_f108c151]
 Example 5

 	This example shows vectors x and y with
 positive strides, and a real symmetric matrix A of order
 3, stored in lower storage mode. It uses the same input matrix A as
 in Example 1.
 Call Statement and Input: UPLO N ALPHA X INCX Y INCY A LDA
 | | | | | | | | |
CALL SSYR2('L' , 3 , 1.0 , X , 1 , Y , 2 , A , 3)

X = (3.0, 2.0, 1.0)
Y = (5.0, . , 3.0, . , 2.0)

 ┌ ┐
 | 8.0 . . |
A = | 4.0 6.0 . |
 | 2.0 7.0 3.0 |
 └ ┘

 Output: ┌ ┐
 | 38.0 . . |
A = | 23.0 18.0 . |
 | 13.0 14.0 7.0 |
 └ ┘

 	[bookmark: am5gr_hsslr2__am5gr_f108c154]
 Example 6

 	This example shows vector x and y having
 strides of opposite signs. For x, which has negative
 stride, processing begins at element X(5), which
 is 3.0. The real symmetric matrix A of order 3 is stored
 in upper storage mode. It uses the same input matrix A as
 in Example 1.
 Call Statement and Input: UPLO N ALPHA X INCX Y INCY A LDA
 | | | | | | | | |
CALL SSYR2('U' , 3 , 1.0 , X , -2 , Y , 2 , A , 4)

X = (1.0, . , 2.0, . , 3.0)
Y = (5.0, . , 3.0, . , 2.0)

 ┌ ┐
 | 8.0 4.0 2.0 |
A = | . 6.0 7.0 |
 | . . 3.0 |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | 38.0 23.0 13.0 |
A = | . 18.0 14.0 |
 | . . 7.0 |
 | . . . |
 └ ┘

 	[bookmark: am5gr_hsslr2__am5gr_f108c157]
 Example 7

 	This example shows vector x and y with
 positive stride, and a complex Hermitian matrix A of
 order 3, stored in lower storage mode. It uses the same input matrix A as
 in Example 3.
 Note: On input, the imaginary parts of the diagonal
 elements of the complex Hermitian matrix A are assumed
 to be zero, so you do not have to set these values. On output, if α ≠ zero, the imaginary
 parts of the diagonal elements are set to zero.

 Call Statement and Input: UPLO N ALPHA X INCX Y INCY A LDA
 | | | | | | | | |
CALL CHER2('L' , 3 , ALPHA , X , 1 , Y , 2 , A , 3)

ALPHA = (1.0, 0.0)
X = ((1.0, 2.0), (4.0, 0.0), (3.0, 4.0))
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))

 ┌ ┐
 | (1.0, .) . . |
A = | (3.0, -5.0) (7.0, .) . |
 | (2.0, 3.0) (4.0, 8.0) (6.0, .) |
 └ ┘

 Output: ┌ ┐
 | (3.0, 0.0) . . |
A = | (7.0, -10.0) (23.0, 0.0) . |
 | (9.0, 4.0) (14.0, 23.0) (26.0, 0.0) |
 └ ┘

 	[bookmark: am5gr_hsslr2__am5gr_f108c159]
 Example 8

 	This example shows vector x and y having
 strides of opposite signs. For x, which has negative
 stride, processing begins at element X(5), which
 is (1.0, 2.0). The complex Hermitian matrix A of order
 3 is stored in upper storage mode. It uses the same input matrix A as
 in Example 3.
 Note: On input, the imaginary parts of the diagonal
 elements of the complex Hermitian matrix A are assumed
 to be zero, so you do not have to set these values. On output, if α ≠ zero, the imaginary
 parts of the diagonal elements are set to zero.

 Call Statement and Input: UPLO N ALPHA X INCX Y INCY A LDA
 | | | | | | | | |
CALL CHER2('U' , 3 , ALPHA , X , -2 , Y , 2 , A , 3)

ALPHA = (1.0, 0.0)
X = ((3.0, 4.0), . , (4.0, 0.0), . , (1.0, 2.0))
Y = ((1.0, 0.0), . , (2.0, -1.0), . , (2.0, 1.0))

 ┌ ┐
 | (1.0, .) (3.0, 5.0) (2.0, -3.0) |
A = | . (7.0, .) (4.0, -8.0) |
 | . . (6.0, .) |
 └ ┘

 Output: ┌ ┐
 | (3.0, 0.0) (7.0, 10.0) (9.0, -4.0) |
A = | . (23.0, 0.0) (14.0, -23.0) |
 | . . (26.0, 0.0) |
 └ ┘

 	[bookmark: am5gr_hsslr2__am5gr_f108c162]
 Example 9

 	This example shows vectors x and y with
 positive strides and a real symmetric matrix A of order
 3, stored in lower-packed storage mode. It uses the same input matrix A as
 in Example 1.
 Call Statement and Input: N ALPHA X INCX Y INCY AP
 | | | | | | |
CALL SSLR2(3 , 1.0 , X , 1 , Y , 2 , AP)

X = (3.0, 2.0, 1.0)
Y = (5.0, . , 3.0, . , 2.0)
AP = (8.0, 4.0, 2.0, 6.0, 7.0, 3.0)

 Output: AP = (38.0, 23.0, 13.0, 18.0, 14.0, 7.0)

 Parent topic: Linear Algebra Subprograms

 SGBMV, DGBMV, CGBMV, and ZGBMV (Matrix-Vector Product for a
 General Band Matrix, Its Transpose, or Its Conjugate Transpose)

 Purpose

 SGBMV and DGBMV compute the matrix-vector
 product for either a real general band matrix or its transpose, where
 the general band matrix is stored in BLAS-general-band storage mode.
 It uses the scalars α and β, vectors x and y,
 and general band matrix A or its transpose:

 y

 ←

 β

 y

 +

 α

 Ax

 y

 ←

 β

 y

 +

 α

 A

 T

 x

 CGBMV
 and ZGBMV compute the matrix-vector product for either a complex general
 band matrix, its transpose, or its conjugate transpose, where the
 general band matrix is stored in BLAS-general-band storage mode. It
 uses the scalars α and β, vectors x and y,
 and general band matrix A, its transpose, or its conjugate
 transpose:

 y

 ←

 β

 y

 +

 α

 Ax

 y

 ←

 β

 y

 +

 α

 A

 T

 x

 y

 ←

 β

 y

 +

 α

 A

 H

 x

 Table 105. Data Types.

 	α, β, x, y, A

 	Subprogram

 	Short-precision real

 	SGBMV

 	Long-precision real

 	DGBMV

 	Short-precision complex

 	CGBMV

 	Long-precision complex

 	ZGBMV

 Syntax

 	Fortran

 	CALL SGBMV | DGBMV | CGBMV | ZGBMV (transa, m, n, ml, mu, alpha, a, lda, x, incx, beta, y, incy)

 	C and C++

 	sgbmv | dgbmv | cgbmv | zgbmv (transa, m, n, ml, mu, alpha, a, lda, x, incx, beta, y, incy);

 	CBLAS

 	cblas_sgbmv | cblas_dgbmv |cblas_cgbmv | cblas_zgbmv ([image: Start of change]cblas_layout[image: End of change], cblas_transa, m, n, ml, mu, alpha, a, lda, x, incx, beta, y, incy);

 	On Entry

 	

 	[image: Start of change]cblas_layout[image: End of change]

 	indicates whether the input matrices are stored in row major order
 or column major order, where:

 	If [image: Start of change]cblas_layout[image: End of change] = CblasRowMajor,
 the matrices are stored in row major order.

 	If [image: Start of change]cblas_layout[image: End of change] = CblasColMajor,
 the matrices are stored in column major order.

 Specified as: an object of enumerated type [image: Start of change]CBLAS_LAYOUT[image: End of change]. It
 must be CblasRowMajor or CblasColMajor.

 	transa

 	indicates the form of matrix A to use in the computation,
 where:
 If transa = 'N', A is used in the
 computation.

 If transa = 'T', AT is
 used in the computation.

 If transa = 'C', AH is
 used in the computation.

 Specified as: a single character.
 It must be 'N', 'T', or 'C'.

 	cblas_transa

 	indicates the form of matrix A to use in the computation,
 where:
 If cblas_transa = CblasNoTrans, A is
 used in the computation.

 If cblas_transa = CblasTrans, AT is
 used in the computation.

 If cblas_transa = CblasConjTrans, AH is
 used in the computation.

 Specified as: an object of enumerated
 type CBLAS_TRANSPOSE. It must be CblasNoTrans, CblasTrans, or CblasConjTrans.

 	 m

 	is the number of rows in matrix A, and:
 If transa = 'N',
 it is the length of vector y.

 If transa = 'T'
 or 'C', it is the length of vector x.

 Specified
 as: an integer; m ≥ 0.

 	n

 	is the number of columns in matrix A, and:
 If transa = 'N',
 it is the length of vector x.

 If transa = 'T'
 or 'C', it is the length of vector y.

 Specified
 as: an integer; n ≥ 0.

 	 ml

 	is the lower band width ml of the matrix A.

 Specified as: an integer; ml ≥ 0.

 	 mu

 	is the upper band width mu of the matrix A.

 Specified as: an integer; mu ≥ 0.

 	 alpha

 	is the scaling constant α.
 Specified as: a number of the data
 type indicated in Table 105.

 	 a

 	is the m by n general band
 matrix A, stored in BLAS-general-band storage mode.
 It has an upper band width mu and a lower band
 width ml. Also:
 If transa = 'N', A is
 used in the computation.

 If transa = 'T', AT is
 used in the computation.

 If transa = 'C', AH is
 used in the computation.
 Note: No data should be moved to form AT or AH;
 that is, the matrix A should always be stored in its
 untransposed form in BLAS-general-band storage mode.

 Specified
 as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 105, where lda ≥ ml+mu+1.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ ml+mu+1.

 	 x

 	is the vector x, where:
 If transa = 'N',
 it has length n.

 If transa = 'T'
 or 'C', it has length m.

 Specified as:
 a one-dimensional array, containing numbers of the data type indicated
 in Table 105, where:

 If transa = 'N',
 it must have at least 1+(n-1)|incx|
 elements.

 If transa = 'T' or 'C', it must have at least
 1+(m-1)|incx| elements.

 	 incx

 	is the stride for vector x.
 Specified as: an
 integer; incx > 0 or incx < 0.

 	 beta

 	is the scaling constant β.
 Specified as: a number of the data
 type indicated in Table 105.

 	 y

 	is the vector y, where:
 If transa = 'N',
 it has length m.

 If transa = 'T'
 or 'C', it has length n.

 Specified as:
 a one-dimensional array, containing numbers of the data type indicated
 in Table 105, where:

 If transa = 'N',
 it must have at least 1+(m-1)|incy|
 elements.

 If transa = 'T' or 'C', it must have at least
 1+(n-1)|incy| elements.

 	 incy

 	is the stride for vector y.
 Specified as: an
 integer; incy > 0 or incy < 0.

 	On Return

 	

 	 y

 	is the vector y, containing the result of the computation,
 where:
 If transa = 'N', it has length m.

 If transa = 'T'
 or 'C', it has length n.

 Returned as:
 a one-dimensional array, containing numbers of the data type indicated
 in Table 105.

 Notes

 	For SGBMV and DGBMV, if you specify 'C' for the transa argument,
 it is interpreted as though you specified 'T'.

 	All subroutines accept lowercase letters for the transa argument.

 	Vector y must have no common elements with matrix A or
 vector x; otherwise, results are unpredictable. See Concepts.

 	To achieve optimal performance, use lda = mu+ml+1.

 	For general band matrices, if you specify ml ≥ m or mu ≥ n,
 ESSL assumes, only for purposes of the computation, that the
 lower band width is m-1 or the upper band width
 is n-1, respectively. However, ESSL uses the original
 values for ml and mu for
 the purposes of finding the locations of element a11 and
 all other elements in the array specified for A, as
 described in General Band Matrix.
 For an illustration of this technique, see Example 4.

 	For a description of how a general band matrix is stored in BLAS-general-band
 storage mode in an array, see General Band Matrix.

 Function

 The possible computations that
 can be performed by these subroutines are described. Varying implementation
 techniques are used for this computation to improve performance. As
 a result, accuracy of the computational result may vary for different
 computations.

 In all the computations, general band matrix A is
 stored in its untransposed form in an array, using BLAS-general-band
 storage mode.

 For SGBMV and CGBMV, intermediate results are
 accumulated in long precision. Occasionally, for performance reasons,
 these intermediate results are truncated to short precision and stored.

 See
 references [42], [43], [46], [54], and [93]. No computation
 is performed if m or n is 0
 or if α is
 zero and β is
 one.

 	[bookmark: am5gr_hsgbmv__am5gr_f108c166]
 General Band Matrix

 	For SGBMV, DGBMV, CGBMV, and ZGBMV, the matrix-vector product
 for a general band matrix is expressed as follows:

 y

 ←

 β

 y

 +

 α

 Ax

 where:

 x is a vector of length n.

 y is
 a vector of length m.

 α is a scalar.

 β is
 a scalar.

 A is an m by n general
 band matrix, having a lower band width of ml and
 an upper band width of mu.

 	[bookmark: am5gr_hsgbmv__am5gr_f108c167]
 Transpose of a General Band Matrix

 	
 For SGBMV, DGBMV, CGBMV, and ZGBMV, the matrix-vector product
 for the transpose of a general band matrix is expressed as:

 y

 ←

 β

 y

 +

 α

 A

 T

 x

 where:

 x is
 a vector of length m.

 y is
 a vector of length n.

 α is a scalar.

 β is
 a scalar.

 AT is the transpose of an m by n general
 band matrix A, having a lower band width of ml and
 an upper band width of mu.

 	[bookmark: am5gr_hsgbmv__am5gr_f108c168]
 Conjugate Transpose of a General Band Matrix

 	
 For CGBMV and ZGBMV, the matrix-vector product for the conjugate
 transpose of a general band matrix is expressed as follows:

 y

 ←

 β

 y

 +

 α

 A

 H

 x

 where:

 x is
 a vector of length m.

 y is
 a vector of length n.

 α is a scalar.

 β is
 a scalar.

 AH is the conjugate transpose
 of an m by n general band matrix A of
 order n, having a lower band width of ml and
 an upper band width of mu.

 Error conditions

 	Resource Errors

 	Unable to allocate internal work area

 	[bookmark: am5gr_hsgbmv__am5gr_f108c169]
 Computational Errors

 	None

 	[bookmark: am5gr_hsgbmv__am5gr_f108c170]
 Input-Argument Errors

 	

 	[image: Start of change]cblas_layout[image: End of change] ≠ CblasRowMajor or
 CblasColMajor

 	transa ≠ 'N', 'T', or 'C'

 	cblas_transa ≠ CblasNoTrans, CblasTrans,
 or CblasConjTrans

 	m < 0

 	n < 0

 	ml < 0

 	mu < 0

 	lda ≤ 0

 	lda < ml+mu+1

 	incx = 0

 	incy = 0

 Examples

 	[bookmark: am5gr_hsgbmv__am5gr_f108c171]
 Example 1

 	This example shows how to use SGBMV to perform the computation y←βy+αAx,
 where TRANSA is equal to 'N', and the following real
 general band matrix A is used in the computation. Matrix A is:
 ┌ ┐
 | 1.0 1.0 1.0 0.0 |
 | 2.0 2.0 2.0 2.0 |
 | 3.0 3.0 3.0 3.0 |
 | 4.0 4.0 4.0 4.0 |
 | 0.0 5.0 5.0 5.0 |
 └ ┘

 Call Statement and Input: TRANSA M N ML MU ALPHA A LDA X INCX BETA Y INCY
 | | | | | | | | | | | | |
CALL SGBMV('N' , 5 , 4 , 3 , 2 , 2.0 , A , 8 , X , 1 , 10.0 , Y , 2)

 ┌ ┐
 | . . 1.0 2.0 |
 | . 1.0 2.0 3.0 |
 | 1.0 2.0 3.0 4.0 |
A = | 2.0 3.0 4.0 5.0 |
 | 3.0 4.0 5.0 . |
 | 4.0 5.0 . . |
 | |
 | |
 └ ┘

 X = (1.0, 2.0, 3.0, 4.0)
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0, .)

 Output: Y = (22.0, . , 60.0, . , 90.0, . , 120.0, . , 140.0, .)

 	[bookmark: am5gr_hsgbmv__am5gr_f108c174]
 Example 2

 	This example shows how to use SGBMV to perform the computation y ← βy+αATx,
 where TRANSA is equal to 'T', and the transpose of
 a real general band matrix A is used in the computation.
 It uses the same input as Example 1.
 Call Statement
 and Input: TRANSA M N ML MU ALPHA A LDA X INCX BETA Y INCY
 | | | | | | | | | | | | |
CALL SGBMV('T' , 5 , 4 , 3 , 2 , 2.0 , A , 8 , X , 1 , 10.0 , Y , 2)

 Output: Y = (70.0, . , 130.0, . , 140.0, . , 148.0, .)

 	[bookmark: am5gr_hsgbmv__am5gr_f108c177]
 Example 3

 	This example shows how to use CGBMV to perform the computation y←βy+αAHx,
 where TRANSA is equal to 'C', and the complex conjugate
 of the following general band matrix A is used in the
 computation. Matrix A is: ┌ ┐
 | (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (0.0, 0.0) |
 | (2.0, 2.0) (2.0, 2.0) (2.0, 2.0) (2.0, 2.0) |
 | (3.0, 3.0) (3.0, 3.0) (3.0, 3.0) (3.0, 3.0) |
 | (4.0, 4.0) (4.0, 4.0) (4.0, 4.0) (4.0, 4.0) |
 | (0.0, 0.0) (5.0, 5.0) (5.0, 5.0) (0.0, 0.0) |
 └ ┘

 Call Statement and Input: TRANSA M N ML MU ALPHA A LDA X INCX BETA Y INCY
 | | | | | | | | | | | | |
CALL CGBMV('C' , 5 , 4 , 3 , 2 , ALPHA , A , 8 , X , 1 , BETA , Y , 2)

 ┌ ┐
 | . . (1.0, 1.0) (2.0, 2.0) |
 | . (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) |
 | (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) |
A = | (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) |
 | (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) . |
 | (4.0, 4.0) (5.0, 5.0) . . |
 | |
 | |
 └ ┘

 X = ((1.0, 2.0), (2.0, 3.0), (3.0, 4.0), (4.0, 5.0),
 (5.0, 6.0))
ALPHA = (1.0, 1.0)
BETA = (10.0, 0.0)
Y = ((1.0, 2.0), . , (2.0, 3.0), . , (3.0, 4.0), . ,
 (4.0, 5.0), .)

 Output: Y = ((70.0, 100.0), . , (130.0, 170.0), . ,
 (140.0, 180.0), . , (148.0, 186.0), .)

 	[bookmark: am5gr_hsgbmv__am5gr_thisx4]
 Example 4

 	This example shows how to use SGBMV to perform the computation y←βy+αAx,
 where ml ≥ m and mu ≥ n, TRANSA is
 equal to 'N', and the following real general band matrix A is
 used in the computation. Matrix A is: ┌ ┐
 | 1.0 1.0 1.0 1.0 1.0 |
 | 2.0 2.0 2.0 2.0 2.0 |
 | 3.0 3.0 3.0 3.0 3.0 |
 | 4.0 4.0 4.0 4.0 4.0 |
 └ ┘

 Call Statement and Input: TRANSA M N ML MU ALPHA A LDA X INCX BETA Y INCY
 | | | | | | | | | | | | |
CALL SGBMV('N' , 4 , 5 , 6 , 5 , 2.0 , A , 12 , X , 1 , 10.0 , Y , 2)

 ┌ ┐
 | |
 | 1.0 |
 | . . . 1.0 2.0 |
 | . . 1.0 2.0 3.0 |
 | . 1.0 2.0 3.0 4.0 |
A = | 1.0 2.0 3.0 4.0 . |
 | 2.0 3.0 4.0 . . |
 | 3.0 4.0 . . . |
 | 4.0 |
 | |
 | |
 | |
 └ ┘

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, .)

 Output: Y = (40.0, . , 80.0, . , 120.0, . , 160.0, .)

 Parent topic: Linear Algebra Subprograms

 SSBMV, DSBMV, CHBMV, and ZHBMV (Matrix-Vector Product for a
 Real Symmetric or Complex Hermitian Band Matrix)

 Purpose

 SSBMV and DSBMV compute the matrix-vector
 product for a real symmetric band matrix. CHBMV and ZHBMV compute
 the matrix-vector product for a complex Hermitian band matrix. The
 band matrix A is stored in either upper- or lower-band-packed
 storage mode. It uses the scalars α and β, vectors x and y,
 and band matrix A:

 y

 ←

 β

 y

 +

 α

 Ax

 y

 ←

 β

 y

 +

 α

 Ax

 Table 106. Data Types.

 	α, β, x, y, A

 	Subprogram

 	Short-precision real

 	SSBMV

 	Long-precision real

 	DSBMV

 	Short-precision complex

 	CHBMV

 	Long-precision complex

 	ZHBMV

 Syntax

 	Fortran

 	CALL SSBMV | DSBMV | CHBMV | ZHBMV (uplo, n, k, alpha, a, lda, x, incx, beta, y, incy)

 	C and C++

 	ssbmv | dsbmv | chbmv | zhbmv (uplo, n, k, alpha, a, lda, x, incx, beta, y, incy);

 	CBLAS

 	cblas_ssbmv | cblas_dsbmv | cblas_chbmv | cblas_zhbmv ([image: Start of change]cblas_layout[image: End of change], cblas_uplo, n, k, alpha, a, lda, x, incx, beta, y, incy);

 	On Entry

 	

 	[image: Start of change]cblas_layout[image: End of change]

 	indicates whether the input matrices are stored in row major order
 or column major order, where:

 	If [image: Start of change]cblas_layout[image: End of change] = CblasRowMajor,
 the matrices are stored in row major order.

 	If [image: Start of change]cblas_layout[image: End of change] = CblasColMajor,
 the matrices are stored in column major order.

 Specified as: an object of enumerated type [image: Start of change]CBLAS_LAYOUT[image: End of change]. It
 must be CblasRowMajor or CblasColMajor.

 	 uplo

 	indicates the storage mode used for matrix A, where
 either the upper or lower triangle can be stored:
 If uplo = 'U', A is
 stored in upper-band-packed storage mode.

 If uplo = 'L', A is
 stored in lower-band-packed storage mode.

 Specified as: a
 single character. It must be 'U' or 'L'.

 	cblas_uplo

 	indicates the storage mode used for matrix A, where:

 If cblas_uplo = CblasUpper, A is stored
 in upper-band-packed storage mode.

 If cblas_uplo = CblasLower, A is
 stored in lower-band-packed storage mode.

 Specified
 as: an object of enumerated type CBLAS_UPLO. It must be CblasUpper
 or CblasLower.

 	 n

 	is the order of matrix A and the number of elements
 in vectors x and y.
 Specified as:
 an integer; n ≥ 0.

 	 k

 	is the half band width k of the matrix A.

 Specified as: an integer; k ≥ 0.

 	 alpha

 	is the scaling constant α.
 Specified as: a number of the data
 type indicated in Table 106.

 	 a

 	is the real symmetric or complex Hermitian band matrix A of
 order n, having a half band width of k,
 where:
 If uplo = 'U', A is stored in
 upper-band-packed storage mode.

 If uplo = 'L', A is
 stored in lower-band-packed storage mode.

 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 106,
 where lda ≥ k+1.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ k+1.

 	 x

 	is the vector x of length n.

 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 106.

 	 incx

 	is the stride for vector x.
 Specified as: an
 integer; incx > 0 or incx < 0.

 	 beta

 	is the scaling constant β.
 Specified as: a number of the data
 type indicated in Table 106.

 	 y

 	is the vector y of length n.

 Specified as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 106.

 	 incy

 	is the stride for vector y.
 Specified as: an
 integer; incy > 0 or incy < 0.

 	On Return

 	

 	 y

 	is the vector y of length n,
 containing the result of the computation. Returned as: a one-dimensional
 array, containing numbers of the data type indicated in Table 106.

 Notes

 	All subroutines accept lowercase letters for the uplo argument.

 	Vector y must have no common elements with matrix A or
 vector x; otherwise, results are unpredictable. See Concepts.

 	To achieve optimal performance in these subroutines, use lda = k+1.

 	The imaginary parts of the diagonal elements of the complex Hermitian
 matrix A are assumed to be zero, so you do not have
 to set these values.

 	For real symmetric and complex Hermitian band matrices, if you
 specify k ≥ n,
 ESSL assumes, only for purposes of the computation, that the
 half band width of matrix A is n-1;
 that is, it processes matrix A, of order n,
 as though it is a (nonbanded) real symmetric or complex Hermitian
 matrix. However, ESSL uses the original value for k for
 the purposes of finding the locations of element a11 and
 all other elements in the array specified for A, as
 described in the storage modes referenced in the next note. For an
 illustration of this technique, see Example 3.

 	For a description of how a real symmetric band matrix is stored,
 see Upper-Band-Packed Storage Mode or Lower-Band-Packed Storage Mode. For a description of
 how a complex Hermitian band matrix is stored, see Complex Hermitian Matrix.

 Function

 These subroutines perform the
 following matrix-vector product, using a real symmetric or complex
 Hermitian band matrix A, stored in either upper- or
 lower-band-packed storage mode:

 y

 ←

 β

 y

 +

 α

 Ax

 where:

 x and y are
 vectors of length n.

 α and β are
 scalars.

 A is an real symmetric or complex Hermitian
 band matrix of order n, having a half bandwidth
 of k.

 For SSBMV and CHBMV, intermediate
 results are accumulated in long precision when the AltiVec or VSX
 unit is not used. Occasionally, for performance reasons, these intermediate
 results are truncated to short precision and stored.

 See references [42], [46], [54], and [93]. No computation
 is performed if n is 0 or if α is zero and β is one.

 Error conditions

 	Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hssbmv__am5gr_f108c183]
 Computational Errors

 	None

 	[bookmark: am5gr_hssbmv__am5gr_f108c184]
 Input-Argument Errors

 	

 	[image: Start of change]cblas_layout[image: End of change] ≠ CblasRowMajor or
 CblasColMajor

 	uplo ≠ 'U' or 'L'

 	cblas_uplo ≠ CblasLower or CblasUpper

 	n < 0

 	k < 0

 	lda ≤ 0

 	lda < k+1

 	incx = 0

 	incy = 0

 Examples

 	Example 1

 	
 This example shows how to use SSBMV to perform the matrix-vector
 product, where the real symmetric band matrix A of order
 7 and half band width of 3 is stored in upper-band-packed storage
 mode. Matrix A is: ┌ ┐
 | 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
 | 1.0 2.0 2.0 2.0 2.0 0.0 0.0 |
 | 1.0 2.0 3.0 3.0 3.0 3.0 0.0 |
 | 1.0 2.0 3.0 4.0 4.0 4.0 4.0 |
 | 0.0 2.0 3.0 4.0 5.0 5.0 5.0 |
 | 0.0 0.0 3.0 4.0 5.0 6.0 6.0 |
 | 0.0 0.0 0.0 4.0 5.0 6.0 7.0 |
 └ ┘

 Call Statement and Input: UPLO N K ALPHA A LDA X INCX BETA Y INCY
 | | | | | | | | | | |
CALL SSBMV('U' , 7 , 3 , 2.0 , A , 5 , X , 1 , 10.0 , Y , 2)

 ┌ ┐
 | . . . 1.0 2.0 3.0 4.0 |
 | . . 1.0 2.0 3.0 4.0 5.0 |
A = | . 1.0 2.0 3.0 4.0 5.0 6.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 |
 | |
 └ ┘

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0)
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0, . , 6.0, . , 7.0)

 Output: Y = (30.0, . , 78.0, . , 148.0, . , 244.0, . , 288.0, . ,
 316.0, . , 322.0)

 	Example 2

 	
 This example shows how to use CHBMV to perform the matrix-vector
 product, where the complex Hermitian band matrix A of
 order 7 and half band width of 3 is stored in lower-band-packed storage
 mode. Matrix A is:

 ┌ ┐
 | (1.0, 0.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) |
 | (1.0, -1.0) (2.0, 0.0) (2.0, 2.0) (2.0, 2.0) (2.0, 2.0) (0.0, 0.0) (0.0, 0.0) |
 | (1.0, -1.0) (2.0, -2.0) (3.0, 0.0) (3.0, 3.0) (3.0, 3.0) (3.0, 3.0) (0.0, 0.0) |
 | (1.0, -1.0) (2.0, -2.0) (3.0, -3.0) (4.0, 0.0) (4.0, 4.0) (4.0, 4.0) (4.0, 4.0) |
 | (0.0, 0.0) (2.0, -2.0) (3.0, -3.0) (4.0, -4.0) (5.0, 0.0) (5.0, 5.0) (5.0, 5.0) |
 | (0.0, 0.0) (0.0, 0.0) (3.0, -3.0) (4.0, -4.0) (5.0, -5.0) (6.0, 0.0) (6.0, 6.0) |
 | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (4.0, -4.0) (5.0, -5.0) (6.0, -6.0) (7.0, 0.0) |
 └ ┘

 Note: The imaginary parts of the diagonal elements of a complex
 Hermitian matrix are assumed to be zero, so you do not need to set
 these values.

 Call Statement and Input:
 UPLO N K ALPHA A LDA X INCX BETA Y INCY
 | | | | | | | | | | |
CALL CHBMV('L' , 7 , 3 , ALPHA , A , 5 , X , 1 , BETA , Y , 2)

ALPHA = (2.0, 0.0)
BETA = (10.0, 0.0)

 ┌ ┐
 | (1.0, .) (2.0, .) (3.0, .) (4.0, .) (5.0, .) (6.0, .) (7.0, .) |
 | (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) (6.0, 6.0) . |
A = | (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) . . |
 | (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) . . . |
 | |
 └ ┘

 X = ((1.0, 1.0), (2.0, 2.0), (3.0, 3.0), (4.0, 4.0),
 (5.0, 5.0), (6.0, 6.0), (7.0, 7.0))
Y = ((1.0, 1.0), . , (2.0, 2.0), . , (3.0, 3.0), . ,
 (4.0, 4.0), . , (5.0, 5.0), . , (6.0, 6.0), . ,
 (7.0, 7.0))

 Output:
 Y = ((48.0, 12.0), . , (124.0, 32.0), . , (228.0, 68.0), . ,
 (360.0, 128.0), . , (360.0, 216.0), . ,
 (300.0, 332.0), . , (168.0, 476.0))

 	Example 3

 	
 This example shows how to use SSBMV to perform the matrix-vector
 product, where n ≥ k.
 Matrix A is a real 5 by 5 symmetric band matrix with
 a half band width of 5, stored in upper-band-packed storage mode.
 Matrix A is: ┌ ┐
 | 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 2.0 2.0 2.0 2.0 |
 | 1.0 2.0 3.0 3.0 3.0 |
 | 1.0 2.0 3.0 4.0 4.0 |
 | 1.0 2.0 3.0 4.0 5.0 |
 └ ┘

 Call Statement and Input: UPLO N K ALPHA A LDA X INCX BETA Y INCY
 | | | | | | | | | | |
CALL SSBMV('U' , 5 , 5 , 2.0 , A , 7 , X , 1 , 10.0 , Y , 2)

 ┌ ┐
 | |
 | 1.0 |
 | . . . 1.0 2.0 |
A = | . . 1.0 2.0 3.0 |
 | . 1.0 2.0 3.0 4.0 |
 | 1.0 2.0 3.0 4.0 5.0 |
 | |
 └ ┘

X = (1.0, 2.0, 3.0, 4.0, 5.0)
Y = (1.0, . , 2.0, . , 3.0, . , 4.0, . , 5.0, .)

 Output: Y = (40.0, . , 78.0, . , 112.0, . , 140.0, . , 160.0, .)

 Parent topic: Linear Algebra Subprograms

 STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV
 (Matrix-Vector Product for a Triangular Matrix, Its Transpose, or
 Its Conjugate Transpose)

 Purpose

 STRMV, DTRMV, STPMV, and DTPMV
 compute one of the following matrix-vector products, using the vector x and
 triangular matrix A or its transpose:

 x

 ←

 Ax

 x

 ←

 A

 T

 x

 CTRMV,
 ZTRMV, CTPMV, and ZTPMV compute one of the following matrix-vector
 products, using the vector x and triangular matrix A,
 its transpose, or its conjugate transpose:

 x

 ←

 Ax

 x

 ←

 A

 T

 x

 x

 ←

 A

 H

 x

 Matrix A can
 be either upper or lower triangular, where:

 	For the _TRMV subroutines, it is stored in upper- or lower-triangular
 storage mode, respectively.

 	For the _TPMV subroutines, it is stored in upper- or lower-triangular-packed
 storage mode, respectively.

 Table 107. Data
 Types.

 	A, x

 	Subprogram

 	Short-precision real

 	STRMV and STPMV

 	Long-precision real

 	DTRMV and DTPMV

 	Short-precision complex

 	CTRMV and CTPMV

 	Long-precision complex

 	ZTRMV and ZTPMV

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL STRMV | DTRMV | CTRMV | ZTRMV (uplo, transa, diag, n, a, lda, x, incx)

 CALL STPMV | DTPMV | CTPMV | ZTPMV (uplo, transa, diag, n, ap, x, incx)

 	C and C++

 	strmv | dtrmv | ctrmv | ztrmv (uplo, transa, diag, n, a, lda, x, incx);

 stpmv | dtpmv | ctpmv | ztpmv (uplo, transa, diag, n, ap, x, incx);

 	CBLAS

 	cblas_strmv | cblas_dtrmv | cblas_ctrmv | cblas_ztrmv ([image: Start of change]cblas_layout[image: End of change], cblas_uplo, cblas_transa, cblas_diag, n, a, lda, x, incx);

 cblas_stpmv | cblas_dtpmv | cblas_ctpmv | cblas_ztpmv ([image: Start of change]cblas_layout[image: End of change], cblas_uplo, cblas_transa, cblas_diag, n, ap, x, incx);

 	On Entry

 	

 	[image: Start of change]cblas_layout[image: End of change]

 	indicates whether the input matrices are stored in row major order
 or column major order, where:

 	If [image: Start of change]cblas_layout[image: End of change] = CblasRowMajor,
 the matrices are stored in row major order.

 	If [image: Start of change]cblas_layout[image: End of change] = CblasColMajor,
 the matrices are stored in column major order.

 Specified as: an object of enumerated type [image: Start of change]CBLAS_LAYOUT[image: End of change]. It
 must be CblasRowMajor or CblasColMajor.

 	 uplo

 	indicates whether matrix A is an upper or lower
 triangular matrix, where:
 If uplo = 'U', A is
 an upper triangular matrix.

 If uplo = 'L', A is
 a lower triangular matrix.

 Specified as: a single character.
 It must be 'U' or 'L'.

 	cblas_uplo

 	indicates whether matrix A is an upper or lower
 triangular matrix, where:
 If cblas_uplo = CblasUpper, A
 is an upper triangular matrix.

 If cblas_uplo = CblasLower, A
 is a lower triangular matrix.

 Specified as: an object of enumerated
 type CBLAS_UPLO. It must be CblasUpper or CblasLower.

 	 transa

 	indicates the form of matrix A to use in the computation,
 where:
 If transa = 'N', A is used in the
 computation.

 If transa = 'T', AT is
 used in the computation.

 If transa = 'C', AH is
 used in the computation.

 Specified as: a single character.
 It must be 'N', 'T', or 'C'.

 	cblas_transa

 	indicates the form of matrix A to use in the computation,
 where:
 If cblas_transa = CblasNoTrans, A is
 used in the computation.

 If cblas_transa = CblasTrans, AT is
 used in the computation.

 If cblas_transa = CblasConjTrans, AH is
 used in the computation.

 Specified as: an object of enumerated
 type CBLAS_TRANSPOSE. It must be CblasNoTrans, CblasTrans, or CblasConjTrans.

 	 diag

 	indicates the characteristics of the diagonal of matrix A,
 where:
 If diag = 'U', A is a unit triangular
 matrix.

 If diag = 'N', A is not a unit
 triangular matrix.

 Specified as: a single character. It must
 be 'U' or 'N'.

 	 cblas_diag

 	indicates the characteristics of the diagonal of matrix A,
 where:
 If diag = CblasUnit, A is a unit
 triangular matrix.

 If diag = CblasNonUnit A is
 not a unit triangular matrix.

 Specified as: an object of enumerated
 type CBLAS_DIAG. It must be CblasNonUnit or CblasUnit.

 	 n

 	is the order of triangular matrix A.
 Specified
 as: an integer; 0 ≤ n ≤ lda.

 	 a

 	is the upper or lower triangular matrix A of order n,
 stored in upper- or lower-triangular storage mode, respectively.
 Note: No
 data should be moved to form AT or AH;
 that is, the matrix A should always be stored in its
 untransposed form.

 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 107.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ n.

 	 ap

 	is the upper or lower triangular matrix A of order n,
 stored in upper- or lower-triangular-packed storage mode, respectively.

 Specified as: a one-dimensional array of (at least) length n(n+1)/2,
 containing numbers of the data type indicated in Table 107.

 	 x

 	is the vector x of length n.

 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 107.

 	 incx

 	is the stride for vector x.
 Specified as: an
 integer; incx > 0 or incx < 0.

 	On Return

 	

 	 x

 	is the vector x of length n,
 containing the results of the computation. Returned as: a one-dimensional
 array, containing numbers of the data type indicated in Table 107.

 Notes

 	These subroutines accept lowercase letters for the uplo, transa,
 and diag arguments.

 	For STRMV, DTRMV, STPMV, and DTPMV if you specify 'C' for the transa argument,
 it is interpreted as though you specified 'T'.

 	Matrix A and vector x must have no
 common elements; otherwise, results are unpredictable.

 	ESSL assumes certain values in your array for parts of a triangular
 matrix. As a result, you do not have to set these values. For unit
 triangular matrices, the elements of the diagonal are assumed to be
 1.0 for real matrices and (1.0, 0.0) for complex matrices. When using
 upper- or lower-triangular storage, the unreferenced elements in the
 lower and upper triangular part, respectively, are assumed to be zero.

 	For a description of triangular matrices and how they are stored
 in upper- and lower-triangular storage mode and in upper- and lower-triangular-packed
 storage mode, see Triangular Matrix.

 Function

 These subroutines
 can perform the following matrix-vector product computations, using
 the triangular matrix A, its transpose, or its conjugate
 transpose, where A can be either upper or lower triangular:

 x

 ←

 Ax

 x

 ←

 A

 T

 x

 x

 ←

 A

 H

 x

 (for CTRMV, ZTRMV, CTPMV, and ZTPMV only)

 where:

 x is
 a vector of length n.

 A is
 an upper or lower triangular matrix of order n.
 For _TRMV, it is stored in upper- or lower-triangular storage mode,
 respectively. For _TPMV, it is stored in upper- or lower-triangular-packed
 storage mode, respectively.

 See references [40] and [46]. If n is
 0, no computation is performed.

 Error conditions

 	[bookmark: am5gr_hstrmv__am5gr_f108c194]
 Computational Errors

 	None

 	[bookmark: am5gr_hstrmv__am5gr_f108c195]
 Input-Argument Errors

 	

 	[image: Start of change]cblas_layout[image: End of change] ≠ CblasRowMajor or
 CblasColMajor

 	uplo ≠ 'L' or 'U'

 	cblas_uplo ≠ CblasLower or CblasUpper

 	transa ≠ 'T', 'N', or 'C'

 	cblas_transa ≠ CblasNoTrans, CblasTrans,
 or CblasConjTrans

 	diag ≠ 'N' or 'U'

 	cblas_diag ≠ CblasNonUnit or CblasUnit

 	n < 0

 	lda ≤ 0

 	lda < n

 	incx = 0

 Examples

 	Example 1

 	
 This example shows the computation x←Ax.
 Matrix A is a real 4 by 4 lower triangular matrix that
 is unit triangular, stored in lower-triangular storage mode. Vector x is
 a vector of length 4. Matrix A is: ┌ ┐
 | 1.0 . . . |
 | 1.0 1.0 . . |
 | 2.0 3.0 1.0 . |
 | 3.0 4.0 3.0 1.0 |
 └ ┘

 Note: Because
 matrix A is unit triangular, the diagonal elements are
 not referenced. ESSL assumes a value of 1.0 for the diagonal elements.

 Call Statement and Input: UPLO TRANSA DIAG N A LDA X INCX
 | | | | | | | |
CALL STRMV('L' , 'N' , 'U' , 4 , A , 4 , X , 1)

 ┌ ┐
 | |
A = | 1.0 . . . |
 | 2.0 3.0 . . |
 | 3.0 4.0 3.0 . |
 └ ┘

X = (1.0, 2.0, 3.0, 4.0)

 Output:
 X = (1.0, 3.0, 11.0, 24.0)

 	Example 2

 	
 This example shows the computation x←ATx.
 Matrix A is a real 4 by 4 upper triangular matrix that
 is unit triangular, stored in upper-triangular storage mode. Vector x is
 a vector of length 4. Matrix A is: ┌ ┐
 | 1.0 2.0 3.0 2.0 |
 | . 1.0 2.0 5.0 |
 | . . 1.0 3.0 |
 | . . . 1.0 |
 └ ┘

 Note: Because
 matrix A is unit triangular, the diagonal elements are
 not referenced. ESSL assumes a value of 1.0 for the diagonal elements.

 Call Statement and Input: UPLO TRANSA DIAG N A LDA X INCX
 | | | | | | | |
CALL STRMV('U' , 'T' , 'U' , 4 , A , 4 , X , 1)

 ┌ ┐
 | . 2.0 3.0 2.0 |
A = | . . 2.0 5.0 |
 | . . . 3.0 |
 | |
 └ ┘

X = (5.0, 4.0, 3.0, 2.0)

 Output:
 X = (5.0, 14.0, 26.0, 41.0)

 	Example 3

 	
 This example shows the computation x←AHx.
 Matrix A is a complex 4 by 4 upper triangular matrix
 that is unit triangular, stored in upper-triangular storage mode.
 Vector x is a vector of length 4. Matrix A is:
 ┌ ┐
 | (1.0, 0.0) (2.0, 2.0) (3.0, 3.0) (2.0, 2.0) |
 | . (1.0, 0.0) (2.0, 2.0) (5.0, 5.0) |
 | . . (1.0, 0.0) (3.0, 3.0) |
 | . . . (1.0, 0.0) |
 └ ┘

 Note: Because
 matrix A is unit triangular, the diagonal elements are
 not referenced. ESSL assumes a value of (1.0, 0.0) for the diagonal
 elements.

 Call Statement and Input:
 UPLO TRANSA DIAG N A LDA X INCX
 | | | | | | | |
CALL CTRMV('U' , 'C' , 'U' , 4 , A , 4 , X , 1)

 ┌ ┐
 | . (2.0, 2.0) (3.0, 3.0) (2.0, 2.0) |
A = | . . (2.0, 2.0) (5.0, 5.0) |
 | . . . (3.0, 3.0) |
 | |
 └ ┘

X = ((5.0, 5.0), (4.0, 4.0), (3.0, 3.0), (2.0, 2.0))

 Output: X = ((5.0, 5.0), (24.0, 4.0), (49.0, 3.0), (80.0, 2.0))

 	Example 4

 	
 This example shows the computation x←Ax.
 Matrix A is a real 4 by 4 lower triangular matrix that
 is unit triangular, stored in lower-triangular-packed storage mode.
 Vector x is a vector of length 4. Matrix A is:
 ┌ ┐
 | 1.0 . . . |
 | 1.0 1.0 . . |
 | 2.0 3.0 1.0 . |
 | 3.0 4.0 3.0 1.0 |
 └ ┘

 Note: Because
 matrix A is unit triangular, the diagonal elements are
 not referenced. ESSL assumes a value of 1.0 for the diagonal elements.

 Call Statement and Input: UPLO TRANSA DIAG N AP X INCX
 | | | | | | |
CALL STPMV('L' , 'N' , 'U' , 4 , AP , X , 1)

AP = (. , 1.0, 2.0, 3.0, . , 3.0, 4.0, . , 3.0, .)
X = (1.0, 2.0, 3.0, 4.0)

 Output:
 X = (1.0, 3.0, 11.0, 24.0)

 	Example 5

 	
 This example shows the computation x←ATx.
 Matrix A is a real 4 by 4 upper triangular matrix that
 is not unit triangular, stored in upper-triangular-packed storage
 mode. Vector x is a vector of length 4. Matrix A is:
 ┌ ┐
 | 1.0 2.0 3.0 2.0 |
 | . 2.0 2.0 5.0 |
 | . . 3.0 3.0 |
 | . . . 1.0 |
 └ ┘

 Call Statement and Input: UPLO TRANSA DIAG N AP X INCX
 | | | | | | |
CALL STPMV('U' , 'T' , 'N' , 4 , AP , X , 1)

AP = (1.0, 2.0, 2.0, 3.0, 2.0, 3.0, 2.0, 5.0, 3.0, 1.0)
X = (5.0, 4.0, 3.0, 2.0)

 Output:
 X = (5.0, 18.0, 32.0, 41.0)

 	Example 6

 	
 This example shows the computation x←AHx.
 Matrix A is a complex 4 by 4 upper triangular matrix
 that is unit triangular, stored in upper-triangular-packed storage
 mode. Vector x is a vector of length 4. Matrix A is:
 ┌ ┐
 | (1.0, 0.0) (2.0, 2.0) (3.0, 3.0) (2.0, 2.0) |
 | . (1.0, 0.0) (2.0, 2.0) (5.0, 5.0) |
 | . . (1.0, 0.0) (3.0, 3.0) |
 | . . . (1.0, 0.0) |
 └ ┘

 Note: Because
 matrix A is unit triangular, the diagonal elements are
 not referenced. ESSL assumes a value of (1.0, 0.0) for the diagonal
 elements.

 Call Statement and Input:
 UPLO TRANSA DIAG N AP X INCX
 | | | | | | |
CALL CTPMV('U' , 'C' , 'U' , 4 , AP , X , 1)

AP = (. , (2.0, 2.0), . , (3.0, 3.0), (2.0, 2.0), . ,
 (2.0, 2.0), (5.0, 5.0), (3.0, 3.0), .)
X = ((5.0, 5.0), (4.0, 4.0), (3.0, 3.0), (2.0, 2.0))

 Output: X = ((5.0, 5.0), (24.0, 4.0), (49.0, 3.0), (80.0, 2.0))

 Parent topic: Linear Algebra Subprograms

 STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and ZTPSV
 (Solution of a Triangular System of Equations with a Single Right-Hand
 Side)

 Purpose

 STRSV, DTRSV, STPSV, and DTPSV
 perform one of the following solves for a triangular system of equations
 with a single right-hand side, using the vector x and
 triangular matrix A or its transpose:

 	Solution

 	Equation

 	

 	1. x←A-1x

 	Ax = b

 	

 	2. x←A-Tx

 	ATx = b

 	

 CTRSV, ZTRSV, CTPSV, and ZTPSV perform one of the following
 solves for a triangular system of equations with a single right-hand
 side, using the vector x and and triangular matrix A,
 its transpose, or its conjugate transpose:

 	Solution

 	Equation

 	

 	1. x←A-1x

 	Ax = b

 	

 	2. x←A-Tx

 	ATx = b

 	

 	3. x←A-Hx

 	AHx = b

 	

 Matrix A can be either upper or lower triangular,
 where:

 	For the _TRSV subroutines, it is stored in upper- or lower-triangular
 storage mode, respectively.

 	For the _TPSV subroutines, it is stored in upper- or lower-triangular-packed
 storage mode, respectively.

 Note: The term b used in the systems of equations
 listed above represents the right-hand side of the system. It is
 important to note that in these subroutines the right-hand side of
 the equation is actually provided in the input-output argument x.

 Table 108. Data Types.

 	A, x

 	Subroutine

 	Short-precision real

 	STRSV and STPSV

 	Long-precision real

 	DTRSV and DTPSV

 	Short-precision complex

 	CTRSV and CTPSV

 	Long-precision complex

 	ZTRSV and ZTPSV

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL STRSV | DTRSV | CTRSV | ZTRSV (uplo, transa, diag, n, a, lda, x, incx)

 CALL STPSV | DTPSV | CTPSV | ZTPSV (uplo, transa, diag, n, ap, x, incx)

 	C and C++

 	strsv | dtrsv | ctrsv | ztrsv (uplo, transa, diag, n, a, lda, x, incx);

 stpsv | dtpsv | ctpsv | ztpsv (uplo, transa, diag, n, ap, x, incx);

 	CBLAS

 	cblas_strsv | cblas_dtrsv | cblas_ctrsv | cblas_ztrsv ([image: Start of change]cblas_layout[image: End of change], cblas_uplo, cblas_transa, cblas_diag, n, a, lda, x, incx);

 cblas_stpsv | cblas_dtpsv | cblas_ctpsv | cblas_ztpsv ([image: Start of change]cblas_layout[image: End of change], cblas_uplo, cblas_transa, cblas_diag, n, ap, x, incx);

 	On Entry

 	

 	[image: Start of change]cblas_layout[image: End of change]

 	indicates whether the input matrices are stored in row major order
 or column major order, where:

 	If [image: Start of change]cblas_layout[image: End of change] = CblasRowMajor,
 the matrices are stored in row major order.

 	If [image: Start of change]cblas_layout[image: End of change] = CblasColMajor,
 the matrices are stored in column major order.

 Specified as: an object of enumerated type [image: Start of change]CBLAS_LAYOUT[image: End of change]. It
 must be CblasRowMajor or CblasColMajor.

 	 uplo

 	indicates whether matrix A is an upper or lower
 triangular matrix, where:
 If uplo = 'U', A is
 an upper triangular matrix.

 If uplo = 'L', A is
 a lower triangular matrix.

 Specified as: a single character.
 It must be 'U' or 'L'.

 	cblas_uplo

 	indicates whether matrix A is an upper or lower
 triangular matrix, where:
 If cblas_uplo = CblasUpper, A is
 an upper triangular matrix.

 If cblas_uplo = CblasLower, A is
 a lower triangular matrix.

 Specified as: an object of enumerated
 type CBLAS_UPLO. It must be CblasUpper or CblasLower.

 	 transa

 	indicates the form of matrix A used in the system
 of equations, where:
 If transa = 'N', A is
 used, resulting in solution 1.

 If transa = 'T', AT is
 used, resulting in solution 2.

 If transa = 'C', AH is
 used, resulting in solution 3.

 Specified as: a single character.
 It must be 'N', 'T', or 'C'.

 	cblas_transa

 	indicates the form of matrix A to use in the computation,
 where:
 If cblas_transa
 = CblasNoTrans, A is
 used, resulting in solution 1.

 If cblas_transa = CblasTrans, AT is
 used, resulting in solution 2.

 If cblas_transa = CblasConjTrans, AH
 is used, resulting in solution 3.

 Specified
 as: an object of enumerated type CBLAS_TRANSPOSE. It must be CblasNoTrans,
 CblasTrans, or CblasConjTrans.

 	 diag

 	indicates the characteristics of the diagonal of matrix A,
 where:
 If diag = 'U', A is a unit triangular
 matrix.

 If diag = 'N', A is not a unit
 triangular matrix.

 Specified as: a single character. It must
 be 'U' or 'N'.

 	 cblas_diag

 	indicates the characteristics of the diagonal of matrix A,
 where:
 If diag = CblasUnit, A is a unit
 triangular matrix.

 If diag = CblasNonUnit A is
 not a unit triangular matrix.

 Specified as: an object of
 enumerated type CBLAS_DIAG. It must be CblasNonUnit or CblasUnit.

 	 n

 	is the order of triangular matrix A.
 Specified
 as: an integer; n ≥ 0 and n ≤ lda.

 	 a

 	is the upper or lower triangular matrix A of order n,
 stored in upper- or lower-triangular storage mode, respectively. Specified
 as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 108.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ n.

 	 ap

 	is the upper or lower triangular matrix A of order n,
 stored in upper- or lower-triangular-packed storage mode, respectively.

 Specified as: a one-dimensional array of (at least) length n(n+1)/2,
 containing numbers of the data type indicated in Table 108.

 	 x

 	is the vector x of length n,
 containing the right-hand side of the triangular system to be solved.

 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 108.

 	 incx

 	is the stride for vector x.
 Specified as: an
 integer; incx > 0 or incx < 0.

 	On Return

 	

 	 x

 	is the solution vector x of length n,
 containing the results of the computation. Returned as: a one-dimensional
 array, containing numbers of the data type indicated in Table 108.

 Notes

 	These subroutines accept lowercase letters for the uplo, transa,
 and diag arguments.

 	For STRSV, DTRSV, STPSV, and DTPSV, if you specify 'C' for the transa argument,
 it is interpreted as though you specified 'T'.

 	Matrix A and vector x must have no
 common elements; otherwise, results are unpredictable.

 	ESSL assumes certain values in your array for parts of a triangular
 matrix. As a result, you do not have to set these values. For unit
 diagonal matrices, the elements of the diagonal are assumed to be
 1.0 for real matrices and (1.0, 0.0) for complex matrices. When using
 upper- or lower-triangular storage, the unreferenced elements in the
 lower and upper triangular part, respectively, are assumed to be zero.

 	For a description of triangular matrices and how they are stored
 in upper- and lower-triangular storage mode and in upper- and lower-triangular-packed
 storage mode, see Triangular Matrix.

 Function

 These subroutines
 solve a triangular system of equations with a single right-hand side.
 The solution x may be any of the following, where triangular
 matrix A, its transpose, or its conjugate transpose
 is used, and where A can be either upper- or lower-triangular:

 x

 ←

 A

 -1

 x

 x

 ←

 A

 -T

 x

 x

 ←

 A

 -H

 x

 (only for CTRSV, ZTRSV, CTPSV, and ZTPSV)

 where:

 x is
 a vector of length n.

 A is
 an upper or lower triangular matrix of order n.
 For _TRSV, it is stored in upper- or lower-triangular storage mode,
 respectively. For _TPSV, it is stored in upper- or lower-triangular-packed
 storage mode, respectively.

 If n is 0, no
 computation is performed. See references [40], [44], and [46].

 Error conditions

 	[bookmark: am5gr_hstrsv__am5gr_f110a430]
 Computational Errors

 	None

 	[bookmark: am5gr_hstrsv__am5gr_f110a431]
 Input-Argument Errors

 	

 	[image: Start of change]cblas_layout[image: End of change] ≠ CblasRowMajor or
 CblasColMajor

 	uplo ≠ 'L' or 'U'

 	cblas_uplo ≠ CblasLower or CblasUpper

 	transa ≠ 'T', 'N', or 'C'

 	cblas_transa ≠ CblasNoTrans, CblasTrans,
 or CblasConjTrans

 	diag ≠ 'N' or 'U'

 	cblas_diag ≠ CblasNonUnit or
 CblasUnit

 	n < 0

 	lda ≤ 0

 	lda < n

 	incx = 0

 Examples

 	Example 1

 	
 This example shows the solution x←A-1x.
 Matrix A is a real 4 by 4 lower unit triangular matrix,
 stored in lower-triangular storage mode. Vector x is
 a vector of length 4.
 Note: Because matrix A is unit
 triangular, the diagonal elements are not referenced. ESSL assumes
 a value of 1.0 for the diagonal elements.

 Call Statement and Input: UPLO TRANSA DIAG N A LDA X INCX
 | | | | | | | |
CALL STRSV('L' , 'N' , 'U' , 4 , A , 4 , X , 1)

 ┌ ┐
 | |
 | 1.0 . . . |
A = | 2.0 3.0 . . |
 | 3.0 4.0 3.0 . |
 └ ┘

X = (1.0, 3.0, 11.0, 24.0)

 Output: X = (1.0, 2.0, 3.0, 4.0)

 	Example 2

 	
 This example shows the solution x←A-Tx.
 Matrix A is a real 4 by 4 upper nonunit triangular matrix,
 stored in upper-triangular storage mode. Vector x is
 a vector of length 4.

 Call Statement
 and Input: UPLO TRANSA DIAG N A LDA X INCX
 | | | | | | | |
CALL STRSV('U' , 'T' , 'N' , 4 , A , 4 , X , 1)

 ┌ ┐
 | 1.0 2.0 3.0 2.0 |
A = | . 2.0 2.0 5.0 |
 | . . 3.0 3.0 |
 | . . . 1.0 |
 └ ┘

X = (5.0, 18.0, 32.0, 41.0)

 Output: X = (5.0, 4.0, 3.0, 2.0)

 	Example 3

 	
 This example shows the solution x←A-Hx.
 Matrix A is a complex 4 by 4 upper unit triangular matrix,
 stored in upper-triangular storage mode. Vector x is
 a vector of length 4.
 Note: Because matrix A is unit
 triangular, the diagonal elements are not referenced. ESSL assumes
 a value of (1.0, 0.0) for the diagonal elements.

 Call Statement and Input: UPLO TRANSA DIAG N A LDA X INCX
 | | | | | | | |
CALL CTRSV('U' , 'C' , 'U' , 4 , A , 4 , X , 1)

 ┌ ┐
 | . (2.0, 2.0) (3.0, 3.0) (2.0, 2.0) |
A = | . . (2.0, 2.0) (5.0, 5.0) |
 | . . . (3.0, 3.0) |
 | |
 └ ┘

X = ((5.0, 5.0), (24.0, 4.0), (49.0, 3.0), (80.0, 2.0))

 Output: X = ((5.0, 5.0), (4.0, 4.0), (3.0, 3.0), (2.0, 2.0))

 	Example 4

 	
 This example shows the solution x←A-1x.
 Matrix A is a real 4 by 4 lower unit triangular matrix,
 stored in lower-triangular-packed storage mode. Vector x is
 a vector of length 4. Matrix A is: ┌ ┐
 | 1.0 . . . |
 | 1.0 1.0 . . |
 | 2.0 3.0 1.0 . |
 | 3.0 4.0 3.0 1.0 |
 └ ┘

 Note: Because
 matrix A is unit triangular, the diagonal elements are
 not referenced. ESSL assumes a value of 1.0 for the diagonal elements.

 Call Statement and Input: UPLO TRANSA DIAG N AP X INCX
 | | | | | | |
CALL STPSV('L' , 'N' , 'U' , 4 , AP , X , 1)

AP = (. , 1.0, 2.0, 3.0, . , 3.0, 4.0, . , 3.0, .)
X = (1.0, 3.0, 11.0, 24.0)

 Output: X = (1.0, 2.0, 3.0, 4.0)

 	Example 5

 	
 This example shows the solution x←A-Tx.
 Matrix A is a real 4 by 4 upper nonunit triangular matrix,
 stored in upper-triangular-packed storage mode. Vector x is
 a vector of length 4. Matrix A is: ┌ ┐
 | 1.0 2.0 3.0 2.0 |
 | . 2.0 2.0 5.0 |
 | . . 3.0 3.0 |
 | . . . 1.0 |
 └ ┘

 Call Statement and Input: UPLO TRANSA DIAG N AP X INCX
 | | | | | | |
CALL STPSV('U' , 'T' , 'N' , 4 , AP , X , 1)

AP = (1.0, 2.0, 2.0, 3.0, 2.0, 3.0, 2.0, 5.0, 3.0, 1.0)
X = (5.0, 18.0, 32.0, 41.0)

 Output: X = (5.0, 4.0, 3.0, 2.0)

 	Example 6

 	
 This example shows the solution x←A-Hx.
 Matrix A is a complex 4 by 4 upper unit triangular matrix,
 stored in upper-triangular-packed storage mode. Vector x is
 a vector of length 4. Matrix A is: ┌ ┐
 | (1.0, 0.0) (2.0, 2.0) (3.0, 3.0) (2.0, 2.0) |
 | . (1.0, 0.0) (2.0, 2.0) (5.0, 5.0) |
 | . . (1.0, 0.0) (3.0, 3.0) |
 | . . . (1.0, 0.0) |
 └ ┘

 Note: Because
 matrix A is unit triangular, the diagonal elements are
 not referenced. ESSL assumes a value of (1.0, 0.0) for the diagonal
 elements.

 Call Statement and Input:
 UPLO TRANSA DIAG N AP X INCX
 | | | | | | |
CALL CTPSV('U' , 'C' , 'U' , 4 , AP , X , 1)

AP = (. , (2.0, 2.0), . , (3.0, 3.0), (2.0, 2.0), . ,
 (2.0, 2.0), (5.0, 5.0), (3.0, 3.0), .)
X = ((5.0, 5.0), (24.0, 4.0), (49.0, 3.0), (80.0, 2.0))

 Output: X = ((5.0, 5.0), (4.0, 4.0), (3.0, 3.0), (2.0, 2.0))

 Parent topic: Linear Algebra Subprograms

 STBMV, DTBMV, CTBMV, and ZTBMV (Matrix-Vector Product for a
 Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose)

 Purpose

 STBMV and DTBMV compute one of
 the following matrix-vector products, using the vector x and
 triangular band matrix A or its transpose:

 x

 ←

 Ax

 x

 ←

 A

 T

 x

 CTBMV
 and ZTBMV compute one of the following matrix-vector products, using
 the vector x and triangular band matrix A,
 its transpose, or its conjugate transpose:

 x

 ←

 Ax

 x

 ←

 A

 T

 x

 x

 ←

 A

 H

 x

 Matrix A can
 be either upper or lower triangular and is stored in upper- or lower-triangular-band-packed
 storage mode, respectively.

 Table 109. Data Types.

 	A, x

 	Subprogram

 	Short-precision real

 	STBMV

 	Long-precision real

 	DTBMV

 	Short-precision complex

 	CTBMV

 	Long-precision complex

 	ZTBMV

 Syntax

 	Fortran

 	CALL STBMV | DTBMV | CTBMV | ZTBMV (uplo, transa, diag, n, k, a, lda, x, incx)

 	C and C++

 	stbmv | dtbmv | ctbmv | ztbmv (uplo, transa, diag, n, k, a, lda, x, incx);

 	CBLAS

 	cblas_stbmv | cblas_dtbmv | cblas_ctbmv | cblas_ztbmv ([image: Start of change]cblas_layout[image: End of change], cblas_uplo, cblas_transa, cblas_diag, n, k, a, lda, x, incx);

 	On Entry

 	

 	[image: Start of change]cblas_layout[image: End of change]

 	indicates whether the input matrices are stored in row major order
 or column major order, where:

 	If [image: Start of change]cblas_layout[image: End of change] = CblasRowMajor,
 the matrices are stored in row major order.

 	If [image: Start of change]cblas_layout[image: End of change] = CblasColMajor,
 the matrices are stored in column major order.

 Specified as: an object of enumerated type [image: Start of change]CBLAS_LAYOUT[image: End of change]. It
 must be CblasRowMajor or CblasColMajor.

 	 uplo

 	indicates whether matrix A is an upper or lower
 triangular band matrix, where:
 If uplo = 'U', A is
 an upper triangular matrix.

 If uplo = 'L', A is
 a lower triangular matrix.

 Specified as: a single character.
 It must be 'U' or 'L'.

 	cblas_uplo

 	indicates whether matrix A is an upper or lower
 triangular matrix, where:
 If cblas_uplo = CblasUpper, A
 is an upper triangular matrix.

 If cblas_uplo = CblasLower, A is
 a lower triangular matrix.

 Specified as: an object of enumerated
 type CBLAS_UPLO. It must be CblasUpper or CblasLower.

 	 transa

 	indicates the form of matrix A to use in the computation,
 where:
 If transa = 'N', A is used in the
 computation.

 If transa = 'T', AT is
 used in the computation.

 If transa = 'C', AH is
 used in the computation.

 Specified as: a single character.
 It must be 'N', 'T', or 'C'.

 	cblas_transa

 	indicates the form of matrix A to use in the computation,
 where:
 If cblas_transa
 = CblasNoTrans, A is
 used in the computation.

 If cblas_transa = CblasTrans, AT is
 used in the computation.

 If cblas_transa = CblasConjTrans, AH is
 used in the computation.

 Specified as: an object of enumerated
 type CBLAS_TRANSPOSE. It must be CblasNoTrans, CblasTrans, or CblasConjTrans.

 	 diag

 	indicates the characteristics of the diagonal of matrix A,
 where:
 If diag = 'U', A is a unit triangular
 matrix.

 If diag = 'N', A is not a unit
 triangular matrix.

 Specified as: a single character. It must
 be 'U' or 'N'.

 	 cblas_diag

 	indicates the characteristics of the diagonal of matrix A,
 where:
 If diag = CblasUnit, A is a unit
 triangular matrix.

 If diag = CblasNonUnit A is
 not a unit triangular matrix.

 Specified as: an object of
 enumerated type CBLAS_DIAG. It must be CblasNonUnit or CblasUnit.

 	 n

 	is the order of triangular band matrix A. Specified
 as: an integer; n ≥ 0.

 	 k

 	is the upper or lower band width k of the matrix A.

 Specified as: an integer; k ≥ 0.

 	 a

 	is the upper or lower triangular band matrix A of
 order n, stored in upper- or lower-triangular-band-packed
 storage mode, respectively.
 Note: No data should be moved to form AT or AH;
 that is, the matrix A should always be stored in its
 untransposed form.

 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 109.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ k+1.

 	 x

 	is the vector x of length n.

 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 109.

 	 incx

 	is the stride for vector x.
 Specified as: an
 integer; incx > 0 or incx < 0.

 	On Return

 	

 	 x

 	is the vector x of length n,
 containing the results of the computation. Returned as: a one-dimensional
 array, containing numbers of the data type indicated in Table 109.

 Notes

 	These subroutines accept lowercase letters for the uplo, transa,
 and diag arguments.

 	For STBMV and DTBMV, if you specify 'C' for the transa argument,
 it is interpreted as though you specified 'T'.

 	Matrix A and vector x must have no
 common elements; otherwise, results are unpredictable.

 	To achieve optimal performance in these subroutines, use lda = k+1.

 	For unit triangular matrices, the elements of the diagonal are
 assumed to be 1.0 for real matrices and (1.0, 0.0) for complex matrices.
 As a result, you do not have to set these values.

 	For both upper and lower triangular band matrices, if you specify k ≥ n,
 ESSL assumes, only for purposes of the computation, that the
 upper or lower band width of matrix A is n-1;
 that is, it processes matrix A, of order n,
 as though it is a (nonbanded) triangular matrix. However, ESSL uses
 the original value for k for the purposes of
 finding the locations of element a11 and
 all other elements in the array specified for A, as
 described in Triangular Band Matrix.
 For an illustration of this technique, see Example 4.

 	For a description of triangular band matrices and how they are
 stored in upper- and lower-triangular-band-packed storage mode, see Triangular Band Matrix.

 	If you are using a lower triangular band matrix, you may want
 to use this alternate approach instead of using lower-triangular-band-packed
 storage mode. Leave matrix A in full-matrix storage
 mode when you pass it to ESSL and specify the lda argument
 to be lda+1, which is the leading dimension of
 matrix A plus 1. ESSL then processes the matrix elements
 in the same way as though you had set them up in lower-triangular-band-packed
 storage mode.

 Function

 These subroutines
 can perform the following matrix-vector product computations, using
 the triangular band matrix A, its transpose, or its
 conjugate transpose, where A can be either upper or
 lower triangular:

 x

 ←

 Ax

 x

 ←

 A

 T

 x

 x

 ←

 A

 H

 x

 (for CTBMV and ZTBMV only)

 where:

 x is a vector of length n.

 A is
 an upper or lower triangular band matrix of order n,
 stored in upper- or lower-triangular-band-packed storage mode, respectively.

 See
 references [42], [54], and [46]. If n is
 0, no computation is performed.

 Error conditions

 	[bookmark: am5gr_hstbmv__am5gr_f108c227]
 Computational Errors

 	None

 	[bookmark: am5gr_hstbmv__am5gr_f108c228]
 Input-Argument Errors

 	

 	[image: Start of change]cblas_layout[image: End of change] ≠ CblasRowMajor or
 CblasColMajor

 	uplo ≠ 'L' or 'U'

 	cblas_uplo ≠ CblasLower or CblasUpper

 	transa ≠ 'T', 'N', or 'C'

 	cblas_transa ≠ CblasNoTrans, CblasTrans,
 or CblasConjTrans

 	diag ≠ 'N' or 'U'

 	cblas_diag ≠ CblasNonUnit or
 CblasUnit

 	n < 0

 	k < 0

 	lda ≤ 0

 	lda < k+1

 	incx = 0

 Examples

 	Example 1

 	
 This example shows the computation x←Ax.
 Matrix A is a real 7 by 7 upper triangular band matrix
 with a half band width of 3 that is not unit triangular, stored in
 upper-triangular-band-packed storage mode. Vector x is
 a vector of length 7. Matrix A is: ┌ ┐
 | 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
 | 0.0 2.0 2.0 2.0 2.0 0.0 0.0 |
 | 0.0 0.0 3.0 3.0 3.0 3.0 0.0 |
 | 0.0 0.0 0.0 4.0 4.0 4.0 4.0 |
 | 0.0 0.0 0.0 0.0 5.0 5.0 5.0 |
 | 0.0 0.0 0.0 0.0 0.0 6.0 6.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 7.0 |
 └ ┘

 Call Statement and Input: UPLO TRANSA DIAG N K A LDA X INCX
 | | | | | | | | |
CALL STBMV('U' , 'N' , 'N' , 7 , 3 , A , 5 , X , 1)

 ┌ ┐
 | . . . 1.0 2.0 3.0 4.0 |
 | . . 1.0 2.0 3.0 4.0 5.0 |
A = | . 1.0 2.0 3.0 4.0 5.0 6.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 |
 | |
 └ ┘

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0)

 Output: X = (10.0, 28.0, 54.0, 88.0, 90.0, 78.0, 49.0)

 	Example 2

 	
 This example shows the computation x←ATx.
 Matrix A is a real 7 by 7 lower triangular band matrix
 with a half band width of 3 that is not unit triangular, stored in
 lower-triangular-band-packed storage mode. Vector x is
 a vector of length 7. Matrix A is: ┌ ┐
 | 1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 2.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 2.0 3.0 0.0 0.0 0.0 0.0 |
 | 1.0 2.0 3.0 4.0 0.0 0.0 0.0 |
 | 0.0 2.0 3.0 4.0 5.0 0.0 0.0 |
 | 0.0 0.0 3.0 4.0 5.0 6.0 0.0 |
 | 0.0 0.0 0.0 4.0 5.0 6.0 7.0 |
 └ ┘

 Call Statement and Input: UPLO TRANSA DIAG N K A LDA X INCX
 | | | | | | | | |
CALL STBMV('L' , 'T' , 'N' , 7 , 3 , A , 5 , X , 1)

 ┌ ┐
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 . |
A = | 1.0 2.0 3.0 4.0 5.0 . . |
 | 1.0 2.0 3.0 4.0 . . . |
 | |
 └ ┘

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0)

 Output: X = (10.0, 28.0, 54.0, 88.0, 90.0, 78.0, 49.0)

 	Example 3

 	
 This example shows the computation x←AHx.
 Matrix A is a complex 7 by 7 upper triangular band matrix
 with a half band width of 3 that is not unit triangular, stored in
 upper-triangular-band-packed storage mode. Vector x is
 a vector of length 7. Matrix A is:

 ┌ ┐
 | (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) |
 | (0.0, 0.0) (2.0, 2.0) (2.0, 2.0) (2.0, 2.0) (2.0, 2.0) (0.0, 0.0) (0.0, 0.0) |
 | (0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (3.0, 3.0) (3.0, 3.0) (3.0, 3.0) (0.0, 0.0) |
 | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (4.0, 4.0) (4.0, 4.0) (4.0, 4.0) (4.0, 4.0) |
 | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (5.0, 5.0) (5.0, 5.0) (5.0, 5.0) |
 | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (6.0, 6.0) (6.0, 6.0) |
 | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (7.0, 7.0) |
 └ ┘

 Call Statement and Input: UPLO TRANSA DIAG N K A LDA X INCX
 | | | | | | | | |
CALL CTBMV('U' , 'C' , 'N' , 7 , 3 , A , 5 , X , 1)

 ┌ ┐
 | . . . (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) |
 | . . (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) |
A = | . (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) (6.0, 6.0) |
 | (1.0, 1.0) (2.0, 2.0) (3.0, 3.0) (4.0, 4.0) (5.0, 5.0) (6.0, 6.0) (7.0, 7.0) |
 | |
 └ ┘

 X = ((1.0, 2.0), (2.0, 4.0), (3.0, 6.0), (4.0, 8.0),
 (5.0, 10.0), (6.0, 12.0), (7.0, 14.0))

 Output: X = ((1.0, 2.0), (7.0, 9.0), (24.0, 23.0), (58.0, 46.0),
 (112.0, 79.0), (186.0, 122.0), (280.0, 175.0))

 	Example 4

 	
 This example shows the computation x←ATx,
 where k > n. Matrix A is
 a real 4 by 4 upper triangular band matrix with a half band width
 of 5 that is not unit triangular, stored in upper-triangular-band-packed
 storage mode. Vector x is a vector of length 4. Matrix A is:
 ┌ ┐
 | 1.0 1.0 1.0 1.0 |
 | . 2.0 2.0 2.0 |
 | . . 3.0 3.0 |
 | . . . 4.0 |
 └ ┘

 Call Statement and Input: UPLO TRANSA DIAG N K A LDA X INCX
 | | | | | | | | |
CALL STBMV('U' , 'T' , 'N' , 4 , 5 , A , 6 , X , 1)

 ┌ ┐
 | |
A = | |
 | . . . 1.0 |
 | . . 1.0 2.0 |
 | . 1.0 2.0 3.0 |
 | 1.0 2.0 3.0 4.0 |
 └ ┘

X = (1.0, 2.0, 3.0, 4.0)

 Output:
 X = (1.0, 5.0, 14.0, 30.0)

 Parent topic: Linear Algebra Subprograms

 STBSV, DTBSV, CTBSV, and ZTBSV (Triangular Band Equation Solve)

 Purpose

 STBSV and DTBSV solve one of the
 following triangular banded systems of equations with a single right-hand
 side, using the vector x and triangular band matrix A or
 its transpose:

 	Solution

 	Equation

 	1. x←A-1x

 	Ax = b

 	2. x←A-Tx

 	ATx = b

 CTBSV and ZTBSV solve one of the following triangular
 banded systems of equations with a single right-hand side, using the
 vector x and triangular band matrix A,
 its transpose, or its conjugate transpose:

 	Solution

 	Equation

 	1. x←A-1x

 	Ax = b

 	2. x←A-Tx

 	ATx = b

 	3. x←A-Hx

 	AHx = b

 Matrix A can be either upper or lower triangular
 and is stored in upper- or lower-triangular-band-packed storage mode,
 respectively.

 Table 110. Data Types.

 	A, x

 	Subprogram

 	Short-precision real

 	STBSV

 	Long-precision real

 	DTBSV

 	Short-precision complex

 	CTBSV

 	Long-precision complex

 	ZTBSV

 Syntax

 	Fortran

 	CALL STBSV | DTBSV | CTBSV | ZTBSV (uplo, trans, diag, n, k, a, lda, x, incx)

 	C and C++

 	stbsv | dtbsv | ctbsv | ztbsv (uplo, trans, diag, n, k, a, lda, x, incx);

 	CBLAS

 	cblas_stbsv | cblas_dtbsv | cblas_ctbsv | cblas_ ztbsv ([image: Start of change]cblas_layout[image: End of change], cblas_uplo,
 cblas_trans, cblas_diag, n,
 k, a, lda, x,
 incx);

 	On Entry

 	

 	[image: Start of change]cblas_layout[image: End of change]

 	indicates whether the input matrices are stored in row major order
 or column major order, where:

 	If [image: Start of change]cblas_layout[image: End of change] = CblasRowMajor, the matrices are stored in row major order.

 	If [image: Start of change]cblas_layout[image: End of change] = CblasColMajor, the matrices are stored in column major order.

 Specified as: an object of enumerated type [image: Start of change]CBLAS_LAYOUT[image: End of change]. It
 must be CblasRowMajor or CblasColMajor.

 	 uplo

 	indicates whether matrix A is an upper or lower
 triangular band matrix, where:
 If uplo = 'U', A is
 an upper triangular matrix.

 If uplo = 'L', A is
 a lower triangular matrix.

 Specified as: a single character.
 It must be 'U' or 'L'.

 	cblas_uplo

 	indicates whether matrix A is an upper or lower
 triangular matrix, where:
 If cblas_uplo = CblasUpper, A
 is an upper triangular matrix.

 If cblas_uplo = CblasLower, A is
 a lower triangular matrix.

 Specified as: an object of enumerated
 type CBLAS_UPLO. It must be CblasUpper or CblasLower.

 	 trans

 	indicates the form of matrix A used in the system
 of equations, where:
 If trans = 'N', A is
 used, resulting in solution 1.

 If trans = 'T', AT is
 used, resulting in solution 2.

 If trans = 'C', AH is
 used, resulting in solution 3.

 Specified as: a single character.
 It must be 'N', 'T', or 'C'.

 	cblas_transa

 	indicates the form of matrix A to use in the computation,
 where:
 If cblas_transa
 = CblasNoTrans, A
 is used, resulting in solution 1.

 If cblas_transa = CblasTrans, AT
 is used, resulting in solution 2.

 If cblas_transa = CblasConjTrans, AHis
 used, resulting in solution 3.

 Specified as:
 an object of enumerated type CBLAS_TRANSPOSE. It must be CblasNoTrans,
 CblasTrans, or CblasConjTrans.

 	 diag

 	indicates the characteristics of the diagonal of matrix A,
 where:
 If diag = 'U', A is a unit triangular
 matrix.

 If diag = 'N', A is not a unit
 triangular matrix.

 Specified as: a single character. It must
 be 'U' or 'N'.

 	 cblas_diag

 	indicates the characteristics of the diagonal of matrix A,
 where:
 If diag = CblasUnit, A is a unit
 triangular matrix.

 If diag = CblasNonUnit A is
 not a unit triangular matrix.

 Specified as: an object of
 enumerated type CBLAS_DIAG. It must be CblasNonUnit or CblasUnit.

 	 n

 	is the order of triangular band matrix A. Specified as: an integer;
 n ≥ 0.

 	 k

 	is the upper or lower band width k of the matrix A. Specified
 as: an integer; k ≥ 0.

 	 a

 	is the upper or lower triangular band matrix A of
 order n, stored in upper- or lower-triangular-band-packed
 storage mode, respectively. Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 110.

 	 lda

 	is the leading dimension of the array specified for a. Specified as: an
 integer; lda > 0 and lda ≥ k+1.

 	 x

 	is the vector x of length n,
 containing the right-hand side of the triangular system to be solved.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 110.

 	 incx

 	is the stride for vector x. Specified as: an integer; incx > 0
 or incx < 0.

 	On Return

 	

 	 x

 	is the solution vector x of length n,
 containing the results of the computation. Returned as: a one-dimensional
 array, containing numbers of the data type indicated in Table 110.

 Notes

 	These subroutines accept lowercase letters for the uplo, trans,
 and diag arguments.

 	For STBSV and DTBSV, if you specify 'C' for the trans argument,
 it is interpreted as though you specified 'T'.

 	Matrix A and vector x must have no
 common elements; otherwise, results are unpredictable.

 	For unit triangular matrices, the elements of the diagonal are
 assumed to be 1.0 for real matrices and (1.0, 0.0) for complex matrices,
 and you do not need to set these values in the array.

 	For both upper and lower triangular band matrices, if you specify k ≥ n, ESSL assumes, for
 purposes of the computation only, that the upper or lower band width of matrix A
 is n-1; that is, it processes matrix A of order
 n, as though it is a (nonbanded) triangular matrix. However, ESSL uses the
 original value for k
 for the purposes of finding the locations of element a11 and
 all other elements in the array specified for A, as described in Triangular Band Matrix. For an illustration of this technique, see Example 3.

 	For a description of triangular band matrices and how they are
 stored in upper- and lower-triangular-band-packed storage mode, see Triangular Band Matrix.

 	If you are using a lower triangular band matrix, it may save your
 program some time if you use this alternate approach instead of using
 lower-triangular-band-packed storage mode. Leave matrix A in
 full-matrix storage mode when you pass it to ESSL and specify the lda argument
 to be lda+1, which is the leading dimension of
 matrix A plus 1. ESSL then processes the matrix elements
 in the same way as though you had set them up in lower-triangular-band-packed
 storage mode.

 Function

 These subroutines
 solve a triangular banded system of equations with a single right-hand
 side. The solution, x, may be any of the following,
 where triangular band matrix A, its transpose, or its
 conjugate transpose is used, and where A can be either
 upper- or lower-triangular:

 	x←A-1x

 	x←A-Tx

 	x←A-Hx (for
 CTBSV and ZTBSV only)

 where:

 x is a vector of length n.

 A is
 an upper or lower triangular band matrix of order n,
 stored in upper- or lower-triangular-band-packed storage mode, respectively.

 See references [42], [54], and [46]. If n is 0, no
 computation is performed.

 Error conditions

 	[bookmark: am5gr_hstbsv__am5gr_f10b164]
 Computational Errors

 	None

 	[bookmark: am5gr_hstbsv__am5gr_f10b165]
 Input-Argument Errors

 	

 	[image: Start of change]cblas_layout[image: End of change] ≠ CblasRowMajor or CblasColMajor

 	n < 0

 	k < 0

 	lda ≤ 0

 	lda < k+1

 	incx = 0

 	uplo ≠ 'L' or 'U'

 	cblas_uplo ≠ CblasLower or
 CblasUpper

 	trans ≠ 'T', 'N', or 'C'

 	cblas_transa ≠ CblasNoTrans,
 CblasTrans, or CblasConjTrans

 	diag ≠ 'N' or 'U'

 	cblas_diag ≠ CblasNonUnit or
 CblasUnit

 Examples

 	Example 1

 	
 This example shows the solution x←A-1x. Matrix
 A is a real 9 by 9 upper triangular band matrix with an upper band width of 2 that is
 not unit triangular, stored in upper-triangular-band-packed storage mode. Vector x is
 a vector of length 9, where matrix A is:
 ┌ ┐
 | 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 4.0 2.0 3.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 4.0 1.0 1.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 4.0 2.0 2.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 3.0 1.0 1.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 3.0 2.0 2.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 3.0 1.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 |
 └ ┘

 Call Statement and Input: UPLO TRANS DIAG N K A LDA X INCX
 | | | | | | | | |
CALL STBSV('U' , 'N' , 'N' , 9 , 2 , A , 3 , X , 1)

 ┌ ┐
 | . . 1.0 3.0 1.0 2.0 1.0 2.0 0.0 |
A = | . 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 |
 | 1.0 4.0 4.0 4.0 3.0 3.0 3.0 2.0 1.0 |
 └ ┘

X = (2.0, 7.0, 1.0, 8.0, 2.0, 8.0, 1.0, 8.0, 3.0)

 Output: X = (1.0, 1.0, 0.0, 1.0, 0.0, 2.0, 0.0, 1.0, 3.0)

 	Example 2

 	
 This example shows the solution x←A-Tx, solving the same
 system as in Example 1. Matrix A is a real 9 by 9 lower triangular band matrix with a
 lower band width of 2 that is not unit triangular, stored in lower-triangular-band-packed storage
 mode. Vector x is a vector of length 9 where matrix A is:
 ┌ ┐
 | 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 2.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 3.0 1.0 4.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 1.0 2.0 3.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 2.0 1.0 3.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 1.0 2.0 3.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 2.0 1.0 2.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 1.0 |
 └ ┘

 Call Statement and Input: UPLO TRANS DIAG N K A LDA X INCX
 | | | | | | | | |
CALL STBSV('L' , 'T' , 'N' , 9 , 2 , A , 3 , X , 1)

 ┌ ┐
 | 1.0 4.0 4.0 4.0 3.0 3.0 3.0 2.0 1.0 |
A = | 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 . |
 | 1.0 3.0 1.0 2.0 1.0 2.0 0.0 . . |
 └ ┘

 X =

 (same as input

 X

 in Example 1)

 Output:

 X =

 (same as output

 X

 in Example 1)

 	Example 3

 	
 This example shows the solution x←A-Tx, where
 k > n. Matrix A is a real 4 by 4 upper triangular band matrix with
 an upper band width of 3, even though k is specified as 5. It is not unit
 triangular and is stored in upper-triangular-band-packed storage mode. Vector x is a
 vector of length 4 where matrix A is:
 ┌ ┐
 | 1.0 2.0 3.0 2.0 |
 | 0.0 2.0 2.0 5.0 |
 | 0.0 0.0 3.0 3.0 |
 | 0.0 0.0 0.0 1.0 |
 └ ┘

 Call Statement and Input: UPLO TRANS DIAG N K A LDA X INCX
 | | | | | | | | |
CALL STBSV('U' , 'T' , 'N' , 4 , 5 , A , 6 , X , 1)

 ┌ ┐
 | |
 | |
A = | . . . 2.0 |
 | . . 3.0 5.0 |
 | . 2.0 2.0 3.0 |
 | 1.0 2.0 3.0 1.0 |
 └ ┘

X = (5.0, 18.0, 32.0, 41.0)

 Output: X = (5.0, 4.0, 3.0, 2.0)

 	Example 4

 	
 This example shows the solution x←A-Tx.
 Matrix A is a complex 7 by 7 lower triangular band matrix
 with a lower band width of 3 that is not unit triangular, stored in
 lower-triangular-band-packed storage mode. Vector x is
 a vector of length 7. Matrix A is:

 ┌ ┐
 | (1.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) │
 | (1.0, 2.0) (2.0, 1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) │
 | (1.0, 3.0) (2.0, 2.0) (3.0, 1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) │
 | (1.0, 4.0) (2.0, 3.0) (3.0, 3.0) (4.0, 1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) │
 | (0.0, 0.0) (2.0, 4.0) (3.0, 3.0) (4.0, 2.0) (2.0, 1.0) (0.0, 0.0) (0.0, 0.0) │
 | (0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (4.0, 3.0) (5.0, 1.0) (3.0, 1.0) (0.0, 0.0) │
 | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (4.0, 4.0) (5.0, 2.0) (6.0, 1.0) (2.0, 1.0) │
 └ ┘

 Call Statement and Input: UPLO TRANS DIAG N K A LDA X INCX
 | | | | | | | | |
CALL CTBSV('L' , 'T' , 'N' , 7 , 3 , A , 4 , X , 1)

 ┌ ┐
 | (1.0, 0.0) (2.0, 1.0) (3.0, 1.0) (4.0, 1.0) (2.0, 1.0) (3.0, 1.0) (2.0, 1.0) │
A = | (1.0, 2.0) (2.0, 2.0) (3.0, 3.0) (4.0, 2.0) (5.0, 1.0) (6.0, 1.0) . |
 | (1.0, 3.0) (2.0, 3.0) (3.0, 3.0) (4.0, 3.0) (5.0, 2.0) . . |
 | (1.0, 4.0) (2.0, 4.0) (3.0, 3.0) (4.0, 4.0) . . . |
 └ ┘

 X = ((2.0, 2.0), (7.0, 1.0), (1.0, 1.0), (8.0, 1.0),
 (2.0, 0.0), (8.0, 1.0), (1.0, 2.0))

 Output: X = ((-12.048, -13.136), (6.304, -1.472), (-1.880, 1.040),
 (2.600, -1.800), (-2.160, 1.880), (0.800, -1.400),
 (0.800, 0.600))

 	

 	

 Parent topic: Linear Algebra Subprograms

 Sparse Matrix-Vector Subprograms

 This contains the sparse matrix-vector subprogram
 descriptions.

 Parent topic: Linear Algebra Subprograms

 DSMMX (Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix
 Storage Mode)

 Purpose

 This subprogram computes the matrix-vector
 product for sparse matrix A, stored in compressed-matrix
 storage mode, using the matrix and vectors x and y:

 y

 ←

 Ax

 where A, x,
 and y contain long-precision real numbers. You can use
 DSMTM to transpose matrix A before calling this subroutine.
 The resulting computation performed by this subroutine is then y←ATx.

 Syntax

 	Fortran

 	CALL DSMMX (m, nz, ac, ka, lda, x, y)

 	C and C++

 	dsmmx (m, nz, ac, ka, lda, x, y);

 	On Entry

 	

 	 m

 	is the number of rows in sparse matrix A and the
 number of elements in vector y. Specified as: an integer; m ≥ 0.

 	 nz

 	is the maximum number of nonzero elements in each row of sparse
 matrix A. Specified as: an integer; nz ≥ 0.

 	 ac

 	is the m by n sparse matrix A,
 stored in compressed-matrix storage mode in an array, referred to
 as AC. Specified as: an lda by
 (at least) nz array, containing long-precision
 real numbers.

 	 ka

 	is the array, referred to as KA, containing the
 column numbers of the matrix A elements stored in the
 corresponding positions in array AC. Specified as:
 an lda by (at least) nz array,
 containing integers, where 1 ≤ (elements
 of KA) ≤ n.

 	 lda

 	is the size of the leading dimension of the arrays specified for ac and ka.
 Specified as: an integer; lda > 0 and lda ≥ m.

 	 x

 	is the vector x of length n.
 Specified as: a one-dimensional array of (at least) length n,
 containing long-precision real numbers.

 	 y

 	See On Return.

 	On Return

 	

 	 y

 	is the vector y of length m,
 containing the result of the computation. Returned as: a one-dimensional
 array of (at least) length m, containing long-precision
 real numbers.

 Notes

 	Matrix A must have no common elements with vectors x and y;
 otherwise, results are unpredictable.

 	For the KA array, where there are no corresponding
 nonzero elements in AC, you must still fill in a
 number between 1 and n. See the Example.

 	For a description of how sparse matrices are stored in compressed-matrix
 storage mode, see Compressed-Matrix Storage Mode.

 	If your sparse matrix is stored by rows, as defined in Storage-by-Rows, you should first use the
 DSRSM utility subroutine, described in DSRSM (Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode), to convert your sparse
 matrix to compressed-matrix storage mode.

 Function

 The matrix-vector product is computed
 for a sparse matrix, stored in compressed matrix mode:

 y

 ←

 Ax

 where:

 A is
 an m by n sparse matrix, stored
 in compressed-matrix storage mode in arrays AC and KA.

 x is
 a vector of length n.

 y is
 a vector of length m.

 It is expressed as
 follows:

 [image:]

 See reference [87]. If m is
 0, no computation is performed; if nz is 0, output
 vector y is set to zero, because matrix A contains
 all zeros.

 If your program uses a sparse matrix stored by rows
 and you want to use this subroutine, you should first convert your
 sparse matrix to compressed-matrix storage mode by using the DSRSM
 utility subroutine described in DSRSM (Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode).

 Error conditions

 	[bookmark: am5gr_hdsmmx__am5gr_f108d002]
 Computational Errors

 	None

 	[bookmark: am5gr_hdsmmx__am5gr_f108d003]
 Input-Argument Errors

 	

 	m < 0

 	lda ≤ 0

 	m > lda

 	nz < 0

 Examples

 	[bookmark: am5gr_hdsmmx__am5gr_xxex]
 Example

 	
 This example shows the matrix-vector product computed for
 the following sparse matrix A, which is stored in compressed-matrix
 storage mode in arrays AC and KA.
 Matrix A is: ┌ ┐
 | 4.0 0.0 7.0 0.0 0.0 0.0 |
 | 3.0 4.0 0.0 2.0 0.0 0.0 |
 | 0.0 2.0 4.0 0.0 4.0 0.0 |
 | 0.0 0.0 7.0 4.0 0.0 1.0 |
 | 1.0 0.0 0.0 3.0 4.0 0.0 |
 | 1.0 1.0 0.0 0.0 3.0 4.0 |
 └ ┘

 Call Statement and Input: M NZ AC KA LDA X Y
 | | | | | | |
CALL DSMMX(6 , 4 , AC , KA , 6 , X , Y)

 ┌ ┐
 | 4.0 7.0 0.0 0.0 |
 | 4.0 3.0 2.0 0.0 |
AC = | 4.0 2.0 4.0 0.0 |
 | 4.0 7.0 1.0 0.0 |
 | 4.0 1.0 3.0 0.0 |
 | 4.0 1.0 1.0 3.0 |
 └ ┘

 ┌ ┐
 | 1 3 1 1 |
 | 2 1 4 1 |
KA = | 3 2 5 1 |
 | 4 3 6 1 |
 | 5 1 4 1 |
 | 6 1 2 5 |
 └ ┘
X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

 Output: Y = (25.0, 19.0, 36.0, 43.0, 33.0, 42.0)

 Parent topic: Linear Algebra Subprograms

 DSMTM (Transpose a Sparse Matrix in Compressed-Matrix Storage
 Mode)

 Purpose

 This subprogram transposes sparse
 matrix A, stored in compressed-matrix storage mode,
 where A contains long-precision real numbers.

 Syntax

 	Fortran

 	CALL DSMTM (m, nz, ac, ka, lda, n, nt, at, kt, ldt, aux, naux)

 	C and C++

 	dsmtm (m, nz, ac, ka, lda, n, nt, at, kt, ldt, aux, naux);

 	On Entry

 	

 	 m

 	is the number of rows in sparse matrix A. Specified
 as: an integer; m ≥ 0.

 	 nz

 	is the maximum number of nonzero elements in each row of sparse
 matrix A. Specified as: an integer; nz ≥ 0.

 	 ac

 	is the m by n sparse matrix A,
 stored in compressed-matrix storage mode in an array, referred to
 as AC. Specified as: an lda by
 (at least) nz array, containing long-precision
 real numbers.

 	 ka

 	is the array, referred to as KA, containing the
 column numbers of the matrix A elements stored in the
 corresponding positions in array AC. Specified as:
 an lda by (at least) nz array,
 containing integers, where 1 ≤ (elements
 of KA) ≤ n.

 	 lda

 	is the size of the leading dimension of the arrays specified for ac and ka.
 Specified as: an integer; lda > 0 and lda ≥ m.

 	 n

 	is the number of columns in sparse matrix A. Specified
 as: an integer; 0 ≤ n ≤ ldt and n ≥ (maximum
 column index in KA).

 	 nt

 	is the number of columns in output arrays AT and KT that
 are available for use. Specified as: an integer; nt > 0.

 	 at

 	See On Return.

 	 kt

 	See On Return.

 	 ldt

 	is the size of the leading dimension of the arrays specified for at and kt.
 Specified as: an integer; ldt > 0 and ldt ≥ n.

 	 aux

 	has the following meaning:
 If naux = 0
 and error 2015 is unrecoverable, aux is ignored.

 Otherwise,
 it is a storage work area used by this subroutine. Its size is specified
 by naux.

 Specified as: an area of storage,
 containing long-precision real numbers. They can have any value.

 	 naux

 	is the size of the work area specified by aux—that
 is, the number of elements in aux. Specified as:
 an integer, where:
 If naux = 0 and error 2015 is unrecoverable,
 DSMTM dynamically allocates the work area used by this subroutine.
 The work area is deallocated before control is returned to the calling
 program.

 Otherwise, naux ≥ n.

 	On Return

 	

 	 n

 	is the number of rows in the transposed matrix AT.
 Returned as: an integer; n = (maximum column index in KA).

 	 nt

 	is the maximum number of nonzero elements, nt,
 in each row of the transposed matrix AT.
 Returned as: an integer; nt ≤ m.

 	 at

 	is the n by (at least) m sparse
 matrix transpose AT, stored in compressed-matrix
 storage mode in an array, referred to as AT. Returned
 as: an ldt by (at least) nt array,
 containing long-precision real numbers.

 	 kt

 	is the array, referred to as KT, containing the
 column numbers of the transposed matrix AT elements,
 stored in the corresponding positions in array AT.
 Returned as: an ldt by (at least) nt array,
 containing integers, where 1 ≤ (elements
 of KT) ≤ m.

 Notes

 	In your C program, arguments n and nt must
 be passed by reference.

 	The value specified for input argument nt should
 be greater than or equal to the number of nonzero elements you estimate
 to be in each row of the transposed sparse matrix AT.
 The output value is less than or equal to the input value you specify.

 	For the KA array, where there are no corresponding
 nonzero elements in AC, you must still fill in a
 number between 1 and n. See the Example.

 	For a description of how sparse matrices are stored in compressed-matrix
 storage mode, see Compressed-Matrix Storage Mode.

 	If your sparse matrix is stored by rows, as defined in Storage-by-Rows, you should first use the
 DSRSM utility subroutine, described in DSRSM (Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode), to convert your sparse
 matrix to compressed-matrix storage mode.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 A sparse matrix A,
 stored in arrays AC and KA in compressed-matrix
 storage mode, is transposed, forming AT,
 and is stored in arrays AT and KT in
 compressed-matrix storage mode. See reference [87]. This subroutine
 is provided for when you want to do a matrix-vector product using
 a transposed matrix, AT. First, you transpose
 a matrix, A, using this subroutine, then you call DSMMX
 with the transposed matrix AT. This results
 in the following computation being performed: y←ATx.

 If
 your program uses a sparse matrix stored by rows and you want to use
 this subroutine, you should first convert your sparse matrix to compressed-matrix
 storage mode by using the DSRSM utility subroutine described in DSRSM (Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode).

 Error conditions

 	[bookmark: am5gr_hdsmtm__am5gr_f108d007]
 Resource Errors

 	Error 2015 is unrecoverable, naux = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hdsmtm__am5gr_f108d008]
 Computational Errors

 	None

 	[bookmark: am5gr_hdsmtm__am5gr_f108d010]
 Input-Argument Errors

 	

 	m, n < 0

 	lda, ldt < 1

 	lda < m

 	ldt < n

 	nz < 0

 	n is less than the maximum column index in KA.

 	nt or ldt are too small.

 	When the following two errors occur, arrays AT, KT,
 and AUX are overwritten:

 naux

 <

 n

 nt

 ≤

 0

 	Error 2015 is recoverable or naux≠0, and naux is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	[bookmark: am5gr_hdsmtm__am5gr_xxex2]
 Example

 	
 This example shows how to transpose the following 5 by 4
 sparse matrix A, which is stored in compressed-matrix
 storage mode in arrays AC and KA.
 Matrix A is: ┌ ┐
 | 11.0 0.0 0.0 0.0 |
 | 21.0 0.0 23.0 0.0 |
 | 0.0 0.0 33.0 34.0 |
 | 0.0 42.0 0.0 44.0 |
 | 51.0 0.0 53.0 0.0 |
 └ ┘

 The
 resulting 4 by 5 matrix transpose AT, stored
 in compressed-matrix storage mode in arrays AT and KT,
 is as follows. Matrix AT is: ┌ ┐
 | 11.0 21.0 0.0 0.0 51.0 |
 | 0.0 0.0 0.0 42.0 0.0 |
 | 0.0 23.0 33.0 0.0 53.0 |
 | 0.0 0.0 34.0 44.0 0.0 |
 └ ┘

 As
 shown here, the value of N is larger than the actual
 number of columns in the matrix A. On output, the exact
 number of rows in the transposed matrix is returned in the output
 argument N.

 On output, row 6 of AT and KT is
 is not accessed or modified by the subroutine. Column 4 and row 5
 are accessed and modified. They are of no use in further computations
 and will not be used, because NT = 3 and M = 4.

 Call Statement and Input: M NZ AC KA LDA N NT AT KT LDT AUX NAUX
 | | | | | | | | | | | |
CALL DSMTM(5 , 2 , AC , KA , 5 , 5 , 4 , AT , KT , 6 , AUX , 5)

 ┌ ┐
 | 11.0 0.0 |
 | 21.0 23.0 |
AC = | 33.0 34.0 |
 | 42.0 44.0 |
 | 51.0 53.0 |
 └ ┘

 ┌ ┐
 | 1 1 |
 | 1 3 |
KA = | 3 4 |
 | 2 4 |
 | 1 3 |
 └ ┘

 Output: N = 4
NT = 3

 ┌ ┐
 | 11.0 21.0 51.0 0.0 |
 | 42.0 0.0 0.0 0.0 |
AT = | 33.0 23.0 53.0 0.0 |
 | 34.0 44.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 |
 | |
 └ ┘

 ┌ ┐
 | 1 2 5 1 |
 | 4 1 1 1 |
KT = | 3 2 5 1 |
 | 3 4 1 1 |
 | 1 1 1 1 |
 | |
 └ ┘

 Parent topic: Linear Algebra Subprograms

 DSDMX (Matrix-Vector Product for a Sparse Matrix or Its Transpose
 in Compressed-Diagonal Storage Mode)

 Purpose

 This subprogram computes the matrix-vector
 product for square sparse matrix A, stored in compressed-diagonal
 storage mode, using either the matrix or its transpose, and vectors x and y:

 y

 ←

 Ax

 y

 ←

 A

 T

 x

 where A, x,
 and y contain long-precision real numbers.

 Syntax

 	Fortran

 	CALL DSDMX (iopt, n, nd, ad, lda, trans, la, x, y)

 	C and C++

 	dsdmx (iopt, n, nd, ad, lda, trans, la, x, y);

 	On Entry

 	

 	 iopt

 	indicates the storage variation used for sparse matrix A,
 stored in compressed-diagonal storage mode, where:
 If iopt = 0,
 matrix A is a general sparse matrix, where all the nonzero
 diagonals in matrix A are used to set up the storage
 arrays.

 If iopt = 1, matrix A is a symmetric
 sparse matrix, where only the nonzero main diagonal and one of each
 of the unique nonzero diagonals are used to set up the storage arrays.

 Specified
 as: an integer; iopt = 0 or 1.

 	 n

 	is the order of sparse matrix A and the number of
 elements in vectors x and y. Specified
 as: an integer; n ≥ 0.

 	 nd

 	is the number of diagonals stored in the columns of array AD,
 as well as the number of columns in AD and the number
 of elements in array LA. Specified as: an integer; nd ≥ 0.

 	 ad

 	is the sparse matrix A of order n,
 stored in compressed diagonal storage in an array, referred to as AD.
 The iopt argument indicates the storage variation
 used for storing matrix A. The trans argument
 indicates the following:
 If trans = 'N', A is
 used in the computation.

 If trans = 'T', AT is
 used in the computation.
 Note: No data should be moved to form AT;
 that is, the matrix A should always be stored in its
 untransposed form.

 Specified as: an lda by
 (at least) nd array, containing long-precision
 real numbers; lda ≥ n.

 	 lda

 	is the size of the leading dimension of the array specified for ad.
 Specified as: an integer; lda > 0 and lda ≥ n.

 	 trans

 	indicates the form of matrix A to use in the computation,
 where:
 If trans = 'N', A is used in the
 computation.

 If trans = 'T', AT is
 used in the computation.

 Specified as: a single character; trans = 'N'
 or 'T'.

 	 la

 	is the array, referred to as LA, containing the
 diagonal numbers k for the diagonals stored in
 each corresponding column in array AD. (For an explanation
 of how diagonal numbers are assigned, see Compressed-Diagonal Storage Mode.)
 Specified as: a one-dimensional
 array of (at least) length nd, containing integers;
 1-n ≤ LA(i) ≤ n-1.

 	 x

 	is the vector x of length n.
 Specified as: a one-dimensional array, containing long-precision real
 numbers.

 	 y

 	See On Return.

 	On Return

 	

 	 y

 	is the vector y of length n,
 containing the result of the computation. Returned as: a one-dimensional
 array, containing long-precision real numbers.

 Notes

 	All subroutines accept lowercase letters for the trans argument.

 	Matrix A must have no common elements with vectors x and y;
 otherwise, results are unpredictable.

 	For a description of how sparse matrices are stored in compressed-diagonal
 storage mode, see Compressed-Diagonal Storage Mode.

 Function

 The matrix-vector product of a
 square sparse matrix or its transpose, is computed for a matrix stored
 in compressed-diagonal storage mode:

 y

 ←

 Ax

 y

 ←

 A

 T

 x

 where:

 A is
 a sparse matrix of order n, stored in compressed-diagonal
 storage mode in AD and LA, using
 the storage variation for either general or symmetric sparse matrices,
 as indicated by the iopt argument.

 x and y are
 vectors of length n.

 It is expressed
 as follows for y←Ax:

 [image: Matrix-Vector Product Graphic]

 It is expressed as follows for y←ATx:

 [image: Matrix-Vector Product Graphic]

 If n is 0, no computation is performed;
 if nd is 0, output vector y is set
 to zero, because matrix A contains all zeros.

 Error conditions

 	[bookmark: am5gr_hdsdmx__am5gr_f108d014]
 Computational Errors

 	None

 	[bookmark: am5gr_hdsdmx__am5gr_f108d015]
 Input-Argument Errors

 	

 	iopt ≠ 0 or 1

 	n < 0

 	lda ≤ 0

 	n > lda

 	trans ≠ 'N' or 'T'

 	nd < 0

 	LA(j) ≤ -n or LA(j) ≥ n,
 for any j = 1, n

 Examples

 	Example 1

 	
 This example shows the matrix-vector product using trans = 'N',
 which is computed for the following sparse matrix A of
 order 6. The matrix is stored in compressed-matrix storage mode in
 arrays AD and LA using the storage
 variation for general sparse matrices, storing all nonzero diagonals.
 Matrix A is: ┌ ┐
 | 4.0 0.0 7.0 0.0 0.0 0.0 |
 | 3.0 4.0 0.0 2.0 0.0 0.0 |
 | 0.0 2.0 4.0 0.0 4.0 0.0 |
 | 0.0 0.0 7.0 4.0 0.0 1.0 |
 | 1.0 0.0 0.0 3.0 4.0 0.0 |
 | 1.0 1.0 0.0 0.0 3.0 4.0 |
 └ ┘

 Call Statement and Input: IOPT N ND AD LDA TRANS LA X Y
 | | | | | | | | |
CALL DSDMX(0 , 6 , 5 , AD , 6 , 'N' , LA , X , Y)

 ┌ ┐
 | 4.0 0.0 0.0 0.0 7.0 |
 | 4.0 0.0 0.0 3.0 2.0 |
AD = | 4.0 0.0 0.0 2.0 4.0 |
 | 4.0 0.0 0.0 7.0 1.0 |
 | 4.0 0.0 1.0 3.0 0.0 |
 | 4.0 1.0 1.0 3.0 0.0 |
 └ ┘

 LA = (0, -5, -4, -1, 2)
X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

 Output: Y = (25.0, 19.0, 36.0, 43.0, 33.0, 42.0)

 	Example 2

 	
 This example shows the matrix-vector product using trans = 'N',
 which is computed for the following sparse matrix A of
 order 6. The matrix is stored in compressed-matrix storage mode in
 arrays AD and LA using the storage
 variation for symmetric sparse matrices, storing the nonzero main
 diagonal and one of each of the unique nonzero diagonals. Matrix A is:
 ┌ ┐
 | 11.0 0.0 13.0 0.0 15.0 0.0 |
 | 0.0 22.0 0.0 24.0 0.0 26.0 |
 | 13.0 0.0 33.0 0.0 35.0 0.0 |
 | 0.0 24.0 0.0 44.0 0.0 46.0 |
 | 15.0 0.0 35.0 0.0 55.0 0.0 |
 | 0.0 26.0 0.0 46.0 0.0 66.0 |
 └ ┘

 Call Statement and Input: IOPT N ND AD LDA TRANS LA X Y
 | | | | | | | | |
CALL DSDMX(1 , 6 , 3 , AD , 6 , 'N' , LA , X , Y)

 ┌ ┐
 | 11.0 13.0 0.0 |
 | 22.0 24.0 0.0 |
AD = | 33.0 35.0 0.0 |
 | 44.0 46.0 0.0 |
 | 55.0 0.0 15.0 |
 | 66.0 0.0 26.0 |
 └ ┘

 LA = (0, 2, -4)
X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

 Output: Y = (125.0, 296.0, 287.0, 500.0, 395.0, 632.0)

 	Example 3

 	
 This example is the same as Example 1 except that it shows
 the matrix-vector product for the transpose of a matrix, using trans = 'T'.
 It is computed using the transpose of the following sparse matrix A of
 order 6, which is stored in compressed-matrix storage mode in arrays AD and LA,
 using the storage variation for general sparse matrices, storing all
 nonzero diagonals. It uses the same matrix A as in
 Example 1.

 Call Statement and Input:
 IOPT N ND AD LDA TRANS LA X Y
 | | | | | | | | |
CALL DSDMX(0 , 6 , 5 , AD , 6 , 'T' , LA , X , Y)

 AD =

 (same as input

 AD

 in Example 1)

 LA =

 (same as input

 LA

 in Example 1)

 X =

 (same as input

 X

 in Example 1)

 Output: Y = (21.0, 20.0, 47.0, 35.0, 50.0, 28.0)

 Parent topic: Linear Algebra Subprograms

 Matrix Operations

 The matrix operation subroutines are described here.

 	Overview of the Matrix Operation Subroutines

 	Use Considerations

 	Performance and Accuracy Considerations

 	Matrix Operation Subroutines

 	SGEADD, DGEADD, CGEADD, and ZGEADD (Matrix Addition for General Matrices or Their Transposes)

 	SGESUB, DGESUB, CGESUB, and ZGESUB (Matrix Subtraction for General Matrices or Their Transposes)

 	SGEMUL, DGEMUL, CGEMUL, and ZGEMUL (Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes)

 	SGEMMS, DGEMMS, CGEMMS, and ZGEMMS (Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes
 Using Winograd's Variation of Strassen's Algorithm)

 	SGEMM, DGEMM, CGEMM, and ZGEMM (Combined Matrix Multiplication and Addition for General Matrices, Their Transposes, or Conjugate
 Transposes)

 	SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM (Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric or Complex
 Hermitian)

 	STRMM, DTRMM, CTRMM, and ZTRMM (Triangular Matrix-Matrix Product)

 	STRSM, DTRSM, CTRSM, and ZTRSM (Solution of Triangular Systems of Equations with Multiple Right-Hand Sides)

 	SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK (Rank-K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix)

 	SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K (Rank-2K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix)

 	SGETMI, DGETMI, CGETMI, ZGETMI, CGECMI and ZGECMI (General Matrix Transpose or Conjugate Transpose [In-Place])

 	SGETMO, DGETMO, CGETMO, ZGETMO, CGECMO, and ZGECMO (General Matrix Transpose or Conjugate Transpose [Out-of-Place])

 Parent topic: Reference Information

 Overview of the Matrix Operation Subroutines

 Some of the matrix operation subroutines
 were designed in accordance with the Level 3 BLAS de facto standard.
 If these subroutines do not comply with the standard as approved, IBM® will consider updating them
 to do so. If IBM updates these
 subroutines, the updates could require modifications of the calling
 application program. For details on the Level 3 BLAS, see reference [40]. The matrix
 operation subroutines also include the commonly used matrix operations:
 addition, subtraction, multiplication, and transposition.

 Table 111. List of Matrix
 Operation Subroutines.

 	Short-Precision
 Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	

 SGEADD

 CGEADD

 	

 DGEADD

 ZGEADD

 	SGEADD, DGEADD, CGEADD, and ZGEADD (Matrix Addition for General Matrices or Their Transposes)

 	

 SGESUB

 CGESUB

 	

 DGESUB

 ZGESUB

 	SGESUB, DGESUB, CGESUB, and ZGESUB (Matrix Subtraction for General Matrices or Their Transposes)

 	

 SGEMUL

 CGEMUL

 	

 DGEMUL

 ZGEMUL

 DGEMLP

 §

 	SGEMUL, DGEMUL, CGEMUL, and ZGEMUL (Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes)

 	

 SGEMMS

 CGEMMS

 	

 DGEMMS

 ZGEMMS

 	SGEMMS, DGEMMS, CGEMMS, and ZGEMMS (Matrix Multiplication for General Matrices, Their Transposes, or Conjugate Transposes
 Using Winograd's Variation of Strassen's Algorithm)

 	

 SGEMM

 ♦

 CGEMM

 ♦

 cblas_sgemm

 ♦

 cblas_cgemm

 ♦

 	

 DGEMM

 ♦

 ZGEMM

 ♦

 cblas_dgemm

 ♦

 cblas_zgemm

 ♦

 	SGEMM, DGEMM, CGEMM, and ZGEMM (Combined Matrix Multiplication and Addition for General Matrices, Their Transposes, or Conjugate
 Transposes)

 	

 SSYMM

 ♦

 CSYMM

 ♦

 CHEMM

 ♦

 cblas_ssymm

 ♦

 cblas_csymm

 ♦

 cblas_chemm

 ♦

 	

 DSYMM

 ♦

 ZSYMM

 ♦

 ZHEMM

 ♦

 cblas_dsymm

 ♦

 cblas_zsymm

 ♦

 cblas_zhemm

 ♦

 	SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM (Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric or Complex
 Hermitian)

 	

 STRMM

 ♦

 CTRMM

 ♦

 cblas_strmm

 ♦

 cblas_ctrmm

 ♦

 	

 DTRMM

 ♦

 ZTRMM

 ♦

 cblas_dtrmm

 ♦

 cblas_ztrmm

 ♦

 	STRMM, DTRMM, CTRMM, and ZTRMM (Triangular Matrix-Matrix Product)

 	

 STRSM

 ♦

 CTRSM

 ♦

 cblas_strsm

 ♦

 cblas_ctrsm

 ♦

 	

 DTRSM

 ♦

 ZTRSM

 ♦

 cblas_dtrsm

 ♦

 cblas_ztrsm

 ♦

 	STRSM, DTRSM, CTRSM, and ZTRSM (Solution of Triangular Systems of Equations with Multiple Right-Hand Sides)

 	

 SSYRK

 ♦

 CSYRK

 ♦

 CHERK

 ♦

 cblas_ssyrk

 ♦

 cblas_csyrk

 ♦

 cblas_cherk

 ♦

 	

 DSYRK

 ♦

 ZSYRK

 ♦

 ZHERK

 ♦

 cblas_dsyrk

 ♦

 cblas_zsyrk

 ♦

 cblas_zherk

 ♦

 	SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK (Rank-K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix)

 	

 SSYR2K

 ♦

 CSYR2K

 ♦

 CHER2K

 ♦

 cblas_ssyr2k

 ♦

 cblas_csyr2k

 ♦

 cblas_cher2k

 ♦

 	

 DSYR2K

 ♦

 ZSYR2K

 ♦

 ZHER2K

 ♦

 cblas_dsyr2k

 ♦

 cblas_zsyr2k

 ♦

 cblas_zher2k

 ♦

 	SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K (Rank-2K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix)

 	

 SGETMI

 CGETMI

 CGECMI

 	

 DGETMI

 ZGETMI

 ZGECMI

 	 SGETMI, DGETMI, CGETMI, ZGETMI, CGECMI and ZGECMI (General Matrix Transpose or Conjugate Transpose [In-Place])

 	

 SGETMO

 CGETMO

 CGECMO

 	

 DGETMO

 ZGETMO

 ZGECMO

 	 SGETMO, DGETMO, CGETMO, ZGETMO, CGECMO, and ZGECMO (General Matrix Transpose or Conjugate Transpose [Out-of-Place])

 	
 ♦ Level 3 BLAS

 § This
 subroutine is provided only for migration from earlier release of
 ESSL and is not intended for use in new programs.

 Parent topic: Matrix Operations

 Use Considerations

 This describes some key points about using the matrix operations subroutines.

 	Specifying Normal, Transposed, or Conjugate Transposed Input Matrices

 	Transposing or Conjugate Transposing:

 Parent topic: Matrix Operations

 Specifying Normal, Transposed, or Conjugate Transposed Input
 Matrices

 On each invocation, the matrix operation subroutines can
 perform one of several possible computations, using different forms
 of the input matrices A and B. For the
 real and complex versions of the subroutines, there are four and nine
 combinations, respectively, depending on the characters specified
 for the transa and transb arguments:

 	'N'

 	Normal form

 	'T'

 	Transposed form

 	'C'

 	Conjugate transposed form

 The four and nine possible combinations are defined as
 follows:

 	Real Combinations

 	Complex Combinations

 	AB

 	AB

 	ATB

 	ATB

 	

 	AHB

 	ABT

 	ABT

 	ATBT

 	ATBT

 	

 	AHBT

 	

 	ABH

 	

 	ATBH

 	

 	AHBH

 Parent topic: Use Considerations

 Transposing or Conjugate Transposing:

 This describes some key points about using transposed and conjugate transposed
 matrices.

 	On Input

 	On Output

 Parent topic: Use Considerations

 On Input

 In every case, the input arrays for the matrix, its transpose, or its conjugate
 transpose should be stored in the original untransposed form. You then specify
 the desired form of the matrix to be used in the computation in the transa or transb arguments. For a description of matrix transpose
 and matrix conjugate transpose, see Matrices.

 Parent topic: Transposing or Conjugate Transposing:

 On Output

 If you want to compute the transpose or the conjugate transpose of a matrix
 operation—that is, the
 output stored in matrix C—you should use the matrix identities described
 in Special Usage for each subroutine description.
 Examples are provided in the subroutine descriptions to show the use of these
 matrix identities. This accomplishes the transpose or conjugate transpose
 as part of the multiply operation.

 Parent topic: Transposing or Conjugate Transposing:

 Performance and Accuracy Considerations

 This describes some key points about performance and accuracy
 in the matrix operations subroutines.

 	In General

 	For Large Matrices

 	For Combined Operations

 Parent topic: Matrix Operations

 In General

 	The matrix operation subroutines use algorithms that are tuned
 specifically to the workstation processors they run on. The techniques
 involve using any one of several computational methods, based on certain
 operation counts and sizes of data.

 	The short-precision multiplication subroutines provide increased
 accuracy by partially accumulating results in long precision when
 the AltiVec or VSX unit is not used.

 	Strassen's method is not stable for certain row or column scalings
 of the input matrices A and B. Therefore,
 for matrices A and B with divergent exponent
 values, Strassen's method may give inaccurate results. For these cases,
 you should use the _GEMUL or _GEMM subroutines.

 	There are ESSL-specific rules that apply to the results of computations
 on the workstation processors using the ANSI/IEEE standards. For details,
 see What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?.

 Parent topic: Performance and Accuracy Considerations

 For Large Matrices

 If you are using large square matrices in your matrix
 multiplication operations, you may get better
 performance by using SGEMMS, DGEMMS, CGEMMS, and ZGEMMS. These subroutines
 use Winograd's variation of Strassen's algorithm for both real and
 complex matrices.

 Parent topic: Performance and Accuracy Considerations

 For Combined Operations

 If you want to perform a combined matrix multiplication and addition with
 scaling, SGEMM, DGEMM, CGEMM, and ZGEMM provide better performance than if
 you perform the parts of the computation separately in your program. See references [40] and [43].

 Parent topic: Performance and Accuracy Considerations

 Matrix Operation Subroutines

 This contains the matrix operation subroutine
 descriptions.

 Parent topic: Matrix Operations

 SGEADD, DGEADD, CGEADD, and ZGEADD (Matrix Addition for General
 Matrices or Their Transposes)

 Purpose

 These subroutines can perform any
 one of the following matrix additions, using matrices A and B or
 their transposes, and matrix C:

 C

 ←

 A

 +

 B

 C

 ←

 A

 T

 +

 B

 C

 ←

 A

 +

 B

 T

 C

 ←

 A

 T

 +

 B

 T

 Table 112. Data Types.

 	A, B, C

 	Subroutine

 	Short-precision real

 	SGEADD

 	Long-precision real

 	DGEADD

 	Short-precision complex

 	CGEADD

 	Long-precision complex

 	ZGEADD

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SGEADD | DGEADD | CGEADD | ZGEADD (a, lda, transa, b, ldb, transb, c, ldc, m, n)

 	C and C++

 	sgeadd | dgeadd | cgeadd | zgeadd (a, lda, transa, b, ldb, transb, c, ldc, m, n);

 	On Entry

 	

 	 a

 	is the matrix A, where:
 If transa = 'N', A is
 used in the computation, and A has m rows
 and n columns.

 If transa = 'T', AT is
 used in the computation, and A has n rows
 and m columns.
 Note: No data should be moved to
 form AT; that is, the matrix A should
 always be stored in its untransposed form.

 Specified
 as: a two-dimensional array, containing numbers of the data type indicated
 in Table 112, where:

 If transa = 'N',
 its size must be lda by (at least) n.

 If transa = 'T',
 its size must be lda by (at least) m.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and:

 If transa = 'N', lda ≥ m.

 If transa = 'T', lda ≥ n.

 	 transa

 	indicates the form of matrix A to use in the computation,
 where:
 If transa = 'N', A is used in the
 computation.

 If transa = 'T', AT is
 used in the computation.

 Specified as: a single character; transa = 'N'
 or 'T'.

 	 b

 	is the matrix B, where:
 If transb = 'N', B is
 used in the computation, and B has m rows
 and n columns.

 If transb = 'T', BT is
 used in the computation, and B has n rows
 and m columns.
 Note: No data should be moved to
 form BT; that is, the matrix B should
 always be stored in its untransposed form.

 Specified
 as: a two-dimensional array, containing numbers of the data type indicated
 in Table 112, where:

 If transb = 'N',
 its size must be ldb by (at least) n.

 If transb = 'T',
 its size must be ldb by (at least) m.

 	 ldb

 	is the leading dimension of the array specified for b.

 Specified as: an integer; ldb > 0
 and:

 If transb = 'N', ldb ≥ m.

 If transb = 'T', ldb ≥ n.

 	 transb

 	indicates the form of matrix B to use in the computation,
 where:
 If transb = 'N', B is used in the
 computation.

 If transb = 'T', BT is
 used in the computation.

 Specified as: a single character; transb = 'N'
 or 'T'.

 	c

 	See On Return.

 	ldc

 	is the leading dimension of the array specified for c.

 Specified as: an integer; ldc > 0
 and ldc ≥ m.

 	m

 	is the number of rows in matrix C.
 Specified
 as: an integer; 0 ≤ m ≤ ldc.

 	n

 	is the number of columns in matrix C.
 Specified
 as: an integer; 0 ≤ n.

 	On Return

 	

 	c

 	is the m by n matrix C,
 containing the results of the computation. Returned as: an ldc by
 (at least) n array, containing numbers of the data
 type indicated in Table 112.

 Notes

 	All subroutines accept lowercase letters for the transa and transb arguments.

 	Matrix C must have no common elements with matrices A or B.
 However, C may (exactly) coincide with A if transa = 'N',
 and C may (exactly) coincide with B if transb = 'N'.
 Otherwise, results are unpredictable. See Concepts.

 Function

 The matrix sum
 is expressed as follows, where aij, bij,
 and cij are elements
 of matrices A, B, and C, respectively:

 c

 ij

 =

 a

 ij

 +

 b

 ij

 for

 C

 ←

 A

 +

 B

 c

 ij

 =

 a

 ij

 +

 b

 ji

 for

 C

 ←

 A

 +

 B

 T

 c

 ij

 =

 a

 ji

 +

 b

 ij

 for

 C

 ←

 A

 T

 +

 B

 c

 ij

 =

 a

 ji

 +

 b

 ji

 for

 C

 ←

 A

 T

 +

 B

 T

 for

 i

 =

 1,

 m

 and

 j

 =

 1,

 n

 If m or n is
 0, no computation is performed.

 Special Usage

 You can compute the
 transpose CT of each of the four computations
 listed under Function by using
 the following matrix identities:

 (

 A

 +

 B

)

 T

 =

 A

 T

 +

 B

 T

 (

 A

 +

 B

 T

)

 T

 =

 A

 T

 +

 B

 (

 A

 T

 +

 B

)

 T

 =

 A

 +

 B

 T

 (

 A

 T

 +

 B

 T

)

 T

 =

 A

 +

 B

 Be
 careful that your output array receiving CT has
 dimensions large enough to hold the transposed matrix. See Example 4.

 Error conditions

 	[bookmark: am5gr_hsgeadd__am5gr_f109010]
 Input-Argument Errors

 	

 	lda, ldb, ldc ≤ 0

 	m, n < 0

 	m > ldc

 	transa, transb ≠ 'N' or 'T'

 	transa = 'N' and m > lda

 	transa = 'T' and n > lda

 	transb = 'N' and m > ldb

 	transb = 'T' and n > ldb

 Examples

 	Example 1

 	
 This example shows the computation C←A+B,
 where A and C are contained in larger
 arrays A and C, respectively, and B is
 the same size as array B, in which it is contained.

 Call Statement and Input: A LDA TRANSA B LDB TRANSB C LDC M N
 | | | | | | | | | |
CALL SGEADD(A , 6 , 'N' , B , 4 , 'N' , C , 5 , 4 , 3)

 ┌ ┐
 | 110000.0 120000.0 130000.0 |
 | 210000.0 220000.0 230000.0 |
A = | 310000.0 320000.0 330000.0 |
 | 410000.0 420000.0 430000.0 |
 | . . . |
 | . . . |
 └ ┘

 ┌ ┐
 | 11.0 12.0 13.0 |
B = | 21.0 22.0 23.0 |
 | 31.0 32.0 33.0 |
 | 41.0 42.0 43.0 |
 └ ┘

 Output: ┌ ┐
 | 110011.0 120012.0 130013.0 |
 | 210021.0 220022.0 230023.0 |
C = | 310031.0 320032.0 330033.0 |
 | 410041.0 420042.0 430043.0 |
 | . . . |
 └ ┘

 	Example 2

 	
 This example shows the computation C←AT+B,
 where A, B, and C are the same size as
 arrays A, B, and C,
 in which they are contained.

 Call Statement
 and Input: A LDA TRANSA B LDB TRANSB C LDC M N
 | | | | | | | | | |
CALL SGEADD(A , 3 , 'T' , B , 4 , 'N' , C , 4 , 4 , 3)

 ┌ ┐
 | 110000.0 120000.0 130000.0 140000.0 |
A = | 210000.0 220000.0 230000.0 240000.0 |
 | 310000.0 320000.0 330000.0 340000.0 |
 └ ┘

 ┌ ┐
 | 11.0 12.0 13.0 |
B = | 21.0 22.0 23.0 |
 | 31.0 32.0 33.0 |
 | 41.0 42.0 43.0 |
 └ ┘

 Output: ┌ ┐
 | 110011.0 210012.0 310013.0 |
C = | 120021.0 220022.0 320023.0 |
 | 130031.0 230032.0 330033.0 |
 | 140041.0 240042.0 340043.0 |
 └ ┘

 	Example 3

 	
 This example shows computation C←A+BT,
 where A is contained in a larger array A,
 and B and C are the same size as arrays B and C,
 in which they are contained.

 Call Statement
 and Input: A LDA TRANSA B LDB TRANSB C LDC M N
 | | | | | | | | | |
CALL SGEADD(A , 5 , 'N' , B , 3 , 'T' , C , 4 , 4 , 3)

 ┌ ┐
 | 110000.0 120000.0 130000.0 |
 | 210000.0 220000.0 230000.0 |
A = | 310000.0 320000.0 330000.0 |
 | 410000.0 420000.0 430000.0 |
 | . . . |
 └ ┘

 ┌ ┐
 | 11.0 12.0 13.0 14.0 |
B = | 21.0 22.0 23.0 24.0 |
 | 31.0 32.0 33.0 34.0 |
 └ ┘

 Output: ┌ ┐
 | 110011.0 120021.0 130031.0 |
C = | 210012.0 220022.0 230032.0 |
 | 310013.0 320023.0 330033.0 |
 | 410014.0 420024.0 430034.0 |
 └ ┘

 	Example 4

 	
 This example shows how to produce the transpose of the result
 of the computation performed in Example
 3, C←A+BT,
 which uses the calling sequence: CALL SGEADD(A , 5 , 'N' , B , 3 , 'T' , C , 4 , 4 , 3)

 You
 instead code a calling sequence for CT←AT+B,
 as shown below, where the resulting matrix CT in
 the output array CT is the transpose of the matrix
 in the output array C in Example 3. Note that the
 array CT has dimensions large enough to receive the
 transposed matrix. For a description of all the matrix identities,
 see Special Usage.

 Call Statement and Input: A LDA TRANSA B LDB TRANSB C LDC M N
 | | | | | | | | | |
CALL SGEADD(A , 5 , 'T' , B , 3 , 'N' , CT , 4 , 3 , 4)

 ┌ ┐
 | 110000.0 120000.0 130000.0 |
 | 210000.0 220000.0 230000.0 |
A = | 310000.0 320000.0 330000.0 |
 | 410000.0 420000.0 430000.0 |
 | . . . |
 └ ┘

 ┌ ┐
 | 11.0 12.0 13.0 14.0 |
B = | 21.0 22.0 23.0 24.0 |
 | 31.0 32.0 33.0 34.0 |
 └ ┘

 Output: ┌ ┐
 | 110011.0 210012.0 310013.0 410014.0 |
CT = | 120021.0 220022.0 320023.0 420024.0 |
 | 130031.0 230032.0 330033.0 430034.0 |
 | |
 └ ┘

 	Example 5

 	
 This example shows the computation C←AT+BT,
 where A, B, and C are the same size as
 the arrays A, B, and C,
 in which they are contained.

 Call Statement
 and Input: A LDA TRANSA B LDB TRANSB C LDC M N
 | | | | | | | | | |
CALL SGEADD(A , 3 , 'T' , B , 3 , 'T' , C , 4 , 4 , 3)

 ┌ ┐
 | 110000.0 120000.0 130000.0 140000.0 |
A = | 210000.0 220000.0 230000.0 240000.0 |
 | 310000.0 320000.0 330000.0 340000.0 |
 └ ┘

 ┌ ┐
 | 11.0 12.0 13.0 14.0 |
B = | 21.0 22.0 23.0 24.0 |
 | 31.0 32.0 33.0 34.0 |
 └ ┘

 Output: ┌ ┐
 | 110011.0 210021.0 310031.0 |
C = | 120012.0 220022.0 320032.0 |
 | 130013.0 230023.0 330033.0 |
 | 140014.0 240024.0 340034.0 |
 └ ┘

 	Example 6

 	
 This example shows the computation C←A+B,
 where A, B, and C are contained
 in larger arrays A, B, and C,
 respectively, and the arrays contain complex data.

 Call Statement and Input: A LDA TRANSA B LDB TRANSB C LDC M N
 | | | | | | | | | |
CALL CGEADD(A , 6 , 'N' , B , 5 , 'N' , C , 5 , 4 , 3)

 ┌ ┐
 | (1.0, 5.0) (9.0, 2.0) (1.0, 9.0) |
 | (2.0, 4.0) (8.0, 3.0) (1.0, 8.0) |
A = | (3.0, 3.0) (7.0, 5.0) (1.0, 7.0) |
 | (6.0, 6.0) (3.0, 6.0) (1.0, 4.0) |
 | . . . |
 | . . . |
 └ ┘

 ┌ ┐
 | (1.0, 8.0) (2.0, 7.0) (3.0, 2.0) |
 | (4.0, 4.0) (6.0, 8.0) (6.0, 3.0) |
B = | (6.0, 2.0) (4.0, 5.0) (4.0, 5.0) |
 | (7.0, 2.0) (6.0, 4.0) (1.0, 6.0) |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | (2.0, 13.0) (11.0, 9.0) (4.0, 11.0) |
 | (6.0, 8.0) (14.0, 11.0) (7.0, 11.0) |
C = | (9.0, 5.0) (11.0, 10.0) (5.0, 12.0) |
 | (13.0, 8.0) (9.0, 10.0) (2.0, 10.0) |
 | . . . |
 └ ┘

 Parent topic: Matrix Operations

 SGESUB, DGESUB, CGESUB, and ZGESUB (Matrix Subtraction for
 General Matrices or Their Transposes)

 Purpose

 These subroutines can perform any
 one of the following matrix subtractions, using matrices A and B or
 their transposes, and matrix C:

 C

 ←

 A

 -

 B

 C

 ←

 A

 T

 -

 B

 C

 ←

 A

 -

 B

 T

 C

 ←

 A

 T

 -

 B

 T

 Table 113. Data Types.

 	A, B, C

 	Subroutine

 	Short-precision real

 	SGESUB

 	Long-precision real

 	DGESUB

 	Short-precision complex

 	CGESUB

 	Long-precision complex

 	ZGESUB

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SGESUB | DGESUB | CGESUB | ZGESUB (a, lda, transa, b, ldb, transb, c, ldc, m, n)

 	C and C++

 	sgesub | dgesub | cgesub | zgesub (a, lda, transa, b, ldb, transb, c, ldc, m, n);

 	On Entry

 	

 	 a

 	is the matrix A, where:
 If transa = 'N', A is
 used in the computation, and A has m rows
 and n columns.

 If transa = 'T', AT is
 used in the computation, and A has n rows
 and m columns.
 Note: No data should be moved to
 form AT; that is, the matrix A should
 always be stored in its untransposed form.

 Specified
 as: a two-dimensional array, containing numbers of the data type indicated
 in Table 113, where:

 If transa = 'N',
 its size must be lda by (at least) n.

 If transa = 'T',
 its size must be lda by (at least) m.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and:

 If transa = 'N', lda ≥ m.

 If transa = 'T', lda ≥ n.

 	 transa

 	indicates the form of matrix A to use in the computation,
 where:
 If transa = 'N', A is used in the
 computation.

 If transa = 'T', AT is
 used in the computation.

 Specified as: a single character; transa = 'N'
 or 'T'.

 	 b

 	is the matrix B, where:
 If transb = 'N', B is
 used in the computation, and B has m rows
 and n columns.

 If transb = 'T', BT is
 used in the computation, and B has n rows
 and m columns.
 Note: No data should be moved to
 form BT; that is, the matrix B should
 always be stored in its untransposed form.

 Specified
 as: a two-dimensional array, containing numbers of the data type indicated
 in Table 112,
 where:

 If transb = 'N', its size must be ldb by
 (at least) n.

 If transb = 'T',
 its size must be ldb by (at least) m.

 	 ldb

 	is the leading dimension of the array specified for b.

 Specified as: an integer; ldb > 0
 and:

 If transb = 'N', ldb ≥ m.

 If transb = 'T', ldb ≥ n.

 	 transb

 	indicates the form of matrix B to use in the computation,
 where:
 If transb = 'N', B is used in the
 computation.

 If transb = 'T', BT is
 used in the computation.

 Specified as: a single character; transb = 'N'
 or 'T'.

 	 c

 	See On Return.

 	 ldc

 	is the leading dimension of the array specified for c.

 Specified as: an integer; ldc > 0
 and ldc ≥ m.

 	 m

 	is the number of rows in matrix C.
 Specified
 as: an integer; 0 ≤ m ≤ ldc.

 	 n

 	is the number of columns in matrix C.
 Specified
 as: an integer; 0 ≤ n.

 	On Return

 	

 	 c

 	is the m by n matrix C,
 containing the results of the computation. Returned as: an ldc by
 (at least) n array, containing numbers of the data
 type indicated in Table 113.

 Notes

 	All subroutines accept lowercase letters for the transa and transb arguments.

 	Matrix C must have no common elements with matrices A or B.
 However, C may (exactly) coincide with A if transa = 'N',
 and C may (exactly) coincide with B if transb = 'N'.
 Otherwise, results are unpredictable. See Concepts.

 Function

 The matrix subtraction
 is expressed as follows, where aij, bij,
 and cij are elements
 of matrices A, B, and C, respectively:

 c

 ij

 =

 a

 ij

 -

 b

 ij

 for

 C

 ←

 A

 -

 B

 c

 ij

 =

 a

 ij

 -

 b

 ji

 for

 C

 ←

 A

 -

 B

 T

 c

 ij

 =

 a

 ji

 -

 b

 ij

 for

 C

 ←

 A

 T

 -

 B

 c

 ij

 =

 a

 ji

 -

 b

 ji

 for

 C

 ←

 A

 T

 -

 B

 T

 for

 i

 =

 1,

 m

 and

 j

 =

 1,

 n

 If m or n is
 0, no computation is performed.

 Special Usage

 You can compute the
 transpose CT of each of the four computations
 listed under Function by using
 the following matrix identities:

 (

 A

 -

 B

)

 T

 =

 A

 T

 -

 B

 T

 (

 A

 -

 B

 T

)

 T

 =

 A

 T

 -

 B

 (

 A

 T

 -

 B

)

 T

 =

 A

 -

 B

 T

 (

 A

 T

 -

 B

 T

)

 T

 =

 A

 -

 B

 Be
 careful that your output array receiving CT has
 dimensions large enough to hold the transposed matrix. See Example 5.

 Error conditions

 	[bookmark: am5gr_hsgesub__am5gr_f109029]
 Computational Errors

 	None

 	[bookmark: am5gr_hsgesub__am5gr_f109030]
 Input-Argument Errors

 	

 	lda, ldb, ldc ≤ 0

 	m, n < 0

 	m > ldc

 	transa, transb ≠ 'N' or 'T'

 	transa = 'N' and m > lda

 	transa = 'T' and n > lda

 	transb = 'N' and m > ldb

 	transb = 'T' and n > ldb

 Examples

 	Example 1

 	
 This example shows the computation C←A-B,
 where A and C are contained in larger
 arrays A and C, respectively, and B is
 the same size as array B, in which it is contained.

 Call Statement and Input: A LDA TRANSA B LDB TRANSB C LDC M N
 | | | | | | | | | |
CALL SGESUB(A , 6 , 'N' , B , 4 , 'N' , C , 5 , 4 , 3)

 ┌ ┐
 | 110000.0 120000.0 130000.0 |
 | 210000.0 220000.0 230000.0 |
A = | 310000.0 320000.0 330000.0 |
 | 410000.0 420000.0 430000.0 |
 | . . . |
 | . . . |
 └ ┘

 ┌ ┐
 | -11.0 -12.0 -13.0 |
B = | -21.0 -22.0 -23.0 |
 | -31.0 -32.0 -33.0 |
 | -41.0 -42.0 -43.0 |
 └ ┘

 Output: ┌ ┐
 | 110011.0 120012.0 130013.0 |
 | 210021.0 220022.0 230023.0 |
C = | 310031.0 320032.0 330033.0 |
 | 410041.0 420042.0 430043.0 |
 | . . . |
 └ ┘

 	Example 2

 	
 This example shows the computation C←AT-B,
 where A, B, and C are the same size as
 arrays A, B, and C,
 in which they are contained.

 Call Statement
 and Input: A LDA TRANSA B LDB TRANSB C LDC M N
 | | | | | | | | | |
CALL SGESUB(A , 3 , 'T' , B , 4 , 'N' , C , 4 , 4 , 3)

 ┌ ┐
 | 110000.0 120000.0 130000.0 140000.0 |
A = | 210000.0 220000.0 230000.0 240000.0 |
 | 310000.0 320000.0 330000.0 340000.0 |
 └ ┘

 ┌ ┐
 | -11.0 -12.0 -13.0 |
B = | -21.0 -22.0 -23.0 |
 | -31.0 -32.0 -33.0 |
 | -41.0 -42.0 -43.0 |
 └ ┘

 Output: ┌ ┐
 | 110011.0 210012.0 310013.0 |
C = | 120021.0 220022.0 320023.0 |
 | 130031.0 230032.0 330033.0 |
 | 140041.0 240042.0 340043.0 |
 └ ┘

 	Example 3

 	
 This example shows computation C←A-BT,
 where A is contained in a larger array A,
 and B and C are the same size as arrays B and C,
 in which they are contained.

 Call Statement
 and Input: A LDA TRANSA B LDB TRANSB C LDC M N
 | | | | | | | | | |
CALL SGESUB(A , 5 , 'N' , B , 3 , 'T' , C , 4 , 4 , 3)

 ┌ ┐
 | 110000.0 120000.0 130000.0 |
 | 210000.0 220000.0 230000.0 |
A = | 310000.0 320000.0 330000.0 |
 | 410000.0 420000.0 430000.0 |
 | . . . |
 └ ┘

 ┌ ┐
 | -11.0 -12.0 -13.0 -14.0 |
B = | -21.0 -22.0 -23.0 -24.0 |
 | -31.0 -32.0 -33.0 -34.0 |
 └ ┘

 Output: ┌ ┐
 | 110011.0 120021.0 130031.0 |
C = | 210012.0 220022.0 230032.0 |
 | 310013.0 320023.0 330033.0 |
 | 410014.0 420024.0 430034.0 |
 └ ┘

 	Example 4

 	
 This example shows the computation C←AT-BT,
 where A, B, and C are the same size as
 the arrays A, B, and C,
 in which they are contained.

 Call Statement
 and Input: A LDA TRANSA B LDB TRANSB C LDC M N
 | | | | | | | | | |
CALL SGESUB(A , 3 , 'T' , B , 3 , 'T' , C , 4 , 4 , 3)

 ┌ ┐
 | 110000.0 120000.0 130000.0 140000.0 |
A = | 210000.0 220000.0 230000.0 240000.0 |
 | 310000.0 320000.0 330000.0 340000.0 |
 └ ┘

 ┌ ┐
 | -11.0 -12.0 -13.0 -14.0 |
B = | -21.0 -22.0 -23.0 -24.0 |
 | -31.0 -32.0 -33.0 -34.0 |
 └ ┘

 Output: ┌ ┐
 | 110011.0 210021.0 310031.0 |
C = | 120012.0 220022.0 320032.0 |
 | 130013.0 230023.0 330033.0 |
 | 140014.0 240024.0 340034.0 |
 └ ┘

 	Example 5

 	
 This example shows how to produce the transpose of the result
 of the computation performed in Example
 4, C←AT-BT,
 which uses the calling sequence: CALL SGESUB(A , 3 , 'T' , B , 3 , 'T' , C , 4 , 4 , 3)

 You
 instead code a calling sequence for CT←A-B,
 as shown below, where the resulting matrix CT in
 the output array CT is the transpose of the matrix
 in the output array C in Example 4. Note that the
 array CT has dimensions large enough to receive the
 transposed matrix. For a description of all the matrix identities,
 see Special Usage.

 Call Statement and Input: A LDA TRANSA B LDB TRANSB C LDC M N
 | | | | | | | | | |
CALL SGESUB(A , 3 , 'N' , B , 3 , 'N' , CT , 3 , 3 , 4)

 ┌ ┐
 | 110000.0 120000.0 130000.0 140000.0 |
A = | 210000.0 220000.0 230000.0 240000.0 |
 | 310000.0 320000.0 330000.0 340000.0 |
 └ ┘

 ┌ ┐
 | -11.0 -12.0 -13.0 -14.0 |
B = | -21.0 -22.0 -23.0 -24.0 |
 | -31.0 -32.0 -33.0 -34.0 |
 └ ┘

 Output: ┌ ┐
 | 110011.0 120012.0 130013.0 140014.0 |
CT = | 210021.0 220022.0 230023.0 240024.0 |
 | 310031.0 320032.0 330033.0 340034.0 |
 └ ┘

 	Example 6

 	
 This example shows the computation C←A-B,
 where A, B, and C are contained
 in larger arrays A, B, and C,
 respectively, and the arrays contain complex data.

 Call Statement and Input: A LDA TRANSA B LDB TRANSB C LDC M N
 | | | | | | | | | |
CALL CGESUB(A , 6 , 'N' , B , 5 , 'N' , C , 5 , 4 , 3)

 ┌ ┐
 | (1.0, 5.0) (9.0, 2.0) (1.0, 9.0) |
 | (2.0, 4.0) (8.0, 3.0) (1.0, 8.0) |
A = | (3.0, 3.0) (7.0, 5.0) (1.0, 7.0) |
 | (6.0, 6.0) (3.0, 6.0) (1.0, 4.0) |
 | . . . |
 | . . . |
 └ ┘

 ┌ ┐
 | (1.0, 8.0) (2.0, 7.0) (3.0, 2.0) |
 | (4.0, 4.0) (6.0, 8.0) (6.0, 3.0) |
B = | (6.0, 2.0) (4.0, 5.0) (4.0, 5.0) |
 | (7.0, 2.0) (6.0, 4.0) (1.0, 6.0) |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | (0.0, -3.0) (7.0, -5.0) (-2.0, 7.0) |
 | (-2.0, 0.0) (2.0, -5.0) (-5.0, 5.0) |
C = | (-3.0, 1.0) (3.0, 0.0) (-3.0, 2.0) |
 | (-1.0, 4.0) (-3.0, 2.0) (0.0, -2.0) |
 | . . . |
 └ ┘

 Parent topic: Matrix Operations

 SGEMUL, DGEMUL, CGEMUL, and ZGEMUL (Matrix Multiplication for
 General Matrices, Their Transposes, or Conjugate Transposes)

 Purpose

 SGEMUL and DGEMUL can perform any
 one of the following matrix multiplications, using matrices A and B or
 their transposes, and matrix C:

 	C←AB

 	C←ABT

 	

 	C←ATB

 	C←ATBT

 	

 CGEMUL and ZGEMUL can perform any one of the following
 matrix multiplications, using matrices A and B,
 their transposes or their conjugate transposes, and matrix C:

 	C←AB

 	C←ABT

 	C←ABH

 	C←ATB

 	C←ATBT

 	C←ATBH

 	C←AHB

 	C←AHBT

 	C←AHBH

 Table 114. Data
 Types.

 	A, B, C

 	Subroutine

 	Short-precision real

 	SGEMUL

 	Long-precision real

 	DGEMUL

 	Short-precision complex

 	CGEMUL

 	Long-precision complex

 	ZGEMUL

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SGEMUL | DGEMUL | CGEMUL | ZGEMUL (a, lda, transa, b, ldb, transb, c, ldc, l, m, n)

 	C and C++

 	sgemul | dgemul | cgemul | zgemul (a, lda, transa, b, ldb, transb, c, ldc, l, m, n);

 	On Entry

 	

 	 a

 	is the matrix A, where:
 If transa = 'N', A is
 used in the computation, and A has l rows
 and m columns.

 If transa = 'T', AT is
 used in the computation, and A has m rows
 and l columns.

 If transa = 'C', AH is
 used in the computation, and A has m rows
 and l columns.
 Note: No data should be moved to
 form AT or AH; that
 is, the matrix A should always be stored in its untransposed
 form.

 Specified as: a two-dimensional array, containing
 numbers of the data type indicated in Table 114, where:

 If transa = 'N',
 its size must be lda by (at least) m.

 If transa = 'T'
 or 'C', its size must be lda by (at least) l.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and:

 If transa = 'N', lda ≥ l.

 If transa = 'T'
 or 'C', lda ≥ m.

 	 transa

 	indicates the form of matrix A to use in the computation,
 where:
 If transa = 'N', A is used in the
 computation.

 If transa = 'T', AT is
 used in the computation.

 If transa = 'C', AH is
 used in the computation.

 Specified as: a single character; transa = 'N'
 or 'T' for SGEMUL and DGEMUL; transa = 'N',
 'T', or 'C' for CGEMUL and ZGEMUL.

 	 b

 	is the matrix B, where:
 If transb = 'N', B is
 used in the computation, and B has m rows
 and n columns.

 If transb = 'T', BT is
 used in the computation, and B has n rows
 and m columns.

 If transb = 'C', BH is
 used in the computation, and B has n rows
 and m columns.
 Note: No data should be moved to
 form BT or BH; that
 is, the matrix B should always be stored in its untransposed
 form.

 Specified as: a two-dimensional array, containing
 numbers of the data type indicated in Table 114, where:

 If transb = 'N',
 its size must be ldb by (at least) n.

 If transb = 'T'
 or 'C', its size must be ldb by (at least) m.

 	 ldb

 	is the leading dimension of the array specified for b.

 Specified as: an integer; ldb > 0
 and:

 If transb = 'N', ldb ≥ m.

 If transb = 'T'
 or 'C', ldb ≥ n.

 	 transb

 	indicates the form of matrix B to use in the computation,
 where:
 If transb = 'N', B is used in the
 computation.

 If transb = 'T', BT is
 used in the computation.

 If transb = 'C', BH is
 used in the computation.

 Specified as: a single character; transb = 'N'
 or 'T' for SGEMUL and DGEMUL; transb = 'N',
 'T', or 'C' for CGEMUL and ZGEMUL.

 	 c

 	See On Return.

 	 ldc

 	is the leading dimension of the array specified for c.

 Specified as: an integer; ldc > 0
 and ldc ≥ l.

 	 l

 	is the number of rows in matrix C.
 Specified
 as: an integer; 0 ≤ l ≤ ldc.

 	 m

 	has the following meaning, where:
 If transa = 'N',
 it is the number of columns in matrix A.

 If transa = 'T'
 or 'C', it is the number of rows in matrix A.

 In
 addition:

 If transb = 'N', it is the number of rows in
 matrix B.

 If transb = 'T'
 or 'C', it is the number of columns in matrix B.

 Specified
 as: an integer; m ≥ 0.

 	 n

 	is the number of columns in matrix C.
 Specified
 as: an integer; n ≥ 0.

 	On Return

 	

 	 c

 	is the l by n matrix C,
 containing the results of the computation. Returned as: an ldc by
 (at least) n numbers of the data type indicated
 in Table 114.

 Notes

 	All subroutines accept lowercase letters for the transa and transb arguments.

 	Matrix C must have no common elements with matrices A or B;
 otherwise, results are unpredictable. See Concepts.

 Function

 The matrix multiplication
 is expressed as follows, where aik, bkj,
 and cij are elements
 of matrices A, B, and C, respectively:

 [image: Matrix Multiplication Graphic]

 See reference [46]. If l or n is
 0, no computation is performed. If l and n are
 greater than 0, and m is 0, an l by n matrix
 of zeros is returned.

 Special Usage

 	[bookmark: am5gr_hsgemul__am5gr_f109057]
 Equivalence Rules

 	By using the following equivalence rules, you can compute the
 transpose CT or the conjugate transpose CH of
 some of the computations performed by these subroutines:

 	Transpose

 	Conjugate Transpose

 	(AB)T = BTAT

 	(AB)H = BHAH

 	(ATB)T = BTA

 	(AHB)H = BHA

 	(ABT)T = BAT

 	(ABH)H = BAH

 	(ATBT)T = BA

 	(AHBH)H = BA

 When coding the calling sequences for these cases, be
 careful to code your matrix arguments and dimension arguments in the
 order indicated by the rule. Also, be careful that your output array,
 receiving CT or CH,
 has dimensions large enough to hold the resulting transposed or conjugate
 transposed matrix. See Example
 2 and Example 4.

 Error conditions

 	[bookmark: am5gr_hsgemul__am5gr_f109058]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hsgemul__am5gr_f109059]
 Computational Errors

 	None

 	[bookmark: am5gr_hsgemul__am5gr_f109060]
 Input-Argument Errors

 	

 	lda, ldb, ldc ≤ 0

 	l, m, n < 0

 	l > ldc

 	transa, transb ≠ 'N' or 'T' for SGEMUL
 and DGEMUL

 	transa, transb ≠ 'N', 'T', or 'C'
 for CGEMUL and ZGEMUL

 	transa = 'N' and l > lda

 	transa = 'T' or 'C' and m > lda

 	transb = 'N' and m > ldb

 	transb = 'T' or 'C' and n > ldb

 Examples

 	Example 1

 	
 This example shows the computation C←AB,
 where A, B, and C are contained in larger
 arrays A, B, and C,
 respectively.

 Call Statement and Input:
 A LDA TRANSA B LDB TRANSB C LDC L M N
 | | | | | | | | | | |
CALL SGEMUL(A , 8 , 'N' , B , 6 , 'N' , C , 7 , 6 , 5 , 4)

 ┌ ┐
 | 1.0 2.0 -1.0 -1.0 4.0 |
 | 2.0 0.0 1.0 1.0 -1.0 |
 | 1.0 -1.0 -1.0 1.0 2.0 |
A = | -3.0 2.0 2.0 2.0 0.0 |
 | 4.0 0.0 -2.0 1.0 -1.0 |
 | -1.0 -1.0 1.0 -3.0 2.0 |
 | |
 | |
 └ ┘

 ┌ ┐
 | 1.0 -1.0 0.0 2.0 |
 | 2.0 2.0 -1.0 -2.0 |
B = | 1.0 0.0 -1.0 1.0 |
 | -3.0 -1.0 1.0 -1.0 |
 | 4.0 2.0 -1.0 1.0 |
 | |
 └ ┘

 Output: ┌ ┐
 | 23.0 12.0 -6.0 2.0 |
 | -4.0 -5.0 1.0 3.0 |
 | 3.0 0.0 1.0 4.0 |
C = | -3.0 5.0 -2.0 -10.0 |
 | -5.0 -7.0 4.0 4.0 |
 | 15.0 6.0 -5.0 6.0 |
 | |
 └ ┘

 	Example 2

 	
 This example shows how to produce the transpose of the result
 of the computation performed in Example
 1, C←AB, which uses the
 calling sequence: CALL SGEMUL (A,8,'N',B,6,'N',C,7,6,5,4)

 You
 instead code a calling sequence for CT←BTAT,
 as shown below, where the resulting matrix CT in
 the output array CT is the transpose of the matrix
 in the output array C in Example 1. Note that the
 array CT has dimensions large enough to receive the
 transposed matrix. For a description of all the matrix identities,
 see Special Usage.

 Call Statement and Input: A LDA TRANSA B LDB TRANSB C LDC L M N
 | | | | | | | | | | |
CALL SGEMUL(B , 6 , 'T' , A , 8 , 'T' , CT , 5 , 4 , 5 , 6)

 ┌ ┐
 | 1.0 -1.0 0.0 2.0 |
 | 2.0 2.0 -1.0 -2.0 |
B = | 1.0 0.0 -1.0 1.0 |
 | -3.0 -1.0 1.0 -1.0 |
 | 4.0 2.0 -1.0 1.0 |
 | |
 └ ┘

 ┌ ┐
 | 1.0 2.0 -1.0 -1.0 4.0 |
 | 2.0 0.0 1.0 1.0 -1.0 |
 | 1.0 -1.0 -1.0 1.0 2.0 |
A = | -3.0 2.0 2.0 2.0 0.0 |
 | 4.0 0.0 -2.0 1.0 -1.0 |
 | -1.0 -1.0 1.0 -3.0 2.0 |
 | |
 | |
 └ ┘

 Output: ┌ ┐
 | 23.0 -4.0 3.0 -3.0 -5.0 15.0 |
 | 12.0 -5.0 0.0 5.0 -7.0 6.0 |
CT = | -6.0 1.0 1.0 -2.0 4.0 -5.0 |
 | 2.0 3.0 4.0 -10.0 4.0 6.0 |
 | |
 └ ┘

 	Example 3

 	
 This example shows the computation C←ATB,
 where A and C are contained in larger
 arrays A and C, respectively, and B is
 the same size as the

 Call Statement and
 Input: A LDA TRANSA B LDB TRANSB C LDC L M N
 | | | | | | | | | | |
CALL SGEMUL(A , 4 , 'T' , B , 3 , 'N' , C , 5 , 3 , 3 , 6)

 ┌ ┐
 | 1.0 -3.0 2.0 |
A = | 2.0 4.0 0.0 |
 | 1.0 -1.0 -1.0 |
 | . . . |
 └ ┘

 ┌ ┐
 | 1.0 -3.0 2.0 2.0 -1.0 2.0 |
B = | 2.0 4.0 0.0 0.0 1.0 -2.0 |
 | 1.0 -1.0 -1.0 -1.0 -1.0 1.0 |
 └ ┘

 Output: ┌ ┐
 | 6.0 4.0 1.0 1.0 0.0 -1.0 |
 | 4.0 26.0 -5.0 -5.0 8.0 -15.0 |
C = | 1.0 -5.0 5.0 5.0 -1.0 3.0 |
 | |
 | |
 └ ┘

 	Example 4

 	
 This example shows how to produce the transpose of the result
 of the computation performed in Example
 3, C←ATB,
 which uses the calling sequence: CALL SGEMUL (A,4,'T',B,3,'N',C,5,3,3,6)

 You
 instead code the calling sequence for CT←BTA,
 as shown below, where the resulting matrix CT in
 the output array CT is the transpose of the matrix
 in the output array C in Example 3. Note that the
 array CT has dimensions large enough to receive the
 transposed matrix. For a description of all the matrix identities,
 see Special Usage.

 Call Statement and Input: A LDA TRANSA B LDB TRANSB C LDC L M N
 | | | | | | | | | | |
CALL SGEMUL(B , 3 , 'T' , A , 4 , 'N' , CT , 8 , 6 , 3 , 3)

 ┌ ┐
 | 1.0 -3.0 2.0 2.0 -1.0 2.0 |
B = | 2.0 4.0 0.0 0.0 1.0 -2.0 |
 | 1.0 -1.0 -1.0 -1.0 -1.0 1.0 |
 └ ┘

 ┌ ┐
 | 1.0 -3.0 2.0 |
A = | 2.0 4.0 0.0 |
 | 1.0 -1.0 -1.0 |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | 6.0 4.0 1.0 |
 | 4.0 26.0 -5.0 |
 | 1.0 -5.0 5.0 |
CT = | 1.0 -5.0 5.0 |
 | 0.0 8.0 -1.0 |
 | -1.0 -15.0 3.0 |
 | . . . |
 | . . . |
 └ ┘

 	Example 5

 	
 This example shows the computation C←ABT,
 where A and C are contained in larger
 arrays A and C, respectively, and B is
 the same size as the array B in which it is contained.

 Call Statement and Input: A LDA TRANSA B LDB TRANSB C LDC L M N
 | | | | | | | | | | |
CALL SGEMUL(A , 4 , 'N' , B , 3 , 'T' , C , 5 , 3 , 2 , 3)

 ┌ ┐
 | 1.0 -3.0 |
A = | 2.0 4.0 |
 | 1.0 -1.0 |
 | . . |
 └ ┘

 ┌ ┐
 | 1.0 -3.0 |
B = | 2.0 4.0 |
 | 1.0 -1.0 |
 └ ┘

 Output: ┌ ┐
 | 10.0 -10.0 4.0 |
 | -10.0 20.0 -2.0 |
C = | 4.0 -2.0 2.0 |
 | . . . |
 | . . . |
 └ ┘

 	Example 6

 	
 This example shows the computation C←ATBT,
 where A, B, and C are the same size as
 the arrays A, B, and C in which
 they are contained. (Based on the dimensions of the matrices, A is
 actually a column vector, and C is actually a row vector.)

 Call Statement and Input: A LDA TRANSA B LDB TRANSB C LDC L M N
 | | | | | | | | | | |
CALL SGEMUL(A , 3 , 'T' , B , 3 , 'T' , C , 1 , 1 , 3 , 3)

 ┌ ┐
 | 1.0 |
A = | 2.0 |
 | 1.0 |
 └ ┘

 ┌ ┐
 | 1.0 -3.0 2.0 |
B = | 2.0 4.0 0.0 |
 | 1.0 -1.0 -1.0 |
 └ ┘

 Output: ┌ ┐
B = | -3.0 10.0 -2.0 |
 └ ┘

 	Example 7

 	
 This example shows the computation C←ATB using
 complex data, where A, B, and C are
 contained in larger arrays A, B,
 and C, respectively.

 Call
 Statement and Input: A LDA TRANSA B LDB TRANSB C LDC L M N
 | | | | | | | | | | |
CALL CGEMUL(A , 6 , 'T' , B , 7 , 'N' , C , 3 , 2 , 3 , 3)

 ┌ ┐
 | (1.0, 2.0) (3.0, 4.0) |
 | (4.0, 6.0) (7.0, 1.0) |
A = | (6.0, 3.0) (2.0, 5.0) |
 | . . |
 | . . |
 | . . |
 └ ┘

 ┌ ┐
 | (1.0, 9.0) (2.0, 6.0) (5.0, 6.0) |
 | (2.0, 5.0) (6.0, 2.0) (6.0, 4.0) |
 | (2.0, 6.0) (5.0, 4.0) (2.0, 6.0) |
B = | . . . |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | (-45.0, 85.0) (20.0, 93.0) (-13.0, 110.0) |
C = | (-50.0, 90.0) (12.0, 79.0) (3.0, 94.0) |
 | . . . |
 └ ┘

 	Example 8

 	
 This example shows the computation C←ABH using
 complex data, where A and C are contained
 in larger arrays A and C, respectively,
 and B is the same size as the array B in
 which it is contained.

 Call Statement
 and Input: A LDA TRANSA B LDB TRANSB C LDC L M N
 | | | | | | | | | | |
CALL CGEMUL(A , 4 , 'N' , B , 3 , 'C' , C , 4 , 3 , 2 , 3)

 ┌ ┐
 | (1.0, 2.0) (-3.0, 2.0) |
A = | (2.0, 6.0) (4.0, 5.0) |
 | (1.0, 2.0) (-1.0, 8.0) |
 | . . |
 └ ┘

 ┌ ┐
 | (1.0, 3.0) (-3.0, 2.0) |
B = | (2.0, 5.0) (4.0, 6.0) |
 | (1.0, 1.0) (-1.0, 9.0) |
 └ ┘

 Output: ┌ ┐
 | (20.0, -1.0) (12.0, 25.0) (24.0, 26.0) |
C = | (18.0, -23.0) (80.0, -2.0) (49.0, -37.0) |
 | (26.0, -23.0) (56.0, 37.0) (76.0, 2.0) |
 | . . . |
 └ ┘

 Parent topic: Matrix Operations

 SGEMMS, DGEMMS, CGEMMS, and ZGEMMS (Matrix Multiplication for
 General Matrices, Their Transposes, or Conjugate Transposes Using
 Winograd's Variation of Strassen's Algorithm)

 Purpose

 These subroutines use Winograd's
 variation of the Strassen's algorithm to perform the matrix multiplication
 for both real and complex matrices. SGEMMS and DGEMMS can perform
 any one of the following matrix multiplications, using matrices A and B or
 their transposes, and matrix C:

 	C←AB

 	C←ABT

 	

 	C←ATB

 	C←ATBT

 	

 CGEMMS and ZGEMMS can perform any one of the following
 matrix multiplications, using matrices A and B,
 their transposes or their conjugate transposes, and matrix C:

 	C←AB

 	C←ABT

 	C←ABH

 	C←ATB

 	C←ATBT

 	C←ATBH

 	C←AHB

 	C←AHBT

 	C←AHBH

 Table 115. Data
 Types.

 	A, B, C

 	aux

 	Subroutine

 	Short-precision real

 	Short-precision real

 	SGEMMS

 	Long-precision real

 	Long-precision real

 	DGEMMS

 	Short-precision complex

 	Short-precision real

 	CGEMMS

 	Long-precision complex

 	Long-precision real

 	ZGEMMS

 Syntax

 	Fortran

 	CALL SGEMMS | DGEMMS | CGEMMS | ZGEMMS (a, lda, transa, b, ldb, transb, c, ldc, l, m, n, aux, naux)

 	C and C++

 	sgemms | dgemms | cgemms | zgemms (a, lda, transa, b, ldb, transb, c, ldc, l, m, n, aux, naux);

 	On Entry

 	

 	 a

 	is the matrix A, where:
 If transa = 'N', A is
 used in the computation, and A has l rows
 and m columns.

 If transa = 'T', AT is
 used in the computation, and A has m rows
 and l columns.

 If transa = 'C', AH is
 used in the computation, and A has m rows
 and l columns.
 Note: No data should be moved to
 form AT or AH; that
 is, the matrix A should always be stored in its untransposed
 form.

 Specified as: a two-dimensional array, containing
 numbers of the data type indicated in Table 115, where:

 If transa = 'N',
 its size must be lda by (at least) m.

 If transa = 'T'
 or 'C', its size must be lda by (at least) l.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and:

 If transa = 'N', lda ≥ l.

 If transa = 'T'
 or 'C', lda ≥ m.

 	 transa

 	indicates the form of matrix A to use in the computation,
 where:
 If transa = 'N', A is used in the
 computation.

 If transa = 'T', AT is
 used in the computation.

 If transa = 'C', AH is
 used in the computation.

 Specified as: a single character; transa = 'N'
 or 'T' for SGEMMS and DGEMMS; transa = 'N',
 'T', or 'C' for CGEMMS and ZGEMMS.

 	 b

 	is the matrix B, where:
 If transb = 'N', B is
 used in the computation, and B has m rows
 and n columns.

 If transb = 'T', BT is
 used in the computation, and B has n rows
 and m columns.

 If transb = 'C', BH is
 used in the computation, and B has n rows
 and m columns.
 Note: No data should be moved to
 form BT or BH; that
 is, the matrix B should always be stored in its untransposed
 form.

 Specified as: a two-dimensional array, containing
 numbers of the data type indicated in Table 115, where:

 If transb = 'N',
 its size must be ldb by (at least) n.

 If transb = 'T'
 or 'C', its size must be ldb by (at least) m.

 	 ldb

 	is the leading dimension of the array specified for b.

 Specified as: an integer; ldb > 0
 and:

 If transb = 'N', ldb ≥ m.

 If transb = 'T'
 or 'C', ldb ≥ n.

 	 transb

 	indicates the form of matrix B to use in the computation,
 where:
 If transb = 'N', B is used in the
 computation.

 If transb = 'T', BT is
 used in the computation.

 If transb = 'C', BH is
 used in the computation.

 Specified as: a single character; transb = 'N'
 or 'T' for SGEMMS and DGEMMS; transb = 'N',
 'T', or 'C' for CGEMMS and ZGEMMS.

 	 c

 	See On Return.

 	 ldc

 	is the leading dimension of the array specified for c.

 Specified as: an integer; ldc > 0
 and ldc ≥ l.

 	 l

 	is the number of rows in matrix C.
 Specified
 as: an integer; 0 ≤ l ≤ ldc.

 	 m

 	has the following meaning, where:
 If transa = 'N',
 it is the number of columns in matrix A.

 If transa = 'T'
 or 'C', it is the number of rows in matrix A.

 In
 addition:

 If transb = 'N', it is the number of rows in
 matrix B.

 If transb = 'T'
 or 'C', it is the number of columns in matrix B.

 Specified
 as: an integer; m ≥ 0.

 	 n

 	is the number of columns in matrix C.
 Specified
 as: an integer; n ≥ 0.

 	 aux

 	has the following meaning:
 If naux = 0
 and error 2015 is unrecoverable, aux is ignored.

 Otherwise,
 is the storage work area used by this subroutine. Its size is specified
 by naux.

 Specified as: an area of storage
 containing numbers of the data type indicated in Table 115.

 	 naux

 	is the size of the work area specified by aux—that
 is, the number of elements in aux.
 Specified
 as: an integer, where:

 If naux = 0
 and error 2015 is unrecoverable, SGEMMS, DGEMMS, CGEMMS, and ZGEMMS
 dynamically allocate the work area used by the subroutine. The work
 area is deallocated before control is returned to the calling program.

 Otherwise,

 When
 this subroutine uses Strassen's algorithm:

 	For SGEMMS and DGEMMS:

 Use

 naux

 =

 max

 [

 (

 n

)(

 l

), 0.7

 m

 (

 l

 +

 n

)

]

 .

 	For CGEMMS and ZGEMMS:

 Use

 naux

 =

 max

 [

 (

 n

)(

 l

), 0.7

 m

 (

 l

 +

 n

)

]

 +

 nb1

 +

 nb2

 , where:

 If

 l

 ≥

 n

 , then

 nb1

 ≥

 (

 l

)(

 n

 +20) and

 nb2

 ≥

 max

 [

 (

 n

)(

 l

), (

 m

)(

 n

 +20)

]

 .

 If

 l

 <

 n

 , then

 nb1

 ≥

 (

 m

)(

 n

 +20) and

 nb2

 ≥

 max

 [

 (

 n

)(

 l

), (

 l

)(

 m

 +20)

]

 .

 When this subroutine uses the direct method (_GEMUL),
 use naux ≥ 0.
 Note:

 	In most cases, these formulas provide an overestimate.

 	For an explanation of when this subroutine uses the direct method
 versus Strassen's algorithm, see Notes.

 	On Return

 	

 	 c

 	is the l by n matrix C,
 containing the results of the computation. Returned as: an ldc by
 (at least) n array, containing numbers of the data
 type indicated in Table 115.

 Notes

 	There are two instances when these subroutines use the direct
 method (_GEMUL), rather than using Strassen's algorithm:

 	When either or both of the input matrices are small

 	For CGEMMS and ZGEMMS, when input matrices A and B overlap

 In these instances when the direct method is used, the subroutine
 does not use auxiliary storage, and you can specify naux = 0.

 	For CGEMMS and ZGEMMS, one of the input matrices, A or B,
 is rearranged during the computation and restored to its original
 form on return. Keep this in mind when diagnosing an abnormal termination.

 	All subroutines accept lowercase letters for the transa and transb arguments.

 	Matrix C must have no common elements with matrices A or B;
 otherwise, results are unpredictable. See Concepts.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 The matrix multiplications
 performed by these subroutines are functionally equivalent to those
 performed by SGEMUL, DGEMUL, CGEMUL, and ZGEMUL. For details on the
 computations performed, see Function.

 SGEMMS,
 DGEMMS, CGEMMS, and ZGEMMS use Winograd's variation of the Strassen's
 algorithm with minor changes for tuning purposes. (See pages 45 and
 46 in reference [17].) The subroutines
 compute matrix multiplication for both real and complex matrices of
 large sizes. Complex matrix multiplication uses a special technique,
 using three real matrix multiplications and five real matrix additions.
 Each of these three resulting matrix multiplications then uses Strassen's
 algorithm.

 	[bookmark: am5gr_hsgemms__am5gr_strassy]
 Strassen's Algorithm

 	The steps of Strassen's algorithm can be repeated up to four times
 by these subroutines, with each step reducing the dimensions of the
 matrix by a factor of two. The number of steps used by this subroutine
 depends on the size of the input matrices. Each step reduces the
 number of operations by about 10% from the normal matrix multiplication.
 On the other hand, if the matrix is small, a normal matrix multiplication
 is performed without using the Strassen's algorithm, and no improvement
 is gained. For details about small matrices, see Notes.

 	[bookmark: am5gr_hsgemms__am5gr_f109081]
 Complex Matrix Multiplication

 	The complex multiplication is performed by forming the real and
 imaginary parts of the input matrices. These subroutines uses three
 real matrix multiplications and five real matrix additions, instead
 of the normal four real matrix multiplications and two real matrix
 additions. Using only three real matrix multiplications allows the
 subroutine to achieve up to a 25% reduction in matrix operations,
 which can result in a significant savings in computing time for large
 matrices.

 	[bookmark: am5gr_hsgemms__am5gr_f109082]
 Accuracy Considerations

 	Strassen's method is not stable for certain row or column scalings
 of the input matrices A and B. Therefore,
 for matrices A and B with divergent exponent
 values Strassen's method may give inaccurate results. For these cases,
 you should use the _GEMUL or _GEMM subroutines.

 Special Usage

 The
 equivalence rules, defined for matrix multiplication of A and B in Special Usage, also
 apply to these subroutines. You should use the equivalence rules when
 you want to transpose or conjugate transpose the result of the multiplication
 computation. When coding the calling sequences for these cases, be
 careful to code your matrix arguments and dimension arguments in the
 order indicated by the rule. Also, be careful that your output array,
 receiving CT or CH,
 has dimensions large enough to hold the resulting transposed or conjugate
 transposed matrix. See Example 2 and Example 4.

 Error conditions

 	[bookmark: am5gr_hsgemms__am5gr_f109083]
 Resource Errors

 	Error 2015 is unrecoverable, naux = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hsgemms__am5gr_f109084]
 Computational Errors

 	None

 	[bookmark: am5gr_hsgemms__am5gr_f109085]
 Input-Argument Errors

 	

 	lda, ldb, ldc ≤ 0

 	l, m, n < 0

 	l > ldc

 	transa, transb ≠ 'N' or 'T' for SGEMMS
 and DGEMMS

 	transa, transb ≠ 'N', 'T', or 'C'
 for CGEMMS and ZGEMMS

 	transa = 'N' and l > lda

 	transa = 'T' or 'C' and m > lda

 	transb = 'N' and m > ldb

 	transb = 'T' or 'C' and n > ldb

 	Error 2015 is recoverable or naux not equal
 to 0, and naux is too small—that is, less than the minimum required value.
 Return code 1 is returned if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows the computation C←AB,
 where A, B, and C are contained
 in larger arrays A, B, and C,
 respectively. It shows how to code the calling sequence for SGEMMS,
 but does not use the Strassen algorithm for doing the computation.
 The calling sequence is shown below. The input and output, other
 than auxiliary storage, is the same as in Example 1 for
 SGEMUL.

 Call Statement and Input: A LDA TRANSA B LDB TRANSB C LDC L M N AUX NAUX
 | | | | | | | | | | | | |
CALL SGEMMS(A , 8 , 'N' , B , 6 , 'N' , C , 7 , 6 , 5 , 4 , AUX , 0)

 	Example 2

 	
 This example shows the computation C←ABH,
 where A and C are contained in larger
 arrays A and C, respectively, and B is
 the same size as the array B in which it is contained.
 The arrays contain complex data. This example shows how to code the
 calling sequence for CGEMMS, but does not use the Strassen algorithm
 for doing the computation. The calling sequence is shown below. The
 input and output, other than auxiliary storage, is the same as in Example 8 for
 CGEMUL.

 Call Statement and Input: A LDA TRANSA B LDB TRANSB C LDC L M N AUX NAUX
 | | | | | | | | | | | | |
CALL CGEMMS(A , 4 , 'N' , B , 3 , 'C' , C , 4 , 3 , 2 , 3 , AUX , 0)

 Parent topic: Matrix Operations

 SGEMM, DGEMM, CGEMM, and ZGEMM (Combined Matrix Multiplication
 and Addition for General Matrices, Their Transposes, or Conjugate
 Transposes)

 Purpose

 SGEMM and DGEMM can perform any
 one of the following combined matrix computations, using scalars α and β, matrices A and B or
 their transposes, and matrix C:

 	C ← αAB+βC

 	C ← αABT+βC

 	

 	C ← αATB+βC

 	C ← αATBT+βC

 	

 CGEMM and ZGEMM can perform any one of the following combined
 matrix computations, using scalars α and β, matrices A and B,
 their transposes or their conjugate transposes, and matrix C:

 	C ← αAB+βC

 	C ← αABT+βC

 	C ← αABH+βC

 	C ← αATB+βC

 	C ← αATBT+βC

 	C ← αATBH+βC

 	C ← αAHB+βC

 	C ← αAHBT+βC

 	C ← αAHBH+βC

 Table 116. Data
 Types.

 	A, B, C, α, β

 	Subroutine

 	Short-precision real

 	SGEMM

 	Long-precision real

 	DGEMM

 	Short-precision complex

 	CGEMM

 	Long-precision complex

 	ZGEMM

 Note: On certain processors, SIMD algorithms may be used if
 alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SGEMM | DGEMM | CGEMM | ZGEMM (transa, transb, l, n, m, alpha, a, lda, b, ldb, beta, c, ldc)

 	C and C++

 	sgemm | dgemm | cgemm | zgemm (transa, transb, l, n, m, alpha, a, lda, b, ldb, beta, c, ldc);

 	CBLAS

 	cblas_sgemm | cblas_dgemm | cblas_cgemm | cblas_zgemm ([image: Start of change]cblas_layout[image: End of change], cblas_transa, cblas_transb,
 l, n, m, alpha,
 a, lda, b, ldb,
 beta, c, ldc);

 	On Entry

 	

 	[image: Start of change]cblas_layout[image: End of change]

 	indicates whether the input and output matrices are stored in
 row major order or column major order, where:

 	If [image: Start of change]cblas_layout[image: End of change] = CblasRowMajor,
 the matrices are stored in row major order. 			

 	If [image: Start of change]cblas_layout[image: End of change] = CblasColMajor,
 the matrices are stored in column major order.

 Specified as: an object of enumerated type [image: Start of change]CBLAS_LAYOUT[image: End of change]. It
 must be CblasRowMajor or CblasColMajor.

 	 transa

 	indicates the form of matrix A to use in the computation,
 where:
 If transa = 'N', A is used in the
 computation.

 If transa = 'T', AT is
 used in the computation.

 If transa = 'C', AH is
 used in the computation.

 Specified as: a single character; transa = 'N',
 'T', or 'C'.

 	cblas_transa

 	indicates the form of matrix A to use in the computation,
 where:
 If cblas_transa = CblasNoTrans, A is
 used in the computation.

 If cblas_transa = CblasTrans, AT is
 used in the computation.

 If cblas_transa = CblasConjTrans, AH is
 used in the computation.

 Specified as: an object of enumerated
 type CBLAS_TRANSPOSE. It must be CblasNoTrans, CblasTrans, or CblasConjTrans.

 	 transb

 	indicates the form of matrix B to use in the computation,
 where:
 If transb = 'N', B is used in the
 computation.

 If transb = 'T', BT is
 used in the computation.

 If transb = 'C', BH is
 used in the computation.

 Specified as: a single character; transb = 'N',
 'T', or 'C'.

 	cblas_transb

 	indicates the form of matrix B to use in the computation,
 where:
 If cblas_transb = CblasNoTrans, B is
 used in the computation.

 If cblas_transb = CblasTrans, BT is
 used in the computation.

 If cblas_transb = CblasConjTrans, BH is
 used in the computation.

 Specified as: an object of enumerated
 type CBLAS_TRANSPOSE. It must be CblasNoTrans, CblasTrans, or CblasConjTrans.

 	 l

 	is the number of rows in matrix C.
 Specified
 as: an integer; 0 ≤ l ≤ ldc.

 	 n

 	is the number of columns in matrix C.
 Specified
 as: an integer; n ≥ 0.

 	 m

 	has the following meaning, where:
 If transa = 'N',
 it is the number of columns in matrix A.

 If transa = 'T'
 or 'C', it is the number of rows in matrix A.

 In
 addition:

 If transb = 'N', it is the number of rows in
 matrix B.

 If transb = 'T'
 or 'C', it is the number of columns in matrix B.

 Specified
 as: an integer; m ≥ 0.

 	 alpha

 	is the scalar α.
 Specified as: a number of the data
 type indicated in Table 116.

 	 a

 	is the matrix A, where:
 If transa = 'N', A is
 used in the computation, and A has l rows
 and m columns.

 If transa = 'T', AT is
 used in the computation, and A has m rows
 and l columns.

 If transa = 'C', AH is
 used in the computation, and A has m rows
 and l columns.
 Note: No data should be moved to
 form AT or AH; that
 is, the matrix A should always be stored in its untransposed
 form.

 Specified as: a two-dimensional array, containing
 numbers of the data type indicated in Table 116, where:

 If transa = 'N',
 its size must be lda by (at least) m.

 If transa = 'T'
 or 'C', its size must be lda by (at least) l.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and:

 If transa = 'N', lda ≥ l.

 If transa = 'T'
 or 'C', lda ≥ m.

 	 b

 	is the matrix B, where:
 If transb = 'N', B is
 used in the computation, and B has m rows
 and n columns.

 If transb = 'T', BT is
 used in the computation, and B has n rows
 and m columns.

 If transb = 'C', BH is
 used in the computation, and B has n rows
 and m columns.
 Note: No data should be moved to
 form BT or BH; that
 is, the matrix B should always be stored in its untransposed
 form.

 Specified as: a two-dimensional array, containing
 numbers of the data type indicated in Table 116, where:

 If transb = 'N',
 its size must be ldb by (at least) n.

 If transb = 'T'
 or 'C', its size must be ldb by (at least) m.

 	 ldb

 	is the leading dimension of the array specified for b.

 Specified as: an integer; ldb > 0
 and:

 If transb = 'N', ldb ≥ m.

 If transb = 'T'
 or 'C', ldb ≥ n.

 	 beta

 	is the scalar β.
 Specified as: a number of the data
 type indicated in Table 116.

 	 c

 	is the l by n matrix C.

 Specified as: a two-dimensional array, containing numbers of the
 data type indicated in Table 116.

 	 ldc

 	is the leading dimension of the array specified for c.

 Specified as: an integer; ldc > 0
 and ldc ≥ l.

 	On Return

 	

 	 c

 	is the l by n matrix C,
 containing the results of the computation. Returned as: an ldc by
 (at least) n array, containing numbers of the data
 type indicated in Table 116.

 Notes

 	All subroutines accept lowercase letters for the transa and transb arguments.

 	For SGEMM and DGEMM, if you specify 'C' for the transa or transb argument,
 it is interpreted as though you specified 'T'.

 	Matrix C must have no common elements with matrices A or B;
 otherwise, results are unpredictable. See Concepts.

 Function

 The combined
 matrix addition and multiplication is expressed as follows, where aik, bkj,
 and cij are elements
 of matrices A, B, and C, respectively:

 [image: Combined Matrix Addition and Multiplication Graphic]

 See references [40] and [46]. In the following
 three cases, no computation is performed:

 	l is 0.

 	n is 0.

 	β is
 1 and α is
 0.

 Assuming the above conditions do not exist, if β ≠ 1 and m is
 0, then βC is
 returned.

 Special Usage

 	[bookmark: am5gr_hsgemm__am5gr_f109093]
 Equivalence Rules

 	The equivalence rules, defined for matrix multiplication of A and B in Special Usage, also
 apply to the matrix multiplication part of the computation performed
 by this subroutine. You should use the equivalent rules when you
 want to transpose or conjugate transpose the multiplication part of
 the computation. When coding the calling sequences for these cases,
 be careful to code your matrix arguments and dimension arguments in
 the order indicated by the rule. Also, be careful that your input
 and output array C has dimensions large enough to
 hold the resulting matrix. See Example
 4.

 Error conditions

 	[bookmark: am5gr_hsgemm__am5gr_f109094]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hsgemm__am5gr_f09095]
 Computational Errors

 	None

 	[bookmark: am5gr_hsgemm__am5gr_f109096]
 Input-Argument Errors

 	

 	[image: Start of change]cblas_layout[image: End of change] ≠ CblasRowMajor or
 CblasColMajor

 	lda, ldb, ldc ≤ 0

 	l, m, n < 0

 	l > ldc

 	transa, transb ≠ 'N', 'T', or 'C'

 	transa = 'N' and l > lda

 	transa = 'T' or 'C' and m > lda

 	cblas_transa ≠ CblasNoTrans, CblasTrans,
 or CblasConjTrans

 	cblas_transa = CblasNoTrans and l > lda

 	cblas_transa = CblasTrans, or CblasConjTrans and m > lda

 	transb = 'N' and m > ldb

 	transb = 'T' or 'C' and n > ldb

 	cblas_transb ≠ CblasNoTrans, CblasTrans,
 or CblasConjTrans

 	cblas_transb = CblasNoTrans and m > ldb

 	cblas_transb = CblasTrans, or CblasConjTrans and n > ldb

 Examples

 	Example 1

 	
 This example shows the computation C←αAB+βC,
 where A, B, and C are contained
 in larger arrays A, B, and C,
 respectively.

 Call Statement and Input:
 TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
 | | | | | | | | | | | | |
CALL SGEMM('N' , 'N' , 6 , 4 , 5 , 1.0 , A , 8 , B , 6 , 2.0 , C , 7)

 ┌ ┐
 | 1.0 2.0 -1.0 -1.0 4.0 |
 | 2.0 0.0 1.0 1.0 -1.0 |
 | 1.0 -1.0 -1.0 1.0 2.0 |
A = | -3.0 2.0 2.0 2.0 0.0 |
 | 4.0 0.0 -2.0 1.0 -1.0 |
 | -1.0 -1.0 1.0 -3.0 2.0 |
 | |
 | |
 └ ┘

 ┌ ┐
 | 1.0 -1.0 0.0 2.0 |
 | 2.0 2.0 -1.0 -2.0 |
B = | 1.0 0.0 -1.0 1.0 |
 | -3.0 -1.0 1.0 -1.0 |
 | 4.0 2.0 -1.0 1.0 |
 | |
 └ ┘

 ┌ ┐
 | 0.5 0.5 0.5 0.5 |
 | 0.5 0.5 0.5 0.5 |
 | 0.5 0.5 0.5 0.5 |
C = | 0.5 0.5 0.5 0.5 |
 | 0.5 0.5 0.5 0.5 |
 | 0.5 0.5 0.5 0.5 |
 | |
 └ ┘

 Output: ┌ ┐
 | 24.0 13.0 -5.0 3.0 |
 | -3.0 -4.0 2.0 4.0 |
 | 4.0 1.0 2.0 5.0 |
C = | -2.0 6.0 -1.0 -9.0 |
 | -4.0 -6.0 5.0 5.0 |
 | 16.0 7.0 -4.0 7.0 |
 | |
 └ ┘

 	Example 2

 	
 This example shows the computation C←αABT+βC,
 where A and C are contained in larger
 arrays A and C, respectively, and B is
 the same size as array B in which it is contained.

 Call Statement and Input: TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
 | | | | | | | | | | | | |
CALL SGEMM('N' , 'T' , 3 , 3 , 2 , 1.0 , A , 4 , B , 3 , 2.0 , C , 5)

 ┌ ┐
 | 1.0 -3.0 |
A = | 2.0 4.0 |
 | 1.0 -1.0 |
 | . . |
 └ ┘

 ┌ ┐
 | 1.0 -3.0 |
B = | 2.0 4.0 |
 | 1.0 -1.0 |
 └ ┘

 ┌ ┐
 | 0.5 0.5 0.5 |
 | 0.5 0.5 0.5 |
C = | 0.5 0.5 0.5 |
 | . . . |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | 11.0 -9.0 5.0 |
 | -9.0 21.0 -1.0 |
C = | 5.0 -1.0 3.0 |
 | . . . |
 | . . . |
 └ ┘

 	Example 3

 	
 This example shows the computation C←αAB+βC using
 complex data, where A, B, and C are
 contained in larger arrays, A, B,
 and C, respectively.

 Call
 Statement and Input: TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
 | | | | | | | | | | | | |
CALL CGEMM('N' , 'N' , 6 , 2 , 3 , ALPHA , A , 8 , B , 4 , BETA , C , 8)

 ALPHA = (1.0, 0.0)
BETA = (2.0, 0.0)

 ┌ ┐
 | (1.0, 5.0) (9.0, 2.0) (1.0, 9.0) |
 | (2.0, 4.0) (8.0, 3.0) (1.0, 8.0) |
 | (3.0, 3.0) (7.0, 5.0) (1.0, 7.0) |
A = | (4.0, 2.0) (4.0, 7.0) (1.0, 5.0) |
 | (5.0, 1.0) (5.0, 1.0) (1.0, 6.0) |
 | (6.0, 6.0) (3.0, 6.0) (1.0, 4.0) |
 | . . . |
 | . . . |
 └ ┘

 ┌ ┐
 | (1.0, 8.0) (2.0, 7.0) |
B = | (4.0, 4.0) (6.0, 8.0) |
 | (6.0, 2.0) (4.0, 5.0) |
 | . . |
 └ ┘

 ┌ ┐
 | (0.5, 0.0) (0.5, 0.0) |
 | (0.5, 0.0) (0.5, 0.0) |
 | (0.5, 0.0) (0.5, 0.0) |
C = | (0.5, 0.0) (0.5, 0.0) |
 | (0.5, 0.0) (0.5, 0.0) |
 | (0.5, 0.0) (0.5, 0.0) |
 | . . |
 | . . |
 └ ┘

 Output: ┌ ┐
 | (-22.0, 113.0) (-35.0, 142.0) |
 | (-19.0, 114.0) (-35.0, 141.0) |
 | (-20.0, 119.0) (-43.0, 146.0) |
C = | (-27.0, 110.0) (-58.0, 131.0) |
 | (8.0, 103.0) (0.0, 112.0) |
 | (-55.0, 116.0) (-75.0, 135.0) |
 | . . |
 | . . |
 └ ┘

 	Example 4

 	
 This example shows how to obtain the conjugate transpose
 of ABH.

 [image: Conjugate Transpose Graphic]

 This shows the conjugate transpose of the computation performed
 in Example
 8 for CGEMUL, which uses the following calling sequence: CALL CGEMUL(A , 4 , 'N' , B , 3 , 'C' , C , 4 , 3 , 2 , 3)

 You
 instead code the calling sequence for C←βC+αBAH,
 where β = 0, α = 1,
 and the array C has the correct dimensions to receive
 the transposed matrix. Because β is zero, βC = 0. For a description of all the matrix
 identities, see Special Usage.

 Call Statement and Input: TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
 | | | | | | | | | | | | |
CALL CGEMM('N' , 'C' , 3 , 3 , 2 , ALPHA , B , 3 , A , 3 , BETA , C , 4)

 ALPHA = (1.0, 0.0)
BETA = (0.0, 0.0)

 ┌ ┐
 | (1.0, 3.0) (-3.0, 2.0) |
B = | (2.0, 5.0) (4.0, 6.0) |
 | (1.0, 1.0) (-1.0, 9.0) |
 └ ┘

 ┌ ┐
 | (1.0, 2.0) (-3.0, 2.0) |
A = | (2.0, 6.0) (4.0, 5.0) |
 | (1.0, 2.0) (-1.0, 8.0) |
 | . . |
 └ ┘

 C =

 (not relevant)

 Output: ┌ ┐
 | (20.0, 1.0) (18.0, 23.0) (26.0, 23.0) |
C = | (12.0, -25.0) (80.0, 2.0) (56.0, -37.0) |
 | (24.0, -26.0) (49.0, 37.0) (76.0, -2.0) |
 | . . . |
 └ ┘

 	Example 5

 	
 This example shows the computation C←αATBH+βC using
 complex data, where A, B, and C are the
 same size as the arrays A, B, and C,
 in which they are contained. Because β is zero, βC = 0. (Based on the dimensions of the
 matrices, A is actually a column vector, and C is
 actually a row vector.)

 Call Statement
 and Input: TRANSA TRANSB L N M ALPHA A LDA B LDB BETA C LDC
 | | | | | | | | | | | | |
CALL CGEMM('T' , 'C' , 1 , 3 , 3 , ALPHA , A , 3 , B , 3 , BETA , C , 1)

 ALPHA = (1.0, 1.0)
BETA = (0.0, 0.0)

 ┌ ┐
 | (1.0, 2.0) |
A = | (2.0, 5.0) |
 | (1.0, 6.0) |
 └ ┘

 ┌ ┐
 | (1.0, 6.0) (-3.0, 4.0) (2.0, 6.0) |
B = | (2.0, 3.0) (4.0, 6.0) (0.0, 3.0) |
 | (1.0, 3.0) (-1.0, 6.0) (-1.0, 9.0) |
 └ ┘

 C =

 (not relevant)

 Output: ┌ ┐
C = | (86.0, 44.0) (58.0, 70.0) (121.0, 55.0) |
 └ ┘

 Parent topic: Matrix Operations

 SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM (Matrix-Matrix
 Product Where One Matrix is Real or Complex Symmetric or Complex Hermitian)

 Purpose

 These subroutines compute one of
 the following matrix-matrix products, using the scalars α and β and
 matrices A, B, and C:

 	C←αAB+βC

 	C←αBA+βC

 where matrix A is stored in either upper
 or lower storage mode, and:

 	For SSYMM and DSYMM, matrix A is real symmetric.

 	For CSYMM and ZSYMM, matrix A is complex symmetric.

 	For CHEMM and ZHEMM, matrix A is complex Hermitian.

 Table 117. Data
 Types.

 	α, A, B, β, C

 	Subprogram

 	Short-precision real

 	SSYMM

 	Long-precision real

 	DSYMM

 	Short-precision complex

 	CSYMM and CHEMM

 	Long-precision complex

 	ZSYMM and ZHEMM

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SSYMM | DSYMM | CSYMM | ZSYMM | CHEMM | ZHEMM (side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc)

 	C and C++

 	ssymm | dsymm | csymm | zsymm | chemm | zhemm (side, uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc);

 	CBLAS

 	cblas_ssymm | cblas_dsymm | cblas_csymm | cblas_zsymm | cblas_chemm
 | cblas_zhemm ([image: Start of change]cblas_layout[image: End of change], cblas_side, cblas_uplo, m, n, alpha, a, lda, b, ldb, beta, c, ldc);

 	On Entry

 	

 	[image: Start of change]cblas_layout[image: End of change]

 	indicates whether the input and output matrices are stored in
 row major order or column major order, where:

 	If [image: Start of change]cblas_layout[image: End of change] = CblasRowMajor,
 the matrices are stored in row major order. 			

 	If [image: Start of change]cblas_layout[image: End of change] = CblasColMajor,
 the matrices are stored in column major order.

 Specified as: an object of enumerated type [image: Start of change]CBLAS_LAYOUT[image: End of change]. It
 must be CblasRowMajor or CblasColMajor.

 	 side

 	indicates whether matrix A is located to the left
 or right of rectangular matrix B in the equation used
 for this computation, where:
 If side = 'L',
 A is to the left of B, resulting in equation
 1.

 If side = 'R', A is to the right
 of B, resulting in equation 2.

 Specified as:
 a single character. It must be 'L' or 'R'.

 	 cblas_side

 	indicates whether matrix A is located to the left
 or right of rectangular matrix B in the equation used
 for this computation, where:
 If cblas_side = CblasLeft,
 A is to the left of B, resulting in equation
 1.

 If cblas_side = CblasRight, A is to
 the right of B, resulting in equation 2.

 Specified
 as: an object of enumerated type CBLAS_SIDE. It must be CblasLeft
 or CblasRight.

 	 uplo

 	indicates the storage mode used for matrix A, where:

 If uplo = 'U', A is stored in
 upper storage mode.

 If uplo = 'L', A is
 stored in lower storage mode.

 Specified as: a single character.
 It must be 'U' or 'L'.

 	cblas_uplo

 	indicates the storage mode used for matrix A, where:

 If cblas_uplo = CblasUpper, A is stored
 in upper storage mode.

 If cblas_uplo = CblasLower, A is
 stored in lower storage mode.

 Specified as: an object of enumerated
 type CBLAS_UPLO. It must be CblasUpper or CblasLower.

 	 m

 	is the number of rows in rectangular matrices B and C,
 and:
 If side = 'L', m is the
 order of matrix A.

 Specified as: an integer;
 0 ≤ m ≤ ldb, m ≤ ldc,
 and:

 If side = 'L', m ≤ lda.

 	 n

 	is the number of columns in rectangular matrices B and C,
 and:
 If side = 'R', n is the
 order of matrix A.

 Specified as: an integer; n ≥ 0 and:

 If side = 'R', n ≤ lda.

 	 alpha

 	is the scalar α.
 Specified as: a number of the data
 type indicated in Table 117.

 	 a

 	is the real symmetric, complex symmetric, or complex Hermitian
 matrix A, where:
 If side = 'L', A is
 order m.

 If side = 'R', A is
 order n.

 and where it is stored as follows:

 If uplo = 'U', A is
 stored in upper storage mode.

 If uplo = 'L', A is
 stored in lower storage mode.

 Specified as: a two-dimensional
 array, containing numbers of the data type indicated in Table 117, where:

 If side = 'L',
 its size must be lda by (at least) m.

 If side = 'R',
 it size must be lda by (at least) n.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and:

 If side = 'L', lda ≥ m.

 If side = 'R', lda ≥ n.

 	 b

 	is the m by n rectangular
 matrix B.
 Specified as: an ldb by
 (at least) n array, containing numbers of the data
 type indicated in Table 117.

 	 ldb

 	is the leading dimension of the array specified for b.

 Specified as: an integer; ldb > 0
 and ldb ≥ m.

 	 beta

 	is the scalar β.
 Specified as: a number of the data
 type indicated in Table 117.

 	 c

 	is the m by n rectangular
 matrix C.
 Specified as: an ldc by
 (at least) n array, containing numbers of the data
 type indicated in Table 117.

 	 ldc

 	is the leading dimension of the array specified for c.

 Specified as: an integer; ldc > 0
 and ldc ≥ m.

 	On Return

 	

 	 c

 	is the m by n matrix C,
 containing the results of the computation.
 Returned as: an ldc by
 (at least) n array, containing numbers of the data
 type indicated in Table 117.

 Notes

 	These subroutines accept lowercase letters for the side and uplo arguments.

 	Matrices A, B, and C must
 have no common elements; otherwise, results are unpredictable.

 	If matrix A is upper triangular (uplo = 'U'),
 these subroutines use only the data in the upper triangular portion
 of the array. If matrix A is lower triangular, (uplo = 'L'),
 these subroutines use only the data in the lower triangular portion
 of the array. In each case, the other portion of the array is altered
 during the computation, but restored before exit.

 	The imaginary parts of the diagonal elements of a complex Hermitian
 matrix A are assumed to be zero, so you do not have
 to set these values.

 	For a description of how symmetric matrices are stored in upper
 and lower storage mode, see Symmetric Matrix.
 For a description of how complex Hermitian matrices are stored in
 upper and lower storage mode, see Complex Hermitian Matrix.

 Function

 These subroutines can perform
 the following matrix-matrix product computations using matrix A,
 which is real symmetric for SSYMM and DSYMM, complex symmetric for
 CSYMM and ZSYMM, and complex Hermitian for CHEMM and ZHEMM:

 	C←αAB+βC

 	C←αBA+βC
 where:

 α and β are
 scalars.

 A is a matrix of the type indicated
 above, stored in upper or lower storage mode. It is order m for
 equation 1 and order n for equation 2.

 B and C are m by n rectangular
 matrices.

 See references [40] and [46]. In the following
 two cases, no computation is performed:

 	n or m is 0.

 	β is
 one and α is
 zero.

 Error conditions

 	[bookmark: am5gr_hssymm__am5gr_f109108]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hssymm__am5gr_f109109]
 Computational Errors

 	None

 	[bookmark: am5gr_hssymm__am5gr_f109110]
 Input-Argument Errors

 	

 	[image: Start of change]cblas_layout[image: End of change] ≠ CblasRowMajor or
 CblasColMajor

 	m < 0

 	m > ldb

 	m > ldc

 	n < 0

 	lda, ldb, ldc ≤ 0

 	side ≠ 'L' or 'R'

 	side = 'L' and m > lda

 	side = 'R' and n > lda

 	cblas_side ≠ CblasLeft or CblasRight

 	cblas_side = CblasLeft and m > lda

 	cblas_side = CblasRight and n > lda

 	uplo ≠ 'L' or 'U'

 	cblas_uplo ≠ CblasLower or CblasUpper

 Examples

 	Example 1

 	
 This example shows the computation C←αAB+βC,
 where A is a real symmetric matrix of order 5, stored
 in upper storage mode, and B and C are
 5 by 4 rectangular matrices.

 Call Statement
 and Input: SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
 | | | | | | | | | | | |
CALL SSYMM('L' , 'U' , 5 , 4 , 2.0 , A , 8 , B , 6 , 1.0 , C , 5)

 ┌ ┐
 | 1.0 2.0 -1.0 -1.0 4.0 |
 | . 0.0 1.0 1.0 -1.0 |
 | . . -1.0 1.0 2.0 |
A = | . . . 2.0 0.0 |
 | -1.0 |
 | |
 | |
 | |
 └ ┘

 ┌ ┐
 | 1.0 -1.0 0.0 2.0 |
 | 2.0 2.0 -1.0 -2.0 |
B = | 1.0 0.0 -1.0 1.0 |
 | -3.0 -1.0 1.0 -1.0 |
 | 4.0 2.0 -1.0 1.0 |
 | |
 └ ┘

 ┌ ┐
 | 23.0 12.0 -6.0 2.0 |
 | -4.0 -5.0 1.0 3.0 |
C = | 5.0 6.0 -1.0 -4.0 |
 | -4.0 1.0 0.0 -5.0 |
 | 8.0 -4.0 -2.0 13.0 |
 └ ┘

 Output: ┌ ┐
 | 69.0 36.0 -18.0 6.0 |
 | -12.0 -15.0 3.0 9.0 |
C = | 15.0 18.0 -3.0 -12.0 |
 | -12.0 3.0 0.0 -15.0 |
 | 8.0 -20.0 -2.0 35.0 |
 └ ┘

 	Example 2

 	
 This example shows the computation C←αAB+βC,
 where A is a real symmetric matrix of order 3, stored
 in lower storage mode, and B and C are
 3 by 6 rectangular matrices.

 Call Statement
 and Input: SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
 | | | | | | | | | | | |
CALL SSYMM('L' , 'L' , 3 , 6 , 2.0 , A , 4 , B , 3 , 2.0 , C , 5)

 ┌ ┐
 | 1.0 . . |
A = | 2.0 4.0 . |
 | 1.0 -1.0 -1.0 |
 | . . . |
 └ ┘

 ┌ ┐
 | 1.0 -3.0 2.0 2.0 -1.0 2.0 |
B = | 2.0 4.0 0.0 0.0 1.0 -2.0 |
 | 1.0 -1.0 -1.0 -1.0 -1.0 1.0 |
 └ ┘

 ┌ ┐
 | 6.0 4.0 1.0 1.0 0.0 -1.0 |
 | 9.0 11.0 5.0 5.0 3.0 -5.0 |
C = | -2.0 -6.0 3.0 3.0 -1.0 32.0 |
 | |
 | |
 └ ┘

 Output: ┌ ┐
 | 24.0 16.0 4.0 4.0 0.0 -4.0 |
 | 36.0 44.0 20.0 20.0 12.0 -20.0 |
C = | -8.0 -24.0 12.0 12.0 -4.0 12.0 |
 | |
 | |
 └ ┘

 	Example 3

 	
 This example shows the computation C←αBA+βC,
 where A is a real symmetric matrix of order 3, stored
 in upper storage mode, and B and C are
 2 by 3 rectangular matrices.

 Call Statement
 and Input: SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
 | | | | | | | | | | | |
CALL SSYMM('R' , 'U' , 2 , 3 , 2.0 , A , 4 , B , 3 , 1.0 , C , 5)

 ┌ ┐
 | 1.0 -3.0 1.0 |
A = | . 4.0 -1.0 |
 | . . 2.0 |
 | . . . |
 └ ┘

 ┌ ┐
 | 1.0 -3.0 3.0 |
B = | 2.0 4.0 -1.0 |
 | . . . |
 └ ┘

 ┌ ┐
 | 13.0 -18.0 10.0 |
 | -11.0 11.0 -4.0 |
C = | . . . |
 | . . . |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | 39.0 -54.0 30.0 |
 | -33.0 33.0 -12.0 |
C = | . . . |
 | . . . |
 | . . . |
 └ ┘

 	Example 4

 	
 This example shows the computation C←αBA+βC,
 where A is a real symmetric matrix of order 3, stored
 in lower storage mode, and B and C are
 3 by 3 square matrices.

 Call Statement
 and Input: SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
 | | | | | | | | | | | |
CALL SSYMM('R' , 'L' , 3 , 3 , -1.0 , A , 3 , B , 3 , 1.0 , C , 3)

 ┌ ┐
 | 1.0 . . |
A = | 2.0 10.0 . |
 | 1.0 11.0 4.0 |
 └ ┘

 ┌ ┐
 | 1.0 -3.0 2.0 |
B = | 2.0 4.0 0.0 |
 | 1.0 -1.0 -1.0 |
 └ ┘

 ┌ ┐
 | 1.0 5.0 -9.0 |
C = | -3.0 10.0 -2.0 |
 | -2.0 8.0 0.0 |
 └ ┘

 Output: ┌ ┐
 | 4.0 11.0 15.0 |
C = | -13.0 -34.0 -48.0 |
 | 0.0 27.0 14.0 |
 └ ┘

 	Example 5

 	
 This example shows the computation C←αBA+βC,
 where A is a complex symmetric matrix of order 3, stored
 in upper storage mode, and B and C are
 2 by 3 rectangular matrices.

 Call Statement
 and Input: SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
 | | | | | | | | | | | |
CALL CSYMM('R' , 'U' , 2 , 3 , ALPHA , A , 4 , B , 3 , BETA , C , 5)

 ALPHA = (2.0, 3.0)

BETA = (1.0, 6.0)

 ┌ ┐
 | (1.0, 5.0) (-3.0, 2.0) (1.0, 6.0) |
A = | . (4.0, 5.0) (-1.0, 4.0) |
 | . . (2.0, 5.0) |
 | . . . |
 └ ┘

 ┌ ┐
 | (1.0, 1.0) (-3.0, 2.0) (3.0, 3.0) |
B = | (2.0, 6.0) (4.0, 5.0) (-1.0, 4.0) |
 | . . . |
 └ ┘

 ┌ ┐
 | (13.0, 6.0) (-18.0, 6.0) (10.0, 7.0) |
 | (-11.0, 8.0) (11.0, 1.0) (-4.0, 2.0) |
C = | . . . |
 | . . . |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | (-96.0, 72.0) (-141.0, -226.0) (-112.0, 38.0) |
 | (-230.0, -269.0) (-133.0, -23.0) (-272.0, -198.0) |
C = | . . . |
 | . . . |
 | . . . |
 └ ┘

 	Example 6

 	
 This example shows the computation C←αBA+βC,
 where A is a complex Hermitian matrix of order 3, stored
 in lower storage mode, and B and C are
 3 by 3 square matrices.
 Note: The imaginary parts of the diagonal
 elements of a complex Hermitian matrix are assumed to be zero, so
 you do not have to set these values.

 Call
 Statement and Input: SIDE UPLO M N ALPHA A LDA B LDB BETA C LDC
 | | | | | | | | | | | |
CALL CHEMM('R' , 'L' , 2 , 3 , ALPHA , A , 4 , B , 3 , BETA , C , 5)

 ALPHA = (2.0, 3.0)

BETA = (1.0, 6.0)

 ┌ ┐
 | (1.0, .) . . |
A = | (3.0, 2.0) (4.0, .) . |
 | (-1.0, 6.0) (1.0, 4.0) (2.0, .) |
 | . . . |
 └ ┘

 ┌ ┐
 | (1.0, 1.0) (-3.0, 2.0) (3.0, 3.0) |
B = | (2.0, 6.0) (4.0, 5.0) (-1.0, 4.0) |
 | . . . |
 └ ┘

 ┌ ┐
 | (13.0, 6.0) (-18.0, 6.0) (10.0, 7.0) |
 | (-11.0, 8.0) (11.0, 1.0) (-4.0, 2.0) |
C = | . . . |
 | . . . |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | (-137.0, 17.0) (-158.0, -102.0) (-39.0, 141.0) |
 | (-154.0, -77.0) (-63.0, 186.0) (159.0, 104.0) |
C = | . . . |
 | . . . |
 | . . . |
 └ ┘

 Parent topic: Matrix Operations

 STRMM, DTRMM, CTRMM, and ZTRMM (Triangular Matrix-Matrix Product)

 Purpose

 STRMM and DTRMM compute one of
 the following matrix-matrix products, using the scalar α,
 rectangular matrix B, and triangular matrix A or
 its transpose:

 	1. B←αAB

 	3. B←αBA

 	

 	 2. B←αATB

 	 4. B←αBAT

 	

 CTRMM and ZTRMM compute one of the following matrix-matrix
 products, using the scalar α, rectangular matrix B,
 and triangular matrix A, its transpose, or its conjugate
 transpose:

 	1. B←αAB

 	3. B←αBA

 	 5. B←αAHB

 	 2. B←αATB

 	 4. B←αBAT

 	6. B←αBAH

 Table 118. Data
 Types.

 	A, B, α

 	Subroutine

 	Short-precision real

 	STRMM

 	Long-precision real

 	DTRMM

 	Short-precision complex

 	CTRMM

 	Long-precision complex

 	ZTRMM

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL STRMM | DTRMM | CTRMM | ZTRMM (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

 	C and C++

 	strmm | dtrmm | ctrmm | ztrmm (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb);

 	CBLAS

 	cblas_strmm | cblas_dtrmm | cblas_ctrmm | cblas_ztrmm ([image: Start of change]cblas_layout[image: End of change], cblas_side, cblas_uplo, cblas_transa, cblas_diag, m, n, alpha, a, lda, b, ldb);

 	On Entry

 	

 	[image: Start of change]cblas_layout[image: End of change]

 	indicates whether the input and output matrices are stored in
 row major order or column major order, where:

 	If [image: Start of change]cblas_layout[image: End of change] = CblasRowMajor,
 the matrices are stored in row major order. 			

 	If [image: Start of change]cblas_layout[image: End of change] = CblasColMajor,
 the matrices are stored in column major order.

 Specified as: an object of enumerated type [image: Start of change]CBLAS_LAYOUT[image: End of change]. It
 must be CblasRowMajor or CblasColMajor.

 	 side

 	indicates whether the triangular matrix A is located
 to the left or right of rectangular matrix B in the
 equation used for this computation, where:
 If side = 'L',
 A is to the left of B in the equation,
 resulting in either equation 1, 2, or 5.

 If side = 'R',
 A is to the right of B in the equation,
 resulting in either equation 3, 4, or 6.

 Specified as: a single
 character. It must be 'L' or 'R'.

 	 cblas_side

 	indicates whether matrix A is located to the left
 or right of rectangular matrix B in the equation used
 for this computation, where:
 If cblas_side = CblasLeft,
 A is to the left of B in the equation,
 resulting in either equation 1, 2, or 5.

 If cblas_side = CblasRight,
 A is to the right of B in the equation,
 resulting in either equation 3, 4, or 6.

 Specified as: an
 object of enumerated type CBLAS_SIDE. It must be CblasLeft or CblasRight.

 	 uplo

 	indicates whether matrix A is an upper or lower
 triangular matrix, where:
 If uplo = 'U', A is
 an upper triangular matrix.

 If uplo = 'L', A is
 a lower triangular matrix.

 Specified as: a single character.
 It must be 'U' or 'L'.

 	cblas_uplo

 	indicates whether matrix A is an upper or lower
 triangular matrix, where:
 If cblas_uplo = CblasUpper, A is
 an upper triangular matrix.

 If cblas_uplo = CblasLower, A is
 a lower triangular matrix.

 Specified as: an object of enumerated
 type CBLAS_UPLO. It must be CblasUpper or CblasLower.

 	 transa

 	indicates the form of matrix A to use in the computation,
 where:
 If transa = 'N', A is used in the
 computation, resulting in either equation 1 or 3.

 If transa = 'T', AT is
 used in the computation, resulting in either equation 2 or 4.

 If transa = 'C', AH is
 used in the computation, resulting in either equation 5 or 6.

 Specified as: a single character. It must be 'N', 'T', or 'C'.

 	cblas_transa

 	indicates the form of matrix A to use in the computation,
 where:
 If cblas_transa = CblasNoTrans, A is
 used in the computation, resulting in either equation 1 or 3.

 If cblas_transa = CblasTrans, AT is
 used in the computation, resulting in either equation 2 or 4.

 If cblas_transa = CblasConjTrans, AH is
 used in thecomputation, resulting in either equation 5 or 6.

 Specified
 as: an object of enumerated type CBLAS_TRANSPOSE. It must be CblasNoTrans,
 CblasTrans, or CblasConjTrans.

 	 diag

 	indicates the characteristics of the diagonal of matrix A,
 where:
 If diag = 'U', A is a unit triangular
 matrix.

 If diag = 'N', A is not a unit
 triangular matrix.

 Specified as: a single character. It must
 be 'U' or 'N'.

 	 cblas_diag

 	indicates the characteristics of the diagonal of matrix A,
 where:
 If diag = CblasUnit, A is a unit
 triangular matrix.

 If diag = CblasNonUnit A is
 not a unit triangular matrix.

 Specified as: an object of enumerated
 type CBLAS_DIAG. It must be CblasNonUnit or CblasUnit.

 	 m

 	is the number of rows in rectangular matrix B, and:

 If side = 'L', m is the
 order of triangular matrix A.

 Specified as:
 an integer, where:

 If side = 'L',
 0 ≤ m ≤ lda and m ≤ ldb.

 If side = 'R',
 0 ≤ m ≤ ldb.

 	 n

 	is the number of columns in rectangular matrix B,
 and:
 If side = 'R', n is the
 order of triangular matrix A.

 Specified as:
 an integer; n ≥ 0 and:

 If side = 'R', n ≤ lda.

 	 alpha

 	is the scalar α.
 Specified as: a number of the data
 type indicated in Table 118.

 	 a

 	is the triangular matrix A, of which only the upper
 or lower triangular portion is used, where:
 If side = 'L', A is
 order m.

 If side = 'R', A is
 order n.
 Note: No data should be moved to form AT or AH;
 that is, the matrix A should always be stored in its
 untransposed form.

 Specified as: a two-dimensional
 array, containing numbers of the data type indicated in Table 118, where:

 If side = 'L',
 its size must be lda by (at least) m.

 If side = 'R',
 it size must be lda by (at least) n.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and:

 If side = 'L', lda ≥ m.

 If side = 'R', lda ≥ n.

 	 b

 	is the m by n rectangular
 matrix B.
 Specified as: an ldb by
 (at least) n array, containing numbers of the data
 type indicated in Table 118.

 	 ldb

 	is the leading dimension of the array specified for b.

 Specified as: an integer; ldb > 0
 and ldb ≥ m.

 	On Return

 	

 	 b

 	is the m by n matrix B,
 containing the results of the computation. Returned as: an ldb by
 (at least) n array, containing numbers of the data
 type indicated in Table 118.

 Notes

 	These subroutines accept lowercase letters for the side, uplo, transa,
 and diag arguments.

 	For STRMM and DTRMM, if you specify 'C' for the transa argument,
 it is interpreted as though you specified 'T'.

 	Matrices A and B must have no common
 elements; otherwise, results are unpredictable.

 	ESSL assumes certain values in your array for parts of a triangular
 matrix. As a result, you do not have to set these values. For unit
 triangular matrices, the elements of the diagonal are assumed to be
 1.0 for real matrices and (1.0, 0.0) for complex matrices. When using
 upper- or lower-triangular storage, the unreferenced elements in the
 lower and upper triangular part, respectively, are assumed to be zero.

 	For a description of triangular matrices and how they are stored,
 see Triangular Matrix.

 Function

 These subroutines
 can perform the following matrix-matrix product computations, using
 the triangular matrix A, its transpose, or its conjugate
 transpose, where A can be either upper- or lower-triangular:

 	B←αAB

 	B←αATB

 	B←αAHB
 (for CTRMM and ZTRMM only)
 where:

 α

 is a scalar.

 A

 is a triangular matrix of order

 m

 .

 B

 is an

 m

 by

 n

 rectangular matrix.

 	B←αBA

 	B←αBAT

 	B←αBAH (for CTRMM
 and ZTRMM only)
 where:

 α

 is a scalar.

 A

 is a triangular matrix of order

 n

 .

 B

 is an

 m

 by

 n

 rectangular matrix.

 See references [40] and [46]. If n or m is
 0, no computation is performed.

 Error conditions

 	[bookmark: am5gr_hstrmm__am5gr_f109130]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hstrmm__am5gr_f109131]
 Computational Errors

 	None

 	[bookmark: am5gr_hstrmm__am5gr_f109132]
 Input-Argument Errors

 	

 	[image: Start of change]cblas_layout[image: End of change] ≠ CblasRowMajor or
 CblasColMajor

 	m < 0

 	m > ldb

 	n < 0

 	lda, ldb ≤ 0

 	side ≠ 'L' or 'R'

 	side = 'L' and m > lda

 	side = 'R' and n > lda

 	cblas_side ≠ CblasLeft or CblasRight

 	cblas_side = CblasLeft and m > lda

 	cblas_side = CblasRight and n > lda

 	uplo ≠ 'L' or 'U'

 	cblas_uplo ≠ CblasLower or CblasUpper

 	transa ≠ 'T', 'N', or 'C'

 	cblas_transa ≠ CblasNoTrans, CblasTrans,
 or CblasConjTrans

 	diag ≠ 'N' or 'U'

 	cblas_diag ≠ CblasNonUnit or CblasUnit

 Examples

 	Example 1

 	
 This example shows the computation B←αAB,
 where A is a 5 by 5 upper triangular matrix that is
 not unit triangular, and B is a 5 by 3 rectangular matrix.

 Call Statement and Input: SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
 | | | | | | | | | | |
CALL STRMM('L' , 'U' , 'N' , 'N' , 5 , 3 , 1.0 , A , 7 , B , 6)

 ┌ ┐
 | 3.0 -1.0 2.0 2.0 1.0 |
 | . -2.0 4.0 -1.0 3.0 |
 | . . -3.0 0.0 2.0 |
A = | . . . 4.0 -2.0 |
 | 1.0 |
 | |
 | |
 └ ┘

 ┌ ┐
 | 2.0 3.0 1.0 |
 | 5.0 5.0 4.0 |
B = | 0.0 1.0 2.0 |
 | 3.0 1.0 -3.0 |
 | -1.0 2.0 1.0 |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | 6.0 10.0 -2.0 |
 | -16.0 -1.0 6.0 |
B = | -2.0 1.0 -4.0 |
 | 14.0 0.0 -14.0 |
 | -1.0 2.0 1.0 |
 | . . . |
 └ ┘

 	Example 2

 	
 This example shows the computation B←αATB,
 where A is a 5 by 5 upper triangular matrix that is
 not unit triangular, and B is a 5 by 4 rectangular matrix.

 Call Statement and Input: SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
 | | | | | | | | | | |
CALL STRMM('L' , 'U' , 'T' , 'N' , 5 , 4 , 1.0 , A , 7 , B , 6)

 ┌ ┐
 | -1.0 -4.0 -2.0 2.0 3.0 |
 | . -2.0 2.0 2.0 2.0 |
 | . . -3.0 -1.0 4.0 |
A = | . . . 1.0 0.0 |
 | -2.0 |
 | |
 | |
 └ ┘

 ┌ ┐
 | 1.0 2.0 3.0 4.0 |
 | 3.0 3.0 -1.0 2.0 |
B = | -2.0 -1.0 0.0 1.0 |
 | 4.0 4.0 -3.0 -3.0 |
 | 2.0 2.0 2.0 2.0 |
 | |
 └ ┘

 Output: ┌ ┐
 | -1.0 -2.0 -3.0 -4.0 |
 | 2.0 -2.0 -14.0 -12.0 |
B = | 10.0 5.0 -8.0 -7.0 |
 | 14.0 15.0 1.0 8.0 |
 | -3.0 4.0 3.0 16.0 |
 | |
 └ ┘

 	Example 3

 	
 This example shows the computation B←αBA,
 where A is a 5 by 5 lower triangular matrix that is
 not unit triangular, and B is a 3 by 5 rectangular matrix.

 Call Statement and Input: SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
 | | | | | | | | | | |
CALL STRMM('R' , 'L' , 'N' , 'N' , 3 , 5 , 1.0 , A , 7 , B , 4)

 ┌ ┐
 | 2.0 |
 | 2.0 3.0 . . . |
 | 2.0 1.0 1.0 . . |
A = | 0.0 3.0 0.0 -2.0 . |
 | 2.0 4.0 -1.0 2.0 -1.0 |
 | |
 | |
 └ ┘

 ┌ ┐
 | 3.0 4.0 -1.0 -1.0 -1.0 |
B = | 2.0 1.0 -1.0 0.0 3.0 |
 | -2.0 -1.0 -3.0 0.0 2.0 |
 | |
 └ ┘

 Output: ┌ ┐
 | 10.0 4.0 0.0 0.0 1.0 |
B = | 10.0 14.0 -4.0 6.0 -3.0 |
 | -8.0 2.0 -5.0 4.0 -2.0 |
 | |
 └ ┘

 	Example 4

 	
 This example shows the computation B←αBA,
 where A is a 6 by 6 upper triangular matrix that is
 unit triangular, and B is a 1 by 6 rectangular matrix.

 Note: Because matrix A is unit triangular, the diagonal
 elements are not referenced. ESSL assumes a value of 1.0 for the diagonal
 elements.

 Call Statement and Input:
 SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
 | | | | | | | | | | |
CALL STRMM('R' , 'U' , 'N' , 'U' , 1 , 6 , 1.0 , A , 7 , B , 2)

 ┌ ┐
 | . 2.0 -3.0 1.0 2.0 4.0 |
 | . . 0.0 1.0 1.0 -2.0 |
 | . . . 4.0 -1.0 1.0 |
A = | 0.0 -1.0 |
 | 2.0 |
 | |
 | |
 └ ┘

 ┌ ┐
B = | 1.0 2.0 1.0 3.0 -1.0 -2.0 |
 | |
 └ ┘

 Output: ┌ ┐
B = | 1.0 4.0 -2.0 10.0 2.0 -6.0 |
 | |
 └ ┘

 	Example 5

 	
 This example shows the computation B←αAHB,
 where A is a 5 by 5 upper triangular matrix that is
 not unit triangular, and B is a 5 by 1 rectangular matrix.

 Call Statement and Input: SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
 | | | | | | | | | | |
CALL CTRMM('L' , 'U' , 'C' , 'N' , 5 , 1 , ALPHA , A , 6 , B , 6)

ALPHA = (1.0, 0.0)

 ┌ ┐
 | (-4.0, 1.0) (4.0, -3.0) (-1.0, 3.0) (0.0, 0.0) (-1.0, 0.0) |
 | . (-2.0, 0.0) (-3.0, -1.0) (-2.0, -1.0) (4.0, 3.0) |
A = | . . (-5.0, 3.0) (-3.0, -3.0) (-5.0, -5.0) |
 | . . . (4.0, -4.0) (2.0, 0.0) |
 | (2.0, -1.0) |
 | |
 └ ┘

 ┌ ┐
 | (3.0, 4.0) |
 | (-4.0, 2.0) |
B = | (-5.0, 0.0) |
 | (1.0, 3.0) |
 | (3.0, 1.0) |
 | . |
 └ ┘

 Output: ┌ ┐
 | (-8.0, -19.0) |
 | (8.0, 21.0) |
B = | (44.0, -8.0) |
 | (13.0, -7.0) |
 | (19.0, 2.0) |
 | . |
 └ ┘

 Parent topic: Matrix Operations

 STRSM, DTRSM, CTRSM, and ZTRSM (Solution of Triangular Systems
 of Equations with Multiple Right-Hand Sides)

 Purpose

 STRSM and DTRSM perform one of
 the following solves for a triangular system of equations with multiple
 right-hand sides, using scalar α, rectangular matrix B,
 and triangular matrix A or its transpose:

 	Solution

 	Equation

 	

 	1. B←α(A-1)B

 	AX = αB

 	

 	2. B←α(A-T)B

 	ATX = αB

 	

 	3. B←αB(A-1)

 	XA = αB

 	

 	4. B←αB(A-T)

 	XAT = αB

 	

 CTRSM and ZTRSM perform one of the following solves for
 a triangular system of equations with multiple right-hand sides, using
 scalar α,
 rectangular matrix B, and triangular matrix A,
 its transpose, or its conjugate transpose:

 	Solution

 	Equation

 	

 	1. B←α(A-1)B

 	AX = αB

 	

 	2. B←α(A-T)B

 	ATX = αB

 	

 	3. B←αB(A-1)

 	XA = αB

 	

 	4. B←αB(A-T)

 	XAT = αB

 	

 	5. B←α(A-H)B

 	AHX = αB

 	

 	6. B←αB(A-H)

 	XAH = αB

 	

 Note: The term X used in the systems of equations
 listed above represents the output solution matrix. It is important
 to note that in these subroutines the solution matrix is actually
 returned in the input-output argument b.

 Table 119. Data Types.

 	A, B, α

 	Subroutine

 	Short-precision real

 	STRSM

 	Long-precision real

 	DTRSM

 	Short-precision complex

 	CTRSM

 	Long-precision complex

 	ZTRSM

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL STRSM | DTRSM | CTRSM | ZTRSM (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)

 	C and C++

 	strsm | dtrsm | ctrsm | ztrsm (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb);

 	CBLAS

 	cblas_strsm | cblas_dtrsm | cblas_ctrsm | cblas_ztrsm ([image: Start of change]cblas_layout[image: End of change], cblas_side, cblas_uplo, cblas_transa, cblas_diag, m, n, alpha, a, lda, b, ldb);

 	On Entry

 	

 	[image: Start of change]cblas_layout[image: End of change]

 	indicates whether the input and output matrices are stored in
 row major order or column major order, where:

 	If [image: Start of change]cblas_layout[image: End of change] = CblasRowMajor,
 the matrices are stored in row major order. 			

 	If [image: Start of change]cblas_layout[image: End of change] = CblasColMajor,
 the matrices are stored in column major order.

 Specified as: an object of enumerated type [image: Start of change]CBLAS_LAYOUT[image: End of change]. It
 must be CblasRowMajor or CblasColMajor.

 	 side

 	indicates whether the triangular matrix A is located
 to the left or right of rectangular matrix B in the
 system of equations, where:
 If side = 'L',
 A is to the left of B, resulting in solution
 1, 2, or 5.

 If side = 'R', A is to the right
 of B, resulting in solution 3, 4, or 6.

 Specified
 as: a single character. It must be 'L' or 'R'.

 	 cblas_side

 	indicates whether matrix A is located to the left
 or right of rectangular matrix B in the equation used
 for this computation, where:
 If cblas_side = CblasLeft,
 A is to the left of B, resulting in solution
 1, 2, or 5.

 If cblas_side = CblasRight,
 A is to the right of B, resulting in
 solution 3, 4, or 6.

 Specified as: an object of enumerated
 type CBLAS_SIDE. It must be CblasLeft or CblasRight.

 	 uplo

 	indicates whether matrix A is an upper or lower
 triangular matrix, where:
 If uplo = 'U', A is
 an upper triangular matrix.

 If uplo = 'L', A is
 a lower triangular matrix.

 Specified as: a single character.
 It must be 'U' or 'L'.

 	cblas_uplo

 	indicates whether matrix A is an upper or lower
 triangular matrix, where:
 If cblas_uplo = CblasUpper, A is
 an upper triangular matrix.

 If cblas_uplo = CblasLower, A is
 a lower triangular matrix.

 Specified as: an object of enumerated
 type CBLAS_UPLO. It must be CblasUpper or CblasLower.

 	 transa

 	indicates the form of matrix A used in the system
 of equations, where:
 If transa = 'N', A is
 used, resulting in solution 1 or 3.

 If transa = 'T', AT is
 used, resulting in solution 2 or 4.

 If transa = 'C', AH is
 used, resulting in solution 5 or 6.

 Specified as: a single
 character. It must be 'N', 'T', or 'C'.

 	cblas_transa

 	indicates the form of matrix A to use in the computation,
 where:
 If cblas_transa = CblasNoTrans, A is
 used, resulting in solution 1 or 3.

 If cblas_transa = CblasTrans, AT is
 used, resulting in solution 2 or 4.

 If cblas_transa = CblasConjTrans, AH is
 used, resulting in solution 5 or 6.

 Specified as: an object
 of enumerated type CBLAS_TRANSPOSE. It must be CblasNoTrans, CblasTrans,
 or CblasConjTrans.

 	 diag

 	indicates the characteristics of the diagonal of matrix A,
 where:
 If diag = 'U', A is a unit triangular
 matrix.

 If diag = 'N', A is not a unit
 triangular matrix.

 Specified as: a single character. It must
 be 'U' or 'N'.

 	 cblas_diag

 	indicates the characteristics of the diagonal of matrix A,
 where:
 If diag = CblasUnit, A is a unit
 triangular matrix.

 If diag = CblasNonUnit A is
 not a unit triangular matrix.

 Specified as: an object of enumerated
 type CBLAS_DIAG. It must be CblasNonUnit or CblasUnit.

 	 m

 	is the number of rows in rectangular matrix B, and:

 If side = 'L', m is the
 order of triangular matrix A.

 Specified as:
 an integer, where:

 If side = 'L',
 0 ≤ m ≤ lda and m ≤ ldb.

 If side = 'R',
 0 ≤ m ≤ ldb.

 	 n

 	is the number of columns in rectangular matrix B,
 and:
 If side = 'R', n is the
 order of triangular matrix A.

 Specified as:
 an integer; n ≥ 0, and:

 If side = 'R', n ≤ lda.

 	 alpha

 	is the scalar α. Specified as: a number of the data type
 indicated in Table 119.

 	 a

 	is the triangular matrix A, of which only the upper
 or lower triangular portion is used, where:
 If side = 'L', A is
 order m.

 If side = 'R', A is
 order n.

 Specified as: a two-dimensional
 array, containing numbers of the data type indicated in Table 119, where:

 If side = 'L',
 its size must be lda by (at least) m.

 If side = 'R',
 it size must be lda by (at least) n.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0,
 and:

 If side = 'L', lda ≥ m.

 If side = 'R', lda ≥ n.

 	 b

 	is the m by n rectangular
 matrix B, which contains the right-hand sides of the
 triangular system to be solved.
 Specified as: an ldb by
 (at least) n array, containing numbers of the data
 type indicated in Table 119.

 	 ldb

 	is the leading dimension of the array specified for b.

 Specified as: an integer; ldb > 0
 and ldb ≥ m.

 	On Return

 	

 	 b

 	is the m by n matrix B,
 containing the results of the computation.
 Returned as: an ldb by
 (at least) n array, containing numbers of the data
 type indicated in Table 119.

 Notes

 	These subroutines accept lowercase letters for the transa, side, diag,
 and uplo arguments.

 	For STRSM and DTRSM, if you specify 'C' for the transa argument,
 it is interpreted as though you specified 'T'.

 	Matrices A and B must have no common
 elements or results are unpredictable.

 	If matrix A is upper triangular (uplo = 'U'),
 these subroutines refer to only the upper triangular portion of the
 matrix. If matrix A is lower triangular, (uplo = 'L'),
 these subroutines refer to only the lower triangular portion of the
 matrix. The unreferenced elements are assumed to be zero.

 	The elements of the diagonal of a unit triangular matrix are always
 one, so you do not need to set these values. The ESSL subroutines
 always assume that the values in these positions are 1.0 for STRSM
 and DTRSM and (1.0, 0.0) for CTRSM and ZTRSM.

 	For a description of triangular matrices and how they are stored,
 see Triangular Matrix.

 Function

 These subroutines
 solve a triangular system of equations with multiple right-hand sides.
 The solution B may be any of the following, where A is
 a triangular matrix and B is a rectangular matrix:

 	B←α(A-1)B

 	B←α(A-T)B

 	B←αB(A-1)

 	B←αB(A-T)

 	B←α(A-H)B (only
 for CTRSM and ZTRSM)

 	B←αB(A-H)
 (only for CTRSM and ZTRSM)

 where:

 α

 is a scalar.

 B

 is an

 m

 by

 n

 rectangular matrix.

 A

 is an upper or lower triangular matrix, where:

 If

 side

 =

 'L', it has order

 m

 , and equation 1, 2, or 5 is performed.

 If

 side

 =

 'R', it has order

 n

 , and equation 3, 4, or 6 is performed.

 If n or m is
 0, no computation is performed. See references [40] and [44].

 Error conditions

 	[bookmark: am5gr_hstrsm__am5gr_f110a451]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hstrsm__am5gr_f110a452]
 Computational Errors

 	None
 Note: If the triangular matrix A is singular,
 the results returned by this subroutine are unpredictable, and there
 may be a divide-by-zero program exception message.

 	[bookmark: am5gr_hstrsm__am5gr_f110a453]
 Input-Argument Errors

 	

 	[image: Start of change]cblas_layout[image: End of change] ≠ CblasRowMajor or
 CblasColMajor

 	m < 0

 	m > ldb

 	n < 0

 	lda, ldb ≤ 0

 	side ≠ 'L' or 'R'

 	side = 'L' and m > lda

 	side = 'R' and n > lda

 	cblas_side ≠ CblasLeft or CblasRight

 	cblas_side = CblasLeft and m > lda

 	cblas_side = CblasRight and n > lda

 	uplo ≠ 'L' or 'U'

 	cblas_uplo ≠ CblasLower or CblasUpper

 	transa ≠ 'T', 'N', or 'C'

 	cblas_transa ≠ CblasNoTrans, CblasTrans,
 or CblasConjTrans

 	diag ≠ 'N' or 'U'

 	cblas_diag ≠ CblasNonUnit or CblasUnit

 Examples

 	Example 1

 	
 This example shows the solution B←α(A-1)B,
 where A is a real 5 by 5 upper triangular matrix that
 is not unit triangular, and B is a real 5 by 3 rectangular
 matrix.

 Call Statement and Input: SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
 | | | | | | | | | | |
CALL STRSM('L' , 'U' , 'N' , 'N' , 5 , 3 , 1.0 , A , 7 , B , 6)

 ┌ ┐
 | 3.0 -1.0 2.0 2.0 1.0 |
 | . -2.0 4.0 -1.0 3.0 |
 | . . -3.0 0.0 2.0 |
A = | . . . 4.0 -2.0 |
 | 1.0 |
 | |
 | |
 └ ┘

 ┌ ┐
 | 6.0 10.0 -2.0 |
 | -16.0 -1.0 6.0 |
B = | -2.0 1.0 -4.0 |
 | 14.0 0.0 -14.0 |
 | -1.0 2.0 1.0 |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | 2.0 3.0 1.0 |
 | 5.0 5.0 4.0 |
B = | 0.0 1.0 2.0 |
 | 3.0 1.0 -3.0 |
 | -1.0 2.0 1.0 |
 | . . . |
 └ ┘

 	Example 2

 	
 This example shows the solution B←α(A-T)B,
 where A is a real 5 by 5 upper triangular matrix that
 is not unit triangular, and B is a real 5 by 4 rectangular
 matrix.

 Call Statement and Input: SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
 | | | | | | | | | | |
CALL STRSM('L' , 'U' , 'T' , 'N' , 5 , 4 , 1.0 , A , 7 , B , 6)

 ┌ ┐
 | -1.0 -4.0 -2.0 2.0 3.0 |
 | . -2.0 2.0 2.0 2.0 |
 | . . -3.0 -1.0 4.0 |
A = | . . . 1.0 0.0 |
 | -2.0 |
 | |
 | |
 └ ┘

 ┌ ┐
 | -1.0 -2.0 -3.0 -4.0 |
 | 2.0 -2.0 -14.0 -12.0 |
B = | 10.0 5.0 -8.0 -7.0 |
 | 14.0 15.0 1.0 8.0 |
 | -3.0 4.0 3.0 16.0 |
 | |
 └ ┘

 Output: ┌ ┐
 | 1.0 2.0 3.0 4.0 |
 | 3.0 3.0 -1.0 2.0 |
B = | -2.0 -1.0 0.0 1.0 |
 | 4.0 4.0 -3.0 -3.0 |
 | 2.0 2.0 2.0 2.0 |
 | |
 └ ┘

 	Example 3

 	
 This example shows the solution B←αB(A-1),
 where A is a real 5 by 5 lower triangular matrix that
 is not unit triangular, and B is a real 3 by 5 rectangular
 matrix.

 Call Statement and Input: SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
 | | | | | | | | | | |
CALL STRSM('R' , 'L' , 'N' , 'N' , 3 , 5 , 1.0 , A , 7 , B , 4)

 ┌ ┐
 | 2.0 |
 | 2.0 3.0 . . . |
 | 2.0 1.0 1.0 . . |
A = | 0.0 3.0 0.0 -2.0 . |
 | 2.0 4.0 -1.0 2.0 -1.0 |
 | |
 | |
 └ ┘

 ┌ ┐
 | 10.0 4.0 0.0 0.0 1.0 |
B = | 10.0 14.0 -4.0 6.0 -3.0 |
 | -8.0 2.0 -5.0 4.0 -2.0 |
 | |
 └ ┘

 Output: ┌ ┐
 | 3.0 4.0 -1.0 -1.0 -1.0 |
B = | 2.0 1.0 -1.0 0.0 3.0 |
 | -2.0 -1.0 -3.0 0.0 2.0 |
 | |
 └ ┘

 	Example 4

 	
 This example shows the solution B←αB(A-1),
 where A is a real 6 by 6 upper triangular matrix that
 is unit triangular, and B is a real 1 by 6 rectangular
 matrix.
 Note: Because matrix A is unit triangular,
 the diagonal elements are not referenced. ESSL assumes a value of
 1.0 for the diagonal element.

 Call
 Statement and Input: SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
 | | | | | | | | | | |
CALL STRSM('R' , 'U' , 'N' , 'U' , 1 , 6 , 1.0 , A , 7 , B , 2)

 ┌ ┐
 | . 2.0 -3.0 1.0 2.0 4.0 |
 | . . 0.0 1.0 1.0 -2.0 |
 | . . . 4.0 -1.0 1.0 |
A = | 0.0 -1.0 |
 | 2.0 |
 | |
 | |
 └ ┘

 ┌ ┐
B = | 1.0 4.0 -2.0 10.0 2.0 -6.0 |
 | |
 └ ┘

 Output: ┌ ┐
B = | 1.0 2.0 1.0 3.0 -1.0 -2.0 |
 | |
 └ ┘

 	Example 5

 	
 This example shows the solution B←αB(A-1),
 where A is a complex 5 by 5 lower triangular matrix
 that is not unit triangular, and B is a complex 3 by
 5 rectangular matrix.

 Call Statement
 and Input: SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
 | | | | | | | | | | |
CALL CTRSM('R' , 'L' , 'N' , 'N' , 3 , 5 , ALPHA , A , 7 , B , 4)

ALPHA = (1.0, 0.0)

 ┌ ┐
 | (2.0, -3.0) |
 | (2.0, -4.0) (3.0, -1.0) . . . |
 | (2.0, 2.0) (1.0, 2.0) (1.0, 1.0) . . |
A = | (0.0, 0.0) (3.0, -1.0) (0.0, -1.0) (-2.0, 1.0) . |
 | (2.0, 2.0) (4.0, 0.0) (-1.0, 2.0) (2.0, -4.0) (-1.0, -4.0) |
 | |
 | |
 └ ┘

 ┌ ┐
 | (22.0, -41.0) (7.0, -26.0) (9.0, 0.0) (-15.0, -3.0) (-15.0, 8.0) |
B = | (29.0, -18.0) (24.0, -10.0) (9.0, 6.0) (-12.0, -24.0) (-19.0, -8.0) |
 | (-15.0, 2.0) (-3.0, -21.0) (-2.0, 4.0) (-4.0, -12.0) (-10.0, -6.0) |
 | |
 └ ┘

 Output: ┌ ┐
 | (3.0, 0.0) (4.0, 0.0) (-1.0, -2.0) (-1.0, -1.0) (-1.0, -4.0) |
B = | (2.0, -1.0) (1.0, 2.0) (-1.0, -3.0) (0.0, 2.0) (3.0, -4.0) |
 | (-2.0, 1.0) (-1.0, -3.0) (-3.0, 1.0) (0.0, 0.0) (2.0, -2.0) |
 | |
 └ ┘

 	Example 6

 	
 This example shows the solution B←α(A-H)B,
 where A is a complex 5 by 5 upper triangular matrix
 that is not unit triangular, and B is a complex 5 by
 1 rectangular matrix.

 Call Statement
 and Input: SIDE UPLO TRANSA DIAG M N ALPHA A LDA B LDB
 | | | | | | | | | | |
CALL CTRSM('L' , 'U' , 'C' , 'N' , 5 , 1 , ALPHA , A , 6 , B , 6)

ALPHA = (1.0, 0.0)

 ┌ ┐
 | (-4.0, 1.0) (4.0, -3.0) (-1.0, 3.0) (0.0, 0.0) (-1.0, 0.0) |
 | . (-2.0, 0.0) (-3.0, -1.0) (-2.0, -1.0) (4.0, 3.0) |
A = | . . (-5.0, 3.0) (-3.0, -3.0) (-5.0, -5.0) |
 | . . . (4.0, -4.0) (2.0, 0.0) |
 | (2.0, -1.0) |
 | |
 └ ┘

 ┌ ┐
 | (-8.0, -19.0) |
 | (8.0, 21.0) |
B = | (44.0, -8.0) |
 | (13.0, -7.0) |
 | (19.0, 2.0) |
 | . |
 └ ┘

 Output: ┌ ┐
 | (3.0, 4.0) |
 | (-4.0, 2.0) |
B = | (-5.0, 0.0) |
 | (1.0, 3.0) |
 | (3.0, 1.0) |
 | . |
 └ ┘

 	

 Parent topic: Matrix Operations

 SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK (Rank-K Update
 of a Real or Complex Symmetric or a Complex Hermitian Matrix)

 Purpose

 These subroutines compute one of
 the following rank-k updates, where matrix C is stored
 in either upper or lower storage mode. SSYRK, DSYRK, CSYRK, and ZSYRK
 use the scalars α and β, real
 or complex matrix A or its transpose, and real or complex
 symmetric matrix C to compute:

 	C ← αAAT+βC

 	C ← αATA+βC

 CHERK and ZHERK use the scalars α and β, complex matrix A or its
 complex conjugate transpose, and complex Hermitian matrix C to
 compute:

 	C ← αAAH+βC

 	C ← αAHA+βC

 Table 120. Data
 Types.

 	A, C

 	α, β

 	Subprogram

 	Short-precision real

 	Short-precision real

 	SSYRK

 	Long-precision real

 	Long-precision real

 	DSYRK

 	Short-precision complex

 	Short-precision complex

 	CSYRK

 	Long-precision complex

 	Long-precision complex

 	ZSYRK

 	Short-precision complex

 	Short-precision real

 	CHERK

 	Long-precision complex

 	Long-precision real

 	ZHERK

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SSYRK | DSYRK | CSYRK | ZSYRK | CHERK | ZHERK (uplo, trans, n, k, alpha, a, lda, beta, c, ldc)

 	C and C++

 	ssyrk | dsyrk | csyrk | zsyrk | cherk | zherk (uplo, trans, n, k, alpha, a, lda, beta, c, ldc);

 	CBLAS

 	cblas_ssyrk | cblas_dsyrk | cblas_csyrk | cblas_zsyrk | cblas_cherk
 | cblas_zherk ([image: Start of change]cblas_layout[image: End of change], cblas_uplo, cblas_trans, n, k, alpha, a, lda, beta, c, ldc);

 	On Entry

 	

 	[image: Start of change]cblas_layout[image: End of change]

 	indicates whether the input and output matrices are stored in
 row major order or column major order, where:

 	If [image: Start of change]cblas_layout[image: End of change] = CblasRowMajor,
 the matrices are stored in row major order. 			

 	If [image: Start of change]cblas_layout[image: End of change] = CblasColMajor,
 the matrices are stored in column major order.

 Specified as: an object of enumerated type [image: Start of change]CBLAS_LAYOUT[image: End of change]. It
 must be CblasRowMajor or CblasColMajor.

 	 uplo

 	indicates the storage mode used for matrix C, where:

 If uplo = 'U', C is stored in
 upper storage mode.

 If uplo = 'L', C is
 stored in lower storage mode.

 Specified as: a single character.
 It must be 'U' or 'L'.

 	cblas_uplo

 	indicates the storage mode used for matrix A, where:

 If cblas_uplo = CblasUpper, A is stored
 in upper storage mode.

 If cblas_uplo = CblasLower, A is
 stored in lower storage mode.

 Specified as: an object of enumerated
 type CBLAS_UPLO. It must be CblasUpper or CblasLower.

 	 trans

 	indicates the form of matrix A to use in the computation,
 where:
 If trans = 'N', A is used, resulting
 in equation 1 or 3.

 If trans = 'T', AT is
 used, resulting in equation 2.

 If trans = 'C', AH is
 used, resulting in equation 4.

 Specified as: a single character,
 where:

 For SSYRK and DSYRK, it must be 'N', 'T', or 'C'.

 For
 CSYRK and ZSYRK, it must be 'N' or 'T'.

 For CHERK and ZHERK,
 it must be 'N' or 'C'.

 	cblas_trans

 	indicates the form of matrix A to use in the computation,
 where:
 If cblas_trans = CblasNoTrans, A is
 used, resulting in equation 1 or 3.

 If cblas_trans = CblasTrans, AT is
 used, resulting in equation 2.

 If cblas_trans = CblasConjTrans, AH is
 used, resulting in equation 4.

 Specified as: an object of
 enumerated type CBLAS_TRANSPOSE, where:

 For SSYRK and DSYRK,
 it must be CblasNoTrans, CblasTrans, or CblasConjTrans.

 For
 CSYRK and ZSYRK, it must be CblasNoTrans or CblasTrans.

 For
 CHERK and ZHERK, it must be CblasNoTrans or CblasConjTrans.

 	 n

 	is the order of matrix C.
 Specified as: an integer;
 0 ≤ n ≤ ldc and:

 If trans = 'N',
 then n ≤ lda.

 	 k

 	has the following meaning, where:
 If trans = 'N',
 it is the number of columns in matrix A.

 If trans = 'T'
 or 'C', it is the number of rows in matrix A.

 Specified
 as: an integer; k ≥ 0 and:

 If trans = 'T'
 or 'C', then k ≤ lda.

 	 alpha

 	is the scalar α.
 Specified as: a number of the data
 type indicated in Table 120.

 	 a

 	is the rectangular matrix A, where:
 If trans = 'N', A is n by k.

 If trans = 'T'
 or 'C', A is k by n.

 Note: No data should be moved to form AT or AH;
 that is, the matrix A should always be stored in its
 untransposed form.

 Specified as: a two-dimensional
 array, containing numbers of the data type indicated in Table 120, where:

 If trans = 'N',
 its size must be lda by (at least) k.

 If trans = 'T'
 or 'C', its size must be lda by (at least) n.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and:

 If trans = 'N', lda ≥ n.

 If trans = 'T'
 or 'C', lda ≥ k.

 	 beta

 	is the scalar β.
 Specified as: a number of the data
 type indicated in Table 120.

 	 c

 	is matrix C of order n, which
 is real symmetric, complex symmetric, or complex Hermitian, where:

 If uplo = 'U', C is stored in
 upper storage mode.

 If uplo = 'L', C is
 stored in lower storage mode.

 Specified as: an ldc by
 (at least) n array, containing numbers of the data
 type indicated in Table 120.

 	 ldc

 	is the leading dimension of the array specified for c.

 Specified as: an integer; ldc > 0
 and ldc ≥ n.

 	On Return

 	

 	 c

 	is matrix C of order n, which
 is real symmetric, complex symmetric, or complex Hermitian, containing
 the results of the computation, where:
 If uplo = 'U', C is
 stored in upper storage mode.

 If uplo = 'L', C is
 stored in lower storage mode.

 Returned as: an ldc by
 (at least) n array, containing numbers of the data
 type indicated in Table 120.

 Notes

 	These subroutines accept lowercase letters for the uplo and trans arguments.

 	For SSYRK and DSYRK, if you specify 'C' for the trans argument,
 it is interpreted as though you specified 'T'.

 	Matrices A and C must have no common
 elements; otherwise, results are unpredictable.

 	The imaginary parts of the diagonal elements of a complex Hermitian
 matrix C are assumed to be zero, so you do not have
 to set these values. On output, they are set to zero, except when β is
 one and α or k is
 zero, in which case no computation is performed.

 	For a description of how symmetric matrices are stored in upper
 and lower storage mode, see Symmetric Matrix.
 For a description of how complex Hermitian matrices are stored in
 upper and lower storage mode, see Complex Hermitian Matrix.

 Function

 These subroutines can perform
 the following rank-k updates. For SSYRK and DSYRK, matrix C is
 real symmetric. For CSYRK and ZSYRK, matrix C is complex
 symmetric. They perform:

 	C←αAAT+βC

 	C←αATA+βC

 For CHERK and ZHERK, matrix C is complex Hermitian.
 They perform:

 	C←αAAH+βC

 	C←αAHA+βC

 where:

 α and β are scalars.

 A is
 a rectangular matrix, which is n by k for
 equations 1 and 3, and is k by n for
 equations 2 and 4.

 C is a matrix of order n of
 the type indicated above, stored in upper or lower storage mode.

 See
 references [40] and [46]. In the following
 two cases, no computation is performed:

 	n is 0.

 	β is
 one, and α is
 zero or k is zero.

 Assuming the above conditions do not exist, if β is
 not one, and αis
 zero or k is zero, then βC is returned.

 Error conditions

 	[bookmark: am5gr_hssyrk__am5gr_f109149]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hssyrk__am5gr_f109150]
 Computational Errors

 	None

 	[bookmark: am5gr_hssyrk__am5gr_f109151]
 Input-Argument Errors

 	

 	[image: Start of change]cblas_layout[image: End of change] ≠ CblasRowMajor or
 CblasColMajor

 	lda, ldc ≤ 0

 	ldc < n

 	k, n < 0

 	uplo ≠ 'U' or 'L'

 	cblas_uplo ≠ CblasLower or CblasUpper

 	trans ≠ 'N', 'T', or 'C'
 for SSYRK and DSYRK

 	trans ≠ 'N' or 'T' for CSYRK
 and ZSYRK

 	trans ≠ 'N' or 'C' for CHERK
 and ZHERK

 	trans = 'N' and lda < n

 	trans = 'T' or 'C' and lda < k

 	cblas_trans ≠ CblasNoTrans, CblasTrans,
 or CblasConjTrans for SSYRK and DSYRK

 	cblas_trans ≠ CblasNoTrans or CblasTrans
 for CSYRK and ZSYRK

 	cblas_trans ≠ CblasNoTrans or
 CblasConjTrans for CHERK and ZHERK

 	cblas_trans = CblasNoTrans and lda < n

 	cblas_trans = CblasTrans, or CblasConjTrans and lda < k

 Examples

 	Example 1

 	
 This example shows the computation C←αAAT+βC,
 where A is an 8 by 2 real rectangular matrix, and C is
 a real symmetric matrix of order 8, stored in upper storage mode.

 Call Statement and Input: UPLO TRANS N K ALPHA A LDA BETA C LDC
 | | | | | | | | | |
CALL SSYRK('U' , 'N' , 8 , 2 , 1.0 , A , 9 , 1.0 , C , 10)

 ┌ ┐
 | 0.0 8.0 |
 | 1.0 9.0 |
 | 2.0 10.0 |
 | 3.0 11.0 |
A = | 4.0 12.0 |
 | 5.0 13.0 |
 | 6.0 14.0 |
 | 7.0 15.0 |
 | . . |
 └ ┘

 ┌ ┐
 | 0.0 1.0 3.0 6.0 10.0 15.0 21.0 28.0 |
 | . 2.0 4.0 7.0 11.0 16.0 22.0 29.0 |
 | . . 5.0 8.0 12.0 17.0 23.0 30.0 |
 | . . . 9.0 13.0 18.0 24.0 31.0 |
C = | 14.0 19.0 25.0 32.0 |
 | 20.0 26.0 33.0 |
 | 27.0 34.0 |
 | 35.0 |
 | |
 | |
 └ ┘

 Output: ┌ ┐
 | 64.0 73.0 83.0 94.0 106.0 119.0 133.0 148.0 |
 | . 84.0 96.0 109.0 123.0 138.0 154.0 171.0 |
 | . . 109.0 124.0 140.0 157.0 175.0 194.0 |
 | . . . 139.0 157.0 176.0 196.0 217.0 |
C = | 174.0 195.0 217.0 240.0 |
 | 214.0 238.0 263.0 |
 | 259.0 286.0 |
 | 309.0 |
 | |
 | |
 └ ┘

 	Example 2

 	
 This example shows the computation C←αATA+βC,
 where A is a 3 by 8 real rectangular matrix, and C is
 a real symmetric matrix of order 8, stored in lower storage mode.

 Call Statement and Input: UPLO TRANS N K ALPHA A LDA BETA C LDC
 | | | | | | | | | |
CALL SSYRK('L' , 'T' , 8 , 3 , 1.0 , A , 4 , 1.0 , C , 8)

 ┌ ┐
 | 0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 |
A = | 1.0 4.0 7.0 10.0 13.0 16.0 19.0 22.0 |
 | 2.0 5.0 8.0 11.0 14.0 17.0 20.0 23.0 |
 | |
 └ ┘

 ┌ ┐
 | 0.0 |
 | 1.0 8.0 |
 | 2.0 9.0 15.0 |
C = | 3.0 10.0 16.0 21.0 |
 | 4.0 11.0 17.0 22.0 26.0 . . . |
 | 5.0 12.0 18.0 23.0 27.0 30.0 . . |
 | 6.0 13.0 19.0 24.0 28.0 31.0 33.0 . |
 | 7.0 14.0 20.0 25.0 29.0 32.0 34.0 35.0 |
 └ ┘

 Output: ┌ ┐
 | 5.0 |
 | 15.0 58.0 |
 | 25.0 95.0 164.0 |
C = | 35.0 132.0 228.0 323.0 |
 | 45.0 169.0 292.0 414.0 535.0 . . . |
 | 55.0 206.0 356.0 505.0 653.0 800.0 . . |
 | 65.0 243.0 420.0 596.0 771.0 945.0 1118.0 . |
 | 75.0 280.0 484.0 687.0 889.0 1090.0 1290.0 1489.0 |
 └ ┘

 	Example 3

 	
 This example shows the computation C←αAAT+βC,
 where A is a 3 by 5 complex rectangular matrix, and C is
 a complex symmetric matrix of order 3, stored in upper storage mode.

 Call Statement and Input: UPLO TRANS N K ALPHA A LDA BETA C LDC
 | | | | | | | | | |
CALL CSYRK('U' , 'N' , 3 , 5 , ALPHA , A , 3 , BETA , C , 4)

 ALPHA = (1.0, 1.0)
BETA = (1.0, 1.0)

 ┌ ┐
 | (2.0, 0.0) (3.0, 2.0) (4.0, 1.0) (1.0, 7.0) (0.0, 0.0) |
A = | (3.0, 3.0) (8.0, 0.0) (2.0, 5.0) (2.0, 4.0) (1.0, 2.0) |
 | (1.0, 3.0) (2.0, 1.0) (6.0, 0.0) (3.0, 2.0) (2.0, 2.0) |
 └ ┘

 ┌ ┐
 | (2.0, 1.0) (1.0, 9.0) (4.0, 5.0) |
C = | . (3.0, 1.0) (6.0, 7.0) |
 | . . (8.0, 1.0) |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | (-57.0, 13.0) (-63.0, 79.0) (-24.0, 70.0) |
C = | . (-28.0, 90.0) (-55.0, 103.0) |
 | . . (13.0, 75.0) |
 | . . . |
 └ ┘

 	Example 4

 	
 This example shows the computation C←αAHA+βC,
 where A is a 5 by 3 complex rectangular matrix, and C is
 a complex Hermitian matrix of order 3, stored in lower storage mode.

 Note: The imaginary parts of the diagonal elements of a complex Hermitian
 matrix are assumed to be zero, so you do not have to set these values.
 On output, they are set to zero.

 Call
 Statement and Input: UPLO TRANS N K ALPHA A LDA BETA C LDC
 | | | | | | | | | |
CALL CHERK('L' , 'C' , 3 , 5 , 1.0 , A , 5 , 1.0 , C , 4)

 ┌ ┐
 | (2.0, 0.0) (3.0, 2.0) (4.0, 1.0) |
 | (3.0, 3.0) (8.0, 0.0) (2.0, 5.0) |
A = | (1.0, 3.0) (2.0, 1.0) (6.0, 0.0) |
 | (3.0, 3.0) (8.0, 0.0) (2.0, 5.0) |
 | (1.0, 9.0) (3.0, 0.0) (6.0, 7.0) |
 └ ┘

 ┌ ┐
 | (6.0, .) . . |
C = | (3.0, 4.0) (10.0, .) . |
 | (9.0, 1.0) (12.0, 2.0) (3.0, .) |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | (138.0, 0.0) . . |
C = | (65.0, 80.0) (165.0, 0.0) . |
 | (134.0, 46.0) (88.0, -88.0) (199.0, 0.0) |
 | . . . |
 └ ┘

 Parent topic: Matrix Operations

 SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K (Rank-2K
 Update of a Real or Complex Symmetric or a Complex Hermitian Matrix)

 Purpose

 These subroutines compute one of
 the following rank-2k updates, where matrix C is stored
 in upper or lower storage mode. SSYR2K, DSYR2K, CSYR2K, and ZSYR2K
 use the scalars α and β, real
 or complex matrices A and B or their transposes,
 and real or complex symmetric matrix C to compute:

 	C ← αABT+αBAT+βC

 	C ← αATB+αBTA+βC

 CHER2K and ZHER2K use the scalars α and β, complex matrices A and B or
 their complex conjugate transposes, and complex Hermitian matrix C to
 compute:

 [image: Rank-2K Update Graphic]

 Table 121. Data
 Types.

 	A, B, C, α

 	β

 	Subprogram

 	Short-precision real

 	Short-precision real

 	SSYR2K

 	Long-precision real

 	Long-precision real

 	DSYR2K

 	Short-precision complex

 	Short-precision complex

 	CSYR2K

 	Long-precision complex

 	Long-precision complex

 	ZSYR2K

 	Short-precision complex

 	Short-precision real

 	CHER2K

 	Long-precision complex

 	Long-precision real

 	ZHER2K

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SSYR2K | DSYR2K | CSYR2K | ZSYR2K | CHER2K | ZHER2K (uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc)

 	C and C++

 	ssyr2k | dsyr2k | csyr2k | zsyr2k | cher2k | zher2k (uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc);

 	CBLAS

 	cblas_ssyr2k | cblas_dsyr2k | cblas_csyr2k | cblas_zsyr2k |
 cblas_cher2k | cblas_zher2k ([image: Start of change]cblas_layout[image: End of change], cblas_uplo, cblas_trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc);

 	On Entry

 	

 	[image: Start of change]cblas_layout[image: End of change]

 	indicates whether the input and output matrices are stored in
 row major order or column major order, where:

 	If [image: Start of change]cblas_layout[image: End of change] = CblasRowMajor,
 the matrices are stored in row major order. 			

 	If [image: Start of change]cblas_layout[image: End of change] = CblasColMajor,
 the matrices are stored in column major order.

 Specified as: an object of enumerated type [image: Start of change]CBLAS_LAYOUT[image: End of change]. It
 must be CblasRowMajor or CblasColMajor.

 	uplo

 	indicates the storage mode used for matrix C, where:

 If uplo = 'U', C is stored in
 upper storage mode.

 If uplo = 'L', C is
 stored in lower storage mode.

 Specified as: a single character.
 It must be 'U' or 'L'.

 	cblas_uplo

 	indicates the storage mode used for matrix A, where:

 If cblas_uplo = CblasUpper, A is stored
 in upper storage mode.

 If cblas_uplo = CblasLower, A is
 stored in lower storage mode.

 Specified as: an object of enumerated
 type CBLAS_UPLO. It must be CblasUpper or CblasLower.

 	trans

 	indicates the form of matrices A and B to
 use in the computation, where:
 If trans = 'N', A and B are
 used, resulting in equation 1 or 3.

 If trans = 'T', AT and BT are
 used, resulting in equation 2.

 If trans = 'C', AH and BH are
 used, resulting in equation 4.

 Specified as: a single character,
 where:

 For SSYR2K and DSYR2K, it must be 'N', 'T', or 'C'.

 For
 CSYR2K and ZSYR2K, it must be 'N' or 'T'.

 For CHER2K and ZHER2K,
 it must be 'N' or 'C'.

 	cblas_trans

 	indicates the form of matrix A to use in the computation,
 where:
 If cblas_trans = CblasNoTrans, A is
 used, resulting in equation 1 or 3.

 If cblas_trans = CblasTrans, AT is
 used, resulting in equation 2.

 If cblas_trans = CblasConjTrans, AH is
 used, resulting in equation 4.

 Specified as: an object of
 enumerated type CBLAS_TRANSPOSE, where:

 For SSYR2K and DSYR2K,
 it must be CblasNoTrans, CblasTrans, or CblasConjTrans.

 For
 CSYR2K and ZSYR2K, it must be CblasNoTrans or CblasTrans.

 For
 CHER2K and ZHER2K, it must be CblasNoTrans or CblasConjTrans.

 	n

 	is the order of matrix C.
 Specified as: an integer;
 0 ≤ n ≤ ldc and:

 If trans = 'N',
 then n ≤ lda and n ≤ ldb.

 	k

 	has the following meaning, where:
 If trans = 'N',
 it is the number of columns in matrices A and B.

 If trans = 'T'
 or 'C', it is the number of rows in matrices A and B.

 Specified
 as: an integer; k ≥ 0 and:

 If trans = 'T'
 or 'C', then k ≤ lda and k ≤ ldb.

 	alpha

 	is the scalar α.
 Specified as: a number of the data
 type indicated in Table 121.

 	a

 	is the rectangular matrix A, where:
 If trans = 'N', A is n by k.

 If trans = 'T'
 or 'C', A is k by n.

 Note: No data should be moved to form AT or AH;
 that is, the matrix A should always be stored in its
 untransposed form.

 Specified as: a two-dimensional
 array, containing numbers of the data type indicated in Table 121, where:

 If trans = 'N',
 its size must be lda by (at least) k.

 If trans = 'T'
 or 'C', its size must be lda by (at least) n.

 	lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and:

 If trans = 'N', lda ≥ n.

 If trans = 'T'
 or 'C', lda ≥ k.

 	b

 	is the rectangular matrix B, where:
 If trans = 'N', B is n by k.

 If trans = 'T'
 or 'C', B is k by n.

 Note: No data should be moved to form BT or BH;
 that is, the matrix B should always be stored in its
 untransposed form.

 Specified as: a two-dimensional
 array, containing numbers of the data type indicated in Table 121, where:

 If trans = 'N',
 its size must be ldb by (at least) k.

 If trans = 'T'
 or 'C', its size must be ldb by (at least) n.

 	ldb

 	is the leading dimension of the array specified for b.

 Specified as: an integer; ldb > 0
 and:

 If trans = 'N', ldb ≥ n.

 If trans = 'T'
 or 'C', ldb ≥ k.

 	beta

 	is the scalar β.
 Specified as: a number of the data
 type indicated in Table 121.

 	c

 	is matrix C of order n, which
 is real symmetric, complex symmetric, or complex Hermitian, where:

 If uplo = 'U', C is stored in
 upper storage mode.

 If uplo = 'L', C is
 stored in lower storage mode.

 Specified as: an ldc by
 (at least) n array, containing numbers of the data
 type indicated in Table 121.

 	ldc

 	is the leading dimension of the array specified for c.

 Specified as: an integer; ldc > 0
 and ldc ≥ n.

 	On Return

 	

 	c

 	is matrix C of order n, which
 is real symmetric, complex symmetric, or complex Hermitian, containing
 the results of the computation, where:
 If uplo = 'U', C is
 stored in upper storage mode.

 If uplo = 'L', C is
 stored in lower storage mode.

 Returned as: an ldc by
 (at least) n array, containing numbers of the data
 type indicated in Table 121.

 Notes

 	These subroutines accept lowercase letters for the uplo and trans arguments.

 	For SSYR2K and DSYR2K, if you specify 'C' for the trans argument,
 it is interpreted as though you specified 'T'.

 	Matrices A and B must have no common
 elements with matrix C; otherwise, results are unpredictable.

 	The imaginary parts of the diagonal elements of a complex Hermitian
 matrix C are assumed to be zero, so you do not have
 to set these values. On output, they are set to zero, except when β is
 one and α or k is
 zero, in which case no computation is performed.

 	For a description of how symmetric matrices are stored in upper
 and lower storage mode, see Symmetric Matrix.
 For a description of how complex Hermitian matrices are stored in
 upper and lower storage mode, see Complex Hermitian Matrix.

 Function

 These subroutines can perform
 the following rank-2k updates. For SSYR2K and DSYR2K, matrix C is
 real symmetric. For CSYR2K and ZSYR2K, matrix C is complex
 symmetric. They perform:

 	C ← αABT + αBAT + βC

 	C ← αATB + αBTA + βC

 For CHER2K and ZHER2K, matrix C is complex
 Hermitian. They perform:

 [image: Rank-2K Update Graphic]

 where:

 α and β are scalars.

 A and B are
 rectangular matrices, which are n by k for
 equations 1 and 3, and are k by n for
 equations 2 and 4.

 C is a matrix of order n of
 the type indicated above, stored in upper or lower storage mode.

 See
 references [40], [46], and [84]. In the following
 two cases, no computation is performed:

 	n is 0.

 	β is
 one, and α is
 zero or k is zero.

 Assuming the above conditions do not exist, if β is
 not one, and α is
 zero or k is zero, then βC is returned.

 Error conditions

 	[bookmark: am5gr_hssyr2k__am5gr_f109165]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hssyr2k__am5gr_f109166]
 Computational Errors

 	None

 	[bookmark: am5gr_hssyr2k__am5gr_f109167]
 Input-Argument Errors

 	

 	[image: Start of change]cblas_layout[image: End of change] ≠ CblasRowMajor or
 CblasColMajor

 	lda, ldb, ldc ≤ 0

 	ldc < n

 	k, n < 0

 	uplo ≠ 'U' or 'L'

 	cblas_uplo ≠ CblasLower or CblasUpper

 	trans ≠ 'N', 'T', or 'C'
 for SSYR2K and DSYR2K

 	trans ≠ 'N' or 'T' for CSYR2K
 and ZSYR2K

 	trans ≠ 'N' or 'C' for CHER2K
 and ZHER2K

 	trans = 'N' and lda < n

 	trans = 'T' or 'C' and lda < k

 	trans = 'N' and ldb < n

 	trans = 'T' or 'C' and ldb < k

 	cblas_transa ≠ CblasNoTrans, CblasTrans,
 or CblasConjTrans for SSYR2K and DSYR2K

 	cblas_transa ≠ CblasNoTrans or CblasTrans
 for CSYR2K and ZSYR2K

 	cblas_transa ≠ CblasNoTrans or
 CblasConjTrans for CHER2K and ZHER2K

 	cblas_transa = CblasNoTrans and lda < n

 	cblas_transa = CblasTrans, or CblasConjTrans and lda < k

 	cblas_trans = CblasNoTrans and ldb < n

 	cblas_trans = CblasNoTrans or CblasConjTrans and ldb < k

 Examples

 	Example 1

 	
 This example shows the computation C←αABT+αBAT+βC,
 where A and B are 8 by 2 real rectangular
 matrices, and C is a real symmetric matrix of order
 8, stored in upper storage mode.

 Call
 Statement and Input: UPLO TRANS N K ALPHA A LDA B LDB BETA C LDC
 | | | | | | | | | | | |
CALL SSYR2K('U' , 'N' , 8 , 2 , 1.0 , A , 9 , B , 8 , 1.0 , C , 10)

 ┌ ┐
 | 0.0 8.0 |
 | 1.0 9.0 |
 | 2.0 10.0 |
 | 3.0 11.0 |
A = | 4.0 12.0 |
 | 5.0 13.0 |
 | 6.0 14.0 |
 | 7.0 15.0 |
 | . . |
 └ ┘

 ┌ ┐
 | 15.0 7.0 |
 | 14.0 6.0 |
 | 13.0 5.0 |
B = | 12.0 4.0 |
 | 11.0 3.0 |
 | 10.0 2.0 |
 | 9.0 1.0 |
 | 8.0 0.0 |
 └ ┘

 ┌ ┐
 | 0.0 1.0 3.0 6.0 10.0 15.0 21.0 28.0 |
 | . 2.0 4.0 7.0 11.0 16.0 22.0 29.0 |
 | . . 5.0 8.0 12.0 17.0 23.0 30.0 |
 | . . . 9.0 13.0 18.0 24.0 31.0 |
C = | 14.0 19.0 25.0 32.0 |
 | 20.0 26.0 33.0 |
 | 27.0 34.0 |
 | 35.0 |
 | |
 | |
 └ ┘

 Output: ┌ ┐
 | 112.0 127.0 143.0 160.0 178.0 197.0 217.0 238.0 |
 | . 138.0 150.0 163.0 177.0 192.0 208.0 225.0 |
 | . . 157.0 166.0 176.0 187.0 199.0 212.0 |
 | . . . 169.0 175.0 182.0 190.0 199.0 |
C = | 174.0 177.0 181.0 186.0 |
 | 172.0 172.0 173.0 |
 | 163.0 160.0 |
 | 147.0 |
 | |
 | |
 └ ┘

 	Example 2

 	
 This example shows the computation C←αATB+αBTA+βC,
 where A and B are 3 by 8 real rectangular
 matrices, and C is a real symmetric matrix of order
 8, stored in lower storage mode.

 Call
 Statement and Input: UPLO TRANS N K ALPHA A LDA B LDB BETA C LDC
 | | | | | | | | | | | |
CALL SSYR2K('L' , 'T' , 8 , 3 , 1.0 , A , 4 , B , 5 , 1.0 , C , 8)

 ┌ ┐
 | 0.0 3.0 6.0 9.0 12.0 15.0 18.0 21.0 |
A = | 1.0 4.0 7.0 10.0 13.0 16.0 19.0 22.0 |
 | 2.0 5.0 8.0 11.0 14.0 17.0 20.0 23.0 |
 | |
 └ ┘

 ┌ ┐
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 |
 | 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
B = | 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 |
 | |
 | |
 └ ┘

 ┌ ┐
 | 0.0 |
 | 1.0 8.0 |
 | 2.0 9.0 15.0 |
C = | 3.0 10.0 16.0 21.0 |
 | 4.0 11.0 17.0 22.0 26.0 . . . |
 | 5.0 12.0 18.0 23.0 27.0 30.0 . . |
 | 6.0 13.0 19.0 24.0 28.0 31.0 33.0 . |
 | 7.0 14.0 20.0 25.0 29.0 32.0 34.0 35.0 |
 └ ┘

 Output: ┌ ┐
 | 16.0 |
 | 38.0 84.0 |
 | 60.0 124.0 187.0 |
C = | 82.0 164.0 245.0 325.0 |
 | 104.0 204.0 303.0 401.0 498.0 . . . |
 | 126.0 244.0 361.0 477.0 592.0 706.0 . . |
 | 148.0 284.0 419.0 553.0 686.0 818.0 949.0 . |
 | 170.0 324.0 477.0 629.0 780.0 930.0 1079.0 1227.0 |
 └ ┘

 	Example 3

 	
 This example shows the computation C←αABT+αBAT+βC,
 where A and B are 3 by 5 complex rectangular
 matrices, and C is a complex symmetric matrix of order
 3, stored in lower storage mode.

 Call
 Statement and Input: UPLO TRANS N K ALPHA A LDA B LDB BETA C LDC
 | | | | | | | | | | | |
CALL CSYR2K('L' , 'N' , 3 , 5 , ALPHA , A , 3 , B , 3 , BETA , C , 4)

 ALPHA = (1.0, 1.0)

BETA = (1.0, 1.0)

 ┌ ┐
 | (2.0, 5.0) (3.0, 2.0) (4.0, 1.0) (1.0, 7.0) (0.0, 0.0) |
A = | (3.0, 3.0) (8.0, 5.0) (2.0, 5.0) (2.0, 4.0) (1.0, 2.0) |
 | (1.0, 3.0) (2.0, 1.0) (6.0, 5.0) (3.0, 2.0) (2.0, 2.0) |
 └ ┘

 ┌ ┐
 | (1.0, 5.0) (6.0, 2.0) (3.0, 1.0) (2.0, 0.0) (1.0, 0.0) |
B = | (2.0, 4.0) (7.0, 5.0) (2.0, 5.0) (2.0, 4.0) (0.0, 0.0) |
 | (3.0, 5.0) (8.0, 1.0) (1.0, 5.0) (1.0, 0.0) (1.0, 1.0) |
 └ ┘

 ┌ ┐
 | (2.0, 3.0) . . |
C = | (1.0, 9.0) (3.0, 3.0) . |
 | (4.0, 5.0) (6.0, 7.0) (8.0, 3.0) |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | (-101.0, 121.0) . . |
C = | (-182.0, 192.0) (-274.0, 248.0) . |
 | (-98.0, 146.0) (-163.0, 205.0) (-151.0, 115.0) |
 | . . . |
 └ ┘

 	Example 4

 	
 This example shows the computation:

 [image: Rank-2K Update Graphic]

 where A and B are 5 by 3 complex
 rectangular matrices, and C is a complex Hermitian matrix
 of order 3, stored in upper storage mode.
 Note: The imaginary parts
 of the diagonal elements of a complex Hermitian matrix are assumed
 to be zero, so you do not have to set these values. On output, they
 are set to zero.

 Call Statement
 and Input: UPLO TRANS N K ALPHA A LDA B LDB BETA C LDC
 | | | | | | | | | | | |
CALL CHER2K('U' , 'C' , 3 , 5 , ALPHA , A , 5 , B , 5 , 1.0 , C , 4)

ALPHA = (1.0, 1.0)

 ┌ ┐
 | (2.0, 0.0) (3.0, 2.0) (4.0, 1.0) |
 | (3.0, 3.0) (8.0, 0.0) (2.0, 5.0) |
A = | (1.0, 3.0) (2.0, 1.0) (6.0, 0.0) |
 | (3.0, 3.0) (8.0, 0.0) (2.0, 5.0) |
 | (1.0, 9.0) (3.0, 0.0) (6.0, 7.0) |
 └ ┘

 ┌ ┐
 | (4.0, 5.0) (6.0, 7.0) (8.0, 0.0) |
 | (1.0, 9.0) (3.0, 0.0) (6.0, 7.0) |
B = | (3.0, 3.0) (8.0, 0.0) (2.0, 5.0) |
 | (1.0, 3.0) (2.0, 1.0) (6.0, 0.0) |
 | (2.0, 0.0) (3.0, 2.0) (4.0, 1.0) |
 └ ┘

 ┌ ┐
 | (6.0, .) (3.0, 4.0) (9.0, 1.0) |
C = | . (10.0, .) (12.0, 2.0) |
 | . . (3.0, .) |
 | . . . |
 └ ┘

 Output: ┌ ┐
 | (102.0, 0.0) (56.0, -143.0) (244.0, -96.0) |
C = | . (174.0, 0.0) (238.0, 78.0) |
 | . . (363.0, 0.0) |
 | . . . |
 └ ┘

 Parent topic: Matrix Operations

 SGETMI, DGETMI, CGETMI, ZGETMI, CGECMI and ZGECMI (General
 Matrix Transpose or Conjugate Transpose [In-Place])

 Purpose

 Subroutines SGETMI, DGETMI, CGETMI,
 and ZGETMI perform a transpose of an n by n matrix A in
 place—that
 is, in matrix A:

 A

 ←

 A

 T

 Subroutines
 CGECMI and ZGECMI perform a conjugate transpose of an n by n matrix A in
 place—that
 is, in matrix A:

 A

 ←

 A

 H

 Table 122. Data Types.

 	A

 	Subroutine

 	Short-precision real

 	SGETMI

 	Long-precision real

 	DGETMI

 	Short-precision complex

 	

 CGETMI

 CGECMI

 	Long-precision complex

 	

 ZGETMI

 ZGECMI

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SGETMI | DGETMI | CGETMI | ZGETMI | CGECMI | ZGECMI (a, lda, n)

 	C and C++

 	sgetmi | dgetmi | cgetmi | zgetmi | cgecmi | zgecmi (a, lda, n);

 	On Entry

 	

 	a

 	is the matrix A having n rows
 and n columns.
 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 122.

 	lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0 and lda ≥ n.

 	n

 	is the number of rows and columns in matrix A.
 Specified
 as: an integer; n ≥ 0.

 	On Return

 	

 	a

 	is the n by n matrix, containing
 the results of the operation.
 Returned as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 122.

 Function

 Subroutines SGETMI,
 DGETMI, CGETMI, and ZGETMI perform a transpose of matrix A in
 place. For matrix A with elements aij, where i, j = 1, n,
 the in-place transpose is expressed as:

 aji = aij for i, j = 1, n

 Subroutines
 CGECMI and ZGECMI perform a conjugate transpose of matrix A
 in place. For matrix A with elements aij, where i, j =
 1, n, the in-place conjugate transpose is expressed
 as:
 [image: CGECMI and ZGECMI function formula]

 If n is
 0, no computation is performed.

 Error conditions

 	[bookmark: am5gr_hsgetmi__am5gr_f109181]
 Computational Errors

 	None

 	[bookmark: am5gr_hsgetmi__am5gr_f109182]
 Input-Argument Errors

 	

 	n < 0 or n > lda

 	lda ≤ 0

 Examples

 	[bookmark: am5gr_hsgetmi__am5gr_f109184]
 Example 1

 	
 This example shows an in-place matrix transpose of matrix A having
 5 rows and 5 columns.

 Call Statement and
 Input: A LDA N
 | | |
CALL SGETMI(A(2,3) , 10 , 5)

 ┌ ┐
 | |
 | . . 1.0 6.0 11.0 16.0 21.0 |
 | . . 2.0 7.0 12.0 17.0 22.0 |
 | . . 3.0 8.0 13.0 18.0 23.0 |
A = | . . 4.0 9.0 14.0 19.0 24.0 |
 | . . 5.0 10.0 15.0 20.0 25.0 |
 | |
 | |
 | |
 | |
 └ ┘

 Output: ┌ ┐
 | |
 | . . 1.0 2.0 3.0 4.0 5.0 |
 | . . 6.0 7.0 8.0 9.0 10.0 |
 | . . 11.0 12.0 13.0 14.0 15.0 |
A = | . . 16.0 17.0 18.0 19.0 20.0 |
 | . . 21.0 22.0 23.0 24.0 25.0 |
 | |
 | |
 | |
 | |
 └ ┘

 	Example 2

 	
 This example shows an in-place matrix conjugate transpose
 of matrix A having 5 rows and 5 columns.

 Call
 Statement and Input: A LDA N
 | | |
CALL ZGECMI(A(2,3) , 10 , 5)

 ┌ ┐
 | |
 | . . (1.0,1.0) (6.0, 6.0) (11.0,11.0) (16.0,16.0) (21.0,21.0) |
 | . . (2.0,2.0) (7.0, 7.0) (12.0,12.0) (17.0,17.0) (22.0,22.0) |
 | . . (3.0,3.0) (8.0, 8.0) (13.0,13.0) (18.0,18.0) (23.0,23.0) |
A = | . . (4.0,4.0) (9.0, 9.0) (14.0,14.0) (19.0,19.0) (24.0,24.0) |
 | . . (5.0,5.0)(10.0,10.0) (15.0,15.0) (20.0,20.0) (25.0,25.0) |
 | |
 | |
 | |
 | |
 └ ┘

 Output:
 ┌ ┐
 | |
 | . . (1.0, -1.0) (2.0, -2.0) (3.0, -3.0) (4.0, -4.0) (5.0, -5.0) |
 | . . (6.0, -6.0) (7.0, -7.0) (8.0, -8.0) (9.0, -9.0) (10.0,-10.0) |
 | . . (11.0,-11.0) (12.0,-12.0) (13.0,-13.0) (14.0,-14.0) (15.0,-15.0) |
A = | . . (16.0,-16.0) (17.0,-17.0) (18.0,-18.0) (19.0,-19.0) (20.0,-20.0) |
 | . . (21.0,-21.0) (22.0,-22.0) (23.0,-23.0) (24.0,-24.0) (25.0,-25.0) |
 | |
 | |
 | |
 | |
 └ ┘

 Parent topic: Matrix Operations

 SGETMO, DGETMO, CGETMO, ZGETMO, CGECMO, and ZGECMO (General
 Matrix Transpose or Conjugate Transpose [Out-of-Place])

 Purpose

 Subroutines SGETMO, DGETMO, CGETMO,
 and ZGETMO perform a transpose of an m by n matrix A out
 of place, returning the result in matrix B:

 B

 ←

 A

 T

 Subroutines
 CGECMO, and ZGECMO perform a conjugate transpose of an m by n matrix A out
 of place, returning the result in matrix B:

 B

 ←

 A

 H

 Table 123. Data Types.

 	A, B

 	Subroutine

 	Short-precision real

 	SGETMO

 	Long-precision real

 	DGETMO

 	Short-precision complex

 	

 CGETMO

 CGECMO

 	Long-precision complex

 	

 ZGETMO

 ZGECMO

 Note: On certain processors, SIMD algorithms may be used
 if alignment requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SGETMO | DGETMO | CGETMO | ZGETMO | CGECMO | ZGECMO (a, lda, m, n, b, ldb)

 	C and C++

 	sgetmo | dgetmo | cgetmo | zgetmo | cgecmo | zgecmo (a, lda, m, n, b, ldb);

 	On Entry

 	

 	 a

 	is the matrix A having m rows
 and n columns.
 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 123.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0 and lda ≥ m.

 	 m

 	is the number of rows in matrix A and the number
 of columns in matrix B.
 Specified as: an integer; m ≥ 0.

 	 n

 	is the number of columns in matrix A and the number
 of rows in matrix B.
 Specified as: an integer; n ≥ 0.

 	 b

 	See On Return.

 	 ldb

 	is the leading dimension of the array specified for b.

 Specified as: an integer; ldb > 0 and ldb ≥ n.

 	On Return

 	

 	 b

 	is the matrix B having n rows
 and m columns, containing the results of the operation.
 Returned
 as: an ldb by (at least) m array,
 containing numbers of the data type indicated in Table 123.

 Notes

 	The matrix B must have no common elements with matrix A;
 otherwise, results are unpredictable. See Concepts.

 Function

 Subroutines SGETMO,
 DGETMO, CGETMO, and ZGETMO perform a transpose of matrix A out
 of place. For matrix A with elements aij, where i =
 1, m and j = 1, n,
 the out-of-place transpose is expressed as:

 bji = aij for i =
 1, m and j = 1, n

 Subroutines
 CGECMO and ZGECMO perform a conjugate transpose of matrix A out
 of place. For matrix A with elements aij, where i =
 1, m and j = 1, n,
 the out-of-place transpose is expressed as:

 [image: CGECMO and ZGECMO function formula]

 If m or n is
 0, no computation is performed.

 Error conditions

 	[bookmark: am5gr_hsgetmo__am5gr_f109200]
 Computational Errors

 	None

 	[bookmark: am5gr_hsgetmo__am5gr_f109201]
 Input-Argument Errors

 	

 	m < 0 or m > lda

 	n < 0 or n > ldb

 	lda ≤ 0

 	ldb ≤ 0

 Examples

 	Example 1

 	
 This example shows an out-of-place matrix transpose of matrix A,
 having 5 rows and 4 columns, with the result going into matrix B.

 Call Statement and Input: A LDA M N B LDB
 | | | | | |
CALL SGETMO(A(2,3) , 10 , 5 , 4 , B(2,2) , 6)

 ┌ ┐
 | |
 | . . 1.0 6.0 11.0 16.0 . |
 | . . 2.0 7.0 12.0 17.0 . |
 | . . 3.0 8.0 13.0 18.0 . |
A = | . . 4.0 9.0 14.0 19.0 . |
 | . . 5.0 10.0 15.0 20.0 . |
 | |
 | |
 | |
 | |
 └ ┘

 Output:
 ┌ ┐
 | |
 | . 1.0 2.0 3.0 4.0 5.0 . |
B = | . 6.0 7.0 8.0 9.0 10.0 . |
 | . 11.0 12.0 13.0 14.0 15.0 . |
 | . 16.0 17.0 18.0 19.0 20.0 . |
 | |
 └ ┘

 	Example 2

 	
 This example uses the same input matrix A as
 in Example 1 to show that transposes can be achieved in the same array
 as long as the input and output data do not overlap. On output, the
 input data is not overwritten in the array.

 Call Statement
 and Input: A LDA M N B LDB
 | | | | | |
CALL SGETMO(A(2,3) , 10 , 5 , 4 , A(7,1) , 10)

 Output:
 ┌ ┐
 | |
 | . . 1.0 6.0 11.0 16.0 . |
 | . . 2.0 7.0 12.0 17.0 . |
 | . . 3.0 8.0 13.0 18.0 . |
A = | . . 4.0 9.0 14.0 19.0 . |
 | . . 5.0 10.0 15.0 20.0 . |
 | 1.0 2.0 3.0 4.0 5.0 . . |
 | 6.0 7.0 8.0 9.0 10.0 . . |
 | 11.0 12.0 13.0 14.0 15.0 . . |
 | 16.0 17.0 18.0 19.0 20.0 . . |
 └ ┘

 	Example 3

 	
 This example shows an out-of-place matrix conjugate transpose
 of matrix A, having 5 rows and 4 columns, with the result
 going into matrix B.

 Call Statement and Input:
 A LDA M N B LDB
 | | | | | |
CALL ZGECMO(A(2,3) , 10 , 5 , 4 , B(2,2) , 6)

 ┌ ┐
 | |
 | . . (1.0,1.0) (6.0, 6.0) (11.0,11.0) (16.0,16.0) |
 | . . (2.0,2.0) (7.0, 7.0) (12.0,12.0) (17.0,17.0) |
 | . . (3.0,3.0) (8.0, 8.0) (13.0,13.0) (18.0,18.0) |
A = | . . (4.0,4.0) (9.0, 9.0) (14.0,14.0) (19.0,19.0) |
 | . . (5.0,5.0) (10.0,10.0) (15.0,15.0) (20.0,20.0) |
 | |
 | |
 | |
 | |
 └ ┘

 Output:
 ┌ ┐
 | |
 | . (1.0, -1.0) (2.0, -2.0) (3.0, -3.0) (4.0, -4.0) (5.0, -5.0) |
B = | . (6.0, -6.0) (7.0, -7.0) (8.0, -8.0) (9.0, -9.0) (10.0,-10.0) |
 | . (11.0,-11.0) (12.0,-12.0) (13.0,-13.0) (14.0,-14.0) (15.0,-15.0) |
 | . (16.0,-16.0) (17.0,-17.0) (18.0,-18.0) (19.0,-19.0) (20.0,-20.0) |
 | |
 └ ┘

 Parent topic: Matrix Operations

 Linear Algebraic Equations

 The linear algebraic equation subroutines, provided in
 four areas, are described here.

 	Overview of the Linear Algebraic Equation Subroutines

 	Dense and Banded Linear Algebraic Equation Considerations

 	Sparse Matrix Direct Solver Considerations

 	Sparse Matrix Skyline Solver Considerations

 	Sparse Matrix Iterative Solver Considerations

 	Linear Least Squares Considerations

 	Dense Linear Algebraic Equation Subroutines

 	SGESV, DGESV, CGESV, ZGESV (General Matrix Factorization and Multiple Right-Hand Side Solve)

 	SGETRF, DGETRF, CGETRF and ZGETRF (General Matrix Factorization)

 	SGETRS, DGETRS, CGETRS, and ZGETRS (General Matrix Multiple Right-Hand Side Solve)

 	SGEF, DGEF, CGEF, and ZGEF (General Matrix Factorization)

 	SGES, DGES, CGES, and ZGES (General Matrix, Its Transpose, or Its Conjugate Transpose Solve)

 	SGESM, DGESM, CGESM, and ZGESM (General Matrix, Its Transpose, or Its Conjugate Transpose Multiple Right-Hand Side Solve)

 	SGECON, DGECON, CGECON, and ZGECON (Estimate the Reciprocal of the Condition Number of a General Matrix)

 	SGEFCD and DGEFCD (General Matrix Factorization, Condition Number Reciprocal, and Determinant)

 	SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and DGEICD (General Matrix Inverse, Condition Number Reciprocal, and Determinant)

 	SLANGE, DLANGE, CLANGE, and ZLANGE (General Matrix Norm)

 	SPPSV, DPPSV, CPPSV, and ZPPSV (Positive Definite Real Symmetric and Complex Hermitian Matrix Factorization and Multiple Right-Hand
 Side Solve)

 	SPOSV, DPOSV, CPOSV, and ZPOSV (Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization and Multiple Right-Hand
 Side Solve)

 	SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, ZPOF, SPPTRF, DPPTRF, CPPTRF, ZPPTRF, SPPF, and DPPF (Positive Definite
 Real Symmetric or Complex Hermitian Matrix Factorization)

 	SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM, ZPOSM, SPPTRS, DPPTRS, CPPTRS, and ZPPTRS (Positive Definite Real Symmetric
 or Complex Hermitian Matrix Multiple Right-Hand Side Solve)

 	SPPS and DPPS (Positive Definite Real Symmetric Matrix Solve)

 	SPOCON, DPOCON, CPOCON, ZPOCON, SPPCON, DPPCON, CPPCON, and ZPPCON (Estimate the Reciprocal of the Condition Number of a Positive
 Definite Real Symmetric or Complex Hermitian Matrix)

 	SPPFCD, DPPFCD, SPOFCD, and DPOFCD (Positive Definite Real Symmetric Matrix Factorization, Condition Number Reciprocal, and
 Determinant)

 	SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, DPOICD, SPPTRI, DPPTRI, CPPTRI, ZPPTRI, SPPICD, and DPPICD (Positive Definite Real
 Symmetric or Complex Hermitian Matrix Inverse, Condition Number Reciprocal, and Determinant)

 	SLANSY, DLANSY, CLANHE, ZLANHE, SLANSP, DLANSP, CLANHP, and ZLANHP (Real Symmetric or Complex Hermitian Matrix Norm)

 	SSYSV, DSYSV, CSYSV, ZSYSV, CHESV, ZHESV, SSPSV, DSPSV, CSPSV, ZSPSV, CHPSV, and ZHPSV (Indefinite Real or Complex Symmetric
 or Complex Hermitian Matrix Factorization and Multiple Right-Hand Side Solve)

 	SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF, and ZHPTRF (Indefinite Real or Complex
 Symmetric or Complex Hermitian Matrix Factorization)

 	SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, ZHETRS, SSPTRS, DSPTRS, CSPTRS, ZSPTRS, CHPTRS, and ZHPTRS (Indefinite Real or Complex
 Symmetric or Complex Hermitian Matrix Multiple Right-Hand Side Solve)

 	DBSSV (Symmetric Indefinite Matrix Factorization and Multiple Right-Hand Side Solve)

 	DBSTRF (Symmetric Indefinite Matrix Factorization)

 	DBSTRS (Symmetric Indefinite Matrix Multiple Right-Hand Side Solve)

 	STRTRI, DTRTRI, CTRTRI, ZTRTRI, STPTRI, DTPTRI, CTPTRI, and ZTPTRI (Triangular Matrix Inverse)

 	SLANTR, DLANTR, CLANTR, ZLANTR, SLANTP, DLANTP, CLANTP, and ZLANTP (Trapezoidal or Triangular Matrix Norm)

 	Banded Linear Algebraic Equation Subroutines

 	SGBSV, DGBSV, CGBSV, and ZGBSV (General Band Matrix Factorization and Multiple Right-Hand Side Solve)

 	SGBTRF, DGBTRF, CGBTRF and ZGBTRF (General Band Matrix Factorization)

 	SGBTRS, DGBTRS, CGBTRS, and ZGBTRS (General Band Matrix Multiple Right-Hand Side Solve)

 	SGBS and DGBS (General Band Matrix Solve)

 	SPBSV, DPBSV, CPBSV, and ZPBSV (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Factorization and Multiple
 Right-Hand Side Solve)

 	SPBTRF, DPBTRF, CPBTRF, and ZPBTRF (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Factorization)

 	SPBTRS, DPBTRS, CPBTRS, and ZPBTRS (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Multiple Right-Hand
 Side Solve)

 	SGTSV, DGTSV, CGTSV, and ZGTSV (General Tridiagonal Matrix Factorization and Multiple Right-Hand Side Solve)

 	SGTTRF, DGTTRF, CGTTRF, and ZGTTRF (General Tridiagonal Matrix Factorization)

 	SGTTRS, DGTTRS, CGTTRS, and ZGTTRS (General Tridiagonal Matrix Multiple Right-Hand Side Solve)

 	SPTSV, DPTSV, CPTSV, and ZPTSV (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Factorization and
 Multiple Right-Hand Side Solve)

 	SPTTRF, DPTTRF, CPTTRF, and ZPTTRF (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Factorization)

 	SPTTRS, DPTTRS, CPTTRS, and ZPTTRS (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Multiple Right-Hand
 Solve)

 	SGBF and DGBF (General Band Matrix Factorization)

 	SPBF, DPBF, SPBCHF, and DPBCHF (Positive Definite Symmetric Band Matrix Factorization)

 	SPBS, DPBS, SPBCHS, and DPBCHS (Positive Definite Symmetric Band Matrix Solve)

 	SGTF and DGTF (General Tridiagonal Matrix Factorization)

 	SGTS and DGTS (General Tridiagonal Matrix Solve)

 	SGTNP, DGTNP, CGTNP, and ZGTNP (General Tridiagonal Matrix Combined Factorization and Solve with No Pivoting)

 	SGTNPF, DGTNPF, CGTNPF, and ZGTNPF (General Tridiagonal Matrix Factorization with No Pivoting)

 	SGTNPS, DGTNPS, CGTNPS, and ZGTNPS (General Tridiagonal Matrix Solve with No Pivoting)

 	SPTF and DPTF (Positive Definite Symmetric Tridiagonal Matrix Factorization)

 	SPTS and DPTS (Positive Definite Symmetric Tridiagonal Matrix Solve)

 	Sparse Linear Algebraic Equation Subroutines

 	DGSF (General Sparse Matrix Factorization Using Storage by Indices, Rows, or Columns)

 	DGSS (General Sparse Matrix or Its Transpose Solve Using Storage by Indices, Rows, or Columns)

 	DGKFS (General Sparse Matrix or Its Transpose Factorization, Determinant, and Solve Using Skyline Storage Mode)

 	DSKFS (Symmetric Sparse Matrix Factorization, Determinant, and Solve Using Skyline Storage Mode)

 	DSRIS (Iterative Linear System Solver for a General or Symmetric Sparse Matrix Stored by Rows)

 	DSMCG (Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve Using Compressed-Matrix Storage Mode)

 	DSDCG (Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve Using Compressed-Diagonal Storage Mode)

 	DSMGCG (General Sparse Matrix Iterative Solve Using Compressed-Matrix Storage Mode)

 	DSDGCG (General Sparse Matrix Iterative Solve Using Compressed-Diagonal Storage Mode)

 	Linear Least Squares Subroutines

 	SGESVD, DGESVD, CGESVD, ZGESVD, SGESDD, DGESDD, CGESDD, and ZGESDD (Singular Value Decomposition for a General Matrix)

 	SGEQRF, DGEQRF, CGEQRF, and ZGEQRF (General Matrix QR Factorization)

 	SGELS, DGELS, CGELS, and ZGELS (Linear Least Squares Solution for a General Matrix)

 	SGELSD, DGELSD, CGELSD, and ZGELSD (Linear Least Squares Solution for a General Matrix Using the Singular Value Decomposition)

 	SGESVF and DGESVF (Singular Value Decomposition for a General Matrix)

 	SGESVS and DGESVS (Linear Least Squares Solution for a General Matrix Using the Singular Value Decomposition)

 	SGELLS and DGELLS (Linear Least Squares Solution for a General Matrix with Column Pivoting)

 Parent topic: Reference Information

 Overview of the Linear Algebraic Equation Subroutines

 This describes the subroutines in each of the four linear
 algebraic equation areas:

 	Dense Linear Algebraic Equation Subroutines

 	Banded Linear Algebraic Equation Subroutines

 	Sparse Linear Algebraic Equation Subroutines

 	Linear Least Squares Subroutines

 Note: Some of the linear algebraic
 equations were designed in accordance with the LAPACK de facto standard.
 If these subprograms do not comply with the standard as approved, IBM® will consider updating them
 to do so. If IBM updates these
 subprograms, the updates could require modifications of the calling
 application program. For details on LAPACK, see [8].

 	Dense Linear Algebraic Equation Subroutines

 	Banded Linear Algebraic Equation Subroutines

 	Sparse Linear Algebraic Equation Subroutines

 	Linear Least Squares Subroutines

 Parent topic: Linear Algebraic Equations

 Dense Linear Algebraic Equation Subroutines

 The dense linear algebraic equation subroutines provide solutions to
 linear systems of equations for both real and complex general matrices and their transposes,
 positive definite real symmetric and complex Hermitian matrices, indefinite real or complex
 symmetric or complex Hermitian matrices, and triangular matrices. Some of these subroutines
 correspond to the LAPACK routines described in reference [
 8].

 Table 124. List of LAPACK Dense Linear Algebraic Equation Subroutines.

 	Short-Precision Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	

 SGESV

 Δ

 CGESV

 Δ

 [image: Start of change]LAPACKE_sgesv

 Δ

 LAPACKE_cgesv

 Δ

 [image: End of change]

 	

 DGESV

 Δ

 ZGESV

 Δ

 [image: Start of change]LAPACKE_dgesv

 Δ

 LAPACKE_zgesv

 Δ

 [image: End of change]

 	SGESV, DGESV, CGESV, ZGESV (General Matrix Factorization and Multiple Right-Hand Side Solve)

 	

 SGETRF

 Δ

 CGETRF

 Δ

 [image: Start of change]LAPACKE_sgetrf

 Δ

 LAPACKE_cgetrf

 Δ

 [image: End of change]

 	

 DGETRF

 Δ

 ZGETRF

 Δ

 [image: Start of change]LAPACKE_dgetrf

 Δ

 LAPACKE_zgetrf

 Δ

 [image: End of change]

 	SGETRF, DGETRF, CGETRF and ZGETRF (General Matrix Factorization)

 	

 SGETRS

 Δ

 CGETRS

 Δ

 [image: Start of change]LAPACKE_sgetrs

 Δ

 LAPACKE_cgetrs

 Δ

 [image: End of change]

 	

 DGETRS

 Δ

 ZGETRS

 Δ

 [image: Start of change]LAPACKE_dgetrf

 Δ

 LAPACKE_zgetrf

 Δ

 [image: End of change]

 	SGETRS, DGETRS, CGETRS, and ZGETRS (General Matrix Multiple Right-Hand Side Solve)

 	

 SGECON

 Δ

 CGECON

 Δ

 [image: Start of change]LAPACKE_sgecon

 Δ

 LAPACKE_cgecon

 Δ

 [image: End of change]

 	

 DGECON

 Δ

 ZGECON

 Δ

 [image: Start of change]LAPACKE_dgecon

 Δ

 LAPACKE_zgecon

 Δ

 [image: End of change]

 	SGECON, DGECON, CGECON, and ZGECON (Estimate the Reciprocal of the Condition Number of a General Matrix)

 	

 SGETRI

 Δ

 CGETRI

 Δ

 [image: Start of change]LAPACKE_sgetri

 Δ

 LAPACKE_cgetri

 Δ

 [image: End of change]

 	

 DGETRI

 Δ

 ZGETRI

 Δ

 [image: Start of change]LAPACKE_dgetri

 Δ

 LAPACKE_zgetri

 Δ

 [image: End of change]

 	SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and DGEICD (General Matrix Inverse, Condition Number Reciprocal, and Determinant)

 	

 SLANGE

 Δ

 CLANGE

 Δ

 [image: Start of change]LAPACKE_slange

 Δ

 LAPACKE_clange

 Δ

 [image: End of change]

 	

 DLANGE

 Δ

 ZLANGE

 Δ

 [image: Start of change]LAPACKE_dlange

 Δ

 LAPACKE_zlange

 Δ

 [image: End of change]

 	SLANGE, DLANGE, CLANGE, and ZLANGE (General Matrix Norm)

 	

 SPPSV

 Δ

 CPPSV

 Δ

 [image: Start of change]LAPACKE_sppsv

 Δ

 LAPACKE_cppsv

 Δ

 [image: End of change]

 	

 DPPSV

 Δ

 ZPPSV

 Δ

 [image: Start of change]LAPACKE_dppsv

 Δ

 LAPACKE_zppsv

 Δ

 [image: End of change]

 	SPPSV, DPPSV, CPPSV, and ZPPSV (Positive Definite Real Symmetric and Complex Hermitian Matrix Factorization and Multiple Right-Hand
 Side Solve)

 	

 SPOSV

 Δ

 CPOSV

 Δ

 [image: Start of change]LAPACKE_sposv

 Δ

 LAPACKE_cposv

 Δ

 [image: End of change]

 	

 DPOSV

 Δ

 ZPOSV

 Δ

 [image: Start of change]LAPACKE_dposv

 Δ

 LAPACKE_zposv

 Δ

 [image: End of change]

 	SPOSV, DPOSV, CPOSV, and ZPOSV (Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization and Multiple Right-Hand
 Side Solve)

 	

 SPOTRF

 Δ

 CPOTRF

 Δ

 SPPTRF

 Δ

 CPPTRF

 Δ

 [image: Start of change]LAPACKE_spotrf

 Δ

 LAPACKE_cpotrf

 Δ

 LAPACKE_spptrf

 Δ

 LAPACKE_cpptrf

 Δ

 [image: End of change]

 	

 DPOTRF

 Δ

 ZPOTRF

 Δ

 DPPTRF

 Δ

 ZPPTRF

 Δ

 [image: Start of change]LAPACKE_dpotrf

 Δ

 LAPACKE_zpotrf

 Δ

 LAPACKE_dpptrf

 Δ

 LAPACKE_zpptrf

 Δ

 [image: End of change]

 	SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, ZPOF, SPPTRF, DPPTRF, CPPTRF, ZPPTRF, SPPF, and DPPF (Positive Definite
 Real Symmetric or Complex Hermitian Matrix Factorization)

 	

 SPOTRS

 Δ

 CPOTRS

 Δ

 SPPTRS

 Δ

 CPPTRS

 Δ

 [image: Start of change]LAPACKE_spotrs

 Δ

 LAPACKE_cpotrs

 Δ

 LAPACKE_spptrs

 Δ

 LAPACKE_cpptrs

 Δ

 [image: End of change]

 	

 DPOTRS

 Δ

 ZPOTRS

 Δ

 DPPTRS

 Δ

 ZPPTRS

 Δ

 [image: Start of change]LAPACKE_dpotrs

 Δ

 LAPACKE_zpotrs

 Δ

 LAPACKE_dpptrs

 Δ

 LAPACKE_zpptrs

 Δ

 [image: End of change]

 	SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM, ZPOSM, SPPTRS, DPPTRS, CPPTRS, and ZPPTRS (Positive Definite Real Symmetric
 or Complex Hermitian Matrix Multiple Right-Hand Side Solve)

 	

 SPOCON

 Δ

 CPOCON

 Δ

 SPPCON

 Δ

 CPPCON

 Δ

 [image: Start of change]LAPACKE_spocon

 Δ

 LAPACKE_cpocon

 Δ

 LAPACKE_sppcon

 Δ

 LAPACKE_cppcon

 Δ

 [image: End of change]

 	

 DPOCON

 Δ

 ZPOCON

 Δ

 DPPCON

 Δ

 ZPPCON

 Δ

 [image: Start of change]LAPACKE_dpocon

 Δ

 LAPACKE_zpocon

 Δ

 LAPACKE_dppcon

 Δ

 LAPACKE_zppcon

 Δ

 [image: End of change]

 	SPOCON, DPOCON, CPOCON, ZPOCON, SPPCON, DPPCON, CPPCON, and ZPPCON (Estimate the Reciprocal of the Condition Number of a Positive
 Definite Real Symmetric or Complex Hermitian Matrix)

 	

 SPOTRI

 Δ

 CPOTRI

 Δ

 SPPTRI

 Δ

 CPPTRI

 Δ

 [image: Start of change]LAPACKE_spotri

 Δ

 LAPACKE_cpotri

 Δ

 LAPACKE_spptri

 Δ

 LAPACKE_cpptri

 Δ

 [image: End of change]

 	

 DPOTRI

 Δ

 ZPOTRI

 Δ

 DPPTRI

 Δ

 ZPPTRI

 Δ

 [image: Start of change]LAPACKE_dpotri

 Δ

 LAPACKE_zpotri

 Δ

 LAPACKE_dpptri

 Δ

 LAPACKE_zpptri

 Δ

 [image: End of change]

 	SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, DPOICD, SPPTRI, DPPTRI, CPPTRI, ZPPTRI, SPPICD, and DPPICD (Positive Definite Real
 Symmetric or Complex Hermitian Matrix Inverse, Condition Number Reciprocal, and Determinant)

 	

 SLANSY

 Δ

 CLANHE

 Δ

 SLANSP

 Δ

 CLANHP

 Δ

 [image: Start of change]LAPACKE_slansy

 Δ

 LAPACKE_clanhe

 Δ

 LAPACKE_slansp

 Δ

 LAPACKE_clanhp

 Δ

 [image: End of change]

 	

 DLANSY

 Δ

 ZLANHE

 Δ

 DLANSP

 Δ

 ZLANHP

 Δ

 [image: Start of change]LAPACKE_dlansy

 Δ

 LAPACKE_zlanhe

 Δ

 LAPACKE_dlansp

 Δ

 LAPACKE_zlanhp

 Δ

 [image: End of change]

 	SLANSY, DLANSY, CLANHE, ZLANHE, SLANSP, DLANSP, CLANHP, and ZLANHP (Real Symmetric or Complex Hermitian Matrix Norm)

 	

 SSYSV

 Δ

 CSYSV

 Δ

 CHESV

 Δ

 SSPSV

 Δ

 CSPSV

 Δ

 CHPSV

 Δ

 [image: Start of change]LAPACKE_ssysv

 Δ

 LAPACKE_csysv

 Δ

 LAPACKE_chesv

 Δ

 LAPACKE_sspsv

 Δ

 LAPACKE_cspsv

 Δ

 LAPACKE_chpsv

 Δ

 [image: End of change]

 	

 DSYSV

 Δ

 ZSYSV

 Δ

 ZHESV

 Δ

 DSPSV

 Δ

 ZSPSV

 Δ

 ZHPSV

 Δ

 [image: Start of change]LAPACKE_dsysv

 Δ

 LAPACKE_zsysv

 Δ

 LAPACKE_zhesv

 Δ

 LAPACKE_dspsv

 Δ

 LAPACKE_zspsv

 Δ

 LAPACKE_zhpsv

 Δ

 [image: End of change]

 	SSYSV, DSYSV, CSYSV, ZSYSV, CHESV, ZHESV, SSPSV, DSPSV, CSPSV, ZSPSV, CHPSV, and ZHPSV (Indefinite Real or Complex Symmetric
 or Complex Hermitian Matrix Factorization and Multiple Right-Hand Side Solve)

 	

 SSYTRF

 Δ

 CSYTRF

 Δ

 CHETRF

 Δ

 SSPTRF

 Δ

 CSPTRF

 Δ

 CHPTRF

 Δ

 [image: Start of change]LAPACKE_ssytrf

 Δ

 LAPACKE_csytrf

 Δ

 LAPACKE_chetrf

 Δ

 LAPACKE_ssptrf

 Δ

 LAPACKE_csptrf

 Δ

 LAPACKE_chptrf

 Δ

 [image: End of change]

 	

 DSYTRF

 Δ

 ZSYTRF

 Δ

 ZHETRF

 Δ

 DSPTRF

 Δ

 ZSPTRF

 Δ

 ZHPTRF

 Δ

 [image: Start of change]LAPACKE_dsytrf

 Δ

 LAPACKE_zsytrf

 Δ

 LAPACKE_zhetrf

 Δ

 LAPACKE_dsptrf

 Δ

 LAPACKE_zsptrf

 Δ

 LAPACKE_zhptrf

 Δ

 [image: End of change]

 	SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF, and ZHPTRF (Indefinite Real or Complex
 Symmetric or Complex Hermitian Matrix Factorization)

 	

 SSYTRS

 Δ

 CSYTRS

 Δ

 CHETRS

 Δ

 SSPTRS

 Δ

 CSPTRS

 Δ

 CHPTRS

 Δ

 [image: Start of change]LAPACKE_ssytrs

 Δ

 LAPACKE_csytrs

 Δ

 LAPACKE_chetrs

 Δ

 LAPACKE_ssptrs

 Δ

 LAPACKE_csptrs

 Δ

 LAPACKE_chptrs

 Δ

 [image: End of change]

 	

 DSYTRS

 Δ

 ZSYTRS

 Δ

 ZHETRS

 Δ

 DSPTRS

 Δ

 ZSPTRS

 Δ

 ZHPTRS

 Δ

 [image: Start of change]LAPACKE_dsytrs

 Δ

 LAPACKE_zsytrs

 Δ

 LAPACKE_zhetrs

 Δ

 LAPACKE_dsptrs

 Δ

 LAPACKE_zsptrs

 Δ

 LAPACKE_zhptrs

 Δ

 [image: End of change]

 	SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, ZHETRS, SSPTRS, DSPTRS, CSPTRS, ZSPTRS, CHPTRS, and ZHPTRS (Indefinite Real or Complex
 Symmetric or Complex Hermitian Matrix Multiple Right-Hand Side Solve)

 	

 STRTRI

 Δ

 CTRTRI

 Δ

 STPTRI

 Δ

 CTPTRI

 Δ

 [image: Start of change]LAPACKE_strtri

 Δ

 LAPACKE_stptri

 Δ

 LAPACKE_ctrtri

 Δ

 LAPACKE_ctptri

 Δ

 [image: End of change]

 	

 DTRTRI

 Δ

 ZTRTRI

 Δ

 DTPTRI

 Δ

 ZTPTRI

 Δ

 [image: Start of change]LAPACKE_dtrtri

 Δ

 LAPACKE_dtptri

 Δ

 LAPACKE_ztrtri

 Δ

 LAPACKE_ztptri

 Δ

 [image: End of change]

 	STRTRI, DTRTRI, CTRTRI, ZTRTRI, STPTRI, DTPTRI, CTPTRI, and ZTPTRI (Triangular Matrix Inverse)

 	

 SLANTR

 Δ

 	

 CLANTR

 Δ

 SLANTP

 Δ

 CLANTP

 Δ

 [image: Start of change]LAPACKE_slantr

 Δ

 	

 LAPACKE_clantr

 Δ

 LAPACKE_slantp

 Δ

 LAPACKE_clantp

 Δ

 [image: End of change]

 	

 DLANTR

 Δ

 ZLANTR

 Δ

 DLANTP

 Δ

 ZLANTP

 Δ

 [image: Start of change]LAPACKE_dlantr

 Δ

 LAPACKE_zlantr

 Δ

 LAPACKE_dlantp

 Δ

 LAPACKE_zlantp

 Δ

 [image: End of change]

 	SLANTR, DLANTR, CLANTR, ZLANTR, SLANTP, DLANTP, CLANTP, and ZLANTP (Trapezoidal or Triangular Matrix Norm)

 	
 Δ LAPACK

 Table 125. List of Dense
 Linear Algebraic Equation Subroutines.

 	Short-Precision
 Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	

 SGEF

 CGEF

 	

 DGEF

 ZGEF

 DGEFP

 §

 	SGEF, DGEF, CGEF, and ZGEF (General Matrix Factorization)

 	

 SGESM

 CGESM

 	

 DGESM

 ZGESM

 	SGESM, DGESM, CGESM, and ZGESM (General Matrix, Its Transpose, or Its Conjugate Transpose Multiple Right-Hand Side Solve)

 	

 SGES

 CGES

 	

 DGES

 ZGES

 	SGES, DGES, CGES, and ZGES (General Matrix, Its Transpose, or Its Conjugate Transpose Solve)

 	SGEFCD

 	DGEFCD

 	SGEFCD and DGEFCD (General Matrix Factorization, Condition Number Reciprocal, and Determinant)

 	

 SGEICD

 	

 DGEICD

 	SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and DGEICD (General Matrix Inverse, Condition Number Reciprocal, and Determinant)

 	

 SPOF

 CPOF

 SPPF

 	

 DPOF

 ZPOF

 DPPF

 DPPFP

 §

 	SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, ZPOF, SPPTRF, DPPTRF, CPPTRF, ZPPTRF, SPPF, and DPPF (Positive Definite
 Real Symmetric or Complex Hermitian Matrix Factorization)

 	

 SPOSM

 CPOSM

 	

 DPOSM

 ZPOSM

 	SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM, ZPOSM, SPPTRS, DPPTRS, CPPTRS, and ZPPTRS (Positive Definite Real Symmetric
 or Complex Hermitian Matrix Multiple Right-Hand Side Solve)

 	SPPS

 	DPPS

 	SPPS and DPPS (Positive Definite Real Symmetric Matrix Solve)

 	

 SPPFCD

 SPOFCD

 	

 DPPFCD

 DPOFCD

 	SPPFCD, DPPFCD, SPOFCD, and DPOFCD (Positive Definite Real Symmetric Matrix Factorization, Condition Number Reciprocal, and
 Determinant)

 	

 SPPICD

 SPOICD

 	

 DPPICD

 DPOICD

 	SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, DPOICD, SPPTRI, DPPTRI, CPPTRI, ZPPTRI, SPPICD, and DPPICD (Positive Definite Real
 Symmetric or Complex Hermitian Matrix Inverse, Condition Number Reciprocal, and Determinant)

 	

 	DBSSV

 	DBSSV (Symmetric Indefinite Matrix Factorization and Multiple Right-Hand Side Solve)

 	

 	DBSTRF

 	DBSTRF (Symmetric Indefinite Matrix Factorization)

 	

 	DBSTRS

 	DBSTRS (Symmetric Indefinite Matrix Multiple Right-Hand Side Solve)

 	

 STRI

 §

 STPI

 §

 	

 DTRI

 §

 DTPI

 §

 	STRTRI, DTRTRI, CTRTRI, ZTRTRI, STPTRI, DTPTRI, CTPTRI, and ZTPTRI (Triangular Matrix Inverse)

 	
 § This
 subroutine is provided for migration from earlier releases of ESSL
 and is not intended for use in new programs. Documentation for this
 subroutine is no longer provided.

 Parent topic: Overview of the Linear Algebraic Equation Subroutines

 Banded Linear Algebraic Equation Subroutines

 The banded linear algebraic equation subroutines provide solutions to linear systems
 of equations for:

 	Real or complex general band matrices

 	Positive definite real symmetric or complex Hermitian band matrices

 	Real or complex general tridiagonal matrices

 	Positive definite real symmetric or complex Hermitian tridiagonal matrices

 Table 126. List of LAPACK
 Banded Linear Algebraic Equation Subroutines.

 	Short-Precision
 Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	

 SGBSV

 Δ

 CGBSV

 Δ

 [image: Start of change]LAPACKE_sgbsv

 Δ

 LAPACKE_cgbsv

 Δ

 [image: End of change]

 	

 DGBSV

 Δ

 ZGBSV

 Δ

 [image: Start of change]LAPACKE_dgbsv

 Δ

 LAPACKE_zgbsv

 Δ

 [image: End of change]

 	SGBSV, DGBSV, CGBSV, and ZGBSV (General Band Matrix Factorization and Multiple Right-Hand Side Solve)

 	

 SGBTRF

 Δ

 CGBTRF

 Δ

 [image: Start of change]LAPACKE_sgbtrf

 Δ

 LAPACKE_cgbtrf

 Δ

 [image: End of change]

 	

 DGBTRF

 Δ

 ZGBTRF

 Δ

 [image: Start of change]LAPACKE_dgbtrf

 Δ

 LAPACKE_zgbtrf

 Δ

 [image: End of change]

 	SGBTRF, DGBTRF, CGBTRF and ZGBTRF (General Band Matrix Factorization)

 	

 SGBTRS

 Δ

 CGBTRS

 Δ

 [image: Start of change]LAPACKE_sgbtrs

 Δ

 LAPACKE_cgbtrs

 Δ

 [image: End of change]

 	

 DGBTRS

 Δ

 ZGBTRS

 Δ

 [image: Start of change]LAPACKE_dgbtrs

 Δ

 LAPACKE_zgbtrs

 Δ

 [image: End of change]

 	SGBTRS, DGBTRS, CGBTRS, and ZGBTRS (General Band Matrix Multiple Right-Hand Side Solve)

 	

 SPBSV

 Δ

 CPBSV

 Δ

 [image: Start of change]LAPACKE_spbsv

 Δ

 LAPACKE_cpbsv

 Δ

 [image: End of change]

 	

 DPBSV

 Δ

 ZPBSV

 Δ

 [image: Start of change]LAPACKE_dpbsv

 Δ

 LAPACKE_zpbsv

 Δ

 [image: End of change]

 	SPBSV, DPBSV, CPBSV, and ZPBSV (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Factorization and Multiple
 Right-Hand Side Solve)

 	

 SPBTRF

 Δ

 CPBTRF

 Δ

 [image: Start of change]LAPACKE_spbtrf

 Δ

 LAPACKE_cpbtrf

 Δ

 [image: End of change]

 	

 DPBTRF

 Δ

 ZPBTRF

 Δ

 [image: Start of change]LAPACKE_dpbtrf

 Δ

 LAPACKE_zpbtrf

 Δ

 [image: End of change]

 	SPBTRF, DPBTRF, CPBTRF, and ZPBTRF (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Factorization)

 	

 SPBTRS

 Δ

 CPBTRS

 Δ

 [image: Start of change]LAPACKE_spbtrs

 Δ

 LAPACKE_cpbtrs

 Δ

 [image: End of change]

 	

 DPBTRS

 Δ

 ZPBTRS

 Δ

 [image: Start of change]LAPACKE_dpbtrf

 Δ

 LAPACKE_zpbtrf

 Δ

 [image: End of change]

 	SPBTRS, DPBTRS, CPBTRS, and ZPBTRS (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Multiple Right-Hand
 Side Solve)

 	

 SGTSV

 Δ

 CGTSV

 Δ

 [image: Start of change]LAPACKE_sgtsv

 Δ

 LAPACKE_cgtsv

 Δ

 [image: End of change]

 	

 DGTSV

 Δ

 ZGTSV

 Δ

 [image: Start of change]LAPACKE_sgtsv

 Δ

 LAPACKE_cgtsv

 Δ

 [image: End of change]

 	SGTSV, DGTSV, CGTSV, and ZGTSV (General Tridiagonal Matrix Factorization and Multiple Right-Hand Side Solve)

 	

 SGTTRF

 Δ

 CGTTRF

 Δ

 [image: Start of change]LAPACKE_sgttrf

 Δ

 LAPACKE_cgttrf

 Δ

 [image: End of change]

 	

 DGTTRF

 Δ

 ZGTTRF

 Δ

 [image: Start of change]LAPACKE_dgttrf

 Δ

 LAPACKE_zgttrf

 Δ

 [image: End of change]

 	SGTTRF, DGTTRF, CGTTRF, and ZGTTRF (General Tridiagonal Matrix Factorization)

 	

 SGTTRS

 Δ

 CGTTRS

 Δ

 [image: Start of change]LAPACKE_sgttrs

 Δ

 LAPACKE_cgttrs

 Δ

 [image: End of change]

 	

 DGTTRS

 Δ

 ZGTTRS

 Δ

 [image: Start of change]LAPACKE_dgttrs

 Δ

 LAPACKE_zgttrs

 Δ

 [image: End of change]

 	SGTTRS, DGTTRS, CGTTRS, and ZGTTRS (General Tridiagonal Matrix Multiple Right-Hand Side Solve)

 	

 SPTSV

 Δ

 CPTSV

 Δ

 [image: Start of change]LAPACKE_sptsv

 Δ

 LAPACKE_cptsv

 Δ

 [image: End of change]

 	

 DPTSV

 Δ

 ZPTSV

 Δ

 [image: Start of change]LAPACKE_dptsv

 Δ

 LAPACKE_zptsv

 Δ

 [image: End of change]

 	SPTSV, DPTSV, CPTSV, and ZPTSV (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Factorization and
 Multiple Right-Hand Side Solve)

 	

 SPTTRF

 Δ

 CPTTRF

 Δ

 [image: Start of change]LAPACKE_spttrf

 Δ

 LAPACKE_cpttrf

 Δ

 [image: End of change]

 	

 DPTTRF

 Δ

 ZPTTRF

 Δ

 [image: Start of change]LAPACKE_dpttrf

 Δ

 LAPACKE_zpttrf

 Δ

 [image: End of change]

 	SPTTRF, DPTTRF, CPTTRF, and ZPTTRF (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Factorization)

 	

 SPTTRS

 Δ

 CPTTRS

 Δ

 [image: Start of change]LAPACKE_spttrs

 Δ

 LAPACKE_cpttrs

 Δ

 [image: End of change]

 	

 DPTTRS

 Δ

 ZPTTRS

 Δ

 [image: Start of change]LAPACKE_dpttrs

 Δ

 LAPACKE_zpttrs

 Δ

 [image: End of change]

 	SPTTRS, DPTTRS, CPTTRS, and ZPTTRS (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Multiple Right-Hand
 Solve)

 	
 Δ LAPACK

 Table 127. List of non-LAPACK
 Banded Linear Algebraic Equation Subroutines.

 	Short-Precision
 Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	SGBF§

 	DGBF§

 	SGBF and DGBF (General Band Matrix Factorization)

 	SGBS§

 	DGBS§

 	SGBS and DGBS (General Band Matrix Solve)

 	

 SPBF

 §

 SPBCHF

 §

 	

 DPBF

 §

 DPBCHF

 §

 	SPBF, DPBF, SPBCHF, and DPBCHF (Positive Definite Symmetric Band Matrix Factorization)

 	

 SPBS

 §

 SPBCHS

 §

 	

 DPBS

 §

 DPBCHS

 §

 	SPBS, DPBS, SPBCHS, and DPBCHS (Positive Definite Symmetric Band Matrix Solve)

 	SGTF§

 	DGTF§

 	SGTF and DGTF (General Tridiagonal Matrix Factorization)

 	SGTS§

 	DGTS§

 	SGTS and DGTS (General Tridiagonal Matrix Solve)

 	

 SGTNP

 CGTNP

 	

 DGTNP

 ZGTNP

 	SGTNP, DGTNP, CGTNP, and ZGTNP (General Tridiagonal Matrix Combined Factorization and Solve with No Pivoting)

 	

 SGTNPF

 CGTNPF

 	

 DGTNPF

 ZGTNPF

 	SGTNPF, DGTNPF, CGTNPF, and ZGTNPF (General Tridiagonal Matrix Factorization with No Pivoting)

 	

 SGTNPS

 CGTNPS

 	

 DGTNPS

 ZGTNPS

 	SGTNPS, DGTNPS, CGTNPS, and ZGTNPS (General Tridiagonal Matrix Solve with No Pivoting)

 	SPTF§

 	DPTF§

 	SPTF and DPTF (Positive Definite Symmetric Tridiagonal Matrix Factorization)

 	SPTS§

 	DPTS§

 	SPTS and DPTS (Positive Definite Symmetric Tridiagonal Matrix Solve)

 	
 § This
 subroutine is provided for migration from earlier releases of ESSL
 and is not intended for use in new programs.

 Parent topic: Overview of the Linear Algebraic Equation Subroutines

 Sparse Linear Algebraic Equation Subroutines

 The sparse linear algebraic equation subroutines provide
 direct and iterative solutions to linear systems of equations both
 for general sparse matrices and their transposes and for sparse symmetric
 matrices.

 Table 128. List of Sparse Linear Algebraic
 Equation Subroutines.

 	Long-Precision
 Subroutine

 	Descriptive Name and Location

 	DGSF

 	DGSF (General Sparse Matrix Factorization Using Storage by Indices, Rows, or Columns)

 	DGSS

 	DGSS (General Sparse Matrix or Its Transpose Solve Using Storage by Indices, Rows, or Columns)

 	

 DGKFS

 DGKFSP

 §

 	DGKFS (General Sparse Matrix or Its Transpose Factorization, Determinant, and Solve Using Skyline Storage Mode)

 	

 DSKFS

 DSKFSP

 §

 	DSKFS (Symmetric Sparse Matrix Factorization, Determinant, and Solve Using Skyline Storage Mode)

 	DSRIS

 	DSRIS (Iterative Linear System Solver for a General or Symmetric Sparse Matrix Stored by Rows)

 	DSMCG‡

 	DSMCG (Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve Using Compressed-Matrix Storage Mode)

 	DSDCG

 	DSDCG (Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve Using Compressed-Diagonal Storage Mode)

 	DSMGCG‡

 	DSMGCG (General Sparse Matrix Iterative Solve Using Compressed-Matrix Storage Mode)

 	DSDGCG

 	DSDGCG (General Sparse Matrix Iterative Solve Using Compressed-Diagonal Storage Mode)

 	
 § This subroutine is provided
 only for migration from earlier releases of ESSL and is not intended
 for use in new programs. Documentation for this subroutine is no
 longer provided.

 ‡ This subroutine is
 provided only for migration from earlier releases of ESSL and is not
 intended for use in new programs. Use DSRIS instead.

 Parent topic: Overview of the Linear Algebraic Equation Subroutines

 Linear Least Squares Subroutines

 The linear least squares subroutines provide least squares
 solutions to linear systems of equations for general matrices
 using a QR factorization or a singular value decomposition.
 Some of these subroutines correspond to the LAPACK routines described
 in reference [8].

 Table 129. List of LAPACK Linear
 Least Squares Subroutines.

 	Short-Precision Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	

 SGESVD

 Δ

 CGESVD

 Δ

 [image: Start of change]SGESDD

 [image: End of change]
 Δ

 [image: Start of change]CGESDD

 [image: End of change]
 Δ

 [image: Start of change]LAPACKE_sgesvd

 Δ

 LAPACKE_cgesvd

 Δ

 LAPACKE_sgesdd

 Δ

 LAPACKE_cgesdd

 Δ

 [image: End of change]

 	

 DGESVD

 Δ

 ZGESVD

 Δ

 DGESDD

 Δ

 ZGESDD

 Δ

 [image: Start of change]LAPACKE_dgesvd

 Δ

 LAPACKE_zgesvd

 Δ

 LAPACKE_dgesdd

 Δ

 LAPACKE_zgesdd

 Δ

 [image: End of change]

 	SGESVD, DGESVD, CGESVD, ZGESVD, SGESDD, DGESDD, CGESDD, and ZGESDD (Singular Value Decomposition for a General Matrix)

 	

 SGEQRF

 Δ

 CGEQRF

 Δ

 [image: Start of change]LAPACKE_sgeqrf

 Δ

 LAPACKE_cgeqrf

 Δ

 [image: End of change]

 	

 DGEQRF

 Δ

 ZGEQRF

 Δ

 [image: Start of change]LAPACKE_dgeqrf

 Δ

 LAPACKE_zgeqrf

 Δ

 [image: End of change]

 	SGEQRF, DGEQRF, CGEQRF, and ZGEQRF (General Matrix QR Factorization)

 	

 SGELS

 Δ

 CGELS

 Δ

 [image: Start of change]LAPACKE_sgels

 Δ

 LAPACKE_cgels

 Δ

 [image: End of change]

 	

 DGELS

 Δ

 ZGELS

 Δ

 [image: Start of change]LAPACKE_dgels

 Δ

 LAPACKE_zgels

 Δ

 [image: End of change]

 	SGELS, DGELS, CGELS, and ZGELS (Linear Least Squares Solution for a General Matrix)

 	

 SGELSD

 Δ

 CGELSD

 Δ

 [image: Start of change]LAPACKE_sgelsd

 Δ

 LAPACKE_cgelsd

 Δ

 [image: End of change]

 	

 DGELSD

 Δ

 ZGELSD

 Δ

 [image: Start of change]LAPACKE_dgelsd

 Δ

 LAPACKE_zgelsd

 Δ

 [image: End of change]

 	SGELSD, DGELSD, CGELSD, and ZGELSD (Linear Least Squares Solution for a General Matrix Using the Singular Value Decomposition)

 	
 Δ LAPACK

 Table 130. List of Non–LAPACK
 Linear Least Squares Subroutines.

 	Short-Precision Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	SGESVF§

 	DGESVF§

 	SGESVF and DGESVF (Singular Value Decomposition for a General Matrix)

 	SGESVS§

 	DGESVS§

 	SGESVS and DGESVS (Linear Least Squares Solution for a General Matrix Using the Singular Value Decomposition)

 	SGELLS§

 	DGELLS§

 	SGELLS and DGELLS (Linear Least Squares Solution for a General Matrix with Column Pivoting)

 	
 § This
 subroutine is provided only for migration from earlier releases of
 ESSL and is not intended for use in new programs.

 Parent topic: Overview of the Linear Algebraic Equation Subroutines

 Dense and Banded Linear Algebraic Equation Considerations

 This provides some key points about using the dense and banded linear algebraic
 equation subroutines.

 	Use Considerations

 	Performance and Accuracy Considerations

 Parent topic: Linear Algebraic Equations

 Use Considerations

 To solve a system of equations, you have two choices:

 	Use the combined factorization-and-solve subroutine for the type of matrix
 you have.

 	Use both the factorization subroutine and the solve subroutine for the
 type of matrix you have. When doing so, note the following:

 	Each factorization subroutine should be followed in your program by the
 corresponding solve subroutine. The output from the factorization subroutine
 should be used as input to the solve subroutine.

 	To solve a system of equations with one or more right-hand sides, follow
 the call to the factorization subroutine with one or more calls to a solve
 subroutine or one call to a multiple solve subroutine.

 Parent topic: Dense and Banded Linear Algebraic Equation Considerations

 Performance and Accuracy Considerations

 	Except in a few instances, the _GTNP subroutines provide better
 performance than the _GTNPF and _GTNPS subroutines. For details, see
 the subroutine descriptions.

 	The general subroutines (dense and banded) use partial pivoting
 for accuracy and fast performance.

 	The short-precision subroutines provide increased accuracy by
 accumulating intermediate results in long precision when the AltiVec
 or VSX unit is not used. Occasionally, for performance reasons, these
 intermediate results are stored.

 	There are ESSL-specific rules that apply to the results of computations
 on the workstation processors using the ANSI/IEEE standards. For details,
 see What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?.

 Parent topic: Dense and Banded Linear Algebraic Equation Considerations

 Sparse Matrix Direct Solver Considerations

 This provides some key points about using the sparse matrix direct solver
 subroutines.

 	Use Considerations

 	Performance and Accuracy Considerations

 Parent topic: Linear Algebraic Equations

 Use Considerations

 	To solve a sparse system of equations by a direct method, you must use
 both the factorization and solve subroutines. The factorization subroutine
 should be followed in your program by the corresponding solve subroutine;
 that is, the output from the factorization subroutine should be used as input
 to the solve subroutine.

 	To solve a system of equations with one or more right-hand sides, follow
 the call to the factorization subroutine with one or more calls to the solve
 subroutine.

 	The amount of storage required for the arrays depends on the sparsity
 pattern of the matrix. The requirement that lna > 2nz on
 entry to DGSF does not guarantee a successful run of the program. Some programs
 may be terminated because of the large number of fill-ins generated upon factorization.
 Fill-ins generated in a program depend on the structure of each matrix.
 If a large number of fill-ins is anticipated when factoring a matrix, the
 value of lna should be large enough to accommodate your problem.

 Parent topic: Sparse Matrix Direct Solver Considerations

 Performance and Accuracy Considerations

 	To make the subroutine more efficient, an input matrix comprised
 of all nonzero elements is preferable. See the syntax description
 of each subroutine for details.

 	DGSF optionally checks the validity of the indices and pointers
 of the input matrix. Use of this option is suggested; however, it
 may affect performance. For details, see the syntax description for
 DGSF.

 	In DGSS, if there are multiple sparse right-hand sides to be solved,
 you should take advantage of the sparsity by selecting a proper value
 for jopt (such as jopt = 10
 or 11). If there is only one right-hand side to be solved, it is suggested
 that you do not exploit the sparsity.

 	In DGSF, the value you enter for the lower bound of all elements
 in the matrix (RPARM(1)) affects the accuracy of
 the result. Specifying a larger number allows you to gain some performance;
 however, you may lose some accuracy in the solution.

 	In DGSF, the threshold pivot tolerance (RPARM(2))
 is used to select pivots. A value that is close to 0.0 approaches
 no pivoting. A value close to 1.0 approaches partial pivoting. A
 value of 0.1 is considered to be a good compromise between numerical
 stability and sparsity.

 	If the ESSL subroutine performs storage compressions, you receive
 an attention message. When this occurs, the performance of this subroutine
 is affected. You can improve the performance by increasing the value
 specified for lna.

 	There are ESSL-specific rules that apply to the results of computations
 on the workstation processors using the ANSI/IEEE standards. For details,
 see What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?.

 Parent topic: Sparse Matrix Direct Solver Considerations

 Sparse Matrix Skyline Solver Considerations

 This provides some key points about using the sparse matrix skyline solver
 subroutines.

 	Use Considerations

 	Performance and Accuracy Considerations

 Parent topic: Linear Algebraic Equations

 Use Considerations

 	To solve a system of equations with one or more right-hand sides, where
 the matrix is stored in skyline storage mode, you can use either of the following
 methods. The factored output matrix is the same for both of these methods.

 	Call the skyline subroutine with the combined factor-and-solve option.

 	Call the skyline subroutine with the factor-only option, followed in your
 program by a call to the same subroutine with the solve-only option. The
 factored output matrix resulting from the factorization should be used as
 input to the same subroutine to do the solve. You can solve for the right-hand
 sides in a single call or in individual calls.

 You also have the option of doing a partial factorization, where
 the subroutine assumes that the initial part of the input matrix is already
 factored. It then factors the remaining rows and columns. If you want, you
 can factor a very large matrix progressively by using this option.

 	Forward elimination can be done with or without scaling the right-hand
 side by the diagonal matrix elements. To perform the computation without
 scaling, call DGKFS with the normal solve-only option, and define the upper
 triangular skyline matrix (AU) as a diagonal. To perform the computation
 with scaling, call DGKFS with the transpose solve-only, option and define
 the lower triangular skyline matrix (AL) as a diagonal.

 	Back substitution can be done with or without scaling the right-hand side
 by the diagonal matrix elements. To perform the computation without scaling,
 call DGKFS with the transpose solve-only option, and define the upper triangular
 skyline matrix (AU) as a diagonal. To perform the computation
 with scaling, call DGKFS with the normal solve-only option, and define the
 lower triangular skyline matrix (AL) as a diagonal.

 Parent topic: Sparse Matrix Skyline Solver Considerations

 Performance and Accuracy Considerations

 	For optimal performance, use diagonal-out skyline storage mode
 for both your input and output matrices. If you specify profile-in
 skyline storage mode for your input matrix, and either you do not
 plan to use the factored output or you plan to do a solve only, it
 is more efficient to specify diagonal-out skyline storage mode for
 your output matrix. These rules apply to all the computations.

 	In some cases, elapsed time may be reduced significantly by using
 the combined factor-and-solve option to solve for all right-hand sides
 at once, in conjunction with the factorization, rather than doing
 the factorization and solve separately.

 	If you do a solve only, and you solve for more than one right-hand
 side, it is most efficient to call the skyline subroutine once with
 all right-hand sides, rather than once for each right-hand side.

 	The skyline subroutines allow some control over processing of
 the pivot (diagonal) elements of the matrix during the factorization
 phase. Pivot processing is controlled by IPARM(10) through IPARM(15) and RPARM(10) through RPARM(15).
 If a pivot occurs within a range that is designated to be fixed (IPARM(0) = 1, IPARM(10) = 1,
 and the appropriate element IPARM(11) through IPARM(15) = 1),
 it is replaced with the corresponding element of RPARM(11) through RPARM(15).
 Should this pivot fix-up occur, you receive an attention message.
 This message indicates that the matrix being factored may be unstable
 (singular or not definite). The results produced in this situation
 may be inaccurate, and you should review them carefully.

 Parent topic: Sparse Matrix Skyline Solver Considerations

 Sparse Matrix Iterative Solver Considerations

 This provides some key points about using the sparse matrix iterative solver
 subroutines.

 	Use Considerations

 	Performance and Accuracy Considerations

 Parent topic: Linear Algebraic Equations

 Use Considerations

 If you need to solve linear systems with different right-hand sides but
 with the same matrix using the preconditioned algorithms, you can reuse the
 incomplete factorization computed during the first call to the subroutine.

 Parent topic: Sparse Matrix Iterative Solver Considerations

 Performance and Accuracy Considerations

 	The DSMCG and DSMGCG subroutines are provided for migration purposes
 from earlier releases of ESSL. You get better performance and a wider
 choice of algorithms if you use the DSRIS subroutine.

 	To select the sparse matrix subroutine that provides the best
 performance, you must consider the sparsity pattern of the matrix.
 From this, you can determine the most efficient storage mode for your
 sparse matrix. ESSL provides a number of versions of the sparse matrix
 iterative solve subroutines. They operate on sparse matrices stored
 in row-wise, diagonal, and compressed-matrix storage modes. These
 storage modes are described in Sparse Matrix.
 Storage-by-rows
 is generally applicable. You should use this storage mode unless
 your matrices are already set up in one of the other storage modes.
 If, however, your matrix has a regular sparsity pattern—that
 is, where the nonzero elements are concentrated along a few diagonals—you may
 want to use compressed-diagonal storage mode. This can save some
 storage space. Compressed-matrix storage mode is provided for migration
 purposes from earlier releases of ESSL and is not intended for use.
 (You get better performance and a wider choice of algorithms if you
 use the DSRIS subroutine, which uses storage-by-rows.)

 	The performance achieved in the sparse matrix iterative solver
 subroutines depends on the value specified for the relative accuracy ε.

 	You can select the iterative algorithm you want to use to solve
 your linear system. The methods include conjugate gradient (CG),
 conjugate gradient squared (CGS), generalized minimum residual (GMRES),
 more smoothly converging variant of the CGS method (Bi-CGSTAB), or
 transpose-free quasi-minimal residual method (TFQMR).

 	For a general sparse or positive definite symmetric matrix, the
 iterative algorithm may fail to converge for one of the following
 reasons:

 	The value of ε is
 too small, asking for too much precision.

 	The maximum number of iterations is too small, allowing too few
 iterations for the algorithm to converge.

 	The matrix is not positive real; that is, the symmetric part,
 (A+AT)/2, is not positive definite.

 	The matrix is ill-conditioned, which may cause overflows during
 the computation.

 	These algorithms have a tendency to generate underflows that may
 hurt overall performance. The system default is to mask underflow,
 which improves the performance of these subroutines.

 Parent topic: Sparse Matrix Iterative Solver Considerations

 Linear Least Squares Considerations

 This provides some key points about using the linear least squares subroutines.

 	Use Considerations

 	Performance and Accuracy Considerations

 Parent topic: Linear Algebraic Equations

 Use Considerations

 If you want to use a singular value decomposition method to compute the
 minimal norm linear least squares solution of AX≅B, calls to SGESVF or DGESVF should be followed by calls to SGESVS or
 DGESVS, respectively.

 Parent topic: Linear Least Squares Considerations

 Performance and Accuracy Considerations

 	Least squares solutions obtained by using a singular value decomposition
 require more storage and run time than those obtained using a QR decomposition
 with column pivoting. The singular value decomposition method, however,
 is a more reliable way to handle rank deficiency.

 	The short-precision subroutines provide increased accuracy by
 accumulating intermediate results in long precision when the AltiVec
 or VSX unit is not used. Occasionally, for performance reasons, these
 intermediate results are stored.

 	The accuracy of the resulting singular values and singular vectors
 varies between the short- and long-precision versions of each subroutine.
 The degree of difference depends on the size and conditioning of the
 matrix computation.

 	There are ESSL-specific rules that apply to the results of computations
 on the workstation processors using the ANSI/IEEE standards. For details,
 see What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?.

 Parent topic: Linear Least Squares Considerations

 Dense Linear Algebraic Equation Subroutines

 This contains the dense linear algebraic
 equation subroutine descriptions.

 Parent topic: Linear Algebraic Equations

 SGESV, DGESV, CGESV, ZGESV (General Matrix Factorization and
 Multiple Right-Hand Side Solve)

 Purpose

 These subroutines solve the system
 of linear equations AX = B for X,
 where A, B, and X are general
 matrices.

 The matrix A is factored using Gaussian
 elimination with partial pivoting.

 Table 131. Data Types.

 	A, B

 	Subroutine

 	Short-precision real

 	SGESV▵

 	Long-precision real

 	DGESV▵

 	Short-precision complex

 	CGESV▵

 	Long-precision complex

 	ZGESV▵

 	
 ▵ LAPACK

 Syntax

 	Fortran

 	 CALL SGESV | DGESV | CGESV | ZGESV (n, nrhs, a, lda, ipvt, bx, ldb, info)

 	C and C++

 	sgesv | dgesv | cgesv | zgesv (n, nrhs, a, lda, ipvt, bx, ldb, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sgesv | LAPACKE_dgesv | LAPACKE_cgesv | LAPACKE_zgesv
 (matrix_layout, n, nrhs,
 a, lda, ipvt, bx,
 ldb);[image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 n

 	is the order n of matrix A and
 the number of rows of matrix B.
 Specified as: an
 integer; n ≥ 0, n ≤ lda,
 and n ≤ ldb.

 	 nrhs

 	is the number of right-hand sides; that is, the number of columns
 of matrix B.
 Specified as: an integer; nrhs ≥ 0.

 	 a

 	is the general matrix A to be factored.
 Specified
 as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 131.

 	 lda

 	is the leading dimension of the array specified for A.

 Specified as: an integer; lda > 0
 and lda ≥ n.

 	 ipvt

 	See On Return.

 	 bx

 	is the general matrix B, containing the nrhs right-hand
 sides of the system. The right-hand sides, each of length n,
 reside in the columns of matrix B.
 Specified as:
 an ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 131.

 	 ldb

 	is the leading dimension of the array specified for B.

 Specified as: an integer; ldb > 0
 and ldb ≥ n.

 	 info

 	See On Return.

 	On Return

 	

 	 a

 	is the transformed matrix A of order n,
 containing the results of the factorization.
 Returned as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 131.
 See Function.

 	 ipvt

 	is the integer vector of length n, containing
 the pivot indices.
 Returned as: a one-dimensional array of (at
 least) length n, containing integers, where 1 ≤ ipvt(i) ≤ n.

 	 bx

 	is the matrix X, containing the nrhs solutions
 to the system. The solutions, each of length n,
 reside in the columns of X.
 Returned as: an ldb by
 (at least) nrhs array, containing numbers of the
 data type indicated in Table 131.

 	 info

 	has the following meaning:
 If info = 0,
 the subroutine completed successfully.

 If info > 0,
 the factorization was unsuccessful and the solution was not computed. info is
 set equal to the first i where Uii is
 singular and its inverse could not be computed.

 [image: Start of change] Returned as:[image: Start of change]
 	For SGESV, DGESV, CGESV, and ZGESV returned as: an integer; info ≥ 0.

 	For LAPACKE_sgesv, LAPACKE_dgesv, LAPACKE_cgesv, and LAPACKE_zgesv returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	In your C program, argument info must be passed
 by reference.

 	The matrices and vector used in this computation must have no
 common elements; otherwise, results are unpredictable.

 	The way these subroutines handle singularity differs from LAPACK.
 Like LAPACK, these subroutines use the info argument
 to provide information about the singularity of A, but
 they also provide an error message.

 	On both input and output, matrices A and B conform
 to LAPACK format.

 Function

 These subroutines
 solve the system of linear equations AX = B for X,
 where A, B, and X are general
 matrices.

 The matrix A is factored using Gaussian
 elimination with partial pivoting to compute the LU factorization
 of A, where:

 A=PLU

 and

 L

 is a unit lower triangular matrix.

 U

 is an upper triangular matrix.

 P

 is the permutation matrix.

 If n is
 0, no computation is performed and the subroutine returns after doing
 some parameter checking. If n > 0 and nrhs is
 0, no solutions are computed and the subroutine returns after factoring
 the matrix.

 See references [8], [44], and [73].

 Error conditions

 	[bookmark: am5gr_hsgesv__am5gr_f109208]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hsgesv__am5gr_f109209]
 Computational Errors

 	Matrix A is singular.

 	The first column, i, of L with
 a corresponding Uii = 0 diagonal element is identified
 in the computational error message.

 	The computational error message may occur multiple times with
 processing continuing after each error, because the default for the
 number of allowable errors for error code 2146 is set to be unlimited
 in the ESSL error option table.

 	[bookmark: am5gr_hsgesv__am5gr_f109210]
 Input-Argument Errors

 	

 	n < 0

 	nrhs < 0

 	n > lda

 	lda ≤ 0

 	n > ldb

 	ldb ≤ 0

 Examples

 	Example 1

 	
 This example shows how to solve the system AX = B,
 where:

 Matrix

 A

 is the same used as input in

 Example 1

 for DGETRF.

 Matrix

 B

 is the same used as input in

 Example 1

 for DGETRS.

 Call Statement and Input: N NRHS A LDA IPVT BX LDB INFO
 | | | | | | | |
CALL DGESV(9 , 5 , A , 9 , IPVT, BX , 9 , INFO)

 A =

 (same as input

 A

 in

 Example 1

)

 BX =

 (same as input

 BX

 in

 Example 1

)

 Output: IPIV = (9, 9, 9, 9, 9, 9, 9, 9, 9)

 ┌ ┐
 | 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 |
 | 0.4 0.3 0.6 0.8 1.1 1.4 1.7 1.9 2.2 |
 | 0.5 -0.4 0.4 0.8 1.2 1.6 2.0 2.4 2.8 |
 | 0.5 -0.3 0.0 0.4 0.8 1.2 1.6 2.0 2.4 |
A = | 0.6 -0.3 0.0 0.0 0.4 0.8 1.2 1.6 2.0 |
 | 0.7 -0.2 0.0 0.0 0.0 0.4 0.8 1.2 1.6 |
 | 0.8 -0.2 0.0 0.0 0.0 0.0 0.4 0.8 1.2 |
 | 0.8 -0.1 0.0 0.0 0.0 0.0 0.0 0.4 0.8 |
 | 0.9 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.4 |
 └ ┘

 ┌ ┐
 | 1.0 2.0 3.0 4.0 5.0 |
 | 2.0 4.0 6.0 8.0 10.0 |
 | 3.0 6.0 9.0 12.0 15.0 |
 | 4.0 8.0 12.0 16.0 20.0 |
BX = | 5.0 10.0 15.0 20.0 25.0 |
 | 6.0 12.0 18.0 24.0 30.0 |
 | 7.0 14.0 21.0 28.0 35.0 |
 | 8.0 16.0 24.0 32.0 40.0 |
 | 9.0 18.0 27.0 36.0 45.0 |
 └ ┘

 INFO = 0

 	Example 2

 	
 This example shows how to solve the system AX = B,
 where:

 Matrix

 A

 is the same used as input in

 Example 2

 for ZGETRF.

 Matrix

 B

 is the same used as input in

 Example 2

 for ZGETRS.

 Call Statement and Input: N NRHS A LDA IPVT BX LDB INFO
 | | | | | | | |
CALL ZGESV(9 , 5 , A , 9 , IPVT, BX, 9 , INFO)

 A =

 (same as input

 A

 in

 Example 2

)

 IPVT =

 (same as input

 IPVT

 in

 Example 2

)

 BX =

 (same as input

 BX

 in

 Example 2

)

 Output:
 ┌ ┐
 | (1.0,1.0) (1.0,2.0) (1.0,3.0) (1.0,4.0) (1.0,5.0) |
 | (2.0,1.0) (2.0,2.0) (2.0,3.0) (2.0,4.0) (2.0,5.0) |
 | (3.0,1.0) (3.0,2.0) (3.0,3.0) (3.0,4.0) (3.0,5.0) |
 | (4.0,1.0) (4.0,2.0) (4.0,3.0) (4.0,4.0) (4.0,5.0) |
BX = | (5.0,1.0) (5.0,2.0) (5.0,3.0) (5.0,4.0) (5.0,5.0) |
 | (6.0,1.0) (6.0,2.0) (6.0,3.0) (6.0,4.0) (6.0,5.0) |
 | (7.0,1.0) (7.0,2.0) (7.0,3.0) (7.0,4.0) (7.0,5.0) |
 | (8.0,1.0) (8.0,2.0) (8.0,3.0) (8.0,4.0) (8.0,5.0) |
 | (9.0,1.0) (9.0,2.0) (9.0,3.0) (9.0,4.0) (9.0,5.0) |
 └ ┘

 INFO = 0

 Parent topic: Linear Algebraic Equations

 SGETRF, DGETRF, CGETRF and ZGETRF (General Matrix Factorization)

 Purpose

 These subroutines factor general
 matrix A using Gaussian elimination with partial pivoting.

 To
 solve the system of equations with one or more right-hand sides, follow
 the call to these subroutines with one or more calls to SGETRS, DGETRS
 CGETRS, or ZGETRS, respectively.

 To compute the inverse of
 matrix A, follow the call to these subroutines with
 a call to SGETRI, DGETRI, CGETRI, or ZGETRI, respectively.

 To
 estimate the reciprocal of the condition number of matrix A,
 follow the call to these subroutines with a call to SGECON, DGECON,
 CGECON, or ZGECON, respectively.

 Table 132. Data Types.

 	A

 	Subroutine

 	Short-precision real

 	SGETRF▵

 	Long-precision real

 	DGETRF▵

 	Short-precision complex

 	CGETRF▵

 	Long-precision complex

 	ZGETRF▵

 	
 ▵ LAPACK

 Note: The output from each of these subroutines should be
 used only as input for specific other subroutines, as shown in the
 table below.

 	Output from this
 subroutine:

 	Should
 be used only as input to the following subroutines:

 	Solve

 	Inverse

 	Reciprocal of the
 condition number

 	SGETRF

 	SGETRS

 	SGETRI

 	SGECON

 	DGETRF

 	DGETRS

 	DGETRI

 	DGECON

 	CGETRF

 	CGETRS

 	CGETRI

 	CGECON

 	ZGETRF

 	ZGETRS

 	ZGETRI

 	ZGECON

 Syntax

 	Fortran

 	CALL SGETRF | DGETRF | CGETRF | ZGETRF (m, n, a, lda, ipvt, info)

 	C and C++

 	sgetrf | dgetrf | cgetrf | zgetrf (m, n, a, lda, ipvt, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sgetrf | LAPACKE_dgetrf | LAPACKE_cgetrf | LAPACKE_zgetrf
 (matrix_layout, m, n, a, lda, ipvt);[image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 m

 	the number of rows in general matrix A used in the
 computation.
 Specified as: an integer; 0 ≤ m ≤ lda.

 	 n

 	the number of columns in general matrix A used in
 the computation.
 Specified as: an integer; n ≥ 0.

 	 a

 	is the m by n general matrix A to
 be factored.
 Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 132.

 	 lda

 	is the leading dimension of matrix A.
 Specified
 as: an integer; lda > 0 and lda ≥ m.

 	 ipvt

 	See On Return.

 	 info

 	See On Return.

 	On Return

 	

 	 a

 	is the m by n transformed
 matrix A, containing the results of the factorization.
 See Function. Returned as:
 an lda by (at least) n array,
 containing numbers of the data type indicated in Table 132.

 	 ipvt

 	is the integer vector ipvt of length min(m,n),
 containing the pivot indices. Returned as: a one-dimensional array
 of (at least) length min(m,n),
 containing integers,where 1 ≤ ipvt(i) ≤ m.

 	 info

 	has the following meaning:
 If info = 0, the factorization of general matrix A completed
 successfully.

 If info > 0, info is set equal to the first i where
 Uii is singular and its inverse could not be computed.

 [image: Start of change] Returned as:[image: Start of change]
 	For SGETRF, DGETRF, CGETRF and ZGETRF returned as: an integer; info ≥ 0.

 	For LAPACKE_sgetrf, LAPACKE_dgetrf, LAPACKE_cgetrf and LAPACKE_zgetrf, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Returned as: an integer; info ≥ 0.

 Notes

 	In your C program, argument info must be passed
 by reference.

 	The matrix A and vector ipvt must
 have no common elements; otherwise results are unpredictable.

 	The way these subroutines handle singularity differs from LAPACK.
 Like LAPACK, these subroutines use the info argument
 to provide information about the singularity of A, but
 they also provide an error message.

 	On both input and output, matrix A conforms to LAPACK
 format.

 Function

 The matrix A is
 factored using Gaussian elimination with partial pivoting to compute
 the LU factorization of A, where:

 A=PLU

 and

 L

 is a unit lower triangular matrix.

 U

 is an upper triangular matrix.

 P

 is the permutation matrix.

 On output,
 the transformed matrix A contains U in
 the upper triangle (if m ≥ n)
 or upper trapezoid (if m < n) and L in
 the strict lower triangle (if m ≤ n)
 or lower trapezoid (if m > n). ipvt contains
 the pivots representing permutation P, such that A = PLU.

 If m or n is
 0, no computation is performed and the subroutine returns after doing
 some parameter checking. See references [8],[44], and [73].

 Error conditions

 	[bookmark: am5gr_hsgetrf__am5gr_f110a004]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hsgetrf__am5gr_f110a005]
 Computational Errors

 	Matrix A is singular.

 	The first column, i, of L with
 a corresponding Uii = 0 diagonal element is identified
 in the computational error message.

 	The computational error message may occur multiple times with
 processing continuing after each error, because the default for the
 number of allowable errors for error code 2146 is set to be unlimited
 in the ESSL error option table.

 	[bookmark: am5gr_hsgetrf__am5gr_f110a006]
 Input-Argument Errors

 	

 	m < 0

 	n < 0

 	m > lda

 	lda ≤ 0

 Examples

 	Example 1

 	
 This example shows a factorization of a real general matrix A of
 order 9.

 Call Statement and Input: M N A LDA IPVT INFO
 | | | | | |
CALL DGETRF(9 , 9 , A, 9 , IPVT, INFO)

 ┌ ┐
 | 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 |
 | 1.2 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 |
 | 1.4 1.2 1.0 1.2 1.4 1.6 1.8 2.0 2.2 |
 | 1.6 1.4 1.2 1.0 1.2 1.4 1.6 1.8 2.0 |
A = | 1.8 1.6 1.4 1.2 1.0 1.2 1.4 1.6 1.8 |
 | 2.0 1.8 1.6 1.4 1.2 1.0 1.2 1.4 1.6 |
 | 2.2 2.0 1.8 1.6 1.4 1.2 1.0 1.2 1.4 |
 | 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 1.2 |
 | 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 |
 └ ┘

 Output: ┌ ┐
 | 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 |
 | 0.4 0.3 0.6 0.8 1.1 1.4 1.7 1.9 2.2 |
 | 0.5 -0.4 0.4 0.8 1.2 1.6 2.0 2.4 2.8 |
 | 0.5 -0.3 0.0 0.4 0.8 1.2 1.6 2.0 2.4 |
A = | 0.6 -0.3 0.0 0.0 0.4 0.8 1.2 1.6 2.0 |
 | 0.7 -0.2 0.0 0.0 0.0 0.4 0.8 1.2 1.6 |
 | 0.8 -0.2 0.0 0.0 0.0 0.0 0.4 0.8 1.2 |
 | 0.8 -0.1 0.0 0.0 0.0 0.0 0.0 0.4 0.8 |
 | 0.9 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.4 |
 └ ┘

 IPVT = (9, 9, 9, 9, 9, 9, 9, 9, 9)
INFO = 0

 	Example 2

 	
 This example shows a factorization of a complex general matrix A of
 order 9.

 Call Statement and Input: M N A LDA IPVT INFO
 | | | | | |
CALL ZGETRF(9 , 9 , A, 9 , IPVT, INFO)

 ┌ ┐
 | (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) (3.2,-1.0) (3.6,-1.0) (4.0,-1.0) (4.4,-1.0) (4.8,-1.0) (5.2,-1.0) |
 | (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) (3.2,-1.0) (3.6,-1.0) (4.0,-1.0) (4.4,-1.0) (4.8,-1.0) |
 | (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) (3.2,-1.0) (3.6,-1.0) (4.0,-1.0) (4.4,-1.0) |
 | (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) (3.2,-1.0) (3.6,-1.0) (4.0,-1.0) |
A = | (3.6, 1.0) (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) (3.2,-1.0) (3.6,-1.0) |
 | (4.0, 1.0) (3.6, 1.0) (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) (3.2,-1.0) |
 | (4.4, 1.0) (4.0, 1.0) (3.6, 1.0) (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) (2.8,-1.0) |
 | (4.8, 1.0) (4.4, 1.0) (4.0, 1.0) (3.6, 1.0) (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) (2.4,-1.0) |
 | (5.2, 1.0) (4.8, 1.0) (4.4, 1.0) (4.0, 1.0) (3.6, 1.0) (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) |
 └ ┘

 Output:
 ┌ ┐
 | (5.2, 1.0) (4.8, 1.0) (4.4, 1.0) (4.0, 1.0) (3.6, 1.0) (3.2, 1.0) (2.8, 1.0) (2.4, 1.0) (2.0, 1.0) |
 | (0.4, 0.1) (0.6,-2.0) (1.1,-1.9) (1.7,-1.9) (2.3,-1.8) (2.8,-1.8) (3.4,-1.7) (3.9,-1.7) (4.5,-1.6) |
 | (0.5, 0.1) (0.0,-0.1) (0.6,-1.9) (1.2,-1.8) (1.8,-1.7) (2.5,-1.6) (3.1,-1.5) (3.7,-1.4) (4.3,-1.3) |
 | (0.6, 0.1) (0.0,-0.1) (-0.1,-0.1) (0.7,-1.9) (1.3,-1.7) (2.0,-1.6) (2.7,-1.5) (3.4,-1.4) (4.0,-1.2) |
A = | (0.6, 0.1) (0.0,-0.1) (-0.1,-0.1) (-0.1, 0.0) (0.7,-1.9) (1.5,-1.7) (2.2,-1.6) (2.9,-1.5) (3.7,-1.3) |
 | (0.7, 0.1) (0.0,-0.1) (0.0, 0.0) (-0.1, 0.0) (-0.1, 0.0) (0.8,-1.9) (1.6,-1.8) (2.4,-1.6) (3.2,-1.5) |
 | (0.8, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.8,-1.9) (1.7,-1.8) (2.5,-1.8) |
 | (0.9, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.8,-2.0) (1.7,-1.9) |
 | (0.9, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.8,-2.0) |
 └ ┘

 IPVT = (9, 9, 9, 9, 9, 9, 9, 9, 9)
INFO = 0

 	Example 3

 	
 This example shows a factorization of a real general matrix A of
 order 9.

 Call Statement and Input: M N A LDA IPVT INFO
 | | | | | |
CALL SGETRF(9 , 9 , A, 9 , IPVT, INFO)

 ┌ ┐
 | 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 |
 | 4.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
 | 0.0 5.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 |
A = | 0.0 0.0 6.0 1.0 1.0 1.0 1.0 1.0 0.0 |
 | 0.0 0.0 0.0 7.0 1.0 1.0 1.0 1.0 1.0 |
 | 0.0 0.0 0.0 0.0 8.0 1.0 1.0 1.0 1.0 |
 | 0.0 0.0 0.0 0.0 0.0 9.0 1.0 1.0 1.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 10.0 11.0 12.0 |
 └ ┘

 Output:
 ┌ ┐
 | 4.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 |
 | 0.0000 5.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 |
 | 0.0000 0.0000 6.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 |
 | 0.0000 0.0000 0.0000 7.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |
A = | 0.0000 0.0000 0.0000 0.0000 8.0000 1.0000 1.0000 1.0000 1.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 9.0000 1.0000 1.0000 1.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 10.0000 11.0000 12.0000 |
 | 0.2500 0.1500 0.1000 0.0714 0.0536 -0.0694 -0.0306 0.1806 0.3111 |
 | 0.2500 0.1500 0.1000 0.0714 -0.0714 -0.0556 -0.0194 0.9385 -0.0031 |
 └ ┘

 IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)

 Parent topic: Linear Algebraic Equations

 SGETRS, DGETRS, CGETRS, and ZGETRS (General Matrix Multiple
 Right-Hand Side Solve)

 Purpose

 SGETRS and DGETRS solve one of
 the following systems of equations for multiple right-hand sides:

 1.

 AX

 =

 B

 2.

 A

 T

 X

 =

 B

 CGETRS
 and ZGETRS solve one of the following systems of equations for multiple
 right-hand sides:

 	AX = B

 	ATX = B

 	AHX = B

 In the formulas above:

 	A represents the general matrix A containing
 the LU factorization.

 	B represents the general matrix B containing
 the right-hand sides in its columns.

 	X represents the general matrix B containing
 the solution vectors in its columns.

 These subroutines use the results of the factorization
 of matrix A, produced by a preceding call to SGETRF,
 DGETRF, CGETRF, or ZGETRF, respectively.

 Table 133. Data Types.

 	A, B

 	Subroutine

 	Short-precision real

 	SGETRS▵

 	Long-precision real

 	DGETRS▵

 	Short-precision complex

 	CGETRS▵

 	Long-precision complex

 	ZGETRS▵

 	▵ LAPACK

 Note: The input to these solve subroutines must be the output
 from the factorization subroutines SGETRF, DGETRF, CGETRF and ZGETRF,
 respectively.

 Syntax

 	Fortran

 	CALL SGETRS | DGETRS | CGETRS | ZGETRS (transa, n, nrhs, a, lda, ipvt, bx, ldb, info)

 	C and C++

 	sgetrs | dgetrs | cgetrs | zgetrs (transa, n, nrhs, a, lda, ipvt, bx, ldb, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sgetrs | LAPACKE_dgetrs | LAPACKE_cgetrs | LAPACKE_zgetrs
 (matrix_layout, transa, n,
 nrhs, a, lda, ipvt,
 bx, ldb); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 transa

 	indicates the form of matrix A to use in the computation,
 where:
 If transa = 'N', A is used in the
 computation, resulting in solution 1.

 If transa = 'T', AT is
 used in the computation, resulting in solution 2.

 If transa = 'C', AH is
 used in the computation, resulting in solution 3.

 Specified
 as: a single character; transa = 'N', 'T', or 'C'.

 	n

 	is the order of factored matrix A and the number
 of rows in matrix B.
 Specified as: an integer; n ≥ 0.

 	nrhs

 	the number of right-hand sides—that is, the number of columns in matrix B used
 in the computation.
 Specified as: an integer; nrhs ≥ 0.

 	a

 	is the factorization of matrix A, produced by a
 preceding call to SGETRF, DGETRF, CGETRF, or ZGETRF, respectively.

 Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 133.

 	lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ n.

 	ipvt

 	is the integer vector ipvt of length n,
 containing the pivot indices produced by a preceding call to SGETRF,
 DGETRF, CGETRF, or ZGETRF, respectively.
 Specified as: a one-dimensional
 array of (at least) length n, containing integers,
 where 1 ≤ ipvt(i) ≤ n.

 	bx

 	is the general matrix B, containing the nrhs right-hand
 sides of the system. The right-hand sides, each of length n,
 reside in the columns of matrix B.
 Specified as:
 an ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 133

 .

 	ldb

 	is the leading dimension of the array specified for B.

 Specified as: an integer; ldb > 0
 and ldb ≥ n.

 	info

 	See On Return.

 	On Return

 	

 	 bx

 	is the matrix X, containing the nrhs solutions
 to the system. The solutions, each of length n,
 reside in the columns of X.
 Returned as: an ldb by
 (at least) nrhs array, containing numbers of the
 data type indicated in Table 133.

 	 info

 	info has the following meaning:
 If info = 0,
 the solve of general matrix A completed successfully.

 [image: Start of change] Returned as:[image: Start of change]
 	For SGETRS, DGETRS, CGETRS, and ZGETRS, returned as: an integer; info ≥ 0.

 	For LAPACKE_sgetrs, LAPACKE_dgetrs, LAPACKE_cgetrs, and LAPACKE_zgetrs, returned as an
 integer function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	In your C program, argument info must be passed
 by reference.

 	These subroutines accept lower case letters for the transa argument.

 	For SGETRS and DGETRS, if you specify 'C' for the transa argument,
 it is interpreted as though you specified 'T'.

 	The scalar data specified for input argument n must
 be the same for both _GETRF and _GETRS. In addition, the scalar data
 specified for input argument m in _GETRF must
 be the same as input argument n in both _GETRF
 and _GETRS.
 If, however, you do not plan to call _GETRS
 after calling _GETRF, then input arguments m and n in
 _GETRF do not need to be equal.

 	The array data specified for input arguments a and ipvt for
 these subroutines must be the same as the corresponding output arguments
 for SGETRF, DGETRF, CGETRF, and ZGETRF, respectively.

 	The matrices and vector used in this computation must have no
 common elements; otherwise, results are unpredictable. See Concepts.

 	On both input and output, matrices A and B conform
 to LAPACK format.

 Function

 One of the following systems of
 equations is solved for multiple right-hand sides:

 1.

 AX

 =

 B

 2.

 A

 T

 X

 =

 B

 3.

 A

 H

 X

 =

 B

 (only for CGETRS and ZGETRS)

 where A, B,
 and X are general matrices. These subroutines uses the
 results of the factorization of matrix A, produced by
 a preceding call to SGETRF, DGETRF, CGETRF or ZGETRF, respectively.
 For details on the factorization, see SGETRF, DGETRF, CGETRF and ZGETRF (General Matrix Factorization).

 If n = 0
 or nrhs = 0, no computation is performed and
 the subroutine returns after doing some parameter checking. See references [8, [44], and [73].

 Error conditions

 	[bookmark: am5gr_hsgetrs__am5gr_f110a014]
 Computational Errors

 	None
 Note: If the factorization performed by SGETRF, DGETRF,
 CGETRF or ZGETRF failed because a pivot element is zero, the results
 returned by this subroutine are unpredictable, and there may be a
 divide-by-zero program exception message.

 	[bookmark: am5gr_hsgetrs__am5gr_f110a015]
 Input-Argument Errors

 	

 	transa ≠ 'N', 'T', or 'C'

 	n < 0

 	nrhs < 0

 	n > lda

 	lda ≤ 0

 	n > ldb

 	ldb ≤ 0

 Examples

 	Example 1

 	
 This example shows how to solve the system AX = B,
 where matrix A is the same matrix factored in the Example 1 for
 DGETRF.

 Call Statement and Input: TRANSA N NRHS A LDA IPIV BX LDB INFO
 | | | | | | | | |
CALL DGETRS('N' , 9 , 5 , A , 9 , IPIV, BX , 9 , INFO)

 IPVT = (9, 9, 9, 9, 9, 9, 9, 9, 9)

 A =

 (same as output

 A

 in

 Example 1

)

 ┌ ┐
 | 93.0 186.0 279.0 372.0 465.0 |
 | 84.4 168.8 253.2 337.6 422.0 |
 | 76.6 153.2 229.8 306.4 383.0 |
 | 70.0 140.0 210.0 280.0 350.0 |
BX = | 65.0 130.0 195.0 260.0 325.0 |
 | 62.0 124.0 186.0 248.0 310.0 |
 | 61.4 122.8 184.2 245.6 307.0 |
 | 63.6 127.2 190.8 254.4 318.0 |
 | 69.0 138.0 207.0 276.0 345.0 |
 └ ┘

 Output: ┌ ┐
 | 1.0 2.0 3.0 4.0 5.0 |
 | 2.0 4.0 6.0 8.0 10.0 |
 | 3.0 6.0 9.0 12.0 15.0 |
 | 4.0 8.0 12.0 16.0 20.0 |
BX = | 5.0 10.0 15.0 20.0 25.0 |
 | 6.0 12.0 18.0 24.0 30.0 |
 | 7.0 14.0 21.0 28.0 35.0 |
 | 8.0 16.0 24.0 32.0 40.0 |
 | 9.0 18.0 27.0 36.0 45.0 |
 └ ┘

 INFO = 0

 	Example 2

 	
 This example shows how to solve the system AX = b,
 where matrix A is the same matrix factored in the Example 2 for
 ZGETRF.

 Call Statement and Input: TRANS N NRHS A LDA IPIV BX LDB INFO
 | | | | | | | | |
CALL ZGETRS('N' , 9 , 5 , A , 9 , IPIV, BX , 9 , INFO)

 IPVT = (9, 9, 9, 9, 9, 9, 9, 9, 9)

 A =

 (same as output

 A

 in

 Example 2

)

 ┌ ┐
 | (193.0,-10.6) (200.0, 21.8) (207.0, 54.2) (214.0, 86.6) (221.0,119.0) |
 | (173.8, -9.4) (178.8, 20.2) (183.8, 49.8) (188.8, 79.4) (193.8,109.0) |
 | (156.2, -5.4) (159.2, 22.2) (162.2, 49.8) (165.2, 77.4) (168.2,105.0) |
 | (141.0, 1.4) (142.0, 27.8) (143.0, 54.2) (144.0, 80.6) (145.0,107.0) |
BX = | (129.0, 11.0) (128.0, 37.0) (127.0, 63.0) (126.0, 89.0) (125.0,115.0) |
 | (121.0, 23.4) (118.0, 49.8) (115.0, 76.2) (112.0,102.6) (109.0,129.0) |
 | (117.8, 38.6) (112.8, 66.2) (107.8, 93.8) (102.8,121.4) (97.8,149.0) |
 | (120.2, 56.6) (113.2, 86.2) (106.2,115.8) (99.2,145.4) (92.2,175.0) |
 | (129.0, 77.4) (120.0,109.8) (111.0,142.2) (102.0,174.6) (93.0,207.0) |
 └ ┘

 Output:
 ┌ ┐
 | (1.0,1.0) (1.0,2.0) (1.0,3.0) (1.0,4.0) (1.0,5.0) |
 | (2.0,1.0) (2.0,2.0) (2.0,3.0) (2.0,4.0) (2.0,5.0) |
 | (3.0,1.0) (3.0,2.0) (3.0,3.0) (3.0,4.0) (3.0,5.0) |
 | (4.0,1.0) (4.0,2.0) (4.0,3.0) (4.0,4.0) (4.0,5.0) |
BX = | (5.0,1.0) (5.0,2.0) (5.0,3.0) (5.0,4.0) (5.0,5.0) |
 | (6.0,1.0) (6.0,2.0) (6.0,3.0) (6.0,4.0) (6.0,5.0) |
 | (7.0,1.0) (7.0,2.0) (7.0,3.0) (7.0,4.0) (7.0,5.0) |
 | (8.0,1.0) (8.0,2.0) (8.0,3.0) (8.0,4.0) (8.0,5.0) |
 | (9.0,1.0) (9.0,2.0) (9.0,3.0) (9.0,4.0) (9.0,5.0) |
 └ ┘

 INFO = 0

 Parent topic: Linear Algebraic Equations

 SGEF, DGEF, CGEF, and ZGEF (General Matrix Factorization)

 Purpose

 This subroutine factors a square
 general matrix A using Gaussian elimination with partial
 pivoting. To solve the system of equations with one or more right-hand
 sides, follow the call to these subroutines with one or more calls
 to SGES/SGESM, DGES/DGESM, CGES/CGESM, or ZGES/ZGESM, respectively.
 To compute the inverse of matrix A, follow the call
 to these subroutines with a call to SGEICD or DGEICD, respectively.

 Table 134. Data Types.

 	A

 	Subroutine

 	Short-precision real

 	SGEF

 	Long-precision real

 	DGEF

 	Short-precision complex

 	CGEF

 	Long-precision complex

 	ZGEF

 Note: The output from these factorization subroutines should
 be used only as input to the following subroutines for performing
 a solve or inverse: SGES/SGESM/SGEICD, DGES/DGESM/DGEICD, CGES/CGESM,
 and ZGES/ZGESM, respectively.

 Syntax

 	Fortran

 	CALL SGEF | DGEF | CGEF | ZGEF (a, lda, n, ipvt)

 	C and C++

 	sgef | dgef | cgef | zgef (a, lda, n, ipvt);

 	On Entry

 	

 	 a

 	is the n by n general matrix A to
 be factored.
 Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 134.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ n.

 	 n

 	is the order of matrix A.
 Specified as: an integer;
 0 ≤ n ≤ lda.

 	 ipvt

 	See On Return.

 	On Return

 	

 	 a

 	is the n by n transformed
 matrix A, containing the results of the factorization.
 See Function. Returned as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 134.

 	 ipvt

 	is the integer vector ipvt of length n,
 containing the pivot indices. Returned as: a one-dimensional array
 of (at least) length n, containing integers.

 Notes

 	Calling SGEFCD or DGEFCD with iopt = 0
 is equivalent to calling SGEF or DGEF.

 	On both input and output, matrix A conforms to LAPACK
 format.

 Function

 The matrix A is
 factored using Gaussian elimination with partial pivoting (ipvt)
 to compute the LU factorization of A,
 where (A = PLU):

 L

 is a unit lower triangular matrix.

 U

 is an upper triangular matrix.

 P

 is the permutation matrix.

 On output,
 the transformed matrix A contains U in
 the upper triangle and L in the strict lower triangle
 where ipvt contains the pivots representing permutation P,
 such that A = PLU.

 If n is
 0, no computation is performed. See references [44] and [46].

 Error conditions

 	[bookmark: am5gr_hsgef__am5gr_f110a021]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hsgef__am5gr_f110a022]
 Computational Errors

 	Matrix A is singular.

 	One or more columns of L and the corresponding diagonal
 of U contain all zeros (all columns of L are
 checked). The first column, i, of L with
 a corresponding U = 0 diagonal element is identified
 in the computational error message.

 	The return code is set to 1.

 	i can be determined at run time by use of the
 ESSL error-handling facilities. To obtain this information, you must
 use ERRSET to change the number of allowable errors for error code
 2103 in the ESSL error option table; otherwise, the default value
 causes your program to terminate when this error occurs. For details,
 see What Can You Do about ESSL Computational Errors?.

 	[bookmark: am5gr_hsgef__am5gr_f110a023]
 Input-Argument Errors

 	

 	lda ≤ 0

 	n < 0

 	n > lda

 Examples

 	Example 1

 	
 This example shows a factorization of a real general matrix A of
 order 9.

 Call Statement and Input: A LDA N IPVT
 | | | |
CALL SGEF(A , 9 , 9 , IPVT)

 ┌ ┐
 | 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 |
 | 4.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
 | 0.0 5.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 |
A = | 0.0 0.0 6.0 1.0 1.0 1.0 1.0 1.0 0.0 |
 | 0.0 0.0 0.0 7.0 1.0 1.0 1.0 1.0 1.0 |
 | 0.0 0.0 0.0 0.0 8.0 1.0 1.0 1.0 1.0 |
 | 0.0 0.0 0.0 0.0 0.0 9.0 1.0 1.0 1.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 10.0 11.0 12.0 |
 └ ┘

 Output:
 ┌ ┐
 | 4.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 |
 | 0.0000 5.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 |
 | 0.0000 0.0000 6.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 |
 | 0.0000 0.0000 0.0000 7.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |
A = | 0.0000 0.0000 0.0000 0.0000 8.0000 1.0000 1.0000 1.0000 1.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 9.0000 1.0000 1.0000 1.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 10.0000 11.0000 12.0000 |
 | 0.2500 0.1500 0.1000 0.0714 0.0536 -0.0694 -0.0306 0.1806 0.3111 |
 | 0.2500 0.1500 0.1000 0.0714 -0.0714 -0.0556 -0.0194 0.9385 -0.0031 |
 └ ┘

 IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)

 	Example 2

 	
 This example shows a factorization of a complex general matrix A of
 order 4.

 Call Statement and Input: A LDA N IPVT
 | | | |
CALL CGEF(A , 4 , 4 , IPVT)

 ┌ ┐
 | (1.0, 2.0) (1.0, 7.0) (2.0, 4.0) (3.0, 1.0) |
A = | (2.0, 0.0) (1.0, 3.0) (4.0, 4.0) (2.0, 3.0) |
 | (2.0, 1.0) (5.0, 0.0) (3.0, 6.0) (0.0, 0.0) |
 | (8.0, 5.0) (1.0, 9.0) (6.0, 6.0) (8.0, 1.0) |
 └ ┘

 Output:
 ┌ ┐
 | (8.0000, 5.0000) (1.0000, 9.0000) (6.0000, 6.0000) (8.0000, 1.0000) |
A = | (0.2022, 0.1236) (1.9101, 5.0562) (1.5281, 2.0449) (1.5056, -0.1910) |
 | (0.2360, -0.0225) (-0.0654, -0.9269) (-0.3462, 6.2692) (-1.6346, 1.3269) |
 | (0.1798, -0.1124) (0.2462, 0.1308) (0.4412, -0.3655) (0.2900, 2.3864) |
 └ ┘

 IPVT = (4, 4, 3, 4)

 Parent topic: Linear Algebraic Equations

 SGES, DGES, CGES, and ZGES (General Matrix, Its Transpose,
 or Its Conjugate Transpose Solve)

 Purpose

 These subroutines solve the system Ax = b for x,
 where A is a general matrix and x and b are
 vectors. Using the iopt argument, they can also
 solve the real system ATx = b or
 the complex system AHx = b for x.
 These subroutines use the results of the factorization of matrix A,
 produced by a preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF,
 or ZGEF, respectively.

 Table 135. Data Types.

 	A, b, x

 	Subroutine

 	Short-precision real

 	SGES

 	Long-precision real

 	DGES

 	Short-precision complex

 	CGES

 	Long-precision complex

 	ZGES

 Note: The input to these solve subroutines must be the output
 from the factorization subroutines SGEF/SGEFCD, DGEF/DGEFP/DGEFCD,
 CGEF, and ZGEF, respectively.

 Syntax

 	Fortran

 	CALL SGES | DGES | CGES | ZGES (a, lda, n, ipvt, bx, iopt)

 	C and C++

 	sges | dges | cges | zges (a, lda, n, ipvt, bx, iopt);

 	On Entry

 	

 	 a

 	is the factorization of matrix A, produced by a
 preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively.
 Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 135.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ n.

 	 n

 	is the order of matrix A.
 Specified as: an integer;
 0 ≤ n ≤ lda.

 	 ipvt

 	is the integer vector ipvt of length n,
 containing the pivot indices produced by a preceding call to SGEF/SGEFCD,
 DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively.
 Specified as:
 a one-dimensional array of (at least) length n,
 containing integers.

 	 bx

 	is the vector b of length n,
 containing the right-hand side of the system.
 Specified as: a
 one-dimensional array of (at least) length n, containing
 numbers of the data type indicated in Table 135.

 	 iopt

 	determines the type of computation to be performed, where:
 If iopt = 0, A is
 used in the computation.

 If iopt = 1, AT is
 used in SGES and DGES. AH is used in CGES
 and ZGES.
 Note: No data should be moved to form AT or AH;
 that is, the matrix A should always be stored in its
 untransposed form.

 Specified as: an integer; iopt = 0
 or 1.

 	On Return

 	

 	 bx

 	is the solution vector x of length n,
 containing the results of the computation. Returned as: a one-dimensional
 array, containing numbers of the data type indicated in Table 135.

 Notes

 	The scalar data specified for input arguments lda and n for
 these subroutines must be the same as the corresponding input arguments
 specified for SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, and ZGEF, respectively.

 	The array data specified for input arguments a and ipvt for
 these subroutines must be the same as the corresponding output arguments
 for SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, and ZGEF, respectively.

 	The vectors and matrices used in this computation must have no
 common elements; otherwise, results are unpredictable. See Concepts.

 Function

 The system Ax = b is
 solved for x, where A is a general matrix
 and x and b are vectors. Using the iopt argument,
 this subroutine can also solve the real system ATx = b or
 the complex system AHx = b for x.
 These subroutines use the results of the factorization of matrix A,
 produced by a preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF,
 or ZGEF, respectively. For a description of how A is
 factored, see SGEF, DGEF, CGEF, and ZGEF (General Matrix Factorization).

 If n is
 0, no computation is performed. See references [44] and [46].

 Error conditions

 	[bookmark: am5gr_hsges__am5gr_f110a029]
 Computational Errors

 	None
 Note: If the factorization performed by SGEF, DGEF, CGEF,
 ZGEF, SGEFCD, DGEFCD, or DGEFP failed because a pivot element is zero,
 the results returned by this subroutine are unpredictable, and there
 may be a divide-by-zero program exception message.

 	[bookmark: am5gr_hsges__am5gr_f110a030]
 Input-Argument Errors

 	

 	lda ≤ 0

 	n < 0

 	n > lda

 	iopt ≠ 0 or 1

 Examples

 	Example 1

 	
 Part 1

 This part of the example shows how to solve
 the system Ax = b, where matrix A is
 the same matrix factored in the Example 1 for
 SGEF and DGEF.

 Call Statement and Input:
 A LDA N IPVT BX IOPT
 | | | | | |
CALL SGES(A , 9 , 9 , IPVT , BX , 0)

 IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)

 BX = (4.0, 5.0, 9.0, 10.0, 11.0, 12.0, 12.0, 12.0, 33.0)

 A =

 (same as output

 A

 in

 Example 1

)

 Output: BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

 Part 2

 This part of the example shows how
 to solve the system ATx = b,
 where matrix A is the input matrix factored in Example 1 for
 SGEF and DGEF. Most of the input is the same in Part 2 as in Part
 1.

 Call Statement and Input: A LDA N IPVT BX IOPT
 | | | | | |
CALL SGES(A , 9 , 9 , IPVT , BX , 1)

 IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)

 BX = (6.0, 8.0, 10.0, 12.0, 13.0, 14.0, 15.0, 15.0, 15.0)

 A =

 (same as output

 A

 in

 Example 1

)

 Output: BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

 	Example 2

 	
 Part 1

 This part of the example
 shows how to solve the system Ax = b, where matrix A is
 the same matrix factored in the Example 2 for
 CGEF and ZGEF.

 Call Statement and Input:
 A LDA N IPVT BX IOPT
 | | | | | |
CALL CGES(A , 4 , 4 , IPVT , BX , 0)

 IPVT = (4, 4, 3, 4)

 BX = ((-10.0, 85.0), (-6.0, 61.0), (10.0, 38.0),

 (58.0, 168.0))

 A =

 (same as output

 A

 in

 Example 1

)

 Output: BX = ((9.0, 0.0), (5.0, 1.0), (1.0, 6.0), (3.0, 4.0))

 Part 2

 This part of the example shows how
 to solve the system AHx = b,
 where matrix A is the input matrix factored in Example 2 for
 CGEF and ZGEF. Most of the input is the same in Part 2 as in Part
 1.

 Call Statement and Input: A LDA N IPVT BX IOPT
 | | | | | |
CALL CGES(A , 4 , 4 , IPVT , BX , 1)

 IPVT = (4, 4, 3, 4)

 BX = ((71.0, 12.0), (61.0, -70.0), (123.0, -34.0),

 (68.0, 7.0))

 A =

 (same as output

 A

 in

 Example 1

)

 Output: BX = ((9.0, 0.0), (5.0, 1.0), (1.0, 6.0), (3.0, 4.0))

 Parent topic: Linear Algebraic Equations

 SGESM, DGESM, CGESM, and ZGESM (General Matrix, Its Transpose,
 or Its Conjugate Transpose Multiple Right-Hand Side Solve)

 Purpose

 These subroutines solve the following
 systems of equations for multiple right-hand sides, where A, X,
 and B are general matrices. SGESM and DGESM solve one
 of the following:

 1.

 AX

 =

 B

 2.

 A

 T

 X

 =

 B

 CGESM
 and ZGESM solve one of the following:

 1.

 AX

 =

 B

 2.

 A

 T

 X

 =

 B

 3.

 A

 H

 X

 =

 B

 These
 subroutines use the results of the factorization of matrix A,
 produced by a preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF,
 or ZGEF, respectively.

 Table 136. Data Types.

 	A, B, X

 	Subroutine

 	Short-precision real

 	SGESM

 	Long-precision real

 	DGESM

 	Short-precision complex

 	CGESM

 	Long-precision complex

 	ZGESM

 Note: The input to these solve subroutines must be the output
 from the factorization subroutines SGEF/SGEFCD, DGEF/DGEFP/DGEFCD,
 CGEF, and ZGEF, respectively.

 Syntax

 	Fortran

 	CALL SGESM | DGESM | CGESM | ZGESM (trans, a, lda, n, ipvt, bx, ldb, nrhs)

 	C and C++

 	sgesm | dgesm | cgesm | zgesm (trans, a, lda, n, ipvt, bx, ldb, nrhs);

 	On Entry

 	

 	 trans

 	indicates the form of matrix A to use in the computation,
 where:
 If transa = 'N', A is used in the
 computation, resulting in equation 1.

 If transa = 'T', AT is
 used in the computation, resulting in equation 2.

 If transa = 'C', AH is
 used in the computation, resulting in equation 3.

 Specified
 as: a single character. It must be 'N', 'T', or 'C'.

 	 a

 	is the factorization of matrix A, produced by a
 preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively.
 Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 136.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ n.

 	 n

 	is the order of matrix A.
 Specified as: an integer;
 0 ≤ n ≤ lda.

 	 ipvt

 	is the integer vector ipvt of length n,
 containing the pivot indices produced by a preceding call to SGEF/SGEFCD,
 DGEF/DGEFP/DGEFCD, CGEF, or ZGEF, respectively.
 Specified as:
 a one-dimensional array of (at least) length n,
 containing integers.

 	 bx

 	is the general matrix B, containing the nrhs right-hand
 sides of the system. The right-hand sides, each of length n,
 reside in the columns of matrix B.
 Specified as:
 an ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 136.

 	 ldb

 	is the leading dimension of the array specified for b.

 Specified as: an integer; ldb > 0
 and ldb ≥ n.

 	 nrhs

 	is the number of right-hand sides in the system to be solved.

 Specified as: an integer; nrhs ≥ 0.

 	On Return

 	

 	 bx

 	is the matrix X, containing the nrhs solutions
 to the system. The solutions, each of length n,
 reside in the columns of X.
 Specified as: an ldb by
 (at least) nrhs array, containing numbers of the
 data type indicated in Table 136.

 Notes

 	For SGESM and DGESM, if you specify 'C' for the trans argument,
 it is interpreted as though you specified 'T'.

 	The scalar data specified for input arguments lda and n for
 these subroutines must be the same as the corresponding input arguments
 specified for SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, and ZGEF, respectively.

 	The array data specified for input arguments a and ipvt for
 these subroutines must be the same as the corresponding output arguments
 for SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, and ZGEF, respectively.

 	The vectors and matrices used in this computation must have no
 common elements; otherwise, results are unpredictable. See Concepts.

 Function

 One of the following systems of
 equations is solved for multiple right-hand sides:

 1.

 AX

 =

 B

 2.

 A

 T

 X

 =

 B

 3.

 A

 H

 X

 =

 B

 (only for CGESM and ZGESM)

 where A, B,
 and X are general matrices. These subroutines use the
 results of the factorization of matrix A, produced by
 a preceding call to SGEF/SGEFCD, DGEF/DGEFP/DGEFCD, CGEF, or ZGEF,
 respectively. For a description of how A is factored,
 see SGEF, DGEF, CGEF, and ZGEF (General Matrix Factorization).

 If n or nrhs is
 0, no computation is performed. See references [44] and [46].

 Error conditions

 	[bookmark: am5gr_hsgesm__am5gr_f110a042]
 Computational Errors

 	None
 Note: If the factorization performed by SGEF, DGEF, CGEF,
 ZGEF, SGEFCD, DGEFCD, or DGEFP failed because a pivot element is zero,
 the results returned by this subroutine are unpredictable, and there
 may be a divide-by-zero program exception message.

 	[bookmark: am5gr_hsgesm__am5gr_f110a043]
 Input-Argument Errors

 	

 	trans ≠ 'N', 'T', or 'C'

 	lda, ldb ≤ 0

 	n < 0

 	n > lda, ldb

 	nrhs < 0

 Examples

 	Example 1

 	
 Part 1

 This part of the example
 shows how to solve the system AX = B for two right-hand
 sides, where matrix A is the same matrix factored in
 the Example
 1 for SGEF and DGEF.

 Call Statement
 and Input: TRANS A LDA N IPVT BX LDB NRHS
 | | | | | | | |
CALL SGESM('N' , A , 9 , 9 , IPVT , BX , 9 , 2)

 IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)

 A =

 (same as output

 A

 in

 Example 1

)

 ┌ ┐
 | 4.0 10.0 |
 | 5.0 15.0 |
 | 9.0 24.0 |
 | 10.0 35.0 |
BX = | 11.0 48.0 |
 | 12.0 63.0 |
 | 12.0 70.0 |
 | 12.0 78.0 |
 | 33.0 266.0 |
 └ ┘

 Output: ┌ ┐
 | 1.0 1.0 |
 | 1.0 2.0 |
 | 1.0 3.0 |
 | 1.0 4.0 |
BX = | 1.0 5.0 |
 | 1.0 6.0 |
 | 1.0 7.0 |
 | 1.0 8.0 |
 | 1.0 9.0 |
 └ ┘

 	

 Part 2

 This part of the example shows
 how to solve the system ATX = B for
 two right-hand sides, where matrix A is the input matrix
 factored in Example
 1 for SGEF and DGEF.

 Call Statement
 and Input: TRANS A LDA N IPVT BX LDB NRHS
 | | | | | | | |
CALL SGESM('T' , A , 9 , 9 , IPVT , BX , 9 , 2)

 IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)

 A =

 (same as output

 A

 in

 Example 1

)

 ┌ ┐
 | 6.0 15.0 |
 | 8.0 26.0 |
 | 10.0 40.0 |
 | 12.0 57.0 |
BX = | 13.0 76.0 |
 | 14.0 97.0 |
 | 15.0 120.0 |
 | 15.0 125.0 |
 | 15.0 129.0 |
 └ ┘

 Output: ┌ ┐
 | 1.0 1.0 |
 | 1.0 2.0 |
 | 1.0 3.0 |
 | 1.0 4.0 |
BX = | 1.0 5.0 |
 | 1.0 6.0 |
 | 1.0 7.0 |
 | 1.0 8.0 |
 | 1.0 9.0 |
 └ ┘

 	Example 2

 	
 Part 1

 This part of the example
 shows how to solve the system AX = B for two right-hand
 sides, where matrix A is the same matrix factored in
 the Example
 2 for CGEF and ZGEF.

 Call Statement
 and Input: TRANS A LDA N IPVT BX LDB NRHS
 | | | | | | | |
CALL CGESM('N' , A , 4 , 4 , IPVT , BX , 4 , 2)

 IPVT = (4, 4, 3, 4)

 A =

 (same as output

 A

 in

 Example 2

)

 ┌ ┐
 | (-10.0, 85.0) (-11.0, 53.0) |
BX = | (-6.0, 61.0) (-6.0, 54.0) |
 | (10.0, 38.0) (2.0, 40.0) |
 | (58.0, 168.0) (15.0, 105.0) |
 └ ┘

 Output: ┌ ┐
 | (9.0, 0.0) (1.0, 1.0) |
BX = | (5.0, 1.0) (2.0, 2.0) |
 | (1.0, 6.0) (3.0, 3.0) |
 | (3.0, 4.0) (4.0, 4.0) |
 └ ┘

 	

 	

 Part 2

 This part of the example shows
 how to solve the system ATX = B for
 two right-hand sides, where matrix A is the input matrix
 factored in Example
 2 for CGEF and ZGEF.

 Call Statement
 and Input: TRANS A LDA N IPVT BX LDB NRHS
 | | | | | | | |
CALL CGESM('T' , A , 4 , 4 , IPVT , BX , 4 , 2)

 IPVT = (4, 4, 3, 4)

 A =

 (same as output

 A

 in

 Example 2

)

 ┌ ┐
 | (71.0, 12.0) (18.0, 68.0) |
BX = | (61.0, -70.0) (-27.0, 71.0) |
 | (123.0, -34.0) (-11.0, 97.0) |
 | (68.0, 7.0) (28.0, 50.0) |
 └ ┘

 Output: ┌ ┐
 | (9.0, 0.0) (1.0, 1.0) |
BX = | (5.0, 1.0) (2.0, 2.0) |
 | (1.0, 6.0) (3.0, 3.0) |
 | (3.0, 4.0) (4.0, 4.0) |
 └ ┘

 	

 Part 3:

 This part of the example
 shows how to solve the system AHX = B for
 two right-hand sides, where matrix A is the input matrix
 factored in Example
 2 for CGEF and ZGEF.

 Call Statement
 and Input: TRANS A LDA N IPVT BX LDB NRHS
 | | | | | | | |
CALL CGESM('C' , A , 4 , 4 , IPVT , BX , 4 , 2)

 IPVT = (4, 4, 3, 4)

 A =

 (same as output

 A

 in

 Example 2

)

 ┌ ┐
 | (58.0, -3.0) (45.0, 20.0) |
BX = | (68.0, -31.0) (83.0, -20.0) |
 | (89.0, -22.0) (98.0, 1.0) |
 | (53.0, 15.0) (45.0, 25.0) |
 └ ┘

 Output: ┌ ┐
 | (1.0, 4.0) (4.0, 5.0) |
BX = | (2.0, 3.0) (3.0, 4.0) |
 | (3.0, 2.0) (2.0, 3.0) |
 | (4.0, 1.0) (1.0, 2.0) |
 └ ┘

 	

 	

 Parent topic: Linear Algebraic Equations

 SGECON, DGECON, CGECON, and ZGECON (Estimate the Reciprocal
 of the Condition Number of a General Matrix)

 Purpose

 SGECON, DGECON, CGECON, and ZGECON
 estimate the reciprocal of the condition number of general matrix A.
 These subroutines use the results of the factorization of matrix A produced
 by a preceding call to SGETRF, DGETRF, CGETRF, or ZGETRF, respectively.
 For details on the factorization, see SGETRF, DGETRF, CGETRF and ZGETRF (General Matrix Factorization).

 Table 137. Data Types.

 	A, work

 	anorm, rcond, rwork

 	Subroutine

 	Short-precision real

 	Short-precision real

 	SGECON▵

 	Long-precision real

 	Long-precision real

 	DGECON▵

 	Short-precision complex

 	Short-precision real

 	CGECON▵

 	Long-precision complex

 	Long-precision real

 	ZGECON▵

 Syntax

 	Fortran

 	

 CALL SGECON | DGECON (

 norm

 ,

 n

 ,

 a

 ,

 lda

 ,

 anorm

 ,

 rcond

 ,

 work

 ,

 iwork

 ,

 info

)

 CALL CGECON | ZGECON (

 norm

 ,

 n

 ,

 a

 ,

 lda

 ,

 anorm

 ,

 rcond

 ,

 work

 ,

 rwork

 ,

 info

)

 	C and C++

 	

 sgecon | dgecon (

 norm

 ,

 n

 ,

 a

 ,

 lda

 ,

 anorm

 ,

 rcond

 ,

 work

 ,

 iwork

 ,

 info

);

 cgecon | zgecon (

 norm

 ,

 n

 ,

 a

 ,

 lda

 ,

 anorm

 ,

 rcond

 ,

 work

 ,

 rwork

 ,

 info

);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change] info = LAPACKE_sgecon | LAPACKE_dgecon (matrix_layout,
 norm, n, a, lda,
 anorm, rcond);
info = LAPACKE_cgecon |
 LAPACKE_zgecon (matrix_layout, norm, n,
 a, lda, anorm, rcond); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 norm

 	specifies whether the estimate of the condition number is computed
 using the one norm or the infinity norm; where:
 If norm =
 'O' or '1', the one norm is used in the computation.

 If norm =
 'I', the infinity norm is used in the computation.

 Specified
 as: a single character; norm = 'O', '1', or 'I'.

 	 n

 	the order of the factored general matrix A used
 in the computation.
 Specified as: an integer; n ≥ 0.

 	 a

 	is the general matrix A, containing the factorization
 of matrix A produced by a preceding call to SGETRF,
 DGETRF, CGETRF, or ZGETRF, respectively.
 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 137.

 	 lda

 	is the leading dimension of matrix A.
 Specified
 as: an integer; lda > 0 and lda ≥ n.

 	 anorm

 	has the following meaning:
 If norm = 'O'
 or '1', then anorm is the one norm of the original
 matrix.

 If norm = 'I', then anorm is
 the infinity norm of the original matrix.

 Note: You may obtain
 the value of anorm by a preceding call to SLANGE,
 DLANGE, CLANGE, or ZLANGE, respectively. Refer to SLANGE, DLANGE, CLANGE, and ZLANGE (General Matrix Norm).

 Specified
 as: a number ≥ 0.0,
 of the data type indicated in Table 137.

 	rcond

 	See On Return.

 	work

 	is the work area used by this subroutine, where:

 	For SGECON and DGECON

 	The size of work is (at least) of length 4n.

 	For CGECON and ZGECON

 	The size of work is (at least) of length 2n.

 Specified as: an area of storage containing
 numbers of data type indicated in Table 137.

 	iwork

 	is a work area used by this subroutine whose size is (at least)
 of length n.
 Specified as: an area of storage
 containing integers.

 	rwork

 	is a work area used by this subroutine whose size is (at least)
 of length 2n.
 Specified as: an area of storage
 containing numbers of the data type indicated in Table 137.

 	info

 	See On Return.

 	On Return

 	

 	rcond

 	has the following meaning:
 If info = 0,
 an estimate of the reciprocal of the condition number of general
 matrix A is returned; i.e., rcond =
 1.0/(NORM(A) ×NORM(A -1)).

 If n =
 0, the subroutines return with rcond = 1.0.

 If n ≠ 0 and anorm =
 0.0, the subroutines return with rcond = 0.0.

 Returned
 as: a number ≥ 0.0,
 of the data type indicated in Table 137.

 	 info

 	has the following meaning:
 If info = 0, the computation completed
 normally.

 [image: Start of change] Returned as:[image: Start of change]
 	For SGECON, DGECON, CGECON, and ZGECON returned as: an integer; info ≥ 0.

 	For LAPACKE_sgecon, LAPACKE_dgecon, LAPACKE_cgecon, and LAPACKE_zgecon returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	In your C program, arguments rcond and info must
 be passed by reference.

 	This subroutine accepts lowercase letters for the norm argument.

 	The scalar data specified for input argument n must
 be the same for SLANGE/DLANGE/CLANGE/ZLANGE, SGETRF/DGETRF/CGETRF/ZGETRF,
 and SGECON/DGECON/CGECON/ZGECON. In addition, the scalar data specified
 for input argument m in SLANGE/DLANGE/CLANGE/ZLANGE
 and SGETRF/DGETRF/CGETRF/ZGETRF must be the same as input argument n in
 SLANGE/DLANGE/CLANGE/ZLANGE, SGETRF/DGETRF/CGETRF/ZGETRF, and SGECON/DGECON/CGECON/ZGECON.

 	The matrix A input to SLANGE/DLANGE/CLANGE/ZLANGE
 must be the same as the corresponding input argument for SGETRF/DGETRF/CGETRF/ZGETRF.

 	The matrix A input to SGECON/DGECON/CGECON/ZGECON
 must be the same as the corresponding output argument for SGETRF/DGETRF/CGETRF/ZGETRF.

 	On both input and output, matrix A conforms to LAPACK
 format.

 Function

 The reciprocal of the condition
 number of general matrix A is estimated, using the results
 of the factorization of matrix A produced by a preceding
 call of SGETRF, DGETRF, CGETRF, or ZGETRF.

 rcond =
 1.0/(NORM(A) × NORM(A-1)).

 If n =
 0, the subroutines return with rcond = 1.0.

 If n ≠ 0 and anorm =
 0.0, the subroutines return with rcond = 0.0.

 See
 reference [82].

 Error conditions

 	[bookmark: am5gr_gecon__am5gr_f110a004a]
 Resource Errors

 	None.

 	[bookmark: am5gr_gecon__am5gr_f110a005a]
 Computational Errors

 	None.

 	[bookmark: am5gr_gecon__am5gr_f110a006a]
 Input-Argument Errors

 	

 	norm ≠ 'O', '1', or 'I'

 	n < 0

 	n > lda

 	lda ≤ 0

 	anorm < 0

 	anorm ≠ 0 and anorm > big or anorm < tiny
 Where:

 	For SGECON and CGECON

 	big and tiny have the following
 values:

 	big = 2127 × (1 - ULP)

 	tiny = 2-126 × (221)

 	For DGECON

 	big and tiny have the following
 values:

 	big = 21023 × (1 - ULP)

 	tiny = 2-1022 × (249)

 	For ZGECON

 	big and tiny have the following
 values:

 	big = 21023 × (1 - ULP)

 	tiny = 2-1022 × (250)

 Where ULP = unit in last place.

 Note: To
 avoid this error, scale matrix A so that tiny ≤ anorm ≤ big.

 Examples

 	Example 1

 	
 This example estimates the reciprocal of the condition number
 of real general matrix A. The input matrix A to
 DLANGE and DGETRF is the same as input matrix A in Example 3.

 Call Statements and Input:

 NORM M N A LDA WORK
 | | | | | |
ANORM = DLANGE('1', 9 , 9 , A , 9 , WORK)

 M N A LDA IPVT INFO
 | | | | | |
CALL DGETRF(9 , 9 , A , 9 , IPVT, INFO)

 NORM N A LDA ANORM RCOND WORK IWORK INFO
 | | | | | | | | |
CALL DGECON('1', 9 , A , 9 , ANORM, RCOND, WORK, IWORK, INFO)

 A = (same as output A in Example 3)

 ANORM = (same as output ANORM in Example 1)

 Output:

 RCOND = 5.44 × 10-5

 INFO = 0

 	Example 2

 	
 This example estimates the reciprocal of the condition number
 of complex general matrix A. The input matrix A to
 ZLANGE and ZGETRF is the same as input matrix A in Example 2.

 Call Statements and Input:

 NORM M N A LDA WORK
 | | | | | |
ANORM = ZLANGE('1', 4 , 4 , A , 4 , RWORK)

 M N A LDA IPVT INFO
 | | | | | |
CALL ZGETRF(4 , 4 , A , 4 , IPVT, INFO)

 NORM N A LDA ANORM RCOND WORK RWORK INFO
 | | | | | | | | |
CALL ZGECON('1', 4 , A , 4 , ANORM, RCOND, WORK, RWORK, INFO)

 A = (same as output A in Example 2)

 ANORM = (same as output ANORM in Example 2)

 Output:

 RCOND = 3.66 × 10-2

 INFO = 0

 Parent topic: Linear Algebraic Equations

 SGEFCD and DGEFCD (General Matrix Factorization, Condition
 Number Reciprocal, and Determinant)

 Purpose

 These subroutines factor general
 matrix A using Gaussian elimination. An estimate of
 the reciprocal of the condition number and the determinant of matrix A can
 also be computed. To solve a system of equations with one or more
 right-hand sides, follow the call to these subroutines with one or
 more calls to SGES/SGESM or DGES/DGESM, respectively. To compute the
 inverse of matrix A, follow the call to these subroutines
 with a call to SGEICD and DGEICD, respectively.

 Table 138. Data Types.

 	A, aux, rcond, det

 	Subroutine

 	Short-precision real

 	SGEFCD

 	Long-precision real

 	DGEFCD

 Note: The output from these factorization subroutines should
 be used only as input to the following subroutines for performing
 a solve or inverse: SGES/SGESM/SGEICD and DGES/DGESM/DGEICD, respectively.

 Syntax

 	Fortran

 	CALL SGEFCD | DGEFCD (a, lda, n, ipvt, iopt, rcond, det, aux, naux)

 	C and C++

 	sgefcd | dgefcd (a, lda, n, ipvt, iopt, rcond, det, aux, naux);

 	On Entry

 	

 	 a

 	is a general matrix A of order n,
 whose factorization, reciprocal of condition number, and determinant
 are computed. Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 138.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ n.

 	 n

 	is the order of matrix A.
 Specified as: an integer;
 0 ≤ n ≤ lda.

 	 ipvt

 	See On Return.

 	 iopt

 	indicates the type of computation to be performed, where:
 If iopt = 0,
 the matrix is factored.

 If iopt = 1,
 the matrix is factored, and the reciprocal of the condition number
 is computed.

 If iopt = 2, the matrix is factored, and the
 determinant is computed.

 If iopt = 3,
 the matrix is factored, and the reciprocal of the condition number
 and the determinant are computed.

 Specified as: an integer; iopt = 0,
 1, 2, or 3.

 	 rcond

 	See On Return.

 	 det

 	See On Return.

 	 aux

 	has the following meaning:
 If naux = 0 and
 error 2015 is unrecoverable, aux is ignored.

 Otherwise,
 it is is a storage work area used by this subroutine. Its size is
 specified by naux.

 Specified as: an area
 of storage, containing numbers of the data type indicated in Table 138.

 	naux

 	is the size of the work area specified by aux—that
 is, the number of elements in aux.
 Specified
 as: an integer, where:

 If naux = 0
 and error 2015 is unrecoverable, SGEFCD and DGEFCD dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise, naux ≥ n.

 	On Return

 	

 	 a

 	is the transformed matrix A of order n,
 containing the results of the factorization. See Function. Returned as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 138.

 	 ipvt

 	is the integer vector ipvt of length n,
 containing the pivot indices. Returned as: a one-dimensional array
 of (at least) length n, containing integers.

 	 rcond

 	is an estimate of the reciprocal of the condition number, rcond,
 of matrix A. Returned as: a number of the data type
 indicated in Table 138; rcond ≥ 0.

 	 det

 	is the vector det, containing the two components, det1 and det2,
 of the determinant of matrix A. The determinant is:

 [image: Determinant Graphic]

 where 1 ≤ det1 < 10.
 Returned as: an array of length 2, containing numbers of the data
 type indicated in Table 138.

 Notes

 	In your C program, argument rcond must be passed
 by reference.

 	When iopt = 0, these subroutines provide the
 same function as a call to SGEF or DGEF, respectively.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 	On both input and output, matrix A conforms to LAPACK format.

 Function

 Matrix A is
 factored using Gaussian elimination with partial pivoting (ipvt)
 to compute the LU factorization of A,
 where (A=PLU):

 L

 is a unit lower triangular matrix.

 U

 is an upper triangular matrix.

 P

 is the permutation matrix.

 On output,
 the transformed matrix A contains U in
 the upper triangle and L in the strict lower triangle
 where ipvt contains the pivots representing permutation P,
 such that A = PLU.

 An estimate
 of the reciprocal of the condition number, rcond,
 and the determinant, det, can also be computed by this
 subroutine. The estimate of the condition number uses an enhanced
 version of the algorithm described in references [81] and [82].

 If n is
 0, no computation is performed. See reference [44].

 These
 subroutines call SGEF and DGEF, respectively, to perform the factorization. ipvt is
 an output vector of SGEF and DGEF. It is returned for use by SGES/SGESM
 and DGES/DGESM, the solve subroutines.

 Error conditions

 	[bookmark: am5gr_hsgefcd__am5gr_f110a057]
 Resource Errors

 	Error 2015 is unrecoverable, naux = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hsgefcd__am5gr_f110a058]
 Computational Errors

 	Matrix A is singular.

 	If your program is not terminated by SGEF and DGEF, then SGEFCD
 and DGEFCD, respectively, return 0 for rcond and det.

 	One or more columns of L and the corresponding diagonal
 of U contain all zeros (all columns of L are
 checked). The first column, i, of L with
 a corresponding U = 0 diagonal element is identified
 in the computational error message, issued by SGEF or DGEF, respectively.

 	i can be determined at run time by using the
 ESSL error-handling facilities. To obtain this information, you must
 use ERRSET to change the number of allowable errors for error code
 2103 in the ESSL error option table; otherwise, the default value
 causes your program to be terminated by SGEF or DGEF, respectively,
 when this error occurs. If your program is not terminated by SGEF
 or DGEF, respectively, the return code is set to 2. For details, see What Can You Do about ESSL Computational Errors?.

 	[bookmark: am5gr_hsgefcd__am5gr_f110a059]
 Input-Argument Errors

 	

 	lda ≤ 0

 	n < 0

 	n > lda

 	iopt ≠ 0, 1, 2, or 3

 	Error 2015 is recoverable or naux≠0, and naux is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	[bookmark: am5gr_hsgefcd__am5gr_xsgef1]
 Example

 	
 This example shows a factorization of matrix A of
 order 9. The input is the same as used in SGEF and DGEF. See Example 1.
 The reciprocal of the condition number and the determinant of matrix A are
 also computed. The values used to estimate the reciprocal of the condition
 number in this example are obtained with the following values:

 ∥A∥1 = max(6.0,
 8.0, 10.0, 12.0, 13.0, 14.0, 15.0, 15.0, 15.0) = 15.0

 Estimate of ∥A-1∥1 = 1091.87

 This
 estimate is equal to the actual rcond of 5.436(10-5),
 which is computed by SGEICD and DGEICD. (See Example 3.)
 On output, the value in det, |A|, is equal
 to 336.

 Call Statement and Input: A LDA N IPVT IOPT RCOND DET AUX NAUX
 | | | | | | | | |
CALL DGEFCD(A , 9 , 9 , IPVT , 3 , RCOND , DET , AUX , 9)

 A =

 (same as input

 A

 in

 Example 1

)

 Output:

 A =

 (same as output

 A

 in

 Example 1

)

 IPVT = (3, 4, 5, 6, 7, 8, 9, 8, 9)

 RCOND = 0.00005436

 DET = (3.36, 2.00)

 Parent topic: Linear Algebraic Equations

 SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and DGEICD (General
 Matrix Inverse, Condition Number Reciprocal, and Determinant)

 Purpose

 These subroutines find the inverse
 of general matrix A.

 Subroutines SGEICD and DGEICD
 also find the reciprocal of the condition number and the determinant
 of general matrix A.

 Table 139. Data Types.

 	A, aux, rcond, det, work

 	Subroutine

 	Short-precision real

 	SGETRI▵ and SGEICD

 	Long-precision real

 	DGETRI▵ and DGEICD

 	Short-precision complex

 	CGETRI▵

 	Long-precision complex

 	ZGETRI▵

 	▵LAPACK

 Note: The input to SGETRI, DGETRI, CGETRI, and ZGETRI must
 be the output from the factorization subroutines SGETRF, DGETRF, CGETRF,
 and ZGETRF, respectively.
 If you call subroutines SGEICD and DGEICD
 with iopt = 4, the input must be the output
 from the factorization subroutines SGEF/SGEFCD/SGETRF or DGEF/DGEFCD/DGEFP/DGETRF,
 respectively.

 Syntax

 	Fortran

 	CALL SGETRI | DGETRI | CGETRI | ZGETRI (n, a, lda, ipvt, work, lwork, info)
 CALL
 SGEICD | DGEICD (a, lda, n, iopt, rcond, det, aux, naux)

 	C and C++

 	sgetri | dgetri | cgetri | zgetri (n, a, lda,
 ipvt, work, lwork, info);

 sgeicd | dgeicd (a, lda, n, iopt, rcond,
 det, aux, naux);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sgetri | LAPACKE_dgetri | LAPACKE_cgetri | LAPACKE_zgetri
 (matrix_layout, n, a,
 lda, ipvt); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 a

 	has the following meaning, where:

 	For subroutines SGETRI, DGETRI, CGETRI, and ZGETRI:

 	
 It is the transformed matrix A of order n,
 resulting from the factorization performed in a previous call to SGETRF,
 DGETRF, CGETRF, or ZGETRF, respectively, whose inverse is computed.

 	For subroutines SGEICD and DGEICD:

 	
 If iopt = 0, 1, 2, or 3, it is matrix A of
 order n, whose inverse, reciprocal of condition
 number, and determinant are computed.

 If iopt = 4,
 it is the transformed matrix A of order n,
 resulting from the factorization performed in a previous call to SGEF/SGEFCD
 or DGEF/DGEFCD/DGEFP, respectively, whose inverse is computed.

 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 139.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ n.

 	 n

 	is the order of matrix A.
 Specified as: an integer;
 0 ≤ n ≤ lda.

 	 iopt

 	indicates the type of computation to be performed, where:
 If iopt = 0,
 the inverse is computed for matrix A.

 If iopt = 1,
 the inverse and the reciprocal of the condition number are computed
 for matrix A.

 If iopt = 2,
 the inverse and the determinant are computed for matrix A.

 If iopt = 3,
 the inverse, the reciprocal of the condition number, and the determinant
 are computed for matrix A.

 If iopt = 4,
 the inverse is computed using the factored matrix A.

 Specified
 as: an integer; iopt = 0, 1, 2, 3, 4.

 	 rcond

 	See On Return.

 	 det

 	See On Return.

 	 aux

 	has the following meaning, and its size is specified by naux:

 If iopt = 0, 1, 2, or 3, then if naux = 0
 and error 2015 is unrecoverable, aux is ignored.
 Otherwise, it is the storage work area used by this subroutine.

 If iopt = 4, aux has
 the following meaning:

 	For SGEICD, the first n (32-bit integer arguments)
 or 2n (64-bit integer arguments) locations in aux must
 contain the ipvt integer vector of length n,
 resulting from a previous call to SGEF, SGETRF, or SGEFCD.

 	For DGEICD, the first ceiling(n/2) (32-bit
 integer arguments) or n (64-bit integer arguments)
 locations in aux must contain the ipvt integer
 vector of length n, resulting from a previous call
 to DGEF, DGETRF, DGEFCD, or DGEFP.

 Specified as: an area of storage, containing numbers
 of the data type indicated in Table 139.

 	 naux

 	is the size of the work area specified by aux;
 that is, the number of elements in aux.
 Specified
 as: an integer, where:

 If iopt ≠ 4, then if naux = 0
 and error 2015 is unrecoverable, SGEICD and DGEICD dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise, naux ≥ 100n.

 	ipvt

 	is the integer vector ipvt of length n,
 containing the pivot indices resulting from a previous call to SGETRF,
 DGETRF, CGETRF, or ZGETRF.
 Specified as: a one-dimensional array
 of (at least) length n, containing integers, where
 1 ≤ ipvt(i) ≤ n.

 	work

 	has the following meaning:
 If lwork = 0, work is
 ignored.

 If lwork ≠ 0, work is
 the work area used by this subroutine, where:

 	If lwork ≠ -1, its size is (at
 least) of length lwork.

 	If lwork = -1, its size is (at least) of length
 1.

 Specified as: an area of storage containing numbers of
 data type indicated in Table 139.

 	lwork

 	is the number of elements in array WORK.
 Specified
 as: an integer; where:

 	If lwork = 0, SGETRI/DGETRI/CGETRI/ZGETRI dynamically
 allocates the work area used by this subroutine. The work area is
 deallocated before control is returned to the calling program. This
 option is an extension to the LAPACK standard.

 	If lwork = -1, SGETRI/DGETRI/CGETRI/ZGETRI performs
 a work area query and returns the optimal size of work in work1.
 No computation is performed and the subroutine returns after error
 checking is complete.

 	Otherwise, it must be:
 lwork ≥ max(1, n)

 	For optimal performance, lwork ≥ 100*n.

 	info

 	See On Return.

 	On Return

 	

 	 a

 	is the resulting inverse of matrix A of order n.
 Returned as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 139.

 	 rcond

 	is the reciprocal of the condition number, rcond,
 of matrix A. Returned as: a real number of the data
 type indicated in Table 139; rcond ≥ 0.

 	 det

 	is the vector det, containing the two components det1 and det2 of
 the determinant of matrix A. The determinant is:

 [image: Determinant Graphic]

 where 1 ≤ det1 <
 10. Returned as: an array of length 2, containing numbers of the data
 type indicated in Table 139.

 	work

 	is the work area used by this subroutine if lwork ≠ 0, where:
 If lwork ≠ 0 and lwork ≠ -1, its size is (at
 least) of length lwork.

 If lwork = -1,
 its size is (at least) of length 1.

 Returned as: an area
 of storage, where:

 If lwork ≥ 1 or lwork = -1,
 then work1 is set to the optimal lwork value
 and contains numbers of the data type indicated in Table 139. Except for work1,
 the contents of work are overwritten on return.

 	info

 	has the following meaning:
 If info = 0, the inverse completed successfully.

 If info > 0, info is set equal to the first i where
 Uii is exactly zero. The matrix is singular, and its inverse could not be
 computed.

 [image: Start of change] Returned as:[image: Start of change]
 	For SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and DGEICD returned as: an integer; info ≥ 0.

 	For LAPACKE_sgetri, LAPACKE_dgetri, LAPACKE_cgetri, and LAPACKE_zgetri, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	In your C program, arguments rcond and info must
 be passed by reference.

 	The input scalar arguments for SGETRI, DGETRI, CGETRI, and ZGETRI
 must be set to the same values as the corresponding input arguments
 in the previous call to SGETRF, DGETRF, CGETRF, and ZGETRF, respectively.
 If iopt = 4,
 the input scalar arguments for SGEICD and DGEICD must be set to the
 same values as the corresponding input arguments in the previous call
 to SGEF/SGEFCD or DGEF/DGEFCD/DGEFP, respectively.

 	You have the option of having the value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 	The way _GETRI subroutines handle computational errors differs
 from LAPACK. Like LAPACK, these subroutines use the info argument
 to provide information about the computational error, but they also
 provide an error message.

 	On both input and output, matrix A conforms to LAPACK
 format.

 	For best performance, specify lwork = 0.

 Function

 These subroutines compute the
 inverse of general square matrix A, where:

 	A-1 is the inverse of matrix A,
 where AA-1 = A-1A = I,
 and I is the identity matrix.

 Additionally, the subroutines SGEICD and DGEICD compute
 the reciprocal of the condition number and the determinant of a general
 square matrix A, using partial pivoting to preserve
 accuracy, where:

 	1/(∥A∥1)(∥A-1∥1)
 is the reciprocal of the condition number, where ∥A∥1 is
 the one-norm of matrix A.

 	|A| is the determinant of matrix A,
 where |A| is expressed as:

 [image: Graphic for A]

 The iopt argument is used to determine the
 combination of output items produced by SGEICD and DGEICD: the inverse,
 the reciprocal of the condition number, and the determinant.

 If n is
 0, no computation is performed. See references [44], [46], and [52].

 Error conditions

 	[bookmark: am5gr_hsgeicd__am5gr_f110a409]
 Resource Errors

 	

 	Unable to allocate internal work area.

 	If iopt = 0, 1, 2, or 3, then error 2015 is
 unrecoverable, naux = 0, and unable to allocate work area.

 	[bookmark: am5gr_hsgeicd__am5gr_f110a410]
 Computational Errors

 	Matrix A is singular or nearly singular.

 	For SGETRI, DGETRI, CGETRI, and ZGETRI:

 	

 	The index i of the first pivot element having
 a value equal to zero is identified in the computational error message.

 	The computational error message may occur multiple times with
 processing continuing after each error, because the default for the
 number of allowable errors for error code 2149 is set to be unlimited
 in the ESSL error option table.

 	For SGEICD and DGEICD:

 	

 	The index i of the first pivot element having
 a value equal to 0 is identified in the computational error message.

 	These subroutines return 0 for rcond and det,
 if you requested them.

 	The return code is set to 2.

 	i can be determined at run time by use of the
 ESSL error-handling facilities. To obtain this information, you must
 use ERRSET to change the number of allowable errors for error code
 2105 in the ESSL error option table; otherwise, the default value
 causes your program to terminate when this error occurs. For details,
 see What Can You Do about ESSL Computational Errors?.

 	[bookmark: am5gr_hsgeicd__am5gr_f110a411]
 Input-Argument Errors

 	

 	lda ≤ 0

 	n < 0

 	n > lda

 	iopt ≠ 0, 1, 2, 3, or 4

 	lwork ≠ 0, lwork ≠ -1, and lwork <
 max(1, n)

 	Error 2015 is recoverable or naux≠0, and naux is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example computes the inverse of matrix A,
 where matrix A is the transformed matrix factored by
 SGETRF in Example
 3 and the input contents of IPVT are the same
 as the output contents of IPVT in Example 3.

 Note: Because lwork is
 0, SGETRI dynamically allocates the work area used by this subroutine.

 Call Statement and Input: N A LDA IPVT WORK LWORK INFO
 | | | | | | |
CALL SGETRI(9 , A , 9 , IPVT , WORK , 0 , INFO)

 A =

 (same as output

 A

 in

 Example 3

)

 IPVT =

 (same as output

 IPVT

 in

 Example 3

)

 Output:
 ┌ ┐
 | 0.333 -0.667 0.333 0.000 0.000 0.000 0.042 -0.042 0.000 |
 | 56.833 -52.167 -1.167 -0.500 -0.500 -0.357 6.836 -0.479 -0.500 |
 | -55.167 51.833 0.833 0.500 0.500 0.214 -6.735 0.521 0.500 |
 | -1.000 1.000 0.000 0.000 0.000 0.143 -0.143 0.000 0.000 |
A = | -1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 |
 | -1.000 1.000 0.000 0.000 0.000 0.000 -0.125 0.125 0.000 |
 | -226.000 206.000 5.000 3.000 2.000 1.429 -27.179 1.750 2.000 |
 | 560.000 -520.000 -10.000 -6.000 -4.000 -2.857 67.857 -5.000 -5.000 |
 | -325.000 305.000 5.000 3.000 2.000 1.429 -39.554 3.125 3.000 |
 └ ┘

 INFO = 0

 	Example 2

 	
 This example computes the inverse of matrix A,
 where A is the transformed matrix factored by ZGETRF
 in Example
 2 and the input contents of IPVT are the same
 as the output contents of IPVT in Example 2.

 Note: Because lwork is
 0, ZGETRI dynamically allocates the work area used by this subroutine.

 Call Statement and Input: N A LDA IPVT WORK LWORK INFO
 | | | | | | |
CALL ZGETRI(9 , A , 9 , IPVT , WORK , 0 , INFO)

 A =

 (same as output

 A

 in

 Example 2

)

 IPVT =

 (same as output

 IPVT

 in

 Example 2

)

 Output:
 ┌ ┐
 | (-0.2, -0.4) (-0.1, 0.1) (-0.1, 0.1) (0.0, 0.1) (0.1, 0.1) (0.1, 0.1) (0.1, 0.0) (0.1, 0.0) (0.0, -0.3) |
 | (0.2, 0.4) (0.0, -0.6) (-0.1, 0.0) (-0.1, 0.0) (-0.1, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.1, 0.0) |
 | (0.0, 0.0) (0.2, 0.4) (0.0, -0.6) (-0.1, 0.0) (-0.1, 0.0) (-0.1, 0.0) (0.0, 0.0) (0.0, 0.0) (0.1, 0.0) |
 | (0.0, 0.0) (0.0, 0.0) (0.2, 0.4) (0.0, -0.6) (-0.1, 0.0) (-0.1, 0.0) (-0.1, 0.0) (0.0, 0.0) (0.1, 0.1) |
A = | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.2, 0.4) (0.0, -0.6) (-0.1, 0.0) (-0.1, 0.0) (-0.1, 0.0) (0.1, 0.1) |
 | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.2, 0.4) (0.0, -0.6) (-0.1, 0.0) (-0.1, 0.0) (0.0, 0.1) |
 | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.2, 0.4) (0.0, -0.6) (-0.1, 0.0) (-0.1, 0.1) |
 | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.2, 0.4) (0.0, -0.6) (-0.1, 0.1) |
 | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.2, 0.4) (-0.2, -0.4) |
 └ ┘

 INFO = 0

 	Example 3

 	
 This example computes the inverse, the reciprocal of the
 condition number, and the determinant of matrix A. The
 values used to compute the reciprocal of the condition number in this
 example are obtained with the following values:

 ∥

 A

 ∥

 1

 = max(6.0, 8.0, 10.0, 12.0, 13.0, 14.0, 15.0, 15.0, 15.0)

 =

 15.0

 ∥

 A

 -1

 ∥

 1

 = 1226.33

 On output, the value in det, |A|,
 is equal to 336.

 Call Statement and Input:

 A LDA N IOPT RCOND DET AUX NAUX
 | | | | | | | |
CALL DGEICD(A , 9 , 9 , 3 , RCOND , DET , AUX , 293)

 ┌ ┐
 | 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 |
 | 4.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
 | 0.0 5.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 |
A = | 0.0 0.0 6.0 1.0 1.0 1.0 1.0 1.0 0.0 |
 | 0.0 0.0 0.0 7.0 1.0 1.0 1.0 1.0 1.0 |
 | 0.0 0.0 0.0 0.0 8.0 1.0 1.0 1.0 1.0 |
 | 0.0 0.0 0.0 0.0 0.0 9.0 1.0 1.0 1.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 10.0 11.0 12.0 |
 └ ┘

 Output:
 ┌ ┐
 | 0.333 -0.667 0.333 0.000 0.000 0.000 0.042 -0.042 0.000 |
 | 56.833 -52.167 -1.167 -0.500 -0.500 -0.357 6.836 -0.479 -0.500 |
 | -55.167 51.833 0.833 0.500 0.500 0.214 -6.735 0.521 0.500 |
 | -1.000 1.000 0.000 0.000 0.000 0.143 -0.143 0.000 0.000 |
A = | -1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 |
 | -1.000 1.000 0.000 0.000 0.000 0.000 -0.125 0.125 0.000 |
 | -226.000 206.000 5.000 3.000 2.000 1.429 -27.179 1.750 2.000 |
 | 560.000 -520.000 -10.000 -6.000 -4.000 -2.857 67.857 -5.000 -5.000 |
 | -325.000 305.000 5.000 3.000 2.000 1.429 -39.554 3.125 3.000 |
 └ ┘

RCOND = 0.00005436
DET = (3.36, 2.00)

 	Example 4

 	
 This example computes the inverse of matrix A,
 where: iopt = 4; matrix A is the
 transformed matrix factored by SGEF in Example 1;
 and the input contents of AUX are the same as the
 output contents of IPVT in Example 1.

 Call Statement and Input: A LDA N IOPT RCOND DET AUX NAUX
 | | | | | | | |
CALL SGEICD(A , 9 , 9 , 4 , RCOND , DET , AUX , 300)

 A =

 (same as output

 A

 in

 Example 1

)

 AUX =

 (same as output

 IPVT

 in

 Example 1

)

 Output:
 ┌ ┐
 | 0.333 -0.667 0.333 0.000 0.000 0.000 0.042 -0.042 0.000 |
 | 56.833 -52.167 -1.167 -0.500 -0.500 -0.357 6.836 -0.479 -0.500 |
 | -55.167 51.833 0.833 0.500 0.500 0.214 -6.735 0.521 0.500 |
 | -1.000 1.000 0.000 0.000 0.000 0.143 -0.143 0.000 0.000 |
A = | -1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 |
 | -1.000 1.000 0.000 0.000 0.000 0.000 -0.125 0.125 0.000 |
 | -226.000 206.000 5.000 3.000 2.000 1.429 -27.179 1.750 2.000 |
 | 560.000 -520.000 -10.000 -6.000 -4.000 -2.857 67.857 -5.000 -5.000 |
 | -325.000 305.000 5.000 3.000 2.000 1.429 -39.554 3.125 3.000 |
 └ ┘

 Parent topic: Linear Algebraic Equations

 SLANGE, DLANGE, CLANGE, and ZLANGE (General Matrix Norm)

 Purpose

 SLANGE, DLANGE, CLANGE, and ZLANGE
 compute the norm of general matrix A.

 Table 140. Data Types.

 	A

 	work, Result

 	Subprogram

 	Short-precision real

 	Short-precision real

 	SLANGE▵

 	Long-precision real

 	Long-precision real

 	DLANGE▵

 	Short-precision complex

 	Short-precision real

 	CLANGE▵

 	Long-precision complex

 	Long-precision real

 	ZLANGE▵

 Syntax

 	Fortran

 	SLANGE | DLANGE | CLANGE | ZLANGE (norm, m, n, a, lda, work)

 	C and C++

 	slange | dlange | clange | zlange (norm, m, n, a, lda, work);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]LAPACKE_slange | LAPACKE_dlange | LAPACKE_clange | LAPACKE_zlange
 (matrix_layout, norm, m,
 n, a, lda); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 norm

 	specifies the type of computation, where:
 If norm =
 'O' or '1', the one norm of A is computed.

 If norm =
 'I', the infinity norm of A is computed.

 If norm =
 'F' or 'E', the Frobenius or Euclidean norm of A is
 computed.

 If norm = 'M', the absolute value
 of the matrix element having the largest absolute value, i.e., max
 (|A|), is returned.

 Specified as: a single character; norm =
 'O', '1', 'I', 'F', 'E', or 'M'.

 	 m

 	the number of rows in matrix A.
 Specified as:
 an integer; m ≥ 0.

 	 n

 	the number of columns in matrix A.
 Specified
 as: an integer; n ≥ 0.

 	 a

 	is the general matrix A, with m rows
 and n columns.
 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 140.

 	 lda

 	is the leading dimension of matrix A.
 Specified
 as: an integer; lda > 0 and lda ≥ m.

 	work

 	is the work area used by this subroutine, where:

 	When norm = 'I', the size of work is
 (at least) of length m.

 	Otherwise, work is not referenced.

 Specified as: an area of storage containing numbers of data
 type indicated in Table 140.

 	On Return

 	

 	 Function value

 	is the result of the norm computation, returned as a number of
 the data type indicated in Table 140.
 If norm =
 'O' or '1', the one norm of A is returned.

 If norm =
 'I', the infinity norm of A is returned.

 If norm =
 'F' or 'E', the Frobenius or Euclidean norm of A is
 returned.

 If norm = 'M', the absolute value
 of the matrix element having the largest absolute value, i.e., max
 (|A|), is returned.

 If m =
 0 or n = 0, the function returns zero.

 Notes

 	Declare this function in your program as returning a value of
 the data type indicated in Table 140.

 	This function accepts lowercase letters for the norm argument.

 Function

 One of the following computations
 is performed on general matrix A, depending on the value
 specified for norm:

 	Value specified for norm

 	Type of computation performed

 	'O' or '1'

 	one norm

 	'I'

 	infinity norm

 	'F' or 'E'

 	Frobenius or Euclidean norm

 	'M'

 	absolute value of the matrix element having
 the largest absolute value, i.e., max (|A|)

 If m = 0 or n =
 0, the function returns zero.

 Error conditions

 	[bookmark: am5gr_llange__am5gr_f110langea004a]
 Resource Errors

 	None.

 	[bookmark: am5gr_llange__am5gr_f110alange005a]
 Computational Errors

 	None.

 	[bookmark: am5gr_llange__am5gr_f110alange006a]
 Input-Argument Errors

 	

 	norm ≠ 'O', '1', 'I', 'F',
 'E', or 'M'

 	m < 0

 	n < 0

 	m > lda

 	lda ≤ 0

 Examples

 	Example 1

 	
 This example computes the one norm of real general matrix A.

 Call Statements and Input:

 NORM M N A LDA WORK
 | | | | | |
ANORM = DLANGE('1', 9 , 9 , A , 9 , WORK)

 A = (same as input matrix A in Example 3)

 Output:

 ANORM
 = 15.0

 	Example 2

 	
 This example computes the one norm of complex general matrix A.

 Call Statements and Input:

 NORM M N A LDA WORK
 | | | | | |
ANORM = ZLANGE('1', 4 , 4 , A , 4 , WORK)

 A = (same as input matrix A in Example 2)

 Output:

 ANORM
 = 25.32

 Parent topic: Linear Algebraic Equations

 SPPSV, DPPSV, CPPSV, and ZPPSV (Positive Definite Real Symmetric
 and Complex Hermitian Matrix Factorization and Multiple Right-Hand
 Side Solve)

 Purpose

 These subroutines solve the system
 of linear equations AX = B for X, where X
 and B are general matrices and:

 	for SPPSV and DPPSV, A is a positive definite real
 symmetric matrix.

 	for CPPSV and ZPPSV, A is a positive definite complex
 Hermitian matrix.

 The matrix A, stored in upper- or lower-packed
 storage mode, is factored using Cholesky factorization.

 Table 141. Data Types.

 	A, B

 	Subroutine

 	Short-precision real

 	SPPSV▵

 	Long-precision real

 	DPPSV▵

 	Short-precision complex

 	CPPSV▵

 	Long-precision complex

 	ZPPSV▵

 	▵ LAPACK

 Syntax

 	Fortran

 	 CALL SPPSV | DPPSV | CPPSV | ZPPSV (uplo, n, nrhs, ap, bx, ldb, info)

 	C and C++

 	sppsv | dppsv | cppsv | zppsv (uplo, n, nrhs, ap, bx, ldb, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sppsv | LAPACKE_dppsv | LAPACKE_cppsv | LAPACKE_zppsv
 (matrix_layout, uplo, n, nrhs, ap, bx, ldb);[image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 uplo

 	indicates whether matrix A is stored in upper- or
 lower-packed storage mode, where:
 If uplo = 'U', A is
 stored in upper-packed storage mode.

 If uplo = 'L', A is
 stored in lower-packed storage mode.

 Specified as: a single
 character. It must be 'U' or 'L'.

 	 n

 	is the order n of matrix A and
 the number of rows of matrix B.
 Specified as: an
 integer; n ≥ 0.

 	 nrhs

 	is the number of right-hand sides; that is, the number of columns
 of matrix B.
 Specified as: an integer; nrhs ≥ 0.

 	 ap

 	is an array, referred to as AP, in which matrix A,
 to be factored, is stored in upper- or lower-packed storage mode.
 Specified
 as: a one-dimensional array of (at least) length n(n+1)/2,
 containing numbers of the data type indicated in Table 141.

 	 bx

 	is the general matrix B, containing the nrhs right-hand
 sides of the system. The right-hand sides, each of length n,
 reside in the columns of B.
 Specified as: an ldb by
 (at least) nrhs array, containing numbers of the
 data type indicated in Table 141.

 	 ldb

 	is the leading dimension of the array specified for B.

 Specified as: an integer; ldb > 0
 and ldb ≥ n.

 	 info

 	See On Return.

 	On Return

 	

 	 ap

 	is an array, referred to as AP, in which the
 transformed matrix A of order n,
 containing the results of the factorization, is stored in upper- or
 lower-packed storage mode.
 Returned as: a one-dimensional array
 of (at least) length n(n+1)/2,
 containing numbers of the data type indicated in Table 141. See Function.

 	 bx

 	is the general matrix X, containing the nrhs solutions
 to the system. The solutions, each of length n,
 reside in the columns of X.
 Returned as: an ldb by
 (at least) nrhs array, containing numbers of the
 data type indicated in Table 141.

 	 info

 	has the following meaning:
 If info = 0, the subroutine completed successfully.

 If info > 0, the factorization was unsuccessful. B is overwritten; that is, the original
 input is not preserved. info is set equal to the order i of
 the first minor encountered having a nonpositive determinant.

 [image: Start of change] Returned as:[image: Start of change]
 	For SPPSV, DPPSV, CPPSV, and ZPPSV, returned as: an integer; info ≥ 0.

 	For LAPACKE_sppsv, LAPACKE_dppsv, LAPACKE_cppsv, and LAPACKE_zppsv, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	These subroutines accept lowercase letters for the uplo argument.

 	In your C program, argument info must be passed
 by reference.

 	The matrices used in this computation must have no common elements;
 otherwise, results are unpredictable. See Concepts.

 	On input, the imaginary parts of the diagonal elements of the
 complex Hermitian matrix A are assumed to be zero, so
 you do not have to set these values. On output, they are set to zero.

 	For a description of the storage modes used for the matrices,
 see:

 	For positive definite real symmetric matrices, see Positive Definite or Negative Definite Symmetric Matrix.

 	For positive definite complex Hermitian matrices, see Positive Definite or Negative Definite Complex Hermitian Matrix.

 	On both input and output, matrices A, B,
 and X conform to LAPACK format.

 	The way these subroutines handle computational errors differs
 from LAPACK. Like LAPACK, these subroutines use the info argument
 to provide information about the computational error, but they also
 provide an error message.

 Function

 The system AX = B is
 solved for X, where X and B are
 general matrices and:

 	for SPPSV and DPPSV, A is a positive definite real
 symmetric matrix.

 	for CPPSV and ZPPSV, A is a positive definite complex
 Hermitian matrix.

 The matrix A, stored in upper- or lower-packed
 storage mode, is factored using the Cholesky factorization method,
 where A is expressed as:

 	A = LLT or A = UTU

 	for SPPSV and DPPSV

 	A = LLH or A = UHU

 	for CPPSV and ZPPSV

 where:

 L

 is a lower triangular matrix.

 U

 is an upper triangular matrix.

 If n is
 0, no computation is performed and the subroutine returns after doing
 some parameter checking. If n > 0 and nrhs is
 0, no solutions are computed and the subroutine returns after factoring
 the matrix.

 See references [8], [44], and [46].

 Error conditions

 	[bookmark: am5gr_hsppsv__am5gr_f110a063]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hsppsv__am5gr_f110a064]
 Computational Errors

 	Matrix A is not positive definite.

 	The order i of the first minor encountered
 having a nonpositive determinant is identified in the computational
 error message.

 	The computational error message may occur multiple times with
 processing continuing after each error, because the default for the
 number of allowable errors for error code 2148 is set to be unlimited
 in the ESSL error option table.

 	[bookmark: am5gr_hsppsv__am5gr_f110a065]
 Input-Argument Errors

 	

 	uplo ≠ 'U' or 'L'

 	n < 0

 	nrhs < 0

 	n > ldb

 	ldb ≤ 0

 Examples

 	Example 1

 	
 This example shows how to solve the system AX = B,
 where matrix A is a positive definite real symmetric
 matrix of order 9, stored in lower-packed storage mode.

 On
 input, matrix A is: ┌ ┐
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
 | 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
 | 1.0 2.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 |
 | 1.0 2.0 3.0 4.0 5.0 5.0 5.0 5.0 5.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 6.0 6.0 6.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.0 7.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
 └ ┘

 On
 output, all elements of this matrix A are 1.0.
 Note: The AP array
 is formatted in a triangular arrangement for readability; however,
 it is stored in lower-packed storage mode.

 Call Statement and Input: UPLO N NRHS AP BX LDB INFO
 | | | | | | |
CALL SPPSV ('L', 9, 2, AP, BX, 9, INFO)

 AP =

 (same as input

 AP

 in

 Example 5

)

 BX =

 (same as input

 BX

 in

 Example 5

)

 Output: AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0,
 1.0, 1.0,
 1.0)

 ┌ ┐
 | 1.0 1.0 |
 | 1.0 2.0 |
 | 1.0 3.0 |
BX = | 1.0 4.0 |
 | 1.0 5.0 |
 | 1.0 6.0 |
 | 1.0 7.0 |
 | 1.0 8.0 |
 | 1.0 9.0 |
 └ ┘

 INFO = 0

 	Example 2

 	
 This example shows how to solve the system AX = B,
 where matrix A is a positive definite real symmetric
 matrix of order 9, stored in upper-packed storage mode.

 On
 input, matrix A is: ┌ ┐
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
 | 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
 | 1.0 2.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 |
 | 1.0 2.0 3.0 4.0 5.0 5.0 5.0 5.0 5.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 6.0 6.0 6.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.0 7.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
 └ ┘

 On
 output, all elements of this matrix A are 1.0.
 Note: The AP array
 is formatted in a triangular arrangement for readability; however,
 it is stored in upper-packed storage mode.

 Call Statement and Input: UPLO N NRHS AP BX LDB INFO
 | | | | | | |
CALL SPPSV ('U', 9, 2, AP, BX, 9, INFO)

 AP =

 (same as input

 AP

 in

 Example 6

)

 BX =

 (same as input

 BX

 in

 Example 6

)

 Output: AP = (1.0,
 1.0, 1.0,
 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

 ┌ ┐
 | 1.0 1.0 |
 | 1.0 2.0 |
 | 1.0 3.0 |
BX = | 1.0 4.0 |
 | 1.0 5.0 |
 | 1.0 6.0 |
 | 1.0 7.0 |
 | 1.0 8.0 |
 | 1.0 9.0 |
 └ ┘

 INFO = 0

 	Example 3

 	
 This example shows how to solve the system AX = B,
 where matrix A is a positive definite complex Hermitian
 matrix of order 3, stored in lower-packed storage mode.

 On
 input, matrix A is: ┌ ┐
 | (25.0, 0.0) (-5.0, -5.0) (10.0, 5.0) |
 | (-5.0, 5.0) (51.0, 0.0) (4.0, -6.0) |
 | (10.0, -5.0) (4.0, 6.0) (71.0, 0.0) |
 └ ┘

 Note: On
 input, the imaginary parts of the diagonal elements of the complex
 Hermitian matrix A are assumed to be zero, so you do
 not have to set these values. On output, they are set to zero.

 Call Statement and Input: UPLO N NRHS AP BX LDB INFO
 | | | | | | |
CALL ZPPSV ('L', 3, 2, AP, BX, 3, INFO)

 AP =

 (same as input

 AP

 in

 Example 7

)

 BX =

 (same as input

 BX

 in

 Example 7

)

 Output: AP = ((5.0, 0.0), (-1.0, 1.0), (2.0, -1.0), (7.0, 0.0), (1.0, 1.0), (8.0, 0.0))

 ┌ ┐
 | (2.0, -1.0) (2.0, 0.0) |
BX = | (1.0, 1.0) (-1.0, 2.0) |
 | (0.0, -2.0) (1.0, 1.0) |
 └ ┘

 INFO = 0

 	Example 4

 	
 This example shows how to solve the system AX = B,
 where matrix A is a positive definite complex Hermitian
 matrix of order 3, stored in upper-packed storage mode.

 On
 input, matrix A is: ┌ ┐
 | (9.0, 0.0) (3.0, 3.0) (3.0, -3.0) |
 | (3.0, -3.0) (18.0, 0.0) (8.0, -6.0) |
 | (3.0, 3.0) (8.0, 6.0) (43.0, 0.0) |
 └ ┘

 Note: On
 input, the imaginary parts of the diagonal elements of the complex
 Hermitian matrix A are assumed to be zero, so you do
 not have to set these values. On output, they are set to zero.

 Call Statement and Input: UPLO N NRHS AP BX LDB INFO
 | | | | | | |
CALL ZPPSV ('U', 3, 2, AP, BX, 3, INFO)

 AP =

 (same as input

 AP

 in

 Example 8

)

 BX =

 (same as input

 BX

 in

 Example 8

)

 Output: AP = ((3.0, 0.0), (1.0, 1.0), (4.0, 0.0), (1.0, -1.0), (2.0, -1.0), (6.0, 0.0))

 ┌ ┐
 | (2.0, -1.0) (2.0, 0.0) |
BX = | (1.0, -1.0) (0.0, 1.0) |
 | (3.0, 0.0) (1.0, -1.0) |
 └ ┘

 INFO = 0

 Parent topic: Linear Algebraic Equations

 SPOSV, DPOSV, CPOSV, and ZPOSV (Positive Definite Real Symmetric
 or Complex Hermitian Matrix Factorization and Multiple Right-Hand
 Side Solve)

 Purpose

 These subroutines solve the system
 of linear equations AX = B for X,
 where X and B are general matrices and:

 	for SPOSV and DPOSV, A is a positive definite real
 symmetric matrix.

 	for CPOSV and ZPOSV, A is a positive definite complex
 Hermitian matrix.

 The matrix A, stored in upper- or lower-storage
 mode, is factored using Cholesky factorization.

 Table 142. Data Types.

 	A, B

 	Subroutine

 	Short-precision real

 	SPOSV▵

 	Long-precision real

 	DPOSV▵

 	Short-precision complex

 	CPOSV▵

 	Long-precision complex

 	ZPOSV▵

 	▵LAPACK

 Syntax

 	Fortran

 	 CALL SPOSV | DPOSV | CPOSV | ZPOSV (uplo, n, nrhs, a, lda, bx, ldb, info)

 	C and C++

 	sposv | dposv | cposv | zposv (uplo, n, nrhs, a,
 lda, bx, ldb, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sposv | LAPACKE_dposv | LAPACKE_cposv | LAPACKE_zposv
 (matrix_layout, uplo, n, nrhs, a,
 lda, bx, ldb);[image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 uplo

 	indicates whether matrix A is stored in upper or
 lower storage mode, where:
 If uplo = 'U', A is
 stored in upper storage mode.

 If uplo = 'L', A is
 stored in lower storage mode.

 Specified as: a single character.
 It must be 'U' or 'L'.

 	 n

 	is the order n of matrix A and
 the number of rows of matrix B.
 Specified as: an
 integer; n ≥ 0.

 	 nrhs

 	is the number of right-hand sides; that is, the number of columns
 of matrix B.
 Specified as: an integer; nrhs ≥ 0.

 	 a

 	is the positive definite matrix A to be factored.
 Specified
 as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 142. See Notes.

 	 lda

 	is the leading dimension of the array specified for A.

 Specified as: an integer; lda > 0
 and lda ≥ n.

 	 bx

 	is the general matrix B, containing the nrhs right-hand
 sides of the system. The right-hand sides, each of length n,
 reside in the columns of B.
 Specified as: an ldb by
 (at least) nrhs array, containing numbers of the
 data type indicated in Table 142.

 	 ldb

 	is the leading dimension of the array specified for B.

 Specified as: an integer; ldb > 0
 and ldb ≥ n.

 	 info

 	See On Return.

 	On Return

 	

 	 a

 	is the transformed matrix A of order n,
 containing the results of the factorization.
 Returned as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 142.
 See Function.

 	 bx

 	is the general matrix X, containing the nrhs solutions
 to the system. The solutions, each of length n,
 reside in the columns of X.
 Returned as: an ldb by
 (at least) nrhs array, containing numbers of the
 data type indicated in Table 142.

 	 info

 	has the following meaning:
 If info = 0,
 the subroutine completed successfully.

 If info > 0,
 the factorization was unsuccessful and the solution was not computed. info is
 set equal to the order i of the first minor encountered
 having a nonpositive determinant.

 [image: Start of change] Returned as:[image: Start of change]
 	For SPOSV, DPOSV, CPOSV, and ZPOSV, returned as: an integer; info ≥ 0.

 	For LAPACKE_sposv, LAPACKE_dposv, LAPACKE_cposv, and LAPACKE_zposv, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	In your C program, argument info must be passed
 by reference.

 	All subroutines accept lowercase letters for the uplo argument.

 	On input, the imaginary parts of the diagonal elements of the
 complex Hermitian matrix A are assumed to be zero, so
 you do not have to set these values. On output, they are set to zero.

 	The way these subroutines handle computational errors differs
 from LAPACK. Like LAPACK, these subroutines use the info argument
 to provide information about the computational error, but they also
 provide an error message.

 	On both input and output, matrices A, B,
 and X conform to LAPACK format.

 	For a description of the storage modes used for the matrices,
 see:

 	For positive definite real symmetric matrices, see Positive Definite or Negative Definite Symmetric Matrix.

 	For positive definite complex Hermitian matrices, see Positive Definite or Negative Definite Complex Hermitian Matrix.

 	The matrices used in this computation must have no common elements;
 otherwise, results are unpredictable. See Concepts.

 Function

 These subroutines
 solve the system of linear equations AX = B for X,
 where X and B are general matrices and:

 	for SPOSV and DPOSV, A is a positive definite real
 symmetric matrix.

 	for CPOSV and ZPOSV, A is a positive definite complex
 Hermitian matrix.

 The matrix A is factored using Cholesky factorization,
 where A is expressed as:

 	A=LLT or A=UTU

 	for SPOSV and DPOSV

 	A=LLH or A=UHU

 	 for CPOSV and ZPOSV

 where:

 L

 is a unit lower triangular matrix.

 U

 is an upper triangular matrix.

 If n is
 0, no computation is performed and the subroutine returns after doing
 some parameter checking. If n > 0 and nrhs is
 0, no solutions are computed and the subroutine returns after factoring
 the matrix.

 See references [8], [44], and [82].

 Error conditions

 	[bookmark: am5gr_hsposv__am5gr_f110a075]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hsposv__am5gr_f110a076]
 Computational Errors

 	Matrix A is not positive definite.
 The order i of
 the first minor encountered having a nonpositive determinant
 is identified in the computational error message.

 The computational
 error message may occur multiple times with processing continuing
 after each error, because the default for the number of allowable
 errors for error code 2148 is set to be unlimited in the ESSL error
 option table.

 	[bookmark: am5gr_hsposv__am5gr_f110a077]
 Input-Argument Errors

 	

 	uplo ≠ 'U' or 'L'

 	n < 0

 	nrhs < 0

 	n > lda

 	lda ≤ 0

 	n > ldb

 	ldb ≤ 0

 Examples

 	Example 1

 	
 This example shows how to solve the system AX = B,
 where:

 Matrix

 A

 is the same used as input in

 Example 1

 for SPOTRF.

 Matrix

 B

 is the same used as input in

 Example 1

 for SPOTRS.

 Call Statement and Input: UPLO N NRHS A LDA BX LDB INFO
 | | | | | | | |
CALL SPOSV('L', 9 , 2 , A , 9 , BX , 9 , INFO)

 A =

 (same as input

 A

 in

 Example 1

)

 BX =

 (same as input

 BX

 in

 Example 1

)

 Output: ┌ ┐
 | 1.0 |
 | 1.0 1.0 |
 | 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 1.0 |
A = | 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 . . . |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . . |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 └ ┘

 ┌ ┐
 | 1.0 1.0 |
 | 1.0 2.0 |
 | 1.0 3.0 |
 | 1.0 4.0 |
BX = | 1.0 5.0 |
 | 1.0 6.0 |
 | 1.0 7.0 |
 | 1.0 8.0 |
 | 1.0 9.0 |
 └ ┘

 INFO = 0

 	Example 2

 	
 This example shows how to solve the system AX = B,
 where:

 Matrix

 A

 is the same used as input in

 Example 2

 for SPOTRF.

 Matrix

 B

 is the same used as input in

 Example 2

 for SPOTRS.

 Call Statement and Input: UPLO N NRHS A LDA BX LDB INFO
 | | | | | | | |
CALL SPOSV('U' , 9 , 2 , A , 9 , BX , 9 , INFO)

 A =

 (same as input

 A

 in

 Example 2

)

 BX =

 (same as input

 BX

 in

 Example 2

)

 Output: ┌ ┐
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | . . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | . . . 1.0 1.0 1.0 1.0 1.0 1.0 |
A = | 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 |
 | 1.0 1.0 |
 | 1.0 |
 └ ┘

 ┌ ┐
 | 1.0 1.0 |
 | 1.0 2.0 |
 | 1.0 3.0 |
 | 1.0 4.0 |
BX = | 1.0 5.0 |
 | 1.0 6.0 |
 | 1.0 7.0 |
 | 1.0 8.0 |
 | 1.0 9.0 |
 └ ┘

 INFO = 0

 	Example 3

 	
 This example shows how to solve the system AX = B,
 where:

 Matrix

 A

 is the same used as input in

 Example 3

 for CPOTRF.

 Matrix

 BX

 is the same used as input in

 Example 3

 for CPOTRS.

 Call Statement and Input: UPLO N NRHS A LDA BX LDB INFO
 | | | | | | | |
CALL CPOSV('L', 3 , 2 , A , 3 , BX , 3 , INFO)

 ┌ ┐
 | (25.0, 0.0) (-5.0, -5.0) (10.0, 5.0) |
A = | (-5.0, 5.0) (51.0, 0.0) (4.0, -6.0) |
 | (10.0, -5.0) (4.0, 6.0) (71.0, 0.0) |
 └ ┘

 ┌ ┐
 | (60.0, -55.0) (70.0, 10.0) |
BX = | (34.0, 58.0) (-51.0, 110.0) |
 | (13.0, -152.0) (75.0, 63.0) |
 └ ┘

 Output: ┌ ┐
 | (5.0, 0.0) (-5.0, -5.0) (10.0, 5.0) |
A = | (-1.0, 1.0) (7.0, 0.0) (4.0, -6.0) |
 | (2.0, -1.0) (1.0, 1.0) (8.0, 0.0) |
 └ ┘

 ┌ ┐
 | (2.0, -1.0) (2.0, 0.0) |
BX = | (1.0, 1.0) (-1.0, 2.0) |
 | (0.0, -2.0) (1.0, 1.0) |
 └ ┘

 INFO = 0

 	Example 4

 	
 This example shows how to solve the system AX = B,
 where:

 Matrix

 A

 is the same used as input in

 Example 4

 for CPOTRF.

 Matrix

 BX

 is the same used as input in

 Example 4

 for CPOTRS.

 Call Statement and Input: UPLO N NRHS A LDA BX LDB INFO
 | | | | | | | |
CALL CPOSV('U', 3 , 2 , A , 3 , BX , 3 , INFO)

 ┌ ┐
 | (9.0, 0.0) (3.0, 3.0) (3.0, -3.0) |
A = | (3.0, -3.0) (18.0, 0.0) (8.0, -6.0) |
 | (3.0, 3.0) (8.0, 6.0) (43.0, 0.0) |
 └ ┘

 ┌ ┐
 | (33.0, -18.0) (15.0, -3.0) |
BX = | (45.0, -45.0) (8.0, -2.0) |
 | (152.0, 1.0) (43.0, -29.0) |
 └ ┘

 Output:
 Note: The strict lower part of A is
 not referenced.

 ┌ ┐
 | (3.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
A = | (3.0, -3.0) (4.0, 0.0) (2.0, -1.0) |
 | (3.0, 3.0) (8.0, 6.0) (6.0, 0.0) |
 └ ┘

 ┌ ┐
 | (2.0, -1.0) (2.0, 0.0) |
BX = | (1.0, -1.0) (0.0, 1.0) |
 | (3.0, 0.0) (1.0, -1.0) |
 └ ┘

 INFO = 0

 Parent topic: Linear Algebraic Equations

 SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, ZPOF, SPPTRF,
 DPPTRF, CPPTRF, ZPPTRF, SPPF, and DPPF (Positive Definite Real Symmetric
 or Complex Hermitian Matrix Factorization)

 Purpose

 These subroutines factor matrix A as
 explained below:

 	SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, and ZPOF

 	
 The SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, and
 ZPOF subroutines factor matrix A stored in upper or
 lower storage mode, where:

 	For SPOTRF, DPOTRF, SPOF, and DPOF, A is a positive
 definite real symmetric matrix.

 	For CPOTRF, ZPOTRF, CPOF, and ZPOF, A is a positive
 definite complex Hermitian matrix.

 Matrix A is factored using Cholesky factorization.

 To
 solve the system of equations with one or more right-hand sides, follow
 the call to SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, or ZPOF
 with a call to SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM,
 or ZPOSM, respectively.

 To find the inverse of matrix A,
 follow the call to SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, or DPOF with
 a call to SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, or DPOICD, respectively.

 To
 estimate the reciprocal of the condition number of matrix A,
 follow the call to SPOTRF, DPOTRF, CPOTRF, or ZPOTRF with a call to
 SPOCON, DPOCON, CPOCON, or ZPOCON, respectively.

 	SPPTRF, DPPTRF, CPPTRF, and ZPPTRF

 	
 The SPPTRF, DPPTRF, CPPTRF, and ZPPTRF subroutines factor
 matrix A, stored in upper- or lower-packed storage mode,
 where:

 	For SPPTRF and DPPTRF, A is a positive definite
 real symmetric matrix.

 	For CPPTRF and ZPPTRF, A is a positive definite
 complex Hermitian matrix.

 Matrix A is factored using Cholesky factorization.

 To
 solve the system of equations with one or more right-hand sides, follow
 the call to SPPTRF, DPPTRF, CPPTRF, or ZPPTRF with a call to SPPTRS,
 DPPTRS, CPPTRS, or ZPPTRS, respectively.

 To find the inverse
 of matrix A, follow the call to SPPTRF, DPPTRF, CPPTRF,
 or ZPPTRF with a call to SPPTRI, DPPTRI, CPPTRI, or ZPPTRI, respectively.

 To
 estimate the reciprocal of the condition number of matrix A,
 follow the call to SPPTRF, DPPTRF, CPPTRF, or ZPPTRF with a call to
 SPPCON, DPPCON, CPPCON, or ZPPCON, respectively.

 	SPPF and DPPF

 	
 The SPPF and DPPF subroutines factor positive definite real
 symmetric matrix A, stored in lower-packed storage mode,
 using Gaussian elimination (LDLT) or Cholesky
 factorization. To solve a system of equations with one or more right-hand
 sides, follow the call to these subroutines with one or more calls
 to SPPS or DPPS, respectively. To find the inverse of matrix A,
 follow the call to these subroutines, performing Cholesky factorization,
 with a call to SPPICD or DPPICD, respectively.

 Table 143. Data Types.

 	A

 	Subroutine

 	Short-precision real

 	 SPOTRF▵, SPOF, SPPTRF▵,
 and SPPF

 	Long-precision real

 	DPOTRF▵, DPOF, DPPTRF▵,
 and DPPF

 	Short-precision complex

 	CPOTRF▵, CPOF, and CPPTRF▵

 	Long-precision complex

 	ZPOTRF▵, ZPOF, and ZPPTRF▵

 	▵LAPACK

 Note: The output from each of these subroutines should be
 used only as input for specific other subroutines, as shown in the
 table below.

 	Output from this
 subroutine:

 	Should
 be used only as input to the following subroutines:

 	Solve

 	Inverse

 	Reciprocal of the
 condition number

 	SPOTRF

 	SPOTRS

 	SPOTRI

 	SPOCON

 	DPOTRF

 	DPOTRS

 	DPOTRI

 	DPOCON

 	CPOTRF

 	CPOTRS

 	CPOTRI

 	CPOCON

 	ZPOTRF

 	ZPOTRS

 	ZPOTRI

 	ZPOCON

 	SPOF

 	SPOSM

 	SPOICD

 	SPOICD

 	DPOF

 	DPOSM

 	DPOICD

 	DPOICD

 	CPOF

 	CPOSM

 	

 	

 	ZPOF

 	ZPOSM

 	

 	

 	SPPTRF

 	SPPTRS

 	SPPTRI

 	SPPCON

 	DPPTRF

 	DPPTRS

 	DPPTRI

 	DPPCON

 	CPPTRF

 	CPPTRS

 	CPPTRI

 	CPPCON

 	ZPPTRF

 	ZPPTRS

 	ZPPTRI

 	ZPPCON

 	SPPF

 	SPPS

 	SPPICD

 	SPPICD

 	DPPF

 	DPPS

 	DPPICD

 	DPPICD

 Syntax

 	Fortran

 	

 CALL SPOTRF | DPOTRF | CPOTRF | ZPOTRF (

 uplo

 ,

 n

 ,

 a

 ,

 lda

 ,

 info

)

 CALL SPOF | DPOF | CPOF | ZPOF (

 uplo

 ,

 a

 ,

 lda

 ,

 n

)

 CALL SPPTRF | DPPTRF | CPPTRF | ZPPTRF (

 uplo

 ,

 n

 ,

 ap

 ,

 info

)

 CALL SPPF | DPPF (

 ap

 ,

 n

 ,

 iopt

)

 	C and C++

 	

 spotrf | dpotrf | cpotrf | zpotrf (

 uplo

 ,

 n

 ,

 a

 ,

 lda

 ,

 info

);

 spof | dpof | cpof | zpof (

 uplo

 ,

 a

 ,

 lda

 ,

 n

);

 spptrf | dpptrf | cpptrf | zpptrf (

 uplo

 ,

 n

 ,

 ap

 ,

 info

);

 sppf | dppf (

 ap

 ,

 n

 ,

 iopt

);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_spotrf | LAPACKE_dpotrf | LAPACKE_cpotrf | LAPACKE_zpotrf
 (matrix_layout, uplo, n,
 a, lda);
nfo = LAPACKE_spptrf | LAPACKE_dpptrf |
 LAPACKE_cpptrf | LAPACKE_zpptrf (matrix_layout, uplo,
 n, ap); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 uplo

 	indicates whether matrix A is stored in upper or
 lower storage mode, where:
 If uplo = 'U', A is
 stored in upper storage mode.

 If uplo = 'L', A is
 stored in lower storage mode.

 Specified as: a single character.
 It must be 'U' or 'L'.

 	 ap

 	is an array, referred to as AP, in which matrix A,
 to be factored, is stored as follows:

 	SPPTRF, DPPTRF, CPPTRF, and ZPPTRF

 	Upper-packed or lower-packed storage mode

 	SPPF and DPPF

 	Lower-packed storage mode

 Specified as: a one-dimensional array, containing
 numbers of the data type indicated in Table 143. See Notes.

 	For SPPTRF, DPPTRF, CPPTRF, and ZPPTRF:

 	The array must have at least n(n+1)/2
 elements.

 	For SPPF and DPPF:

 	If iopt = 0 or 10, the array must have at least n(n+1)/2+n elements.
 If iopt = 1
 or 11, the array must have at least n(n+1)/2
 elements.

 	 a

 	is the positive definite matrix A, to be factored.

 Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 143.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ n.

 	 n

 	is the order n of matrix A.
 Specified
 as: an integer; n ≥ 0.

 	 iopt

 	determines the type of computation to be performed, where:
 If iopt = 0,
 the matrix is factored using the LDLT method,
 and the output is stored in an internal format.

 If iopt = 1,
 the matrix is factored using Cholesky factorization, and the output
 is stored in an internal format.

 If iopt = 10,
 the matrix is factored using the LDLT method,
 and the output is stored in lower-packed storage mode.

 If iopt = 11,
 the matrix is factored using Cholesky factorization, and the output
 is stored in lower-packed storage mode.

 Specified as: an integer; iopt = 0,
 1, 10, or 11.

 	 info

 	See On Return.

 	On Return

 	

 	 ap

 	is an array, referred to as AP, in which the
 transformed matrix A of order n,
 containing the results of the factorization, is stored.

 	For SPPTRF, DPPTRF, CPPTRF, and ZPPTRF:

 	The transformed matrix is stored in upper-packed or lower-packed
 storage mode.

 	For SPPF and DPPF:

 	If iopt is 0 or 1, the transformed matrix is
 stored in an internal format and should only be used as input to the
 corresponding solve or inverse subroutine.
 If iopt is
 10 or 11, the transformed matrix is stored in lower-packed storage
 mode.

 Returned as: a one-dimensional array, containing
 numbers of the data type indicated in Table 143.

 	For SPPTRF, DPPTRF, CPPTRF, and ZPPTRF:

 	The array contains at least n(n+1)/2
 elements.

 	For SPPF and DPPF:

 	If iopt = 0 or 10, the array contains n(n+1)/2+n elements.
 If iopt = 1
 or 11, the array contains n(n+1)/2
 elements.

 See Notes and
 see Function.

 	 a

 	is the transformed matrix A of order n,
 containing the results of the factorization. See Function.
 Returned as: a two-dimensional
 array, containing numbers of the data type indicated in Table 143.

 	 info

 	has the following meaning:
 If info = 0,
 the factorization completed successfully.

 If info > 0, info is
 set equal to the order i of the first minor encountered
 having a nonpositive determinant.

 [image: Start of change] Returned as:[image: Start of change]
 	For SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, ZPOF, SPPTRF, DPPTRF, CPPTRF, ZPPTRF,
 SPPF, and DPPF, returned as: an integer; info ≥ 0.

 	For LAPACKE_spotrf, LAPACKE_dpotrf, LAPACKE_cpotrf, LAPACKE_zpotrf, LAPACKE_spptrf,
 LAPACKE_dpptrf, LAPACKE_cpptrf, and LAPACKE_zpptrf, returned as an integer function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Specified as: an integer; info ≥ 0.

 Notes

 	In your C program, argument info must be passed
 by reference.

 	All subroutines accept lowercase letters for the uplo argument.

 	On input, the imaginary parts of the diagonal elements of the
 complex Hermitian matrix A are assumed to be zero, so
 you do not have to set these values. On output, they are set to zero.

 	In the input and output arrays specified for ap,
 the first n(n+1)/2 elements
 are matrix elements. The additional n locations,
 required in the array when iopt = 0 or 10, are used for working storage
 by this subroutine and should not be altered between calls to the
 factorization and solve subroutines.

 	If iopt = 0 or 1, SPPF and DPPF in some cases
 utilize algorithms based on recursive packed storage format. As a
 result, on output, if iopt = 0 or 1, the array specified for
 AP may be stored in this new format rather than the conventional lower
 packed format. (See references [61], [77], and [79]).
 The array
 specified for AP should not be altered between calls to the factorization
 and solve subroutines; otherwise unpredictable results may occur.

 	The way _POTRF and _PPTRF subroutines handle computational errors
 differs from LAPACK. Like LAPACK, these subroutines use the info argument
 to provide information about the computational error, but they also
 provide an error message.

 	On both input and output, matrix A conforms to LAPACK
 format.

 	For a description of the storage modes used for the matrices,
 see:

 	For positive definite symmetric matrices, see Positive Definite or Negative Definite Symmetric Matrix.

 	For positive definite complex Hermitian matrices, see Positive Definite or Negative Definite Complex Hermitian Matrix.

 Function

 The functions
 for these subroutines are described.

 For
 SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, and ZPOF

 The
 positive definite matrix A, stored in upper or lower
 storage mode, is factored using Cholesky factorization, where A is
 expressed as:

 	A = LLT or A = UTU

 	for SPOTRF, DPOTRF, SPOF, and DPOF

 	A = LLH or A = UHU

 	for CPOTRF, ZPOTRF, CPOF, and ZPOF

 where:

 L

 is a lower triangular matrix.

 U

 is an upper triangular matrix.

 If n is
 0, no computation is performed. See references [8] and [44].

 For SPPTRF, DPPTRF, CPPTRF, and ZPPTRF:

 The
 positive definite matrix A, stored in upper-packed or
 lower-packed storage mode, is factored using Cholesky factorization,
 where A is expressed as:

 	A = LLT or A = UTU

 	for SPPTRF and DPPTRF

 	A = LLH or A = UHU

 	for CPPTRF and ZPPTRF

 where:

 L

 is a lower triangular matrix.

 U

 is an upper triangular matrix.

 If n is
 0, no computation is performed. See references [8], [44], and [78].

 For SPPF and DPPF:

 If iopt = 0
 or 10, the positive definite symmetric matrix A, stored
 in lower-packed storage mode, is factored using Gaussian elimination,
 where A is expressed as:

 A

 =

 LDL

 T

 where:

 L

 is a unit lower triangular matrix.

 D

 is a diagonal matrix.

 If iopt = 1
 or 11, the positive definite symmetric matrix A, stored
 in lower-packed storage mode, is factored using Cholesky factorization,
 where A is expressed as:

 A

 =

 LL

 T

 where L is
 a lower triangular matrix.

 If n is 0, no
 computation is performed. See references [8] and [44].

 Error conditions

 	[bookmark: am5gr_hsppf__am5gr_f110a090]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hsppf__am5gr_f110a091]
 Computational Errors

 	

 	Matrix A is not positive definite (for SPOTRF, DPOTRF,
 CPOTRF, ZPOTRF, SPPTRF, DPPTRF, CPPTRF, and ZPPTRF).

 	The order i of the first minor encountered
 having a nonpositive determinant is identified in the computational
 error message.

 	The computational error message may occur multiple times with
 processing continuing after each error, because the default for the
 number of allowable errors for error code 2148 is set to be unlimited
 in the ESSL error option table.

 	Matrix A is not positive definite (for SPPF and
 DPPF when iopt = 0 or 10).

 	Processing continues to the end of the matrix.

 	One or more elements of D contain values less than
 or equal to 0; all elements of D are checked. The index i of
 the last nonpositive element encountered is identified in the
 computational error message.

 	The return code is set to 1.

 	i can be determined at run time by use of the
 ESSL error-handling facilities. To obtain this information, you must
 use ERRSET to change the number of allowable errors for error code
 2104 in the ESSL error option table; otherwise, the default value
 causes your program to terminate when this error occurs. For details,
 see What Can You Do about ESSL Computational Errors?.

 	Matrix A is not positive definite (for SPPF and
 DPPF when iopt = 1 or 11 and for SPOF, DPOF, CPOF,
 and ZPOF).

 	Processing stops at the first occurrence of a nonpositive definite
 diagonal element.

 	The order i of the first minor encountered
 having a nonpositive determinant is identified in the computational
 error message.

 	The return code is set to 1.

 	i can be determined at run time by use of the
 ESSL error-handling facilities. To obtain this information, you must
 use ERRSET to change the number of allowable errors for error code
 2115 in the ESSL error option table; otherwise, the default value
 causes your program to terminate when this error occurs. For details,
 see What Can You Do about ESSL Computational Errors?.

 	[bookmark: am5gr_hsppf__am5gr_f110a092]
 Input-Argument Errors

 	

 	uplo ≠ 'U' or 'L'

 	n < 0

 	n > lda

 	lda ≤ 0

 	iopt ≠ 0, 1, 10, or 11

 Examples

 	Example 1

 	
 This example shows a factorization of the same positive definite
 symmetric matrix A of order 9 used in Example 9, but stored in
 lower storage mode.

 Call Statement and
 Input:

 UPLO N A LDA INFO
 | | | | |
CALL SPOTRF('L' , 9 , A , 9 , INFO)

 or

 UPLO A LDA N
 | | | |
CALL SPOF('L' , A , 9 , 9)

 ┌ ┐
 | 1.0 |
 | 1.0 2.0 |
 | 1.0 2.0 3.0 |
 | 1.0 2.0 3.0 4.0 |
A = | 1.0 2.0 3.0 4.0 5.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 . . . |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 . . |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 . |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
 └ ┘

 Output: ┌ ┐
 | 1.0 |
 | 1.0 1.0 |
 | 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 1.0 |
A = | 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 . . . |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . . |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 └ ┘

 INFO = 0

 	Example 2

 	
 This example shows a factorization of the same positive definite
 symmetric matrix A of order 9 used in Example 9, but stored in
 upper storage mode.

 Call Statement and
 Input:

 UPLO N A LDA INFO
 | | | | |
CALL SPOTRF('U' , 9 , A , 9 , INFO)

 or

 UPLO A LDA N
 | | | |
CALL SPOF('U' , A , 9 , 9)

 ┌ ┐
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | . 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
 | . . 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
 | . . . 4.0 4.0 4.0 4.0 4.0 4.0 |
A = | 5.0 5.0 5.0 5.0 5.0 |
 | 6.0 6.0 6.0 6.0 |
 | 7.0 7.0 7.0 |
 | 8.0 8.0 |
 | 9.0 |
 └ ┘

 Output: ┌ ┐
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | . . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | . . . 1.0 1.0 1.0 1.0 1.0 1.0 |
A = | 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 |
 | 1.0 1.0 |
 | 1.0 |
 └ ┘

 INFO = 0

 	Example 3

 	
 This example shows a factorization of positive definite complex
 Hermitian matrix A of order 3, stored in lower storage
 mode, where on input matrix A is: ┌ ┐
 | (25.0, 0.0) (-5.0, -5.0) (10.0, 5.0) |
 | (-5.0, 5.0) (51.0, 0.0) (4.0, -6.0) |
 | (10.0, -5.0) (4.0, 6.0) (71.0, 0.0) |
 └ ┘

 Note: On
 input, the imaginary parts of the diagonal elements of the complex
 Hermitian matrix A are assumed to be zero, so you do
 not have to set these values. On output, they are set to zero.

 Call Statement and Input:

 UPLO N A LDA INFO
 | | | | |
CALL CPOTRF('L' , 3 , A , 3 , INFO)

 or

 UPLO A LDA N
 | | | |
CALL CPOF('L' , A , 3 , 3)

 ┌ ┐
 | (25.0, .) . . |
A = | (-5.0, 5.0) (51.0, .) . |
 | (10.0, -5.0) (4.0, 6.0) (71.0, .) |
 └ ┘

 Output: ┌ ┐
 | (5.0, 0.0) . . |
A = | (-1.0, 1.0) (7.0, 0.0) . |
 | (2.0, -1.0) (1.0, 1.0) (8.0, 0.0) |
 └ ┘

 INFO = 0

 	Example 4

 	
 This example shows a factorization of positive definite complex
 Hermitian matrix A of order 3, stored in upper storage
 mode, where on input matrix A is: ┌ ┐
 | (9.0, 0.0) (3.0, 3.0) (3.0, -3.0) |
 | (3.0, -3.0) (18.0, 0.0) (8.0, -6.0) |
 | (3.0, 3.0) (8.0, 6.0) (43.0, 0.0) |
 └ ┘

 Note: On
 input, the imaginary parts of the diagonal elements of the complex
 Hermitian matrix A are assumed to be zero, so you do
 not have to set these values. On output, they are set to zero.

 Call Statement and Input:

 UPLO N A LDA INFO
 | | | | |
CALL CPOTRF('U' , 3 , A , 3 , INFO)

 or

 UPLO A LDA N
 | | | |
CALL CPOF('U' , A , 3 , 3)

 ┌ ┐
 | (9.0, .) (3.0,3.0) (3.0,-3.0) |
A = | . (18.0, .) (8.0,-6.0) |
 | . . (43.0, .) |
 └ ┘

 Output: ┌ ┐
 | (3.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
A = | . (4.0, 0.0) (2.0, -1.0) |
 | . . (6.0, 0.0) |
 └ ┘

 INFO = 0

 	Example 5

 	
 This example shows a factorization (using the Cholesky factorization
 method) of the same positive definite symmetric matrix A of
 order 9 used in Example 9,
 but stored in lower-packed storage mode.

 Note: The AP arrays
 are formatted in a triangular arrangement for readability; however,
 they are stored in lower-packed storage mode.

 Call Statement and Input: UPLO N AP INFO
 | | | |
CALL SPPTRF('L' , 9 , AP , INFO)

 AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0,
 4.0, 4.0, 4.0, 4.0, 4.0, 4.0,
 5.0, 5.0, 5.0, 5.0, 5.0,
 6.0, 6.0, 6.0, 6.0,
 7.0, 7.0, 7.0,
 8.0, 8.0,
 9.0)

 Output: AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0,
 1.0, 1.0,
 1.0)

INFO = 0

 	Example 6

 	
 This example shows a factorization (using the Cholesky factorization
 method) of the same positive definite symmetric matrix A of
 order 9 used in Example 9,
 but stored in upper-packed storage mode.
 Note: The AP arrays
 are formatted in a triangular arrangement for readability; however,
 they are stored in upper-packed storage mode.

 Call Statement and Input: UPLO N AP INFO
 | | | |
CALL SPPTRF('U', 9, AP, INFO)

 AP = (1.0,
 1.0, 2.0,
 1.0, 2.0, 3.0,
 1.0, 2.0, 3.0, 4.0,
 1.0, 2.0, 3.0, 4.0, 5.0,
 1.0, 2.0, 3.0, 4.0, 5.0, 6.0,
 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0,
 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,
 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)

 Output: AP = (1.0,
 1.0, 1.0,
 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

 INFO = 0

 	Example 7

 	
 This example shows a factorization (using the Cholesky factorization
 method) of the same positive definite complex Hermitian matrix A of
 order 3 used in Example 3,
 but stored in lower-packed storage mode.

 Note: On input, the
 imaginary parts of the diagonal elements of the complex Hermitian
 matrix A are assumed to be zero, so you do not have
 to set these values. On output, they are set to zero.

 Call Statement and Input: UPLO N AP INFO
 | | | |
CALL ZPPTRF('L' , 3 , AP , INFO)

 AP = ((25.0, .), (-5.0, 5.0), (10.0, -5.0), (51.0, .), (4.0, 6.0), (71.0, .))

 Output: AP = ((5.0, 0.0), (-1.0, 1.0), (2.0, -1.0), (7.0, 0.0), (1.0, 1.0), (8.0, 0.0))

INFO = 0

 	Example 8

 	
 This example shows a factorization (using the Cholesky factorization
 method) of the same positive definite complex Hermitian matrix A of
 order 3 used in Example 4,
 but stored in upper-packed storage mode.

 Note: On input, the
 imaginary parts of the diagonal elements of the complex Hermitian
 matrix A are assumed to be zero, so you do not have
 to set these values. On output, they are set to zero.

 Call Statement and Input: UPLO N AP INFO
 | | | |
CALL ZPPTRF('U' , 3 , AP , INFO)

 AP = ((9.0, .), (3.0, 3.0), (18.0, .), (3.0, -3.0), (8.0, -6.0), (43.0, .))

 Output: AP = ((3.0, 0.0), (1.0, 1.0), (4.0, 0.0), (1.0, -1.0), (2.0, -1.0), (6.0, 0.0))

INFO = 0

 	Example 9

 	
 This example shows a factorization (using the Gaussian elimination
 method) of positive definite symmetric matrix A of order
 9, stored in lower-packed storage mode, where on input matrix A is:
 ┌ ┐
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
 | 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
 | 1.0 2.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 |
 | 1.0 2.0 3.0 4.0 5.0 5.0 5.0 5.0 5.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 6.0 6.0 6.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.0 7.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
 └ ┘

 On
 output, all elements of this matrix A are 1.0.
 Note: The AP arrays
 are formatted in a triangular arrangement for readability; however,
 they are stored in lower-packed storage mode.

 Call Statement and Input: AP N IOPT
 | | |
CALL SPPF(AP, 9, 0)

 AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0,
 4.0, 4.0, 4.0, 4.0, 4.0, 4.0,
 5.0, 5.0, 5.0, 5.0, 5.0,
 6.0, 6.0, 6.0, 6.0,
 7.0, 7.0, 7.0,
 8.0, 8.0,
 9.0,
 . , . , . , . , . , . , . , . , .)

 Output: AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0,
 1.0, 1.0,
 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

 	Example 10

 	
 This example shows a factorization (using the Cholesky factorization
 method) of the same positive definite symmetric matrix A of
 order 9 used in Example 9,
 stored in lower-packed storage mode.
 Note: The AP arrays
 are formatted in a triangular arrangement for readability; however,
 they are stored in lower-packed storage mode.

 Call Statement and Input: AP N IOPT
 | | |
CALL SPPF(AP, 9, 1)

 AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0,
 4.0, 4.0, 4.0, 4.0, 4.0, 4.0,
 5.0, 5.0, 5.0, 5.0, 5.0,
 6.0, 6.0, 6.0, 6.0,
 7.0, 7.0, 7.0,
 8.0, 8.0,
 9.0)

 Output: AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0,
 1.0, 1.0,
 1.0)

 Parent topic: Linear Algebraic Equations

 SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM, ZPOSM,
 SPPTRS, DPPTRS, CPPTRS, and ZPPTRS (Positive Definite Real Symmetric
 or Complex Hermitian Matrix Multiple Right-Hand Side Solve)

 Purpose

 These subroutines solve the system AX = B for X,
 where X and B are general matrices
 and:

 	For SPOTRS, DPOTRS, SPOSM, DPOSM, SPPTRS, and DPPTRS, A is
 a positive definite real symmetric matrix.

 	For CPOTRS, ZPOTRS, CPOSM, ZPOSM, CPPTRS, and ZPPTRS, A is
 a positive definite complex Hermitian matrix.

 SPOTRS, DPOTRS, CPOTRS, and ZPOTRS use the results of
 the factorization of matrix A, produced by a preceding
 call to SPOTRF, DPOTRF, CPOTRF, or ZPOTRF, respectively.

 SPOSM,
 DPOSM, CPOSM, and ZPOSM use the results of the factorization of matrix A,
 produced by a preceding call to SPOF/SPOFCD, DPOF/DPOFCD, CPOF, or
 ZPOF, respectively.

 SPPTRS, DPPTRS, CPPTRS, and ZPPTRS use
 the results of the factorization of matrix A, produced
 by a preceding call to SPPTRF, DPPTRF, CPPTRF, or ZPPTRF, respectively.

 Table 144. Data Types.

 	A, B, X

 	Subroutine

 	Short-precision real

 	SPOTRS▵, SPOSM, and SPPTRS▵

 	Long-precision real

 	DPOTRS▵, DPOSM, and DPPTRS▵

 	Short-precision complex

 	CPOTRS▵, CPOSM, and CPPTRS▵

 	Long-precision complex

 	ZPOTRS▵, ZPOSM, and ZPPTRS▵

 	▵LAPACK

 Note: The input to these solve subroutines must be the output
 from the corresponding factorization subroutines.

 Syntax

 	Fortran

 	
 CALL SPOTRS | DPOTRS | CPOTRS | ZPOTRS (uplo, n, nrhs, a, lda, bx, ldb, info)

 CALL
 SPOSM | DPOSM | CPOSM | ZPOSM (uplo, a, lda, n, bx, ldb, nrhs)

 CALL
 SPPTRS | DPPTRS | CPPTRS | ZPPTRS (uplo, n, nrhs, ap, bx, ldb, info)

 	C and C++

 	spotrs | dpotrs | cpotrs | zpotrs (uplo, n, nrhs,
 a, lda, bx, ldb, info);

 sposm
 | dposm | cposm | zposm (uplo, a, lda, n, bx, ldb,
 nrhs);

 spptrs
 | dpptrs | cpptrs | zpptrs (uplo, n, nrhs, ap, bx,
 ldb, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_spotrs | LAPACKE_dpotrs | LAPACKE_cpotrs | LAPACKE_zpotrs
 (matrix_layout, uplo, n,
 nrhs, a, lda, bx,
 ldb);
info = LAPACKE_spptrs | LAPACKE_dpptrs | LAPACKE_cpptrs |
 LAPACKE_zpptrs (matrix_layout, uplo, n,
 nrhs, ap, bx, ldb); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 uplo

 	indicates whether the original matrix A is stored
 in upper or lower storage mode, where:
 If uplo = 'U', A is
 stored in upper storage mode.

 If uplo = 'L', A is
 stored in lower storage mode.

 Specified as: a single character.
 It must be 'U' or 'L'.

 	 a

 	is the factorization of positive definite matrix A,
 produced by a preceding call to SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF/SPOFCD,
 DPOF/DPOFCD, CPOF, or ZPOF.
 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 144.

 	 ap

 	is an array, referred to as AP, in which the
 factorization of positive definite matrix A, produced
 by a preceding call to SPPTRF, DPPTRF, CPPTRF, or ZPPTRF, is stored
 in upper-packed or lower-packed storage mode.
 Specified as: a
 one-dimensional array, containing numbers of the data type indicated
 in Table 144.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ n.

 	 n

 	is the order of matrix A and the number of rows
 of matrix B.
 Specified as: an integer; n ≥ 0.

 	 bx

 	is the general matrix B, containing the nrhs right-hand
 sides of the system. The right-hand sides, each of length n,
 reside in the columns of B.
 Specified as: an ldb by
 (at least) nrhs array, containing numbers of the
 data type indicated in Table 144.

 	 ldb

 	is the leading dimension of the array specified for b.

 Specified as: an integer; ldb > 0
 and ldb ≥ n.

 	 nrhs

 	is the number of right-hand sides; that is, the number of columns
 of matrix B.
 Specified as: an integer; nrhs ≥ 0.

 	info

 	See On Return.

 	On Return

 	

 	 bx

 	is the general matrix X, containing the nrhs solutions
 to the system. The solutions, each of length n,
 reside in the columns of X.
 Returned as: an ldb by
 (at least) nrhs array, containing numbers of the
 data type indicated in Table 144.

 	 info

 	info has the following meaning:
 If info = 0,
 the solve completed successfully.

 [image: Start of change] Returned as:[image: Start of change]
 	For SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM, ZPOSM, SPPTRS, DPPTRS, CPPTRS, and
 ZPPTRS, returned as: an integer; info ≥ 0.

 	For LAPACKE_spotrs, LAPACKE_dpotrs, LAPACKE_cpotrs, LAPACKE_zpotrs, LAPACKE_spptrs,
 LAPACKE_dpptrs, LAPACKE_cpptrs, and LAPACKE_zpptrs, returned as an integer function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	In your C program, argument info must be passed
 by reference.

 	All subroutines accept lowercase letters for the uplo argument.

 	The scalar data specified for input arguments uplo, lda,
 and n for these subroutines must be the same as
 the corresponding input arguments specified for SPOTRF/SPOF/SPOFCD/SPPTRF,
 DPOTRF/DPOF/DPOFCD/DPPTRF, CPOTRF/CPOF/CPPTRF, and ZPOTRF/ZPOF/ZPPTRF,
 respectively.

 	The array data specified for input argument a for
 these subroutines must be the same as the corresponding output arguments
 for SPOTRF/SPOF/SPOFCD, DPOTRF/DPOF/DPOFCD, CPOTRF/CPOF, and ZPOTRF/ZPOF,
 respectively.

 	The array data specified for input argument ap for
 these subroutines must be the same as the corresponding output arguments
 for SPPTRF, DPPTRF, CPPTRF, and ZPPTRF, respectively.

 	The matrices used in this computation must have no common elements;
 otherwise, results are unpredictable. See Concepts.

 	For a description of how the matrices are stored:

 	For positive definite real symmetric matrices, see Positive Definite or Negative Definite Symmetric Matrix.

 	For positive definite complex Hermitian matrices, see Positive Definite or Negative Definite Complex Hermitian Matrix.

 Function

 The system AX = B is
 solved for X, where X and B are
 general matrices and A is a positive definite real symmetric
 matrix for SPOTRS/SPOSM/SPPTRS and DPOTRS/DPOSM/DPPTRS, and a positive
 definite complex Hermitian matrix for CPOTRS/CPOSM/CPPTRS and ZPOTRS/ZPOSM/ZPPTRS.
 These subroutines use the results of the factorization of matrix A,
 produced by a preceding call to SPOTRF/SPOF/SPOFCD/SPPTRF, DPOTRF/DPOF/DPOFCD/DPPTRF,
 CPOTRF/CPOF/CPPTRF, or ZPOTRF/ZPOF/ZPPTRF, respectively. For a description
 of how A is factored, see SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, ZPOF, SPPTRF, DPPTRF, CPPTRF, ZPPTRF, SPPF, and DPPF (Positive Definite
 Real Symmetric or Complex Hermitian Matrix Factorization).

 If n or nrhs is
 0, no computation is performed. See references [8] and [44].

 Error conditions

 	[bookmark: am5gr_hsposm__am5gr_f110a115]
 Computational Errors

 	None
 Note: If the factorization performed by _POTRF, _POF, _POFCD,
 or _PPTRF failed because matrix A was not positive definite,
 the results returned by this subroutine are unpredictable, and there
 may be a divide-by-zero program exception message.

 	[bookmark: am5gr_hsposm__am5gr_f110a116]
 Input-Argument Errors

 	

 	uplo ≠ 'U' or 'L'

 	n < 0

 	nrhs < 0

 	n > lda

 	lda ≤ 0

 	n > ldb

 	ldb ≤ 0

 Examples

 	Example 1

 	
 This example shows how to solve the system AX = B for
 two right-hand sides, where matrix A is the same matrix
 factored in the Example
 1 for SPOTRF and SPOF.

 Call Statement
 and Input:

 UPLO N NRHS A LDA BX LDB INFO
 | | | | | | | |
CALL SPOTRS('L' , 9 , 2 , A , 9 , BX , 9 , INFO)

 or

 UPLO A LDA N BX LDB NRHS
 | | | | | | |
CALL SPOSM('L' , A , 9 , 9 , BX , 9 , 2)

 A =

 (same as output

 A

 in

 Example 1

)

 ┌ ┐
 | 9.0 45.0 |
 | 17.0 89.0 |
 | 24.0 131.0 |
 | 30.0 170.0 |
BX = | 35.0 205.0 |
 | 39.0 235.0 |
 | 42.0 259.0 |
 | 44.0 276.0 |
 | 45.0 285.0 |
 └ ┘

 Output: ┌ ┐
 | 1.0 1.0 |
 | 1.0 2.0 |
 | 1.0 3.0 |
 | 1.0 4.0 |
BX = | 1.0 5.0 |
 | 1.0 6.0 |
 | 1.0 7.0 |
 | 1.0 8.0 |
 | 1.0 9.0 |
 └ ┘

 INFO = 0

 	Example 2

 	
 This example shows how to solve the system AX = B for
 two right-hand sides, where matrix A is the input matrix
 factored in Example
 2 for SPOTRF and SPOF.

 Call Statement
 and Input:

 UPLO N NRHS A LDA BX LDB INFO
 | | | | | | | |
CALL SPOTRS('U' , 9 , 2 , A , 9 , BX , 9 , INFO)

 or

 UPLO A LDA N BX LDB NRHS
 | | | | | | |
CALL SPOSM('U' , A , 9 , 9 , BX , 9 , 2)

 A =

 (same as output

 A

 in

 Example 2

)

 ┌ ┐
 | 9.0 45.0 |
 | 17.0 89.0 |
 | 24.0 131.0 |
 | 30.0 170.0 |
BX = | 35.0 205.0 |
 | 39.0 235.0 |
 | 42.0 259.0 |
 | 44.0 276.0 |
 | 45.0 285.0 |
 └ ┘

 Output: ┌ ┐
 | 1.0 1.0 |
 | 1.0 2.0 |
 | 1.0 3.0 |
 | 1.0 4.0 |
BX = | 1.0 5.0 |
 | 1.0 6.0 |
 | 1.0 7.0 |
 | 1.0 8.0 |
 | 1.0 9.0 |
 └ ┘

 INFO = 0

 	Example 3

 	
 This example shows how to solve the system AX = B for
 two right-hand sides, where matrix A is the same matrix
 factored in the Example
 3 for CPOTRF and CPOF.

 Call Statement
 and Input:

 UPLO N NRHS A LDA BX LDB INFO
 | | | | | | | |
CALL CPOTRS('L' , 3 , 2 , A , 3 , BX , 3 , INFO)

 or

 UPLO A LDA N BX LDB NRHS
 | | | | | | |
CALL CPOSM('L' , A , 3 , 3 , BX , 3 , 2)

 A =

 (same as output

 A

 in

 Example 3

)

 ┌ ┐
 | (60.0, -55.0) (70.0, 10.0) |
BX = | (34.0, 58.0) (-51.0, 110.0) |
 | (13.0, -152.0) (75.0, 63.0) |
 └ ┘

 Output: ┌ ┐
 | (2.0, -1.0) (2.0, 0.0) |
BX = | (1.0, 1.0) (-1.0, 2.0) |
 | (0.0, -2.0) (1.0, 1.0) |
 └ ┘

 INFO = 0

 	Example 4

 	
 This example shows how to solve the system AX = B for
 two right-hand sides, where matrix A is the input matrix
 factored in Example
 4 for CPOTRF and CPOF.

 Call Statement
 and Input:

 UPLO N NRHS A LDA BX LDB INFO
 | | | | | | | |
CALL CPOTRS('U' , 3 , 2 , A , 3 , BX , 3 , INFO)

 or

 UPLO A LDA N BX LDB NRHS
 | | | | | | |
CALL CPOSM('U' , A , 3 , 3 , BX , 3 , 2)

 A =

 (same as output

 A

 in

 Example 4

)

 ┌ ┐
 | (33.0, -18.0) (15.0, -3.0) |
BX = | (45.0, -45.0) (8.0, -2.0) |
 | (152.0, 1.0) (43.0, -29.0) |
 └ ┘

 Output: ┌ ┐
 | (2.0, -1.0) (2.0, 0.0) |
BX = | (1.0, -1.0) (0.0, 1.0) |
 | (3.0, 0.0) (1.0, -1.0) |
 └ ┘

 INFO = 0

 	Example 5

 	
 This example shows how to solve the system AX = B for
 two right-hand sides, where matrix A is the input matrix
 factored in Example
 5 for SPPTRF and DPPTRF.

 Call
 Statement and Input: UPLO N NRHS AP BX LDB INFO
 | | | | | | |
CALL SPPTRS('L' , 9 , 2 , AP , BX , 9 , INFO)

 A =

 (same as output

 A

 in

 Example 5

)

 ┌ ┐
 | 9.0 45.0 |
 | 17.0 89.0 |
 | 24.0 131.0 |
 | 30.0 170.0 |
BX = | 35.0 205.0 |
 | 39.0 235.0 |
 | 42.0 259.0 |
 | 44.0 276.0 |
 | 45.0 285.0 |
 └ ┘

 Output: ┌ ┐
 | 1.0 1.0 |
 | 1.0 2.0 |
 | 1.0 3.0 |
 | 1.0 4.0 |
BX = | 1.0 5.0 |
 | 1.0 6.0 |
 | 1.0 7.0 |
 | 1.0 8.0 |
 | 1.0 9.0 |
 └ ┘

 INFO = 0

 	Example 6

 	
 This example shows how to solve the system AX = B for
 two right-hand sides, where matrix A is the same matrix
 factored in Example
 6 for SPPTRF.

 Call Statement and
 Input: UPLO N NRHS AP BX LDB INFO
 | | | | | | |
CALL SPPTRS('U' , 9 , 2 , AP , BX , 9 , INFO)

 A =

 (same as output

 A

 in

 Example 6

)

 ┌ ┐
 | 9.0 45.0 |
 | 17.0 89.0 |
 | 24.0 131.0 |
 | 30.0 170.0 |
BX = | 35.0 205.0 |
 | 39.0 235.0 |
 | 42.0 259.0 |
 | 44.0 276.0 |
 | 45.0 285.0 |
 └ ┘

 Output: ┌ ┐
 | 1.0 1.0 |
 | 1.0 2.0 |
 | 1.0 3.0 |
 | 1.0 4.0 |
BX = | 1.0 5.0 |
 | 1.0 6.0 |
 | 1.0 7.0 |
 | 1.0 8.0 |
 | 1.0 9.0 |
 └ ┘

 INFO = 0

 	Example 7

 	
 This example shows how to solve the system AX = B for
 two right-hand sides, where matrix A is the same matrix
 factored in Example
 7 for ZPPTRF.

 Call Statement and
 Input: UPLO N NRHS AP BX LDB INFO
 | | | | | | |
CALL ZPPTRS('L' , 3 , 2 , AP , BX , 3 , INFO)

 AP =

 (same as output

 AP

 in

 Example 7

)

 ┌ ┐
 | (60.0, -55.0) (70.0, 10.0) |
BX = | (34.0, 58.0) (-51.0, 110.0) |
 | (13.0, -152.0) (75.0, 63.0) |
 └ ┘

 Output: ┌ ┐
 | (2.0, -1.0) (2.0, 0.0) |
BX = | (1.0, 1.0) (-1.0, 2.0) |
 | (0.0, -2.0) (1.0, 1.0) |
 └ ┘

 INFO = 0

 	Example 8

 	
 This example shows how to solve the system AX = B for
 two right-hand sides, where matrix A is the same matrix
 factored in Example
 8 for ZPPTRF.

 Call Statement and
 Input: UPLO N NRHS AP BX LDB INFO
 | | | | | | |
CALL ZPPTRS('U' , 3 , 2 , AP , BX , 3 , INFO)

 AP =

 (same as output

 AP

 in

 Example 8

)

 ┌ ┐
 | (33.0, -18.0) (15.0, -3.0) |
BX = | (45.0, -45.0) (8.0, -2.0) |
 | (152.0, 1.0) (43.0, -29.0) |
 └ ┘

 Output: ┌ ┐
 | (2.0, -1.0) (2.0, 0.0) |
BX = | (1.0, -1.0) (0.0, 1.0) |
 | (3.0, 0.0) (1.0, -1.0) |
 └ ┘

 INFO = 0

 Parent topic: Linear Algebraic Equations

 SPPS and DPPS (Positive Definite Real Symmetric Matrix Solve)

 Purpose

 These subroutines solve the system Ax = b for x,
 where A is a positive definite symmetric matrix, and x and b are
 vectors. The subroutines use the results of the factorization of matrix A,
 produced by a preceding call to SPPF/SPPFCD or DPPF/DPPFP/DPPFCD,
 respectively.

 Table 145. Data
 Types.

 	A, b, x

 	Subroutine

 	Short-precision real

 	SPPS

 	Long-precision real

 	DPPS

 Note: The input to these solve subroutines must be the output
 from the factorization subroutines SPPF/SPPFCD and DPPF/DPPFP/DPPFCD,
 respectively.

 Syntax

 	Fortran

 	CALL SPPS | DPPS (ap, n, bx, iopt)

 	C and C++

 	spps | dpps (ap, n, bx, iopt);

 	On Entry

 	

 	 ap

 	is the factorization of matrix A, produced by a
 preceding call to SPPF/SPPFCD or DPPF/DPPFP/DPPFCD, respectively.

 Specified as: a one-dimensional array, containing numbers of the
 data type indicated in Table 145,
 where:

 If iopt = 0, the array must contain n(n+1)/2+n elements.

 If iopt = 1,
 the array must contain n(n+1)/2
 elements.

 	 n

 	is the order of matrix A used in the factorization,
 and the lengths of vectors b and x.
 Specified
 as: an integer; n ≥ 0.

 	 bx

 	is the vector b of length n,
 containing the right-hand side of the system.
 Specified as: a
 one-dimensional array of (at least) length n, containing
 numbers of the data type indicated in Table 145.

 	 iopt

 	indicates the type of factorization that was performed on matrix A,
 where:
 If iopt = 0, the matrix was factored using
 the LDLT method.

 If iopt = 1,
 the matrix was factored using Cholesky factorization.

 Specified
 as: an integer; iopt = 0 or 1.

 	On Return

 	

 	 bx

 	is the solution vector x of length n,
 containing the results of the computation.
 Specified as: a one-dimensional
 array, containing numbers of the data type indicated in Table 145.

 Notes

 	The array data specified for input argument ap for
 these subroutines must be the same as the corresponding output argument
 for SPPF/SPPFCD and DPPF/DPPFP/DPPFCD, respectively.

 	The scalar data specified for input argument n for
 these subroutines must be the same as that specified for SPPF/SPPFCD
 and DPPF/DPPFP/DPPFCD, respectively.

 	When you call these subroutines after calling SPPF or DPPF, the
 value of input argument iopt must be as follows:

 	SPPF/DPPF Input iopt

 	SPPS/DPPS Input iopt

 	0 or 10

 	0

 	1 or 11

 	1

 	When you call these subroutines after calling SPPFCD or DPPFCD,
 the value of input argument iopt must be 0.

 	When you call these subroutines after calling DPPFP, the value
 of input argument iopt must be 1.

 	In the input array specified for ap, the first n(n+1)/2
 elements are matrix elements. The additional n locations,
 required in the array when iopt = 0, are used for working storage by
 this subroutine and should not be altered between calls to the factorization
 and solve subroutines.

 	The vectors and matrices used in this computation must have no
 common elements; otherwise, results are unpredictable. See Concepts.

 	For a description of how a positive definite symmetric matrix
 is stored in lower-packed storage mode in an array, see Symmetric Matrix.

 Function

 The system Ax = b is
 solved for x, where A is a positive definite
 symmetric matrix, stored in lower-packed storage mode in array AP,
 and x and b are vectors. These subroutines
 use the results of the factorization of matrix A, produced
 by a preceding call to SPPF/SPPFCD or DPPF/DPPFP/DPPFCD, respectively.

 If n is
 0, no computation is performed. See references [44] and [46].

 Error conditions

 	[bookmark: am5gr_hspps__am5gr_f110a134]
 Computational Errors

 	None
 Note: If a call to SPPF, DPPF, SPPFCD, DPPFCD, or DPPFP
 resulted in a nonpositive definite matrix, error 2104 or 2115, SPPS
 or DPPS results may be unpredictable or numerically unstable.

 	[bookmark: am5gr_hspps__am5gr_f110a135]
 Input-Argument Errors

 	

 	n < 0

 	iopt ≠ 0 or 1

 Examples

 	Example 1

 	
 This example shows how to solve the system Ax = b,
 where matrix A is the same matrix factored in the Example 9 for
 SPPF and DPPF.

 Call Statement and Input:
 AP N BX IOPT
 | | | |
CALL SPPS (AP , 9 , BX , 0)

 AP =

 (same as output

 AP

 in

 Example 9

 for SPPF and DPPF)

 BX = (9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0)

 Output: BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

 	Example 2

 	
 This example shows how to solve the same system as in Example
 1, where matrix A is the same matrix factored in the Example 10 for
 SPPF and DPPF.

 Call Statement and Input:
 AP N BX IOPT
 | | | |
CALL SPPS(AP , 9 , BX , 1)

 AP =

 (same as output

 AP

 in

 Example 10

 for SPPF and DPPF)

 BX = (9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0)

 Output: BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

 Parent topic: Linear Algebraic Equations

 SPOCON, DPOCON, CPOCON, ZPOCON, SPPCON, DPPCON, CPPCON, and
 ZPPCON (Estimate the Reciprocal of the Condition Number of a Positive
 Definite Real Symmetric or Complex Hermitian Matrix)

 Purpose

 These subroutines estimate the
 reciprocal of the condition number of matrix A as explained
 below:

 	SPOCON, DPOCON, CPOCON, and ZPOCON

 	
 The SPOCON, DPOCON, CPOCON, and ZPOCON subroutines estimate
 the reciprocal of the condition number of matrix A,
 stored in upper or lower storage mode, where:

 	For SPOCON and DPOCON, A is a positive definite
 real symmetric matrix.

 	For CPOCON and ZPOCON, A is a positive definite
 complex Hermitian matrix.

 These subroutines use the results of the factorization
 of matrix A produced by a preceding call to SPOTRF,
 DPOTRF, CPOTRF, or ZPOTRF, respectively.

 	SPPCON, DPPCON, CPPCON, and ZPPCON

 	
 The SPPCON, DPPCON, CPPCON, and ZPPCON subroutines estimate
 the reciprocal of the condition number of matrix A,
 stored in upper-packed or lower-packed storage mode, where:

 	For SPPCON and DPPCON, A is a positive definite
 real symmetric matrix.

 	For CPPCON and ZPPCON, A is a positive definite
 complex Hermitian matrix.

 These subroutines use the results of the factorization
 of matrix A produced by a preceding call to SPPTRF,
 DPPTRF, CPPTRF, or ZPPTRF, respectively.

 For details about the factorization subroutines,
 see SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, ZPOF, SPPTRF, DPPTRF, CPPTRF, ZPPTRF, SPPF, and DPPF (Positive Definite
 Real Symmetric or Complex Hermitian Matrix Factorization).

 Table 146. Data Types.

 	A, work

 	anorm, rcond, rwork

 	Subroutine

 	Short-precision real

 	Short-precision real

 	SPOCON▵, SPPCON▵

 	Long-precision real

 	Long-precision real

 	DPOCON▵, DPPCON▵

 	Short-precision complex

 	Short-precision real

 	CPOCON▵, CPPCON▵

 	Long-precision complex

 	Long-precision real

 	ZPOCON▵, ZPPCON▵

 Syntax

 	Fortran

 	

 CALL SPOCON | DPOCON (

 uplo

 ,

 n

 ,

 a

 ,

 lda

 ,

 anorm

 ,

 rcond

 ,

 work

 ,

 iwork

 ,

 info

)

 CALL CPOCON | ZPOCON (

 uplo

 ,

 n

 ,

 a

 ,

 lda

 ,

 anorm

 ,

 rcond

 ,

 work

 ,

 rwork

 ,

 info

)

 CALL SPPCON | DPPCON (

 uplo

 ,

 n

 ,

 ap

 ,

 anorm

 ,

 rcond

 ,

 work

 ,

 iwork

 ,

 info

)

 CALL CPPCON | ZPPCON (

 uplo

 ,

 n

 ,

 ap

 ,

 anorm

 ,

 rcond

 ,

 work

 ,

 rwork

 ,

 info

)

 	C and C++

 	

 spocon | dpocon (

 uplo

 ,

 n

 ,

 a

 ,

 lda

 ,

 anorm

 ,

 rcond

 ,

 work

 ,

 iwork

 ,

 info

);

 cpocon | zpocon (

 uplo

 ,

 n

 ,

 a

 ,

 lda

 ,

 anorm

 ,

 rcond

 ,

 work

 ,

 rwork

 ,

 info

);

 sppcon | dppcon (

 uplo

 ,

 n

 ,

 ap

 ,

 anorm

 ,

 rcond

 ,

 work

 ,

 iwork

 ,

 info

);

 cppcon | zppcon (

 uplo

 ,

 n

 ,

 ap

 ,

 anorm

 ,

 rcond

 ,

 work

 ,

 rwork

 ,

 info

);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_spocon | LAPACKE_dpocon (matrix_layout,
 uplo, n, a, lda,
 anorm, rcond);
info = LAPACKE_cpocon |
 LAPACKE_zpocon (matrix_layout, uplo, n,
 a, lda, anorm, rcond);

 info = LAPACKE_sppcon | LAPACKE_dppcon (matrix_layout,
 uplo, n, ap, anorm,
 rcond);
info = LAPACKE_cppcon | LAPACKE_zppcon
 (matrix_layout, uplo, n,
 ap, anorm, rcond); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 uplo

 	indicates whether matrix A is stored in upper or
 lower storage mode, where:
 If uplo = 'U', A is
 stored in upper storage mode.

 If uplo = 'L', A is
 stored in lower storage mode.

 Specified as: a single character.
 It must be 'U' or 'L'.

 	 n

 	the order of the factored matrix A used in the computation.

 Specified as: an integer; n ≥ 0.

 	 ap

 	is an array, referred to as AP, containing the
 factorization of the positive definite matrix A produced
 by a preceding call to SPPTRF, DPPTRF, CPPTRF, or ZPPTRF, respectively,
 stored in upper-packed or lower-packed storage mode.
 Specified
 as: a one-dimensional array, containing numbers of the data type indicated
 in Table 146. See Notes.

 	 a

 	the factorization of positive definite matrix A produced
 by a preceding call to SPOTRF, DPOTRF, CPOTRF, or ZPOTRF, respectively,
 stored in upper or lower storage mode.
 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 146.

 	 lda

 	is the leading dimension of matrix A.
 Specified
 as: an integer; lda > 0 and lda ≥ n.

 	 anorm

 	is the one norm of the original matrix A.

 	For SPOCON, DPOCON, CPOCON, and ZPOCON

 	
 To obtain the value of anorm, make a preceding
 call to SLANSY, DLANSY, CLANHE, or ZLANHE, respectively.

 	For SPPCON, DPPCON, CPPCON, and ZPPCON

 	
 To obtain the value of anorm, make a preceding
 call to SLANSP, DLANSP, CLANHP, or ZLANHP, respectively.

 Refer to SLANSY, DLANSY, CLANHE, ZLANHE, SLANSP, DLANSP, CLANHP, and ZLANHP (Real Symmetric or Complex Hermitian Matrix Norm).

 Specified
 as: a number ≥ ≥ 0.0, of the
 data type indicated in Table 146.

 	rcond

 	See On Return.

 	work

 	is the work area used by this subroutine, where:

 	For SPOCON, DPOCON, SPPCON, and DPPCON

 	The size of work is (at least) of length 3n.

 	For CPOCON, ZPOCON, CPPCON, and ZPPCON

 	The size of work is (at least) of length 2n.

 Specified as: an area of storage containing
 numbers of data type indicated in Table 146.

 	iwork

 	is a work area used by this subroutine whose size is (at least)
 of length n.
 Specified as: an area of storage
 containing integers.

 	rwork

 	is a work area used by this subroutine whose size is (at least)
 of length n.
 Specified as: an area of storage
 containing numbers of the data type indicated in Table 146.

 	info

 	See On Return.

 	On Return

 	

 	rcond

 	has the following meaning:
 If info = 0,
 an estimate of the reciprocal of the condition number of matrix A is
 returned; i.e., rcond = 1.0/(NORM(A) × NORM(A-1)).

 If n =
 0, the subroutines return with rcond = 1.0.

 If n ≠ 0 and anorm =
 0.0, the subroutines return with rcond = 0.0.

 Returned
 as: a number ≥ ≥ 0.0, of the
 data type indicated in Table 146.

 	 info

 	has the following meaning:
 If info = 0,
 the computation completed normally.

 [image: Start of change] Returned as:[image: Start of change]
 	For SPOCON, DPOCON, CPOCON, ZPOCON, SPPCON, DPPCON, CPPCON, and ZPPCON, returned as: an integer;
 info ≥ 0.

 	For LAPACKE_spocon, LAPACKE_dpocon, LAPACKE_cpocon, LAPACKE_zpocon, LAPACKE_sppcon,
 LAPACKE_dppcon, LAPACKE_cppcon, and LAPACKE_zppcon, returned as an integer function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Returned as: an integer; info =
 0.

 Notes

 	In your C program, arguments rcond and info must
 be passed by reference.

 	This subroutine accepts lowercase letters for the uplo argument.

 	For input arguments uplo, lda,
 and n, the following must be true:

 	For SPOCON/DPOCON/CPOCON/ZPOCON

 	The scalar data specified for uplo, lda,
 and n must be the same as the scalar data specified
 for SLANSY/DLANSY/CLANHE/ZLANHE and SPOTRF/DPOTRF/CPOTRF/ZPOTRF.

 	For SPPCON/DPPCON/CPPCON/ZPPCON

 	The scalar data specified for uplo and n must
 be the same as the scalar data specified for SLANSP/DLANSP/CLANHP/ZLANHP
 and SPPTRF/DPPTRF/CPPTRF/ZPPTRF.

 	For matrix A, the following must be true:

 	For SPOCON/DPOCON/CPOCON/ZPOCON

 	The matrix A input to SLANSY/DLANSY/CLANHE/ZLANHE
 must be the same as the corresponding input argument for SPOTRF/DPOTRF/CPOTRF/ZPOTRF.

 	For SPPCON/DPPCON/CPPCON/ZPPCON

 	The matrix A input to SLANSP/DLANSP/CLANHP/ZLANHP
 must be the same as the corresponding input argument for SPPTRF/DPPTRF/CPPTRF/ZPPTRF.

 	On both input and output, matrix A conforms to LAPACK
 format.

 	For a description of the storage modes used for the matrices,
 see:

 	For positive definite symmetric matrices, see Positive Definite or Negative Definite Symmetric Matrix.

 	For positive definite complex Hermitian matrices, see Positive Definite or Negative Definite Complex Hermitian Matrix.

 Function

 The reciprocal of the condition
 number of general matrix A is estimated, using the results
 of the factorization of matrix A produced by a preceding
 factorization call.

 rcond = 1.0/(NORM(A) ×
 NORM(A-1)).

 If n = 0, the subroutines
 return with rcond = 1.0.

 If n ≠ 0 and anorm =
 0.0, the subroutines return with rcond = 0.0.

 See
 reference [82].

 Error conditions

 	[bookmark: am5gr_popcon__am5gr_f110popcona004a]
 Resource Errors

 	None.

 	[bookmark: am5gr_popcon__am5gr_f110popcon005a]
 Computational Errors

 	None.

 	[bookmark: am5gr_popcon__am5gr_f110popcon006a]
 Input-Argument Errors

 	

 	uplo ≠ 'U' or 'L'

 	n < 0

 	n > lda

 	lda ≤ 0

 	anorm < 0

 	anorm ≠ 0 and anorm > big or anorm < tiny
 Where:

 	For SPOCON, SPPCON, CPOCON, and CPPCON

 	big and tiny have the following
 values:

 	big = 2127 × (1 - ULP)

 	tiny = 2-126 × 221

 	For DPOCON, DPPCON, ZPOCON, and ZPPCON

 	big and tiny have the following
 values:

 	big = 21023 × (1 - ULP)

 	tiny = 2-1022 × 250

 Where ULP = unit in last place.

 Note: To
 avoid this error, scale matrix A so that tiny ≤ anorm ≤ big.

 Examples

 	Example 1

 	
 This example estimates the reciprocal of the condition number
 of positive definite real symmetric matrix A stored
 in lower storage mode. The input matrix A to DLANSY
 and DPOTRF is the same as input matrix A in Example 1.

 Call Statements and Input:

 NORM UPLO N A LDA WORK
 | | | | | |
ANORM = DLANSY('1', 'L', 9 , A , 9 , WORK)

 UPLO N A LDA INFO
 | | | | |
CALL DPOTRF('L', 9 , A , 9 , INFO)

 UPLO N A LDA ANORM RCOND WORK IWORK INFO
 | | | | | | | | |
CALL DPOCON('L', 9 , A , 9 , ANORM, RCOND, WORK, IWORK , INFO)

 A = (same as output A in Example 1)

 ANORM
 = (same as output ANORM in Example 1)

 Output:

 RCOND
 = 5.56 × 10-3

 INFO = 0

 	Example 2

 	
 This example estimates the reciprocal of the condition number
 of positive definite real symmetric matrix A stored
 in upper storage mode. The input matrix A to DLANSY
 and DPOTRF is the same as input matrix A in Example 2.

 Call Statements and Input:

 NORM UPLO N A LDA WORK
 | | | | | |
ANORM = DLANSY('1', 'U' ,9 , A , 9 , WORK)

 UPLO N A LDA INFO
 | | | | |
CALL DPOTRF('U', 9 , A , 9 , INFO)

 UPLO N A LDA ANORM RCOND WORK IWORK INFO
 | | | | | | | | |
CALL DPOCON('U', 9 , A , 9 , ANORM, RCOND, WORK, IWORK , INFO)

 A = (same as output A in Example 2)

 ANORM
 = (same as output ANORM in Example 2)

 Output:

 RCOND
 = 5.56 × 10-3

 INFO = 0

 	Example 3

 	
 This example estimates the reciprocal of the condition number
 of positive definite complex Hermitian matrix A stored
 in lower storage mode. The input matrix A to ZLANHE
 and ZPOTRF is the same as input matrix A in Example 3.

 Call Statements and Input:

 NORM UPLO N A LDA WORK
 | | | | | |
ANORM = ZLANHE('1', 'L', 3 , A , 3 , RWORK)

 UPLO N A LDA INFO
 | | | | |
CALL ZPOTRF('L', 3 , A , 3 , INFO)

 UPLO N A LDA ANORM RCOND WORK RWORK INFO
 | | | | | | | | |
CALL ZPOCON('L', 3 , A , 3 , ANORM, RCOND, WORK, RWORK, INFO)

 A = (same as output A in Example 3)

 ANORM
 = (same as output ANORM in Example 3)

 Output:

 RCOND
 = 1.85 × 10-1

 INFO = 0

 	Example 4

 	
 This example estimates the reciprocal of the condition number
 of positive definite complex Hermitian matrix A stored
 in upper storage mode. The input matrix A to ZLANHE
 and ZPOTRF is the same as input matrix A in Example 4.

 Call Statements and Input:

 NORM UPLO N A LDA WORK
 | | | | | |
ANORM = ZLANHE('1', 'U', 3 , A , 3 , RWORK)

 UPLO N A LDA INFO
 | | | | |
CALL ZPOTRF('U', 3 , A , 3 , INFO)

 UPLO N A LDA ANORM RCOND WORK RWORK INFO
 | | | | | | | | |
CALL ZPOCON('U', 3 , A , 3 , ANORM, RCOND, WORK, RWORK, INFO)

 A = (same as output A in Example 3)

 ANORM
 = (same as output ANORM in Example 4)

 Output:

 RCOND
 = 1.01 × 10-1

 INFO = 0

 	Example 5

 	
 This example estimates the reciprocal of the condition number
 of positive definite real symmetric matrix A stored
 in lower-packed storage mode. The input matrix A to
 DLANSP and DPPTRF is the same as input matrix A in Example 5.

 Call Statements and Input:

 NORM UPLO N AP WORK
 | | | | |
ANORM = DLANSP('1', 'L', 9 , AP , WORK)

 UPLO N AP INFO
 | | | |
CALL DPPTRF('L', 9 , AP , INFO)

 UPLO N AP ANORM RCOND WORK IWORK INFO
 | | | | | | | |
CALL DPPCON('L', 9 , AP, ANORM, RCOND, WORK, IWORK , INFO)

 AP = (same as output AP in Example 5)

 ANORM
 = (same as output ANORM in Example 5)

 Output:

 RCOND
 = 5.56 × 10-3

 INFO = 0

 	Example 6

 	
 This example estimates the reciprocal of the condition number
 of positive definite real symmetric matrix A stored
 in upper-packed storage mode. The input matrix A to
 DLANSP and DPPTRF is the same as input matrix A in Example 6.

 Call Statements and Input:

 NORM UPLO N AP WORK
 | | | | |
ANORM = DLANSP('1', 'U' , 9 , AP , WORK)

 UPLO N AP INFO
 | | | |
CALL DPPTRF('U', 9 , AP , INFO)

 UPLO N AP ANORM RCOND WORK IWORK INFO
 | | | | | | | |
CALL DPPCON('U', 9 , AP, ANORM, RCOND, WORK, IWORK , INFO)

 AP = (same as output AP in Example 6)

 ANORM
 = (same as output ANORM in Example 6)

 Output:

 RCOND
 = 5.56 × 10-3

 INFO = 0

 	Example 7

 	
 This example estimates the reciprocal of the condition number
 of positive definite complex Hermitian matrix A stored
 in lower-packed storage mode. The input matrix A to
 ZLANHP and ZPPTRF is the same as input matrix A in Example 7.

 Call Statements and Input:

 NORM UPLO N AP WORK
 | | | | |
ANORM = ZLANHP('1', 'L' , 3 , AP , RWORK)

 UPLO N AP INFO
 | | | |
CALL ZPPTRF('L' , 3 , AP , INFO)

 UPLO N AP ANORM RCOND WORK RWORK INFO
 | | | | | | | |
CALL ZPPCON('L', 3 , AP ,ANORM, RCOND, WORK, RWORK, INFO)

 AP = (same as output AP in Example 7)

 ANORM
 = (same as output ANORM in Example 7)

 Output:

 RCOND
 = 1.85 × 10-1

 INFO = 0

 	Example 8

 	
 This example estimates the reciprocal of the condition number
 of positive definite complex Hermitian matrix A stored
 in upper-packed storage mode. The input matrix A to
 ZLANHP and ZPPTRF is the same as input matrix A in Example 8.

 Call Statements and Input:

 NORM UPLO N AP WORK
 | | | | |
ANORM = ZLANHP('1', 'U' , 3 , AP , RWORK)

 UPLO N AP INFO
 | | | |
CALL ZPPTRF('U', 3 , AP , INFO)

 UPLO N AP ANORM RCOND WORK RWORK INFO
 | | | | | | | |
CALL ZPPCON('U', 3 , AP ,ANORM, RCOND, WORK, RWORK, INFO)

 AP = (same as output AP in Example 8)

 ANORM
 = (same as output ANORM in Example 8)

 Output:

 RCOND
 = 1.01 × 10-1

 INFO = 0

 Parent topic: Linear Algebraic Equations

 SPPFCD, DPPFCD, SPOFCD, and DPOFCD (Positive Definite Real
 Symmetric Matrix Factorization, Condition Number Reciprocal, and Determinant)

 Purpose

 The SPPFCD and DPPFCD subroutines
 factor positive definite symmetric matrix A, stored
 in lower-packed storage mode, using Gaussian elimination (LDLT).
 The reciprocal of the condition number and the determinant of matrix A can
 also be computed. To solve the system of equations with one or more
 right-hand sides, follow the call to these subroutines with one or
 more calls to SPPS or DPPS, respectively.

 The SPOFCD and DPOFCD
 subroutines factor positive definite symmetric matrix A,
 stored in upper or lower storage mode, using Cholesky factorization
 (LLT or UTU).
 The reciprocal of the condition number and the determinant of matrix A can
 also be computed. To solve the system of equations with one or more
 right-hand sides, follow the call to these subroutines with a call
 to SPOSM or DPOSM, respectively. To find the inverse of matrix A,
 follow the call to these subroutines with a call to SPOICD or DPOICD,
 respectively.

 Table 147. Data Types.

 	A, aux, rcond, det

 	Subroutine

 	Short-precision real

 	SPPFCD and SPOFCD

 	Long-precision real

 	DPPFCD and DPOFCD

 Note: The output factorization from SPPFCD and DPPFCD should
 be used only as input to the solve subroutines SPPS and DPPS, respectively.
 The output from SPOFCD and DPOFCD should be used only as input to
 the following subroutines for performing a solve or inverse: SPOSM/SPOICD
 and DPOSM/DPOICD, respectively.

 Syntax

 	Fortran

 	CALL SPPFCD | DPPFCD (ap, n, iopt, rcond, det, aux, naux)

 CALL SPOFCD | DPOFCD (uplo, a, lda, n, iopt, rcond, det, aux, naux)

 	C and C++

 	sppfcd | dppfcd (ap, n, iopt, rcond, det, aux, naux);

 spofcd | dpofcd (uplo, a, lda, n, iopt, rcond, det, aux, naux);

 	On Entry

 	

 	 uplo

 	indicates whether matrix A is stored in upper or
 lower storage mode, where:
 If uplo = 'U', A is
 stored in upper storage mode.

 If uplo = 'L', A is
 stored in lower storage mode.

 Specified as: a single character.
 It must be 'U' or 'L'.

 	 ap

 	is the array, referred to as AP, in which the
 matrix A, to be factored, is stored in lower-packed
 storage mode.
 Specified as: a one-dimensional array of (at least)
 length n(n+1)/2+n,
 containing numbers of the data type indicated in Table 147.

 	 a

 	is the positive definite symmetric matrix A, to
 be factored.
 Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 147.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ n.

 	 n

 	is the order n of matrix A.
 Specified
 as: an integer, where:

 For SPPFCD and DPPFCD, n ≥ 0.

 For
 SPOFCD and DPOFCD, 0 ≤ n ≤ lda.

 	 iopt

 	indicates the type of computation to be performed, where:
 If iopt = 0,
 the matrix is factored.

 If iopt = 1,
 the matrix is factored, and the reciprocal of the condition number
 is computed.

 If iopt = 2, the matrix is factored, and the
 determinant is computed.

 If iopt = 3,
 the matrix is factored and the reciprocal of the condition number
 and the determinant are computed.

 Specified as: an integer; iopt = 0,
 1, 2, or 3.

 	 rcond

 	See On Return.

 	 det

 	See On Return.

 	 aux

 	has the following meaning:
 If naux = 0
 and error 2015 is unrecoverable, aux is ignored.

 Otherwise,
 is the storage work area used by these subroutines. Its size is specified
 by naux. Specified as: an area of storage, containing
 numbers of the data type indicated in Table 147.

 	 naux

 	is the size of the work area specified by aux—that
 is, the number of elements in aux.
 Specified
 as: an integer, where:

 If naux = 0
 and error 2015 is unrecoverable, SPPFCD, DPPFCD, SPOFCD, and DPOFCD
 dynamically allocate the work area used by the subroutine. The work
 area is deallocated before control is returned to the calling program.

 Otherwise, naux ≥ n.

 	On Return

 	

 	 ap

 	is the transformed matrix A of order n,
 containing the results of the factorization. See Function. Returned as: a one-dimensional
 array of (at least) length n(n+1)/2+n,
 containing numbers of the data type indicated in Table 147.

 	 a

 	is the transformed matrix A of order n,
 containing the results of the factorization. See Function. Returned as: a two-dimensional
 array, containing numbers of the data type indicated in Table 147.

 	 rcond

 	is the estimate of the reciprocal of the condition number, rcond,
 of matrix A. Returned as: a number of the data type
 indicated in Table 147; rcond ≥ 0.

 	 det

 	is the vector det, containing the two components det1 and det2 of
 the determinant of matrix A. The determinant is:

 [image: Determinant Graphic]

 where 1 ≤ det1 < 10.
 Returned as: an array of length 2, containing numbers of the data
 type indicated in Table 147.

 Notes

 	All subroutines accept lowercase letters for the uplo argument.

 	In your C program, argument rcond must be passed
 by reference.

 	When iopt = 0, SPPFCD and DPPFCD provide the
 same function as a call to SPPF or DPPF, respectively. When iopt = 0,
 SPOFCD and DPOFCD provide the same function as a call to SPOF or DPOF,
 respectively.

 	SPPFCD and DPPFCD in many cases utilize new algorithms based on
 recursive packed storage format. As a result, on output, the array
 specified for AP may be stored in this new format rather than the
 conventional lower packed format. (See references [61], [77], and [79]).
 The array
 specified for AP should not be altered between calls to the factorization
 and solve subroutines; otherwise unpredictable results may occur.

 	See Notes for
 information on specifying a value for iopt in the
 SPPS and DPPS subroutines after calling SPPFCD and DPPFCD, respectively.

 	In the input and output arrays specified for ap,
 the first n(n+1)/2 elements
 are matrix elements. The additional n locations
 in the array are used for working storage by this subroutine and should
 not be altered between calls to the factorization and solve subroutines.

 	For a description of how a positive definite symmetric matrix
 is stored in lower-packed storage mode in an array, see Symmetric Matrix. For a description of
 how a positive definite symmetric matrix is stored in upper or lower
 storage mode, see Positive Definite or Negative Definite Symmetric Matrix.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 The functions
 for these subroutines are described.

 	[bookmark: am5gr_hsppfcd__am5gr_f110a143]
 For SPPFCD and DPPFCD

 	
 The positive definite symmetric matrix A, stored
 in lower-packed storage mode, is factored using Gaussian elimination,
 where A is expressed as:

 A

 =

 LDL

 T

 where:

 L

 is a unit lower triangular matrix.

 L

 T

 is the transpose of matrix

 L

 .

 D

 is a diagonal matrix.

 An estimate
 of the reciprocal of the condition number, rcond,
 and the determinant, det, can also be computed by this
 subroutine. The estimate of the condition number uses an enhanced
 version of the algorithm described in references [81] and [82].

 If n is
 0, no computation is performed. See references [44] and [46].

 These
 subroutines call SPPF and DPPF, respectively, to perform the factorization
 using Gaussian elimination (LDLT). If you
 want to use the Cholesky factorization method, you must call SPPF
 and DPPF directly.

 	[bookmark: am5gr_hsppfcd__am5gr_f110a144]
 For SPOFCD and DPOFCD

 	
 The positive definite symmetric matrix A, stored
 in upper or lower storage mode, is factored using Cholesky factorization,
 where A is expressed as:

 A

 =

 LL

 T

 or

 A

 =

 U

 T

 U

 where:

 L

 is a lower triangular matrix.

 L

 T

 is the transpose of matrix

 L

 .

 U

 is an upper triangular matrix.

 U

 T

 is the transpose of matrix

 U

 .

 If
 specified, the estimate of the reciprocal of the condition number
 and the determinant can also be computed. The estimate of the condition
 number uses an enhanced version of the algorithm described in references [81] and [82].

 If n is
 0, no computation is performed. See references [8] and [44].

 Error conditions

 	[bookmark: am5gr_hsppfcd__am5gr_f110a145]
 Resource Errors

 	Error 2015 is unrecoverable, naux = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hsppfcd__am5gr_f110a146]
 Computational Errors

 	

 	Matrix A is not positive definite (for SPPFCD and
 DPPFCD).

 	If matrix A is singular (at least one of the diagonal
 elements are 0), then rcond and det,
 if you requested them, are set to 0.

 	If matrix A is nonsingular and nonpositive definite
 (none of the diagonal elements are 0 and at least one diagonal element
 is negative), then rcond and det,
 if you requested them, are computed.

 	One or more elements of D contain values less than
 or equal to 0; all elements of D are checked. The index i of
 the last nonpositive element encountered is identified in the computational
 error message, issued by SPPF or DPPF, respectively.

 	i can be determined at run time by using the
 ESSL error-handling facilities. To obtain this information, you must
 use ERRSET to change the number of allowable errors for error code
 2104 in the ESSL error option table; otherwise, the default value
 causes your program to be terminated by SPPF or DPPF, respectively,
 when this error occurs. If your program is not terminated by SPPF
 or DPPF, respectively, the return code is set to 2. For details, see What Can You Do about ESSL Computational Errors?.

 	Matrix A is not positive definite (for SPOFCD and
 DPOFCD).

 	If matrix A is singular (at least one of the diagonal
 elements are 0), then rcond and det,
 if you requested them, are set to 0.

 	If matrix A is nonsingular and nonpositive definite
 (none of the diagonal elements are 0 and at least one diagonal element
 is negative), then rcond and det,
 if you requested them, are computed.

 	Processing stops at the first occurrence of a nonpositive definite
 diagonal element.

 	The order i of the first minor encountered
 having a nonpositive determinant is identified in the computational
 error message.

 	i can be determined at run time by using the
 ESSL error-handling facilities. To obtain this information, you must
 use ERRSET to change the number of allowable errors for error code
 2115 in the ESSL error option table; otherwise, the default value
 causes your program to be terminated by SPPF or DPPF, respectively,
 when this error occurs. If your program is not terminated by SPPF
 or DPPF, respectively, the return code is set to 2. For details, see What Can You Do about ESSL Computational Errors?.

 	[bookmark: am5gr_hsppfcd__am5gr_f110a147]
 Input-Argument Errors

 	

 	uplo ≠ 'U' or 'L'

 	lda ≤ 0

 	lda < n

 	n < 0

 	iopt ≠ 0, 1, 2, or 3

 	Error 2015 is recoverable or naux≠0, and naux is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example computes the factorization, reciprocal of the
 condition number, and determinant of matrix A. The input
 is the same as used in Example 9 for
 SPPF.

 The values used to estimate the reciprocal of the condition
 number are obtained with the following values:

 ∥

 A

 ∥

 1

 =

 max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0)

 =

 45.0

 Estimate of ∥

 A

 ∥

 =

 4.0

 On
 output, the value in det, |A|, is equal
 to 1.

 Call Statement and Input: AP N IOPT RCOND DET AUX NAUX
 | | | | | | |
CALL DPPFCD(AP , 9 , 3 , RCOND , DET , AUX , 9)

 AP =

 (same as input

 AP

 in

 Example 9

)

 Output:

 AP =

 (same as output

 AP

 in

 Example 9

)

 RCOND = 0.0055555

 DET = (1.0, 0.0)

 	Example 2

 	
 This example computes the factorization, reciprocal of the
 condition number, and determinant of matrix A. The input
 is the same as used in Example 1 for
 SPOF.

 The values used to estimate the reciprocal of the condition
 number are obtained with the following values:

 ∥

 A

 ∥

 1

 =

 max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0)

 =

 45.0

 Estimate of ∥

 A

 ∥

 =

 4.0

 On
 output, the value in det, |A|, is equal
 to 1.

 Call Statement and Input: UPLO A LDA N IOPT RCOND DET AUX NAUX
 | | | | | | | | |
CALL SPOFCD('L', A , 9 , 9 , 3 , RCOND , DET , AUX , 9)

 A =

 (same as input

 A

 in

 Example 1

)

 Output:

 A =

 (same as output

 A

 in

 Example 1

)

 RCOND = 0.0055555

 DET = (1.0, 0.0)

 	Example 3

 	
 This example computes the factorization, reciprocal of the
 condition number, and determinant of matrix A. The input
 is the same as used in Example 2 for
 SPOF.

 The values used to estimate the reciprocal of the condition
 number are obtained with the following values:

 ∥

 A

 ∥

 1

 =

 max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0)

 =

 45.0

 Estimate of ∥

 A

 ∥

 =

 4.0

 On
 output, the value in det, |A|, is equal
 to 1.

 Call Statement and Input: UPLO A LDA N IOPT RCOND DET AUX NAUX
 | | | | | | | | |
CALL SPOFCD('U', A , 9 , 9 , 3 , RCOND , DET , AUX , 9)

 A =

 (same as input

 A

 in

 Example 2

)

 Output:

 A =

 (same as output

 A

 in

 Example 2

)

 RCOND = 0.0055555

 DET = (1.0, 0.0)

 Parent topic: Linear Algebraic Equations

 SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, DPOICD, SPPTRI, DPPTRI,
 CPPTRI, ZPPTRI, SPPICD, and DPPICD (Positive Definite Real Symmetric
 or Complex Hermitian Matrix Inverse, Condition Number Reciprocal,
 and Determinant)

 Purpose

 These subroutines find the inverse
 of a positive definite real symmetric or complex Hermitian matrix A using
 Cholesky factorization, where:

 	For SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, and DPOICD, A is
 stored in upper or lower storage mode.

 	For SPPTRI, DPPTRI, CPPTRI, and ZPPTRI, A is stored
 in upper- or lower-packed storage mode.

 	For SPPICD and DPPICD, A is stored in lower-packed
 storage mode.

 Subroutines SPOICD, DPOICD, SPPICD, and DPPICD also find
 the reciprocal of the condition number and the determinant of matrix A.

 Table 148. Data Types.

 	A, aux, rcond, det

 	Subroutine

 	Short-precision real

 	SPOTRI▵, SPOICD, SPPTRI▵,
 and SPPICD

 	Long-precision real

 	DPOTRI▵, DPOICD, DPPTRI▵,
 and DPPICD

 	Short-precision complex

 	CPOTRI▵ and CPPTRI▵

 	Long-precision complex

 	ZPOTRI▵ and ZPPTRI▵

 	▵LAPACK

 Note: For each of the _POTRI and _PPTRI subroutines, the
 input must be the output from the corresponding _POTRF or _PPTRF Cholesky
 factorization subroutine.
 If you call the subroutines SPOICD,
 DPOICD, SPPICD, and DPPICD with iopt = 4,
 the input must be the output from SPPF, DPPF, SPOF/SPOFCD, or DPOF/DPOFCD,
 respectively, where Cholesky factorization was performed.

 Syntax

 	Fortran

 	

 CALL SPOTRI | DPOTRI | CPOTRI | ZPOTRI (

 uplo

 ,

 n

 ,

 a

 ,

 lda

 ,

 info

)

 CALL SPOICD | DPOICD (

 uplo

 ,

 a

 ,

 lda

 ,

 n

 ,

 iopt

 ,

 rcond

 ,

 det

 ,

 aux

 ,

 naux

)

 CALL SPPTRI | DPPTRI | CPPTRI | ZPPTRI (

 uplo

 ,

 n

 ,

 ap

 ,

 info

)

 CALL SPPICD | DPPICD (

 ap

 ,

 n

 ,

 iopt

 ,

 rcond

 ,

 det

 ,

 aux

 ,

 naux

)

 	C and C++

 	

 spotri | dpotri | cpotri | zpotri (

 uplo

 ,

 n

 ,

 a

 ,

 lda

 ,

 info

);

 spoicd | dpoicd (

 uplo

 ,

 a

 ,

 lda

 ,

 n

 ,

 iopt

 ,

 rcond

 ,

 det

 ,

 aux

 ,

 naux

);

 spptri | dpptri | cpptri | zpptri (

 uplo

 ,

 n

 ,

 ap

 ,

 info

);

 sppicd | dppicd (

 ap

 ,

 n

 ,

 iopt

 ,

 rcond

 ,

 det

 ,

 aux

 ,

 naux

);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_spotri | LAPACKE_dpotri | LAPACKE_cpotri | LAPACKE_zpotri
 (matrix_layout, uplo, n,
 a, lda);
info = LAPACKE_spptri | LAPACKE_dpptri |
 LAPACKE_cpptri | LAPACKE_zpptri (matrix_layout, uplo,
 n, ap); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 uplo

 	indicates whether matrix A is stored in upper or
 lower storage mode, where:
 If uplo = 'U', A is
 stored in upper storage mode.

 If uplo = 'L', A is
 stored in lower storage mode.

 Specified as: a single character.
 It must be 'U' or 'L'.

 	[bookmark: am5gr_hsppicd__am5gr_aptri]
 ap

 	is the array, referred to as AP, where:

 	For SPPTRI, DPPTRI, CPPTRI, and ZPPTRI:

 	
 AP contains the transformed matrix A of
 order n, resulting from the Cholesky factorization
 performed in a previous call to SPPTRF, DPPTRF, CPPTRF, or ZPPTRF,
 respectively, whose inverse is computed.

 	For SPPICD and DPPICD:

 	If iopt = 0, 1, 2, or 3, then AP contains
 the positive definite real symmetric matrix A, whose
 inverse, condition number reciprocal, and determinant are computed,
 where matrix A is stored in lower-packed storage mode.
 If iopt = 4,
 then AP contains the transformed matrix A of
 order n, resulting from the Cholesky factorization
 performed in a previous call to SPPF or DPPF, respectively, whose
 inverse is computed.

 Specified as: a one-dimensional array of (at
 least) length n(n+1)/2, containing
 numbers of the data type indicated in Table 148.

 	[bookmark: am5gr_hsppicd__am5gr_atri]
 a

 	has the following meaning, where:

 	For SPOTRI, DPOTRI, CPOTRI, and ZPOTRI:

 	
 It is the transformed matrix A of order n,
 containing results of the factorization from a previous call to SPOTRF,
 DPOTRF, CPOTRF, or ZPOTRF, respectively, whose inverse is computed.

 	For SPOICD and DPOICD:

 	
 If iopt = 0, 1, 2, or 3, it is the positive
 definite real symmetric matrix A, whose inverse, condition
 number reciprocal, and determinant are computed, where matrix A is
 stored in upper or lower storage mode.

 If iopt =
 4, it is the transformed matrix A of order n,
 containing results of the factorization from a previous call to SPOF/SPOFCD
 or DPOF/DPOFCD, respectively, whose inverse is computed.

 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 148.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ n.

 	 n

 	is the order n of matrix A.
 Specified
 as: an integer; n ≥ 0.

 	 iopt

 	indicates the type of computation to be performed, where:
 If iopt = 0,
 the inverse is computed for matrix A.

 If iopt = 1,
 the inverse and the reciprocal of the condition number are computed
 for matrix A.

 If iopt = 2,
 the inverse and the determinant are computed for matrix A.

 If iopt = 3,
 the inverse, the reciprocal of the condition number, and the determinant
 are computed for matrix A.

 If iopt =
 4, the inverse is computed for the Cholesky factored matrix A.

 Specified
 as: an integer; iopt = 0, 1, 2, 3, or 4.

 	 rcond

 	See On Return.

 	 det

 	See On Return.

 	 aux

 	has the following meaning:
 If naux = 0
 and error 2015 is unrecoverable, aux is ignored.

 Otherwise,
 it is the storage work area used by this subroutine. Its size is
 specified by naux. Specified as: an area of storage,
 containing numbers of the data type indicated in Table 148.

 	 naux

 	is the size of the work area specified by aux—that
 is, the number of elements in aux.
 Specified
 as: an integer, where:

 If naux = 0
 and error 2015 is unrecoverable, SPOICD, DPOICD, SPPICD, and DPPICD
 dynamically allocate the work area used by the subroutine. The work
 area is deallocated before control is returned to the calling program.

 Otherwise, naux ≥ n.

 	info

 	See On Return.

 	On Return

 	

 	 ap

 	is an array, referred to as AP, in which the
 transformed matrix A of order n,
 containing the inverse of the matrix, is stored.

 	For SPPTRI, DPPTRI, CPPTRI, and ZPPTRI:

 	The transformed matrix is stored in upper- or lower-packed storage
 mode.

 	For SPPICD and DPPICD:

 	The transformed matrix is stored in lower-packed storage mode.

 Returned as: a one-dimensional array of at least
 length n(n+1)/2, containing
 numbers of the data type indicated in Table 148.

 	 a

 	is the transformed matrix A of order n,
 containing the inverse of the matrix in upper or lower storage mode.
 Returned as: a two-dimensional array, containing numbers of the data
 type indicated in Table 148.

 	 rcond

 	is the reciprocal of the condition number, rcond,
 of matrix A. Returned as: a real number of the data
 type indicated in Table 148; rcond ≥ 0.

 	 det

 	is the vector det, containing the two components det1 and det2 of
 the determinant of matrix A. The determinant is:

 [image: Determinant Graphic]

 where 1 ≤ det1 <
 10. Returned as: an array of length 2, containing numbers of the data
 type indicated in Table 148.

 	info

 	has the following meaning:
 If info = 0,
 the inverse completed successfully.

 If info >
 0, info is set equal to the first i where Aii is
 zero; the matrix is not positive definite, and its inverse could not
 be completed.

 [image: Start of change] Returned as:[image: Start of change]
 	For SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, DPOICD, SPPTRI, DPPTRI, CPPTRI, ZPPTRI, SPPICD, and
 DPPICD, returned as: an integer; info ≥ 0.

 	For LAPACKE_LAPACKE_spotri, LAPACKE_dpotri, LAPACKE_cpotri, LAPACKE_zpotri, LAPACKE_spptri,
 LAPACKE_dpptri, LAPACKE_cpptri, and LAPACKE_zppti, returned as an integer function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Specified as: an integer; info ≥ 0.

 Notes

 	In your C program, the arguments info and rcond must
 be passed by reference.

 	For SPOICD, DPOICD, SPPICD, and DPPICD, when you specify iopt =
 4, you must do the following:

 	For SPOICD and DPOICD, specify the same storage mode for matrix A that
 was specified in the previous call to SPOF/SPOFCD or DPOF/DPOFCD,
 respectively.

 	For SPPICD and DPPICD, use Cholesky factorization in the previous
 call to SPPF or DPPF, respectively.

 	The scalar data specified for input arguments uplo, lda,
 and n for these subroutines must be the same as
 the input arguments specified for the corresponding factorization
 subroutines.

 	All subroutines accept lowercase letters for the uplo
 argument.

 	SPPICD and DPPICD in some cases utilize algorithms based on recursive
 packed storage format. (See references [61], [77], and [79]).

 	The way _POTRI and _PPTRI subroutines handle computational errors
 differs from LAPACK. Like LAPACK, these subroutines use the info argument
 to provide information about the computational error, but they also
 provide an error message.

 	On both input and output, matrix A conforms to LAPACK
 format.

 	For a description of how a positive definite symmetric matrix
 is stored in upper- or lower-packed storage mode in an array or in
 upper or lower storage mode, see Symmetric Matrix.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 These subroutines find the inverse
 of positive definite matrix A, where:

 	A-1 is the inverse of matrix A,
 where AA-1 = A-1A = I.

 	For positive definite real symmetric matrix A:
 A = LLT or UTU

 A-1 = L-TL-1 or U-1U-T

 	For positive definite complex Hermitian matrix A:
 A = LLH or UHU

 A-1 = L-HL-1 or U-1U-H

 Note: SPPICD and DPPICD only support a matrix in lower-packed
 storage mode.

 Additionally, the subroutines SPOICD,
 DPOICD, SPPICD, and DPPICD find the reciprocal of the condition number
 and the determinant of positive definite symmetric matrix A using
 Cholesky factorization, where:

 	1/(∥A∥1)(∥A-1∥1)
 is the reciprocal of the condition number, where ∥A∥1 is
 the one-norm of matrix A.

 	|A| is the determinant of matrix A,
 where |A| is expressed as:

 [image: Graphic for A]

 	The iopt argument is used to determine the
 combination of output items produced: the inverse, the reciprocal
 of the condition number, and the determinant.

 If n is 0, no computation is performed.
 See references [44],
 [46],
 and [52].

 Error conditions

 	[bookmark: am5gr_hsppicd__am5gr_f110a410a]
 Resource Errors

 	

 	Unable to allocate internal work area.

 	Error 2015 is unrecoverable, naux = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hsppicd__am5gr_f110a411a]
 Computational Errors

 	
 Note: If the Cholesky factorization performed by one of the _POTRF
 and _PPTRF subroutines failed because matrix A was not
 positive definite, the results returned by the corresponding _POTRI
 or _PPTRI subroutine are unpredictable.
 If the Cholesky factorization
 performed by SPPF, DPPF, SPOF/SPOFCD, or DPOF/DPOFCD failed because
 matrix A was not positive definite, the results returned
 by SPOICD, DPOICD, SPPICD, or DPPICD, respectively, with iopt = 4,
 are unpredictable.

 	For SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPPTRI, DPPTRI, CPPTRI, and
 ZPPTRI:

 	
 The inverse of matrix A could not be computed.

 	One or more of the diagonal elements of the factored matrix A are
 zero. The first diagonal element that is found to be exactly zero
 is identified in the computational error message and returned in info.
 If one or more of the diagonal elements of the factored matrix A are
 negative, the results are unpredictable.

 	The computational error message may occur multiple times with
 processing continuing after each error because the default for the
 number of allowable errors for error code 2151 is set to be unlimited
 in the ESSL error option table.

 	For SPOICD, DPOICD, SPPICD, and DPPICD:

 	
 Matrix A is not positive definite.

 	These subroutines do not perform the inverse, determinant, and
 reciprocal of the condition number computations.

 	For iopt = 1, 2, or 3, the leading minor of
 order i has a nonpositive determinant. The order i is
 identified in the computational error message.

 	i can be determined at run time by using the
 ESSL error-handling facilities. To obtain this information, you must
 use ERRSET to change the number of allowable errors for error code
 2115 in the error option table; otherwise, the default value causes
 your program to terminate. If your program is not terminated, the
 return code is set to 2. For details, see What Can You Do about ESSL Computational Errors?.

 The inverse of matrix A could not be computed.

 	For iopt = 4, for _POICD and _PPICD, one or
 more of the diagonal elements of the factored matrix A are
 zero. i is the first diagonal element that is found
 to be exactly zero and is identified in the computational error message.
 If one or more of the diagonal elements of the factored matrix A are
 negative, the results are unpredictable.

 	i can be determined at run time by using the
 ESSL error-handling facilities. To obtain this information, you must
 use ERRSET to change the number of allowable errors for error code
 2150 in the error option table; otherwise, the default value causes
 your program to terminate. If your program is not terminated, the
 return code is set to 3. For details, see What Can You Do about ESSL Computational Errors?.

 	[bookmark: am5gr_hsppicd__am5gr_f110a412a]
 Input-Argument Errors

 	

 	uplo ≠ 'U' or 'L'

 	n < 0

 	lda ≤ 0

 	lda < n

 	iopt ≠ 0, 1, 2, 3, or 4

 	Error 2015 is recoverable or naux ≠ 0, and naux is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example uses SPOTRI to compute the inverse of matrix A,
 where iopt = 4, and matrix A is
 the transformed matrix factored by SPOTRF in Example 9.

 Call Statement and Input: UPLO N A LDA INFO
 | | | | |
CALL SPOTRI('U' , 9 , A , 9 , INFO)

 A =

 (same as output

 A

 in

 Example 2

 for SPOTRF)

 Output:
 ┌ ┐
 | 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | . 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | . . 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
 | . . . 2.0 -1.0 0.0 0.0 0.0 0.0 |
A = | 2.0 -1.0 0.0 0.0 0.0 |
 | 2.0 -1.0 0.0 0.0 |
 | 2.0 -1.0 0.0 |
 | 2.0 -1.0 |
 | 1.0 |
 └ ┘

 INFO = 0

 	Example 2

 	
 This example uses CPOTRI to compute the inverse of the matrix A,
 stored in lower storage mode. Matrix A is the transformed
 matrix factored by CPOTRF in Example 3.

 Call Statement and Input: UPLO N A LDA INFO
 | | | | |
CALL CPOTRI('L' , 3 , A , 3 , INFO)

 A =

 (same as output

 A

 in

 Example 3

 for CPOTRF)

 Output: ┌ ┐
 | (.05, .00) . . |
A = | (.00, -.01) (.02, .00) . |
 | (-.01, .00) (.00, .00) (.02, .00) |
 └ ┘

 INFO = 0

 	Example 3

 	
 This example uses CPOTRI to compute the inverse of the matrix A,
 stored in upper storage mode. Matrix A is the transformed
 matrix factored by CPOTRF in Example 4.

 Call Statement and Input: UPLO N A LDA INFO
 | | | | |
CALL CPOTRI('U' , 3 , A , 3 , INFO)

 A =

 (same as output

 A

 in

 Example 4

 for CPOTRF)

 Output: ┌ ┐
 | (.13, .00) (-.02, -.03) (.00, .01) |
A = | . (.07, .00) (-.01, .01) |
 | . . (.03, .00) |
 └ ┘

 INFO = 0

 	Example 4

 	
 This example uses SPOICD to compute the inverse, reciprocal
 of the condition number, and determinant of matrix A,
 stored in upper storage mode. Matrix A is:
 ┌ ┐
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
 | 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
 | 1.0 2.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 |
 | 1.0 2.0 3.0 4.0 5.0 5.0 5.0 5.0 5.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 6.0 6.0 6.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.0 7.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 8.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
 └ ┘

 The values used to compute the reciprocal of the condition
 number in this example are obtained with the following values:

 ∥

 A

 ∥

 1

 = max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0) = 45.0

 ∥

 A

 -1

 ∥

 1

 =

 4.0

 On
 output, the value in det, |A|, is equal
 to 1, and RCOND = 1/180.

 Call
 Statement and Input:
 UPLO A LDA N IOPT RCOND DET AUX NAUX
 | | | | | | | | |
CALL SPOICD('U' , A , 9 , 9 , 3 , RCOND , DET , AUX , 9)

 ┌ ┐
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | . 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
 | . . 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
 | . . . 4.0 4.0 4.0 4.0 4.0 4.0 |
A = | 5.0 5.0 5.0 5.0 5.0 |
 | 6.0 6.0 6.0 6.0 |
 | 7.0 7.0 7.0 |
 | 8.0 8.0 |
 | 9.0 |
 └ ┘

 Output:
 ┌ ┐
 | 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | . 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | . . 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
 | . . . 2.0 -1.0 0.0 0.0 0.0 0.0 |
A = | 2.0 -1.0 0.0 0.0 0.0 |
 | 2.0 -1.0 0.0 0.0 |
 | 2.0 -1.0 0.0 |
 | 2.0 -1.0 |
 | 1.0 |
 └ ┘

RCOND = 0.005555556
DET = (1.0, 0.0)

 	Example 5

 	
 This example uses SPPTRI to compute the inverse of matrix A,
 where matrix A is the transformed matrix factored in Example 5 by
 SPPTRF.
 Note: The AP arrays are formatted in a triangular
 arrangement for readability; however, they are stored in lower-packed
 storage mode.

 Call Statement and
 Input: UPLO N AP INFO
 | | | |
CALL SPPTRI('L' , 9 , AP , INFO)

 AP =

 (same as output

 AP

 in

 Example 5

 for SPPTRF)

 Output:
 AP = (2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 2.0, -1.0, 0.0, 0.0, 0.0, 0.0,
 2.0, -1.0, 0.0, 0.0, 0.0,
 2.0, -1.0, 0.0, 0.0,
 2.0, -1.0, 0.0,
 2.0, -1.0,
 1.0)

INFO = 0

 	Example 6

 	
 This example uses SPPTRI to compute the inverse of matrix A,
 where matrix A is the transformed matrix factored in Example 6 by
 SPPTRF.
 Note: The AP arrays are formatted in a triangular
 arrangement for readability; however, they are stored in upper-packed
 storage mode.

 Call Statement and
 Input: UPLO N AP INFO
 | | | |
CALL SPPTRI('U' , 9 , AP , INFO)

 AP =

 (same as output

 AP

 in

 Example 6

 for SPPTRF)

 Output:
 AP = (2.0,
 -1.0, 2.0,
 0.0, -1.0, 2.0,
 0.0, 0.0, -1.0, 2.0,
 0.0, 0.0, 0.0, -1.0, 2.0,
 0.0, 0.0, 0.0, 0.0, -1.0, 2.0,
 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 2.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 2.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 1.0)

INFO = 0

 	Example 7

 	
 This example uses ZPPTRI to compute the inverse of matrix A,
 where matrix A, stored in lower-packed storage mode,
 is the transformed matrix factored in Example 7 by
 ZPPTRF.

 Call Statement and Input:
 UPLO N AP INFO
 | | | |
CALL ZPPTRI('L' , 3 , AP , INFO)

 AP =

 (same as output

 AP

 in

 Example 7

 for ZPPTRF)

 Output:
 AP = ((0.05, 0.00) (0.00, -0.01) (-0.01, 0.00) (0.02, 0.00) (0.00, 0.00) (0.02, 0.00))

INFO = 0

 	Example 8

 	
 This example uses ZPPTRI to compute the inverse of matrix A,
 where matrix A, stored in upper-packed storage mode,
 is the transformed matrix factored in Example 8 by
 ZPPTRF.

 Call Statement and Input:
 UPLO N AP INFO
 | | | |
CALL ZPPTRI('U' , 3 , AP , INFO)

 AP =

 (same as output

 AP

 in

 Example 8

 for ZPPTRF)

 Output:
 AP = ((0.13, 0.0) (-0.02, -0.03) (0.07, 0.00) (0.00, 0.01) (-0.01, 0.01) (0.03, 0.00))

INFO = 0

 	[bookmark: am5gr_hsppicd__am5gr_xppicd]
 Example 9

 	
 This example uses SPPICD to compute the inverse, reciprocal
 of the condition number, and determinant of the same matrix A used
 in Example 4; however,
 matrix A is stored in lower-packed storage mode in this
 example.

 The values used to compute the reciprocal of the
 condition number in this example are obtained with the following values:

 ∥

 A

 ∥

 1

 = max(9.0, 17.0, 24.0, 30.0, 35.0, 39.0, 42.0, 44.0, 45.0) = 45.0

 ∥

 A

 -1

 ∥

 1

 = 4.0

 On
 output, the value in det, |A|, is equal
 to 1, and RCOND = 1/180.
 Note: The AP arrays
 are formatted in a triangular arrangement for readability; however,
 they are stored in lower-packed storage mode.

 Call Statement and Input:
 AP N IOPT RCOND DET AUX NAUX
 | | | | | | |
CALL SPPICD(AP , 9 , 3 , RCOND , DET , AUX , 9)

AP = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0,
 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0,
 4.0, 4.0, 4.0, 4.0, 4.0, 4.0,
 5.0, 5.0, 5.0, 5.0, 5.0,
 6.0, 6.0, 6.0, 6.0,
 7.0, 7.0, 7.0,
 8.0, 8.0,
 9.0)

 Output:
 AP = (2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 2.0, -1.0, 0.0, 0.0, 0.0, 0.0,
 2.0, -1.0, 0.0, 0.0, 0.0,
 2.0, -1.0, 0.0, 0.0,
 2.0, -1.0, 0.0,
 2.0, -1.0,
 1.0)

RCOND = 0.005556
DET = (1.0, 0.0)

 	[bookmark: am5gr_hsppicd__am5gr_xppic3]
 Example 10

 	
 This example uses SPPICD to compute the inverse of matrix A,
 where iopt = 4, and matrix A is
 the transformed matrix factored in Example 10 by
 SPPF.
 Note: The AP arrays are formatted in a triangular
 arrangement for readability; however, they are stored in lower-packed
 storage mode.

 Call Statement and
 Input: AP N IOPT RCOND DET AUX NAUX
 | | | | | | |
CALL SPPICD(AP , 9 , 4 , RCOND , DET , AUX , 9)

 AP =

 (same as output

 AP

 in

 Example 10

 for SPPF)

 Output:
 AP = (2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 2.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 2.0, -1.0, 0.0, 0.0, 0.0, 0.0,
 2.0, -1.0, 0.0, 0.0, 0.0,
 2.0, -1.0, 0.0, 0.0,
 2.0, -1.0, 0.0,
 2.0, -1.0,
 1.0)

 Parent topic: Linear Algebraic Equations

 SLANSY, DLANSY, CLANHE, ZLANHE, SLANSP, DLANSP, CLANHP, and
 ZLANHP (Real Symmetric or Complex Hermitian Matrix Norm)

 Purpose

 These subprograms compute the norm
 of matrix A as explained below:

 	SLANSY, DLANSY, CLANHE, and ZLANHE

 	
 These subprograms compute the norm of matrix A,
 stored in upper or lower storage mode, where:

 	For SLANSY and DLANSY, A is a positive definite
 real symmetric matrix.

 	For CLANHE and ZLANHE, A is a positive definite
 complex Hermitian matrix.

 	SLANSP, DLANSP, CLANHP, and ZLANHP

 	
 These subroutines compute the norm of matrix A,
 stored in upper-packed or lower-packed storage mode, where:

 	For SLANSP and DLANSP, A is a positive definite
 real symmetric matrix.

 	For CLANHP and ZLANHP, A is a positive definite
 complex Hermitian matrix.

 Table 149. Data Types.

 	A

 	 work, Result

 	Subprogram

 	Short-precision real

 	Short-precision real

 	SLANSY▵, SLANSP▵

 	Long-precision real

 	Long-precision real

 	DLANSY▵, DLANSP▵

 	Short-precision complex

 	Short-precision real

 	CLANHE▵, CLANHP▵

 	Long-precision complex

 	Long-precision real

 	ZLANHE▵, ZLANHP▵

 Syntax

 	Fortran

 	

 SLANSY | DLANSY | CLANHE | ZLANHE(

 norm

 ,

 uplo

 ,

 n

 ,

 a

 ,

 lda

 ,

 work

)

 SLANSP | DLANSP | CLANHP | ZLANHP (

 norm

 ,

 uplo

 ,

 n

 ,

 ap

 ,

 work

)

 	C and C++

 	

 slansy | dlansy | clanhe | zlanhe (

 norm

 ,

 uplo

 ,

 n

 ,

 a

 ,

 lda

 ,

 work

);

 slansp | dlansp | clanhp | zlanhp (

 norm

 ,

 uplo

 ,

 n

 ,

 ap

 ,

 work

);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]LAPACKE_slansy | LAPACKE_dlansy | LAPACKE_clanhe | LAPACKE_zlanhe
 (matrix_layout, norm, uplo,
 n, a, lda);
 LAPACKE_slansp |
 LAPACKE_dlansp | LAPACKE_clanhp | LAPACKE_zlanhp (matrix_layout,
 norm, uplo, n,
 ap);[image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 norm

 	specifies the type of computation, where:
 If norm =
 'O' or '1', the one norm of A is computed.

 If norm =
 'I', the infinity norm of A is computed.

 If norm =
 'F' or 'E', the Frobenius or Euclidean norm of A is
 computed.

 If norm = 'M', the absolute value
 of the matrix element having the largest absolute value, i.e., max
 (|A|), is returned.

 Specified as: a single character; norm =
 'O', '1', 'I', 'F', 'E', or 'M'.

 	 uplo

 	indicates whether matrix A is stored in upper or
 lower storage mode, where:
 If uplo = 'U', A is
 stored in upper storage mode.

 If uplo = 'L', A is
 stored in lower storage mode.

 Specified as: a single character.
 It must be 'U' or 'L'.

 	 n

 	is the order of matrix A.
 Specified as: an integer; n ≥ 0.

 	 ap

 	is the matrix A, stored in upper-packed or lower-packed
 storage mode.
 Specified as: a one-dimensional array, containing
 numbers of the data type indicated in Table 149.

 	 a

 	is the matrix A, stored in upper or lower storage
 mode.
 Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 149.

 	 lda

 	is the leading dimension of matrix A.
 Specified
 as: an integer; lda > 0 and lda ≥ n.

 	work

 	is the work area used by this subroutine, where:

 	When norm = 'O', '1', or 'I', the size of work is
 (at least) of length n.

 	Otherwise, work is not referenced.

 Specified as: an area of storage containing numbers of data
 type indicated in Table 149.

 	On Return

 	

 	 Function value

 	is the result of the norm computation, returned as a number of
 the data type indicated in Table 149.
 If norm =
 'O' or '1', the one norm of A is returned.

 If norm =
 'I', the infinity norm of A is returned.

 If norm =
 'F' or 'E', the Frobenius or Euclidean norm of A is
 returned.

 If norm = 'M', the absolute value
 of the matrix element having the largest absolute value, i.e., max
 (|A|), is returned.

 If n =
 0, the function returns zero.

 Notes

 	Declare this function in your program as returning a value of
 the data type indicated in Table 149.

 	This function accepts lowercase letters for the norm and uplo arguments.

 	For real symmetric and complex Hermitian matrices, the one norm
 and the infinity norm are identical.

 Function

 One of the following computations
 is performed on matrix A, depending on the value specified
 for norm:

 	Value specified for norm

 	Type of computation performed

 	'O' or '1'

 	one norm

 	'I'

 	infinity norm

 	'F' or 'E'

 	Frobenius or Euclidean norm

 	'M'

 	absolute value of the matrix element having
 the largest absolute value, i.e., max (|A|)

 If n = 0, the function returns
 zero.

 Error conditions

 	[bookmark: am5gr_llansy__am5gr_f110alansy004a]
 Resource Errors

 	None.

 	[bookmark: am5gr_llansy__am5gr_f110alansy005a]
 Computational Errors

 	None.

 	[bookmark: am5gr_llansy__am5gr_f110alansy006a]
 Input-Argument Errors

 	

 	norm ≠ 'O', '1', 'I', 'F',
 'E', or 'M'

 	uplo ≠ 'U' or 'L'

 	n < 0

 	n > lda

 	lda ≤ 0

 Examples

 	Example 1

 	
 This example computes the one norm of positive definite real
 symmetric matrix A stored in lower storage mode.

 Call Statements and Input:

 NORM UPLO N A LDA WORK
 | | | | | |
ANORM = DLANSY('1', 'L', 9 , A , 9 , WORK)

 A = (same as input matrix A in Example 1)

 Output:

 ANORM
 = 45.0

 	Example 2

 	
 This example computes the one norm of positive definite real
 symmetric matrix A stored in upper storage mode.

 Call Statements and Input:

 NORM UPLO N A LDA WORK
 | | | | | |
ANORM = DLANSY('1', 'U', 9 , A , 9 , WORK)

 A = (same as input matrix A in Example 2)

 Output:

 ANORM
 = 45.0

 	Example 3

 	
 This example computes the one norm of positive definite complex
 Hermitian matrix A stored in lower storage mode.

 Call Statements and Input:

 NORM UPLO N A LDA WORK
 | | | | | |
ANORM = ZLANHE('1', 'L', 3 , A , 3 , WORK)

 A = (same as input matrix A in Example 3)

 Output:

 ANORM
 = 89.39

 	Example 4

 	
 This example computes the one norm of positive definite complex
 Hermitian matrix A stored in upper storage mode.

 Call Statements and Input:

 NORM UPLO N A LDA WORK
 | | | | | |
ANORM = ZLANHE('1', 'U', 3 , A , 3 , WORK)

 A = (same as input matrix A in Example 4)

 Output:

 ANORM
 = 57.24

 	Example 5

 	
 This example computes the one norm of positive definite real
 symmetric matrix A stored in lower-packed storage mode.

 Call Statements and Input:

 NORM UPLO N AP WORK
 | | | | |
ANORM = DLANSP('1', 'L', 9 , AP , WORK)

 AP = (same as input matrix AP in Example 5)

 Output:

 ANORM
 = 45.0

 	Example 6

 	
 This example computes the one norm of positive definite real
 symmetric matrix A stored in upper-packed storage mode.

 Call Statements and Input:

 NORM UPLO N AP WORK
 | | | | |
ANORM = DLANSP('1', 'U', 9 , AP , WORK)

 AP = (same as input matrix AP in Example 6)

 Output:

 ANORM
 = 45.0

 	Example 7

 	
 This example computes the one norm of positive definite complex
 Hermitian matrix A stored in lower-packed storage mode.

 Call Statements and Input:

 NORM UPLO N AP WORK
 | | | | |
ANORM = ZLANHP('1', 'L' , 3 , AP , WORK)

 AP = (same as input matrix AP in Example 7)

 Output:

 ANORM
 = 89.39

 	Example 8

 	
 This example computes the one norm of positive definite complex
 Hermitian matrix A stored in upper-packed storage mode.

 Call Statements and Input:

 NORM UPLO N AP WORK
 | | | | |
ANORM = ZLANHP('1', 'U' , 3 , AP , WORK)

 AP = (same as input matrix AP in Example 8)

 Output:

 ANORM
 = 57.24

 Parent topic: Linear Algebraic Equations

 SSYSV, DSYSV, CSYSV, ZSYSV, CHESV, ZHESV, SSPSV, DSPSV, CSPSV, ZSPSV, CHPSV, and ZHPSV
 (Indefinite Real or Complex Symmetric or Complex Hermitian Matrix Factorization and Multiple
 Right-Hand Side Solve)

 Purpose

 These subroutines solve the system AX = B for X,
 where A is an indefinite real or complex symmetric or
 complex Hermitian matrix and X and B are
 general matrices.

 Table 150. Data Types.

 	A, B, work

 	Subroutine

 	Short-precision real

 	SSYSVΔ, SSPSVΔ

 	Long-precision real

 	DSYSVΔ, DSPSVΔ

 	Short-precision complex

 	CSYSVΔ, CHESVΔ, CSPSVΔ, CHPSVΔ

 	Long-precision complex

 	
 ZSYSVΔ, ZHESVΔ, ZSPSVΔ, ZHPSVΔ

 	ΔLAPACK

 Syntax

 	Fortran

 	

 CALL SSYSV | DSYSV | CSYSV | ZSYSV | CHESV | ZHESV (

 uplo

 ,

 n

 ,

 nrhs

 ,

 a

 ,

 lda

 ,

 ipiv

 ,

 b

 ,

 ldb

 ,

 work

 ,

 lwork

 ,

 info

)

 CALL SSPSV | DSPSV | CSPSV | ZSPSV | CHPSV | ZHPSV (

 uplo

 ,

 n

 ,

 nrhs

 ,

 ap

 ,

 ipiv

 ,

 b

 ,

 ldb

 ,

 info

)

 	C and C++

 	

 ssysv | dsysv | csysv | zsysv | chesv | zhesv (

 uplo

 ,

 n

 ,

 nrhs

 ,

 a

 ,

 lda

 ,

 ipiv

 ,

 b

 ,

 ldb

 ,

 work

 ,

 lwork

 ,

 info

);

 sspsv | dspsv | cspsv | zspsv | chpsv | zhpsv (

 uplo

 ,

 n

 ,

 nrhs

 ,

 ap

 ,

 ipiv

 ,

 b

 ,

 ldb

 ,

 info

);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_ssysv | LAPACKE_dsysv | LAPACKE_csysv | LAPACKE_zsysv | LAPACKE_chesv |
 LAPACKE_zhesv (matrix_layout, uplo, n,
 nrhs, a, lda, ipiv,
 b, ldb);
info = LAPACKE_sspsv | LAPACKE_dspsv |
 LAPACKE_cspsv | LAPACKE_zspsv | LAPACKE_chpsv | LAPACKE_zhpsv (matrix_layout,
 uplo, n, nrhs, ap,
 ipiv, b, ldb);[image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 uplo

 	indicates whether the upper or lower triangular part of the matrix A is
 referenced, where:
 If uplo = 'U', the upper
 triangular part is referenced.

 If uplo =
 'L', the lower triangular part is referenced.

 Specified as:
 a single character; uplo = 'U' or 'L'.

 	 n

 	is the order of matrix A and the number of rows
 in matrix B.
 Specified as: an integer; n ≥ 0.

 	 nrhs

 	is the number of right-hand sides; that is, the number of columns
 in matrix B.

 	Specified as: an integer; nrhs ≥ 0.

 	 a

 	is the indefinite real symmetric, complex symmetric, or complex
 Hermitian matrix A of order n.
 If uplo =
 'U', it is stored in upper storage mode.

 If uplo =
 'L', it is stored in lower storage mode.

 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 150.

 	 ap

 	is the indefinite real symmetric, complex symmetric, or complex
 Hermitian matrix A of order n. It
 is stored in an array, referred to as AP, where:
 If uplo =
 'U', it is stored in upper-packed storage mode.

 If uplo =
 'L', it is stored in lower-packed storage mode.

 Specified as:
 one-dimensional array of (at least) length n(n +
 1)/2, containing numbers of the data type indicated in Table 150.

 	 lda

 	is the leading dimension of the array specified for A.
 Specified
 as: an integer; lda > 0 and lda ≥ n.

 	 ipiv

 	See On Return.

 	 b

 	is the general matrix B containing the nrhs right-hand
 sides of the system. The right-hand sides, each of length n,
 reside in the columns of matrix B.
 Specified as: an ldb by nrhs array,
 containing numbers of the data type indicated in Table 150.

 	 ldb

 	is the leading dimension of the array specified for B.

 Specified as: an integer; ldb > 0
 and ldb ≥ n.

 	 work

 	is a work area used by these subroutines, where:
 If lwork = 0, work is
 ignored.

 If lwork ≠ 0, the size of work is
 determined as follows:

 	If lwork ≠ -1, work is
 (at least) of length lwork.

 	If lwork = -1, work is (at
 least) of length 1.

 Specified as: an area of storage containing numbers of
 the data type indicated in Table 150.

 	 lwork

 	is the number of elements in array WORK.
 Specified
 as: an integer; where:

 	If lwork = 0, the subroutine dynamically allocates
 the workspace needed for use during this computation. The work area
 is deallocated before control is returned to the calling program.

 	If lwork = -1, subroutine performs a workspace
 query and returns the optimal required size of work in work1.
 No computation is performed and the subroutine returns after error
 checking is complete.

 	Otherwise, lwork ≥ 1. It is
 suggested that the user specify lwork ≥ 8n.

 	 info

 	See On Return.

 	On Return

 	

 	a

 	is the transformed matrix A containing the results
 of the factorization. See Function.

 	Returned as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 150.

 	 ap

 	is the transformed matrix A containing the results
 of the factorization. See Function.
 Returned
 as: a one-dimensional array of (at least) length n(n +
 1)/2, containing numbers of the data type indicated in Table 150.

 	 ipiv

 	If info = 0, ipiv contains
 the pivot indices.
 If ipivk >
 0, then rows and columns k and ipivk were
 interchanged and Dk,k is
 a 1 × 1 diagonal
 block.

 If uplo = 'U' and ipivk = ipivk-1 <
 0, then rows and columns k-1 and -ipivk were
 interchanged and Dk-1:k,k-1:k is
 a 2 × 2 diagonal
 block.

 If uplo = 'L' and ipivk = ipivk+1 <
 0, then rows and columns k+1 and -ipivk were
 interchanged and Dk:k+1,k:k+1 is
 a 2 × 2 diagonal
 block.

 Returned as: a one-dimensional integer array of (at least)
 length n, containing integers.

 	 b

 	If info = 0, b is the matrix X,
 containing the nrhs solutions to the system. The
 solutions, each of length n, reside in the columns
 of X.
 Returned as: an ldb by (at
 least) nrhs array, containing numbers of the data
 type indicated in Table 150.

 	 work

 	is a work area used by this subroutine if lwork ≠ 0, where:
 If lwork ≠ 0 and lwork ≠ -1, its size is
 (at least) of length lwork.

 If lwork = -1,
 its size is (at least) of length 1.

 Returned as: an area
 of storage, where:

 If lwork ≥ 1 or lwork = -1,
 then work1 is set to the optimal lwork value
 and all other elements of work are overwritten.

 	info

 	has the following meaning:

 	If info = 0, the factorization completed successfully.

 	If info > 0, the factorization was unsuccessful and info is set to i where
 dii is exactly zero.

 [image: Start of change] Returned as:[image: Start of change]
 	For SSYSV, DSYSV, CSYSV, ZSYSV, CHESV, ZHESV, SSPSV, DSPSV, CSPSV, ZSPSV, CHPSV, and ZHPSV,
 returned as: an integer; info ≥ 0.

 	For LAPACKE_ssysv, LAPACKE_dsysv, LAPACKE_csysv, LAPACKE_zsysv, LAPACKE_chesv, LAPACKE_zhesv,
 LAPACKE_sspsv, LAPACKE_dspsv, LAPACKE_cspsv, LAPACKE_zspsv, LAPACKE_chpsv, and LAPACKE_zhpsv,
 returned as an integer function value; info ≥
 0.

[image: End of change]
 [image: End of change]

 Notes

 	These subroutines accept lowercase letters for the uplo argument.

 	In your C program, argument info must be passed
 by reference.

 	a, ap, b, ipiv,
 and work must have no common elements; otherwise,
 results are unpredictable.

 	For a description of how real and complex symmetric matrices are
 stored in lower or upper storage mode, see Lower Storage Mode or Upper Storage Mode, respectively.
 For a
 description of how complex Hermitian matrices are stored in lower
 or upper storage mode, see Complex Hermitian Matrix.

 	For a description of how real and complex symmetric matrices are
 stored in lower- or upper-packed storage mode, see Lower-Packed Storage Mode or Upper-Packed Storage Mode, respectively.
 For a
 description of how complex Hermitian matrices are stored in lower-
 or upper-packed storage mode, see Complex Hermitian Matrix.

 	On input, the imaginary parts of the diagonal elements of the
 complex Hermitian matrix A are assumed to be zero, so
 you do not have to set these values. On output, they are set to zero.

 	For best performance, specify lwork = 0.

 Function

 These subroutines
 solve the system AX = B for X,
 where A is an indefinite real or complex symmetric or
 complex Hermitian indefinite matrix and X and B are
 general matrices.

 For SSYSV, DSYSV, CSYSV, ZSYSV, SSPSV,
 DSPSV, CSPSV, and ZSPSV:

 The indefinite real or complex
 symmetric indefinite matrix A is factored using the
 Bunch-Kaufman diagonal pivoting method, where A is expressed
 as one of the following:

 A = UDUT

 A = LDLT

 where:

 U is a product of permutation and unit upper
 triangular matrices.

 L is a product of permutation
 and unit lower triangular matrices.

 D is a symmetric
 block diagonal matrix, consisting of 1 × 1 and 2 × 2 diagonal blocks.

 Matrix A is
 stored as follows:

 	For SSYSV, DSYSV, CSYSV, and ZSYSV, matrix A is
 stored in upper or lower storage mode.

 	For SSPSV, DSPSV, CSPSV, and ZSPSV, matrix A is
 stored in upper- or lower-packed storage mode.

 For CHESV, ZHESV, CHPSV, and ZHPSV:

 The indefinite
 complex Hermitian indefinite matrix A is factored using
 the Bunch-Kaufman diagonal pivoting method, where A is
 expressed as one of the following:

 A = UDUH

 A = LDLH

 where:

 U is a product of permutation and unit upper
 triangular matrices.

 L is a product of permutation
 and unit lower triangular matrices.

 D is a complex
 Hermitian block diagonal matrix, consisting of 1 × 1 and 2 × 2 diagonal blocks.

 Matrix A is
 stored as follows:

 	For CHESV and ZHESV, matrix A is stored in upper
 or lower storage mode.

 	For CHPSV and ZHPSV, matrix A is stored in upper-
 or lower-packed storage mode.

 If n is 0, no computation is performed
 and the subroutine returns after doing some parameter checking. If n >
 0 and nrhs is 0, no solutions are computed and
 the subroutine returns after factoring the matrix. See references [8] and [18].

 Error conditions

 	Resource Errors

 	lwork = 0 and unable to allocate work area

 	Computational Errors

 	Matrix A is singular.

 	The factorization completed but the block diagonal matrix D is
 exactly singular. info is set to i, where dii is
 exactly zero. This diagonal element is identified in the computational
 error message.

 	The computational error message may occur multiple times with
 processing continuing after each error, because the default for the
 number of allowable errors for error code 2147 is set to be unlimited
 in the ESSL error option table. For details, see What Can You Do about ESSL Computational Errors?.

 	Input-Argument Errors

 	

 	uplo ≠ 'U' or 'L'

 	n < 0

 	nrhs < 0

 	lda ≤ 0

 	n > lda

 	ldb ≤ 0

 	n > ldb

 	lwork ≠ 0 and lwork ≠ -1 and lwork < the
 minimum required value

 Examples

 	Example 1

 	
 This example shows how to solve the system AX = B,
 for three right-hand sides, where indefinite real symmetric matrix A
 is the same matrix factored in the Example 1 for
 DSYTRF.

 Note: Because lwork =
 0, the subroutine dynamically allocates WORK.

 Call
 Statement and Input:

 UPLO N NRHS A LDA IPIV B LDB WORK LWORK INFO
 | | | | | | | | | | |
CALL DSYSV('L' , 8 , 3 , A , 8 , IPIV , B , 8 , WORK, 0 , INFO)

 A =

 (same as input

 A

 in

 Example 1

)

 B =

 (same as input

 B

 in

 Example 1

)

 Output: ┌ ┐
 | 3.0 |
 | 5.0 3.0 |
 | 1.0 -1.0 4.0 |
 A = | -1.0 1.0 -1.0 8.0 |
 | 1.0 0.0 0.0 -1.0 1.0 . . . |
 | 0.0 -1.0 1.0 -1.0 3.0 1.0 . . |
 | 1.0 -1.0 1.0 -1.0 -1.0 1.0 2.0 . |
 | -1.0 0.0 1.0 -1.0 1.0 0.0 1.0 16.0 |
 └ ┘

 IPIV = (-2 -2 3 4 -6 -6 7 8)

 ┌ ┐
 | 1.0 1.0 8.0 |
 | 1.0 2.0 7.0 |
 | 1.0 3.0 6.0 |
 B = | 1.0 4.0 5.0 |
 | 1.0 5.0 4.0 |
 | 1.0 6.0 3.0 |
 | 1.0 7.0 2.0 |
 | 1.0 8.0 1.0 |
 └ ┘

 INFO = 0

 	Example 2

 	
 This example shows how to solve the system AX = B for
 three right-hand sides, where indefinite complex symmetric matrix A
 is the same matrix factored in the Example 2 for
 ZSYTRF.

 Note: Because lwork =
 0, the subroutine dynamically allocates WORK.

 Call
 Statement and Input:

 UPLO N NRHS A LDA IPIV B LDB WORK LWORK INFO
 | | | | | | | | | | |
CALL ZSYSV('L' , 4 , 3 , A , 4 , IPIV , B , 4 , WORK, 0 , INFO)

 A =

 (same as input

 A

 in

 Example 2

)

 B =

 (same as input

 B

 in

 Example 2

)

 Output: ┌ ┐
 | (0.368,-0.319) . . . |
 A = | (-0.062, 0.006) (0.258,-0.147) . . |
 | (0.625, 0.257) (1.085,-0.335) (0.333, 0.315) . |
 | (-0.462, 0.314) (-0.444, 1.248) (-0.437,-1.386) (0.841, 0.431) |
 └ ┘

 IPIV = (1 2 4 4)

 ┌ ┐
 | (0.409,-0.663) (-0.582,-1.410) (2.484, 2.216) |
 B = | (-1.664,-0.552) (-1.503,-4.837) (-3.577, 2.575) |
 | (2.388, 4.010) (1.260,-0.430) (-1.273, 0.177) |
 | (1.562, 0.164) (6.213, 1.471) (-0.980,-2.551) |
 └ ┘

 INFO = 0

 	Example 3

 	
 This example shows how to solve the system AX = B for
 three right-hand sides, where indefinite complex Hermitian matrix A
 is the same matrix factored in the Example 3 for
 ZHETRF.

 Notes:

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 	On input, the imaginary parts of the diagonal elements of the
 complex Hermitian matrix A are assumed to be zero, so
 you do not have to set these values. On output, they are set to zero.

 Call Statement and Input:

 UPLO N NRHS A LDA IPIV B LDB WORK LWORK INFO
 | | | | | | | | | | |
CALL ZHESV('L' , 4 , 3 , A , 4 , IPIV , B , 4 , WORK, 0 , INFO)

 A =

 (same as input

 A

 in

 Example 3

)

 B =

 (same as input

 B

 in

 Example 3

)

 Output: ┌ ┐
 | (-0.550, 0.000) . . . |
 A = | (-0.027, 0.476) (-0.483, 0.000) . . |
 | (0.062, 0.244) (-0.002, -0.269) (-0.490, 0.000) . |
 | (-0.249, 0.022) (0.152, -0.091) (0.244, -0.002) (-0.479, 0.000) |
 └ ┘

 IPIV = (1 2 3 4)

 ┌ ┐
 | (-1.623,-4.385) (2.635,-1.111) (-2.436,-0.306) |
 B = | (-3.533,-0.212) (1.865,-2.830) (-0.866,-0.308) |
 | (-1.742,-1.724) (-1.576, 1.575) (-0.478,-1.172) |
 | (-1.537,-2.115) (-1.047, 1.608) (3.093, 0.365) |
 └ ┘

 INFO = 0

 	Example 4

 	
 This example shows how to solve the system AX = B for
 three right-hand sides, where indefinite real symmetric matrix A
 is the same matrix factored in the Example 1 for
 DSYTRF.

 Call Statement and Input:

 UPLO N NRHS AP IPIV B LDB INFO
 | | | | | | | |
CALL DSPSV('L' , 8 , 3 , AP , IPIV , B , 8 , INFO)

 AP =

 (same as input

 AP

 in

 Example 4

)

 B =

 (same as input

 B

 in

 Example 4

)

 Output: AP = (3.0 5.0 1.0 -1.0 1.0 0.0 1.0 -1.0,
 3.0 -1.0 1.0 0.0 -1.0 -1.0 0.0,
 4.0 -1.0 0.0 1.0 1.0 1.0,
 8.0 -1.0 -1.0 -1.0 -1.0,
 1.0 3.0 -1.0 1.0,
 1.0 1.0 0.0,
 2.0 1.0,
 16.0)

 IPIV = (1 2 -2 -2 5 6 7 8)

 ┌ ┐
 | 1.0 1.0 8.0 |
 | 1.0 2.0 7.0 |
 | 1.0 3.0 6.0 |
 B = | 1.0 4.0 5.0 |
 | 1.0 5.0 4.0 |
 | 1.0 6.0 3.0 |
 | 1.0 7.0 2.0 |
 | 1.0 8.0 1.0 |
 └ ┘

 INFO = 0

 	Example 5

 	
 This example shows how to solve the system AX = B for
 three right-hand sides, where indefinite complex symmetric matrix A
 is the same matrix factored in the Example 2 for
 ZSYTRF.

 Call Statement and Input:

 UPLO N NRHS AP IPIV B LDB INFO
 | | | | | | | |
CALL ZSPSV('L' , 4 , 3 , AP , IPIV , B , 4 , INFO)

 AP =

 (same as input

 AP

 in

 Example 5

)

 B =

 (same as input

 B

 in

 Example 5

)

 Output:
AP = ((0.368, -0.319), (-0.062, 0.006), (0.625, 0.257), (-0.462, 0.314),
 (0.258,-0.147), (1.085, -0.335), (-0.444, 1.248),
 (0.333, 0.315), (-0.437, -1.386),
 (0.841, 0.431))

 IPIV = (1 2 4 4)

 ┌ ┐
 | (0.409,-0.663) (-0.582,-1.410) (2.484, 2.216) |
 B = | (-1.664,-0.552) (-1.503,-4.837) (-3.577, 2.575) |
 | (2.388, 4.010) (1.260,-0.430) (-1.273, 0.177) |
 | (1.562, 0.164) (6.213, 1.471) (-0.980,-2.551) |
 └ ┘

 INFO = 0

 	Example 6

 	
 This example shows how to solve the system AX = B for
 three right-hand sides, where indefinite complex Hermitian matrix A
 is the same matrix factored in the Example 3 for
 ZHETRF.

 Note: On input, the imaginary
 parts of the diagonal elements of the complex Hermitian matrix A are
 assumed to be zero, so you do not have to set these values. On output,
 they are set to zero.

 Call Statement and Input:

 UPLO N NRHS AP IPIV B LDB INFO
 | | | | | | | |
CALL ZHPSV('L' , 4 , 3 , AP , IPIV , B , 4 , INFO)

 AP =

 (same as input

 AP

 in

 Example 6

)

 B =

 (same as input

 B

 in

 Example 6

)

 Output: AP = ((-0.550, 0.000), (-0.027, 0.476), (0.062, 0.244), (-0.249, 0.022),
 (-0.484, 0.000), (-0.002, -0.269), (0.152, -0.091),
 (-0.490, 0.000), (0.245, -0.002),
 (-0.479, 0.000))

 IPIV = (1 2 3 4)

 ┌ ┐
 | (-1.623,-4.385) (2.635,-1.111) (-2.436,-0.306) |
 B = | (-3.533,-0.212) (1.865,-2.830) (-0.866,-0.308) |
 | (-1.742,-1.724) (-1.576, 1.575) (-0.478,-1.172) |
 | (-1.537,-2.115) (-1.047, 1.608) (3.093, 0.365) |
 └ ┘

 INFO = 0

 Parent topic: Linear Algebraic Equations

 SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF, and
 ZHPTRF (Indefinite Real or Complex Symmetric or Complex Hermitian Matrix Factorization)

 Purpose

 These subroutines factor an indefinite
 real or complex symmetric or complex Hermitian matrix A.
 The matrix A is factored using the Bunch-Kaufman diagonal
 pivoting method.

 To solve the system of equations with one or
 more right-hand sides, follow the call to SSYTRF, DSYTRF, CSYTRF,
 ZSYTRF, CHETRF, or ZHETRF with a call to SSYTRS, DSYTRS, CSYTRS, ZSYTRS,
 CHETRS, or ZHETRS respectively.

 To solve the system of equations
 with one or more right-hand sides, follow the call to SSPTRF, DSPTRF,
 CSPTRF, ZSPTRF, CHPTRF, or ZHPTRF with a call to SSPTRS, DSPTRS, CSPTRS,
 ZSPTRS, CHPTRS, or ZHPTRS respectively.

 Table 151. Data Types.

 	A, B, work

 	Subroutine

 	Short-precision real

 	SSYTRFΔ, SSPTRFΔ

 	Long-precision real

 	DSYTRFΔ, DSPTRFΔ

 	Short-precision complex

 	CSYTRFΔ, CHETRFΔ, CSPTRFΔ, CHPTRFΔ

 	Long-precision complex

 	
 ZSYTRFΔ, ZHETRFΔ, ZSPTRFΔ, ZHPTRFΔ

 	ΔLAPACK

 Syntax

 	Fortran

 	

 CALL SSYTRF | DSYTRF | CSYTRF | ZSYTRF | CHETRF | ZHETRF (

 uplo

 ,

 n

 ,

 a

 ,

 lda

 ,

 ipiv

 ,

 work

 ,

 lwork

 ,

 info

)

 CALL SSPTRF | DSPTRF | CSPTRF | ZSPTRF | CHPTRF | ZHPTRF (

 uplo

 ,

 n

 ,

 ap

 ,

 ipiv

 ,

 info

)

 	C and C++

 	

 ssytrf | dsytrf | csytrf | zsytrf | chetrf | zhetrf (

 uplo

 ,

 n

 ,

 a

 ,

 lda

 ,

 ipiv

 ,

 work

 ,

 lwork

 ,

 info

);

 ssptrf | dsptrf | csptrf | zsptrf | chptrf | zhptrf (

 uplo

 ,

 n

 ,

 ap

 ,

 ipiv

 ,

 info

);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_ssytrf | LAPACKE_dsytrf | LAPACKE_csytrf | LAPACKE_zsytrf | LAPACKE_chetrf |
 LAPACKE_zhetrf (matrix_layout, uplo, n,
 a, lda, ipiv);
info =
 LAPACKE_ssptrf | LAPACKE_dsptrf | LAPACKE_csptrf | LAPACKE_zsptrf | LAPACKE_chptrf | LAPACKE_zhptrf
 (matrix_layout, uplo, n,
 ap, ipiv); [image: End of change]

 Note:

 	The output from the SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, or
 ZHETRF factorization routines should only be used as input to SSYTRS,
 DSYTRS, CSYTRS, ZSYTRS, CHETRS, or ZHETRS respectively.

 	The output from the SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF, or
 ZHPTRF factorization routines should only be used as input to SSPTRS,
 DSPTRS, CSPTRS, ZSPTRS, CHPTRS, or ZHPTRS respectively.

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 uplo

 	indicates whether the upper or lower triangular part of the matrix A is
 referenced, where:
 If uplo = 'U', the upper
 triangular part is referenced.

 If uplo =
 'L', the lower triangular part is referenced.

 Specified as:
 a single character; uplo = 'U' or 'L'.

 	 n

 	is the order of matrix A used in the computation.

 Specified as: an integer; n ≥ 0.

 	 a

 	is the indefinite real symmetric, complex symmetric, or complex
 Hermitian matrix A of order n.
 If uplo =
 'U', it is stored in upper storage mode.

 If uplo =
 'L', it is stored in lower storage mode.

 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 151.

 	 ap

 	is the indefinite real symmetric, complex symmetric, or complex
 Hermitian matrix A of order n. It
 is stored in an array, referred to as AP, where:
 If uplo =
 'U', it is stored in upper-packed storage mode.

 If uplo =
 'L', it is stored in lower-packed storage mode.

 Specified
 as: one-dimensional array of (at least) length n(n +
 1)/2, containing numbers of the data type indicated in Table 151.

 	 lda

 	is the leading dimension of the array specified for A.
 Specified
 as: an integer; lda > 0 and lda ≥ n.

 	 ipiv

 	See On Return.

 	 work

 	is a work area used by these subroutines, where:
 If lwork = 0, work is
 ignored.

 If lwork ≠ 0, the size of work is
 determined as follows:

 	If lwork ≠ -1, work is
 (at least) of length lwork.

 	If lwork = -1, work is (at
 least) of length 1.

 Specified as: an area of storage containing numbers of
 the data type indicated in Table 151.

 	 lwork

 	is the number of elements in array WORK.
 Specified
 as: an integer; where:

 	If lwork = 0, the subroutine dynamically allocates
 the workspace needed for use during this computation. The work area
 is deallocated before control is returned to the calling program.

 	If lwork = -1, subroutine performs a workspace
 query and returns the optimal required size of work in work1.
 No computation is performed and the subroutine returns after error
 checking is complete.

 	Otherwise, lwork ≥ 1. It is
 suggested that the user specify lwork ≥ 8n.

 	 info

 	See On Return.

 	On Return

 	

 	a

 	is the transformed matrix A containing the results
 of the factorization. See Function.

 	Returned as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 151.

 	 ap

 	is the transformed matrix A containing the results
 of the factorization. See Function.
 Returned
 as: a one-dimensional array of (at least) length n(n +
 1)/2, containing numbers of the data type indicated in Table 151.

 	 ipiv

 	If info = 0, ipiv contains
 the pivot indices.
 If ipivk >
 0, then rows and columns k and ipivk were
 interchanged and Dk,k is
 a 1 × 1 diagonal
 block.

 If uplo = 'U' and ipivk = ipivk-1 <
 0, then rows and columns k-1 and -ipivk were
 interchanged and Dk-1:k,k-1:k is
 a 2 × 2 diagonal
 block.

 If uplo = 'L' and ipivk = ipivk+1 <
 0, then rows and columns k+1 and -ipivk were
 interchanged and Dk:k+1,k:k+1 is
 a 2 × 2 diagonal
 block.

 Returned as: a one-dimensional
 integer array of (at least) length n, containing
 integers.

 	 work

 	is a work area used by this subroutine if lwork ≠ 0, where:
 If lwork ≠ 0 and lwork ≠ -1, its size is
 (at least) of length lwork.

 If lwork = -1,
 its size is (at least) of length 1.

 Returned as: an area
 of storage, where:

 If lwork ≥ 1 or lwork = -1,
 then work1 is set to the optimal lwork value
 and all other elements of work are overwritten.

 	info

 	has the following meaning:

 	If info = 0, the factorization completed successfully.

 	If info > 0, the factorization was unsuccessful and info is set to i where
 dii is exactly zero.

 Returned as:[image: Start of change]
 	For SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF, and
 ZHPTRF, returned as: an integer; info ≥ 0.

 	For LAPACKE_ssytrf, LAPACKE_dsytrf, LAPACKE_csytrf, LAPACKE_zsytrf, LAPACKE_chetrf,
 LAPACKE_zhetrf, LAPACKE_ssptrf, LAPACKE_dsptrf, LAPACKE_csptrf, LAPACKE_zsptrf, LAPACKE_chptrf, and
 LAPACKE_zhptrf, returned as an integer function value; info ≥ 0.

[image: End of change]

 Specified as: an integer; info ≥ 0.

 Notes

 	These subroutines accept lowercase letters for the uplo argument.

 	In your C program, argument info must be passed
 by reference.

 	a, ap, ipiv,
 and work must have no common elements; otherwise,
 results are unpredictable.

 	For a description of how real and complex symmetric matrices are
 stored in lower or upper storage mode, see Lower Storage Mode or Upper Storage Mode, respectively.
 For a
 description of how complex Hermitian matrices are stored in lower
 or upper storage mode, see Complex Hermitian Matrix.

 	For a description of how real and complex symmetric matrices are
 stored in lower- or upper-packed storage mode, see Lower-Packed Storage Mode or Upper-Packed Storage Mode, respectively.
 For a
 description of how complex Hermitian matrices are stored in lower-
 or upper-packed storage mode, see Complex Hermitian Matrix.

 	On input, the imaginary parts of the diagonal elements of the
 complex Hermitian matrix A are assumed to be zero, so
 you do not have to set these values. On output, they are set to zero.

 	For best performance, specify lwork = 0.

 Function

 For SSYTRF,
 DSYTRF, CSYTRF, ZSYTRF, SSPTRF, DSPTRF, CSPTRF, and ZSPTRF:

 The
 indefinite real or complex symmetric matrix A is factored
 using the Bunch-Kaufman diagonal pivoting method, where A is
 expressed as one of the following:

 A = UDUT

 A = LDLT

 where:

 U is a product of permutation and unit upper
 triangular matrices.

 L is a product of permutation
 and unit lower triangular matrices.

 D is a symmetric
 block diagonal matrix, consisting of 1 × 1 and 2 × 2 diagonal blocks.

 Matrix A is
 stored as follows:

 	For SSYTRF, DSYTRF, CSYTRF, and ZSYTRF, matrix A is
 stored in upper or lower storage mode.

 	For SSPTRF, DSPTRF, CSPTRF, and ZSPTRF, matrix A is
 stored in upper- or lower-packed storage mode.

 For CHETRF, ZHETRF, CHPTRF, and ZHPTRF:

 The
 indefinite complex Hermitian matrix A is factored using
 the Bunch-Kaufman diagonal pivoting method, where A is
 expressed as one of the following:

 A = UDUH

 A = LDLH

 where:

 U is a product of permutation and unit upper
 triangular matrices.

 L is a product of permutation
 and unit lower triangular matrices.

 D is a complex
 Hermitian block diagonal matrix, consisting of 1 × 1 and 2 × 2 diagonal blocks.

 Matrix A is
 stored as follows:

 	For CHETRF and ZHETRF, matrix A is stored in upper
 or lower storage mode.

 	For CHPTRF and ZHPTRF, matrix A is stored in upper-
 or lower-packed storage mode.

 If n is 0, no computation is
 performed. See references [8] and [18].

 Error conditions

 	Resource Errors

 	lwork = 0 and unable to allocate work area

 	Computational Errors

 	Matrix A is singular.

 	The factorization completed but the block diagonal matrix D is
 exactly singular. info is set to i, where dii is
 exactly zero. This diagonal element is identified in the computational
 error message.

 	The computational error message may occur multiple times with
 processing continuing after each error, because the default for the
 number of allowable errors for error code 2147 is set to be unlimited
 in the ESSL error option table. For details, see What Can You Do about ESSL Computational Errors?.

 	Input-Argument Errors

 	

 	uplo ≠ 'U' or 'L'

 	n < 0

 	lda ≤ 0

 	n > lda

 	lwork ≠ 0 and lwork ≠ -1 and lwork < the
 minimum required value

 Examples

 	[bookmark: am5gr_indeff__indeffex1]
 Example 1

 	
 This example shows a factorization of the indefinite real
 symmetric matrix A of order 8.

 Matrix A is
 the same matrix factored in the Example 1 for
 DBSTRF.

 Note: Because lwork = 0, the subroutine
 dynamically allocates WORK.

 Call Statement and Input:

 UPLO N A LDA IPIV WORK LWORK INFO
 | | | | | | | |
CALL DSYTRF('L' , 8 , A , 8 , IPIV , WORK, 0 , INFO)

 ┌ ┐
 | 3.0 |
 | 5.0 3.0 |
 | -2.0 2.0 0.0 |
 A = | 2.0 -2.0 0.0 8.0 |
 | 3.0 5.0 -2.0 -6.0 12.0 . . . |
 | -5.0 -3.0 2.0 -10.0 6.0 16.0 . . |
 | -2.0 2.0 0.0 -8.0 8.0 8.0 6.0 . |
 | -3.0 -5.0 6.0 -14.0 6.0 20.0 18.0 34.0 |
 └ ┘

 Output: ┌ ┐
 | 3.0 |
 | 5.0 3.0 |
 | 1.0 -1.0 4.0 |
 A = | -1.0 1.0 -1.0 8.0 |
 | 1.0 0.0 0.0 -1.0 1.0 . . . |
 | 0.0 -1.0 1.0 -1.0 3.0 1.0 . . |
 | 1.0 -1.0 1.0 -1.0 -1.0 1.0 2.0 . |
 | -1.0 0.0 1.0 -1.0 1.0 0.0 1.0 16.0 |
 └ ┘

 IPIV = (-2 -2 3 4 -6 -6 7 8)

 INFO = 0

 	[bookmark: am5gr_indeff__indeffex2]
 Example 2

 	
 This example shows a factorization of the indefinite complex
 symmetric matrix A of order 4.

 Matrix A is:
 ┌ ┐
 | (0.368,-0.319) (-0.021, 0.022) (0.312,-0.105) (-0.070, 0.263) |
 | (-0.021, 0.022) (0.259,-0.148) (0.212,-0.237) (0.071, 0.370) |
 | (0.312,-0.105) (0.212,-0.237) (0.273,-0.041) (0.384,-0.056) |
 | (-0.070, 0.263) (0.071, 0.370) (0.384,-0.056) (-0.230, 0.085) |
 └ ┘

 Note: Because lwork = 0, the subroutine
 dynamically allocates WORK.

 Call Statement and Input:

 UPLO N A LDA IPIV WORK LWORK INFO
 | | | | | | | |
CALL ZSYTRF('L' , 4 , A , 4 , IPIV , WORK, 0 , INFO)

 ┌ ┐
 | (0.368,-0.319) . . . |
 A = | (-0.021, 0.022) (0.259,-0.148) . . |
 | (0.312,-0.105) (0.212,-0.237) (0.273,-0.041) . |
 | (-0.070, 0.263) (0.071, 0.370) (0.384,-0.056) (-0.230, 0.085) |
 └ ┘

 Output: ┌ ┐
 | (0.368,-0.319) . . . |
 A = | (-0.062, 0.006) (0.258,-0.147) . . |
 | (0.625, 0.257) (1.085,-0.335) (0.333, 0.315) . |
 | (-0.462, 0.314) (-0.444, 1.248) (-0.437,-1.386) (0.841, 0.431) |
 └ ┘

 IPIV = (1 2 4 4)

 INFO = 0

 	[bookmark: am5gr_indeff__indeffex3]
 Example 3

 	
 This example shows a factorization of the indefinite complex
 Hermitian matrix A of order 4.

 Matrix A is:
 ┌ ┐
 | (-0.550, 0.000) (0.015, 0.262) (-0.034, 0.134) (0.137, 0.012) |
 | (0.015,-0.262) (-0.609, 0.000) (-0.062,-0.150) (-0.083, 0.021) |
 | (-0.034,-0.134) (-0.062, 0.150) (-0.560, 0.000) (-0.126, 0.053) |
 | (0.137,-0.012) (-0.083,-0.021) (-0.126,-0.053) (-0.558, 0.000) |
 └ ┘

 Notes:

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 	On input, the imaginary parts of the diagonal elements of the
 complex Hermitian matrix A are assumed to be zero, so
 you do not have to set these values. On output, they are set to zero.

 Call Statement and Input:

 UPLO N A LDA IPIV WORK LWORK INFO
 | | | | | | | |
CALL ZHETRF('L' , 4 , A , 4 , IPIV , WORK, 0 , INFO)

 ┌ ┐
 | (-0.550, .) . . . |
 A = | (0.015,-0.262) (-0.609, .) . . |
 | (-0.034,-0.134) (-0.062, 0.150) (-0.560, .) . |
 | (0.137,-0.012) (-0.083,-0.021) (-0.126,-0.053) (-0.558, .) |
 └ ┘

 Output: ┌ ┐
 | (-0.550, 0.000) . . . |
 A = | (-0.027, 0.476) (-0.483, 0.000) . . |
 | (0.062, 0.244) (-0.002,-0.269) (-0.490, 0.000) . |
 | (-0.249, 0.022) (0.152,-0.091) (0.244,-0.002) (-0.479, 0.000) |
 └ ┘

 IPIV = (1 2 4 4)

 INFO = 0

 	[bookmark: am5gr_indeff__indeffex4]
 Example 4

 	
 This example shows a factorization of the indefinite real
 symmetric matrix A of order 8.

 Matrix A is
 the same matrix factored in the Example 1 for
 DBSTRF.

 Call Statement
 and Input:

 UPLO N AP IPIV INFO
 | | | | |
CALL DSPTRF('L' , 8 , AP , IPIV , INFO)

 AP = (3.0 5.0 -2.0 2.0 3.0 -5.0 -2.0 -3.0,
 3.0 2.0 -2.0 5.0 -3.0 2.0 -5.0,
 0.0 0.0 -2.0 2.0 0.0 6.0,
 8.0 -6.0-10.0 -8.0-14.0,
 12.0 6.0 8.0 6.0,
 16.0 8.0 20.0,
 6.0 18.0,
 34.0)

 Output: AP = (3.0 5.0 1.0 -1.0 1.0 0.0 1.0 -1.0,
 3.0 -1.0 1.0 0.0 -1.0 -1.0 0.0,
 4.0 -1.0 0.0 1.0 1.0 1.0,
 8.0 -1.0 -1.0 -1.0 -1.0,
 1.0 3.0 -1.0 1.0,
 1.0 1.0 0.0,
 2.0 1.0,
 16.0)

 IPIV = (-2 -2 3 4 -6 -6 7 8)

 INFO = 0

 	[bookmark: am5gr_indeff__indeffex5]
 Example 5

 	
 This example shows a factorization of the indefinite complex
 symmetric matrix A of order 4.

 Matrix A is
 the same matrix factored in the Example
 2 for ZSYTRF.

 Call Statement and Input:

 UPLO N AP IPIV INFO
 | | | | |
CALL ZSPTRF('L' , 4 , AP , IPIV , INFO)

AP = ((0.368, -0.319), (-0.021, 0.022), (0.312, -0.105),(-0.070, 0.263),
 (0.259, -0.148), (0.212, -0.237),(0.071, 0.370),
 (0.273, -0.041),(0.384, -0.056),
 (-0.230, 0.085))

 Output:
AP = ((0.368, -0.319), (-0.062, 0.006), (0.625, 0.257), (-0.462, 0.314),
 (0.258,-0.147), (1.085, -0.335), (-0.444, 1.248),
 (0.333, 0.315), (-0.437, -1.386),
 (0.841, 0.431))

 IPIV = (1 2 4 4)

 INFO = 0

 	[bookmark: am5gr_indeff__indeffex6]
 Example 6

 	
 This example shows a factorization of the indefinite complex
 Hermitian matrix A of order 4.

 Matrix A is
 the same matrix factored in the Example
 3 for ZHETRF.

 Note: On input,
 the imaginary parts of the diagonal elements of the complex Hermitian
 matrix A are assumed to be zero, so you do not have
 to set these values. On output, they are set to zero.

 Call
 Statement and Input:

 UPLO N AP IPIV INFO
 | | | | |
CALL ZHPTRF('L' , 4 , AP , IPIV , INFO)

 AP = ((-0.550, .), (0.015,-0.262), (-0.034,-0.134), (0.137,-0.012),
 (-0.609, .), (-0.062, 0.150), (-0.083,-0.021),
 (-0.560, .), (-0.126,-0.053),
 (-0.558, .))

 Output: AP = ((-0.550, 0.000), (-0.027, 0.476), (0.062, 0.244), (-0.249, 0.022),
 (-0.484, 0.000), (-0.002, -0.269), (0.152, -0.091),
 (-0.490, 0.000), (0.245, -0.002),
 (-0.479, 0.000))

 IPIV = (1 2 3 4)

 INFO = 0

 Parent topic: Linear Algebraic Equations

 SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, ZHETRS, SSPTRS, DSPTRS, CSPTRS, ZSPTRS, CHPTRS, and
 ZHPTRS (Indefinite Real or Complex Symmetric or Complex Hermitian Matrix Multiple Right-Hand Side
 Solve)

 Purpose

 These subroutines solve the system AX = B for X,
 where A is an indefinite real or complex symmetric or
 complex Hermitian matrix and X and B are
 general matrices.

 SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, or
 ZHETRS use the results of the factorization of matrix A,
 produced by a preceding call to SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF,
 or ZHETRF, respectively.

 SSPTRS, DSPTRS, CSPTRS, ZSPTRS, CHPTRS,
 or ZHPTRS use the results of the factorization of matrix A,
 produced by a preceding call to SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF,
 or ZHPTRF, respectively.

 Table 152. Data Types.

 	A, B

 	Subroutine

 	Short-precision real

 	SSYTRSΔ, SSPTRSΔ

 	Long-precision real

 	DSYTRSΔ, DSPTRSΔ

 	Short-precision complex

 	CSYTRSΔ, CHETRSΔ, CSPTRSΔ, CHPTRSΔ

 	Long-precision complex

 	
 ZSYTRSΔ, ZHETRSΔ, ZSPTRSΔ, ZHPTRSΔ

 	ΔLAPACK

 Syntax

 	Fortran

 	

 CALL SSYTRS | DSYTRS | CSYTRS | ZSYTRS | CHETRS | ZHETRS (

 uplo

 ,

 n

 ,

 nrhs

 ,

 a

 ,

 lda

 ,

 ipiv

 ,

 b

 ,

 ldb

 ,

 info

)

 CALL SSPTRS | DSPTRS | CSPTRS | ZSPTRS | CHPTRS | ZHPTRS (

 uplo

 ,

 n

 ,

 nrhs

 ,

 ap

 ,

 ipiv

 ,

 b

 ,

 ldb

 ,

 info

)

 	C and C++

 	

 ssytrs | dsytrs | csytrs | zsytrs | chetrs | zhetrs (

 uplo

 ,

 n

 ,

 nrhs

 ,

 a

 ,

 lda

 ,

 ipiv

 ,

 b

 ,

 ldb

 ,

 info

);

 ssptrs | dsptrs | csptrs | zsptrs | chptrs | zhptrs (

 uplo

 ,

 n

 ,

 nrhs

 ,

 ap

 ,

 ipiv

 ,

 b

 ,

 ldb

 ,

 info

);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_ssytrs | LAPACKE_dsytrs | LAPACKE_csytrs | LAPACKE_zsytrs | LAPACKE_chetrs |
 LAPACKE_zhetrs (matrix_layout, uplo, n,
 nrhs, a, lda, ipiv,
 b, ldb);
info = LAPACKE_ssptrs | LAPACKE_dsptrs |
 LAPACKE_csptrs | LAPACKE_zsptrs | LAPACKE_chptrs | LAPACKE_zhptrs (matrix_layout,
 uplo, n, nrhs, ap,
 ipiv, b, ldb); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 uplo

 	indicates whether the upper or lower triangular part of the matrix A is
 referenced, where:
 If uplo = 'U', the upper
 triangular part is referenced.

 If uplo =
 'L', the lower triangular part is referenced.

 Specified as:
 a single character; uplo = 'U' or 'L'.

 	 n

 	is the order of matrix A used in the computation.

 Specified as: an integer; n ≥ 0.

 	 nrhs

 	is the number of right-hand sides; that is, the number of columns
 of matrix B.

 	Specified as: an integer; nrhs ≥ 0.

 	 a

 	is the factorization of indefinite real symmetric, complex symmetric,
 or complex Hermitian matrix A of order n produced
 by a preceding call to SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, or
 ZHETRF, respectively.
 If uplo = 'U', it is stored
 in upper storage mode.

 If uplo = 'L', it
 is stored in lower storage mode.

 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 152.

 	 ap

 	is the factorization of indefinite real symmetric, complex symmetric,
 or complex Hermitian matrix A of order n,
 produced by a preceding call to SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF,
 or ZHPTRF, respectively.
 If uplo = 'U', it is
 stored in upper-packed storage mode.

 If uplo =
 'L', it is stored in lower-packed storage mode.

 Specified
 as: a one-dimensional array of (at least) length n(n +
 1)/2, containing numbers of the data type indicated in Table 152.

 	 lda

 	is the leading dimension of the array specified for A.
 Specified
 as: an integer; lda > 0 and lda ≥ n.

 	 ipiv

 	is the array containing the pivot indices produced by a preceding
 call to SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF, DSPTRF,
 CSPTRF, ZSPTRF, CHPTRF, or ZHPTRF, respectively.
 Specified as: a
 one-dimensional integer array of (at least) length n,
 containing integers.

 	 b

 	is the general matrix B containing the nrhs right-hand
 sides of the system. The right-hand sides, each of length n,
 reside in the columns of matrix B.
 Specified as: an ldb by nrhs array,
 containing numbers of the data type indicated in Table 152.

 	 ldb

 	is the leading dimension of the array specified for B.

 Specified as: an integer; ldb>0 and ldb ≥ n.

 	 info

 	See On Return.

 	On Return

 	

 	 b

 	is the matrix X, containing the nrhs solutions
 to the system. The solutions, each of length n,
 reside in the columns of X.
 Returned as: an ldb by
 (at least) nrhs array, containing numbers of the
 data type indicated in Table 152.

 	info

 	has the following meaning:
 If info=0, the factorization completed
 successfully.

 [image: Start of change] Returned as:[image: Start of change]
 	For SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, ZHETRS, SSPTRS, DSPTRS, CSPTRS, ZSPTRS, CHPTRS, and
 ZHPTRS, returned as: an integer; info ≥ 0.

 	For LAPACKE_ssytrs, LAPACKE_dsytrs, LAPACKE_csytrs, LAPACKE_zsytrs, LAPACKE_chetrs,
 LAPACKE_zhetrs, LAPACKE_ssptrs, LAPACKE_dsptrs, LAPACKE_csptrs, LAPACKE_zsptrs, LAPACKE_chptrs, and
 LAPACKE_zhptrs, returned as an integer function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	These subroutines accept lowercase letters for the uplo argument.

 	In your C program, argument info must be passed
 by reference.

 	a, ap, b and ipiv must
 have no common elements; otherwise, results are unpredictable.

 	For a description of how real and complex symmetric matrices are
 stored in lower or upper storage mode, see Lower Storage Mode or Upper Storage Mode, respectively.
 For a
 description of how complex Hermitian matrices are stored in lower
 or upper storage mode, see Complex Hermitian Matrix.

 	For a description of how real and complex symmetric matrices are
 stored in lower- or upper-packed storage mode, see Lower-Packed Storage Mode or Upper-Packed Storage Mode, respectively.
 For a
 description of how complex Hermitian matrices are stored in lower-
 or upper-packed storage mode, see Complex Hermitian Matrix.

 Function

 These subroutines solve the system AX = B for X,
 where A is a real or complex symmetric or complex Hermitian
 matrix and X and B are general matrices.

 SSYTRS,
 DSYTRS, CSYTRS, ZSYTRS, CHETRS, or ZHETRS use the results of the factorization
 of matrix A, produced by a preceding call to SSYTRF,
 DSYTRF, CSYTRF, ZSYTRF, CHETRF, or ZHETRF, respectively.

 SSPTRS,
 DSPTRS, CSPTRS, ZSPTRS, CHPTRS, or ZHPTRS use the results of the
 factorization of matrix A, produced by a preceding
 call to SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF, or ZHPTRF, respectively.

 If n is
 0 or nrhs is 0, no computation is performed and
 the subroutine returns after doing some parameter checking. See references [8] and [18].

 Error conditions

 	Computational Errors

 	None
 Note: If the factorization performed by SSYTRF, DSYTRF,
 CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF,
 or ZHPTRF failed because matrix A is singular, the results
 returned by this subroutine are unpredictable, and there may be a
 divide-by-zero program exception message.

 	Input-Argument Errors

 	

 	uplo ≠ 'U' or 'L'

 	n < 0

 	nrhs < 0

 	lda ≤ 0

 	n > lda

 	ldb ≤ 0

 	n > ldb

 Examples

 	[bookmark: am5gr_indefs__indefsex1]
 Example 1

 	
 This example shows how to solve the system AX=B,
 for three right-hand sides, where indefinite real symmetric matrix A
 is the same matrix factored in the Example 1 for
 DSYTRF.

 Call Statement and Input:

 UPLO N NRHS A LDA IPIV B LDB INFO
 | | | | | | | | |
CALL DSYTRS('L' , 8 , 3 , A , 8 , IPIV , B , 8 , INFO)

 A = (same as output A in Example 1)

 IPIV
 = (same as output IPIV in Example 1)

 ┌ ┐
 | 1.0 -38.0 47.0 |
 | 7.0 -10.0 73.0 |
 | 6.0 52.0 2.0 |
 B = | -30.0 -228.0 -42.0 |
 | 32.0 183.0 105.0 |
 | 34.0 297.0 9.0 |
 | 32.0 244.0 44.0 |
 | 62.0 497.0 61.0 |
 └ ┘

 Output: ┌ ┐
 | 1.0 1.0 8.0 |
 | 1.0 2.0 7.0 |
 | 1.0 3.0 6.0 |
 B = | 1.0 4.0 5.0 |
 | 1.0 5.0 4.0 |
 | 1.0 6.0 3.0 |
 | 1.0 7.0 2.0 |
 | 1.0 8.0 1.0 |
 └ ┘

 INFO = 0

 	[bookmark: am5gr_indefs__indefsex2]
 Example 2

 	
 This example shows how to solve the system AX=B for
 three right-hand sides, where indefinite complex symmetric matrix A
 is the same matrix factored in the Example 2 for
 ZSYTRF.

 	
 Call Statement and Input:

 UPLO N NRHS A LDA IPIV B LDB INFO
 | | | | | | | | |
CALL ZSYTRS('L' , 4 , 3 , A , 4 , IPIV , B , 4 , INFO)

 A = (same as output A in Example 2)

 IPIV
 = (same as output IPIV in Example 2)

 ┌ ┐
 | (1.000, 1.000) (-1.000, 1.000) (2.000, 0.000) |
 B = | (1.000, 1.000) (-1.000, 1.000) (0.000, 1.000) |
 | (1.000, 1.000) (1.000,-1.000) (0.000, 1.000) |
 | (1.000, 1.000) (1.000,-1.000) (-2.000, 0.000) |
 └ ┘

 Output: ┌ ┐
 | (0.409, -0.663) (-0.582,-1.410) (2.484, 2.216) |
 B = | (-1.664, -0.552) (-1.503,-4.837) (-3.577, 2.575) |
 | (2.388, 4.010) (1.260,-0.430) (-1.273, 0.177) |
 | (1.562, 0.164) (6.213, 1.471) (-0.980,-2.551) |
 └ ┘

 INFO = 0

 	[bookmark: am5gr_indefs__indefsex3]
 Example 3

 	
 This example shows how to solve the system AX=B for
 three right-hand sides, where indefinite complex Hermitian matrix A
 is the same matrix factored in the Example 3 for
 ZHETRF.

 Call Statement
 and Input:

 UPLO N NRHS A LDA IPIV B LDB INFO
 | | | | | | | | |
CALL ZHETRS('L' , 4 , 3 , A , 4 , IPIV , B , 4 , INFO)

 A = (same as output A in Example 3)

 IPIV
 = (same as output IPIV in Example 3)

 ┌ ┐
 | (1.000, 1.000) (-1.000, 1.000) (2.000, 0.000) |
 B = | (1.000, 1.000) (-1.000, 1.000) (0.000, 1.000) |
 | (1.000, 1.000) (1.000,-1.000) (0.000, 1.000) |
 | (1.000, 1.000) (1.000,-1.000) (-2.000, 0.000) |
 └ ┘

 Output: ┌ ┐
 | (-1.623,-4.385) (2.635,-1.111) (-2.436,-0.306) |
 B = | (-3.533,-0.212) (1.865,-2.830) (-0.866,-0.308) |
 | (-1.742,-1.724) (-1.576, 1.575) (-0.478,-1.172) |
 | (-1.537,-2.115) (-1.047, 1.608) (3.093, 0.365) |
 └ ┘

 INFO = 0

 	[bookmark: am5gr_indefs__indefsex4]
 Example 4

 	
 This example shows how to solve the system AX=B for
 three right-hand sides, where indefinite real symmetric matrix A
 is the same matrix factored in the Example 1 for
 DSYTRF.

 Call Statement and Input:

 UPLO N NRHS AP IPIV B LDB INFO
 | | | | | | | |
CALL DSPTRS('L' , 8 , 3 , AP , IPIV , B , 8 , INFO)

 AP = (same as output AP in Example 4)

 IPIV
 = (same as output IPIV in Example 4)

 ┌ ┐
 | 1.0 -38.0 47.0 |
 | 7.0 -10.0 73.0 |
 | 6.0 52.0 2.0 |
 B = | -30.0 -228.0 -42.0 |
 | 32.0 183.0 105.0 |
 | 34.0 297.0 9.0 |
 | 32.0 244.0 44.0 |
 | 62.0 497.0 61.0 |
 └ ┘

 Output: ┌ ┐
 | 1.0 1.0 8.0 |
 | 1.0 2.0 7.0 |
 | 1.0 3.0 6.0 |
 B = | 1.0 4.0 5.0 |
 | 1.0 5.0 4.0 |
 | 1.0 6.0 3.0 |
 | 1.0 7.0 2.0 |
 | 1.0 8.0 1.0 |
 └ ┘

 INFO = 0

 	[bookmark: am5gr_indefs__indefsex5]
 Example 5

 	
 This example shows how to solve the system AX=B for
 three right-hand sides, where indefinite complex symmetric matrix A
 is the same matrix factored in the Example 2 for
 ZSYTRF.

 Call Statement and Input:

 UPLO N NRHS AP IPIV B LDB INFO
 | | | | | | | |
CALL ZSPTRS('L' , 4 , 3 , AP , IPIV , B , 4 , INFO)

 AP = (same as output AP in Example 5)

 IPIV
 = (same as output IPIV in Example 5)

 ┌ ┐
 | (1.000, 1.000) (-1.000, 1.000) (2.000, 0.000) |
 B = | (1.000, 1.000) (-1.000, 1.000) (0.000, 1.000) |
 | (1.000, 1.000) (1.000,-1.000) (0.000, 1.000) |
 | (1.000, 1.000) (1.000,-1.000) (-2.000, 0.000) |
 └ ┘

 Output: ┌ ┐
 | (0.409,-0.663) (-0.582,-1.410) (2.484, 2.216) |
 B = | (-1.664,-0.552) (-1.503,-4.837) (-3.577, 2.575) |
 | (2.388, 4.010) (1.260,-0.430) (-1.273, 0.177) |
 | (1.562, 0.164) (6.213, 1.471) (-0.980,-2.551) |
 └ ┘

 INFO = 0

 	[bookmark: am5gr_indefs__indefsex6]
 Example 6

 	
 This example shows how to solve the system AX=B for
 three right-hand sides, where indefinite complex Hermitian matrix A
 is the same matrix factored in the Example 3 for
 ZHETRF.

 Call Statement and Input:

 UPLO N NRHS AP IPIV B LDB INFO
 | | | | | | | |
CALL ZHPTRS('L' , 4 , 3 , AP , IPIV , B , 4 , INFO)

 AP = (same as output AP in Example 6)

 IPIV
 = (same as output IPIV in Example 6)

 ┌ ┐
 | (1.000, 1.000) (-1.000, 1.000) (2.000, 0.000) |
 B = | (1.000, 1.000) (-1.000, 1.000) (0.000, 1.000) |
 | (1.000, 1.000) (1.000,-1.000) (0.000, 1.000) |
 | (1.000, 1.000) (1.000,-1.000) (-2.000, 0.000) |
 └ ┘

 Output: ┌ ┐
 | (-1.623,-4.385) (2.635,-1.111) (-2.436,-0.306) |
 B = | (-3.533,-0.212) (1.865,-2.830) (-0.866,-0.308) |
 | (-1.742,-1.724) (-1.576, 1.575) (-0.478,-1.172) |
 | (-1.537,-2.115) (-1.047, 1.608) (3.093, 0.365) |
 └ ┘

 INFO = 0

 Parent topic: Linear Algebraic Equations

 DBSSV (Symmetric Indefinite Matrix Factorization and Multiple
 Right-Hand Side Solve)

 Purpose

 The DBSSV subroutine solves a system
 of linear equations AX = B for X,
 where A is a real symmetric indefinite matrix, and X and B are
 real general matrices.

 The matrix A, stored in
 upper- or lower-packed storage mode, is factored using the Bunch-Kaufman
 diagonal pivoting method, where A is expressed as:

 A

 =

 UDU

 T

 or

 A

 =

 LDL

 T

 where:

 U is
 a product of permutation and unit upper triangular matrices.

 L is
 a product of permutation and unit lower triangular matrices.

 D is
 a symmetric block diagonal matrix, consisting of 1 × 1 and
 2 × 2
 diagonal blocks.

 Table 153. Data Types.

 	A, B

 	ipvt

 	Subroutine

 	Long-precision real

 	Integer

 	DBSSV

 Syntax

 	Fortran

 	CALL DBSSV (uplo, n, nrhs, ap, ipvt, bx, ldb, nsinfo)

 	C and C++

 	dbssv (uplo, n, nrhs, ap, ipvt, bx, ldb, nsinfo);

 	On Entry

 	

 	 uplo

 	indicates whether matrix A is stored in upper- or
 lower-packed storage mode, where:
 If uplo = 'U', A is
 stored in upper-packed storage mode.

 If uplo = 'L', A is
 stored in lower-packed storage mode.

 Specified as: a single
 character. It must be 'U' or 'L'.

 	 n

 	is the order n of matrix A and
 the number of rows of matrix B.
 Specified as: an integer; n ≥ 0.

 	 nrhs

 	is the number of right-hand sides; i.e., the number of columns
 of matrix B.
 Specified as: an integer; nrhs ≥ 0.

 	 ap

 	is array, referred to as AP, in which matrix A,
 to be factored, is stored in upper- or lower-packed storage mode.

 Specified as: a one-dimensional array of length nsinfo,
 containing numbers of the data type indicated in Table 153. See Notes.

 	 ipvt

 	See On Return.

 	 bx

 	is the matrix B, containing the nrhs right-hand
 sides of the system. The right-hand sides, each of length n,
 reside in the columns of matrix B.
 Specified as:
 an ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 153.

 	 ldb

 	is the leading dimension of the array specified for B.

 Specified as: an integer; ldb > 0
 and ldb ≥ n.

 	 nsinfo

 	is the number of elements in array, AP.
 If n ≤ nco, nsinfo = n(n +
 1) / 2

 Where:

 [image: Math Graphic]

 ics is the size in doublewords of the data
 cache. The data cache size can be obtained by utilizing the following
 C language code fragment: #include <sys/systemcfg.h>
int ics;
 .
 .
 .
ics=_system_configuration.dcache_size/8;

 Otherwise,
 to determine a sufficient amount of storage, use the following processor-independent
 formula:

 n

 0

 =

 100

 ns

 =

 (

 n

 +

 n

 0) (

 n

 +

 n

 0 + 1) / 2 +

 n

 (

 n

 0)

 For

 uplo

 =

 'L',

 nsinfo

 ≥

 ns

 For

 uplo

 =

 'U',

 n

 1

 =

 (

 n

 + 1) / 2

 nt

 =

 n

 ((

 n

 + 1) / 2)

 nt

 1

 =

 n

 1(

 n

 1 + 1)

 ns

 1

 =

 nt

 +

 nt

 1

 nsinfo

 ≥

 max(

 ns

 ,

 ns

 1)

 To determine the minimal amount of storage see Notes.

 Specified as: an
 integer; nsinfo > 0.

 	On Return

 	

 	ap

 	is the transformed matrix A of order n,
 containing the results of the factorization.
 If nsinfo ≥ 0 and n > nco,
 additional information that can be used to obtain a minimum nsinfo is
 stored in AP(1).

 See Notes and Function.
 Returned as: a one-dimensional
 array, containing numbers of the data type indicated in Table 153.

 	 ipvt

 	is an integer vector of length n, containing
 the pivot information necessary to construct the factored form of A.
 Returned
 as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 153.

 	 bx

 	is the matrix X, containing the nrhs solutions
 to the system. The solutions, each of length n,
 reside in the columns of X.
 Returned as: an ldb by
 (at least) nrhs array, containing numbers of the
 data type indicated in Table 153.

 	 nsinfo

 	indicates the result of the computation.

 	If nsinfo = 0, the subroutine completed successfully.

 	If nsinfo > 0, factorization was unsuccessful
 and array B was not updated. nsinfo is
 set to i where dii is
 exactly zero.

 	If nsinfo < 0, factorization did not take place
 and the arrays, AP and B, remain
 unchanged. |nsinfo| is the minimal storage required
 for factorization to take place. Error message 2200 is issued and
 execution terminates, unless you have used ERRSET to make error code
 2200 recoverable. See What Can You Do about ESSL Input-Argument Errors?.

 Specified as: an integer.

 Notes

 	This subroutine accepts lowercase letters for the uplo argument.

 	In your C program, argument nsinfo must be
 passed by reference.

 	In the input array specified for ap, the first n(n+1)/2
 elements are matrix elements. The additional locations, required in
 the array, are used for working storage.

 	The vectors and matrices used in this computation must have no
 common elements; otherwise, results are unpredictable. See Concepts.

 	On return, if nsinfo ≥ 0 and n > nco, ap contains
 additional information in AP(1) that can be used
 to obtain the minimal required nsinfo. This information
 can be accessed using the following code fragment: REAL*8	AP(NSINFO)
INTEGER	API(2)
EQUIVALENCE(API, AP)
 .
 .
 .
NSINFOMIN = API(2)

 	For a description of how a symmetric matrix is stored in upper-
 or lower-packed storage mode in an array, see Symmetric Matrix.

 Function

 The system AX = B is
 solved for X, where A is a real symmetric
 indefinite matrix, and X and B are real
 general matrices.

 The matrix A, stored in upper-
 or lower-packed storage mode, is factored using the Bunch-Kaufman
 diagonal pivoting method, where A is expressed as:

 A

 =

 UDU

 T

 or

 A

 =

 LDL

 T

 where:

 U is a product of permutation and unit upper
 triangular matrices.

 L is a product of permutation
 and unit lower triangular matrices.

 D is a symmetric
 block diagonal matrix, consisting of 1 × 1 and 2 × 2 diagonal blocks.

 If n is
 0, no computation is performed and the subroutine returns after doing
 some parameter checking. If n > 0 and nrhs is
 0, no solutions are computed and the subroutine returns after factoring
 the matrix.

 See references [8] and [76].

 Error conditions

 	[bookmark: am5gr_hdbssv__am5gr_f110a155]
 Resource Errors

 	None.

 	[bookmark: am5gr_hdbssv__am5gr_f110a156]
 Computational Errors

 	Matrix A is singular.

 	The factorization completed but the block diagonal matrix D is
 exactly singular. nsinfo is set to i, where dii is
 exactly zero. This diagonal element is identified in the computational
 error message.

 	The computational error message may occur multiple times with
 processing continuing after each error, because the default for the
 number of allowable errors for error code 2147 is set to be unlimited
 in the ESSL error option table. For details, see What Can You Do about ESSL Computational Errors?.

 	[bookmark: am5gr_hdbssv__am5gr_f110a157]
 Input-Argument Errors

 	

 	uplo ≠ 'U' or 'L'

 	n < 0

 	n > ldb

 	ldb ≤ 0

 	nrhs < 0

 	nsinfo < (minimum value).

 	For the minimum value, see the nsinfo argument
 description.

 	Return code 1 is returned if error 2200 is recoverable.

 Examples

 	Example 1

 	
 This example shows how to solve the system AX = B,
 for three right-hand sides, where matrix A is a real
 symmetric indefinite matrix of order 8, stored in lower-packed storage
 mode, and X and B are real general matrices.

 On
 input, matrix A is: ┌ ┐
 | 3.0 5.0 -2.0 2.0 3.0 -5.0 -2.0 -3.0 |
 | 5.0 3.0 2.0 -2.0 5.0 -3.0 2.0 -5.0 |
 | -2.0 2.0 0.0 0.0 -2.0 2.0 0.0 6.0 |
A = | 2.0 -2.0 0.0 8.0 -6.0 -10.0 -8.0 -14.0 |
 | 3.0 5.0 -2.0 -6.0 12.0 6.0 8.0 6.0 |
 | -5.0 -3.0 2.0 -10.0 6.0 16.0 8.0 20.0 |
 | -2.0 2.0 0.0 -8.0 8.0 8.0 6.0 18.0 |
 | -3.0 -5.0 6.0 -14.0 6.0 20.0 18.0 34.0 |
 └
			┘

 Note: The AP array
 is formatted in a triangular arrangement for readability; however,
 it is stored in lower-packed storage mode.

 Call Statement and Input: UPLO N NRHS AP IPVT BX LDB NSINFO
 | | | | | | | |
CALL DBSSV ('L', 8, 3, AP, IPVT, BX, 8, 36)

 AP = (3.0, 5.0, -2.0, 2.0, 3.0, -5.0, -2.0, -3.0,
 3.0, 2.0, -2.0, 5.0, -3.0, 2.0, -5.0,
 0.0, 0.0, -2.0, 2.0, 0.0, 6.0,
 8.0, -6.0,-10.0, -8.0,-14.0,
 12.0, 6.0, 8.0, 6.0,
 16.0, 8.0, 20.0,
 6.0, 18.0,
 34.0)

 ┌ ┐
 | 1.0 -38.0 47.0 |
 | 7.0 -10.0 73.0 |
 | 6.0 52.0 2.0 |
BX = | -30.0 -228.0 -42.0 |
 | 32.0 183.0 105.0 |
 | 34.0 297.0 9.0 |
 | 32.0 244.0 44.0 |
 | 62.0 497.0 61.0 |
 └ ┘

 Output: ┌ ┐
 | 1.0 1.0 8.0 |
 | 1.0 2.0 7.0 |
 | 1.0 3.0 6.0 |
BX = | 1.0 4.0 5.0 |
 | 1.0 5.0 4.0 |
 | 1.0 6.0 3.0 |
 | 1.0 7.0 2.0 |
 | 1.0 8.0 1.0 |
 └ ┘

 	

 NSINFO = 0

 Note: AP and IPVT are
 stored in an internal format.

 	Example 2

 	
 This example shows how to solve the system AX = B,
 for three right-hand sides, where matrix A is a real
 symmetric indefinite matrix of order 8, stored in upper-packed storage
 mode, and X and B are real general matrices.

 On
 input, matrix A is: ┌ ┐
 | 34.0 18.0 17.0 6.0 -14.0 6.0 -5.0 -3.0 |
 | 18.0 6.0 6.0 8.0 -8.0 0.0 2.0 -2.0 |
 | 17.0 6.0 9.0 9.0 -8.0 0.0 2.0 -2.0 |
 | 6.0 8.0 9.0 12.0 -6.0 -2.0 5.0 3.0 |
 |-14.0 -8.0 -8.0 -6.0 8.0 0.0 -2.0 2.0 |
 | 6.0 0.0 0.0 -2.0 0.0 0.0 2.0 -2.0 |
 | -5.0 2.0 2.0 5.0 -2.0 2.0 3.0 5.0 |
 | -3.0 -2.0 -2.0 3.0 2.0 -2.0 5.0 3.0 |
 └ ┘

 Note: The AP array
 is formatted in a triangular arrangement for readability; however,
 it is stored in upper-packed storage mode.

 Call Statement and Input: UPLO N NRHS AP IPVT BX LDB NSINFO
 | | | | | | | |
CALL DBSSV ('U', 8, 3, AP, IPVT, BX, 8, 36)

 AP = (34.0,
 18.0, 6.0,
 17.0, 6.0, 9.0,
 6.0, 8.0, 9.0, 12.0,
 -14.0, -8.0, -8.0, -6.0, 8.0,
 6.0, 0.0, 0.0, -2.0, 0.0, 0.0,
 -5.0, 2.0, 2.0, 5.0, -2.0, 2.0, 3.0,
 -3.0, -2.0, -2.0, 3.0, 2.0, -2.0, 5.0, 3.0)

 ┌ ┐
 | 59.0 52.0 479.0 |
 | 30.0 38.0 232.0 |
 | 33.0 50.0 247.0 |
BX = | 35.0 114.0 201.0 |
 | -28.0 -36.0 -216.0 |
 | 4.0 -4.0 40.0 |
 | 12.0 88.0 20.0 |
 | 4.0 56.0 -20.0 |
 └ ┘

 Output: ┌ ┐
 | 1.0 1.0 8.0 |
 | 1.0 2.0 7.0 |
 | 1.0 3.0 6.0 |
BX = | 1.0 4.0 5.0 |
 | 1.0 5.0 4.0 |
 | 1.0 6.0 3.0 |
 | 1.0 7.0 2.0 |
 | 1.0 8.0 1.0 |
 └ ┘

 	

 NSINFO = 0

 Note: AP and IPVT are
 stored in an internal format.

 Parent topic: Linear Algebraic Equations

 DBSTRF (Symmetric Indefinite Matrix Factorization)

 Purpose

 DBSTRF factors a real symmetric
 indefinite matrix A. The matrix A, stored
 in upper- or lower-packed storage mode, is factored using the Bunch-Kaufman
 diagonal pivoting method, where A is expressed as:

 A

 =

 UDU

 T

 or

 A

 =

 LDL

 T

 where:

 U is
 a product of permutation and unit upper triangular matrices.

 L is
 a product of permutation and unit lower triangular matrices.

 D is
 a symmetric block diagonal matrix, consisting of 1 × 1 and
 2 × 2
 diagonal blocks.

 To solve a system of equations with one or
 more right-hand sides, follow the call to this subroutine with one
 or more calls to DBSTRS.

 Table 154. Data Types.

 	A

 	ipvt

 	Subroutine

 	Long-precision real

 	Integer

 	DBSTRF

 Note: The output from DBSTRF should be used only as input
 to DBSTRS, for performing a solve.

 Syntax

 	Fortran

 	CALL DBSTRF (uplo, n, ap, ipvt, nsinfo)

 	C and C++

 	dbstrf (uplo, n, ap, ipvt, nsinfo);

 	On Entry

 	

 	 uplo

 	indicates whether matrix A is stored in upper- or
 lower-packed storage mode, where:
 If uplo = 'U', A is
 stored in upper-packed storage mode.

 If uplo = 'L', A is
 stored in lower-packed storage mode.

 Specified as: a single
 character. It must be 'U' or 'L'.

 	 n

 	is the order n of matrix A.
 Specified
 as: an integer; n ≥ 0.

 	 ap

 	is array, referred to as AP, in which matrix A,
 to be factored, is stored in upper- or lower-packed storage mode.

 Specified as: a one-dimensional array of length nsinfo,
 containing numbers of the data type indicated in Table 154. See Notes.

 	 ipvt

 	See On Return.

 	 nsinfo

 	is the number of elements in array, AP.
 If n ≤ nco, nsinfo = n(n +
 1) / 2

 Where:

 [image: Math Graphic]

 ics is the size in doublewords of
 the data cache. The data cache size can be obtained by utilizing the
 following C language code fragment: #include <sys/systemcfg.h>
int ics;
 .
 .
 .
ics=_system_configuration.dcache_size/8;

 ics is
 the size in doublewords of the data cache. The data cache size can
 be obtained by utilizing the following C language code fragment: #include <sys/systemcfg.h>
int ics;
 .
 .
 .
ics=_system_configuration.dcache_size/8;

 Otherwise,
 to determine a sufficient amount of storage, use the following processor-independent
 formula:

 n

 0

 =

 100

 ns

 =

 (

 n

 +

 n

 0) (

 n

 +

 n

 0 + 1) / 2 +

 n

 (

 n

 0)

 For

 uplo

 =

 'L',

 nsinfo

 ≥

 ns

 For

 uplo

 =

 'U',

 n

 1

 =

 (

 n

 + 1) / 2

 nt

 =

 n

 ((

 n

 + 1) / 2)

 nt

 1

 =

 n

 1(

 n

 1 + 1)

 ns

 1

 =

 nt

 +

 nt

 1

 nsinfo

 ≥

 max(

 ns

 ,

 ns

 1)

 To determine the minimal amount of storage see Notes.

 Specified as:
 an integer; nsinfo > 0.

 	On Return

 	

 	ap

 	is the transformed matrix A of order n,
 containing the results of the factorization.
 If nsinfo ≥ 0 and n > nco,
 additional information that can be used to obtain a minimum nsinfo is
 stored in AP(1).

 See Notes and Function.
 Returned as: a
 one-dimensional array, containing numbers of the data type indicated
 in Table 154.

 	 ipvt

 	is an integer vector of length n, containing
 the pivot information necessary to construct the factored form of A.
 Returned
 as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 154.

 	 nsinfo

 	indicates the result of the computation.

 	If nsinfo = 0, the factorization completed successfully.

 	If nsinfo > 0, factorization was unsuccessful
 and nsinfo is set toi where dii is
 exactly zero.

 	If nsinfo < 0, factorization did not take place
 and the array AP remains unchanged. |nsinfo|
 is the minimal storage required for factorization to take place. Error
 message 2200 is issued and execution terminates, unless you have used
 ERRSET to make error code 2200 recoverable. See What Can You Do about ESSL Input-Argument Errors?.

 Specified as: an integer.

 Notes

 	This subroutine accepts lowercase letters for the uplo argument.

 	In your C program, argument nsinfo must be
 passed by reference.

 	In the input array specified for ap, the first n(n+1)/2
 elements are matrix elements. The additional locations, required in
 the array, are used for working storage.

 	The array specified for ap should not be altered
 between calls to the factorization and solve subroutines; otherwise,
 unpredictable results may occur.

 	On return, if nsinfo ≥ 0 and n > nco, ap contains
 additional information in AP(1) that can be used
 to obtain the minimal required nsinfo. This information
 can be accessed using the following code fragment: REAL*8	AP(NSINFO)
INTEGER	API(2)
EQUIVALENCE(API, AP)
 .
 .
 .
NSINFOMIN = API(2)

 	For a description of how a symmetric matrix is stored in upper-
 or lower-packed storage mode in an array, see Symmetric Matrix.

 Function

 where:

 U is
 a product of permutation and unit upper triangular matrices.

 L is
 a product of permutation and unit lower triangular matrices.

 D is
 a symmetric block diagonal matrix, consisting of 1 × 1 and
 2 × 2
 diagonal blocks.

 If n is 0, no computation
 is performed and the subroutine returns after doing some parameter
 checking.

 See references [8] and [76].

 Error conditions

 	[bookmark: am5gr_hdbstrf__am5gr_f110a163]
 Resource Errors

 	None.

 	[bookmark: am5gr_hdbstrf__am5gr_f110a164]
 Computational Errors

 	Matrix A is singular.

 	The factorization completed but the block diagonal matrix D is
 exactly singular. nsinfo is set to i, where dii is
 exactly zero. This diagonal element is identified in the computational
 error message.

 	The computational error message may occur multiple times with
 processing continuing after each error, because the default for the
 number of allowable errors for error code 2147 is set to be unlimited
 in the ESSL error option table. For details, see What Can You Do about ESSL Computational Errors?.

 	[bookmark: am5gr_hdbstrf__am5gr_f110a165]
 Input-Argument Errors

 	

 	uplo ≠ 'U' or 'L'

 	n < 0

 	nsinfo < (minimum value).

 	For the minimum value, see the nsinfo argument
 description.

 	Return code 1 is returned if error 2200 is recoverable.

 Examples

 	Example 1

 	
 This example shows a factorization of a symmetric indefinite
 matrix A of order 8, stored in lower-packed storage
 mode, where on input matrix A is: ┌ ┐
 | 3.0 5.0 -2.0 2.0 3.0 -5.0 -2.0 -3.0 |
 | 5.0 3.0 2.0 -2.0 5.0 -3.0 2.0 -5.0 |
 | -2.0 2.0 0.0 0.0 -2.0 2.0 0.0 6.0 |
 | 2.0 -2.0 0.0 8.0 -6.0 -10.0 -8.0 -14.0 |
 | 3.0 5.0 -2.0 -6.0 12.0 6.0 8.0 6.0 |
 | -5.0 -3.0 2.0 -10.0 6.0 16.0 8.0 20.0 |
 | -2.0 2.0 0.0 -8.0 8.0 8.0 6.0 18.0 |
 | -3.0 -5.0 6.0 -14.0 6.0 20.0 18.0 34.0 |
 └ ┘

 Note: The AP array
 is formatted in a triangular arrangement for readability; however,
 it is stored in lower-packed storage mode.

 Call Statement and Input: UPLO N AP IPVT NSINFO
 | | | | |
CALL DBSTRF ('L', 8, AP, IPVT, 36)

 AP = (3.0, 5.0, -2.0, 2.0, 3.0, -5.0, -2.0, -3.0,
 3.0, 2.0, -2.0, 5.0, -3.0, 2.0, -5.0,
 0.0, 0.0, -2.0, 2.0, 0.0, 6.0,
 8.0, -6.0,-10.0, -8.0,-14.0,
 12.0, 6.0, 8.0, 6.0,
 16.0, 8.0, 20.0,
 6.0, 18.0,
 34.0)

 Output:

 NSINFO = 0

 Note: AP and IPVT are
 stored in an internal format and must be passed unchanged to the solve
 subroutine.

 	Example 2

 	
 This example shows a factorization of a symmetric indefinite
 matrix A of order 8, stored in upper-packed storage
 mode, where on input matrix A is: ┌ ┐
 | 34.0 18.0 17.0 6.0 -14.0 6.0 -5.0 -3.0 |
 | 18.0 6.0 6.0 8.0 -8.0 0.0 2.0 -2.0 |
 | 17.0 6.0 9.0 9.0 -8.0 0.0 2.0 -2.0 |
 | 6.0 8.0 9.0 12.0 -6.0 -2.0 5.0 3.0 |
 |-14.0 -8.0 -8.0 -6.0 8.0 0.0 -2.0 2.0 |
 | 6.0 0.0 0.0 -2.0 0.0 0.0 2.0 -2.0 |
 | -5.0 2.0 2.0 5.0 -2.0 2.0 3.0 5.0 |
 | -3.0 -2.0 -2.0 3.0 2.0 -2.0 5.0 3.0 |
 └ ┘

 Note: The AP array
 is formatted in a triangular arrangement for readability; however,
 it is stored in upper-packed storage mode.

 Call Statement and Input: UPLO N AP IPVT NSINFO
 | | | | |
CALL DBSTRF ('U', 8, AP, IPVT, 36)

 AP = (34.0,
 18.0, 6.0,
 17.0, 6.0, 9.0,
 6.0, 8.0, 9.0, 12.0,
 -14.0, -8.0, -8.0, -6.0, 8.0,
 6.0, 0.0, 0.0, -2.0, 0.0, 0.0,
 -5.0, 2.0, 2.0, 5.0, -2.0, 2.0, 3.0,
 -3.0, -2.0, -2.0, 3.0, 2.0, -2.0, 5.0, 3.0)

 Output:

 NSINFO = 0

 Note: AP and IPVT are
 stored in an internal format and must be passed unchanged to the solve
 subroutine.

 Parent topic: Linear Algebraic Equations

 DBSTRS (Symmetric Indefinite Matrix Multiple Right-Hand Side
 Solve)

 Purpose

 The DBSTRS subroutine solves a system
 of linear equations AX = B for X,
 where A is a real symmetric indefinite matrix, and X and B are
 real general matrices. This subroutine uses the results of the factorization
 of matrix A, produced by a preceding call to DBSTRF.

 Table 155. Data Types.

 	A, B

 	ipvt

 	Subroutine

 	Long-precision real

 	Integer

 	DBSTRS

 Note: The input to this solve subroutine must be the output
 from the factorization subroutine DBSTRF.

 Syntax

 	Fortran

 	CALL DBSTRS (uplo, n, nrhs, ap, ipvt, bx, ldb, info)

 	C and C++

 	dbstrs (uplo, n, nrhs, ap, ipvt, bx, ldb, info);

 	On Entry

 	

 	 uplo

 	indicates whether original matrix A is stored in
 upper- or lower-packed storage mode, where:
 If uplo = 'U', A is
 stored in upper-packed storage mode.

 If uplo = 'L', A is
 stored in lower-packed storage mode.

 Specified as: a single
 character. It must be 'U' or 'L'.

 	 n

 	is the order n of factored matrix A and
 the number of rows of matrix B.
 Specified as: an
 integer; n ≥ 0.

 	 nrhs

 	is the number of right-hand sides; i.e., the number of columns
 of matrix B.
 Specified as: an integer; nrhs ≥ 0.

 	 ap

 	is the factored matrix A produced by a preceding
 call to DBSTRF.
 Specified as: a one-dimensional array of length nsinfo,
 containing numbers of the data type indicated in Table 155. See Notes and DBSTRF (Symmetric Indefinite Matrix Factorization).

 	 ipvt

 	is an integer vector of length n, containing
 the pivot information necessary to construct the factored form of A,
 produced by a preceding call to DBSTRF.
 Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 155.
 See Notes.

 	 bx

 	is the general matrix B, containing the nrhs right-hand
 sides of the system. The right-hand sides, each of length n,
 reside in the columns of matrix B.
 Specified as:
 an ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 155.

 	 ldb

 	is the leading dimension of the array specified for B.

 Specified as: an integer; ldb > 0
 and ldb ≥ n.

 	 info

 	See On Return.

 	On Return

 	

 	 bx

 	is the matrix X, containing the nrhs solutions
 to the system. The solutions, each of length n,
 reside in the columns of X.
 Returned as: an ldb by
 (at least) nrhs array, containing numbers of the
 data type indicated in Table 155.

 	 info

 	indicates the result of the computation.

 	If info = 0, the subroutine completed successfully.

 Returned as: an integer.

 Notes

 	This subroutine accepts lowercase letters for the uplo argument.

 	In your C program, argument info must be passed
 by reference.

 	The array data specified for input arguments ap and ipvt for
 this subroutine must be the same as the corresponding output arguments
 for DBSTRF.

 	The scalar data specified for input arguments uplo and n must
 be the same as that specified for DBSTRF.

 	The vectors and matrices used in this computation must have no
 common elements; otherwise, results are unpredictable. See Concepts.

 	For a description of how a symmetric matrix is stored in upper-
 or lower-packed storage mode in an array, see Symmetric Matrix.

 	To solve AX = B for X,
 where B and X are n by nrhs matrices,
 precede the call to DBSTRS with a call to DBSTRF.

 Function

 The system AX = B is
 solved for X, where A is a real symmetric
 indefinite matrix, and X and B are real
 general matrices. This subroutine uses the results of the factorization
 of matrix A, produced by a preceding call to DBSTRF.

 If n or nrhs is
 0, no computation is performed and the subroutine returns after doing
 some parameter checking.

 See references [8] and [76].

 Error conditions

 	[bookmark: am5gr_hdbstrs__am5gr_f110a400]
 Resource Errors

 	None.

 	[bookmark: am5gr_hdbstrs__am5gr_f110a401]
 Computational Errors

 	None.
 Note: If the factorization performed by DBSTRF failed
 because matrix A is singular, the results returned by
 this subroutine are unpredictable, and there may be a divide-by-zero
 program exception message.

 	[bookmark: am5gr_hdbstrs__am5gr_f110a402]
 Input-Argument Errors

 	

 	uplo ≠ 'U' or 'L'

 	n < 0

 	nrhs < 0

 	n > ldb

 	ldb ≤ 0

 Examples

 	Example 1

 	
 This example shows how to solve the system AX = B,
 for three right-hand sides, where matrix A is the same
 matrix factored in the Example 1 for
 DBSTRF.

 Call Statement and Input: UPLO N NRHS AP IPVT BX LDB INFO
 | | | | | | | |
CALL DBSTRS ('L', 8, 3, AP, IPVT, BX, 8, INFO)

 AP =

 (for this subroutine must be the same

 as the corresponding output argument for DBSTRF.

 See

 Example 1

 for DBSTRF.)

 IPVT =

 (for this subroutine must be the same

 as the corresponding output argument for DBSTRF.

 See

 Example 1

 for DBSTRF.)

 ┌ ┐
 | 1.0 -38.0 47.0 |
 | 7.0 -10.0 73.0 |
 | 6.0 52.0 2.0 |
BX = | -30.0 -228.0 -42.0 |
 | 32.0 183.0 105.0 |
 | 34.0 297.0 9.0 |
 | 32.0 244.0 44.0 |
 | 62.0 497.0 61.0 |
 └ ┘

 Output: ┌ ┐
 | 1.0 1.0 8.0 |
 | 1.0 2.0 7.0 |
 | 1.0 3.0 6.0 |
BX = | 1.0 4.0 5.0 |
 | 1.0 5.0 4.0 |
 | 1.0 6.0 3.0 |
 | 1.0 7.0 2.0 |
 | 1.0 8.0 1.0 |
 └ ┘

 	

 INFO = 0

 	Example 2

 	
 This example shows how to solve the system AX = B,
 for three right-hand sides, where matrix A is the same
 matrix factored in the Example 2 for
 DBSTRF.

 Call Statement and Input: UPLO N NRHS AP IPVT BX LDB INFO
 | | | | | | | |
CALL DBSTRS ('U', 8, 3, AP, IPVT, BX, 8, INFO)

 AP =

 (for this subroutine must be the same

 as the corresponding output argument for DBSTRF.

 See

 Example 2

 for DBSTRF.)

 IPVT =

 (for this subroutine must be the same

 as the corresponding output argument for DBSTRF.

 See

 Example 2

 for DBSTRF.)

 ┌ ┐
 | 59.0 52.0 479.0 |
 | 30.0 38.0 232.0 |
 | 33.0 50.0 247.0 |
BX = | 35.0 114.0 201.0 |
 | -28.0 -36.0 -216.0 |
 | 4.0 -4.0 40.0 |
 | 12.0 88.0 20.0 |
 | 4.0 56.0 -20.0 |
 └ ┘

 Output: ┌ ┐
 | 1.0 1.0 8.0 |
 | 1.0 2.0 7.0 |
 | 1.0 3.0 6.0 |
BX = | 1.0 4.0 5.0 |
 | 1.0 5.0 4.0 |
 | 1.0 6.0 3.0 |
 | 1.0 7.0 2.0 |
 | 1.0 8.0 1.0 |
 └ ┘

 	

 INFO = 0

 Parent topic: Linear Algebraic Equations

 STRTRI, DTRTRI, CTRTRI, ZTRTRI, STPTRI, DTPTRI, CTPTRI, and
 ZTPTRI (Triangular Matrix Inverse)

 Purpose

 These subroutines find the inverse
 of triangular matrix A:

 A

 ←

 A

 -1

 Matrix A can
 be either upper or lower triangular, where:

 	For STRTRI, DTRTRI, CTRTRI, and ZTRTRI, it is stored in upper-
 or lower-triangular storage mode.

 	For STPTRI, DTPTRI, CTPTRI, and ZTPTRI, it is stored in upper-
 or lower-triangular-packed storage mode.

 Table 156. Data
 Types.

 	A

 	Subroutine

 	Short-precision real

 	STRTRI▵ and STPTRI▵

 	Long-precision real

 	DTRTRI▵ and DTPTRI▵

 	Short-precision complex

 	CTRTRI▵ and CTPTRI▵

 	Long-precision complex

 	ZTRTRI▵ and ZTPTRI▵

 	▵LAPACK

 Syntax

 	Fortran

 	
 CALL STRTRI | DTRTRI | CTRTRI | ZTRTRI (uplo, diag, n, a, lda, info)

 CALL
 STPTRI | DTPTRI | CTPTRI | ZTPTRI (uplo, diag, n, ap, info)

 	C and C++

 	
 strtri | dtrtri | ctrtri | ztrtri (uplo, diag, n, a, lda, info);

 stptri
 | dtptri | ctptri | ztptri (uplo, diag, n, ap, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_strtri | LAPACKE_dtrtri | LAPACKE_ctrtri | LAPACKE_ztrtri
 (matrix_layout, uplo, diag,
 n, a, lda);
info =
 LAPACKE_stptri | LAPACKE_dtptri | LAPACKE_ctptri | LAPACKE_ztptri (matrix_layout,
 uplo, diag, n, ap); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 uplo

 	indicates whether matrix A is an upper or lower
 triangular matrix, where:
 If uplo = 'U', A is
 an upper triangular matrix.

 If uplo = 'L', A is
 a lower triangular matrix.

 Specified as: a single character.
 It must be 'U' or 'L'.

 	 diag

 	indicates the characteristics of the diagonal of matrix A,
 where:
 If diag = 'U', A is a unit triangular
 matrix.

 If diag = 'N', A is not a unit
 triangular matrix.

 Specified as: a single character. It must
 be 'U' or 'N'.

 	 a

 	is the upper or lower triangular matrix A of order n,
 stored in upper- or lower-triangular storage mode, respectively. Specified
 as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 156.

 	 lda

 	is the leading dimension of the arrays specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ n.

 	 ap

 	is the upper or lower triangular matrix A of order n,
 stored in upper- or lower-triangular-packed storage mode, respectively.

 Specified as: a one-dimensional array of (at least) length n(n+1)/2,
 containing numbers of the data type indicated in Table 156.

 	 n

 	is the order of matrix A.
 Specified as: an integer; n ≥ 0.

 	info

 	See On Return.

 	On Return

 	

 	a

 	is the inverse of the upper or lower triangular matrix A of
 order n, stored in upper- or lower-triangular storage
 mode, respectively. Returned as: an lda by (at
 least) n array, containing numbers of the data
 type indicated in Table 156.

 	ap

 	is the inverse of the upper or lower triangular matrix A of
 order n, stored in upper- or lower-triangular-packed
 storage mode, respectively. Returned as: a one-dimensional array of
 (at least) length n(n+1)/2,
 containing numbers of the data type indicated in Table 156.

 	info

 	has the following meaning:
 If info = 0, the inverse completed successfully.

 If info > 0, info is set equal to the first i where
 Aii is zero. Matrix A is singular and its inverse could not
 be computed.

 [image: Start of change] Returned as:[image: Start of change]
 	For STRTRI, DTRTRI, CTRTRI, ZTRTRI, STPTRI, DTPTRI, CTPTRI, and ZTPTRI, returned as: an integer;
 info ≥ 0.

 	For LAPACKE_strtri, LAPACKE_dtrtri, LAPACKE_ctrtri, LAPACKE_ztrtri, LAPACKE_stptri,
 LAPACKE_dtptri, LAPACKE_ctptri, and LAPACKE_ztptri, returned as an integer function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	In C programs, the argument info must be passed
 by reference.

 	These subroutines accept lowercase letters for the uplo and diag arguments.

 	If matrix A is upper triangular (uplo = 'U'),
 these subroutines refer to only the upper triangular portion of the
 matrix. If matrix A is lower triangular, (uplo = 'L'),
 these subroutines refer to only the lower triangular portion of the
 matrix. The unreferenced elements are assumed to be zero.

 	The elements of the diagonal of a unit triangular matrix are always
 one, so you do not need to set these values.

 	The way _TRTRI and _TPTRI subroutines handle computational errors
 differs from LAPACK. Like LAPACK, these subroutines use the info argument
 to provide information about the computational error, but they also
 provide an error message.

 	On both input and output, matrix A conforms to LAPACK
 format.

 	For a description of triangular matrices and how they are stored
 in upper- and lower-triangular storage mode and in upper- and lower-triangular-packed
 storage mode, see Triangular Matrix.

 Function

 These subroutines find the inverse
 of triangular matrix A, where A is either
 upper or lower triangular:

 A

 ←

 A

 -1

 where:

 A

 is the triangular matrix of order

 n

 .

 A

 -1

 is the inverse of the triangular matrix of order

 n

 .

 If n is
 0, no computation is performed. See references [8] and [44].

 Error conditions

 	[bookmark: am5gr_hstri__am5gr_f110a473]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hstri__am5gr_f110a474]
 Computational Errors

 	Matrix A is singular.

 	One or more of the diagonal elements of matrix A are
 zero. The first column, i, of matrix A,
 in which a zero diagonal element is found, is identified in the computational
 error message and returned in the argument info.

 	The computational error message may occur multiple times with
 processing continuing after each error, because the default for the
 number of allowable errors for error code 2146 is set to be unlimited
 in the ESSL error option table.

 	[bookmark: am5gr_hstri__am5gr_f110a475]
 Input-Argument Errors

 	

 	uplo ≠ 'U' or 'L'

 	diag ≠ 'U' or 'N'

 	n < 0

 	lda ≤ 0

 	lda < n

 Examples

 	Example 1

 	
 This example shows how the inverse of matrix A is
 computed, where A is a 5 by 5 upper triangular matrix
 that is not unit triangular and is stored in upper-triangular storage
 mode.

 Matrix A is: ┌ ┐
 | 1.00 3.00 4.00 5.00 6.00 |
 | 0.00 2.00 8.00 9.00 1.00 |
 | 0.00 0.00 4.00 8.00 4.00 |
 | 0.00 0.00 0.00 -2.00 6.00 |
 | 0.00 0.00 0.00 0.00 -1.00 |
 └ ┘

 Matrix A-1 is:
 ┌ ┐
 | 1.00 -1.50 2.00 3.75 35.00 |
 | 0.00 0.50 -1.00 -1.75 -14.00 |
 | 0.00 0.00 0.25 1.00 7.00 |
 | 0.00 0.00 0.00 -0.50 -3.00 |
 | 0.00 0.00 0.00 0.00 -1.00 |
 └ ┘

 Call Statement and Input: UPLO DIAG N A LDA INFO
 | | | | | |
CALL STRTRI('U' , 'N' , 5 , A, 5, INFO)

 ┌ ┐
 | 1.00 3.00 4.00 5.00 6.00 |
 | . 2.00 8.00 9.00 1.00 |
A = | . . 4.00 8.00 4.00 |
 | . . . -2.00 6.00 |
 | -1.00 |
 └ ┘

 Output: ┌ ┐
 | 1.00 -1.50 2.00 3.75 35.00 |
 | . 0.50 -1.00 -1.75 -14.00 |
A = | . . 0.25 1.00 7.00 |
 | . . . -0.50 -3.00 |
 | -1.00 |
 └ ┘

 INFO = 0

 	Example 2

 	
 This example shows how the inverse of matrix A is
 computed, where A is a 5 by 5 lower triangular matrix
 that is unit triangular and is stored in lower-triangular storage
 mode.

 Matrix A is: ┌ ┐
 | 1.0 0.0 0.0 0.0 0.0 |
 | 3.0 1.0 0.0 0.0 0.0 |
 | 4.0 8.0 1.0 0.0 0.0 |
 | 5.0 9.0 8.0 1.0 0.0 |
 | 6.0 1.0 4.0 6.0 1.0 |
 └ ┘

 Matrix A-1 is:
 ┌ ┐
 | 1.0 0.0 0.0 0.0 0.0 |
 | -3.0 1.0 0.0 0.0 0.0 |
 | 20.0 -8.0 1.0 0.0 0.0 |
 | -138.0 55.0 -8.0 1.0 0.0 |
 | 745.0 -299.0 44.0 -6.0 1.0 |
 └ ┘

 Note: Because
 matrix A is unit triangular, the diagonal elements are
 not referenced. ESSL assumes a value of one for the diagonal elements.

 Call Statement and Input: UPLO DIAG N A LDA INFO
 | | | | | |
CALL STRTRI('L' , 'U' , 5 , A, 5, INFO)

 ┌ ┐
 | |
 | 3.0 |
A = | 4.0 8.0 . . . |
 | 5.0 9.0 8.0 . . |
 | 6.0 1.0 4.0 6.0 . |
 └ ┘

 Output: ┌ ┐
 | |
 | -3.0 |
A = | 20.0 -8.0 . . . |
 | -138.0 55.0 -8.0 . . |
 | 745.0 -299.0 44.0 -6.0 . |
 └ ┘

 INFO = 0

 	Example 3

 	
 This example shows how the inverse of matrix A is
 computed, where A is a 5 by 5 upper triangular matrix
 that is not unit triangular and is stored in upper-triangular storage
 mode.

 Matrix A is:
 ┌ ┐
 | (-4.00, 1.00) (4.00, -3.00) (-1.00, 3.00) (0.00, 0.00) (-1.00, 0.00) |
 | (0.00, 0.00) (-2.00, 0.00) (-3.00, -1.00) (-2.00, -1.00) (4.00, 3.00) |
 | (0.00, 0.00) (0.00, 0.00) (-5.00, 3.00) (-3.00, -3.00) (-5.00, -5.00) |
 | (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (4.00, -4.00) (2.00, 0.00) |
 | (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (2.00, -1.00) |
 └ ┘ 	

 Matrix A-1 is:
 ┌ ┐
 | (-0.24, -0.06) (-0.56, 0.24) (0.41, 0.09) (-0.22, 0.13) (1.32, 2.12) |
 | (0.00, 0.00) (-0.50, 0.00) (0.18, 0.21) (-0.22, -0.06) (0.21, 1.87) |
 | (0.00, 0.00) (0.00, 0.00) (-0.15, -0.09) (0.07, -0.11) (0.02, -0.47) |
 | (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.12, 0.12) (-0.05, -0.15) |
 | (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.40, 0.20) |
 └ ┘

 	

 Call Statement and Input: UPLO DIAG N A LDA INFO
 | | | | | |
CALL ZTRTRI('U' , 'N' , 5 , A, 5, INFO)

 ┌ ┐
 | (-4.00, 1.00) (4.00, -3.00) (-1.00, 3.00) (0.00, 0.00) (-1.00, 0.00) |
 | . (-2.00, 0.00) (-3.00, -1.00) (-2.00, -1.00) (4.00, 3.00) |
A = | . . (-5.00, 3.00) (-3.00, -3.00) (-5.00, -5.00) |
 | . . . (4.00, -4.00) (2.00, 0.00) |
 | (2.00, -1.00) |
 └ ┘

 Output:
 ┌ ┐
 | (-0.24, -0.06) (-0.56, 0.24) (0.41, 0.09) (-0.22, 0.13) (1.32, 2.12) |
 | . (-0.50, 0.00) (0.18, 0.21) (-0.22, -0.06) (0.21, 1.87) |
A = | . . (-0.15, -0.09) (0.07, -0.11) (0.02, -0.47) |
 | . . . (0.12, 0.12) (-0.05, -0.15) |
 | (0.40, 0.20) |
 └ ┘ 	

 INFO = 0

 	Example 4

 	
 This example shows how the inverse of matrix A is
 computed, where A is a 5 by 5 lower triangular matrix
 that is unit triangular and is stored in lower-triangular storage
 mode.

 Matrix A is:
 ┌ ┐
 | (1.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) |
 | (4.00, -3.00) (1.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) |
 | (-1.00, 3.00) (-3.00, -1.00) (1.00, 0.00) (0.00, 0.00) (0.00, 0.00) |
 | (0.00, 0.00) (-2.00, -1.00) (-3.00, -3.00) (1.00, 0.00) (0.00, 0.00) |
 | (-1.00, 0.00) (4.00, 3.00) (-5.00, -5.00) (2.00, 0.00) (1.00, 0.00) |
 └ ┘

 	

 Matrix A-1 is:
 ┌ ┐
 | (1.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) |
 | (-4.00, 3.00) (1.00, 0.00) (0.00, 0.00) (0.00, 0.00) (0.00, 0.00) |
 | (-14.00, 2.00) (3.00, 1.00) (1.00, 0.00) (0.00, 0.00) (0.00, 0.00) |
 | (-59.00, -34.00) (8.00, 13.00) (3.00, 3.00) (1.00, 0.00) (0.00, 0.00) |
 | (64.00, 8.00) (-10.00, -9.00) (-1.00, -1.00) (-2.00, 0.00) (1.00, 0.00) |
 └ ┘

 Note: Because matrix A is unit triangular,
 the diagonal elements are not referenced. ESSL assumes a value of
 one for the diagonal elements.

 Call
 Statement and Input: UPLO DIAG N A LDA INFO
 | | | | | |
CALL ZTRTRI('L' , 'U' , 5 , A, 5, INFO)

 ┌ ┐
 | |
 | (4.00, -3.00) |
 | (-1.00, 3.00) (-3.00, 1.00) . . . |
A = | (0.00, 0.00) (-2.00, -1.00) (-3.00, -3.00) . . |
 | (-1.00, 0.00) (4.00, 3.00) (-5.00, -5.00) (2.00, 0.00) . |
 └ ┘

 Output:
 ┌ ┐
 | |
 | (-4.00, 3.00) |
 | (-14.00, 2.00) (3.00, 1.00) . . . |
A = | (-59.00, -34.00) (8.00, 13.00) (3.00, 3.00) . . |
 | (64.00, 8.00) (-10.00, -9.00) (-1.00, -1.00) (-2.00, 0.00) . |
 └ ┘

 INFO = 0

 	Example 5

 	
 This example shows how the inverse of matrix A is
 computed, where A is the same matrix shown in Example 1 and is stored
 in upper-triangular-packed storage mode. The inverse matrix computed
 here is the same as the inverse matrix shown in Example 1 and is stored
 in upper-triangular-packed storage mode.

 Call
 Statement and Input: UPLO DIAG N AP INFO
 | | | | |
CALL STPTRI('U' , 'N' , 5 , AP, INFO)

 AP = (1.00, 3.00, 2.00, 4.00, 8.00, 4.00, 5.00, 9.00, 8.00,
 -2.00, 6.00, 1.00, 4.00, 6.00, -1.00)

 Output: AP = (1.00, -1.50, 0.50, 2.00, -1.00, 0.25, 3.75, -1.75, 1.00,
 -0.50, 35.00, -14.00, 7.00, -3.00, -1.00)

 INFO = 0

 	Example 6

 	
 This example shows how the inverse of matrix A is
 computed, where A is the same matrix shown in Example 2 and is stored
 in lower-triangular-packed storage mode. The inverse matrix computed
 here is the same as the inverse matrix shown in Example 2 and is stored
 in lower-triangular-packed storage mode.
 Note: Because matrix A is
 unit triangular, the diagonal elements are not referenced. ESSL assumes
 a value of one for the diagonal elements.

 Call Statement and Input: UPLO DIAG N AP INFO
 | | | | |
CALL STPTRI('L' , 'U' , N , AP, INFO)

 AP = (. , 3.0, 4.0, 5.0, 6.0, . , 8.0, 9.0, 1.0, . , 8.0, 4.0,
 . , 6.0, .)

 Output:
 AP = (. , -3.0, 20.0, -138.0, 745.0, . , -8.0, 55.0, -299.0,
 . , -8.0, 44.0, . , -6.0, .)

 INFO = 0

 	Example 7

 	
 This example shows how the inverse of matrix A is
 computed, where A is the same matrix shown in Example 3 and is stored in
 upper-triangular-packed storage mode. The inverse matrix computed
 here is the same as the inverse matrix shown in Example 3 and is stored in
 upper-triangular-packed storage mode.

 Call
 Statement and Input: UPLO DIAG N AP INFO
 | | | | |
CALL ZTPTRI('U' , 'N' , 5 , AP, INFO)

 AP = ((-4.00, 1.00),
 (4.00, -3.00), (-2.00, 0.00),
 (-1.00, 3.00), (-3.00, -1.00), (-5.00, 3.00),
 (0.00, 0.00), (-2.00, -1.00), (-3.00, -3.00), (4.00, -4.00),
 (-1.00, 0.00), (4.00, 3.00), (-5.00, -5.00), (2.00, 0.00), (2.00, -1.00))

 Output:
 AP = ((-0.24, -0.06),
 (-0.56, 0.24), (-0.50, 0.00),
 (0.41, 0.09), (0.18, 0.21), (-0.15, -0.09),
 (-0.22, 0.13), (-0.22, -0.06), (0.07, -0.11), (0.12, 0.12),
 (1.32, 2.12), (0.21, 1.87), (0.02, -0.47), (-0.05, -0.15), (0.40, 0.20))

 INFO = 0

 	Example 8

 	
 This example shows how the inverse of matrix A is
 computed, where A is the same matrix shown in Example 4 and is stored in
 lower-triangular-packed storage mode. The inverse matrix computed
 here is the same as the inverse matrix shown in Example 4 and is stored in
 lower-triangular-packed storage mode.

 Note: Because matrix A is
 unit triangular, the diagonal elements are not referenced. ESSL assumes
 a value of one for the diagonal elements.

 Call
 Statement and Input: UPLO DIAG N AP INFO
 | | | | |
CALL ZTPTRI('L' , 'U' , 5 , AP, INFO)

 AP = (., (4.00, -3.00), (-1.00, 3.00), (0.00, 0.00), (-1.00, 0.00),
 ., (-3.00, -1.00), (-2.00, -1.00), (4.00, 3.00),
 ., (-3.00, -3.00), (-5.00, -5.00),
 ., (2.00, 0.00),
 .)

 Output:
 AP = (., (-4.00, 3.00), (-14.00, 2.00), (-59.00, -34.00), (64.00, 8.00),
 ., (3.00, 1.00), (8.00, 13.00), (-10.00, -9.00),
 ., (3.00, 3.00), (-1.00, -1.00),
 ., (-2.00, 0.00),
 .)

 INFO = 0

 Parent topic: Linear Algebraic Equations

 SLANTR, DLANTR, CLANTR, ZLANTR, SLANTP, DLANTP, CLANTP, and
 ZLANTP (Trapezoidal or Triangular Matrix Norm)

 Purpose

 These subprograms compute the norm
 of matrix A as explained below:

 	SLANTR, DLANTR, CLANTR, and ZLANTR

 	
 These subprograms compute the norm of trapezoidal matrix A stored
 in upper- or lower-trapezoidal storage mode.

 	SLANTP, DLANTP, CLANTP, and ZLANTP

 	
 These subroutines compute the norm of triangular matrix A,
 stored in upper- or lower-triangular-packed storage mode.

 Table 157. Data
 Types.

 	A

 	 work, Result

 	Subprogram

 	Short-precision real

 	Short-precision real

 	SLANTRΔ, SLANTPΔ

 	Long-precision real

 	Long-precision real

 	DLANTRΔ, DLANTPΔ

 	Short-precision complex

 	Short-precision real

 	CLANTRΔ, CLANTPΔ

 	Long-precision complex

 	Long-precision real

 	ZLANTRΔ, ZLANTPΔ

 	ΔLAPACK

 Syntax

 	Fortran

 	

 SLANTR | DLANTR | CLANTR | ZLANTR (

 norm

 ,

 uplo

 ,

 diag

 ,

 m

 ,

 n

 ,

 a

 ,

 lda

 ,

 work

)

 SLANTP | DLANTP | CLANTP | ZLANTP (

 norm

 ,

 uplo

 ,

 diag

 ,

 n

 ,

 ap

 ,

 work

)

 	C and C++

 	

 slantr | dlantr | clantr | zlantr (

 norm

 ,

 uplo

 ,

 diag

 ,

 m

 ,

 n

 ,

 a

 ,

 lda

 ,

 work

);

 slantp | dlantp | clantp | zlantp (

 norm

 ,

 uplo

 ,

 diag

 ,

 n

 ,

 ap

 ,

 work

);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]LAPACKE_slantr | LAPACKE_dlantr | LAPACKE_clantr | LAPACKE_zlantr
 (matrix_layout, norm, uplo,
 diag, m, n, a,
 lda):
LAPACKE_slantp | LAPACKE_dlantp | LAPACKE_clantp |
 LAPACKE_zlantp (matrix_layout, norm, uplo,
 diag, n, ap);[image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 norm

 	specifies the type of computation, where:
 If norm =
 'O' or '1', the one norm of A is computed.

 If norm =
 'I', the infinity norm of A is computed.

 If norm =
 'F' or 'E', the Frobenius or Euclidean norm of A is
 computed.

 If norm = 'M', the absolute value
 of the matrix element having the largest absolute value, i.e., max
 (|A|), is returned.

 Specified as: a single character; norm =
 'O', '1', 'I', 'F', 'E', or 'M'.

 	 uplo

 	indicates the storage mode used for matrix A, where:

 	For SLANTR, DLANTR, CLANTR, and ZLANTR

 	If uplo='U', A is stored in upper-trapezoidal
 storage mode.
 If uplo='L', A is
 stored in lower-trapezoidal storage mode.

 	For SLANTP, DLANTP, CLANTP, and ZLANTP

 	If uplo='U', A is stored in upper-triangular-packed
 storage mode.
 If uplo='L', A is
 stored in lower-triangular-packed storage mode.

 Specified as: a single character. It
 must be 'U' or 'L'.

 	diag

 	indicates the characteristics of the diagonal of matrix A,
 where:

 	For SLANTR, DLANTR, CLANTR, and ZLANTR

 	If diag = 'U', A is a unit trapezoidal
 matrix.
 If diag = 'N', A is not
 a unit trapezoidal matrix.

 	For SLANTP, DLANTP, CLANTP, and ZLANTP

 	If diag = 'U', A is a unit triangular
 matrix.
 If diag =
 'N', A is not a unit triangular matrix.

 Specified as: a single character. It must be
 'U' or 'N'.

 	m

 	is the number of rows in trapezoidal matrix A.
 Specified
 as: an integer; m ≥ 0.

 	 n

 	

 	For SLANTR, DLANTR, CLANTR, and ZLANTR

 	n is the number of columns in matrix A.

 	For SLANTP, DLANTP, CLANTP, and ZLANTP

 	n is the order of matrix A

 Specified as: an integer; n ≥ 0.

 	 ap

 	is the matrix A of order n, stored
 in upper- or lower-triangular-packed storage mode.
 Specified as:
 a one-dimensional array of (at least) n(n+1)/2,
 containing numbers of the data type indicated in Table 157.

 	 a

 	is the trapezoidal matrix A, stored in upper- or
 lower-trapezoidal storage mode.
 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 157.

 	 lda

 	is the leading dimension of matrix A.
 Specified
 as: an integer; lda ≥ m.

 	work

 	is the work area used by this subroutine, where:

 	When norm = 'I', '1', or 'O', work is
 (at least) of length:

 	m for SLANTR, DLANTR, CLANTR, and ZLANTR

 	n for SLANTP, DLANTP, CLANTP, and ZLANTP

 	Otherwise, work is not referenced.

 Specified as: an area of storage containing numbers of data
 type indicated in Table 157.

 	On Return

 	

 	 Function value

 	is the result of the norm computation, returned as a number of
 the data type indicated in Table 157.
 If norm =
 'O' or '1', the one norm of A is returned.

 If norm =
 'I', the infinity norm of A is returned.

 If norm =
 'F' or 'E', the Frobenius or Euclidean norm of A is
 returned.

 If norm = 'M', the absolute value
 of the matrix element having the largest absolute value, i.e., max
 (|A|), is returned.

 If m =
 0 or n = 0, the function returns zero.

 Notes

 	Declare this function in your program as returning a value of
 the data type indicated in Table 157.

 	This function accepts lowercase letters for the norm, uplo,
 and diag arguments.

 	For a description of triangular matrices and how they are stored
 in upper- and lower-triangular-packed storage mode, see Triangular Matrix.

 	For a description of trapezoidal matrices and how they are stored
 in upper- and lower-trapezoidal storage mode, see Trapezoidal Matrix.

 	For SLANTR, DLANTR, CLANTR, and ZLANTR, the following cases are
 extensions to the LAPACK standard:

 	 uplo = 'U' and m > n

 	 uplo = 'L' and n > m

 Function

 One of the following computations
 is performed on matrix A, depending on the value specified
 for norm:

 	Value specified for norm

 	Type of computation performed

 	'O' or '1'

 	one norm

 	'I'

 	infinity norm

 	'F' or 'E'

 	Frobenius or Euclidean norm

 	'M'

 	absolute value of the matrix element having
 the largest absolute value, i.e., max (|A|)

 If m = 0 or n =
 0, the function returns zero.

 Error conditions

 	[bookmark: am5gr_lant__am5gr_f110alansy004a]
 Resource Errors

 	None.

 	[bookmark: am5gr_lant__am5gr_f110alansy005a]
 Computational Errors

 	None.

 	[bookmark: am5gr_lant__am5gr_f110alansy006a]
 Input-Argument Errors

 	

 	norm ≠ 'O', '1', 'I', 'F',
 'E', or 'M'

 	uplo ≠ 'U' or 'L'

 	diag ≠ 'U' or 'N'

 	m < 0

 	n < 0

 	lda < 1

 	lda < m

 Examples

 	Example 1

 	
 This example computes the infinity norm of real trapezoidal
 matrix A stored in lower-trapezoidal storage mode.

 Call
 Statements and Input:

 NORM UPLO DIAG M N A LDA WORK
 | | | | | | | |
ANORM = DLANTR('I', 'L', 'N', 10 , 9 , A , 10 , WORK)

 ┌ ┐
 | 1.0 |
 | 1.0 2.0 |
 | 1.0 2.0 3.0 |
 | 1.0 2.0 3.0 4.0 |
A = | 1.0 2.0 3.0 4.0 5.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 . . . |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 . . |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 . |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
 └ ┘

 Output:

 ANORM
 = 45.0

 	Example 2

 	
 This example computes the Frobenius norm of real trapezoidal
 matrix A stored upper-trapezoidal storage mode.

 Call
 Statements and Input:

 NORM UPLO DIAG M N A LDA WORK
 | | | | | | | |
ANORM = DLANTR('F', 'U', 'U', 9 , 10 , A , 9 , WORK)

 ┌ ┐
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | . 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
 | . . 1.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
 | . . . 1.0 4.0 4.0 4.0 4.0 4.0 4.0 |
A = | 1.0 5.0 5.0 5.0 5.0 5.0 |
 | 1.0 6.0 6.0 6.0 6.0 |
 | 1.0 7.0 7.0 7.0 |
 | 1.0 8.0 8.0 |
 | 1.0 9.0 |
 └ ┘

 Output:

 ANORM
 = 28.88

 	Example 3

 	
 This example computes the infinity norm of complex trapezoidal
 matrix A stored in lower-trapezoidal storage mode.

 Call
 Statements and Input:

 NORM UPLO DIAG M N A LDA WORK
 | | | | | | | |
ANORM = ZLANTR('I', 'L', 'N', 5 , 4 , A , 5 , WORK)

 ┌ ┐
 | (1.0, 1.0) . . . |
 | (2.0, 1.0)(2.0, 2.0) . . |
A = | (3.0, 1.0)(3.0, 2.0)(3.0, 3.0) . |
 | (4.0, 1.0)(4.0, 2.0)(4.0, 3.0)(4.0, 4.0) |
 | (5.0, 1.0)(5.0, 2.0)(5.0, 3.0)(5.0, 4.0) |
 └ ┘

 Output:

 ANORM
 = 22.7

 	Example 4

 	
 This example computes the absolute value of the matrix element
 having the largest absolute value of complex trapezoidal matrix A stored
 in upper-trapezoidal storage mode.

 Call Statements and Input:

 NORM UPLO DIAG M N A LDA WORK
 | | | | | | | |
ANORM = ZLANTR('M', 'U', 'U', 4 , 5 , A , 4 , WORK)

 ┌ ┐
 | (1.0, 0.0)(1.0, 2.0)(1.0, 3.0)(1.0, 4.0)(1.0, 5.0) |
 | . (1.0, 0.0)(2.0, 3.0)(2.0, 4.0)(2.0, 5.0) |
 A = | . . (1.0, 0.0)(3.0, 4.0)(3.0, 5.0) |
 | . . . (1.0, 0.0)(4.0, 5.0) |
 └ ┘

 Output:

 ANORM
 = 6.40

 	Example 5

 	
 This example computes the infinity norm of real triangular
 matrix A, stored in lower-triangular-packed storage
 mode.

 Call Statements and Input:

 NORM UPLO DIAG N AP WORK
 | | | | | |
ANORM = DLANTP('I', 'L', 'N', 9 , AP , WORK)

 ┌ ┐
 | 1.0 |
 | 1.0 2.0 |
 | 1.0 2.0 3.0 |
 | 1.0 2.0 3.0 4.0 |
AP = | 1.0 2.0 3.0 4.0 5.0 |
 | 1.0 2.0 3.0 4.0 5.0 6.0 . . . |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 . . |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 . |
 | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 |
 └ ┘

 Output:

 ANORM
 = 45.0

 	Example 6

 	
 This example computes
 the Frobenius norm of real triangular matrix A, stored
 in upper-triangular-packed storage mode.

 Call Statements
 and Input:

 NORM UPLO DIAG N AP WORK
 | | | | | |
ANORM = DLANTP('F', 'U', 'U', 9 , AP , WORK)

 ┌ ┐
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | . 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
 | . . 1.0 3.0 3.0 3.0 3.0 3.0 3.0 |
 | . . . 1.0 4.0 4.0 4.0 4.0 4.0 |
AP = | 1.0 5.0 5.0 5.0 5.0 |
 | 1.0 6.0 6.0 6.0 |
 | 1.0 7.0 7.0 |
 | 1.0 8.0 |
 | 1.0 |
 └ ┘

 Output:

 ANORM
 = 28.72

 	Example 7

 	
 This example computes the infinity norm of complex triangular
 matrix A, stored in lower-triangular-packed storage
 mode.

 Call Statements and Input:

 NORM UPLO DIAG N AP WORK
 | | | | | |
ANORM = ZLANTP('I', 'L', 'N', 5 , AP , WORK)

 ┌ ┐
 | (1.0, 1.0) |
 | (1.0, 1.0)(2.0, 2.0) . . . |
AP = | (1.0, 1.0)(2.0, 2.0)(3.0, 3.0) . . |
 | (1.0, 1.0)(2.0, 2.0)(3.0, 3.0)(4.0, 4.0) . |
 | (1.0, 1.0)(2.0, 2.0)(3.0, 3.0)(4.0, 4.0)(5.0, 5.0) |
 └ ┘

 Output:

 ANORM
 = 21.2

 	Example 8

 	
 This example computes
 the absolute value of the matrix element having the largest absolute
 value of complex triangular matrix A, stored in upper-triangular-packed
 storage mode.

 Call Statements and Input:

 NORM UPLO DIAG N AP WORK
 | | | | | |
ANORM = ZLANTP('M', 'U', 'U', 5 , AP , WORK)

 ┌ ┐
 | (1.0, 0.0)(1.0, 1.0)(1.0, 1.0)(1.0, 1.0)(1.0, 1.0) |
 | . (1.0, 0.0)(2.0, 2.0)(2.0, 2.0)(2.0, 2.0) |
 AP = | . . (1.0, 0.0)(3.0, 3.0)(3.0, 3.0) |
 | . . . (1.0, 0.0)(4.0, 4.0) |
 | (1.0, 0.0) |
 └ ┘

 Output:

 ANORM
 = 5.65

 Parent topic: Linear Algebraic Equations

 Banded Linear Algebraic Equation Subroutines

 This contains the banded linear algebraic equation
 subroutine descriptions.

 Parent topic: Linear Algebraic Equations

 SGBSV, DGBSV, CGBSV, and ZGBSV (General Band Matrix Factorization
 and Multiple Right-Hand Side Solve)

 Purpose

 These subroutines solve the general
 band system of linear equations AX=B for X,
 where A is a general band matrix and B and X are
 general matrices.

 The matrix A is stored in BLAS-general-band
 storage mode and is factored using Gaussian elimination with partial
 pivoting.

 Table 158. Data
 Types.

 	A, B

 	Subroutine

 	Short-precision real

 	SGBSVΔ

 	Long-precision real

 	DGBSVΔ

 	Short-precision complex

 	CGBSVΔ

 	Long-precision complex

 	ZGBSVΔ

 	ΔLAPACK

 Syntax

 	Fortran

 	CALL SGBSV | DGBSV | CGBSV | ZGBSV (n, kl, ku, nrhs, a, lda, ipiv, b, ldb, info)

 	C and C++

 	sgbsv | dgbsv | cgbsv | zgbsv (n, kl,
 ku, nrhs, a, lda,
 ipiv, b, ldb,
 info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sgbsv | LAPACKE_dgbsv | LAPACKE_cgbsv | LAPACKE_zgbsv
 (matrix_layout, n, kl,
 ku, nrhs, a, lda,
 ipiv, b, ldb); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	n

 	is the order of matrix A and the number of rows
 in matrix B.
 Specified as: an integer; n ≥ 0.

 	 kl

 	is the lower band width kl of the matrix A.

 	Specified as: an integer; kl ≥ 0.

 	 ku

 	is the upper band width ku of the matrix A.

 	Specified as: an integer; ku ≥ 0.

 	 nrhs

 	is the number of right-hand sides; that is, the number of columns
 of matrix B.

 	Specified as: an integer; nrhs ≥ 0.

 	a

 	is the general band matrix A of order n.

 	Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 158.

 	 lda

 	is the leading dimension of the array specified for a.

 	Specified as: an integer; lda > 0 and lda ≥ 2kl+ku+1.

 	 ipiv

 	See "On Return".

 	b

 	is the general matrix B, containing the nrhs right-hand
 sides of the system. The right-hand sides, each of length n,
 reside in the columns of matrix B.
 Specified as:
 an ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 158.

 	ldb

 	is the leading dimension of the array specified for B.
 Specified
 as: an integer; ldb > 0 and ldb ≥ n.

 	 info

 	See "On Return".

 	On Return

 	

 	a

 	is the transformed matrix A of order n containing
 the results of the factorization. See Function.

 	Returned as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 158.

 	 ipiv

 	is the integer vector of length n, containing
 the pivot indices.

 	Returned as: a one-dimensional integer array of (at least) length n,
 containing integers; 1 ≤ ipivj ≤ n for
 all j.

 	b

 	If info = 0, b is the general
 matrix X, containing the nrhs solutions
 to the system. The solutions, each of length n,
 reside in the columns of matrix X.
 Returned as:
 an ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 158.

 	info

 	has the following meaning:
 If info = 0,
 the subroutine completed successfully.

 If info > 0, info is
 set to the first i, where Uii is
 zero. The solution has not been computed.

 [image: Start of change] Returned as:[image: Start of change]
 	For SGBSV, DGBSV, CGBSV, and ZGBSV, returned as: an integer; info ≥ 0.

 	For LAPACKE_sgbsv, LAPACKE_dgbsv, LAPACKE_cgbsv, and LAPACKE_zgbsv, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	In your C program, argument info must be passed
 by reference.

 	a, ipiv, and b must
 have no common elements; otherwise, results are unpredictable.

 	For a description of how a general band matrix is stored in BLAS-general-band
 storage mode in an array, see General Band Matrix.

 	The way these subroutines handle singularity differs from LAPACK.
 Like LAPACK, these subroutines use the info argument to provide information
 about the singularity of A, but they also provide an error message.

 Function

 These subroutines
 solve the general band system of linear equations AX
 = B, where A is a general band matrix
 and B and X are general matrices.

 If n is
 0, no computation is performed and the subroutine returns after doing
 some parameter checking. If n > 0 and nrhs is
 0, no solutions are computed and the subroutine returns after factoring
 the matrix.

 See references [8] and [46].

 Error conditions

 	Resource Errors

 	None

 	Computational Errors

 	Matrix A is singular or nearly singular.

 	The first column, i, of L with
 a corresponding Uii = 0 diagonal element
 is identified in the computational error message.

 	The computational error message may occur multiple times with
 processing continuing after each error, because the default for the
 number of allowable errors for error code 2146 is set to be unlimited
 in the ESSL error option table.

 	Input-Argument Errors

 	

 	n < 0

 	kl < 0

 	ku < 0

 	nrhs < 0

 	lda ≤ 0

 	2kl+ku+1 > lda

 	ldb ≤ 0

 	n > ldb

 Examples

 	Example 1

 	
 This example shows how to solve the real general band system AX=B,
 where:

 Matrix A is the same used as input in Example 1 for
 DGBTRF.

 Matrix B is the same used as input in Example 1 for
 DGBTRS.

 Call Statement and Input: N KL KU NRHS A LDA IPIV B LDB INFO)
 | | | | | | | | | |
CALL DGBSV(9 , 2, 3 , 3 , A , 8 , IPIV , B , 9 , INFO)

 A =

 (same as input

 A

 in

 Example 1

)

 B =

 (same as input

 B

 in

 Example 1

)

 Output: ┌ ┐
 | 4.000 4.000 4.000 4.000 |
 | 3.000 3.000 3.000 3.000 -2.271 |
 | . . . 2.000 2.000 2.000 2.000 -4.074 -1.747 |
 | . . 1.000 1.000 1.000 1.000 -4.691 -4.177 1.000 |
 A = | . 2.000 2.000 2.000 2.000 -4.419 -3.174 2.000 0.927 |
 | 3.000 3.000 3.000 3.000 -3.617 -5.095 3.000 -1.546 3.037 |
 | 0.666 0.444 0.518 0.567 -0.334 0.326 0.043 -0.790 . |
 | 0.333 -0.111 0.592 0.246 -0.829 -0.588 -0.617 . . |
 └ ┘

 IPIV = (3, 4, 5, 6, 5, 6, 9, 8, 9)

 ┌ ┐
 | 0.629 1.149 4.713 |
 | -0.025 1.870 -0.726 |
 | 0.523 0.615 2.946 |
 | -0.286 -1.434 -2.774 |
 B = | -0.104 -0.524 -1.067 |
 | -0.118 -0.591 -0.970 |
 | 0.220 -0.896 2.027 |
 | -0.079 1.604 -0.340 |
 | 0.496 0.480 3.599 |
 └ ┘

 INFO = 0

 	

 	Example 2

 	
 This example shows how to solve the complex general band system AX=B,
 where:

 Matrix A is the same used as input in Example 2 for
 ZGBTRF.

 Matrix B is the same used as input in Example 3 for
 ZGBTRS.

 Call Statement and Input: N KL KU NRHS A LDA IPIV B LDB INFO)
 | | | | | | | | | |
CALL ZGBSV(5 , 1 , 2 , 3 , A , 5 , IPIV , B , 5 , INFO)

 A =

 (same as input

 A

 in

 Example 2

)

 B =

 (same as input

 B

 in

 Example 3

)

 Output: ┌ ┐
 | . . . (2.000, 4.000) (3.000, 5.000) |
 | . . (2.000, 3.000) (3.000, 4.000) (4.000, 5.000) |
A = | . (0.200, 0.200) (0.300, 0.300) (0.400, 0.400) (0.500, 0.500) |
 |(2.000, 1.000) (3.000, 2.000) (4.000, 3.000) (5.000, 4.000) (-0.339,-6.596) |
 |(0.060, 0.020) (0.534, 0.305) (0.443, 0.300) (-0.412,-0.396) . |
 └ ┘
IPIV = (2, 3, 4, 5, 5)

 ┌ ┐
 |(-0.039,-0.250)(0.237,-0.265)(-0.247,-0.723) |
 |(0.161,-0.014)(0.158, 0.163)(-0.092,-0.192) |
 B = |(0.205, 0.105)(0.069, 0.317)(0.248, 0.130) |
 |(0.116, 0.109)(-0.015, 0.224)(0.314, 0.146) |
 |(-0.055, 0.038)(-0.090,-0.027)(0.032,-0.001) |
 └ ┘

 INFO = 0

 	

 Parent topic: Linear Algebraic Equations

 SGBTRF, DGBTRF, CGBTRF and ZGBTRF (General Band Matrix Factorization)

 Purpose

 These subroutines factor general
 band matrix A, stored in BLAS-general-band storage mode,
 using Gaussian elimination with partial pivoting.

 To solve the
 system of equations with one or more right-hand sides, follow the
 call to these subroutines with one or more calls to SGBTRS, DGBTRS,
 CGBTRS, and ZGBTRS respectively.

 Table 159. Data Types.

 	A

 	Subroutine

 	Short-precision real

 	SGBTRFΔ

 	Long-precision real

 	DGBTRFΔ

 	Short-precision complex

 	CGBTRFΔ

 	Long-precision complex

 	ZGBTRFΔ

 	ΔLAPACK

 Note: The output from these factorization subroutines should
 be used only as input to the solve subroutines SGBTRS, DGBTRS, CGBTRS,
 and ZGBTRS respectively.

 Syntax

 	Fortran

 	CALL SGBTRF | DGBTRF | CGBTRF | ZGBTRF (m, n, kl, ku, a, lda, ipiv, info)

 	C and C++

 	sgbtrf | dgbtrf | cgbtrf | zgbtrf (m, n, kl, ku, a, lda, ipiv, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sgbtrf | LAPACKE_dgbtrf | LAPACKE_cgbtrf | LAPACKE_zgbtrf
 (matrix_layout, m, n,
 kl, ku, a, lda,
 ipiv); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	m

 	is the number of rows in matrix A.Specified as:
 an integer; m ≥ 0.

 	n

 	is the number of columns in matrix A.Specified
 as: an integer; n ≥ 0.

 	 kl

 	is the lower band width kl of the matrix A.

 	Specified as: an integer; kl ≥ 0.

 	 ku

 	is the upper band width ku of the matrix A.

 	Specified as: an integer; ku ≥ 0.

 	a

 	is the m by n general band
 matrix A to be factored.

 	Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 159.

 	 lda

 	is the leading dimension of the array specified for A.

 	Specified as: an integer; lda > 0 and lda ≥ 2kl+ku+1.

 	 ipiv

 	See "On Return".

 	 info

 	See "On Return".

 	On Return

 	

 	a

 	is the transformed matrix A containing the results
 of the factorization. See Function.

 	Returned as: an lda by (at least) n array,
 containing integers.

 	 ipiv

 	is the integer vector of length min(m,n),
 containing the pivot indices.

 	Returned as: a one-dimensional integer array of (at least) length
 min(m,n), containing integers;
 1 ≤ ipivj ≤ m for
 all j.

 	info

 	has the following meaning:
 If info = 0, the subroutine completed
 successfully.

 If info > 0, info is set to the first
 i, where Uii is zero. The
 factorization has been completed.

 [image: Start of change] Returned as:[image: Start of change]
 	For SGBTRF, DGBTRF, CGBTRF and ZGBTRF, returned as: an integer; info ≥ 0.

 	For LAPACKE_sgbtrf, LAPACKE_dgbtrf, LAPACKE_cgbtrf and LAPACKE_zgbtrf, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	In your C program, argument info must be passed
 by reference.

 	a and ipiv must have no
 common elements; otherwise, results are unpredictable.

 	For a description of how a general band matrix is stored in BLAS-general-band
 storage mode in an array, see General Band Matrix.

 	The way these subroutines handle singularity differs from LAPACK.
 Like LAPACK, these subroutines use the info argument
 to provide information about the singularity of A, but
 they also provide an error message.

 Function

 These subroutines
 factor general band matrix A, stored in BLAS-general-band
 storage mode, using Gaussian elimination with partial pivoting to
 compute the LU factorization of A:

 A = PLU

 In
 the formula above:

 	P is the permutation matrix

 	L is a unit lower triangular band matrix

 	U is a upper triangular band matrix

 To solve the system of equations with one or more right-hand
 sides, follow the call to these subroutines with one or more calls
 to SGBTRS, DGBTRS, CGBTRS, and ZGBTRS respectively.

 If m or n is
 0, no computation is performed and the subroutine returns after doing
 some parameter checking.

 See references [8] and [46].

 Error conditions

 	Resource Errors

 	None

 	Computational Errors

 	Matrix A is singular or nearly singular.

 	The first column, i, of L with
 a corresponding Uii = 0 diagonal element
 is identified in the computational error message.

 	The computational error message may occur multiple times with
 processing continuing after each error, because the default for the
 number of allowable errors for error code 2146 is set to be unlimited
 in the ESSL error option table.

 	Input-Argument Errors

 	

 	m < 0

 	n < 0

 	kl < 0

 	ku <
 0

 	lda ≤ 0

 	2kl + ku + 1 > lda

 Examples

 	[bookmark: am5gr_hsgbtrf__gbtfex1]
 Example 1

 	
 This example shows a factorization of the following real
 general band matrix of order 9. Matrix A is: ┌ ┐
 | 1.0 2.0 3.0 4.0 0.0 0.0 0.0 0.0 0.0 |
 | 2.0 1.0 2.0 3.0 4.0 0.0 0.0 0.0 0.0 |
 | 3.0 2.0 1.0 2.0 3.0 4.0 0.0 0.0 0.0 |
 | 0.0 3.0 2.0 1.0 2.0 3.0 4.0 0.0 0.0 |
 | 0.0 0.0 3.0 2.0 1.0 2.0 3.0 4.0 0.0 |
 | 0.0 0.0 0.0 3.0 2.0 1.0 2.0 3.0 4.0 |
 | 0.0 0.0 0.0 0.0 3.0 2.0 1.0 2.0 3.0 |
 | 0.0 0.0 0.0 0.0 0.0 3.0 2.0 1.0 2.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 3.0 2.0 1.0 |
 └ ┘

 Call Statement and Input: M N KL KU A LDA IPIV INFO)
 | | | | | | | |
CALL DGBTRF(9 , 9 , 2 , 3 , A , 8 , IPIV , INFO)

 ┌ ┐
 | |
 | |
 | . . . 4.0 4.0 4.0 4.0 4.0 4.0 |
 | . . 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
 A = | . 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 . |
 | 3.0 3.0 3.0 3.0 3.0 3.0 3.0 . . |
 └ ┘

 Output: ┌ ┐
 | 4.000 4.000 4.000 4.000 |
 | 3.000 3.000 3.000 3.000 -2.271 |
 | . . . 2.000 2.000 2.000 2.000 -4.074 -1.747 |
 | . . 1.000 1.000 1.000 1.000 -4.691 -4.177 1.000 |
 A = | . 2.000 2.000 2.000 2.000 -4.419 -3.174 2.000 0.927 |
 | 3.000 3.000 3.000 3.000 -3.617 -5.095 3.000 -1.546 3.037 |
 | 0.666 0.444 0.518 0.567 -0.334 0.326 0.043 -0.790 . |
 | 0.333 -0.111 0.592 0.246 -0.829 -0.588 -0.617 . . |
 └ ┘

 IPIV = (3, 4, 5, 6, 5, 6, 9, 8, 9)

INFO = 0

 	

 	[bookmark: am5gr_hsgbtrf__gbtfex2]
 Example 2

 	
 This example shows a factorization of the following complex
 general band matrix of order 5. Matrix A is: ┌ ┐
 |(0.100, 0.100) (1.000, 2.000) (1.000, 3.000) (0.000, 0.000) (0.000, 0.000) |
 |(2.000, 1.000) (0.200, 0.200) (2.000, 3.000) (2.000, 4.000) (0.000, 0.000) |
 |(0.000, 0.000) (3.000, 2.000) (0.300, 0.300) (3.000, 4.000) (3.000, 5.000) |
 |(0.000, 0.000) (0.000, 0.000) (4.000, 3.000) (0.400, 0.400) (4.000, 5.000) |
 |(0.000, 0.000) (0.000, 0.000) (0.000, 0.000) (5.000, 4.000) (0.500, 0.500) |
 └ ┘

 Call Statement and Input: M N KL KU A LDA IPIV INFO)
 | | | | | | | |
CALL ZGBTRF(5 , 5 , 1 , 2 , A , 5 , IPIV , INFO)

 ┌ ┐
 | |
 | . . (1.000, 3.000) (2.000, 4.000) (3.000, 5.000) |
 A = | . (1.000, 2.000) (2.000, 3.000) (3.000, 4.000) (4.000, 5.000) |
 |(0.100, 0.100) (0.200, 0.200) (0.300, 0.300) (0.400, 0.400) (0.500, 0.500) |
 |(2.000, 1.000) (3.000, 2.000) (4.000, 3.000) (5.000, 4.000) . |
 └ ┘

 Output: ┌ ┐
 | . . . (2.000, 4.000) (3.000, 5.000) |
 | . . (2.000, 3.000) (3.000, 4.000) (4.000, 5.000) |
A = | . (0.200, 0.200) (0.300, 0.300) (0.400, 0.400) (0.500, 0.500) |
 |(2.000, 1.000) (3.000, 2.000) (4.000, 3.000) (5.000, 4.000) (-0.339,-6.596) |
 |(0.060, 0.020) (0.534, 0.305) (0.443, 0.300) (-0.412,-0.396) . |
 └ ┘

IPIV = (2, 3, 4, 5, 5)

INFO = 0

 Parent topic: Linear Algebraic Equations

 SGBTRS, DGBTRS, CGBTRS, and ZGBTRS (General Band Matrix Multiple
 Right-Hand Side Solve)

 Purpose

 SGBTRS and DGTBRS solve one of
 the following systems of equations for multiple right-hand sides:

 1.

 AX

 =

 B

 2.

 A

 T

 X

 =

 B

 CGBTRS
 and ZGBTRS solve one of the following systems of equations for multiple
 right-hand sides:

 	AX = B

 	ATX=B

 	AHX=B

 In the formulas above:

 	A represents the general band matrix A stored
 in BLAS-general-band storage mode, containing the factorization.

 	B represents the general matrix B containing
 the right-hand sides in its columns.

 	X represents the general matrix B containing
 the solution vectors in its columns.

 These subroutines use the results of the factorization of
 matrix A and vector ipiv, produced
 by a preceding call to SGBTRF, DGBTRF, CGBTRF, and ZGBTRF, respectively.

 Table 160. Data Types.

 	A, B

 	Subroutine

 	Short-precision real

 	SGBTRSΔ

 	Long-precision real

 	DGBTRSΔ

 	Short-precision complex

 	CGBTRSΔ

 	Long-precision complex

 	ZGBTRSΔ

 	ΔLAPACK

 Note: The input to these solve subroutines must be the output
 from the factorization subroutines SGBTRF, DGBTRF, CGBTRF, and ZGBTRF,
 respectively.

 Syntax

 	Fortran

 	CALL SGBTRS | DGBTRS | CGBTRS | ZGBTRS (trans, n, kl, ku, nrhs, a, lda, ipiv, b, ldb, info)

 	C and C++

 	sgbtrs | dgbtrs | cgbtrs | zgbtrs (trans, n, kl, ku, nrhs, a, lda, ipiv, b, ldb, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sgbtrs | LAPACKE_dgbtrs | LAPACKE_cgbtrs | LAPACKE_zgbtrs
 (matrix_layout, trans, n,
 kl, ku, nrhs, a,
 lda, ipiv, b, ldb); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 trans

 	indicates the form of matrix A to use in the computation,
 where:
 If trans = 'N', A is used
 in the computation, resulting in solution 1.

 If trans =
 'T', AT is used in the computation, resulting
 in solution 2.

 If trans = 'C', AH is
 used in the computation, resulting in solution 3.

 Specified
 as: a single character; transa = 'N', 'T', or 'C'.

 	n

 	is the order of factored matrix A and the number
 of rows in matrix B.
 Specified as: an integer; n ≥ 0.

 	 kl

 	is the lower band width kl of the matrix A.

 	Specified as: an integer; kl ≥ 0.

 	 ku

 	is the upper band width ku of the matrix A.

 	Specified as: an integer; ku ≥ 0.

 	 nrhs

 	is the number of right-hand sides; that is, the number of columns
 of matrix B used in the computation.

 	Specified as: an integer; nrhs ≥ 0.

 	a

 	is the factorization of matrix A, produced by a
 preceding call to SGBTRF,
 DGBTRF, CGBTRF, or ZGBTRF, respectively.

 	Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 160.

 	 lda

 	is the leading dimension of the array specified for a.

 	Specified as: an integer; lda > 0 and lda ≥ 2kl+ku+1.

 	 ipiv

 	is the array containing the pivot indices produced by a preceding
 call to SGBTRF, DGBTRF, CGBTRF, or ZGBTRF, respectively.

 	Specified as: a one-dimensional array of (at least) length n,
 containing integers.

 	b

 	is the general matrix B, containing the nrhs right-hand
 sides of the system. The right-hand sides, each of length n,
 reside in the columns of matrix B.
 Specified as:
 an ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 160.

 	ldb

 	is the leading dimension of the array specified for B.
 Specified
 as: an integer; ldb > 0 and ldb ≥ n.

 	info

 	See "On Return".

 	On Return

 	

 	 b

 	is the matrix X, containing the nrhs solutions
 to the system. The solutions, each of length n,
 reside in the columns of X.

 	Returned as: an ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 160.

 	info

 	has the following meaning:
 If info = 0, the subroutine completed
 successfully.

 SGBTRS, DGBTRS, CGBTRS, and ZGBTRS
 [image: Start of change] Returned as:[image: Start of change]
 	For SGBTRS, DGBTRS, CGBTRS, and ZGBTRS, returned as: an integer; info ≥ 0.

 	For LAPACKE_sgbtrs, LAPACKE_dgbtrs, LAPACKE_cgbtrs, and LAPACKE_zgbtrs, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	These subroutines accept lowercase letters for the trans arguments.

 	In your C program, argument info must be passed
 by reference.

 	For SGBTRS and DGBTRS, if you specify 'C' for the trans argument,
 it is interpreted as though you specified 'T'.

 	The scalar data specified for input argument n must
 be the same for both _GTBRF and _GTBRS.

 	The array data specified for input arguments a and ipiv for
 these subroutines must be the same as the corresponding output arguments
 for SGBTRF, DGBTRF, CGBTRF, or ZGBTRF respectively.

 	a, ipiv, and b must
 have no common elements; otherwise, results are unpredictable.

 	For a description of how a general band matrix is stored in BLAS-general-band
 storage mode in an array, see General Band Matrix.

 Function

 One of the following systems of
 equations is solved for multiple right-hand sides:

 1.

 AX

 =

 B

 2.

 A

 T

 X

 =

 B

 3.

 A

 H

 X

 =

 B

 (only for CGBTRS and ZGBTRS)

 where A is
 a general band matrix and B and X are
 general matrices. These subroutines uses the results of the factorization
 of matrix A, produced by a preceding call to SGBTRF,
 DGBTRF, CGBTRF, or ZGBTRF, respectively. For details on the factorization,
 see SGBTRF, DGBTRF, CGBTRF and ZGBTRF (General Band Matrix Factorization).

 If n or nrhs is
 0, no computation is performed.

 See reference [46].

 Error conditions

 	Resource Errors

 	None

 	Computational Errors

 	
 Note: If the factorization performed by SGBTRF, DGBTRF, CGBTRF,
 or ZGBTRF failed due to a singular matrix argument, the results returned
 by this subroutine are unpredictable, and there may be a divide-by-zero
 program exception message.

 	Input-Argument Errors

 	

 	trans ≠ 'N', 'T, or 'C'

 	n < 0

 	kl < 0

 	ku < 0

 	nrhs < 0

 	lda ≤ 0

 	2kl+ku+1 > lda

 	ldb ≤ 0

 	n > ldb

 Examples

 	[bookmark: am5gr_hsgbtrs__gbtrsex1]
 Example 1

 	
 This example shows how to solve the system AX = B,
 where real general band matrix A is the same matrix
 factored in Example
 1 for DGBTRF.

 Call Statement and Input: TRANS N KL KU NRHS A LDA IPIV B LDB INFO)
 | | | | | | | | | | |
CALL DGBTRS('N' , 9 , 2 , 3 , 3 , A , 8 , IPIV , B , 9 , INFO)

 A = (same as output A in Example 1)

 IPIV
 = (same as output IPIV in Example 1)

 ┌ ┐
 | 1.0 1.0 1.0 |
 | 1.0 -1.0 2.0 |
 | 1.0 1.0 3.0 |
 | 1.0 -1.0 4.0 |
 B = | 1.0 1.0 5.0 |
 | 1.0 -1.0 6.0 |
 | 1.0 1.0 7.0 |
 | 1.0 -1.0 8.0 |
 | 1.0 1.0 9.0 |
 └ ┘

 Output: ┌ ┐
 | 0.629 1.149 4.713 |
 | -0.025 1.870 -0.726 |
 | 0.523 0.615 2.946 |
 | -0.286 -1.434 -2.774 |
 B = | -0.104 -0.524 -1.067 |
 | -0.118 -0.591 -0.970 |
 | 0.220 -0.896 2.027 |
 | -0.079 1.604 -0.340 |
 | 0.496 0.480 3.599 |
 └ ┘

INFO = 0

 	

 	Example 2

 	
 This example shows how to solve the system ATX
 = B, where real general band matrix A is
 the same matrix factored in Example 1 for
 DGBTRF.

 Call Statement and Input: TRANS N KL KU NRHS A LDA IPIV B LDB INFO)
 | | | | | | | | | | |
CALL DGBTRS('T' , 9 , 2 , 3 , 3 , A , 8 , IPIV , B , 9 , INFO)

 A = (same as output A in Example 1)

 IPIV
 = (same as output IPIV in Example 1)

 ┌ ┐
 | 1.0 1.0 1.0 |
 | 1.0 -1.0 2.0 |
 | 1.0 1.0 3.0 |
 | 1.0 -1.0 4.0 |
 B = | 1.0 1.0 5.0 |
 | 1.0 -1.0 6.0 |
 | 1.0 1.0 7.0 |
 | 1.0 -1.0 8.0 |
 | 1.0 1.0 9.0 |
 └ ┘

 Output: ┌ ┐
 | 0.496 0.480 1.362 |
 | -0.079 1.604 -0.450 |
 | 0.220 -0.896 0.179 |
 | -0.118 -0.591 -0.211 |
 B = | -0.104 -0.524 0.018 |
 | -0.286 -1.434 -0.095 |
 | 0.523 0.615 2.285 |
 | -0.025 1.870 0.468 |
 | 0.629 1.149 1.586 |
 └ ┘

INFO = 0

 	

 	[bookmark: am5gr_hsgbtrs__gbtrsex3]
 Example 3

 	
 This example shows how to solve the system AX = B,
 where complex general band matrix A is the same matrix
 factored in Example
 2 for ZGBTRF.

 Call Statement and Input: TRANS N KL KU NRHS A LDA IPIV B LDB INFO)
 | | | | | | | | | | |
CALL ZGBTRS('N' , 5 , 1 , 2 , 3 , A , 5 , IPIV , B , 5 , INFO)

 A = (same as output A in Example 2)

 IPIV
 = (same as output IPIV in Example 2)

 ┌ ┐
 |(0.100, 1.000)(-1.000, 1.000)(0.200, 0.400) |
 |(0.100, 1.000)(-1.000, 1.000)(0.400, 0.800) |
 B = |(0.100, 1.000)(-1.000, 1.000)(0.600, 1.200) |
 |(0.100, 1.000)(-1.000, 1.000)(0.800, 1.600) |
 |(0.100, 1.000)(-1.000, 1.000)(1.000, 2.000) |
 └ ┘

 Output: ┌ ┐
 |(-0.039,-0.250)(0.237,-0.265)(-0.247,-0.723) |
 |(0.161,-0.014)(0.158, 0.163)(-0.092,-0.192) |
 B = |(0.205, 0.105)(0.069, 0.317)(0.248, 0.130) |
 |(0.116, 0.109)(-0.015, 0.224)(0.314, 0.146) |
 |(-0.055, 0.038)(-0.090,-0.027)(0.032,-0.001) |
 └ ┘

INFO = 0

 	

 	Example 4

 	
 This example shows how to solve the system AHX
 = B, where complex general band matrix A is
 the same matrix factored in Example 2 for
 ZGBTRF.

 Call Statement and Input: TRANS N KL KU NRHS A LDA IPIV B LDB INFO)
 | | | | | | | | | | |
CALL ZGBTRS('C' , 5 , 1 , 2 , 3 , A , 5 , IPIV, B , 5 , INFO)

 A = (same as output A in Example 2)

 IPIV
 = (same as output IPIV in Example 2) ┌ ┐
 |(0.100, 1.000)(-1.000, 1.000)(0.200, 0.400) |
 |(0.100, 1.000)(-1.000, 1.000)(0.400, 0.800) |
 B = |(0.100, 1.000)(-1.000, 1.000)(0.600, 1.200) |
 |(0.100, 1.000)(-1.000, 1.000)(0.800, 1.600) |
 |(0.100, 1.000)(-1.000, 1.000)(1.000, 2.000) |
 └ ┘

 Output: ┌ ┐
 |(0.015,-0.126)(0.150,-0.096)(0.029, 0.017) |
 |(-0.158, 0.428)(-0.607, 0.209)(-0.002, 0.200) |
 B = |(-0.094, 0.283)(-0.392, 0.149)(-0.054, 0.230) |
 |(-0.057,-0.111)(0.070,-0.161)(-0.114, 0.109) |
 |(-0.088,-0.409)(0.367,-0.460)(-0.111,-0.050) |
 └ ┘

INFO = 0

 	

 Parent topic: Linear Algebraic Equations

 SGBS and DGBS (General Band Matrix Solve)

 Purpose

 These subroutines solve the system Ax = b for x,
 where A is a general band matrix, and x and b are
 vectors. They use the results of the factorization of matrix A,
 produced by a preceding call to SGBF or DGBF, respectively.

 Table 161. Table 172. Data Types.

 	A, b, x

 	Subroutine

 	Short-precision real

 	SGBS

 	Long-precision real

 	DGBS

 Note: The input to these solve subroutines must be the output
 from the factorization subroutines SGBF and DGBF, respectively.

 Syntax

 	Fortran

 	CALL SGBS | DGBS (agb, lda, n, ml, mu, ipvt, bx)

 	C and C++

 	sgbs | dgbs (agb, lda, n, ml, mu, ipvt, bx);

 	On Entry

 	

 	 agb

 	is the factorization of general band matrix A, produced
 by a preceding call to SGBF or DGBF. Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in , where lda ≥ 2ml+mu+16.

 	 lda

 	is the leading dimension of the array specified for agb.
 Specified as: an integer; lda > 0 and lda ≥ 2ml+mu+16.

 	 n

 	is the order of the matrix A. Specified as: an integer; n > ml and n > mu.

 	 ml

 	is the lower band width ml of the matrix A.
 Specified as: an integer; 0 ≤ ml < n.

 	 mu

 	is the upper band width mu of the matrix A.
 Specified as: an integer; 0 ≤ mu < n.

 	 ipvt

 	is the integer vector ipvt of length n,
 produced by a preceding call to SGBF or DGBF. It contains the pivot
 information necessary to construct matrix L from the
 information contained in the array specified for agb.

 Specified as: a one-dimensional array of (at least) length n,
 containing integers.

 	 bx

 	is the vector b of length n,
 containing the right-hand side of the system. Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in .

 	On Return

 	

 	 bx

 	is the solution vector x of length n,
 containing the results of the computation. Returned as: a one-dimensional
 array, containing numbers of the data type indicated in .

 Notes

 	The scalar data specified for input arguments lda, n, ml,
 and mu for these subroutines must be the same as
 that specified for SGBF and DGBF, respectively.

 	The array data specified for input arguments agb and ipvt for
 these subroutines must be the same as the corresponding output arguments
 for SGBF and DGBF, respectively.

 	The entire lda by n array
 specified for agb must remain unchanged between
 calls to the factorization and solve subroutines.

 	The vectors and matrices used in this computation must have no
 common elements; otherwise, results are unpredictable. See Concepts.

 	This subroutine can be used for tridiagonal matrices (ml = mu = 1);
 however, the tridiagonal subroutines, SGTF/DGTF and SGTS/DGTS, are
 faster.

 	For a description of how a general band matrix is stored in general-band
 storage mode in an array, see General Band Matrix.

 Function

 The real system Ax = b is
 solved for x, where A is a real general
 band matrix, stored in general-band storage mode, and x and b are
 vectors. These subroutines use the results of the factorization of
 matrix A, produced by a preceding call to SGBF or DGBF,
 respectively. The transformed matrix A, used by this
 computation, consists of the upper triangular matrix U and
 the multipliers necessary to construct L using ipvt,
 as defined in Function.
 See reference [46].

 Error conditions

 	[bookmark: am5gr_hsgbs__am5gr_f10b008]
 Computational Errors

 	
 Note: If the factorization performed by SGBF or DGBF failed due
 to a singular matrix argument, the results returned by this subroutine
 are unpredictable, and there may be a divide-by-zero program exception
 message.

 	[bookmark: am5gr_hsgbs__am5gr_f10b009]
 Input-Argument Errors

 	

 	lda ≤ 0

 	ml < 0

 	ml ≥ n

 	mu < 0

 	mu ≥ n

 	lda < 2ml+mu+16

 Examples

 	[bookmark: am5gr_hsgbs__am5gr_exgbs]
 Example

 	
 This example shows how to solve the system Ax = b,
 where general band matrix A is the same matrix factored
 in Example for
 SGBF and DGBF. The input for AGB and IPVT in
 this example is the same as the output for that example.

 Call Statement and Input: AGB LDA N ML MU IPVT BX
 | | | | | | |
CALL SGBS(AGB , 23 , 9 , 2 , 3 , IPVT , BX)

 IPVT = (2, -65534, -131070, -196606, -262142, -327678, -327678,

 -327680, -327680)

 BX = (4.0000, 5.0000, 9.0000, 10.0000, 11.0000, 12.0000,

 12.0000, 12.0000, 33.0000)

 AGB =

 (same as output

 AGB

 in

 Example

)

 Output: BX = (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000,
 0.9999, 1.0001)

 	

 Parent topic: Linear Algebraic Equations

 SPBSV, DPBSV, CPBSV, and ZPBSV (Positive Definite Real Symmetric
 or Complex Hermitian Band Matrix Factorization and Multiple Right-Hand
 Side Solve)

 Purpose

 These subroutines solve the system AX = B for X,
 where X and B are general matrices
 and:

 	For SPBSV and DPBSV, A is a positive definite
 real symmetric band matrix stored in upper- or lower-band-packed storage
 mode.

 	For CPBSV and ZPBSV, A is a positive definite
 complex Hermitian band matrix stored in upper- or lower-band-packed
 storage mode.

 Table 162. Data Types.

 	A, B

 	Subroutine

 	Short-precision real

 	SPBSVΔ

 	Long-precision real

 	DPBSVΔ

 	Short-precision complex

 	CPBSVΔ

 	Long-precision complex

 	ZPBSVΔ

 	ΔLAPACK

 Syntax

 	Fortran

 	CALL SPBSV | DPBSV | CPBSV | ZPBSV (uplo, n, k, nrhs, a, lda, b, ldb, info)

 	C and C++

 	spbsv | dpbsv | cpbsv | zpbsv (uplo, n, k, nrhs, a, lda, b, ldb, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_spbsv | LAPACKE_dpbsv | LAPACKE_cpbsv | LAPACKE_zpbsv
 (matrix_layout, uplo, n,
 k, nrhs, a, lda,
 b, ldb); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 uplo

 	indicates whether the matrix A is stored in upper-
 or lower-band-backed storage mode, where:
 If uplo =
 'U', A is stored in upper-band-packed storage mode.

 If uplo =
 'L', A is stored in lower-band-packed storage mode.

 Specified
 as: a single character. It must be 'U' or 'L'.

 	 n

 	is the order n of matrix A and
 the number of rows of matrix B. Specified as: an integer; n ≥ 0.

 	 k

 	is the half band width k of the matrix A.
 Specified as: an integer; 0 ≤ k ≤ max(0,n-1).

 	 nrhs

 	is the number of right-hand sides; i.e., the number of columns
 of matrix B. Specified as: an integer; nrhs ≥ 0.

 	 a

 	is the positive definite real symmetric or complex Hermitian band
 matrix A of order n, having a half
 band width of k , where:

 	If uplo = 'U', it is stored in upper-band-packed
 storage mode.

 	If uplo = 'L', it is stored in lower-band-packed
 storage mode.

 Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 162.

 	 lda

 	is the leading dimension of the array specified for A.
 Specified as: an integer; lda > 0 and lda > k.

 	b

 	is the matrix B of right-hand side vectors. Specified
 as: the ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 162.

 	 ldb

 	is the leading dimension of the array specified for B.
 Specified as: an integer; ldb > 0 and ldb ≥ n.

 	On Return

 	

 	a

 	If info = 0, a is the updated
 matrix A containing the results of the Cholesky factorization.
 See Function.
 Returned as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 162.

 	 b

 	If info = 0, b is the general
 matrix X containing the nrhs solutions
 to the system. The solutions, each of length n,
 reside in the columns of X.
 Returned as: an ldb by
 (at least) nrhs array, containing numbers of the
 data type indicated in Table 162.

 	info

 	has the following meaning:
 If info = 0, the subroutine completed
 successfully.

 If info = i, the leading minor of order
 i is not positive definite. The factorization could not be completed and the
 solution was not computed.

 [image: Start of change] Returned as:[image: Start of change]
 	For SPBSV, DPBSV, CPBSV, and ZPBSV, returned as: an integer; info ≥ 0.

 	For LAPACKE_spbsv, LAPACKE_dpbsv, LAPACKE_cpbsv, and LAPACKE_zpbsv, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	In your C program, argument info must be passed
 by reference.

 	All subroutines accept lowercase letters for the uplo argument.

 	For a description of how real symmetric matrices are stored in
 upper- or lower-band-packed storage mode, see Upper-Band-Packed Storage Mode or Lower-Band-Packed Storage Mode, respectively.
 For
 a description of how complex Hermitian matrices are stored in upper-
 or lower-band-packed storage mode, see Complex Hermitian Band Matrix Storage Representation.

 	On input, the imaginary parts of the diagonal elements of the
 complex Hermitian matrix A are assumed to be zero, so
 you do not have to set these values. On output, they are set to zero.

 	The matrices used in this computation must have no common elements;
 otherwise, results are unpredictable. See Concepts.

 	The way these subroutines handle computational errors differs
 from LAPACK. Like LAPACK, these subroutines use the info argument
 to provide information about the computational error, but they also
 provide an error message.

 	On both input and output, matrix A conforms to LAPACK
 format.

 Function

 These subroutines
 solve the system AX = B for X,
 where X and B are general matrices
 and:

 	For SPBSV and DPBSV, A is a positive definite
 real symmetric band matrix stored in upper- or lower-band-packed storage
 mode.

 	For CPBSV and ZPBSV, A is a positive definite
 complex Hermitian band matrix stored in upper- or lower-band-packed
 storage mode.

 Matrix A is factored using Cholesky factorization:

 	For SPBTRF and DPBTRF:

 	A = LLT if uplo=
 'L'.

 	A = UTU if uplo=
 'U'.

 	For CPBTRF and ZPBTRF:

 	A = LLH if uplo=
 'L'.

 	A = UHU if uplo=
 'U'.

 Where:

 	L is a lower triangular band matrix

 	U is a upper triangular band matrix

 If n = 0, no computation is performed
 and the subroutine returns after doing some parameter checking. If n >
 0 and nrhs = 0, no solutions are computed and the
 subroutine returns after factoring the matrix. See references [8],[44], and [73].

 Error conditions

 	Resource Errors

 	Unable to allocate internal work area.

 	Computational Errors

 	Matrix A is not positive definite. For details,
 see the description of the info argument.

 	Input-Argument Errors

 	

 	uplo ≠ 'U' or 'L'

 	n < 0

 	k < 0

 	k > max(0,n-1)

 	nrhs < 0

 	lda ≤ 0

 	k ≥ lda

 	ldb ≤ 0

 	n > ldb

 Examples

 	Example 1

 	
 This example shows how to solve the system AX = B,
 where A is a real positive definite band matrix factored
 in the form LLT.

 Matrix A is
 the same used as input in Example 1 for
 DPBTRF.

 Matrix B is the same used as input in Example 1 for
 DPBTRS.

 Call Statement and Input: UPLO N K NRHS A LDA B LDB INFO
 | | | | | | | | |
CALL DPBSV('L' , 9 , 3 , 3 , A , 4 , B , 9 , INFO)

 A = (same as input A in Example 1)
 B = (same as input B in Example 1)

 Output:
 ┌ ┐
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 A = | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . . |
 | 1.0 1.0 1.0 1.0 1.0 1.0 . . . |
 └ ┘

 ┌ ┐
 | 1.0 1.0 1.0 |
 | 1.0 -1.0 0.0 |
 | 1.0 1.0 -1.0 |
 | 1.0 -1.0 1.0 |
 B = | 1.0 1.0 0.0 |
 | 1.0 -1.0 -1.0 |
 | 1.0 1.0 1.0 |
 | 1.0 -1.0 0.0 |
 | 1.0 1.0 -1.0 |
 └ ┘

 INFO = 0

 	Example 2

 	
 This example shows how to solve the system AX = B,
 where A is a real positive definite symmetric band matrix
 factored in the form UTU .

 Matrix A is
 the same used as input in Example 2 for
 DPBTRF.

 Matrix B is the same used as input in Example 2 for
 DPBTRS.

 Call Statement and Input: UPLO N K NRHS A LDA B LDB INFO
 | | | | | | | | |
CALL DPBSV('U' , 9 , 2 , 3 , A , 3 , B , 9 , INFO)

 A = (same as input A in Example 2)
 B = (same as input B in Example 2)

 Output: ┌ ┐
 | . . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 A = | . -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 └ ┘

 ┌ ┐
 | 1.0 1.0 1.0 |
 | 1.0 -1.0 0.0 |
 | 1.0 1.0 -1.0 |
 | 1.0 -1.0 1.0 |
 B = | 1.0 1.0 0.0 |
 | 1.0 -1.0 -1.0 |
 | 1.0 1.0 1.0 |
 | 1.0 -1.0 0.0 |
 | 1.0 1.0 -1.0 |
 └ ┘

 INFO = 0

 	

 	Example 3

 	
 This example shows how to solve the system AX = B,
 where A is a positive definite complex Hermitian band
 matrix factored in the form LLH.

 Matrix A is
 the same used as input in Example 3 for
 ZPBTRF.

 Matrix B is the same used as input in Example 3 for
 ZPBTRS.

 Call Statement and Input: UPLO N K NRHS A LDA B LDB INFO
 | | | | | | | | |
CALL ZPBSV ('L' , 6 , 3 , 3 , A , 4 , B , 6 , INFO)

 A = (same as input A in Example 3)
 B = (same as input B in Example 3)

 Output: ┌ ┐
 | (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) |
 A = | (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) . |
 | (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) . . |
 | (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) . . . |
 └ ┘

 ┌ ┐
 | (7.0, 33.0) (1.0, -1.0) (1.0, 1.0) |
 | (19.0, -1.0) (1.0, -1.0) (1.0, -1.0) |
 | (5.0, -13.0) (1.0, -1.0) (2.0, 1.0) |
 B = | (-11.0, -5.0) (1.0, -1.0) (2.0, -1.0) |
 | (-3.0, 9.0) (1.0, -1.0) (1.0, 2.0) |
 | (5.0, -1.0) (1.0, -1.0) (1.0, -2.0) |
 └ ┘

 INFO = 0

 	

 	Example 4

 	
 This example shows how to solve the system AX = B,
 where A is a complex Hermitian band matrix factored
 in the form UHU.

 Matrix A is
 the same used as input in Example 4 for
 ZPBTRF.

 Matrix B is the same used as input in Example 4 for
 ZPBTRS.

 Call Statement and Input: UPLO N K NRHS A LDA B LDB INFO
 | | | | | | | | |
CALL ZPBSV('U' , 6 , 2 , 3 , A , 3 , B , 6 , INFO)

 A = (same as input A in Example 4)
 B = (same as input B in Example 4)

 Output: ┌ ┐
 | . . (1.0, -1.0) (1.0, 1.0) (1.0, -1.0) (1.0, 1.0) |
 A = | . (1.0, 1.0) (1.0, -1.0) (1.0, 1.0) (1.0, -1.0) (1.0, 1.0) |
 | (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) |
 └ ┘

 ┌ ┐
 | (5.0, 13.0) (1.0, -1.0) (1.0, 1.0) |
 | (-3.0, 7.0) (1.0, -1.0) (1.0, -1.0) |
 | (11.0, -5.0) (1.0, -1.0) (2.0, 1.0) |
 B = | (3.0, 7.0) (1.0, -1.0) (2.0, -1.0) |
 | (1.0, -5.0) (1.0, -1.0) (1.0, 2.0) |
 | (1.0, 1.0) (1.0, -1.0) (1.0, -2.0) |
 └ ┘

INFO = 0

 	

 Parent topic: Linear Algebraic Equations

 SPBTRF, DPBTRF, CPBTRF, and ZPBTRF (Positive Definite Real
 Symmetric or Complex Hermitian Band Matrix Factorization)

 Purpose

 These subroutines use Cholesky
 factorization to factor a positive definite real symmetric or complex
 Hermitian band matrix A, stored in upper- or lower-band-packed
 storage mode.

 To solve the system of equations, follow the
 call to these subroutines with one or more calls to SPBTRS, DPBTRS,
 CPBTRS, or ZPBTRS, respectively.

 Table 163. Data Types.

 	A

 	Subroutine

 	Short-precision real

 	SPBTRFΔ

 	Long-precision real

 	DPBTRFΔ

 	Short-precision complex

 	CPBTRFΔ

 	Long-precision complex

 	ZPBTRFΔ

 	ΔLAPACK

 Note: The output from these factorization subroutines should
 be used only as input to the solve subroutines SPBTRS, DPBTRS, CPBTRS,
 or ZPBTRS, respectively.

 Syntax

 	Fortran

 	CALL SPBTRF | DPBTRF | CPBTRF | ZPBTRF (uplo, n, k, a, lda, info)

 	C and C++

 	spbtrf | dpbtrf | cpbtrf | zpbtrf (uplo, n, k, a, lda, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_spbtrf | LAPACKE_dpbtrf | LAPACKE_cpbtrf | LAPACKE_zpbtrf
 (matrix_layout, uplo, n,
 k, a, lda); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 uplo

 	indicates whether matrix A is stored in upper- or
 lower-band-packed storage mode, where:
 If uplo =
 'U', A is stored in upper-band-packed storage mode.

 If uplo =
 'L', A is stored in lower-band-packed storage mode.

 Specified
 as: a single character. It must be 'U' or 'L'.

 	 n

 	is the order n of matrix A. Specified
 as: an integer; n ≥ 0.

 	 k

 	is the half band width k of the matrix A.
 Specified as: an integer; 0 ≤ k ≤ max(0,n-1).

 	 a

 	is the positive definite real symmetric or complex Hermitian band
 matrix A of order n, having a half
 band width of k , where:

 	If uplo = 'U', it is stored in upper-band-packed
 storage mode.

 	If uplo = 'L', it is stored in lower-band-packed
 storage mode.

 Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 163.

 	 lda

 	is the leading dimension of the array specified for A.
 Specified as: an integer; lda > 0 and lda > k.

 	On Return

 	

 	a

 	If info = 0, a is the updated
 matrix A containing the results of the Cholesky factorization.
 See Function.
 Returned as:
 an lda by (at least) n array,
 containing numbers of the data type indicated in Table 163.

 	info

 	has the following meaning:
 If info = 0, the subroutine completed successfully.

 If
 info = i, the leading minor of order i is not positive definite
 and the factorization could not be completed.

 [image: Start of change] Returned as:[image: Start of change]
 	For SPBTRF, DPBTRF, CPBTRF, and ZPBTR, returned as: an integer; info
 ≥ 0.

 	For LAPACKE_spbtrf, LAPACKE_dpbtrf, LAPACKE_cpbtrf, and LAPACKE_zpbtrf, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	These subroutines accept lower case letters for the uplo argument.

 	In your C program, argument info must be passed
 by reference.

 	On input, the imaginary parts of the diagonal elements of the
 complex Hermitian matrix A are assumed to be zero, so
 you do not have to set these values. On output, they are set to zero.

 	For a description of how real symmetric matrices are stored in
 upper- or lower-band-packed storage mode, see Upper-Band-Packed Storage Mode orLower-Band-Packed Storage Mode, respectively.
 For
 a description of how complex Hermitian matrices are stored in upper-
 or lower-band-packed storage mode, see Complex Hermitian Band Matrix Storage Representation.

 	The way these subroutines handle computational errors differs
 from LAPACK. Like LAPACK, these subroutines use the info argument
 to provide information about the computational error, but they also
 provide an error message.

 	On both input and output, matrix A conforms to LAPACK
 format.

 Function

 These subroutines
 use Cholesky factorization to factor a positive definite real symmetric
 or complex Hermitian band matrix A, stored in upper-
 or lower-band-packed storage mode:

 	For SPBTRF and DPBTRF:

 	A = LLT if uplo=
 'L'.

 	A = UTU if uplo=
 'U'.

 	For CPBTRF and ZPBTRF:

 	A = LLH if uplo=
 'L'.

 	A = UHU if uplo=
 'U'.

 Where:

 	L is a lower triangular band matrix

 	U is a upper triangular band matrix

 This factorization can then be used by SPBTRS, DPBTRS,
 CPBTRS, or ZPBTRS, respectively, to solve the system of equations.

 If n =
 0, no computation is performed.

 Error conditions

 	Resource Errors

 	Unable to allocate internal work area.

 	Computational Errors

 	 Matrix A is not positive definite. For details,
 see the description of the info argument.

 	Input-Argument Errors

 	

 	uplo ≠ 'U' or 'L'

 	n < 0

 	k < 0

 	k > max(0,n-1)

 	lda ≤ 0

 	k ≥ lda

 Examples

 	[bookmark: am5gr_leqbpbtrf__pbtrfex1]
 Example 1

 	
 This example shows a factorization of the following real
 positive definite symmetric band matrix A in the form A = LLT: ┌ ┐
 | 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 2.0 2.0 2.0 1.0 0.0 0.0 0.0 0.0 |
 | 1.0 2.0 3.0 3.0 2.0 1.0 0.0 0.0 0.0 |
 | 1.0 2.0 3.0 4.0 3.0 2.0 1.0 0.0 0.0 |
 | 0.0 1.0 2.0 3.0 4.0 3.0 2.0 1.0 0.0 |
 | 0.0 0.0 1.0 2.0 3.0 4.0 3.0 2.0 1.0 |
 | 0.0 0.0 0.0 1.0 2.0 3.0 4.0 3.0 2.0 |
 | 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 3.0 |
 | 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 |
 └ ┘

 Call Statement and Input: UPLO N K A LDA INFO
 | | | | | |
CALL DPBTRF('L' , 9 , 3 , A , 4 , INFO)

 ┌ ┐
 | 1.0 2.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 |
 A = | 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 . |
 | 1.0 2.0 2.0 2.0 2.0 2.0 2.0 . . |
 | 1.0 1.0 1.0 1.0 1.0 1.0 . . . |
 └ ┘

 Output: ┌ ┐
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 A = | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . . |
 | 1.0 1.0 1.0 1.0 1.0 1.0 . . . |
 └ ┘

 INFO = 0

 	[bookmark: am5gr_leqbpbtrf__pbtrfex2]
 Example 2

 	
 This example shows a factorization of the following real
 positive definite symmetric band matrix A in the form A = UTU:

 ┌ ┐
 | 1.0 -1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | -1.0 2.0 -2.0 1.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 -2.0 3.0 -2.0 1.0 0.0 0.0 0.0 0.0 |
 | 0.0 1.0 -2.0 3.0 -2.0 1.0 0.0 0.0 0.0 |
 | 0.0 0.0 1.0 -2.0 3.0 -2.0 1.0 0.0 0.0 |
 | 0.0 0.0 0.0 1.0 -2.0 3.0 -2.0 1.0 0.0 |
 | 0.0 0.0 0.0 0.0 1.0 -2.0 3.0 -2.0 1.0 |
 | 0.0 0.0 0.0 0.0 0.0 1.0 -2.0 3.0 -2.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 1.0 -2.0 3.0 |
 └ ┘

 Call
 Statement and Input: UPLO N K A LDA INFO
 | | | | | |
CALL DPBTRF('U' , 9 , 2 , A , 3 , INFO)

 ┌ ┐
 | . . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 A = | . -1.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 |
 | 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
 └ ┘

 Output: ┌ ┐
 | . . 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 A = | . -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 └ ┘

 INFO = 0

 	

 	[bookmark: am5gr_leqbpbtrf__pbtrfex3]
 Example 3

 	
 This example shows a factorization of the following positive
 definite complex Hermitian band matrix A in the form A = LLH: ┌ ┐
 | (1.0, 0.0) (1.0,-1.0) (1.0,-1.0) (1.0,-1.0) (0.0, 0.0) (0.0, 0.0) |
 | (1.0, 1.0) (3.0, 0.0) (3.0,-1.0) (3.0,-1.0) (1.0,-1.0) (0.0, 0.0) |
 | (1.0, 1.0) (3.0, 1.0) (5.0, 0.0) (5.0,-1.0) (3.0,-1.0) (1.0,-1.0) |
 | (1.0, 1.0) (3.0, 1.0) (5.0, 1.0) (7.0, 0.0) (5.0,-1.0) (3.0,-1.0) |
 | (0.0, 0.0) (1.0, 1.0) (3.0, 1.0) (5.0, 1.0) (7.0, 0.0) (5.0,-1.0) |
 | (0.0, 0.0) (0.0, 0.0) (1.0, 1.0) (3.0, 1.0) (5.0, 1.0) (7.0, 0.0) |
 └ ┘

 Call Statement and Input: UPLO N K A LDA INFO
 | | | | | |
CALL ZPBTRF('L' , 6 , 3 , A , 4 , INFO)

 ┌ ┐
 | (1.0, .) (3.0, .) (5.0, .) (7.0, .) (7.0, .) (7.0, .) |
 A = | (1.0, 1.0) (3.0, 1.0) (5.0, 1.0) (5.0, 1.0) (5.0, 1.0) . |
 | (1.0, 1.0) (3.0, 1.0) (3.0, 1.0) (3.0, 1.0) . . |
 | (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) . . . |
 └ ┘

 Output: ┌ ┐
 | (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) |
 A = | (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) . |
 | (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) . . |
 | (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) . . . |
 └ ┘

 INFO = 0

 	[bookmark: am5gr_leqbpbtrf__pbtrfex4]
 Example 4

 	
 This example shows a factorization of the following positive
 definite complex Hermitian band matrix A in the form A = UHU: ┌ ┐
 | (1.0, 0.0) (1.0, 1.0) (1.0,-1.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) |
 | (1.0,-1.0) (3.0, 0.0) (1.0,-3.0) (1.0, 1.0) (0.0, 0.0) (0.0, 0.0) |
 | (1.0, 1.0) (1.0, 3.0) (5.0, 0.0) (1.0, 3.0) (1.0,-1.0) (0.0, 0.0) |
 | (0.0, 0.0) (1.0,-1.0) (1.0,-3.0) (5.0, 0.0) (1.0,-3.0) (1.0, 1.0) |
 | (0.0, 0.0) (0.0, 0.0) (1.0, 1.0) (1.0, 3.0) (5.0, 0.0) (1.0, 3.0) |
 | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (1.0,-1.0) (1.0,-3.0) (5.0, 0.0) |
 └ ┘

 Call Statement and Input: UPLO N K A LDA INFO
 | | | | | |
CALL ZPBTRF('U' , 6 , 2 , A , 3 , INFO)

 ┌ ┐
 | . . (1.0,-1.0) (1.0, 1.0) (1.0,-1.0) (1.0, 1.0) |
 A = | . (1.0, 1.0) (1.0,-3.0) (1.0, 3.0) (1.0,-3.0) (1.0, 3.0) |
 | (1.0, .) (3.0, .) (5.0, .) (5.0, .) (5.0, .) (5.0, .) |
 └ ┘

 Output: ┌ ┐
 | . . (1.0, -1.0) (1.0, 1.0) (1.0, -1.0) (1.0, 1.0) |
 A = | . (1.0, 1.0) (1.0, -1.0) (1.0, 1.0) (1.0, -1.0) (1.0, 1.0) |
 | (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) |
 └ ┘

 INFO = 0

 Parent topic: Linear Algebraic Equations

 SPBTRS, DPBTRS, CPBTRS, and ZPBTRS (Positive Definite Real
 Symmetric or Complex Hermitian Band Matrix Multiple Right-Hand Side
 Solve)

 Purpose

 These subroutines solve the system AX = B for X,
 where X and B are general matrices
 and:

 	For SPBTRS and DPBTRS, A is a positive definite
 real symmetric band matrix.

 	For CPBTRS and ZPBTRS, A is a positive definite
 complex Hermitian band matrix.

 Table 164. Data Types.

 	A, B

 	Subroutine

 	Short-precision real

 	SPBTRSΔ

 	Long-precision real

 	DPBTRSΔ

 	Short-precision complex

 	CPBTRSΔ

 	Long-precision complex

 	ZPBTRSΔ

 	ΔLAPACK

 Note: The input to these solve subroutines must be the output
 from the factorization subroutines SPBTRF, DPBTRF, CPBTRF, and ZPBTRF,
 respectively.

 Syntax

 	Fortran

 	CALL SPBTRS | DPBTRS | CPBTRS | ZPBTRS (uplo, n, k, nrhs, a, lda, b, ldb, info)

 	C and C++

 	spbtrs | dpbtrs | cpbtrs | zpbtrs (uplo, n, k, nrhs, a, lda, b, ldb, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_spbtrs | LAPACKE_dpbtrs | LAPACKE_cpbtrs | LAPACKE_zpbtrs
 (matrix_layout, uplo, n,
 k, nrhs, a, lda,
 b, ldb); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 uplo

 	indicates whether the factored matrix A is stored
 in upper- or lower-band-backed storage mode, where:
 If uplo =
 'U', A is stored in upper-band-packed storage mode.

 If uplo =
 'L', A is stored in lower-band-packed storage mode.

 Specified
 as: a single character. It must be 'U' or 'L'.

 	 n

 	is the order n of matrix A and
 the number of rows of matrix B. Specified as: an integer; n ≥ 0.

 	 k

 	is the half band width k of the matrix A.
 Specified as: an integer; 0 ≤ k ≤ max(0,n-1).

 	 nrhs

 	is the number of right-hand sides; i.e., the number of columns
 of matrix B. Specified as: an integer; nrhs ≥ 0.

 	 a

 	is the factorization of positive definite matrix A,
 produced by a preceding call to SPBTRF, DPBTRF, CPBTRF, and ZPBTRF,
 respectively.
 Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 164.

 	 lda

 	is the leading dimension of the array specified for A.
 Specified as: an integer; lda > 0 and lda > k.

 	b

 	is the matrix B of right-hand side vectors. Specified
 as: the ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 164.

 	 ldb

 	is the leading dimension of the array specified for B.
 Specified as: an integer; ldb > 0 and ldb ≥ n.

 	On Return

 	

 	 b

 	is the general matrix X, containing the nrhs solutions
 to the system. The solutions, each of length n,
 reside in the columns of X.
 Returned as: an ldb by
 (at least) nrhs array, containing numbers of the
 data type indicated in Table 164.

 	 info

 	info has the following meaning:
 If info = 0, the solve
 completed successfully.

 S
 [image: Start of change] Returned as:[image: Start of change]
 	For SPBTRS, DPBTRS, CPBTRS, and ZPBTR, returned as: an integer; info
 ≥ 0.

 	For LAPACKE_spbtrs, LAPACKE_dpbtrs, LAPACKE_cpbtrs, and LAPACKE_zpbtr, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	In your C program, argument info must be passed
 by reference.

 	All subroutines accept lowercase letters for the uplo argument.

 	For a description of how real symmetric matrices are stored in
 upper- or lower-band-packed storage mode, see Upper-Band-Packed Storage Mode or Lower-Band-Packed Storage Mode, respectively.
 For
 a description of how complex Hermitian matrices are stored in upper-
 or lower-band-packed storage mode, see Complex Hermitian Band Matrix Storage Representation.

 	The scalar data specified for input arguments uplo, n, k,
 and lda for these subroutines must be the same
 as the corresponding input arguments specified for SPBTRF, DPBTRF,
 CPBTRF, and ZPBTRF, respectively.

 	The array data specified for input argument a for
 these subroutines must be the same as the corresponding output argument
 for SPBTRF, DPBTRF, CPBTRF, and ZPBTRF, respectively.

 	The matrices used in this computation must have no common elements;
 otherwise, results are unpredictable. See Concepts.

 Function

 These subroutines solve the system AX = B for X,
 where X and B are general matrices
 and:

 	For SPBTRS and DPBTRS, A is a positive definite
 real symmetric band matrix.

 	For CPBTRS and ZPBTRS, A is a positive definite
 complex Hermitian band matrix.

 These subroutines use the results of the factorization
 of matrix A, produced by a preceding call to SPBTRF,
 DPBTRF, CPBTRF, and ZPBTRF, respectively. For a description of how A is
 factored, see SPBTRF, DPBTRF, CPBTRF, and ZPBTRF (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Factorization).

 If n or nrhs is
 0, no computation is performed. See references [8] and [44].

 Error conditions

 	Computational Errors

 	None
 Note: If the factorization performed by SPBTRF, DPBTRF,
 CPBTRF, and ZPBTRF failed because matrix A was not positive
 definite, the results returned by this subroutine are unpredictable,
 and there may be a divide-by-zero program exception message.

 	Input-Argument Errors

 	

 	uplo ≠ 'U' or 'L'

 	n < 0

 	k < 0

 	k > max(0,n-1)

 	nrhs < 0

 	lda ≤ 0

 	k ≥ lda

 	ldb ≤ 0

 	n > ldb

 Examples

 	[bookmark: am5gr_leqbpbtrs__pbtrsex1]
 Example 1

 	
 This example shows how to solve the system AX = B,
 where matrix A is the same positive definite symmetric
 band matrix factored in Example 1
 for DPBTRF in the form A = LLT.

 Call Statement and
 Input: UPLO N K NRHS A LDA B LDB INFO
 | | | | | | | | |
CALL DPBTRS('L' , 9 , 3 , 3 , A , 4 , B , 9 , INFO)

 A = (same output A as in Example 1)

 ┌ ┐
 | 4.0 0.0 1.0 |
 | 8.0 0.0 1.0 |
 | 12.0 0.0 0.0 |
 | 16.0 0.0 1.0 |
 B = | 16.0 0.0 0.0 |
 | 16.0 0.0 -1.0 |
 | 15.0 1.0 0.0 |
 | 13.0 1.0 -2.0 |
 | 10.0 2.0 -3.0 |
 └ ┘

 Output:
 ┌ ┐
 | 1.0 1.0 1.0 |
 | 1.0 -1.0 0.0 |
 | 1.0 1.0 -1.0 |
 | 1.0 -1.0 1.0 |
 B = | 1.0 1.0 0.0 |
 | 1.0 -1.0 -1.0 |
 | 1.0 1.0 1.0 |
 | 1.0 -1.0 0.0 |
 | 1.0 1.0 -1.0 |
 └ ┘

 INFO = 0

 	[bookmark: am5gr_leqbpbtrs__pbtrsex2]
 Example 2

 	
 This example shows how to solve the system AX = B,
 where matrix A is the same positive definite symmetric
 band matrix factored in Example 2
 for DPBTRF in the form UTU.

 Call
 Statement and Input: UPLO N K NRHS A LDA B LDB INFO
 | | | | | | | | |
CALL DPBTRS('U' , 9 , 2 , 3 , A , 3 , B , 9 , INFO)

 A = (same as output A in Example 2)

 ┌ ┐
 | 1.0 3.0 0.0 |
 | 0.0 -6.0 2.0 |
 | 1.0 9.0 -4.0 |
 | 1.0 -9.0 4.0 |
 B = | 1.0 9.0 0.0 |
 | 1.0 -9.0 -4.0 |
 | 1.0 9.0 4.0 |
 | 0.0 -8.0 -1.0 |
 | 2.0 6.0 -2.0 |
 └ ┘

 Output: ┌ ┐
 | 1.0 1.0 1.0 |
 | 1.0 -1.0 0.0 |
 | 1.0 1.0 -1.0 |
 | 1.0 -1.0 1.0 |
 B = | 1.0 1.0 0.0 |
 | 1.0 -1.0 -1.0 |
 | 1.0 1.0 1.0 |
 | 1.0 -1.0 0.0 |
 | 1.0 1.0 -1.0 |
 └ ┘

 INFO = 0

 	

 	[bookmark: am5gr_leqbpbtrs__pbtrsex3]
 Example 3

 	
 This example shows how to solve the system AX = B,
 where matrix A is the same positive definite complex
 Hermitian band matrix factored in Example 3
 for ZPBTRF in the form LLH.

 Call Statement and
 Input: UPLO N K NRHS A LDA B LDB INFO
 | | | | | | | | |
CALL ZPBTRS('L' , 6 , 3 , 3 , A , 4 , B , 6 , INFO)

 A = (same as output A in Example 3)

 ┌ ┐
 | (1.0, 1.0) (1.0, -7.0) (5.0, -5.0) |
 | (1.0, 1.0) (9.0, -13.0) (18.0, -4.0) |
 | (1.0, 1.0) (17.0, -19.0) (27.0, 0.0) |
 B = | (1.0, 1.0) (25.0, -23.0) (35.0, 2.0) |
 | (1.0, 1.0) (23.0, -19.0) (28.0, 5.0) |
 | (1.0, 1.0) (19.0, -13.0) (18.0, -1.0) |
 └ ┘

 Output: ┌ ┐
 | (7.0, 33.0) (1.0, -1.0) (1.0, 1.0) |
 | (19.0, -1.0) (1.0, -1.0) (1.0, -1.0) |
 | (5.0, -13.0) (1.0, -1.0) (2.0, 1.0) |
 B = | (-11.0, -5.0) (1.0, -1.0) (2.0, -1.0) |
 | (-3.0, 9.0) (1.0, -1.0) (1.0, 2.0) |
 | (5.0, -1.0) (1.0, -1.0) (1.0, -2.0) |
 └ ┘

 INFO = 0

 	

 	[bookmark: am5gr_leqbpbtrs__pbtrsex4]
 Example 4

 	
 This example shows how to solve the system AX = B,
 where matrix A is the same positive definite complex
 Hermitian band matrix factored in Example 4
 for ZPBTRF in the form UHU.

 Call
 Statement and Input: UPLO N K NRHS A LDA B LDB INFO
 | | | | | | | | |
CALL ZPBTRS('U' , 6 , 2 , 3 , A , 3 , B , 6 , INFO)

 A = (same as output A in Example 4)

 ┌ ┐
 | (1.0, 1.0) (3.0, -3.0) (6.0, 0.0) |
 | (1.0, 1.0) (3.0, -9.0) (13.0, -7.0) |
 | (1.0, 1.0) (15.0, -3.0) (22.0, 15.0) |
 B = | (1.0, 1.0) (3.0, -15.0) (25.0, -14.0) |
 | (1.0, 1.0) (15.0, -1.0) (18.0, 19.0) |
 | (1.0, 1.0) (3.0, -11.0) (13.0, -14.0) |
 └ ┘

 Output: ┌ ┐
 | (5.0, 13.0) (1.0, -1.0) (1.0, 1.0) |
 | (-3.0, 7.0) (1.0, -1.0) (1.0, -1.0) |
 | (11.0, -5.0) (1.0, -1.0) (2.0, 1.0) |
 B = | (3.0, 7.0) (1.0, -1.0) (2.0, -1.0) |
 | (1.0, -5.0) (1.0, -1.0) (1.0, 2.0) |
 | (1.0, 1.0) (1.0, -1.0) (1.0, -2.0) |
 └ ┘

 INFO = 0

 	

 Parent topic: Linear Algebraic Equations

 SGTSV, DGTSV, CGTSV, and ZGTSV (General Tridiagonal Matrix
 Factorization and Multiple Right-Hand Side Solve)

 Purpose

 These subroutines solve the general
 tridiagonal system of linear equations AX=B for X,
 where A is a general tridiagonal matrix and B and X are
 general matrices.

 The matrix A is factored using
 Gaussian elimination with partial pivoting.

 Table 165. Data Types.

 	dl, d, du, B

 	Subroutine

 	Short-precision real

 	SGTSVΔ

 	Long-precision real

 	DGTSVΔ

 	Short-precision complex

 	CGTSVΔ

 	Long-precision complex

 	ZGTSVΔ

 	ΔLAPACK

 Syntax

 	Fortran

 	CALL SGTSV | DGTSV | CGTSV | ZGTSV (n, nrhs, dl, d, du, b, ldb, info)

 	C and C++

 	sgtsv | dgtsv | cgtsv | zgtsv (n, nrhs, dl, d, du, b, ldb, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sgtsv | LAPACKE_dgtsv | LAPACKE_cgtsv | LAPACKE_zgtsv
 (matrix_layout, n, nrhs,
 dl, d, du, b,
 ldb); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	n

 	is the order of matrix A and the number of rows
 in matrix B.
 Specified as: an integer; n ≥ 0.

 	nrhs

 	is the number of right-hand sides; that is, the number of columns
 of matrix B used in the computation.

 	Specified as: an integer; nrhs ≥ 0.

 	 dl

 	is the array DL, containing the n -
 1 subdiagonal elements of A.

 	Specified as: a one-dimensional array of (at least) length n -
 1, containing numbers of the data type indicated in Table 165.

 	 d

 	is the array D, containing the n diagonal
 elements of A.

 	Specified as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 165.

 	 du

 	is the array DU, containing the n -
 1 superdiagonal elements of A.

 	Specified as: a one-dimensional array of (at least) length n -
 1, containing numbers of the data type indicated in Table 165.

 	b

 	is the general matrix B, containing the nrhs right-hand
 sides of the system. The right-hand sides, each of length n,
 reside in the columns of matrix B.
 Specified as:
 an ldb by (at least) n array,
 containing numbers of the data type indicated in Table 165.

 	ldb

 	is the leading dimension of the array specified for B.
 Specified
 as: an integer; ldb > 0 and ldb ≥ n.

 	info

 	See "On Return".

 	On Return

 	

 	 dl

 	The array DL is overwritten.

 	Returned as: a one-dimensional array of (at least) length n -
 1, containing numbers of the data type indicated in Table 165.

 	 d

 	The array D is overwritten.

 	Returned as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 165.

 	 du

 	The array DU is overwritten.

 	Returned as: a one-dimensional array of (at least) length n -
 1, containing numbers of the data type indicated in Table 165.

 	b

 	If info = 0, b is the general
 matrix B, containing the nrhs right-hand
 sides of the system. The right-hand sides, each of length n,
 reside in the columns of matrix B.
 Returned as:
 an ldb by (at least) n array,
 containing numbers of the data type indicated in Table 165.

 	info

 	has the following meaning:
 If info = 0, the subroutine completed
 successfully.

 If info > 0, info is set to the first i, where
 Uii is zero. B is overwritten; that is,
 the solution has not been computed.

 [image: Start of change] Returned as:[image: Start of change]
 	For SGTSV, DGTSV, CGTSV, and ZGTSV, returned as: an integer; info
 ≥ 0.

 	For LAPACKE_sgtsv, LAPACKE_dgtsv, LAPACKE_cgtsv, and LAPACKE_zgtsv, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	In your C program, argument info must be passed
 by reference.

 	dl, d, du,
 and B must have no common elements; otherwise, results
 are unpredictable.

 	For a description of how general tridiagonal matrices are stored,
 see General Tridiagonal Matrix.

 	The way these subroutines handle singularity differs from LAPACK.
 Like LAPACK, these subroutines use the info argument to provide information
 about the singularity of A, but they also provide an error message.

 Function

 These subroutines solve the general
 tridiagonal system of linear equations AX = B,
 where A is a general tridiagonal matrix and B and X are
 general matrices.

 If n is 0 or nrhs is
 0, no computation is performed and the subroutine returns after doing
 some parameter checking.

 See reference [8].

 Error conditions

 	Resource Errors

 	None

 	Computational Errors

 	Matrix A is singular or nearly singular.

 	The first column, i, of L with
 a corresponding zero diagonal element is identified in the computational
 error message.

 	The computational error message may occur multiple times with
 processing continuing after each error, because the default for the
 number of allowable errors for error code 2168 is set to be unlimited
 in the ESSL error option table.

 	Input-Argument Errors

 	

 	n < 0

 	nrhs < 0

 	ldb ≤ 0

 	n > ldb

 Examples

 	Example 1

 	
 This example shows how to solve the real general tridiagonal
 system AX = B, where:

 Matrix A is
 the same used as input in Example 1 for
 DGTTRF.

 Matrix B is the same used as input in Example 1 for
 DGTTRS.

 Note: On output, arrays DL, D,
 and DU are overwritten.

 Call Statement and
 Input: N NRHS DL D DU B LDB INFO
 | | | | | | | |
CALL DGTSV(9 , 3 , DL , D , DU , B , 9 , INFO)

 DL =

 (same as input

 DL

 in

 Example 1

)

 D =

 (same as input

 D

 in

 Example 1

)

 DU =

 (same as input

 DU

 in

 Example 1

)

 B =

 (same as input

 B

 in

 Example 1

)

 Output: ┌ ┐
 | 0.609 0.478 4.597 |
 | 0.098 0.130 -0.899 |
 | -0.231 -0.641 -2.723 |
 | 0.234 0.312 2.105 |
B = | 0.364 0.153 2.516 |
 | -0.017 -0.023 -0.958 |
 | -0.019 -0.359 -0.147 |
 | 0.267 0.357 2.505 |
 | 0.198 -0.070 1.484 |
 └ ┘

INFO = 0

 	Example 2

 	
 This example shows how to solve the complex general tridiagonal
 system
AX=B, where:

 Matrix A is
 the same used as input in Example 2 for
 ZGTTRF.

 Matrix B is the same used as input in Example 3 for
 ZGTTRS.

 Note: On output, arrays DL, D,
 and DU are overwritten.

 Call Statement and
 Input: N NRHS DL D DU B LDB INFO
 | | | | | | | |
CALL ZGTSV(4 , 3 , DL , D , DU , B , 4 , INFO)

 DL =

 (same as input

 DL

 in

 Example 2

)

 D =

 (same as input

 D

 in

 Example 2

)

 DU =

 (same as input

 DU

 in

 Example 2

)

 B =

 (same as input

 B

 in

 Example 3

 .)

 Output: ┌ ┐
 | (-0.247, 0.0) (0.119, 0.0) (0.0, 0.247)|
B = | (0.311, 0.0) (0.220, 0.0) (0.0, -0.311)|
 | (0.357, 0.0) (-0.394, 0.0) (0.0, -0.357)|
 | (-0.073, 0.0) (0.183, 0.0) (0.0, 0.073)|
 └ ┘

 INFO = 0

 Parent topic: Linear Algebraic Equations

 SGTTRF, DGTTRF, CGTTRF, and ZGTTRF (General Tridiagonal Matrix
 Factorization)

 Purpose

 These subroutines factor general
 tridiagonal matrix A using Gaussian elimination with
 partial pivoting.

 To solve the system of equations with one
 or more right-hand sides, follow the call to these subroutines with
 one or more calls to SGTTRS, DGTTRS, CGTTRS, or ZGTTRS, respectively.

 Table 166. Data Types.

 	dl, d, du, du2

 	Subroutine

 	Short-precision real

 	SGTTRFΔ

 	Long-precision real

 	DGTTRFΔ

 	Short-precision complex

 	CGTTRFΔ

 	Long-precision complex

 	ZGTTRFΔ

 	ΔLAPACK

 Note: The output from these factorization subroutines should
 be used only as input to the solve subroutines SGTTRS, DGTTRS, CGTTRS,
 or ZGTTRS, respectively.

 Syntax

 	Fortran

 	CALL SGTTRF | DGTTRF | CGTTRF | ZGTTRF (n, dl, d, du, du2, ipiv, info)

 	C and C++

 	sgttrf | dgttrf | cgttrf | zgttrf (n, dl,
 d, du, du2, ipiv,
 info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sgttrf | LAPACKE_dgttrf | cgttrf | LAPACKE_zgttrf
 (matrix_layout, n, dl,
 d, du, du2, ipiv); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 n

 	the order of general tridiagonal matrix A used in
 the computation.

 	Specified as: an integer; n ≥ 0.

 	 dl

 	is the array DL, containing the n -
 1 subdiagonal elements of A.

 	Specified as: a one-dimensional array of (at least) length n -
 1, containing numbers of the data type indicated in Table 166.

 	 d

 	is the array D, containing the n diagonal
 elements of A.

 	Specified as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 166.

 	 du

 	is the array DU, containing the n -
 1 superdiagonal elements of A.

 	Specified as: a one-dimensional array of (at least) length n -
 1, containing numbers of the data type indicated in Table 166.

 	 du2

 	See "On Return".

 	 ipiv

 	See "On Return".

 	info

 	See "On Return".

 	On Return

 	

 	 dl

 	is the array DL, containing the n -
 1 multipliers that define matrix L from the factorization
 of A.

 	Returned as: a one-dimensional array of (at least) length n -
 1, containing numbers of the data type indicated in Table 166.

 	 d

 	is the array D, containing the n diagonal
 elements of matrix U from the factorization of A.

 	Returned as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 166.

 	 du

 	is the array DU, containing the n -
 1 elements of the first superdiagonal of matrix U from
 the factorization of A.

 	Returned as: a one-dimensional array of (at least) length n -
 1, containing numbers of the data type indicated in Table 166.

 	 du2

 	is the array DU2, containing the n -
 2 elements of the second superdiagonal of matrix U
 from the factorization of A.

 	Returned as: a one-dimensional array of (at least) length n -
 2, containing numbers of the data type indicated in Table 166.

 	 ipiv

 	Contains the pivot indices.
 For 1 ≤ i ≤ n ,
 row i of the matrix was interchanged with row ipivi. ipivi will
 always be either i or i + 1.

 If ipivi = i,
 no row interchange was required.

 Returned as: a one-dimensional
 integer array of (at least) length n, containing
 integers; 1 ≤ ipivi ≤ n .

 	info

 	has the following meaning:
 If info = 0, the subroutine completed
 successfully.

 If info > 0, info is set to the first i, where
 Uii is zero. The factorization has been
 completed.

 [image: Start of change] Returned as:[image: Start of change]
 	For SGTTRF, DGTTRF, CGTTRF, and ZGTTRF, returned as: an integer; info
 ≥ 0.

 	For LAPACKE_sgttrf, LAPACKE_dgttrf, LAPACKE_cgttrf, and LAPACKE_zgttrf, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	In your C program, argument info must be passed
 by reference.

 	dl, d, du, du2,
 and ipiv must have no common elements; otherwise
 results are unpredictable.

 	For a description of how general tridiagonal matrices are stored,
 see General Tridiagonal Matrix.

 	The way these subroutines handle singularity differs from LAPACK.
 Like LAPACK, these subroutines use the info argument
 to provide information about the singularity of A, but
 they also provide an error message.

 Function

 These subroutines factor general
 tridiagonal matrix A using Gaussian elimination with
 partial pivoting where:

 A = LU

 In
 the formula above:

 	L is a product of permutation and unit lower bidiagonal
 matrices.

 	U is upper triangular with non-zeros in only the
 main diagonal and first two superdiagonals.

 If n is 0, no computation is performed
 and the subroutine returns after doing some parameter checking.

 See
 reference [8].

 Error conditions

 	Resource Errors

 	None

 	Computational Errors

 	Matrix A is singular or nearly singular.

 	The first column, i, of L with
 a corresponding zero diagonal element is identified in the computational
 error message.

 	The computational error message may occur multiple times with
 processing continuing after each error, because the default for the
 number of allowable errors for error code 2168 is set to be unlimited
 in the ESSL error option table.

 	Input-Argument Errors

 	
 n < 0

 Examples

 	Example 1

 	
 This example shows a factorization of a real general tridiagonal
 matrix of order 9.

 Matrix A is: ┌ ┐
 | 1.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 3.0 1.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 3.0 1.0 4.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 3.0 1.0 4.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 3.0 1.0 4.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 3.0 1.0 4.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 3.0 1.0 4.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 3.0 1.0 4.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 1.0 |
 └ ┘

 Call
 Statement and Input: N DL D DU DU2 IPIV INFO
 | | | | | | |
CALL DGTTRF(9 , DL , D , DU , DU2 , IPIV , INFO)

DL = (3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0)

D = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

DU = (4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0)

 Output:
 DL = (0.333, 0.818, 0.696, 0.908, 0.849, -0.799, 0.625, -0.332)

D = (3.000, 3.666, 3.000, 3.303, 3.532, 3.000, 4.799, 3.000, 4.332)

DU = (1.000, -1.333, 1.000, -2.787, 4.000, 1.000, 3.196, 1.000)

DU2 = (4.000, 0.000, 4.000, 0.000, 0.000, 4.000, 0.000)

IPIV = (2, 2, 4, 4, 5, 7, 7, 9, 9)

INFO = 0

 	[bookmark: am5gr_hsgttrf__gttrfex2]
 Example 2

 	
 This example shows a factorization of a complex general tridiagonal
 matrix of order 4.

 Matrix A is: ┌ ┐
 | (1.0, 1.0) (4.0, 4.0) (0.0, 0.0) (0.0, 0.0) |
 | (3.0, 3.0) (1.0, 1.0) (4.0, 4.0) (0.0, 0.0) |
 | (0.0, 0.0) (3.0, 3.0) (1.0, 1.0) (4.0, 4.0) |
 | (0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (1.0, 1.0) |
 └ ┘

 Call Statement and Input: N DL D DU DU2 IPIV INFO
 | | | | | | |
CALL ZGTTRF(4 , DL , D , DU , DU2 , IPIV , INFO)

DL = ((3.0, 3.0) (3.0, 3.0) (3.0, 3.0))

D = ((1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0))

DU = ((4.0, 4.0) (4.0, 4.0) (4.0, 4.0))

 Output:
 DL = ((0.0333, 0.0) (0.0818, 0.0) (0.0696, 0.0))

D = ((3.0, 3.0) (3.0666, 3.0666) (3.0, 3.0) (3.0303 , 3.0303))

DU = ((1.0, 1.0) (-1.0333, -1.0333) (1.0, 1.0))

DU2 = ((4.0, 4.0) (0.0, 0.0))

IPIV = (2, 2, 4, 4)

INFO = 0

 Parent topic: Linear Algebraic Equations

 SGTTRS, DGTTRS, CGTTRS, and ZGTTRS (General Tridiagonal Matrix
 Multiple Right-Hand Side Solve)

 Purpose

 SGTTRS and DGTTRS solve one of the
 following systems of equations for multiple right-hand sides:

 1.

 AX

 =

 B

 2.

 A

 T

 X

 =

 B

 CGTTRS
 and ZGTTRS solve one of the following systems of equations for multiple
 right-hand sides:

 	AX = B

 	ATX=B

 	AHX=B

 In the formulas above:

 	A represents the general tridiagonal matrix A containing
 the factorization.

 	B represents the general matrix B containing
 the right-hand sides in its columns.

 	X represents the general matrix B containing
 the solution vectors in its columns.

 These subroutines use the results of the factorization of
 vectors dl, d, du, du2,
 and ipiv, produced by a preceding call to SGTTRF,
 DGTTRF, CGTTRF, and ZGTTRF, respectively.

 Table 167. Data Types.

 	dl, d, du, du2, B

 	Subroutine

 	Short-precision real

 	SGTTRSΔ

 	Long-precision real

 	DGTTRSΔ

 	Short-precision complex

 	CGTTRSΔ

 	Long-precision complex

 	ZGTTRSΔ

 	ΔLAPACK

 Note: The input to these solve subroutines must be the output
 from the factorization subroutines SGTTRF, DGTTRF, CGTTRF, and ZGTTRF,
 respectively.

 Syntax

 	Fortran

 	CALL SGTTRS | DGTTRS | CGTTRS | ZGTTRS (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)

 	C and C++

 	sgttrs | dgttrs | cgttrs | zgttrs (trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sgttrs | LAPACKE_dgttrs | LAPACKE_cgttrs | LAPACKE_zgttrs
 (matrix_layout, trans, n,
 nrhs, dl, d, du,
 du2, ipiv, b, ldb); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 trans

 	indicates the form of matrix A to use in the computation,
 where:
 If trans = 'N', A is used
 in the computation, resulting in solution 1.

 If trans =
 'T', AT is used in the computation, resulting
 in solution 2.

 If trans = 'C', AH is
 used in the computation, resulting in solution 3.

 Specified
 as: a single character; transa = 'N', 'T', or 'C'.

 	n

 	is the order of factored matrix A and the number
 of rows in matrix B.
 Specified as: an integer; n ≥ 0.

 	nrhs

 	is the number of right-hand sides; that is, the number of columns
 of matrix B used in the computation.

 	Specified as: an integer; nrhs ≥ 0.

 	 dl

 	is the array DL, containing the n -
 1 multipliers that define matrix L from the factorization
 of A, produced by a preceding call to SGTTRF, DGTTRF,
 CGTTRF, or ZGTTRF, respectively.

 	Specified as: a one-dimensional array of (at least) length n -
 1, containing numbers of the data type indicated in Table 167.

 	 d

 	is the array D, containing the n diagonal
 elements of matrix U from the factorization of A,
 produced by a preceding call to SGTTRF, DGTTRF, CGTTRF, or ZGTTRF,
 respectively.

 	Specified as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 167.

 	 du

 	is the array DU, containing the n -
 1 elements of the first superdiagonal of matrix U from
 the factorization of A, produced by a preceding call
 to SGTTRF, DGTTRF, CGTTRF, or ZGTTRF, respectively.

 	Specified as: a one-dimensional array of (at least) length n -
 1, containing numbers of the data type indicated in Table 167.

 	 du2

 	is the array DU2, containing the n -
 2 elements of the second superdiagonal of matrix U
 from the factorization of A, produced by a preceding
 call to SGTTRF, DGTTRF, CGTTRF, or ZGTTRF, respectively.

 	Specified as: a one-dimensional array of (at least) length n -
 2, containing numbers of the data type indicated in Table 167.

 	ipiv

 	is the array containing the pivot indices produced by a preceding
 call to SGTTRF, DGTTRF, CGTTRF, and ZGTTRF, respectively.

 	Specified as: a one-dimensional array of (at least) length n,
 containing integers; 1 ≤ ipivi ≤ n.

 	b

 	is the general matrix B, containing the nrhs right-hand
 sides of the system. The right-hand sides, each of length n,
 reside in the columns of matrix B.
 Specified as:
 an ldb by (at least) n array,
 containing numbers of the data type indicated in Table 167.

 	ldb

 	is the leading dimension of the array specified for B.
 Specified
 as: an integer; ldb > 0 and ldb ≥ n.

 	info

 	See "On Return".

 	On Return

 	

 	 b

 	is the matrix X, containing the nrhs solutions
 to the system. The solutions, each of length n,
 reside in the columns of X.

 	Returned as: an ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 167.

 	info

 	has the following meaning:
 If info = 0, the subroutine completed
 successfully.

 [image: Start of change] Returned as:[image: Start of change]
 	For >SGTTRS, DGTTRS, CGTTRS, and ZGTTRS, returned as: an integer; info
 ≥ 0.

 	For LAPACKE_sgttrs, LAPACKE_dgttrs, LAPACKE_cgttrs, and LAPACKE_zgttrs, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	These subroutines accept lowercase letters for the trans arguments.

 	In your C program, argument info must be passed
 by reference.

 	dl, d, du, du2, ipiv,
 and B must have no common elements; otherwise results
 are unpredictable.

 	For SGTTRS and DGTTRS, if you specify 'C' for the trans argument,
 it is interpreted as though you specified 'T'.

 	The scalar data specified for input argument n must
 be the same for both _GTTRF and _GTTRS.

 	The array data specified for input arguments d, dl, du, du2,
 and ipiv for these subroutines must be the same
 as the corresponding output arguments for SGTTRF, DGTTRF, CGTTRF,
 and ZGTTRF, respectively.

 	For a description of how general tridiagonal matrices are stored,
 see General Tridiagonal Matrix.

 Function

 One of the following systems of
 equations is solved for multiple right-hand sides:

 1.

 AX

 =

 B

 2.

 A

 T

 X

 =

 B

 3.

 A

 H

 X

 =

 B

 (only for CGTTRS and ZGTTRS)

 where A is
 a general tridiagonal matrix and B and X are
 general matrices. These subroutines uses the results of the factorization
 of matrix A, produced by a preceding call to SGTTRF,
 DGTTRF, CGTTRF or ZGTTRF, respectively. For details on the factorization,
 see SGTTRF, DGTTRF, CGTTRF, and ZGTTRF (General Tridiagonal Matrix Factorization).

 If n is
 0 or nrhs is 0, no computation is performed and
 the subroutine returns after doing some parameter checking.

 See
 reference [8].

 Error conditions

 	Resource Errors

 	None

 	Computational Errors

 	None
 Note: If the factorization performed by SGTTRF, DGTTRF,
 CGTTRF or ZGTTRF failed because a pivot element is zero, the results
 returned by this subroutine are unpredictable, and there may be a
 divide-by-zero program exception message.

 	Input-Argument Errors

 	

 	trans ≠ 'N', 'T', or 'C'

 	n < 0

 	nrhs < 0

 	ldb ≤ 0

 	n > ldb

 Examples

 	[bookmark: am5gr_hsgttrs__gttrsex1]
 Example 1

 	
 This example shows how to solve the real general tridiagonal
 system AX = B, where matrix A is
 the same matrix factored in Example 1 for
 DGTTRF.

 Call Statement and Input: TRANS N NRHS DL D DU DU2 IPIV B LDB INFO
 | | | | | | | | | | |
CALL DGTTRS('N' , 9 , 3 , DL , D , DU , DU2 , IPIV , B , 9 , INFO)

 DL =

 (same as output

 DL

 in

 Example 1

)

 D =

 (same as output

 D

 in

 Example 1

)

 DU =

 (same as output

 DU

 in

 Example 1

)

 DU2 =

 (same as output

 DU2

 in

 Example 1

)

 IPIV =

 (same as output

 IPIV

 in

 Example 1

)

 ┌ ┐
 | 1.0 1.0 1.0 |
 | 1.0 -1.0 2.0 |
 | 1.0 1.0 3.0 |
 | 1.0 -1.0 4.0 |
B = | 1.0 1.0 5.0 |
 | 1.0 -1.0 6.0 |
 | 1.0 1.0 7.0 |
 | 1.0 -1.0 8.0 |
 | 1.0 1.0 9.0 |
 └ ┘

 Output: ┌ ┐
 | 0.609 0.478 4.597 |
 | 0.098 0.130 -0.899 |
 | -0.231 -0.641 -2.723 |
 | 0.234 0.312 2.105 |
B = | 0.364 0.153 2.516 |
 | -0.017 -0.023 -0.958 |
 | -0.019 -0.359 -0.147 |
 | 0.267 0.357 2.505 |
 | 0.198 -0.070 1.484 |
 └ ┘

INFO = 0

 	[bookmark: am5gr_hsgttrs__gttrsex2]
 Example 2

 	
 This example shows how to solve the real general tridiagonal
 system ATX = B,
 where matrix A is the same matrix factored in Example 1 for
 DGTTRF.

 Call Statement and Input: TRANS N NRHS DL D DU DU2 IPIV B LDB INFO
 | | | | | | | | | | |
CALL DGTTRS('T' , 9 , 3 , DL , D , DU , DU2 , IPIV , B , 9 , INFO)

 DL =

 (same as output

 DL

 in

 Example 1

)

 D =

 (same as output

 D

 in

 Example 1

)

 DU =

 (same as output

 DU

 in

 Example 1

)

 DU2 =

 (same as output

 DU2

 in

 Example 1

)

 IPIV =

 (same as output

 IPIV

 in

 Example 1

)

 ┌ ┐
 | 1.0 1.0 1.0 |
 | 1.0 -1.0 2.0 |
 | 1.0 1.0 3.0 |
 | 1.0 -1.0 4.0 |
B = | 1.0 1.0 5.0 |
 | 1.0 -1.0 6.0 |
 | 1.0 1.0 7.0 |
 | 1.0 -1.0 8.0 |
 | 1.0 1.0 9.0 |
 └ ┘

 Output: ┌ ┐
 | 0.198 -0.070 0.491 |
 | 0.267 0.356 0.170 |
 | -0.019 -0.359 -0.045 |
 | -0.017 -0.023 0.789 |
B = | 0.365 0.153 1.130 |
 | 0.234 0.312 0.238 |
 | -0.230 -0.641 0.414 |
 | 0.979 0.130 1.878 |
 | 0.609 0.478 1.489 |
 └ ┘

INFO = 0

 	[bookmark: am5gr_hsgttrs__gttrsex3]
 Example 3

 	
 This example shows how to solve the complex general tridiagonal
 system
AX=B, where matrix A is
 the same matrix factored in Example 2 for
 ZGTTRF.

 Call Statement and Input: TRANS N NRHS DL D DU DU2 IPIV B LDB INFO
 | | | | | | | | | | |
CALL ZGTTRS('N' , 4 , 3 , DL , D , DU , DU2 , IPIV , B , 4 , INFO)

 DL =

 (same as output

 DL

 in

 Example 2

)

 D =

 (same as output

 D

 in

 Example 2

)

 DU =

 (same as output

 DU

 in

 Example 2

)

 DU2 =

 (same as output

 DU2

 in

 Example 2

)

 IPIV =

 (same as output

 IPIV

 in

 Example 2

)

 ┌ ┐
 | (1.0, 1.0) (1.0, 1.0) (1.0, -1.0) |
B = | (1.0, 1.0) (-1.0, -1.0) (1.0, -1.0) |
 | (1.0, 1.0) (1.0, 1.0) (1.0, -1.0) |
 | (1.0, 1.0) (-1.0, -1.0) (1.0, -1.0) |
 └ ┘

 Output: ┌ ┐
 | (-0.247, 0.000) (0.119, 0.000) (0.000, 0.247) |
B = | (0.311, 0.000) (0.220, 0.000) (0.000, -0.311) |
 | (0.357, 0.000) (-0.394, 0.000) (0.000, -0.357) |
 | (-0.073, 0.000) (0.183, 0.000) (0.000, 0.073) |
 └ ┘

INFO = 0

 	Example 4

 	
 This example shows how to solve the complex general tridiagonal
 system
ATX = B,
 where matrix A is the same matrix factored in Example 2 for
 ZGTTRF.

 Call Statement and Input: TRANS N NRHS DL D DU DU2 IPIV B LDB INFO
 | | | | | | | | | | |
CALL ZGTTRS('T' , 4 , 3 , DL , D , DU , DU2 , IPIV , B , 4 , INFO)

 DL =

 (same as output

 DL

 in

 Example 2

)

 D =

 (same as output

 D

 in

 Example 2

)

 DU =

 (same as output

 DU

 in

 Example 2

)

 DU2 =

 (same as output

 DU2

 in

 Example 2

)

 IPIV =

 (same as output

 IPIV

 in

 Example 2

)

 ┌ ┐
 | (1.0, 1.0) (1.0, 1.0) (1.0, -1.0) |
B = | (1.0, 1.0) (-1.0, -1.0) (1.0, -1.0) |
 | (1.0, 1.0) (1.0, 1.0) (1.0, -1.0) |
 | (1.0, 1.0) (-1.0, -1.0) (1.0, -1.0) |
 └ ┘

 Output: ┌ ┐
 | (-0.073, 0.0) (-0.183, 0.0) (0.0, 0.073)|
B = | (0.357, 0.0) (0.394, 0.0) (0.0, -0.357)|
 | (0.311, 0.0) (-0.220, 0.0) (0.0, -0.311)|
 | (-0.247, 0.0) (-0.119, 0.0) (0.0, 0.247)|
 └ ┘

INFO = 0

 Parent topic: Linear Algebraic Equations

 SPTSV, DPTSV, CPTSV, and ZPTSV (Positive Definite Real Symmetric
 or Complex Hermitian Tridiagonal Matrix Factorization and Multiple
 Right-Hand Side Solve)

 Purpose

 SPTSV and DPTSV solve the tridiagonal
 system AX = B for X, where X and B are
 general matrices and A is a positive definite real symmetric
 matrix stored in LAPACK-symmetric-tridiagonal storage mode.

 CPTSV
 and ZPTSV solve one of the following tridiagonal systems for X,
 where X and B are general matrices and A is
 a positive definite complex Hermitian matrix stored in LAPACK-complex
 Hermitian-tridiagonal storage mode:

 	If you specify the subdiagonal of A in e,
 then this subroutine solves AX = B.

 	If you specify the superdiagonal of A in e,
 then this subroutines solves ATX = B.

 Table 168. Data Types.

 	d

 	e, B

 	Subroutine

 	Short-precision real

 	Short-precision real

 	SPTSVΔ

 	Long-precision real

 	Long-precision real

 	DPTSVΔ

 	Short-precision real

 	Short-precision complex

 	CPTSVΔ

 	Long-precision real

 	Long-precision complex

 	ZPTSVΔ

 	ΔLAPACK

 Syntax

 	Fortran

 	CALL SPTSV | DPTSV | CPTSV | ZPTSV (n, nrhs, d, e, b, ldb, info)

 	C and C++

 	sptsv | dptsv | cptsv | zptsv (n, nrhs, d, e, b, ldb, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sptsv | LAPACKE_dptsv | LAPACKE_cptsv |
 LAPACKE_zptsv(matrix_layout, n, nrhs,
 d, e, b, ldb); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 n

 	is the order n of tridiagonal matrix A.
 Specified as: an integer; n ≥ 0.

 	 nrhs

 	is the number of right-hand sides; i.e., the number of columns
 of matrix B. Specified as: an integer; nrhs ≥ 0.

 	d

 	is the vector d, containing the main diagonal of
 matrix A in positions 1 through n in
 an array referred to as D. Specified as: a one-dimensional
 array, of (at least) length n, containing numbers
 of the data type indicated in Table 168.

 	e

 	is the vector e containing the subdiagonal or superdiagonal
 of matrix A in positions 1 through n-1
 in an array referred to as E. Specified as: a one-dimensional
 array, of (at least) length n-1, containing numbers
 of the data type indicated in Table 168.

 	b

 	is the matrix B of right-hand side vectors. Specified
 as the ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 168.

 	 ldb

 	is the leading dimension of the array specified for B.
 Specified as: an integer; ldb > 0 and ldb ≥ n.

 	On Return

 	

 	 d

 	if info=0, is the vector d, containing
 the diagonal D of the factorization of matrix A in
 an array referred to as D. Returned as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 168.

 	 e

 	if info=0, is the vector e, as
 follows:

 	For SPTSV and DPTSV

 	e contains the subdiagonal or superdiagonal elements
 of the unit lower bidiagonal factor L in positions 1
 through n-1 in an array, referred to as E.

 	For CPTSV and ZPTSV

 	e contains the following:

 	If, on entry, you specified the subdiagonal of matrix A in e, e contains
 the subdiagonal elements of the unit lower bidiagonal factor L in
 positions 1 through n-1 in an array, referred to
 as E.

 	If, on entry, you specified the superdiagonal of matrix A in e, e contains
 the superdiagonal elements of the unit upper bidiagonal factor U in
 positions 1 through n-1 in an array, referred to
 as E.

 Returned as: a one-dimensional array of (at least)
 length n-1, containing numbers of the data type
 indicated in Table 168. It has
 the same length as E on entry.

 	 b

 	If info = 0, b is the general
 matrix X, containing the solutions to the system.
 Returned
 as: an ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 168.

 	info

 	has the following meaning:
 If info = 0, the subroutine completed
 successfully.

 If info = i, the leading minor of order
 i is not positive definite. The factorization could not be completed and the
 solution was not computed.

 [image: Start of change] Returned as:[image: Start of change]
 	For SPTSV, DPTSV, CPTSV, and ZPTSV, returned as: an integer; info
 ≥ 0.

 	For LAPACKE_sptsv, LAPACKE_dptsv, LAPACKE_cptsv, and LAPACKE_zptsv, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	In your C program, argument info must be passed
 by reference.

 	For a description of how real symmetric tridiagonal matrices are
 stored in LAPACK-symmetric-tridiagonal storage mode, see LAPACK-Symmetric-Tridiagonal Storage Mode. For a description
 of how complex Hermitian tridiagonal matrices are stored in LAPACK-complex
 Hermitian-tridiagonal storage mode, Complex Hermitian Tridiagonal Storage Representation.

 	The way these subroutines handle computational errors differs
 from LAPACK. Like LAPACK, these subroutines use the info argument
 to provide information about the computational error, but they also
 provide an error message.

 	On both input and output, matrix A conforms to LAPACK
 format.

 Function

 SPTSV and DPTSV solve the tridiagonal
 system AX = B for X, where X and B are
 general matrices and A is a positive definite real symmetric
 matrix stored in LAPACK-symmetric-tridiagonal storage mode.

 The
 matrix A is factored using A = LDLT.

 Note: Because A is
 symmetric, this may be considered to be a UTDU factorization
 as well.

 CPTSV and ZPTSV solve one of the following tridiagonal
 systems for X, where X and B are
 general matrices and A is a positive definite complex
 Hermitian matrix stored in LAPACK-complex Hermitian-tridiagonal storage
 mode:

 	If you specify the subdiagonal of A in e,
 then this subroutine solves AX = B and A = LDLH.

 	If you specify the superdiagonal of A in e,
 then this subroutines solves ATX = B and A = UHDU.

 If n = 0, no computation is performed
 and the subroutine returns after doing some parameter checking. If n >
 0 and nrhs = 0, no solutions are computed and the
 subroutine returns after factoring the matrix. See references [8],[44], and [73].

 Error conditions

 	Computational Errors

 	Matrix A is not positive definite. For details, see the description
 of the info argument.

 	Input-Argument Errors

 	

 	n < 0

 	nrhs < 0

 	ldb ≤ 0

 	n > ldb

 Examples

 	Example 1

 	This example shows how to solve the positive definite real symmetric
 tridiagonal system of linear equations AX = B,
 where:
 Matrix A is the same used as input in Example 1 for
 DPTTRF.

 Matrix B is the same used as input in Example 1 for
 DPTTRS.

 Call Statement and Input: N NRHS D E B LDB INFO
 | | | | | | |
CALL DPTSV(4 , 2 , D , E , B , 4 , INFO)

 D = (same as output D in Example 1)

 E = (same as output E in Example 1)

 B = (same as input B in Example 1)

 Output:
 D = (1.0, 1.0, 2.0, 0.5)

E = (1.0, 1.0, 0.5)

 ┌ ┐
 | 1.0 -1.0 |
 B = | 1.0 -1.0 |
 | 1.0 0.0 |
 | 1.0 1.0 |
 └ ┘

 INFO = 0

 	Example 2

 	This example shows how to solve the positive definite complex
 Hermitian tridiagonal system of linear equations AX = B,
 where:
 Matrix A is the same used as input in Example 2 for
 ZPTTRF.

 Matrix B is the same used as input in Example 2 for
 ZPTTRS.

 Call Statement and Input: N NRHS D E B LDB INFO
 | | | | | | |
CALL ZPTSV(4 , 3 , D , E , B , 4 , INFO)

 D = (same as output D in Example 2)

 E = (same as output E in Example 2)

 B = (same as input B in Example 2)

 Output:
 D = (1.0 2.0 3.0 4.0)

 E = ((1.0, 1.0) (1.0, 1.0) (1.0, 1.0))

 ┌ ┐
 | (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
 | (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
 B = | (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
 | (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
 └ ┘

 INFO = 0

 	Example 3

 	This example shows how to solve the positive definite complex
 Hermitian tridiagonal system of linear equations ATX = B,
 where:
 Matrix A is the same used as input in Example 3 for
 ZPTTRF.

 Matrix B is the same used as input in Example 3 for
 ZPTTRS.

 Call Statement and Input: N NRHS D E B LDB INFO
 | | | | | | |
CALL ZPTSV(4 , 3 , D , E , B , 4 , INFO)

 D = (same as output D in Example 3)

 E = (same as output E in Example 3)

 B = (same as input B in Example 3)

 Output:
 D = (1.0 2.0 3.0 4.0)

 E = ((1.0, -1.0) (1.0, -1.0) (1.0, -1.0))

 ┌ ┐
 | (3.00, -3.33) (6.33, -0.33) (-0.33, -6.33) |
 | (0.66, 1.66) (-1.00, 2.33) (2.33, 1.00) |
 B = | (0.83, -1.50) (2.33, -0.66) (-0.66, -2.33) |
 | (1.50, 1.00) (0.50, 2.50) (2.50, -0.50) |
 └ ┘

 INFO = 0

 Parent topic: Linear Algebraic Equations

 SPTTRF, DPTTRF, CPTTRF, and ZPTTRF (Positive Definite Real
 Symmetric or Complex Hermitian Tridiagonal Matrix Factorization)

 Purpose

 SPTTRF and DPTTRF factor a positive
 definite real symmetric tridiagonal matrix stored in LAPACK-symmetric-tridiagonal
 storage mode:

 A = LDLT

 CPTTRF and ZPTTRF factor
 a positive definite complex Hermitian tridiagonal matrix stored in
 LAPACK-complex Hermitian-tridiagonal storage mode:

 	If you specify the subdiagonal of A in vector e,
 then A = LDLH

 	If you specify the superdiagonal of A in vector e,
 then A = UHDU

 To solve the system of equations with one or more right-hand
 sides, follow the call to SPTTRF, DPTTRF, CPTTRF, or ZPTTRF with
 a call to SPTTRS, DPTTRS, CPTTRS, or ZPTTRS, respectively.

 Table 169. Data Types.

 	Data Types

 	d

 	e

 	Subroutine

 	Short-precision real

 	Short-precision real

 	SPTTRFΔ

 	Long-precision real

 	Long-precision real

 	DPTTRFΔ

 	Short-precision real

 	Short-precision complex

 	CPTTRFΔ

 	Long-precision real

 	Long-precision complex

 	ZPTTRFΔ

 	ΔLAPACK

 Note: The output from these factorization subroutines should
 be used only as input to the solve subroutines SPTTRS, DPTTRS, CPTTRS,
 or ZPTTRS, respectively.

 Syntax

 	Fortran

 	CALL SPTTRF | DPTTRF | CPTTRF | ZPTTRF (n, d, e, info)

 	C and C++

 	spttrf | dpttrf | cpttrf | zpttrf (n, d, e, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_spttrf | LAPACKE_dpttrf | LAPACKE_cpttrf | LAPACKE_zpttrf
 (matrix_layout, n, d,
 e); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	n

 	is the order n of tridiagonal matrix A.
 Specified as: an integer; n ≥ 0.

 	d

 	is the vector d, containing the main diagonal of
 matrix A in positions 1 through n in
 an array referred to as D. Specified as: a one-dimensional
 array, of (at least) length n, containing numbers
 of the data type indicated in Table 169.

 	e

 	is the vector e containing the subdiagonal or superdiagonal
 of matrix A in positions 1 through n-1
 in an array referred to as E. Specified as: a one-dimensional
 array, of (at least) length n-1, containing numbers
 of the data type indicated in Table 169.

 	On Return

 	

 	 d

 	If info = 0, is the vector d,
 containing the diagonal D of the factorization of
 matrix A in an array referred to as D.
 Returned as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 169.

 	 e

 	If info = 0, is the vector e,
 as follows:

 	For SPTTRF and DPTTRF

 	e contains the subdiagonal elements of the unit
 lower bidiagonal factor L in positions 1 through n-1
 in 	an array referred to as E.

 	For CPTTRF and ZPTTRF

 	e contains the following:

 	If on entry you specified the subdiagonal of matrix A in e, e contains
 the subdiagonal elements of the unit bidiagonal factor L in
 positions 1 through n-1 in an array, referred to
 as E.

 	If on entry you specified the superdiagonal of matrix A in e, e contains
 the subdiagonal elements of the unit bidiagonal factor U in
 positions 1 through n-1 in an array, referred to
 as E.

 Returned as: a one-dimensional array of (at least)
 length n-1, containing numbers of the data type
 indicated in Table 169. It has
 the same length as E on entry.

 	info

 	has the following meaning:
 If info = 0, the subroutine completed
 successfully.

 If info = i, the leading minor of order
 i is not positive definite, and the factorization could not be completed.

 [image: Start of change] Returned as:[image: Start of change]
 	For SPTTRF, DPTTRF, CPTTRF, and ZPTTRF, returned as: an integer; info
 ≥ 0.

 	For LAPACKE_spttrf, LAPACKE_dpttrf, LAPACKE_cpttrf, and LAPACKE_zpttrf, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	In your C program, argument info must be passed
 by reference.

 	For a description of how real symmetric tridiagonal matrices are
 stored in LAPACK-symmetric-tridiagonal storage mode, see LAPACK-Symmetric-Tridiagonal Storage Mode. For a description
 of how complex Hermitian tridiagonal matrices are stored in LAPACK-complex
 Hermitian-tridiagonal storage mode, Complex Hermitian Tridiagonal Storage Representation.

 	The way these subroutines handle computational errors differs
 from LAPACK. Like LAPACK, these subroutines use the info argument
 to provide information about the computational error, but they also
 provide an error message.

 	On both input and output, matrix A conforms to LAPACK
 format.

 Function

 SPTTRF and DPTTRF factor a positive
 definite real symmetric tridiagonal matrix stored in LAPACK-symmetric-tridiagonal
 storage mode:

 A = LDLT

 Note: Because A is
 symmetric, this may be considered to be a UTDU factorization
 as well.

 CPTTRF and ZPTTRF factor a positive definite complex
 Hermitian tridiagonal matrix stored in LAPACK-complex Hermitian-tridiagonal
 storage mode:

 	If you specify the subdiagonal of A in vector e,
 then A = LDLH

 	If you specify the superdiagonal of A in vector e,
 then A = UHDU

 To solve the system of equations with one or more right-hand
 sides, follow the call to SPTTRF, DPTTRF, CPTTRF, or ZPTTRF with
 a call to SPTTRS, DPTTRS, CPTTRS, or ZPTTRS, respectively.

 If n is
 0, no computation is performed and the subroutine returns after doing
 some parameter checking. See references [8],[44], and [73].

 Error conditions

 	Computational Errors

 	Matrix A is not positive definite. For details,
 see the description of the info argument.

 	[bookmark: am5gr_leqbpttrf__am5gr_f10b139]
 Input-Argument Errors

 	

 	n < 0

 Examples

 	Example 1

 	
 This example shows a factorization of the positive definite
 real symmetric tridiagonal matrix A, in the form A = LDLT: ┌ ┐
 | 1.0 1.0 0.0 0.0 |
 | 1.0 2.0 1.0 0.0 |
 | 0.0 1.0 3.0 1.0 |
 | 0.0 0.0 1.0 1.0 |
 └ ┘

 Call Statement and Input: N D E INFO
 | | | |
CALL DPTTRF(4 , D , E , INFO)

D = (1.0, 2.0, 3.0, 1.0)

E = (1.0, 1.0, 1.0)

 Output: D = (1.0, 1.0, 2.0, 0.5)

E = (1.0, 1.0, 0.5)

INFO = 0

 	[bookmark: am5gr_leqbpttrf__pttrfex2]
 Example 2

 	
 This example shows a factorization of the positive definite
 complex Hermitian tridiagonal matrix A, in the form A = LDLH: ┌ ┐
 | (1.0, 0.0) (1.0, -1.0) (0.0, 0.0) (0.0, 0.0) |
 | (1.0, 1.0) (4.0, 0.0) (2.0, -2.0) (0.0, 0.0) |
 | (0.0, 0.0) (2.0, 2.0) (7.0, 0.0) (3.0, -3.0) |
 | (0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (10.0, 0.0) |
 └ ┘

 Call
 Statement and Input: N D E INFO
 | | | |
CALL ZPTTRF(4 , D , E , INFO)

D = (1.0 4.0 7.0 10.0)

E = ((1.0, 1.0) (2.0, 2.0) (3.0, 3.0))

 Output:
 D = (1.0 2.0 3.0 4.0)

E = ((1.0, 1.0) (1.0, 1.0) (1.0, 1.0))

INFO = 0

 	[bookmark: am5gr_leqbpttrf__pttrfex3]
 Example 3

 	
 This example shows a factorization of the positive definite
 complex Hermitian tridiagonal matrix A, in the form A = UHDU: ┌ ┐
 | (1.0, 0.0) (1.0, -1.0) (0.0, 0.0) (0.0, 0.0) |
 | (1.0, 1.0) (4.0, 0.0) (2.0, -2.0) (0.0, 0.0) |
 | (0.0, 0.0) (2.0, 2.0) (7.0, 0.0) (3.0, -3.0) |
 | (0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (10.0, 0.0) |
 └ ┘

 Call
 Statement and Input: N D E INFO
 | | | |
CALL ZPTTRF(4 , D , E , INFO)

D = (1.0 4.0 7.0 10.0)

E = ((1.0, -1.0) (2.0, -2.0) (3.0, -3.0))

 Output:
 D = (1.0 2.0 3.0 4.0)

E = ((1.0, -1.0) (1.0, -1.0) (1.0, -1.0))

INFO = 0

 Parent topic: Linear Algebraic Equations

 SPTTRS, DPTTRS, CPTTRS, and ZPTTRS (Positive Definite Real
 Symmetric or Complex Hermitian Tridiagonal Matrix Multiple Right-Hand
 Solve)

 Purpose

 SPTTRS and DPTTRS solve the tridiagonal
 system AX = B for X, where X and B are
 general matrices and A is a positive definite real symmetric
 matrix.

 CPTTRS and ZPTTRS solve one of the following tridiagonal
 systems for X, where X and B are
 general matrices and A is a positive definite complex
 Hermitian matrix.

 	If, in the call to CPTTRF or ZPTTRF, you specified the subdiagonal
 of A in e:

 	If uplo = 'L', then this subroutine solves AX = B.

 	If uplo = 'U', then this subroutine solves ATX = B.

 	If, in the call to CPTTRF or ZPTTRF, you specified the superdiagonal
 of A in e:

 	If uplo = 'L', then this subroutine solves ATX = B.

 	If uplo = 'U', then this subroutine solves AX = B.

 These subroutines use the results of the factorization
 of matrix A, produced by a preceding call to SPTTRF, DPTTRF, CPTTRF,
 or ZPTTRF respectively.

 Table 170. Data Types.

 	d

 	e, B

 	Subroutine

 	Short-precision real

 	Short-precision real

 	SPTTRSΔ

 	Long-precision real

 	Long-precision real

 	DPTTRSΔ

 	Short-precision real

 	Short-precision complex

 	CPTTRSΔ

 	Long-precision real

 	Long-precision complex

 	ZPTTRSΔ

 	ΔLAPACK

 Note: The input to these solve subroutines must be the output
 from the factorization subroutines SPTTRF, DPTTRF, CPTTRF, or ZPTTRF
 respectively.

 Syntax

 	Fortran

 	CALL SPTTRS | DPTTRS (n, nrhs, d, e, b, ldb, info)

 	CALL CPTTRS | ZPTTRS (uplo, n, nrhs, d, e, b, ldb, info)

 	C and C++

 	spttrs | dpttrs(n, nrhs, d, e, b, ldb, info);

 	cpttrs | zpttrs (uplo, n, nrhs, d, e, b, ldb, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_spttrs | LAPACKE_dpttrs (matrix_layout,
 n, nrhs, d, e,
 b, ldb);
info = LAPACKE_cpttrs | LAPACKE_zpttrs
 (matrix_layout, uplo, n,
 nrhs, d, e, b,
 ldb);[image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 uplo

 	indicates whether e is the subdiagonal of the
 unit bidiagonal lower triangular factor L or superdiagonal
 of the unit bidiagonal upper triangular factor U:
 If uplo =
 'L', e is the subdiagonal of the unit bidiagonal
 lower triangular factor L.

 If uplo =
 'U', e is the superdiagonal of the unit bidiagonal
 upper triangular factor U.

 Specified as: a single
 character. It must be 'L' or 'U'.

 	 n

 	is the order n of tridiagonal matrix A.
 Specified as: an integer; n ≥ 0.

 	 nrhs

 	is the number of right-hand sides; i.e., the number of columns
 of matrix B. Specified as: an integer; nrhs ≥ 0.

 	d

 	is the vector d, containing part of the factorization
 of matrix A from SPTTRF, DPTTRF, CPTTRF, or ZPTTRF,
 respectively, in an array, referred to as D. Specified
 as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 170.

 	e

 	

 	For SPTTRS and DPTTRS

 	is the vector e, containing the subdiagonal elements
 of the unit bidiagonal factor L in positions 1 through n-1
 in an array, referred to as E.

 	For CPTTRS and ZPTTRS

 	is the vector e, containing the subdiagonal or superdiagonal
 of matrix A in positions 1 through n-1
 in an array, referred to as E.

 	If uplo = 'L', e contains he
 subdiagonal elements of the unit bidiagonal factor L in
 positions 1 through n-1 in an array, referred to
 as E.

 	If uplo = 'U', e contains the
 superdiagonal elements of the unit bidiagonal factor U in
 positions 1 through n-1 in an array, referred to
 as E.

 Specified as: a one-dimensional array, of (at least)
 length n-1, containing numbers of the data type
 indicated in Table 170.

 	b

 	is the matrix B of right-hand side vectors. Specified
 as the ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 170.

 	 ldb

 	is the leading dimension of the array specified for B.
 Specified as: an integer; ldb > 0 and ldb ≥ n.

 	On Return

 	

 	 b

 	is the general matrix X, containing the solutions
 to the system.
 Returned as: an ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 170.

 	 info

 	info has the following meaning:
 If info = 0, the solve
 completed successfully.

 [image: Start of change] Returned as:[image: Start of change]
 	For SPTTRS, DPTTRS, CPTTRS, and ZPTTRS, returned as: an integer; info
 ≥ 0.

 	For LAPACKE_spttrs, LAPACKE_dpttrs, LAPACKE_cpttrs, and LAPACKE_zpttrs, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	In your C program, argument info must be passed
 by reference.

 	All subroutines accept lowercase letters for the uplo argument.

 	For a description of how real symmetric tridiagonal matrices are
 stored in LAPACK-symmetric-tridiagonal storage mode, see LAPACK-Symmetric-Tridiagonal Storage Mode. For a description
 of how complex Hermitian tridiagonal matrices are stored in LAPACK-complex
 Hermitian-tridiagonal storage mode, Complex Hermitian Tridiagonal Storage Representation.

 	The scalar data specified for input argument n for
 these subroutines must be the same as the corresponding input argument
 specified for SPTTRF, DPTTRF, CPTTRF, or ZPTTRF, respectively.

 	The array data specified for input arguments d and e for
 these subroutines must be the same as the corresponding output arguments
 for SPTTRF, DPTTRF, CPTTRF, and ZPTTRF, respectively.

 Function

 SPTTRS
 and DPTTRS solve the tridiagonal system AX = B for X,
 where X and B are general matrices and A is
 a positive definite real symmetric matrix.

 CPTTRS and ZPTTRS
 solve one of the following tridiagonal systems for X,
 where X and B are general matrices and A is
 a positive definite complex Hermitian matrix.

 	If, in the call to CPTTRF or ZPTTRF, you specified the subdiagonal
 of A in e:

 	If uplo = 'L', then this subroutine solves AX = B.

 	If uplo = 'U', then this subroutine solves ATX = B.

 	If, in the call to CPTTRF or ZPTTRF, you specified the superdiagonal
 of A in e:

 	If uplo = 'L', then this subroutine solves ATX = B.

 	If uplo = 'U', then this subroutine solves AX = B.

 These subroutines use the results of the factorization
 of matrix A, produced by a preceding call to SPTTRF, DPTTRF, CPTTRF,
 or ZPTTRF respectively. For a description of how A is
 factored, see SPTTRF, DPTTRF, CPTTRF, and ZPTTRF (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Factorization).

 If n or nrhs is
 0, no computation is performed. See references [8] and [44].

 Error conditions

 	Computational Errors

 	None
 Note: If the factorization performed by SPTTRF, DPTTRF,
 CPTTRF, or ZPTTRF failed because matrix A was not positive
 definite, the results returned by this subroutine are unpredictable,
 and there may be a divide-by-zero program exception message.

 	Input-Argument Errors

 	

 	uplo ≠ 'U' or 'L'

 	n < 0

 	nrhs < 0

 	ldb ≤ 0

 	n > ldb

 Examples

 	[bookmark: am5gr_leqbpttrs__pttrsex1]
 Example 1

 	This example shows how to solve the system of linear equations AX = B where
 positive definite real symmetric tridiagonal matrix A is
 the same matrix factored in Example 1 for
 DPTTRF in the form LDLT.
 Call
 Statement and Input: N NRHS D E B LDB INFO
 | | | | | | |
CALL DPTTRS(4 , 2 , D , E , B , 4 , INFO)

 D = (same as output D in Example 1)

 E = (same as output E in Example 1)

 ┌ ┐
 | 2.0 -2.0 |
 B = | 4.0 -3.0 |
 | 5.0 0.0 |
 | 2.0 1.0 |
 └ ┘

 Output: ┌ ┐
 | 1.0 -1.0 |
 B = | 1.0 -1.0 |
 | 1.0 0.0 |
 | 1.0 1.0 |
 └ ┘

 INFO = 0

 	[bookmark: am5gr_leqbpttrs__pttrsex2]
 Example 2

 	This example shows how to solve the system of linear equations AX = B where
 positive definite complex Hermitian tridiagonal matrix A
 is the same matrix factored in Example 2 for
 ZPTTRF in the form LDLH.

 Call Statement and Input: UPLO N NRHS D E B LDB INFO
 | | | | | | | |
CALL ZPTTRS('L', 4 , 3 , D , E , B , 4 , INFO)

 D = (same as output D in Example 2)

 E = (same as output E in Example 2)

 ┌ ┐
 | (2.0, -1.0) (3.0, 1.0) (1.0, -3.0) |
 B = | (7.0, -1.0) (8.0, 6.0) (6.0, -8.0) |
 | (12.0, -1.0) (13.0, 11.0) (11.0, -13.0) |
 | (13.0, 3.0) (10.0, 16.0) (16.0, -10.0) |
 └ ┘

 Output: ┌ ┐
 | (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
 | (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
 B = | (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
 | (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
 └ ┘

 INFO = 0

 	[bookmark: am5gr_leqbpttrs__pttrsex3]
 Example 3

 	This example shows how to solve the system of linear equations ATX = B where
 positive definite complex Hermitian tridiagonal matrix A is
 the same matrix factored in Example 2 for
 ZPTTRF in the form LDLH.

 Call Statement and Input: UPLO N NRHS D E B LDB INFO
 | | | | | | | |
CALL ZPTTRS('U', 4 , 3 , D , E , B , 4 , INFO)

 D = (same as output D in Example 2)

 E = (same as output E in Example 2)

 ┌ ┐
 | (2.0, -1.0) (3.0, 1.0) (1.0, -3.0) |
 B = | (7.0, -1.0) (8.0, 6.0) (6.0, -8.0) |
 | (12.0, -1.0) (13.0, 11.0) (11.0, -13.0) |
 | (13.0, 3.0) (10.0, 16.0) (16.0, -10.0) |
 └ ┘

 Output: ┌ ┐
 | (3.00, -3.33) (6.33, -0.33) (-0.33, -6.33) |
 | (0.66, 1.66) (-1.00, 2.33) (2.33, 1.00) |
 B = | (0.83, -1.50) (2.33, -0.66) (-0.66, -2.33) |
 | (1.50, 1.00) (0.50, 2.50) (2.50, -0.50) |
 └ ┘

 INFO = 0

 	[bookmark: am5gr_leqbpttrs__pttrsex4]
 Example 4

 	This example shows how to solve the system of linear equations AX = B where
 positive definite complex Hermitian tridiagonal matrix A is
 the same matrix factored in Example 3 for
 ZPTTRF in the form UHDU.

 Call Statement and Input: UPLO N NRHS D E B LDB INFO
 | | | | | | | |
CALL ZPTTRS('U', 4 , 3 , D , E , B , 4 , INFO)

 D = (same as output D in Example 3)

 E = (same as output E in Example 3)

 ┌ ┐
 | (2.0, -1.0) (3.0, 1.0) (1.0, -3.0) |
 B = | (7.0, -1.0) (8.0, 6.0) (6.0, -8.0) |
 | (12.0, -1.0) (13.0, 11.0) (11.0, -13.0) |
 | (13.0, 3.0) (10.0, 16.0) (16.0, -10.0) |
 └ ┘

 Output: ┌ ┐
 | (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
 | (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
 B = | (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
 | (1.0, 0.0) (1.0, 1.0) (1.0, -1.0) |
 └ ┘

 INFO = 0

 	[bookmark: am5gr_leqbpttrs__pttrsex5]
 Example 5

 	This example shows how to solve the system of linear equations ATX = B where
 positive definite complex Hermitian tridiagonal matrix A is
 the same matrix factored in Example 3 for
 ZPTTRF in the form UHDU.

 Call Statement and Input: UPLO N NRHS D E B LDB INFO
 | | | | | | | |
CALL ZPTTRS('U', 4 , 3 , D , E , B , 4 , INFO)

 D = (same as output D in Example 3)

 E = (same as output E in Example 3)

 ┌ ┐
 | (2.0, -1.0) (3.0, 1.0) (1.0, -3.0) |
 B = | (7.0, -1.0) (8.0, 6.0) (6.0, -8.0) |
 | (12.0, -1.0) (13.0, 11.0) (11.0, -13.0) |
 | (13.0, 3.0) (10.0, 16.0) (16.0, -10.0) |
 └ ┘

 Output: ┌ ┐
 | (3.00, -3.33) (6.33, -0.33) (-0.33, -6.33) |
 | (0.66, 1.66) (-1.00, 2.33) (2.33, 1.00) |
 B = | (0.83, -1.50) (2.33, -0.66) (-0.66, -2.33) |
 | (1.50, 1.00) (0.50, 2.50) (2.50, -0.50) |
 └ ┘

 INFO = 0

 Parent topic: Linear Algebraic Equations

 SGBF and DGBF (General Band Matrix Factorization)

 Purpose

 These subroutines factor general
 band matrix A, stored in general-band storage mode,
 using Gaussian elimination. To solve the system of equations with
 one or more right-hand sides, follow the call to these subroutines
 with one or more calls to SGBS or DGBS, respectively.

 Table 171. Data Types.

 	A

 	Subroutine

 	Short-precision real

 	SGBF

 	Long-precision real

 	DGBF

 Note: The output from these factorization subroutines should
 be used only as input to the solve subroutines SGBS and DGBS, respectively.

 Syntax

 	Fortran

 	CALL SGBF | DGBF (agb, lda, n, ml, mu, ipvt)

 	C and C++

 	sgbf | dgbf (agb, lda, n, ml, mu, ipvt);

 	On Entry

 	

 	 agb

 	is the general band matrix A of order n,
 stored in general-band storage mode, to be factored. It has an upper
 band width mu and a lower band width ml.
 Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 171, where lda ≥ 2ml+mu+16.

 	 lda

 	is the leading dimension of the array specified for agb.
 Specified as: an integer; lda > 0 and lda ≥ 2ml+mu+16.

 	 n

 	is the order of the matrix A. Specified as: an integer; n > ml and n > mu.

 	 ml

 	is the lower band width ml of the matrix A.
 Specified as: an integer; 0 ≤ ml < n.

 	 mu

 	is the upper band width mu of the matrix A.
 Specified as: an integer; 0 ≤ mu < n.

 	 ipvt

 	See On Return.

 	On Return

 	

 	 agb

 	is the transformed matrix A of order n,
 containing the results of the factorization. See Function. Returned as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 171.

 	 ipvt

 	is the integer vector ipvt of length n,
 containing the pivot information necessary to construct matrix L from
 the information contained in the output array agb.
 Returned as: a one-dimensional array of (at least) length n,
 containing integers.

 Notes

 	ipvt is not a permutation vector in the strict sense.
 It is used to record column interchanges in L due to
 partial pivoting and to improve performance.

 	The entire lda by n array
 specified for agb must remain unchanged between
 calls to the factorization and solve subroutines.

 	This subroutine can be used for tridiagonal matrices (ml = mu = 1);
 however, the tridiagonal subroutines SGTF/DGTF and SGTS/DGTS are faster.

 	For a description of how a general band matrix is stored in general-band
 storage mode in an array, see General Band Matrix.

 Function

 The general band
 matrix A, stored in general-band storage mode, is factored
 using Gaussian elimination with partial pivoting to compute the LU factorization
 of A, where:

 ipvt

 is a vector containing the pivoting information.

 L

 is a unit lower triangular band matrix.

 U

 is an upper triangular band matrix.

 The
 transformed matrix A contains U in packed
 format, along with the multipliers necessary to construct, with the
 help of ipvt, a matrix L, such that A = LU.
 This factorization can then be used by SGBS or DGBS, respectively,
 to solve the system of equations. See reference [46].

 Error conditions

 	[bookmark: am5gr_hsgbf__am5gr_f10b002]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hsgbf__am5gr_f10b003]
 Computational Errors

 	Matrix A is singular.

 	One or more columns of L and the corresponding diagonal
 of U contain all zeros (all columns of L are
 checked). The last column, i, of L with
 a corresponding U = 0 diagonal element is identified
 in the computational error message.

 	The return code is set to 1.

 	i can be determined at run time by use of the
 ESSL error-handling facilities. To obtain this information, you must
 use ERRSET to change the number of allowable errors for error code
 2103 in the ESSL error option table; otherwise, the default value
 causes your program to terminate when this error occurs. For details,
 see What Can You Do about ESSL Computational Errors?.

 	[bookmark: am5gr_hsgbf__am5gr_f10b004]
 Input-Argument Errors

 	

 	lda ≤ 0

 	ml < 0

 	ml ≥ n

 	mu < 0

 	mu ≥ n

 	lda < 2ml+mu+16

 Examples

 	[bookmark: am5gr_hsgbf__am5gr_exgbf]
 Example

 	
 This example shows a factorization of a general band matrix A of
 order 9, with a lower band width of 2 and an upper band width of 3.
 On input matrix A is: ┌ ┐
 | 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 |
 | 4.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
 | 0.0 5.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 |
 | 0.0 0.0 6.0 1.0 1.0 1.0 1.0 1.0 0.0 |
 | 0.0 0.0 0.0 7.0 1.0 1.0 1.0 1.0 1.0 |
 | 0.0 0.0 0.0 0.0 8.0 1.0 1.0 1.0 1.0 |
 | 0.0 0.0 0.0 0.0 0.0 9.0 1.0 1.0 1.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 10.0 11.0 12.0 |
 └ ┘

 Matrix A is
 stored in general-band storage mode in the two-dimensional array AGB of
 size LDA by N, where LDA = 2ml+mu+16 = 23.
 The array AGB is declared as AGB(1:23,1:9).
 Note: Matrix A is
 the same matrix used in the examples in subroutines SGEF and DGEF
 (see Example
 1) and SGEFCD and DGEFCD (see Example).

 Call Statement and Input: AGB LDA N ML MU IPVT)
 | | | | | |
CALL SGBF(AGB , 23 , 9 , 2 , 3 , IPVT)

 ┌ ┐
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |
 | 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |
 | 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |
 | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 12.0000 |
 | 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 11.0000 0.0000 |
 | 4.0000 5.0000 6.0000 7.0000 8.0000 9.0000 10.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
AGB = | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 └ ┘

 Output:
 ┌ ┐
 | 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 |
 | 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |
 | 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 |
 | 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 12.0000 |
 | 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 11.0000 0.3111 |
 | 0.2500 0.2000 0.1600 0.1400 0.1250 0.1100 0.1000 5.5380 -325.00 |
 | 0.0000 0.1500 0.0000 0.0714 0.0000 -0.0556 -0.0306 0.9385 0.0000 |
 | 0.2500 0.1500 0.1000 0.0714 -0.0714 -0.0694 -0.0194 0.0000 0.0000 |
 | 0.2500 0.0000 0.1000 0.0000 0.0536 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
AGB = | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 |
 └ ┘

 IPVT = (2, -65534, -131070, -196606, -262142, -327678, -327678,
 -327680, -327680)

 	

 Parent topic: Linear Algebraic Equations

 SPBF, DPBF, SPBCHF, and DPBCHF (Positive Definite Symmetric
 Band Matrix Factorization)

 Purpose

 These subroutines factor positive
 definite symmetric band matrix A, stored in lower-band-packed
 storage mode, using:

 	Gaussian elimination for SPBF and DPBF

 	Cholesky factorization for SPBCHF and DPBCHF

 To solve the system of equations with one or more right-hand
 sides, follow the call to these subroutines with one or more calls
 to SPBS, DPBS, SPBCHS, or DPBCHS, respectively.

 Table 173. Data Types.

 	A

 	Subroutine

 	Short-precision real

 	SPBF and SPBCHF

 	Long-precision real

 	DPBF and DPBCHF

 Note:

 	The output from these factorization subroutines should be used
 only as input to the solve subroutines SPBS, DPBS, SPBCHS, and DPBCHS,
 respectively.

 	For optimal performance:

 	For wide band widths, use _PBCHF.

 	For narrow band widths, use either _PBF or _PBCHF.

 	For very narrow band widths:

 	Use either SPBF or SPBCHF.

 	Use DPBF.

 Syntax

 	Fortran

 	CALL SPBF | DPBF | SPBCHF | DPBCHF (apb, lda, n, m)

 	C and C++

 	spbf | dpbf | spbchf | dpbchf (apb, lda, n, m);

 	On Entry

 	

 	 apb

 	is the positive definite symmetric band matrix A of
 order n, stored in lower-band-packed storage mode,
 to be factored. It has a half band width of m.
 Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 173. See Notes.

 	 lda

 	is the leading dimension of the array specified for apb.
 Specified as: an integer; lda > 0 and lda > m.

 	 n

 	is the order n of matrix A. Specified
 as: an integer; n > m.

 	 m

 	is the half band width of the matrix A. Specified
 as: an integer; 0 ≤ m < n.

 	On Return

 	

 	 apb

 	is the transformed matrix A of order n,
 containing the results of the factorization. See Function. Returned as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 173. For
 further details, see Notes.

 Notes

 	These subroutines can be used for tridiagonal matrices (m = 1);
 however, the tridiagonal subroutines, SPTF/DPTF and SPTS/DPTS, are
 faster.

 	For SPBF and DPBF when m > 0, location APB(2,n)
 is sometimes set to 0.

 	For a description of how a positive definite symmetric band matrix
 is stored in lower-band-packed storage mode in an array, see Positive Definite Symmetric Band Matrix.

 Function

 The positive definite
 symmetric band matrix A, stored in lower-band-packed
 storage mode, is factored using Gaussian elimination in SPBF and DPBF
 and Cholesky factorization in SPBCHF and DPBCHF. The transformed matrix A contains
 the results of the factorization in packed format. This factorization
 can then be used by SPBS, DPBS, SPBCHS, and DPBCHS, respectively,
 to solve the system of equations.

 For performance reasons,
 divides are done in a way that reduces the effective exponent range
 for which DPBF works properly, when processing narrow band widths;
 therefore, you may want to scale your problem.

 Error conditions

 	[bookmark: am5gr_hspbf__am5gr_f10b104]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hspbf__am5gr_f10b105]
 Computational Errors

 	

 	Matrix A is not positive definite (for SPBF and
 DPBF).

 	One or more elements of D contain values less than
 or equal to 0; all elements of D are checked. The index i of
 the last nonpositive element encountered is identified in the computational
 error message.

 	The return code is set to 1.

 	i can be determined at run time by use of the
 ESSL error-handling facilities. To obtain this information, you must
 use ERRSET to change the number of allowable errors for error code
 2104 in the ESSL error option table; otherwise, the default value
 causes your program to terminate when this error occurs. For details,
 see Coding Your Program.

 	Matrix A is not positive definite (for SPBCHF and
 DPBCHF).

 	The leading minor of order i has a nonpositive
 determinant. The order i is identified in the computational
 error message.

 	The return code is set to 1.

 	i can be determined at run time by using the
 ESSL error-handling facilities. To obtain this information, you must
 use ERRSET to change the number of allowable errors for error code
 2115 in the ESSL error option table; otherwise, the default value
 causes your program to be terminate when this error occurs. For details,
 see Coding Your Program.

 	[bookmark: am5gr_hspbf__am5gr_f10b106]
 Input-Argument Errors

 	

 	lda ≤ 0

 	m < 0

 	m ≥ n

 	m ≥ lda

 Examples

 	Example 1

 	
 This example shows a factorization of a real positive definite
 symmetric band matrix A of order 9, using Gaussian elimination,
 where on input, matrix A is: ┌ ┐
 | 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 2.0 2.0 1.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 2.0 3.0 2.0 1.0 0.0 0.0 0.0 0.0 |
 | 0.0 1.0 2.0 3.0 2.0 1.0 0.0 0.0 0.0 |
 | 0.0 0.0 1.0 2.0 3.0 2.0 1.0 0.0 0.0 |
 | 0.0 0.0 0.0 1.0 2.0 3.0 2.0 1.0 0.0 |
 | 0.0 0.0 0.0 0.0 1.0 2.0 3.0 2.0 1.0 |
 | 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 2.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 |
 └ ┘

 and
 on output, matrix A is: ┌ ┐
 | 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 |
 | 0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 |
 | 0.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 |
 | 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 |
 | 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 |
 | 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 |
 └ ┘

 where
 array location APB(2,9) is set to 0.0.

 Call Statement and Input: APB LDA N M
 | | | |
CALL SPBF(APB , 3 , 9 , 2)

 ┌ ┐
 | 1.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 |
APB = | 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 . |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . . |
 └ ┘

 Output: ┌ ┐
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
APB = | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . . |
 └ ┘

 	Example 2

 	
 This example shows a Cholesky factorization of the same matrix
 used in Example 1.

 Call Statement and
 Input: APB LDA N M
 | | | |
CALL SPBCHF(APB , 3 , 9 , 2)

 APB =

 (same as input

 APB

 in Example 1)

 Output: ┌ ┐
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
APB = | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . . |
 └ ┘

 	

 Parent topic: Linear Algebraic Equations

 SPBS, DPBS, SPBCHS, and DPBCHS (Positive Definite Symmetric
 Band Matrix Solve)

 Purpose

 These subroutines solve the system Ax = b for x,
 where A is a positive definite symmetric band matrix,
 and x and b are vectors. They use the
 results of the factorization of matrix A, produced by
 a preceding call to SPBF, DPBF, SPBCHF, and DPBCHF, respectively,
 where:

 	Gaussian elimination was used by SPBF and DPBF.

 	Cholesky factorization was used by SPBCHF and DPBCHF.

 Table 174. Data
 Types.

 	A, b, x

 	Subroutine

 	Short-precision real

 	SPBS and SPBCHS

 	Long-precision real

 	DPBS and DPBCHS

 Note:

 	The input to these solve subroutines must be the output from the
 factorization subroutines SPBF, DPBF, SPBCHF, and DPBCHF, respectively.

 	For performance tradeoffs, see SPBF, DPBF, SPBCHF, and DPBCHF (Positive Definite Symmetric Band Matrix Factorization).

 Syntax

 	Fortran

 	CALL SPBS | DPBS | SPBCHS | DPBCHS (apb, lda, n, m, bx)

 	C and C++

 	spbs | dpbs | spbchs | dpbchs (apb, lda, n, m, bx);

 	On Entry

 	

 	 apb

 	is the factorization of matrix A, produced by a
 preceding call to SPBF or DPBF. Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 174. See Notes.

 	 lda

 	is the leading dimension of the array specified for apb.
 Specified as: an integer; lda > 0 and lda > m.

 	 n

 	is the order n of matrix A. Specified
 as: an integer; n > m.

 	 m

 	is the half band width of the matrix A. Specified
 as: an integer; 0 ≤ m < n.

 	 bx

 	is the vector b of length n,
 containing the right-hand side of the system. Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 174.

 	On Return

 	

 	 bx

 	is the solution vector x of length n,
 containing the results of the computation. Returned as: a one-dimensional
 array, containing numbers of the data type indicated in Table 174.

 Notes

 	The scalar data specified for input arguments lda, n,
 and m for these subroutines must be the same as
 that specified for SPBF, DPBF, SPBCHF, and DPBCHF, respectively.

 	The array data specified for input argument apb for
 these subroutines must be the same as the corresponding output argument
 for SPBF, DPBF, SPBCHF, and DPBCHF, respectively.

 	These subroutines can be used for tridiagonal matrices (m = 1);
 however, the tridiagonal subroutines, SPTF/DPTF and SPTS/DPTS, are
 faster.

 	The vectors and matrices used in this computation must have no
 common elements; otherwise, results are unpredictable. See Concepts.

 	For a description of how a positive definite symmetric band matrix
 is stored in lower-band-packed storage mode in an array, see Positive Definite Symmetric Band Matrix.

 Function

 The system Ax = b is
 solved for x, where A is a positive definite
 symmetric band matrix, stored in lower-band-packed storage mode, and x and b are
 vectors. These subroutines use the results of the factorization of
 matrix A, produced by a preceding call to SPBF, DPBF,
 SPBCHF, or DPBCHF, respectively.

 Error conditions

 	[bookmark: am5gr_hspbs__am5gr_f10b112]
 Computational Errors

 	None
 Note: If the factorization subroutine resulted in a nonpositive
 definite matrix, error 2104 for SPBF and DPBF or error 2115 for SPBCHF
 and DPBCHF, results of these subroutines may be unpredictable.

 	[bookmark: am5gr_hspbs__am5gr_f10b113]
 Input-Argument Errors

 	

 	lda ≤ 0

 	m < 0

 	m ≥ n

 	m ≥ lda

 Examples

 	Example 1

 	
 This example shows how to solve the system Ax = b,
 where matrix A is the same matrix factored in the Example 1 for
 SPBF and DPBF, using Gaussian elimination.

 Call
 Statement and Input: APB LDA N M BX
 | | | | |
CALL SPBS(APB , 3 , 9 , 2 , BX)

 APB =

 (same as output

 APB

 in

 Example 1

)

 BX = (3.0, 6.0, 9.0, 9.0, 9.0, 9.0, 9.0, 8.0, 6.0)

 Output:

 BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

 This
 example shows how to solve the system Ax = b,
 where matrix A is the same matrix factored in the Example 2 for
 SPBCHF and DPBCHF, using Cholesky factorization.

 Call Statement and Input: APB LDA N M BX
 | | | | |
CALL SPBCHS(APB , 3 , 9 , 2 , BX)

 APB =

 (same as output

 APB

 in

 Example 2

)

 BX = (3.0, 6.0, 9.0, 9.0, 9.0, 9.0, 9.0, 8.0, 6.0)

 Output: BX = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

 Parent topic: Linear Algebraic Equations

 SGTF and DGTF (General Tridiagonal Matrix Factorization)

 Purpose

 These subroutines compute the standard
 Gaussian factorization with partial pivoting for tridiagonal matrix A,
 stored in tridiagonal storage mode. To solve a tridiagonal system
 with one or more right-hand sides, follow the call to these subroutines
 with one or more calls to SGTS or DGTS, respectively.

 Table 175. Data Types.

 	c, d, e, f

 	Subroutine

 	Short-precision real

 	SGTF

 	Long-precision real

 	DGTF

 Note: The output from these factorization subroutines should
 be used only as input to the solve subroutines SGTS and DGTS, respectively.

 Syntax

 	Fortran

 	CALL SGTF | DGTF (n, c, d, e, f, ipvt)

 	C and C++

 	sgtf | dgtf (n, c, d, e, f, ipvt);

 	On Entry

 	

 	 n

 	is the order n of tridiagonal matrix A.
 Specified as: an integer; n ≥ 0.

 	 c

 	is the vector c, containing the lower subdiagonal
 of matrix A in positions 2 through n in
 an array, referred to as C. Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 175.

 	 d

 	is the vector d, containing the main diagonal of
 matrix A, in positions 1 through n in
 an array, referred to as D. Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 175.

 	 e

 	is the vector e, containing the upper subdiagonal
 of matrix A, in positions 1 through n-1
 in an array, referred to as E. Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 175.

 	 f

 	See On Return.

 	 ipvt

 	See On Return.

 	On Return

 	

 	 c

 	is the vector c, containing part of the factorization
 of matrix A in positions 1 through n in
 an array, referred to as C. Returned as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 175.

 	 d

 	is the vector d, containing part of the factorization
 of matrix A in an array, referred to as D.
 Returned as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 175.

 	 e

 	is the vector e, containing part of the factorization
 of the matrix A in positions 1 through n in
 an array, referred to as E. Returned as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 175.

 	 f

 	is the vector f, containing part of the factorization
 of matrix A in the first n positions
 in an array, referred to as F. Returned as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 175.

 	 ipvt

 	is the integer vector ipvt of length n,
 containing the pivot information. Returned as: a one-dimensional array
 of (at least) length n, containing integers.

 Notes

 	For a description of how tridiagonal matrices are stored, see General Tridiagonal Matrix.

 	ipvt is not a permutation vector in the strict sense.
 It is used to record column interchanges in the tridiagonal matrix
 due to partial pivoting.

 	The factorization matrix A is stored in nonstandard
 format.

 Function

 The standard Gaussian elimination
 with partial pivoting of tridiagonal matrix A is computed.
 The factorization is returned by overwriting input arrays C, D,
 and E, and by writing into output array F,
 along with pivot information in vector ipvt. This factorization
 can then be used by SGTS or DGTS, respectively, to solve tridiagonal
 systems of linear equations. See references [51], [63], [64], and [109]. If n is
 0, no computation is performed.

 Error conditions

 	[bookmark: am5gr_hsgtf__am5gr_f10b120]
 Computational Errors

 	Matrix A is singular or nearly singular.

 	A pivot element has a value that cannot be reciprocated or is
 equal to 0. The index i of the element is identified
 in the computational error message.

 	The return code is set to 1.

 	i can be determined at run time by use of the
 ESSL error-handling facilities. To obtain this information, you must
 use ERRSET to change the number of allowable errors for error code
 2105 in the ESSL error option table; otherwise, the default value
 causes your program to terminate when this error occurs. For details,
 see What Can You Do about ESSL Computational Errors?.

 	[bookmark: am5gr_hsgtf__am5gr_f10b121]
 Input-Argument Errors

 	
 n < 0

 Examples

 	[bookmark: am5gr_hsgtf__am5gr_xsvf]
 Example

 	
 This example shows how to factor the following tridiagonal
 matrix A of order 4: ┌ ┐
 | 2.0 2.0 0.0 0.0 |
 | 1.0 3.0 2.0 0.0 |
 | 0.0 1.0 3.0 2.0 |
 | 0.0 0.0 1.0 3.0 |
 └ ┘

 Call Statement and Input: N C D E F IPVT
 | | | | | |
CALL DGTF(4 , C , D , E , F , IPVT)

C = (. , 1.0, 1.0, 1.0)
D = (2.0, 3.0, 3.0, 3.0)
E = (2.0, 2.0, 2.0, .)

 Output:
 C = (. , -0.5, -0.5, -0.5)
D = (-0.5, -0.5, -0.5, -0.5)
E = (2.0, 2.0, 2.0, .)
IPVT = (X'00', X'00', X'00', X'00')

 Notes :

 	F is stored in an internal format and is passed
 unchanged to the solve subroutine.

 	A "." means you do not have to store a value
 in that position in the array. However, these storage positions are
 required and may be overwritten during the computation.

 Parent topic: Linear Algebraic Equations

 SGTS and DGTS (General Tridiagonal Matrix Solve)

 Purpose

 These subroutines solve a tridiagonal
 system of linear equations using the factorization of tridiagonal
 matrix A, stored in tridiagonal storage mode, produced
 by SGTF or DGTF, respectively.

 Table 176. Data Types.

 	c, d, e, f, b, x

 	Subroutine

 	Short-precision real

 	SGTS

 	Long-precision real

 	DGTS

 Note: The input to these solve subroutines must be the output
 from the factorization subroutines SGTF and DGTF, respectively.

 Syntax

 	Fortran

 	CALL SGTS | DGTS (n, c, d, e, f, ipvt, bx)

 	C and C++

 	sgts | dgts (n, c, d, e, f, ipvt, bx);

 	On Entry

 	

 	 n

 	is the order n of tridiagonal matrix A.
 Specified as: an integer; n ≥ 0.

 	 c

 	is the vector c, containing part of the factorization
 of matrix A from SGTF or DGTF, respectively, in an array,
 referred to as C. Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 176.

 	 d

 	is the vector d, containing part of the factorization
 of matrix A from SGTF or DGTF, respectively, in an array,
 referred to as D. Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 176.

 	 e

 	is the vector e, containing part of the factorization
 of matrix A from SGTF or DGTF, respectively, in an array,
 referred to as E. Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 176.

 	 f

 	is the vector f, containing part of the factorization
 of matrix A from SGTF or DGTF, respectively, in an array,
 referred to as F. Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 176.

 	 ipvt

 	is the integer vector ipvt of length n,
 containing the pivot information, produced by a preceding call to
 SGTF and DGTF, respectively. Specified as: a one-dimensional array
 of (at least) length n, containing integers.

 	 bx

 	is the vector b of length n,
 containing the right-hand side of the system in the first n positions
 in an array, referred to as BX. Specified as: a one-dimensional
 array of (at least) length n+1, containing numbers
 of the data type indicated in Table 176.
 For details on specifying the length, see Notes.

 	On Return

 	

 	 bx

 	is the solution vector x (at least) of length n,
 containing the solution of the tridiagonal system in the first n positions
 in an array, referred to as BX. Returned as: a one-dimensional
 array, of (at least) length (n+1), containing numbers
 of the data type indicated in Table 176.
 For details about the length, see Notes.

 Notes

 	For a description of how tridiagonal matrices are stored, see General Tridiagonal Matrix.

 	Array BX can have a length of n if
 memory location BX(n+1) is addressable—that
 is, not in read-protected storage. If it is in read-protected storage,
 array BX must have a length of n+1. In both cases,
 the vector b (on input) and vector x (on
 output) reside in positions 1 through n in array BX.
 Array location BX(n+1) is not
 altered by these subroutines.

 Function

 Given the factorization produced
 by SGTF or DGTF, respectively, these subroutines use the standard
 forward elimination and back substitution to solve the tridiagonal
 system Ax = b, where A is
 a general tridiagonal matrix. See references [51], [63], [64], and [109].

 Error conditions

 	[bookmark: am5gr_hsgts__am5gr_f10b126]
 Computational Errors

 	None

 	[bookmark: am5gr_hsgts__am5gr_f10b127]
 Input-Argument Errors

 	n < 0

 Examples

 	[bookmark: am5gr_hsgts__am5gr_xsgt1]
 Example

 	
 This example solves the tridiagonal system Ax = b, where
 matrix A is the same matrix factored in Example for
 SGTF and DGTF, and where:

 b

 = (4.0, 6.0, 6.0, 4.0)

 x

 = (1.0, 1.0, 1.0, 1.0)

 Call Statement and Input: N C D E F IPVT BX
 | | | | | | |
CALL DGTS(4 , C , D , E , F , IPVT , BX)

 C =

 (same as output

 C

 in

 Example

)

 D =

 (same as output

 D

 in

 Example

)

 E =

 (same as output

 E

 in

 Example

)

 F =

 (same as output

 F

 in

 Example

)

 IPVT =

 (same as output

 IPVT

 in

 Example

)

 BX =

 (4.0, 6.0, 6.0, 4.0, .)

 Output: BX = (1.0, 1.0, 1.0, 1.0, .)

 Parent topic: Linear Algebraic Equations

 SGTNP, DGTNP, CGTNP, and ZGTNP (General Tridiagonal Matrix
 Combined Factorization and Solve with No Pivoting)

 Purpose

 These subroutines solve the tridiagonal
 system Ax = b using Gaussian elimination,
 where tridiagonal matrix A is stored in tridiagonal
 storage mode.

 Table 177. Data Types.

 	c, d, e, b, x

 	Subroutine

 	Short-precision real

 	SGTNP

 	Long-precision real

 	DGTNP

 	Short-precision complex

 	CGTNP

 	Long-precision complex

 	ZGTNP

 Note: In general, these subroutines provide better performance
 than the _GTNPF and _GTNPS subroutines; however, in the following
 instances, you get better performance by using _GTNPF and _GTNPS:

 	For small n

 	When performing a single factorization followed by multiple solves

 Syntax

 	Fortran

 	CALL SGTNP | DGTNP | CGTNP | ZGTNP (n, c, d, e, bx)

 	C and C++

 	sgtnp | dgtnp | cgtnp | zgtnp (n, c, d, e, bx);

 	On Entry

 	

 	 n

 	is the order n of tridiagonal matrix A.
 Specified as: an integer; n ≥ 0.

 	 c

 	is the vector c, containing the lower subdiagonal
 of matrix A in positions 2 through n in
 an array, referred to as C. Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 177.
 On output, C is overwritten; that is, the original
 input is not preserved.

 	 d

 	is the vector d, containing the main diagonal of
 matrix A in positions 1 through n in
 an array, referred to as D. Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 177.
 On output, D is overwritten; that is, the original
 input is not preserved.

 	 e

 	is the vector e, containing the upper subdiagonal
 of matrix A in positions 1 through n-1
 in an array, referred to as E. Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 177.
 On output, E is overwritten; that is, the original
 input is not preserved.

 	 bx

 	is the vector b, containing the right-hand side
 of the system in the first n positions in an array,
 referred to as BX. Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 177.

 	On Return

 	

 	 bx

 	is the solution vector x of length n,
 containing the solution of the tridiagonal system in the first n positions
 in an array, referred to as BX. Returned as: a one-dimensional
 array, containing numbers of the data type indicated in Table 177.

 Notes

 For a description of how
 tridiagonal matrices are stored, see General Tridiagonal Matrix.

 Function

 The solution of the tridiagonal
 system Ax = b is computed by Gaussian
 elimination.

 No pivoting is done. Therefore, these subroutines
 should not be used when pivoting is necessary to maintain the numerical
 accuracy of the solution. Overflow may occur if small main diagonal
 elements are generated. Underflow or accuracy loss may occur if large
 main diagonal elements are generated.

 For performance reasons,
 complex divides are done without scaling. Computing the inverse in
 this way restricts the range of numbers for which the ZGTNP subroutine
 works properly.

 For performance reasons, divides are done in
 a way that reduces the effective exponent range for which DGTNP and
 ZGTNP work properly; therefore, you may want to scale your problem,
 such that the diagonal elements are close to 1.0 for DGTNP and (1.0,
 0.0) for ZGTNP.

 Error conditions

 	[bookmark: am5gr_hsgtnp__am5gr_f10b131]
 Computational Errors

 	None

 	[bookmark: am5gr_hsgtnp__am5gr_f10b132]
 Input-Argument Errors

 	
 n < 0

 Examples

 	Example 1

 	
 This example shows a factorization of the real tridiagonal
 matrix A, of order 4: ┌ ┐
 | 7.0 4.0 0.0 0.0 |
 | 1.0 8.0 5.0 0.0 |
 | 0.0 2.0 9.0 6.0 |
 | 0.0 0.0 3.0 10.0 |
 └ ┘

 It
 then finds the solution of the tridiagonal system Ax = b,
 where b is: (11.0, 14.0, 17.0, 13.0)

 and x is:
 (1.0, 1.0, 1.0, 1.0)

 On
 output, arrays C, D, and E are
 overwritten.

 Call Statement and Input:
 N C D E BX
 | | | | |
CALL DGTNP(4 , C , D , E , BX)

C = (. , 1.0, 2.0, 3.0)
D = (7.0, 8.0, 9.0, 10.0)
E = (4.0, 5.0, 6.0, .)
BX = (11.0, 14.0, 17.0, 13.0)

 Output: BX = (1.0, 1.0, 1.0, 1.0)

 	Example 2

 	
 This example shows a factorization of the complex tridiagonal
 matrix A, of order 4: ┌ ┐
 | (7.0, 7.0) (4.0, 4.0) (0.0, 0.0) (0.0, 0.0) |
 | (1.0, 1.0) (8.0, 8.0) (5.0, 5.0) (0.0, 0.0) |
 | (0.0, 0.0) (2.0, 2.0) (9.0, 9.0) (6.0, 6.0) |
 | (0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (10.0, 10.0) |
 └ ┘

 It
 then finds the solution of the tridiagonal system Ax = b,
 where b is: ((-11.0,19.0), (-14.0,50.0), (-17.0,93.0), (-13.0,85.0))

 and x is:
 ((1.0,-1.0), (2.0,-2.0), (3.0,-3.0), (4.0,-4.0))

 On
 output, arrays C, D, and E are
 overwritten.

 Call Statement and Input:
 N C D E BX
 | | | | |
CALL ZGTNP(4 , C , D , E , BX)

C = (. , (1.0, 1.0), (2.0, 2.0), (3.0, 3.0))
D = ((7.0, 7.0), (8.0, 8.0), (9.0, 9.0), (10.0, 10.0))
E = ((4.0, 4.0), (5.0, 5.0), (6.0, 6.0), .)
BX = ((-11.0, 19.0), (-14.0, 50.0), (-17.0, 93.0), (-13.0, 85.0))

 Output: BX = ((0.0, 1.0), (1.0, 2.0), (2.0, 3.0), (3.0, 4.0))

 Parent topic: Linear Algebraic Equations

 SGTNPF, DGTNPF, CGTNPF, and ZGTNPF (General Tridiagonal Matrix
 Factorization with No Pivoting)

 Purpose

 These subroutines factor tridiagonal
 matrix A, stored in tridiagonal storage mode, using
 Gaussian elimination. To solve a tridiagonal system of linear equations
 with one or more right-hand sides, follow the call to these subroutines
 with one or more calls to SGTNPS, DGTNPS, CGTNPS, or ZGTNPS, respectively.

 Table 178. Data Types.

 	c, d, e

 	Subroutine

 	Short-precision real

 	SGTNPF

 	Long-precision real

 	DGTNPF

 	Short-precision complex

 	CGTNPF

 	Long-precision complex

 	ZGTNPF

 Note:

 	The output from these factorization subroutines should be used
 only as input to the solve subroutines SGTNPS, DGTNPS, CGTNPS, and
 ZGTNPS, respectively.

 	In general, the _GTNP subroutines provide better performance than
 the _GTNPF and _GTNPS subroutines; however, in the following instances,
 you get better performance by using _GTNPF and _GTNPS:

 	For small n

 	When performing a single factorization followed by multiple solves

 Syntax

 	Fortran

 	CALL SGTNPF | DGTNPF | CGTNPF | ZGTNPF (n, c, d, e, iopt)

 	C and C++

 	sgtnpf | dgtnpf | cgtnpf | zgtnpf (n, c, d, e, iopt);

 	On Entry

 	

 	n

 	is the order n of tridiagonal matrix A.
 Specified as: an integer; n ≥ 0.

 	c

 	is the vector c, containing the lower subdiagonal
 of matrix A in positions 2 through n in
 an array, referred to as C. Specified as: a one-dimensional
 array, of (at least) length n, containing numbers
 of the data type indicated in Table 178.

 	d

 	is the vector d, containing the main diagonal of
 matrix A in positions 1 through n in
 an array, referred to as D. Specified as: a one-dimensional
 array, of (at least) length n, containing numbers
 of the data type indicated in Table 178.

 	e

 	is the vector e, containing the upper subdiagonal
 of matrix A in positions 1 through n-1
 in an array, referred to as E. Specified as: a one-dimensional
 array, of (at least) length n, containing numbers
 of the data type indicated in Table 178.

 	 iopt

 	indicates the type of computation to be performed, where:

 If

 iopt

 =

 0 or 1, Gaussian elimination is used to factor the matrix.

 Specified
 as: an integer; iopt = 0 or 1.

 	On Return

 	

 	 c

 	is the vector c, containing part of the factorization
 of matrix A in positions 1 through n in
 an array, referred to as C. Returned as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 178.

 	 d

 	is the vector d, containing part of the factorization
 of matrix A in an array, referred to as D.
 Returned as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 178.

 	 e

 	is the vector e, containing part of the factorization
 of matrix A in positions 1 through n in
 an array, referred to as E. Returned as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 178.
 It has the same length as E on entry.

 Notes

 For a description of how
 tridiagonal matrices are stored, see General Tridiagonal Matrix.

 Function

 The factorization of a diagonally-dominant
 tridiagonal matrix A is computed using Gaussian elimination,
 This factorization can then be used by SGTNPS, DGTNPS, CGTNPS, or
 ZGTNPS respectively, to solve the tridiagonal systems of linear equations.
 See reference [91].

 No
 pivoting is done by these subroutines. Therefore, these subroutines
 should not be used when pivoting is necessary to maintain the numerical
 accuracy of the solution. Overflow may occur if small main diagonal
 elements are generated. Underflow or accuracy loss may occur if large
 main diagonal elements are generated.

 For performance reasons,
 complex divides are done without scaling. Computing the inverse in
 this way restricts the range of numbers for which ZGTNPF works properly.

 For
 performance reasons, divides are done in a way that reduces the effective
 exponent range for which DGTNPF and ZGTNPF work properly; therefore,
 you may want to scale your problem, such that the diagonal elements
 are close to 1.0 for DGTNPF and (1.0, 0.0) for ZGTNPF.

 Error conditions

 	[bookmark: am5gr_hsgtnpf__am5gr_f10b138]
 Computational Errors

 	None

 	[bookmark: am5gr_hsgtnpf__am5gr_f10b139]
 Input-Argument Errors

 	

 	n < 0

 	iopt ≠ 0 or 1

 Examples

 	Example 1

 	
 This example shows a factorization of the tridiagonal matrix A, of
 order 4: ┌ ┐
 | 1.0 1.0 0.0 0.0 |
 | 1.0 2.0 1.0 0.0 |
 | 0.0 1.0 3.0 1.0 |
 | 0.0 0.0 1.0 1.0 |
 └ ┘

 Call Statement and Input: N C D E IOPT
 | | | | |
CALL DGTNPF(4 , C , D , E , 0)

C = (. , 1.0, 1.0, 1.0)
D = (1.0, 2.0, 3.0, 1.0)
E = (1.0, 1.0, 1.0, .)

 Output:
 C = (. , -1.0, -1.0, 1.0)
D = (-1.0, -1.0, -1.0, -1.0)
E = (1.0, 1.0, -1.0, .)

 	Example 2

 	
 This example shows a factorization of the tridiagonal matrix A, of
 order 4: ┌ ┐
 | (7.0, 7.0) (4.0, 4.0) (0.0, 0.0) (0.0, 0.0) |
 | (1.0, 1.0) (8.0, 8.0) (5.0, 5.0) (0.0, 0.0) |
 | (0.0, 0.0) (2.0, 2.0) (9.0, 9.0) (6.0, 6.0) |
 | (0.0, 0.0) (0.0, 0.0) (3.0, 3.0) (10.0, 10.0) |
 └ ┘

 Call Statement and Input: N C D E IOPT
 | | | | |
CALL ZGTNPF(4 , C , D , E , 0)

C = (. , (1.0, 1.0), (2.0, 2.0), (3.0, 3.0))
D = ((7.0, 7.0), (8.0, 8.0), (9.0, 9.0), (10.0, 10.0))
E = ((4.0, 4.0), (5.0, 5.0), (6.0, 6.0), .)

 Output: C = (. , (-0.142, 0.0), (-0.269, 0.0), (3.0, 3.0))
D = ((-0.0714, 0.0714), (-0.0673, 0.0673), (-0.0854, 0.0854),
 (-0.05, 0.05))
E = ((4.0, 4.0), (5.0, 5.0), (-0.6, 0.0), .)

 Notes :

 	A "." means you do not have to store a value
 in that position in the array. However, these storage positions are
 required and may be overwritten during the computation.

 Parent topic: Linear Algebraic Equations

 SGTNPS, DGTNPS, CGTNPS, and ZGTNPS (General Tridiagonal Matrix
 Solve with No Pivoting)

 Purpose

 These subroutines solve a tridiagonal
 system of equations using the factorization of matrix A,
 stored in tridiagonal storage mode, produced by SGTNPF, DGTNPF, CGTNPF,
 or ZGTNPF, respectively.

 Table 179. Data Types.

 	c, d, e, b, x

 	Subroutine

 	Short-precision real

 	SGTNPS

 	Long-precision real

 	DGTNPS

 	Short-precision complex

 	CGTNPS

 	Long-precision complex

 	ZGTNPS

 Note: The input to these solve subroutines must be the output
 from the factorization subroutines SGTNPF, DGTNPF, CGTNPF, and ZGTNPF,
 respectively.

 Syntax

 	Fortran

 	CALL SGTNPS | DGTNPS | CGTNPS | ZGTNPS (n, c, d, e, bx)

 	C and C++

 	sgtnps | dgtnps | cgtnps | zgtnps (n, c, d, e, bx);

 	On Entry

 	

 	 n

 	is the order n of tridiagonal matrix A.
 Specified as: an integer; n ≥ 0.

 	 c

 	is the vector c, containing part of the factorization
 of matrix A from SGTNPF, DGTNPF, CGTNPF, and ZGTNPF,
 respectively, in an array, referred to as C. Specified
 as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 179.

 	d

 	is the vector d, containing part of the factorization
 of matrix A from SGTNPF, DGTNPF, CGTNPF, and ZGTNPF,
 respectively, in an array, referred to as D. Specified
 as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 179.

 	 e

 	is the vector e, containing part of the factorization
 of matrix A from SGTNPF, DGTNPF, CGTNPF, and ZGTNPF,
 respectively, in an array, referred to as E. Specified
 as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 179.

 	 bx

 	is the vector b, containing the right-hand side
 of the system in the first n positions in an array,
 referred to as BX. Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 179.

 	On Return

 	

 	 bx

 	is the solution vector x of length n,
 containing the solution of the tridiagonal system in the first n positions
 in an array, referred to as BX. Returned as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 179.

 Notes

 For a description of how
 tridiagonal matrices are stored, see General Tridiagonal Matrix.

 Function

 The solution of tridiagonal system Ax = b is
 computed using the factorization produced by SGTNPF, DGTNPF, CGTNPF,
 or ZGTNPF, respectively. The factorization is based on Gaussian elimination.
 See reference [91].

 Error conditions

 	[bookmark: am5gr_hsgtnps__am5gr_f10b146]
 Computational Errors

 	None

 	[bookmark: am5gr_hsgtnps__am5gr_f10b147]
 Input-Argument Errors

 	n < 0

 Examples

 	Example 1

 	
 This example finds the solution of tridiagonal system Ax = b,
 where matrix A is the same matrix factored in Example 1 for
 SGTNPF and DGTNPF. b is: (2.0, 4.0, 5.0, 2.0)

 and x is:
 (1.0, 1.0, 1.0, 1.0)

 Call Statement and Input: N C D E BX
 | | | | |
CALL DGTNPS(4 , C , D , E , BX)

 C =

 (same as output

 C

 in

 Example 1

)

 D =

 (same as output

 D

 in

 Example 1

)

 E =

 (same as output

 E

 in

 Example 1

)

 BX =

 (2.0, 4.0, 5.0, 2.0)

 Output: BX = (1.0, 1.0, 1.0, 1.0)

 	Example 2

 	
 This example finds the solution of tridiagonal system Ax = b,
 where matrix A is the same matrix factored in Example 2 for
 CGTNPF and ZGTNPF. b is: ((-11.0,19.0), (-14.0,50.0), (-17.0,93.0), (-13.0,85.0))

 and x is:
 ((0.0,1.0), (1.0,2.0), (2.0,3.0), (3.0,4.0))

 Call Statement and Input: N C D E BX
 | | | | |
CALL ZGTNPS(4 , C , D , E , BX)

 C =

 (same as output

 C

 in

 Example 2

)

 D =

 (same as output

 D

 in

 Example 2

)

 E =

 (same as output

 E

 in

 Example 2

)

 BX =

 ((-11.0, 19.0), (-14.0, 50.0), (-17.0, 93.0), (-13.0, 8))

 Output: BX = ((0.0, 1.0), (1.0, 2.0), (2.0, 3.0), (3.0, 4.0))

 Parent topic: Linear Algebraic Equations

 SPTF and DPTF (Positive Definite Symmetric Tridiagonal Matrix
 Factorization)

 Purpose

 These subroutines factor symmetric
 tridiagonal matrix A, stored in symmetric-tridiagonal
 storage mode, using Gaussian elimination. To solve a tridiagonal system
 of linear equations with one or more right-hand sides, follow the
 call to these subroutines with one or more calls to SPTS or DPTS,
 respectively.

 Table 180. Data
 Types.

 	c, d

 	Subroutine

 	Short-precision real

 	SPTF

 	Long-precision real

 	DPTF

 Note: The output from these factorization subroutines should
 be used only as input to the solve subroutines SPTS and DPTS, respectively.

 Syntax

 	Fortran

 	CALL SPTF | DPTF (n, c, d, iopt)

 	C and C++

 	sptf | dptf (n, c, d, iopt);

 	On Entry

 	

 	 n

 	is the order n of tridiagonal matrix A.
 Specified as: an integer; n ≥ 0.

 	 c

 	is the vector c, containing the off-diagonal of
 matrix A in positions 2 through n in
 an array, referred to as C. Specified as: a one-dimensional
 array, of (at least) length n, containing numbers
 of the data type indicated in Table 180.

 	 d

 	is the vector d, containing the main diagonal of
 matrix A in positions 1 through n in
 an array referred to as D. Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 180.

 	 iopt

 	indicates the type of computation to be performed, where:

 If

 iopt

 =

 0 or 1, Gaussian elimination is used to factor the matrix.

 Specified
 as: an integer; iopt = 0 or 1.

 	On Return

 	

 	 c

 	is the vector c, containing part of the factorization
 of matrix A in an array, referred to as C.
 Returned as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 180.

 	 d

 	is the vector d, containing part of the factorization
 of matrix A in positions 1 through n in
 an array, referred to as D. Returned as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 180.
 It has the same length as D on entry.

 Notes

 For a description of how
 positive definite symmetric tridiagonal matrices are stored, see Positive Definite Symmetric Tridiagonal Matrix.

 Function

 The factorization of positive
 definite symmetric tridiagonal matrix A is computed
 using Gaussian elimination. This factorization can then be used by
 SPTS or DPTS, respectively, to solve the tridiagonal systems of linear
 equations. See reference [91].

 No
 pivoting is done. Therefore, these subroutines should not be used
 when pivoting is necessary to maintain the numerical accuracy of the
 solution. Overflow may occur if small pivots are generated.

 For
 performance reasons, divides are done in a way that reduces the effective
 exponent range for which DPTF works properly; therefore, you may want
 to scale your problem, such that the diagonal elements are close to
 1.0 for DPTF.

 Error conditions

 	[bookmark: am5gr_hsptf__am5gr_f10b153]
 Computational Errors

 	None
 Note: There is no test for positive definiteness in these
 subroutines.

 	[bookmark: am5gr_hsptf__am5gr_f10b154]
 Input-Argument Errors

 	

 	n < 0

 	iopt ≠ 0 or 1

 Examples

 	[bookmark: am5gr_hsptf__am5gr_xspt1]
 Example

 	
 This example shows a factorization of the tridiagonal matrix A, of
 order 4: ┌ ┐
 | 1.0 1.0 0.0 0.0 |
 | 1.0 2.0 1.0 0.0 |
 | 0.0 1.0 3.0 1.0 |
 | 0.0 0.0 1.0 1.0 |
 └ ┘

 Call Statement and Input: N C D IOPT
 | | | |
CALL DPTF(4 , C , D , 0)

C = (. , 1.0, 1.0, 1.0)
D = (1.0, 2.0, 3.0, 1.0)

 Output:
 C = (. , -1.0, -1.0, -1.0)
D = (-1.0, -1.0, -1.0, -1.0)

 	[bookmark: am5gr_hsptf__am5grf10b157]
 Note

 	A "." means you do not have to store a value
 in that position in the array. However, these storage positions are
 required and may be overwritten during the computation.

 Parent topic: Linear Algebraic Equations

 SPTS and DPTS (Positive Definite Symmetric Tridiagonal Matrix
 Solve)

 Purpose

 These subroutines solve a positive
 definite symmetric tridiagonal system of equations using the factorization
 of matrix A, stored in symmetric-tridiagonal storage
 mode, produced by SPTF and DPTF, respectively.

 Table 181. Data Types.

 	c, d, b, x

 	Subroutine

 	Short-precision real

 	SPTS

 	Long-precision real

 	DPTS

 Note: The input to these solve subroutines must be the output
 from the factorization subroutines SPTF and DPTF, respectively.

 Syntax

 	Fortran

 	CALL SPTS | DPTS (n, c, d, bx)

 	C and C++

 	spts | dpts (n, c, d, bx);

 	On Entry

 	

 	 n

 	is the order n of tridiagonal matrix A.
 Specified as: an integer; n ≥ 0.

 	 c

 	is the vector c, containing part of the factorization
 of matrix A from SPTF or DPTF, respectively, in an array,
 referred to as C. Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 181.

 	 d

 	is the vector d, containing part of the factorization
 of matrix A from SPTF or DPTF, respectively, in an array,
 referred to as D. Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 181.

 	 bx

 	is the vector b, containing the right-hand side
 of the system in the first n positions in an array,
 referred to as BX. Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 181.

 	On Return

 	

 	 bx

 	is the solution vector x of length n,
 containing the solution of the tridiagonal system in the first n positions
 in an array, referred to as BX. Returned as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 181.

 Notes

 For a description of how
 tridiagonal matrices are stored, see Positive Definite or Negative Definite Symmetric Matrix.

 Function

 The solution of positive definite
 symmetric tridiagonal system Ax = b is computed using
 the factorization produced by SPTF or DPTF, respectively. The factorization
 is based on Gaussian elimination. See reference [91].

 Error conditions

 	[bookmark: am5gr_hspts__am5gr_f10b159]
 Computational Errors

 	None

 	[bookmark: am5gr_hspts__am5gr_f10b160]
 Input-Argument Errors

 	
 n < 0

 Examples

 	[bookmark: am5gr_hspts__am5gr_xspt1x]
 Example

 	
 This example finds the solution of tridiagonal system Ax = b,
 where matrix A is the same matrix factored in Example for
 SPTF and DPTF. b is: (2.0, 4.0, 5.0, 2.0)

 and x is:
 (1.0, 1.0, 1.0, 1.0)

 Call Statement and Input: N C D BX
 | | | |
CALL DPTS(4 , C , D , BX)

C = (. , -1.0, -1.0, -1.0)
D = (-1.0, -1.0, -1.0, -1.0)
BX = (2.0, 4.0, 5.0, 2.0)

 Output:
 BX = (1.0, 1.0, 1.0, 1.0)

 Parent topic: Linear Algebraic Equations

 Sparse Linear Algebraic Equation Subroutines

 This contains the sparse linear algebraic equation
 subroutine descriptions.

 Parent topic: Linear Algebraic Equations

 DGSF (General Sparse Matrix Factorization Using Storage by
 Indices, Rows, or Columns)

 Purpose

 This subroutine factors sparse
 matrix A by Gaussian elimination, using a modified Markowitz
 count with threshold pivoting. The sparse matrix can be stored by
 indices, rows, or columns. To solve the system of equations, follow
 the call to this subroutine with a call to DGSS.

 Syntax

 	Fortran

 	CALL DGSF (iopt, n, nz, a, ia, ja, lna, iparm, rparm, oparm, aux, naux)

 	C and C++

 	dgsf (iopt, n, nz, a, ia, ja, lna, iparm, rparm, oparm, aux, naux);

 	On Entry

 	

 	 iopt

 	indicates the storage technique used for sparse matrix A,
 where:
 If iopt = 0, it is stored by indices.

 If iopt = 1,
 it is stored by rows.

 If iopt = 2,
 it is stored by columns.

 Specified as: an integer; iopt = 0,
 1, or 2.

 	 n

 	is the order n of sparse matrix A.
 Specified as: an integer; n ≥ 0.

 	 nz

 	is the number of elements in sparse matrix A, stored
 in an array, referred to as A.
 Specified as:
 an integer; nz > 0.

 	 a

 	is the sparse matrix A, to be factored, stored in
 an array, referred to as A.
 Specified as: an
 array of length lna, containing long-precision
 real numbers.

 	 ia

 	is the array, referred to as IA, where:
 If iopt = 0,
 it contains the row numbers that correspond to the elements in array A.

 If iopt = 1,
 it contains the row pointers.

 If iopt = 2,
 it contains the row numbers that correspond to the elements in array A.

 Specified
 as: an array of length lna, containing integers; IA(i) ≥ 1. See Sparse Matrix for more information
 on storage techniques.

 	 ja

 	is the array, referred to as JA, where:
 If iopt = 0,
 it contains the column numbers that correspond to the elements in
 array A.

 If iopt = 1,
 it contains the column numbers that correspond to the elements in
 array A.

 If iopt = 2,
 it contains the column pointers.

 Specified as: an array of
 length lna, containing integers; JA(i) ≥ 1. See Sparse Matrix for more information
 on storage techniques.

 	 lna

 	is the length of the arrays specified for a, ia,
 and ja.
 Specified as: an integer; lna > 2nz.
 If you do not specify a sufficient amount, it results in an error.
 See Error conditions.

 The size
 of lna depends on the structure of the input matrix.
 The requirement that lna > 2nz does
 not guarantee a successful run of the program. If the input matrix
 is expected to have many fill-ins, lna should be
 set larger. Larger lna may result in a performance
 improvement.

 For details on how lna relates
 to storage compressions, see Performance and Accuracy Considerations.

 	 iparm

 	is an array of parameters, IPARM(i),
 where:

 	IPARM(1) determines whether the default values
 for iparm and rparm are used
 by this subroutine.
 If IPARM(1) = 0,
 the following default values are used:

 IPARM(2)

 =

 10

 IPARM(3)

 =

 1

 IPARM(4)

 =

 0

 RPARM(1)

 =

 10

 -12

 RPARM(2)

 =

 0.1

 If IPARM(1) = 1,
 the default values are not used.

 	IPARM(2) determines the number of minimal Markowitz
 counts that are examined to determine a pivot. (See reference [121].)

 	IPARM(3) has the following meaning, where:
 If IPARM(3) = 0,
 this subroutine checks the values in arrays IA and JA.

 If IPARM(3) = 1,
 this subroutine assumes that the input values are correct in arrays IA and JA.

 	IPARM(4) has the following meaning, where:
 If IPARM(4) = 0,
 this computation is not performed.

 If IPARM(4) = 1,
 this subroutine computes:

 The absolute value of the smallest pivot element

 The absolute value of the largest element in

 U

 .

 These
 values are stored in OPARM(2) and OPARM(3),
 respectively.

 	IPARM(5) is reserved.

 Specified as: an array of (at least) length 5, containing integers,
 where the iparm values must be:

 IPARM(1)

 =

 0 or 1

 IPARM(2)

 ≥

 1

 IPARM(3)

 =

 0 or 1

 IPARM(4)

 =

 0 or 1

 	 rparm

 	is an array of parameters, RPARM(i),
 where:

 	RPARM(1) contains the lower bound of the absolute
 value of all elements in the matrix. If a pivot element is less than
 this number, the matrix is reported as singular. Any computed element
 whose absolute value is less than this number is set to 0.

 	RPARM(2) is the threshold pivot tolerance used
 to control the choice of pivots.

 	RPARM(3) is reserved.

 	RPARM(4) is reserved.

 	RPARM(5) is reserved.

 Specified as: a one-dimensional array of (at least) length
 5, containing long-precision real numbers, where the rparm values
 must be:

 RPARM(1)

 ≥

 0.0

 0.0

 ≤

 RPARM(2)

 ≤

 1.0

 For
 additional information about rparm, see Performance and Accuracy Considerations.

 	 oparm

 	See On Return.

 	 aux

 	is the storage work area used by this subroutine. Its size is
 specified by naux.
 Specified as: an area of
 storage, containing long-precision real numbers.

 	 naux

 	is the size of the work area specified by aux—that
 is, the number of elements in aux.
 Specified
 as: an integer.

 	For 32-bit integer arguments

 	naux ≥ 10n+100.

 	For 64-bit integer arguments

 	naux ≥ 18n+100.

 	On Return

 	

 	 a

 	is the transformed array, referred to as A, containing
 the factored matrix A, required as input to DGSS. Returned
 as: a one-dimensional array of length lna, containing
 long-precision real numbers.

 	 ia

 	is the transformed array, referred to as IA,
 required as input to DGSS. Returned as: a one-dimensional array of
 length lna, containing integers.

 	 ja

 	is the transformed array, referred to as JA,
 required as input to DGSS. Returned as: a one-dimensional array of
 length lna, containing integers.

 	 oparm

 	is an array of parameters, OPARM(i),
 where:

 	OPARM(1) is the amount of fill-ins for the sparse
 processing portion of the algorithm.

 	OPARM(2) contains the absolute value of the smallest
 pivot element of the matrix. This value is computed and set only
 if IPARM(4) = 1.

 	OPARM(3) contains the absolute value of the
 largest element encountered in U after the factorization.
 This value is computed and set only if IPARM(4) = 1.

 	OPARM(4) is reserved.

 	OPARM(5) is reserved.

 Returned as: a one-dimensional array of length 5, containing
 long-precision real numbers.

 	 aux

 	is the storage work area used by this subroutine. It contains
 the information required as input for DGSS.
 Specified as: an area
 of storage, containing long-precision real numbers.

 Notes

 	For a description of the three storage techniques used by this
 subroutine for sparse matrices, see Sparse Matrix.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 The matrix A is
 factored by Gaussian elimination, using a modified Markowitz count
 with threshold pivoting to compute the sparse LU factorization of A:

 LU

 =

 PAQ

 where:

 A is
 a general sparse matrix of order n, stored by indices,
 columns, or rows in arrays A, IA,
 and JA.

 L is a unit lower triangular
 matrix.

 U is an upper triangular matrix.

 P is
 a permutation matrix.

 Q is a permutation matrix.

 To
 solve the system of equations, follow the call to this subroutine
 with a call to DGSS. If n is 0, no computation
 is performed. See references [16], [56], and [112].

 Error conditions

 	[bookmark: am5gr_hdgsf__am5gr_f10c002]
 Computational Errors

 	

 	If this subroutine has to perform storage compressions, an attention
 message is issued. When this occurs, the performance of this subroutine
 is affected. The performance can be improved by increasing the value
 specified for lna.

 	The following errors with their corresponding return codes can
 occur in this subroutine. Where a value of i is
 indicated, it can be determined at run time by use of the ESSL error-handling
 facilities. To obtain this information, you must use ERRSET to change
 the number of allowable errors for that particular error code in the
 ESSL error option table; otherwise, the default value causes your
 program to terminate when the error occurs. For details, see What Can You Do about ESSL Computational Errors?.

 	For error 2117, return code 2 indicates that the pivot element
 in a column, i, is smaller than the value specified
 in RPARM(1).

 	For error 2118, return code 3 indicates that pivot element in
 a row, i, is smaller than the value specified in RPARM(1).

 	For error 2120, return code 4 indicates that a row, i,
 is found empty on factorization. The matrix is singular.

 	For error 2121, return code 5 indicates that a column is found
 empty on factorization. The matrix is singular.

 	For error 2119, return code 6 indicates that the storage space
 indicated by lna is insufficient.

 	For error 2122, return code 7 indicates that no pivot element
 was found in the active submatrix.

 	[bookmark: am5gr_hdgsf__am5gr_f10c003]
 Input-Argument Errors

 	

 	iopt ≠ 0, 1, or 2

 	n < 0

 	nz ≤ 0

 	lna ≤ 2nz

 	IPARM(1) ≠ 0 or 1

 	IPARM(2) ≤ 0

 	IPARM(3) ≠ 0 or 1

 	IPARM(4) ≠ 0 or 1

 	RPARM(1) < 0.0

 	RPARM(2) < 0.0 or RPARM(2) > 1.0

 	iopt = 1 and ia(i) ≥ ia (i+1), i = 1, n

 	iopt = 2 and ja(i) ≥ ja(i+1), i = 1, n

 	iopt = 0 or 1 and ja(i) < 1
 or ja(i) > n, i = 1, nz

 	iopt = 0 or 1 and ia(i) < 1
 or ia(i) > n, i = 1, nz

 	There are duplicate indices in a row or column of the input matrix.

 	The matrix is singular if a row or column of the input matrix
 is empty.

 	naux is too small—that is, less than the minimum required value.
 Return code 1 is returned if error 2015 is recoverable.

 Examples

 	[bookmark: am5gr_hdgsf__am5gr_e12345]
 Example

 	
 This example factors 5 by 5 sparse matrix A,
 which is stored by indices in arrays A, IA,
 and JA. The three storage techniques are shown in
 this example, and the output is the same regardless of the storage
 technique used. The matrix is factored using Gaussian elimination
 with threshold pivoting. Matrix A is: ┌ ┐
 | 2.0 0.0 4.0 0.0 0.0 |
 | 1.0 1.0 0.0 0.0 3.0 |
 | 0.0 0.0 3.0 4.0 0.0 |
 | 2.0 2.0 0.0 1.0 5.0 |
 | 0.0 0.0 1.0 1.0 0.0 |
 └ ┘

 Note: In
 this example, only nonzero elements are used as input to the matrix.

 Call Statement and Input (Storage-By-Indices):

 IOPT N NZ A IA JA LNA IPARM RPARM OPARM AUX NAUX
 | | | | | | | | | | | |
CALL DGSF(0 , 5, 13, A, IA, JA, 27 , IPARM, RPARM, OPARM, AUX, 150)

 A = (2.0, 1.0, 1.0, 3.0, 4.0, 1.0, 5.0, 2.0, 2.0, 1.0, 1.0,
 4.0, 3.0, . , . , . , . , . , . , . , . , . , . , . , . ,
 . , .)
IA = (1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 1, 2, . , . , . , . ,
 . , . , . , . , . , . , . , . , . , .)
JA = (1, 1, 2, 3, 4, 4, 5, 1, 2, 3, 4, 3, 5, . , . , . , . ,
 . , . , . , . , . , . , . , . , . , .)
IPARM = (1, 3, 1, 1)
RPARM = (1.D-12, 0.1D0)

 Call
 Statement and Input (Storage-By-Rows):

 IOPT N NZ A IA JA LNA IPARM RPARM OPARM AUX NAUX
 | | | | | | | | | | | |
CALL DGSF(1 , 5, 13, A, IA, JA, 27 , IPARM, RPARM, OPARM, AUX, 150)

 A = (2.0, 4.0, 1.0, 1.0, 3.0, 3.0, 4.0, 2.0, 2.0, 1.0, 5.0,
 1.0, 1.0, . , . , . , . , . , . , . , . , . , . , . , . ,
 . , .)
IA = (1, 3, 6, 8, 12, 14, . , . , . , . , . , . , . , . , . ,
 . , . , . , . , .)
JA = (1, 3, 1, 2, 5, 3, 4, 1, 2, 4, 5, 3, 4, . , . , . , . ,
 . , . , . , . , . , . , . , . , . , .)
IPARM = (1, 3, 1, 1)
RPARM = (1.D-12, 0.1D0)

 Call
 Statement and Input (Storage-By-Columns):

 IOPT N NZ A IA JA LNA IPARM RPARM OPARM AUX NAUX
 | | | | | | | | | | | |
CALL DGSF(2 , 5, 13, A, IA, JA, 27 , IPARM, RPARM, OPARM, AUX, 150)

 A = (2.0, 1.0, 2.0, 1.0, 2.0, 4.0, 3.0, 1.0, 4.0, 1.0, 1.0,
 3.0, 5.0, . , . , . , . , . , . , . , . , . , . , . , . ,
 . , .)
IA = (1, 2, 4, 2, 4, 1, 3, 5, 3, 4, 5, 2, 4, . , . , . , . ,
 . , . , . , . , . , . , . , . , . , .)
JA = (1, 4, 6, 9, 12, 14, . , . , . , . , . , . , . , . , . ,
 . , . , . , . , .)
IPARM = (1, 3, 0, 1)
RPARM = (1.D-12, 0.1D0)

 Output:
 A = (0.5, . , 0.3, 1.0, . , 1.0, . , 3.0, . , . , . , 1.0,
 1.0, . , . , . , . , . , . , . , -1.7, -0.5, -1.0, -1.0,
 4.0, -3.0, -4.0)
IA = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . , . , . , . ,
 . , . , . , 2, 1, 1, 3, 3, 5, 5)
JA = (1, 0, 5, 2, 0, 4, 0, 2, 0, 0, 0, 3, 4, . , . , . , . ,
 . , . , . , 4, 2, 4, 4, 1, 3, 1)
OPARM = (1.000000, 0.333333, 3.000000)

 Note: On input, a "." means that you do not have
 to store a value in that position in the array. However, the storage
 position is required and may be overwritten during the computation.
 On output, a "." means that the value in that position in the
 array is not significant.

 Parent topic: Linear Algebraic Equations

 DGSS (General Sparse Matrix or Its Transpose Solve Using Storage
 by Indices, Rows, or Columns)

 Purpose

 This subroutine solves either of
 the following systems:

 Ax

 =

 b

 A

 T

 x

 =

 b

 where A is
 a sparse matrix, AT is the transpose of sparse
 matrix A, and x and b are
 vectors. DGSS uses the results of the factorization of matrix A,
 produced by a preceding call to DGSF.
 Note: The input to this solve
 subroutine must be the output from the factorization subroutine, DGSF.

 Syntax

 	Fortran

 	CALL DGSS (jopt, n, a, ia, ja, lna, bx, aux, naux)

 	C and C++

 	dgss (jopt, n, a, ia, ja, lna, bx, aux, naux);

 	On Entry

 	

 	 jopt

 	indicates the type of computation to be performed, where:
 If jopt = 0, Ax = b is
 solved, where the right-hand side is not sparse.

 If jopt = 1, ATx = b is
 solved, where the right-hand side is not sparse.

 If jopt = 10, Ax = b is
 solved, where the right-hand side is sparse.

 If jopt = 11, ATx = b is
 solved, where the right-hand side is sparse.

 Specified as:
 an integer; jopt = 0, 1, 10, or 11.

 	 n

 	is the order n of sparse matrix A.
 Specified as: an integer; n ≥ 0.

 	 a

 	is the factorization of sparse matrix A, stored
 in array A, produced by a preceding call to DGSF.

 Specified as: an array of length lna, containing
 long-precision real numbers.

 	 ia

 	is the array, referred to as IA, produced by
 a preceding call to DGSF.
 Specified as: an array of length lna,
 containing integers.

 	 ja

 	is the array, referred to as JA, produced by
 a preceding call to DGSF.
 Specified as: an array of length lna,
 containing integers.

 	 lna

 	is the length of the arrays A, IA,
 and JA. In DGSS, lna must be identical
 to the value specified in DGSF; otherwise, results are unpredictable.

 Specified as: an integer; lna > 0.

 	 bx

 	is the vector b of length n,
 containing the right-hand side of the system.
 Specified as: a
 one-dimensional array of (at least) length n, containing
 long-precision real numbers.

 	 aux

 	is the storage work area passed to this subroutine by a preceding
 call to DGSF. Its size is specified by naux.
 Specified
 as: an area of storage, containing long-precision real numbers.

 	 naux

 	is the size of the work area specified by aux—that
 is, the number of elements in aux.
 Specified
 as: an integer.

 	For 32-bit integer arguments

 	naux ≥ 10n+100.

 	For 64-bit integer arguments

 	naux ≥ 18n+100.

 	On Return

 	

 	 ia

 	is the transformed array, referred to as IA,
 which can be used as input in subsequent calls to this subroutine.
 This may result in a performance increase.
 Specified as: an array
 of length lna, containing integers.

 	 bx

 	is the solution vector x of length n,
 containing the results of the computation.
 Specified as: a one-dimensional
 array, containing long-precision real numbers.

 Notes

 	The input arguments n, lna,
 and naux, must be the same as those specified for
 DGSF. Whereas, the input arguments a, ia, ja, and aux must
 be those produced on output by DGSF. Otherwise, results are unpredictable.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 The system Ax = b is
 solved for x, where A is a sparse matrix
 and x and b are vectors. Depending on
 the value specified for the jopt argument, DGSS
 can also solve the system ATx = b,
 where AT is the transpose of sparse matrix A.

 If
 the value specified for the jopt argument is 0
 or 10, the following equation is solved:

 Ax

 =

 b

 If
 the value specified for the jopt argument is 1
 or 11, the following equation is solved:

 A

 T

 x

 =

 b

 DGSS
 uses the results of the factorization of matrix A, produced
 by a preceding call to DGSF. The transformed matrix A consists
 of the upper triangular matrix U and the lower triangular
 matrix L.

 See references [16], [56], and [112].

 Error conditions

 	[bookmark: am5gr_hdgss__am5gr_f10c009]
 Computational Errors

 	None

 	[bookmark: am5gr_hdgss__am5gr_f10c010]
 Input-Argument Errors

 	

 	jopt ≠ 0, 1, 10, or 11

 	n < 0

 	lna ≤ 0

 	naux is too small—that is, less than the minimum required value.
 Return code 1 is returned if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows how to solve the system Ax = b,
 where matrix A is a 5 by 5 sparse matrix. The right-hand
 side is not sparse.
 Note: The input for this subroutine is the same
 as the output from DGSF, except for BX.

 Matrix A is:
 ┌ ┐
 | 2.0 0.0 4.0 0.0 0.0 |
 | 1.0 1.0 0.0 0.0 3.0 |
 | 0.0 0.0 3.0 4.0 0.0 |
 | 2.0 2.0 0.0 1.0 5.0 |
 | 0.0 0.0 1.0 1.0 0.0 |
 └ ┘

 Call Statement and Input: JOPT N A IA JA LNA BX AUX NAUX
 | | | | | | | | |
CALL DGSS(0 , 5 , A , IA , JA , 27 , BX , AUX , 150)

 A = (0.5, . , 0.3, 1.0, . , 1.0, . , 3.0, . , . , . , 1.0,
 1.0, . , . , . , . , . , . , . , -1.7, -0.5, -1.0, -1.0,
 4.0, -3.0, -4.0)
IA = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . , . , . , . ,
 . , . , . , 2, 1, 1, 3, 3, 5, 5)
JA = (1, 0, 5, 2, 0, 4, 0, 2, 0, 0, 0, 3, 4, . , . , . , . ,
 . , . , . , 4, 2, 4, 4, 1, 3, 1)
BX = (1.0, 1.0, 1.0, 1.0, 1.0)

 Output: IA = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . , . , . , . ,
 . , . , . , 2, 1, 1, 3, 3, 5, 5)
BX = (-5.500000, 9.500000, 3.000000, -2.000000, -1.000000)

 Note: On input, a "." means that you do not have
 to store a value in that position in the array. However, the storage
 position is required and may be overwritten during the computation.
 On output, a "." means that the value in that position in the
 array is not significant.

 	Example 2

 	
 This example shows how to solve the system ATx = b,
 using the same matrix A used in Example 1. The input
 is also the same as in Example 1, except for the jopt argument.
 The right-hand side is not sparse.

 Call
 Statement and Input: JOPT N A IA JA LNA BX AUX NAUX
 | | | | | | | | |
CALL DGSS(1 , 5 , A , IA , JA , 27 , BX , AUX , 150)

BX = (1.0, 1.0, 1.0, 1.0, 1.0)

 Output: IA = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . , . , . , . ,
 . , . , . , 2, 1, 1, 3, 3, 5, 5)
BX = (0.000000, -3.000000, -2.000000, 2.000000, 7.000000)

 Note: On input, a "." means that you do not have
 to store a value in that position in the array. However, the storage
 position is required and may be overwritten during the computation.
 On output, a "." means that the value in that position in the
 array is not significant.

 	Example 3

 	
 This example shows how to solve the system Ax = b,
 using the same matrix A as in Examples 1 and 2. The
 input is also the same as in Examples 1 and 2, except for the jopt and bx arguments.
 The right-hand side is sparse.

 Call Statement
 and Input: JOPT N A IA JA LNA BX AUX NAUX
 | | | | | | | | |
CALL DGSS(10 , 5 , A , IA , JA , 27 , BX , AUX , 150)

BX = (0.0, 0.0, 0.0, 1.0, 0.0)

 Output: IA = (1, 4, 2, 5, 3, 5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 2, 1, 1, 3, 3, 5, 5)
BX = (0.000000, 3.000000, 0.000000, 0.000000, -1.000000)

 Note: On input, a "." means that you do not have
 to store a value in that position in the array. However, the storage
 position is required and may be overwritten during the computation.
 On output, a "." means that the value in that position in the
 array is not significant.

 	Example 4

 	
 This example shows how to solve the system ATx = b,
 using the same matrix A as in Examples 1, 2, and 3.
 The input is also the same as in Examples 1, 2, and 3, except for
 the jopt argument. The right-hand side is sparse.

 Call Statement and Input: JOPT N A IA JA LNA BX AUX NAUX
 | | | | | | | | |
CALL DGSS(11 , 5 , A , IA , JA , 27 , BX , AUX , 150)

BX = (0.0, 0.0, 0.0, 1.0, 0.0)

 Output: IA = (1, 4, 2, 5, 3, 5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 0, 2, 1, 1, 3, 3, 5, 5)
BX = (0.000000, 0.000000, 1.000000, 0.000000, -3.000000)

 Note: On input, a "." means that you do not have
 to store a value in that position in the array. However, the storage
 position is required and may be overwritten during the computation.
 On output, a "." means that the value in that position in the
 array is not significant.

 Parent topic: Linear Algebraic Equations

 DGKFS (General Sparse Matrix or Its Transpose Factorization,
 Determinant, and Solve Using Skyline Storage Mode)

 Purpose

 This subroutine can perform either
 or both of the following functions for general sparse matrix A,
 stored in skyline storage mode, and for vectors x and b:

 	Factor A and, optionally, compute the determinant
 of A.

 	Solve the system Ax = b or ATx = b using
 the results of the factorization of matrix A, produced
 on this call or a preceding call to this subroutine.

 You also have the choice of using profile-in or diagonal-out
 skyline storage mode for A on input or output.
 Note: The
 input to the solve performed by this subroutine must be the output
 from the factorization performed by this subroutine.

 Syntax

 	Fortran

 	CALL DGKFS (n, au, nu, idu, al, nl, idl, iparm, rparm, aux, naux, bx, ldbx, mbx)

 	C and C++

 	dgkfs (n, au, nu, idu, al, nl, idl, iparm, rparm, aux, naux, bx, ldbx, mbx);

 	On Entry

 	

 	 n

 	is the order of general sparse matrix A. Specified
 as: an integer; n ≥ 0.

 	 au

 	is the array, referred to as AU, containing one
 of three forms of the upper triangular part of general sparse matrix A,
 depending on the type of computation performed, where:

 	If you are doing a factor and solve or a factor only,
 and if IPARM(3) = 0, then AU contains
 the unfactored upper triangle of general sparse matrix A.

 	If you are doing a factor only, and if IPARM(3) > 0,
 then AU contains the partially factored upper triangle
 of general sparse matrix A. The first IPARM(3) columns
 in the upper triangle of A are already factored. The
 remaining columns are factored in this computation.

 	If you are doing a solve only, then AU contains
 the factored upper triangle of general sparse matrix A,
 produced by a preceding call to this subroutine.

 In each case:

 If IPARM(4) = 0,
 diagonal-out skyline storage mode is used for A.

 If IPARM(4) = 1,
 profile-in skyline storage mode is used for A.

 Specified
 as: a one-dimensional array of (at least) length nu,
 containing long-precision real numbers.

 	 nu

 	is the length of array AU.
 Specified as:
 an integer; nu ≥ 0 and nu ≥ (IDU(n+1)-1).

 	 idu

 	is the array, referred to as IDU, containing
 the relative positions of the diagonal elements of matrix A (in
 one of its three forms) in array AU.
 Specified
 as: a one-dimensional array of (at least) length n+1,
 containing integers.

 	 al

 	is the array, referred to as AL, containing one
 of three forms of the lower triangular part of general sparse matrix A,
 depending on the type of computation performed, where:

 	If you are doing a factor and solve or a factor only,
 and if IPARM(3) = 0, then AL contains
 the unfactored lower triangle of general sparse matrix A.

 	If you are doing a factor only, and if IPARM(3) > 0,
 then AL contains the partially factored lower triangle
 of general sparse matrix A. The first IPARM(3) rows
 in the lower triangle of A are already factored. The
 remaining rows are factored in this computation.

 	If you are doing a solve only, then AL contains
 the factored lower triangle of general sparse matrix A,
 produced by a preceding call to this subroutine.

 Note: In all these cases, entries in AL for
 diagonal elements of A are not assumed to have meaningful
 values.

 In each case:

 If IPARM(4) = 0,
 diagonal-out skyline storage mode is used for A.

 If IPARM(4) = 1,
 profile-in skyline storage mode is used for A.

 Specified
 as: a one-dimensional array of (at least) length nl,
 containing long-precision real numbers.

 	 nl

 	is the length of array AL.
 Specified as:
 an integer; nl ≥ 0 and nl ≥ (IDL(n+1)-1).

 	 idl

 	is the array, referred to as IDL, containing
 the relative positions of the diagonal elements of matrix A (in
 one of its three forms) in array AL.
 Specified
 as: a one-dimensional array of (at least) length n+1,
 containing integers.

 	 iparm

 	is an array of parameters, IPARM(i),
 where:

 	IPARM(1) indicates whether certain default values
 for iparm and rparm are used
 by this subroutine, where:
 If IPARM(1) = 0,
 the following default values are used. For restrictions, see Notes.

 IPARM(2)

 =

 0

 IPARM(3)

 =

 0

 IPARM(4)

 =

 0

 IPARM(5)

 =

 0

 IPARM(10)

 =

 0

 IPARM(11)

 =

 -1

 IPARM(12)

 =

 -1

 IPARM(13)

 =

 -1

 IPARM(14)

 =

 -1

 IPARM(15)

 =

 0

 RPARM(10)

 =

 10

 -12

 If IPARM(1) = 1,
 the default values are not used.

 	IPARM(2) indicates the type of computation performed
 by this subroutine. The following table gives the IPARM(2) values
 for each variation:

 	Type of Computation

 	Ax = b

 	Ax = b and Determinant(A)

 	ATx = b

 	ATx = b and Determinant(A)

 	Factor and Solve

 	0

 	10

 	100

 	110

 	Factor Only

 	1

 	11

 	N/A

 	N/A

 	Solve Only

 	2

 	N/A

 	102

 	N/A

 	IPARM(3) indicates whether a full or partial
 factorization is performed on matrix A, where:
 If IPARM(3) = 0,
 and:

 If you are doing a factor and solve or a factor
 only, then a full factorization is performed for matrix A on
 rows and columns 1 through n.

 If you are
 doing a solve only, this argument has no effect on the computation,
 but must be set to 0.

 If IPARM(3) > 0,
 and you are doing a factor only, then a partial factorization
 is performed on matrix A. Rows 1 through IPARM(3) of
 columns 1 through IPARM(3) in matrix A must
 be in factored form from a preceding call to this subroutine. The
 factorization is performed on rows IPARM(3)+1 through n and
 columns IPARM(3)+1 through n.
 For an illustration, see Notes.

 	IPARM(4) indicates the input storage mode used
 for matrix A. This determines the arrangement of data
 in arrays AU, IDU, AL,
 and IDL on input, where:
 If IPARM(4) = 0,
 diagonal-out skyline storage mode is used.

 If IPARM(4) = 1,
 profile-in skyline storage mode is used.

 	IPARM(5) indicates the output storage mode used
 for matrix A. This determines the arrangement of data
 in arrays AU, IDU, AL,
 and IDL on output, where:
 If IPARM(5) = 0,
 diagonal-out skyline storage mode is used.

 If IPARM(5) = 1,
 profile-in skyline storage mode is used.

 	IPARM(6) through IPARM(9) are
 reserved.

 	IPARM(10) has the following meaning, where:
 If
 you are doing a factor and solve or a factor only, then IPARM(10) indicates
 whether certain default values for iparm and rparm are
 used by this subroutine, where:

 If IPARM(10) = 0,
 the following default values are used. For restrictions, see Notes.

 IPARM(11)

 =

 -1

 IPARM(12)

 =

 -1

 IPARM(13)

 =

 -1

 IPARM(14)

 =

 -1

 IPARM(15)

 =

 0

 RPARM(10)

 =

 10

 -12

 If IPARM(10) = 1, the default values are not used.

 If
 you are doing a solve only, this argument is not used.

 	IPARM(11) through IPARM(15) have
 the following meaning, where:
 If you are doing a factor and
 solve or a factor only, then IPARM(11) through IPARM(15) control
 the type of processing to apply to pivot elements occurring in regions
 1 through 5, respectively. The pivot elements are ukk for k = 1, n when
 doing a full factorization, and they are k = IPARM(3)+1, n when
 doing a partial factorization. The region in which a pivot element
 falls depends on the sign and magnitude of the pivot element. The
 regions are determined by RPARM(10). For a description
 of the regions and associated pivot values, see Notes. For each region i for i = 1,5,
 where the pivot occurs in region i, the processing
 applied to the pivot element is determined by IPARM(10+i),
 where:

 If IPARM(10+i) = -1,
 the pivot element is trapped and computational error 2126 is generated.
 See Error conditions.

 If IPARM(10+i) = 0,
 for i = 1, 2, 4, and 5, processing continues
 normally.

 Note: A value of 0 is not permitted for region 3, because
 if processing continues, a divide-by-zero exception occurs.

 If IPARM(10+i) = 1,
 the pivot element is replaced with the value in RPARM(10+i),
 and processing continues normally.

 If you are doing a solve
 only, these arguments are not used.

 	IPARM(16) through IPARM(25),
 see On Return.

 Specified as: a one-dimensional array of (at least) length
 25, containing integers, where:

 IPARM(1)

 =

 0 or 1

 IPARM(2)

 =

 0, 1, 2, 10, 11, 100, 102, or 110

 If

 IPARM(2)

 =

 0, 2, 10, 100, 102, or 110, then

 IPARM(3)

 =

 0

 If

 IPARM(2)

 =

 1 or 11, then 0

 ≤

 IPARM(3)

 ≤

 n

 IPARM(4)

 ,

 IPARM(5)

 =

 0 or 1

 If

 IPARM(2)

 =

 0, 1, 10, 11, 100, or 110, then:

 IPARM(10)

 =

 0 or 1

 IPARM(11)

 ,

 IPARM(12)

 =

 -1, 0, or 1

 IPARM(13)

 =

 -1 or 1

 IPARM(14)

 ,

 IPARM(15)

 =

 -1, 0, or 1

 	rparm

 	is an array of parameters, RPARM(i),
 where:

 	RPARM(1) through RPARM(9) are
 reserved.

 	RPARM(10) has the following meaning, where:
 If
 you are doing a factor and solve or a factor only, RPARM(10) is
 the tolerance value for small pivots. This sets the bounds for the
 pivot regions, where pivots are processed according to the options
 you specify for the five regions in IPARM(11) through IPARM(15),
 respectively. The suggested value is 10-15 ≤ IPARM(10) ≤ 1.

 If
 you are doing a solve only, this argument is not used.

 	RPARM(11) through RPARM(15) have
 the following meaning, where:
 If you are doing a factor and
 solve or a factor only, RPARM(11) through RPARM(15) are
 the fix-up values to use for the pivots in regions 1 through 5, respectively.
 For each RPARM(10+i) for i = 1,5,
 where the pivot occurs in region i:

 If IPARM(10+i) = 1,
 the pivot is replaced with RPARM(10+i),
 where |RPARM(10+i)| should be
 a sufficiently large nonzero value to avoid overflow when calculating
 the reciprocal of the pivot. The suggested value is 10-15 ≤ |RPARM(10+i)| ≤ 1.

 If IPARM(10+i) ≠ 1, RPARM(10+i)
 is not used.

 If you are doing a solve only, these arguments
 are not used.

 	RPARM(16) through RPARM(25),
 see On Return.

 Specified as: a one-dimensional array of (at least) length
 25, containing long-precision real numbers, where if IPARM(2) = 0,
 1, 10, 11, 100, or 110, then:

 RPARM(10)

 ≥

 0.0

 RPARM(11)

 through

 RPARM(15)

 ≠

 0.0

 	 aux

 	has the following meaning:
 If naux = 0
 and error 2015 is unrecoverable, aux is ignored.

 Otherwise,
 it is the storage work area used by this subroutine. Its size is specified
 by naux.

 Specified as: an area of storage,
 containing long-precision real numbers.

 	 naux

 	is the size of the work area specified by aux—that
 is, the number of elements in aux.
 Specified
 as: an integer, where:

 If naux = 0
 and error 2015 is unrecoverable, DGKFS dynamically allocates the work
 area used by this subroutine. The work area is deallocated before
 control is returned to the calling program.

 Otherwise,

 If
 you are doing a factor only:

 	For 32-bit integer arguments

 	Use naux ≥ 5n.

 	For 64-bit integer arguments

 	Use naux ≥ 7n.

 If you are doing a factor and solve or
 a solve only:

 	For 32-bit integer arguments

 	Use naux ≥ 5n +
 4mbx.

 	For 64-bit integer arguments

 	Use naux ≥ 7n +
 4mbx.

 	 bx

 	has the following meaning, where:
 If you are doing a factor
 and solve or a solve only, bx is the
 array, containing the mbx right-hand side vectors b of
 the system Ax = b or ATx = b.
 Each vector b is length n and is
 stored in the corresponding column of the array.

 If you are
 doing a factor only, this argument is not used in the computation.

 Specified
 as: an ldbx by (at least) mbx array,
 containing long-precision real numbers.

 	 ldbx

 	has the following meaning, where:
 If you are doing a factor
 and solve or a solve only, ldbx is the
 leading dimension of the array specified for bx.

 If
 you are doing a factor only, this argument is not used in the
 computation.

 Specified as: an integer; ldbx ≥ n and:

 If mbx ≠ 0, then ldbx > 0.

 If mbx = 0,
 then ldbx ≥ 0.

 	 mbx

 	has the following meaning, where:
 If you are doing a factor
 and solve or a solve only, mbx is the
 number of right-hand side vectors, b, in the array specified
 for bx.

 If you are doing a factor only,
 this argument is not used in the computation.

 Specified as:
 an integer; mbx ≥ 0.

 	On Return

 	

 	 au

 	is the array, referred to as AU, containing the
 upper triangular part of the LU factored form of general
 sparse matrix A, where:
 If IPARM(5) = 0,
 diagonal-out skyline storage mode is used for A.

 If IPARM(5) = 1,
 profile-in skyline storage mode is used for A.

 (If mbx = 0
 and you are doing a solve only, then au is unchanged
 on output.) Returned as: a one-dimensional array of (at least) length nu,
 containing long-precision real numbers.

 	 idu

 	is the array, referred to as IDU, containing
 the relative positions of the diagonal elements of the factored output
 matrix A in array AU. (If mbx = 0
 and you are doing a solve only, then idu is unchanged
 on output.) Returned as: a one-dimensional array of (at least) length n+1,
 containing integers.

 	 al

 	is the array, referred to as AL, containing the
 lower triangular part of the LU factored form of general
 sparse matrix A, where:
 If IPARM(5) = 0,
 diagonal-out skyline storage mode is used for A.

 If IPARM(5) = 1,
 profile-in skyline storage mode is used for A.
 Note: You
 should assume that entries in AL for diagonal elements
 of A do not have meaningful values.

 (If mbx = 0
 and you are doing a solve only, then al is unchanged
 on output.) Returned as: a one-dimensional array of (at least) length nl,
 containing long-precision real numbers.

 	 idl

 	is the array, referred to as IDL, containing
 the relative positions of the diagonal elements of the factored output
 matrix A in array AL. (If mbx = 0
 and you are doing a solve only, then idl is unchanged
 on output.) Returned as: a one-dimensional array of (at least) length n+1,
 containing integers.

 	 iparm

 	is an array of parameters, IPARM(i),
 where:

 	IPARM(1) through IPARM(15) are
 unchanged.

 	IPARM(16) has the following meaning, where:
 If
 you are doing a factor and solve or a factor only, and:

 If IPARM(16) = -1,
 your factorization did not complete successfully, resulting in computational
 error 2126.

 If IPARM(16) > 0, it is the row number k,
 in which the maximum absolute value of the ratio akk/ukk occurred,
 where:

 If IPARM(3) = 0, k can be any
 of the rows, 1 through n, in the full factorization.

 If IPARM(3) > 0, k can
 be any of the rows, IPARM(3)+1 through n,
 in the partial factorization.

 If you are doing a solve
 only, this argument is not used in the computation and is unchanged.

 	IPARM(17) through IPARM(20) are
 reserved.

 	IPARM(21) through IPARM(25) have
 the following meaning, where:
 If you are doing a factor and
 solve or a factor only, IPARM(21) through IPARM(25) have
 the following meanings for each region i for i = 1,5,
 respectively:

 If IPARM(20+i) = -1,
 your factorization did not complete successfully, resulting in computational
 error 2126.

 If IPARM(20+i) ≥ 0, it is the
 number of pivots in region i for the columns that
 were factored in matrix A, where:

 If IPARM(3) = 0,
 columns 1 through n were factored in the full factorization.

 If IPARM(3) > 0,
 columns IPARM(3)+1 through n were
 factored in the partial factorization.

 If you are
 doing a solve only, these arguments are not used in the computation
 and are unchanged.

 Returned as: a one-dimensional array of (at least) length
 25, containing integers.

 	 rparm

 	is an array of parameters, RPARM(i),
 where:

 	RPARM(1) through RPARM(15) are
 unchanged.

 	RPARM(16) has the following meaning, where:
 If
 you are doing a factor and solve or a factor only, and:

 If RPARM(16) = 0.0,
 your factorization did not complete successfully, resulting in computational
 error 2126.

 If |RPARM(16)| > 0.0, it is the ratio for row k, akk/ukk,
 having the maximum absolute value. Row k is indicated
 in IPARM(16), and:

 If IPARM(3) = 0,
 the ratio corresponds to one of the rows, 1 through n,
 in the full factorization.

 If IPARM(3) > 0,
 the ratio corresponds to one of the rows, IPARM(3)+1
 through n, in the partial factorization.

 If
 you are doing a solve only, this argument is not used in the
 computation and is unchanged.

 	RPARM(17) and RPARM(18) have
 the following meaning, where:
 If you are computing the determinant of
 matrix A, then RPARM(17) is the mantissa, detbas,
 and RPARM(18) is the power of 10, detpwr,
 used to express the value of the determinant: detbas(10detpwr),
 where 1 ≤ detbas < 10.
 Also:

 If IPARM(3) = 0, the determinant is computed for
 columns 1 through n in the full factorization.

 If IPARM(3) > 0,
 the determinant is computed for columns IPARM(3)+1
 through n in the partial factorization.

 If
 you are not computing the determinant of matrix A,
 these arguments are not used in the computation and are unchanged.

 	RPARM(19) through RPARM(25) are
 reserved.

 Returned as: a one-dimensional array of (at least) length 25,
 containing long-precision real numbers.

 	 bx

 	has the following meaning, where:
 If you are doing a factor
 and solve or a solve only, bx is the
 array, containing the mbx solution vectors x of
 the system Ax = b or ATx = b.
 Each vector x is length n and is
 stored in the corresponding column of the array. (If mbx = 0,
 then bx is unchanged on output.)

 If you
 are doing a factor only, this argument is not used in the computation
 and is unchanged.

 Returned as: an ldbx by
 (at least) mbx array, containing long-precision
 real numbers.

 Notes

 	If you set either IPARM(1) = 0 or IPARM(10) = 0,
 indicating you want to use the default values for IPARM(11) through IPARM(15) and RPARM(10),
 then:

 	Matrix A must be positive definite.

 	No pivots are fixed, using RPARM(11) through RPARM(15) values.

 	No small pivots are tolerated; that is, the value should be |pivot| > RPARM(10).

 	Many of the input and output parameters for iparm and rparm are
 defined for the five pivot regions handled by this subroutine. The
 limits of the regions are based on RPARM(10), as
 shown in Figure 13.. The pivot
 values in each region are:

 Region 1:

 pivot

 <

 -

 RPARM(10)

 Region 2: -

 RPARM(10)

 ≤

 pivot

 <

 0

 Region 3:

 pivot

 =

 0

 Region 4: 0

 <

 pivot

 ≤

 RPARM(10)

 Region 5:

 pivot

 >

 RPARM(10)

 Figure 13. Five Pivot Regions[image: Five Pivot Regions Graphic]

 	The IPARM(4) and IPARM(5) arguments
 allow you to specify the same or different skyline storage modes for
 your input and output arrays for matrix A. This allows
 you to change storage modes as needed. However, if you are concerned
 with performance, you should use diagonal-out skyline storage mode
 for both input and output, if possible, because there is less overhead.

 For a description of how sparse matrices are stored in skyline
 storage mode, see Profile-In Skyline Storage Mode and Diagonal-Out Skyline Storage Mode.

 	Following is an illustration of the portion of matrix A factored
 in the partial factorization when IPARM(3) > 0.
 In this case, the subroutine assumes that rows and columns 1 through IPARM(3) are
 already factored and that rows and columns IPARM(3)+1
 through n are to be factored in this computation.

 [image: Portion of Matrix A Graphic]

 You use the partial factorization function when, for design
 or storage reasons, you must factor the matrix A in
 stages. When doing a partial factorization, you must use the same
 skyline storage mode for all parts of the matrix as it is progressively
 factored.

 	Your various arrays must have no common elements; otherwise, results
 are unpredictable.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 This subroutine can factor, compute
 the determinant of, and solve general sparse matrix A,
 stored in skyline storage mode. For all computations, input matrix A can
 be stored in either diagonal-out or profile-in skyline storage mode.
 Output matrix A can also be stored in either of these
 modes and can be different from the mode used for input.

 Matrix A is
 factored into the following form using specified pivot processing:

 A

 =

 LU

 where:

 U

 is an upper triangular matrix.

 L

 is a lower triangular matrix.

 The transformed
 matrix A, factored into its LU form, is
 stored in packed format in arrays AU and AL.
 The inverse of the diagonal of matrix U is stored in
 the corresponding elements of array AU. The off-diagonal
 elements of the upper triangular matrix U are stored
 in the corresponding off-diagonal elements of array AU.
 The off-diagonal elements of the lower triangular matrix L are
 stored in the corresponding off-diagonal elements of array AL.
 (The diagonal elements stored in array AL do not
 have meaningful values.)

 The partial factorization of matrix A,
 which you can do when you specify the factor-only option, assumes
 that the first IPARM(3) rows and columns are already
 factored in the input matrix. It factors the remaining n-IPARM(3) rows
 and columns in matrix A. (See Notes for an illustration.) It
 updates only the elements in arrays AU and AL corresponding
 to the part of matrix A that is factored.

 The
 determinant can be computed with any of the factorization computations.
 With a full factorization, you get the determinant for the whole
 matrix. With a partial factorization, you get the determinant for
 only that part of the matrix factored in this computation.

 The
 system Ax = b or ATx = b,
 having multiple right-hand sides, is solved for x, using
 the transformed matrix A produced by this call or a
 subsequent call to this subroutine.

 See references [11], [19], [32], [56], and [83]. If n is
 0, no computation is performed. If mbx is 0, no
 solve is performed.

 Error conditions

 	[bookmark: am5gr_hdgkfs__am5gr_f10c020]
 Resource Errors

 	

 	Error 2015 is unrecoverable, naux = 0,
 and unable to allocate work area.

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hdgkfs__am5gr_f10c021]
 Computational Errors

 	

 	If a pivot occurs in region i for i = 1,5
 and IPARM(10+i) = 1,
 the pivot value is replaced with RPARM(10+i),
 an attention message is issued, and processing continues.

 	Unacceptable pivot values occurred in the factorization of matrix A.

 	One or more diagonal elements of U contains unacceptable
 pivots and no valid fixup is applicable. The row number i of
 the first unacceptable pivot element is identified in the computational
 error message.

 	The return code is set to 2.

 	i can be determined at run time by use of the
 ESSL error-handling facilities. To obtain this information, you must
 use ERRSET to change the number of allowable errors for error code
 2126 in the ESSL error option table; otherwise, the default value
 causes your program to terminate when this error occurs. For details,
 see What Can You Do about ESSL Computational Errors?.

 	[bookmark: am5gr_hdgkfs__am5gr_f10c022]
 Input-Argument Errors

 	

 	n < 0

 	nu < 0

 	IDU(n+1) > nu+1

 	IDU(i+1) ≤ IDU(i)
 for i = 1, n

 	IDU(i+1) > IDU(i)+i and IPARM(4) = 0
 for i = 1, n

 	IDU(i) > IDU(i-1)+i and IPARM(4) = 1
 for i = 2, n

 	nl < 0

 	IDL(n+1) > nl+1

 	IDL(i+1) ≤ IDL(i)
 for i = 1, n

 	IDL(i+1) > IDL(i)+i and IPARM(4) = 0
 for i = 1, n

 	IDL(i) > IDL(i-1)+i and IPARM(4) = 1
 for i = 2, n

 	IPARM(1) ≠ 0 or 1

 	IPARM(2) ≠ 0, 1, 2, 10, 11,
 100, 102, or 110

 	IPARM(3) < 0

 	IPARM(3) > n

 	IPARM(3) > 0 and IPARM(2) ≠ 1 or 11

 	IPARM(4), IPARM(5) ≠ 0 or 1

 	IPARM(2) = 0, 1, 10, 11, 100, or 110 and:

 IPARM(10)

 ≠

 0 or 1

 IPARM(11)

 ,

 IPARM(12)

 ≠

 -1, 0, or 1

 IPARM(13)

 ≠

 -1 or 1

 IPARM(14)

 ,

 IPARM(15)

 ≠

 -1, 0, or 1

 RPARM(10)

 <

 0.0

 RPARM

 (10+

 i

)

 =

 0.0 and

 IPARM

 (10+

 i

)

 =

 1 for

 i

 =

 1,5

 	IPARM(2) = 0, 2, 10, 100, 102, or 110 and:

 ldbx

 ≤

 0 and

 mbx

 ≠

 0 and

 n

 ≠

 0

 ldbx

 <

 0 and

 mbx

 =

 0

 ldbx

 <

 n

 and

 mbx

 ≠

 0

 mbx

 <

 0

 	Error 2015 is recoverable or naux≠0, and naux is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows how to factor a 9 by 9 general sparse
 matrix A and solve the system Ax = b with
 three right-hand sides. The default values are used for IPARM and RPARM.
 Input matrix A, shown here, is stored in diagonal-out
 skyline storage mode. Matrix A is: ┌ ┐
 | 2.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 2.0 4.0 4.0 2.0 2.0 0.0 0.0 0.0 2.0 |
 | 2.0 4.0 6.0 4.0 4.0 0.0 2.0 0.0 4.0 |
 | 2.0 4.0 6.0 6.0 6.0 2.0 4.0 0.0 6.0 |
 | 0.0 0.0 0.0 2.0 4.0 4.0 4.0 2.0 4.0 |
 | 0.0 2.0 4.0 6.0 8.0 6.0 8.0 4.0 10.0 |
 | 0.0 0.0 0.0 2.0 4.0 6.0 8.0 6.0 8.0 |
 | 0.0 0.0 0.0 2.0 4.0 6.0 8.0 8.0 10.0 |
 | 2.0 4.0 6.0 6.0 8.0 6.0 10.0 8.0 16.0 |
 └ ┘

 Output
 matrix A, shown here, is in LU factored
 form with U-1 on the diagonal, and is stored
 in diagonal-out skyline storage mode. Matrix B is: ┌ ┐
 | 0.5 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 0.5 2.0 2.0 2.0 0.0 0.0 0.0 2.0 |
 | 1.0 1.0 0.5 2.0 2.0 0.0 2.0 0.0 2.0 |
 | 1.0 1.0 1.0 0.5 2.0 2.0 2.0 0.0 2.0 |
 | 0.0 0.0 0.0 1.0 0.5 2.0 2.0 2.0 2.0 |
 | 0.0 1.0 1.0 1.0 1.0 0.5 2.0 2.0 2.0 |
 | 0.0 0.0 0.0 1.0 1.0 1.0 0.5 2.0 2.0 |
 | 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.5 2.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 |
 └ ┘

 Call Statement and Input:
 N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
 | | | | | | | | | | | | | |
CALL DGKFS(9 , AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 57 , BX , 12 , 3)

 AU = (2.0, 4.0, 2.0, 6.0, 4.0, 2.0, 6.0, 4.0, 2.0, 4.0, 6.0,
 4.0, 2.0, 6.0, 4.0, 2.0, 8.0, 8.0, 4.0, 4.0, 2.0, 8.0,
 6.0, 4.0, 2.0, 16.0, 10.0, 8.0, 10.0, 4.0, 6.0, 4.0, 2.0)
IDU = (1, 2, 4, 7, 10, 14, 17, 22, 26, 34)
AL = (0.0, 0.0, 2.0, 0.0, 4.0, 2.0, 0.0, 6.0, 4.0, 2.0, 0.0,
 2.0, 0.0, 8.0, 6.0, 4.0, 2.0, 0.0, 6.0, 4.0, 2.0, 0.0,
 8.0, 6.0, 4.0, 2.0, 0.0, 8.0, 10.0, 6.0, 8.0, 6.0, 6.0,
 4.0, 2.0)
IDL = (1, 2, 4, 7, 11, 13, 18, 22, 27, 36)
IPARM = (0, . , . , . , . , . , . , . , . , . , . , . , . , . ,
 . , . , . , . , . , . , . , . , . , . , .)

 RPARM =

 (not relevant)

 ┌ ┐
 | 6.00 12.00 18.00 |
 | 16.00 32.00 48.00 |
 | 26.00 52.00 78.00 |
 | 36.00 72.00 108.00 |
 | 20.00 40.00 60.00 |
BX = | 48.00 96.00 144.00 |
 | 34.00 68.00 102.00 |
 | 38.00 76.00 114.00 |
 | 66.00 132.00 198.00 |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 Output:

 AU = (0.5, 0.5, 2.0, 0.5, 2.0, 2.0, 0.5, 2.0, 2.0, 0.5,

 2.0,

 2.0, 2.0, 0.5, 2.0, 2.0, 0.5, 2.0, 2.0, 2.0, 2.0, 0.5,

 2.0, 2.0, 2.0, 0.5, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0)

 IDU =

 (same as input)

 AL = (0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,

 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,

 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

 1.0, 1.0)

 IDL =

 (same as input)

 IPARM = (0, . , . , . , . , . , . , . , . , . , . , . , . , . ,

 . , 9, . , . , . , . , 0, 0, 0, 0, 9)

 RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

 . , 8.0, . , . , . , . , . , . , . , . , .)

 ┌ ┐
 | 1.00 2.00 3.00 |
 | 1.00 2.00 3.00 |
 | 1.00 2.00 3.00 |
 | 1.00 2.00 3.00 |
 | 1.00 2.00 3.00 |
BX = | 1.00 2.00 3.00 |
 | 1.00 2.00 3.00 |
 | 1.00 2.00 3.00 |
 | 1.00 2.00 3.00 |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 	Example 2

 	
 This example shows how to factor the 9 by 9 general sparse
 matrix A from Example 1, solve the system ATx = b with
 three right-hand sides, and compute the determinant of A.
 The default values for pivot processing are used for IPARM.
 Input matrix A is stored in profile-in skyline storage
 mode. Output matrix A is in LU factored
 form with U-1 on the diagonal, and is stored
 in diagonal-out skyline storage mode. It is the same as output matrix A in
 Example 1.

 Call Statement and Input:

 N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
 | | | | | | | | | | | | | |
CALL DGKFS(9, AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 57 , BX , 12 , 3)

 AU = (2.0, 2.0, 4.0, 2.0, 4.0, 6.0, 2.0, 4.0, 6.0, 2.0, 4.0,
 6.0, 4.0, 2.0, 4.0, 6.0, 2.0, 4.0, 4.0, 8.0, 8.0, 2.0,
 4.0, 6.0, 8.0, 2.0, 4.0, 6.0, 4.0, 10.0, 8.0, 10.0, 16.0)
IDU = (1, 3, 6, 9, 13, 16, 21, 25, 33, 34)
AL = (0.0, 2.0, 0.0, 2.0, 4.0, 0.0, 2.0, 4.0, 6.0, 0.0, 2.0,
 0.0, 2.0, 4.0, 6.0, 8.0, 0.0, 2.0, 4.0, 6.0, 0.0, 2.0,
 4.0, 6.0, 8.0, 0.0, 2.0, 4.0, 6.0, 6.0, 8.0, 6.0, 10.0,
 8.0, 0.0)
IDL = (1, 3, 6, 10, 12, 17, 21, 26, 35, 36)
IPARM = (1, 110, 0, 1, 0, . , . , . , . , 0, . , . , . , . , . ,
 . , . , . , . , . , . , . , . , . , .)

 RPARM =

 (not relevant)

 ┌ ┐
 | 10.00 20.00 30.00 |
 | 20.00 40.00 60.00 |
 | 28.00 56.00 84.00 |
 | 30.00 60.00 90.00 |
 | 40.00 80.00 120.00 |
BX = | 30.00 60.00 90.00 |
 | 44.00 88.00 132.00 |
 | 28.00 56.00 84.00 |
 | 60.00 120.00 180.00 |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 Output:

 AU =

 (same as output

 AU

 in Example 1)

 IDU =

 (same as output

 IDU

 in Example 1)

 AL =

 (same as output

 AL

 in Example 1)

 IDL =

 (same as output

 IDL

 in Example 1)

 IPARM = (1, 110, 0, 1, 0, . , . , . , . , 0, . , . , . , . , . ,

 9, . , . , . , . , 0, 0, 0, 0, 9)

 RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

 . , 8.0, 5.12, 2.0, . , . , . , . , . , . , .)

 BX =

 (same as output

 BX

 in Example 1)

 	Example 3

 	
 This example shows how to factor a 9 by 9 negative-definite
 general sparse matrix A, solve the system Ax = b with
 three right-hand sides, and compute the determinant of A.
 (Default values for pivot processing are not used for IPARM because A is
 negative-definite.) Input matrix A, shown here, is
 stored in diagonal-out skyline storage mode: ┌ ┐
 | -2.0 -2.0 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | -2.0 -4.0 -4.0 -2.0 -2.0 0.0 0.0 0.0 -2.0 |
 | -2.0 -4.0 -6.0 -4.0 -4.0 0.0 -2.0 0.0 -4.0 |
 | -2.0 -4.0 -6.0 -6.0 -6.0 -2.0 -4.0 0.0 -6.0 |
 | 0.0 0.0 0.0 -2.0 -4.0 -4.0 -4.0 -2.0 -4.0 |
 | 0.0 -2.0 -4.0 -6.0 -8.0 -6.0 -8.0 -4.0 -10.0 |
 | 0.0 0.0 0.0 -2.0 -4.0 -6.0 -8.0 -6.0 -8.0 |
 | 0.0 0.0 0.0 -2.0 -4.0 -6.0 -8.0 -8.0 -10.0 |
 | -2.0 -4.0 -6.0 -6.0 -8.0 -6.0 -10.0 -8.0 -16.0 |
 └ ┘

 Output
 matrix A, shown here, is in LU factored
 form with U-1 on the diagonal, and is stored
 in diagonal-out skyline storage mode. Matrix A is: ┌ ┐
 | -0.5 -2.0 -2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 -0.5 -2.0 -2.0 -2.0 0.0 0.0 0.0 -2.0 |
 | 1.0 1.0 -0.5 -2.0 -2.0 0.0 -2.0 0.0 -2.0 |
 | 1.0 1.0 1.0 -0.5 -2.0 -2.0 -2.0 0.0 -2.0 |
 | 0.0 0.0 0.0 1.0 -0.5 -2.0 -2.0 -2.0 -2.0 |
 | 0.0 1.0 1.0 1.0 1.0 -0.5 -2.0 -2.0 -2.0 |
 | 0.0 0.0 0.0 1.0 1.0 1.0 -0.5 -2.0 -2.0 |
 | 0.0 0.0 0.0 1.0 1.0 1.0 1.0 -0.5 -2.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 -0.5 |
 └ ┘

 Call Statement and Input:
 N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
 | | | | | | | | | | | | | |
CALL DGKFS(9, AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 57 , BX , 12 , 3)

 AU = (-2.0, -4.0, -2.0, -6.0, -4.0, -2.0, -6.0, -4.0, -2.0,
 -4.0, -6.0, -4.0, -2.0, -6.0, -4.0, -2.0, -8.0, -8.0,
 -4.0, -4.0, -2.0, -8.0, -6.0, -4.0, -2.0, -16.0, -10.0,
 -8.0, -10.0, -4.0, -6.0, -4.0, -2.0)
IDU = (1, 2, 4, 7, 10, 14, 17, 22, 26, 34)
AL = (0.0, 0.0, -2.0, 0.0, -4.0, -2.0, 0.0, -6.0, -4.0, -2.0,
 0.0, -2.0, 0.0, -8.0, -6.0, -4.0, -2.0, 0.0, -6.0, -4.0,
 -2.0, 0.0, -8.0, -6.0, -4.0, -2.0, 0.0, -8.0, -10.0,
 -6.0, -8.0, -6.0, -6.0, -4.0, -2.0)
IDL = (1, 2, 4, 7, 11, 13, 18, 22, 27, 36)
IPARM = (1, 10, 0, 0, 0, . , . , . , . , 1, 0, -1, -1, -1, -1, . ,
 . , . , . , . , . , . , . , . , .)
RPARM = (. , . , . , . , . , . , . , . , . , 10-15, . , . ,
 . , . , . , . , . , . , . , . , . , . , . , . , .)
BX = (same as input BX in Example 1

 Output: AU = (-0.5, -0.5, -2.0, -0.5, -2.0, -2.0, -0.5, -2.0, -2.0,
 -0.5, -2.0, -2.0, -2.0, -0.5, -2.0, -2.0, -0.5, -2.0,
 -2.0, -2.0, -2.0, -0.5, -2.0, -2.0, -2.0, -0.5, -2.0,
 -2.0, -2.0, -2.0, -2.0, -2.0, -2.0)
IDU =(same as input)
AL = (0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,
 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,
 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 1.0)
IDL =(same as input)
IPARM = (1, 10, 0, 0, 0, . , . , . , . , 1, 0, -1, -1, -1, -1, 9,
 . , . , . , . , 9, 0, 0, 0, 0)
RPARM = (. , . , . , . , . , . , . , . , . , 10-15, . , . ,
. , . , . , 8.0, -5.12, 2.0, . , . , . , . , . , . , .)

 ┌ ┐
 | -1.00 -2.00 -3.00 |
 | -1.00 -2.00 -3.00 |
 | -1.00 -2.00 -3.00 |
 | -1.00 -2.00 -3.00 |
 | -1.00 -2.00 -3.00 |
BX = | -1.00 -2.00 -3.00 |
 | -1.00 -2.00 -3.00 |
 | -1.00 -2.00 -3.00 |
 | -1.00 -2.00 -3.00 |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 	Example 4

 	
 This example shows how to factor the first six rows and columns,
 referred to as matrix A1, of the 9 by 9 general sparse
 matrix A from Example 1 and compute the determinant
 of A1. Input matrix A1, shown here, is
 stored in diagonal-out skyline storage mode. Input matrix A1 is:
 ┌ ┐
 | 2.0 2.0 2.0 0.0 0.0 0.0 |
 | 2.0 4.0 4.0 2.0 2.0 0.0 |
 | 2.0 4.0 6.0 4.0 4.0 0.0 |
 | 2.0 4.0 6.0 6.0 6.0 2.0 |
 | 0.0 0.0 0.0 2.0 4.0 4.0 |
 | 0.0 2.0 4.0 6.0 8.0 6.0 |
 └ ┘

 Output
 matrix A1, shown here, is in LU factored
 form with U-1 on the diagonal, and is stored
 in diagonal-out skyline storage mode. Output matrix A1 is:
 ┌ ┐
 | 0.5 2.0 2.0 0.0 0.0 0.0 |
 | 1.0 0.5 2.0 2.0 2.0 0.0 |
 | 1.0 1.0 0.5 2.0 2.0 0.0 |
 | 1.0 1.0 1.0 0.5 2.0 2.0 |
 | 0.0 0.0 0.0 1.0 0.5 2.0 |
 | 0.0 1.0 1.0 1.0 1.0 0.5 |
 └ ┘

 Call Statement and Input: N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
 | | | | | | | | | | | | | |
CALL DGKFS(6, AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 45 , BX , LDBX , MBX)

 AU =

 (same as input

 AU

 in Example 1)

 IDU = (1, 2, 4, 7, 10, 14, 17)

 AL =

 (same as input

 AL

 in Example 1)

 IDL = (1, 2, 4, 7, 11, 13, 18)

 IPARM = (1, 11, 0, 0, 0, . , . , . , . , 0, . , . , . , . , . ,

 . , . , . , . , . , . , . , . , . , .)

 RPARM =

 (not relevant)

 BX =

 (not relevant)

 LDBX =

 (not relevant)

 MBX =

 (not relevant)

 Output: AU = (0.5, 0.5, 2.0, 0.5, 2.0, 2.0, 0.5, 2.0, 2.0, 0.5,
2.0,
 2.0, 2.0, 0.5, 2.0, 2.0, 8.0, 8.0, 4.0, 4.0, 2.0, 8.0,
 6.0, 4.0, 2.0, 16.0, 10.0, 8.0, 10.0, 4.0, 6.0, 4.0, 2.0)
IDU =(same as input)
AL = (0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0,
 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 6.0, 4.0, 2.0, 0.0,
 8.0, 6.0, 4.0, 2.0, 0.0, 8.0, 10.0, 6.0, 8.0, 6.0, 6.0,
 4.0, 2.0)
IDL =(same as input)
IPARM = (1, 11, 0, 0, 0, . , . , . , . , 0, . , . , . , . , . , 3,
 . , . , . , . , 0, 0, 0, 0, 6)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,
 . , 3.0, 6.4, 1.0, . , . , . , . , . , . , .)
BX =(same as input)
LDBX =(same as input)
MBX =(same as input)

 	Example 5

 	
 This example shows how to do a partial factorization of the
 9 by 9 general sparse matrix A from Example 1, where
 the first six rows and columns were factored in Example 4. It factors
 the remaining three rows and columns and computes the determinant
 of that part of the matrix. The input matrix, referred to as A2,
 shown here, is made up of the output factored matrix A1 plus
 the three remaining unfactored rows and columns of matrix A.
 Matrix A2 is: ┌ ┐
 | 0.5 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 0.5 2.0 2.0 2.0 0.0 0.0 0.0 2.0 |
 | 1.0 1.0 0.5 2.0 2.0 0.0 2.0 0.0 4.0 |
 | 1.0 1.0 1.0 0.5 2.0 2.0 4.0 0.0 6.0 |
 | 0.0 0.0 0.0 1.0 0.5 2.0 4.0 2.0 4.0 |
 | 0.0 1.0 1.0 1.0 1.0 0.5 8.0 4.0 10.0 |
 | 0.0 0.0 0.0 2.0 4.0 6.0 8.0 6.0 8.0 |
 | 0.0 0.0 0.0 2.0 4.0 6.0 8.0 8.0 10.0 |
 | 2.0 4.0 6.0 6.0 8.0 6.0 10.0 8.0 16.0 |
 └ ┘

 Both
 parts of input matrix A2 are stored in diagonal-out
 skyline storage mode.

 Output matrix A2 is the
 same as output matrix A in Example 1 and is stored in
 diagonal-out skyline storage mode.

 Call
 Statement and Input: N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
 | | | | | | | | | | | | | |
CALL DGKFS(9, AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 45 , BX , LDBX , MBX)

 AU =(same as output AU in Example 4)
IDU =(same as input IDU in Example 1)
AL =(same as output AL in Example 4)
IDL =(same as input IDL in Example 1)
IPARM = (1, 11, 6, 0, 0, . , . , . , . , 0, . , . , . , . , . ,
 . , . , . , . , . , . , . , . , . , .)
RPARM =(not relevant)
BX =(not relevant)
LDBX =(not relevant)
MBX =(not relevant)

 Output:
 AU =(same as output AU in Example 1)
IDU =(same as output IDU in Example 1)
AL =(same as output AL in Example 1)
IDL =(same as output IDL in Example 1)
IPARM = (1, 11, 6, 0, 0, . , . , . , . , 0, . , . , . , . , . , 9,
 . , . , . , . , 0, 0, 0, 0, 3)
RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,
 . , 8.0, 8.0, 0.0, . , . , . , . , . , . , .)
BX =(same as input)
LDBX =(same as input)
MBX =(same as input)

 	Example 6

 	
 This example shows how to solve the system Ax = b with
 one right-hand side for a general sparse matrix A. Input
 matrix A, used here, is the same as factored output
 matrix A from Example 1, stored in profile-in skyline
 storage mode. Here, output matrix A is unchanged on
 output and is stored in profile-in skyline storage mode.

 Call Statement and Input: N AU NU IDU AL NL IDL IPARM RPARM AUX NAUX BX LDBX MBX
 | | | | | | | | | | | | | |
CALL DGKFS(9, AU, 33, IDU, AL, 35, IDL, IPARM, RPARM, AUX, 49 , BX , 9 , 1)

 AU = (0.5, 2.0, 0.5, 2.0, 2.0, 0.5, 2.0, 2.0, 0.5, 2.0,
2.0,
 2.0, 0.5, 2.0, 2.0, 0.5, 2.0, 2.0, 2.0, 2.0, 0.5, 2.0,
 2.0, 2.0, 0.5, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 0.5)
IDU = (1, 3, 6, 9, 13, 16, 21, 25, 33, 34)
AL = (0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0,
 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0,
 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 1.0, 0.0)
IDL = (1, 3, 6, 10, 12, 17, 21, 26, 35, 36)
IPARM = (1, 2, 0, 1, 1, . , . , . , . , . , . , . , . , . , . ,
 . , . , . , . , . , . , . , . , . , .)
RPARM =(not relevant)
BX = (12.0, 58.0, 114.0, 176.0, 132.0, 294.0, 240.0, 274.0,
 406.0)

 Output:
 AU =(same as input)
IDU =(same as input)
AL =(same as input)
IDL =(same as input)
IPARM =(same as input)
RPARM =(not relevant)
BX = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)

 Parent topic: Linear Algebraic Equations

 DSKFS (Symmetric Sparse Matrix Factorization, Determinant,
 and Solve Using Skyline Storage Mode)

 Purpose

 This subroutine can perform either
 or both of the following functions for symmetric sparse matrix A,
 stored in skyline storage mode, and for vectors x and b:

 	Factor A and, optionally, compute the determinant
 of A.

 	Solve the system Ax = b using the results
 of the factorization of matrix A, produced on this call
 or a preceding call to this subroutine.

 You have the choice of using either Gaussian elimination
 or Cholesky decomposition. You also have the choice of using profile-in
 or diagonal-out skyline storage mode for A on input
 or output.
 Note: The input to the solve performed by this subroutine
 must be the output from the factorization performed by this subroutine.

 Syntax

 	Fortran

 	CALL DSKFS (n, a, na, idiag, iparm, rparm, aux, naux, bx, ldbx, mbx)

 	C and C++

 	dskfs (n, a, na, idiag, iparm, rparm, aux, naux, bx, ldbx, mbx);

 	On Entry

 	

 	 n

 	is the order of symmetric sparse matrix A. Specified
 as: an integer; n ≥ 0.

 	 a

 	is the array, referred to as A, containing one
 of three forms of the upper triangular part of symmetric sparse matrix A,
 depending on the type of computation performed, where:

 	If you are doing a factor and solve or a factor only,
 and if IPARM(3) = 0, then A contains
 the unfactored upper triangle of symmetric sparse matrix A.

 	If you are doing a factor only, and if IPARM(3) > 0,
 then A contains the partially factored upper triangle
 of symmetric sparse matrix A. The first IPARM(3) columns
 in the upper triangle of A are already factored. The
 remaining columns are factored in this computation.

 	If you are doing a solve only, then A contains
 the factored upper triangle of sparse matrix A, produced
 by a preceding call to this subroutine.

 In each case:

 If IPARM(4) = 0,
 diagonal-out skyline storage mode is used for A.

 If IPARM(4) = 1,
 profile-in skyline storage mode is used for A.

 Specified
 as: a one-dimensional array of (at least) length na,
 containing long-precision real numbers.

 	 na

 	is the length of array A.
 Specified as: an
 integer; na ≥ 0 and na ≥ (IDIAG(n+1)-1).

 	 idiag

 	is the array, referred to as IDIAG, containing
 the relative positions of the diagonal elements of matrix A (in
 one of its three forms) in array A.
 Specified
 as: a one-dimensional array of (at least) length n+1,
 containing integers.

 	 iparm

 	is an array of parameters, IPARM(i),
 where:

 	IPARM(1) indicates whether certain default values
 for iparm and rparm are used
 by this subroutine, where:
 If IPARM(1) = 0,
 the following default values are used. For restrictions, see Notes.

 IPARM(2)

 =

 0

 IPARM(3)

 =

 0

 IPARM(4)

 =

 0

 IPARM(5)

 =

 0

 IPARM(10)

 =

 0

 IPARM(11)

 =

 -1

 IPARM(12)

 =

 -1

 IPARM(13)

 =

 -1

 IPARM(14)

 =

 -1

 IPARM(15)

 =

 0

 RPARM(10)

 =

 10

 -12

 If IPARM(1) = 1,
 the default values are not used.

 	IPARM(2) indicates the type of computation performed
 by this subroutine. The following table gives the IPARM(2) values
 for each variation:

 	Type of Computation

 	Gaussian Elimination Ax = b

 	Gaussian Elimination Ax = b and Determinant(A)

 	Cholesky Decomposition Ax = b

 	Cholesky Decomposition Ax = b and Determinant(A)

 	Factor and Solve

 	0

 	10

 	100

 	110

 	Factor Only

 	1

 	11

 	101

 	111

 	Solve Only

 	2

 	N/A

 	102

 	N/A

 	IPARM(3) indicates whether a full or partial
 factorization is performed on matrix A, where:
 If IPARM(3) = 0,
 and:

 If you are doing a factor and solve or a factor
 only, then a full factorization is performed for matrix A on
 rows and columns 1 through n.

 If you are
 doing a solve only, this argument has no effect on the computation,
 but must be set to 0.

 If IPARM(3) > 0,
 and you are doing a factor only, then a partial factorization
 is performed on matrix A. Rows 1 through IPARM(3) of
 columns 1 through IPARM(3) in matrix A must
 be in factored form from a preceding call to this subroutine. The
 factorization is performed on rows IPARM(3)+1 through n and
 columns IPARM(3)+1 through n.
 For an illustration, see Notes.

 	IPARM(4) indicates the input storage mode used
 for matrix A. This determines the arrangement of data
 in arrays A and IDIAG on input,
 where:
 If IPARM(4) = 0, diagonal-out skyline storage mode
 is used.

 If IPARM(4) = 1, profile-in skyline storage mode
 is used.

 	IPARM(5) indicates the output storage mode used
 for matrix A. This determines the arrangement of data
 in arrays A and IDAIG on output,
 where:
 If IPARM(5) = 0, diagonal-out skyline storage mode
 is used.

 If IPARM(5) = 1, profile-in skyline storage mode
 is used.

 	IPARM(6) through IPARM(9) are
 reserved.

 	IPARM(10) has the following meaning, where:
 If
 you are doing a factor and solve or a factor only, then IPARM(10) indicates
 whether certain default values for iparm and rparm are
 used by this subroutine, where:

 If

 IPARM(10)

 =

 0, the following default values are used.

 For restrictions, see

 Notes

 .

 IPARM(11)

 =

 -1

 IPARM(12)

 =

 -1

 IPARM(13)

 =

 -1

 IPARM(14)

 =

 -1

 IPARM(15)

 =

 0

 RPARM(10)

 =

 10

 -12

 If

 IPARM(10)

 =

 1, the default values are not used.

 If
 you are doing a solve only, this argument is not used.

 	IPARM(11) through IPARM(15) have
 the following meaning, where:
 If you are doing a factor and
 solve or a factor only, then IPARM(11) through IPARM(15) control
 the type of processing to apply to pivot elements occurring in regions
 1 through 5, respectively. The pivot elements are dkk for
 Gaussian elimination and rkk for
 Cholesky decomposition for k = 1, n when doing
 a full factorization, and they are k = IPARM(3)+1, n when
 doing a partial factorization. The region in which a pivot element
 falls depends on the sign and magnitude of the pivot element. The
 regions are determined by RPARM(10). For a description
 of the regions and associated pivot values, see Notes. For each region i for i = 1,5,
 where the pivot occurs in region i, the processing
 applied to the pivot element is determined by IPARM(10+i),
 where:

 If IPARM(10+i) = -1,
 the pivot element is trapped and computational error 2126 is generated.
 See Error conditions.

 If IPARM(10+i) = 0,
 processing continues normally.
 Note: A value of 0 is not permitted
 for region 3, because if processing continues, a divide-by-zero exception
 occurs. In addition, if you are doing a Cholesky decomposition, a
 value of 0 is not permitted in regions 1 and 2, because a square root
 exception occurs.

 If IPARM(10+i) = 1,
 the pivot element is replaced with the value in RPARM(10+i),
 and processing continues normally.

 If you are doing a solve
 only, these arguments are not used.

 	IPARM(16) through IPARM(25),
 see On Return.

 Specified as: a one-dimensional array of (at least) length
 25, containing integers, where:

 IPARM(1)

 =

 0 or 1

 IPARM(2)

 =

 0, 1, 2, 10, 11, 100, 101, 102, 110, or 111

 If

 IPARM(2)

 =

 0, 2, 10, 100, 102, or 110, then

 IPARM(3)

 =

 0

 If

 IPARM(2)

 =

 1, 11, 101, or 111, then 0

 ≤

 IPARM(3)

 ≤

 n

 IPARM(4)

 ,

 IPARM(5)

 =

 0 or 1

 If

 IPARM(2)

 =

 0, 1, 10, or 11, then:

 IPARM(10)

 =

 0 or 1

 IPARM(11)

 ,

 IPARM(12)

 =

 -1, 0, or 1

 IPARM(13)

 =

 -1 or 1

 IPARM(14)

 ,

 IPARM(15)

 =

 -1, 0, or 1

 If IPARM(2) = 100,
 101, 110, or 111, then:

 IPARM(10)

 =

 0 or 1

 IPARM(11)

 ,

 IPARM(12)

 ,

 IPARM(13)

 =

 -1 or 1

 IPARM(14)

 ,

 IPARM(15)

 =

 -1, 0, or 1

 	 rparm

 	is an array of parameters, RPARM(i),
 where:

 	RPARM(1) through RPARM(9) are
 reserved.

 	RPARM(10) has the following meaning, where:
 If
 you are doing a factor and solve or a factor only, RPARM(10) is
 the tolerance value for small pivots. This sets the bounds for the
 pivot regions, where pivots are processed according to the options
 you specify for the five regions in IPARM(11) through IPARM(15),
 respectively. The suggested value is 10-15 ≤ IPARM(10) ≤ 1.

 If
 you are doing a solve only, this argument is not used.

 	RPARM(11) through RPARM(15) have
 the following meaning, where:
 If you are doing a factor and
 solve or a factor only, RPARM(11) through RPARM(15) are
 the fix-up values to use for the pivots in regions 1 through 5, respectively.
 For each RPARM(10+i) for i = 1,5,
 where the pivot occurs in region i:

 If IPARM(10+i) = 1,
 the pivot is replaced with RPARM(10+i),
 where |RPARM(10+i)| should be
 a sufficiently large nonzero value to avoid overflow when calculating
 the reciprocal of the pivot. For Gaussian elimination, the suggested
 value is 10-15 ≤ |RPARM(10+i)| ≤ 1. For Cholesky
 decomposition, the value must be RPARM(10+i) > 0.

 If IPARM(10+i) ≠ 1, RPARM(10+i)
 is not used.

 If you are doing a solve only, these arguments
 are not used.

 	RPARM(16) through RPARM(25),
 see On Return.

 Specified as: a one-dimensional array of (at least) length
 25, containing long-precision real numbers, where if IPARM(2) = 0,
 1, 10, 11, 100, 101, 110, or 111, then:

 RPARM(10) ≥ 0.0

 If IPARM(2) = 0,
 1, 10, or 11, then RPARM(11) through RPARM(15) ≠ 0.0

 If IPARM(2) = 100,
 101, 110, or 111, then RPARM(11) through RPARM(15) > 0.0

 	 aux

 	has the following meaning:
 If naux = 0
 and error 2015 is unrecoverable, aux is ignored.

 Otherwise,
 it is the storage work area used by this subroutine. Its size is specified
 by naux.

 Specified as: an area of storage,
 containing long-precision real numbers.

 	 naux

 	is the size of the work area specified by aux—that
 is, the number of elements in aux.
 Specified
 as: an integer, where:

 If naux = 0
 and error 2015 is unrecoverable, DSKFS dynamically allocates the work
 area used by this subroutine. The work area is deallocated before
 control is returned to the calling program.

 Otherwise, If
 you are doing a factor only

 	For 32-bit integer arguments

 	You can use naux ≥ n.

 	For 64-bit integer arguments

 	You can use naux ≥ 2n.

 However, for optimal performance:

 	For 32-bit integer arguments

 	Use naux ≥ 3n.

 	For 64-bit integer arguments

 	Use naux ≥ 4n.

 If you are doing a factor and solve or
 a solve only:

 	For 32-bit integer arguments

 	Use naux ≥ 3n +
 4mbx.

 	For 64-bit integer arguments

 	Use naux ≥ 4n +
 4mbx.

 For further details on error handling and
 the special factor-only case, see Notes.

 	 bx

 	has the following meaning, where:
 If you are doing a factor
 and solve or a solve only, bx is the
 array, containing the mbx right-hand side vectors b of
 the system Ax = b. Each vector b is
 length n and is stored in the corresponding column
 of the array.

 If you are doing a factor only, this
 argument is not used in the computation.

 Specified as: an ldbx by
 (at least) mbx array, containing long-precision
 real numbers.

 	 ldbx

 	has the following meaning, where:
 If you are doing a factor
 and solve or a solve only, ldbx is the
 leading dimension of the array specified for bx.

 If
 you are doing a factor only, this argument is not used in the
 computation.

 Specified as: an integer; ldbx ≥ n and:

 If mbx ≠ 0, then ldbx > 0.

 If mbx = 0,
 then ldbx ≥ 0.

 	 mbx

 	has the following meaning, where:
 If you are doing a factor
 and solve or a solve only, mbx is the
 number of right-hand side vectors, b, in the array specified
 for bx.

 If you are doing a factor only,
 this argument is not used in the computation.

 Specified as:
 an integer; mbx ≥ 0.

 	On Return

 	

 	 a

 	is the array, referred to as A, containing the
 upper triangular part of symmetric sparse matrix A in LDLT or RTR factored
 form, where:
 If IPARM(5) = 0, diagonal-out skyline storage mode
 is used for A.

 If IPARM(5) = 1,
 profile-in skyline storage mode is used for A.

 (If mbx = 0
 and you are doing a solve only, then a is unchanged
 on output.) Returned as: a one-dimensional array of (at least) length na,
 containing long-precision real numbers.

 	 idiag

 	is the array, referred to as IDIAG, containing
 the relative positions of the diagonal elements of the factored output
 matrix A in array A. (If mbx = 0
 and you are doing a solve only, then idiag is unchanged
 on output.)
 Returned as: a one-dimensional array of (at least)
 length n+1, containing integers.

 	 iparm

 	is an array of parameters, IPARM(i),
 where:

 	IPARM(1) through IPARM(15) are
 unchanged.

 	IPARM(16) has the following meaning, where:
 If
 you are doing a factor and solve or a factor only, and:

 If IPARM(16) = -1,
 your factorization did not complete successfully, resulting in computational
 error 2126.

 If IPARM(16) > 0, it is the row number k,
 in which the maximum absolute value of the ratio akk/dkk for
 Gaussian elimination and akk/rkk for
 Cholesky decomposition occurred, where:

 If IPARM(3) = 0, k can
 be any of the rows, 1 through n, in the full factorization.

 If IPARM(3) > 0, k can
 be any of the rows, IPARM(3)+1 through n,
 in the partial factorization.

 If you are doing a solve
 only, this argument is not used in the computation and is unchanged.

 	IPARM(17) through IPARM(20) are
 reserved.

 	IPARM(21) through IPARM(25) have
 the following meaning, where:
 If you are doing a factor and
 solve or a factor only, IPARM(21) through IPARM(25) have
 the following meanings for each region i for i = 1,5,
 respectively:

 If IPARM(20+i) = -1,
 your factorization did not complete successfully, resulting in computational
 error 2126.

 If IPARM(20+i) ≥ 0, it is the
 number of pivots in region i for the columns that
 were factored in matrix A, where:

 If IPARM(3) = 0,
 columns 1 through n were factored in the full factorization.

 If IPARM(3) > 0,
 columns IPARM(3)+1 through n were
 factored in the partial factorization.

 If you are
 doing a solve only, these arguments are not used in the computation
 and are unchanged.

 Returned as: a one-dimensional array of (at least) length
 25, containing integers.

 	 rparm

 	is an array of parameters, RPARM(i),
 where:

 	RPARM(1) through RPARM(15) are
 unchanged.

 	RPARM(16) has the following meaning, where:
 If
 you are doing a factor and solve or a factor only, and:

 If RPARM(16) = 0.0,
 your factorization did not complete successfully, resulting in computational
 error 2126.

 If |RPARM(16)| > 0.0, it is the ratio for row k, akk/dkk for
 Gaussian elimination and akk/rkk for
 Cholesky decomposition, having the maximum absolute value. Row k is
 indicated in IPARM(16), and:

 If IPARM(3) = 0,
 the ratio corresponds to one of the rows, 1 through n,
 in the full factorization.

 If IPARM(3) > 0,
 the ratio corresponds to one of the rows, IPARM(3)+1
 through n, in the partial factorization.

 If
 you are doing a solve only, this argument is not used in the
 computation and is unchanged.

 	RPARM(17) and RPARM(18) have
 the following meaning, where:
 If you are computing the determinant of
 matrix A, then RPARM(17) is the mantissa, detbas,
 and RPARM(18) is the power of 10, detpwr,
 used to express the value of the determinant: detbas(10detpwr),
 where 1 ≤ detbas < 10.
 Also:

 If IPARM(3) = 0, the determinant is computed for
 columns 1 through n in the full factorization.

 If IPARM(3) > 0,
 the determinant is computed for columns IPARM(3)+1
 through n in the partial factorization.

 If
 you are not computing the determinant of matrix A,
 these arguments are not used in the computation and are unchanged.

 	RPARM(19) through RPARM(25) are
 reserved.

 Returned as: a one-dimensional array of (at least) length 25,
 containing long-precision real numbers.

 	 bx

 	has the following meaning, where:
 If you are doing a factor
 and solve or a solve only, bx is the
 array, containing the mbx solution vectors x of
 the system Ax = b. Each vector x is
 length n and is stored in the corresponding column
 of the array. (If mbx = 0, then bx is
 unchanged on output.)

 If you are doing a factor only,
 this argument is not used in the computation and is unchanged.

 Returned
 as: an ldbx by (at least) mbx array,
 containing long-precision real numbers.

 Notes

 	When doing a solve only, you should specify the same factorization
 method in IPARM(2), Gaussian elimination or Cholesky
 decomposition, that you specified for your factorization on a previous
 call to this subroutine.

 	If you set either IPARM(1) = 0 or IPARM(10) = 0,
 indicating you want to use the default values for IPARM(11) through IPARM(15) and RPARM(10),
 then:

 	Matrix A must be positive definite.

 	No pivots are fixed, using RPARM(11) through RPARM(15) values.

 	No small pivots are tolerated; that is, the value should be |pivot| > RPARM(10).

 	Many of the input and output parameters for iparm and rparm are
 defined for the five pivot regions handled by this subroutine. The
 limits of the regions are based on RPARM(10), as
 shown in Figure 14.. The pivot
 values in each region are:

 Region 1:

 pivot

 <

 -

 RPARM(10)

 Region 2: -

 RPARM(10)

 ≤

 pivot

 <

 0

 Region 3:

 pivot

 =

 0

 Region 4: 0

 <

 pivot

 ≤

 RPARM(10)

 Region 5:

 pivot

 >

 RPARM(10)

 Figure 14. Five Pivot Regions[image: Five Pivot Regions Graphic]

 	The IPARM(4) and IPARM(5) arguments
 allow you to specify the same or different skyline storage modes for
 your input and output arrays for matrix A. This allows
 you to change storage modes as needed. However, if you are concerned
 with performance, you should use diagonal-out skyline storage mode
 for both input and output, if possible, because there is less overhead.

 For a description of how sparse matrices are stored in skyline
 storage mode, see Profile-In Skyline Storage Mode and Diagonal-Out Skyline Storage Mode. Those descriptions use different
 array and variable names from the ones used here. To relate the two
 sets, use the following table:

 	Name Here

 	Name in the Storage Description

 	A

 	AU

 	na

 	nu

 	IDIAG

 	IDU

 	Following is an illustration of the portion of matrix A factored
 in the partial factorization when IPARM(3) > 0.
 In this case, the subroutine assumes that rows and columns 1 through IPARM(3) are
 already factored and that rows and columns IPARM(3)+1
 through n are to be factored in this computation.

 [image: Portion of Matrix A Graphic]

 You use the partial factorization function when, for design
 or storage reasons, you must factor the matrix A in
 stages. When doing a partial factorization, you must use the same
 skyline storage mode for all parts of the matrix as it is progressively
 factored.

 	Your various arrays must have no common elements; otherwise, results
 are unpredictable.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 This subroutine can factor, compute
 the determinant of, and solve symmetric sparse matrix A,
 stored in skyline storage mode. It can use either Gaussian elimination
 or Cholesky decomposition. For all computations, input matrix A can
 be stored in either diagonal-out or profile-in skyline storage mode.
 Output matrix A can also be stored in either of these
 modes and can be different from the mode used for input.

 For
 Gaussian elimination, matrix A is factored into the
 following form using specified pivot processing:

 A

 =

 LDL

 T

 where:

 D

 is a diagonal matrix.

 L

 is a lower triangular matrix.

 The transformed
 matrix A, factored into its LDLT form,
 is stored in packed format in array A, such that
 the inverse of the diagonal matrix D is stored in the
 corresponding elements of array A. The off-diagonal
 elements of the unit upper triangular matrix LT are
 stored in the corresponding off-diagonal elements of array A.

 For
 Cholesky decomposition, matrix A is factored into the
 following form using specified pivot processing:

 A

 =

 R

 T

 R

 where R is
 an upper triangular matrix

 The transformed matrix A,
 factored into its RTR form,
 is stored in packed format in array A, such that
 the inverse of the diagonal elements of the upper triangular matrix R is
 stored in the corresponding elements of array A.
 The off-diagonal elements of matrix R are stored in
 the corresponding off-diagonal elements of array A.

 The
 partial factorization of matrix A, which you can do
 when you specify the factor-only option, assumes that the first IPARM(3) rows
 and columns are already factored in the input matrix. It factors
 the remaining n-IPARM(3) rows
 and columns in matrix A. (See Notes for an illustration.) It
 updates only the elements in array A corresponding
 to the part of matrix A that is factored.

 The
 determinant can be computed with any of the factorization computations.
 With a full factorization, you get the determinant for the whole
 matrix. With a partial factorization, you get the determinant for
 only that part of the matrix factored in this computation.

 The
 system Ax = b, having multiple
 right-hand sides, is solved for x using the transformed
 matrix A produced by this call or a subsequent call
 to this subroutine.

 See references [11], [19], [32], [56], [83]. If n is
 0, no computation is performed. If mbx is 0, no
 solve is performed.

 Error conditions

 	[bookmark: am5gr_hdskfs__am5gr_f10c043]
 Resource Errors

 	

 	Error 2015 is unrecoverable, naux = 0,
 and unable to allocate work area.

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hdskfs__am5gr_f10c044]
 Computational Errors

 	

 	If a pivot occurs in region i for i = 1,5
 and IPARM(10+i) = 1,
 the pivot value is replaced with RPARM(10+i),
 an attention message is issued, and processing continues.

 	Unacceptable pivot values occurred in the factorization of matrix A.

 	One or more diagonal elements of D or R contains
 unacceptable pivots and no valid fixup is applicable. The row number i of
 the first unacceptable pivot element is identified in the computational
 error message.

 	The return code is set to 2.

 	i can be determined at run time by use of the
 ESSL error-handling facilities. To obtain this information, you must
 use ERRSET to change the number of allowable errors for error code
 2126 in the ESSL error option table; otherwise, the default value
 causes your program to terminate when this error occurs. For details,
 see What Can You Do about ESSL Computational Errors?.

 	[bookmark: am5gr_hdskfs__am5gr_f10c045]
 Input-Argument Errors

 	

 	n < 0

 	na < 0

 	IDIAG(n+1) > na+1

 	IDIAG(i+1) ≤ IDIAG(i)
 for i = 1, n

 	IDIAG(i+1) > IDIAG(i)+i and IPARM(4) = 0
 for i = 1, n

 	IDIAG(i) > IDIAG(i-1)+i and IPARM(4) = 1
 for i = 2, n

 	IPARM(1) ≠ 0 or 1

 	IPARM(2) ≠ 0, 1, 2, 10, 11,
 100, 101, 102, 110, or 111

 	IPARM(3) < 0

 	IPARM(3) > n

 	IPARM(3) > 0 and IPARM(2) ≠ 1, 11, 101, or 111

 	IPARM(4), IPARM(5) ≠ 0 or 1

 	IPARM(2) = 0, 1, 10, or 11 and:

 IPARM(10)

 ≠

 0 or 1

 IPARM(11)

 ,

 IPARM(12)

 ≠

 -1, 0, or 1

 IPARM(13)

 ≠

 -1 or 1

 IPARM(14)

 ,

 IPARM(15)

 ≠

 -1, 0, or 1

 RPARM(10)

 <

 0.0

 RPARM

 (10+

 i

)

 =

 0.0 and

 IPARM

 (10+

 i

)

 =

 1 for

 i

 =

 1,5

 	IPARM(2) = 100, 101, 110, or 111 and:

 IPARM(10)

 ≠

 0 or 1

 IPARM(11)

 ,

 IPARM(12)

 ,

 IPARM(13)

 ≠

 -1 or 1

 IPARM(14)

 ,

 IPARM(15)

 ≠

 -1, 0, or 1

 RPARM(10)

 <

 0.0

 RPARM

 (10+

 i

)

 ≤

 0.0 and

 IPARM

 (10+

 i

)

 =

 1 for

 i

 =

 1,5

 	IPARM(2) = 0, 2, 10, 100, 102, or 110 and:

 ldbx

 ≤

 0 and

 mbx

 ≠

 0 and

 n

 ≠

 0

 ldbx

 <

 0 and

 mbx

 =

 0

 ldbx

 <

 n

 and

 mbx

 ≠

 0

 mbx

 <

 0

 	Error 2015 is recoverable or naux≠0, and naux is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows how to factor a 9 by 9 symmetric sparse
 matrix A and solve the system Ax = b with
 three right-hand sides. It uses Gaussian elimination. The default
 values are used for IPARM and RPARM.
 Input matrix A, shown here, is stored in diagonal-out
 skyline storage mode. Matrix A is: ┌ ┐
 | 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 2.0 2.0 2.0 1.0 1.0 0.0 1.0 0.0 |
 | 1.0 2.0 3.0 3.0 2.0 2.0 0.0 2.0 0.0 |
 | 1.0 2.0 3.0 4.0 3.0 3.0 0.0 3.0 0.0 |
 | 0.0 1.0 2.0 3.0 4.0 4.0 1.0 4.0 0.0 |
 | 0.0 1.0 2.0 3.0 4.0 5.0 2.0 5.0 1.0 |
 | 0.0 0.0 0.0 0.0 1.0 2.0 3.0 3.0 2.0 |
 | 0.0 1.0 2.0 3.0 4.0 5.0 3.0 7.0 3.0 |
 | 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 |
 └ ┘

 Output
 matrix A, shown here, is in LDLT factored
 form with D-1 on the diagonal, and is stored
 in diagonal-out skyline storage mode. Matrix A is: ┌ ┐
 | 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 |
 | 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 |
 | 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 |
 | 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 |
 └ ┘

 Call Statement and Input: N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
 | | | | | | | | | | |
CALL DSKFS(9, A, 33, IDIAG, IPARM, RPARM, AUX, 39 , BX , 12 , 3)

 A = (1.0, 2.0, 1.0, 3.0, 2.0, 1.0, 4.0, 3.0, 2.0, 1.0, 4.0,
 3.0, 2.0, 1.0, 5.0, 4.0, 3.0, 2.0, 1.0, 3.0, 2.0, 1.0,
 7.0, 3.0, 5.0, 4.0, 3.0, 2.0, 1.0, 4.0, 3.0, 2.0, 1.0)
IDIAG = (1, 2, 4, 7, 11, 15, 20, 23, 30, 34)
IPARM = (0, . , . , . , . , . , . , . , . , . , . , . , . , . ,
 . , . , . , . , . , . , . , . , . , . , .)

 RPARM =

 (not relevant)

 ┌ ┐
 | 4.00 8.00 12.00 |
 | 10.00 20.00 30.00 |
 | 15.00 30.00 45.00 |
 | 19.00 38.00 57.00 |
 | 19.00 38.00 57.00 |
BX = | 23.00 46.00 69.00 |
 | 11.00 22.00 33.00 |
 | 28.00 56.00 84.00 |
 | 10.00 20.00 30.00 |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 Output:

 A = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

 1.0,

 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

 IDIAG =

 (same as input)

 IPARM = (0, . , . , . , . , . , . , . , . , . , . , . , . , . ,

 . , 8, . , . , . , . , 0, 0, 0, 0, 9)

 RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

 . , 7.0, . , . , . , . , . , . , . , . , .)

 ┌ ┐
 | 1.00 2.00 3.00 |
 | 1.00 2.00 3.00 |
 | 1.00 2.00 3.00 |
 | 1.00 2.00 3.00 |
 | 1.00 2.00 3.00 |
BX = | 1.00 2.00 3.00 |
 | 1.00 2.00 3.00 |
 | 1.00 2.00 3.00 |
 | 1.00 2.00 3.00 |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 	Example 2

 	
 This example shows how to factor the 9 by 9 symmetric sparse
 matrix A from Example 1, solve the system Ax = b with
 three right-hand sides, and compute the determinant of A.
 It uses Gaussian elimination. The default values for pivot processing
 are used for IPARM. Input matrix A is
 stored in profile-in skyline storage mode. Output matrix A is
 in LDLT factored form with D-1 on
 the diagonal, and is stored in diagonal-out skyline storage mode.
 It is the same as output matrix A in Example 1.

 Call Statement and Input: N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
 | | | | | | | | | | |
CALL DSKFS(9, A, 33, IDIAG, IPARM, RPARM, AUX, 39 , BX , 12 , 3)

 A = (1.0, 1.0, 2.0, 1.0, 2.0, 3.0, 1.0, 2.0, 3.0, 4.0, 1.0,
 2.0, 3.0, 4.0, 1.0, 2.0, 3.0, 4.0, 5.0, 1.0, 2.0, 3.0,
 1.0, 2.0, 3.0, 4.0, 5.0, 3.0, 7.0, 1.0, 2.0, 3.0, 4.0)
IDIAG = (1, 3, 6, 10, 14, 19, 22, 29, 33, 34)
IPARM = (1, 10, 0, 1, 0, . , . , . , . , 0, . , . , . , . , . ,
 . , . , . , . , . , . , . , . , . , .)

 RPARM =

 (not relevant)

 ┌ ┐
 | 4.00 8.00 12.00 |
 | 10.00 20.00 30.00 |
 | 15.00 30.00 45.00 |
 | 19.00 38.00 57.00 |
 | 19.00 38.00 57.00 |
BX = | 23.00 46.00 69.00 |
 | 11.00 22.00 33.00 |
 | 28.00 56.00 84.00 |
 | 10.00 20.00 30.00 |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 Output:

 A =

 (same as output

 A

 in Example 1)

 IDIAG =

 (same as input

 IDIAG

 in Example 1)

 IPARM = (1, 10, 0, 1, 0, . , . , . , . , 0, . , . , . , . , . , 8,

 . , . , . , . , 0, 0, 0, 0, 9)

 RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

 . , 7.0, 1.0, 0.0, . , . , . , . , . , . , .)

 BX =

 (same as output

 BX

 in Example 1)

 	Example 3

 	
 This example shows how to factor a 9 by 9 negative-definite
 symmetric sparse matrix A, solve the system Ax = b with
 three right-hand sides, and compute the determinant of A.
 It uses Gaussian elimination. (Default values for pivot processing
 are not used for IPARM because A is
 negative-definite.) Input matrix A, shown here, is
 stored in diagonal-out skyline storage mode. Matrix A is:
 ┌ ┐
 | -1.0 -1.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
 | -1.0 -2.0 -2.0 -2.0 -1.0 -1.0 0.0 -1.0 0.0 |
 | -1.0 -2.0 -3.0 -3.0 -2.0 -2.0 0.0 -2.0 0.0 |
 | -1.0 -2.0 -3.0 -4.0 -3.0 -3.0 0.0 -3.0 0.0 |
 | 0.0 -1.0 -2.0 -3.0 -4.0 -4.0 -1.0 -4.0 0.0 |
 | 0.0 -1.0 -2.0 -3.0 -4.0 -5.0 -2.0 -5.0 -1.0 |
 | 0.0 0.0 0.0 0.0 -1.0 -2.0 -3.0 -3.0 -2.0 |
 | 0.0 -1.0 -2.0 -3.0 -4.0 -5.0 -3.0 -7.0 -3.0 |
 | 0.0 0.0 0.0 0.0 0.0 -1.0 -2.0 -3.0 -4.0 |
 └ ┘

 Output
 matrix A, shown here, is in LDLT factored
 form with D-1 on the diagonal, and is stored
 in diagonal-out skyline storage mode. Matrix A is: ┌ ┐
 | -1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 -1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 |
 | 1.0 1.0 -1.0 1.0 1.0 1.0 0.0 1.0 0.0 |
 | 1.0 1.0 1.0 -1.0 1.0 1.0 0.0 1.0 0.0 |
 | 0.0 1.0 1.0 1.0 -1.0 1.0 1.0 1.0 0.0 |
 | 0.0 1.0 1.0 1.0 1.0 -1.0 1.0 1.0 1.0 |
 | 0.0 0.0 0.0 0.0 1.0 1.0 -1.0 1.0 1.0 |
 | 0.0 1.0 1.0 1.0 1.0 1.0 1.0 -1.0 1.0 |
 | 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 -1.0 |
 └ ┘

 Call Statement and Input: N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
 | | | | | | | | | | |
CALL DSKFS(9, A, 33, IDIAG, IPARM, RPARM, AUX, 39 , BX , 12 , 3)

 A = (-1.0, -2.0, -1.0, -3.0, -2.0, -1.0, -4.0, -3.0, -2.0,
 -1.0, -4.0, -3.0, -2.0, -1.0, -5.0, -4.0, -3.0, -2.0,
 -1.0, -3.0, -2.0, -1.0, -7.0, -3.0, -5.0, -4.0, -3.0,
 -2.0, -1.0, -4.0, -3.0, -2.0, -1.0)
IDIAG = (1, 2, 4, 7, 11, 15, 20, 23, 30, 34)
IPARM = (1, 10, 0, 0, 0, . , . , . , . , 1, 0, -1, -1, -1, -1, . ,
 . , . , . , . , . , . , . , . , .)

 RPARM = (. , . , . , . , . , . , . , . , . ,

 10

 -15

 , . , . ,

 . , . , . , . , . , . , . , . , . , . , . , . , .)

 BX =

 (same as input

 BX

 in Example 1)

 Output:

 A = (-1.0, -1.0, 1.0, -1.0, 1.0, 1.0, -1.0, 1.0,

 1.0, 1.0,

 -1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0,

 1.0, -1.0 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0,

 1.0)

 IDIAG =

 (same as input)

 IPARM = (1, 10, 0, 0, 0, . , . , . , . , 1, 0, -1, -1, -1, -1, 8,

 . , . , . , . , 9, 0, 0, 0, 0)

 RPARM = (. , . , . , . , . , . , . , . , . ,

 10

 -15

 , . , . ,

 . , . , . , 7.0, -1.0, 0.0, . , . , . , . , . , . , .)

 ┌ ┐
 | -1.00 -2.00 -3.00 |
 | -1.00 -2.00 -3.00 |
 | -1.00 -2.00 -3.00 |
 | -1.00 -2.00 -3.00 |
 | -1.00 -2.00 -3.00 |
BX = | -1.00 -2.00 -3.00 |
 | -1.00 -2.00 -3.00 |
 | -1.00 -2.00 -3.00 |
 | -1.00 -2.00 -3.00 |
 | . . . |
 | . . . |
 | . . . |
 └ ┘

 	Example 4

 	
 This example shows how to factor the first six rows and columns,
 referred to as matrix A1, of the 9 by 9 symmetric sparse
 matrix A from Example 1 and compute the determinant
 of A1. It uses Gaussian elimination. Input matrix A1,
 shown here, is stored in diagonal-out skyline storage mode. Input
 matrix A1 is: ┌ ┐
 | 1.0 1.0 1.0 1.0 0.0 0.0 |
 | 1.0 2.0 2.0 2.0 1.0 1.0 |
 | 1.0 2.0 3.0 3.0 2.0 2.0 |
 | 1.0 2.0 3.0 4.0 3.0 3.0 |
 | 0.0 1.0 2.0 3.0 4.0 4.0 |
 | 0.0 1.0 2.0 3.0 4.0 5.0 |
 └ ┘

 Output
 matrix A1, shown here, is in LDLT factored
 form with D-1 on the diagonal, and is stored
 in diagonal-out skyline storage mode. Output matrix A1 is:
 ┌ ┐
 | 1.0 1.0 1.0 1.0 0.0 0.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 0.0 1.0 1.0 1.0 1.0 1.0 |
 | 0.0 1.0 1.0 1.0 1.0 1.0 |
 └ ┘

 Call Statement and Input: N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
 | | | | | | | | | | |
CALL DSKFS (6 , A , 33 , IDIAG , IPARM , RPARM , AUX , 27 , BX , LDBX , MBX)

 A =

 (same as input

 A

 in Example 1)

 IDIAG = (1, 2, 4, 7, 11, 15, 20)

 IPARM = (1, 11, 0, 0, 0, . , . , . , . , 0, . , . , . , . , . ,

 . , . , . , . , . , . , . , . , . , .)

 RPARM =

 (not relevant)

 BX =

 (not relevant)

 LDBX =

 (not relevant)

 MBX =

 (not relevant)

 Output:

 A = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

 1.0,

 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 3.0, 2.0, 1.0,

 7.0, 3.0, 5.0, 4.0, 3.0, 2.0, 1.0, 4.0, 3.0, 2.0, 1.0)

 IDIAG =

 (same as input)

 IPARM = (1, 11, 0, 0, 0, . , . , . , . , 0, . , . , . , . , . , 6,

 . , . , . , . , 0, 0, 0, 0, 6)

 RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

 . , 5.0, 1.0, 0.0, . , . , . , . , . , . , .)

 BX =

 (same as input)

 LDBX =

 (same as input)

 MBX =

 (same as input)

 	Example 5

 	
 This example shows how to do a partial factorization of the
 9 by 9 symmetric sparse matrix A from Example 1, where
 the first six rows and columns were factored in Example 4. It factors
 the remaining three rows and columns and computes the determinant
 of that part of the matrix. It uses Gaussian elimination. The input
 matrix, referred to as A2, shown here, is made up of
 the output factored matrix A1 plus the three remaining
 unfactored rows and columns of matrix A Matrix A2 is:
 ┌ ┐
 | 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 0.0 2.0 0.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 0.0 3.0 0.0 |
 | 0.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 0.0 |
 | 0.0 1.0 1.0 1.0 1.0 1.0 2.0 5.0 1.0 |
 | 0.0 0.0 0.0 0.0 1.0 2.0 3.0 3.0 2.0 |
 | 0.0 1.0 2.0 3.0 4.0 5.0 3.0 7.0 3.0 |
 | 0.0 0.0 0.0 0.0 0.0 1.0 2.0 3.0 4.0 |
 └ ┘

 Both
 parts of input matrix A2 are stored in diagonal-out
 skyline storage mode.

 Output matrix A2 is the
 same as output matrix A in Example 1 and is stored in
 diagonal-out skyline storage mode.

 Call
 Statement and Input: N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
 | | | | | | | | | | |
CALL DSKFS (9 , A , 33 , IDIAG , IPARM , RPARM , AUX , 27 , BX , LDBX , MBX)

 A =

 (same as output

 A

 in Example 4)

 IDIAG =

 (same as input

 IDIAG

 in Example 1)

 IPARM = (1, 11, 6, 0, 0, . , . , . , . , 0, . , . , . , . , . ,

 . , . , . , . , . , . , . , . , . , .)

 RPARM =

 (not relevant)

 BX =

 (not relevant)

 LDBX =

 (not relevant)

 MBX =

 (not relevant)

 Output:

 A =

 (same as output

 A

 in Example 1)

 IDIAG =

 (same as output

 IDIAG

 in Example 1)

 IPARM = (1, 11, 6, 0, 0, . , . , . , . , 0, . , . , . , . , . , 8,

 . , . , . , . , 0, 0, 0, 0, 3)

 RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

 . , 7.0, 1.0, 0.0, . , . , . , . , . , . , .)

 BX =

 (same as input)

 LDBX =

 (same as input)

 MBX =

 (same as input)

 	Example 6

 	
 This example shows how to solve the system Ax = b with
 one right-hand side for a symmetric sparse matrix A.
 Input matrix A, used here, is the same as factored output
 matrix A from Example 1, stored in profile-in skyline
 storage mode. It specifies Gaussian elimination, as used in Example
 1. Here, output matrix A is unchanged on output and
 is stored in profile-in skyline storage mode.

 Call
 Statement and Input: N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
 | | | | | | | | | | |
CALL DSKFS (9, A, 33, IDIAG, IPARM, RPARM, AUX, 31 , BX , 9 , 1)

 A = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

 1.0,

 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

 IDIAG = (1, 3, 6, 10, 14, 19, 22, 29, 33, 34)

 IPARM = (1, 2, 0, 1, 1, . , . , . , . , . , . , . , . , . , . ,

 . , . , . , . , . , . , . , . , . , .)

 RPARM =

 (not relevant)

 BX = (10.0, 38.0, 64.0, 87.0, 103.0, 133.0, 80.0, 174.0, 80.0)

 Output:

 A =

 (same as input)

 IDIAG =

 (same as input)

 IPARM =

 (same as input)

 APARM =

 (same as input)

 BX = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)

 	Example 7

 	
 This example shows how to factor a 9 by 9 symmetric sparse
 matrix A and solve the system Ax = b with
 four right-hand sides. It uses Cholesky decomposition. Input matrix A,
 shown here, is stored in profile-in skyline storage mode Matrix A is:
 ┌ ┐
 | 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 |
 | 1.0 5.0 3.0 0.0 3.0 0.0 0.0 0.0 3.0 |
 | 1.0 3.0 11.0 3.0 5.0 3.0 3.0 0.0 5.0 |
 | 0.0 0.0 3.0 17.0 5.0 5.0 5.0 0.0 5.0 |
 | 1.0 3.0 5.0 5.0 29.0 7.0 7.0 0.0 9.0 |
 | 0.0 0.0 3.0 5.0 7.0 39.0 9.0 6.0 9.0 |
 | 0.0 0.0 3.0 5.0 7.0 9.0 53.0 8.0 11.0 |
 | 0.0 0.0 0.0 0.0 0.0 6.0 8.0 66.0 10.0 |
 | 1.0 3.0 5.0 5.0 9.0 9.0 11.0 10.0 89.0 |
 └ ┘

 Output
 matrix A, shown here, is in RTR factored
 form with the inverse of the diagonal of R on the diagonal,
 and is stored in profile-in skyline storage mode. Matrix A is:
 ┌ ┐
 | 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 |
 | 1.0 .5 1.0 0.0 1.0 0.0 0.0 0.0 1.0 |
 | 1.0 1.0 .333 1.0 1.0 1.0 1.0 0.0 1.0 |
 | 0.0 0.0 1.0 .25 1.0 1.0 1.0 0.0 1.0 |
 | 1.0 1.0 1.0 1.0 .2 1.0 1.0 0.0 1.0 |
 | 0.0 0.0 1.0 1.0 1.0 .167 1.0 1.0 1.0 |
 | 0.0 0.0 1.0 1.0 1.0 1.0 .143 1.0 1.0 |
 | 0.0 0.0 0.0 0.0 0.0 1.0 1.0 .125 1.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .111 |
 └ ┘

 Call Statement and Input: N A NA IDIAG IPARM RPARM AUX NAUX BX LDBX MBX
 | | | | | | | | | | |
CALL DSKFS(9, A, 34, IDIAG, IPARM, RPARM, AUX, 43 , BX , 10 , 4)

 A = (1.0, 1.0, 5.0, 1.0, 3.0, 11.0, 3.0, 17.0, 1.0, 3.0, 5.0,
 5.0, 29.0, 3.0, 5.0, 7.0, 39.0, 3.0, 5.0, 7.0, 9.0, 53.0,
 6.0, 8.0, 66.0, 1.0, 3.0, 5.0, 5.0, 9.0, 9.0, 11.0, 10.0,
 89.0)
IDIAG = (1, 3, 6, 8, 13, 17, 22, 25, 34, 35)
IPARM = (1, 110, 0, 1, 1, . , . , . , . , 0, . , . , . , . , . ,
 . , . , . , . , . , . , . , . , . , .)

 RPARM =

 (not relevant)

 ┌ ┐
 | 5.00 10.00 15.00 20.00 |
 | 15.00 30.00 45.00 60.00 |
 | 34.00 68.00 102.00 136.00 |
 | 40.00 80.00 120.00 160.00 |
BX = | 66.00 132.00 198.00 264.00 |
 | 78.00 156.00 234.00 312.00 |
 | 96.00 192.00 288.00 384.00 |
 | 90.00 180.00 270.00 360.00 |
 | 142.00 284.00 426.00 568.00 |
 | |
 └ ┘

 Output:

 A = (1.0, 1.0, .5, 1.0, 1.0, .333, 1.0, .25, 1.0, 1.0,

 1.0,

 1.0, .2, 1.0, 1.0, 1.0, .167, 1.0, 1.0, 1.0, 1.0, .143,

 1.0, 1.0, .125, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,

 .111)

 IDIAG =

 (same as input)

 IPARM = (1, 110, 0, 1, 1, . , . , . , . , 0, . , . , . , . , . ,

 9, . , . , . , . , 0, 0, 0, 0, 9)

 RPARM = (. , . , . , . , . , . , . , . , . , . , . , . , . , . ,

 . , 9.89, 1.32, 11.0, . , . , . , . , . , . , .)

 ┌ ┐
 | 1.00 2.00 3.00 4.00 |
 | 1.00 2.00 3.00 4.00 |
 | 1.00 2.00 3.00 4.00 |
 | 1.00 2.00 3.00 4.00 |
BX = | 1.00 2.00 3.00 4.00 |
 | 1.00 2.00 3.00 4.00 |
 | 1.00 2.00 3.00 4.00 |
 | 1.00 2.00 3.00 4.00 |
 | 1.00 2.00 3.00 4.00 |
 | |
 └ ┘

 	

 Parent topic: Linear Algebraic Equations

 DSRIS (Iterative Linear System Solver for a General or Symmetric
 Sparse Matrix Stored by Rows)

 Purpose

 This subroutine solves a general
 or symmetric sparse linear system of equations, using an iterative
 algorithm, with or without preconditioning. The methods include conjugate
 gradient (CG), conjugate gradient squared (CGS), generalized minimum
 residual (GMRES), more smoothly converging variant of the CGS method
 (Bi-CGSTAB), or transpose-free quasi-minimal residual method (TFQMR).
 The preconditioners include an incomplete LU factorization, an incomplete
 Cholesky factorization (for positive definite symmetric matrices),
 diagonal scaling, or symmetric successive over-relaxation (SSOR) with
 two possible choices for the diagonal matrix: one uses the absolute
 values sum of the input matrix, and the other uses the diagonal obtained
 from the LU factorization. The sparse matrix is stored using storage-by-rows
 for general matrices and upper- or lower-storage-by-rows for symmetric
 matrices. Matrix A and vectors x and b are
 used:

 Ax

 =

 b

 where A, x,
 and b contain long-precision real numbers.

 Syntax

 	Fortran

 	CALL DSRIS (stor, init, n, ar, ja, ia, b, x, iparm, rparm, aux1, naux1, aux2, naux2)

 	C and C++

 	dsris (stor, init, n, ar, ja, ia, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 stor

 	indicates the form of sparse matrix A and the storage
 mode used, where:
 If stor = 'G', A is a general
 sparse matrix, stored using storage-by-rows.

 If stor = 'U', A is
 a symmetric sparse matrix, stored using upper-storage-by-rows.

 If stor = 'L', A is
 a symmetric sparse matrix, stored using lower-storage-by-rows.

 Specified
 as: a single character. It must be 'G', 'U', or 'L'.

 	 init

 	indicates the type of computation to be performed, where:
 If init = 'I',
 the preconditioning matrix is computed, the internal representation
 of the sparse matrix is generated, and the iteration procedure is
 performed. The coefficient matrix and preconditioner in internal format
 are saved in aux1.

 If init = 'S',
 the iteration procedure is performed using the coefficient matrix
 and the preconditioner in internal format, stored in aux1,
 created in a preceding call to this subroutine with init = 'I'.
 You use this option to solve the same matrix for different right-hand
 sides, b, optimizing your performance. As long as you
 do not change the coefficient matrix and preconditioner in aux1,
 any number of calls can be made with init = 'S'.

 Specified
 as: a single character. It must be 'I' or 'S'.

 	 n

 	is the order of the linear system Ax = b and
 the number of rows and columns in sparse matrix A.
 Specified
 as: an integer; n ≥ 0.

 	 ar

 	is the sparse matrix A of order n,
 stored by rows in an array, referred to as AR. The stor argument
 indicates the storage variation used for storing matrix A.

 Specified as: a one-dimensional array, containing long-precision
 real numbers. The number of elements in this array can be determined
 by subtracting 1 from the value in IA(n+1).

 	 ja

 	is the array, referred to as JA, containing the
 column numbers of each nonzero element in sparse matrix A.

 Specified as: a one-dimensional array, containing integers; 1 ≤ (JA elements) ≤ n.
 The number of elements in this array can be determined by subtracting
 1 from the value in IA(n+1).

 	 ia

 	is the row pointer array, referred to as IA,
 containing the starting positions of each row of matrix A in
 array AR and one position past the end of array AR.
 Specified as: a one-dimensional array of (at least) length n+1,
 containing integers; IA(i+1) ≥ IA(i)
 for i = 1, n+1.

 	 b

 	is the vector b of length n,
 containing the right-hand side of the matrix problem.
 Specified
 as: a one-dimensional array of (at least) length n,
 containing long-precision real numbers.

 	 x

 	is the vector x of length n,
 containing your initial guess of the solution of the linear system.

 Specified as: a one-dimensional array of (at least) length n,
 containing long-precision real numbers. The elements can have any
 value, and if no guess is available, the value can be zero.

 	 iparm

 	is an array of parameters, IPARM(i),
 where:

 	IPARM(1) controls the number of iterations.
 If IPARM(1) > 0, IPARM(1) is
 the maximum number of iterations allowed.

 If IPARM(1) = 0,
 the following default values are used:

 IPARM(1)

 =

 300

 IPARM(2)

 =

 4

 IPARM(4)

 =

 4

 IPARM(5)

 =

 1

 RPARM(1)

 =

 10

 -6

 RPARM(2)

 =

 1

 	IPARM(2) is the flag used to select the iterative
 procedure used in this subroutine.
 If IPARM(2) = 1,
 the conjugate gradient (CG) method is used. Note that this algorithm
 should only be used with positive definite symmetric matrices.

 If IPARM(2) = 2,
 the conjugate gradient squared (CGS) method is used.

 If IPARM(2) = 3,
 the generalized minimum residual (GMRES) method, restarted after k steps,
 is used.

 If IPARM(2) = 4, the more smoothly converging variant
 of the CGS method (Bi-CGSTAB) is used.

 If IPARM(2) = 5,
 the transpose-free quasi-minimal residual method (TFQMR) is used.

 	IPARM(3) has the following meaning, where:
 If IPARM(2) ≠ 3, then IPARM(3) is
 not used.

 If IPARM(2) = 3, then IPARM(3) = k,
 where k is the number of steps after which the
 generalized minimum residual method is restarted. A value for k in
 the range of 5 to 10 is suitable for most problems.

 	IPARM(4) is the flag that determines the type
 of preconditioning.
 If IPARM(4) = 1,
 the system is not preconditioned.

 If IPARM(4) = 2,
 the system is preconditioned by a diagonal matrix.

 If IPARM(4) = 3,
 the system is preconditioned by SSOR splitting with the diagonal given
 by the absolute values sum of the input matrix.

 If IPARM(4) = 4,
 the system is preconditioned by an incomplete LU factorization.

 If IPARM(4) = 5,
 the system is preconditioned by SSOR splitting with the diagonal given
 by the incomplete LU factorization.

 Note: The multithreaded
 version of DSRIS only runs on multiple threads when IPARM(4) = 1
 or 2.

 	IPARM(5) is the flag used to select the stopping
 criterion used in the computation, where the following items are used
 in the definitions of the stopping criteria below:

 	ε is
 the desired relative accuracy and is stored in RPARM(1).

 	xj is the solution
 found at the j-th iteration.

 	rj and r0 are
 the preconditioned residuals obtained at iterations j and
 0, respectively. (The residual at iteration j is
 given by b-Axj.)

 If IPARM(5) = 1, the iterative method is stopped
 when:

 ∥

 r

 j

 ∥

 2

 / ∥

 x

 j

 ∥

 2

 <

 ε

 Note: IPARM(5) = 1
 is the default value assumed by ESSL if you do not specify one of
 the values described here; therefore, if you do not update your program
 to set an IPARM(5) value, you, by default, use the
 above stopping criterion.

 If IPARM(5) = 2,
 the iterative method is stopped when:

 ∥

 r

 j

 ∥

 2

 / ∥

 r

 0

 ∥

 2

 <

 ε

 If IPARM(5) = 3,
 the iterative method is stopped when:

 ∥

 x

 j

 -

 x

 j

 -1

 ∥

 2

 / ∥

 x

 j

 ∥

 2

 <

 ε

 Note: Stopping
 criterion 3 performs poorly with the TFQMR method; therefore, if you
 specify TFQMR (IPARM(2) = 5), you should not specify stopping
 criterion 3.

 	IPARM(6), see On Return.

 Specified as: an array of (at least) length 6, containing
 integers, where:

 IPARM(1)

 ≥

 0

 IPARM(2)

 =

 1, 2, 3, 4, or 5

 If

 IPARM(2)

 =

 3, then

 IPARM(3)

 >

 0

 IPARM(4)

 =

 1, 2, 3, 4, or 5

 IPARM(5)

 =

 1, 2, or 3 (Other values default to stopping criterion 1.)

 	 rparm

 	is an array of parameters, RPARM(i),
 where:
 RPARM(1) has the following meaning, where:

 	if RPARM(1) > 0, then RPARM(1) is
 the relative accuracy ε used in the stopping criterion.

 	if RPARM(1) = 0, then the solver is forced to
 evaluate at most IPARM(1) iterations.

 See 5.

 RPARM(2),
 see On Return.

 RPARM(3) has
 the following meaning, where:

 	If IPARM(4) ≠ 3, then RPARM(3) is
 not used.

 	If IPARM(4) = 3, then RPARM(3) is
 the acceleration parameter used in SSOR. (A value in the range 0.5
 to 2.0 is suitable for most problems.)

 Specified as: a one-dimensional array of (at least)
 length 3, containing long-precision real numbers, where:

 RPARM(1)

 ≥

 0

 If

 IPARM(4)

 =

 3,

 RPARM(3)

 >

 0

 	 aux1

 	is working storage for this subroutine, where:
 If init = 'I',
 the working storage is computed. It can contain any values.

 If init = 'S',
 the working storage is used in solving the linear system. It contains
 the coefficient matrix and preconditioner in internal format, computed
 in an earlier call to this subroutine.

 Specified as: an area
 of storage, containing naux1 long-precision real
 numbers.

 	 naux1

 	is the number of doublewords in the working storage specified
 in aux1.
 Specified as: an integer, where:

 In
 these formulas nw has the following value:

 If

 stor

 =

 'G', then

 nw

 =

 IA

 (

 n

 +1)-1+

 n

 .

 If

 stor

 =

 'U' or 'L', then

 nw

 =

 2(

 IA

 (

 n

 +1)-1).

 	For 32-bit integer arguments

 	

 If

 IPARM(4)

 = 1, use

 naux1

 ≥

 (3/2)

 nw

 + (1/2)

 n

 + 20.

 If

 IPARM(4)

 = 2, use

 naux1

 ≥

 (3/2)

 nw

 + (3/2)

 n

 + 20.

 If

 IPARM(4)

 = 3, 4, or 5, use

 naux1

 ≥

 3

 nw

 +

 n

 + 20.

 	For 64-bit integer arguments

 	

 If

 IPARM(4)

 = 1, use

 naux1

 ≥

 2

 nw

 +

 n

 + 40.

 If

 IPARM(4)

 = 2, use

 naux1

 ≥

 2

 nw

 +

 2n

 + 40.

 If

 IPARM(4)

 = 3, 4, or 5, use

 naux1

 ≥

 4

 nw

 + 4

 n

 + 40.

 Note: If you receive an attention message, you
 have not specified sufficient auxiliary storage to achieve optimal
 performance, but it is enough to perform the computation. To obtain
 optimal performance, you need to use the amount given by the attention
 message.

 	 aux2

 	has the following meaning:
 If naux2 = 0
 and error 2015 is unrecoverable, aux2 is ignored.

 Otherwise,
 it is working storage used by this subroutine that is available for
 use by the calling program between calls to this subroutine.

 Specified
 as: an area of storage, containing naux2 long-precision
 real numbers.

 	 naux2

 	is the number of doublewords in the working storage specified
 in aux2.
 Specified as: an integer, where:

 If naux2 = 0
 and error 2015 is unrecoverable, DSRIS dynamically allocates the work
 area used by this subroutine. The work area is deallocated before
 control is returned to the calling program.

 Otherwise,

 If

 IPARM(2)

 =

 1, use

 naux

 2

 ≥

 4

 n

 .

 If

 IPARM(2)

 =

 2, use

 naux

 2

 ≥

 7

 n

 .

 If

 IPARM(2)

 =

 3, use

 naux

 2

 ≥

 (

 k

 +2)

 n

 +

 k

 (

 k

 +4)+1, where

 k

 =

 IPARM(3)

 .

 If

 IPARM(2)

 =

 4, use

 naux

 2

 ≥

 7

 n

 .

 If

 IPARM(2)

 =

 5, use

 naux

 2

 ≥

 9

 n

 .

 	On Return

 	

 	 ar

 	is the sparse matrix A of order n,
 stored by rows in an array, referred to as AR. The stor argument
 indicates the storage variation used for storing matrix A.
 The order of the elements in each row of A in AR may
 be changed on output.
 Returned as: a one-dimensional array, containing
 long-precision real numbers. The number of elements in this array
 can be determined by subtracting 1 from the value in IA(n+1).

 	 ja

 	is the array, referred to as JA, containing the
 column numbers of each nonzero element in sparse matrix A.
 These elements correspond to the arrangement of the contents of AR on
 output.
 Returned as: a one-dimensional array, containing integers;
 1 ≤ (JA elements) ≤ n.
 The number of elements in this array can be determined by subtracting
 1 from the value in IA(n+1).

 	 x

 	is the vector x of length n,
 containing the solution of the system Ax = b.
 Returned as: a one-dimensional array of (at least) length n,
 containing long-precision real numbers.

 	 iparm

 	is an array of parameters, IPARM(i),
 where:
 IPARM(1) through IPARM(5) are
 unchanged.

 IPARM(6) contains the number of
 iterations performed by this subroutine.

 Returned as: a one-dimensional
 array of length 6, containing integers.

 	 rparm

 	is an array of parameters, RPARM(i),
 where:
 RPARM(1) is unchanged.

 RPARM(2) contains
 the estimate of the error of the solution. If the process converged, RPARM(2) ≤ ε.

 RPARM(3) is
 unchanged.

 Returned as: a one-dimensional array of length
 3, containing long-precision real numbers.

 	 aux1

 	is working storage for this subroutine, containing the coefficient
 matrix and preconditioner in internal format, ready to be passed in
 a subsequent invocation of this subroutine. Returned as: an area of
 storage, containing naux1 long-precision real numbers.

 Notes

 	If you want to solve the same sparse linear system of equations
 multiple times using a different algorithm with the same preconditioner
 and using a different right-hand side each time, you get the best
 performance by using the following technique. Call DSRIS the first
 time with init = 'I'. This solves the system, and
 then stores the coefficient matrix and preconditioner in internal
 format in aux1. On the subsequent invocations of
 DSRIS with different right-hand sides, specify init = 'S'.
 This indicates to DSRIS to use the contents of aux1,
 saving the time to convert your coefficient matrix and preconditioner
 to internal format. If you use this technique, you should not modify
 the contents of aux1 between calls to DSRIS.
 In
 some cases, you can specify a different algorithm in IPARM(2) when
 making calls with init = 'S'. (See Example 2.) However, DSRIS
 sometimes needs different information in aux1 for
 different algorithms. When this occurs, DSRIS issues an attention
 message, continues processing the computation, and then resets the
 contents of aux1. Your performance is not improved
 in this case, which is functionally equivalent to calling DSRIS with init = 'I'.

 	If you use the CG method with init = 'I',
 you must use the CG method when you specify init = 'S'.
 However, if you use a different method with init = 'I',
 you can use any other method, except CG, when you specify init = 'S'.

 	These subroutines accept lowercase letters for the stor and init arguments.

 	Matrix A, vector x, and vector b must
 have no common elements; otherwise, results are unpredictable.

 	The algorithm computes a sequence of approximate
 solution vectors x that converge to the solution. The
 iterative procedure is stopped when the selected stopping criterion
 is satisfied or when more than the maximum number of iterations (in IPARM(1))
 is reached.
 For the stopping criteria specified in IPARM(5),
 the relative accuracy ε (in RPARM(1)) must
 be specified reasonably (10-4 to 10-8). If you
 specify a larger ε,
 the algorithm takes fewer iterations to converge to a solution. If
 you specify a smaller ε, the algorithm requires more iterations
 and computer time, but converges to a more precise solution. If the
 value you specify is unreasonably small, the algorithm may fail to
 converge within the number of iterations it is allowed to perform.

 	For a description of how sparse matrices are stored by rows, see Storage-by-Rows.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 The linear system:

 Ax

 =

 b

 is
 solved using one of the following methods: conjugate gradient (CG),
 conjugate gradient squared (CGS), generalized minimum residual (GMRES),
 more smoothly converging variant of the CGS method (Bi-CGSTAB), or
 transpose-free quasi-minimal residual method (TFQMR), where:

 A is
 a sparse matrix of order n. The matrix is stored
 in arrays AR, IA, and JA.
 If it is general, it is stored by rows. If it is symmetric, it can
 be stored using upper- or lower-storage-by-rows.

 x is
 a vector of length n.

 b is
 a vector of length n.

 One of the
 following preconditioners is used:

 	an incomplete LU factorization

 	an incomplete Cholesky factorization (for positive definite symmetric
 matrices)

 	diagonal scaling

 	symmetric successive over-relaxation (SSOR) with two possible
 choices for the diagonal matrix:

 	the absolute values sum of the input matrix

 	the diagonal obtained from the LU factorization

 See references [44], [67], [99], [105], [108], and [114].

 When
 you call this subroutine to solve a system for the first time, you
 specify init = 'I'. After that, you can solve the
 same system any number of times by calling this subroutine each time
 with init = 'S'. These subsequent calls use the
 coefficient matrix and preconditioner, stored in internal format in aux1.
 You optimize performance by doing this, because certain portions of
 the computation have already been performed.

 Error conditions

 	[bookmark: am5gr_hdsris__am5gr_f10c068]
 Resource Errors

 	Error 2015 is unrecoverable, naux2 = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hdsris__am5gr_f10c069]
 Computational Errors

 	The following errors, with their corresponding return codes, can
 occur in this subroutine. For details on error handling, see What Can You Do about ESSL Computational Errors?.

 	For error 2110, if RPARM(1) > , return code
 1 indicates that the subroutine exceeded IPARM(1) iterations
 without converging. Vector x contains the approximate
 solution computed at the last iteration.

 	For error 2130, return code 2 indicates that the incomplete LU
 factorization of A could not be completed, because one
 pivot was 0.

 	For error 2124, the subroutine has been called with init = 'S',
 but the data contained in aux1 was computed for
 a different algorithm. An attention message is issued. Processing
 continues, and the contents of aux1 are reset correctly.

 	For error 2134, return code 3 indicates that the data contained
 in aux1 is not consistent with the input sparse
 matrix. The subroutine has been called with init = 'S',
 and aux1 contains an incomplete factorization and
 internal data storage for the input matrix A that was
 computed by a previous call to the subroutine when init = 'I'.
 This error indicates that aux1 has been modified
 since the last call to the subroutine, or that the input matrix is
 not the same as the one that was factored. If the default action has
 been overridden, the subroutine can be called again with the same
 parameters, with the exception of IPARM(4) = 1
 or 4.

 	For error 2131, return code 4 indicates that the matrix is singular,
 because all elements in one row of the matrix contain zero.

 	For error 2129, return code 5 indicates that the matrix is not
 positive definite.

 	For error 2128, return code 8 indicates an internal ESSL error.
 Please contact your IBM® Representative.

 	[bookmark: am5gr_hdsris__am5gr_f10c070]
 Input-Argument Errors

 	

 	n < 0

 	stor ≠ 'G', 'U', or 'L'

 	init ≠ 'I' or 'S'

 	IA(n+1) < 1

 	IA(i+1)-IA(i) < 0,
 for any i = 1, n

 	IPARM(1) < 0

 	IPARM(2) ≠ 1, 2, 3, 4, or 5

 	IPARM(3) ≤ 0 and IPARM(2) = 3

 	IPARM(4) ≠ 1, 2, 3, 4, or 5

 	RPARM(1) < 0

 	RPARM(3) ≤ 0 and IPARM(4) = 3

 	naux1 is too small—that is, less than the minimum required value.
 Return code 6 is returned if error 2015 is recoverable.

 	Error 2015 is recoverable or naux2≠0, and naux2 is
 too small—that
 is, less than the minimum required value. Return code 7 is returned
 for naux2 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example finds the solution of the linear system Ax = b for
 the sparse matrix A, which is stored by rows in arrays AR, IA,
 and JA. The system is solved using the Bi-CGSTAB
 algorithm. The iteration is stopped when the norm of the residual
 is less than the given threshold specified in RPARM(1).
 The algorithm is allowed to perform 20 iterations. The process converges
 after 9 iterations. Matrix A is: ┌ ┐
 | 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 1.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 0.0 0.0 2.0 -1.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 1.0 2.0 -1.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 1.0 2.0 -1.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 1.0 2.0 -1.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 -1.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 |
 └ ┘

 Call Statement and Input:
 STOR INIT N AR JA IA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | |
CALL DSRIS('G' , 'I' , 9 , AR , JA , IA , B , X , IPARM , RPARM , AUX1 , 98 , AUX2 , 63)

 AR = (2.0, 2.0, -1.0, 1.0, 2.0, 1.0, 2.0, -1.0, 1.0, 2.0, -1.0,
 1.0, 2.0, -1.0, 1.0, 2.0, -1.0, 1.0, 2.0, -1.0, 1.0, 2.0)
JA = (1, 2, 3, 2, 3, 1, 4, 5, 4, 5, 6, 5, 6, 7, 6, 7, 8, 7, 8,
 9, 8, 9)
IA = (1, 2, 4, 6, 9, 12, 15, 18, 21, 23)
B = (2.0, 1.0, 3.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
IPARM(1) = 20
IPARM(2) = 4
IPARM(3) = 0
IPARM(4) = 1
IPARM(5) = 10
RPARM(1) = 1.D-7
RPARM(3) = 1.0

 Output: X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(6) = 9
RPARM(2) = 0.29D-16

 	Example 2

 	
 This example finds the solution of the linear system Ax = b for
 the same sparse matrix A used in Example 1. It also
 uses the same right-hand side in b and the same initial
 guesses in x. However, the system is solved using a
 different algorithm, conjugate gradient squared (CGS). Because INIT is
 'S', the best performance is achieved. The iteration is stopped when
 the norm of the residual is less than the given threshold specified
 in RPARM(1). The algorithm is allowed to perform
 20 iterations. The process converges after 9 iterations.

 Call Statement and Input:
 STOR INIT N AR JA IA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | |
CALL DSRIS('G' , 'S' , 9 , AR , JA , IA , B , X , IPARM , RPARM , AUX1 , 98 , AUX2 , 63)

 AR =

 (same as input

 AR

 in Example 1)

 JA =

 (same as input

 JA

 in Example 1)

 IA =

 (same as input

 IA

 in Example 1)

 B =

 (same as input

 B

 in Example 1)

 X =

 (same as input

 X

 in Example 1)

 IPARM(1) = 20

 IPARM(2) = 2

 IPARM(3) = 0

 IPARM(4) = 1

 IPARM(5) = 10

 RPARM(1) = 1.D-7

 RPARM(3) = 1.0

 Output:
 X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(6) = 9
RPARM(2) = 0.42D-19

 	Example 3

 	
 This example finds the solution of the linear system Ax = b for
 the sparse matrix A, which is stored by rows in arrays AR, IA,
 and JA. The system is solved using the two-term conjugate
 gradient method (CG), preconditioned by incomplete LU factorization.
 The iteration is stopped when the norm of the residual is less than
 the given threshold specified in RPARM(1). The algorithm
 is allowed to perform 20 iterations. The process converges after 1
 iteration. Matrix A is: ┌ ┐
 | 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
 | -1.0 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 |
 | 0.0 -1.0 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 |
 | 0.0 0.0 -1.0 0.0 2.0 0.0 -1.0 0.0 0.0 |
 | 0.0 0.0 0.0 -1.0 0.0 2.0 0.0 -1.0 0.0 |
 | 0.0 0.0 0.0 0.0 -1.0 0.0 2.0 0.0 -1.0 |
 | 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 2.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 2.0 |
 └ ┘

 Call Statement Input:
 STOR INIT N AR JA IA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | |
CALL DSRIS('G' , 'I' , 9 , AR , JA , IA , B , X , IPARM , RPARM , AUX1 , 223 , AUX2 , 36)

 AR = (2.0, -1.0, 2.0, -1.0, -1.0, 2.0, -1.0, -1.0, 2.0, -1.0,
 -1.0, 2.0, -1.0, -1.0, 2.0, -1.0, -1.0, 2.0, -1.0, -1.0,
 2.0, -1.0, 2.0)
JA = (1, 3, 2, 4, 1, 3, 5, 2, 4, 6, 3, 5, 7, 4, 6, 8, 5, 7, 9,
 6, 8, 7, 9)
IA = (1, 3, 5, 8, 11, 14, 17, 20, 22, 24)
B = (1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
IPARM(1) = 20
IPARM(2) = 1
IPARM(3) = 0
IPARM(4) = 4
IPARM(5) = 1
RPARM(1) = 1.D-7
RPARM(3) = 1.0

 Output: X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(6) = 1
RPARM(2) = 0.16D-15

 	Example 4

 	
 This example finds the solution of the linear system Ax = b for
 the same sparse matrix A used in Example 3. However,
 matrix A is stored using upper-storage-by-rows in arrays AR, IA,
 and JA. The system is solved using the generalized
 minimum residual (GMRES), restarted after 5 steps and preconditioned
 with SSOR splitting. The iteration is stopped when the norm of the
 residual is less than the given threshold specified in RPARM(1).
 The algorithm is allowed to perform 20 iterations. The process converges
 after 12 iterations.

 Call Statement Input

 STOR INIT N AR JA IA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | |
CALL DSRIS('U' , 'I' , 9 , AR , JA , IA , B , X , IPARM , RPARM , AUX1 , 219 , AUX2 , 109)

 AR = (2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0, 2.0, -1.0,
 2.0, -1.0, 2.0, -1.0, 2.0, 2.0)
JA = (1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 6, 8, 7, 9, 8, 9)
IA = (1, 3, 5, 7, 9, 11, 13, 15, 16, 17)
B = (1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
IPARM(1) = 20
IPARM(2) = 3
IPARM(3) = 5
IPARM(4) = 3
IPARM(5) = 1
RPARM(1) = 1.D-7
RPARM(3) = 2.0

 Output: X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(6) = 12
RPARM(2) = 0.33D-7

 Parent topic: Linear Algebraic Equations

 DSMCG (Sparse Positive Definite or Negative Definite Symmetric
 Matrix Iterative Solve Using Compressed-Matrix Storage Mode)

 Purpose

 This subroutine solves a symmetric,
 positive definite or negative definite linear system, using the conjugate
 gradient method, with or without preconditioning by an incomplete
 Cholesky factorization, for a sparse matrix stored in compressed-matrix
 storage mode. Matrix A and vectors x and b are
 used:

 Ax

 =

 b

 where A, x,
 and b contain long-precision real numbers.
 Note:

 	These subroutines are provided only for migration purposes. You
 get better performance and a wider choice of algorithms if you use
 the DSRIS subroutine.

 	If your sparse matrix is stored by rows, as defined in Storage-by-Rows, you should first use the
 utility subroutine DSRSM to convert your sparse matrix to compressed-matrix
 storage mode. See DSRSM (Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode)

 Syntax

 	Fortran

 	CALL DSMCG (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, naux1, aux2, naux2)

 	C and C++

 	dsmcg (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 m

 	is the order of the linear system Ax = b and
 the number of rows in sparse matrix A.
 Specified
 as: an integer; m ≥ 0.

 	 nz

 	is the maximum number of nonzero elements in each row of sparse
 matrix A.
 Specified as: an integer; nz ≥ 0.

 	 ac

 	is the array, referred to as AC, containing the
 values of the nonzero elements of the sparse matrix, stored in compressed-matrix
 storage mode.
 Specified as: an lda by (at least) nz array,
 containing long-precision real numbers.

 	 ka

 	is the array, referred to as KA, containing the
 column numbers of the matrix A elements stored in the
 corresponding positions in array AC.
 Specified
 as: an lda by (at least) nz array,
 containing integers, where 1 ≤ (elements
 of KA) ≤ m.

 	 lda

 	is the leading dimension of the arrays specified for ac and ka.

 Specified as: an integer; lda > 0
 and lda ≥ m.

 	 b

 	is the vector b of length m,
 containing the right-hand side of the matrix problem.
 Specified
 as: a one-dimensional array of (at least) length m,
 containing long-precision real numbers.

 	 x

 	is the vector x of length m,
 containing your initial guess of the solution of the linear system.

 Specified as: a one-dimensional array of (at least) length m,
 containing long-precision real numbers. The elements can have any
 value, and if no guess is available, the value can be zero.

 	 iparm

 	is an array of parameters, IPARM(i),
 where:

 	IPARM(1) controls the number of iterations.
 If IPARM(1) > 0, IPARM(1) is
 the maximum number of iterations allowed.

 If IPARM(1) = 0,
 the following default values are used:

 IPARM(1)

 =

 300

 IPARM(2)

 =

 1

 IPARM(3)

 =

 0

 RPARM(1)

 =

 10

 -6

 	IPARM(2) is the flag used to select the stopping
 criterion.
 If IPARM(2) = 0, the conjugate gradient iterative
 procedure is stopped when:

 ∥

 r

 ∥

 2

 / ∥

 x

 ∥

 2

 <

 ε

 where r = b-Ax is
 the residual, and ε is the desired relative accuracy. ε is
 stored in RPARM(1).

 If IPARM(2) = 1,
 the conjugate gradient iterative procedure is stopped when:

 ∥

 r

 ∥

 2

 /

 λ

 ∥

 x

 ∥

 2

 <

 ε

 where λ is
 an estimate to the minimum eigenvalue of the iteration matrix. λ is
 computed adaptively by this program and, on output, is stored in RPARM(2).

 If IPARM(2) = 2,
 the conjugate gradient iterative procedure is stopped when:

 ∥

 r

 ∥

 2

 /

 λ

 ∥

 x

 ∥

 2

 <

 ε

 where λ is
 a predetermined estimate to the minimum eigenvalue of the iteration
 matrix. This eigenvalue estimate, on input, is stored in RPARM(2) and
 may be obtained by an earlier call to this subroutine with the same
 matrix.

 	IPARM(3) is the flag that determines whether
 the system is to be solved using the conjugate gradient method, preconditioned
 by an incomplete Cholesky factorization with no fill-in.
 If IPARM(3) = 0,
 the system is not preconditioned.

 If IPARM(3) = 10,
 the system is preconditioned by an incomplete Cholesky factorization.

 If IPARM(3) = -10,
 the system is preconditioned by an incomplete Cholesky factorization,
 where the factorization matrix was computed in an earlier call to
 this subroutine and is stored in aux2.

 	IPARM(4), see On Return.

 Specified as: an array of (at least) length 4, containing integers,
 where:

 IPARM(1)

 ≥

 0

 IPARM(2)

 =

 0, 1, or 2

 IPARM(3)

 =

 0, 10, or -10

 	 rparm

 	is an array of parameters, RPARM(i),
 where ε is
 stored in RPARM(1), and λ is stored in RPARM(2).

 RPARM(1) > 0, is the relative accuracy ε used
 in the stopping criterion.

 RPARM(2) > 0,
 is the estimate of the smallest eigenvalue, λ, of the iteration matrix. It is only
 used when IPARM(2) = 2.

 RPARM(3),
 see On Return.

 Specified
 as: a one-dimensional array of (at least) length 3, containing long-precision
 real numbers.

 	 aux1

 	has the following meaning:
 If naux1 = 0
 and error 2015 is unrecoverable, aux1 is ignored.

 Otherwise,
 it is a storage work area used by this subroutine, which is available
 for use by the calling program between calls to this subroutine. Its
 size is specified by naux1.

 Specified as:
 an area of storage, containing long-precision real numbers.

 	 naux1

 	is the size of the work area specified by aux1—that
 is, the number of elements in aux1.
 Specified
 as: an integer, where:

 If naux1 = 0
 and error 2015 is unrecoverable, DSMCG dynamically allocates the work
 area used by this subroutine. The work area is deallocated before
 control is returned to the calling program.

 Otherwise, naux1 must
 have at least the following value, where:

 If IPARM(2) = 0
 or 2, use naux1 ≥ 3m.

 If IPARM(2) = 1
 and IPARM(1) ≠ 0, use naux1 ≥ 3m+2(IPARM(1)).

 If IPARM(2) = 1
 and IPARM(1) = 0, use naux1 ≥ 3m+600.

 	 aux2

 	is a storage work area used by this subroutine. If IPARM(3) = -10, aux2 must
 contain the incomplete Cholesky factorization of matrix A,
 computed in an earlier call to DSMCG. The size of aux2 is
 specified by naux2.
 Specified as: an area of
 storage, containing long-precision real numbers.

 	 naux2

 	is the size of the work area specified by aux2—that
 is, the number of elements in aux2.
 Specified
 as: an integer. When IPARM(3) = 10 or -10, naux2 must
 have at least the following value:

 	For 32-bit integer arguments

 	naux2 ≥ m(nz-1)1.5+2(m+6).

 	For 64-bit integer arguments

 	naux2 ≥ m(nz-1)2.0+3(m+6).

 	On Return

 	

 	 x

 	is the vector x of length m,
 containing the solution of the system Ax = b.
 Returned as: a one-dimensional array of (at least) length m,
 containing long-precision real numbers.

 	 iparm

 	is an array of parameters, IPARM(i),
 where:
 IPARM(1) is unchanged.

 IPARM(2) is
 unchanged.

 IPARM(3) is unchanged.

 IPARM(4) contains
 the number of iterations performed by this subroutine.

 Returned
 as: a one-dimensional array of length 4, containing integers.

 	 rparm

 	is an array of parameters, RPARM(i),
 where:
 RPARM(1) is unchanged.

 RPARM(2) is
 unchanged if IPARM(2) = 0 or 2. If IPARM(2) = 1, RPARM(2) contains λ,
 an estimate of the smallest eigenvalue of the iteration matrix.

 RPARM(3)
 contains the estimate of the error of the solution. If the process
 converged, RPARM(3) ≤ ε.

 Returned
 as: a one-dimensional array of length 3, containing long-precision
 real numbers; λ > 0.

 	 aux2

 	is the storage work area used by this subroutine.
 If IPARM(3) = 10, aux2 contains
 the incomplete Cholesky factorization of matrix A.

 If IPARM(3) = -10, aux2 is
 unchanged.

 See Notes for
 additional information on aux2. Returned as: an
 area of storage, containing long-precision real numbers.

 Notes

 	When IPARM(3) = -10, this subroutine uses the incomplete
 Cholesky factorization in aux2, computed in an
 earlier call to this subroutine. When IPARM(3) = 10,
 this subroutine computes the incomplete Cholesky factorization and
 stores it in aux2.

 	If you solve the same sparse linear system of equations several
 times with different right-hand sides using the preconditioned algorithm,
 specify IPARM(3) = 10 on the first invocation. The
 incomplete factorization is stored in aux2. You
 may save computing time on subsequent calls by setting IPARM(3) = -10.
 In this way, the algorithm reutilizes the incomplete factorization
 that was computed the first time. Therefore, you should not modify
 the contents of aux2 between calls.

 	Matrix A must have no common elements with vectors x and b;
 otherwise, results are unpredictable.

 	In the iterative solvers for sparse matrices, the relative accuracy ε (RPARM(1))
 must be specified "reasonably" (10-4 to 10-8).
 The algorithm computes a sequence of approximate solution vectors x that
 converge to the solution. The iterative procedure is stopped when
 the norm of the residual is sufficiently small—that is, when:

 ∥

 b

 -

 Ax

 ∥

 2

 /

 λ

 ∥

 x

 ∥

 2

 <

 ε

 where λ is
 an estimate of the minimum eigenvalue of the iteration matrix, which
 is either estimated adaptively or given by the user. As a result,
 if you specify a larger ε, the algorithm takes fewer iterations
 to converge to a solution. If you specify a smaller ε,
 the algorithm requires more iterations and computer time, but converges
 to a more precise solution. If the value you specify is unreasonably
 small, the algorithm may fail to converge within the number of iterations
 it is allowed to perform.

 	For a description of how sparse matrices are stored in compressed-matrix
 storage mode, see Compressed-Matrix Storage Mode.

 	On output, array AC and vector b are
 not bitwise identical to what they were on input, because the matrix A and
 the right-hand side are scaled before starting the iterative process
 and are unscaled before returning control to the user. In addition,
 arrays AC and KA may be rearranged
 on output, but still contain a mathematically equivalent mapping of
 the elements in matrix A.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 The sparse positive definite or
 negative definite linear system:

 Ax

 =

 b

 is
 solved, where:

 A is a symmetric, positive definite
 or negative definite sparse matrix of order m,
 stored in compressed-matrix storage mode in AC and KA.

 x is
 a vector of length m.

 b is
 a vector of length m.

 The system is solved
 using the two-term conjugate gradient method, with or without preconditioning
 by an incomplete Cholesky factorization. In both cases, the matrix
 is scaled by the square root of the diagonal.

 See references [73] and [80]. [44].

 If
 your program uses a sparse matrix stored by rows and you want to use
 this subroutine, first convert your sparse matrix to compressed-matrix
 storage mode by using the subroutine DSRSM (see DSRSM (Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode)).

 Error conditions

 	[bookmark: am5gr_hdsmcg__am5gr_f10c083]
 Resource Errors

 	Error 2015 is unrecoverable, naux1 = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hdsmcg__am5gr_f10c085]
 Computational Errors

 	The following errors, with their corresponding return codes, can
 occur in this subroutine. Where a value of i is
 indicated, it can be determined at run time by use of the ESSL error-handling
 facilities. To obtain this information, you must use ERRSET to change
 the number of allowable errors for that particular error code in the
 ESSL error option table; otherwise, the default value causes your
 program to terminate when the error occurs. For details, see What Can You Do about ESSL Computational Errors?.

 	For error 2110, return code 1 indicates that the subroutine exceeded IPARM(1) iterations
 without converging. Vector x contains the approximate
 solution computed at the last iteration.

 	For error 2111, return code 2 indicates that aux2 contains
 an incorrect factorization. The subroutine has been called with IPARM(3) = -10,
 and aux2 contains an incomplete factorization of
 the input matrix A that was computed by a previous call
 to the subroutine when IPARM(3) = 10. This error indicates that aux2 has
 been modified since the last call to the subroutine, or that the input
 matrix is not the same as the one that was factored. If the default
 action has been overridden, the subroutine can be called again with
 the same parameters, with the exception of IPARM(3) = 0
 or 10.

 	For error 2109, return code 3 indicates that the inner product
 (y,Ay) is negative in the iterative procedure
 after iteration i. This should not occur, because
 the input matrix is assumed to be positive or negative definite. Vector x contains
 the results of the last iteration. The value i is
 identified in the computational error message.

 	For error 2108, return code 4 indicates that the matrix is not
 positive definite. AC is partially modified and does
 not represent the same matrix as on entry.

 	[bookmark: am5gr_hdsmcg__am5gr_f10c086]
 Input-Argument Errors

 	

 	m < 0

 	lda < 1

 	lda < m

 	nz < 0

 	nz = 0 and m > 0

 	IPARM(1) < 0

 	IPARM(2) ≠ 0, 1, or 2

 	IPARM(3) ≠ 0, 10, or -10

 	RPARM(1) < 0

 	RPARM(2) < 0

 	Error 2015 is recoverable or naux1≠0, and naux1 is
 too small—that
 is, less than the minimum required value. Return code 5 is returned
 if error 2015 is recoverable.

 	naux2 is too small—that is, less than the minimum required value.
 Return code 5 is returned if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example finds the solution of the linear system Ax = b for
 the sparse matrix A, which is stored in compressed-matrix
 storage mode in arrays AC and KA.
 The system is solved using the conjugate gradient method. Matrix A is:
 ┌ ┐
 | 2.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 -1.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | -1.0 0.0 0.0 2.0 -1.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 -1.0 2.0 -1.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 -1.0 2.0 -1.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 -1.0 2.0 -1.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 2.0 -1.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 2.0 |
 └ ┘

 Note: For
 input matrix KA, (.) indicates any value between
 1 and 9.

 Call Statement and Input:
 M NZ AC KA LDA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | |
CALL DSMCG(9 , 3 , AC, KA, 9 , B , X, IPARM, RPARM, AUX1, 27 , AUX2, 0)

 IPARM(1) = 20
IPARM(2) = 0
IPARM(3) = 0
RPARM(1) = 1.D-7

 ┌ ┐
 | 2.0 -1.0 0.0 |
 | 2.0 -1.0 0.0 |
 | -1.0 2.0 0.0 |
 | -1.0 2.0 -1.0 |
AC = | -1.0 2.0 -1.0 |
 | -1.0 2.0 -1.0 |
 | -1.0 2.0 -1.0 |
 | -1.0 2.0 -1.0 |
 | -1.0 2.0 0.0 |
 └ ┘

 ┌ ┐
 | 1 4 . |
 | 2 3 . |
 | 2 3 . |
 | 1 4 5 |
KA = | 4 5 6 |
 | 5 6 7 |
 | 6 7 8 |
 | 7 8 9 |
 | 8 9 . |
 └ ┘

 B = (1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

 Output: X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 5
RPARM(2) = 0
RPARM(3) = 0.351D-15

 	Example 2

 	
 This example finds the solution of the linear system Ax = b for
 the same sparse matrix A as in Example 1, which is stored
 in compressed-matrix storage mode in arrays AC and KA.
 The system is solved using the conjugate gradient method, preconditioned
 with an incomplete Cholesky factorization. The smallest eigenvalue
 of the iteration matrix is computed and used in stopping the computation.

 Note: For input matrix KA, (.) indicates any value
 between 1 and 9.

 Call Statement
 and Input: M NZ AC KA LDA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | |
CALL DSMCG(9 , 3 , AC, KA, 9 , B , X, IPARM, RPARM, AUX1, 67 , AUX2, 74)

 IPARM(1) = 20

 IPARM(2) = 1

 IPARM(3) = 10

 RPARM(1) = 1.D-7

 AC =

 (same as input

 AC

 in Example 1)

 KA =

 (same as input

 KA

 in Example 1)

 B = (1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0)

 X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

 Output: X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 1
RPARM(2) = 1
RPARM(3) = 0.100D-15

 Parent topic: Linear Algebraic Equations

 DSDCG (Sparse Positive Definite or Negative Definite Symmetric
 Matrix Iterative Solve Using Compressed-Diagonal Storage Mode)

 Purpose

 This subroutine solves a symmetric,
 positive definite or negative definite linear system, using the two-term
 conjugate gradient method, with or without preconditioning by an incomplete
 Cholesky factorization, for a sparse matrix stored in compressed-diagonal
 storage mode. Matrix A and vectors x and b are
 used:

 Ax

 =

 b

 where A, x,
 and b contain long-precision real numbers.

 Syntax

 	Fortran

 	CALL DSDCG (iopt, m, nd, ad, lda, la, b, x, iparm, rparm, aux1, naux1, aux2, naux2)

 	C and C++

 	dsdcg (iopt, m, nd, ad, lda, la, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 iopt

 	indicates the type of storage used, where:
 If iopt = 0,
 all the nonzero diagonals of the sparse matrix are stored in compressed-diagonal
 storage mode.

 If iopt = 1, the sparse matrix, stored in compressed-diagonal
 storage mode, is symmetric. Only the main diagonal and one of each
 pair of identical diagonals are stored in array AD.

 Specified
 as: an integer; iopt = 0 or 1.

 	 m

 	is the order of the linear system Ax = b and
 the number of rows in sparse matrix A.
 Specified
 as: an integer; m ≥ 0.

 	 nd

 	is the number of nonzero diagonals stored in the columns of array AD,
 the number of columns in the array AD, and the number
 of elements in array LA.
 Specified as: an integer;
 it must have the following value, where:

 If m > 0,
 then nd > 0.

 If m = 0,
 then nd ≥ 0.

 	 ad

 	is the array, referred to as AD, containing the
 values of the nonzero elements of the sparse matrix stored in compressed-diagonal
 storage mode. If iopt = 1, the main diagonal and one of each
 pair of identical diagonals is stored in this array.
 Specified
 as: an lda by (at least) nd array,
 containing long-precision real numbers.

 	 lda

 	is the leading dimension of the array specified for ad.

 Specified as: an integer; lda > 0
 and lda ≥ m.

 	 la

 	is the array, referred to as LA, containing the
 diagonal numbers k for the diagonals stored in
 each corresponding column in array AD. For an explanation
 of how diagonal numbers are assigned, see Compressed-Diagonal Storage Mode.
 Specified as: a one-dimensional
 array of (at least) length nd, containing integers,
 where 1-m ≤ (elements
 of LA) ≤ m-1.

 	 b

 	is the vector b of length m,
 containing the right-hand side of the matrix problem.
 Specified
 as: a one-dimensional array of (at least) length m,
 containing long-precision real numbers.

 	 x

 	is the vector x of length m,
 containing your initial guess of the solution of the linear system.

 Specified as: a one-dimensional array of (at least) length m,
 containing long-precision real numbers. The elements can have any
 value, and if no guess is available, the value can be zero.

 	 iparm

 	is an array of parameters, IPARM(i),
 where:

 	IPARM(1) controls the number of iterations.
 If IPARM(1) > 0, IPARM(1) is
 the maximum number of iterations allowed.

 If IPARM(1) = 0,
 the following default values are used:

 IPARM(1)

 =

 300

 IPARM(2)

 =

 1

 IPARM(3)

 =

 0

 RPARM(1)

 =

 10

 -6

 	IPARM(2) is the flag used to select the stopping
 criterion.
 If IPARM(2) = 0, the conjugate gradient iterative
 procedure is stopped when:

 ∥

 r

 ∥

 2

 / ∥

 x

 ∥

 2

 <

 ε

 where r = b-Ax is
 the residual and ε is
 the desired relative accuracy. ε is stored in RPARM(1).

 If IPARM(2) = 1,
 the conjugate gradient iterative procedure is stopped when:

 ∥

 r

 ∥

 2

 /

 λ

 ∥

 x

 ∥

 2

 <

 ε

 where λ is
 an estimate to the minimum eigenvalue of the iteration matrix. λ is
 computed adaptively by this program and, on output, is stored in RPARM(2).

 If IPARM(2) = 2,
 the conjugate gradient iterative procedure is stopped when:

 ∥

 r

 ∥

 2

 /

 λ

 ∥

 x

 ∥

 2

 <

 ε

 where λ is a predetermined estimate to the minimum
 eigenvalue of the iteration matrix. This eigenvalue estimate, on input,
 is stored in RPARM(2) and may be obtained by an earlier
 call to this subroutine with the same matrix.

 	IPARM(3) is the flag that determines whether
 the system is to be solved using the conjugate gradient method, preconditioned
 by an incomplete Cholesky factorization with no fill-in.
 If IPARM(3) = 0,
 the system is not preconditioned.

 If IPARM(3) = 10,
 the system is preconditioned by an incomplete Cholesky factorization.

 If IPARM(3) = -10,
 the system is preconditioned by an incomplete Cholesky factorization,
 where the factorization matrix was computed in an earlier call to
 this subroutine and is stored in aux2.

 	IPARM(4), see On Return.

 Specified as: an array of (at least) length 4, containing
 integers, where:

 IPARM(1)

 =

 0

 IPARM(2)

 =

 0, 1, or 2

 IPARM(3)

 =

 0, 10, or -10

 	 rparm

 	is an array of parameters, RPARM(i),
 where ε is
 stored in RPARM(1), and λ is stored in RPARM(2).

 RPARM(1) > 0, is the relative accuracy ε used
 in the stopping criterion.

 RPARM(2) > 0,
 is the estimate of the smallest eigenvalue, λ, of the iteration matrix. It is only
 used when IPARM(2) = 2.

 RPARM(3),
 see On Return.

 Specified
 as: a one-dimensional array of (at least) length 3, containing long-precision
 real numbers.

 	 aux1

 	has the following meaning:
 If naux1 = 0
 and error 2015 is unrecoverable, aux1 is ignored.

 Otherwise,
 it is a storage work area used by this subroutine, which is available
 for use by the calling program between calls to this subroutine. Its
 size is specified by naux1.

 Specified as:
 an area of storage, containing long-precision real numbers.

 	 naux1

 	is the size of the work area specified by aux1—that
 is, the number of elements in aux1.
 Specified
 as: an integer, where:

 If naux = 0
 and error 2015 is unrecoverable, DSDCG dynamically allocates the work
 area used by this subroutine. The work area is deallocated before
 control is returned to the calling program.

 Otherwise, it
 must have at least the following value, where:

 If IPARM(2) = 0
 or 2, use naux1 ≥ 3m.

 If IPARM(2) = 1
 and IPARM(1) ≠ 0, use naux1 ≥ 3m+2(IPARM(1)).

 If IPARM(2) = 1
 and IPARM(1) = 0, use naux1 ≥ 3m+600.

 	 aux2

 	is the storage work area used by this subroutine. If IPARM(3) = -10, aux2 must
 contain the incomplete Cholesky factorization of matrix A,
 computed in an earlier call to DSDCG. Its size is specified by naux2.

 Specified as: an area of storage, containing long-precision real
 numbers.

 	 naux2

 	is the size of the work area specified by aux2—that
 is, the number of elements in aux2.
 Specified
 as: an integer. When IPARM(3) = 10 or -10, naux2 must
 have at least the following value:

 	For 32-bit integer arguments

 	naux2 ≥ m(3nd +
 2) + 8

 	For 64-bit integer arguments

 	naux2 ≥ m(4nd +
 3) + 12

 	On Return

 	

 	 x

 	is the vector x of length m,
 containing the solution of the system Ax = b.
 Returned as: a one-dimensional array, containing long-precision real
 numbers.

 	 iparm

 	As an array of parameters, IPARM(i),
 where:
 IPARM(1) is unchanged.

 IPARM(2) is
 unchanged.

 IPARM(3) is unchanged.

 IPARM(4) contains
 the number of iterations performed by this subroutine.

 Returned
 as: a one-dimensional array of length 4, containing integers.

 	 rparm

 	is an array of parameters, RPARM(i),
 where:
 RPARM(1) is unchanged.

 RPARM(2) is
 unchanged if IPARM(2) = 0 or 2. If IPARM(2) = 1, RPARM(2) contains λ,
 an estimate of the smallest eigenvalue of the iteration matrix.

 RPARM(3) contains
 the estimate of the error of the solution. If the process converged, RPARM(3) ≤ ε.

 Returned
 as: a one-dimensional array of length 3, containing long-precision
 real numbers; λ > 0.

 	 aux2

 	is the storage work area used by this subroutine.
 If IPARM(3) = 10, aux2 contains
 the incomplete Cholesky factorization of matrix A.

 If IPARM(3) = -10, aux2 is
 unchanged.

 See Notes for
 additional information on aux2. Returned as: an
 area of storage, containing long-precision real numbers.

 Notes

 	When IPARM(3) = -10, this subroutine uses the incomplete
 Cholesky factorization in aux2, computed in an
 earlier call to this subroutine. When IPARM(3) = 10,
 this subroutine computes the incomplete Cholesky factorization and
 stores it in aux2.

 	If you solve the same sparse linear system of equations several
 times with different right-hand sides using the preconditioned algorithm,
 specify IPARM(3) = 10 on the first invocation. The
 incomplete factorization is stored in aux2. You
 may save computing time on subsequent calls by setting IPARM(3) = -10.
 In this way, the algorithm reutilizes the incomplete factorization
 that was computed the first time. Therefore, you should not modify
 the contents of aux2 between calls.

 	Matrix A must have no common elements with vectors x and b;
 otherwise, results are unpredictable.

 	In the iterative solvers for sparse matrices, the relative accuracy ε (RPARM(1))
 must be specified "reasonably" (10-4 to 10-8).
 The algorithm computes a sequence of approximate solution vectors x that
 converge to the solution. The iterative procedure is stopped when
 the norm of the residual is sufficiently small—that is, when:

 ∥

 b

 -

 Ax

 ∥

 2

 /

 λ

 ∥

 x

 ∥

 2

 <

 ε

 where λ is
 an estimate of the minimum eigenvalue of the iteration matrix, which
 is either estimated adaptively or given by the user. As a result,
 if you specify a larger ε, the algorithm takes fewer iterations
 to converge to a solution. If you specify a smaller ε,
 the algorithm requires more iterations and computer time, but converges
 to a more precise solution. If the value you specify is unreasonably
 small, the algorithm may fail to converge within the number of iterations
 it is allowed to perform.

 	For a description of how sparse matrices are stored in compressed-matrix
 storage mode, see Compressed-Matrix Storage Mode.

 	On output, array AD and vector b are
 not bitwise identical to what they were on input, because the matrix A and
 the right-hand side are scaled before starting the iterative process
 and are unscaled before returning control to the user. In addition,
 arrays AD and LA may be rearranged
 on output, but still contain a mathematically equivalent mapping of
 the elements in matrix A.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 The sparse positive definite or
 negative definite linear system:

 Ax

 =

 b

 is
 solved, where:

 A is a symmetric, positive definite
 or negative definite sparse matrix of order m,
 stored in compressed-diagonal storage mode in arrays AD and LA.

 x is
 a vector of length m.

 b is
 a vector of length m.

 The system is solved
 using the two-term conjugate gradient method, with or without preconditioning
 by an incomplete Cholesky factorization. In both cases, the matrix
 is scaled by the square root of the diagonal.

 See references [73] and [80]. [44].

 Error conditions

 	[bookmark: am5gr_hdsdcg__am5gr_f10c092]
 Resource Errors

 	Error 2015 is unrecoverable, naux1 = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hdsdcg__am5gr_f10c093]
 Computational Errors

 	The following errors, with their corresponding return codes, can
 occur in this subroutine. Where a value of i is
 indicated, it can be determined at run time by use of the ESSL error-handling
 facilities. To obtain this information, you must use ERRSET to change
 the number of allowable errors for that particular error code in the
 ESSL error option table; otherwise, the default value causes your
 program to terminate when the error occurs. For details, see What Can You Do about ESSL Computational Errors?.

 	For error 2110, return code 1 indicates that the subroutine exceeded IPARM(1) iterations
 without converging. Vector x contains the approximate
 solution computed at the last iteration.

 	For error 2111, return code 2 indicates that aux2 contains
 an incorrect factorization. The subroutine has been called with IPARM(3) = -10,
 and aux2 contains an incomplete factorization of
 the input matrix A that was computed by a previous call
 to the subroutine when IPARM(3) = 10. This error indicates that aux2 has
 been modified since the last call to the subroutine, or that the input
 matrix is not the same as the one that was factored. If the default
 action has been overridden, the subroutine can be called again with
 the same parameters, with the exception of IPARM(3) = 0
 or 10.

 	For error 2109, return code 3 indicates that the inner product
 (y,Ay) is negative in the iterative procedure
 after iteration i. This should not occur, because
 the input matrix is assumed to be positive or negative definite. Vector x contains
 the results of the last iteration. The value i is
 identified in the computational error message.

 	For error 2108, return code 4 indicates that the matrix is not
 positive definite. AC is partially modified and does
 not represent the same matrix as on entry.

 	[bookmark: am5gr_hdsdcg__am5gr_f10c094]
 Input-Argument Errors

 	

 	iopt ≠ 0 or 1

 	m < 0

 	lda < 1

 	lda < m

 	nd < 0

 	nd = 0 and m > 0

 	|λ(i)| > m-1
 for i = 1, nd

 	IPARM(1) < 0

 	IPARM(2) ≠ 0, 1, or 2

 	IPARM(3) ≠ 0, 10, or -10

 	RPARM(1) < 0

 	RPARM(2) < 0

 	Error 2015 is recoverable or naux1≠0, and naux1 is
 too small—that
 is, less than the minimum required value. Return code 5 is returned
 if error 2015 is recoverable.

 	naux2 is too small—that is, less than the minimum required value.
 Return code 5 is returned if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example finds the solution of the linear system Ax = b for
 sparse matrix A, which is stored in compressed-diagonal
 storage mode in arrays AD and LA.
 The system is solved using the two-term conjugate gradient method.
 In this example, IOPT = 0.. Matrix A is: ┌ ┐
 | 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
 | -1.0 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 |
 | 0.0 -1.0 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 |
 | 0.0 0.0 -1.0 0.0 2.0 0.0 -1.0 0.0 0.0 |
 | 0.0 0.0 0.0 -1.0 0.0 2.0 0.0 -1.0 0.0 |
 | 0.0 0.0 0.0 0.0 -1.0 0.0 2.0 0.0 -1.0 |
 | 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 2.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 2.0 |
 └ ┘

 Call Statement and Input:
 IOPT M ND AD LDA LA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | |
CALL DSDCG(0 , 9 , 3 , AD , 9 , LA , B , X , IPARM , RPARM , AUX1 , 283 , AUX2 , 0)

 IPARM(1) = 20
IPARM(2) = 0
IPARM(3) = 0
RPARM(1) = 1.D-7

 ┌ ┐
 | 2.0 0.0 -1.0 |
 | 2.0 0.0 -1.0 |
 | 2.0 -1.0 -1.0 |
 | 2.0 -1.0 -1.0 |
AD = | 2.0 -1.0 -1.0 |
 | 2.0 -1.0 -1.0 |
 | 2.0 -1.0 -1.0 |
 | 2.0 -1.0 0.0 |
 | 2.0 -1.0 0.0 |
 └ ┘

 LA = (0, -2, 2)
B = (1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

 Output: X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 5
RPARM(2) = 0
RPARM(3) = 0.46D-16

 	Example 2

 	
 This example finds the solution of the linear system Ax = b for
 the same sparse matrix A as in Example 1, which is stored
 in compressed-diagonal storage mode in arrays AD and LA.
 The system is solved using the two-term conjugate gradient method.
 In this example, IOPT = 1, indicating that the matrix is
 symmetric, and only the main diagonal and one of each pair of identical
 diagonals are stored in array AD.

 Call Statement and Input:
 IOPT M ND AD LDA LA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | |
CALL DSDCG(1 , 9 , 2 , AD , 9 , LA , B , X , IPARM , RPARM , AUX1 , 283 , AUX2 , 80)

 IPARM(1) = 20
IPARM(2) = 0
IPARM(3) = 10
RPARM(1) = 1.D-7

 ┌ ┐
 | 2.0 0.0 |
 | 2.0 0.0 |
 | 2.0 -1.0 |
 | 2.0 -1.0 |
AD = | 2.0 -1.0 |
 | 2.0 -1.0 |
 | 2.0 -1.0 |
 | 2.0 -1.0 |
 | 2.0 -1.0 |
 └ ┘

 LA = (0, -2)
B = (1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

 Output: X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 1
RPARM(2) = 0
RPARM(3) = 0.89D-16

 Parent topic: Linear Algebraic Equations

 DSMGCG (General Sparse Matrix Iterative Solve Using Compressed-Matrix
 Storage Mode)

 Purpose

 This subroutine solves a general
 sparse linear system of equations using an iterative algorithm, conjugate
 gradient squared or generalized minimum residual, with or without
 preconditioning by an incomplete LU factorization. The subroutine
 is suitable for positive real matrices—that is, when the symmetric part of the matrix,
 (A+AT)/2, is positive definite.
 The sparse matrix is stored in compressed-matrix storage mode. Matrix A and
 vectors x and b are used:

 Ax

 =

 b

 where A, x,
 and b contain long-precision real numbers.
 Note:

 	These subroutines are provided only for migration purposes. You
 get better performance and a wider choice of algorithms if you use
 the DSRIS subroutine.

 	If your sparse matrix is stored by rows, as defined in Storage-by-Rows, you should first use the
 utility subroutine DSRSM to convert your sparse matrix to compressed-matrix
 storage mode. See DSRSM (Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode).

 Syntax

 	Fortran

 	CALL DSMGCG (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, naux1, aux2, naux2)

 	C and C++

 	dsmgcg (m, nz, ac, ka, lda, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 m

 	is the order of the linear system Ax = b and
 the number of rows in sparse matrix A.
 Specified
 as: an integer; m ≥ 0.

 	 nz

 	is the maximum number of nonzero elements in each row of sparse
 matrix A.
 Specified as: an integer; nz ≥ 0.

 	 ac

 	is the array, referred to as AC, containing the
 values of the nonzero elements of the sparse matrix, stored in compressed-matrix
 storage mode.
 Specified as: an lda by (at least) nz array,
 containing long-precision real numbers.

 	 ka

 	is the array, referred to as KA, containing the
 column numbers of the matrix A elements stored in the
 corresponding positions in array AC.
 Specified
 as: an lda by (at least) nz array,
 containing integers, where 1 ≤ (elements
 of KA) ≤ m.

 	 lda

 	is the leading dimension of the arrays specified for ac and ka.

 Specified as: an integer; lda > 0
 and lda ≥ m.

 	 b

 	is the vector b of length m,
 containing the right-hand side of the matrix problem.
 Specified
 as: a one-dimensional array of (at least) length m,
 containing long-precision real numbers.

 	 x

 	is the vector x of length m,
 containing your initial guess of the solution of the linear system.

 Specified as: a one-dimensional array of (at least) length m,
 containing long-precision real numbers. The elements can have any
 value, and if no guess is available, the value can be zero.

 	 iparm

 	is an array of parameters, IPARM(i),
 where:

 	IPARM(1) controls the number of iterations.
 If IPARM(1) > 0, IPARM(1) is
 the maximum number of iterations allowed.

 If IPARM(1) = 0,
 the following default values are used:

 IPARM(1)

 =

 300

 IPARM(2)

 =

 0

 IPARM(3)

 =

 10

 RPARM(1)

 =

 10

 -6

 	IPARM(2) is the flag used to select the iterative
 procedure used in this subroutine.
 If IPARM(2) = 0,
 the conjugate gradient squared method is used.

 If IPARM(2) = k,
 the generalized minimum residual method, restarted after k steps,
 is used. Note that the size of the work area aux1 becomes
 larger as k increases. A value for k in
 the range of 5 to 10 is suitable for most problems.

 	IPARM(3) is the flag that determines whether
 the system is to be preconditioned by an incomplete LU factorization
 with no fill-in.
 If IPARM(3) = 0, the system is not preconditioned.

 If IPARM(3) = 10,
 the system is preconditioned by an incomplete LU factorization.

 If IPARM(3) = -10,
 the system is preconditioned by an incomplete LU factorization, where
 the factorization matrix was computed in an earlier call to this subroutine
 and is stored in aux2.

 	IPARM(4), see On Return.

 Specified as: an array of (at least) length 4, containing integers,
 where:

 IPARM(1)

 ≥

 0

 IPARM(2)

 ≥

 0

 IPARM(3)

 =

 0, 10, or -10

 	 rparm

 	is an array of parameters, RPARM(i),
 where:
 RPARM(1) > 0, is the relative accuracy ε used
 in the stopping criterion. The iterative procedure is stopped when:

 ∥

 b

 -

 Ax

 ∥

 2

 / ∥

 x

 ∥

 2

 <

 ε

 RPARM(2) is
 reserved.

 RPARM(3), see On Return.

 Specified
 as: a one-dimensional array of (at least) length 3, containing long-precision
 real numbers.

 	 aux1

 	has the following meaning:
 If naux1 = 0
 and error 2015 is unrecoverable, aux1 is ignored.

 Otherwise,
 it is a storage work area used by this subroutine, which is available
 for use by the calling program between calls to this subroutine. Its
 size is specified by naux1.

 Specified as:
 an area of storage, containing long-precision real numbers.

 	 naux1

 	is the size of the work area specified by aux1—that
 is, the number of elements in aux1.
 Specified
 as: an integer, where:

 If naux1 = 0
 and error 2015 is unrecoverable, DSMGCG dynamically allocates the
 work area used by this subroutine. The work area is deallocated before
 control is returned to the calling program.

 Otherwise, it
 must have at least the following value, where:

 If IPARM(2) = 0,
 use naux1 ≥ 7m.

 If IPARM(2) > 0,
 use naux1 ≥ (k+2)m+k(k+4)+1,
 where k = IPARM(2).

 	 aux2

 	is the storage work area used by this subroutine. If IPARM(3) = -10, aux2 must
 contain the incomplete LU factorization of matrix A,
 computed in an earlier call to DSMGCG. The size of aux2 is
 specified by naux2.
 Specified as: an area of
 storage, containing long-precision real numbers.

 	 naux2

 	is the size of the work area specified by aux2—that
 is, the number of elements in aux2.
 Specified
 as: an integer. When IPARM(3) = 10, naux2 must
 have at least the following value:

 	For 32-bit integer arguments

 	naux2 ≥ 3 + 2m +
 1.5nz(m)

 	For 64-bit integer arguments

 	naux2 ≥ 12 + 3m +
 2nz(m)

 	On Return

 	

 	 x

 	is the vector x of length m,
 containing the solution of the system Ax = b.
 Returned as: a one-dimensional array of (at least) length m,
 containing long-precision real numbers.

 	 iparm

 	is an array of parameters, IPARM(i),
 where:
 IPARM(1) is unchanged.

 IPARM(2) is
 unchanged.

 IPARM(3) is unchanged.

 IPARM(4) contains
 the number of iterations performed by this subroutine.

 Returned
 as: a one-dimensional array of length 4, containing integers.

 	 rparm

 	is an array of parameters, RPARM(i),
 where:
 RPARM(1) is unchanged.

 RPARM(2) is
 reserved.

 RPARM(3) contains the estimate
 of the error of the solution. If the process converged, RPARM(3) ≤ RPARM(1)

 Returned
 as: a one-dimensional array of length 3, containing long-precision
 real numbers.

 	 aux2

 	is the storage work area used by this subroutine.
 If IPARM(3) = 10, aux2 contains
 the incomplete LU factorization of matrix A.

 If IPARM(3) = -10, aux2 is
 unchanged.

 See Notes for
 additional information on aux2. Returned as: an
 area of storage, containing long-precision real numbers.

 Notes

 	When IPARM(3) = -10, this subroutine uses the incomplete
 LU factorization in aux2, computed in an earlier
 call to this subroutine. When IPARM(3) = 10,
 this subroutine computes the incomplete LU factorization and stores
 it in aux2.

 	If you solve the same sparse linear system of equations several
 times with different right-hand sides using the preconditioned algorithm,
 specify IPARM(2) = 10 on the first invocation. The
 incomplete factorization is stored in aux2. You
 may save computing time on subsequent calls by setting IPARM(3) equal
 to -10. In this way, the algorithm reutilizes the incomplete factorization
 that was computed the first time. Therefore, you should not modify
 the contents of aux2 between calls.

 	Matrix A must have no common elements with vectors x and b;
 otherwise, results are unpredictable.

 	In the iterative solvers for sparse matrices, the relative accuracy ε (RPARM(1))
 must be specified "reasonably" (10-4 to 10-8).
 The algorithm computes a sequence of approximate solution vectors x that
 converge to the solution. The iterative procedure is stopped when
 the norm of the residual is sufficiently small—that is, when:

 ∥

 b

 -

 Ax

 ∥

 2

 / ∥

 x

 ∥

 2

 <

 ε

 As
 a result, if you specify a larger ε, the algorithm takes fewer iterations
 to converge to a solution. If you specify a smaller ε,
 the algorithm requires more iterations and computer time, but converges
 to a more precise solution. If the value you specify is unreasonably
 small, the algorithm may fail to converge within the number of iterations
 it is allowed to perform.

 	For a description of how sparse matrices are stored in compressed-matrix
 storage mode, see Compressed-Matrix Storage Mode.

 	On output, array AC is not bitwise identical
 to what it was on input because the matrix A is scaled
 before starting the iterative process and is unscaled before returning
 control to the user.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 The linear system:

 Ax

 =

 b

 is
 solved using either the conjugate gradient squared method or the generalized
 minimum residual method, with or without preconditioning by an incomplete
 LU factorization, where:

 A is a sparse matrix
 of order m, stored in compressed-matrix storage
 mode in arrays AC and KA.

 x is
 a vector of length m.

 b is
 a vector of length m.

 See references [105] and [107]. [44].

 If
 your program uses a sparse matrix stored by rows and you want to use
 this subroutine, first convert your sparse matrix to compressed-matrix
 storage mode by using the subroutine DSRSM (see DSRSM (Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode)).

 Error conditions

 	[bookmark: am5gr_hdsmgcg__am5gr_f10c100]
 Resource Errors

 	Error 2015 is unrecoverable, naux1 = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hdsmgcg__am5gr_f10c101]
 Computational Errors

 	The following errors, with their corresponding return codes, can
 occur in this subroutine. For details on error handling, see What Can You Do about ESSL Computational Errors?.

 	For error 2110, return code 1 indicates that the subroutine exceeded IPARM(1) iterations
 without converging. Vector x contains the approximate
 solution computed at the last iteration.

 	For error 2111, return code 2 indicates that aux2 contains
 an incorrect factorization. The subroutine has been called with IPARM(3) = -10,
 and aux2 contains an incomplete factorization of
 the input matrix A that was computed by a previous call
 to the subroutine when IPARM(3) = 10. This error indicates that aux2 has
 been modified since the last call to the subroutine, or that the input
 matrix is not the same as the one that was factored. If the default
 action has been overridden, the subroutine can be called again with
 the same parameters, with the exception of IPARM(3) = 0
 or 10.

 	For error 2112, return code 3 indicates that the incomplete LU
 factorization of A could not be completed, because one
 pivot was 0.

 	For error 2116, return code 4 indicates that the matrix is singular,
 because all elements in one row of the matrix contain 0. Array AC is
 partially modified and does not represent the same matrix as on entry.

 	[bookmark: am5gr_hdsmgcg__am5gr_f10c102]
 Input-Argument Errors

 	

 	m < 0

 	lda < 1

 	lda < m

 	nz < 0

 	nz = 0 and m > 0

 	IPARM(1) < 0

 	IPARM(2) < 0

 	IPARM(3) ≠ 0, 10, or -10

 	RPARM(1) < 0

 	RPARM(2) < 0

 	Error 2015 is recoverable or naux1≠0, and naux1 is
 too small—that
 is, less than the minimum required value. Return code 5 is returned
 if error 2015 is recoverable.

 	naux2 is too small—that is, less than the minimum required value.
 Return code 5 is returned if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example finds the solution of the linear system Ax = b for
 the sparse matrix A, which is stored in compressed-matrix
 storage mode in arrays AC and KA.
 The system is solved using the conjugate gradient squared method.
 Matrix A is: ┌ ┐
 | 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 1.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 1.0 0.0 0.0 2.0 -1.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 1.0 2.0 -1.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 1.0 2.0 -1.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 1.0 2.0 -1.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 -1.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 |
 └ ┘

 Note: For
 input matrix KA, (.) indicates any value between
 1 and 9.

 Call Statement and Input:

 M NZ AC KA LDA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | |
CALL DSMGCG(9 , 3 , AC , KA , 9 , B , X , IPARM , RPARM , AUX1 , 63 , AUX2 , 0)

 IPARM(1) = 20
IPARM(2) = 0
IPARM(3) = 0
RPARM(1) = 1.D-7

 ┌ ┐
 | 2.0 0.0 0.0 |
 | 2.0 -1.0 0.0 |
 | 1.0 2.0 0.0 |
 | 1.0 2.0 -1.0 |
AC = | 1.0 2.0 -1.0 |
 | 1.0 2.0 -1.0 |
 | 1.0 2.0 -1.0 |
 | 1.0 2.0 -1.0 |
 | 1.0 2.0 0.0 |
 └ ┘

 ┌ ┐
 | 1 . . |
 | 2 3 . |
 | 2 3 . |
 | 1 4 5 |
KA = | 4 5 6 |
 | 5 6 7 |
 | 6 7 8 |
 | 7 8 9 |
 | 8 9 . |
 └ ┘

 B = (2.0, 1.0, 3.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0)
X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

 Output: X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 9
RPARM(3) = 0.150D-19

 	Example 2

 	
 This example finds the solution of the linear system Ax = b for
 the same sparse matrix A as in Example 1, which is stored
 in compressed-matrix storage mode in arrays AC and KA.
 The system is solved using the generalized minimum residual method,
 restarted after 5 steps and preconditioned with an incomplete LU factorization.
 Most of the input is the same as in Example 1.
 Note: For input matrix KA,
 (.) indicates any value between 1 and 9.

 Call Statement and Input:
 M NZ AC KA LDA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | |
CALL DSMGCG(9 , 3 , AC , KA , 9 , B , X , IPARM , RPARM , AUX1 , 109 , AUX2 , 46)

 IPARM(1) = 20

 IPARM(2) = 5

 IPARM(3) = 10

 RPARM(1) = 1.D-7

 AC =

 (same as input

 AC

 in Example 1)

 KA =

 (same as input

 KA

 in Example 1)

 B = (2.0, 1.0, 3.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0)

 X = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

 Output: X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 2
RPARM(3) = 0.290D-15

 Parent topic: Linear Algebraic Equations

 DSDGCG (General Sparse Matrix Iterative Solve Using Compressed-Diagonal
 Storage Mode)

 Purpose

 This subroutine solves a general
 sparse linear system of equations using an iterative algorithm, conjugate
 gradient squared or generalized minimum residual, with or without
 preconditioning by an incomplete LU factorization. The subroutine
 is suitable for positive real matrices—that is, when the symmetric part of the matrix,
 (A+AT)/2, is positive definite.
 The sparse matrix is stored in compressed-diagonal storage mode. Matrix A and
 vectors x and b are used:

 Ax

 =

 b

 where A, x,
 and b contain long-precision real numbers.

 Syntax

 	Fortran

 	CALL DSDGCG (m, nd, ad, lda, la, b, x, iparm, rparm, aux1, naux1, aux2, naux2)

 	C and C++

 	dsdgcg (m, nd, ad, lda, la, b, x, iparm, rparm, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 m

 	is the order of the linear system Ax = b and
 the number of rows in sparse matrix A.
 Specified
 as: an integer; m ≥ 0.

 	 nd

 	is the number of nonzero diagonals stored in the columns of array AD,
 the number of columns in array AD, and the number
 of elements in array LA.
 Specified as: an integer;
 it must have the following value, where:

 If m > 0,
 then nd > 0.

 If m = 0,
 then nd ≥ 0.

 	 ad

 	is the array, referred to as AD, containing the
 values of the nonzero elements of the sparse matrix, stored in compressed-matrix
 storage mode.
 Specified as: an lda by (at least) nd array,
 containing long-precision real numbers.

 	 lda

 	is the leading dimension of the arrays specified for ad.

 Specified as: an integer; lda > 0
 and lda ≥ m.

 	 la

 	is the array, referred to as LA, containing the
 diagonal numbers k for the diagonals stored in
 each corresponding column in array AD. For an explanation
 of how diagonal numbers are stored, see Compressed-Diagonal Storage Mode.
 Specified as: a one-dimensional
 array of (at least) length nd, containing integers,
 where 1-m ≤ (elements
 of LA) ≤ (m-1).

 	 b

 	is the vector b of length m,
 containing the right-hand side of the matrix problem.
 Specified
 as: a one-dimensional array of (at least) length m,
 containing long-precision real numbers.

 	 x

 	is the vector x of length m,
 containing your initial guess of the solution of the linear system.

 Specified as: a one-dimensional array of (at least) length m,
 containing long-precision real numbers. The elements can have any
 value, and if no guess is available, the value can be zero.

 	 iparm

 	is an array of parameters, IPARM(i),
 where:

 	IPARM(1) controls the number of iterations.
 If IPARM(1) > 0, IPARM(1) is
 the maximum number of iterations allowed.

 If IPARM(1) = 0,
 the following default values are used:

 IPARM(1)

 =

 300

 IPARM(2)

 =

 0

 IPARM(3)

 =

 10

 RPARM(1)

 =

 10

 -6

 	IPARM(2) is the flag used to select the iterative
 procedure used in this subroutine.
 If IPARM(2) = 0,
 the conjugate gradient squared method is used.

 If IPARM(2) = k,
 the generalized minimum residual method, restarted after k steps,
 is used. Note that the size of the work area aux1 becomes
 larger as k increases. A value for k in
 the range of 5 to 10 is suitable for most problems.

 	IPARM(3) is the flag that determines whether
 the system is to be preconditioned by an incomplete LU factorization
 with no fill-in.
 If IPARM(3) = 0, the system is not preconditioned.

 If IPARM(3) = 10,
 the system is preconditioned by an incomplete LU factorization.

 If IPARM(3) = -10,
 the system is preconditioned by an incomplete LU factorization, where
 the factorization matrix was computed in an earlier call to this subroutine
 and is stored in aux2.

 	IPARM(4), see On Return.

 Specified as: an array of (at least) length 4, containing integers,
 where:

 IPARM(1)

 ≥

 0

 IPARM(2)

 ≥

 0

 IPARM(3)

 =

 0, 10, or -10

 	 rparm

 	is an array of parameters, RPARM(i),
 where:
 If RPARM(1) > 0, is the relative accuracy ε used
 in the stopping criterion. The iterative procedure is stopped when:

 ∥

 b

 -

 Ax

 ∥

 2

 / ∥

 x

 ∥

 2

 <

 ε

 RPARM(2) is
 reserved.

 RPARM(3), see On Return.

 Specified
 as: a one-dimensional array of (at least) length 3, containing long-precision
 real numbers.

 	 aux1

 	has the following meaning:
 If naux1 = 0
 and error 2015 is unrecoverable, aux1 is ignored.

 Otherwise,
 it is a storage work area used by this subroutine, which is available
 for use by the calling program between calls to this subroutine. Its
 size is specified by naux1.

 Specified as:
 an area of storage, containing long-precision real numbers.

 	 naux1

 	is the size of the work area specified by aux1—that
 is, the number of elements in aux1.
 Specified
 as: an integer, where:

 If naux1 = 0
 and error 2015 is unrecoverable, DSDGCG dynamically allocates the
 work area used by this subroutine. The work area is deallocated before
 control is returned to the calling program.

 Otherwise, naux1 > 0
 and must have at least the following value, where:

 If IPARM(2) = 0,
 use naux1 ≥ 7m.

 If IPARM(2) > 0,
 use naux1 ≥ (k+2)m+k(k+4)+1,
 where k = PARM(2).

 	 aux2

 	is a storage work area used by this subroutine. If IPARM(3) = -10, aux2 must
 contain the incomplete LU factorization of matrix A,
 computed in an earlier call to DSDGCG. The size of aux2 is
 specified by naux2.
 Specified as: an area of
 storage, containing long-precision real numbers.

 	 naux2

 	is the size of the work area specified by aux2—that
 is, the number of elements in aux2.
 Specified
 as: an integer. When IPARM(3) = 10 or -10, naux2 must
 have at least the following value:

 	For 32-bit integer arguments

 	naux2 ≥ 3 + 2m +
 1.5nd(m)

 	For 64-bit integer arguments

 	naux2 ≥ 12 + 3m +
 2nd(m)

 	On Return

 	

 	 x

 	is the vector x of length m,
 containing the solution of the system Ax = b.
 Returned as: a one-dimensional array of (at least) length m,
 containing long-precision real numbers.

 	 iparm

 	is an array of parameters, IPARM(i),
 where:
 IPARM(1) is unchanged.

 IPARM(2) is
 unchanged.

 IPARM(3) is unchanged.

 IPARM(4) contains
 the number of iterations performed by this subroutine.

 Returned
 as: a one-dimensional array of length 4, containing integers.

 	 rparm

 	is an array of parameters, RPARM(i),
 where:
 RPARM(1) is unchanged.

 RPARM(2)
 is reserved.

 RPARM(3) contains the estimate
 of the error of the solution. If the process converged, RPARM(3) ≤ RPARM(1).

 Returned
 as: a one-dimensional array of length 3, containing long-precision
 real numbers.

 	 aux2

 	is the storage work area used by this subroutine.
 If IPARM(3) = 10, aux2 contains
 the incomplete LU factorization of matrix A.

 If IPARM(3) = -10, aux2 is
 unchanged.

 See Notes for
 additional information on aux2. Returned as: an
 area of storage, containing long-precision real numbers.

 Notes

 	When IPARM(3) = -10, this subroutine uses the incomplete
 LU factorization in aux2, computed in an earlier
 call to this subroutine. When IPARM(3) = 10,
 this subroutine computes the incomplete LU factorization and stores
 it in aux2.

 	If you solve the same sparse linear system of equations several
 times with different right-hand sides, using the preconditioned algorithm,
 specify IPARM(3) = 10 on the first invocation. The
 incomplete factorization is stored in aux2. You
 may save computing time on subsequent calls by setting IPARM(3) = -10.
 In this way, the algorithm reutilizes the incomplete factorization
 that was computed the first time. Therefore, you should not modify
 the contents of aux2 between calls.

 	Matrix A must have no common elements with vectors x and b;
 otherwise, results are unpredictable.

 	In the iterative solvers for sparse matrices, the relative accuracy ε (RPARM(1))
 must be specified "reasonably" (10-4 to 10-8).
 The algorithm computes a sequence of approximate solution vectors x that
 converge to the solution. The iterative procedure is stopped when
 the norm of the residual is sufficiently small—that is, when:

 ∥

 b

 -

 Ax

 ∥

 2

 / ∥

 x

 ∥

 2

 <

 ε

 As
 a result, if you specify a larger ε, the algorithm takes fewer iterations
 to converge to a solution. If you specify a smaller ε,
 the algorithm requires more iterations and computer time, but converges
 to a more precise solution. If the value you specify is unreasonably
 small, the algorithm may fail to converge within the number of iterations
 it is allowed to perform.

 	For a description of how sparse matrices are stored in compressed-diagonal
 storage mode, see Compressed-Diagonal Storage Mode.

 	On output, array AD is not bitwise identical
 to what it was on input, because matrix A is scaled
 before starting the iterative process and is unscaled before returning
 control to the user.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 The linear system:

 Ax

 =

 b

 is
 solved using either the conjugate gradient squared method or the generalized
 minimum residual method, with or without preconditioning by an incomplete
 LU factorization, where:

 A is a sparse matrix
 of order m, stored in compressed-diagonal storage
 mode in arrays AD and LA.

 x is
 a vector of length m.

 b is
 a vector of length m.

 See references [105] and [107]. [44].

 Error conditions

 	[bookmark: am5gr_hdsdgcg__am5gr_f10c111]
 Resource Errors

 	Error 2015 is unrecoverable, naux1 = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hdsdgcg__am5gr_f10c112]
 Computational Errors

 	The following errors, with their corresponding return codes, can
 occur in this subroutine. For details on error handling, see What Can You Do about ESSL Computational Errors?.

 	For error 2110, return code 1 indicates that the subroutine exceeded IPARM(1) iterations
 without converging. Vector x contains the approximate
 solution computed at the last iteration.

 	For error 2111, return code 2 indicates that aux2 contains
 an incorrect factorization. The subroutine has been called with IPARM(3) = -10,
 and aux2 contains an incomplete factorization of
 the input matrix A that was computed by a previous call
 to the subroutine when IPARM(3) = 10. This error indicates that aux2 has
 been modified since the last call to the subroutine, or that the input
 matrix is not the same as the one that was factored. If the default
 action has been overridden, the subroutine can be called again with
 the same parameters, with the exception of IPARM(3) = 0
 or 10.

 	For error 2112, return code 3 indicates that the incomplete LU
 factorization of A could not be completed, because one
 pivot was 0.

 	For error 2116, return code 4 indicates that the matrix is singular,
 because all elements in one row of the matrix contain 0. Array AC is
 partially modified and does not represent the same matrix as on entry.

 	[bookmark: am5gr_hdsdgcg__am5gr_f10c113]
 Input-Argument Errors

 	

 	m < 0

 	lda < 1

 	lda < m

 	nd < 0

 	nd = 0 and m > 0

 	IPARM(1) < 0

 	IPARM(2) < 0

 	IPARM(3) ≠ 0, 10, or -10

 	RPARM(1) < 1.D0

 	Error 2015 is recoverable or naux1≠0, and naux1 is
 too small—that
 is, less than the minimum required value. Return code 5 is returned
 if error 2015 is recoverable.

 	naux2 is too small—that is, less than the minimum required value.
 Return code 5 is returned if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example finds the solution of the linear system Ax = b for
 the sparse matrix A, which is stored in compressed-diagonal
 storage mode in arrays AD and LA.
 The system is solved using the conjugate gradient squared method.
 Matrix A is: ┌ ┐
 | 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 2.0 0.0 -1.0 0.0 0.0 0.0 |
 | 1.0 0.0 0.0 0.0 2.0 0.0 -1.0 0.0 0.0 |
 | 0.0 1.0 0.0 0.0 0.0 2.0 0.0 -1.0 0.0 |
 | 0.0 0.0 1.0 0.0 0.0 0.0 2.0 0.0 -1.0 |
 | 0.0 0.0 0.0 1.0 0.0 0.0 0.0 2.0 0.0 |
 | 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 2.0 |
 └ ┘

 Call Statement and Input:
 M ND AD LDA LA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | |
CALL DSDGCG(9 , 3 , AD , 9 , LA , B , X , IPARM , RPARM , AUX1 , 63 , AUX2 , 0)

 IPARM(1) = 20
IPARM(2) = 0
IPARM(3) = 0
RPARM(1) = 1.D-7

 ┌ ┐
 | 2.0 -1.0 0.0 |
 | 2.0 -1.0 0.0 |
 | 2.0 -1.0 0.0 |
 | 2.0 -1.0 0.0 |
AD = | 2.0 -1.0 1.0 |
 | 2.0 -1.0 1.0 |
 | 2.0 -1.0 1.0 |
 | 2.0 0.0 1.0 |
 | 2.0 0.0 1.0 |
 └ ┘

 LA = (0, 2, -4)
B = (1, 1, 1, 1, 2, 2, 2, 3, 3)
X = (0, 0, 0, 0, 0, 0, 0, 0, 0)

 Output: X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 8
RPARM(3) = 0.308D-17

 	Example 2

 	
 This example finds the solution of the linear system Ax = b for
 the same sparse matrix A as in Example 1, which is stored
 in compressed-diagonal storage mode in arrays AD and LA.
 The system is solved using the generalized minimum residual method,
 restarted after 5 steps and preconditioned with an incomplete LU factorization.
 Most of the input is the same as in Example 1.

 Call Statement and Input:
 M ND AD LDA LA B X IPARM RPARM AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | |
CALL DSDGCG(9 , 3 , AD , 9 , LA , B , X , IPARM , RPARM , AUX1 , 109 , AUX2 , 46)

 IPARM(1) = 20

 IPARM(2) = 5

 IPARM(3) = 10

 RPARM(1) = 1.D-7

 AD =

 (same as input

 AD

 in Example 1)

 LA =

 (same as input

 LA

 in Example 1)

 B = (1, 1, 1, 1, 2, 2, 2, 3, 3)

 X = (0, 0, 0, 0, 0, 0, 0, 0, 0)

 Output: X = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
IPARM(4) = 6
RPARM(3) = 0.250D-15

 Parent topic: Linear Algebraic Equations

 Linear Least Squares Subroutines

 This contains the linear least squares subroutine
 descriptions.

 Parent topic: Linear Algebraic Equations

 SGESVD, DGESVD, CGESVD, ZGESVD, SGESDD, DGESDD, CGESDD, and ZGESDD (Singular Value
 Decomposition for a General Matrix)

 Purpose

 These subroutines compute the singular
 value decomposition of a general matrix A, optionally
 computing the left and/or right singular vectors. The singular
 value decomposition is written:

 For SGESVD, DGESVD, [image: Start of change]SGESDD, and DGESDD[image: End of change], A = UΣVT, where
 UT = U -1 and VT =
 V -1

 For CGESVD, ZGESVD, [image: Start of change]CGESDD, and ZGESDD[image: End of change], A = UΣVH, where
 UH = U -1 and VH =
 V -1

 In
 the formulas above:

 	U and V are general matrices whose
 first min(m, n) columns are the
 left and right singular vectors of A.

 	Σ is a diagonal matrix whose min(m, n)
 diagonal elements are the singular values of A.

 Table 182. Data Types.

 	A, U, vt, work

 	s, [image: Start of change]superb[image: End of change],
 rwork

 	Subroutine

 	Short-precision real

 	Short-precision real

 	SGESVDΔ, SGESDDΔ

 	Long-precision real

 	Long-precision real

 	DGESVDΔ,[image: Start of change] DGESDDΔ[image: End of change]

 	Short-precision complex

 	Short-precision real

 	CGESVDΔ, CGESDDΔ

 	Long-precision complex

 	Long-precision real

 	ZGESVDΔ, [image: Start of change]ZGESDD[image: End of change]Δ

 	ΔLAPACK

 Syntax

 	Fortran

 	CALL SGESVD | DGESVD (jobu, jobvt,
 m, n, a, lda,
 s, u, ldu, vt,
 ldvt, work, lwork,
 info)
 CALL CGESVD | ZGESVD (jobu, jobvt,
 m, n, a, lda,
 s, u, ldu, vt,
 ldvt, work, lwork,
 rwork, info)

 [image: Start of change]CALL SGESDD | DGESDD
 (jobz, m, n, a,
 lda, s, u, ldu,
 vt, ldvt, work, lwork,
 iwork, info)[image: End of change]

 [image: Start of change]CALL CGESDD | ZGESDD (jobz,
 m, n, a, lda,
 s, u, ldu, vt,
 ldvt, work, lwork,
 rwork, iwork, info)[image: End of change]

 	C and C++

 	sgesvd | dgesvd (jobu, jobvt, m,
 n, a, lda, s,
 u, ldu, vt, ldvt,
 work, lwork, info);
 cgesvd | zgesvd
 (jobu, jobvt, m, n,
 a, lda, s, u,
 ldu, vt, ldvt, work,
 lwork, rwork, info);

 [image: Start of change]sgesdd | dgesdd (jobz, m, n,
 a, lda, s, u,
 ldu, vt, ldvt, work,
 lwork, iwork, info);[image: End of change]

 [image: Start of change]cgesdd | zgesdd
 (jobz, m, n, a,
 lda, s, u, ldu,
 vt, ldvt, work, lwork,
 rwork, iwork, info);[image: End of change]

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sgesvd | LAPACKE_dgesvd (matrix_layout,
 jobu, jobvt, m, n,
 a, lda, s, u,
 ldu, vt, ldvt, superb);

 info = LAPACKE_cgesvd | LAPACKE_zgesvd (matrix_layout,
 jobu, jobvt, m, n,
 a, lda, s, u,
 ldu, vt, ldvt,
 superb);

 [image: Start of change]info = LAPACKE_sgesdd | LAPACKE_dgesdd
 (matrix_layout, jobz, m,
 n, a, lda, s,
 u, ldu, vt, ldvt);[image: End of change]

 [image: Start of change]info = LAPACKE_cgesdd | LAPACKE_zgesdd (matrix_layout,
 jobz, m, n, a,
 lda, s, u, ldu,
 vt, ldvt);[image: End of change]

 [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	jobu

 	indicates the options for computing all or part of matrix U, where: [image: Start of change]
 	If jobu = 'A', all m columns [image: Start of change](the left
 singluar vectors)[image: End of change] are returned in array u.

 	If jobu = 'S', the first min(m, n)
 columns (the left singular vectors) are returned in array u.

 	If jobu = 'O', the first min(m, n)
 columns (the left singular vectors) are overwritten on the array a.

 	If jobu = 'N', no columns (no left singular vectors) are computed.

[image: End of change]

 	jobvt

 	indicates the options for computing all or part of VT (for
 SGESVD/DGESVD) or VH (for CGESVD/ZGESVD), where: [image: Start of change]
 	If jobvt = 'A', all n rows [image: Start of change](the right
 singular vectors)[image: End of change] are returned in array vt.

 	If jobvt = 'S', the first min(m, n)
 rows (the right singular vectors) are returned in array vt.

 	If jobvt = 'O', the first min(m, n)
 rows (the right singular vectors) are [image: Start of change]overwritten[image: End of change] in array
 a.

 	If jobvt = 'N', no rows (no right singular vectors) are computed.

[image: End of change]

 	[image: Start of change]jobz[image: End of change]

 	[image: Start of change]indicates the options for computing all or part of U and
 VT (for SGESDD/DGESDD) or VH (for CGESDD/ZGESDD),
 where:

 	If jobz = 'A', all m columns (the left singular vectors)
 are returned in array u and all n rows (the right singular
 vectors) are returned in array vt.

 	If jobz = 'S', the first min(m, n)
 columns (the left singular vectors) are returned in array u and
 the first min(m, n) rows (the right singular vectors) are
 returned in array vt.

 	If jobz = 'O' and m ≥ n, the first
 n columns (the left singular vectors) are overwritten in the array a and all rows (the right singular vectors) are returned in array
 vt.
 If jobz = 'O' and m
 < n, all columns (the left singular vectors) are returned in array
 u and first m rows (the right singular vectors)
 are overwritten on the array a.

 	If jobz = 'N', no columns (the left singular vectors) or rows (the right
 singular vectors) are computed.

 [image: End of change]

 	m

 	is the number of rows in matrix A.Specified as:
 an integer; m ≥ 0.

 	n

 	is the number of columns in matrix A.Specified
 as: an integer; n ≥ 0.

 	 a

 	is the m by n general matrix A,
 whose singular value decomposition is to be computed.
 Specified
 as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 182.

 	 lda

 	is the leading dimension of the array specified for A.
 Specified as: an
 integer; lda > 0 and lda ≥ m.

 	s

 	See "On Return".

 	u

 	See "On Return".

 	ldu

 	is the leading dimension of the array specified for U.
 Specified as: an integer;
 ldu>0 and:

 If jobu = 'A' or 'S',
 ldu ≥ [image: Start of change]max(1,
 m)[image: End of change].

 [image: Start of change]If jobz
 = 'A' or 'S', ldu ≥ [image: Start of change]max(1, m[image: End of change]).[image: End of change]

 [image: Start of change]If
 jobz = 'O' and m < n,
 ldu ≥ max(1, m).[image: End of change]

 	vt

 	See "On Return".

 	ldvt

 	is the leading dimension of the array specified for VT.
 Specified as: an
 integer; ldvt>0 and:

 If jobvt = 'A',
 ldvt ≥ [image: Start of change]max(1, n)[image: End of change].

 If jobvt =
 'S', ldvt ≥
 [image: Start of change]max(1, min(m,
 n))[image: End of change].

 [image: Start of change]If jobz = 'A', ldvt ≥ max(1, n).[image: End of change]

 [image: Start of change]If jobz = 'S', ldvt ≥ max(1, min(m,
 n)).[image: End of change]

 [image: Start of change]If jobz = 'O', and
 m ≥ n,
 ldvt ≥
 [image: Start of change]max(1, n)[image: End of change].[image: End of change]

 	[image: Start of change]superb[image: End of change]

 	[image: Start of change]is a work area of size min(m, n) - 1.

 Specified
 as: an area of storage containing numbers of the data type indicated in Table 182.

 [image: End of change]

 	work

 	is the work area used by these subroutines, where:
 If lwork = 0, work is
 ignored.

 If lwork ≠ 0, the size of work is
 determined as follows:

 	If lwork ≠ -1, work is
 (at least) of length lwork.

 	If lwork = -1, work is (at
 least) of length 1.

 Specified as: an area of storage, containing numbers of
 the data type indicated in Table 182.

 	lwork

 	is the number of elements in array WORK.
 Specified as: an integer; where:

 	If lwork = 0, the subroutine dynamically allocates the workspace needed for use
 during this computation. The work area is deallocated before control is returned to the calling
 program.

 	If lwork = -1, the subroutine performs a workspace query and returns the
 optimal required size of work in work1. No
 computation is performed and the subroutine returns after error checking is complete.

 	Otherwise:

 	For SGESVD and DGESVD

 	[image: Start of change]lwork ≥ max(1, 3*min(m, n) +
 max(m,n),
 5*min(m, n))
 Note: If jobu = 'N' or
 jobvt = 'N', depending on m, n and the
 implementation, lwork ≥ max(1, 5*min(m, n)) may be sufficient and less than the value
 shown above.

 [image: End of change]

 	[image: Start of change]For CGESVD and ZGESVD[image: End of change]

 	[image: Start of change]lwork ≥ max(1,
 2*min(m, n) +
 max(m,n))
 Note: If jobu = 'N' or
 jobvt = 'N', depending on m, n and the
 implementation, lwork ≥ max(1, 3*min(m, n)) may be sufficient and less than the value
 shown above.

 [image: End of change]

 	[image: Start of change]For SGESDD and DGESDD[image: End of change]

 	[image: Start of change]If jobz = 'N', lwork ≥ 3*min(m,
 n) + max(max(m, n),
 7*min(m, n))
 If jobz = 'O':

 lwork ≥ 3*min(m, n) + max(max(m,
 n), 5*min(m, n)*min(m,
 n) + 4*min(m,
 n))

 If
 jobz = 'S', lwork ≥ 4*min(m,
 n)*min(m, n) + 7*min(m,
 n)

 If jobz = 'A', lwork ≥ 4*min(m,
 n)*min(m, n) + 6*min(m,
 n) + max(m, n)

 [image: End of change]

 	[image: Start of change]For CGESDD and ZGESDD[image: End of change]

 	[image: Start of change]If jobz = 'N', lwork ≥ 2*min(m,
 n) + max(m, n)
 If jobz
 = 'O', lwork ≥ 2*min(m, n)*min(m, n)
 + 2*min(m, n) + max(m,
 n)

 If jobz = 'S', lwork ≥ min(m,
 n)*min(m, n) + 3*min(m,
 n)

 If jobz = 'A', lwork ≥ min(m,
 n)*min(m, n) + 2*min(m,
 n) + max(m, n)

 [image: End of change]

 	[image: Start of change]iwork[image: End of change]

 	[image: Start of change]is a storage work area of size [image: Start of change]8*min(m,n)[image: End of change].
 Specified as: an integer array.

 [image: End of change]

 	[image: Start of change]rwork[image: End of change]

 	[image: Start of change]

 	For CGESVD and ZGESVD

 	rwork is a work area of size (at least) 5*min(m,n).

 	For CGESDD and ZGESDD

 	rwork is a work area of size (at least) max(1, lrwork).

 If jobz = 'N', lrwork ≥ 5*min(m,n).

 If max(m, n) >>
 min(m, n), lwork
 ≥ 5*min(m,n)*min(m, n) + 5*min(m,n).

 Otherwise, lrwork ≥ max(5*min(m,n)*min(m, n) + 5*min(m,n), 2*max(m, n)*min(m,n) + 2*min(m, n)*min(m,n) + min(m, n)).

 Note:
 LRWORK depends on whether or not max(m,n) >>
 min(m, n). ESSL is compatible with LAPACK 3.6.1 where
 max(m,n) >> min(m, n) is
 defined as max(m,n) >=
 17.0*min(m, n)/9.0. If this definition changes in future
 LAPACK releases, IBM will consider updating these subroutines. If IBM updates these subroutines, the
 updates could require modifications of the calling application program.

 Specified as: an area of storage containing numbers of the data type indicated in Table 182.

 [image: End of change]

 	On Return

 	

 	a

 	is overwritten as follows:
 [image: Start of change]If jobu = 'O' [image: Start of change]or
 jobz = 'O'[image: End of change] and m ≥ n, u is
 not referenced. Instead, a is overwritten with the first
 min(m, n) columns of U. These are the left
 singular vectors, stored column-wise.[image: End of change]

 [image: Start of change]If jobvt = 'O' [image: Start of change]or jobz = 'O'[image: End of change] and m <
 n, vt is not referenced. Instead, a is
 overwritten with the first min(m, n) rows of
 VT
 (for SGESVD, DGESVD, SGESDD, or DGESDD) or
 VH (for CGESVD, ZGESVD, CGESDD, or ZGESDD). These are the right singular
 vectors, stored row-wise.[image: End of change]

 If jobu ≠ 'O'
 [image: Start of change]and jobvt
 ≠ 'O' and jobz ≠ 'O'[image: End of change], the contents of a are
 overwritten on return.

 Returned as: an lda by (at least) n
 array, containing numbers of the data type indicated in Table 182.

 	s

 	is the vector s containing the non-negative singular
 values in descending order in the first min(m, n)
 elements of s.
 Returned as: a one-dimensional array
 of (at least) length min(m, n)
 containing numbers of the data type indicated in Table 182 .

 	u

 	 If jobu = 'A' or if jobz = 'A' or if jobz
 = 'O' and m < n, u contains the
 m by m matrix U.
 If
 jobu = 'S' or if jobz = 'S', u contains first
 min(m, n) columns of
 U. These are the left singular vectors, stored
 column-wise.

 If jobu = 'O' or 'N' or jobz = 'N' or
 jobz = 'O' and m ≥
 n, u is not referenced.

 [image: Start of change]Returned as: an
 ldu by (at least) m (if jobu = 'A' or if
 jobz = 'A' or if jobz = 'O' and m <
 n) or min(m, n) (if jobu
 = 'S' or if jobz = 'S') array containing numbers of the data type indicated in
 Table 182.[image: End of change]

 	 vt

 	[image: Start of change]
 	For SGESVD, DGESVD, SGESDD, and DGESDD:

 	

 	If jobvt = 'A' or jobz = 'A' or jobz = 'O'
 and m ≥
 n, vt contains the matrix
 VT of order
 n.

 	If jobvt = 'S' or jobz = 'S',
 vt contains the first
 min(m, n) [image: Start of change]rows[image: End of change] of
 VT. These are the right singular
 vector, stored row-wise.

 	If jobvt = 'O' or 'N' or jobz = 'N' or
 jobz = 'O' and m < n,
 vt is not referenced.

 Note: These subroutines return VT
 instead of V

 	For CGESVD, ZGESVD, CGESDD, and ZGESDD:

 	

 	If jobvt = 'A' or jobz = 'A' or jobz = 'O'
 and m ≥
 n, vt contains the matrix
 VH of order
 n.

 	If jobvt = 'S' or jobz = 'S',
 vt contains the first
 min(m, n) [image: Start of change]rows[image: End of change] of
 VH. These are the right singular
 vector, stored row-wise.

 	If jobvt = 'O' or 'N' or jobz = 'N' or
 jobz = 'O' and m < n,
 vt is not referenced.

 	
 Note: These subroutines return VH
 instead of V

[image: End of change]

 Returned as: an ldvt by (at least) n array,
 containing numbers of the data type indicated in Table 182.

 	[image: Start of change]superb[image: End of change]

 	[image: Start of change]is a work area used by this subroutine.
 Returned as: an area of storage. If info > 0,
 superb contains the unconverged superdiagonal elements of the upper bidiagonal
 matrix B whose diagonal is in s.

 [image: End of change]

 	work

 	is a work area used by this subroutine if lwork
 ≠ 0, where:
 If lwork ≠ 0 and lwork ≠ -1, its size is (at least) of length
 lwork.

 If lwork = -1, its size is (at least) of length
 1.

 If [image: Start of change]lwork[image: End of change] = 0, work is not
 referenced.

 Returned as: an area of storage where:

 If lwork ≥ 1 or lwork = -1, then
 work1 is set to the optimal lwork value.

 For
 SGESVD or DGESVD, if lwork
 ≥ 1 and info > 0,
 work2:min(m, n) contains the
 unconverged superdiagonal elements of an upper bidiagonal matrix B, whose diagonal is
 in array S (not necessarily sorted). B satisfies A =
 UBVT, so it has the same singular values as A, and singular
 vectors related by U and VT.

 	rwork

 	is a work area used by this subroutine.
 Returned as: an area of storage where:

 [image: Start of change]For CGESVD and ZGESVD, [image: End of change] if info > 0,
 rwork1:min(m, n)-1 contains the
 unconverged superdiagonal elements of an upper bidiagonal matrix B whose diagonal is
 in array s (not necessarily sorted). B satisfies A =
 UBVH, so it has the same singular values as A, and singular
 vectors related by U and VH.

 	info

 	has the following meaning:
 If info = 0, the subroutine completed
 successfully.

 	[image: Start of change]For SGESVD, DGESVD, CGESVD, ZGESVD, LAPACKE_sgesvd, LAPACKE_dgesvd, LAPACKE_cgesvd,
 and LAPACKE_zgesvd:[image: End of change]

 	If info > 0, info specifies how many superdiagonals of an
 intermediate bidiagonal form B did not converge to zero.

 	[image: Start of change][image: Start of change]For SGESDD, DGESDD, CGESDD, ZGESDD, LAPACKE_sgesdd, LAPACKE_dgesdd, LAPACKE_cgesdd,
 and LAPACKE_zgesdd:[image: End of change][image: End of change]

 	[image: Start of change]If info > 0, the algorithm did not converge to zero and the update process
 failed. The singular values and singular vectors did not converge.[image: End of change]

 [image: Start of change]Returned as:

 	For SGESVD, DGESVD, CGESVD, ZGESVD, SGESDD, DGESDD, CGESDD, and ZGESDD, returned as: an integer;
 info ≥ 0.

 	For LAPACKE_sgesvd, LAPACKE_dgesvd, LAPACKE_cgesvd, LAPACKE_zgesvd, LAPACKE_sgesdd,
 LAPACKE_dgesdd, LAPACKE_cgesdd, and LAPACKE_zgesdd, returned as an integer function value; info ≥ 0.

 Returned as: an integer, info ≥ 0.[image: End of change]

 Notes

 	These subroutines accept lowercase letters for the jobu,
 jobvt,[image: Start of change] and jobz[image: End of change] arguments.

 	In your C program, argument info must be passed
 by reference.

 	When you specify jobu = 'O' or 'N' [image: Start of change]or
 jobz = 'O' or 'N',[image: End of change] you must specify a dummy argument for
 u.

 	When you specify jobvt = 'O' or 'N' [image: Start of change]or
 jobz = 'O' or 'N',[image: End of change] you must specify a dummy argument for
 vt.

 	You cannot specify both jobu = 'O' and jobvt = 'O'.

 	a, s, u, vt,
 work, rwork, and [image: Start of change]iwork[image: End of change] must
 have no common elements; otherwise, results are unpredictable.

 	For best performance, specify lwork = 0.

 Function

 These subroutines compute the
 singular value decomposition of a general matrix A,
 optionally computing the left and/or right singular vectors.
 The singular value decomposition is written:

 For SGESVD, DGESVD, [image: Start of change]SGESDD, and DGESDD[image: End of change], A = UΣVT, where
 UT = U -1 and VT =
 V -1

 For CGESVD, ZGESVD, [image: Start of change]CGESDD, and ZGESDD[image: End of change], A = UΣVH, where
 UH = U -1 and VH =
 V -1

 In
 the formulas above:

 	U and V are general matrices whose
 first min(m, n) columns are the
 left and right singular vectors of A.

 	Σ is a diagonal matrix whose min(m, n)
 diagonal elements are the singular values of A.

 The computation involves the following steps:

 	If necessary, scale A

 	If necessary, compute QR or LQ factorization

 	Bidiagonalize the matrix

 	For SGESVD, DGESVD, CGESVD, and ZGESD, compute the singular values and, optionally, the left
 and/or right singular vectors from the bidiagonalized matrix.
 For SGESDD, DGESDD, CGESDD, and
 ZGESDD, compute the singular values and, optionally, the left and/or right singular vectors from the
 bidiagonalized matrix using the divide and conquer algorithm.

 	If necessary, update the singular vectors

 	If necessary, undo scaling

 If m or n is 0,
 no computation is performed and the subroutine returns after doing
 some parameter checking.

 See references [73, 104].

 Error conditions

 	[bookmark: am5gr_hgesvd__am5gr_f10d002]
 Resource Errors

 	lwork = 0 and unable to allocate work space

 	[bookmark: am5gr_hgesvd__am5gr_f10d003]
 Computational Errors

 	For SGESVD, DGESVD, CGESVD, and ZGESD, at least info superdiagonals of an
 intermediate bidiagonal form B did not converge to zero.
 [image: Start of change]For SGESDD,
 DGESDD, CGESDD, and ZGESDD, singular values and/or singular vectors did not converge.[image: End of change]

 	[bookmark: am5gr_hgesvd__am5gr_ersvf]
 Input-Argument Errors

 	

 	jobu ≠ 'A', 'S', 'O', or
 'N'

 	jobvt ≠ 'A', 'S', 'O', or
 'N'

 	jobu = 'O' and jobvt = 'O'

 	[image: Start of change]jobz ≠ 'A', 'S',
 'O', or 'N'[image: End of change]

 	m < 0

 	n < 0

 	lda ≤ 0

 	m > lda

 	ldu ≤ 0

 	m > ldu and (jobu = 'A' or
 jobz = 'S')

 	[image: Start of change]m > ldu and (jobz = 'A' or
 jobz = 'S')[image: End of change]

 	[image: Start of change]m > ldu and (jobz = 'O' and
 m < n[image: End of change]

 	ldvt
 ≤ 0

 	n > ldvt and jobvt = 'A'

 	[image: Start of change]n > ldvt and jobz =
 'A'[image: End of change]

 	n > ldvt and jobz = 'O' and m ≥
 n

 	min(m, n) > ldvt and
 jobvt = 'S'

 	[image: Start of change]min(m, n) > ldvt and
 jobz = 'S'[image: End of change]

 	lwork
 ≠ 0 and lwork
 ≠ -1 and lwork < the required
 value

 	[image: Start of change]The size of a work array is greater than 2147483647 when 32-bit integers are
 used.[image: End of change]

 Examples

 	Example 1

 	
 This example shows how to find the singular values only of
 the real general matrix A.

 Notes:

 	For DGESVD, because jobu = 'N', argument u is not
 referenced.

 	For DGESVD, because jobvt = 'N', argument vt is not
 referenced.

 	[image: Start of change]For DGESDD, because jobz = 'N', arguments u and
 vt are not referenced.[image: End of change]

 	Because lwork = 0, the subroutine dynamically allocates
 WORK.

 	[image: Start of change]iwork is an integer work array of size 64.[image: End of change]

 Call Statement and Input:
 JOBU JOBVT M N A LDA S U LDU VT LDVT WORK LWORK INFO
 | | | | | | | | | | | | | |
CALL DGESVD('N' , 'N' , 4 , 4 , A , 4 , S , U , 1 , VT , 1 , WORK , 0 , INFO)

 [image: Start of change]–or–[image: End of change]

 [image: Start of change] JOBZ M N A LDA S U LDU VT LDVT WORK LWORK IWORK INFO
 | | | | | | | | | | | | | |
CALL DGESDD('N' , 4 , 4 , A , 4 , S , U , 1 , VT , 1 , WORK , 0 , IWORK , INFO)

 [image: End of change]

 ┌ ┐
 | 1.0 1.0 0.0 0.0 |
A = | 0.0 2.0 1.0 0.0 |
 | 0.0 0.0 3.0 1.0 |
 | 0.0 0.0 0.0 4.0 |
 └ ┘

 Output:

 Array A is overwritten.

 ┌ ┐
 | 4.260007 |
S = | 3.107349 |
 | 2.111785 |
 | 0.858542 |
 └ ┘

INFO = 0

 	Example 2

 	
 This example shows how to find the singular values of the
 real general matrix A and return all its left and right
 singular vectors U and VT in
 arrays U and VT.

 Note:

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 	[image: Start of change]iwork is an integer work array of size 64.[image: End of change]

 Call Statement and Input:
 JOBU JOBVT M N A LDA S U LDU VT LDVT WORK LWORK INFO
 | | | | | | | | | | | | | |
CALL DGESVD('A' , 'A' , 3 , 3 , A , 3 , S , U , 3 , VT , 3 , WORK , 0 , INFO)

 [image: Start of change]–or–[image: End of change]

 [image: Start of change] JOBZ M N A LDA S U LDU VT LDVT WORK LWORK IWORK INFO
 | | | | | | | | | | | | | |
CALL DGESDD('A' , 3 , 3 , A , 3 , S , U , 3 , VT , 3 , WORK , 0 , IWORK , INFO)

 [image: End of change]

 ┌ ┐
 | 1.0 2.0 3.0 |
A = | 2.0 4.0 5.0 |
 | 3.0 5.0 6.0 |
 └ ┘

 Output:

 Array A is
 overwritten.

 ┌ ┐
 | 11.344814 |
S = | 0.515729 |
 | 0.170915 |
 └ ┘

 ┌ ┐
 | -0.327985 -0.736976 -0.591009 |
U = | -0.591009 -0.327985 0.736976 |
 | -0.736976 0.591009 -0.327985 |
 └ ┘

 ┌ ┐
 | -0.327985 -0.591009 -0.736976 |
VT = | 0.736976 0.327985 -0.591009 |
 | -0.591009 0.736976 -0.327985 |
 └ ┘

INFO = 0

 	[bookmark: am5gr_hgesvd__ex3]
 Example 3

 	
 This example shows how to find the singular values of the real general matrix A.
 Additionally:

 The first min(m, n) columns of its left singular vectors
 U are returned in array U.

 The first min(m, n) rows of its right singular vectors
 VT are returned in array A.

 Notes:

 	Because jobvt = 'O', argument vt is not referenced.

 	Because lwork = 0, the subroutine dynamically allocates
 WORK.

 	[image: Start of change]iwork is an integer work array of size 64.[image: End of change]

 Call Statement and Input:
 JOBU JOBVT M N A LDA S U LDU VT LDVT WORK LWORK INFO
 | | | | | | | | | | | | | |
CALL DGESVD('S' , 'O' , 2 , 4 , A , 2 , S , U , 2 , VT , 1 , WORK , 0 , INFO)

 [image: Start of change]–or–[image: End of change]

 [image: Start of change] JOBZ M N A LDA S U LDU VT LDVT WORK LWORK IWORK INFO
 | | | | | | | | | | | | | |
CALL DGESDD('S' , 2 , 4 , A , 2 , S , U , 2 , VT , 2 , WORK , 0 , IWORK , INFO)

 [image: End of change]

 ┌ ┐
 A = | 1.0 2.0 3.0 4.0 |
 | 5.0 6.0 7.0 8.0 |
 └ ┘

 Output: [image: Start of change]
 	For DGESVD:
 ┌ ┐
A = | -0.352062 -0.443626 -0.535190 -0.626754 |
 | 0.758981 0.321242 -0.116498 -0.554238 |
 └ ┘

 	For DGESDD, A has been overwritten on output.

[image: End of change]
 ┌ ┐
S = | 14.227407 |
 | 1.257330 |
 └ ┘

 ┌ ┐
U = | -0.376168 -0.926551 |
 | -0.926551 0.376168 |
 └ ┘

 [image: Start of change]
 	For DGESVD, VT is not referenced.

 	For DGESDD, VT
 is: ┌ ┐
VT = | -0.352062 -0.443626 -0.535190 -0.626754 |
 | 0.758981 0.321242 -0.116498 -0.554238 |
 └ ┘

[image: End of change]

 INFO = 0

 	Example 4

 	
 This example shows how to find the singular values only of
 the complex general matrix A.

 Notes:

 	For ZGESVD, because jobu = 'N', argument u is not
 referenced.

 	For ZGESVD, because jobvt = 'N', argument vt is not
 referenced.

 	[image: Start of change]For ZGESDD, because jobz = 'N', arguments u and
 vt are not referenced.[image: End of change]

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 	[image: Start of change]iwork is an integer work array of size 64.[image: End of change]

 	[image: Start of change]rwork is an integer work array of size 64.[image: End of change]

 Call Statement and Input:
 JOBU JOBVT M N A LDA S U LDU VT LDVT WORK LWORK RWORK INFO
 | | | | | | | | | | | | | | |
CALL ZGESVD('N' , 'N' , 4 , 4 , A , 4 , S , U , 1 , VT , 1 , WORK , 0 , RWORK , INFO)

 [image: Start of change]–or–[image: End of change]

 [image: Start of change] JOBZ M N A LDA S U LDU VT LDVT WORK LWORK RWORK IWORK INFO
 | | | | | | | | | | | | | | |
CALL ZGESDD('N' , 4 , 4 , A , 4 , S , U , 1 , VT , 1 , WORK , 0 , RWORK , IWORK , INFO)

 [image: End of change]

 ┌ ┐
 | (1.0, 1.0) (1.0, 0.0) (0.0, 0.0) (0.0, 0.0) |
A = | (0.0, 0.0) (2.0,-1.0) (1.0, 0.0) (0.0, 0.0) |
 | (0.0, 0.0) (0.0, 0.0) (3.0, 1.0) (1.0, 0.0) |
 | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (4.0,-1.0) |
 └ ┘

 Output:

 Array A is
 overwritten.

 ┌ ┐
 | 4.389511 |
S = | 3.276236 |
 | 2.346361 |
 | 1.221907 |
 └ ┘

INFO = 0

 	Example 5

 	
 This example shows how to find the singular values of the
 complex general matrix A and its left and right singular
 vectors.

 Note:

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 	[image: Start of change]iwork is an integer work array of size 64.[image: End of change]

 	[image: Start of change]rwork is an integer work array of size 60.[image: End of change]

 Call Statement and Input:
 JOBU JOBVT M N A LDA S U LDU VT LDVT WORK LWORK RWORK INFO
 | | | | | | | | | | | | | | |
CALL ZGESVD('A' , 'A' , 3 , 3 , A , 3 , S , U , 3 , VT , 3 , WORK , 0 , RWORK , INFO)

 [image: Start of change]–or–[image: End of change]

 [image: Start of change] JOBZ M N A LDA S U LDU VT LDVT WORK LWORK RWORK IWORK INFO
 | | | | | | | | | | | | | | |
CALL ZGESDD('A' , 3 , 3 , A , 3 , S , U , 3 , VT , 3 , WORK , 0 , RWORK , IWORK INFO)

 [image: End of change]

 ┌ ┐
 | (1.0, 1.0) (2.0,-1.0) (3.0, 0.0) |
A = | (2.0,-1.0) (4.0, 1.0) (5.0,-1.0) |
 | (3.0, 0.0) (5.0,-1.0) (6.0, 1.0) |
 └ ┘

 Output:

 Array A is
 overwritten.

 ┌ ┐
 | 11.370686 |
S = | 2.386257 |
 | 1.006620 |
 └ ┘

 ┌ ┐
 | (-0.3265, 0.0409) (0.0558, 0.4814) (0.3504,-0.7308) |
U = | (-0.5822, 0.0725) (-0.0823,-0.7730) (0.1017,-0.2026) |
 | (-0.7396, 0.0233) (0.0036, 0.4009) (-0.2805, 0.4616) |
 └ ┘

 ┌ ┐
 | (-0.3290, 0.0000) (-0.5867,-0.0004) (-0.7367,-0.0688) |
VT = | (0.4846, 0.0000) (-0.7774,-0.0071) (0.3987, 0.0425) |
 | (-0.8105, 0.0000) (-0.2267,-0.0041) (0.5375, 0.0533) |
 └ ┘

INFO = 0

 	Example 6

 	
 This example shows how to find the singular values of the
 complex general matrix A. Additionally:

 The first
 min(m, n) columns of its left
 singular vectors U are returned
 in array U.

 The first min(m, n)
 rows of its right singular vectors VH are
 returned in array A.

 Notes:

 	Because jobvt = 'O', argument vt is
 not referenced.

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 	[image: Start of change]rwork is a work array of size 60.[image: End of change]

 Call Statement and Input: JOBU JOBVT M N A LDA S U LDU VT LDVT WORK LWORK RWORK INFO
 | | | | | | | | | | | | | | |
CALL ZGESVD('S' , 'O' , 4 , 2 , A , 4 , S , U , 4 , VT , 1 , WORK , 0 , RWORK , INFO)

 ┌ ┐
 | (1.0, 1.0) (2.0, 0.0) |
 A = | (3.0, 0.0) (4.0,-1.0) |
 | (5.0, 1.0) (6.0, 0.0) |
 | (7.0, 0.0) (8.0,-1.0) |
 └ ┘

 Output:

 ┌ ┐
 | (-0.642481, 0.000000) (-0.754181, 0.135753) |
A = | (-0.766302, 0.000000) (0.632319,-0.113817) |
 | . . |
 | . . |
 └ ┘

 ┌ ┐
S = | 14.394066 |
 | 0.900474 |
 └ ┘

 ┌ ┐
 | (-0.149426,-0.063497) (0.553415,-0.598204) |
U = | (-0.352918, 0.014671) (0.382229,-0.196618) |
 | (-0.537547,-0.101222) (-0.041751,-0.092615) |
 | (-0.741039,-0.023054) (-0.212937, 0.308971) |
 └ ┘

 INFO = 0

 	[image: Start of change]Example 7[image: End of change]

 	[image: Start of change]This example shows how to find the singular values of the complex general matrix A.
 Additionally:

 All the columns of its left singular vectors U are returned in array
 U.

 The first m rows of its right singular vectors VH are
 returned in array A.

 Notes:

 	Because jobvt = 'O', argument vt is not referenced.

 	Because lwork = 0, the subroutine dynamically allocates
 WORK.

 	[image: Start of change]iwork is an integer work array of size 64.[image: End of change]

 	[image: Start of change]rwork is a work array of size 60.[image: End of change]

 Call Statement and Input:

 JOBZ M N A LDA S U LDU VT LDVT WORK LWORK RWORK IWORK INFO
 | | | | | | | | | | | | | | |
CALL ZGESDD('O' , 2 , 3 , A , 2 , S , U , 2 , VT , 1 , WORK , 0 , RWORK , IWORK INFO)

 ┌ ┐
 A = | (1.0, 1.0) (2.0, 0.0) (3.0, 0.0) |
 | (0.0, 0.0) (5.0,-1.0) (6.0, 0.0) |
 └ ┘

 Output:

 ┌ ┐
A = | (-0.0488,-0.0488) (-0.6265, 0.0670) (-0.7722,-0.0447) |
 | (0.65909, 0.6590) (-0.2388, 0.1973) (0.1352,-0.1316) |
 └ ┘

 ┌ ┐
S = | 8.666569 |
 | 1.374982 |
 └ ┘

 ┌ ┐
U = | (-0.4231, 0.0000) (0.9061, 0.0000) |
 | (-0.9038, 0.0646) (-0.4221, 0.0301) |
 └ ┘

 INFO = 0

 [image: End of change]

 Parent topic: Linear Algebraic Equations

 SGEQRF, DGEQRF, CGEQRF, and ZGEQRF (General Matrix QR Factorization)

 Purpose

 This subroutine computes the QR factorization
 of a general matrix

 A = QR

 where:

 For SGEQRF and DGEQRF,

 Q

 is an orthogonal matrix.

 For CGEQRF and ZGEQRF,

 Q

 is a unitary matrix.

 For

 m

 ≥

 n

 ,

 R

 is an upper triangular matrix.

 For

 m

 <

 n

 ,

 R

 is an upper trapezoidal matrix.

 Table 183. Data Types.

 	A, τ, work

 	Subroutine

 	Short-precision real

 	SGEQRF▵

 	Long-precision real

 	DGEQRF▵

 	Short-precision complex

 	CGEQRF▵

 	Long-precision complex

 	ZGEQRF▵

 	▵LAPACK

 Syntax

 	Fortran

 	CALL SGEQRF | DGEQRF | CGEQRF | ZGEQRF
 (m, n, a, lda, tau, work, lwork, info)

 	C and C++

 	sgeqrf | dgeqrf | cgeqrf | zgeqrf
 (m, n, a, lda, tau,
 work, lwork, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sgeqrf | LAPACKE_dgeqrf | LAPACKE_cgeqrf | LAPACKE_zgeqrf
 (matrix_layout, m, n, a, lda,
 tau);[image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 m

 	is the number of rows in matrix A used in the computation.

 Specified as: an integer; m ≥ 0.

 	 n

 	is the number of columns in matrix A used in the
 computation.
 Specified as: an integer; n ≥ 0.

 	 a

 	is the m by n general matrix A whose QR factorization
 is to be computed.
 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 183.

 	 lda

 	is the leading dimension of the array specified for a.
 Specified
 as: an integer; lda > 0 and lda ≥ m.

 	 tau

 	See On Return.

 	 work

 	has the following meaning:
 If lwork = 0, work is
 ignored.

 If lwork ≠ 0, work is
 the work area used by this subroutine, where:

 	If lwork ≠ -1, its size is (at
 least) of length lwork.

 	If lwork = -1, its size is (at least) of length
 1.

 Specified as: an area of storage containing numbers of
 data type indicated in Table 183.

 	 lwork

 	is the number of elements in array WORK.
 Specified
 as: an integer; where:

 	If lwork = 0, these subroutines dynamically
 allocate the work area used by this subroutine. The work area is
 deallocated before control is returned to the calling program. This
 option is an extension to the LAPACK standard.

 	If lwork = -1, these subroutines perform a work
 area query and return the optimal size of work in work1.
 No computation is performed and the subroutine returns after error
 checking is complete.

 	Otherwise, it must be:
 lwork ≥ max(1, n)

 	info

 	See On Return.

 	On Return

 	

 	 a

 	is the updated general matrix A, containing the
 results of the computation.
 The elements on and above the diagonal
 of the array contain the min(m, n) × n upper
 trapezoidal matrix R (R is upper triangular
 if m ≥ n).
 The elements below the diagonal with τ represent the matrix Q as
 a product of min(m, n) elementary
 reflectors.

 Returned as: an lda by (at
 least) n array, containing numbers of the data
 type indicated in Table 183.

 	 tau

 	is the vector τ, of length min(m, n),
 containing the scalar factors of the elementary reflectors.
 Returned
 as: a one-dimensional array of (at least) length min(m, n),
 containing numbers of the data type indicated in Table 183.

 	 work

 	is the work area used by this subroutine if lwork ≠ 0, where:
 If lwork ≠ 0 and lwork ≠ -1, its size is (at
 least) of length lwork.

 If lwork = -1,
 its size is (at least) of length 1.

 Returned as: an area
 of storage, where:

 If lwork ≥ 1 or lwork = -1,
 then work1 is set to the optimal lwork value
 and contains numbers of the data type indicated in Table 183. Except for work1,
 the contents of work are overwritten on return.

 	 info

 	indicates that a successful computation occurred.
 [image: Start of change] Returned as:[image: Start of change]
 	For SGEQRF, DGEQRF, CGEQRF, and ZGEQRF, returned as: an integer; info
 ≥ 0.

 	For LAPACKE_sgeqrf, LAPACKE_dgeqrf, LAPACKE_cgeqrf, and LAPACKE_zgeqrf, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes and Coding Rules

 	In your C program, argument info must be passed
 by reference.

 	The vectors and matrices used in the computation must have no
 common elements; otherwise, results are unpredictable.

 	For best perfomance specify lwork = 0.

 Function

 Compute the QR factorization
 of a general matrix A

 A = QR

 where:

 The matrix

 Q

 is represented as a product of elementary reflectors:

 Q

 =

 H

 1

 H

 2

 …

 H

 k

 where:

 k

 =

 min(

 m

 ,

 n

)

 For each

 i

 :

 For SGEQRF and DGEQRF,

 H

 i

 =

 I

 -

 τ

 vv

 T

 For CGEQRF and ZGEQRF,

 H

 i

 =

 I

 -

 τ

 vv

 H

 τ

 is a scalar, stored on return in

 τ

 i

 v

 is a real vector with

 v

 1:

 i

 -1

 =

 zero,

 v

 i

 =

 one.

 v

 i

 +1:

 m

 is stored on return in

 A

 i

 +1:

 m

 ,

 i

 I

 is the identity matrix

 For

 m

 ≥

 n

 ,

 R

 is an upper triangular matrix.

 For

 m

 <

 n

 ,

 R

 is an upper trapezoidal matrix.

 If m = 0
 or n = 0, no computation is performed and
 the subroutine returns after doing some parameter checking.

 See
 references [61, 8, 76, 59, 60].

 Error conditions

 	[bookmark: am5gr_hdgeqrf__am5gr_f10d023]
 Resource Errors

 	lwork = 0 and unable to allocate work space.

 	[bookmark: am5gr_hdgeqrf__am5gr_f10d024]
 Computational Errors

 	None.

 	[bookmark: am5gr_hdgeqrf__am5gr_f10d025]
 Input-Argument Errors

 	

 	m < 0

 	n < 0

 	lda ≤ 0

 	lda < m

 	lwork ≠ 0, lwork ≠ -1, and lwork < max(1, n)

 Examples

 	Example 1

 	
 This example shows the QR factorization of
 a general matrix A of size 6 × 2.

 Note: Because lwork = 0,
 DGEQRF dynamically allocates the work area used by this subroutine.

 Call Statements and Input:

 M N A LDA TAU WORK LWORK INFO
 | | | | | | | |
CALL DGEQRF (6 , 2 , A , 6 , TAU , WORK , 0 , INFO)

 General
 matrix A of size 6 × 2: ┌ ┐
 | .000000 2.000000 |
 | 2.000000 -1.000000 |
A = | 2.000000 -1.000000 |
 | .000000 1.500000 |
 | 2.000000 -1.000000 |
 | 2.000000 -1.000000 |
 └ ┘

 Output:

 General
 matrix A of size 6 × 2. ┌ ┐
 | -4.000000 2.000000 |
 | .500000 2.500000 |
A = | .500000 .285714 |
 | .000000 -.428571 |
 | .500000 .285714 |
 | .500000 .285714 |
 └ ┘

 Vector τ of
 length 2: ┌ ┐
TAU = | 1.000000 1.400000 |
 └ ┘
INFO = 0

 	Example 2

 	
 This example shows the QR factorization of
 a general matrix A of size 4x5.

 Note: Because lwork = 0,
 DGEQRF dynamically allocates the work area used by this subroutine.

 Call Statements and Input:

 M N A LDA TAU WORK LWORK INFO
 | | | | | | | |
CALL DGEQRF (4 , 5 , A , 4 , TAU , WORK , 0 , INFO)

 General
 matrix A of size 4 × 5: ┌ ┐
 | .500000 .500000 1.207107 .000000 1.707107 |
A = | .500000 -1.500000 -.500000 2.414214 .707107 |
 | .500000 .500000 .207107 .000000 .292893 |
 | .500000 -1.500000 -.500000 -.414214 -.707107 |
 └ ┘

 Output:

 General
 matrix A of size 4 × 5: ┌ ┐
 | -1.000000 1.000000 -.207107 -1.000000 -1.000000 |
A = | .333333 2.000000 1.207107 -1.000000 1.000000 |
 | .333333 -.200000 .707107 .000000 1.000000 |
 | .333333 .400000 .071068 -2.000000 -1.000000 |
 └ ┘

 Vector τ of
 length 4: ┌ ┐
TAU = | 1.500000 1.666667 1.989949 .000000 |
 └ ┘
INFO = 0

 	Example 3

 	
 This example shows the QR factorization of
 a general matrix A of size 6 × 2.

 Note: Because lwork = 0,
 ZGEQRF dynamically allocates the work area used by this subroutine.

 Call Statements and Input:

 M N A LDA TAU WORK LWORK INFO
 | | | | | | | |
CALL ZGEQRF (6 , 2 , A , 6 , TAU , WORK , 0 , INFO)

 General
 matrix A of size 6 × 2: ┌ ┐
 | (-1.800000, -0.900000) (1.100000, -0.800000) |
 | (-1.600000, 1.000000) (1.700000, 1.400000) |
A = | (-1.000000, -0.300000) (1.200000, 0.300000) |
 | (1.100000, -0.100000) (0.700000, -1.900000) |
 | (0.500000, 0.700000) (-0.200000, -1.500000) |
 | (-1.500000, -0.700000) (1.800000, -0.600000) |
 └ ┘

 Output:

 General
 matrix A of size 6 × 2: ┌ ┐
 | (3.660601, 0.000000) (-1.731956, -0.524504) |
 | (0.255874, -0.225302) (-3.865905, 0.000000) |
 A = | (0.187102, 0.024101) (0.135165, -0.000348) |
 | (-0.193177, 0.050152) (0.057186, -0.451900) |
 | (-0.109713, -0.110108) (-0.065903, -0.220144) |
 | (0.288000, 0.080724) (0.110147, -0.200172) |
 └ ┘

 Vector τ of
 length 2: ┌ ┐
TAU = | (1.491723, 0.245861) (1.268358, 0.545419) |
 └ ┘

INFO = 0

 	Example 4

 	
 This example shows the QR factorization of
 a general matrix A of size 3 × 4.

 Note: Because lwork = 0,
 ZGEQRF dynamically allocates the work area used by this subroutine.

 Call Statements and Input:

 M N A LDA TAU WORK LWORK INFO
 | | | | | | | |
CALL ZGEQRF (3 , 4 , A , 3 , TAU , WORK , 0 , INFO)

 General
 matrix A of size 3 × 4: ┌ ┐
 | (-1.60, 0.10) (0.30, 1.70) (0.30, 0.20) (-0.50, -1.80) |
 | (-1.20, 0.00) (-0.90, -0.50) (1.50, 0.80) (1.50, -1.10) |
A = | (-0.10, 1.30) (-1.10, 0.50) (0.40, -1.30) (1.60, 0.70) |
 └ ┘

 Output:

 General
 matrix A of size 3 × 4: ┌ ┐
 | (2.39, 0.00) (0.64, -0.32) (-1.67, -0.71) (-0.18, 0.88) |
 A = | (0.30, 0.01) (2.23, 0.00) (-0.70, 0.81) (-2.25, -0.01) |
 | (0.03, -0.33) (0.48, -0.28) (0.65, 0.00) (-1.00, -1.77) |
 └ ┘

 Vector τ of
 length 3: ┌ ┐
TAU = | (1.67, -0.04) (1.35, 0.49) (1.99, 0.14) |
 └ ┘

INFO = 0

 Parent topic: Linear Algebraic Equations

 SGELS, DGELS, CGELS, and ZGELS (Linear Least Squares Solution
 for a General Matrix)

 Purpose

 SGELS and DGELS compute the linear
 least squares solution for a real general matrix A or
 its transpose using a QR factorization without column
 pivoting, where A is assumed to have full rank.

 CGELS
 and ZGELS compute the linear least squares solution for a complex
 general matrix A or its conjugate transpose using a QR factorization
 without column pivoting, where A is assumed to have
 full rank.

 The following options are provided:

 	If transa = 'N' and m ≥ n:
 find the least squares solution of an overdetermined system; that
 is, solve the least squares problem: minimize ∥B - AX∥

 	If transa = 'N' and m < n:
 find the minimum norm solution of an underdetermined system; that
 is, the problem is: AX = B

 	For SGELS and DGELS:

 	If transa = 'T' and m ≥ n:
 find the minimum norm solution of an underdetermined system; that
 is, the problem is ATX = B

 	If transa = 'T' and m < n:
 find the least squares solution of an overdetermined system; that
 is, solve the least squares problem: minimize ∥B - ATX∥

 	For CGELS and ZGELS:

 	If transa = 'C' and m ≥ n:
 find the minimum norm solution of an underdetermined system; that
 is, the problem is AHX = B

 	If transa = 'C' and m < n:
 find the least squares solution of an overdetermined system; that
 is, solve the least squares problem: minimize ∥B - AHX∥

 Table 184. Data
 Types.

 	A, B, work

 	Subroutine

 	Short-precision real

 	SGELS▵

 	Long-precision real

 	DGELS▵

 	Short-precision complex

 	CGELS▵

 	Long-precision complex

 	ZGELS▵

 	▵LAPACK

 Syntax

 	Fortran

 	CALL SGELS | DGELS | CGELS | ZGELS
 (transa, m, n, nrhs, a, lda, b, ldb, work, lwork, info)

 	C and C++

 	sgels | dgels | cgels | zgels (transa, m, n, nrhs, a, lda, b, ldb, work, lwork, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sgels | LAPACKE_dgels | LAPACKE_cgels | LAPACKE_zgels
 (matrix_layout, transa, m,
 n, nrhs, a, lda,
 b, ldb); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 transa

 	indicate the form of matrix A to use in the computation,
 where:
 If transa = 'N', matrix A is used.

 If transa = 'T',
 matrix AT is used.

 If transa = 'C',
 matrix AH is used.

 Specified as:
 a single character, where:

 	For SGELS and DGELS, it must be 'N' or 'T'.

 	For CGELS and ZGELS, it must be 'N' or 'C'.

 	 m

 	is the number of rows in matrix A used in the computation.

 Specified as: an integer; m ≥ 0.

 	 n

 	is the number of columns in matrix A used in the
 computation.
 Specified as: an integer; n ≥ 0.

 	 nrhs

 	is the number of right-hand sides; that is, the number of columns
 in matrix B used in the computation.
 Specified
 as: an integer; nrhs ≥ 0.

 	 a

 	is the m by n coefficient
 matrix A.
 Note: No data should be moved to form AT or AH;
 that is, the matrix A should always be stored in its
 untransposed form.

 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 184.

 	 lda

 	is the leading dimension of the array specified for a.
 Specified
 as: an integer; lda > 0 and lda ≥ m.

 	 b

 	is the matrix B of right-hand side vectors.
 If transa = 'N',
 matrix B has m rows and nrhs columns.

 For DGELS and SGELS, if transa = 'T',
 matrix B has n rows and nrhs columns.

 For
 CGELS and ZGELS, if transa = 'C', matrix B has n rows
 and nrhs columns.

 Specified as: the ldb by
 (at least) nrhs array, containing numbers of the
 data type indicated in Table 184.

 	 ldb

 	is the leading dimension of the array specified for b.

 Specified as: an integer; ldb > 0 and ldb ≥ max(m,n).

 	 work

 	has the following meaning:
 If lwork = 0, work is
 ignored.

 If lwork ≠ 0, work is
 the work area used by this subroutine, where:

 	If lwork ≠ -1, its size is (at
 least) of length lwork.

 	If lwork = -1, its size is (at least) of length
 1.

 Specified as: an area of storage containing numbers of
 data type indicated in Table 184.

 	 lwork

 	is the number of elements in array work.

 Specified as: an integer; where:

 	If lwork = 0, these subroutines dynamically
 allocate the work area used by this subroutine. The work area is
 deallocated before control is returned to the calling program. This
 option is an extension to the LAPACK standard.

 	If lwork = -1, these subroutines perform a work
 area query and return the optimal size of work in work1.
 No computation is performed, and the subroutine returns after error
 checking is complete.

 	Otherwise, it must be:
 lwork ≥ max(1, mn +
 max(mn, nrhs))

 where mn = min(m, n).

 	info

 	See On Return.

 	On Return

 	

 	 a

 	is the updated general matrix A. The matrix A is
 overwritten; that is, the original input is not preserved.
 Returned
 as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 184.

 	 b

 	is the updated general matrix B, containing the
 results of the computation. B is overwritten by the
 solution vectors, stored columnwise:

 	If transa = 'N' and m ≥ n,
 rows 1 to n of B contain the least
 squares solution vectors; the residual sum of squares for the solution
 in each column is given by the sum of squares of elements n+1
 to m in that column.

 	If transa = 'N' and m < n,
 rows 1 to n of B contain the minimum
 norm solution vectors.

 	For SGELS and DGELS:

 	If transa = 'T' and m ≥ n,
 rows 1 to m of B contain the minimum
 norm solution vectors.

 	If transa = 'T' and m < n,
 rows 1 to m of B contain the least
 squares solution vectors; the residual sum of squares for the solution
 in each column is given by the sum of squares of elements m+1
 to n in that column.

 	For CGELS and ZGELS:

 	If transa = 'C' and m ≥ n,
 rows 1 to m of B contain the minimum
 norm solution vectors.

 	If transa = 'C' and m < n,
 rows 1 to m of B contain the least
 squares solution vectors; the residual sum of squares for the solution
 in each column is given by the sum of squares of elements m+1
 to n in that column.

 Returned as: an ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 184.

 	 work

 	is the work area used by this subroutine if lwork ≠ 0, where:
 If lwork ≠ 0 and lwork ≠ -1, its size is (at
 least) of length lwork.

 If lwork = -1,
 its size is (at least) of length 1.

 Returned as: an area
 of storage, where:

 If lwork ≥ 1 or lwork = -1,
 then work1 is set to the optimal lwork value
 and contains numbers of the data type indicated in Table 184.

 Except for work1,
 the contents of work are overwritten on return.

 	 info

 	indicates that a successful computation occurred.
 [image: Start of change] Returned as:[image: Start of change]
 	For SGELS, DGELS, CGELS, and ZGELS, returned as: an integer; info
 ≥ 0.

 	For LAPACKE_sgels, LAPACKE_dgels, LAPACKE_cgels, and LAPACKE_zgels, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes and Coding Rules

 	In your C program, argument info must be passed
 by reference.

 	All subroutines accept lowercase letters for the transa argument.

 	The vectors and matrices used in the computation must have no
 common elements; otherwise, results are unpredictable.

 	For best perfomance specify lwork = 0.

 Function

 SGELS and
 DGELS compute the linear least squares solution for a real general
 matrix A or its transpose using a QR factorization
 without column pivoting, where A is assumed to have
 full rank.

 CGELS and ZGELS compute the linear least squares
 solution for a complex general matrix A or its conjugate
 transpose using a QR factorization without column pivoting,
 where A is assumed to have full rank.

 The following
 options are provided:

 	If transa = 'N' and m ≥ n:
 find the least squares solution of an overdetermined system; that
 is, solve the least squares problem: minimize ∥B - AX∥

 	If transa = 'N' and m < n:
 find the minimum norm solution of an underdetermined system; that
 is, the problem is: AX = B

 	For SGELS and DGELS:

 	If transa = 'T' and m ≥ n:
 find the minimum norm solution of an underdetermined system; that
 is, the problem is ATX = B

 	If transa = 'T' and m < n:
 find the least squares solution of an overdetermined system; that
 is, solve the least squares problem: minimize ∥B - ATX∥

 	For CGELS and ZGELS:

 	If transa = 'C' and m ≥ n:
 find the minimum norm solution of an underdetermined system; that
 is, the problem is AHX = B

 	If transa = 'C' and m < n:
 find the least squares solution of an overdetermined system; that
 is, solve the least squares problem: minimize ∥B - AHX∥

 If (m = 0 and n = 0)
 or nrhs = 0, then no computation is performed
 and the subroutine returns after doing some parameter checking.

 See
 reference [73].

 Error conditions

 	[bookmark: am5gr_hdgels__am5gr_f10d029]
 Resource Errors

 	lwork = 0 and unable to allocate work space.

 	[bookmark: am5gr_hdgels__am5gr_f10d030]
 Computational Errors

 	None.

 	[bookmark: am5gr_hdgels__am5gr_f10d031]
 Input-Argument Errors

 	

 	For SGELS and DGELS, transa ≠ 'N' or 'T'
 For
 CGELS and ZGELS, transa ≠ 'N' or 'C'

 	m < 0

 	n < 0

 	nrhs < 0

 	lda < m

 	lda ≤ 0

 	ldb < max(m, n)

 	ldb ≤ 0

 	lwork ≠ 0, lwork ≠ -1, and lwork < max(1, mn +
 max(mn, nrhs)) where mn =
 min(m, n)

 Examples

 	Example 1

 	
 This example finds the least squares solution of an overdetermined
 real general system; that is, it solves the least squares problem:
 minimize ∥B-AX∥.
 Matrix A is size 6 × 2 and matrix B is
 size 6 × 3.

 Note: Because lwork = 0,
 DGELS dynamically allocates the work area used by this subroutine.

 Call Statements and Input:

 TRANSA M N NRHS A LDA B LDB WORK LWORK INFO
 | | | | | | | | | | |
CALL DGELS ('N' , 6 , 2 , 3 , A , 6 , B, 6, WORK, 0, INFO)

 General
 matrix A of size 6 × 2: ┌ ┐
 | .000000000 2.000000000 |
 | 2.000000000 -1.000000000 |
A = | 2.000000000 -1.000000000 |
 | .000000000 1.500000000 |
 | 2.000000000 -1.000000000 |
 | 2.000000000 -1.000000000 |
 └ ┘

 General
 matrix B of size 6 × 3: ┌ ┐
 | 1.000000000 4.000000000 1.000000000 |
 | 1.000000000 1.000000000 2.000000000 |
B = | 1.000000000 -1.000000000 1.000000000 |
 | 1.000000000 3.000000000 2.000000000 |
 | 1.000000000 1.000000000 1.000000000 |
 | 1.000000000 -1.000000000 1.000000000 |
 └ ┘

 Output:

 General
 matrix A is overwritten.

 Solution matrix X overwrites B:
 ┌ ┐
 | .780000000 1.000000000 1.025000000 |
 | .560000000 2.000000000 .800000000 |
B = | .042857143 -1.285714286 -.250000000 |
 | .185714286 .428571429 1.250000000 |
 | .042857143 .714285714 -.250000000 |
 | .042857143 -1.285714286 -.250000000 |
 └ ┘

 INFO = 0

 	Example 2

 	
 This example finds the minimum norm solution of an underdetermined
 real general system ATX = B.
 Matrix A is size 6 × 2. On input, matrix B is
 size 2 × 1, stored in array b with leading
 dimension 6.

 Note: Because lwork = 0,
 DGELS dynamically allocates the work area used by this subroutine.

 Call Statements and Input:

 TRANSA M N NRHS A LDA B LDB WORK LWORK INFO
 | | | | | | | | | | |
CALL DGELS ('T' , 6 , 2 , 1 , A , 6 , B, 6, WORK, 0, INFO)

 General
 matrix A of size 6 × 2: ┌ ┐
 | .000000000 2.000000000 |
 | 2.000000000 -1.000000000 |
A = | 2.000000000 -1.000000000 |
 | .000000000 1.500000000 |
 | 2.000000000 -1.000000000 |
 | 2.000000000 -1.000000000 |
 └ ┘

 General
 matrix B of size 2 × 1: ┌ ┐
B = | 1.000000000 |
 | 1.000000000 |
 | . |
 | . |
 | . |
 | . |
 └ ┘

 Output:

 General
 matrix A is overwritten.

 Solution matrix X overwrites B:
 ┌ ┐
 | .480000000 |
 | .125000000 |
B = | .125000000 |
 | .360000000 |
 | .125000000 |
 | .125000000 |
 └ ┘

 INFO = 0

 	Example 3

 	
 This example finds the minimum norm solution of an underdetermined
 real general system AX = B.
 Matrix A is size 3 × 4. On input, matrix B is
 size 3 × 4, stored in array b with leading
 dimension 4.

 Note: Because lwork = 0,
 DGELS dynamically allocates the work area used by this subroutine.

 Call Statements and Input:

 TRANSA M N NRHS A LDA B LDB WORK LWORK INFO
 | | | | | | | | | | |
CALL DGELS ('N' , 3 , 4 , 4 , A , 3 , B, 4, WORK, 0, INFO)

 General
 matrix A of size 3 × 4: ┌ ┐
 | .500000000 .500000000 .500000000 .500000000 |
A = | .500000000 -1.500000000 .500000000 -1.500000000 |
 | 1.000000000 1.000000000 .000000000 1.000000000 |
 └ ┘

 General
 matrix B of size 3 × 4: ┌ ┐
 | 1.000000000 1.000000000 1.000000000 .000000000 |
B = | 1.000000000 -1.000000000 2.500000000 1.000000000 |
 | 1.000000000 1.000000000 3.000000000 .000000000 |
 | |
 └ ┘

 Output:

 General
 matrix A is overwritten.

 Solution matrix X overwrites B:
 ┌ ┐
 | 1.000000000 .000000000 3.500000000 .500000000 |
B = | .000000000 .500000000 -.250000000 -.250000000 |
 | 1.000000000 1.000000000 -1.000000000 .000000000 |
 | .000000000 .500000000 -.250000000 -.250000000 |
 └ ┘

 INFO = 0

 	Example 4

 	
 This example finds the least squares solution of an overdetermined
 real general system; that is, it solves the least squares problem:
 minimize ∥B-ATX∥.
 Matrix A is size 3 × 4. On input, matrix B is
 size 4 × 4.

 Note: Because lwork = 0,
 DGELS dynamically allocates the work area used by this subroutine.

 Call Statements and Input: TRANSA M N NRHS A LDA B LDB WORK LWORK INFO
 | | | | | | | | | | |
CALL DGELS ('T' , 3 , 4 , 4 , A , 3 , B , 4 , WORK , 0 , INFO)

 General matrix A of size 3 × 4: ┌ ┐
 | .500000000 .500000000 .500000000 .500000000 |
A = | .500000000 -1.500000000 .500000000 -1.500000000 |
 | 1.207106781 -.500000000 .207106781 -.500000000 |
 └ ┘

 General
 matrix B of size 4 × 4: ┌ ┐
 | 1.000000000 1.000000000 1.000000000 .000000000 |
B = | 1.000000000 -1.000000000 2.000000000 2.414213562 |
 | 1.000000000 1.000000000 3.000000000 .000000000 |
 | 1.000000000 -1.000000000 4.000000000 -.414213562 |
 └ ┘

 Output:

 General
 matrix A is overwritten.

 Solution matrix X overwrites B:
 ┌ ┐
 | 2.000000000 1.000000000 6.121320344 .500000000 |
B = | .000000000 1.000000000 .707106781 -.500000000 |
 | .000000000 .000000000 -2.000000000 .000000000 |
 | .000000000 .000000000 1.414213562 -2.000000000 |
 └ ┘

 INFO = 0

 	Example 5

 	
 This example finds the minimum norm solution of an underdetermined
 complex general system AX = B. Matrix A is
 size 3 × 4. Matrix B is size 3 × 3, stored
 in array b with leading dimension 4.

 Note: Because lwork = 0,
 ZGELS dynamically allocates the work area used by this subroutine.

 Call Statements and Input:

 TRANSA M N NRHS A LDA B LDB WORK LWORK INFO
 | | | | | | | | | | |
CALL ZGELS ('N' , 3 , 4 , 3 , A , 3 , B , 4 , WORK , 0 , INFO)

 General
 matrix A of size 3 × 4: ┌ ┐
 | (1.00, 0.00) (-2.00, 1.00) (-3.00, -1.00) (4.00, -3.00) |
A = | (1.00, -1.00) (2.00, 2.00) (-3.00, 0.00) (-4.00, -2.00) |
 | (1.00, -2.00) (-2.00, 3.00) (-3.00, 1.00) (4.00, -1.00) |
 └ ┘

 General
 matrix B of size 3 × 3: ┌ ┐
 | (1.00, 0.00) (0.00, 1.00) (1.00, 1.00) |
 B = | (-1.00, 1.00) (1.00, -1.00) (0.00, 0.00) |
 | (2.00, 1.00) (1.00, 2.00) (-1.00, -1.00) |
 | . . . |
 └ ┘

 Output:

 General
 matrix A is overwritten.

 Solution matrix X overwrites B:
 ┌ ┐
 | (-0.16, 0.15) (-0.08, 0.18) (0.16, -0.31) |
 B = | (0.11, 0.02) (0.21, -0.50) (-0.38, 0.65) |
 | (-0.13, -0.32) (0.16, 0.12) (-0.27, -0.28) |
 | (0.37, -0.05) (0.04, 0.06) (-0.19, 0.33) |
 └ ┘

 INFO = 0

 	Example 6

 	
 This example finds the least squares solution of an overdetermined
 complex general system A; that is, it solves the least squares problem:
 minimize ∥B-AX∥.
 Matrix A is size 6 × 2. Matrix B is
 size 6 × 1.

 Note: Because lwork = 0,
 ZGELS dynamically allocates the work area used by this subroutine.

 Call Statements and Input:

 TRANSA M N NRHS A LDA B LDB WORK LWORK INFO
 | | | | | | | | | | |
CALL ZGELS ('N' , 6 , 2 , 1 , A , 6 , B , 6 , WORK , 0 , INFO)

 Matrix A is
 the same used as input in Example 3 for
 ZGEQRF.

 General matrix B of 6 × 1: ┌ ┐
 | (6.0, 0.0) |
B = | (5.0, 0.0) |
 | (4.0, 0.0) |
 | (3.0, 0.0) |
 | (2.0, 0.0) |
 | (1.0, 0.0) |
 └ ┘

 Output:

 General
 matrix A is overwritten.

 Solution matrix X overwrites B:

 ┌ ┐
 | (-1.135350, 0.520298) |
B = | (0.944064, 0.624509) |
 | (1.062824, -0.899701) |
 | (2.570856, 1.687827) |
 | (2.556854, 2.835820) |
 | (-3.982815, -0.231572) |
 └ ┘

 INFO = 0

 	Example 7

 	
 This example finds the minimum norm solution of an underdetermined
 complex general system AHX = B. Matrix A is
 size 3 × 3. Matrix B is size 3 × 2.

 Note: Because lwork = 0,
 ZGELS dynamically allocates the work area used by this subroutine.

 Call Statements and Input:

 TRANSA M N NRHS A LDA B LDB WORK LWORK INFO
 | | | | | | | | | | |
CALL ZGELS ('C' , 3 , 3 , 2 , A , 3 , B , 3 , WORK , 0 , INFO)

 Matrix A is
 the same used as input in Example 4 for
 CPOSV.

 Matrix B is the same used as input in Example 4 for
 CPOSV.

 Output:

 General matrix A is
 overwritten.

 Solution matrix X overwrites B:
 ┌ ┐
 | (2.0, -1.0) (2.0, 0.0) |
B = | (1.0, -1.0) (0.0, 1.0) |
 | (3.0, 0.0) (1.0, -1.0) |
 └ ┘

 INFO = 0

 	Example 8

 	
 This example finds the least squares solution of an overdetermined
 complex general system; that is, it solves the least squares problem:
 minimize ∥B-AHX∥.
 Matrix A is size 2 × 6. Matrix B is
 size 6 × 1.

 Note: Because lwork = 0,
 ZGELS dynamically allocates the work area used by this subroutine.

 Call Statements and Input:

 TRANSA M N NRHS A LDA B LDB WORK LWORK INFO
 | | | | | | | | | | |
CALL ZGELS ('C' , 2 , 6 , 1 , A , 2 , B , 6 , WORK , 0 , INFO)

 General
 matrix A of size 2 × 6: ┌ ┐
A = | (2.0, 0.0) (6.0, 0.0) (10.0, 0.0) (14.0, 0.0) (18.0, 0.0) (22.0, 0.0) |
 | (4.0, 0.0) (8.0, 0.0) (12.0, 0.0) (16.0, 0.0) (20.0, 0.0) (24.0, 0.0) |
 └ ┘

 General
 matrix B of size 6 × 1: ┌ ┐
 | (6.0, 0.0) |
B = | (5.0, 0.0) |
 | (4.0, 0.0) |
 | (3.0, 0.0) |
 | (2.0, 0.0) |
 | (1.0, 0.0) |
 └ ┘

 Output:

 General
 matrix A is overwritten.

 Solution matrix X overwrites B:
 ┌ ┐
 | (-3.50, 0.00) |
B = | (3.25, 0.00) |
 | (0.00, 0.00) |
 | (0.00, 0.00) |
 | (0.00, 0.00) |
 | (0.00, 0.00) |
 └ ┘

 INFO = 0

 Parent topic: Linear Algebraic Equations

 SGELSD, DGELSD, CGELSD, and ZGELSD (Linear Least Squares Solution
 for a General Matrix Using the Singular Value Decomposition)

 Purpose

 These subroutines compute the linear
 least squares solution for a general matrix A using
 the singular value decomposition.

 The following options are
 provided:

 	If m ≥ n: find the least squares solution of an overdetermined system; that is, solve
 the least squares problem: minimize ∥B - AX∥

 	If m < n: find the minimum norm solution of an
 undetermined system; that is, the problem is: AX=B

 Table 185. Data Types.

 	A, B, work

 	s, rcond, rwork

 	Subroutine

 	Short-precision real

 	Short-precision real

 	SGELSDΔ

 	Long-precision real

 	Long-precision real

 	DGELSDΔ

 	Short-precision complex

 	Short-precision real

 	CGELSDΔ

 	Long-precision complex

 	Long-precision real

 	ZGELSDΔ

 	ΔLAPACK

 Syntax

 	Fortran

 	CALL SGELSD | DGELSD (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, iwork, info)
 CALL
 CGELSD | ZGELSD (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, iwork, info)

 	C and C++

 	sgelsd | dgelsd (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, iwork, info);
 cgelsd
 | zgelsd (m, n, nrhs, a, lda, b, ldb, s, rcond, rank, work, lwork, rwork, iwork, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sgelsd | LAPACKE_dgelsd (matrix_layout,
 m, n, nrhs, a,
 lda, b, ldb, s,
 rcond, rank);
info = LAPACKE_cgelsd |
 LAPACKE_zgelsd (matrix_layout, m, n,
 nrhs, a, lda, b,
 ldb, s, rcond, rank); [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 m

 	is the number of rows in matrix A and B.

 Specified as: an integer; m ≥ 0.

 	 n

 	is the number of columns in matrix A.
 Specified
 as: an integer; n ≥ 0.

 	 nrhs

 	is the number of right-hand sides; that is, the number of columns
 in matrix B.
 Specified as: an integer; nrhs ≥ 0.

 	 a

 	is the m by n general matrix A.

 Specified as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 185.

 	 lda

 	is the leading dimension of the array specified for A.
 Specified
 as: an integer; lda > 0 and lda ≥ m.

 	 b

 	is the general matrix B containing the nrhs right-hand
 sides of the system. The right-hand sides, each of length m,
 reside in the columns of matrix B.
 Specified as:
 the ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 185.

 	 ldb

 	is the leading dimension of the array specified for b.

 Specified as: an integer; ldb ≥ max(m,n).

 	rcond

 	is used to determine the effective rank of matrix A.
 Singular values of si ≤ (rcond)(si)
 are treated as zero.
 If rcond is less than or
 equal to zero or rcond is greater than or equal
 to one, then an rcond value of ε is used, where ε is the machine precision.

 Specified
 as: a number of data type indicated in Table 185.

 	 work

 	is the work area used by this subroutine, where:
 If lwork=0, work is
 ignored.

 If lwork ≠ 0, the size of work is
 determined as follows:

 	If lwork ≠ -1, work is
 (at least) of length lwork.

 	If lwork=-1, work is (at
 least) of length 1.

 Specified as: an area of storage containing numbers
 of data type indicated in Table 185.

 	 lwork

 	is the number of elements in array work.

 Specified as: an integer; where:

 	If lwork=0, these subroutines dynamically allocate
 the work area used by this subroutine. The work area is deallocated
 before control is returned to the calling program. This option is
 an extension to the LAPACK standard.

 	If lwork=-1, these subroutines perform a work
 area query and return the optimal size of work in work1.
 No computation is performed, and the subroutine returns after error
 checking is complete.

 	Otherwise:

 	For SGELSD and DGELSD

 	lwork ≥ 12r +
 2(r)(smlsiz) + 8(r)(nlvl)
 + (r)(nrhs) + (smlsiz+1)2,
 where:

 	r = min(m,n)

 	smlsiz = 25

 	nlvl = max(0, int(log2(r/(smlsiz+1)))+1)

 	For CGELSD and ZGELSD

 	lwork ≥ max(1,m+n+r,2r +
 (r)(nrhs)), where r =
 min(m, n).

 Note: These formulas represent the minimum workspace required.
 For best performance, specify either lwork = -1
 (to obtain the optimal size to use) or lwork =
 0 (to direct the subroutine to dynamically allocate the workspace).

 	 rwork

 	is a work area of size max(1, lrwork), where:

 lrwork ≥ 10r +
 2(r)(smlsiz) + 8(r)(nlvl)
 +2(smlsiz)(nrhs) + max((smlsiz+1)2, n(1
 + nrhs) + 2nrhs), where:

 	r = min(m, n)

 	smlsiz = 25

 	nlvl = max(0, int(log2(r/(smlsiz+1)))
 + 1)

 Specified as: an area of storage containing numbers of
 data type indicated in Table 185.

 	 iwork

 	is a work area of size max(1, liwork), where:

 liwork ≥ 3(r)(nlvl)
 + 11r where:

 	r = min(m, n)

 	smlsiz = 25

 	nlvl = max(0,int(log2(r/(smlsiz+1)))
 + 1)

 	Specified as: an area of storage containing integers.

 	info

 	See On Return.

 	On Return

 	

 	 a

 	The matrix A is overwritten; that is, the original
 input is not preserved.
 Returned as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 185.

 	 b

 	is the updated general matrix B, containing the
 results of the computation. B is overwritten by the n by nrhs solution
 matrix X.

 	If m ≥ n and rank = n,
 rows 1 to n of B contain the least
 squares solution vectors; the residual sum of squares for the solution
 in each column is given by the sum of squares of elements n +
 1 to m in that column.

 	If m < n, rows 1 to n of B contain
 the minimum norm solution vectors.

 Returned as: an ldb by (at least) nrhs array,
 containing numbers of the data type indicated in Table 185.

 	s

 	is the vector s containing the
 singular values of matrix A.
 Returned
 as: a one-dimensional array of (at least) length min(m,n)
 containing numbers of the data type indicated in Table 185 .

 	rank

 	is the effective rank of A; that is the number of
 singular values that are greater than rcond(s1).
 Returned
 as: an integer.

 	 work

 	is the work area used by this subroutine if lwork ≠ 0, where:
 If lwork ≠ 0 and lwork ≠ -1, its size is
 (at least) of length lwork.

 If lwork=-1,
 its size is (at least) of length 1.

 Returned as: an area
 of storage, where:

 If lwork ≥ 1 or lwork=-1,
 then work1 is set to the optimal lwork value
 and contains numbers of the data type indicated in Table 185.

 Except for work1,
 the contents of work are overwritten on return.

 	rwork

 	is a work area used by these subroutines.
 Returned as: an area
 of storage where, if info = 0, rwork1 is
 set to the minimum size of rwork.

 	iwork

 	is a work area used by these subroutines.
 Returned as: an area
 of storage where, if info = 0, iwork1 is
 set to the minimum size of iwork.

 	info

 	has the following meaning:
 If info = 0, the subroutine completed
 successfully.

 If 0 < info ≤ max(m, n),
 info specifies how many superdiagonals of an intermediate bidiagonal form did not
 converge to zero.

 If info = max(m, n)
 + 1, a singular value failed to converge.

 SGELSD, DGELSD, CGELSD, and ZGELSD
 [image: Start of change] Returned as:[image: Start of change]
 	For SGELSD, DGELSD, CGELSD, and ZGELSD, returned as: an integer; info ≥ 0.

 	For LAPACKE_sgelsd, LAPACKE_dgelsd, LAPACKE_cgelsd, and LAPACKE_zgelsd, returned as an integer
 function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes
 and Coding Rules

 	In your C program, arguments rank and info must
 be passed by reference.

 	a, b, s, work, rwork and iwork must
 have no common elements; otherwise, results are unpredictable.

 	For best performance, specify lwork = 0.

 Function

 These
 subroutines compute the linear least squares solution for a general
 matrix A using the singular value decomposition.

 The
 following options are provided:

 	If m ≥ n: find the least squares solution of an overdetermined system; that is, solve
 the least squares problem: minimize ∥B - AX∥

 	If m < n: find the minimum norm solution of an
 undetermined system; that is, the problem is: AX=B

 See reference [34], [73].

 Error conditions

 	[bookmark: am5gr_lsd__am5gr_f10d029]
 Resource Errors

 	lwork=0 and unable to allocate work space.

 	[bookmark: am5gr_lsd__am5gr_f10d030]
 Computational Errors

 	

 	Superdiagonals of an intermediate bidiagonal form did not converge
 to zero.

 	A singular value failed to converge.

 	[bookmark: am5gr_lsd__am5gr_f10d031]
 Input-Argument Errors

 	

 	m < 0

 	n < 0

 	nrhs < 0

 	lda ≤ 0

 	lda < m

 	ldb ≤ 0

 	ldb < max(m,n)

 	lwork ≠ 0 and lwork ≠ -1 and lwork < the
 minimum required value

 	rwork ≠ 0 and rwork ≠ -1 and rwork < the
 minimum required value

 	iwork ≠ 0 and iwork ≠ -1 and iwork < the
 minimum required value

 Examples

 	Example 1

 	
 This example finds the least squares solution of an overdetermined
 real general system; that is, it solves the least squares problem:
 minimize ∥B-AX∥.
 Matrix A is size 6 × 2 and matrix B is
 size 6 × 3.

 Notes®:

 	Because lwork=0, DGELSD dynamically allocates
 the work area used by this subroutine.

 	iwork is an integer work array of size 22.

 Call Statements and Input:

 M N NRHS A LDA B LDB S RCOND RANK WORK LWORK IWORK INFO
 | | | | | | | | | | | | | |
CALL DGELSD (6 , 2 , 3 , A , 6 , B , 6 , S , RCOND , RANK , WORK , 0 , IWORK , INFO)

 A =

 (same as input

 A

 in

 Example 1

 for DGELS)

 B =

 (same as input

 B

 in

 Example 1

 for DGELS)

RCOND = .745058D-08

 Output:

 General
 matrix A is overwritten.

 Solution matrix X overwrites B:
 ┌ ┐
 | 0.780000000 1.000000000 1.025000000 |
 | 0.560000000 2.000000000 0.800000000 |
B = | 0.042857143 -1.285714286 -0.250000000 |
 | 0.185714286 0.428571429 1.250000000 |
 | 0.042857143 0.714285714 -0.250000000 |
 | 0.042857143 -1.285714286 -0.250000000 |
 └ ┘

 ┌ ┐
 | 4.650367627 |
S = | 2.150367627 |
 └ ┘

 RANK = 2

 INFO = 0

 	Example 2

 	
 This example finds the minimum norm solution of an underdetermined
 real general system AX = B. Matrix A is
 size 3 × 4. On
 input, matrix B is size 3 × 3, stored in array b with
 leading dimension 4.

 Notes :

 	Because lwork=0, DGELSD dynamically allocates
 the work area used by this subroutine.

 	iwork is an integer work array of size 33.

 Call Statements and Input:

 M N NRHS A LDA B LDB S RCOND RANK WORK LWORK IWORK INFO
 | | | | | | | | | | | | | |
CALL DGELSD (3 , 4 , 4 , A , 3 , B , 4 , S , RCOND , RANK , WORK , 0 , IWORK , INFO)

 A =

 (same as input

 A

 in

 Example 3

 for DGELS)

 B =

 (same as input

 B

 in

 Example 3

 for DGELS)

RCOND = -1

 Output:

 General matrix A is
 overwritten.

 Solution matrix X overwrites B:
 ┌ ┐
 | 1.000000000 0.000000000 3.500000000 0.500000000 |
B = | 0.000000000 0.500000000 -0.250000000 -0.250000000 |
 | 1.000000000 1.000000000 -1.000000000 0.000000000 |
 | 0.000000000 0.500000000 -0.250000000 -0.250000000 |
 └ ┘

 ┌ ┐
 | 2.672011881 |
S = | 1.297080811 |
 | 0.407712367 |
 └ ┘

 RANK = 3

 INFO = 0

 	Example 3

 	
 This example finds the least squares solution of an overdetermined
 complex general system; that is, it solves the least squares problem:
 minimize ∥B-AX∥.
 Matrix A is size 6 × 2 and matrix B is
 size 6 × 1.

 Notes:

 	Because lwork=0, ZGELSD dynamically allocates
 the work area used by this subroutine.

 	rwork is a real work array of size 871.

 	iwork is an integer work array of size 22.

 Call Statements and Input:

 M N NRHS A LDA B LDB S RCOND RANK WORK LWORK RWORK IWORK INFO
 | | | | | | | | | | | | | | |
CALL ZGELSD (6 , 2 , 1 , A , 6 , B , 6 , S , RCOND , RANK , WORK , 0 , RWORK , IWORK , INFO)

 A =

 (same as input

 A

 in

 Example 6

 for ZGELS)

 B =

 (same as input

 B

 in

 Example 6

 for ZGELS)

RCOND = .745058D-08

 Output:

 General
 matrix A is overwritten.

 Solution matrix X overwrites B:
 ┌ ┐
 | (-1.135350, 0.520298) |
 | (0.944064, 0.624509) |
B = | (1.062824, -0.899701) |
 | (2.570856, 1.687826) |
 | (2.556854, 2.835820) |
 | (-3.982815, -0.231572) |
 └ ┘

 ┌ ┐
 | 4.781121271 |
S = | 2.959878261 |
 └ ┘

 RANK = 2

 INFO = 0

 	Example 4

 	
 This example finds the minimum norm solution of an underdetermined
 complex general system AX = B. Matrix A is
 size 3 × 4. On
 input, matrix B is size 3 × 3, stored in array b with
 leading dimension 4.

 Notes :

 	Because lwork=0, ZGELSD dynamically allocates
 the work area used by this subroutine.

 	rwork is a real work array of size 1081.

 	iwork is an integer work array of size 33.

 Call Statements and Input:

 M N NRHS A LDA B LDB S RCOND RANK WORK LWORK RWORK IWORK INFO
 | | | | | | | | | | | | | | |
CALL ZGELSD (3 , 4 , 3 , A , 3 , B , 4 , S , RCOND , RANK , WORK , 0 , RWORK , IWORK , INFO)

 A =

 (same as input

 A

 in

 Example 5

 for ZGELS)

 B =

 (same as input

 B

 in

 Example 5

 for ZGELS)

RCOND = -1

 Output:

 General matrix A is
 overwritten.

 Solution matrix X overwrites B:
 ┌ ┐
 | (-0.16, 0.15) (-0.08, 0.18) (0.16,-0.31) |
B = | (0.11, 0.02) (0.21,-0.50) (-0.38, 0.65) |
 | (-0.13,-0.32) (0.16, 0.12) (-0.27,-0.28) |
 | (0.37,-0.05) (0.04, 0.06) (-0.19, 0.33) |
 └ ┘

 ┌ ┐
 | 9.895527537 |
S = | 4.876518979 |
 | 1.816066467 |
 └ ┘

 RANK = 3

 INFO = 0

 Parent topic: Linear Algebraic Equations

 SGESVF and DGESVF (Singular Value Decomposition for a General
 Matrix)

 Purpose

 These subroutines compute the singular
 value decomposition of general matrix A in preparation
 for solving linear least squares problems. To compute the minimal
 norm linear least squares solution of AX≅B, follow the call to these subroutines with
 a call to SGESVS or DGESVS, respectively.

 Table 186. Data Types.

 	A, B, s, aux

 	Subroutine

 	Short-precision real

 	SGESVF

 	Long-precision real

 	DGESVF

 Syntax

 	Fortran

 	CALL SGESVF | DGESVF (iopt, a, lda, b, ldb, nb, s, m, n, aux, naux)

 	C and C++

 	sgesvf | dgesvf (iopt, a, lda, b, ldb, nb, s, m, n, aux, naux);

 	On Entry

 	

 	 iopt

 	indicates the type of computation to be performed, where:
 If iopt = 0
 or 10, singular values are computed.

 If iopt = 1
 or 11, singular values and V are computed.

 If iopt = 2
 or 12, singular values, V, and UTB are
 computed.

 Specified as: an integer; iopt = 0,
 1, 2, 10, 11, or 12.

 If iopt < 10,
 singular values are unordered.

 If iopt ≥ 10, singular
 values are sorted in descending order and, if applicable, the columns
 of V and the rows of UTB are
 swapped to correspond to the sorted singular values.

 	 a

 	is the m by n general matrix A,
 whose singular value decomposition is to be computed.
 Specified
 as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 186.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ max(m, n).

 	 b

 	has the following meaning, where:
 If iopt = 0,
 1, 10, or 11, this argument is not used in the computation.

 If iopt = 2
 or 12, it is the m by nb matrix B.

 Specified
 as: an ldb by (at least) nb array,
 containing numbers of the data type indicated in Table 186.

 If this subroutine
 is followed by a call to SGESVS or DGESVS, B should
 contain the right-hand side of the linear least squares problem, AX≅B.
 (The nb column vectors of B contain
 right-hand sides for nb distinct linear least squares
 problems.) However, if the matrix UT is desired
 on output, B should be equal to the identity matrix
 of order m.

 	 ldb

 	has the following meaning, where:
 If iopt = 0,
 1, 10, or 11, this argument is not used in the computation.

 If iopt = 2
 or 12, it is the leading dimension of the array specified for b.

 Specified
 as: an integer. It must have the following values, where:

 If iopt = 0,
 1, 10, or 11, ldb > 0.

 If iopt = 2
 or 12, ldb > 0 and ldb ≥ max(m, n).

 	 nb

 	has the following meaning, where:
 If iopt = 0,
 1, 10, or 11, this argument is not used in the computation.

 If iopt = 2
 or 12, it is the number of columns in matrix B.

 Specified
 as: an integer; if iopt = 2 or 12, nb > 0.

 	 s

 	See On Return.

 	 m

 	is the number of rows in matrices A and B.

 Specified as: an integer; m ≥ 0.

 	 n

 	is the number of columns in matrix A and the number
 of elements in vector s.
 Specified as: an integer; n ≥ 0.

 	 aux

 	has the following meaning:
 If naux = 0
 and error 2015 is unrecoverable, aux is ignored.

 Otherwise,
 it is the storage work area used by this subroutine. Its size is specified
 by naux.

 Specified as: an area of storage,
 containing numbers of the data type indicated in Table 186.

 	 naux

 	is the size of the work area specified by aux—that
 is, the number of elements in aux.
 Specified
 as: an integer, where:

 If naux = 0
 and error 2015 is unrecoverable, SGESVF and DGESVF dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise,
 It must have the following value, where:

 If iopt = 0
 or 10, naux ≥ n+max(m, n).

 If iopt = 1
 or 11, naux ≥ 2n+max(m, n).

 If iopt = 2
 or 12, naux ≥ 2n+max(m, n, nb).

 	On Return

 	

 	 a

 	has the following meaning, where:
 If iopt = 0,
 or 10, A is overwritten; that is, the original input
 is not preserved.

 If iopt = 1,
 2, 11, or 12, A contains the real orthogonal matrix V,
 of order n, in its first n rows
 and n columns. If iopt = 11
 or 12, the columns of V are swapped to correspond to
 the sorted singular values. If m > n,
 rows n+1, n+2, …, m of
 array A are overwritten; that is, the original input
 is not preserved.

 Returned as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 186.

 	 b

 	has the following meaning, where:
 If iopt = 0,
 1, 10, or 11, B is not used in the computation.

 If iopt = 2
 or 12, B is overwritten by the n by nb matrix UTB.

 If iopt = 12,
 the rows of UTB are swapped
 to correspond to the sorted singular values. If m > n,
 rows n+1, n+2, …, m of
 array B are overwritten; that is, the original input
 is not preserved.

 Returned as: an ldb by
 (at least) nb array, containing numbers of the
 data type indicated in Table 186.

 	 s

 	is a the vector s of length n,
 containing the singular values of matrix A. Returned
 as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 186; si ≥ 0, where:

 If iopt < 10, the singular values are unordered
 in s.

 If iopt ≥ 10, the singular
 values are sorted in descending order in s; that is, s1 ≥ s2 ≥ … ≥ sn ≥ 0. If applicable,
 the columns of V and the rows of UTB are
 swapped to correspond to the sorted singular values.

 Notes

 	The following items must have no common elements; otherwise, results
 are unpredictable: matrices A and B, vector s,
 and the data area specified for aux.

 	When you specify iopt = 0, 1, 10, or 11, you must also specify:

 	A dummy argument for b

 	A positive value for ldb

 See Example.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 The singular value decomposition
 of a real general matrix is computed as follows:

 A

 =

 U

 Σ

 V

 T

 where:

 UTU = VTV = VVT = I

 A is
 an m by n real general matrix.

 V is
 a real general orthogonal matrix of order n. On
 output, V overwrites the first n rows
 and n columns of A.

 UTB is
 an n by nb real general matrix.
 On output, UTB overwrites the
 first n rows and nb columns
 of B.

 Σ is an n by n real
 diagonal matrix. The diagonal elements of Σ are the singular values of A,
 returned in the vector s.

 If m or n is
 equal to 0, no computation is performed.

 One of the following
 algorithms is used:

 	Golub-Reinsch Algorithm (See pages 134 to 151 in reference [118].)

 	Reduce the real general matrix A to bidiagonal form
 using Householder transformations.

 	Iteratively reduce the bidiagonal form to diagonal form using
 a variant of the QR algorithm.

 	Chan Algorithm (See reference [20].)

 	Compute the QR decomposition of matrix A using Householder
 transformations; that is, A = QR.

 	Apply the Golub-Reinsch Algorithm to the matrix R.

 If R = XWYT is
 the singular value decomposition of R, the singular
 value decomposition of matrix A is given by:

 [image: Singular Value Decomposition Graphic]

 where:

 [image: Singular Value Decomposition Graphic]

 Also, see references [20], [69], [92], and pages
 134 to 151 in reference [118]. These algorithms
 have a tendency to generate underflows that may hurt overall performance.
 The system default is to mask underflow, which improves the performance
 of these subroutines.

 Error conditions

 	[bookmark: am5gr_hsgesvf__am5gr_f10d002]
 Resource Errors

 	Error 2015 is unrecoverable, naux = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hsgesvf__am5gr_f10d003]
 Computational Errors

 	Singular value (i) failed to converge after
 (x) iterations.

 	The singular values (sj, j = n, n-1, …, i+1)
 are correct. If iopt < 10, they are unordered. Otherwise,
 they are ordered.

 	a has been modified.

 	If iopt = 2 or 12, then b has
 been modified.

 	The return code is set to 1.

 	i and x can be determined
 at run time by use of the ESSL error-handling facilities. To obtain
 this information, you must use ERRSET to change the number of allowable
 errors for error code 2107 in the ESSL error option table; otherwise,
 the default value causes your program to terminate when this error
 occurs. See What Can You Do about ESSL Computational Errors?.

 	[bookmark: am5gr_hsgesvf__am5gr_ersvf]
 Input-Argument Errors

 	

 	iopt ≠ 0, 1, 2, 10, 11,
 or 12

 	lda ≤ 0

 	max(m, n) > lda

 	ldb ≤ 0 and iopt = 2,
 12

 	max(m, n) > ldb and iopt = 2,
 12

 	nb ≤ 0 and iopt = 2,
 12

 	m < 0

 	n < 0

 	Error 2015 is recoverable or naux≠0, and naux is
 too small—that
 is, less than the minimum required value. Return code 2 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows how to find only the singular values, s,
 of a real long-precision general matrix A, where:

 	M is greater than N.

 	NAUX is greater than or equal to N+max(M, N) = 7.

 	LDB has been set to 1 to avoid a Fortran error
 message.

 	DUMMY is a placeholder for argument b,
 which is not used in the computation.

 	The singular values are returned in S.

 	On output, matrix A is overwritten; that is, the
 original input is not preserved.

 Call Statement and Input: IOPT A LDA B LDB NB S M N AUX NAUX
 | | | | | | | | | | |
CALL DGESVF(0 , A , 4 , DUMMY , 1 , 0 , S , 4 , 3 , AUX , 7)

 ┌ ┐
 | 1.0 2.0 3.0 |
A = | 4.0 5.0 6.0 |
 | 7.0 8.0 9.0 |
 | 10.0 11.0 12.0 |
 └ ┘

 Output: S = (25.462, 1.291, 0.000)

 	Example 2

 	
 This example computes the singular values, s,
 of a real long-precision general matrix A and the matrix V,
 where:

 	M is equal to N.

 	NAUX is greater than or equal to 2N+max(M, N) = 9.

 	LDB has been set to 1 to avoid a Fortran error
 message.

 	DUMMY is a placeholder for argument b,
 which is not used in the computation.

 	The singular values are returned in S.

 	The matrix V is returned in A.

 Call Statement and Input: IOPT A LDA B LDB NB S M N AUX NAUX
 | | | | | | | | | | |
CALL DGESVF(1 , A , 3 , DUMMY , 1 , 0 , S , 3 , 3 , AUX , 9)

 ┌ ┐
 | 2.0 1.0 1.0 |
A = | 4.0 1.0 0.0 |
 | -2.0 2.0 1.0 |
 └ ┘

 Output: ┌ ┐
 | -0.994 0.105 -0.041 |
A = | -0.112 -0.870 0.480 |
 | -0.015 -0.482 -0.876 |
 └ ┘

S = (4.922, 2.724, 0.597)

 	Example 3

 	
 This example computes the singular values, s,
 and computes matrices V and UTB in
 preparation for solving the underdetermined system AX≅B,
 where:

 	M is less than N.

 	NAUX is greater than or equal to 2N+max(M, N, NB) = 9.

 	The singular values are returned in S.

 	The matrix V is returned in A.

 	The matrix UTB is returned
 in B.

 Call Statement and Input: IOPT A LDA B LDB NB S M N AUX NAUX
 | | | | | | | | | | |
CALL DGESVF(2 , A , 3 , B , 3 , 1 , S , 2 , 3 , AUX , 9)

 ┌ ┐
 | 1.0 2.0 2.0 |
A = | 2.0 4.0 5.0 |
 | . . . |
 └ ┘

 ┌ ┐
 | 1.0 |
B = | 4.0 |
 | . |
 └ ┘

 Output: ┌ ┐
 | -0.304 -0.894 0.328 |
A = | -0.608 0.447 0.656 |
 | -0.733 0.000 -0.680 |
 └ ┘

 ┌ ┐
 | -4.061 |
B = | 0.000 |
 | -0.714 |
 └ ┘

S = (7.342, 0.000, 0.305)

 	Example 4

 	
 This example computes the singular values, s,
 and matrices V and UTB in
 preparation for solving the overdetermined system AX≅B,
 where:

 	M is greater than N.

 	NAUX is greater than or equal to 2N+max(M, N, NB) = 7.

 	The singular values are returned in S.

 	The matrix V is returned in A.

 	The matrix UTB is returned
 in B.

 Call Statement and Input: IOPT A LDA B LDB NB S M N AUX NAUX
 | | | | | | | | | | |
CALL DGESVF(2 , A , 3 , B , 3 , 2 , S , 3 , 2 , AUX , 7)

 ┌ ┐
 | 1.0 4.0 |
A = | 2.0 5.0 |
 | 3.0 6.0 |
 └ ┘

 ┌ ┐
 | 7.0 10.0 |
B = | 8.0 11.0 |
 | 9.0 12.0 |
 └ ┘

 Output: ┌ ┐
 | 0.922 -0.386 |
A = | -0.386 -0.922 |
 | . . |
 └ ┘

 ┌ ┐
 | -1.310 -2.321 |
B = | -13.867 -18.963 |
 | . . |
 └ ┘

X = (0.773, 9.508)

 	Example 5

 	
 This example computes the singular values, s,
 and matrices V and UTB in
 preparation for solving the overdetermined system AX≅B.
 The singular values are sorted in descending order, and the columns
 of V and the rows of UTB are
 swapped to correspond to the sorted singular values.

 	M is greater than N.

 	NAUX is greater than or equal to 2N+max(M, N, NB) = 7.

 	The singular values are returned in S.

 	The matrix V is returned in A.

 	The matrix UTB is returned
 in B.

 Call Statement and Input: IOPT A LDA B LDB NB S M N AUX NAUX
 | | | | | | | | | | |
CALL DGESVF(12 , A , 3 , B , 3 , 2 , S , 3 , 2 , AUX , 7)

 ┌ ┐
 | 1.0 4.0 |
A = | 2.0 5.0 |
 | 3.0 6.0 |
 └ ┘

 ┌ ┐
 | 7.0 10.0 |
B = | 8.0 11.0 |
 | 9.0 12.0 |
 └ ┘

 Output: ┌ ┐
 | -0.386 0.922 |
A = | -0.922 -0.386 |
 | . . |
 └ ┘

 ┌ ┐
 | -13.867 -18.963 |
B = | -1.310 -2.321 |
 | . . |
 └ ┘

S = (9.508, 0.773)

 Parent topic: Linear Algebraic Equations

 SGESVS and DGESVS (Linear Least Squares Solution for a General
 Matrix Using the Singular Value Decomposition)

 Purpose

 These subroutines compute the minimal
 norm linear least squares solution of AX≅B, where A is a general matrix,
 using the singular value decomposition computed by SGESVF or DGESVF.

 Table 187. Data Types.

 	V, UB, X, s, τ

 	Subroutine

 	Short-precision real

 	SGESVS

 	Long-precision real

 	DGESVS

 Syntax

 	Fortran

 	CALL SGESVS | DGESVS (v, ldv, ub, ldub, nb, s, x, ldx, m, n, tau)

 	C and C++

 	sgesvs | dgesvs (v, ldv, ub, ldub, nb, s, x, ldx, m, n, tau);

 	On Entry

 	

 	 v

 	is the orthogonal matrix V of order n in
 the singular value decomposition of matrix A. It is
 produced by a preceding call to SGESVF or DGESVF, where it corresponds
 to output argument a.
 Specified as: an ldv by
 (at least) n array, containing numbers of the data
 type indicated in Table 187.

 	 ldv

 	is the leading dimension of the array specified for v.

 Specified as: an integer; ldv > 0
 and ldv ≥ n.

 	 ub

 	is an n by nb matrix, containing UTB.
 It is produced by a preceding call to SGESVF or DGESVF, where it corresponds
 to output argument b. On output, UTB is
 overwritten; that is, the original input is not preserved.
 Specified
 as: an ldub by (at least) nb array,
 containing numbers of the data type indicated in Table 187.

 	 ldub

 	is the leading dimension of the array specified for ub.

 Specified as: an integer; ldub > 0
 and ldub ≥ n.

 	 nb

 	is the number of columns in matrices X and UTB.

 Specified as: an integer; nb > 0.

 	 s

 	is the vector s of length n,
 containing the singular values of matrix A. It is produced
 by a preceding call to SGESVF or DGESVF, where it corresponds to output
 argument s.
 Specified as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 187; si ≥ 0.

 	 x

 	See On Return.

 	 ldx

 	is the leading dimension of the array specified for x.

 Specified as: an integer; ldx > 0
 and ldx ≥ n.

 	 m

 	is the number of rows in matrix A.
 Specified
 as: an integer; m ≥ 0.

 	 n

 	is the number of columns in matrix A, the order
 of matrix V, the number of elements in vector s,
 the number of rows in matrix UB, and the number of rows
 in matrix X. Specified as: an integer; n ≥ 0.

 	 tau

 	is the error tolerance τ. Any singular values in vector s that
 are less than τ are
 treated as zeros when computing matrix X.
 Specified
 as: a number of the data type indicated in Table 187; τ ≥ 0. For more
 information on the values for τ, see Notes.

 	On Return

 	

 	 x

 	is an n by nb matrix, containing
 the minimal norm linear least solutions of AX≅B.
 The nb column vectors of X contain
 minimal norm solution vectors for nb distinct linear
 least squares problems.
 Returned as: an ldx by
 (at least) nb array, containing numbers of the
 data type indicated in Table 187.

 Notes

 	V, X, s, and UTB can
 have no common elements; otherwise the results are unpredictable.

 	In problems involving experimental data, τ should reflect the absolute accuracy of
 the matrix elements:

 τ

 ≥

 max(|

 Δ

 ij

 |)

 where Δij are
 the errors in aij.
 In problems where the matrix elements are known exactly or are only
 affected by roundoff errors:

 [image: Math Graphic]

 where:

 ε is equal to 0.11920E-06 for SGESVS
 and 0.22204D-15 for DGESVS. s is a vector containing
 the singular values of matrix A.

 For more information,
 see references [20], [69], [92], and pages
 134 to 151 in reference [118].

 Function

 The minimal norm linear least
 squares solution of AX≅B, where A is
 a real general matrix, is computed using the singular value decomposition,
 produced by a preceding call to SGESVF or DGESVF. From SGESVF or DGESVF,
 the singular value decomposition of A is given by the
 following:

 A

 =

 U

 Σ

 V

 T

 The
 linear least squares of solution X, for AX≅B, is given by the following formula:

 X

 =

 V

 Σ

 +

 U

 T

 B

 where:

 [image: Math Graphic]

 If m or n is equal
 to 0, no computation is performed. See references [20], [69], [92], and pages
 134 to 151 in reference [118]. These algorithms
 have a tendency to generate underflows that may hurt overall performance.
 The system default is to mask underflow, which improves the performance
 of these subroutines.

 Error conditions

 	[bookmark: am5gr_hsgesvs__am5gr_f10d015]
 Computational Errors

 	None

 	[bookmark: am5gr_hsgesvs__am5gr_f10d016]
 Input-Argument Errors

 	

 	ldv ≤ 0

 	n > ldv

 	ldub ≤ 0

 	n > ldub

 	ldx ≤ 0

 	n > ldx

 	nb ≤ 0

 	m < 0

 	n < 0

 	τ < 0

 Examples

 	Example 1

 	
 This example finds the linear least squares solution for
 the underdetermined system AX≅B, using the
 singular value decomposition computed by DGESVF. Matrix A is:
 ┌ ┐
 | 1.0 2.0 2.0 |
 | 2.0 4.0 5.0 |
 └ ┘

 and
 matrix B is: ┌ ┐
 | 1.0 |
 | 4.0 |
 └ ┘

 On
 output, matrix UTB is overwritten.

 Note: This example corresponds to DGESVF Example 3.

 Call Statement and Input: V LDV UB LDUB NB S X LDX M N TAU
 | | | | | | | | | | |
CALL DGESVS(V , 3 , UB , 3 , 1 , S , X , 3 , 2 , 3 , TAU)

 ┌ ┐
 | -0.304 -0.894 0.328 |
V = | -0.608 0.447 0.656 |
 | -0.733 0.000 -0.680 |
 └ ┘

 ┌ ┐
 | -4.061 |
UB = | 0.000 |
 | -0.714 |
 └ ┘

S = (7.342, 0.000, 0.305)
TAU = 0.3993D-14

 Output:
 ┌ ┐
 | -0.600 |
X = | -1.200 |
 | 2.000 |
 └ ┘

 	Example 2

 	
 This example finds the linear least squares solution for
 the overdetermined system AX≅B, using the
 singular value decomposition computed by DGESVF. Matrix A is:
 ┌ ┐
 | 1.0 4.0 |
 | 2.0 5.0 |
 | 3.0 6.0 |
 └ ┘

 and
 where B is: ┌ ┐
 | 7.0 10.0 |
 | 8.0 11.0 |
 | 9.0 12.0 |
 └ ┘

 On
 output, matrix UTB is overwritten.

 Note: This example corresponds to DGESVF Example 4.

 Call Statement: V LDV UB LDUB NB S X LDX M N TAU
 | | | | | | | | | | |
CALL DGESVS(V , 3 , UB , 3 , 2 , S , X , 2 , 3 , 2 , TAU)

 Input: ┌ ┐
 | 0.922 -0.386 |
V = | -0.386 -0.922 |
 | . . |
 └ ┘

 ┌ ┐
 | -1.310 -2.321 |
UB = | -13.867 -18.963 |
 | . . |
 └ ┘

S = (0.773, 9.508)
TAU = 0.5171D-14

 Output:
 ┌ ┐
X = | -1.000 -2.000 |
 | 2.000 3.000 |
 └ ┘

 	

 	

 Parent topic: Linear Algebraic Equations

 SGELLS and DGELLS (Linear Least Squares Solution for a General
 Matrix with Column Pivoting)

 Purpose

 These subroutines compute the minimal
 norm linear least squares solution of AX≅B, using a QR decomposition with column pivoting.

 Table 188. Data Types.

 	A, B, X, rn, τ, aux

 	Subroutine

 	Short-precision real

 	SGELLS

 	Long-precision real

 	DGELLS

 Syntax

 	Fortran

 	CALL SGELLS | DGELLS (iopt, a, lda, b, ldb, x, ldx, rn, tau, m, n, nb, k, aux, naux)

 	C and C++

 	sgells | dgells (iopt, a, lda, b, ldb, x, ldx, rn, tau, m, n, nb, k, aux, naux);

 	On Entry

 	

 	 iopt

 	indicates the type of computation to be performed, where:
 If iopt = 0, X is
 computed.

 If iopt = 1, X and the Euclidean
 Norm of the residual vectors are computed.

 Specified as: an
 integer; iopt = 0 or 1.

 	 a

 	is the m by n coefficient
 matrix A. On output, A is overwritten;
 that is, the original input is not preserved.
 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 188.

 	 lda

 	is the leading dimension of the array specified for a.

 Specified as: an integer; lda > 0
 and lda ≥ m.

 	 b

 	is the m by nb matrix B,
 containing the right-hand sides of the linear systems. The nb column
 vectors of B contain right-hand sides for nb distinct
 linear least squares problems. On output, B is overwritten;
 that is, the original input is not preserved.
 Specified as: an ldb by
 (at least) nb array, containing numbers of the
 data type indicated in Table 188.

 	 ldb

 	is the leading dimension of the array specified for b.

 Specified as: an integer; ldb > 0
 and ldb ≥ m.

 	 x

 	See On Return.

 	 ldx

 	is the leading dimension of the array specified for x.

 Specified as: an integer; ldx > 0
 and ldx ≥ n.

 	 rn

 	See On Return.

 	 tau

 	is the tolerance τ, used to determine the subset of the columns
 of A used in the solution.
 Specified as: a number
 of the data type indicated in Table 188; τ ≥ 0. For more
 information on how to select a value for τ, see Notes.

 	 m

 	is the number of rows in matrices A and B.

 Specified as: an integer; m ≥ 0.

 	 n

 	is the number of columns in matrix A and the number
 of rows in matrix X.
 Specified as: an integer; n ≥ 0.

 	 nb

 	is the number of columns in matrices B and X and
 the number of elements in vector rn.
 Specified as:
 an integer; nb > 0.

 	 k

 	See On Return.

 	 aux

 	has the following meaning:
 If naux = 0
 and error 2015 is unrecoverable, aux is ignored.

 Otherwise,
 it is the storage work area used by this subroutine. Its size is specified
 by naux.

 Specified as: an area of storage,
 containing numbers of the data type indicated in Table 188. On output, the contents
 of aux are overwritten.

 	 naux

 	is the size of the work area specified by aux—that
 is, the number of elements in aux.
 Specified
 as: an integer, where:

 If naux = 0
 and error 2015 is unrecoverable, SGELLS and DGELLS dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise,
 it must have the following values:

 	For SGELLS

 	For SGELLS, it must have the following values:

 	For 32-bit integer arguments

 	naux ≥ 3n +
 max(n, nb)

 	For 64-bit integer arguments

 	naux ≥ 4n +
 max(n, nb) + 3

 	For DGELLS

 	For DGELLS, it must have the following values:

 	For 32-bit integer arguments

 	naux ≥ [ceiling(2.5n)
 + max(n, nb)]

 	For 64-bit integer arguments

 	naux ≥ 3n +
 max(n, nb)

 	On Return

 	

 	 x

 	is the solution matrix X, with n rows
 and nb columns, where:
 If k ≠ 0, the nb column
 vectors of X contain minimal norm least squares solutions
 for nb distinct linear least squares problems.
 The elements in each solution vector correspond to the original columns
 of A.

 If k = 0,
 the nb column vectors of X are set
 to 0.

 Returned as: an ldx by (at least) nb array,
 containing numbers of the data type indicated in Table 188.

 	 rn

 	is the vector rn of length nb,
 where:
 If iopt = 0 or k = 0, rn is
 not used in the computation.

 If iopt = 1, rni is
 the Euclidean Norm of the residual vector for the linear least squares
 problem defined by the i-th column vector of B.

 Returned
 as: a one-dimensional array of (at least) nb, containing
 numbers of the data type indicated in Table 188.

 	 k

 	is the number of columns of matrix A used in the
 solution. Returned as: an integer; k = (the
 number of diagonal elements of matrix R exceeding τ in magnitude).

 Notes

 	In your C program, argument k must be passed
 by reference.

 	If ldb ≥ max(m, n),
 matrix X and matrix B can be the same;
 otherwise, matrix X and matrix B can have
 no common elements, or the results are unpredictable.

 	The following items must have no common elements; otherwise, results
 are unpredictable:

 	Matrices A and X, vector rn,
 and the data area specified for aux

 	Matrices A and B, vector rn,
 and the data area specified for aux.

 	If the relative uncertainty in the matrix B is ρ, then:

 τ

 ≥

 ρ

 ∥

 A

 ∥

 F

 See
 references [52], [73], and [92] for additional
 guidance on determining suitable values for τ.

 	When you specify iopt = 0, you must also specify a dummy
 argument for rn. For more details, see Example 1.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 The minimal norm linear least squares
 solution of AX≅B is computed
 using a QR decomposition with column pivoting, where:

 A

 is an

 m

 by

 n

 real general matrix.

 B

 is an

 m

 by

 nb

 real general matrix.

 X

 is an

 n

 by

 nb

 real general matrix.

 Optionally,
 the Euclidean Norms of the residual vectors can be computed. Following
 are the steps involved in finding the minimal norm linear least squares
 solution of AX≅B. A is
 decomposed, using Householder transformations and column pivoting,
 into the following form:

 AP

 =

 QR

 where:

 P

 is a permutation matrix.

 Q

 is an orthogonal matrix.

 R

 is an upper triangular matrix.

 k is
 the first index, where:

 |

 r

 k

 +1,

 k

 +1

 |

 ≤

 τ

 If k = n,
 the minimal norm linear least squares solution is obtained by solving RX = QTB and
 reordering X to correspond to the original columns of A.

 If k < n, R has
 the following form:

 [image: Math Graphic]

 To find the minimal norm linear least squares solution,
 it is necessary to zero the submatrix R12 using
 Householder transformations. See references [52], [73], and [92]. If m or n is
 equal to 0, no computation is performed. These algorithms have a tendency
 to generate underflows that may hurt overall performance. The system
 default is to mask underflow, which improves the performance of these
 subroutines.

 Error conditions

 	[bookmark: am5gr_hsgells__am5gr_f10d037a]
 Resource Errors

 	Error 2015 is unrecoverable, naux = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hsgells__am5gr_f10d038a]
 Computational Errors

 	None

 	[bookmark: am5gr_hsgells__am5gr_erria]
 Input-Argument Errors

 	

 	iopt ≠ 0 or 1

 	lda ≤ 0

 	m > lda

 	ldb ≤ 0

 	m > ldb

 	ldx ≤ 0

 	n > ldx

 	m < 0

 	n < 0

 	nb ≤ 0

 	τ < 0

 	Error 2015 is recoverable or naux≠0, and naux is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example solves the underdetermined system AX≅B.
 On output, A and B are overwritten. DUMMY is
 used as a placeholder for argument rn, which is
 not used in the computation.

 Call Statement
 and Input: IOPT A LDA B LDB X LDX RN TAU M N NB K AUX NAUX
 | | | | | | | | | | | | | | |
CALL DGELLS(0 , A , 2 , B , 2 , X , 3 , DUMMY , TAU , 2 , 3 , 1 , K , AUX , 11)

 ┌ ┐
A = | 1.0 2.0 2.0 |
 | 2.0 4.0 5.0 |
 └ ┘

 ┌ ┐
B = | 1.0 |
 | 4.0 |
 └ ┘

TAU = 0.0

 Output: ┌ ┐
 | -0.600 |
X = | -1.200 |
 | 2.000 |
 └ ┘

K = 2

 	Example 2

 	
 This example solves the overdetermined system AX≅B.
 On output, A and B are overwritten. DUMMY is
 used as a placeholder for argument rn, which is
 not used in the computation.

 Call Statement
 and Input: IOPT A LDA B LDB X LDX RN TAU M N NB K AUX NAUX
 | | | | | | | | | | | | | | |
CALL DGELLS(0 , A , 3 , B , 3 , X , 2 , DUMMY , TAU , 3 , 2 , 2 , K , AUX , 7)

 ┌ ┐
 | 1.0 4.0 |
A = | 2.0 5.0 |
 | 3.0 6.0 |
 └ ┘

 ┌ ┐
 | 7.0 10.0 |
B = | 8.0 11.0 |
 | 9.0 12.0 |
 └ ┘

TAU = 0.0

 Output: ┌ ┐
X = | -1.000 -2.000 |
 | 2.000 3.000 |
 └ ┘

K = 2

 	Example 3

 	
 This example solves the overdetermined system AX≅B and
 computes the Euclidean Norms of the residual vectors. On output, A and B are
 overwritten.

 Call Statement and Input:
 IOPT A LDA B LDB X LDX RN TAU M N NB K AUX NAUX
 | | | | | | | | | | | | | | |
CALL DGELLS(1 , A , 3 , B , 3 , X , 2 , RN , TAU , 3 , 2 , 2 , K , AUX , 7)

 ┌ ┐
 | 1.1 -4.3 |
A = | 2.0 -5.0 |
 | 3.0 -6.0 |
 └ ┘

 ┌ ┐
 | -7.0 10.0 |
B = | -8.0 11.0 |
 | -9.0 12.0 |
 └ ┘

TAU = 0.0

 Output: ┌ ┐
X = | 0.543 -1.360 |
 | 1.785 -2.699 |
 └ ┘

 ┌ ┐
RN = | 0.196 |
 | 0.275 |
 └ ┘

K = 2

 Parent topic: Linear Algebraic Equations

 Eigensystem Analysis

 The eigensystem analysis subroutines are described here.

 	Overview of the Eigensystem Analysis Subroutines

 	Performance and Accuracy Considerations

 	Eigensystem Analysis Subroutines

 	SGEEV, DGEEV, CGEEV, ZGEEV, SGEEVX, DGEEVX, CGEEVX, and ZGEEVX (Eigenvalues and, Optionally, Right Eigenvectors, Left Eigenvectors,
 Reciprocal Condition Numbers for Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a General Matrix)

 	SSYEV, DSYEV, CHEEV, ZHEEV, SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX, DSYEVX, CHEEVX, and ZHEEVX (Eigenvalues and, Optionally,
 the Eigenvectors of a Real Symmetric or Complex Hermitian Matrix)

 	SSPEVD, DSPEVD, CHPEVD, ZHPEVD, SSYEVD, DSYEVD, CHEEVD, and ZHEEVD (Eigenvalues and, Optionally the Eigenvectors, of a Real
 Symmetric or Complex Hermitian Matrix Using a Divide-and-Conquer Algorithm)

 	SGGEV, DGGEV, CGGEV, ZGGEV, SGGEVX, DGGEVX, CGGEVX, and ZGGEVX (Eigenvalues and, Optionally, Right Eigenvectors, Left Eigenvectors,
 Reciprocal Condition Numbers for Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a General Matrix
 Generalized Eigenproblem)

 	SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX, DSYGVX, CHEGVX, and ZHEGVX (Eigenvalues and, Optionally, the Eigenvectors of a Positive
 Definite Real Symmetric or Complex Hermitian Generalized Eigenproblem)

 Parent topic: Reference Information

 Overview of the Eigensystem Analysis Subroutines

 The eigensystem analysis subroutines provide solutions
 to the algebraic eigensystem analysis problem and the generalized
 eigensystem analysis problem. These subroutines correspond to the
 LAPACK routines described in reference [8].

 Table 189. List of LAPACK Eigensystem Analysis Subroutines.

 	Short-Precision Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	
 [image: Start of change]SGEEV

 Δ

 CGEEV

 [image: End of change]
 Δ

 SGEEVX

 Δ

 CGEEVX

 Δ

 [image: Start of change]LAPACKE_sgeev

 Δ

 LAPACKE_cgeev

 Δ

 LAPACKE_sgeevx

 Δ

 LAPACKE_cgeevx

 Δ

 [image: End of change]

 	
 [image: Start of change]DGEEV

 Δ

 ZGEEV

 [image: End of change]
 Δ

 DGEEVX

 Δ

 ZGEEVX

 Δ

 [image: Start of change]LAPACKE_dgeev

 Δ

 LAPACKE_zgeev

 Δ

 LAPACKE_dgeevx

 Δ

 LAPACKE_zgeevx

 Δ

 [image: End of change]

 	SGEEV, DGEEV, CGEEV, ZGEEV, SGEEVX, DGEEVX, CGEEVX, and ZGEEVX (Eigenvalues and, Optionally, Right Eigenvectors, Left Eigenvectors,
 Reciprocal Condition Numbers for Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a General Matrix)

 	
 [image: Start of change]SSYEV

 Δ

 CHEEV

 Δ

 [image: End of change]

 SSPEVX

 Δ

 CHPEVX

 Δ

 SSYEVX

 Δ

 CHEEVX

 Δ

 LAPACKE_ssyev

 Δ

 LAPACKE_cheev

 Δ

 LAPACKE_sspevx

 Δ

 LAPACKE_chpevx

 Δ

 LAPACKE_ssyevx

 Δ

 LAPACKE_cheevx

 Δ

 	
 [image: Start of change]DSYEV

 Δ

 ZHEEV

 [image: End of change]
 Δ

 DSPEVX

 Δ

 ZHPEVX

 Δ

 DSYEVX

 Δ

 ZHEEVX

 Δ

 [image: Start of change]LAPACKE_dsyev

 Δ

 LAPACKE_zheev

 Δ

 LAPACKE_dspevx

 Δ

 LAPACKE_zhpevx

 Δ

 LAPACKE_dsyevx

 Δ

 LAPACKE_zheevx

 Δ

 [image: End of change]

 	SSYEV, DSYEV, CHEEV, ZHEEV, SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX, DSYEVX, CHEEVX, and ZHEEVX (Eigenvalues and, Optionally,
 the Eigenvectors of a Real Symmetric or Complex Hermitian Matrix)

 	

 SSPEVD

 Δ

 CHPEVD

 Δ

 SSYEVD

 Δ

 CHEEVD

 Δ

 [image: Start of change]LAPACKE_sspevd

 Δ

 LAPACKE_chpevd

 Δ

 LAPACKE_ssyevd

 Δ

 LAPACKE_cheevd

 Δ

 [image: End of change]

 	

 DSPEVD

 Δ

 ZHPEVD

 Δ

 DSYEVD

 Δ

 ZHEEVD

 Δ

 [image: Start of change]LAPACKE_dspevd

 Δ

 LAPACKE_zhpevd

 Δ

 LAPACKE_dsyevd

 Δ

 LAPACKE_zheevd

 Δ

 [image: End of change]

 	SSPEVD, DSPEVD, CHPEVD, ZHPEVD, SSYEVD, DSYEVD, CHEEVD, and ZHEEVD (Eigenvalues and, Optionally the Eigenvectors, of a Real
 Symmetric or Complex Hermitian Matrix Using a Divide-and-Conquer Algorithm)

 	

 SGGEV

 Δ

 CGGEV

 Δ

 [image: Start of change]SGGEVX

 Δ

 CGGEVX

 Δ

 [image: End of change]

 [image: Start of change]LAPACKE_sggev

 Δ

 LAPACKE_cggev

 Δ

 [image: End of change]

 [image: Start of change]LAPACKE_sggevx

 Δ

 LAPACKE_cggevx

 Δ

 [image: End of change]

 	

 DGGEV

 Δ

 ZGGEV

 Δ

 [image: Start of change]DGGEVX

 Δ

 ZGGEVX

 Δ

 [image: End of change]

 [image: Start of change]LAPACKE_dggev

 Δ

 LAPACKE_zggev

 Δ

 [image: End of change]

 [image: Start of change]LAPACKE_dggevx

 Δ

 LAPACKE_zggevx

 Δ

 [image: End of change]

 	SGGEV, DGGEV, CGGEV, ZGGEV, SGGEVX, DGGEVX, CGGEVX, and ZGGEVX (Eigenvalues and, Optionally, Right Eigenvectors, Left Eigenvectors,
 Reciprocal Condition Numbers for Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a General Matrix
 Generalized Eigenproblem)

 	

 SSPGVX

 Δ

 CHPGVX

 Δ

 SSYGVX

 Δ

 CHEGVX

 Δ

 [image: Start of change]LAPACKE_sspgvx

 Δ

 LAPACKE_chpgvx

 Δ

 LAPACKE_ssygvx

 Δ

 LAPACKE_chegvx

 Δ

 [image: End of change]

 	

 DSPGVX

 Δ

 ZHPGVX

 Δ

 DSYGVX

 Δ

 ZHEGVX

 Δ

 [image: Start of change]LAPACKE_dspgvx

 Δ

 LAPACKE_zhpgvx

 Δ

 LAPACKE_dsygvx

 Δ

 LAPACKE_zhegvx

 Δ

 [image: End of change]

 	SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX, DSYGVX, CHEGVX, and ZHEGVX (Eigenvalues and, Optionally, the Eigenvectors of a Positive
 Definite Real Symmetric or Complex Hermitian Generalized Eigenproblem)

 	
 ΔLAPACK

 Parent topic: Eigensystem Analysis

 Performance and Accuracy Considerations

 	The short precision subroutines provide increased accuracy by
 accumulating intermediate results in long precision when the AltiVec
 or VSX unit is not used. Occasionally, for performance reasons, these
 intermediate results are stored.

 	There are some ESSL-specific rules that apply to the results of
 computations on the workstation processors using the ANSI/IEEE standards.
 For details, see What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?.

 Parent topic: Eigensystem Analysis

 Eigensystem Analysis Subroutines

 This contains the eigensystem analysis subroutine
 descriptions.

 Parent topic: Eigensystem Analysis

 SGEEV, DGEEV, CGEEV, ZGEEV, SGEEVX, DGEEVX, CGEEVX, and ZGEEVX (Eigenvalues and, Optionally,
 Right Eigenvectors, Left Eigenvectors, Reciprocal Condition Numbers for Eigenvalues, and Reciprocal
 Condition Numbers for Right Eigenvectors of a General Matrix)

 Purpose

 	[image: Start of change]SGEEV, DGEEV, CGEEV, and ZGEEV compute the eigenvalues and, optionally, right
 eigenvectors and/or left eigenvectors of a general matrix.[image: End of change]

 	SGEEVX, DGEEVX, CGEEVX, and ZGEEVX compute the eigenvalues and, optionally, right eigenvectors,
 left eigenvectors, reciprocal condition numbers for eigenvalues, and reciprocal condition numbers
 for right eigenvectors of a general matrix.

 For a right eigenvector v of A:

 Av = λv

 For
 a left eigenvector u of A:

 uHA = λuH

 The
 computed eigenvectors are normalized to have the Euclidean norm equal
 to one and the largest component real.

 Table 190. Data Types.

 	A, vl, vr, work, wr, wi, w

 	scale, abnrm, rconde, rcondv, rwork

 	Subroutine

 	Short-precision real

 	Short-precision real

 	
 [image: Start of change]SGEEV

 [image: End of change]
 Δ

 SGEEVX

 Δ

 	Long-precision real

 	Long-precision real

 	
 [image: Start of change]DGEEV

 [image: End of change]
 Δ

 DGEEVX

 Δ

 	Short-precision complex

 	Short-precision real

 	
 [image: Start of change]CGEEV

 [image: End of change]
 Δ

 CGEEVX

 Δ

 	Long-precision complex

 	Long-precision real

 	
 [image: Start of change]ZGEEV

 [image: End of change]
 Δ

 ZGEEVX

 Δ

 	
 Δ LAPACK

 Syntax

 	Fortran

 	[image: Start of change]CALL SGEEV | DGEEV (jobvl, jobvr,
 n, a, lda, wr,
 wi, vl, ldvl, vr,
 ldvr, work, lwork, info)[image: End of change][image: Start of change]CALL CGEEV | ZGEEV (jobvl, jobvr,
 n, a, lda, w,
 vl, ldvl, vr, ldvr,
 work, lwork, rwork,
 info) [image: End of change]

 CALL SGEEVX | DGEEVX (balanc,
 jobvl, jobvr, sense, n,
 a, lda, wr, wi,
 vl, ldvl, vr, ldvr,
 ilo, ihi, scale, abnrm,
 rconde, rcondv, work,
 lwork, iwork, info)

 CALL CGEEVX |
 ZGEEVX (balanc, jobvl, jobvr,
 sense, n, a, lda,
 w, vl, ldvl, vr,
 ldvr, ilo, ihi, scale,
 abnrm, rconde, rcondv,
 work, lwork, rwork,
 info)

 	C and C++

 	[image: Start of change]sgeev | dgeev (jobvl, jobvr,
 n, a, lda, wr,
 wi, vl, ldvl, vr,
 ldvr, work, lwork,
 info);[image: End of change][image: Start of change]cgeev | zgeev (jobvl,
 jobvr, n, a, lda,
 w, vl, ldvl, vr,
 ldvr, work, lwork,
 rwork, info);[image: End of change]

 sgeevx | dgeevx
 (balanc, jobvl, jobvr,
 sense, n, a, lda,
 wr, wi, vl, ldvl,
 vr, ldvr, ilo, ihi,
 scale, abnrm, rconde,
 rcondv, work, lwork,
 iwork, info);

 cgeevx | zgeevx
 (balanc, jobvl, jobvr,
 sense, n, a, lda,
 w, vl, ldvl, vr,
 ldvr, ilo, ihi, scale,
 abnrm, rconde, rcondv,
 work, lwork, rwork,
 info);

 	[image: Start of change]LAPACKE[image: End of change]

 	info = LAPACKE_sgeev | LAPACKE_dgeev (matrix_layout,
 jobvl, jobvr, n, a,
 lda, wr, wi, vl,
 ldvl, vr, ldvr);
 [image: Start of change]info =
 LAPACKE_cgeev | LAPACKE_zgeev (matrix_layout, jobvl,
 jobvr, n, a, lda,
 w, vl, ldvl, vr,
 ldvr);[image: End of change]

 info = LAPACKE_sgeevx | LAPACKE_dgeevx
 (matrix_layout, balanc, jobvl,
 jobvr, sense, n, a,
 lda, wr, wi, vl,
 ldvl, vr, ldvr, ilo,
 ihi, scale, abnrm,
 rconde, rcondv);

 info = LAPACKE_cgeevx | LAPACKE_zgeevx
 (matrix_layout, balanc, jobvl,
 jobvr, sense, n, a,
 lda, w, vl, ldvl,
 vr, ldvr, ilo, ihi,
 scale, abnrm, rconde,
 rcondv);

 	On Entry

 	

 	[bookmark: am5gr_hsgeevx__matrixlay]
 [image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	balanc

 	indicates whether or not to scale A diagonally and whether or not to permute its
 rows and columns to improve the conditioning of its eigenvalues, where balanc can
 have any of the following values:

 	N

 	Neither diagonally scale nor permute A.

 	P

 	Permute A, but do not diagonally scale it.

 	S

 	Diagonally scale A, but do not permute it.

 	B

 	Both diagonally scale and permute A.

 When diagonal scaling is specified, the subroutine replaces A with
 DAD-1 where D is a diagonal
 matrix chosen to make the rows and columns of A more equal in norm and the condition
 numbers of its eigenvalues and eigenvectors smaller.

 When permuting is specified, the subroutine makes A more nearly upper
 triangular.

 The computed reciprocal condition numbers correspond to the balanced matrix. In exact arithmetic,
 permuting rows and columns does not change the condition numbers, but diagonal scaling does change
 the condition numbers.

 Specified as: a single character. It must be 'N', 'P', 'S', or 'B'.

 	jobvl

 	indicates whether or not to compute the left eigenvectors of A,
 where jobvl can have either of the following values:

 	N

 	Do not compute the left eigenvectors of A.

 	V

 	Compute the left eigenvectors of A.

 Note: If sense = 'E' or 'B', jobvl must
 = 'V'.

 Specified as: a single character. It must be 'N'
 or 'V'.

 	jobvr

 	indicates whether or not to compute the right eigenvectors of A,
 where jobvr can have either of the following values:

 	N

 	Do not compute the right eigenvectors of A.

 	V

 	Compute the right eigenvectors of A.

 Note: If sense = 'E' or 'B', jobvr must
 = 'V'.

 Specified as: a single character. It must be 'N'
 or 'V'.

 	sense

 	indicates which reciprocal numbers to compute (if any), where sense can
 have any of the following values:

 	N

 	Do not compute reciprocal condition numbers.

 	E

 	Compute reciprocal condition numbers for eigenvalues only.

 	V

 	Compute reciprocal condition numbers for right eigenvectors only.

 	B

 	Compute reciprocal condition numbers for eigenvalues and right
 eigenvectors.
 Note: If sense = 'E' or 'B', both jobvl and jobvr must
 equal 'V' (so that both left and right eigenvectors are also computed).

 Specified as: a single character. It must be
 'N', 'E', 'V', or 'B'.

 	n

 	is the order of the general matrix A.
 Specified
 as: an integer; n ≥ 0.

 	a

 	is the general matrix A of order n.
 Specified
 as: an lda by (at least) n array,
 containing numbers of the data type indicated in Table 190.

 	lda

 	is the leading dimension of the array specified for a.
 [image: Start of change]Specified as: an integer, where lda
 > 0 and
 lda
 ≥ n[image: End of change]

 	wr

 	See On Return.

 	wi

 	See On Return.

 	w

 	See On Return.

 	ldvl

 	is the leading dimension of the array specified for vl.

 Specified as: an integer; ldvl > 0;
 if jobvl = 'V', ldvl ≥ n.

 	ldvr

 	is the leading dimension of the array specified for vr.

 Specified as: an integer; ldvr > 0;
 if jobvr = 'V', ldvr ≥ n.

 	 work

 	is the storage work area used by this subroutine. Its size is
 specified by lwork.
 Specified as: an area of
 storage, containing numbers of the data type indicated in Table 190.

 	 lwork

 	is the number of elements in array WORK.
 Specified
 as an integer, where:

 	If lwork = 0, the subroutine dynamically allocates
 the workspace needed for use during this computation. The dynamically
 allocated workspace will be freed prior to returning control to the
 calling program.

 	If lwork = -1, a workspace query is assumed.
 The subroutine only calculates the optimal size of the WORK array
 and returns this value as the first entry of the WORK array.

 Otherwise:

 	[image: Start of change]For SGEEV and DGEEV:

 	If jobvl = 'N' or jobvr = 'N', lwork ≥ max(1, 3n).

 	If jobvl = 'V' or jobvr = 'V', lwork ≥ max(1, 4n).

 [image: End of change]

 	For CGEEV and ZGEEV, lwork ≥ max(1, 2n).

 	For SGEEVX and DGEEVX:

 	If sense = 'N' or 'E':

 	If jobvl = 'N' and jobvr =
 'N', lwork ≥ max(1, 2n).

 	[image: Start of change]If jobvl = 'V' or jobvr = 'V',
 lwork ≥ max(1,
 3n).[image: End of change]

 	If sense = 'V' or 'B', lwork ≥ max(1, n(n
 + 6)).

 	For CGEEVX and ZGEEVX:

 	If sense = 'N' or 'E', lwork ≥ max(1, 2n).

 	[image: Start of change]If sense = 'V' or 'B', lwork ≥ max(1, n2 +
 6n2).[image: End of change]

 Note: These formulas represent the minimum workspace required.
 For best performance, specify either lwork = -1
 (to obtain the optimal size to use) or lwork =
 0 (to direct the subroutine to dynamically allocate the workspace).

 	 rwork

 	is a storage work area of size 2n.
 Specified
 as: an area of storage containing numbers of the data type indicated
 in Table 190.

 	iwork

 	is a storage work area of size [image: Start of change]max(1, 2n-2)[image: End of change].
 If
 sense = 'N' or 'E', iwork is not referenced by the
 subroutine.

 Specified as: an integer array.

 	On Return

 	

 	a

 	is the updated general matrix A of order n.
 On output, A is overwritten; that is, the original
 input is not preserved. If jobvl = 'V'
 or jobvr = 'V', A contains
 the Schur form of the balanced matrix.
 Returned as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 190.

 	wr

 	contains the real part of the computed eigenvalues.
 Returned
 as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 190.

 	wi

 	contains the imaginary part of the computed eigenvalues.
 Returned
 as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 190.

 	w

 	contains the computed eigenvalues.
 Returned as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 190.

 	vl

 	contains the left eigenvectors.

 	If jobvl = 'V', the left eigenvectors are stored
 one after another in the columns of vl, in the
 same order as their eigenvalues.

 	For [image: Start of change]SGEEV, DGEEV,[image: End of change] SGEEVX and DGEEVX:

 	If the jth eigenvalue is real, then the jth column of
 vl contains its eigenvector.

 	If the jth and (j+1)st eigenvalues form a complex
 conjugate pair, then the jth and (j+1)st columns of
 vl contain the real and imaginary parts of the eigenvector corresponding to the
 jth eigenvalue. The conjugate of this eigenvector is the eigenvector for the
 (j+1)st eigenvalue.

 	If jobvl = 'N', vl is not
 referenced.

 Returned as: an array of size (ldvl, n)
 containing numbers of the data type indicated in Table 190.

 	vr

 	contains the right eigenvectors.

 	If jobvr = 'V', the left eigenvectors are stored
 one after another in the columns of vr, in the
 same order as their eigenvalues.

 	For [image: Start of change]SGEEV, DGEEV,[image: End of change] SGEEVX and DGEEVX:

 	If the jth eigenvalue is real, then the jth column of
 vr contains its eigenvector.

 	If the jth and (j+1)st eigenvalues form a complex
 conjugate pair, then the jth and (j+1)st columns of
 vr contain the real and imaginary parts of the eigenvector corresponding to the
 jth eigenvalue. The conjugate of this eigenvector is the eigenvector for the
 (j+1)st eigenvalue.

 	If jobvr = 'N', vr is not
 referenced.

 Returned as: an array of size (ldvr, n)
 containing numbers of the data type indicated in Table 190.

 	ilo

 	has the following meaning:
 If balanc = 'N', ilo = 1.

 Otherwise,
 the value of ilo is determined when A is
 balanced.

 The balanced aij =
 0 if i > j and j = 1, …, (ilo-1)
 or i = (ihi+1), …, n.

 Returned
 as: an integer; 1 ≤ ilo ≤ n.

 	ihi

 	has the following meaning:
 If balanc = 'N', ihi = n.

 Otherwise, the value of ihi is determined when A is
 balanced.

 The balanced aij = 0 if i > j and
 j = 1, …, (ilo-1) or
 i = (ihi+1), …,
 n.

 Returned as: an integer; 1 ≤ ihi ≤ n.

 	scale

 	contains the details of the permutations and scaling factors applied
 when balancing A.
 If pj is
 the index of the row and column interchanged with row and column j,
 and dj is the scaling
 factor applied to row and column j, then:

 	scalej = pj,
 for j = 1, …, (ilo-1)

 	scalej = dj,
 for j = ilo, …, ihi

 	scalej = pj,
 for j = (ihi+1), …, n

 Returned as: a one-dimensional array of (at least) length n containing
 numbers of the data type indicated in Table 190.

 	abnrm

 	is the one-norm of the balanced matrix (the maximum of the sum
 of absolute values of elements of any column).
 Returned as: a number
 of the data type indicated in Table 190; abnrm ≥ 0.

 	rconde

 	contains the computed reciprocal condition numbers of the eigenvalues,
 where rcondej is
 the reciprocal condition number of the jth eigenvalue.
 Returned
 as: an array of dimension n containing numbers
 of the data type indicated in Table 190.

 	rcondv

 	contains the computed reciprocal condition numbers of the eigenvectors,
 where rcondvj is
 the reciprocal condition number of the jth right
 eigenvector.
 Returned as: an array of dimension n containing
 numbers of the data type indicated in Table 190.

 	 work

 	is the work area used by this subroutine if lwork ≠ 0, where:
 If lwork ≠ 0 and lwork ≠ -1, its size is (at
 least) of length lwork.

 If lwork = -1,
 its size is (at least) of length 1.

 Returned as: an area
 of storage, where:

 If lwork ≥ 1 or lwork = -1,
 then work1 is set to the optimal lwork value
 and contains numbers of the data type indicated in Table 190.

 Except for work1,
 the contents of work are overwritten on return.

 	 rwork

 	is a storage work area of size 2n.
 Returned
 as: an area of storage containing numbers of the data type indicated
 in Table 190.

 	iwork

 	is a storage work area of size 2n-2.
 If sense = 'N'
 or 'E', iwork is not referenced by the subroutine.

 Returned
 as: an integer array.

 	info

 	has the following meaning:
 If info = 0, the subroutine completed successfully.

 If
 info > 0:[image: Start of change]
 	For SGEEV, DGEEV, CGEEV, ZGEEV, LAPACKE_sgeev, LAPACKE_dgeev, LAPACKE_cgeev, and LAPACKE_zgeev,
 if info > 0, the QR algorithm failed to compute all the eigenvalues, and no eigenvectors were computed;
 elements (i+1):n of the eigenvalue arrays contain eigenvalues
 that have converged.

 	For SGEEVX, DGEEVX, CGEEVX, ZGEEVX, LAPACKE_sgeevx, LAPACKE_dgeevx, LAPACKE_cgeevx, and
 LAPACKE_zgeevx, if info > 0, the QR algorithm failed to compute all the eigenvalues, and no eigenvectors or
 reciprocal condition numbers were computed; elements 1:(ilo-1) and
 (i+1):n of the eigenvalue arrays contain eigenvalues that have
 converged.

[image: End of change]

 [image: Start of change] Returned as:[image: Start of change]
 	For SGEEV, DGEEV, CGEEV, ZGEEV, SGEEVX, DGEEVX, CGEEVX, and ZGEEVX returned as: an integer; info
 ≥ 0.

 	For LAPACKE_sgeev, LAPACKE_dgeev, LAPACKE_cgeev, LAPACKE_zgeev, LAPACKE_sgeevx, LAPACKE_dgeevx,
 LAPACKE_cgeevx, and LAPACKE_zgeevx, returned as an integer function value; info ≥ 0.

[image: End of change]
 [image: End of change]

 Notes

 	[image: Start of change]A, wr, wi,
 vl, vr, work, rwork, and
 iwork must have no common elements; otherwise, results are unpredictable.[image: End of change]

 	When you specify jobvl = 'N', you must specify a dummy argument
 for vl.

 	When you specify jobvr = 'N', you must specify a dummy argument
 for vr.

 	When you specify sense = 'N', you must specify a dummy argument
 for rconde.

 	When you specify sense = 'N' or 'E', you must specify dummy
 arguments for rcondv and iwork.

 	In your C program, the ilo, ihi, abnrm, info arguments
 must be passed by reference.

 	These subroutines accept lowercase letters for the balanc, jobvl, jobvr,
 and sense arguments.

 	The vectors and matrices used in the computation must have no
 common elements; otherwise, results are unpredictable.

 	For best performance, specify lwork = 0.

 Function

 These subroutines compute the following for a general matrix A :

 	[image: Start of change]SGEEV, DGEEV, CGEEV, ZGEEV, SGEEVX, DGEEVX, CGEEVX, and ZGEEVX compute:

 	eigenvalues

 	optionally, the right eigenvectors, left eigenvectors, or both

 [image: End of change]

 	SGEEVX, DGEEVX, CGEEVX, and ZGEEVX also compute:

 	optionally, the reciprocal condition numbers for the eigenvalues

 	optionally, the reciprocal condition numbers for the right eigenvectors

 	[bookmark: am5gr_hsgeevx__am5gr_f11a002xa]
 Computing eigenvalues only

 	The eigenvalues (only) of general matrix A are computed
 as follows:

 	If necessary, scale the general matrix A.

 	Balance the general matrix A.

 	Reduce the balanced matrix to an upper Hessenberg matrix using
 the following types of transformations:

 	[image: Start of change]SGEEV, DGEEV, SGEEVX and DGEEVX[image: End of change]

 	Orthogonal similarity transformations

 	[image: Start of change]CGEEV, DGEEV, CGEEVX and ZGEEVX[image: End of change]

 	Unitary similarity transformations

 	[image: Start of change]Compute the eigenvalues of the upper Hessenberg matrix using the multi-shift QR
 algorithm or the implicit double-shift QR algorithm.[image: End of change]

 	[image: Start of change]If specified for SGEEVX, DGEEVX, CGEEVX, and ZGEEVX, compute reciprocal condition
 numbers.[image: End of change]

 	If necessary, undo scaling.

 	[bookmark: am5gr_hsgeevx__am5gr_f11a002xb]
 Computing eigenvalues and right eigenvectors or left eigenvectors
 or both

 	The eigenvalues and right eigenvectors or left eigenvectors, or
 both, of general matrix A are computed as follows:

 	If necessary, scale the general matrix A.

 	Balance the general matrix A.

 	Reduce the balanced matrix to an upper Hessenberg matrix using
 the following types of transformations:

 	[image: Start of change]SGEEV, DGEEV, SGEEVX and DGEEVX[image: End of change]

 	Orthogonal similarity transformations

 	[image: Start of change]CGEEV, ZGEEV, CGEEVX and ZGEEVX[image: End of change]

 	Unitary similarity transformations

 	Accumulate the transformations.

 	Compute the eigenvalues of the upper Hessenberg matrix, and the
 appropriate eigenvectors of the corresponding balanced matrix, using
 the multi-shift QR algorithm or the implicit double-shift QR algorithm.

 	[image: Start of change]If specified, compute reciprocal condition numbers.[image: End of change]

 	Undo balancing the eigenvectors; normalize the eigenvectors; and
 make the largest component real.

 	If necessary, undo scaling.

 If n = 0, no computation is performed and
 the subroutine returns after doing some parameter checking.

 For
 more information, see references [14], [15], [65], [66], and [74].

 Error conditions

 	[bookmark: am5gr_hsgeevx__am5gr_f11a004x]
 Resource Errors

 	lwork = 0, and unable to allocate work area.

 	[bookmark: am5gr_hsgeevx__am5gr_f11a005x]
 Computational Errors

 	

 	Eigenvalue (i) failed to converge.

 	[image: Start of change]For SGEEV, DGEEV, CGEEV and ZGEEV, elements
 (i+1):n of wr and wi
 contain eigenvalues that have converged. No eigenvectors have been computed.[image: End of change]

 	[image: Start of change]For SGEEVX, DGEEVX, CGEEVX, and ZGEEVX, elements 1:(ilo-1) and
 (i+1):n contain eigenvalues that have converged. No
 eigenvectors or condition numbers have been computed.[image: End of change]

 	The computational error message may occur multiple times with
 processing continuing after each error because the default for the
 number of allowable errors for error code 2153 is set to be unlimited
 in the ESSL error option table.

 	The subroutine computed the eigenvalues using multiple algorithms.

 	Performance may be degraded.

 	The computational error message may occur multiple times with
 processing continuing after each error because the default for the
 number of allowable errors for error code 2613 is set to be unlimited
 in the ESSL error option table.

 	[bookmark: am5gr_hsgeevx__am5gr_f11a006x]
 Input-Argument Errors

 	

 	balanc ≠ 'N', 'S', 'P', or
 'B'

 	jobvl ≠ 'N', or 'V'

 	jobvr ≠ 'N', or 'V'

 	sense ≠ 'N', 'E', 'V', or
 'B'

 	(sense = 'E' or sense = 'B')
 and (jobvl ≠ 'V' or jobvr ≠ 'V')

 	n < 0

 	lda ≤ 0

 	n > lda

 	ldvl ≤ 0

 	ldvr ≤ 0

 	jobvl ≠ 'V' and ldvl < n

 	jobvr ≠ 'V' and ldvr < n

 	[image: Start of change]For SGEEV and DGEEV, if lwork ≠ 0:

 	If jobvl =
 'N' and jobvr = 'N', lwork <max(1, 3n).

 	If jobvl =
 'V' or jobvr = 'V', lwork <4n.

 For CGEEV and ZGEEV, if lwork ≠ 0 and lwork< max(1,2n).

 [image: End of change]

 	For SGEEVX and DGEEVX:

 	If sense =
 'N' or 'E':

 	If jobvl =
 'N' and jobvr = 'N', lwork <max(1, 2n).

 	If jobvl =
 'V' or jobvr = 'V', lwork <3n.

 	If sense =
 'V' or 'B', lwork < n(n + 6).

 For CGEEVX and ZGEEVX:

 	If sense =
 'N' or 'E', lwork < max(1, 2n).

 	If sense =
 'V' or 'B', lwork < n2 + 2n.

 	lwork ≠ 0 and
 lwork ≠ -1 and
 lwork < the
 minimum required value.

 	[image: Start of change]The size of a work array is greater than 2147483647 when 32-bit integers are
 used.[image: End of change]

 Examples

 	Example 1

 	
 This example shows how to find the eigenvalues only of a
 long-precision real general matrix A of order 4, where:

 	LDVL and LDVR are set to 1 to
 avoid an error condition.

 	DUMMY1 is a placeholder for VL. VL is
 not used.

 	DUMMY2 is a placeholder for VR. VR is
 not used.

 	DUMMY3 is a placeholder for RCONDE. RCONDE is
 not used.

 	DUMMY4 is a placeholder for RCONDV. RCONDV is
 not used.

 	IDUMMY is a placeholder for IWORK. IWORK is
 not used.

 Note:

 	This matrix is used in Example 5.5 in referenced text [74].

 	Because lwork = 0, the subroutine dynamically allocates WORK.

 	On output, A has been overwritten.

 Call Statement and Input:
 [image: Start of change] JOBVL JOBVR N A LDA WR WI VL LDVL VR LDVR WORK LWORK INFO
 | | | | | | | | | | | | | |
CALL DGEEV('N', 'N', 4, A, 4, WR, WI, DUMMY1, 1, DUMMY2, 1, WORK, 0, INFO)

[image: End of change]

 [image: Start of change]–or–[image: End of change]

 BALANC JOBVL JOBVR SENSE N A LDA WR WI VL LDVL VR LDVR ILO IHI
 | | | | | | | | | | | | | | |
CALL DGEEVX('N', 'N', 'N', 'N', 4, A, 4, WR, WI, DUMMY1, 1, DUMMY2, 1, ILO, IHI,

 SCALE ABNRM RCONDE RCONDV WORK LWORK IWORK INFO
 | | | | | | | |
 SCALE, ABNRM, DUMMY3, DUMMY4, WORK, 0, IDUMMY, INFO)

 ┌ ┐
 | -2.0 2.0 2.0 2.0 |
A = | -3.0 3.0 2.0 2.0 |
 | -2.0 0.0 4.0 2.0 |
 | -1.0 0.0 0.0 5.0 |
 └ ┘

 Output: ┌ ┐
 | 1.000000 |
WR = | 2.000000 |
 | 3.000000 |
 | 4.000000 |
 └ ┘

 ┌ ┐
 | 0.000000 |
WI = | 0.000000 |
 | 0.000000 |
 | 0.000000 |
 └ ┘

 ┌ ┐
 | 1.000000 |
SCALE = | 1.000000 |
 | 1.000000 |
 | 1.000000 |
 └ ┘

 ILO = 1
IHI = 4
ABNRM = 11.0
INFO = 0

 	Example 2

 	
 For a long precision real general matrix A of order 4, this example shows the
 following, depending on the subroutine you are using:

 	[image: Start of change]For DGEEV, this example shows how to find the eigenvalues and left and right
 eigenvectors of a general matrix A.[image: End of change]

 	for DGEEVX, this example shows the eigenvalues, left and right eigenvectors, and reciprocal
 condition numbers for the eigenvalues and right eigenvectors of a balanced general matrix
 A of order 4.

 Note:

 	This matrix is used in Example 5.5 in referenced text [74].

 	IWORK is an integer work array of size 6.

 	On output, A has been overwritten by the Schur form of the balanced
 matrix.

 Call Statement and Input:

 [image: Start of change] JOBVL JOBVR N A LDA WR WI VL LDVL VR LDVR WORK LWORK INFO
 | | | | | | | | | | | | | |
CALL DGEEV('V', 'V', 4, A, 4, WR, WI, VL, 1, VR, 1, WORK, 0, INFO)

[image: End of change]

 [image: Start of change]–or–[image: End of change]

 BALANC JOBVL JOBVR SENSE N A LDA WR WI VL LDVL VR LDVR ILO IHI
 | | | | | | | | | | | | | | |
CALL DGEEVX('B', 'V', 'V', 'B', 4, A, 4, WR, WI, VL, 4, VR, 4, ILO, IHI,

 SCALE ABNRM RCONDE RCONDV WORK LWORK IWORK INFO
 | | | | | | | |
 SCALE, ABNRM, RCONDE, RCONDV, WORK, 0, IWORK, INFO)

 ┌ ┐
 | -2.0 2.0 2.0 2.0 |
A = | -3.0 3.0 2.0 2.0 |
 | -2.0 0.0 4.0 2.0 |
 | -1.0 0.0 0.0 5.0 |
 └ ┘

 [image: Start of change]Output:

 	For
 DGEEV: ┌ ┐
 | 1.000000 -6.949732 2.539925 -0.707107 |
A = | 0.000000 2.000000 1.060660 -0.717805 |
 | 0.000000 0.000000 3.000000 -0.780869 |
 | 0.000000 0.000000 0.000000 4.000000 |
 └ ┘

 	For
 DGEEVX: ┌ ┐
 | 1.000000 -6.949732 -1.320184 0.103510 |
A = | 0.000000 2.000000 -2.415229 1.002262 |
 | 0.000000 0.000000 3.000000 -0.780869 |
 | 0.000000 0.000000 0.000000 4.000000 |
 └ ┘

 [image: End of change]

 ┌ ┐
 | 1.000000 |
WR = | 2.000000 |
 | 3.000000 |
 | 4.000000 |
 └ ┘

 ┌ ┐
 | 0.000000 |
WI = | 0.000000 |
 | 0.000000 |
 | 0.000000 |
 └ ┘

 ┌ ┐
 | -0.707107 -0.408248 0.000000 0.000000 |
VL = | 0.707107 0.816497 0.408248 0.000000 |
 | 0.000000 -0.408248 -0.816497 -0.447214 |
 | 0.000000 0.000000 0.408248 0.894427 |
 └ ┘

 ┌ ┐
 | -0.730297 0.625543 -0.554700 0.500000 |
VR = | -0.547723 0.625543 -0.554700 0.500000 |
 | -0.365148 0.417029 -0.554700 0.500000 |
 | -0.182574 0.208514 -0.277350 0.500000 |
 └ ┘

 ┌ ┐
 | 0.087287 |
RCONDE = | 0.053722 |
 | 0.096561 |
 | 0.282843 |
 └ ┘

 ┌ ┐
 | 0.448959 |
RCONDV = | 0.244976 |
 | 0.289148 |
 | 0.508520 |
 └ ┘

 ┌ ┐
 | 1.000000 |
SCALE = | 2.000000 |
 | 1.000000 |
 | 0.500000 |
 └ ┘

 ILO = 1
IHI = 4
ABNRM = 7.5
INFO = 0

 	Example 3

 	
 This example shows how to find the eigenvalues, left and right eigenvectors, and reciprocal
 condition numbers of a balanced long-precision real general matrix A of order 3.
 Note:

 	This matrix is used in Example 5.4 in referenced text [74].

 	IWORK is an integer work array of size 4.

 	On output, A has been overwritten by the Schur form of the balanced
 matrix.

 Call Statement and Input:
 BALANC JOBVL JOBVR SENSE N A LDA WR WI VL LDVL VR LDVR ILO IHI
 | | | | | | | | | | | | | | |
CALL DGEEVX('B', 'V', 'V', 'B', 3, A, 3, WR, WI, VL, 3, VR, 3, ILO, IHI,

 SCALE ABNRM RCONDE RCONDV WORK LWORK IWORK INFO
 | | | | | | | |
 SCALE, ABNRM, RCONDE, RCONDV, WORK, 0, IWORK, INFO)

 ┌ ┐
 | 8.0 -1.0 -5.0 |
A = | -4.0 4.0 -2.0 |
 | 18.0 -5.0 -7.0 |
 └ ┘

 Output: ┌ ┐
 | 2.000000 -6.928203 -13.435029 |
A = | 2.309401 2.000000 -10.206207 |
 | 0.000000 0.000000 1.000000 |
 └ ┘

 ┌ ┐
 | 2.000000 |
WR = | 2.000000 |
 | 1.000000 |
 └ ┘

 ┌ ┐
 | 4.000000 |
WI = | -4.000000 |
 | 0.000000 |
 └ ┘

 ┌ ┐
 | -0.877058 0.000000 -0.816497 |
VL = | 0.263117 -0.087706 0.408248 |
 | 0.350823 0.175412 0.408248 |
 └ ┘

 ┌ ┐
 | 0.316228 -0.316228 0.408248 |
VR = | 0.632456 0.000000 0.816497 |
 | 0.000000 -0.632456 0.408248 |
 └ ┘

 ┌ ┐
 | 0.301511 |
RCONDE = | 0.301511 |
 | 0.192450 |
 └ ┘

 ┌ ┐
 | 1.671856 |
RCONDV = | 1.671856 |
 | 1.174058 |
 └ ┘

 ┌ ┐
 | 0.500000 |
SCALE = | 1.000000 |
 | 1.000000 |
 └ ┘

 ILO = 1
IHI = 3
ABNRM = 19.0
INFO = 0

 	Example 4

 	
 This example shows how to find the eigenvalues and right eigenvectors of a long-precision complex
 general matrix A of order 4, where:

 	LDVL is set to 1 to avoid an error condition.

 	DUMMY1 is a placeholder for VL. VL is not
 used.

 	DUMMY2 is a placeholder for RCONDE. RCONDE is
 not used.

 	DUMMY3 is a placeholder for RCONDV. RCONDV is
 not used.

 Note:

 	This matrix is used in Example 6.5 in referenced text [74].

 	On output, A has been overwritten by the Schur form of the balanced
 matrix.

 	[image: Start of change]RWORK is a real array of length 8.[image: End of change]

 Call Statement and Input:
 [image: Start of change] JOBVL JOBVR N A LDA W VL LDVL VR LDVR WORK LWORK RWORK INFO
 | | | | | | | | | | | | | |
CALL ZGEEV('N', 'V', 4, A, 4, W, DUMMY1, 1, VR, 4, WORK, 0, RWORK, INFO)

[image: End of change]

 [image: Start of change]–or–[image: End of change]

 BALANC JOBVL JOBVR SENSE N A LDA W VL LDVL VR LDVR ILO IHI
 | | | | | | | | | | | | | |
CALL ZGEEVX('N', 'N', 'V', 'N', 4, A, 4, W, DUMMY1, 1, VR, 4, ILO, IHI,

 SCALE ABNRM RCONDE RCONDV WORK LWORK RWORK INFO
 | | | | | | | |
 SCALE, ABNRM, DUMMY2, DUMMY3, WORK, 0, RWORK, INFO)

 ┌ ┐
 | (5.0, 9.0) (5.0, 5.0) (-6.0, -6.0) (-7.0, -7.0) |
A = | (3.0, 3.0) (6.0, 10.0) (-5.0, -5.0) (-6.0, -6.0) |
 | (2.0, 2.0) (3.0, 3.0) (-1.0, 3.0) (-5.0, -5.0) |
 | (1.0, 1.0) (2.0, 2.0) (-3.0, -3.0) (0.0, 4.0) |
 └ ┘

 Output:

 	[image: Start of change]For
 ZGEEV: ┌ ┐
 | (2.0000, 6.0000) (-4.8694, -0.6574) (-6.7837, -7.6341) (17.1461, -0.1118) |
A = | (0.0000, 0.0000) (4.0000, 8.0000) (0.1351, 1.7912) (-2.7907, -2.0982) |
 | (0.0000, 0.0000) (0.0000, 0.0000) (3.0000, 7.0000) (-3.0172, 0.1977) |
 | (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (1.0000, 5.0000) |
 └ ┘

 [image: End of change]

 	For
 ZGEEVX: ┌ ┐
 | (2.0000, 6.0000) (-1.1081, 4.9368) (-3.3663, 3.6542) (-19.9524, 4.0936) |
A = | (0.0000, 0.0000) (4.0000, 8.0000) (0.1597, 0.5962) (-2.1519, 5.6785) |
 | (0.0000, 0.0000) (0.0000, 0.0000) (3.0000, 7.0000) (0.8130, 4.9939) |
 | (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (1.0000, 5.0000) |
 └ ┘

 ┌ ┐
 | (2.0000, 6.0000) |
W = | (4.0000, 8.0000) |
 | (3.0000, 7.0000) |
 | (1.0000, 5.0000) |
 └ ┘

 ┌ ┐
 | (0.3780, 0.0000) (0.5774, 0.0000) (0.5774, 0.0000) (0.7559, 0.0000) |
VR = | (0.7559, 0.0000) (0.5774, 0.0000) (0.5774, 0.0000) (0.3780, 0.0000) |
 | (0.3780, 0.0000) (0.5774, 0.0000) (0.0000, 0.0000) (0.3780, 0.0000) |
 | (0.3780, 0.0000) (0.0000, 0.0000) (0.5774, 0.0000) (0.3780, 0.0000) |
 └ ┘

 ┌ ┐
 | 1.000000 |
SCALE = | 1.000000 |
 | 1.000000 |
 | 1.000000 |
 └ ┘

 ILO = 1
IHI = 4
ABNRM = 29.5
INFO = 0

 	Example 5

 	For a long precision complex general matrix A of order 4, this example shows the
 following, depending on the subroutine you are using:

 	[image: Start of change]For ZGEEV, this example shows how to find the eigenvalues and left and right
 eigenvectors of a complex general matrix A.[image: End of change]

 	for ZGEEVX, this example shows the eigenvalues, left and right eigenvectors, and reciprocal
 condition numbers for the eigenvalues and right eigenvectors of a balanced complex general matrix
 A of order 4.

 Note:

 	This matrix is used in Example 6.5 in referenced text [74].

 	RWORK is a real array of length 8.

 	On output, A has been overwritten by the Schur form of the balanced
 matrix.

 Call Statement and Input:
 [image: Start of change] JOBVL JOBVR N A LDA W VL LDVL VR LDVR WORK LWORK RWORK INFO
 | | | | | | | | | | | | | |
CALL ZGEEV('V', 'V', 4, A, 4, W, DUMMY1, 1, VR, 4, WORK, 0, RWORK, INFO)

[image: End of change]

 [image: Start of change]–or–[image: End of change]

 BALANC JOBVL JOBVR SENSE N A LDA W VL LDVL VR LDVR ILO IHI
 | | | | | | | | | | | | | |
CALL ZGEEVX('P', 'V', 'V', 'B', 4, A, 4, W, VL, 4, VR, 4, ILO, IHI,

 SCALE ABNRM RCONDE RCONDV WORK LWORK RWORK INFO
 | | | | | | | |
 SCALE, ABNRM, RCONDE, RCONDV, WORK, 0, RWORK, INFO)

 ┌ ┐
 | (5.0, 9.0) (5.0, 5.0) (-6.0, -6.0) (-7.0, -7.0) |
A = | (3.0, 3.0) (6.0, 10.0) (-5.0, -5.0) (-6.0, -6.0) |
 | (2.0, 2.0) (3.0, 3.0) (-1.0, 3.0) (-5.0, -5.0) |
 | (1.0, 1.0) (2.0, 2.0) (-3.0, -3.0) (0.0, 4.0) |
 └ ┘

 Output:

 	For
 ZGEEV: ┌ ┐
 | (2.0000, 6.0000) (-4.8694, -0.6574) (-6.7837, -7.6341) (17.1461, -0.1118) |
A = | (0.0000, 0.0000) (4.0000, 8.0000) (0.1351, 1.7912) (-2.7907, -2.0982) |
 | (0.0000, 0.0000) (0.0000, 0.0000) (3.0000, 7.0000) (-3.0172, 0.1977) |
 | (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (1.0000, 5.0000) |
 └ ┘

 	For
 ZGEEVX: ┌ ┐
 | (2.0000, 6.0000) (-1.1081, 4.9368) (-3.3663, 3.6542) (-19.9524, 4.0936) |
A = | (0.0000, 0.0000) (4.0000, 8.0000) (0.1597, 0.5962) (-2.1519, 5.6785) |
 | (0.0000, 0.0000) (0.0000, 0.0000) (3.0000, 7.0000) (0.8130, 4.9939) |
 | (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (1.0000, 5.0000) |
 └ ┘

 ┌ ┐
 | (2.0000, 6.0000) |
W = | (4.0000, 8.0000) |
 | (3.0000, 7.0000) |
 | (1.0000, 5.0000) |
 └ ┘

 ┌ ┐
 | (0.3780, 0.0000) (0.5774, 0.0000) (0.5774, 0.0000) (0.7559, 0.0000) |
VR = | (0.7559, 0.0000) (0.5774, 0.0000) (0.5774, 0.0000) (0.3780, 0.0000) |
 | (0.3780, 0.0000) (0.5774, 0.0000) (0.0000, 0.0000) (0.3780, 0.0000) |
 | (0.3780, 0.0000) (0.0000, 0.0000) (0.5774, 0.0000) (0.3780, 0.0000) |
 └ ┘

 ┌ ┐
 | (-0.5774, 0.0000) (-0.3780, 0.0000) (-0.3780, 0.0000) (0.0000, 0.0000) |
VL = | (0.0000, 0.0000) (-0.3780, 0.0000) (-0.3780, 0.0000) (-0.5774, 0.0000) |
 | (0.5774, 0.0000) (0.3780, 0.0000) (0.7559, 0.0000) (0.5774, 0.0000) |
 | (0.5774, 0.0000) (0.7559, 0.0000) (0.3780, 0.0000) (0.5774, 0.0000) |
 └ ┘

 ┌ ┐
 | 0.2182 |
RCONDE = | 0.2182 |
 | 0.2182 |
 | 0.2182 |
 └ ┘

 ┌ ┐
 | 0.3089 |
RCONDV = | 0.6450 |
 | 0.1770 |
 | 0.5504 |
 └ ┘

 ┌ ┐
 | 1.000000 |
SCALE = | 1.000000 |
 | 1.000000 |
 | 1.000000 |
 └ ┘

 ILO = 1
IHI = 4
ABNRM = 29.5
INFO = 0

 	Example 6

 	
 This example shows how to find the eigenvalues, left and
 right eigenvectors, and reciprocal condition numbers for the eigenvalues
 and right eigenvectors of a balanced long-precision complex general
 matrix A of order 4.
 Note:

 	This matrix is used in Example 6.5 in referenced text [74].

 	RWORK is a real array of length 8.

 	On output, A has been overwritten by the Schur
 form of the balanced matrix.

 Call Statement and Input:
 BALANC JOBVL JOBVR SENSE N A LDA W VL LDVL VR LDVR ILO IHI
 | | | | | | | | | | | | | |
CALL ZGEEVX('B', 'V', 'V', 'B', 4, A, LDA, W, VL, 4, VR, 4, ILO, IHI,

 SCALE ABNRM RCONDE RCONDV WORK LWORK RWORK INFO
 | | | | | | | |
 SCALE, ABNRM, RCONDE, RCONDV, WORK, 0, RWORK, INFO)

 ┌ ┐
 | (5.0, 9.0) (5.0, 5.0) (-6.0, -6.0) (-7.0, -7.0) |
A = | (3.0, 3.0) (6.0, 10.0) (-5.0, -5.0) (-6.0, -6.0) |
 | (2.0, 2.0) (3.0, 3.0) (-1.0, 3.0) (-5.0, -5.0) |
 | (1.0, 1.0) (2.0, 2.0) (-3.0, -3.0) (0.0, 4.0) |
 └ ┘

 Output: ┌ ┐
 | (2.0000, 6.0000) (0.2165, -4.9088) (6.7861, -7.6319) (-16.4572, 4.8125) |
A = | (0.0000, 0.0000) (4.0000, 8.0000) (0.1841, 1.7868) (1.5401, -3.1335) |
 | (0.0000, 0.0000) (0.0000, 0.0000) (3.0000, 7.0000) (-0.6773, -2.9469) |
 | (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (1.0000, 5.0000) |
 └ ┘

 ┌ ┐
 | (2.0000, 6.0000) |
W = | (4.0000, 8.0000) |
 | (3.0000, 7.0000) |
 | (1.0000, 5.0000) |
 └ ┘

 ┌ ┐
 | (0.3780, 0.0000) (0.5774, 0.0000) (0.5774, 0.0000) (0.7559, 0.0000) |
VR = | (0.7559, 0.0000) (0.5774, 0.0000) (0.5774, 0.0000) (0.3780, 0.0000) |
 | (0.3780, 0.0000) (0.5774, 0.0000) (0.0000, 0.0000) (0.3780, 0.0000) |
 | (0.3780, 0.0000) (0.0000, 0.0000) (0.5774, 0.0000) (0.3780, 0.0000) |
 └ ┘

 ┌ ┐
 | (-0.5774, 0.0000) (-0.3780, 0.0000) (-0.3780, 0.0000) (0.0000, 0.0000) |
VL = | (0.0000, 0.0000) (-0.3780, 0.0000) (-0.3780, 0.0000) (-0.5774, 0.0000) |
 | (0.5774, 0.0000) (0.3780, 0.0000) (0.7559, 0.0000) (0.5774, 0.0000) |
 | (0.5774, 0.0000) (0.7559, 0.0000) (0.3780, 0.0000) (0.5774, 0.0000) |
 └ ┘

 ┌ ┐
 | 0.1633 |
RCONDE = | 0.2108 |
 | 0.2108 |
 | 0.2887 |
 └ ┘

 ┌ ┐
 | 0.4507 |
RCONDV = | 0.4293 |
 | 0.1317 |
 | 0.5114 |
 └ ┘

 ┌ ┐
 | 2.000000 |
SCALE = | 1.000000 |
 | 1.000000 |
 | 1.000000 |
 └ ┘

 ILO = 1
IHI = 4
ABNRM = 27.3
INFO = 0

 Parent topic: Eigensystem Analysis

 SSYEV, DSYEV, CHEEV, ZHEEV, SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX, DSYEVX, CHEEVX, and
 ZHEEVX (Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric or Complex Hermitian
 Matrix)

 Purpose

 These subroutines compute eigenvalues and, optionally, the eigenvectors of a real symmetric
 matrix or a complex Hermitian matrix:

 	[image: Start of change]SSYEV and DSYEV compute all eigenvalues and, optionally, the eigenvectors of real
 symmetric matrix A, stored in lower or upper storage mode.[image: End of change]

 	[image: Start of change]CHEEV and ZHEEV compute all eigenvalues and, optionally, the eigenvectors of complex
 Hermitian matrix A, stored in lower or upper storage mode.[image: End of change]

 	SSPEVX and DSPEVX compute selected eigenvalues and, optionally, the eigenvectors of real
 symmetric matrix A, stored in lower- or upper-packed storage mode.

 	CHPEVX and ZHPEVX compute selected eigenvalues and, optionally, the eigenvectors of complex
 Hermitian matrix A, stored in lower- or upper-packed storage mode.

 	[image: Start of change]SSYEVX and DSYEVX compute selected eigenvalues and, optionally, the eigenvectors of
 real symmetric matrix A, stored in lower or upper storage mode.[image: End of change]

 	CHEEVX and ZHEEVX compute [image: Start of change]selected[image: End of change] eigenvalues and, optionally, the
 eigenvectors of complex Hermitian matrix A, stored in lower or upper storage
 mode.

 [image: Start of change]For SSYEV, DSYEV, CHEEV, and ZHEEV, eigenvalues are returned in vector
 w, and eigenvectors are returned in matrix A.[image: End of change]

 For SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX, DSYEVX, CHEEVX, and ZHEEVX eigenvalues are returned
 in vector w, and eigenvectors are returned in matrix Z.

 [image: Start of change]The formula is shown
 below:[image: End of change]
 Az

 =

 w

 z

 where A = AT or A = AH.

 Table 191. Data Types.

 	vl, vu, abstol, w, rwork

 	A, [image: Start of change]Z[image: End of change], work

 	Subroutine

 	Short-precision real

 	Short-precision real

 	
 [image: Start of change]SSYEV

 Δ

 [image: End of change]

 SSPEVX

 Δ

 SSYEVX

 Δ

 	Long-precision real

 	Long-precision real

 	
 [image: Start of change]DSYEV

 Δ

 [image: End of change]

 DSPEVX

 Δ

 DSYEVX

 Δ

 	Short-precision real

 	Short-precision complex

 	
 [image: Start of change]CHEEV

 Δ

 [image: End of change]

 CHPEVX

 Δ

 CHEEVX

 Δ

 	Long-precision real

 	Long-precision complex

 	
 [image: Start of change]ZHEEV

 Δ

 [image: End of change]

 ZHPEVX

 Δ

 ZHEEVX

 Δ

 	
 Δ LAPACK

 Syntax

 	Fortran

 	[image: Start of change]CALL SSYEV | DSYEV (jobz, uplo,
 n, a, lda, w,
 work, lwork, info) [image: End of change][image: Start of change]CALL
 CHEEV | ZHEEV (jobz, uplo, n,
 a, lda, w, work,
 lwork, rwork, info) [image: End of change]

 CALL SSPEVX |
 DSPEVX (jobz, range, uplo,
 n, ap, vl, vu,
 il, iu, abstol, m,
 w, z, ldz, work,
 iwork, ifail, info)

 CALL CHPEVX |
 ZHPEVX (jobz, range, uplo,
 n, ap, vl, vu,
 il, iu, abstol, m,
 w, z, ldz, work,
 rwork, iwork, ifail,
 info)

 CALL SSYEVX | DSYEVX (jobz,
 range, uplo, n, a,
 lda, vl, vu, il,
 iu, abstol, m, w,
 z, ldz, work, lwork,
 iwork, ifail, info)

 CALL CHEEVX |
 ZHEEVX (jobz, range, uplo,
 n, a, lda, vl,
 vu, il, iu, abstol,
 m, w, z, ldz,
 work, lwork, rwork,
 iwork, ifail, info)

 	C and C++

 	[image: Start of change]ssyev | dsyev (jobz, uplo,
 n, a, lda, w,
 work, lwork, info);[image: End of change][image: Start of change]cheev | zheev (jobz, uplo, n,
 a, lda, w, work,
 lwork, rwork, info);[image: End of change]

 sspevx | dspevx
 (jobz, range, uplo, n,
 ap, vl, vu, il,
 iu, abstol, m, w,
 z, ldz, work, iwork,
 ifail, info);

 chpevx | zhpevx (jobz,
 range, uplo, n, ap,
 vl, vu, il, iu,
 abstol, m, w, z,
 ldz, work, rwork, iwork,
 ifail, info);

 ssyevx | dsyevx (jobz,
 range, uplo, n, a,
 lda, vl, vu, il,
 iu, abstol, m, w,
 z, ldz, work, lwork,
 iwork, ifail, info);

 cheevx | zheevx
 (jobz, range, uplo, n,
 a, lda, vl, vu,
 il, iu, abstol, m,
 w, z, ldz, work,
 lwork, rwork, iwork,
 ifail, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_ssyev | LAPACKE_dsyev (matrix_layout,
 jobz, uplo, n, a,
 lda, w);
 [image: Start of change]info = LAPACKE_cheev | LAPACKE_zheev
 (matrix_layout, jobz, uplo,
 n, a, lda,
 w);[image: End of change]

 info = LAPACKE_sspevx | LAPACKE_dspevx
 (matrix_layout, jobz, range,
 uplo, n, ap, vl,
 vu, il, iu, abstol,
 m, w, z, ldz,
 ifail);

 info = LAPACKE_chpevx | LAPACKE_zhpevx
 (matrix_layout, jobz, range,
 uplo, n, ap, vl,
 vu, il, iu, abstol,
 m, w, z, ldz,
 ifail);

 info = LAPACKE_ssyevx | LAPACKE_dsyevx
 (matrix_layout, jobz, range,
 uplo, n, a, lda,
 vl, vu, il, iu,
 abstol, m, w, z,
 ldz, ifail);

 info = LAPACKE_cheevx | LAPACKE_zheevx
 (matrix_layout, jobz, range,
 uplo, n, a, lda,
 vl, vu, il, iu,
 abstol, m, w, z,
 ldz, ifail);

 [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 jobz

 	indicates the type of computation to be performed, where:
 If jobz = 'N',
 eigenvalues only are computed.

 If jobz = 'V',
 eigenvalues and eigenvectors are computed.

 Specified as:
 a single character; jobz = 'N' or 'V'.

 	 range

 	indicates the type of computation to be performed, where:
 If range = 'A',
 all eigenvalues are to be found.

 If range = 'V',
 all eigenvalues in the interval [vl, vu]
 are to be found.

 If range = 'I',
 the il-th through iu-th eigenvalues
 are to be found.

 Specified as: a single character; range = 'A',
 'V', or 'I'.

 	 uplo

 	indicates whether the upper or lower triangular part of the matrix
 A is referenced, where:
 If uplo = 'U',
 the upper triangular part is referenced.

 If uplo = 'L',
 the lower triangular part is referenced.

 Specified as: a
 single character; uplo = 'U' or 'L'.

 	 n

 	is the order of matrix A used in the computation.

 Specified as: an integer; n ≥ 0.

 	 ap

 	is the real symmetric or complex Hermitian matrix A of
 order n. It is stored in an array, referred to
 as AP, where:
 If uplo = 'U', it
 is stored in upper-packed storage mode.

 If uplo =
 'L', it is stored in lower-packed storage mode.

 Specified
 as: one-dimensional array of (at least) length n(n +
 1)/2, containing numbers of the data type indicated in Table 191.

 	 a

 	is the real symmetric or complex Hermitian matrix A of
 order n.
 If uplo = 'U', it
 is stored in upper storage mode.

 If uplo =
 'L', it is stored in lower storage mode.

 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 191.

 	 lda

 	is the leading dimension of the array specified for A.
 Specified
 as: an integer; lda > 0 and lda ≥ n.

 	 vl

 	has the following meaning:
 If range =
 'V', it is the lower bound of the interval to be searched for eigenvalues.

 If range ≠ 'V', this argument
 is ignored.

 Specified as: a number of the data type indicated
 in Table 191. If range =
 'V', vl < vu.

 	 vu

 	has the following meaning:
 If range =
 'V', it is the upper bound of the interval to be searched for eigenvalues.

 If range ≠ 'V', this argument
 is ignored.

 Specified as: a number of the data type indicated
 in Table 191. If range =
 'V', vl < vu.

 	 il

 	has the following meaning:
 If range =
 'I', it is the index (from smallest to largest) of the smallest eigenvalue
 to be returned.

 If range ≠ 'I', this argument
 is ignored.

 Specified as: an integer; il ≥ 1.

 	 iu

 	has the following meaning:
 If range =
 'I', it is the index (from smallest to largest) of the largest eigenvalue
 to be returned.

 If range ≠ 'I', this argument
 is ignored.

 Specified as: an integer; min(il, n) ≤ iu ≤ n.

 	 abstol

 	is the absolute tolerance for the eigenvalues. An approximate
 eigenvalue is accepted as converged when it is determined to lie in
 an interval [a, b] of width
 less than or equal to:
 abstol + ε(max(|a|,
 |b|))

 where ε is the machine precision. If abstol is
 less than or equal to zero, then ε(norm(T)) is used in its
 place, where norm(T) is the one-norm of the tridiagonal
 matrix obtained by reducing A to tridiagonal form. For
 most problems, this is the appropriate level of accuracy to request.

 For
 certain strongly graded matrices, greater accuracy can be obtained
 in very small eigenvalues by setting abstol to
 a very small positive number. However, if abstol is
 less than:
 [image: square root of unfl]

 where unfl is
 the underflow threshold, then:
 [image: square root of unfl]

 is
 used in its place.

 Eigenvalues are computed most accurately
 when abstol is set to twice the underflow threshold—that
 is, (2)(unfl).

 If jobz =
 'V', setting abstol to unfl (the
 underflow threshold) yields the most orthogonal eigenvectors.

 Note:

 	The approximate values of the constants used for abstol are
 listed below:

 	For SSPEVX, CHPEVX, SSYEVX, and CHEEVX

 	

 	ε

 	0.119209289550781250E-06

 	unfl

 	0.1175494351E-37

 	[image: square root of unfl]

 	0.1084202172E-18

 	For DSPEVX, ZHPEVX, DSYEVX, and ZHEEVX

 	

 	ε

 	0.222044604925031308E-15

 	unfl

 	0.222507385850720138E-307

 	[image: square root of unfl]

 	0.149166814624004135E-153

 	The value of abstol can affect which algorithm
 is used to compute the eigenvalues and eigenvectors. See Function.

 Specified as: a number of the data type indicated
 in Table 191.

 	 m

 	See On Return.

 	 w

 	See On Return.

 	 z

 	See On Return.

 	 ldz

 	is the leading dimension of the array specified for Z.

 Specified as: an integer; ldz > 0
 and, if jobz = 'V', ldz ≥ n.

 	 work

 	is a work area used by these subroutines, where: [image: Start of change]
 	For SSYEV, DSYEV, CHEEV, ZHEEV, SSYEVX, DSYEVX, CHEEVX, and ZHEEVX

 	
 If lwork = 0, work is ignored.

 If lwork ≠ 0, the size of
 work is determined as follows:

 	If lwork ≠ -1,
 work is (at least) of length lwork.

 	If lwork = -1, work is (at least) of length 1.

[image: End of change]

 	For SSPEVX and DSPEVX

 	Its size is 8n.

 	For CHPEVX and ZHPEVX

 	Its size is 2n.

 Specified as: an area of storage containing numbers of the data type indicated in Table 191.

 	 lwork

 	is used to determine the size of the WORK array.

 Specified as: an integer, where:

 	If lwork = 0, the subroutine dynamically allocates
 the workspace needed for use during this computation. The dynamically
 allocated workspace will be freed prior to returning control to the
 calling program.

 	If lwork = -1, a workspace query is assumed.
 The subroutine only calculates the optimal size of the WORK array
 and returns this value as the first entry of the WORK array.

 Otherwise:

 	[image: Start of change]For SSYEV and DSYEV[image: End of change]

 	[image: Start of change]lwork ≥ max(1,
 3n-1).[image: End of change]

 	[image: Start of change]For CHEEV and ZHEEV[image: End of change]

 	[image: Start of change]lwork ≥ max(1,
 2n-1).[image: End of change]

 	For SSYEVX and DSYEVX

 	lwork ≥ max(1,
 8n).

 	For CHEEVX and ZHEEVX

 	lwork ≥ max(1, 2n).

 Note: These formulas represent the minimum workspace
 required. For best performance, specify either lwork =
 -1 (to obtain the optimal size to use) or lwork =
 0 (to direct the subroutine to dynamically allocate the workspace).

 	 rwork

 	is a work area:[image: Start of change]
 	For CHEEV and ZHEEV

 	rwork is a work area of size max(1, 3n-2) .

 	[image: Start of change]For CHPEVX, ZHPEVX, CHEEVX, and ZHEEVX[image: End of change]

 	rwork is a work area of size 7n.

[image: End of change]

 Specified as: an area of storage containing real numbers of the data type indicated in Table 191.

 	 iwork

 	is a work area of size 5n.
 Specified as:
 an area of storage containing integers.

 	 ifail

 	See On Return.

 	On Return

 	

 	 ap

 	On exit, the matrix A is overwritten by values generated
 during the reduction to tridiagonal form.
 If uplo = 'U',
 the diagonal and first superdiagonal of the tridiagonal matrix T overwrite
 the corresponding elements of A.

 If uplo = 'L',
 the diagonal and first subdiagonal of T overwrite the
 corresponding elements of A.

 Returned as: a one-dimensional
 array of (at least) length n(n +
 1)/2, containing numbers of the data type indicated in Table 191.

 	 a

 	

 	[image: Start of change]For SSYEV, DSYEV, CHEEV, and ZHEEV[image: End of change]

 	[image: Start of change]On exit:
 If jobz = 'V', the columns of a contain the orthonormal eigenvectors of the
 matrix A corresponding to the computed eigenvalues, with the i-th
 column of A holding the eigenvector associated with
 w(i).

 If jobz = 'N':

 	If uplo = 'U', the leading n by n upper
 triangular part of A is overwritten.

 	If uplo = 'L', the leading n by n lower
 triangular part of A is overwritten.

 [image: End of change]

 	For SSYEVX, SSPEVX, DSPEVX, CHPEVX, ZHPEVX, DSYEVX, CHEEVX, and ZHEEVX

 	On exit, the matrix A is overwritten by values generated during the reduction to
 tridiagonal form.
 If uplo = 'U', the diagonal and first superdiagonal of the tridiagonal matrix T
 overwrite the corresponding elements of A.

 If uplo = 'L', the diagonal and first subdiagonal of T overwrite the corresponding elements
 of A.

 Returned as: an array of dimension lda by (at least) n,
 containing numbers of the data type indicated in Table 191.

 	 m

 	is the number of eigenvalues found.
 Returned as: an integer;
 0 ≤ m ≤ n .

 	w

 	

 	[image: Start of change]For SSYEV, DSYEV, CHEEV, and ZHEEV[image: End of change]

 	[image: Start of change]is the vector w of length n containing the computed eigenvalues
 in ascending order. [image: End of change]

 	For SSYEVX, SSPEVX, DSPEVX, CHPEVX, ZHPEVX, DSYEVX, CHEEVX, and ZHEEVX

 	is the vector w, containing the computed eigenvalues in ascending order in the
 first m elements of w.

 Returned as: a one-dimensional array of (at least) length n, containing
 numbers of the data type indicated in Table 191.

 	 z

 	has the following meaning, where:
 If jobz = 'N',
 then z is ignored.

 If jobz = 'V',
 the first m columns of z contain
 the orthonormal eigenvectors of the matrix A corresponding
 to the computed eigenvalues, with the i-th column
 of z holding the eigenvector associated with w(i).
 If an eigenvector fails to converge, then that column of z contains
 the latest approximation to the eigenvector, and the index of the
 eigenvector is returned in ifail.
 Note: You must
 ensure that at least max(1, m) columns are supplied
 in the array z; if range = 'V',
 the exact value of m is not known in advance and
 an upper bound must be used.

 Returned as: an ldz by
 (at least) max(1, m) array, containing numbers
 of the data type indicated in Table 191.

 	 work

 	is a work area used by these subroutines.
 Returned as: an area
 of storage where:

 If lwork = -1,
 then work is (at least) of length 1 and work1 contains
 the calculated optimal size of the WORK array.

 If lwork ≠ -1 and lwork ≠ 0, then work is
 (at least) of length lwork and work1 contains
 the value specified for lwork.

 Except for work1,
 the contents of work are overwritten on return.

 	ifail

 	has the following meaning:
 If jobz = 'N', ifail is
 ignored.

 If jobz = 'V':

 	If info = 0, the first m elements
 of ifail are zero.

 	If info > 0, ifail contains
 the indices of the eigenvectors that failed to converge.

 Returned as: an array of length n,
 containing integers.

 	info

 	has the following meaning:

 	[image: Start of change][image: Start of change]For SSYEV, DSYEV, CHEEV, ZHEEV, LAPACKE_ssyev, LAPACKE_dsyev, LAPACKE_cheev, and
 LAPACKE_zheev[image: End of change][image: End of change]

 	[image: Start of change]If info = 0, then the algorithm converged. This indicates a normal exit.
 If info = i, the algorithm
 failed to converge. i off-diagnoal elements of an intermediate tridiagonal form
 did not converge to zero.

 [image: End of change]

 	[image: Start of change]For SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX, DSYEVX, CHEEVX, and ZHEEVX,
 LAPACKE_sspevx, LAPACKE_dspevx, LAPACKE_chpevx, LAPACKE_zhpevx, LAPACKE_ssyevx, LAPACKE_dsyevx,
 LAPACKE_cheevx, and LAPACKE_zheevx[image: End of change]

 	If info = 0, then all eigenvectors converged. This indicates a normal exit.
 If
 info = i, then i eigenvectors failed to converge. Their indices
 are saved in array ifail.

 [image: Start of change]Returned as:

 	For SSYEV, DSYEV, CHEEV, ZHEEV, SSYEVX, SSPEVX, DSPEVX, CHPEVX, ZHPEVX, DSYEVX, CHEEVX, and
 ZHEEVX returned as: an integer; info ≥ 0.

 	For LAPACKE_ssyev, LAPACKE_dsyev, LAPACKE_cheev, LAPACKE_zheev, LAPACKE_ssyevx, LAPACKE_sspevx,
 LAPACKE_dspevx, LAPACKE_chpevx, LAPACKE_zhpevx, LAPACKE_dsyevx, LAPACKE_cheevx, and LAPACKE_zheevx
 returned as an integer function value; info ≥
 0.

 [image: End of change]

 Notes

 	This subroutine accepts lowercase letters for the jobz, range,
 and uplo arguments.

 	In your C program, the arguments info and m must
 be passed by reference.

 	On input, the imaginary parts of the diagonal elements of the
 complex Hermitian matrix A are assumed to be zero, so
 you do not have to set these values.

 	A, Z, w, ifail, work, rwork, iwork must
 have no common elements; otherwise, results are unpredictable.

 	For a description of how real symmetric matrices are stored in
 lower- or upper-packed storage mode, see Lower-Packed Storage Mode or Upper-Packed Storage Mode, respectively.
 For a
 description of how complex Hermitian matrices are stored in lower-
 or upper-packed storage mode, see Complex Hermitian Matrix.

 	For best performance specify lwork = 0.

 Function

 	[image: Start of change]For SSYEV, DSYEV, CHEEV, and ZHEEV[image: End of change]

 	[image: Start of change]These subroutines compute all eigenvalues and, optionally, the eigenvectors of a real symmetric
 or complex Hermitian matrix A, stored in lower or upper storage mode. (If
 n = 0, the
 subroutine returns after completing parameter checking.)
 The computation involves the following
 steps:

 	If necessary, scale the matrix A.

 	Reduce the matrix to real symmetric tridiagonal form.

 	Compute all eigenvalues and, optionally, the eigenvectors.

 	If jobz = 'N', compute all the eigenvalues of the symmetric tridiagonal matrix using the Pal-Walker-Kahan
 variant of the QL or QR algorithm.

 	Otherwise, for jobz = 'V', compute all eigenvalues and eigenvectors of the symmetric tridiagonal matrix
 using the implicit QL or QR method.

 	[image: Start of change]Rescale eigenvalues appropriately if matrix A was scaled.[image: End of change]

 [image: End of change]

 	For SSYEVX, SSPEVX, DSPEVX, CHPEVX, ZHPEVX, DSYEVX, CHEEVX, and ZHEEVX

 	These subroutines compute selected eigenvalues and, optionally, the eigenvectors of a real
 symmetric or complex Hermitian matrix A, stored in lower-packed or upper-packed
 storage mode or in lower or upper storage mode. Eigenvalues and eigenvectors can be selected by
 specifying either a range of values or a range of indices for the desired eigenvalues. (If
 n = 0, the
 subroutine returns after completing parameter checking.)
 The computation involves the following
 steps:

 	[image: Start of change]If necessary, scale the matrix A.[image: End of change]

 	Reduce the matrix to real symmetric tridiagonal form.

 	Compute the selected eigenvalues and, optionally, the eigenvectors. The algorithm used depends
 on the value specified for abstol and whether or not all eigenvalues are
 requested.

 	If abstol ≤ 0 and all
 eigenvalues were requested (that is, range = 'A' or range = 'I' with il = 1 and iu = n), do the
 following:

 	If jobz = 'N', compute all the eigenvalues of the symmetric tridiagonal matrix using the Pal-Walker-Kahan
 variant of the QL or QR algorithm.

 	Otherwise, for jobz = 'V', compute all eigenvalues and eigenvectors of the symmetric tridiagonal matrix
 using the implicit QL or QR method.

 	Otherwise, if abstol > 0, or if a subset of the eigenvalues was requested via range = 'I' or range = 'V', or if the previous step failed
 to compute all eigenvalues, do the following:

 	Compute the requested eigenvalues using bisection. If abstol
 ≤ 0, then ε(norm(T)) is used in its place, where norm(T)
 is the one-norm of the tridiagonal matrix obtained by reducing A to tridiagonal form.

 	If the eigenvectors were also requested, compute the eigenvectors using inverse iteration.

 	[image: Start of change]Rescale eigenvalues appropriately if matrix A was scaled.[image: End of change]

 For more information on these methods, see references [8], [34], and [74].

 Error conditions

 	[bookmark: am5gr_hsspevx__cs13a]
 Resource Errors

 	

 	lwork = 0, and unable to allocate work area.

 	[bookmark: am5gr_hsspevx__am5gr_f11a056xx]
 Computational Errors

 	

 	Bisection failed to converge for some eigenvalues. The eigenvalues
 may not be as accurate as the absolute and relative tolerances.

 	The number of eigenvalues computed does not match the number of
 eigenvalues requested.

 	No eigenvalues were computed because the Gershgorin interval initially
 used was incorrect.

 	Some eigenvectors failed to converge. The indices are stored in ifail.

 	The subroutine computed the eigenvalues using multiple algorithms.
 Performance may be degraded.

 	[image: Start of change]If info = i, the algorithm failed to converge. i indicates
 the number of elements of an intermediate tridiagonal form which did not converge to zero.[image: End of change]

 Note: The default for the number of allowable errors for error conditions 2154, 2155, 2156, 2157,
 2162, and 2613 is set to be unlimited in the ESSL error option table; therefore, each
 computational error message may occur multiple times with processing continuing after each
 error.

 	[bookmark: am5gr_hsspevx__am5gr_f11a057xx]
 Input-Argument Errors

 	

 	jobz ≠ 'N' or 'V'

 	range ≠ 'A', 'V', or 'I'

 	uplo ≠ 'U' or 'L'

 	n < 0

 	range = 'V', n > 0,
 and vu ≤ vl

 	range = 'I' and (il < 1
 or il > max(1, n))

 	range = 'I' and (iu < min(n, il)
 or iu > n)

 	lda ≤ 0

 	lda < n

 	ldz ≤ 0

 	jobz = 'V' and ldz < n

 	lwork ≠ 0 and lwork ≠ -1 and lwork < the
 minimum required value

 Examples

 	Example 1

 	
 This example shows how to find the eigenvalues only of a
 real symmetric matrix A of order 4, stored in lower-packed
 storage mode.

 Note: This matrix is Example 4.1 in referenced text
 [74].

 Matrix A is:
 ┌ ┐
 | 5.0 4.0 1.0 1.0 |
 | 4.0 5.0 1.0 1.0 |
 | 1.0 1.0 4.0 2.0 |
 | 1.0 1.0 2.0 4.0 |
 └ ┘

 Call Statement and Input:
 JOBZ RANGE UPLO N AP VL VU IL IU ABSTOL M W Z LDZ WORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | |
CALL DSPEVX ('N', 'A', 'L', 4, AP, VL, VU, IL, IU, -1.0, M, W, Z, 4, WORK, IWORK, IFAIL, INFO)

AP = (5.0, 4.0, 1.0, 1.0, 5.0, 1.0, 1.0, 4.0, 2.0, 4.0)

 Output: M = 4

 AP = (5.000000, -4.242641, 0.121320, 0.121320, 6.0000000, 1.414214, 0.414214, 5.000000, 0.000000, 2.000000)

 ┌ ┐
 | 1.000000 |
W = | 2.000000 |
 | 5.000000 |
 | 10.000000 |
 └ ┘

 Z is not used when JOBZ = 'N'.

 IFAIL is not used when JOBZ = 'N'.

 INFO = 0

 	Example 2

 	
 This example shows how to find the eigenvalues and eigenvectors
 of a real symmetric matrix A of order 4, stored in upper-packed
 storage mode. This example also illustrates the use of the il and iu arguments
 when range = 'I'.

 Note: This matrix is Example
 4.1 in referenced text [74].

 Matrix A is
 the same matrix used for DSPEVX in Example 1.

 Call Statement and Input:
 JOBZ RANGE UPLO N AP VL VU IL IU ABSTOL M W Z LDZ WORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | |
CALL DSPEVX ('V', 'I', 'U', 4, AP, VL, VU, 1, 3, -1.0, M, W, Z, 4, WORK, IWORK, IFAIL, INFO)

AP = (5.0, 4.0, 5.0, 1.0, 1.0, 4.0, 1.0, 1.0, 2.0, 4.0)

 Output: M = 3

 AP = (1.000000, 0.000000, 6.000000, 0.414214, 2.828427, 7.000000, 0.224745, 0.224725, -2.449490, 4.000000)

 ┌ ┐
 | 1.000000 |
W = | 2.000000 |
 | 5.000000 |
 | . |
 └ ┘

 ┌ ┐
 | 0.707107 0.000000 -0.316228 |
Z = | -0.707107 0.000000 -0.316228 |
 | 0.000000 -0.707107 0.632456 |
 | 0.000000 0.707107 0.632456 |
 └ ┘

 IFAIL = (0,0,0,.)
INFO = 0

 	Example 3

 	
 This example shows how to find the eigenvalues and eigenvectors
 of a real symmetric matrix A of order 4, stored in upper-packed
 storage mode. This example also illustrates the use of the vl and vu arguments
 when range = 'V'.

 Note: This matrix is Example
 4.1 in Reference [74].

 Matrix A is
 the same matrix used for DSPEVX in Example 1.

 Call Statement and Input:
 JOBZ RANGE UPLO N AP VL VU IL IU ABSTOL M W Z LDZ WORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | |
CALL DSPEVX ('V', 'V', 'U', 4, AP, 3.0, 11.0, 0, 0, -1.0, M, W, Z, 4, WORK, IWORK, IFAIL, INFO)

AP = (5.0, 4.0, 5.0, 1.0, 1.0, 4.0, 1.0, 1.0, 2.0, 4.0)

 Output: M = 2

 AP = (1.000000, 0.000000, 6.000000, 0.414214, 2.828427, 7.000000, 0.224745, 0.224725, -2.449490, 4.000000)

 ┌ ┐
 | 5.000000 |
W = | 10.000000 |
 | . |
 | . |
 └ ┘

 ┌ ┐
 | -0.316228 -0.632456 |
Z = | -0.316228 -0.632456 |
 | 0.632456 -0.316228 |
 | 0.632456 -0.316228 |
 └ ┘

 IFAIL = (0,0,.,.)
INFO = 0

 	Example 4

 	
 This example shows how to find the eigenvalues only of a
 complex Hermitian matrix A of order 3, stored in lower-packed
 storage mode.

 Note: This matrix is Example 6.3 in referenced text
 [74].

 Matrix A is:
 ┌ ┐
 | (2.0, 0.0) (0.0, 1.0) (0.0, 0.0) |
 | (0.0, -1.0) (2.0, 0.0) (0.0, 0.0) |
 | (0.0, 0.0) (0.0, 0.0) (3.0, 0.0) |
 └ ┘

 Call Statement and Input:
 JOBZ RANGE UPLO N AP VL VU IL IU ABSTOL M W Z LDZ WORK RWORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | | |
CALL ZHPEVX ('N', 'A', 'L', 3, AP, VL, VU, IL, IU, -1.0, M, W, Z, 3, WORK, RWORK, IWORK, IFAIL, INFO)

AP = ((2.0, .), (0.0, -1.0), (0.0, 0.0), (2.0, .), (0.0, 0.0), (3.0, .))

 Output: M = 3

 AP = ((2.0, 0.0), (-1.0, 0.0), (0.0, 0.0), (2.0, 0.0), (0.0, 0.0), (3.0, 0.0))

 ┌ ┐
 | 1.000000 |
W = | 3.000000 |
 | 3.000000 |
 └ ┘

 Z is not used when JOBZ = 'N'.

 IFAIL is not used when JOBZ = 'N'.

 INFO = 0

 	Example 5

 	
 This example shows how to find the eigenvalues and eigenvectors
 of a complex Hermitian matrix A of order 3, stored in
 upper-packed storage mode. This example also illustrates the use of
 the il and iu arguments when range = 'I'.

 Note: This
 matrix is Example 6.3 in referenced text [74].

 Matrix A is
 the same matrix used for ZHPEVX in Example 4.

 Call Statement and Input:
 JOBZ RANGE UPLO N AP VL VU IL IU ABSTOL M W Z LDZ WORK RWORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | | |
CALL ZHPEVX ('V', 'I', 'U', 3, AP, VL, VU, 1, 2, -1.0, M, W, Z, 3, WORK, RWORK, IWORK, IFAIL, INFO)

AP = ((2.0, .), (0.0, 1.0), (2.0, .), (0.0, 0.0), (0.0, 0.0), (3.0, .))

 Output: M = 2

 AP = ((2.0, 0.0), (-1.0, 0.0), (2.0, 0.0), (0.0, 0.0), (0.0, 0.0), (3.0, 0.0))

 ┌ ┐
 | 1.000000 |
W = | 3.000000 |
 | . |
 └ ┘

 ┌ ┐
 | (0.0000, -0.7071), (0.0000, 0.1591) |
Z = | (0.7071, 0.0000), (0.1591, 0.0000) |
 | (0.0000, 0.0000), (0.9744, 0.0000) |
 └ ┘

 IFAIL = (0,0,.)
INFO = 0

 	Example 6

 	
 This example shows how to find the eigenvalues and eigenvectors
 of a complex Hermitian matrix A of order 3, stored in
 upper-packed storage mode. This example also illustrates the use of
 the vl and vu arguments when range = 'V'.

 Note: This
 matrix is Example 6.3 in referenced text [74].

 Matrix A is
 the same matrix used for ZHPEVX in Example 4.

 Call Statement and Input:
 JOBZ RANGE UPLO N AP VL VU IL IU ABSTOL M W Z LDZ WORK RWORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | | |
CALL ZHPEVX ('V', 'V', 'U', 3, AP, 2.0, 4.0, IL, IU, -1.0, M, W, Z, 3, WORK, RWORK, IWORK, IFAIL, INFO)

AP = ((2.0, .), (0.0, 1.0), (2.0, .), (0.0, 0.0), (0.0, 0.0), (3.0, .))

 Output: M = 2

 AP = ((2.0, 0.0), (-1.0, 0.0), (2.0, 0.0), (0.0, 0.0), (0.0, 0.0), (3.0, 0.0))

 ┌ ┐
 | 3.000000 |
W = | 3.000000 |
 | . |
 └ ┘

 ┌ ┐
 | (0.0000, -0.6634), (0.0000, -0.2447) |
Z = | (-0.6634, 0.0000), (-0.2447, 0.0000) |
 | (-0.3460, 0.0000), (0.9382, 0.0000) |
 └ ┘

 IFAIL = (0,0,.)
INFO = 0

 	Example 7

 	
 This example shows how to find the eigenvalues only of a
 symmetric matrix A of order 4.

 Note:

 	This matrix is Example 4.1 in referenced text [74].

 	Because lwork = 0, the subroutine dynamically allocates WORK.

 Matrix A is the same matrix used for DSPEVX in Example 1.

 Call Statement and Input: [image: Start of change]
 JOBZ UPLO N A LDA W WORK LWORK INFO
 | | | | | | | | |
CALL DSYEV ('N', 'L', 4, A, 4, W, WORK, 0, INFO)

 [image: End of change]

 [image: Start of change]–or–[image: End of change]

 JOBZ RANGE UPLO N A LDA VL VU IL IU ABSTOL M W Z LDZ WORK LWORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | | | |
CALL DSYEVX ('N', 'A', 'L', 4, A, 4, VL, VU, IL, IU, -1.0, M, W, Z, 4, WORK, 0, IWORK, IFAIL, INFO)

 [image: Start of change] ┌ ┐
 | 5.0 . . . |
A = | 4.0 5.0 . . |
 | 1.0 1.0 4.0 . |
 | 1.0 1.0 2.0 4.0 |
 └ ┘
[image: End of change]

 Output: M = 4

 For DSYEV, A has been overwritten on output.

 For
 DSYEVX: ┌ ┐
 | 5.000000 . . . |
A = | -4.242641 6.000000 . . |
 | 0.121320 1.414214 5.000000 . |
 | 0.121320 1.414214 0.000000 2.000000 |
 └ ┘

 ┌ ┐
 | 1.000000 |
W = | 2.000000 |
 | 5.000000 |
 | 10.000000 |
 └ ┘

 Z
 is not used when JOBZ = 'N'.

 IFAIL is
 not used when JOBZ = 'N'. INFO = 0

 	[image: Start of change]Example 8[image: End of change]

 	[image: Start of change]This example shows how to find the eigenvalues and eigenvectors of a real symmetric matrix
 A of order 4 stored in upper storage mode.

 Note:

 	This matrix is Example 4.1 in referenced text [74].

 	Because lwork = 0, the subroutine dynamically allocates WORK.

 Matrix A is the same matrix used for DSPEVX in Example 1.

 Call Statement and Input: [image: Start of change]
 JOBZ UPLO N A LDA W WORK LWORK INFO
 | | | | | | | | |
CALL DSYEV ('V', 'U', 4, A, 4, W, WORK, 0, INFO)

 [image: End of change]

 [image: Start of change] ┌ ┐
 | 5.0 4.0 1.0 1.0 |
A = | . 5.0 1.0 1.0 |
 | . . 4.0 2.0 |
 | . . . 4.0 |
 └ ┘
[image: End of change]

 Output: ┌ ┐
 | 0.707107 0.000000 0.316228 0.632456 |
A = | -0.707107 0.000000 0.316228 0.632456 |
 | 0.000000 0.707107 -0.632456 0.316228 |
 | 0.000000 -0.707107 -0.632456 0.316228 |
 └ ┘

 ┌ ┐
 | 1.000000 |
W = | 2.000000 |
 | 5.000000 |
 | 10.000000 |
 └ ┘

 INFO = 0

 [image: End of change]

 	Example 9

 	
 This example shows how to find the eigenvalues and eigenvectors
 of a real symmetric matrix A of order 4. This example
 also illustrates the use of the il and iu arguments
 when range = 'I'.

 Note:

 	This matrix is Example 4.1 in referenced text [74].

 	Because lwork = 0, the subroutine dynamically allocates WORK.

 Matrix A is the same matrix used for
 DSPEVX in Example 1.

 Call Statement and Input:
 JOBZ RANGE UPLO N A LDA VL VU IL IU ABSTOL M W Z LDZ WORK LWORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | | | |
CALL DSYEVX ('V', 'I', 'U', 4, A, 4, VL, VU, 1, 3, -1.0, M, W, Z, 4, WORK, 0, IWORK, IFAIL, INFO)

 Output: M = 3

 ┌ ┐
 | 1.000000 0.000000 0.414214 0.224745 |
A = | . 6.000000 2.828427 0.224745 |
 | . . 7.000000 -2.449490 |
 | . . . 4.000000 |
 └ ┘

 ┌ ┐
 | 1.000000 |
W = | 2.000000 |
 | 5.000000 |
 | . |
 └ ┘

 ┌ ┐
 | 0.707107 0.000000 -0.316228 |
Z = | -0.707107 0.000000 -0.316228 |
 | 0.000000 -0.707107 0.632456 |
 | 0.000000 0.707107 0.632456 |
 └ ┘

 IFAIL = (0,0,0,.)
INFO = 0

 	Example 10

 	
 This example shows how to find the eigenvalues and eigenvectors
 of a real symmetric matrix A of order 4. This example
 also illustrates the use of the vl and vu arguments
 when range = 'V'.

 Note:

 	This matrix is Example 4.1 in referenced text [74].

 	Because lwork = 0, the subroutine dynamically allocates WORK.

 Matrix A is the same matrix used for
 DSPEVX in Example 1.

 Call Statement and Input:
 JOBZ RANGE UPLO N A LDA VL VU IL IU ABSTOL M W Z LDZ WORK LWORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | | | |
CALL DSYEVX ('V', 'V', 'U', 4, A, 4, 3.0, 11.0, IL, IU, -1.0, M, W, Z, 4, WORK, 0, IWORK, IFAIL, INFO)

 Output: M = 2

 ┌ ┐
 | 1.000000 0.000000 0.414214 0.224745 |
A = | . 6.000000 2.828427 0.224745 |
 | . . 7.000000 -2.449490 |
 | . . . 4.000000 |
 └ ┘

 ┌ ┐
 | 5.000000 |
W = | 10.000000 |
 | . |
 | . |
 └ ┘

 ┌ ┐
 | -0.316228 -0.632456 |
Z = | -0.316228 -0.632456 |
 | 0.632456 -0.316228 |
 | 0.632456 -0.316228 |
 └ ┘

 IFAIL = (0,0,.,.)
INFO = 0

 	Example 11

 	
 This example shows how to find the eigenvalues only of a
 complex Hermitian matrix A of order 3.

 Note:

 	This matrix is Example 6.3 in referenced text [74].

 	Because lwork = 0, the subroutine dynamically allocates WORK.

 Note:

 For ZHEEVX, matrix A is the same matrix used for ZHPEVX in Example 4.

 Call Statement and Input:

 [image: Start of change]
 JOBZ UPLO N A LDA W WORK LWORK RWORK INFO
 | | | | | | | | | |
CALL ZHEEV ('N', 'L', 3, A, 3, W, WORK, 0, RWORK INFO)

 [image: End of change]

 [image: Start of change]–or–[image: End of change]

 JOBZ RANGE UPLO N A LDA VL VU IL IU ABSTOL M W Z LDZ WORK LWORK RWORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | | | | |
CALL ZHEEVX ('N', 'A', 'L', 3, A, LDA, VL, VU, IL, IU, -1.0, M, W, Z, 3, WORK, 0, RWORK, IWORK, IFAIL, INFO)

 ┌ ┐
 | (2.0, 0.0) . . |
A = | (0.0,-1.0) (2.0, 0.0) . |
 | (0.0, 0.0) (0.0, 0.0) (3.0, 0.0) |
 └ ┘

 Output:

 	[image: Start of change]For ZHEEV, A has been overwritten on output.[image: End of change]

 	For
 ZHEEVX: ┌ ┐
 | (2.0, 0.0) . . |
A = | (-1.0, 0.0) (2.0, 0.0) . |
 | (0.0, 0.0) (0.0, 0.0) (3.0, 0.0) |
 └ ┘

 ┌ ┐
 | 1.000000 |
W = | 3.000000 |
 | 3.000000 |
 └ ┘

 Z
 is not used when JOBZ = 'N'.

 IFAIL is
 not used when JOBZ = 'N' INFO = 0

 	[bookmark: am5gr_hsspevx__cs16anewforzheev]
 [image: Start of change]Example 12[image: End of change]

 	[image: Start of change]This example shows how to find the eigenvalues and eigenvectors of a complex Hermitian matrix
 A of order 3 stored in upper storage mode.

 Note:

 	This matrix is Example 6.3 in referenced text [74].

 	Because lwork = 0, the subroutine dynamically allocates WORK.

 Matrix A is the same matrix used for ZHPEVX in Example 4.

 Call Statement and Input:
 JOBZ UPLO N A LDA W WORK LWORK RWORK INFO
 | | | | | | | | | |
CALL ZHEEV ('V', 'U', 3, A, 3, W, WORK, 0, RWORK, INFO)

 ┌ ┐
 | (2.0, 0.0) (0.0, 1.0) (0.0, 0.0) |
A = | . (2.0, 0.0) (0.0, 0.0) |
 | . . (3.0, 0.0) |
 └ ┘

 Output: ┌ ┐
 | (0.0000, 0.7071) (0.0000, 0.7071) (0.0000, 0.0000) |
A = | (-0.7071, 0.0000) (0.7071, 0.0000) (0.0000, 0.0000) |
 | (0.0000, 0.0000) (0.0000, 0.0000) (1.0000, 0.0000) |
 └ ┘

 ┌ ┐
 | 1.000000 |
W = | 3.000000 |
 | 3.000000 |
 └ ┘

 INFO = 0

 [image: End of change]

 	Example 13

 	
 This example shows how to find the eigenvalues and eigenvectors
 of a complex Hermitian matrix A of order 3. This example
 also illustrates the use of the il and iu arguments
 when range = 'I'.

 Note:

 	This matrix is Example 6.3 in referenced text [74].

 	Because lwork = 0, the subroutine dynamically allocates WORK.

 Matrix A is the same matrix used for
 ZHPEVX in Example 4.

 Call Statement and Input:
 JOBZ RANGE UPLO N A LDA VL VU IL IU ABSTOL M W Z LDZ WORK LWORK RWORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | | | | |
CALL ZHEEVX ('V', 'I', 'U', 3, A, LDA, VL, VU, 1, 2, -1.0, M, W, Z, 3, WORK, 0, RWORK, IWORK, IFAIL, INFO)

 Output: M = 2

 ┌ ┐
 | (2.0, 0.0) (-1.0, 0.0) (0.0, 0.0) |
A = | . (2.0, 0.0) (0.0, 0.0) |
 | . . (3.0, 0.0) |
 └ ┘

 ┌ ┐
 | 1.000000 |
W = | 3.000000 |
 | . |
 └ ┘

 ┌ ┐
 | (0.0000, -0.7071), (0.0000, 0.1591) |
Z = | (0.7071, 0.0000), (0.1591, 0.0000) |
 | (0.0000, 0.0000), (0.9744, 0.0000) |
 └ ┘

 IFAIL = (0,0,.)
INFO = 0

 	Example 14

 	
 This example shows how to find the eigenvalues and eigenvectors
 of a complex Hermitian matrix A of order 3. This example
 also illustrates the use of the vl and vu arguments
 when range = 'V'.

 Note:

 	This matrix is Example 6.3 in referenced text [74].

 	Because lwork = 0, the subroutine dynamically allocates WORK.

 Matrix A is the same matrix used for
 ZHPEVX in Example 4.

 Call Statement and Input:
 JOBZ RANGE UPLO N A LDA VL VU IL IU ABSTOL M W Z LDZ WORK LWORK RWORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | | | | |
CALL ZHEEVX ('V', 'V', 'U', 3, A, LDA, 2.0, 4.0, IL, IU, -1.0, M, W, Z, 3, WORK, 0, RWORK, IWORK, IFAIL, INFO)

 Output: M = 2

 ┌ ┐
 | (2.0, 0.0) (-1.0, 0.0) (0.0, 0.0) |
A = | . (2.0, 0.0) (0.0, 0.0) |
 | . . (3.0, 0.0) |
 └ ┘

 ┌ ┐
 | 3.000000 |
W = | 3.000000 |
 | . |
 └ ┘

 ┌ ┐
 | (0.0000, 0.6634), (0.0000, 0.2447) |
Z = | (-0.6634, 0.0000), (-0.2447, 0.0000) |
 | (-0.3460, 0.0000), (0.9382, 0.0000) |
 └ ┘

 IFAIL = (0,0,.)
INFO = 0

 Parent topic: Eigensystem Analysis

 SSPEVD, DSPEVD, CHPEVD, ZHPEVD, SSYEVD, DSYEVD, CHEEVD, and
 ZHEEVD (Eigenvalues and, Optionally the Eigenvectors, of a Real Symmetric
 or Complex Hermitian Matrix Using a Divide-and-Conquer Algorithm)

 Purpose

 These subroutines compute eigenvalues
 and, optionally, the eigenvectors of a real symmetric matrix or a
 complex Hermitian matrix.

 If eigenvalues only are computed,
 these subroutines compute the eigenvalues using the Pal-Walker-Kahan
 variant of the QL or QR algorithm.

 If eigenvectors are computed,
 the subroutine uses a divide-and-conquer method to compute them:

 	SSPEVD and DSPEVD compute eigenvalues and, optionally, the eigenvectors
 of real symmetric matrix A, stored in lower- or upper-packed
 storage mode.

 	CHPEVD and ZHPEVD compute eigenvalues and, optionally, the eigenvectors
 of complex Hermitian matrix A, stored in lower- or upper-packed
 storage mode.

 	SSYEVD and DSYEVD compute eigenvalues and, optionally, the eigenvectors
 of real symmetric matrix A, stored in lower or upper
 storage mode.

 	CHEEVD and ZHEEVD compute eigenvalues and, optionally, the eigenvectors
 of complex Hermitian matrix A, stored in lower or upper
 storage mode.

 Eigenvalues are returned in vector w and eigenvectors
 are returned in matrix Z (for subroutines SSPEVD, DSPEVD,
 CHPEVD, ZHPEVD) or in matrix A (for subroutines SSYEVD,
 DSYEVD, CHEEVD, ZHEEVD):

 Az

 =

 w

 z

 where A = AT or A = AH.

 Table 192. Data Types.

 	w, rwork

 	A, Z, work

 	Subroutine

 	Short-precision real

 	Short-precision real

 	

 SSPEVD

 Δ

 SSYEVD

 Δ

 	Long-precision real

 	Long-precision real

 	

 DSPEVD

 Δ

 DSYEVD

 Δ

 	Short-precision real

 	Short-precision complex

 	

 CHPEVD

 Δ

 CHEEVD

 Δ

 	Long-precision real

 	Long-precision complex

 	

 ZHPEVD

 Δ

 ZHEEVD

 Δ

 	
 ▵LAPACK

 Syntax

 	Fortran

 	CALL SSPEVD | DSPEVD (jobz, uplo, n,
 ap, w, z, ldz,
 work, lwork, iwork,
 liwork, info)
 CALL CHPEVD | ZHPEVD (jobz,
 uplo, n, ap, w,
 z, ldz, work, lwork,
 rwork, lrwork, iwork,
 liwork, info)

 CALL SSYEVD | DSYEVD
 (jobz, uplo, n, a,
 lda, w, work, lwork,
 iwork, liwork, info)

 CALL CHEEVD |
 ZHEEVD (jobz, uplo, n,
 a, lda, w, work,
 lwork, rwork, lrwork,
 iwork, liwork, info)

 	C and C++

 	sspevd | dspevd (jobz, uplo, n,
 ap, w, z, ldz,
 work, lwork, iwork,
 liwork, info);
 chpevd | zhpevd (jobz,
 uplo, n, ap, w,
 z, ldz, work, lwork,
 rwork, lrwork, iwork,
 liwork, info);

 ssyevd | dsyevd
 (jobz, uplo, n, a,
 lda, w, work, lwork,
 iwork, liwork, info);

 cheevd |
 zheevd (jobz, uplo, n,
 a, lda, w, work,
 lwork, rwork, lrwork,
 iwork, liwork, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sspevd | LAPACKE_dspevd (matrix_layout,
 jobz, uplo, n, ap,
 w, z, ldz);
 info = LAPACKE_chpevd |
 LAPACKE_zhpevd (matrix_layout, jobz, uplo,
 n, ap, w, z,
 ldz);

 info = LAPACKE_ssyevd | LAPACKE_dsyevd
 (matrix_layout, jobz, uplo,
 n, a, lda, w);

 info = LAPACKE_cheevd | LAPACKE_zheevd (matrix_layout,
 jobz, uplo, n, a,
 lda, w);

 [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 jobz

 	indicates the type of computation to be performed, where:
 If jobz =
 'N', eigenvalues only are computed.

 If jobz =
 'V', eigenvalues and eigenvectors are computed.

 Specified
 as: a single character; jobz = 'N' or 'V'.

 	 uplo

 	indicates whether the upper or lower triangular part of the matrix
 A is referenced, where:
 If uplo =
 'U', the upper triangular part is referenced.

 If uplo =
 'L', the lower triangular part is referenced.

 Specified as:
 a single character; uplo = 'U' or 'L'.

 	 n

 	is the order of matrix A used in the computation.

 Specified as: an integer; n ≥ 0.

 	 ap

 	is the real symmetric or complex Hermitian matrix A of
 order n. It is stored in an array, referred to
 as AP, where:
 If uplo = 'U',
 it is stored in upper-packed storage.

 If uplo =
 'L', it is stored in lower-packed storage mode.

 Specified
 as: one-dimensional array of (at least) length n(n +
 1)/2, containing numbers of the data type indicated in Table 192.

 	 a

 	is the real symmetric or complex Hermitian matrix A of
 order n.
 If uplo = 'U', it
 is stored in upper storage mode.

 If uplo =
 'L', it is stored in lower storage mode.

 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 192.

 	 lda

 	is the leading dimension of the array specified for A.
 Specified
 as: an integer; lda > 0 and lda ≥ n.

 	 w

 	See On Return.

 	 z

 	See On Return.

 	 ldz

 	is the leading dimension of the array specified for Z.

 Specified as: an integer; ldz > 0 and, if jobz =
 'V', ldz ≥ n.

 	 work

 	is a work area used by these subroutines.
 if lwork =
 0 and liwork ≠ -1 and lrwork ≠ -1, work is
 ignored.

 If lwork ≠ -1, and liwork ≠ -1 and lrwork ≠ -1, work is
 (at least) of length lwork.

 If lwork =
 -1, or liwork = -1, or lrwork =
 -1, work is (at least) of length 1.

 Specified
 as: an area of storage containing numbers of the data type indicated
 in Table 192.

 	 lwork

 	is used to determine the size of the WORK array.

 Specified as: an integer, where:

 If lwork =
 0 and liwork ≠ -1 and lrwork ≠ -1, the subroutine
 dynamically allocates the workspace needed for use during this computation.
 The dynamically allocated workspace will be freed prior to returning
 control to the calling program.

 If lwork =
 -1 or liwork = -1 or lrwork =
 -1, these subroutines perform a work area query for all work areas
 and return the optimal size of work in work1 and iwork in iwork1 and rwork in rwork1.

 Otherwise:

 	If n ≤ 1, lwork must
 be (at least) 1.

 	If jobz = 'N' and n >
 1, lwork is as follows:

 	For SSPEVD, DSPEVD

 	lwork must be (at least) 2n

 	For SSYEVD, and DSYEVD

 	lwork must be (at least) 2n + 1

 	For CHPEVD and ZHPEVD

 	lwork must be (at least) n

 	For CHEEVD and ZHEEVD

 	lwork must be (at least) n +
 1

 	If jobz = 'V' and n > 1, lwork is
 as follows:

 	For SSPEVD and DSPEVD

 	lwork must be (at least) 1 + 6n + n2

 	For SSYEVD and DSYEVD

 	lwork must be (at least) 1 + 6n +
 2n2

 	For CHPEVD and ZHPEVD

 	lwork must be (at least) 2n

 	For CHEEVD and ZHEEVD

 	lwork must be (at least) 2n + n2

 Note: These formulas represent the minimum workspace required.
 For best performance, specify either lwork = -1
 (to obtain the optimal size to use) or lwork =
 0 (to direct the subroutine to dynamically allocate the workspace).

 	 rwork

 	has the following meaning:
 if lrwork = 0
 and liwork ≠ -1 and lwork ≠ -1, rwork is
 ignored.

 If lrwork ≠ -1, and liwork ≠ -1 and lwork ≠ -1, rwork is
 (at least) of length lrwork.

 If lrwork =
 -1, or liwork = -1, or lwork =
 -1, rwork is (at least) of length 1.

 Specified
 as: an area of storage containing real numbers of the data type indicated
 in Table 192.

 	 lrwork

 	is the number of elements in array rwork.
 Specified
 as: a fullword integer; where:

 If lrwork =
 0 and liwork ≠ -1 and lwork ≠ -1 , the subroutine
 dynamically allocates the workspace needed for use during this computation.
 The dynamically allocated workspace will be freed prior to returning
 control to the calling program.

 If lrwork =
 -1 or liwork = -1 or lwork =
 -1, these subroutines perform a work area query for all work areas
 and return the optimal size of work in work1 and iwork in iwork1 and rwork in rwork1.

 Otherwise:

 	If n ≤ 1, lrwork must
 be (at least) 1

 	If jobz = 'N' and n > 1, lrwork must
 be (at least) n

 	If jobz = 'V' and n > 1, lrwork must
 be (at least) 1 + 5n + 2n2

 	iwork

 	has the following meaning:
 if liwork =
 0 and lrwork ≠ -1 and lwork ≠ -1, iwork is
 ignored.

 If liwork ≠ -1, and lrwork ≠ -1 and lwork ≠ -1, iwork is
 (at least) of length liwork.

 If liwork =
 -1, or lrwork = -1, or lwork =
 -1, iwork is (at least) of length 1.

 Specified
 as: an area of storage containing fullword integers.

 	 liwork

 	is the number of elements in array IWORK.
 Specified
 as: a fullword integer; where:

 If liwork =
 0 and lrwork ≠ -1 and lwork ≠ -1 , the subroutine
 dynamically allocates the workspace needed for use during this computation.
 The dynamically allocated workspace will be freed prior to returning
 control to the calling program.

 If liwork =
 -1 or lrwork = -1 or lwork =
 -1, these subroutines perform a work area query for all work areas
 and return the optimal size of work in work1 and iwork in iwork1 and rwork in rwork1.

 Otherwise:

 	If n ≤ 1, liwork must
 be (at least) 1

 	If jobz = 'N' and n > 1, liwork must
 be (at least) 1

 	If jobz = 'V' and n > 1, lwork must
 be (at least) 3+ 5n

 	On Return

 	

 	 ap

 	the matrix A is overwritten by values generated
 during the reduction to tridiagonal form.
 If uplo =
 'U', the diagonal and first superdiagonal of the tridiagonal matrix T overwrite
 the corresponding elements of A.

 If uplo =
 'L', the diagonal and first subdiagonal of T overwrite
 the corresponding elements of A.

 Returned as:
 a one-dimensional array of (at least) length n(n +
 1)/2, containing numbers of the data type indicated in Table 192.

 	 a

 	If jobz = 'V' and info =
 0, a contains the orthonormal eigenvectors corresponding
 to the computed eigenvalues, with the i-th column
 of A holding the eigenvector associated with wi
 If jobz =
 'V' and info ≠ 0, no eigenvectors
 are valid.

 If jobz = 'N':

 	If uplo = 'U', the upper triangle of matrix A is
 overwritten.

 	If uplo = 'L', the lower triangle of matrix A is
 overwritten.

 Returned as: an array of dimension lda by
 (at least) n, containing numbers of the data type
 indicated in Table 192.

 	 w

 	If info = 0, w is the vector w,
 containing the computed eigenvalues in ascending order.
 If info ≠ 0, no eigenvalues
 are valid.

 Returned as: a one-dimensional array of (at least)
 length n, containing numbers of the data type indicated
 in Table 192.

 	 z

 	has the following meaning, where:
 If jobz =
 'N', then z is ignored.

 If jobz =
 'V' and info = 0, z contains
 the orthonormal eigenvectors corresponding to the computed eigenvalues,
 with the i-th column of z holding
 the eigenvector associated with wi.

 If jobz =
 'V' and info ≠ 0, no eigenvectors
 are valid.

 Returned as: an ldz by n array,
 containing numbers of the data type indicated in Table 192.

 	 work

 	is a work area used by these subroutines.
 Returned as: an area
 of storage where:

 If lwork ≥ 1 or lwork =
 -1 or liwork = -1 or lrwork =
 -1, then work1 is
 set to the optimal lwork value and contains numbers
 of the data type indicated in Table 192.

 Except
 for work1,
 the contents of work are overwritten on return.

 	 rwork

 	is a work area used by these subroutines.
 Returned as: an area
 of storage where:

 If lrwork ≥ 1 or lrwork =
 -1 or liwork = -1 or lwork =
 -1, then rwork1 is
 set to the optimal lrwork value and contains numbers of the data type
 indicated in Table 192.

 Except
 for rwork1,
 the contents of rwork are overwritten on return.

 	 iwork

 	is a work area used by these subroutines.
 Returned as: an area
 of storage where:

 If liwork ≥ 1 or liwork =
 -1 or lrwork = -1 or lwork =
 -1, then iwork1 is
 set to the optimal liwork value and contains numbers of the data type
 indicated in Table 192.

 Except
 for iwork1, the contents of iwork are
 overwritten on return.

 	info

 	has the following meaning:
 If info = 0, then all eigenvalues converged.
 This indicates a normal exit.

 If info = i and
 jobz = 'N', then the algorithm failed to converge. i indicates
 the number of elements of an intermediate tridiagonal form which did not converge to zero.

 If
 info = i and jobz = 'V', then the algorithm
 failed to compute an eigenvalue while working on the submatrix lying in rows and columns
 info / (n + 1) through mod(info,
 n + 1). No eigenvalues are valid.

 Returned as: [image: Start of change]
 	For SSPEVD, DSPEVD, CHPEVD, ZHPEVD, SSYEVD, DSYEVD, CHEEVD, and ZHEEVD returned as: an integer;
 info ≥ 0.

 	For LAPACKE_sspevd, LAPACKE_dspevd, LAPACKE_chpevd, LAPACKE_zhpevd, LAPACKE_ssyevd,
 LAPACKE_dsyevd, LAPACKE_cheevd, and LAPACKE_zheevd returned as an integer function value; info ≥ 0.

[image: End of change]

 Notes

 	This subroutine accepts lowercase letters for the jobz and uplo arguments.

 	In your C program, the argument info must be
 passed by reference.

 	On input, the imaginary parts of the diagonal elements of the
 complex Hermitian matrix A are assumed to be zero, so
 you do not have to set these values.

 	A, Z, w, work, rwork, iwork must
 have no common elements; otherwise, results are unpredictable.

 	For a description of how real symmetric matrices are stored in
 lower- or upper-packed storage mode, see Lower-Packed Storage Mode or Upper-Packed Storage Mode, respectively.
 For a
 description of how complex Hermitian matrices are stored in lower-
 or upper-packed storage mode, see Complex Hermitian Matrix.

 	For a description of how real symmetric matrices are stored in
 lower or upper storage mode, see Lower Storage Mode or Upper Storage Mode, respectively.
 For a
 description of how complex Hermitian matrices are stored in lower
 or upper storage mode, see Complex Hermitian Matrix.

 	For best performance specify lwork = 0, liwork =
 0, and lrwork = 0.

 Function

 These subroutines
 compute eigenvalues and, optionally, the eigenvectors of a real symmetric
 matrix or a complex Hermitian matrix.

 If eigenvalues only are
 computed, these subroutines compute the eigenvalues using the Pal-Walker-Kahan
 variant of the QL or QR algorithm.

 If eigenvectors are computed,
 the subroutine uses a divide-and-conquer method to compute them:

 	SSPEVD and DSPEVD compute eigenvalues and, optionally, the eigenvectors
 of real symmetric matrix A, stored in lower- or upper-packed
 storage mode.

 	CHPEVD and ZHPEVD compute eigenvalues and, optionally, the eigenvectors
 of complex Hermitian matrix A, stored in lower- or upper-packed
 storage mode.

 	SSYEVD and DSYEVD compute eigenvalues and, optionally, the eigenvectors
 of real symmetric matrix A, stored in lower or upper
 storage mode.

 	CHEEVD and ZHEEVD compute eigenvalues and, optionally, the eigenvectors
 of complex Hermitian matrix A, stored in lower or upper
 storage mode.

 Eigenvalues are returned in vector w and eigenvectors
 are returned in matrix Z (for subroutines SSPEVD, DSPEVD,
 CHPEVD, ZHPEVD) or in matrix A (for subroutines SSYEVD,
 DSYEVD, CHEEVD, ZHEEVD):

 Az

 =

 w

 z

 where A = AT or A = AH.

 The computation involves
 the following steps:

 	If necessary, scale the matrix A.

 	Reduce matrix A to tridiagonal form.

 	Compute the eigenvalues and, optionally, the eigenvectors of the
 symmetric tridiagonal matrix. The algorithm used depends on the value
 specified for jobz:

 	If jobz = 'N', compute all the eigenvalues
 using the Pal-Walker-Kahan variant of the QL or QR algorithms.

 	Otherwise, compute both the eigenvalues and eigenvectors using
 a divide-and-conquer algorithm, then apply Householder transformations
 to the eigenvector matrix.

 	Rescale eigenvalues appropriately if the matrix was scaled.

 If n = 0, the subroutine returns after
 completing parameter checking.

 For more information on these
 methods, see references [8], [74], and [34].

 Error conditions

 	Resource Errors

 	

 	lwork = 0, and unable to allocate work area.

 	lrwork = 0, and unable to allocate work area.

 	liwork = 0, and unable to allocate work area.

 	Computational Errors

 	

 	If info = i and jobz =
 'N', then the algorithm failed to converge. i indicates
 the number of elements of an intermediate tridiagonal form which did
 not converge to zero.

 	If info = i and jobz =
 'V', then the algorithm failed to compute an eigenvalue while working
 on the submatrix lying in rows and columns info /
 (n + 1) through mod(info, n +
 1). No eigenvalues are valid.

 	Input-Argument Errors

 	

 	jobz ≠ 'N' or 'V'

 	uplo ≠ 'U' or 'L'

 	n < 0

 	lda ≤ 0

 	n > lda

 	ldz ≤ 0

 	n > ldz and jobz =
 'V'

 	lwork ≠ 0 and lwork ≠ -1 and liwork ≠ -1 and lrwork ≠ -1, and lwork < the
 minimum required value

 	liwork ≠ 0 and liwork ≠ -1 and lwork ≠ -1 and lrwork ≠ -1, and liwork < the
 minimum required value

 	lrwork ≠ 0 and lrwork ≠ -1 and liwork ≠ -1 and lwork ≠ -1 and lrwork <
 the minimum required value

 	[image: Start of change]The size of a work array is greater than 2147483647 when 32-bit integers are
 used.[image: End of change]

 Examples

 	[bookmark: am5gr_eigevd__dspevdex1]
 Example 1

 	
 This example shows how to find the eigenvalues only of a
 real symmetric matrix of order 4, stored in lower-packed storage mode.

 Notes:

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 	Because liwork = 0, the subroutine dynamically
 allocates IW0RK.

 	Z is not used when jobz = 'N'.

 	On output, array AP is overwritten.

 	This matrix is Example 4.1 in referenced text [74].

 Matrix A is: ┌ ┐
 | 5.0 4.0 1.0 1.0 |
 | 4.0 5.0 1.0 1.0 |
 | 1.0 1.0 4.0 2.0 |
 | 1.0 1.0 2.0 4.0 |
 └ ┘

 Call Statement and Input:
 JOBZ UPLO N AP W Z LDZ WORK LWORK IWORK LIWORK INFO
 | | | | | | | | | | | |
CALL DSPEVD ('N', 'L', 4, AP, W, Z, 4, WORK, 0, IWORK, 0, INFO)

AP = (5.0, 4.0, 1.0, 1.0, 5.0, 1.0, 1.0, 4.0, 2.0, 4.0)

 Output: ┌ ┐
 | 1.000000 |
W = | 2.000000 |
 | 5.000000 |
 | 10.000000 |
 └ ┘

 INFO = 0

 	Example 2

 	
 This example shows how to find the eigenvalues and eigenvectors
 of a real symmetric matrix of order 4, stored in upper-packed storage
 mode.

 Notes:

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 	Because liwork = 0, the subroutine dynamically
 allocates IW0RK.

 	On output, array AP is overwritten.

 	This matrix is Example 4.1 in referenced text [74].

 Matrix A is the same as in Example 1.

 Call Statement
 and Input:
 JOBZ UPLO N AP W Z LDZ WORK LWORK IWORK LIWORK INFO
 | | | | | | | | | | | |
CALL DSPEVD ('V', 'U', 4, AP, W, Z, 4, WORK, 0, IWORK, 0, INFO)

AP = (5.0,4.0,5.0,1.0,1.0,4.0,1.0,1.0,2.0,4.0)

 Output: ┌ ┐
 | 1.000000 |
W = | 2.000000 |
 | 5.000000 |
 | 10.000000 |
 └ ┘

 ┌ ┐
 |-0.707107 0.000000 0.316228 -0.632456|
Z = | 0.707107 0.000000 0.316228 -0.632456|
 | 0.000000 -0.707107 -0.632456 -0.316228|
 | 0.000000 0.707107 -0.632456 -0.316228|
 └ ┘

 INFO = 0

 	[bookmark: am5gr_eigevd__eigevdex3]
 Example 3

 	
 This example shows how to find the eigenvalues only of a
 complex Hermitian matrix of order 3, stored in lower-packed storage
 mode.

 Notes:

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 	Because lrwork = 0, the subroutine dynamically
 allocates RWORK.

 	Because liwork = 0, the subroutine dynamically
 allocates IW0RK.

 	Z is not used when jobz = 'N'.

 	On output, array AP is overwritten.

 	This matrix is Example 4.1 in referenced text [74].

 Matrix A is: ┌ ┐
 |(2.0, 0.0) (0.0, 1.0) (0.0, 0.0)|
 |(0.0,-1.0) (2.0, 0.0) (0.0, 0.0)|
 |(0.0, 0.0) (0.0, 0.0) (3.0, 0.0)|
 └ ┘

 Call Statement
 and Input: JOBZ UPLO N AP W Z LDZ WORK LWORK
 | | | | | | | | |
CALL ZHPEVD ('N', 'L', 3, AP, W, Z, 3, WORK, 0,

 RWORK LRWORK IWORK LIWORK INFO
 | | | | |
 RWORK, 0, IWORK, 0, INFO)

AP = ((2.0, .),(0.0,-1.0),(0.0,0.0),
 (2.0, .),(0.0,0.0),(3.0, .))

 Output:
 ┌ ┐
 | 1.000000 |
W = | 3.000000 |
 | 3.000000 |
 └ ┘

 INFO = 0

 	Example 4

 	
 This example shows how to find the eigenvalues and eigenvectors
 of a complex Hermitian matrix of order 3, stored in upper-packed storage
 mode.

 Notes:

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 	Because lrwork = 0, the subroutine dynamically
 allocates RWORK.

 	Because liwork = 0, the subroutine dynamically
 allocates IW0RK.

 	On output, array AP is overwritten.

 	This matrix is Example 4.1 in referenced text [74].

 Matrix A is the same as in Example 3.

 Call Statement
 and Input:
 JOBZ UPLO N AP W Z LDZ WORK LWORK RWORK LRWORK IWORK LIWORK INFO
 | | | | | | | | | | | | | |
CALL ZHPEVD ('V', 'U', 3, AP, W, Z, 3, WORK, 0, RWORK, 0, IWORK, 0, INFO)

AP = ((2.0, .),(0.0,-1.0),(0.0,0.0),(2.0, .),(0.0,0.0),(3.0, .))

 Output: ┌ ┐
 | 1.000000 |
W = | 3.000000 |
 | 3.000000 |
 └ ┘

 ┌ ┐
 |(-0.7071, 0.0) (-0.7071, 0.0) (0.0, 0.0)|
Z = |(0.0,-0.7071) (0.0, 0.7071) (0.0, 0.0)|
 |(0.0, 0.0) (0.0, 0.0) (1.0, 0.0)|
 └ ┘

 INFO = 0

 	[bookmark: am5gr_eigevd__eigevdex5]
 Example 5

 	
 This example shows how to find the eigenvalues only of a
 real symmetric matrix of order 4, stored in lower storage mode.

 Notes:

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 	Because liwork = 0, the subroutine dynamically
 allocates IW0RK.

 	On output, array A is overwritten.

 	This matrix is Example 4.1 in referenced text [74].

 Matrix A is: ┌ ┐
 | 5.0 4.0 1.0 1.0 |
 | 4.0 5.0 1.0 1.0 |
 | 1.0 1.0 4.0 2.0 |
 | 1.0 1.0 2.0 4.0 |
 └ ┘

 Call Statement and Input:
 JOBZ UPLO N A LDA W WORK LWORK IWORK LIWORK INFO
 | | | | | | | | | | |
CALL DSYEVD ('N', 'L', 4, A, 4, W, WORK, 0, IWORK, 0, INFO)

 ┌ ┐
 | 5.0 . . . |
A = | 4.0 5.0 . . |
 | 1.0 1.0 4.0 . |
 | 1.0 1.0 2.0 4.0 |
 └ ┘

 Output: ┌ ┐
 | 1.000000 |
W = | 2.000000 |
 | 5.000000 |
 | 10.000000 |
 └ ┘

 INFO = 0

 	Example 6

 	
 This example shows how to find the eigenvalues and eigenvectors
 of a real symmetric matrix of order 4, stored in upper storage mode.

 Notes:

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 	Because liwork = 0, the subroutine dynamically
 allocates IW0RK.

 	This matrix is Example 4.1 in referenced text [74].

 Matrix A is the same as in Example 5.

 Call Statement
 and Input:
 JOBZ UPLO N A LDA W WORK LWORK IWORK LIWORK INFO
 | | | | | | | | | | |
CALL DSYEVD ('V', 'U', 4, A, 4, W, WORK, 0, IWORK, 0, INFO)

 ┌ ┐
 | 5.0 4.0 1.0 1.0 |
A = | . 5.0 1.0 1.0 |
 | . . 4.0 2.0 |
 | . . . 4.0 |
 └ ┘

 Output: ┌ ┐
 |-0.707107 0.000000 0.316228 -0.632456|
A = | 0.707107 0.000000 0.316228 -0.632456|
 | 0.000000 -0.707107 -0.632456 -0.316228|
 | 0.000000 0.707107 -0.632456 -0.316228|
 └ ┘

 ┌ ┐
 | 1.000000 |
W = | 2.000000 |
 | 5.000000 |
 | 10.000000 |
 └ ┘

 INFO = 0

 	[bookmark: am5gr_eigevd__eigevdex7]
 Example 7

 	
 This example shows how to find the eigenvalues only of a
 complex Hermitian matrix of order 3, stored in lower storage mode.

 Notes:

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 	Because lrwork = 0, the subroutine dynamically
 allocates RWORK.

 	Because liwork = 0, the subroutine dynamically
 allocates IW0RK.

 	On output, arrayA is overwritten.

 	This matrix is Example 4.1 in referenced text [74].

 Matrix A is: ┌ ┐
 |(2.0, 0.0) (0.0, 1.0) (0.0, 0.0)|
 |(0.0,-1.0) (2.0, 0.0) (0.0, 0.0)|
 |(0.0, 0.0) (0.0, 0.0) (3.0, 0.0)|
 └ ┘

 Call Statement
 and Input:
 JOBZ UPLO N A LDA W WORK LWORK RWORK LRWORK IWORK LIWORK INFO
 | | | | | | | | | | | | |
CALL ZHEEVD ('N', 'L', 3, A, 3, W, WORK, 0, RWORK, 0, IWORK, 0, INFO)

 ┌ ┐
 |(2.0, .) . . |
A = |(0.0,-1.0) (2.0, .) . |
 |(0.0, 0.0) (0.0, 0.0) (3.0, .)|
 └ ┘

 Output: ┌ ┐
 | 1.000000 |
W = | 3.000000 |
 | 3.000000 |
 └ ┘

 INFO = 0

 	Example 8

 	
 This example shows how to find the eigenvalues and eigenvectors
 of a complex Hermitian matrix A of order 3, stored in
 upper storage mode.

 Notes:

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 	Because lrwork = 0, the subroutine dynamically
 allocates RWORK.

 	Because liwork = 0, the subroutine dynamically
 allocates IW0RK.

 	This matrix is Example 4.1 in referenced text [74].

 Matrix A is the same as in Example 7.

 Call Statement
 and Input:
 JOBZ UPLO N A LDA W WORK LWORK RWORK LRWORK IWORK LIWORK INFO
 | | | | | | | | | | | | |
CALL ZHEEVD ('V', 'U', 3, A, 3, W, WORK, 0, RWORK, 0, IWORK, 0, INFO)

 ┌ ┐
 |(2.0, .) (0.0, 1.0) (0.0, 0.0)|
A = | . (2.0, .) (0.0, 0.0)|
 | . . (3.0, .)|
 └ ┘

 Output: ┌ ┐
 |(-0.7071, 0.0) (-0.7071, 0.0) (0.0, 0.0)|
A = |(0.0,-0.7071) (0.0, 0.7071) (0.0, 0.0)|
 |(0.0, 0.0) (0.0, 0.0) (1.0, 0.0)|
 └ ┘

 ┌ ┐
 | 1.000000 |
W = | 3.000000 |
 | 3.000000 |
 └ ┘

 INFO = 0

 Parent topic: Eigensystem Analysis

 SGGEV, DGGEV, CGGEV, ZGGEV, [image: Start of change]SGGEVX, DGGEVX, CGGEVX, and ZGGEVX (Eigenvalues
 and, Optionally, Right Eigenvectors, Left Eigenvectors, Reciprocal Condition Numbers for
 Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a General Matrix Generalized
 Eigenproblem)[image: End of change]

 Purpose

 	SGGEV, DGGEV, CGGEV, and ZGGEV compute the eigenvalues and, optionally, the left and/or right
 eigenvectors of a general matrix generalized eigenproblem.

 	[image: Start of change]SGGEVX, DGGEVX, CGGEVX, and ZGGEVX compute the eigenvalues and, optionally, right
 eigenvectors, left eigenvectors, reciprocal condition numbers for eigenvalues, and reciprocal
 condition numbers for right eigenvectors of a general matrix generalized eigenproblem.[image: End of change]

 For the left eigenvectors:

 vlHA = λvlHB

 For
 the right eigenvectors:

 Avr = λBvr

 The
 eigenvalues are returned in two parts, α and β, where:

 For SGGEV, DGGEV, [image: Start of change]SGGEVX, and DGGEVX[image: End of change], α and β
 are returned in vectors alphar,
 alphai, and beta, where alphar contains the
 real part of α and
 alphai contains the imaginary part of α.

 	If alphaij = 0, then the
 j-th eigenvalue is real.

 	If alphaij > 0, then the
 j-th and (j+1)-th eigenvalues are a complex conjugate
 pair.

 For CGGEV, ZGGEV, [image: Start of change]CGGEVX, and ZGGEVX[image: End of change], α and β
 are returned in vectors alpha and
 beta.

 For SGGEV, DGGEV, [image: Start of change]SGGEVX, and DGGEVX[image: End of change]:

 	If alphaij = 0, then the
 j-th eigenvalue is real:

 	αj = alpharj

 	βj = betaj

 	If alphaij > 0, then the
 j-th and (j+1)-th eigenvalues αj+1 are a
 complex conjugate pair:

 	αj = (alpharj,
 alphaij)

 	βj = betaj

 	αj+1 = (alpharj,
 -alphaij)

 	βj+1 = betaj

 For CGGEV, ZGGEV, [image: Start of change]CGGEVX, and ZGGEVX[image: End of change]:

 	αj = alphaj

 	βj = betaj

 Left eigenvectors are returned in matrix VL and
 right eigenvectors are returned in matrix VR.

 Table 193. Data Types.

 	A, B, VL, VR,
 bwork, work
 α, β

 	alphar, alphai, lscale,
 rscale, abnrm, rconde, rcondv,
 rwork

 	Subroutine

 	Short-precision real

 	Short-precision real

 	

 SGGEV

 Δ

 [image: Start of change]SGGEVX

 Δ

 [image: End of change]

 	Long-precision real

 	Long-precision real

 	

 DGGEV

 Δ

 [image: Start of change]DGGEVX

 Δ

 [image: End of change]

 	Short-precision complex

 	Short-precision real

 	

 CGGEV

 Δ

 [image: Start of change]CGGEVX

 Δ

 [image: End of change]

 	Long-precision complex

 	Long-precision real

 	

 ZGGEV

 Δ

 [image: Start of change]ZGGEVX

 Δ

 [image: End of change]

 	
 ΔLAPACK

 Syntax

 	Fortran

 	CALL SGGEV | DGGEV (jobvl, jobvr, n,
 a, lda, b, ldb,
 alphar, alphai, beta,
 vl, ldvl, vr, ldvr,
 work, lwork, info)
 CALL CGGEV | ZGGEV
 (jobvl, jobvr, n, a,
 lda, b, ldb, alpha,
 beta, vl, ldvl, vr,
 ldvr, work, lwork,
 rwork, info)

 [image: Start of change]CALL SGGEVX | DGGEVX
 (balanc, jobvl, jobvr,
 sense, n, a, lda,
 b, ldb, alphar, alphai,
 beta, vl, ldvl, vr,
 ldvr, ilo, ihi, lscale,
 rscale, abnrm, bbnrm,
 rconde, rcondv, work,
 lwork, iwork, bwork,
 info)[image: End of change]

 [image: Start of change]CALL CGGEVX | ZGGEVX (balanc,
 jobvl, jobvr, sense, n,
 a, lda, b, ldb,
 alpha, beta, vl, ldvl,
 vr, ldvr, ilo, ihi,
 lscale, rscale, abnrm,
 bbnrm, rconde, rcondv,
 work, lwork, rwork,
 iwork, bwork, info)[image: End of change]

 	C and C++

 	sggev | dggev (jobvl, jobvr, n,
 a, lda, b, ldb,
 alphar, alphai, beta,
 vl, ldvl, vr, ldvr,
 work, lwork, info);
 cggev | zggev
 (jobvl, jobvr, n, a,
 lda, b, ldb, alpha,
 beta, vl, ldvl, vr,
 ldvr, work, lwork,
 rwork, info);

 [image: Start of change]sggevx | dggevx
 (balanc, jobvl, jobvr,
 sense, n, a, lda,
 b, ldb, alphar, alphai,
 beta, vl, ldvl, vr,
 ldvr, ilo, ihi, lscale,
 rscale, abnrm, bbnrm,
 rconde, rcondv, work,
 lwork, iwork, bwork,
 info);[image: End of change]

 [image: Start of change]cggevx | zggevx (balanc,
 jobvl, jobvr, sense, n,
 a, lda, b, ldb,
 alpha, beta, vl, ldvl,
 vr, ldvr, ilo, ihi,
 lscale, rscale, abnrm,
 bbnrm, rconde, rcondv,
 work, lwork, rwork,
 iwork, bwork, info);[image: End of change]

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sggev | LAPACKE_dggev (matrix_layout,
 jobvl, jobvr, n, a,
 lda, b, ldb, alphar,
 alphai, beta, vl, ldvl,
 vr, ldvr);
 info = LAPACKE_cggev | LAPACKE_zggev
 (matrix_layout, jobvl, jobvr,
 n, a, lda, b,
 ldb, alpha, beta, vl,
 ldvl, vr, ldvr);

 info =
 LAPACKE_sggevx | LAPACKE_dggevx (matrix_layout, balanc,
 jobvl, jobvr, sense, n,
 a, lda, b, ldb,
 alphar, alphai, beta,
 vl, ldvl, vr, ldvr,
 ilo, ihi, lscale,
 rscale, abnrm, bbnrm,
 rconde, rcondv);

 info = LAPACKE_cggevx | LAPACKE_zggevx
 (matrix_layout, balanc, jobvl,
 jobvr, sense, n, a,
 lda, b, ldb, alpha,
 beta, vl, ldvl, vr,
 ldvr, ilo, ihi, lscale,
 rscale, abnrm, bbnrm,
 rconde, rcondv);

 [image: End of change]

 	On Entry

 	

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	[image: Start of change]balanc[image: End of change]

 	[image: Start of change]indicates whether or not to scale A diagonally and whether or not to permute its
 rows and columns to improve the conditioning of its eigenvalues, where balanc can
 have any of the following values:

 	N

 	Neither diagonally scale nor permute A.

 	P

 	Permute A, but do not diagonally scale it.

 	S

 	Diagonally scale A, but do not permute it.

 	B

 	Both diagonally scale and permute A.

 When diagonal scaling is specified, the subroutine replaces A with
 DAD-1 where D is a diagonal
 matrix chosen to make the rows and columns of A more equal in norm and the condition
 numbers of its eigenvalues and eigenvectors smaller.

 When permuting is specified, the subroutine makes A more nearly upper
 triangular.

 The computed reciprocal condition numbers correspond to the balanced matrix. In exact arithmetic,
 permuting rows and columns does not change the condition numbers, but diagonal scaling does change
 the condition numbers.

 Specified as: a single character. It must be 'N', 'P', 'S', or 'B'.

 [image: End of change]

 	jobvl

 	indicates the type of computation to be performed, where:
 If jobvl = 'N', the left eigenvectors are not
 computed.

 If jobvl = 'V', the left eigenvectors are computed.

 Specified as: a single character. It must be 'N' or 'V'.

 	jobvr

 	indicates the type of computation to be performed, where:
 If jobvr = 'N', the right eigenvectors are not
 computed.

 If jobvr = 'V', the right eigenvectors are computed.

 Specified as: a single character. It must be 'N' or 'V'.

 	[image: Start of change]sense[image: End of change]

 	[image: Start of change]indicates which reciprocal numbers to compute (if any), where sense can have
 any of the following values:

 	N

 	Do not compute reciprocal condition numbers.

 	E

 	Compute reciprocal condition numbers for eigenvalues only.

 	V

 	Compute reciprocal condition numbers for right eigenvectors only.

 	B

 	Compute reciprocal condition numbers for eigenvalues and right eigenvectors.

 Specified as: a single character. It must be 'N', 'E', 'V', or 'B'.[image: End of change]

 	n

 	is the order of the general matrices A and B.
 Specified as: an
 integer; n ≥ 0.

 	a

 	is the general matrix A of order n.
 Specified as: an
 lda by (at least) n array, containing numbers of the data type
 indicated in Table 193.

 	lda

 	is the leading dimension of the array specified for matrix A.
 Specified as: an
 integer; lda > 0 and lda ≥ n.

 	b

 	is the general matrix B of order n.
 Specified as: an
 ldb by (at least) n array, containing numbers of the data type
 indicated in Table 193.

 	ldb

 	is the leading dimension of the array specified for matrix B.
 Specified as: an
 integer; ldb > 0 and ldb ≥ n.

 	alphar

 	See On Return.

 	alphai

 	See On Return.

 	alpha

 	See On Return.

 	beta

 	See On Return.

 	vl

 	See On Return.

 	ldvl

 	is the leading dimension of the array specified for vl.
 Specified as: an
 integer; ldvl > 0; if jobvl = 'V', ldvl ≥ n.

 	vr

 	See On Return.

 	ldvr

 	is the leading dimension of the array specified for vr.
 Specified as: an
 integer; ldvr > 0; if jobvr = 'V', ldvr ≥ n.

 	[image: Start of change]ilo[image: End of change]

 	[image: Start of change]See On Return.[image: End of change]

 	[image: Start of change]ihi[image: End of change]

 	[image: Start of change]See On Return.[image: End of change]

 	[image: Start of change]lscale[image: End of change]

 	[image: Start of change]See On Return.[image: End of change]

 	[image: Start of change]rscale[image: End of change]

 	[image: Start of change]See On Return.[image: End of change]

 	[image: Start of change]abnrm[image: End of change]

 	[image: Start of change]See On Return.[image: End of change]

 	[image: Start of change]bbnrm[image: End of change]

 	[image: Start of change]See On Return.[image: End of change]

 	[image: Start of change]rconde[image: End of change]

 	[image: Start of change]See On Return.[image: End of change]

 	[image: Start of change]rcondv[image: End of change]

 	[image: Start of change]See On Return.[image: End of change]

 	work

 	is the storage work area used by this subroutine. Its size is specified by
 lwork.
 Specified as: an area of storage, containing numbers of the data type
 indicated in Table 193.

 	lwork

 	is the number of elements in array WORK.
 Specified as an integer, where:

 	If lwork = 0, the subroutine dynamically allocates the workspace needed for
 use during this computation. The dynamically allocated workspace will be freed prior to returning
 control to the calling program.

 	If lwork = -1, a workspace query is assumed. The subroutine only calculates
 the optimal size of the WORK array and returns this value as the first entry of the
 WORK array.

 Otherwise:

 	For SGGEV and DGGEV:

 	lwork ≥ max(1,
 8n)

 	For CGGEV and ZGGEV:

 	lwork ≥ max(1,
 2n)

 	[image: Start of change]For [image: Start of change]SGGEVX and DGGEVX[image: End of change]:

 	If sense = 'N':

 	If balanc = 'N' or 'P' and jobvl = 'N' and
 jobvr = 'N', lwork ≥ max(1,2n)
 ;
Otherwise, lwork ≥ max(1,6n)

 	If balanc = 'S' or 'B' or if jobvl = 'V' or
 jobvr = 'V', lwork ≥ max(1, 6n)

 	If sense = 'N', lwork ≥ max(1, 2n)

 	If sense = 'E', lwork ≥ max(1, 10n)

 	If sense = 'V' or 'B', lwork ≥ 2n2+8n+16

 [image: End of change]

 	[image: Start of change]For [image: Start of change]CGGEVX and ZGGEVX[image: End of change]:

 	If sense = 'N', lwork ≥ max(1, 2n)

 	If sense = 'E', lwork ≥ max(1, 4n)

 	If sense = 'V' or 'B', lwork ≥ max(1,2n(n+1))

 [image: End of change]

 These formulas represent the minimum workspace required. For best performance, specify either
 lwork = -1 (to obtain the optimal size to use) or lwork = 0
 (to direct the subroutine to dynamically allocate the workspace).

 	[image: Start of change]rwork[image: End of change]

 	[image: Start of change]For CGGEV, and ZGGEV, rwork is a storage work area of size
 8n.
 [image: Start of change]For CGEEVX, and ZGGEVX, if balanc = 'S' or
 'B', rwork must be at least max(1,6n). Otherwise,
 rwork is of size max(1,2n).[image: End of change]

 Specified as: an area of
 storage containing numbers of the data type indicated in Table 193.

 [image: End of change]

 	[image: Start of change]iwork[image: End of change]

 	[image: Start of change]For SGGEVX and DGGEVX, iwork is a storage work area of
 n+6.
 For CGEEVX and ZGGEVX, iwork is a storage work area of
 size 2n-2.

 If sense = 'N' or 'E',
 iwork is not referenced by the subroutine.

 Specified as: an area of storage
 containing logical values of the data type indicated in Table 193.

 [image: End of change]

 	[image: Start of change]bwork[image: End of change]

 	[image: Start of change]is a storage work area of size n. If sense = 'N',
 bwork is not referenced by the subroutine.
 Specified as: an area of storage
 containing numbers of the data type indicated in Table 193.

 [image: End of change]

 	On Return

 	

 	[image: Start of change]a[image: End of change]

 	[image: Start of change]is the updated general matrix A of order n. On output,
 A is overwritten; that is, the original input is not preserved.

 	For SGGEVX, DGGEVX, CGGEVX, and ZGGEVX, if jobvl ='V' or jobvr ='V' and balanc
 ≠ 'N', A contains the Schur form of
 the balanced matrices.

 Returned as: an lda by (at least) n array, containing
 numbers of the data type indicated in Table 193.

 [image: End of change]

 	[image: Start of change]b[image: End of change]

 	[image: Start of change]is the updated general matrix B of order n. On output,
 B is overwritten; that is, the original input is not preserved.

 	For SGGEVX, DGGEVX, CGGEVX, and ZGGEVX, if jobvl ='V' or jobvr ='V' and balanc
 ≠ 'N', B contains the Schur form of
 the balanced matrices.

 Returned as: an lda by (at least) n array, containing
 numbers of the data type indicated in Table 193.

 [image: End of change]

 	alphar

 	is the vector of length n, containing the real part of the numerators of the
 eigenvalues. For details, see Function.
 Returned as: an array of (at
 least) length n, containing numbers of the data type indicated in Table 193.

 	alphai

 	is the vector of length n, containing the imaginary part of the numerators of
 the eigenvalues. For details, see FunctionReturned as: an array of (at least) length
 n, containing numbers of the data type indicated in Table 193.

 	alpha

 	is the vector α of length
 n, containing the numerators of the eigenvalues. For details, see FunctionReturned as: an array of (at least)
 length n, containing numbers of the data type indicated in Table 193.

 	beta

 	is the vector β
 of length n, containing the denominators of the
 eigenvalues. For details, see FunctionReturned as: an
 array of (at least) length n, containing numbers of the
 data type indicated in Table 193.

 	vl

 	contains the left eigenvectors.

 	For SGGEV, DGGEV, [image: Start of change]SGGEVX, and DGGEVX[image: End of change]:

 	If jobvl = 'V', the left eigenvectors are stored in the columns of
 vl, in the same order as their eigenvalues.

 	If the j-th eigenvalue is real or complex, then the j-th
 column of vl contains its eigenvector.

 	If the j-th and (j+1)-th eigenvalues form a complex
 conjugate pair, then the j-th and (j+1)-th columns of
 vl contain the real and imaginary parts of the eigenvector corresponding to the
 j-th eigenvalue. The conjugate of this eigenvector is the eigenvector for the
 (j+1)-th eigenvalue.

 	If jobvl = 'N', vl is not referenced.

 	For CGGEV, ZGGEV, [image: Start of change]CGGEVX, and ZGGEVX[image: End of change]:

 	If jobvl = 'V', the left eigenvectors are stored in the columns of
 vl, in the same order as their eigenvalues.

 	If jobvl = 'N', vl is not referenced.

 Returned as: an array of size (ldvl, n) containing numbers
 of the data type indicated in Table 193.

 	vr

 	contains the right eigenvectors.

 	For SGGEV, DGGEV, [image: Start of change]SGGEVX, and DGGEVX[image: End of change]:

 	If jobvr = 'V', the right eigenvectors are stored in the columns of
 vr, in the same order as their eigenvalues.

 	If the j-th eigenvalue is real or complex, then the j-th
 column of vr contains its eigenvector.

 	If the j-th and (j+1)-th eigenvalues form a complex
 conjugate pair, then the j-th and (j+1)-th columns of
 vr contain the real and imaginary parts of the eigenvector corresponding to the
 j-th eigenvalue. The conjugate of this eigenvector is the eigenvector for the
 (j+1)-th eigenvalue.

 	If jobvr = 'N', vr is not referenced.

 	For CGGEV, ZGGEV, [image: Start of change]CGGEVX, and ZGGEVX[image: End of change]:

 	If jobvr = 'V', the right eigenvectors are stored in the columns of
 vr, in the same order as their eigenvalues.

 	If jobvr = 'N', vr is not referenced.

 Returned as: an array of size (ldvr, n) containing numbers
 of the data type indicated in Table 193.

 	[image: Start of change]ilo[image: End of change]

 	[image: Start of change]has the following meaning:
 If balanc = 'N', ilo = 1.

 Otherwise, the value of ilo is determined when A is
 balanced.

 The balanced aij = 0 if i > j and
 j = 1, …, (ilo-1) or
 i = (ihi+1), …,
 n.

 Returned as: an integer; 1 ≤ ilo ≤ n.

 [image: End of change]

 	[image: Start of change]ihi[image: End of change]

 	[image: Start of change]has the following meaning:
 If balanc = 'N', ihi = n.

 Otherwise, the value of ihi is determined when A is
 balanced.

 The balanced aij = 0 if i > j and
 j = 1, …, (ilo-1) or
 i = (ihi+1), …,
 n.

 Returned as: an integer; 1 ≤ ihi ≤ n.

 [image: End of change]

 	[image: Start of change]lscale[image: End of change]

 	[image: Start of change]contains the details of the permutations and scaling factors applied to the left side when
 balancing A and B.
 If
 plj is the index of the row and column interchanged
 with row and column j, and dlj
 is the scaling factor applied to row and column j, then:

 	lscalej =
 plj, for j = 1, …, (ilo-1)

 	lscalej =
 dlj, for j = ilo, …, ihi

 	lscalej =
 plj, for j = (ihi+1), …, n

 Returned as: a one-dimensional array of (at least) length n containing numbers
 of the data type indicated in Table 193.

 [image: End of change]

 	[image: Start of change]rscale[image: End of change]

 	[image: Start of change]contains the details of the permutations and scaling factors applied to the right side when
 balancing A and B.
 If
 prj is the index of the row and column interchanged
 with row and column j, and drj
 is the scaling factor applied to row and column j, then:

 	rscalej =
 prj, for j = 1, …, (ilo-1)

 	rscalej =
 drj, for j = ilo, …, ihi

 	rscalej =
 prj, for j = (ihi+1), …, n

 Returned as: a one-dimensional array of (at least) length n containing numbers
 of the data type indicated in Table 193.

 [image: End of change]

 	[image: Start of change]abnrm[image: End of change]

 	[image: Start of change]is the one-norm of the balanced matrix (the maximum of the sum of absolute values of elements of
 any column).
 Returned as: a number of the data type indicated in Table 193; abnrm ≥ 0.

 [image: End of change]

 	[image: Start of change]bbnrm[image: End of change]

 	[image: Start of change]is the one-norm of the balanced matrix (the maximum of the sum of absolute values of elements of
 any column).
 Returned as: a number of the data type indicated in Table 193; bbnrm ≥ 0.

 [image: End of change]

 	[image: Start of change]rconde[image: End of change]

 	[image: Start of change]contains the computed reciprocal condition numbers of the eigenvalues, where
 rcondej is the reciprocal condition number of the
 jth eigenvalue.
 Returned as: an array of dimension n
 containing numbers of the data type indicated in Table 193.

 [image: End of change]

 	[image: Start of change]rcondv[image: End of change]

 	[image: Start of change]contains the computed reciprocal condition numbers of the eigenvectors, where
 rcondvj is the reciprocal condition number of the
 jth right eigenvector.
 Returned as: an array of dimension n
 containing numbers of the data type indicated in Table 193.

 [image: End of change]

 	work

 	is the work area used by this subroutine if lwork
 ≠ 0, where:
 If lwork ≠ 0 and lwork ≠ -1, its size is (at least) of length
 lwork.

 If lwork
 = -1, its size is (at least) of
 length 1.

 Returned as: an area of storage, where:

 If lwork ≥ 1 or
 lwork = -1,
 then work1 is set to the optimal lwork value and
 contains numbers of the data type indicated in Table 193.

 Except for work1, the contents of work are
 overwritten on return.

 	info

 	 If info = 0, the subroutine completed successfully.
 If 1 ≤ info
 ≤ n, the QZ algorithm
 failed to compute all the eigenvalues, and no eigenvectors were computed. However:

 	[image: Start of change]For SGGEV, DGGEV, SGGEVX, DGGEVX, LAPACKE_sggev, LAPACKE_dggev, LAPACKE_sggevx, and
 LAPACKE_dggevx, alpharj,
 alphaij, betaj are valid for j =
 (info+1,...,n)[image: End of change]

 	[image: Start of change]For CGGEV, ZGGEV, CGGEVX, ZGGEVX, LAPACKE_cggev, LAPACKE_zggev, LAPACKE_cggevx, and
 LAPACKE_zggevx, alphaj and
 betaj are valid for
 j = (info+1,...,n)[image: End of change]

 If info = n + 1, the eigenvalues failed to
 converge in the computation of shifts.

 If info = n + 2,
 the eigenvectors failed to converge because the 2-by-2 block did not have a complex eigenvalue.

 [image: Start of change]Returned as:

 	For SGGEV, DGGEV, CGGEV, ZGGEV, SGGEVX, DGGEVX, and ZGGEVX, returned as: an integer; info ≥ 0.

 	For LAPACKE_sggev, LAPACKE_dggev, LAPACKE_cggev, LAPACKE_zggev, LAPACKE_sggevx, LAPACKE_dggevx,
 LAPACKE_cggevx, and LAPACKE_zggevx returned as an integer function value; info ≥ 0.

 [image: End of change]

 Notes

 	The vectors and matrices used in the computation must have no common elements; otherwise,
 results are unpredictable.

 	[image: Start of change]These subroutines accept lowercase letters for the balanc,
 jobvl, jobvr, and sense arguments.[image: End of change]

 	When you specify jobvl = 'N', you must specify a dummy argument
 for vl.

 	When you specify jobvr = 'N', you must specify a dummy argument
 for vr.

 	These subroutines accept lowercase letters for the jobvl and jobvr arguments.

 	[image: Start of change]When you specify sense = 'N', you must specify a dummy argument for
 rconde.[image: End of change]

 	[image: Start of change]When you specify sense = 'N' or 'E', you must specify dummy arguments for
 rcondv and iwork.[image: End of change]

 	[image: Start of change]In your C program, the ilo, ihi,
 abnrm, info arguments must be passed by reference.[image: End of change]

 	In your C program, the info arguments must
 be passed by reference.

 	For best performance, specify lwork = 0.

 	The eigenvalue quotients might easily over- or underflow, and β might
 be zero. However, α is always less than and usually
 comparable with NORM(A) in magnitude, and β is always less than and usually comparable
 with NORM(B) in magnitude.

 Function

 	SGGEV, DGGEV, CGGEV, and ZGGEV compute the eigenvalues and, optionally, the left and/or right
 eigenvectors of a general matrix generalized eigenproblem.

 	[image: Start of change]SGGEVX, DGGEVX, CGGEVX, and ZGGEVX compute the eigenvalues and, optionally, right
 eigenvectors, left eigenvectors, reciprocal condition numbers for eigenvalues, and reciprocal
 condition numbers for right eigenvectors of a general matrix generalized eigenproblem.[image: End of change]

 For the left eigenvectors:

 vlHA =
 λvlHB

 For the right eigenvectors:

 Avr = λBvr

 The eigenvalues are returned in two parts, α and β,
 where:

 For SGGEV, DGGEV, [image: Start of change]SGGEVX, and DGGEVX[image: End of change], α and β
 are returned in vectors alphar,
 alphai, and beta, where alphar contains the
 real part of α and
 alphai contains the imaginary part of α.

 	If alphaij = 0, then the
 j-th eigenvalue is real.

 	If alphaij > 0, then the
 j-th and (j+1)-th eigenvalues are a complex conjugate
 pair.

 For CGGEV, ZGGEV, [image: Start of change]CGGEVX, and ZGGEVX[image: End of change], α and β
 are returned in vectors alpha and
 beta.

 For SGGEV, DGGEV, [image: Start of change]SGGEVX, and DGGEVX[image: End of change]:

 	If alphaij = 0, then the
 j-th eigenvalue is real:

 	αj = alpharj

 	βj = betaj

 	If alphaij > 0, then the
 j-th and (j+1)-th eigenvalues αj+1 are a
 complex conjugate pair:

 	αj = (alpharj,
 alphaij)

 	βj = betaj

 	αj+1 = (alpharj,
 -alphaij)

 	βj+1 = betaj

 For CGGEV, ZGGEV, [image: Start of change]CGGEVX, and ZGGEVX[image: End of change]:

 	αj = alphaj

 	βj = betaj

 Left eigenvectors are returned in matrix VL and right eigenvectors are returned in
 matrix VR.

 [image: Start of change]For SGGEV, DGGEV, CGGEV, and ZGGEV[image: End of change], the computation involves the following steps:

 	If necessary, scale the matrices A and B.

 	Balance the matrices A and B.

 	Reduce the balanced matrix A to an upper Hessenberg matrix and reduce the balanced
 matrix B to an upper triangular form.

 	Compute the eigenvalues of the Hessenberg-triangular pair, using the QZ algorithm.

 	If desired, compute the eigenvectors.

 	Undo balancing.

 	If necessary, undo scaling.

 [image: Start of change]For SGGEVX, DGGEVX, CGGEVX, and ZGGEVX, the computation involves the following steps:

 	If necessary, scale the matrices A and B.

 	Balance the matrices A and B.

 	Reduce the balanced matrix A to triangular form.

 	Apply the unitary transformation to matrix A.

 	Reduce the matrix pair (A,B) to generalized Hessenberg form.

 	Compute the eigenvalues and eigenvectors using the QZ algorithm and estimate condition numbers,
 if desired.

 	Undo balancing.

 	If necessary, undo scaling.

 [image: End of change]

 If n = 0, no
 computation is performed and the subroutine returns after doing some parameter checking.

 [image: Start of change]For more information, see references [[image: Start of change]14[image: End of change]], [[image: Start of change]15[image: End of change]], 47], [51], [55], [[image: Start of change]65[image: End of change]], [66], [69], [73], [74], [85], [86], [100], [106], [116], [118], and [119].[image: End of change]

 Error conditions

 	Resource Errors

 	lwork = 0, and unable to allocate work area.

 	Computational Errors

 	

 	If 1 ≤ info ≤ n,
 the QZ algorithm failed to compute all the eigenvalues, and no eigenvectors
 were computed.

 	If info = n + 1, the eigenvalues
 failed to converge in the computation of shifts.

 	If info = n + 2, the eigenvectors
 failed to converge because the 2-by-2 block did not have a complex
 eigenvalue.

 	Input-Argument Errors

 	

 	[image: Start of change]balanc ≠ 'N', 'S',
 'P', or 'B'[image: End of change]

 	jobvl ≠ 'N', or 'V'

 	jobvr ≠ 'N', or 'V'

 	sense ≠ 'N', 'E', 'V', or
 'B'

 	n < 0

 	lda ≤ 0

 	n > lda

 	ldb ≤ 0

 	n > ldb

 	ldvl ≤ 0

 	n > ldvl and jobvl =
 'V'

 	ldvr ≤ 0

 	n > ldvr and jobvr =
 'V'

 	[image: Start of change]jobvl ='V' and ldvl
 ≤ 0[image: End of change]

 	[image: Start of change]jobvr ='V' and ldvr
 ≤ 0[image: End of change]

 	[image: Start of change]jobvl ='V' and ldvl <
 n[image: End of change]

 	[image: Start of change]jobvr ='V' and ldvr <
 n[image: End of change]

 	lwork ≠ 0 and lwork ≠ -1 and lwork < the
 minimum required value.

 	[image: Start of change]The size of a work array is greater than 2147483647 when 32-bit integers are
 used.[image: End of change]

 Examples

 	Example 1

 	
 This example shows how to find the eigenvalues only of a
 long-precision real generalized eigenproblem (A, B).
 Note:

 	ldvl and ldvr are set to
 1 to avoid an error condition.

 	On output, matrices A and B are overwritten.

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 Call Statement and Input: JOBVL JOBVR N A LDA B LDB ALPHAR ALPHAI BETA VL LDVL VR LDVR WORK LWORK INFO
 | | | | | | | | | | | | | | | | |
 CALL DGGEV('N', 'N', 3, A, 3, B, 3, ALPHAR, ALPHAI, BETA, VL, 1, VR, 1, WORK, 0, INFO)

 ┌ ┐
 | 10.0 1.0 2.0 |
A = | 1.0 2.0 -1.0 |
 | 1.0 1.0 2.0 |
 └ ┘

 ┌ ┐
 | 1.0 2.0 3.0 |
B = | 4.0 5.0 6.0 |
 | 7.0 8.0 9.0 |
 └ ┘

 Output: ┌ ┐
 | 2.092346 |
ALPHAR = | -4.789188 |
 | 4.490731 |
 └ ┘

 ┌ ┐
 | 0.000000 |
ALPHAI = | 0.000000 |
 | 0.000000 |
 └ ┘

 ┌ ┐
 | 12.711351 |
BETA = | 0.998541 |
 | 0.000000 |
 └ ┘

 INFO = 0

 	Example 2

 	
 This example shows how to find the eigenvalues and the left
 and right eigenvectors of a long-precision real generalized eigenproblem
 (A, B).
 Note:

 	On output, matrices A and B are overwritten.

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 	This matrix is used on page 263 in referenced text [5].

 Call Statement and Input: JOBVL JOBVR N A LDA B LDB ALPHAR ALPHAI BETA VL LDVL VR LDVR WORK LWORK INFO
 | | | | | | | | | | | | | | | | |
 CALL DGGEV('V', 'V', 5, A, 5, B, 5, ALPHAR, ALPHAI, BETA, VL, 1, VR, 1, WORK, 0, INFO)

 ┌ ┐
 | 2.0 3.0 4.0 5.0 6.0|
A = | 4.0 4.0 5.0 6.0 7.0|
 | 0.0 3.0 6.0 7.0 8.0|
 | 0.0 0.0 2.0 8.0 9.0|
 | 0.0 0.0 0.0 1.0 10.0|
 └ ┘

 ┌ ┐
 | 1.0 -1.0 -1.0 -1.0 -1.0|
B = | 0.0 1.0 -1.0 -1.0 -1.0|
 | 0.0 0.0 1.0 -1.0 -1.0|
 | 0.0 0.0 0.0 1.0 -1.0|
 | 0.0 0.0 0.0 0.0 1.0|
 └ ┘

 Output: ┌ ┐
 | 7.950050 |
 | -0.277338 |
ALPHAR = | 2.149669 |
 | 6.720718 |
 | 10.987556 |
 └ ┘

 ┌ ┐
 | 0.000000 |
 | 0.000000 |
ALPHAI = | 0.000000 |
 | 0.000000 |
 | 0.000000 |
 └ ┘

 ┌ ┐
 | 0.374183 |
 | 1.480299 |
BETA = | 1.636872 |
 | 1.213574 |
 | 0.908837 |
 └ ┘

 ┌ ┐
 | -0.003801 1.000000 -0.778812 -0.032145 -0.005114 |
 | -0.018291 -0.546838 0.133707 -0.028432 -0.012900 |
VL = | -0.074427 -0.174281 1.000000 0.076908 -0.009062 |
 | -0.279354 -0.051285 -0.696402 0.285338 0.123783 |
 | -1.000000 -0.026864 0.282389 -1.000000 1.000000 |
 └ ┘

 ┌ ┐
 | -1.000000 0.483408 -0.540696 -1.000000 -1.000000 |
 | -0.565497 -1.000000 -0.684441 -0.722065 -0.610415 |
VR = | -0.180429 0.661372 1.000000 0.089003 -0.116987 |
 | -0.034182 -0.180646 -0.363671 0.223599 0.038979 |
 | -0.003039 0.017732 0.041865 -0.050111 0.018653 |
 └ ┘

 INFO = 0

 	Example 3

 	
 This example shows how to find the eigenvalues only of a
 long-precision complex generalized eigenproblem (A, B).
 Note:

 	ldvl and ldvr have been
 set to 1 to avoid an error condition.

 	On output, matrices A and B are overwritten.

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 Call Statement and Input: JOBVL JOBVR N A LDA B LDB ALPHAR ALPHAI BETA VL LDVL VR LDVR WORK LWORK RWORK INFO
 | | | | | | | | | | | | | | | | | |
 CALL ZGGEV('N', 'N', 4, A, 4, B, 4, ALPHAR, ALPHAI, BETA, VL, 1, VR, 1, WORK, 0, RWORK, INFO)

 ┌ ┐
 | (2, 4) (1, 6) (2, 8) (4, 4) |
 A = | (3, 3) (6, 1) (5, 3) (0, 0) |
 | (5, 1) (8, 5) (3, 2) (8, 5) |
 | (7, 6) (3, 7) (2, 1) (5, 4) |
 └ ┘

 ┌ ┐
 | (0, 0) (1, 0) (0, 0) (0, 0) |
B = | (0, 0) (0, 0) (1, 0) (0, 0) |
 | (0, 0) (0, 0) (0, 0) (1, 0) |
 | (1, 0) (0, 0) (0, 0) (0, 0) |
 └ ┘

 Output: ┌ ┐
 | (15.8864, 15.0474) |
ALPHA = | (7.0401, 2.0585) |
 | (1.7083, 4.1133) |
 | (-3.6348, -1.2193) |
 └ ┘

 ┌ ┐
 | (1.0, 0.0) |
BETA = | (1.0, 0.0) |
 | (1.0, 0.0) |
 | (1.0, 0.0) |
 └ ┘

 INFO = 0

 	Example 4

 	
 This example shows how to find the eigenvalues and the left and right eigenvectors of a
 long-precision complex eigenproblem (A, B).
 Note:

 	On output, matrices A and B are overwritten.

 	Because lwork = 0, the subroutine dynamically allocates
 WORK.

 	This matrix is used on page 263 in referenced text [5].

 Call Statement and Input: JOBVL JOBVR N A LDA B LDB ALPHAR ALPHAI BETA VL LDVL VR LDVR WORK LWORK RWORK INFO
 | | | | | | | | | | | | | | | | | |
 CALL ZGGEV('V', 'V', 3, A, 3, B, 3, ALPHAR, ALPHAI, BETA, VL, 3, VR, 3, WORK, 0, RWORK, INFO)

 ┌ ┐
 | (1.0, 2.0) (3.0, 4.0) (21.0,22.0) |
A = | (43.0,44.0) (13.0,14.0) (15.0,16.0) |
 | (5.0, 6.0) (7.0, 8.0) (25.0,26.0) |
 └ ┘

 ┌ ┐
 | (2.0, 0.0) (0.0,-1.0) (0.0, 0.0) |
B = | (0.0, 1.0) (2.0, 0.0) (0.0, 0.0) |
 | (0.0, 0.0) (0.0, 0.0) (3.0, 0.0) |
 └ ┘

 Output: ┌ ┐
 | (15.863783, 41.115283) |
ALPHA = | (-12.917205, 19.973815) |
 | (3.215518, -4.912439) |
 └ ┘

 ┌ ┐
 | (1.668461, 0.0) |
BETA = | (2.024212, 0.0) |
 | (2.664836, 0.0) |
 └ ┘

 ┌ ┐
 | (0.0634, -0.8686) (0.8988, -0.1012) (-0.6456, -0.3544) |
VL = | (-0.3652, -0.3826) (0.0108, -0.3479) (0.0001, -0.0852) |
 | (0.3605, -0.6395) (-0.2029, 0.6348) (0.4537, 0.4128) |
 └ ┘

 ┌ ┐
 | (0.3799, -0.1986) (0.2712, -0.0943) (-0.1470, 0.1422) |
VR = | (0.0132, -0.9868) (-0.5085, -0.4915) (0.3239, -0.6761) |
 | (-0.0976, -0.2383) (-0.0633, 0.1388) (-0.0395, 0.1663) |
 └ ┘

 INFO = 0

 	[image: Start of change]Example 5[image: End of change]

 	[image: Start of change]This example shows how to find the eigenvalues, the left and right eigenvectors, and the
 reciprocal condition numbers of the eigenvalues and right eigenvectors of a long-precision real
 generalized eigenproblem (A,B).
 Note:

 	On output, matrices A and B are overwritten.

 	Because lwork = 0, the subroutine dynamically allocates
 WORK.

 Call Statement and Input: BALANC JOBVL JOBVR SENSE N A LDA B LDB ALPHAR ALPHAI BETA VL LDVL VR LDVR ILO IHI LSCALE RSCALE
 | | | | | | | | | | | | | | | | | | | |
 CALL DGGEVX('P', 'V', 'V', 'B', 6, A, 6, B, 6, ALPHAR, ALPHAI, BETA, VL, 6, VR, 6, ILO, IHI, LSCALE, RSCALE,

 ABNRM BBNRM RCONDE RCONDV WORK LWORK IWORK BWORK INFO
 | | | | | | | | |
 ABNRM, BBNRM, RCONDE, RCONDV, WORK, 0, IWORK BWORK, INFO)

 ┌ ┐
 | 9.0 98.0 1.0 96.0 30.0 94.0 |
 | 1.0 92.0 91.0 90.0 8.0 88.0 |
A = | 66.0 1.0 68.0 0.0 40.0 1.0 |
 | 0.0 1.0 64.0 50.0 66.0 1.0 |
 | 10.0 0.0 10.0 86.0 8.0 10.0 |
 | 8.0 1.0 20.0 12.0 20.0 15.0 |
 └ ┘

 ┌ ┐
 | 21.0 24.0 9.0 22.0 25.0 18.0 |
 | 19.0 9.0 20.0 25.0 15.0 6.0 |
B = | 5.0 4.0 9.0 14.0 2 .0 21.0 |
 | 18.0 7.0 8.0 24.0 9.0 1.0 |
 | 15.0 20.0 9.0 1.0 14.0 24.0 |
 | 21.0 23.0 9.0 14.0 88.0 88.0 |
 └ ┘

 Output: ┌ ┐
 | 64.6956 |
 | 55.0897 |
ALPHAR = | -28.2595 |
 | -0.0472 |
 | -0.0437 |
 | 13.8550 |
 └ ┘

 ┌ ┐
 | 70.4260 |
 | -59.9693 |
ALPHAI = | 0.0000 |
 | 28.9059 |
 | -26.7715 |
 | 0.0000 |
 └ ┘

 ┌ ┐
 | 15.2997 |
 | 13.0280 |
BETA = | 15.2267 |
 | 26.2607 |
 | 24.3216 |
 | 47.4385 |
 └ ┘

 ┌ ┐
 | -0.8391 0.3207 -0.5181 0.5129 0.1237 0.1230 |
 | -0.1545 0.6066 0.0489 -0.4870 0.0269 -0.0401 |
VL = | -0.5621 0.6337 -1.0000 -0.3687 0.5350 0.1137 |
 | -0.2946 0.2303 -0.5078 0.4050 -0.2545 0.1577 |
 | -0.4076 0.5085 -0.4921 -0.1974 -0.0241 0.0910 |
 | -0.7701 0.8407 -1.0000 -0.4524 0.0892 0.9064 |
 └ ┘

 ┌ ┐
 | 0.8937 -0.6723 -0.1299 -0.2564 -0.3186 0.3349 |
 | 0.1062 0.0314 0.5842 0.0377 -0.0345 -0.0360 |
VR = | 1.0000 0.4950 0.1818 -0.5869 0.0451 -0.3523 |
 | -0.9722 0.0642 -0.0423 0.1502 0.1791 -0.0818 |
 | -0.0277 -0.1835 -0.0507 -0.1421 -0.1836 0.2469 |
 | 0.0654 -0.8883 0.0497 -0.1390 0.1957 1.0000 |
 └ ┘

 ┌ ┐
 | 27.2117 |
 | 27.2117 |
RCONDE = | 11.8821 |
 | 6.6118 |
 | 6.6118 |
 | 26.3358 |
 └ ┘

 ┌ ┐
 | 0.1657 |
 | 0.1657 |
RCONDV = | 5.2466 |
 | 1.8139 |
 | 1.8139 |
 | 6.5921 |
 └ ┘

 INFO = 0

 [image: End of change]

 	[image: Start of change]Example 6[image: End of change]

 	[image: Start of change]This example shows how to find the eigenvalues, the left and right eigenvectors, and the
 reciprocal condition numbers of the eigenvalues and right eigenvectors of a long-precision complex
 generalized eigenproblem (A,B).
 Note:

 	On output, matrices A and B are overwritten.

 	Because lwork = 0, the subroutine dynamically allocates
 WORK.

 Call Statement and Input: BALANC JOBVL JOBVR SENSE N A LDA B LDB ALPHA BETA VL LDVL VR LDVR ILO IHI LSCALE RSCALE
 | | | | | | | | | | | | | | | | | | |
 CALL ZGGEVX('S', 'V', 'V', 'B', 3, A, 3, B, 3, ALPHA, BETA, VL, 3, VR, 3, ILO, IHI, LSCALE, RSCALE,

 ABNRM BBNRM RCONDE RCONDV WORK LWORK RWORK IWORK BWORK INFO
 | | | | | | | | |
 ABNRM, BBNRM, RCONDE, RCONDV, WORK, 0, RWORK, IWORK BWORK, INFO)

 ┌ ┐
 | (10.0, 1.0) (1.0, 0.0) (2.0,-1.0) |
A = | (1.0, 2.5) (2.0,-1.0) (-1.0, 0.0) |
 | (1.0, 0.0) (1.0, 0.0) (2.0, 1.5) |
 └ ┘

 ┌ ┐
 | (1.0, 0.0) (2.0, 0.0) (3.0, 0.0) |
B = | (4.0, 1.0) (5.0,-5.0) (6.0,-2.0) |
 | (7.0, 5.0) (8.0,-8.0) (9.0, 0.5) |
 └ ┘

 Output: ┌ ┐
 | (-6.6742, -0.5632) |
ALPHA = | (2.1073, 1.6591) |
 | (1.2922, -3.5963) |
 └ ┘

 ┌ ┐
 | (0.4561, 0.0000) |
BETA = | (17.7898, 0.0000) |
 | (1.9190, 0.0000) |
 └ ┘

 ┌ ┐
 | (0.7337, 0.0000) (0.1686, 0.0647) (0.9185, 0.0814) |
VL = | (0.0000, 0.0000) (0.0000, 0.0000) (1.0000, 0.0000) |
 | (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) |
 └ ┘

 ┌ ┐
 | (1.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) |
VR = | (-0.1260, -0.8739) (0.1299, -0.2557) (0.6423, 0.0000) |
 | (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) |
 └ ┘

 ┌ ┐
 | 4.1319 |
RCONDE = | 15.2697 |
 | 2.4329 |
 └ ┘

 ┌ ┐
 | 3.0489 |
RCONDV = | 4.1998 |
 | 2.3870 |
 └ ┘

 INFO = 0

 [image: End of change]

 Parent topic: Eigensystem Analysis

 SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX, DSYGVX, CHEGVX, and
 ZHEGVX (Eigenvalues and, Optionally, the Eigenvectors of a Positive
 Definite Real Symmetric or Complex Hermitian Generalized Eigenproblem)

 Purpose

 These subroutines compute eigenvalues
 and, optionally, the eigenvectors of a positive definite real symmetric
 or complex Hermitian generalized eigenproblem:

 	If itype = 1, the problem is Ax = λBx

 	If itype = 2, the problem is ABx = λx

 	If itype = 3, the problem is BAx = λx

 In the formulas above:

 	A represents the real symmetric or complex Hermitian
 matrix A

 	B represents the positive definite real symmetric
 or complex Hermitian matrix B

 Eigenvalues and eigenvectors can be selected by specifying
 a range of values or a range of indices for the desired eigenvalues.

 Table 194. Data Types.

 	A, B, Z, work

 	vl, vu, abstol, w, rwork

 	Subroutine

 	Short-precision real

 	Short-precision real

 	

 SSPGVX

 Δ

 SSYGVX

 Δ

 	Long-precision real

 	Long-precision real

 	

 DSPGVX

 Δ

 DSYGVX

 Δ

 	Short-precision complex

 	Short-precision real

 	

 CHPGVX

 Δ

 CHEGVX

 Δ

 	Long-precision complex

 	Long-precision real

 	

 ZHPGVX

 Δ

 ZHEGVX

 Δ

 	 ΔLAPACK

 Syntax

 	Fortran

 	
 CALL SSPGVX | DSPGVX (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork, ifail, info)

 CALL
 CHPGVX | ZHPGVX (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info)

 CALL
 SSYGVX | DSYGVX (itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info)

 CALL
 CHEGVX | ZHEGVX (itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)

 	C and C++

 	
 sspgvx | dspgvx (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z, ldz, work, iwork, ifail, info);

 chpgvx
 | zhpgvx (itype, jobz, range, uplo, n, ap, bp, vl, vu, il, iu, abstol, m, w, z, ldz, work, rwork, iwork, ifail, info);

 ssygvx
 | dsygvx (itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, iwork, ifail, info);

 chegvx
 | zhegvx (itype, jobz, range, uplo, n, a, lda, b, ldb, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork, iwork, ifail, info);

 	[image: Start of change]LAPACKE[image: End of change]

 	[image: Start of change]info = LAPACKE_sspgvx | LAPACKE_dspgvx (matrix_layout,
 itype, jobz, range,
 uplo, n, ap, bp,
 vl, vu, il, iu,
 abstol, m, w, z,
 ldz, ifail);

 info = LAPACKE_chpgvx | LAPACKE_zhpgvx (matrix_layout,
 itype, jobz, range,
 uplo, n, ap, bp,
 vl, vu, il, iu,
 abstol, m, w, z,
 ldz,
 ifail);

 info = LAPACKE_ssygvx | LAPACKE_dsygvx (matrix_layout,
 itype, jobz, range,
 uplo, n, a, lda,
 b, ldb, vl, vu,
 il, iu, abstol, m,
 w, z, ldz,
 ifail);

 info = LAPACKE_chegvx | LAPACKE_zhegvx (matrix_layout,
 itype, jobz, range,
 uplo, n, a, lda,
 b, ldb, vl, vu,
 il, iu, abstol, m,
 w, z, ldz,
 ifail);

 [image: End of change]

 On Entry

 	[image: Start of change]matrix_layout[image: End of change]

 	[image: Start of change]indicates whether the input and output matrices are stored in row major order or column major
 order, where:

 	If matrix_layout = LAPACK_ROW_MAJOR, the matrices are stored in row major
 order.

 	If matrix_layout = LAPACK_COL_MAJOR, the matrices are stored in column major
 order.

 Specified as: an integer. It must be LAPACK_ROW_MAJOR or LAPACK_COL_MAJOR [image: End of change]

 	 itype

 	specifies the problem type, where:
 If itype =
 1, the problem is Ax = λBx.

 If itype =
 2, the problem is ABx = λx.

 If itype =
 3, the problem is BAx = λx.

 Specified as: an integer; itype = 1, 2,
 or 3.

 	 jobz

 	indicates the type of computation to be performed, where:
 If jobz =
 'N', eigenvalues only are computed.

 If jobz =
 'V', eigenvalues and eigenvectors are computed.

 Specified
 as: a single character; jobz = 'N' or 'V'.

 	 range

 	indicates which eigenvalues to compute, where:
 If range =
 'A', all eigenvalues are to be found.

 If range =
 'V', all eigenvalues in the interval [vl, vu] are to be found.

 If range =
 'I', the il-th through iu-th
 eigenvalues are to be found.

 Specified as: a single character; range =
 'A', 'V', or 'I'.

 	 uplo

 	indicates whether the upper or lower triangular part of the matrices A and B are
 referenced, where:
 If uplo = 'U', the upper
 triangular part is referenced.

 If uplo =
 'L', the lower triangular part is referenced.

 Specified as:
 a single character; uplo = 'U' or 'L'.

 	 n

 	is the order of matrices A and B used
 in the computation.
 Specified as: an integer; n ≥ 0.

 	 ap

 	is the real symmetric or complex Hermitian matrix A of
 order n. It is stored in an array, referred to
 as AP, where:
 If uplo = 'U',
 it is stored in upper-packed storage mode.

 If uplo =
 'L', it is stored in lower-packed storage mode.

 Specified
 as: one-dimensional array of (at least) length n(n +
 1)/2, containing numbers of the data type indicated in Table 194.

 	 bp

 	is the positive definite real symmetric or complex Hermitian matrix B of
 order n. It is stored in an array, referred to
 as BP, where:
 If uplo = 'U',
 it is stored in upper-packed storage mode.

 If uplo =
 'L', it is stored in lower-packed storage mode.

 Specified
 as: one-dimensional array of (at least) length n(n +
 1)/2, containing numbers of the data type indicated in Table 194.

 	 a

 	is the real symmetric or complex Hermitian matrix A of
 order n.
 If uplo = 'U', it
 is stored in upper storage mode.

 If uplo =
 'L', it is stored in lower storage mode.

 Specified as: an lda by
 (at least) n array, containing numbers of the data
 type indicated in Table 194.

 	 lda

 	is the leading dimension of the array specified for A.
 Specified
 as: an integer; lda > 0 and lda ≥ n.

 	b

 	is the positive definite real symmetric or complex Hermitian matrix B of
 order n.
 If uplo = 'U', it
 is stored in upper storage mode.

 If uplo =
 'L', it is stored in lower storage mode.

 Specified as: an ldb by
 (at least) n array, containing numbers of the data
 type indicated in Table 194.

 	 ldb

 	is the leading dimension of the array specified for B.
 Specified
 as: an integer; ldb > 0 and ldb ≥ n.

 	vl

 	has the following meaning:
 If range = 'V',
 it is the lower bound of the interval to be searched for eigenvalues.

 If range ≠ 'V', this argument
 is ignored.

 Specified as: a number of the data type indicated
 in Table 194. If range = 'V', vl < vu.

 	vu

 	has the following meaning:
 If range = 'V',
 it is the upper bound of the interval to be searched for eigenvalues.

 If range ≠ type indicated in Table 194. If range
 = 'V', vl < vu.

 	il

 	has the following meaning:
 If range = 'I',
 it is the index (from smallest to largest) of the smallest eigenvalue
 to be returned.

 If range ≠ 'I', this argument
 is ignored.

 Specified as: an integer; il ≥ 1.

 	iu

 	has the following meaning:
 If range = 'I',
 it is the index (from smallest to largest) of the largest eigenvalue
 to be returned.

 If range ≠ 'I', this argument
 is ignored.

 Specified as: an integer; min(il, n) ≤ iu ≤ n.

 	abstol

 	is the absolute tolerance for the eigenvalues. An approximate
 eigenvalue is accepted as converged when it is determined to lie in
 an interval [a, b] of width less
 than or equal to:

 	abstol+ε(max(|a|, |b|))

 where ε is
 the machine precision. If abstol ≤ zero, then ε(norm(T))
 is used in its place, where norm(T) is the 1-norm of
 the tridiagonal matrix obtained by reducing the standard form of the
 generalized problem to tridiagonal form. For most problems, this is
 the appropriate level of accuracy to request.

 For certain
 strongly graded matrices, greater accuracy can be obtained in very
 small eigenvalues by setting abstol to a very small
 positive number. However, if abstol is less than:

 [image: Math Graphic]

 where unfl is the underflow threshold,
 then:

 [image: Math Graphic]

 is used in its place.

 Eigenvalues are computed
 most accurately when abstol is set to twice the
 underflow threshold—that is, (2)(unfl).

 If jobz =
 'V', then setting abstol to unfl,
 the underflow threshold, yields the most orthogonal eigenvectors.

 Note:

 	The approximate values of the constants used for abstol are
 listed below:

 	For SSPGVX, CHPGVX, SSYGVX, and CHEGVX

 	

 	ε

 	0.119209289550781250E-06

 	unfl

 	0.1175494351E-37

 	[image: square root of unfl]

 	0.1084202172E-18

 	For DSPGVX, ZHPGVX, DSYGVX, and ZHEGVX

 	

 	ε

 	0.222044604925031308E-15

 	unfl

 	0.222507385850720138E-307

 	[image: square root of unfl]

 	0.149166814624004135E-153

 	The value of abstol can affect which algorithm
 is used to compute the eigenvalues and eigenvectors. See Function.

 Specified as: a number of the data type indicated
 in Table 194.

 	m

 	See On Return.

 	 w

 	See On Return.

 	 z

 	See On Return.

 	 ldz

 	is the leading dimension of the array specified for Z.

 Specified as: an integer; ldz > 0 and ldz ≥ n.

 	 work

 	is a work area used by these subroutines, where:

 	For SSPGVX and DSPGVX

 	Its size is 8n.

 	For CHPGVX and ZHPGVX

 	Its size is 2n.

 	For SSYGVX, DSYGVX, CHEGVX, and ZHEGVX

 	
 If lwork = 0, work is ignored.

 If lwork ≠ 0, the size of work is
 determined as follows:

 	If lwork ≠ -1, work is
 (at least) of length lwork.

 	If lwork = -1, work is (at
 least) of length 1.

 Specified as: an area of storage containing numbers
 of the data type indicated in Table 194.

 	 lwork

 	is the number of elements in array WORK.
 Specified
 as: an integer; where:

 	If lwork = 0, the subroutine dynamically allocates
 the workspace needed for use during this computation. The work area
 is deallocated before control is returned to the calling program.

 	If lwork = -1, subroutine performs a workspace
 query and returns the optimal required size of work in work1.
 No computation is performed and the subroutine returns after error
 checking is complete.

 	Otherwise:

 	For SSYGVX and DSYGVX

 	lwork ≥ max(1, 8n).

 	For CHEGVX and ZHEGVX

 	lwork ≥ max(1, 2n).

 	 rwork

 	is a work area of size 7n.
 Specified as:
 an area of storage containing numbers of the data type indicated in Table 194.

 	iwork

 	is a work area of size 5n.
 Specified
 as: an area of storage containing integers.

 	 ifail

 	See On Return.

 	 info

 	See On Return.

 On Return

 	 ap

 	is overwritten.
 Returned as: a one-dimensional array of (at
 least) length n(n + 1)/2, containing
 numbers of the data type indicated in Table 194.

 	 bp

 	contains the results of the Cholesky factorization.

 	For SSPGVX and DSPGVX

 	If uplo = 'U', if info ≤ n, the triangular
 factor U from the Cholesky factorization B = UTU stored
 in upper-packed storage format.
 If uplo = 'L',
 if info ≤ n, the triangular
 factor L from the Cholesky factorization = LLT stored
 in lower-packed storage mode.

 	For CHPGVX and ZHPGVX

 	If uplo = 'U', if info ≤ n, the triangular
 factor U from the Cholesky factorization B = UHU stored
 in upper-packed storage format.
 If uplo = 'L',
 if info ≤ n, the triangular
 factor L from the Cholesky factorization B = LLH stored
 in lower-packed storage mode.

 Returned as: one-dimensional array of (at least)
 length n(n + 1)/2, containing
 numbers of the data type indicated in Table 194.

 	 a

 	is overwritten as follows:

 	If uplo = 'U', the leading n by n upper
 triangular part of A is overwritten.

 	If uplo = 'L', the leading n by n lower
 triangular part of A is overwritten.

 Returned as: an array of dimension lda by
 (at least) n, containing numbers of the data type
 indicated in Table 194.

 	 b

 	contains the results of the Cholesky factorization.

 	For SSYGVX and DSYGVX

 	If uplo = 'U', if info ≤ n, the leading n by n upper
 triangular part of B contains the triangular factor U from
 the Cholesky factorization B = UTU.
 If uplo =
 'L', if info ≤ n, the leading n by n lower
 triangular part of B contains the triangular factor L from
 the Cholesky factorization B = LLT.

 	For CHEGVX and ZHEGVX

 	If uplo = 'U', if info ≤ n, the leading n by n upper
 triangular part of B contains the triangular factor U from
 the Cholesky factorization B = UHU.
 If uplo =
 'L', if info ≤ n, the leading n by n lower
 triangular part of B contains the triangular factor L from
 the Cholesky factorization B = LLH.

 Returned as: an array of dimension ldb by
 (at least) n, containing numbers of the data type
 indicated in Table 194.

 	 m

 	is the number of eigenvalues found.
 Returned as: an integer;
 0 ≤ m ≤ n .

 	 w

 	is the vector w, containing the computed eigenvalues
 in ascending order in the first m elements of w.

 Returned as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 194.

 	 z

 	has the following meaning, where:
 If jobz =
 'N', then z is ignored.

 If jobz =
 'V' and info = 0, the first m columns
 of Z contain the eigenvectors corresponding to the selected
 eigenvalues, with the i-th column of Z holding
 the eigenvector associated with w(i).

 The
 eigenvectors are normalized as follows:

 	For SSYGVX, DSYGVX, SSPGVX, and DSPGVX

 	If itype = 1 or 2, ZTBZ = I.
 If itype =
 3, ZTB-1Z = I.

 	For CHPGVX, ZHPGVX, CHEGVX, and ZHEGVX

 	If itype = 1 or 2, ZHBZ = I.
 If itype =
 3, ZHB-1Z = I.

 where I is the identity matrix.

 If
 an eigenvector fails to converge, then that column of Z contains
 the latest approximation to the eigenvector, and the index of the
 eigenvector is returned in ifail.
 Note: You must
 ensure that at least max(1, m) columns are supplied
 in the array Z; if range = 'V', the
 exact value of m is not known in advance and an
 upper bound must be used.

 Returned as: an ldz by
 (at least) max(1, m) array, containing numbers
 of the data type indicated in Table 194.

 	 work

 	is a work area used by this subroutine if lwork ≠ 0, where:
 If lwork ≠ 0 and lwork ≠ -1, its size is (at
 least) of length lwork.

 If lwork = -1,
 its size is (at least) of length 1.

 Returned as: an area
 of storage, where:

 If lwork ≥ 1 or lwork = -1,
 then work1 is set to the optimal lwork value
 and all other elements of work are overwritten.

 	ifail

 	has the following meaning:
 If jobz = 'N', ifail is
 ignored.

 If jobz = 'V':

 	If info = 0, the first m elements
 of ifail are zero.

 	If info > 0, ifail contains the
 indices of the eigenvectors that failed to converge.

 Returned as: an array of length n,
 containing integers.

 	info

 	has the following meaning:
 If info = 0, the subroutine completed
 successfully.

 If info = i, then i eigenvectors failed
 to converge. Their indices are saved in array ifail.

 If
 info = n + i for 1 ≤ i ≤ n, then the leading minor of order
 i of B is not positive definite. The factorization of
 B could not be completed, and no eigenvalues or eigenvectors were computed.

 [image: Start of change]Returned as:

 	For SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX, DSYGVX, CHEGVX, and ZHEGVX returned as: an integer;
 info ≥ 0.

 	For LAPACKE_sspgvx, LAPACKE_dspgvx, LAPACKE_chpgvx, LAPACKE_zhpgvx, LAPACKE_ssygvx,
 LAPACKE_dsygvx, LAPACKE_chegvx, and LAPACKE_zhegvx returned as an integer function value; info ≥ 0.

 [image: End of change]

 Notes

 	These subroutines accept lowercase letters for the jobz, range,
 and uplo arguments.

 	In your C program, arguments m and info must
 be passed by reference.

 	ap, bp, a, b, b, w, z, work, rwork, iwork and ifail must
 have no common elements; otherwise, results are unpredictable.

 	For a description of how real symmetric matrices are stored in
 lower- or upper-packed storage mode, see Lower-Packed Storage Mode or Upper-Packed Storage Mode, respectively.
 For a
 description of how complex Hermitian matrices are stored in lower-
 or upper-packed storage mode, see Complex Hermitian Matrix.

 	For a description of how real symmetric matrices are stored in
 lower or upper storage mode, see Lower Storage Mode or Upper Storage Mode, respectively.
 For a
 description of how complex Hermitian matrices are stored in lower
 or upper storage mode, see Complex Hermitian Matrix.

 	On input, the imaginary parts of the diagonal elements of the
 complex Hermitian matrices A and B are
 assumed to be zero, so you do not have to set these values. On output,
 for matrix B they are set to zero.

 	For best performance, specify lwork = 0.

 Function

 These subroutines
 compute eigenvalues and, optionally, the eigenvectors of a positive
 definite real symmetric or complex Hermitian generalized eigenproblem:

 	If itype = 1, the problem is Ax = λBx

 	If itype = 2, the problem is ABx = λx

 	If itype = 3, the problem is BAx = λx

 In the formulas above:

 	A represents the real symmetric or complex Hermitian
 matrix A

 	B represents the positive definite real symmetric
 or complex Hermitian matrix B

 Eigenvalues and eigenvectors can be selected by specifying
 a range of values or a range of indices for the desired eigenvalues.

 The
 computation involves the following steps:

 	Compute the Cholesky factorization of B.

 	Reduce the positive definite real symmetric or complex Hermitian
 generalized eigenproblem to standard form.

 	Compute the requested eigenvalues and, optionally, the eigenvectors
 of the standard form.

 	Backtransform the eigenvectors to obtain the eigenvectors of the
 original problem.

 If n = 0, no computation is performed
 and the subroutine returns after doing some parameter checking.

 See
 reference [8].

 Error conditions

 	Resource Errors

 	

 	lwork = 0 and unable to allocate work area

 	Computational Errors

 	

 	The matrix B is not positive definite. See output
 argument info for more details.

 	Bisection failed to converge for some eigenvalues. The eigenvalues
 may not be as accurate as the absolute and relative tolerances.

 	The number of eigenvalues computed does not match the number of
 eigenvalues requested.

 	No eigenvalues were computed because the Gershgorin interval initially
 used was incorrect.

 	Some eigenvectors failed to converge. The indices are stored
 in ifail.

 	Informational Errors

 	

 	ESSL computed the eigenvalues using multiple algorithms. Performance
 may be degraded.

 	Input-Argument Errors

 	

 	itype < 1 or itype > 3

 	jobz ≠ 'N' or 'V'

 	range ≠ 'A', 'V', or 'I'

 	uplo ≠ 'U' or 'L'

 	n < 0

 	lda ≤ 0

 	lda < n

 	ldb ≤ 0

 	ldb < n

 	range = 'V', n > 0, and vu ≤ vl

 	range = 'I' and (il < 1
 or il > max(1, n))

 	range = 'I' and (iu < min(n, il)
 or iu > n)

 	ldz ≤ 0

 	jobz = 'V' and ldz < n

 	lwork ≠ 0 and lwork ≠ -1 and lwork < the
 minimum required value

 Examples

 	Example 1

 	
 This example shows how to find the eigenvalues of a real
 symmetric positive generalized eigenproblem of the form: Ax = λBx.
 Matrices A and B are stored in lower-packed
 storage mode.

 Matrix A is: ┌ ┐
 | 6.0 4.0 4.0 1.0 |
 | 4.0 6.0 1.0 4.0 |
 | 4.0 1.0 6.0 4.0 |
 | 1.0 4.0 4.0 6.0 |
 └ ┘

 Matrix B is:
 ┌ ┐
 | 1.0 0.0 0.0 0.0 |
 | 0.0 1.0 0.0 0.0 |
 | 0.0 0.0 1.0 0.0 |
 | 0.0 0.0 0.0 1.0 |
 └ ┘

 Notes:

 	Because jobz = 'N', Z and ifail are
 not referenced.

 	Because range = 'A', arguments vl, vu, il,
 and iu are not referenced.

 Call Statement and Input:
 ITYPE JOBZ RANGE UPLO N AP BP VL VU IL IU ABSTOL M W Z LDZ WORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | | | |
CALL DSPGVX (1, 'N', 'A', 'L', 4, AP, BP VL, VU, IL, IU, -1.0, M, W, Z, 4, WORK, IWORK, IFAIL, INFO)

 AP = (6.0, 4.0, 4.0, 1.0, 6.0, 1.0, 4.0, 6.0, 4.0, 6.0)

 BP = (1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0)

 Output:

 Matrix AP is overwritten.

 BP = (1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0)

 M = 4

 W = (-1.0, 5.0, 5.0, 15.0)

 INFO = 0

 	Example 2

 	
 This example shows how to find the eigenvalues and eigenvectors
 of a real symmetric positive generalized eigenproblem of the form: ABx = λx.
 Matrices A and B are stored in upper-packed
 storage mode.

 This example illustrates the use of the il and iu parameters
 when range = 'I'.

 Matrices A and B are
 the same as in Example 1.

 Notes:

 	Because range = 'I', arguments vl and vu are
 not referenced.

 Call Statement and Input:
 ITYPE JOBZ RANGE UPLO N AP BP VL VU IL IU ABSTOL M W Z LDZ WORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | | | |
CALL DSPGVX (2, 'V', 'I', 'U', 4, AP, BP VL, VU, 1, 2, -1.0, M, W, Z, 4, WORK, IWORK, IFAIL, INFO)

 AP = (6.0, 4.0, 6.0, 4.0, 1.0, 6.0, 1.0, 4.0, 4.0, 6.0)

 BP = (1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)

 Output:

 Matrix AP is overwritten.

 BP = (1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)

 M = 2

 W = (-1.0, 5.0, . , .)

 ┌ ┐
 | 0.500000 0.544042 . . |
Z = |-0.500000 0.451683 . . |
 |-0.500000 -0.451683 . . |
 | 0.500000 -0.544042 . . |
 └ ┘

 IFAIL = (0, 0, . , .)

 INFO = 0

 	Example 3

 	
 This example shows how to find all eigenvalues only of a
 positive definite complex Hermitian generalized eigenproblem of the
 form: Ax = λBx. Matrices A and B are
 stored in lower-packed storage mode.

 Matrix A is:
 ┌ ┐
 | (6.0, 0.0) (4.0, 0.0) (4.0, 0.0) (1.0, 0.0) |
 | (4.0, 0.0) (6.0, 0.0) (1.0, 0.0) (4.0, 0.0) |
 | (4.0, 0.0) (1.0, 0.0) (6.0, 0.0) (4.0, 0.0) |
 | (1.0, 0.0) (4.0, 0.0) (4.0, 0.0) (6.0, 0.0) |
 └ ┘

 Matrix B is:
 ┌ ┐
 | (1.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) |
 | (0.0, 0.0) (1.0, 0.0) (0.0, 0.0) (0.0, 0.0) |
 | (0.0, 0.0) (0.0, 0.0) (1.0, 0.0) (0.0, 0.0) |
 | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (1.0, 0.0) |
 └ ┘

 Notes:

 	Because jobz= 'N', Z and ifail are
 not referenced.

 	Because range = 'A', arguments vl, vu, il,
 and iu are not referenced.

 	On input, the imaginary parts of the Hermitian matrix A are
 assumed to be zero, values. On output, they are set to zero.

 Call Statement and Input:
 ITYPE JOBZ RANGE UPLO N AP BP VL VU IL IU ABSTOL M W Z LDZ WORK RWORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | | | | |
CALL ZHPGVX (1, 'N', 'A', 'L', 4, AP, BP VL, VU, IL, IU, -1.0, M, W, Z, 4, WORK, RWORK IWORK, IFAIL, INFO)

AP = ((6.0, .), (4.0, 0.0), (4.0, 0.0), (1.0, 0.0),(6.0, .), (1.0, 0.0), (4.0, 0.0), (6.0, .),
 (4.0, 0.0), (6.0, .))

BP = ((1.0, .), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0),(1.0, .), (0.0, 0.0), (0.0, 0.0), (1.0, .),
 (0.0, 0.0), (1.0, .))

 Output:

 Matrix AP is overwritten.

 M = 4

 BP = ((1.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0),(1.0, 0.0), (0.0, 0.0), (0.0, 0.0),
 (1.0, 0.0), (0.0, 0.0), (1.0, 0.0))

 W = (-1.0, 5.0, 5.0, 15.0)

 INFO = 0

 	Example 4

 	
 This example shows how to find all eigenvalues and eigenvectors
 of a positive definite complex Hermitian generalized eigenproblem
 of the form: ABx = λx.
 Matrices A and B are stored in upper-packed
 storage mode.

 This example illustrates the use of the il and iu parameters
 when range = 'I'.

 Matrices A and B are
 the same as in Example 3.

 Notes:

 	Because range = 'I', arguments vl and vu are
 not referenced.

 	On input, the imaginary parts of the Hermitian matrix A are
 assumed to be zero, values. On output, they are set to zero.

 Call Statement and Input:
 ITYPE JOBZ RANGE UPLO N AP BP VL VU IL IU ABSTOL M W Z LDZ WORK RWORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | | | | |
CALL ZHPGVX (2, 'V', 'I', 'L', 4, AP, BP VL, VU, 1, 2, -1.0, M, W, Z, 4, WORK, RWORK, IWORK, IFAIL, INFO)

AP = ((6.0, .), (4.0, 0.0), (4.0, 0.0), (1.0, 0.0),(6.0, .), (1.0, 0.0), (4.0, 0.0), (6.0, .),
 (4.0, 0.0), (6.0, .))

BP = ((1.0, .), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0),(1.0, .), (0.0, 0.0), (0.0, 0.0), (1.0, .),
 (0.0, 0.0), (1.0, .))

 Output:

 Matrix AP is overwritten.

 BP = ((1.0, 0.0), (0.0, 0.0), (0.0, 0.0), (0.0, 0.0),(1.0, 0.0), (0.0, 0.0), (0.0, 0.0),
 (1.0, 0.0), (0.0, 0.0), (1.0, 0.0))

 M = 2

 W = (-1.0, 5.0, . , .)

 ┌ ┐
 |(0.500000, 0.0) (0.544042, 0.0) . . |
Z = |(-0.500000, 0.0) (0.451683, 0.0) . . |
 |(-0.500000, 0.0) (-0.451683, 0.0) . . |
 |(0.500000, 0.0) (-0.544042, 0.0) . . |
 └ ┘

 IFAIL = (0, 0, . , .)

INFO = 0

 	Example 5

 	
 This example shows how to find the eigenvalues only of a
 positive definite real symmetric generalized eigenproblem of the
 form: Ax = λBx. Matrices A and B are
 stored in lower storage mode.

 Matrices A and B are
 the same as in Example 1

 Notes:

 	Because jobz = 'N', Z and ifail are
 not referenced.

 	Because range = 'A', arguments vl, vu, il,
 and iu are not referenced.

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 Call Statement and Input:
 ITYPE JOBZ RANGE UPLO N A LDA B LDB VL VU IL IU ABSTOL M W Z LDZ WORK LWORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | | | | | | |
CALL DSYGVX (1, 'N', 'A', 'L', 4, A, 4, B, 4, VL, VU, IL, IU, -1.0, M, W, Z, 4, WORK, 0, IWORK, IFAIL, INFO)

 ┌ ┐
 | 6.0 . . . |
A = | 4.0 6.0 . . |
 | 4.0 1.0 6.0 . |
 | 1.0 4.0 4.0 6.0 |
 └ ┘

 ┌ ┐
 | 1.0 . . . |
B = | 0.0 1.0 . . |
 | 0.0 0.0 1.0 . |
 | 0.0 0.0 0.0 1.0 |
 └ ┘

 Output:

 Matrix A is overwritten.

 M = 4

 ┌ ┐
 | 1.000000 . . . |
B = | 0.000000 1.000000 . . |
 | 0.000000 0.000000 1.000000 . |
 | 0.000000 0.000000 0.000000 1.000000 |
 └ ┘

 ┌ ┐
 | - 1.000000 |
W = | 5.000000 |
 | 5.000000 |
 | 15.000000 |
 └ ┘

 INFO = 0

 	Example 6

 	
 This example shows how to find the eigenvalues and eigenvectors
 of a positive definite real symmetric generalized eigenproblem of
 the form: ABx = λx.
 Matrices A and B are stored in upper storage
 mode.

 This example illustrates the use of the il and iu parameters
 when range = 'I'.

 Matrices A and B are
 the same as in Example 1

 Notes:

 	Because range = 'I', arguments vl and vu are
 not referenced.

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 Call Statement and Input:
 ITYPE JOBZ RANGE UPLO N A LDA B LDB VL VU IL IU ABSTOL M W Z LDZ WORK LWORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | | | | | | |
CALL DSYGVX (2, 'V', 'I', 'U', 4, A, 4, B, 4, VL, VU, 1, 2, -1.0, M, W, Z, 4, WORK, 0, IWORK, IFAIL, INFO)

 Output:

 Matrix A is
 overwritten.

 M = 2

 ┌ ┐
 | 1.000000 0.000000 0.000000 0.000000 |
B = | . 1.000000 0.000000 0.000000 |
 | . . 1.000000 0.000000 |
 | . . . 1.000000 |
 └ ┘

 ┌ ┐
W = | -1.000000 |
 | 5.000000 |
 | . |
 | . |
 └ ┘

 ┌ ┐
 | 0.500000 0.543058 . . |
Z = | -0.500000 0.452866 . . |
 | -0.500000 -0.452866 . . |
 | 0.500000 -0.543058 . . |
 └ ┘

 IFAIL = (0, 0, ., .)

 INFO = 0

 	Example 7

 	
 This example shows how to find the eigenvalues and eigenvectors
 of a positive definite real symmetric generalized eigenproblem of
 the form: BAx = λx.
 Matrices A and B are stored in upper storage
 mode.

 This example illustrates the use of the vl and vu paramenters
 when range = 'V'.

 Matrices A and B are
 the same as in Example 1

 Notes:

 	Because range = 'V', arguments il and
 iu are not referenced.

 	On output, array A is overwritten.

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 Call Statement and Input:
 ITYPE JOBZ RANGE UPLO N A LDA B LDB VL VU IL IU ABSTOL M W Z LDZ WORK LWORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | | | | | | |
CALL DSYGVX (3, 'V', 'V', 'U', 4, A, 4, B, 4, 2.0, 6.0, IL, IU, -1.0, M, W, Z, 4, WORK, 0, IWORK, IFAIL, INFO)

 ┌ ┐
 | 6.0 4.0 4.0 1.0 |
A = | . 6.0 1.0 4.0 |
 | . . 6.0 4.0 |
 | . . . 6.0 |
 └ ┘

 ┌ ┐
 | 1.0 0.0 0.0 0.0 |
B = | . 1.0 0.0 0.0 |
 | . . 1.0 0.0 |
 | . . . 1.0 |
 └ ┘

 Output:

 Matrix A is overwritten.

 M = 2

 ┌ ┐
 | 1.000000 0.000000 0.000000 0.000000 |
B = | . 1.000000 0.000000 0.000000 |
 | . . 1.000000 0.000000 |
 | . . . 1.000000 |
 └ ┘

 ┌ ┐
W = | 5.000000 |
 | 5.000000 |
 | . |
 | . |
 └ ┘

 ┌ ┐
 | -0.123202 -0.696291 . . |
Z = | 0.696291 -0.123202 . . |
 | -0.696291 0.123202 . . |
 | 0.123202 0.696291 . . |
 └ ┘

 IFAIL = (0, 0, ., .)

INFO = 0

 	Example 8

 	
 This example shows how to find the eigenvalues only of a
 positive definite complex Hermitian generalized eigenproblem of the
 form: Ax = λBx. Matrices A and B are
 stored in lower-packed storage mode.

 Matrices A and B are
 the same as in Example 3.

 Notes:

 	Because jobz = 'N', Z and ifail are
 not referenced.

 	Because range = 'A', arguments vl, vu, il,
 and iu are not referenced.

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 	On input, the imaginary parts of the Hermitian matrix A are
 assumed to be zero, values. On output, they are set to zero.

 Call Statement and Input:
 ITYPE JOBZ RANGE UPLO N A LDA B LDB VL VU IL IU ABSTOL M W Z LDZ WORK LWORK RWORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | | | | | | | |
CALL ZHEGVX (1, 'N', 'A', 'L', 4, A, 4, B, 4, VL, VU, IL, IU, -1.0, M, W, Z, 4, WORK, 0, RWORK IWORK, IFAIL, INFO)

 ┌ ┐
 | (6.0, .) . . . |
A = | (4.0, 0.0) (6.0, .) . . |
 | (4.0, 0.0) (1.0, 0.0) (6.0, .) . |
 | (1.0, 0.0) (4.0, 0.0) (4.0, 0.0) (6.0, .) |
 └ ┘

 ┌ ┐
 | (1.0, .) . . . |
B = | (0.0, 0.0) (1.0, .) . . |
 | (0.0, 0.0) (0.0, 0.0) (1.0, .) . |
 | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (1.0, .) |
 └ ┘

 Output:

 Matrix A is overwritten.

 M = 4

 ┌ ┐
 | (1.0, 0.0) . . . |
B = | (0.0, 0.0) (1.0, 0.0) . . |
 | (0.0, 0.0) (0.0, 0.0) (1.0, 0.0) . |
 | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (1.0, 0.0) |
 └ ┘

 ┌ ┐
 | -1.000000 |
W = | 5.000000 |
 | 5.000000 |
 | 15.000000 |
 └ ┘

 INFO = 0

 	Example 9

 	
 This example shows how to find the eigenvalues and eigenvectors
 of a positive definite complex Hermitian generalized eigenproblem
 of the form: ABx = λx.
 Matrices A and B are stored in upper-packed
 storage mode.

 This example illustrates the use of the il and iu parameters
 when range = 'I'.

 Matrices A and B are
 the same as in Example 3.

 Notes:

 	Because range = 'I', arguments vl and vu are
 not referenced.

 	Because lwork = 0, the subroutine dynamically
 allocates WORK.

 	On input, the imaginary parts of the Hermitian matrix A are
 assumed to be zero, values. On output, they are set to zero.

 Call Statement and Input:
 ITYPE JOBZ RANGE UPLO N A LDA B LDB VL VU IL IU ABSTOL M W Z LDZ WORK LWORK RWORK IWORK IFAIL INFO
 | | | | | | | | | | | | | | | | | | | | | | | |
CALL ZHEGVX (2, 'V', 'I', 'L', 4, A, 4, B, 4, VL, VU, 1, 2, -1.0, M, W, Z, 4, WORK, 0, RWORK IWORK, IFAIL, INFO)

 ┌ ┐
 | (6.0, .) . . . |
A = | (4.0, 0.0) (6.0, .) . . |
 | (4.0, 0.0) (1.0, 0.0) (6.0, .) . |
 | (1.0, 0.0) (4.0, 0.0) (4.0, 0.0) (6.0, .) |
 └ ┘

 ┌ ┐
 | (1.0, .) . . . |
B = | (0.0, 0.0) (1.0, .) . . |
 | (0.0, 0.0) (0.0, 0.0) (1.0, .) . |
 | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (1.0, .) |
 └ ┘

 Output:

 Matrix A is overwritten.

 M = 2

 ┌ ┐
 | (1.0, 0.0) . . . |
B = | (0.0, 0.0) (1.0, 0.0) . . |
 | (0.0, 0.0) (0.0, 0.0) (1.0, 0.0) . |
 | (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (1.0, 0.0) |
 └ ┘

 ┌ ┐
W = | -1.000000 |
 | 5.000000 |
 └ ┘

 ┌ ┐
 |(0.500000, 0.0) (-0.154815, 0.0) . . |
Z = |(-0.500000, 0.0) (-0.689950, 0.0) . . |
 |(-0.500000, 0.0) (0.689950, 0.0) . . |
 |(0.500000, 0.0) (0.154815, 0.0) . . |
 └ ┘

 IFAIL = (0, 0, ., .)

INFO = 0

 Parent topic: Eigensystem Analysis

 Fourier Transforms, Convolutions and Correlations, and Related
 Computations

 The signal processing subroutines, provided in three areas,
 are described here.

 	Overview of the Signal Processing Subroutines

 	Fourier Transforms, Convolutions, and Correlations Considerations

 	Performance and Accuracy Considerations

 	Related Computation Considerations

 	Fourier Transform Subroutines

 	SCFTD and DCFTD (Multidimensional Complex Fourier Transform)

 	SRCFTD and DRCFTD (Multidimensional Real-to-Complex Fourier Transform)

 	SCRFTD and DCRFTD (Multidimensional Complex-to-Real Fourier Transform)

 	SCFT and DCFT (Complex Fourier Transform)

 	SRCFT and DRCFT (Real-to-Complex Fourier Transform)

 	SCRFT and DCRFT (Complex-to-Real Fourier Transform)

 	SCOSF and DCOSF (Cosine Transform)

 	SSINF and DSINF (Sine Transform)

 	SCFT2 and DCFT2 (Complex Fourier Transform in Two Dimensions)

 	SRCFT2 and DRCFT2 (Real-to-Complex Fourier Transform in Two Dimensions)

 	SCRFT2 and DCRFT2 (Complex-to-Real Fourier Transform in Two Dimensions)

 	SCFT3 and DCFT3 (Complex Fourier Transform in Three Dimensions)

 	SRCFT3 and DRCFT3 (Real-to-Complex Fourier Transform in Three Dimensions)

 	SCRFT3 and DCRFT3 (Complex-to-Real Fourier Transform in Three Dimensions)

 	Convolution and Correlation Subroutines

 	SCON and SCOR (Convolution or Correlation of One Sequence with One or More Sequences)

 	SCOND and SCORD (Convolution or Correlation of One Sequence with Another Sequence Using a Direct Method)

 	SCONF and SCORF (Convolution or Correlation of One Sequence with One or More Sequences Using the Mixed-Radix Fourier Method)

 	SDCON, DDCON, SDCOR, and DDCOR (Convolution or Correlation with Decimated Output Using a Direct Method)

 	SACOR (Autocorrelation of One or More Sequences)

 	SACORF (Autocorrelation of One or More Sequences Using the Mixed-Radix Fourier Method)

 	Related-Computation Subroutines

 	SPOLY and DPOLY (Polynomial Evaluation)

 	SIZC and DIZC (I-th Zero Crossing)

 	STREC and DTREC (Time-Varying Recursive Filter)

 	SQINT and DQINT (Quadratic Interpolation)

 	SWLEV, DWLEV, CWLEV, and ZWLEV (Wiener-Levinson Filter Coefficients)

 Parent topic: Reference Information

 Overview of the Signal Processing Subroutines

 This describes the subroutines in each of the three signal processing areas:

 	Fourier transform subroutines

 	Convolution and correlation subroutines

 	Related-computation subroutines

 	Fourier Transforms Subroutines

 	Convolution and Correlation Subroutines

 	Related-Computation Subroutines

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 Fourier Transforms Subroutines

 The Fourier transform subroutines perform mixed-radix
 transforms in one, two, and three dimensions.

 Table 195. List of Fourier Transform Subroutines.

 	Short-Precision
 Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and
 Location

 	SCFTD

 	DCFTD

 	SCFTD and DCFTD (Multidimensional Complex Fourier Transform)

 	SRCFTD

 	DRCFTD

 	SRCFTD and DRCFTD (Multidimensional Real-to-Complex Fourier Transform)

 	SCRFTD

 	DCRFTD

 	SCRFTD and DCRFTD (Multidimensional Complex-to-Real Fourier Transform)

 	

 SCFT

 §

 SCFTP

 §

 ,

 ND

 	DCFT§

 	SCFT and DCFT (Complex Fourier Transform)

 	SRCFT§

 	DRCFT§

 	SRCFT and DRCFT (Real-to-Complex Fourier Transform)

 	SCRFT§

 	DCRFT§

 	SCRFT and DCRFT (Complex-to-Real Fourier Transform)

 	

 SCOSF

 SCOSFT

 §

 ,

 ND

 	DCOSF

 	SCOSF and DCOSF (Cosine Transform)

 	SSINF

 	DSINF

 	SSINF and DSINF (Sine Transform)

 	

 SCFT2

 §

 SCFT2P

 §

 ,

 ND

 	DCFT2§

 	SCFT2 and DCFT2 (Complex Fourier Transform in Two Dimensions)

 	SRCFT2§

 	DRCFT2§

 	SRCFT2 and DRCFT2 (Real-to-Complex Fourier Transform in Two Dimensions)

 	SCRFT2§

 	DCRFT2§

 	SCRFT2 and DCRFT2 (Complex-to-Real Fourier Transform in Two Dimensions)

 	

 SCFT3

 §

 SCFT3P

 §

 ,

 ND

 	DCFT3§

 	SCFT3 and DCFT3 (Complex Fourier Transform in Three Dimensions)

 	SRCFT3§

 	DRCFT3§

 	SRCFT3 and DRCFT3 (Real-to-Complex Fourier Transform in Three Dimensions)

 	SCRFT3§

 	DCRFT3§

 	SCRFT3 and DCRFT3 (Complex-to-Real Fourier Transform in Three Dimensions)

 	
 §
 This subroutine is provided only for migration from earlier releases
 of ESSL and is not intended for use in new programs.

 ND Documentation for this subroutine is
 no longer provided.

 Parent topic: Overview of the Signal Processing Subroutines

 Convolution and Correlation Subroutines

 The convolution and correlation subroutines provide the choice of using
 Fourier methods or direct methods. The Fourier-method subroutines contain
 a high-performance mixed-radix capability. There are also several direct-method
 subroutines that provide decimated output.

 Table 196. List of Convolution and Correlation Subroutines.

 	Short-Precision Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	

 SCON

 §

 SCOR

 §

 	

 	SCON and SCOR (Convolution or Correlation of One Sequence with One or More Sequences)

 	

 SCOND

 SCORD

 	

 	SCOND and SCORD (Convolution or Correlation of One Sequence with Another Sequence Using a Direct Method)

 	

 SCONF

 SCORF

 	

 	SCONF and SCORF (Convolution or Correlation of One Sequence with One or More Sequences Using the Mixed-Radix Fourier Method)

 	

 SDCON

 SDCOR

 	

 DDCON

 DDCOR

 	SDCON, DDCON, SDCOR, and DDCOR (Convolution or Correlation with Decimated Output Using a Direct Method)

 	SACOR§

 	

 	SACOR (Autocorrelation of One or More Sequences)

 	SACORF

 	

 	SACORF (Autocorrelation of One or More Sequences Using the Mixed-Radix Fourier Method)

 	
 § These subroutines are provided
 only for migration from earlier releases of ESSL and are not intended for
 use in new programs.

 Parent topic: Overview of the Signal Processing Subroutines

 Related-Computation Subroutines

 The related-computation subroutines consist of a group
 of computations that can be used in general signal processing applications.
 They are similar to those provided on the IBM® 3838
 Array Processor; however,
 the ESSL subroutines generally solve a wider range of problems.

 Table 197. List of Related-Computation Subroutines.

 	Short-Precision Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	SPOLY

 	DPOLY

 	SPOLY and DPOLY (Polynomial Evaluation)

 	SIZC

 	DIZC

 	SIZC and DIZC (I-th Zero Crossing)

 	STREC

 	DTREC

 	STREC and DTREC (Time-Varying Recursive Filter)

 	SQINT

 	DQINT

 	SQINT and DQINT (Quadratic Interpolation)

 	

 SWLEV

 CWLEV

 	

 DWLEV

 ZWLEV

 	SWLEV, DWLEV, CWLEV, and ZWLEV (Wiener-Levinson Filter Coefficients)

 Parent topic: Overview of the Signal Processing Subroutines

 Fourier Transforms, Convolutions, and Correlations Considerations

 This describes some global information applying to the Fourier transform,
 convolution, and correlation subroutines.

 	Use Considerations

 	Initializing Auxiliary Working Storage

 	Determining the Amount of Auxiliary Working Storage That You Need

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 Use Considerations

 This provides some key points about using the Fourier transform, convolution,
 and correlation subroutines.

 	Understanding the Terminology and Conventions Used for Your Array Data

 	Concerns about Lengths of Transforms

 	Determining an Acceptable Length of a Transform

 	Acceptable Lengths for the Transforms

 	Understanding Auxiliary Working Storage Requirements

 Parent topic: Fourier Transforms, Convolutions, and Correlations Considerations

 Understanding the Terminology and Conventions Used for Your Array Data

 These subroutines use the term "sequences," rather than vectors and
 matrices, to describe the data that is stored in the arrays.

 Some of the sequences used in these computations use a zero origin rather
 than a one-origin. For example, xj can
 be expressed with j = 0, 1, …, n-1 rather than j = 1, 2, …, n. When using the formulas provided to calculate array sizes or offsets
 into arrays, you need to be careful that you substitute the correct values.
 For example, the number of xj elements
 in the sequence is n, not n-1.

 Parent topic: Use Considerations

 Concerns about Lengths of Transforms

 The length of the transform you can use in your program depends on the
 limits of the addressability of your processor.

 Parent topic: Use Considerations

 Determining an Acceptable Length of a Transform

 To determine acceptable lengths of the transforms
 in the Fourier transform subroutines, you have different choices depending
 on which subroutine you are using:

 	For subroutines in Table 198,
 all transform lengths between 0 and 1073479680 are acceptable.

 	For subroutines in Table 199,
 you have two choices:

 	You can use the formula or table of values in Acceptable Lengths for the Transforms to choose a value.

 	Alternatively, ESSL's input-argument error recovery provides a
 means of determining an acceptable length of the transform. It uses
 the optionally-recoverable error 2030. For details, see Providing a Correct Transform Length to ESSL.

 Table 198. Fourier Transform subroutines
 allowing all lengths between 0 and 1073479680.

 	Subroutine Name

 	

 SCFTD, DCFTD

 SRCFTD, DRCFTD

 SCRFTD, DCRFTD

 Table 199. Fourier Transform subroutines
 whose lengths are limited to those in Figure 1.

 	Subroutine Name

 	

 SCFT, DCFT

 SCFTP

 SRCFT, DRCFT

 SCRFT, DCRFT

 SCOSF, DCOSF

 SCOSFT

 SSINF, DSINF

 SCFT2, DCFT2

 SCFT2P

 SRCFT2, DRCFT2

 SCRFT2, DCRFT2

 SCFT3, DCFT3

 SCFT3P

 SRCFT3, DRCFT3

 SCRFT3, DCRFT3

 Parent topic: Use Considerations

 Acceptable Lengths for the Transforms

 Use the following formula to determine acceptable transform
 lengths:

 n

 =

 (2

 h

) (3

 i

) (5

 j

) (7

 k

) (11

 m

)

 for

 n

 ≤

 37748736

 where:

 h

 =

 1, 2,

 …

 , 25

 i

 =

 0, 1, 2

 j

 ,

 k

 ,

 m

 =

 0, 1

 Figure 15. lists all
 the acceptable values for transform lengths in the Fourier transform
 subroutines.

 Figure 15. Table of Acceptable Lengths
 for the Transforms 2 4 6 8 10 12 14 16 18
 20 22 24 28 30 32 36 40 42
 44 48 56 60 64 66 70 72 80
 84 88 90 96 110 112 120 126 128
 132 140 144 154 160 168 176 180 192
 198 210 220 224 240 252 256 264 280
 288 308 320 330 336 352 360 384 396
 420 440 448 462 480 504 512 528 560
 576 616 630 640 660 672 704 720 768
 770 792 840 880 896 924 960 990 1008
 1024 1056 1120 1152 1232 1260 1280 1320 1344
 1386 1408 1440 1536 1540 1584 1680 1760 1792
 1848 1920 1980 2016 2048 2112 2240 2304 2310
 2464 2520 2560 2640 2688 2772 2816 2880 3072
 3080 3168 3360 3520 3584 3696 3840 3960 4032
 4096 4224 4480 4608 4620 4928 5040 5120 5280
 5376 5544 5632 5760 6144 6160 6336 6720 6930
 7040 7168 7392 7680 7920 8064 8192 8448 8960
 9216 9240 9856 10080 10240 10560 10752 11088 11264
 11520 12288 12320 12672 13440 13860 14080 14336 14784
 15360 15840 16128 16384 16896 17920 18432 18480 19712
 20160 20480 21120 21504 22176 22528 23040 24576 24640
 25344 26880 27720 28160 28672 29568 30720 31680 32256
 32768 33792 35840 36864 36960 39424 40320 40960 42240
 43008 44352 45056 46080 49152 49280 50688 53760 55440
 56320 57344 59136 61440 63360 64512 65536 67584 71680
 73728 73920 78848 80640 81920 84480 86016 88704 90112
 92160 98304 98560 101376 107520 110880 112640 114688 118272
 122880 126720 129024 131072 135168 143360 147456 147840 157696
 161280 163840 168960 172032 177408 180224 184320 196608 197120
 202752 215040 221760 225280 229376 236544 245760 253440 258048
 262144 270336 286720 294912 295680 315392 322560 327680 337920
 344064 354816 360448 368640 393216 394240 405504 430080 443520
 450560 458752 473088 491520 506880 516096 524288 540672 573440
 589824 591360 630784 645120 655360 675840 688128 709632 720896
 737280 786432 788480 811008 860160 887040 901120 917504 946176
 983040 1013760 1032192 1048576 1081344 1146880 1179648 1182720 1261568
 1290240 1310720 1351680 1376256 1419264 1441792 1474560 1572864 1576960
 1622016 1720320 1774080 1802240 1835008 1892352 1966080 2027520 2064384
 2097152 2162688 2293760 2359296 2365440 2523136 2580480 2621440 2703360
 2752512 2838528 2883584 2949120 3145728 3153920 3244032 3440640 3548160
 3604480 3670016 3784704 3932160 4055040 4128768 4194304 4325376 4587520
 4718592 4730880 5046272 5160960 5242880 5406720 5505024 5677056 5767168
 5898240 6291456 6307840 6488064 6881280 7096320 7208960 7340032 7569408
 7864320 8110080 8257536 8388608 8650752 9175040 9437184 9461760 10092544
 10321920 10485760 10813440 11010048 11354112 11534336 11796480 12582912 12615680
 12976128 13762560 14192640 14417920 14680064 15138816 15728640 16220160 16515072
 16777216 17301504 18350080 18874368 18923520 20185088 20643840 20971520 21626880
 22020096 22708224 23068672 23592960 25165824 25231360 25952256 27525120 28385280
 28835840 29360128 30277632 31457280 32440320 33030144 33554432 34603008 36700160
 37748736

 Parent topic: Use Considerations

 Understanding Auxiliary Working Storage Requirements

 Auxiliary working storage is required by the Fourier transform subroutines
 and by the SCONF, SCORF, and SACORF subroutines. This storage is provided
 through the calling sequence arguments aux, aux1, and aux2. The sizes of these storage areas are specified by the calling sequence
 arguments naux, naux1, and naux2, respectively.

 	AUX1

 	AUX and AUX2

 	AUX3

 Parent topic: Use Considerations

 AUX1

 The aux1 array is used for storing tables and other parameters
 when you call a Fourier transform, convolution, or correlation subroutine
 for initialization with init = 1. The initialized aux1 array is then used on succeeding
 calls with init = 0, when the computation is actually done. You should not use this
 array between the initialization and the computation.

 Parent topic: Understanding Auxiliary Working Storage Requirements

 AUX and AUX2

 The aux and aux2 arrays are used for temporary storage
 during the running of the subroutine and are available for use by your program
 between calls to the subroutine.

 Parent topic: Understanding Auxiliary Working Storage Requirements

 AUX3

 The aux3 argument is provided for migration purposes only and
 is ignored.

 Parent topic: Understanding Auxiliary Working Storage Requirements

 Initializing Auxiliary Working Storage

 In many of those subroutines requiring aux1 auxiliary working
 storage, two invocations of the subroutines are necessary. The first invocation
 initializes the working storage in aux1 for the subroutine, and the
 second performs the computations. (For an explanation of auxiliary working
 storage, see Understanding Auxiliary Working Storage Requirements.) As a result, the
 working storage in aux1 should not be used by the calling program
 between the two calls to the subroutine. However, it can be reused after intervening
 calls to the subroutine with different arguments.

 If you plan to repeat a computation many times using the same set of arguments,
 you only need to do one initialization of the aux1 array; that is,
 the initialized aux1 array can be saved and reused as many times
 as needed for the computation.

 If you plan to perform different computations, with different sets of arguments
 (except for input argument x), you need to do an initialization for
 each different computation; that is, you initialize the various aux1 arrays
 for use with the different computations, saving and reusing them until they
 are not needed any more.

 Parent topic: Fourier Transforms, Convolutions, and Correlations Considerations

 Determining the Amount of Auxiliary Working Storage That You Need

 To determine the size of auxiliary storage, you have several choices. First,
 you can use the formulas provided in each subroutine description. Second,
 ESSL's input-argument error recovery provides a means of determining the minimum
 size you need for auxiliary storage. It uses the optionally-recoverable error
 2015. For details, see Using Auxiliary Storage in ESSL. Third, you can have ESSL
 dynamically allocate aux and aux2. For details, see Dynamic Allocation of Auxiliary Storage.

 Parent topic: Fourier Transforms, Convolutions, and Correlations Considerations

 Performance and Accuracy Considerations

 The following explain the performance and accuracy considerations
 for the Fourier transforms, convolution, and correlation subroutines.
 For further details about performance and accuracy, see Planning Your Program.

 	When Running on the Workstation Processors

 	Defining Arrays

 	Fourier Transform Considerations

 	How the Fourier Transform Subroutines Achieve High Performance

 	Convolution and Correlation Considerations

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 When Running on the Workstation Processors

 There are ESSL-specific rules that apply to the results of computations
 on the workstation processors using the ANSI/IEEE standards. For details,
 see What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?.

 Parent topic: Performance and Accuracy Considerations

 Defining Arrays

 The stride arguments, inc1h,
 inc1x, inc1y, inc2x, inc2y, incx, incy, incmx, incmy, inc3x,
 and inc3y, provide great flexibility in
 defining the input and output data arrays. The arrangement of data
 in storage, however, can have an effect upon cache performance. By
 using strides, you can have data scattered in storage. Best performance
 is obtained with data closely spaced in storage and with elements
 of the sequence in contiguous locations. The optimum values for inc1h,
 inc1x, and inc1y are 1.

 In writing the calling program, you may find it convenient
 to declare X or Y as a two-dimensional
 array. For example, you can declare X in a DIMENSION
 statement as X(INC2X,M).

 Parent topic: Performance and Accuracy Considerations

 Fourier Transform Considerations

 This describes some ways to optimize performance in the Fourier transform
 subroutines.

 	Setting Up Your Data

 	Using the Scale Argument

 Parent topic: Performance and Accuracy Considerations

 Setting Up Your Data

 Many of the Fourier transform, convolution, and correlation
 subroutines provide the facility for processing many sequences in
 one call. For short sequences, for example 1024 elements or less,
 this facility should be used as much as possible. This provides improved
 performance compared to processing only one sequence at a time.

 If possible, you should use the same array for input and
 output.

 For improved performance, small values of inc1x and inc1y should
 be used, where applicable, preferably inc1x = 1
 and inc1y = 1. A stride of 1 means the sequence
 elements are stored contiguously. Also, if possible, the sequences
 should be stored close to each other. For all the Fourier transform
 subroutines except _RCFT and _CRFT, you should use the STRIDE subroutine
 to determine the optimal stride(s) for your input or output data.
 Complete instructions on how to use STRIDE for each of these subroutines
 is included in STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines).

 To obtain the best performance in the three-dimensional
 Fourier transform subroutines, you should use strides, inc2 and inc3,
 provided by the STRIDE subroutine and declare your three-dimensional
 data structure as a one-dimensional array. The three-dimensional Fourier
 transform subroutines assume that inc1 for
 the array is 1. Therefore, each element xijk for i = 0,
 1, …, n1-1, j = 0,
 1, …, n2-1,
 and k = 0, 1, …, n3-1 of the
 three-dimensional data structure of dimensions n1 by n2 by n3 is
 stored in a one-dimensional array X(0:L) at location X(l),
 where l = i+inc2(j)+inc3(k).
 The minimum required value of L is calculated by
 inserting the maximum values for i, j,
 and k in the above equation, giving L = (n1-1)+inc2(n2-1)+inc3(n3-1).
 The minimum total size of array X is L+1.
 To ensure that this mapping is unique so no two elements xijk occupy
 the same array element, X(l),
 the subroutines have the following restriction: inc2 ≥ n1 and inc3 ≥ (inc2)(n2).
 This arrangement of array data in storage leaves some blank space
 between successive planes of the array X. By determining
 the best size for this space, specifying an optimum inc3 stride,
 the third dimension of the array does not create conflicts in the 3090 storage hierarchy.

 If the inc3 stride value returned
 by the STRIDE subroutine turns out to be a multiple of inc2,
 the array X can be declared as a three-dimensional
 array as X(inc2,inc3/inc2,n3);
 otherwise, it can be declared as either a one-dimensional array, X(0:L),
 as described above, or a two-dimensional array X(0:inc3-1,0:n3-1),
 where xijk is
 stored in X(l,k)
 where l = i+(inc2)(j).

 Parent topic: Fourier Transform Considerations

 Using the Scale Argument

 If you must multiply either the input or the output sequences by a common
 factor, you can avoid the multiplication by letting the scale argument
 contain the factor. The subroutines multiply the sine and cosine values by
 the scale factor during the initialization. Thus, scaling takes no time after
 the initialization of the Fourier transform calculations.

 Parent topic: Fourier Transform Considerations

 How the Fourier Transform Subroutines Achieve High Performance

 There are two levels of optimization for the fast Fourier
 transforms (FFTs) in the ESSL library:

 	For sequences with a large power of 2 length, we provide efficient
 implementations by factoring the transform length as follows:
 N=N1N2N3…Np

 where
 each Ni is a power of 2; the power of 2 used depends on
 the machine model.

 The cache optimization includes ordering
 of operations to maximize stride-1 data access and prefetching cache
 lines.

 Similar optimization techniques are used for sequence
 lengths which are not a power of 2 and mixed-radix FFT's are performed.
 Many short sequence FFT's have sequence size specific optimizations.
 Some of these optimizations were originally developed for a vector
 machine and have been adapted for cache based RISC machines (see references [1], [5], and [7])

 	The other optimization in the FFT routine is to treat multiple
 sequences as efficiently as possible. Techniques here include blocking
 sequences to fit into available CPU cache and transposing sequences
 to ensure stride-1 access. Whenever possible, the highest performance
 can be obtained when multiple sequences are transformed in a single
 call.

 Parent topic: Performance and Accuracy Considerations

 Convolution and Correlation Considerations

 This describes some ways to optimize performance in the convolution and
 correlation subroutines.

 	Performance Tradeoffs between Subroutines

 	Special Uses of SCORD

 	Special Uses of _DCON and _DCOR

 	Accuracy When Direct Methods Are Used

 	Accuracy When Fourier Methods Are Used

 	Convolutions and Correlations by Fourier Methods

 Parent topic: Performance and Accuracy Considerations

 Performance Tradeoffs between Subroutines

 The subroutines SCON, SCOR, SACOR, SCOND, SCORD, SDCON,
 SDCOR, DDCON, and DDCOR compute convolutions, correlations, and autocorrelations
 using essentially the same methods. They make a decision, based on
 estimated timings, to use one of two methods:

 	A direct method that is most efficient when one or both of the
 input sequences are short

 	A direct method that is most efficient when the output sequence
 is short

 Using this approach has the following advantages:

 	In most cases, improved performance can be achieved for direct
 methods because:

 	No initialization is required.

 	No working storage or padding of sequences is necessary.

 	In some cases, greater accuracy may be available.

 	Negative strides can be used.

 In general, using SCONF, SCORF, and SACORF provides the
 best performance, because the mixed-radix Fourier transform subroutines
 are used. However, if you can determine from your arguments that a
 direct method is preferred, you should use SCOND and SCORD instead.
 These give you better performance for the direct methods, and also
 give you additional capabilities.

 In cases where there is doubt as to the best choice of
 a subroutine, perform timing experiments.

 Parent topic: Convolution and Correlation Considerations

 Special Uses of SCORD

 The subroutine SCORD can perform the functions of SCON and SACOR; that
 is, it can compute convolutions and autocorrelations. To compute a convolution,
 you must specify a negative stride for h (see
 Example 4 in SCORD). To compute the autocorrelation, you must specify the
 two input sequences to be the same (see Example 5 in SCORD).

 Parent topic: Convolution and Correlation Considerations

 Special Uses of _DCON and _DCOR

 The _DCON and _DCOR subroutines compute convolutions and correlations,
 respectively, by the direct method with decimated output. Setting the decimation
 interval id = 1 in SDCON and SDCOR provides the same function as SCOND and SCORD, respectively.
 Doing the same in DDCON and DDCOR provides long-precision versions of SCOND
 and SCORD, respectively, which are not otherwise available.

 Parent topic: Convolution and Correlation Considerations

 Accuracy When Direct Methods Are Used

 The direct methods used by the convolution and correlation
 subroutines use vector operations to accumulate sums of products.
 The products are computed and accumulated in long precision. As a
 result, higher accuracy can be obtained in the final results for some
 types of data. For example, if input data consists only of integers,
 and if no intermediate and final numbers become too large (larger
 than 224-1 for short-precision computations and larger
 than 256-1 for long-precision computations), the results
 are exact.

 However, when short-precision subroutines use the
 AltiVec or VSX unit to improve performance, they
 do not accumulate intermediate results in long precision.

 Parent topic: Convolution and Correlation Considerations

 Accuracy When Fourier Methods Are Used

 The Fourier methods used by the convolution and correlation subroutines
 compute Fourier transforms of input data that is multiplied element-by-element
 in short-precision arithmetic. The inverse Fourier transform is then computed.
 There are internally generated rounding errors in the Fourier transforms.
 It has been shown in references [115] and [103] that, in the case of white noise data,
 the relative root mean square (RMS) error of the Fourier transform is proportional
 to log2n with a very small proportionality
 factor. In general, with random, evenly distributed data, this is better than
 the RMS error of the direct method. However, one must keep in mind the fact
 that, while the Fourier method may yield a smaller root mean square error,
 there can be points with large relative errors. Thus, it can happen that some
 points, usually at the ends of the output sequence, can be obtained with greater
 relative accuracy with direct methods.

 Parent topic: Convolution and Correlation Considerations

 Convolutions and Correlations by Fourier Methods

 The convolution and correlation subroutines that use the Fourier methods
 determine a sequence length n, whose Fourier transform is computed
 using ESSL subroutines. In the simple case where iy0 = 0 for convolution or iy0 = -nh+1
 for correlation, n is chosen as a value greater than or equal to
 the following, which is also acceptable to the Fourier tranform subroutines:

 nt

 =

 min(

 nh

 +

 nx

 -1,

 ny

) for convolution and correlation

 nt

 =

 min(

 nx

 +

 nx

 -1,

 ny

) for autocorrelation

 which is also acceptable to the Fourier subroutines.

 Parent topic: Convolution and Correlation Considerations

 Related Computation Considerations

 This describes some key points about using the related-computation subroutines.

 	Accuracy Considerations

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 Accuracy Considerations

 	Many of the subroutines performing short-precision computations provide
 increased accuracy by accumulating results in long precision. This is noted
 in the functional description for each subroutine.

 	There are ESSL-specific rules that apply to the results of computations
 on the workstation processors using the ANSI/IEEE standards. For details,
 see What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?.

 Parent topic: Related Computation Considerations

 Fourier Transform Subroutines

 This contains the Fourier transform subroutine
 descriptions.

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SCFTD and DCFTD (Multidimensional Complex Fourier Transform)

 Purpose

 These subroutines compute a set
 of m d-dimensional discrete
 Fourier transforms of complex data.

 Table 200. Data Types.

 	X, Y

 	scale

 	Subroutine

 	Short-precision complex

 	Short-precision real

 	SCFTD

 	Long-precision complex

 	Long-precision real

 	DCFTD

 Notes:

 	Two invocations of this subroutine are necessary: one to prepare
 the working storage for the subroutine, and the other to perform the
 computations.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SCFTD | DCFTD (init, d, x, incx, incmx, y, incy, incmy, n, m, isign, scale, aux1, naux1, aux2, naux2)

 	C and C++

 	scftd | dcftd (init, d, x, incx, incmx, y, incy, incmy, n, m, isign, scale, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 init

 	is a flag, where:
 If init = 1, trigonometric
 functions and other parameters, depending on arguments other than x,
 are computed and saved in aux1. The contents of x and y are
 not used or changed.

 If init = 2, trigonometric
 functions and other parameters, depending on arguments other than x,
 are computed and saved in aux1, and no SIMD algorithms
 are used (see What ESSL Library Do You Want to Use?).
 The contents of x and y are
 not used or changed.

 If init = 0, the discrete
 Fourier transforms of the given array is computed. The only arguments
 that may change after initialization are x, y,
 and aux2. The arguments d, incx, incmx, incy, incmy, n, m, isign, scale, aux1, naux1,
 and naux2 must be the same as when the subroutine
 was called for initialization with init = 1
 or init = 2.

 Specified as: an integer;
 0 ≤ init ≤ 2.

 	d

 	is the dimension of the transform.
 Specified as: an integer;
 1 ≤ d ≤ 3.

 	 x

 	is the array X, consisting of m sequences
 of d-dimensional complex arrays to be transformed.
 Using zero-based indexing, xj1,j2,…,jd,mm is
 stored in location j1(incx1)
 + j2(incx2) + … + jd(incxd)
 + mm(incmx) of the array X.
 Specified
 as: an array of (at least) length 1 + incx1(n1-1)
 + … + incxd(nd-1)
 + incmx(m-1), containing numbers
 of the data type indicated in Table 200.

 	 incx

 	is an array containing the strides between the elements in array X for
 each of the d dimensions.
 Specified as: an
 array of length d containing integers; incx1:d >
 0.

 	 incmx

 	is the stride between the first elements of the d-dimensional
 sequences in array X. (If m =
 1, this argument is ignored.)
 Specified as: an integer; incmx > 0.

 	 y

 	See On Return.

 	 incy

 	is an array containing the strides between the elements in array Y for
 each of the d dimensions.
 Specified as: an
 array of length d containing integers; incy1:d >
 0.

 	 incmy

 	is the stride between the first elements of the d-dimensional
 sequences in array Y. (If m =
 1, this argument is ignored.)
 Specified as: an integer; incmy > 0.

 	 n

 	is an array containing the lengths of the dimensions of the array
 to be transformed.
 Specified as: an array of length d containing
 integers; 0 ≤ n1:d ≤ 1073479680.

 	 m

 	is the number of sequences to be transformed.
 Specified as:
 an integer; m > 0.

 	 isign

 	is an array that controls the direction of the transform (from
 time to frequency or from frequency to time). The sign of Isigni determines
 the signs in the exponents of Wn1, Wn2,
 ..., Wnd, where:

 If isigni > 0, Isigni =
 + (transforming time to frequency).

 If isigni <
 0, Isigni = - (transforming
 frequency to time).

 Specified as: an array of length d containing
 integers; isign1:d ≠0.

 	 scale

 	is the scaling constant by which the transforms are multiplied.
 See Function for its usage.

 Specified as: a number of the data type indicated in Table 200, where scale ≠ 0.0.

 	 aux1

 	is the working storage for this subroutine, where:
 If init > 0,
 the working storage is computed.

 If init =
 0, the working storage is used in the computation of the Fourier transforms.

 Specified
 as: an area of storage, containing naux1 long-precision
 real numbers.

 	 naux1

 	is the number of doublewords in the working storage specified
 in aux1.
 Specified as: an integer; naux1 > 7(d+1)+1
 and naux1 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas (see Processor-Independent Formulas
 for SCFTD for NAUX1 and NAUX2 and Processor-Independent Formulas
 for DCFTD for NAUX1 and NAUX2. For values between 7(d+1)+1
 and the minimum value, you have the option of having the minimum value
 returned in this argument; for details, see On Return and Using Auxiliary Storage in ESSL.

 	 aux2

 	has the following meaning:
 If naux2 = 0
 and error 2015 is unrecoverable, aux2 is ignored.

 Otherwise,
 it is the working storage used by this subroutine, which is available
 for use by the calling program between calls to this subroutine.

 Specified
 as: an area of storage, containing naux2 long-precision
 real numbers. On output, the contents are overwritten.

 	 naux2

 	is the number of doublewords in the working storage specified
 in aux2.
 Specified as: an integer, where:

 If naux2 =
 0 and error 2015 is unrecoverable, the subroutine dynamically allocates
 the work area. The work area is deallocated before control is returned
 to the calling program.

 Otherwise, naux2 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For all other values specified
 less than the minimum value, you have the option of having the minimum
 value returned in this argument; for details, see On Return and Using Auxiliary Storage in ESSL.

 	On Return

 	

 	 y

 	has the following meaning, where:
 If init > 0,
 this argument is not used, and its contents remain unchanged.

 If init =
 0, this is array Y, consisting of the results of
 the m d-dimensional discrete
 Fourier transforms. Using zero-based indexing, yk1,k2,…,kd,mm is
 stored in location k1(incy1)
 + k2(incy2) + … + kd(incyd)
 + mm(incmy) of the array Y.

 Returned
 as: an array of (at least) length 1 + incy1(n1-1)
 + … + incyd(nd-1)
 + incmy(m-1), containing numbers
 of the data type indicated in Table 200.

 	 aux1

 	is the working storage for this subroutine, where:
 If init > 0,
 it contains information ready to be passed in a subsequent invocation
 of this subroutine.

 If init = 0, its contents
 are unchanged.

 Returned as: the contents are not relevant.

 	 naux1

 	contains the minimum value required for successful processing
 (as returned by the subroutine), provided that the following are true:

 	You specified that error 2015 is recoverable.

 	You specified an input value for naux1 that
 is at least 7(d+1)+1 (but insufficient for the
 problem).

 	There were no other errors.

 Otherwise, it remains unchanged.

 Returned as: an
 integer.

 	 naux2

 	contains the minimum value required for successful processing
 (as returned by the subroutine), provided that the following are true:

 	You specified that error 2015 is recoverable.

 	You specified an input value for naux2 that
 is greater than or equal to zero (but insufficient for the problem).

 	There were no other errors.

 Otherwise, it remains unchanged.

 Returned as: an
 integer.

 Notes

 	aux1 should not be used by the calling
 program between calls to this subroutine with init > 0
 and init > 0. However, it can be reused
 after intervening calls to this subroutine with different arguments.

 	When using the ESSL SMP Libraries, for optimal performance, the
 number of threads specified should be the same for init > 0
 and init = 0.

 	For optimal performance, the preferred value for incx1 and incy1 is
 1.
 If you specify the same array for X and Y,
 then incxi and incyi for i =
 1,…,d must
 be equal, and incmx and incmy must
 be equal. In this case, output overwrites input. If you specify different
 arrays for X and Y, they must have
 no common elements; otherwise, results are unpredictable. See Concepts.

 	You have the option of having the minimum required value for naux1 and naux2 dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Formulas

 	[bookmark: am5gr_hscftd__am5gr_f12a002d]
 Processor-Independent Formulas for SCFTD for NAUX1 and NAUX2:

 	

 	[bookmark: am5gr_hscftd__am5gr_f12a003s]
 NAUX1 Formulas

 	

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

)

 ≤

 2048,

 naux1

 = 30000

 d

 .

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

) > 2048,

 naux1

 = 60000

 d

 +14.12(

 n

 1

 +

 …

 +

 n

 d

).

 	[bookmark: am5gr_hscftd__am5gr_f12a004s]
 NAUX2 Formulas

 	

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

) < 252,

 naux2

 = 20000.

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

)

 ≥

 252,

 naux2

 = 20000+(

 r

 +256)(

 s

 +8.56).

 where:

 r

 = max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

) and

 s

 = min(64,

 r

)

 	[bookmark: am5gr_hscftd__am5gr_f12a005d]
 Processor-Independent Formulas for DCFTD for NAUX1 and NAUX2:

 	

 	[bookmark: am5gr_hscftd__am5gr_f12a003d]
 NAUX1 Formulas

 	

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

)

 ≤

 1024,

 naux1

 = 30000

 d

 .

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

) > 1024,

 naux1

 = 60000

 d

 +28.24(

 n

 1

 +

 …

 +

 n

 d

).

 	[bookmark: am5gr_hscftd__am5gr_f12a004d]
 NAUX2 Formulas

 	

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

) < 252,

 naux2

 = 20000.

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

)

 ≥

 252,

 naux2

 = 20000+(2

 r

 +256)(

 s

 +17.12).

 where:

 r

 = max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

) and

 s

 = min(64,

 r

)

 Function

 The set of m d-dimensional
 discrete Fourier transforms of complex data in array X,
 with results going into array Y, is expressed as
 follows:

 [image: (Formula: For details, see PDF version of Guide and Reference)]

 for:

 k1

 = 0,

 …

 ,

 n

 1

 -1

 k2

 = 0,

 …

 ,

 n

 2

 -1

 .

 .

 .

 kd

 = 0,

 …

 ,

 n

 d

 -1

 i

 = 0,

 …

 ,

 m

 -1

 where:

 [image: (Formula: For details, see PDF version of Guide and Reference)]

 for:

 l =
 1,…,d

 and
 where:

 x

 j

 1,

 j

 2

 …

 jd

 ,

 mm

 are elements of the

 d

 -dimensional sequences in array

 X

 .

 y

 k

 1,

 k

 2

 …

 kd

 ,

 mm

 are elements of the

 d

 -dimensional sequences in array

 Y

 .

 For scale =
 1.0 and isign1 = isign2 = … = isignd =
 1, you obtain the discrete Fourier transform (DFT), a function of
 frequency. The inverse Fourier transform is obtained with scale = 1.0/n1 n2…nd and isign1 = isign2 = … = isignd =
 -1. See references[5], [7], [12], and [31].

 Two
 invocations of this subroutine are necessary:

 	With init > 0, the subroutine tests and initializes
 arguments of the program, setting up the aux1 working
 storage.

 	With init = 0, the subroutine checks that the
 initialization arguments in the aux1 working storage
 correspond to the present arguments, and if so, performs the calculation
 of the Fourier transforms.

 If ni =
 0 for any i from 1 to d or if m =
 0; no initialization or computation is performed.

 Error conditions

 	[bookmark: am5gr_hscftd__am5gr_f12a008d]
 Resource Errors

 	Error 2015 is unrecoverable, naux2 = 0, and
 unable to allocate work area.

 	[bookmark: am5gr_hscftd__am5gr_f12a009d]
 Computational Errors

 	None

 	[bookmark: am5gr_hscftd__am5gr_f12a010d]
 Input-Argument Errors

 	

 	init < 0 or init > 2

 	d < 1 or d > 3

 	incxi ≤ 0 (i =
 1,...,d)

 	incmx ≤ 0

 	incyi ≤ 0 (i =
 1,...,d)

 	incmy ≤ 0

 	ni < 0 or ni >
 1073479680 (i = 1,...,d)

 	m < 0

 	isigni = 0 (i =
 1,...,d)

 	scale = 0.0

 	naux1 ≤ 7(d+1)+1.

 	naux1 is too small—that is, less than the minimum required value.
 Return code 1 is returned if error 2015 is recoverable.

 	Error 2015 is recoverable or naux2≠0,
 and naux2 is too small—that is, less than the minimum required value.
 Return code 1 is returned if error 2015 is recoverable.

 	The subroutine has not been initialized with the present arguments.

 Examples

 	Example 1

 	
 This example shows an input array X with
 a set of four long-precision complex sequences:

 [image: (Formula; for details, see PDF version of Guide and Reference)]

 for j =
 0, 1, …, n-1
 with n = 8, and the single frequencies k =
 0, 1, 2, and 3.

 Note: X is the same input array
 used in Example
 1.

 The arrays are declared as follows: COMPLEX*16 X(0:31),Y(0:31)
 REAL*8 AUX1(10000),AUX2(1)

 First, initialize AUX1 using
 the calling sequence shown below with INIT ≠ 0. Then use the
 same calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2 =
 0, this subroutine dynamically allocates the AUX2 working
 storage.

 Call Statement and Input:

 INIT D X INCX INCMX Y INCY INCMY N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | | |
CALL DCFTD(INIT, 1, X, INCX, 8, Y, INCY, 8, N, 4, ISIGN, 1.0, AUX1, 10000, AUX2, 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 INCX

 is an array of length

 d

 .

 INCX(1) = 1

 INCY

 is an array of length

 d

 .

 INCY(1) = 1

 N

 is an array of length

 d

 .

 N(1) = 8

 ISIGN

 is an array of length

 d

 .

 ISIGN(1) = 1

 SCALE = 1.0

 X contains
 the following four sequences: (1.0000, 0.0000) (1.0000, 0.0000) (1.0000, 0.0000) (1.0000, 0.0000)
(1.0000, 0.0000) (0.7071, 0.7071) (0.0000, 1.0000) (-0.7071, 0.7071)
(1.0000, 0.0000) (0.0000, 1.0000) (-1.0000, 0.0000) (0.0000, -1.0000)
(1.0000, 0.0000) (-0.7071, 0.7071) (0.0000, -1.0000) (0.7071, 0.7071)
(1.0000, 0.0000) (-1.0000, 0.0000) (1.0000, 0.0000) (-1.0000, 0.0000)
(1.0000, 0.0000) (-0.7071, -0.7071) (0.0000, 1.0000) (0.7071, -0.7071)
(1.0000, 0.0000) (0.0000, -1.0000) (-1.0000, 0.0000) (0.0000, 1.0000)
(1.0000, 0.0000) (0.7071, -0.7071) (0.0000, -1.0000) (-0.7071, -0.7071)

 Output:

 Y contains
 the following four sequences: (8.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (8.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (8.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (8.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

 	[bookmark: am5gr_hscftd__am5gr_dcftdx2]
 Example 2

 	
 This example shows how to compute a three-dimensional transform.
 In this example, INCX ≥ INCY,
 so the same array can be used for both input and output.

 Note: X is
 the same input array used in Example 1.

 The
 STRIDE subroutine is called to select good values for the INCY strides.
 (As explained below, STRIDE is not called for INCX.)
 Using the transform lengths (N(1) = 32, N(2) =
 64, and N(3) = 40) along with the output data type
 (short-precision complex: 'C'), STRIDE is called
 once for each stride needed. First, it is called for INCY(2):
 CALL STRIDE (N(2),N(1),INCY(2),'C',0)

 The
 output value returned for INCY(2) is 32. Then STRIDE
 is called again for INCY(3): CALL STRIDE (N(3),N(2)*INCY(2),INCY(3),'C',0)

 The
 output value returned for INCY(3) is 2056. Because INCY(3) is
 not a multiple of INCY(2), Y is
 not declared as a three-dimensional array; it is declared as a two-dimensional
 array, Y(INCY(3),N(3)).

 For equivalence,
 it is required that INCX(2) ≥ INCY(2) and INCX(3) ≥ INCY(3).
 Therefore, INCX(2) and INCY(2) are
 set as follows: INCX(2) = INCY(2) =
 32.

 To enable the X array to be declared
 as a three-dimensional array, INCX(3) must be a multiple
 of INCX(2). Therefore, its value is set as INCX(3) =
 65(INCX(2)) = 2080.

 The arrays are declared
 as follows: COMPLEX*8 X(32,65,40),Y(2056,40)
 REAL*8 AUX1(90000),AUX2(1),SCALE

 Arrays X and Y are
 made equivalent by the following statement, making them occupy the
 same storage: EQUIVALENCE (X,Y)

 Note: Because NAUX2 =
 0, this subroutine dynamically allocates the AUX2 working
 storage.

 Call Statement and Input:
 INIT D X INCX INCMX Y INCY INCMY N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | | |
CALL SCFTD(INIT, 3, X, INCX, 0, Y, INCY, 0, N, 1, ISIGN, 1.0, AUX1, 90000, AUX2, 0)

 INIT = 1 (for initialization)
INIT = 0 (for computation)
INCX is an array of length d.
INCX(1) = 1
INCX(2) = 32
INCX(3) = 2080
INCY is an array of length d.
INCY(1) = 1
INCY(2) = 32
INCY(3) = 2056 N is an array of length d.
N(1) = 32
N(2) = 64
N(3) = 40 ISIGN is an array of length d.
ISIGN(1) = 1
ISIGN(2) = 1
ISIGN(3) = 1
SCALE = 1.0
X has (1.0,2.0) in location X(1,1,1) and (0.0,0.0) in all other locations.

 Output:

 Y has (1.0,2.0)
 in all locations.

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SRCFTD and DRCFTD (Multidimensional Real-to-Complex Fourier
 Transform)

 Purpose

 These subroutines compute a set
 of m d-dimensional complex discrete
 Fourier transforms of real data.

 Table 201. Data Types.

 	X, scale

 	Y

 	Subroutine

 	Short-precision real

 	Short-precision complex

 	SRCFTD

 	Long-precision real

 	Long-precision complex

 	DRCFTD

 Notes:

 	Two invocations of this subroutine are necessary: one to prepare
 the working storage for the subroutine, and the other to perform the
 computations.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SRCFTD | DRCFTD (init, d,x, incx, incmx, y, incy, incmy, n, m, isign, scale, aux1, naux1, aux2, naux2)

 	C and C++

 	srcftd | drcftd (init, d, x, incx, incmx, y, incy, incmy, n, m, isign, scale, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 init

 	is a flag, where:
 If init = 1, trigonometric
 functions and other parameters, depending on arguments other than x,
 are computed and saved in aux1. The contents of x and y are
 not used or changed.

 If init = 2, trigonometric
 functions and other parameters, depending on arguments other than x,
 are computed and saved in aux1, and no SIMD algorithms
 are used (see What ESSL Library Do You Want to Use?).
 The contents of x and y are
 not used or changed.

 If init = 0, the discrete
 Fourier transforms of the given array are computed. The only arguments
 that may change after initialization are x, y,
 and aux2. The arguments d, incx, incmx, incy, incmy, n, m, isign, scale, aux1, naux1,
 and naux2 must be the same as when the subroutine
 was called for initialization with init = 1 or init =
 2.

 Specified as: an integer; 0 ≤ init ≤ 2.

 	d

 	is the dimension of the transform.
 Specified as: an integer;
 1 ≤ d ≤ 3.

 	 x

 	is the array X, consisting of m sequences
 of d-dimensional complex arrays to be transformed.
 Using zero-based indexing, xj1,j2,…,jd,mm is
 stored in location j1(incx1) + j2(incx2) + … + jd(incxd) + mm(incmx)
 of the array X.
 Specified as: an array of (at
 least) length 1 + incx1(n1-1) + … + incxd(nd-1) + incmx(m-1),
 containing numbers of the data type indicated in Table 201.

 	 incx

 	is an array containing the strides between the elements in array X for
 each of the d dimensions.
 Specified as: an
 array of length d containing integers; incx1:d > 0.

 	 incmx

 	is the stride between the first elements of the d-dimensional
 sequences in array X. (If m =
 1, this argument is ignored.)
 Specified as: an integer; incmx > 0.

 	y

 	See On Return.

 	 incy

 	is an array containing the strides between the elements in array Y for
 each of the d dimensions.
 Specified as: an
 array of length d containing integers; incy1:d > 0.

 	 incmy

 	is the stride between the first elements of the d-dimensional
 sequences in array Y. (If m =
 1, this argument is ignored.)
 Specified as: an integer; incmy > 0.

 	 n

 	is an array containing the lengths of the dimensions of the array
 to be transformed.
 Specified as: an array of length d containing
 integers; 0 ≤ n1:d ≤ 1073479680.

 	 m

 	is the number of sequences to be transformed.
 Specified as:
 an integer; m > 0.

 	 isign

 	is an array that controls the direction of the transform (from
 time to frequency or from frequency to time). The sign of Isigni determines
 the signs in the exponents of Wn1, Wn2,
 ..., Wnd, where:

 If isigni > 0, Isigni = + (transforming
 time to frequency).

 If isigni < 0, Isigni = - (transforming
 frequency to time).

 Specified as: an array of length d containing
 integers; isign1:d≠0.

 	 scale

 	is the scaling constant by which the transforms are multiplied.
 See Function for its
 usage.
 Specified as: a number of the data type indicated in Table 201, where scale ≠ 0.0.

 	 aux1

 	is the working storage for this subroutine, where:
 If init > 0, the working
 storage is computed.

 If init = 0, the working
 storage is used in the computation of the Fourier transforms.

 Specified
 as: an area of storage, containing naux1 long-precision
 real numbers.

 	 naux1

 	is the number of doublewords in the working storage specified
 in aux1.
 Specified as: an integer; naux1 > (4d+11)
 and naux1 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas (see Formulas). For values between
 (4d+ 11) and the minimum value, you have the
 option of having the minimum value returned in this argument; for
 details, see On Return and Using Auxiliary Storage in ESSL.

 	aux2

 	has the following meaning:
 If naux2 = 0 and error 2015 is unrecoverable,
 aux2 is ignored.

 Otherwise, it is the working storage used by
 this subroutine, which is available for use by the calling program
 between calls to this subroutine.

 Specified as: an area of
 storage, containing naux2 long-precision real numbers.
 On output, the contents are overwritten.

 	 naux2

 	is the number of doublewords in the working storage specified
 in aux2.
 Specified as: an integer, where:

 If naux2 =
 0 and error 2015 is unrecoverable, the subroutine dynamically allocates
 the work area. The work area is deallocated before control is returned
 to the calling program.

 Otherwise, naux2 ≥ (minimum value required for successful
 processing). To determine a sufficient value, use the processor-independent
 formulas. For all other values specified less than the minimum value,
 you have the option of having the minimum value returned in this argument.
 For details, see On Return and Using Auxiliary Storage in ESSL.

 	On Return

 	

 	 y

 	has the following meaning, where:
 If init > 0, this
 argument is not used, and its contents remain unchanged.

 If init =
 0, this is array Y, consisting of the results of
 the m d-dimensional complex
 discrete Fourier transforms. Using zero-based indexing, yk1,k2,…,kd,mm is
 stored in location k1(incy1) + k2(incy2) + … + kd(incyd) + mm(incmy)
 of the array Y. Due to complex conjugate symmetry,
 the output consists of only the first n1/2+ 1 values along
 the first dimension of the array, for k1 = 0, 1, …, n1/2.

 Returned
 as: an array of (at least) length 1 + incy1(n1-1) + … + incyd(nd-1) + incmy(m-1),
 containing numbers of the data type indicated in Table 201.

 	 aux1

 	is the working storage for this subroutine, where:
 If init > 0, it contains
 information ready to be passed in a subsequent invocation of this
 subroutine.

 If init = 0, its contents are
 unchanged.

 Returned as: the contents are not relevant.

 	 naux1

 	contains the minimum value required for successful processing
 (as returned by the subroutine), provided that the following are true:

 	You specified that error 2015 is recoverable.

 	You specified an input value for naux1 that
 is at least (4d+11) (but insufficient for the problem).

 	There were no other errors.

 Otherwise, it remains unchanged.

 Returned as: an
 integer.

 	 naux2

 	contains the minimum value required for successful processing
 (as returned by the subroutine), provided that the following are true:

 	You specified that error 2015 is recoverable.

 	You specified an input value for naux2 that
 is greater than or equal to zero (but insufficient for the problem).

 	There were no other errors.

 Otherwise, it remains unchanged.

 Returned as: an
 integer.

 Notes®

 	aux1 should not be used by the calling
 program between calls to this subroutine with init > 0
 and init = 0. However, it can be reused after intervening
 calls to this subroutine with different arguments.

 	When using the ESSL SMP Libraries, for optimal performance, the
 number of threads specified should be the same for init > 0
 and init = 0.

 	For optimal performance, the preferred value for incx1 and incy1 is
 1.
 If you specify the same array for X and Y,
 then:

 	incxi must equal 2(incyi),
 for i = 2,...,d

 	incmx must be equal to 2(incmy) if m >
 1

 In this case, output overwrites input. If you specify different
 arrays for X and Y, they must have
 no common elements; otherwise, results are unpredictable. See Concepts.

 	You have the option of having the minimum required value for naux1 and naux2 dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Formulas

 	Processor-Independent Formulas for SRCFTD for NAUX1 and NAUX2:

 	

 	NAUX1 Formulas

 	

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

)

 ≤

 2048,

 naux1

 = 60000

 d

 .

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

)

 >

 2048,

 naux1

 = 60000

 d

 +14.12(

 n

 1

 +

 …

 +

 n

 d

).

 	NAUX2 Formulas

 	

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

) < 252,

 naux2

 = 20000.

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

)

 ≥

 252,

 naux2

 = 20000+(

 r

 +

 256)(

 s

 +

 8.56).

 where:

 r

 = max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

) and

 s

 = min(64,

 r

)

 	Processor-Independent Formulas for DRCFTD for NAUX1 and NAUX2:

 	

 	NAUX1 Formulas

 	

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

)

 ≤

 1024,

 naux1

 = 60000

 d

 .

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

)

 >

 1024,

 naux1

 = 60000

 d

 +

 28.24(

 n

 1

 +

 …

 +

 n

 d

).

 	[bookmark: am5gr_hsrcftd__am5gr_f12a004d]
 NAUX2 Formulas

 	

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

) < 252,

 naux2

 = 20000.

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

)

 ≥

 252,

 naux2

 = 20000

 +

 (2

 r

 +

 256)(

 s

 +

 17.12).

 where:

 r

 = max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

) and

 s

 = min(64,

 r

)

 Function

 The set
 of m d-dimensional complex conjugate
 even discrete Fourier transforms of real data in array x with
 results going into array y is expressed as follows:

 [image: (Formula: For details, see PDF version of Guide and Reference)]

 for:

 k1

 = 0,

 …

 ,

 n

 1

 -1

 k2

 = 0,

 …

 ,

 n

 2

 -1

 .

 .

 .

 kd

 = 0,

 …

 ,

 n

 d

 -1

 i

 = 0,

 …

 ,

 m

 -1

 where:

 [image: (Formula: For details, see PDF version of Guide and Reference)]

 for:

 l =
 1,…,d

 and
 where:

 x

 j

 1,

 j

 2

 …

 jd

 ,

 mm

 are elements of the

 d

 -dimensional sequences in array

 X

 .

 y

 k

 1,

 k

 2

 …

 kd

 ,

 mm

 are elements of the

 d

 -dimensional sequences in array

 Y

 .

 For scale =
 1.0 and isign1 = isign2 = … = isignd =
 1, you obtain the discrete Fourier transform (DFT), a function of
 frequency. The inverse Fourier transform is obtained with scale =
 1.0/n1 n2…nd and isign1 = isign2 = … = isignd =
 -1. See references[5], [7], [12], and [31]

 Two invocations
 of this subroutine are necessary:

 	With init > 0, the subroutine tests and initializes
 arguments of the program, setting up the aux1 working
 storage.

 	With init = 0, the subroutine checks that the
 initialization arguments in the aux1 working storage
 correspond to the present arguments, and if so, performs the calculation
 of the Fourier transforms.

 If ni =
 0 for any i from 1 to d or if m =
 0; no initialization or computation is performed.

 Error conditions

 	Resource Errors

 	Error 2015 is unrecoverable, unable to allocate work area, and
 internal deallocation error.

 	Computational Errors

 	None

 	Input-Argument Errors

 	

 	init < 0 or init > 2

 	d < 1 or d > 3

 	incxi ≤ 0 (i = 1,...,d)

 	incmx ≤ 0

 	incyi ≤ 0 (i = 1,...,d)

 	incmy ≤ 0

 	ni < 0
 or ni >1073479680
 (i = 1,...,d)

 	m < 0

 	isigni = 0 (i =
 1,...,d)

 	scale = 0.0

 	naux1 ≤ 4d+11.

 	naux1 is too small—that is, less than the minimum required value.
 Return code 1 is returned if error 2015 is recoverable.

 	Error 2015 is recoverable or naux2 ≠ 0,
 and naux2 is too small—that is, less than the minimum required value.
 Return code 1 is returned if error 2015 is recoverable.

 	The subroutine has not been initialized with the present arguments.

 Examples

 	Example 1

 	
 This example shows an input array X with
 a set of m cosine sequences cos(2πjk/n), j =
 0, 1, …,
 15 with the single frequencies k = 0, 1, 2, 3.
 The Fourier transform of the cosine sequence with frequency k =
 0 or n/2 has 1.0 in the 0 or n/2 position, respectively, and zeros
 elsewhere. For all other k, the Fourier transform
 has 0.5 in the k position and zeros elsewhere.
 The arrays are declared as follows: REAL*4 X(0:100)
 COMPLEX*8 Y(0:50)
 REAL*8 AUX1(1000), AUX2

 First, initialize AUX1 using
 the calling sequence shown below with INIT ≠ 0.
 Then use the same calling sequence with INIT = 0
 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT D X INCX INCMX Y INCY INCMY N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | | |
CALL SRCFTD(INIT, 1 X, INCX, 16, Y, INCY, 9, N, 4, ISIGN, SCALE, AUX1, 1000, AUX2, 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 INCX

 is an array of length

 d

 .

 INCX(1) = 1

 INCY

 is an array of length

 d

 .

 INCY(1) = 1

 N

 is an array of length

 d

 .

 N(1) = 16

 ISIGN

 is an array of length

 d

 .

 ISIGN(1) = 1

 SCALE = 1.0 / 16

 X contains
 the following four sequences: 1.0000 1.0000 1.0000 1.0000
1.0000 0.9239 0.7071 0.3827
1.0000 0.7071 0.0000 -0.7071
1.0000 0.3827 -0.7071 -0.9239
1.0000 0.0000 -1.0000 0.0000
1.0000 -0.3827 -0.7071 0.9239
1.0000 -0.7071 0.0000 0.7071
1.0000 -0.9239 0.7071 -0.3827
1.0000 -1.0000 1.0000 -1.0000
1.0000 -0.9239 0.7071 -0.3827
1.0000 -0.7071 0.0000 0.7071
1.0000 -0.3827 -0.7071 0.9239
1.0000 0.0000 -1.0000 0.0000
1.0000 0.3827 -0.7071 -0.9239
1.0000 0.7071 0.0000 -0.7071
1.0000 0.9239 0.7071 0.3827

 Output:

 Y contains the
 following four sequences: (1.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.5000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.5000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.5000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

 	Example 2

 	
 This example shows how to compute a three-dimensional transform.

 The
 STRIDE subroutine is called to select good values for the INCY strides
 (as the following explains, STRIDE is not called for INCX.)
 Using the transform lengths (N(1) = 33, N(2)
 = 64, and N(3) = 40) along with the output
 data type (short-precision complex: 'C'), STRIDE is called
 once for each stride needed. First, it is called for INCY(2): CALL STRIDE (N(2),N(1)/2+1,INCY(2),'C',0)

 The
 output value returned forINCY(2) is 18. Then STRIDE
 is called again for INCY(3): CALL STRIDE (N(3),N(2)*INCY(2),INCY(3),'C',0)

 The
 output value returned for INCY(3) is 1160. Because INCY(3) is
 not a multiple of INCY(2), Y is not declared as a
 three-dimensional array; it is declared as a two-dimensional array, Y(INCY(3),N(3)).

 For
 equivalence, it is required that INCX(2) = 2(INCY(2)) and INCX(3)
 = 2(INCY(3)). Therefore, INCX(2), INCY(2), INCX(3) and INCY(3) are
 set as follows: 	INCY(2) = 18
	INCX(2) = 36
	INCY(3) = 1160
	INCX(3) = 2320

 The arrays are declared as follows: 	REAL*4 X(2320,40), SCALE
	COMPLEX*8 Y(1160,40)
	REAL*8 AUX1(5000),AUX2

 Arrays X and Y are made
 equivalent by the following statement, making them occupy the same
 storage:EQUIVALENCE (X,Y)

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT D X INCX INCMX Y INCY INCMY N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | | |
CALL SRCFTD(INIT, 3 X, INCX, 0, Y, INCY, 0 N, 1, ISIGN, 1.0, AUX1, 5000, AUX2, 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 INCX

 is an array of length

 d

 .

 INCX(1)

 = 1

 INCX(2)

 = 36

 INCX(3)

 = 2320

 INCY

 is an array of length

 d

 .

 INCY(1)

 = 1

 INCY(2)

 = 18

 INCY(3)

 = 1160

 N

 is an array of length

 d

 .

 N(1)

 = 33

 N(2)

 = 64

 N(3)

 = 40

 ISIGN

 is an array of length

 d

 .

 ISIGN(1)

 = 1

 ISIGN(2)

 = 1

 ISIGN(3)

 = 1

 SCALE

 = 1.0

 X

 has 1.0 in location

 X(1,1)

 and 0.0 in all other locations.

 Output:

 Y has (1.0,0.0) in all locations.

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SCRFTD and DCRFTD (Multidimensional Complex-to-Real Fourier
 Transform)

 Purpose

 These subroutines compute a set
 of m d-dimensional real discrete
 Fourier transforms of complex conjugate even data.

 Table 202. Data Types.

 	X, scale

 	Y

 	Subroutine

 	Short-precision real

 	Short-precision complex

 	SCRFTD

 	Long-precision real

 	Long-precision complex

 	DCRFTD

 Notes:

 	Two invocations of this subroutine are necessary: one to prepare
 the working storage for the subroutine, and the other to perform the
 computations.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SCRFTD | DCRFTD (init, d, x, incx, incmx, y, incy, incmy, n, m, isign, scale, aux1, naux1, aux2, naux2)

 	C and C++

 	scrftd | dcrftd (init, d, x, incx, incmx, y, incy, incmy, n, m, isign, scale, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 init

 	is a flag, where:
 If init = 1, trigonometric
 functions and other parameters, depending on arguments other than x,
 are computed and saved in aux1. The contents of x and y are
 not used or changed.

 If init = 2, trigonometric
 functions and other parameters, depending on arguments other than x,
 are computed and saved in aux1, and no SIMD algorithms
 are used (see What ESSL Library Do You Want to Use?).
 The contents of x and y are
 not used or changed.

 If init = 0, the discrete
 Fourier transforms of the given array are computed. The only arguments
 that may change after initialization are x, y,
 and aux2. The arguments d, incx, incmx, incy, incmy, n, m, isign, scale, aux1, naux1,
 and naux2 must be the same as when the subroutine
 was called for initialization with init = 1 or init =
 2.

 Specified as: an integer; 0 ≤ init ≤ 2.

 	d

 	is the dimension of the transform.
 Specified as: an integer;
 1 ≤ d ≤ 3.

 	 x

 	is the array X, consisting of m sequences
 of d-dimensional complex arrays to be transformed.
 Using zero-based indexing, xj1,j2,...,jd,mm is
 stored in location j1(incx1)
 + j2(incx2) + ...
 + jd(incxd)
 + mm(incmx) of the array X.
 Due to complex conjugate symmetry, the output consists of only the
 first n1/2+1 values along the first dimension of
 the array, for j1 = 0, 1, ..., n1/2.
 Specified
 as: an array of (at least) length 1 + incx1(n1-1)
 + ... + incxd(nd-1)
 + incmx(m-1), containing numbers
 of the data type indicated in Table 202.

 	 incx

 	is an array containing the strides between the elements in array X for
 each of the d dimensions.
 Specified as: an
 array of length d containing integers; incx1:d >
 0.

 	 incmx

 	is the stride between the first elements of the d-dimensional
 sequences in array X. (If m =
 1, this argument is ignored.)
 Specified as: an integer; incmx > 0.

 	y

 	See On Return.

 	 incy

 	is an array containing the strides between the elements in array Y for
 each of the d dimensions.
 Specified as: an
 array of length d containing integers; incy1:d >
 0.

 	 incmy

 	is the stride between the first elements of the d-dimensional
 sequences in array Y. (If m =
 1, this argument is ignored.)
 Specified as: an integer; incmy > 0.

 	 n

 	is an array containing the lengths of the dimensions of the array
 to be transformed.
 Specified as: an array of length d containing
 integers; 0 ≤ n1:d ≤ 1073479680.

 	 m

 	is the number of sequences to be transformed.
 Specified as:
 an integer; m > 0.

 	 isign

 	is an array that controls the direction of the transform (from
 time to frequency or from frequency to time). The sign of Isigni determines
 the signs in the exponents of Wn1, Wn2,
 ..., Wnd, where:

 If isigni > 0, Isigni = + (transforming
 time to frequency).

 If isigni <
 0, Isigni = - (transforming
 frequency to time).

 Specified as: an array of length d containing
 integers; isign1:d ≠ 0.

 	 scale

 	is the scaling constant by which the transforms are multiplied.
 See Function for its
 usage.
 Specified as: a number of the data type indicated in Table 202, where scale ≠ 0.0.

 	 aux1

 	is the working storage for this subroutine, where:
 If init > 0,
 the working storage is computed.

 If init =
 0, the working storage is used in the computation of the Fourier transforms.

 Specified
 as: an area of storage, containing naux1 long-precision
 real numbers.

 	 naux1

 	is the number of doublewords in the working storage specified
 in aux1.
 Specified as: an integer; naux1 > (4d+ 11) and naux1 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas (see Formulas). For values between
 (4d + 11) and the minimum value, you have the
 option of having the minimum value returned in this argument; for
 details, see On Return and Using Auxiliary Storage in ESSL.

 	aux2

 	has the following meaning:
 If naux2 = 0 and error 2015 is unrecoverable,
 aux2 is ignored.

 Otherwise, it is the working storage used by
 this subroutine, which is available for use by the calling program
 between calls to this subroutine.

 Specified as: an area of
 storage, containing naux2 long-precision real numbers.
 On output, the contents are overwritten.

 	 naux2

 	is the number of doublewords in the working storage specified
 in aux2.
 Specified as: an integer, where:

 If naux2 =
 0 and error 2015 is unrecoverable, the subroutine dynamically allocates
 the work area. The work area is deallocated before control is returned
 to the calling program.

 Otherwise, naux2 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For all other values specified
 less than the minimum value, you have the option of having the minimum
 value returned in this argument. For details, see On Return and Using Auxiliary Storage in ESSL.

 	On Return

 	

 	x

 	has the following meaning, where:
 If init > 0,
 this argument is not used, and its contents remain unchanged.

 If init =
 0, this argument is not used, and its contents remain unchanged if
 one of the following is true:

 	d = 1

 	incx1 = 1 and incy1 =
 1

 Otherwise, x is overwritten; that is,
 the original input is not preserved.

 	 y

 	has the following meaning, where:
 If init > 0,
 this argument is not used, and its contents remain unchanged.

 If init =
 0, this is array Y, consisting of the results of
 the m d-dimensional discrete
 Fourier transforms of complex conjugate even data. Using zero-based
 indexing, yk1,k2,...,kd,mm is
 stored in location k1(incy1)
 +k2(incy2) + ...
 + kd(incyd)
 + mm(incmy) of the array Y.

 Returned
 as: an array of (at least) length 1 + incy1(n1-1)
 + ... + incyd(nd-1)
 + incmy(m-1), containing numbers
 of the data type indicated in Table 202.

 	 aux1

 	is the working storage for this subroutine, where:
 If init > 0,
 it contains information ready to be passed in a subsequent invocation
 of this subroutine.

 If init = 0, its contents
 are unchanged.

 Returned as: the contents are not relevant.

 	 naux1

 	contains the minimum value required for successful processing
 (as returned by the subroutine), provided that the following are true:

 	You specified that error 2015 is recoverable.

 	You specified an input value for naux1 that
 is at least (4d+11) (but insufficient for the problem).

 	There were no other errors.

 Otherwise, it remains unchanged.

 Returned as: an
 integer.

 	 naux2

 	contains the minimum value required for successful processing
 (as returned by the subroutine), provided that the following are true:

 	You specified that error 2015 is recoverable.

 	You specified an input value for naux2 that
 is greater than or equal to zero (but insufficient for the problem).

 	There were no other errors.

 Otherwise, it remains unchanged.

 Returned as: an
 integer.

 Notes®

 	aux1 should not be used by the calling
 program between calls to this subroutine with init > 0
 and init = 0. However, it can be reused after intervening
 calls to this subroutine with different arguments.

 	When using the ESSL SMP Libraries, for optimal performance, the
 number of threads specified should be the same for init > 0
 and init = 0.

 	If incx1 = 1 and incy1 =
 1, then:

 	incyi must be even for i =
 2,…,d

 	min(incmy, incy2,…,incyd) ≥ 2(n1/2+1)

 	For optimal performance, the preferred value for incx1 and incy1 is
 1.
 If you specify the same array for X and Y,
 then:

 	incyi must equal 2(incxi),
 for i = 2,…,d

 	incmy must be equal to 2(incmx) if m > 1

 In this case, output overwrites input. If you specify different
 arrays for X and Y, they must have
 no common elements; otherwise, results are unpredictable. See Concepts.

 	You have the option of having the minimum required value for naux1 and naux2 dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Formulas

 	Processor-Independent Formulas for SCRFTD for NAUX1 and NAUX2:

 	

 	NAUX1 Formulas

 	

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

)

 ≤

 2048,

 naux1

 = 60000

 d

 .

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

)

 >

 2048,

 naux1

 = 60000

 d

 +

 14.12(

 n

 1

 +

 …

 +

 n

 d

).

 	NAUX2 Formulas

 	

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

)

 <

 252,

 naux2

 = 20000.

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

)

 ≥

 252,

 naux2

 = 20000+(

 r

 +

 256)(

 s

 +

 8.56).

 where:

 r

 = max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

) and

 s

 = min(64,

 r

)

 	Processor-Independent Formulas for DCRFTD for NAUX1 and NAUX2:

 	

 	NAUX1 Formulas

 	

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

)

 ≤

 1024,

 naux1

 = 60000

 d

 .

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

)

 >

 1024,

 naux1

 = 60000

 d

 +

 28.24(

 n

 1

 +

 …

 +

 n

 d

).

 	[bookmark: am5gr_hscrftd__am5gr_f12vj004d]
 NAUX2 Formulas

 	

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

)

 <

 252,

 naux2

 = 20000.

 If max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

)

 ≥

 252,

 naux2

 = 20000

 +

 (2

 r

 +

 256)(

 s

 +

 17.12).

 where:

 r

 = max(

 n

 1

 ,

 n

 2

 ,

 …

 ,

 n

 d

) and

 s

 = min(64,

 r

)

 Function

 The set
 of m d-dimensional real discrete
 Fourier transforms of complex conjugate even data in array x with
 results going into array y is expressed as follows:

 [image: (Formula: For details, see PDF version of Guide and Reference)]

 for:

 k

 1 = 0,...,

 n

 1

 -1

 k

 2 = 0,...,

 n

 2

 -

 1

 .

 .

 .

 k

 d

 = 0,...,

 n

 d

 -

 1

 i

 = 0,...,

 m

 -

 1

 where:

 [image: (Formula: For details, see PDF version of Guide and Reference)]

 for:

 l =
 1,…,d

 and
 where:

 x

 j

 1,

 j

 2

 …

 jd

 ,

 mm

 are elements of the

 d

 -dimensional sequences in array

 X

 .

 y

 k

 1,

 k

 2

 …

 kd

 ,

 mm

 are elements of the

 d

 -dimensional sequences in array

 Y

 .

 For scale =
 1.0 and isign1 = isign2 = … = isignd =
 1, you obtain the discrete Fourier transform (DFT), a function of
 frequency. The inverse Fourier transform is obtained with scale =
 1.0/n1 n2…nd and isign1 = isign2 = … = isignd =
 -1. See references[5], [7], [12], and [31].

 Two
 invocations of this subroutine are necessary:

 	With init > 0, the subroutine tests and initializes
 arguments of the program, setting up the aux1 working
 storage.

 	With init = 0, the subroutine checks that the
 initialization arguments in the aux1 working storage
 correspond to the present arguments, and if so, performs the calculation
 of the Fourier transforms.

 If ni =
 0 for any i from 1 to d or if m =
 0; no initialization or computation is performed.

 Error conditions

 	Resource Errors

 	Error 2015 is unrecoverable, unable to allocate work area, and
 internal deallocation error.

 	Computational Errors

 	None

 	Input-Argument Errors

 	

 	init < 0 or init > 2

 	d < 1 or d >3

 	incxi ≤ 0 (i =
 1,...,d)

 	incmx ≤ 0

 	incyi ≤ 0 (i =
 1,...,d)

 	incmy ≤ 0

 	ni < 0
 or ni > 1073479680
 (i = 1,...,d)

 	m ≤ 0

 	isigni = 0 (i =
 1,...,d)

 	scale = 0.0

 	naux1 ≤ 4d+11.

 	naux1 is too small—that is, less than the minimum required value.
 Return code 1 is returned if error 2015 is recoverable.

 	Error 2015 is recoverable or naux2 ≠ 0, and naux2 is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 	The subroutine has not been initialized with the present arguments.

 Examples

 	Example 1

 	
 This example shows how to compute a single one-dimensional
 transform.

 The arrays are declared as follows: 	COMPLEX*8 X(0:6)
	REAL*8 AUX1(100),AUX2
 REAL*4 Y(0:11)

 First, initialize AUX1 using
 the calling sequence shown below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT D X INCX INCMX Y INCY INCMY N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | | |
CALL SCRFTD(INIT, 1 X, INCX, 7, Y, INCY, 12, N, 1, ISIGN, 1.0, AUX1, 100, AUX2, 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 INCX

 is an array of length

 d

 .

 INCX(1) = 1

 INCY

 is an array of length

 d

 .

 INCY(1) = 1

 N

 is an array of length

 d

 .

 N(1) = 12

 ISIGN

 is an array of length

 d

 ISIGN(1) = 1

 X contains the following sequence: (1.0, 0.0)
 (0.0, 0.0)
 (0.0, 0.0)
 (0.0, 0.0)
 (0.0, 0.0)
 (0.0, 0.0)
 (0.0, 0.0)

 Output:

 Y contains
 the following sequence: 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000
 1.0000

 	Example 2

 	
 This example shows how to compute a 3-dimensional Fourier
 transform. This example requires additional storage for array Y.

 The
 arrays are declared as follows: COMPLEX*8 X(4,3,2)
 REAL*4 Y(9,3,2)
 REAL*8 AUX1(5000, AUX2)

 First,
 initialize AUX1 using the calling sequence shown
 below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT D X INCX INCMX Y INCY INCMY N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | | |
CALL SCRFTD(INIT, 3 X, 0, INCMX, Y, INCY, 0, N, 1, ISIGN, 1.0, AUX1, 5000, AUX2, 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 INCX

 is an array of length

 d

 .

 INCX(1) = 1

 INCX(2) = 4

 INCX(3) = 12

 INCY

 is an array of length

 d

 INCX(1) = 1

 INCX(2) = 9

 INCX(3) = 27

 N

 is an array of length

 d

 N(1) = 7

 N(2) = 3

 N(3) = 2

 ISIGN

 is an array of length

 d

 ISIGN(1) = 1

 ISIGN(2) = 1

 ISIGN(3) = 1

 X has (1.0,0.0)in
 location X(1,1,1) and (0.0,0.0) in
 all other locations.

 Output:

 Y(i,j,k) =
 1.0 for i = 1,…,7; j = 1,…,3; k =
 1,2

 Y(i,j,k) is unchanged
 for i = 8,9; j = 1,…,3; k =
 1,2

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SCFT and DCFT (Complex Fourier Transform)

 Purpose

 These subroutines compute a set
 of m complex discrete n-point
 Fourier transforms of complex data.

 Table 203. Data Types.

 	X, Y

 	scale

 	Subroutine

 	Short-precision complex

 	Short-precision real

 	SCFT

 	Long-precision complex

 	Long-precision real

 	DCFT

 Note:

 	Two invocations of this subroutine are necessary: one to prepare
 the working storage for the subroutine, and the other to perform the
 computations.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SCFT | DCFT (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2)

 	C and C++

 	scft | dcft (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 init

 	is a flag, where:
 If init ≠ 0, trigonometric
 functions and other parameters, depending on arguments other than x,
 are computed and saved in aux1. The contents of x and y are
 not used or changed.

 If init = 0,
 the discrete Fourier transforms of the given sequences are computed.
 The only arguments that may change after initialization are x, y,
 and aux2. All scalar arguments must be the same
 as when the subroutine was called for initialization with init ≠ 0.

 Specified
 as: an integer. It can have any value.

 	 x

 	is the array X, consisting of m sequences
 of length n.
 Specified as: an array of (at
 least) length 1+(n-1)inc1x+(m-1)inc2x,
 containing numbers of the data type indicated in Table 203.

 	 inc1x

 	is the stride between the elements within each sequence in array X.

 Specified as: an integer; inc1x > 0.

 	 inc2x

 	is the stride between the first elements of the sequences in array X.
 (If m = 1, this argument is ignored.) Specified
 as: an integer; inc2x > 0.

 	 y

 	See On Return.

 	 inc1y

 	is the stride between the elements within each sequence in array Y.

 Specified as: an integer; inc1y > 0.

 	 inc2y

 	is the stride between the first elements of each sequence in array Y.
 (If m = 1, this argument is ignored.) Specified
 as: an integer; inc2y > 0.

 	 n

 	is the length of each sequence to be transformed.
 Specified
 as: an integer; n ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument, as well as in the
 optionally-recoverable error 2030. For details, see Providing a Correct Transform Length to ESSL.

 	 m

 	is the number of sequences to be transformed.
 Specified as:
 an integer; m > 0.

 	 isign

 	controls the direction of the transform, determining the sign Isign of
 the exponent of Wn,
 where:
 If isign = positive value, Isign = +
 (transforming time to frequency).

 If isign = negative
 value, Isign = - (transforming frequency to time).

 Specified
 as: an integer; isign > 0 or isign < 0.

 	 scale

 	is the scaling constant scale. See Function for its usage.
 Specified
 as: a number of the data type indicated in Table 203, where scale > 0.0 or scale < 0.0

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, the working storage
 is computed.

 If init = 0, the working storage is used in
 the computation of the Fourier transforms.

 Specified as: an
 area of storage, containing naux1 long-precision
 real numbers.

 	 naux1

 	is the number of doublewords in the working storage specified
 in aux1.
 Specified as: an integer; naux1 > 7 (32-bit integer
 arguments) or 13 (64-bit integer arguments) and naux1 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For values between 7 (32-bit
 integer arguments) or 13 (64-bit integer arguments) and the minimum
 value, you have the option of having the minimum value returned in
 this argument. For details, see Using Auxiliary Storage in ESSL.

 	 naux2

 	is the number of doublewords in the working storage specified
 in aux2.
 Specified as: an integer, where:

 If naux2 = 0
 and error 2015 is unrecoverable, SCFT and DCFT dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise, naux2 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For all other values specified
 less than the minimum value, you have the option of having the minimum
 value returned in this argument. For details, see Using Auxiliary Storage in ESSL.

 	On Return

 	

 	 y

 	has the following meaning, where:
 If init ≠ 0, this argument
 is not used, and its contents remain unchanged.

 If init = 0,
 this is array Y, consisting of the results of the m discrete
 Fourier transforms, each of length n.

 Returned
 as: an array of (at least) length 1+(n-1)inc1y+(m-1)inc2y,
 containing numbers of the data type indicated in Table 203.

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, it contains information
 ready to be passed in a subsequent invocation of this subroutine.

 If init = 0,
 its contents are unchanged.

 Returned as: the contents are
 not relevant.

 Notes

 	aux1 should not be used by the calling
 program between calls to this subroutine with init ≠ 0 and init = 0.
 However, it can be reused after intervening calls to this subroutine
 with different arguments.

 	When using the ESSL SMP Libraries, for optimal performance, the
 number of threads specified should be the same for init ≠ 0 and init = 0.

 	For optimal performance, the preferred value for inc1x and inc1y is
 1. This implies that the sequences are stored with stride 1. The preferred
 value for inc2x and inc2y is n.
 This implies that sequences are stored one after another without any
 gap.
 It is possible to specify sequences in the transposed form—that
 is, as rows of a two-dimensional array. In this case, inc2x (or inc2y) = 1
 and inc1x (or inc1y) is equal
 to the leading dimension of the array. One can specify either input,
 output, or both in the transposed form by specifying appropriate values
 for the stride parameters. For selecting optimal values of inc1x and inc1y for
 _CFT, you should use STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines).
 Example 1 in the STRIDE subroutine description explains how it is
 used for _CFT.

 If you specify the same array for X and Y,
 then inc1x and inc1y must be
 equal, and inc2x and inc2y must
 be equal. In this case, output overwrites input. If m = 1,
 the inc2x and inc2y values are
 not used by the subroutine. If you specify different arrays for X and Y,
 they must have no common elements; otherwise, results are unpredictable.
 See Concepts.

 Formulas

 Processor-Independent
 Formulas for SCFT for NAUX1 and NAUX2:

 	[bookmark: am5gr_hscft__am5gr_f12a003]
 NAUX1 Formulas

 	

 	For 32-bit integer arguments:

 	

 If

 n

 ≤

 8192, use

 naux1

 =

 20000.

 If

 n

 >

 8192, use

 naux1

 =

 20000+1.14

 n

 .

 	For 64-bit integer arguments:

 	

 If

 n

 ≤

 8192, use

 naux1

 =

 30000.

 If

 n

 >

 8192, use

 naux1

 =

 30000+1.14

 n

 .

 	[bookmark: am5gr_hscft__am5gr_f12a004]
 NAUX2 Formulas

 	

 If

 n

 ≤

 8192, use

 naux2

 =

 20000.

 If

 n

 >

 8192, use

 naux2

 =

 20000+1.14

 n

 .

 For
 the transposed case, where inc2x = 1
 or inc2y = 1, and where n ≥ 252, add the
 following to the above storage requirements:

 (

 n

 +256)(min(64,

 m

))

 Processor-Independent
 Formulas for DCFT for NAUX1 and NAUX2:

 	[bookmark: am5gr_hscft__am5gr_f12a006]
 NAUX1 Formulas

 	

 	For 32-bit integer arguments:

 	

 If

 n

 ≤

 2048, use

 naux1

 =

 20000.

 If

 n

 >

 2048, use

 naux1

 =

 20000+2.28

 n

 .

 	For 64-bit integer arguments:

 	

 If

 n

 ≤

 2048, use

 naux1

 =

 30000.

 If

 n

 >

 2048, use

 naux1

 =

 30000+2.28

 n

 .

 	[bookmark: am5gr_hscft__am5gr_f12a007]
 NAUX2 Formulas

 	

 If

 n

 ≤

 2048, use

 naux2

 =

 20000.

 If

 n

 >

 2048, use

 naux2

 =

 20000+2.28

 n

 .

 For
 the transposed case, where inc2x = 1
 or inc2y = 1, and where n ≥ 252, add the
 following to the above storage requirements:

 (2

 n

 +256)(min(64,

 m

))

 Function

 The set of m complex
 discrete n-point Fourier transforms of complex data in array X,
 with results going into array Y, is expressed as
 follows:

 [image: FFT Graphic]

 for:

 k

 =

 0, 1,

 …

 ,

 n

 -1

 i

 =

 1, 2,

 …

 ,

 m

 where:

 [image: FFT Graphic]

 and where:

 x

 ji

 are elements of the sequences in array

 X

 .

 y

 ki

 are elements of the sequences in array

 Y

 .

 Isign

 is + or - (determined by argument

 isign

).

 scale

 is a scalar value.

 For scale = 1.0
 and isign being positive, you obtain the discrete
 Fourier transform, a function of frequency. The inverse Fourier transform
 is obtained with scale = 1.0/n and isign being
 negative. See references [1], [3], [4], [26], and [27].

 Two
 invocations of this subroutine are necessary:

 	With init ≠ 0, the subroutine
 tests and initializes arguments of the program, setting up the aux1 working
 storage.

 	With init = 0, the subroutine checks that the
 initialization arguments in the aux1 working storage
 correspond to the present arguments, and if so, performs the calculation
 of the Fourier transforms.

 Error conditions

 	[bookmark: am5gr_hscft__am5gr_f12a008]
 Resource Errors

 	Error 2015 is unrecoverable, naux2 = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hscft__am5gr_f12a009]
 Computational Errors

 	None

 	[bookmark: am5gr_hscft__am5gr_f12a010]
 Input-Argument Errors

 	

 	n > 37748736

 	inc1x, inc2x, inc1y,
 or inc2y ≤ 0

 	m ≤ 0

 	isign = 0

 	scale = 0.0

 	The subroutine has not been initialized with the present arguments.

 	The length of the transform in n is not an
 allowable value. Return code 1 is returned if error 2030 is recoverable.

 	naux1 ≤ 7

 	naux1 is too small—that is, less than the minimum required value.
 Return code 1 is returned if error 2015 is recoverable.

 	Error 2015 is recoverable or naux2≠0, and naux2 is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows an input array X with
 a set of four short-precision complex sequences:

 [image: FFT Graphic]

 for j = 0, 1, …, n-1 with n = 8,
 and the single frequencies k = 0, 1, 2, and 3. The arrays are declared
 as follows: COMPLEX*8 X(0:1023),Y(0:1023)
 REAL*8 AUX1(1693),AUX2(1)

 First, initialize AUX1 using
 the calling sequence shown below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:

 INIT X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | |
CALL SCFT(INIT, X , 1 , 8 , Y , 1 , 8 , 8 , 4 , 1 , SCALE, AUX1 , 1693 , AUX2 , 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 1.0

 X contains
 the following four sequences: (1.0000, 0.0000) (1.0000, 0.0000) (1.0000, 0.0000) (1.0000, 0.0000)
(1.0000, 0.0000) (0.7071, 0.7071) (0.0000, 1.0000) (-0.7071, 0.7071)
(1.0000, 0.0000) (0.0000, 1.0000) (-1.0000, 0.0000) (0.0000, -1.0000)
(1.0000, 0.0000) (-0.7071, 0.7071) (0.0000, -1.0000) (0.7071, 0.7071)
(1.0000, 0.0000) (-1.0000, 0.0000) (1.0000, 0.0000) (-1.0000, 0.0000)
(1.0000, 0.0000) (-0.7071, -0.7071) (0.0000, 1.0000) (0.7071, -0.7071)
(1.0000, 0.0000) (0.0000, -1.0000) (-1.0000, 0.0000) (0.0000, 1.0000)
(1.0000, 0.0000) (0.7071, -0.7071) (0.0000, -1.0000) (-0.7071, -0.7071)

 Output:

 Y contains
 the following four sequences: (8.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (8.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (8.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (8.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

 	Example 2

 	
 This example shows an input array X with
 a set of four input spike sequences equal to the output of Example
 1. This shows how you can compute the inverse of the transform in
 Example 1 by using a negative isign, giving as
 output the four sequences listed in the input for Example 1. First,
 initialize AUX1 using the calling sequence shown
 below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | |
CALL SCFT(INIT, X , 1 , 8 , Y , 1 , 8 , 8 , 4 , -1 , SCALE , AUX1 , 1693 , AUX2 , 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 0.125

 X =

 (same as output

 Y

 in Example 1)

 Output:

 Y =

 (same as input

 X

 in Example 1)

 	Example 3

 	
 This example shows an input array X with
 a set of four short-precision complex sequences

 [image: FFT Graphic]

 for j = 0, 1, …, n-1 with n = 12,
 and the single frequencies k = 0, 1, 2, and 3. Also, inc1x = inc1y = m and inc2x = inc2y = 1
 to show how the input and output arrays can be stored in the transposed
 form. The arrays are declared as follows: COMPLEX*8 X (4,0:11),Y(4,0:11)
 REAL*8 AUX1(10000),AUX2(1)

 First, initialize AUX1 using
 the calling sequence shown below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:

 INIT X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | |
CALL SCFT(INIT, X , 4 , 1 , Y , 4 , 1 , 12 , 4 , 1 , SCALE, AUX1 , 10000 , AUX2 , 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 1.0

 X contains
 the following four sequences: (1.0000, 0.0000) (1.0000, 0.0000) (1.0000, 0.0000) (1.0000, 0.0000)
(1.0000, 0.0000) (0.8660, 0.5000) (0.5000, 0.8660) (0.0000, 1.0000)
(1.0000, 0.0000) (0.5000, 0.8660) (-0.5000, 0.8660) (-1.0000, 0.0000)
(1.0000, 0.0000) (0.0000, 1.0000) (-1.0000, 0.0000) (0.0000, -1.0000)
(1.0000, 0.0000) (-0.5000, 0.8660) (-0.5000, -0.8660) (1.0000, 0.0000)
(1.0000, 0.0000) (-0.8660, 0.5000) (0.5000, -0.8660) (0.0000, 1.0000)
(1.0000, 0.0000) (-1.0000, 0.0000) (1.0000, 0.0000) (-1.0000, 0.0000)
(1.0000, 0.0000) (-0.8660, -0.5000) (0.5000, 0.8660) (0.0000, -1.0000)
(1.0000, 0.0000) (-0.5000, -0.8660) (-0.5000, 0.8660) (1.0000, 0.0000)
(1.0000, 0.0000) (0.0000, -1.0000) (-1.0000, 0.0000) (0.0000, 1.0000)
(1.0000, 0.0000) (0.5000, -0.8660) (-0.5000, -0.8660) (-1.0000, 0.0000)
(1.0000, 0.0000) (0.8660, -0.5000) (0.5000, -0.8660) (0.0000, -1.0000)

 Output:

 Y contains
 the following four sequences: (12.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (12.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (12.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (12.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

 	Example 4

 	
 This example shows an input array X with
 a set of four input spike sequences exactly equal to the output of
 Example 3. This shows how you can compute the inverse of the transform
 in Example 3 by using a negative isign, giving
 as output the four sequences listed in the input for Example 3. First,
 initialize AUX1 using the calling sequence shown
 below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | |
CALL SCFT(INIT, X , 4 , 1 , Y , 4 , 1 , 12 , 4 , -1 , SCALE , AUX1, 10000, AUX2, 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 1.0/12.0

 X =

 (same as output

 Y

 in Example 3)

 Output:

 Y =

 (same as input

 X

 in Example 3)

 	Example 5

 	
 This example shows how to compute a transform of a single
 long-precision complex sequence. It uses isign = 1
 and scale = 1.0. The arrays are declared as follows:
 COMPLEX*16 X(0:7),Y(0:7)
 REAL*8 AUX1(26),AUX2(1)

 The input in X is
 an impulse at zero, and the output in Y is constant
 for all frequencies. First, initialize AUX1 using
 the calling sequence shown below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC1X INC2X Y INC1Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | |
CALL DCFT(INIT, X , 1 , 0 , Y , 1 , 0 , 8 , 1 , 1 , SCALE , AUX1 , 26 , AUX2 , 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 1.0

 X contains
 the following sequence: (1.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)
(0.0000, 0.0000)

 Output:

 (1.0000, 0.0000)
(1.0000, 0.0000)
(1.0000, 0.0000)
(1.0000, 0.0000)
(1.0000, 0.0000)
(1.0000, 0.0000)
(1.0000, 0.0000)
(1.0000, 0.0000)

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SRCFT and DRCFT (Real-to-Complex Fourier Transform)

 Purpose

 These subroutines compute a set
 of m complex discrete n-point
 Fourier transforms of real data.

 Table 204. Data Types.

 	X, scale

 	Y

 	Subroutine

 	Short-precision real

 	Short-precision complex

 	SRCFT

 	Long-precision real

 	Long-precision complex

 	DRCFT

 Note:

 	Two invocations of this subroutine are necessary: one to prepare
 the working storage for the subroutine, and the other to perform the
 computations.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SRCFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3)

 CALL DRCFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2)

 	C and C++

 	srcft (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3);

 drcft (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 init

 	is a flag, where:
 If init ≠ 0, trigonometric
 functions and other parameters, depending on arguments other than x,
 are computed and saved in aux1. The contents of x and y are
 not used or changed.

 If init = 0,
 the discrete Fourier transforms of the given sequences are computed.
 The only arguments that may change after initialization are x, y,
 and aux2. All scalar arguments must be the same
 as when the subroutine was called for initialization with init ≠ 0.

 Specified
 as: an integer. It can have any value.

 	 x

 	is the array X, consisting of m sequences
 of length n, which are to be transformed. The sequences
 are assumed to be stored with stride 1.
 Specified as: an array
 of (at least) length n+(m-1)inc2x,
 containing numbers of the data type indicated in Table 204. See Notes for more details. (It can be
 declared as X(inc2x,m).)

 	 inc2x

 	is the stride between the first elements of the sequences in array X.
 (If m = 1, this argument is ignored.) Specified
 as: an integer; inc2x ≥ n.

 	 y

 	See On Return.

 	 inc2y

 	is the stride between the first elements of the sequences in array Y.
 (If m = 1, this argument is ignored.) Specified
 as: an integer; inc2y ≥ (n/2)+1.

 	 n

 	is the length of each sequence to be transformed.
 Specified
 as: an integer; n ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 m

 	is the number of sequences to be transformed.
 Specified as:
 an integer; m > 0.

 	 isign

 	controls the direction of the transform, determining the sign Isign of
 the exponent of Wn,
 where:

 If isign = positive value, Isign = +
 (transforming time to frequency).

 If isign = negative
 value, Isign = - (transforming frequency to time).

 Specified
 as: an integer; isign > 0 or isign < 0.

 	 scale

 	is the scaling constant scale. See Function for its usage.
 Specified
 as: a number of the data type indicated in Table 204, where scale > 0.0 or scale < 0.0.

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, the working storage
 is computed.

 If init = 0, the working storage is used in
 the computation of the Fourier transforms.

 Specified as: an
 area of storage, containing naux1 long-precision
 real numbers.

 	 naux1

 	is the number of doublewords in the working storage specified
 in aux1.
 Specified as: an integer; naux1 > 14 (32-bit integer
 arguments) or 27 (64-bit integer arguments) and naux1 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For values between 14 (32-bit
 integer arguments) or 27 (64-bit integer arguments) and the minimum
 value, you have the option of having the minimum value returned in
 this argument. For details, see Using Auxiliary Storage in ESSL.

 	 aux2

 	has the following meaning:
 If naux2 = 0
 and error 2015 is unrecoverable, aux2 is ignored.

 Otherwise,
 it is the working storage used by this subroutine, which is available
 for use by the calling program between calls to this subroutine.

 Specified
 as: an area of storage, containing naux2 long-precision
 real numbers. On output, the contents are overwritten.

 	 naux2

 	is the number of doublewords in the working storage specified
 in aux2.
 Specified as: an integer, where:

 If naux2 = 0
 and error 2015 is unrecoverable, SRCFT and DRCFT dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise, naux2 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For all other values specified
 less than the minimum value, you have the option of having the minimum
 value returned in this argument. For details, see Using Auxiliary Storage in ESSL.

 	 aux3

 	this argument is provided for migration purposes only and is ignored.

 Specified as: an area of storage, containing naux3 long-precision
 real numbers.

 	 naux3

 	this argument is provided for migration purposes only and is ignored.

 Specified as: an integer.

 	On Return

 	

 	 y

 	has the following meaning, where:
 If init ≠ 0, this argument
 is not used, and its contents remain unchanged.

 If init = 0,
 this is array Y, consisting of the results of the m complex
 discrete Fourier transforms, each of length n.
 The sequences are stored with the stride 1. Due to complex conjugate
 symmetry, only the first (n/2) + 1 elements of each sequence are given
 in the output—that
 is, yki, k = 0,
 1, …, n/2, i = 1,
 2, …, m.

 Returned
 as: an array of (at least) length n/2+1+(m-1)inc2y,
 containing numbers of the data type indicated in Table 204. This array can be declared
 as Y(inc2y,m).

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, it contains information
 ready to be passed in a subsequent invocation of this subroutine.

 If init = 0,
 its contents are unchanged.

 Returned as: the contents are
 not relevant.

 Notes

 	aux1 should not be used by the calling
 program between calls to this subroutine with init ≠ 0 and init = 0.
 However, it can be reused after intervening calls to this subroutine
 with different arguments.

 	When using the ESSL SMP Libraries, for optimal performance, the
 number of threads specified should be the same for init ≠ 0 and init = 0.

 	In these subroutines, the elements in each sequence in x and y are
 assumed to be stored in contiguous storage locations, using a stride
 of 1; therefore, inc1x and inc1y values
 are not a part of the argument list. For optimal performance, the inc2x and inc2y values
 should be close to their respective minimum values, which are given
 below:

 min(

 inc2x

)

 =

 n

 min(

 inc2y

)

 =

 n

 /2+1

 If
 you specify the same array for X and Y,
 then inc2x must equal 2(inc2y).
 In this case, output overwrites input. If m = 1,
 the inc2x and inc2y values are
 not used by the subroutine. If you specify different arrays for X and Y,
 they must have no common elements; otherwise, results are unpredictable.
 See Concepts.

 Formulas

 Processor-Independent
 Formulas for SRCFT for NAUX1 and NAUX2:

 	[bookmark: am5gr_hsrcft__am5gr_f12a027]
 NAUX1 Formulas

 	

 	For 32-bit integer arguments:

 	

 If

 n

 ≤

 16384, use

 naux1

 =

 25000.

 If

 n

 >

 16384, use

 naux1

 =

 20000+0.82

 n

 .

 	For 64-bit integer arguments:

 	

 If

 n

 ≤

 16384, use

 naux1

 =

 35000.

 If

 n

 >

 16384, use

 naux1

 =

 30000+0.82

 n

 .

 	[bookmark: am5gr_hsrcft__am5gr_f12a028]
 NAUX2 Formulas

 	

 If

 n

 ≤

 16384, use

 naux2

 =

 20000.

 If

 n

 >

 16384, use

 naux2

 =

 20000+0.57

 n

 .

 Processor-Independent Formulas
 for DRCFT for NAUX1 and NAUX2:

 	[bookmark: am5gr_hsrcft__am5gr_f12a030]
 NAUX1 Formulas

 	

 	For 32-bit integer arguments:

 	

 If

 n

 ≤

 4096, use

 naux1

 =

 22000.

 If

 n

 >

 4096, use

 naux1

 =

 20000+1.64

 n

 .

 	For 64-bit integer arguments:

 	

 If

 n

 ≤

 4096, use

 naux1

 =

 32000.

 If

 n

 >

 4096, use

 naux1

 =

 30000+1.64

 n

 .

 	[bookmark: am5gr_hsrcft__am5gr_f12a031]
 NAUX2 Formulas

 	

 If

 n

 ≤

 4096, use

 naux2

 =

 20000.

 If

 n

 >

 4096, use

 naux2

 =

 20000+1.14

 n

 .

 Function

 The set of m complex
 conjugate even discrete n-point Fourier transforms of real data in
 array X, with results going into array Y,
 is expressed as follows:

 [image: FFT Graphic]

 for:

 k

 =

 0, 1,

 …

 ,

 n

 -1

 i

 =

 1, 2,

 …

 ,

 m

 where:

 [image: FFT Graphic]

 and where:

 x

 ji

 are elements of the sequences in array

 X

 .

 y

 ki

 are elements of the sequences in array

 Y

 .

 Isign

 is + or - (determined by argument

 isign

).

 scale

 is a scalar value.

 The output
 in array Y is complex. For scale = 1.0
 and isign being positive, you obtain the discrete
 Fourier transform, a function of frequency. The inverse Fourier transform
 is obtained with scale = 1.0/n and isign being
 negative. See references [1], [4], [26], and [27].

 Two
 invocations of this subroutine are necessary:

 	With init ≠ 0, the subroutine
 tests and initializes arguments of the program, setting up the aux1 working
 storage.

 	With init = 0, the subroutine checks that the
 initialization arguments in the aux1 working storage
 correspond to the present arguments, and if so, performs the calculation
 of the Fourier transforms.

 Error conditions

 	[bookmark: am5gr_hsrcft__am5gr_f12a032]
 Resource Errors

 	Error 2015 is unrecoverable, naux2 = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hsrcft__am5gr_f12a033]
 Computational Errors

 	None

 	[bookmark: am5gr_hsrcft__am5gr_f12a034]
 Input-Argument Errors

 	

 	n > 37748736

 	m ≤ 0

 	inc2x < n

 	inc2y < n/2+1

 	isign = 0

 	scale = 0.0

 	The subroutine has not been initialized with the present arguments.

 	The length of the transform in n is not an
 allowable value. Return code 1 is returned if error 2030 is recoverable.

 	naux1 ≤ 14

 	naux1 is too small—that is, less than the minimum required value.
 Return code 1 is returned if error 2015 is recoverable.

 	Error 2015 is recoverable or naux2≠0, and naux2 is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows an input array X with
 a set of m cosine sequences cos(2πjk/n), j = 0,
 1, …,
 15 with the single frequencies k = 0,
 1, 2, 3. The Fourier transform of the cosine sequence with frequency k = 0
 or n/2 has 1.0 in the 0 or n/2 position, respectively, and zeros elsewhere.
 For all other k, the Fourier transform has 0.5
 in the k position and zeros elsewhere. The arrays
 are declared as follows: REAL*4 X(0:65535)
 COMPLEX*8 Y(0:32768)
 REAL*8 AUX1(41928), AUX2(1), AUX3(1)

 First,
 initialize AUX1 using the calling sequence shown
 below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
 | | | | | | | | | | | | | | |
CALL SRCFT(INIT, X , 16 , Y , 9 , 16 , 4 , 1 , SCALE, AUX1 , 41928 , AUX2 , 0 , AUX3 , 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 1.0/16

 X contains
 the following four sequences: 1.0000 1.0000 1.0000 1.0000
1.0000 0.9239 0.7071 0.3827
1.0000 0.7071 0.0000 -0.7071
1.0000 0.3827 -0.7071 -0.9239
1.0000 0.0000 -1.0000 0.0000
1.0000 -0.3827 -0.7071 0.9239
1.0000 -0.7071 0.0000 0.7071
1.0000 -0.9239 0.7071 -0.3827
1.0000 -1.0000 1.0000 -1.0000
1.0000 -0.9239 0.7071 -0.3827
1.0000 -0.7071 0.0000 0.7071
1.0000 -0.3827 -0.7071 0.9239
1.0000 0.0000 -1.0000 0.0000
1.0000 0.3827 -0.7071 -0.9239
1.0000 0.7071 0.0000 -0.7071
1.0000 0.9239 0.7071 0.3827

 Output:

 Y contains the following four sequences: (1.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.5000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.5000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.5000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

 	Example 2

 	
 This example shows another transform computation with different
 data using the same initialized array AUX1 as in
 Example 1. The input is also a set of four cosine sequences cos(2πjk/n), j = 0,
 1, …,
 15 with the single frequencies k = 8,
 9, 10, 11, thus including the middle frequency k = 8.
 The middle frequency has the value 1.0. For other frequencies, the
 transform has zeros, except for frequencies k and n-k.
 Only the values for j = n-k are
 given in the output.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
 | | | | | | | | | | | | | |
CALL SRCFT(0 , X , 16 , Y , 9 , 16 , 4 , 1 , SCALE, AUX1 , 41928 , AUX2 , 0 , AUX3 , 0)

 SCALE = 1.0/16

 X contains
 the following four sequences: 1.0000 1.0000 1.0000 1.0000
-1.0000 -0.9239 -0.7071 -0.3827
 1.0000 0.7071 0.0000 -0.7071
-1.0000 -0.3827 0.7071 0.9239
 1.0000 0.0000 -1.0000 0.0000
-1.0000 0.3827 0.7071 -0.9239
 1.0000 -0.7071 0.0000 0.7071
-1.0000 0.9239 -0.7071 0.3827
 1.0000 -1.0000 1.0000 -1.0000
-1.0000 0.9239 -0.7071 0.3827
 1.0000 -0.7071 0.0000 0.7071
-1.0000 0.3827 0.7071 -0.9239
 1.0000 0.0000 -1.0000 0.0000
-1.0000 -0.3827 0.7071 0.9239
 1.0000 0.7071 0.0000 -0.7071
-1.0000 -0.9239 -0.7071 -0.3827

 Output:

 Y contains the following four sequences: (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.5000, 0.0000)
(0.0000, 0.0000) (0.0000, 0.0000) (0.5000, 0.0000) (0.0000, 0.0000)
(0.0000, 0.0000) (0.5000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)
(1.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000)

 	Example 3

 	
 This example uses the mixed-radix capability. The arrays
 are declared as follows: REAL*8 X(0:11)
 COMPLEX*16 Y(0:6)
 REAL*8 AUX1(50),AUX2(1)

 Arrays X and Y are
 made equivalent by the following statement, making them occupy the
 same storage: EQUIVALENCE (X,Y)

 First,
 initialize AUX1 using the calling sequence shown
 below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | |
CALL DRCFT(INIT, X , 0 , Y , 0 , 12 , 1 , 1 , SCALE , AUX1 , 50 , AUX2 , 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 1.0

 X = (1.0000 , 1.0000 , 1.0000 , 1.0000 , 1.0000 , 1.0000 ,

 1.0000 , 1.0000 , 1.0000 , 1.0000 , 1.0000 , 1.0000)

 Output:

 Y contains the
 following sequence: (12.0000 , 0.0000)
 (0.0000 , 0.0000)
 (0.0000 , 0.0000)
 (0.0000 , 0.0000)
 (0.0000 , 0.0000)
 (0.0000 , 0.0000)
 (0.0000 , 0.0000)

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SCRFT and DCRFT (Complex-to-Real Fourier Transform)

 Purpose

 These subroutines compute a set
 of m real discrete n-point Fourier
 transforms of complex conjugate even data.

 Table 205. Data Types.

 	X

 	Y, scale

 	Subroutine

 	Short-precision complex

 	Short-precision real

 	SCRFT

 	Long-precision complex

 	Long-precision real

 	DCRFT

 Note:

 	Two invocations of this subroutine are necessary: one to prepare
 the working storage for the subroutine, and the other to perform the
 computations.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SCRFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3)

 CALL DCRFT (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2)

 	C and C++

 	scrft (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3);

 dcrft (init, x, inc2x, y, inc2y, n, m, isign, scale, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 init

 	is a flag, where:
 If init ≠ 0, trigonometric
 functions and other parameters, depending on arguments other than x,
 are computed and saved in aux1. The contents of x and y are
 not used or changed.

 If init = 0,
 the discrete Fourier transforms of the given sequences are computed.
 The only arguments that may change after initialization are x, y,
 and aux2. All scalar arguments must be the same
 as when the subroutine was called for initialization with init ≠ 0.

 Specified
 as: an integer. It can have any value.

 	 x

 	is the array X, consisting of m sequences.
 Due to complex conjugate symmetry, the input consists of only the
 first (n/2)+1 elements of each sequence; that is, xji, j = 0,
 1, …, n/2, i = 1,
 2, …, m.
 The sequences are assumed to be stored with stride 1.
 Specified
 as: an array of (at least) length n/2+1+(m-1)inc2x,
 containing numbers of the data type indicated in Table 205. This array can be declared
 as X(inc2x,m).

 	 inc2x

 	is the stride between the first elements of the sequences in array X.
 (If m = 1, this argument is ignored.) Specified
 as: an integer; inc2x ≥ (n/2)+1.

 	 y

 	See On Return.

 	 inc2y

 	is the stride between the first elements of the sequences in array Y.
 (If m = 1, this argument is ignored.) Specified
 as: an integer; inc2y ≥ n.

 	 n

 	is the length of each sequence to be transformed.
 Specified
 as: an integer; n ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 m

 	is the number of sequences to be transformed.
 Specified as:
 an integer; m > 0.

 	 isign

 	controls the direction of the transform, determining the sign Isign of
 the exponent of Wn,
 where:
 If isign = positive value, Isign = +
 (transforming time to frequency).

 If isign = negative
 value, Isign = - (transforming frequency to time).

 Specified
 as: an integer; isign > 0 or isign < 0.

 	 scale

 	is the scaling constant scale. See Function for its usage.
 Specified
 as: a number of the data type indicated in Table 205, where scale > 0.0 or scale < 0.0.

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, the working storage
 is computed.

 If init = 0, the working storage is used in
 the computation of the Fourier transforms.

 Specified as: an
 area of storage, containing naux1 long-precision
 real numbers.

 	 naux1

 	is the number of doublewords in the working storage specified
 in aux1.
 Specified as: an integer; naux1 > 13 (32-bit integer
 arguments) or 25 (64-bit integer arguments) and naux1 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For values between 13 (32-bit
 integer arguments) or 25 (64-bit integer arguments) and the minimum
 value, you have the option of having the minimum value returned in
 this argument. For details, see Using Auxiliary Storage in ESSL.

 	 aux2

 	has the following meaning:
 If naux2 = 0
 and error 2015 is unrecoverable, aux2 is ignored.

 Otherwise,
 it is the working storage used by this subroutine that is available
 for use by the calling program between calls to this subroutine.

 Specified
 as: an area of storage, containing naux2 long-precision
 real numbers. On output, the contents are overwritten.

 	 naux2

 	is the number of doublewords in the working storage specified
 in aux2.
 Specified as: an integer, where:

 If naux2 = 0
 and error 2015 is unrecoverable, SCRFT and DCRFT dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise, naux2 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For all other values specified
 less than the minimum value, you have the option of having the minimum
 value returned in this argument. For details, see Using Auxiliary Storage in ESSL.

 	 aux3

 	this argument is provided for migration purposes only and is ignored.

 Specified as: an area of storage, containing naux3 long-precision
 real numbers.

 	 naux3

 	this argument is provided for migration purposes only and is ignored.

 Specified as: an integer.

 	On Return

 	

 	 y

 	has the following meaning, where:
 If init ≠ 0, this argument
 is not used, and its contents remain unchanged.

 If init = 0,
 this is array Y, consisting of the results of the m discrete
 Fourier transforms of the complex conjugate even data, each of length n.
 The sequences are stored with stride 1.

 Returned as: an array
 of (at least) length n+(m-1)inc2y,
 containing numbers of the data type indicated in Table 205. See Notes for more details. (It can be
 declared as Y(inc2y,m).)

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, it contains information
 ready to be passed in a subsequent invocation of this subroutine.

 If init = 0,
 its contents are unchanged.

 Returned as: the contents are
 not relevant.

 Notes

 	aux1 should not be used by the calling
 program between calls to this subroutine with init ≠ 0 and init = 0.
 However, it can be reused after intervening calls to this subroutine
 with different arguments.

 	When using the ESSL SMP Libraries, for optimal performance, the
 number of threads specified should be the same for init ≠ 0 and init = 0.

 	The elements in each sequence in x and y are
 assumed to be stored in contiguous storage locations—that
 is, with a stride of 1. Therefore, inc1x and inc1y
 values are not a part of the argument list. For optimal performance,
 the inc2x and inc2y values should
 be close to their respective minimum values, which are given below:

 min(

 inc2y

)

 =

 n

 min(

 inc2x

)

 =

 n

 /2+1

 If
 you specify the same array for X and Y,
 then inc2y must equal 2(inc2x).
 In this case, output overwrites input. If m = 1,
 the inc2x and inc2y values are
 not used by the subroutine. If you specify different arrays for X and Y,
 they must have no common elements; otherwise, results are unpredictable.
 See Concepts.

 Formulas

 Processor-Independent
 Formulas for SCRFT for NAUX1 and NAUX2:

 	[bookmark: am5gr_hscrft__am5gr_f12a047]
 NAUX1 Formulas

 	

 	For 32-bit integer arguments:

 	

 If

 n

 ≤

 16384, use

 naux1

 =

 25000.

 If

 n

 >

 16384, use

 naux1

 =

 20000+0.82

 n

 .

 	For 64-bit integer arguments:

 	

 If

 n

 ≤

 16384, use

 naux1

 =

 35000.

 If

 n

 >

 16384, use

 naux1

 =

 30000+0.82

 n

 .

 	[bookmark: am5gr_hscrft__am5gr_f12a048]
 NAUX2 Formulas

 	

 If

 n

 ≤

 16384, use

 naux2

 =

 20000.

 If

 n

 >

 16384, use

 naux2

 =

 20000+0.57

 n

 .

 Processor-Independent Formulas
 for DCRFT for NAUX1 and NAUX2:

 	[bookmark: am5gr_hscrft__am5gr_f12a050]
 NAUX1 Formulas

 	

 	For 32-bit integer arguments:

 	

 If

 n

 ≤

 4096, use

 naux1

 =

 22000.

 If

 n

 >

 4096, use

 naux1

 =

 20000+1.64

 n

 .

 	For 64-bit integer arguments:

 	

 If

 n

 ≤

 4096, use

 naux1

 =

 32000.

 If

 n

 >

 4096, use

 naux1

 =

 30000+1.64

 n

 .

 	[bookmark: am5gr_hscrft__am5gr_f12a051]
 NAUX2 Formulas

 	

 If

 n

 ≤

 4096, use

 naux2

 =

 20000.

 If

 n

 >

 4096, use

 naux2

 =

 20000+1.14

 n

 .

 Function

 The set of m real
 discrete n-point Fourier transforms of complex
 conjugate even data in array X, with results going
 into array Y, is expressed as follows:

 [image: FFT Graphic]

 for:

 k

 =

 0, 1,

 …

 ,

 n

 -1

 i

 =

 1, 2,

 …

 ,

 m

 where:

 [image: FFT Graphic]

 and where:

 x

 ji

 are elements of the sequences in array

 X

 .

 y

 ki

 are elements of the sequences in array

 Y

 .

 Isign

 is + or - (determined by argument

 isign

).

 scale

 is a scalar value.

 Because
 of the symmetry, Y has real data. For scale = 1.0
 and isign being positive, you obtain the discrete
 Fourier transform, a function of frequency. The inverse Fourier transform
 is obtained with scale = 1.0/n and isign being
 negative. See references [1], [4], [26], and [27].

 Two
 invocations of this subroutine are necessary:

 	With init ≠ 0, the subroutine
 tests and initializes arguments of the program, setting up the aux1 working
 storage.

 	With init = 0, the subroutine checks that the
 initialization arguments in the aux1 working storage
 correspond to the present arguments, and if so, performs the calculation
 of the Fourier transforms.

 Error conditions

 	[bookmark: am5gr_hscrft__am5gr_f12a052]
 Resource Errors

 	Error 2015 is unrecoverable, naux2 = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hscrft__am5gr_f12a053]
 Computational Errors

 	None

 	[bookmark: am5gr_hscrft__am5gr_f12a054]
 Input-Argument Errors

 	

 	n > 37748736

 	m ≤ 0

 	inc2x < n/2+1

 	inc2y < n

 	scale = 0.0

 	isign = 0

 	The subroutine has not been initialized with the present arguments.

 	The length of the transform in n is not an
 allowable value. Return code 1 is returned if error 2030 is recoverable.

 	naux1 ≤ 13

 	naux1 is too small—that is, less than the minimum required value.
 Return code 1 is returned if error 2015 is recoverable.

 	Error 2015 is recoverable or naux2≠0, and naux2 is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example uses the mixed-radix capability and shows how
 to compute a single transform. The arrays are declared as follows:
 COMPLEX*8 X(0:6)
 REAL*8 AUX1(50), AUX2(1), AUX3(1)
 REAL*4 Y(0:11)

 First, initialize AUX1 using
 the calling sequence shown below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.
 Note:

 	X shows the n/2+1 = 7
 elements used in the computation.

 	Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:

 INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
 | | | | | | | | | | | | | | |
CALL SCRFT(INIT, X , 0 , Y , 0 , 12 , 1 , 1 , SCALE, AUX1 , 50 , AUX2 , 0 , AUX3 , 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 1.0

 X contains
 the following sequence: (1.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)
(0.0, 0.0)

 Output: Y = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)

 	Example 2

 	
 This example shows another transform computation with different
 data using the same initialized array AUX1 as in
 Example 1.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
 | | | | | | | | | | | | | | |
CALL SCRFT(0 , X , 0 , Y , 0 , 12 , 1 , 1 , SCALE, AUX1 , 50 , AUX2 , 0 , AUX3 , 0)

 SCALE = 1.0

 X contains
 the following sequence: (1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)
(1.0, 0.0)

 Output: Y = (12.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 ,
 0.0 , 0.0 , 0.0 , 0.0)

 	Example 3

 	
 This example shows how to compute many transforms simultaneously.
 The arrays are declared as follows: COMPLEX*8 X(0:8,2)
 REAL*8 AUX1(50), AUX2(1), AUX3(1)
 REAL*4 Y(0:15,2)

 First, initialize AUX1 using
 the calling sequence shown below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
 | | | | | | | | | | | | | | |
CALL SCRFT(INIT, X , 9 , Y , 16 , 16 , 2 , 1 , SCALE, AUX1 , 50 , AUX2 , 0 , AUX3 , 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 1.0

 X contains
 the following two sequences: (1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (0.0, 0.0)
(1.0, 0.0) (1.0, 0.0)

 Output:

 Y contains the following two sequences: 16.0 1.0
 0.0 -1.0
 0.0 1.0
 0.0 -1.0
 0.0 1.0
 0.0 -1.0
 0.0 1.0
 0.0 -1.0
 0.0 1.0
 0.0 -1.0
 0.0 1.0
 0.0 -1.0
 0.0 1.0
 0.0 -1.0
 0.0 1.0
 0.0 -1.0

 	Example 4

 	
 This example shows the same array being used for input and
 output. The arrays are declared as follows: COMPLEX*16 X(0:8,2)
 REAL*8 AUX1(50), AUX2(1)
 REAL*8 Y(0:17,2)

 Arrays X and Y are
 made equivalent by the following statement, making them occupy the
 same storage: EQUIVALENCE (X,Y)

 This
 requires INC2Y = 2(INC2X). First,
 initialize AUX1 using the calling sequence shown
 below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC2X Y INC2Y N M ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | |
CALL DCRFT(INIT, X , 9 , Y , 18 , 16 , 2 , -1 , SCALE, AUX1 , 50 , AUX2 , 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 0.0625

 X contains
 the following two sequences: (1.0, 0.0) (1.0, 0.0)
(0.0, 1.0) (0.0, -1.0)
(-1.0, 0.0) (-1.0, 0.0)
(0.0, -1.0) (0.0, 1.0)
(1.0, 0.0) (1.0, 0.0)
(0.0, 1.0) (0.0, -1.0)
(-1.0, 0.0) (-1.0, 0.0)
(0.0, -1.0) (0.0, 1.0)
(1.0, 0.0) (1.0, 0.0)

 Output:

 Y contains the following two sequences: 0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 1.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
1.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SCOSF and DCOSF (Cosine Transform)

 Purpose

 These subroutines compute a set
 of m real even discrete n-point
 Fourier transforms of cosine sequences of real even data.

 Table 206. Data Types.

 	X, Y, scale

 	Subroutine

 	Short-precision real

 	SCOSF

 	Long-precision real

 	DCOSF

 Note:

 	Two invocations of this subroutine are necessary: one to prepare
 the working storage for the subroutine, and the other to perform the
 computations.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SCOSF | DCOSF (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, scale, aux1, naux1, aux2, naux2)

 	C and C++

 	scosf | dcosf (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, scale, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 init

 	is a flag, where:
 If init ≠ 0, trigonometric
 functions and other parameters, depending on arguments other than x,
 are computed and saved in aux1. The contents of x and y are
 not used or changed.

 If init = 0,
 the discrete Fourier transforms of the given sequences are computed.
 The only arguments that may change after initialization are x, y,
 and aux2. All scalar arguments must be the same
 as when the subroutine was called for initialization with init ≠ 0.

 Specified
 as: an integer. It can have any value.

 	 x

 	is the array X, consisting of m sequences
 of length n/2+1.
 Specified as: an array of
 (at least) length 1+(n/2)inc1x+(m-1)inc2x,
 containing numbers of the data type indicated in Table 206.

 	 inc1x

 	is the stride between the elements within each sequence in array X.

 Specified as: an integer; inc1x > 0.

 	 inc2x

 	is the stride between the first elements of the sequences in array X.
 (If m = 1, this argument is ignored.) Specified
 as: an integer; inc2x > 0.

 	 y

 	See On Return.

 	 inc1y

 	is the stride between the elements within each sequence in array Y.

 Specified as: an integer; inc1y > 0.

 	 inc2y

 	is the stride between the first elements of the sequences in array Y.
 (If m = 1, this argument is ignored.) Specified
 as: an integer; inc2y > 0.

 	 n

 	is the transform length. However, due to symmetry, only the first n/2+1
 values are given in the input and output.
 Specified as: an integer; n ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 m

 	is the number of sequences to be transformed.
 Specified as:
 an integer; m > 0.

 	 scale

 	is the scaling constant scale. See Function for its usage.
 Specified
 as: a number of the data type indicated in Table 206, where scale > 0.0 or scale < 0.0.

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, the working storage
 is computed.

 If init = 0, the working storage is used in
 the computation of the Fourier transforms.

 Specified as: an
 area of storage, containing naux1 long-precision
 real numbers.

 	 naux1

 	is the number of doublewords in the working storage specified
 in aux1.
 Specified as: an integer; naux1 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For all other values specified
 less than the minimum value, you have the option of having the minimum
 value returned in this argument. For details, see Using Auxiliary Storage in ESSL.

 	 aux2

 	has the following meaning:
 If naux2 = 0
 and error 2015 is unrecoverable, aux2 is ignored.

 Otherwise,
 it is the working storage used by this subroutine, which is available
 for use by the calling program between calls to this subroutine.

 Specified
 as: an area of storage, containing naux2 long-precision
 real numbers. On output, the contents are overwritten.

 	 naux2

 	is the number of doublewords in the working storage specified
 in aux2.
 Specified as: an integer, where:

 If naux2 = 0
 and error 2015 is unrecoverable, SCOSF and DCOSF dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise, naux2 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For all other values specified
 less than the minimum value, you have the option of having the minimum
 value returned in this argument. For details, see Using Auxiliary Storage in ESSL.

 	On Return

 	

 	 y

 	has the following meaning, where:
 If init ≠ 0, this argument
 is not used, and its contents remain unchanged.

 If init = 0,
 this is array Y, consisting of the results of the m discrete
 Fourier transforms, where each Fourier transform is real and of length n.
 However, due to symmetry, only the first n/2+1
 values are given in the output—that is, yki, k = 0,
 1, …, n/2
 for each i = 1, 2, …, m.

 Returned
 as: an array of (at least) length 1+(n/2)inc1y+(m-1)inc2y,
 containing numbers of the data type indicated in Table 206.

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, it contains information
 ready to be passed in a subsequent invocation of this subroutine.

 If init = 0,
 its contents are unchanged.

 Returned as: the contents are
 not relevant.

 Notes

 	aux1 should not be used by the calling
 program between calls to this subroutine with init ≠ 0 and init = 0.
 However, it can be reused after intervening calls to this subroutine
 with different arguments.

 	When using the ESSL SMP Libraries, for optimal performance, the
 number of threads specified should be the same for init ≠ 0 and init = 0.

 	For optimal performance, the preferred value for inc1x and inc1y is
 1. This implies that the sequences are stored with stride 1. In addition, inc2x and inc2y should
 be close to n/2+1.
 It is possible to specify
 sequences in the transposed form—that is, as rows of a two-dimensional array.
 In this case, inc2x (or inc2y) = 1
 and inc1x (or inc1y) is equal
 to the leading dimension of the array. One can specify either input,
 output, or both in the transposed form by specifying appropriate values
 for the stride parameters. For selecting optimal values of inc1x and inc1y for
 _COSF, you should use STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines).
 Example 2 in the STRIDE subroutine description explains how it is
 used for _COSF.

 If you specify the same array for X and Y,
 then inc1x and inc1y must be
 equal, and inc2x and inc2y must
 be equal. In this case, output overwrites input. If m = 1,
 the inc2x and inc2y values are
 not used by the subroutine. If you specify different arrays for X and Y,
 they must have no common elements; otherwise, results are unpredictable.
 See Concepts.

 Formulas

 Processor-Independent
 Formulas for SCOSF for NAUX1 and NAUX2:

 	[bookmark: am5gr_hscosf__am5gr_f12a068]
 NAUX1 Formulas

 	

 	For 32-bit integer arguments:

 	

 If

 n

 ≤

 16384, use

 naux1

 =

 40000.

 If

 n

 >

 16384, use

 naux1

 =

 20000+.30

 n

 .

 	For 64-bit integer arguments:

 	

 If

 n

 ≤

 16384, use

 naux1

 =

 50000.

 If

 n

 >

 16384, use

 naux1

 =

 30000+.30

 n

 .

 	[bookmark: am5gr_hscosf__am5gr_f12a069]
 NAUX2 Formulas

 	

 If

 n

 ≤

 16384, use

 naux2

 =

 25000.

 If

 n

 >

 16384, use

 naux2

 =

 20000+.32

 n

 .

 For
 the transposed case, where inc2x = 1
 or inc2y = 1, and where n ≥ 252, add the
 following to the above storage requirements:

 (

 n

 /4+257)(min(128,

 m

))

 Processor-Independent Formulas
 for DCOSF for NAUX1 and NAUX2:

 	[bookmark: am5gr_hscosf__am5gr_f12a071]
 NAUX1 Formulas

 	

 	For 32-bit integer arguments:

 	

 If

 n

 ≤

 16384, use

 naux1

 =

 35000.

 If

 n

 >

 16384, use

 naux1

 =

 20000+.60

 n

 .

 	For 64-bit integer arguments:

 	

 If

 n

 ≤

 16384, use

 naux1

 =

 45000.

 If

 n

 >

 16384, use

 naux1

 =

 30000+.60

 n

 .

 	[bookmark: am5gr_hscosf__am5gr_f12a072]
 NAUX2 Formulas

 	

 If

 n

 ≤

 16384, use

 naux2

 =

 20000.

 If

 n

 >

 16384, use

 naux2

 =

 20000+.64

 n

 .

 For
 the transposed case, where inc2x = 1
 or inc2y = 1, and where n ≥ 252, add the
 following to the above storage requirements:

 (

 n

 /2+257)(min(128,

 m

))

 Function

 The set of m real
 even discrete n-point Fourier transforms of the
 cosine sequences of real data in array X, with results
 going into array Y, is expressed as follows:

 [image: Cosine Transform Graphic]

 for:

 k

 =

 0, 1,

 …

 ,

 n

 /2

 i

 =

 1, 2,

 …

 ,

 m

 where:

 xji are
 elements of the sequences in array X, where each
 sequence contains the n/2+1 real nonredundant data xji, j = 0,
 1, …, n/2.

 yki are
 elements of the sequences in array Y, where each
 sequence contains the n/2+1 real nonredundant data yki, k = 0,
 1, …, n/2.

 scale is
 a scalar value.

 You can obtain the inverse cosine
 transform by specifying scale = 4.0/n. Thus, if
 an X input is used with scale = 1.0,
 and its output is used as input on a subsequent call with scale = 4.0/n,
 the original X is obtained. See references [1], [4], [26], and [27].

 Two
 invocations of this subroutine are necessary:

 	With init ≠ 0, the subroutine
 tests and initializes arguments of the program, setting up the aux1 working
 storage.

 	With init = 0, the subroutine checks that the
 initialization arguments in the aux1 working storage
 correspond to the present arguments, and if so, performs the calculation
 of the Fourier transforms.

 These subroutines use a Fourier transform method with
 a mixed-radix capability. This provides maximum performance for your
 application.

 Error conditions

 	[bookmark: am5gr_hscosf__am5gr_f12a073]
 Resource Errors

 	Error 2015 is unrecoverable, naux2 = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hscosf__am5gr_f12a074]
 Computational Errors

 	None

 	[bookmark: am5gr_hscosf__am5gr_f12a075]
 Input-Argument Errors

 	

 	n > 37748736

 	inc1x or inc1y ≤ 0

 	inc2x or inc2y ≤ 0

 	m ≤ 0

 	scale = 0.0

 	The subroutine has not been initialized with the present arguments.

 	The length of the transform in n is not an
 allowable value. Return code 1 is returned if error 2030 is recoverable.

 	naux1 is too small—that is, less than the minimum required value.
 Return code 1 is returned if error 2015 is recoverable.

 	Error 2015 is recoverable or naux2≠0, and naux2 is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows an input array X with
 a set of m cosine sequences of length n/2+1,
 cos(jk(2π/n)), j = 0,
 1, …, n/2,
 with the single frequencies k = 0, 1, 2, 3. The Fourier transform
 of the cosine sequence with frequency k = 0
 or n/2 has n/2 in the 0-th or n/2-th
 position, respectively, and zeros elsewhere. For all other k,
 the Fourier transform has n/4 in position k and
 zeros elsewhere. The arrays are declared as follows: REAL*4 X(0:71),Y(0:71)
 REAL*8 AUX1(414),AUX2(1)

 First, initialize AUX1 using
 the calling sequence shown below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | |
CALL SCOSF(INIT, X , 1 , 18 , Y , 1 , 18 , 32 , 4 , SCALE, AUX1 , 414 , AUX2 , 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 1.0

 X contains
 the following four sequences: 1.0000 1.0000 1.0000 1.0000
1.0000 0.9808 0.9239 0.8315
1.0000 0.9239 0.7071 0.3827
1.0000 0.8315 0.3827 -0.1951
1.0000 0.7071 0.0000 -0.7071
1.0000 0.5556 -0.3827 -0.9808
1.0000 0.3827 -0.7071 -0.9239
1.0000 0.1951 -0.9239 -0.5556
1.0000 0.0000 -1.0000 0.0000
1.0000 -0.1951 -0.9239 0.5556
1.0000 -0.3827 -0.7071 0.9239
1.0000 -0.5556 -0.3827 0.9808
1.0000 -0.7071 0.0000 0.7071
1.0000 -0.8315 0.3827 0.1951
1.0000 -0.9239 0.7071 -0.3827
1.0000 -0.9808 0.9239 -0.8315
1.0000 -1.0000 1.0000 -1.0000

 Output:

 Y contains the following four sequences: 16.0000 0.0000 0.0000 0.0000
 0.0000 8.0000 0.0000 0.0000
 0.0000 0.0000 8.0000 0.0000
 0.0000 0.0000 0.0000 8.0000
 0.0000 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000 0.0000
 0.0000 0.0000 0.0000 0.0000

 	Example 2

 	
 This example shows an input array X with
 a set of four input spike sequences equal to the output of Example
 1. This shows how you can compute the inverse of the transform in
 Example 1 by using scale = 4.0/n, giving
 as output the four sequences listed in the input for Example 1. First,
 initialize AUX1 using the calling sequence shown
 below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | |
CALL SCOSF(INIT, X , 1 , 18 , Y , 1 , 18 , 32 , 4 , SCALE, AUX1 , 414 , AUX2 , 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 4.0/32

 X =

 (same sequences as in output

 Y

 in Example 1)

 Output:

 Y =

 (same sequences as in output

 X

 in Example 1)

 	Example 3

 	
 This example shows another computation using the same arguments
 initialized in Example 1 and using different input sequence data.
 The data for this example has frequencies k = 14,
 15, 16, 17. Because only the sequence data has changed, initialization
 does not have to be done again.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | |
CALL SCOSF(0 , X , 1 , 18 , Y , 1 , 18 , 32 , 4 , SCALE, AUX1 , 414 , AUX2 , 0)

 SCALE = 1.0

 X contains
 the following four sequences: 1.0000 1.0000 1.0000 1.0000
-0.9239 -0.9808 -1.0000 -0.9808
 0.7071 0.9239 1.0000 0.9239
-0.3827 -0.8315 -1.0000 -0.8315
 0.0000 0.7071 1.0000 0.7071
 0.3827 -0.5556 -1.0000 -0.5556
-0.7071 0.3827 1.0000 0.3827
 0.9239 -0.1951 -1.0000 -0.1951
-1.0000 0.0000 1.0000 0.0000
 0.9239 0.1951 -1.0000 0.1951
-0.7071 -0.3827 1.0000 -0.3827
 0.3827 0.5556 -1.0000 0.5556
 0.0000 -0.7071 1.0000 -0.7071
-0.3827 0.8315 -1.0000 0.8315
 0.7071 -0.9239 1.0000 -0.9239
-0.9239 0.9808 -1.0000 0.9808
 1.0000 -1.0000 1.0000 -1.0000

 Output:

 Y contains the following four sequences: 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
8.0000 0.0000 0.0000 0.0000
0.0000 8.0000 0.0000 8.0000
0.0000 0.0000 16.0000 0.0000

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SSINF and DSINF (Sine Transform)

 Purpose

 These subroutines compute a set
 of m real even discrete n-point
 Fourier transforms of sine sequences of real even data.

 Table 207. Data Types.

 	X, Y, scale

 	Subroutine

 	Short-precision real

 	SSINF

 	Long-precision real

 	DSINF

 Note:

 	Two invocations of this subroutine are necessary: one to prepare
 the working storage for the subroutine, and the other to perform the
 computations.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SSINF | DSINF (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, scale, aux1, naux1, aux2, naux2)

 	C and C++

 	ssinf | dsinf (init, x, inc1x, inc2x, y, inc1y, inc2y, n, m, scale, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 init

 	is a flag, where:
 If init ≠ 0, trigonometric
 functions and other parameters, depending on arguments other than x,
 are computed and saved in aux1. The contents of x and y are
 not used or changed.

 If init = 0,
 the discrete Fourier transforms of the given sequences are computed.
 The only arguments that may change after initialization are x, y,
 and aux2. All scalar arguments must be the same
 as when the subroutine was called for initialization with init ≠ 0.

 Specified
 as: an integer. It can have any value.

 	 x

 	is the array X, consisting of m sequences
 of length n/2.
 Specified as: an array of (at
 least) length 1+(n / 2-1)inc1x+(m-1)inc2x,
 containing numbers of the data type indicated in Table 207. The first element in X must
 have a value of 0.0 (otherwise, incorrect results may occur).

 	 inc1x

 	is the stride between the elements within each sequence in array X.

 Specified as: an integer; inc1x > 0.

 	 inc2x

 	is the stride between the first elements of the sequences in array X.
 (If m = 1, this argument is ignored.) Specified
 as: an integer; inc2x > 0.

 	 y

 	See On Return.

 	 inc1y

 	is the stride between the elements within each sequence in array Y.

 Specified as: an integer; inc1y > 0.

 	 inc2y

 	is the stride between the first elements of the sequences in array Y.
 (If m = 1, this argument is ignored.) Specified
 as: an integer; inc2y > 0.

 	 n

 	is the transform length. However, due to symmetry, only the first n/2
 values are given in the input and output.
 Specified as: an integer; n ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 m

 	is the number of sequences to be transformed.
 Specified as:
 an integer; m > 0.

 	 scale

 	is the scaling constant scale. See Function for its usage.
 Specified
 as: a number of the data type indicated in Table 207, where scale > 0.0 or scale < 0.0.

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, the working storage
 is computed.

 If init = 0, the working storage is used in
 the computation of the Fourier transforms.

 Specified as: an
 area of storage, containing naux1 long-precision
 real numbers.

 	 naux1

 	is the number of doublewords in the working storage specified
 in aux1.
 Specified as: an integer; naux1 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For all other values specified
 less than the minimum value, you have the option of having the minimum
 value returned in this argument. For details, see Using Auxiliary Storage in ESSL.

 	 aux2

 	has the following meaning:
 If naux2 = 0
 and error 2015 is unrecoverable, aux2 is ignored.

 Otherwise,
 it is the working storage used by this subroutine, which is available
 for use by the calling program between calls to this subroutine.

 Specified
 as: an area of storage, containing naux2 long-precision
 real numbers. On output, the contents are overwritten.

 	 naux2

 	is the number of doublewords in the working storage specified
 in aux2.
 Specified as: an integer, where:

 If naux2 = 0
 and error 2015 is unrecoverable, SSINF and DSINF dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise, naux2 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For all other values specified
 less than the minimum value, you have the option of having the minimum
 value returned in this argument. For details, see Using Auxiliary Storage in ESSL.

 	On Return

 	

 	 y

 	has the following meaning, where:
 If init ≠ 0, this argument
 is not used, and its contents remain unchanged.

 If init = 0,
 this is array Y, consisting of the results of the m discrete
 Fourier transforms, where each Fourier transform is real and of length n.
 However, due to symmetry, only the first n/2 values
 are given in the output—that is, yki, k = 0,
 1, …, n/2-1
 for each i = 1, 2, …, m.

 Returned
 as: an array of (at least) length 1+(n / 2-1)inc1y+(m-1)inc2y,
 containing numbers of the data type indicated in Table 207.

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, it contains information
 ready to be passed in a subsequent invocation of this subroutine.

 If init = 0,
 its contents are unchanged.

 Returned as: the contents are
 not relevant.

 Notes

 	aux1 should not be used by the calling
 program between calls to this subroutine with init ≠ 0 and init = 0.
 However, it can be reused after intervening calls to this subroutine
 with different arguments.

 	When using the ESSL SMP Libraries, for optimal performance, the
 number of threads specified should be the same for init ≠ 0 and init = 0.

 	For optimal performance, the preferred value for inc1x and inc1y is
 1. This implies that the sequences are stored with stride 1. In addition, inc2x and inc2y should
 be close to n/2.
 It is possible to specify
 sequences in the transposed form—that is, as rows of a two-dimensional array.
 In this case, inc2x (or inc2y) = 1
 and inc1x (or inc1y) is equal
 to the leading dimension of the array. One can specify either input,
 output, or both in the transposed form by specifying appropriate values
 for the stride parameters. For selecting optimal values of inc1x and inc1y for
 _SINF, you should use STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines).
 Example 3 in the STRIDE subroutine description explains how it is
 used for _SINF.

 If you specify the same array for X and Y,
 then inc1x and inc1y must be
 equal, and inc2x and inc2y must
 be equal. In this case, output overwrites input. If m = 1,
 the inc2x and inc2y values are
 not used by the subroutine. If you specify different arrays for X and Y,
 they must have no common elements; otherwise, results are unpredictable.
 See Concepts.

 Formulas

 Processor-Independent
 Formulas for SSINF for NAUX1 and NAUX2:

 	[bookmark: am5gr_hssinf__am5gr_f12a087]
 NAUX1 Formulas

 	

 	For 32-bit integer arguments:

 	

 If

 n

 ≤

 16384, use

 naux1

 =

 60000.

 If

 n

 >

 16384, use

 naux1

 =

 20000+.30

 n

 .

 	For 64-bit integer arguments:

 	

 If

 n

 ≤

 16384, use

 naux1

 =

 70000.

 If

 n

 >

 16384, use

 naux1

 =

 30000+.30

 n

 .

 	[bookmark: am5gr_hssinf__am5gr_f12a088]
 NAUX2 Formulas

 	

 If

 n

 ≤

 16384, use

 naux2

 =

 25000.

 If

 n

 >

 16384, use

 naux2

 =

 20000+.32

 n

 .

 For
 the transposed case, where inc2x = 1
 or inc2y = 1, and where n ≥ 252, add the
 following to the above storage requirements:

 (

 n

 /4+257)(min(128,

 m

)).

 Processor-Independent
 Formulas for DSINF for NAUX1 and NAUX2:

 	[bookmark: am5gr_hssinf__am5gr_f12a090]
 NAUX1 Formulas

 	

 	For 32-bit integer arguments:

 	

 If

 n

 ≤

 16384, use

 naux1

 =

 50000.

 If

 n

 >

 16384, use

 naux1

 =

 20000+.60

 n

 .

 	For 64-bit integer arguments:

 	

 If

 n

 ≤

 16384, use

 naux1

 =

 60000.

 If

 n

 >

 16384, use

 naux1

 =

 30000+.60

 n

 .

 	[bookmark: am5gr_hssinf__am5gr_f12a091]
 NAUX2 Formulas

 	

 If

 n

 ≤

 16384, use

 naux2

 =

 20000.

 If

 n

 >

 16384, use

 naux2

 =

 20000+.64

 n

 .

 For the transposed case, where inc2x = 1
 or inc2y = 1, and where n ≥ 252, add the
 following to the above storage requirements:

 (

 n

 /2+257)(min(128,

 m

))

 Function

 The set of m real
 even discrete n-point Fourier transforms of the
 sine sequences of real data in array X, with results
 going into array Y, is expressed as follows:

 [image: Sine Transform Graphic]

 for:

 k

 =

 0, 1,

 …

 ,

 n

 /2-1

 i

 =

 1, 2,

 …

 ,

 m

 where:

 x0i = 0.0

 xji are
 elements of the sequences in array X, where each
 sequence contains the n/2 real nonredundant data xji, j = 0,
 1, …, n/2-1.

 yki are
 elements of the sequences in array Y, where each
 sequence contains the n/2 real nonredundant data yki, k = 0,
 1, …, n/2-1.

 scale is
 a scalar value.

 You can obtain the inverse sine transform
 by specifying scale = 4.0/n. Thus, if
 an X input is used with scale = 1.0,
 and its output is used as input on a subsequent call with scale = 4.0/n,
 the original X is obtained. See references [1], [4], [26], and [27].

 Two
 invocations of this subroutine are necessary:

 	With init ≠ 0, the subroutine
 tests and initializes arguments of the program, setting up the aux1 working
 storage.

 	With init = 0, the subroutine checks that the
 initialization arguments in the aux1 working storage
 correspond to the present arguments, and if so, performs the calculation
 of the Fourier transforms.

 These subroutines use a Fourier transform method with
 a mixed-radix capability. This provides maximum performance for your
 application.

 Error conditions

 	[bookmark: am5gr_hssinf__am5gr_f12a092]
 Resource Errors

 	Error 2015 is unrecoverable, naux2 = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hssinf__am5gr_f12a093]
 Computational Errors

 	None

 	[bookmark: am5gr_hssinf__am5gr_f12a094]
 Input-Argument Errors

 	

 	n > 37748736

 	inc1x or inc1y ≤ 0

 	inc2x or inc2y ≤ 0

 	m ≤ 0

 	scale = 0.0

 	The subroutine has not been initialized with the present arguments.

 	The length of the transform in n is not an
 allowable value. Return code 1 is returned if error 2030 is recoverable.

 	naux1 is too small—that is, less than the minimum required value.
 Return code 1 is returned if error 2015 is recoverable.

 	Error 2015 is recoverable or naux2≠0, and naux2 is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows an input array X with
 a set of m sine sequences of length n/2,
 sin(jk(2π/n)), j = 0,
 1, …, n/2-1,
 with the single frequencies k = 1, 2, 3. The Fourier transform of
 the sine sequence has n/4 in position k and
 zeros elsewhere. The arrays are declared as follows: REAL*4 X(0:53),Y(0:53)
 REAL*8 AUX1(414),AUX2(1)

 First, initialize AUX1 using
 the calling sequence shown below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | |
CALL SSINF(INIT, X , 1 , 18 , Y , 1 , 18 , 32 , 3 , SCALE, AUX1 , 414 , AUX2 , 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 1.0

 X contains
 the following three sequences: 0.0000 0.0000 0.0000
0.1951 0.3827 0.5556
0.3827 0.7071 0.9239
0.5556 0.9239 0.9808
0.7071 1.0000 0.7071
0.8315 0.9239 0.1951
0.9239 0.7071 -0.3827
0.9808 0.3827 -0.8315
1.0000 0.0000 -1.0000
0.9808 -0.3827 -0.8315
0.9239 -0.7071 -0.3827
0.8315 -0.9239 0.1951
0.7071 -1.0000 0.7071
0.5556 -0.9239 0.9808
0.3827 -0.7071 0.9239
0.1951 -0.3827 0.5556
 . . .
 . . .

 Output:

 Y contains the following three sequences: 0.0000 0.0000 0.0000
8.0000 0.0000 0.0000
0.0000 8.0000 0.0000
0.0000 0.0000 8.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
 . . .
 . . .

 	Example 2

 	
 This example shows an input array X with
 a set of three input spike sequences equal to the output of Example
 1. This shows how you can compute the inverse of the transform in
 Example 1 by using scale = 4.0/n, giving
 as output the three sequences listed in the input for Example 1. First,
 initialize AUX1 using the calling sequence shown
 below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | |
CALL SSINF(INIT, X , 1 , 18 , Y , 1 , 18 , 32 , 3 , SCALE, AUX1 , 414 , AUX2 , 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 4.0/32

 X =

 (same sequences as in output

 Y

 in Example 1)

 Output:

 Y =

 (same sequences as in output

 X

 in Example 1)

 	Example 3

 	
 This example shows another computation using the same arguments
 initialized in Example 1 and using different input sequence data.
 The data for this example has frequencies k = 14,
 15, 17. Because only the sequence data has changed, initialization
 does not have to be done again.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC1X INC2X Y INC1Y INC2Y N M SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | |
CALL SSINF(0 , X , 1 , 18 , Y , 1 , 18 , 32 , 3 , SCALE, AUX1 , 414 , AUX2 , 0)

 SCALE = 1.0

 X contains
 the following three sequences: 0.0000 0.0000 0.0000
 0.3827 0.1951 -0.1951
-0.7071 -0.3827 0.3827
 0.9239 0.5556 -0.5556
-1.0000 -0.7071 0.7071
 0.9239 0.8315 -0.8315
-0.7071 -0.9239 0.9239
 0.3827 0.9808 -0.9808
 0.8573 -1.0000 1.0000
-0.3827 0.9808 -0.9808
 0.7071 -0.9239 0.9239
-0.9239 0.8315 -0.8315
 1.0000 -0.7071 0.7071
-0.9239 0.5556 -0.5556
 0.7071 -0.3827 0.3827
-0.3827 0.1951 -0.1951
 . . .
 . . .

 Output:

 Y contains the following three sequences: 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
8.0000 0.0000 0.0000
0.0000 8.0000 -8.0000
0.0000 0.0000 0.0000
 . . .
 . . .

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SCFT2 and DCFT2 (Complex Fourier Transform in Two Dimensions)

 Purpose

 These subroutines compute the two-dimensional
 discrete Fourier transform of complex data.

 Table 208. Data Types.

 	X, Y

 	scale

 	Subroutine

 	Short-precision complex

 	Short-precision real

 	SCFT2

 	Long-precision complex

 	Long-precision real

 	DCFT2

 Note:

 	Two invocations of this subroutine are necessary: one to prepare
 the working storage for the subroutine, and the other to perform the
 computations.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SCFT2 | DCFT2 (init, x, inc1x, inc2x, y, inc1y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2)

 	C and C++

 	scft2 | dcft2 (init, x, inc1x, inc2x, y, inc1y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 init

 	is a flag, where:
 If init ≠ 0, trigonometric
 functions and other parameters, depending on arguments other than x,
 are computed and saved in aux1. The contents of x and y are
 not used or changed.

 If init = 0,
 the discrete Fourier transform of the given array is computed. The
 only arguments that may change after initialization are x, y,
 and aux2. All scalar arguments must be the same
 as when the subroutine was called for initialization with init ≠ 0.

 Specified
 as: an integer. It can have any value.

 	 x

 	is the array X, containing the two-dimensional
 data to be transformed, where each element xj1,j2,
 using zero-based indexing, is stored in X(j1(inc1x)+j2(inc2x))
 for j1 = 0, 1, …, n1-1 and j2 = 0,
 1, …, n2-1.

 Specified as: an array of (at least) length 1+(n1-1)inc1x+(n2-1)inc2x,
 containing numbers of the data type indicated in Table 208.

 If inc1x = 1,
 the input array is stored in normal form, and inc2x ≥ n1.

 If inc2x = 1,
 the input array is stored in transposed form, and inc1x ≥ n2.

 See Notes for more details.

 	 inc1x

 	is the stride between the elements in array X for
 the first dimension.
 If the array is stored in the normal form, inc1x = 1.

 If
 the array is stored in the transposed form, inc1x is
 the leading dimension of the array and inc1x ≥ n2.

 Specified
 as: an integer; inc1x > 0. If inc2x = 1,
 then inc1x ≥ n2.

 	 inc2x

 	is the stride between the elements in array X for
 the second dimension.
 If the array is stored in the transposed
 form, inc2x = 1.

 If the array is stored
 in the normal form, inc2x is the leading dimension
 of the array and inc2x ≥ n1.

 Specified
 as: an integer; inc2x > 0. If inc1x = 1,
 then inc2x ≥ n1.

 	 y

 	See On Return.

 	 inc1y

 	is the stride between the elements in array Y for
 the first dimension.
 If the array is stored in the normal form, inc1y = 1.

 If
 the array is stored in the transposed form, inc1y is
 the leading dimension of the array and inc1y ≥ n2.

 Specified
 as: an integer; inc1y > 0. If inc2y = 1,
 then inc1y ≥ n2.

 	 inc2y

 	is the stride between the elements in array Y for
 the second dimension.
 If the array is stored in the transposed
 form, inc2y = 1.

 If the array is stored
 in the normal form, inc2y is the leading dimension
 of the array and inc2y ≥ n1.

 Specified
 as: an integer; inc2y > 0. If inc1y = 1,
 then inc2y ≥ n1.

 	 n1

 	is the length of the first dimension of the two-dimensional data
 in the array to be transformed.
 Specified as: an integer; n1 ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 n2

 	is the length of the second dimension of the two-dimensional data
 in the array to be transformed.
 Specified as: an integer; n2 ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 isign

 	controls the direction of the transform, determining the sign Isign of
 the exponents of Wn1 and Wn2,
 where:
 If isign = positive value, Isign = +
 (transforming time to frequency).

 If isign = negative
 value, Isign = - (transforming frequency to time).

 Specified
 as: an integer; isign > 0 or isign < 0.

 	 scale

 	is the scaling constant scale. See Function for its usage.
 Specified
 as: a number of the data type indicated in Table 208, where scale > 0.0 or scale < 0.0.

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, the working storage
 is computed.

 If init = 0, the working storage is used in
 the computation of the Fourier transforms.

 Specified as: an
 area of storage, containing naux1 long-precision
 real numbers.

 	 naux1

 	is the number of doublewords in the working storage specified
 in aux1.
 Specified as: an integer; naux1 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For all other values specified
 less than the minimum value, you have the option of having the minimum
 value returned in this argument. For details, see Using Auxiliary Storage in ESSL.

 	 aux2

 	has the following meaning:
 If naux2 = 0
 and error 2015 is unrecoverable, aux2 is ignored.

 Otherwise,
 it is the working storage used by this subroutine, which is available
 for use by the calling program between calls to this subroutine.

 Specified
 as: an area of storage, containing naux2 long-precision
 real numbers. On output, the contents are overwritten.

 	 naux2

 	is the number of doublewords in the working storage specified
 in aux2.
 Specified as: an integer, where:

 If naux2 = 0
 and error 2015 is unrecoverable, SCFT2 and DCFT2 dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise, naux2 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For all other values specified
 less than the minimum value, you have the option of having the minimum
 value returned in this argument. For details, see Using Auxiliary Storage in ESSL.

 	On Return

 	

 	 y

 	has the following meaning, where:
 If init ≠ 0, this argument
 is not used, and its contents remain unchanged.

 If init = 0,
 this is array Y, containing the elements resulting
 from the two-dimensional discrete Fourier transform of the data in X.
 Each element yk1,k2,
 using zero-based indexing, is stored in Y(k1(inc1y)+k2(inc2y))
 for k1 = 0, 1, …, n1-1 and k2 = 0,
 1, …, n2-1.

 Returned
 as: an array of (at least) length 1+(n1-1)inc1y+(n2-1)inc2y,
 containing numbers of the data type indicated in Table 208.

 If inc1y = 1,
 the output array is stored in normal form, and inc2y ≥ n1.

 If inc2y = 1,
 the output array is stored in transposed form, and inc1y ≥ n2.

 See Notes for more details.

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, it contains information
 ready to be passed in a subsequent invocation of this subroutine.

 If init = 0,
 its contents are unchanged.

 Returned as: the contents are
 not relevant.

 Notes

 	aux1 should not be used by the calling
 program between program calls to this subroutine with init ≠ 0 and init = 0.
 However, it can be reused after intervening calls to this subroutine
 with different arguments.

 	When using the ESSL SMP Libraries, for optimal performance, the
 number of threads specified should be the same for init ≠ 0 and init = 0.

 	If you specify the same array for X and Y,
 then inc1x must equal inc1y,
 and inc2x must equal inc2y.
 In this case, output overwrites input. If you specify different arrays X and Y,
 they must have no common elements; otherwise, results are unpredictable.
 See Concepts.

 	By appropriately specifying the inc arguments,
 this subroutine allows you to specify that it should use one of two
 forms of its arrays, the normal untransposed form or the transposed
 form. As a result, you do not have to move any data. Instead,
 the subroutine performs the adjustments for you. Also, either the
 input array or the output array can be in transposed form. The FFT
 computation is symmetrical with respect to n1 and n2.
 They can be interchanged without the loss of generality. If they
 are interchanged, an array that is stored in the normal form appears
 as an array stored in the transposed form and vise versa. If, for
 performance reasons, the forms of the input and output arrays are
 different, then the input array should be specified in the normal
 form, and the output array should be specified in the transposed form.
 This can always be done by interchanging n1 and n2.

 	Although the inc arguments for each array can
 be arbitrary, in most cases, one of the inc arguments
 is 1 for each array. If inc1 = 1, the array is stored in normal
 form; that is, the first dimension of the array is along the columns.
 In this case, inc2 is the leading dimension of
 the array and must be at least n1. Conversely,
 if inc2 = 1, the array is stored in the transposed
 form; that is, the first dimension of the array is along the rows.
 In this case, inc1 is the leading dimension of
 the array and must be at least n2. The rows of
 the arrays are accessed with a stride that equals the leading dimension
 of the array. To minimize cache interference in accessing a row,
 an optimal value should be used for the leading dimension of the array.
 You should use STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines) to
 determine this optimal value. Example 4 in the STRIDE subroutine
 description explains how it is used to find either inc1 or inc2.

 Formulas

 Processor-Independent
 Formulas for SCFT2 for NAUX1 and NAUX2:

 The required values
 of naux1 and naux2 depend on n1 and n2.

 	[bookmark: am5gr_hscft2__am5gr_f12a106]
 AUX1 Formulas

 	For 32-bit integer arguments:
 If max(n1, n2) ≤ 8192, use naux1 = 40000.

 If
 max(n1, n2) > 8192, use naux1 = 40000+1.14(n1+n2).

 For
 64-bit integer arguments:

 If max(n1, n2) ≤ 8192, use naux1 = 60000.

 If
 max(n1, n2) > 8192, use naux1 = 60000+1.14(n1+n2).

 	[bookmark: am5gr_hscft2__am5gr_f12a107]
 NAUX2 Formulas

 	If max(n1, n2) < 252,
 use naux2 = 20000.
 If max(n1, n2) ≥ 252, use naux2 = 20000+(r+256)(s+1.14),
 where r = max(n1, n2)
 and s = min(64, n1, n2).

 Processor-Independent Formulas
 for DCFT2 for NAUX1 and NAUX2:

 The required values of naux1 and naux2 depend
 on n1 and n2.

 	[bookmark: am5gr_hscft2__am5gr_f12a109]
 NAUX1 Formulas

 	

 	For 32-bit integer arguments:

 	If max(n1, n2) ≤ 2048, use naux1 = 40000.

 If max(n1, n2) > 2048, use naux1 = 40000+2.28(n1+n2).

 	For 64-bit integer arguments:

 	If max(n1, n2) ≤ 2048, use naux1 = 60000.

 If max(n1, n2) > 2048, use naux1 = 60000+2.28(n1+n2).

 	[bookmark: am5gr_hscft2__am5gr_f12a110]
 NAUX2 Formulas

 	If max(n1, n2) < 252,
 use naux2 = 20000.
 If max(n1, n2) ≥ 252, use naux2 = 20000+(2r+256)(s+2.28),
 where r = max(n1, n2)
 and s = min(64, n1, n2).

 Function

 The two-dimensional
 discrete Fourier transform of complex data in array X,
 with results going into array Y, is expressed as
 follows:

 [image: Two-Dimensional FFT Graphic]

 for:

 k1

 =

 0, 1,

 …

 ,

 n1

 -1

 k2

 =

 0, 1,

 …

 ,

 n2

 -1

 where:

 [image: Two-Dimensional FFT Graphic]

 and where:

 x

 j1

 ,

 j2

 are elements of array

 X

 .

 y

 k1

 ,

 k2

 are elements of array

 Y

 .

 Isign

 is + or - (determined by argument

 isign

).

 scale

 is a scalar value.

 For scale = 1.0
 and isign being positive, you obtain the discrete
 Fourier transform, a function of frequency. The inverse Fourier transform
 is obtained with scale = 1.0/((n1)(n2))
 and isign being negative. See references [1], [4], and [27].

 Two
 invocations of this subroutine are necessary:

 	With init ≠ 0, the subroutine
 tests and initializes arguments of the program, setting up the aux1 working
 storage.

 	With init = 0, the subroutine checks that the
 initialization arguments in the aux1 working storage
 correspond to the present arguments, and if so, performs the calculation
 of the Fourier transform.

 Error conditions

 	[bookmark: am5gr_hscft2__am5gr_f12a111]
 Resource Errors

 	Error 2015 is unrecoverable, naux2 = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hscft2__am5gr_f12a112]
 Computational Errors

 	None

 	[bookmark: am5gr_hscft2__am5gr_f12a113]
 Input-Argument Errors

 	

 	n1 > 37748736

 	n2 > 37748736

 	inc1x|inc2x|inc1y|inc2y ≤ 0

 	scale = 0.0

 	isign = 0

 	The subroutine has not been initialized with the present arguments.

 	The length of one of the transforms in n1 or n2 is
 not an allowable value. Return code 1 is returned if error 2030 is
 recoverable.

 	naux1 is too small—that is, less than the minimum required value.
 Return code 1 is returned if error 2015 is recoverable.

 	Error 2015 is recoverable or naux2≠0, and naux2 is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows how to compute a two-dimensional transform
 where both input and output are stored in normal form (inc1x = inc1y = 1).
 Also, inc2x = inc2y so the same
 array can be used for both input and output. The arrays are declared
 as follows: COMPLEX*8 X(6,8),Y(6,8)
 REAL*8 AUX1(20000), AUX2(1)

 Arrays X and Y are
 made equivalent by the following statement, making them occupy the
 same storage: EQUIVALENCE (X,Y). First, initialize AUX1 using
 the calling sequence shown below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC1X INC2X Y INC1Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | |
CALL SCFT2(INIT, X , 1 , 6 , Y , 1 , 6 , 6 , 8 , 1 , SCALE, AUX1, 20000 , AUX2, 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 1.0

 X

 is an array with 6 rows and 8 columns with (1.0, 0.0) in all locations.

 Output:

 Y is an array
 with 6 rows and 8 columns having (48.0, 0.0) in location Y(1,1) and
 (0.0, 0.0) in all others.

 	Example 2

 	
 This example shows how to compute a two-dimensional inverse
 Fourier transform. For this example, X is stored
 in normal untransposed form (inc1x = 1),
 and Y is stored in transposed form (inc2y = 1).
 The arrays are declared as follows: COMPLEX*16 X(6,8),Y(8,6)
 REAL*8 AUX1(20000), AUX2(1)

 First, initialize AUX1 using
 the calling sequence shown below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC1X INC2X Y INC1Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | |
CALL DCFT2(INIT, X , 1 , 6 , Y , 8 , 1 , 6 , 8 , -1 , SCALE, AUX1 , 20000 , AUX2 , 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 1.0/48.0

 X =

 (same as output

 Y

 in Example 1)

 Output:

 Y is an array
 with 8 rows and 6 columns with (1.0, 0.0) in all locations.

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SRCFT2 and DRCFT2 (Real-to-Complex Fourier Transform in Two
 Dimensions)

 Purpose

 These subroutines compute the two-dimensional
 discrete Fourier transform of real data in a two-dimensional array.

 Table 209. Data Types.

 	X, scale

 	Y

 	Subroutine

 	Short-precision real

 	Short-precision complex

 	SRCFT2

 	Long-precision real

 	Long-precision complex

 	DRCFT2

 Note:

 	Two invocations of this subroutine are necessary: one to prepare
 the working storage for the subroutine, and the other to perform the
 computations.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SRCFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3)

 CALL DRCFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2)

 	C and C++

 	srcft2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3);

 drcft2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 init

 	is a flag, where:
 If init ≠ 0, trigonometric
 functions and other parameters, depending on arguments other than x,
 are computed and saved in aux1. The contents of x and y are
 not used or changed.

 If init = 0,
 the discrete Fourier transform of the given array is computed. The
 only arguments that may change after initialization are x, y,
 and aux2. All scalar arguments must be the same
 as when the subroutine was called for initialization with init ≠ 0.

 Specified
 as: an integer. It can have any value.

 	 x

 	is the array X, containing n1 rows
 and n2 columns of data to be transformed. The data
 in each column is stored with stride 1. Specified as: an inc2x by
 (at least) n2 array, containing numbers of the
 data type indicated in Table 209.
 See Notes for more details.

 	 inc2x

 	is the leading dimension (stride between columns) of array X.
 Specified as: an integer; inc2x ≥ n1.

 	 y

 	See On Return.

 	 inc2y

 	is the leading dimension (stride between columns) of array Y.
 Specified as: an integer; inc2y ≥ ((n1)/2)+1.

 	 n1

 	is the number of rows of data—that is, the length of the columns in array X involved
 in the computation. The length of the columns in array Y are
 (n1)/2+1.
 Specified as: an integer; n1 ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 n2

 	is the number of columns of data—that is, the length of the rows in arrays X and Y involved
 in the computation.
 Specified as: an integer; n2 ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 isign

 	controls the direction of the transform, determining the sign Isign of
 the exponents of Wn1 and Wn2,
 where:
 If isign = positive value, Isign = +
 (transforming time to frequency).

 If isign = negative
 value, Isign = - (transforming frequency to time).

 Specified
 as: an integer; isign > 0 or isign < 0.

 	 scale

 	is the scaling constant scale. See Function for its usage.
 Specified
 as: a number of the data type indicated in Table 209, where scale > 0.0 or scale < 0.0.

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, the working storage
 is computed.

 If init = 0, the working storage is used in
 the computation of the Fourier transforms.

 Specified as: an
 area of storage, containing naux1 long-precision
 real numbers.

 	 naux1

 	is the number of doublewords in the working storage specified
 in aux1.
 Specified as: an integer; naux1 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For all other values specified
 less than the minimum value, you have the option of having the minimum
 value returned in this argument. For details, see Using Auxiliary Storage in ESSL.

 	 aux2

 	has the following meaning:
 If naux2 = 0
 and error 2015 is unrecoverable, aux2 is ignored.

 Otherwise,
 it is the working storage used by this subroutine, which is available
 for use by the calling program between calls to this subroutine.

 Specified
 as: an area of storage, containing naux2 long-precision
 real numbers. On output, the contents are overwritten.

 	 naux2

 	is the number of doublewords in the working storage specified
 in aux2.
 Specified as: an integer, where:

 If naux2 = 0
 and error 2015 is unrecoverable, SRCFT2 and DRCFT2 dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise, naux2 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For all other values specified
 less than the minimum value, you have the option of having the minimum
 value returned in this argument. For details, see Using Auxiliary Storage in ESSL.

 	 aux3

 	this argument is provided for migration purposes only and is ignored.

 Specified as: an area of storage containing naux3 long-precision
 real numbers.

 	 naux3

 	this argument is provided for migration purposes only and is ignored.

 Specified as: an integer.

 	On Return

 	

 	 y

 	has the following meaning, where:
 If init ≠ 0, this argument
 is not used, and its contents remain unchanged.

 If init = 0,
 this is array Y, containing the results of the complex
 discrete Fourier transform of X. The output consists
 of n2 columns of data. The data in each column
 is stored with stride 1. Due to complex conjugate symmetry, the output
 consists of only the first ((n1)/2)+1 rows of the
 array—that
 is, yk1,k2,
 where k1 = 0, 1, …, (n1)/2 and k2 = 0,
 1, …, n2-1.

 Returned
 as: an inc2y by (at least) n2 array,
 containing numbers of the data type indicated in Table 209.

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, it contains information
 ready to be passed in a subsequent invocation of this subroutine.

 If init = 0,
 its contents are unchanged.

 Returned as: the contents are
 not relevant.

 Notes

 	aux1 should not be used by the calling
 program between calls to this subroutine with init ≠ 0 and init = 0.
 However, it can be reused after intervening calls to this subroutine
 with different arguments.

 	When using the ESSL SMP Libraries, for optimal performance, the
 number of threads specified should be the same for init ≠ 0 and init = 0.

 	If you specify the same array for X and Y,
 then inc2x must equal (2)(inc2y).
 In this case, output overwrites input. If you specify different arrays X and Y,
 they must have no common elements; otherwise, results are unpredictable.
 See Concepts.

 	For selecting optimal strides (or leading dimensions inc2x and inc2y)
 for your input and output arrays, you should use STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines). Example 5 in the
 STRIDE subroutine description explains how it is used for these subroutines.

 Formulas

 	[bookmark: am5gr_hsrcft2__am5gr_f12a120]
 Processor-Independent Formulas for SRCFT2 for NAUX1 and NAUX2

 	The required values of naux1 and naux2 depend
 on n1 and n2.

 	[bookmark: am5gr_hsrcft2__am5gr_f12a121]
 NAUX1 Formulas

 	

 	For 32-bit integer arguments:

 	

 If max(

 n1

 /2,

 n2

)

 ≤

 8192, use

 naux1

 =

 45000.

 If max(

 n1

 /2,

 n2

)

 >

 8192, use

 naux1

 =

 40000+0.82

 n1

 +1.14

 n2

 .

 	For 64-bit integer arguments:

 	

 If max(

 n1

 /2,

 n2

)

 ≤

 8192, use

 naux1

 =

 65000.

 If max(

 n1

 /2,

 n2

)

 >

 8192, use

 naux1

 =

 60000+0.82

 n1

 +1.14

 n2

 .

 	[bookmark: am5gr_hsrcft2__am5gr_f12a122]
 NAUX2 Formulas

 	

 If

 n1

 ≤

 16384 and

 n2

 <

 252, use

 naux2

 =

 20000.

 If

 n1

 >

 16384 and

 n2

 <

 252, use

 naux2

 =

 20000+0.57

 n1

 .

 If

 n2

 ≥

 252, add the following to the above storage requirements:

 (

 n2

 +256)(1.14+

 s

)

 where

 s

 =

 min(64, 1+

 n1

 /2).

 	[bookmark: am5gr_hsrcft2__am5gr_f12a123]
 Processor-Independent Formulas for DRCFT2 for NAUX1 and NAUX2

 	The required values of naux1 and naux2 depend
 on n1 and n2.

 	[bookmark: am5gr_hsrcft2__am5gr_f12a124]
 NAUX1 Formulas

 	

 	For 32-bit integer arguments:

 	

 If

 n

 ≤

 2048, use

 naux1

 =

 42000.

 If

 n

 >

 2048, use

 naux1

 =

 40000+1.64

 n1

 +2.28

 n2

 ,

 where

 n

 =

 max(

 n1

 /2,

 n2

).

 	For 64-bit integer arguments:

 	

 If

 n

 ≤

 2048, use

 naux1

 =

 62000.

 If

 n

 >

 2048, use

 naux1

 =

 60000+1.64

 n1

 +2.28

 n2

 ,

 where

 n

 =

 max(

 n1

 /2,

 n2

).

 	[bookmark: am5gr_hsrcft2__am5gr_f12a125]
 NAUX2 Formulas

 	

 If

 n1

 ≤

 4096 and

 n2

 <

 252, use

 naux2

 =

 20000.

 If

 n1

 >

 4096 and

 n2

 <

 252, use

 naux2

 =

 20000+1.14

 n1

 .

 If

 n2

 ≥

 252, add the following to the above storage requirements:

 ((2)

 n2

 +256) (2.28+

 s

)

 where

 s

 =

 min(64, 1+

 n1

 /2).

 Function

 The two-dimensional
 complex conjugate even discrete Fourier transform of real data in
 array X, with results going into array Y,
 is expressed as follows:

 [image: Two-Dimensional FFT Graphic]

 for:

 k1

 =

 0, 1,

 …

 ,

 n1

 -1

 k2

 =

 0, 1,

 …

 ,

 n2

 -1

 where:

 [image: Two-Dimensional FFT Graphic]

 and where:

 x

 j1

 ,

 j2

 are elements of array

 X

 .

 y

 k1

 ,

 k2

 are elements of array

 Y

 .

 Isign

 is + or - (determined by argument

 isign

).

 scale

 is a scalar value.

 The output
 in array Y is complex. For scale = 1.0
 and isign being positive, you obtain the discrete
 Fourier transform, a function of frequency. The inverse Fourier transform
 is obtained with scale = 1.0/((n1)(n2))
 and isign being negative. See references [1], [4], [26], and [27].

 Two
 invocations of this subroutine are necessary:

 	With init ≠ 0, the subroutine
 tests and initializes arguments of the program, setting up the aux1 working
 storage.

 	With init = 0, the subroutine checks that the
 initialization arguments in the aux1 working storage
 correspond to the present arguments, and if so, performs the calculation
 of the Fourier transform.

 Error conditions

 	[bookmark: am5gr_hsrcft2__am5gr_f12a126]
 Resource Errors

 	Error 2015 is unrecoverable, naux2 = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hsrcft2__am5gr_f12a127]
 Computational Errors

 	None

 	[bookmark: am5gr_hsrcft2__am5gr_f12a128]
 Input-Argument Errors

 	

 	n1 > 37748736

 	n2 > 37748736

 	inc2x < n1

 	inc2y < (n1)/2+1

 	scale = 0.0

 	isign = 0

 	The subroutine has not been initialized with the present arguments.

 	The length of one of the transforms in n1 or n2 is
 not an allowable value. Return code 1 is returned if error 2030 is
 recoverable.

 	naux1 is too small—that is, less than the minimum required value.
 Return code 1 is returned if error 2015 is recoverable.

 	Error 2015 is recoverable or naux2≠0, and naux2 is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows how to compute a two-dimensional transform.
 The arrays are declared as follows: COMPLEX*8 Y(0:6,0:7)
 REAL*4 X(0:11,0:7)
 REAL*8 AUX1(1000), AUX2(1), AUX3(1)

 First,
 initialize AUX1 using the calling sequence shown
 below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
 | | | | | | | | | | | | | | |
CALL SRCFT2(INIT, X , 12 , Y , 7 , 12 , 8 , 1 , SCALE, AUX1 , 1000 , AUX2 , 0 , AUX3 , 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 1.0

 X is
 an array with 12 rows and 8 columns having 1.0 in location X(0,0) and
 0.0 in all others.

 Output:

 Y is
 an array with 7 rows and 8 columns with (1.0, 0.0) in all locations.

 	Example 2

 	
 This example shows another transform computation with different
 data using the same initialized array AUX1 in Example
 1.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
 | | | | | | | | | | | | | | |
CALL SRCFT2(0 , X , 12 , Y , 7 , 12 , 8 , 1 , SCALE, AUX1, 1000 , AUX2, 0 , AUX3 , 0)

 SCALE = 1.0

 X

 is an array with 12 rows and 8 columns with 1.0 in all locations.

 Output:

 Y is an array
 with 7 rows and 8 columns having (96.0, 0.0) in location Y(0,0) and
 (0.0, 0.0) in all others.

 	Example 3

 	
 This example shows the same array being used for input and
 output, where isign = -1 and scale = 1/((N1)(N2)).
 The arrays are declared as follows: COMPLEX*16 Y(0:8,0:7)
 REAL*8 X(0:19,0:7)
 REAL*8 AUX1(1000), AUX2(1), AUX3(1)

 Arrays X and Y are
 made equivalent by the following statement, making them occupy the
 same storage. EQUIVALENCE (X,Y)

 This
 requires inc2x ≥ 2(inc2y).
 First, initialize AUX1 using the calling sequence
 shown below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
 | | | | | | | | | | | | | | |
CALL DRCFT2(INIT, X , 20 , Y , 9 , 16 , 8 , -1 , SCALE, AUX1 , 1000 , AUX2 , 0 , AUX3 , 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 1.0/128.0

 ┌ ┐
 | 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
 | 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
 | -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
 | -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
 | 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
 | 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
 | -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
 | -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
 | 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
X = | 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
 | -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
 | -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
 | 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
 | 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
 | -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
 | -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
 | |
 | |
 | |
 | |
 └ ┘

 Output:

 Y is an array
 with 9 rows and 8 columns having (1.0, 1.0) in location Y(4,2) and
 (0.0, 0.0) in all others.

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SCRFT2 and DCRFT2 (Complex-to-Real Fourier Transform in Two
 Dimensions)

 Purpose

 These subroutines compute the two-dimensional
 discrete Fourier transform of complex conjugate even data in a two-dimensional
 array.

 Table 210. Data
 Types.

 	X

 	Y, scale

 	Subroutine

 	Short-precision complex

 	Short-precision real

 	SCRFT2

 	Long-precision complex

 	Long-precision real

 	DCRFT2

 Note:

 	Two invocations of this subroutine are necessary: one to prepare
 the working storage for the subroutine, and the other to perform the
 computations.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SCRFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3)

 CALL DCRFT2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2)

 	C and C++

 	scrft2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2, aux3, naux3);

 dcrft2 (init, x, inc2x, y, inc2y, n1, n2, isign, scale, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	init

 	is a flag, where:
 If init ≠ 0, trigonometric
 functions and other parameters, depending on arguments other than x,
 are computed and saved in aux1. The contents of x and y are
 not used or changed.

 If init = 0,
 the discrete Fourier transform of the given array is computed. The
 only arguments that may change after initialization are x, y,
 and aux2. All scalar arguments must be the same
 as when the subroutine was called for initialization with init ≠ 0.

 Specified
 as: an integer. It can have any value.

 	 x

 	is the array X, containing n2 columns
 of data to be transformed. Due to complex conjugate symmetry, the
 input consists of only the first ((n1)/2)+1 rows
 of the array—that
 is, xj1,j2, j1 = 0,
 1, …,
 (n1)/2, j2 = 0, 1, …, n2-1. The data in each
 column is stored with stride 1.
 Specified as: an inc2x by
 (at least) n2 array, containing numbers of the
 data type indicated in Table 210.

 	 inc2x

 	is the leading dimension (stride between columns) of array X.
 Specified as: an integer; inc2x ≥ ((n1)/2)+1.

 	 y

 	See On Return.

 	 inc2y

 	is the leading dimension (stride between the columns) of array Y.

 Specified as: an integer; inc2y ≥ n1+2.

 	 n1

 	is the number of rows of data—that is, the length of the columns in array Y involved
 in the computation. The length of the columns in array X are
 (n1)/2+1.
 Specified as: an integer; n1 ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 n2

 	is the number of columns of data—that is, the length of the rows in arrays X and Y involved
 in the computation.
 Specified as: an integer; n2 ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 isign

 	controls the direction of the transform, determining the sign Isign of
 the exponents of Wn1 and Wn2,
 where:
 If isign = positive value, Isign = +
 (transforming time to frequency).

 If isign = negative
 value, Isign = - (transforming frequency to time).

 Specified
 as: an integer; isign > 0 or isign < 0.

 	 scale

 	is the scaling constant scale. See Function for its usage.
 Specified
 as: a number of the data type indicated in Table 210, where scale > 0.0 or scale < 0.0.

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, the working storage
 is computed.

 If init = 0, the working storage is used in
 the computation of the Fourier transforms.

 Specified as: an
 area of storage, containing naux1 long-precision
 real numbers.

 	 naux1

 	is the number of doublewords in the working storage specified
 in aux.
 Specified as: an integer; naux1 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For all other values specified
 less than the minimum value, you have the option of having the minimum
 value returned in this argument. For details, see Using Auxiliary Storage in ESSL.

 	 aux2

 	has the following meaning:
 If naux2 = 0
 and error 2015 is unrecoverable, aux2 is ignored.

 Otherwise,
 it is the working storage used by this subroutine, which is available
 for use by the calling program between calls to this subroutine.

 Specified
 as: an area of storage, containing naux2 long-precision
 real numbers. On output, the contents are overwritten.

 	 naux2

 	is the number of doublewords in the working storage specified
 in aux2.
 Specified as: an integer, where:

 If naux2 = 0
 and error 2015 is unrecoverable, SCRFT2 and DCRFT2 dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise, naux2 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For all other values specified
 less than the minimum value, you have the option of having the minimum
 value returned in this argument. For details, see Using Auxiliary Storage in ESSL.

 	 aux3

 	this argument is provided for migration purposes only and is ignored.

 Specified as: an area of storage, containing naux3 long-precision
 real numbers.

 	 naux3

 	this argument is provided for migration purposes only and is ignored.

 Specified as: an integer.

 	On Return

 	

 	 y

 	has the following meaning, where:
 If init ≠ 0, this argument
 is not used, and its contents remain unchanged.

 If init = 0,
 this is the array Y, containing n1 rows
 and n2 columns of results of the real discrete
 Fourier transform of X. The data in each column of Y is
 stored with stride 1.

 Returned as: an inc2y by
 (at least) n2 array, containing numbers of the
 data type indicated in Table 210.
 See Notes for more details.

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, it contains information
 ready to be passed in a subsequent invocation of this subroutine.

 If init = 0,
 its contents are unchanged.

 Returned as: the contents are
 not relevant.

 Notes

 	aux1 should not be used by the calling
 program between program calls to this subroutine with init ≠ 0 and init = 0.
 However, it can be reused after intervening calls to this subroutine
 with different arguments.

 	When using the ESSL SMP Libraries, for optimal performance, the
 number of threads specified should be the same for init ≠ 0 and init = 0.

 	If you specify the same array for X and Y,
 then (2)(inc2x) must equal inc2y.
 In this case, output overwrites input. If you specify different arrays X and Y,
 they must have no common elements; otherwise, results are unpredictable.
 See Concepts.

 	For selecting optimal strides (or leading dimensions inc2x and inc2y)
 for your input and output arrays, you should use STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines). Example 6 in the
 STRIDE subroutine description explains how it is used for these subroutines.

 Formulas

 Processor-Independent
 Formulas for SCRFT2 for NAUX1 and NAUX2

 The required values
 of naux1 and naux2 depend on n1 and n2.

 	[bookmark: am5gr_hscrft2__am5gr_f12a140]
 NAUX1 Formulas

 	For 32-bit integer arguments:
 If max(n1/2, n2) ≤ 8192, use naux1 = 45000.
 If max(n1/2, n2) > 8192, use naux1 = 40000+0.82n1+1.14n2.

 For
 64-bit integer arguments:

 If max(n1/2, n2) ≤ 8192, use naux1 = 65000.
 If max(n1/2, n2) > 8192, use naux1 = 60000+0.82n1+1.14n2.

 	[bookmark: am5gr_hscrft2__am5gr_f12a141]
 NAUX2 Formulas

 	If n1 ≤ 16384 and n2 < 252,
 use naux2 = 20000.
 If n1 > 16384 and n2 < 252,
 use naux2 = 20000+0.57n1.

 If n2 ≥ 252, add the
 following to the above storage requirements:

 (n2+256)(1.14+s)

 where s = min(64,
 1+n1/2).

 Processor-Independent Formulas
 for DCRFT2 for NAUX1 and NAUX2:

 The required values of naux1 and naux2 depend
 on n1 and n2.

 	[bookmark: am5gr_hscrft2__am5gr_f12a143]
 NAUX1 Formulas

 	
 For 32-bit integer arguments:

 If n ≤ 2048, use naux1 = 42000.
 If n > 2048, use naux1 = 40000+1.64n1+2.28n2,
 where n = max(n1/2, n2).

 For
 64-bit integer arguments:

 If n ≤ 2048, use naux1 = 62000.

 If n > 2048, use naux1 = 60000+1.64n1+2.28n2,

 where n = max(n1/2, n2).

 	[bookmark: am5gr_hscrft2__am5gr_f12a144]
 NAUX2 Formulas

 	
 If n1 ≤ 4096 and n2 < 252,
 use naux2 = 20000. If n1 > 4096 and n2 < 252,
 use naux2 = 20000+1.14n1.

 If n2 ≥ 252, add the
 following to the above storage requirements:

 ((2)n2+256)
 (2.28+s)

 where s = min(64,
 1+n1/2).

 Function

 The two-dimensional
 discrete Fourier transform of complex conjugate even data in array X,
 with results going into array Y, is expressed as
 follows:

 [image: Two-Dimensional FFT Graphic]

 for:

 k1

 =

 0, 1,

 …

 ,

 n1

 -1

 k2

 =

 0, 1,

 …

 ,

 n2

 -1

 where:

 [image: Two-Dimensional FFT Graphic]

 and where:

 x

 j1

 ,

 j2

 are elements of array

 X

 .

 y

 k1

 ,

 k2

 are elements of array

 Y

 .

 Isign

 is + or - (determined by argument

 isign

).

 scale

 is a scalar value.

 Because
 of the complex conjugate symmetry, the output in array Y is
 real. For scale = 1.0 and isign being
 positive, you obtain the discrete Fourier transform, a function of
 frequency. The inverse Fourier transform is obtained with scale = 1.0/((n1)(n2))
 and isign being negative. See references [1], [4], and [27].

 Two
 invocations of this subroutine are necessary:

 	With init ≠ 0, the subroutine
 tests and initializes arguments of the program, setting up the aux1 working
 storage.

 	With init = 0, the subroutine checks that the
 initialization arguments in the aux1 working storage
 correspond to the present arguments, and if so, performs the calculation
 of the Fourier transform.

 Error conditions

 	[bookmark: am5gr_hscrft2__am5gr_f12a145]
 Resource Errors

 	Error 2015 is unrecoverable, naux2 = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hscrft2__am5gr_f12a146]
 Computational Errors

 	None

 	[bookmark: am5gr_hscrft2__am5gr_f12a147]
 Input-Argument Errors

 	

 	n1 > 37748736

 	n2 > 37748736

 	inc2x < (n1)/2+1

 	inc2y < n1+2

 	scale = 0.0

 	isign = 0

 	The subroutine has not been initialized with the present arguments.

 	The length of one of the transforms in n1 or n2 is
 not an allowable value. Return code 1 is returned if error 2030 is
 recoverable.

 	naux1 is too small—that is, less than the minimum required value.
 Return code 1 is returned if error 2015 is recoverable.

 	Error 2015 is recoverable or naux2≠0, and naux2 is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows how to compute a two-dimensional transform.
 The arrays are declared as follows: REAL*4 Y(0:13,0:7)
 COMPLEX*8 X(0:6,0:7)
 REAL*8 AUX1(1000), AUX2(1), AUX3(1)

 First,
 initialize AUX1 using the calling sequence shown
 below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
 | | | | | | | | | | | | | | |
CALL SCRFT2(INIT, X , 7 , Y , 14 , 12 , 8 , -1 , SCALE , AUX1 , 1000 , AUX2 , 0 , AUX3 , 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 1.0/96.0

 X

 is an array with 7 rows and 8 columns with (1.0, 0.0) in all locations.

 Output: ┌ ┐
 | 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
Y = | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | |
 | |
 └ ┘

 	Example 2

 	
 This example shows another transform computation with different
 data using the same initialized array AUX1 in Example
 1.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
 | | | | | | | | | | | | | | |
CALL SCRFT2(0 , X , 7 , Y , 14 , 12 , 8 , -1 , SCALE , AUX1 , 1000 , AUX2 , 0 , AUX3 , 0)

 SCALE = 1.0/96.0

 X is
 an array with 7 rows and 8 columns having (96.0, 0.0) in location X(0,0) and
 (0.0, 0.0) in all others.

 Output: ┌ ┐
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
Y = | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |
 | |
 | |
 └ ┘

 	

 	Example 3

 	
 This example shows the same array being used for input and
 output. The arrays are declared as follows: REAL*8 Y(0:17,0:7)
 COMPLEX*16 X(0:8,0:7)
 REAL*8 AUX1(1000), AUX2(1), AUX3(1)

 Arrays X and Y are
 made equivalent by the following statement, making them occupy the
 same storage. EQUIVALENCE (X,Y)

 This
 requires inc2y = 2(inc2x). First,
 initialize AUX1 using the calling sequence shown
 below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT X INC2X Y INC2Y N1 N2 ISIGN SCALE AUX1 NAUX1 AUX2 NAUX2 AUX3 NAUX3
 | | | | | | | | | | | | | | |
CALL DCRFT2(INIT, X , 9 , Y , 18 , 16 , 8 , 1 , SCALE , AUX1 , 1000 , AUX2 , 0 , AUX3 , 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 SCALE = 1.0

 X is
 an array with 9 rows and 8 columns having (1.0, 1.0) in location X(4,2) and
 (0.0, 0.0) in all others.

 Output: ┌ ┐
 | 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
 | 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
 | -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
 | -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
 | 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
 | 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
 | -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
 | -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
Y = | 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
 | 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
 | -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
 | -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
 | 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 |
 | 2.0 -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 |
 | -2.0 -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 |
 | -2.0 2.0 2.0 -2.0 -2.0 2.0 2.0 -2.0 |
 | |
 | |
 └ ┘

 	

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SCFT3 and DCFT3 (Complex Fourier Transform in Three Dimensions)

 Purpose

 These subroutines compute the three-dimensional
 discrete Fourier transform of complex data.

 Table 211. Data Types.

 	X, Y

 	scale

 	Subroutine

 	Short-precision complex

 	Short-precision real

 	SCFT3

 	Long-precision complex

 	Long-precision real

 	DCFT3

 Note:

 	For each use, only one invocation of this subroutine is necessary.
 The initialization phase, preparing the working storage, is a relatively
 small part of the total computation, so it is performed on each invocation.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SCFT3 | DCFT3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux)

 	C and C++

 	scft3 | dcft3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux);

 	On Entry

 	

 	 x

 	is the array X, containing the three-dimensional
 data to be transformed, where each element xj1,j2,j3,
 using zero-based indexing, is stored in X(j1+j2(inc2x)+j3(inc3x))
 for j1 = 0, 1, …, n1-1, j2 = 0,
 1, …, n2-1,
 and j3 = 0, 1, …, n3-1. The strides for
 the elements in the first, second, and third dimensions are assumed
 to be 1, inc2x(≥ n1),
 and inc3x(≥ (n2)(inc2x)),
 respectively.
 Specified as: an array, containing numbers of the
 data type indicated in Table 211.
 If the array is dimensioned X(LDA1,LDA2,LDA3), then LDA1 = inc2x,
 (LDA1)(LDA2) = inc3x, and LDA3 ≥ n3.
 For information on how to set up this array, see Setting Up Your Data. For more details,
 see Notes.

 	 inc2x

 	is the stride between the elements in array X for
 the second dimension.
 Specified as: an integer; inc2x ≥ n1.

 	 inc3x

 	is the stride between the elements in array X for
 the third dimension.
 Specified as: an integer; inc3x ≥ (n2)(inc2x).

 	 y

 	See On Return.

 	 inc2y

 	is the stride between the elements in array Y for
 the second dimension.
 Specified as: an integer; inc2y ≥ n1.

 	 inc3y

 	is the stride between the elements in array Y for
 the third dimension.
 Specified as: an integer; inc3y ≥ (n2)(inc2y).

 	 n1

 	is the length of the first dimension of the three-dimensional
 data in the array to be transformed.
 Specified as: an integer; n1 ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 n2

 	is the length of the second dimension of the three-dimensional
 data in the array to be transformed.
 Specified as: an integer; n2 ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 n3

 	is the length of the third dimension of the three-dimensional
 data in the array to be transformed.
 Specified as: an integer; n3 ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 isign

 	controls the direction of the transform, determining the sign Isign of
 the exponents of Wn1, Wn2,
 and Wn3, where:
 If isign = positive
 value, Isign = + (transforming time to frequency).

 If isign = negative
 value, Isign = - (transforming frequency to time).

 Specified
 as: an integer; isign > 0 or isign < 0.

 	 scale

 	is the scaling constant scale. See Function for its usage.
 Specified
 as: a number of the data type indicated in Table 211, where scale > 0.0 or scale < 0.0.

 	 aux

 	has the following meaning:
 If naux = 0
 and error 2015 is unrecoverable, aux is ignored.

 Otherwise,
 it is a storage work area used by this subroutine.

 Specified
 as: an area of storage, containing naux long-precision
 real numbers. On output, the contents are overwritten.

 	 naux

 	is the number of doublewords in the working storage specified
 in aux.
 Specified as: an integer, where:

 If naux = 0
 and error 2015 is unrecoverable, SCFT3 and DCFT3 dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise, naux ≥ (minimum
 value required for successful processing). To determine a sufficient
 value, use the processor-independent formulas. For all other values
 specified less than the minimum value, you have the option of having
 the minimum value returned in this argument. For details, see Using Auxiliary Storage in ESSL.

 	On Return

 	

 	 y

 	is the array Y, containing the elements resulting
 from the three-dimensional discrete Fourier transform of the data
 in X. Each element yk1,k2,k3,
 using zero-based indexing, is stored in Y(k1+k2(inc2y)+k3(inc3y))
 for k1 = 0, 1, …, n1-1, k2 = 0,
 1, …, n2-1,
 and k3 = 0, 1, …, n3-1. The strides for
 the elements in the first, second, and third dimensions are assumed
 to be 1, inc2y(≥ n1),
 and inc3y(≥ (n2)(inc2y)),
 respectively.
 Returned as: an array, containing numbers of the
 data type indicated in Table 211.
 If the array is dimensioned Y(LDA1,LDA2,LDA3), then LDA1 = inc2y,
 (LDA1)(LDA2) = inc3y, and LDA3 ≥ n3.
 For information on how to set up this array, see Setting Up Your Data. For more details,
 see Notes.

 Notes

 	If you specify the same array for X and Y,
 then inc2x must be greater than or equal to inc2y,
 and inc3x must be greater than or equal to inc3y.
 In this case, output overwrites input. When using the ESSL SMP Libraries
 in a multithreaded environment, if inc2x > inc2y or inc3x > inc3y,
 these subroutines run on a single thread and issue an attention message.

 If you specify different arrays X and Y,
 they must have no common elements; otherwise, results are unpredictable.
 See Concepts.

 	You should use STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines) to
 determine the optimal values for the strides inc2y and inc3y for
 your output array. The strides for your input array do not affect
 performance. Example 7 in the STRIDE subroutine description explains
 how it is used for these subroutines. For additional information on
 how to set up your data, see Setting Up Your Data.

 Formulas

 Processor-Independent
 Formulas for SCFT3 for NAUX:

 Use the following formulas for
 calculating naux:

 	For 32-bit integer arguments:

 	

 	If max(n2, n3) < 252
 and:

 If

 n1

 ≤

 8192, use

 naux

 =

 60000.

 If

 n1

 >

 8192, use

 naux

 =

 60000+2.28

 n1

 .

 	If n2 ≥ 252, n3 < 252,
 and:

 If

 n1

 ≤

 8192, use

 naux

 =

 60000+

 λ

 .

 If

 n1

 >

 8192, use

 naux

 =

 60000+2.28

 n1

 +

 λ

 ,

 where

 λ

 =

 (

 n2

 +256)(

 s

 +2.28)

 and

 s

 =

 min(64,

 n1

).

 	If n2 < 252, n3 ≥ 252, and:

 If

 n1

 ≤

 8192, use

 naux

 =

 60000+

 ψ

 .

 If

 n1

 >

 8192, use

 naux

 =

 60000+2.28

 n1

 +

 ψ

 ,

 where

 ψ

 =

 (

 n3

 +256)(

 s

 +2.28)

 and

 s

 =

 min(64, (

 n1

)(

 n2

)).

 	If n2 ≥ 252 and n3 ≥ 252, use the
 larger of the values calculated for cases 2 and 3 above.

 	For 64-bit integer arguments:

 	

 	If max(n2, n3) < 252
 and:

 If

 n1

 ≤

 8192, use

 naux

 =

 90000.

 If

 n1

 >

 8192, use

 naux

 =

 90000+2.28

 n1

 .

 	If n2 ≥ 252, n3 < 252,
 and:

 If

 n1

 ≤

 8192, use

 naux

 =

 90000+

 λ

 .

 If

 n1

 >

 8192, use

 naux

 =

 90000+2.28

 n1

 +

 λ

 ,

 where

 λ

 =

 (

 n2

 +256)(

 s

 +2.28)

 and

 s

 =

 min(64,

 n1

).

 	If n2 < 252, n3 ≥ 252, and:

 If

 n1

 ≤

 8192, use

 naux

 =

 90000+

 ψ

 .

 If

 n1

 >

 8192, use

 naux

 =

 90000+2.28

 n1

 +

 ψ

 ,

 where

 ψ

 =

 (

 n3

 +256)(

 s

 +2.28)

 and

 s

 =

 min(64, (

 n1

)(

 n2

)).

 	If n2 ≥ 252 and n3 ≥ 252, use the
 larger of the values calculated for cases 2 and 3 above.

 Processor-Independent
 Formulas for DCFT3 for NAUX:

 Use the following formulas for
 calculating naux:

 	For 32-bit integer arguments:

 	

 	If max(n2, n3) < 252
 and:

 If

 n1

 ≤

 2048, use

 naux

 =

 60000.

 If

 n1

 >

 2048, use

 naux

 =

 60000+4.56

 n1

 .

 	If n2 ≥ 252, n3 < 252,
 and:

 If

 n1

 ≤

 2048, use

 naux

 =

 60000+

 λ

 .

 If

 n1

 >

 2048, use

 naux

 =

 60000+4.56

 n1

 +

 λ

 ,

 where

 λ

 =

 ((2)

 n2

 +256)(

 s

 +4.56)

 and

 s

 =

 min(64,

 n1

).

 	If n2 < 252, n3 ≥ 252, and:

 If

 n1

 ≤

 2048, use

 naux

 =

 60000+

 ψ

 .

 If

 n1

 >

 2048, use

 naux

 =

 60000+4.56

 n1

 +

 ψ

 ,

 where

 ψ

 =

 ((2)

 n3

 +256)(

 s

 +4.56)

 and

 s

 =

 min(64, (

 n1

)(

 n2

)).

 	If n2 ≥ 252 and n3 ≥ 252, use the
 larger of the values calculated for cases 2 and 3 above.

 	For 64-bit integer arguments:

 	

 	If max(n2, n3) < 252
 and:

 If

 n1

 ≤

 2048, use

 naux

 =

 90000.

 If

 n1

 >

 2048, use

 naux

 =

 90000+4.56

 n1

 .

 	If n2 ≥ 252, n3 < 252,
 and:

 If

 n1

 ≤

 2048, use

 naux

 =

 90000+

 λ

 .

 If

 n1

 >

 2048, use

 naux

 =

 90000+4.56

 n1

 +

 λ

 ,

 where

 λ

 =

 ((2)

 n2

 +256)(

 s

 +4.56)

 and

 s

 =

 min(64,

 n1

).

 	If n2 < 252, n3 ≥ 252, and:

 If

 n1

 ≤

 2048, use

 naux

 =

 90000+

 ψ

 .

 If

 n1

 >

 2048, use

 naux

 =

 90000+4.56

 n1

 +

 ψ

 ,

 where

 ψ

 =

 ((2)

 n3

 +256)(

 s

 +4.56)

 and

 s

 =

 min(64, (

 n1

)(

 n2

)).

 	If n2 ≥ 252 and n3 ≥ 252, use the
 larger of the values calculated for cases 2 and 3 above.

 Function

 The three-dimensional
 discrete Fourier transform of complex data in array X,
 with results going into array Y, is expressed as
 follows:

 [image: Three-Dimensional FFT Graphic]

 for:

 k1

 =

 0, 1,

 …

 ,

 n1

 -1

 k2

 =

 0, 1,

 …

 ,

 n2

 -1

 k3

 =

 0, 1,

 …

 ,

 n3

 -1

 where:

 [image: Three-Dimensional FFT Graphic]

 and where:

 x

 j1

 ,

 j2

 ,

 j3

 are elements of array

 X

 .

 y

 k1

 ,

 k2

 ,

 k3

 are elements of array

 Y

 .

 Isign

 is + or - (determined by argument

 isign

).

 scale

 is a scalar value.

 For scale = 1.0
 and isign being positive, you obtain the discrete
 Fourier transform, a function of frequency. The inverse Fourier transform
 is obtained with scale = 1.0/((n1)(n2)(n3))
 and isign being negative. See references [1], [4], [5], [26], and [27].

 Error conditions

 	[bookmark: am5gr_hscft3__am5gr_f12a160]
 Resource Errors

 	Error 2015 is unrecoverable, naux = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hscft3__am5gr_f12a161]
 Computational Errors

 	None

 	[bookmark: am5gr_hscft3__am5gr_f12a162]
 Input-Argument Errors

 	

 	n1 > 37748736

 	n2 > 37748736

 	n3 > 37748736

 	inc2x < n1

 	inc3x < (n2)(inc2x)

 	inc2y < n1

 	inc3y < (n2)(inc2y)

 	scale = 0.0

 	isign = 0

 	The length of one of the transforms in n1, n2,
 or n3 is not an allowable value. Return code 1
 is returned if error 2030 is recoverable.

 	Error 2015 is recoverable or naux≠0, and naux is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	[bookmark: am5gr_hscft3__am5gr_scft2x3]
 Example

 	
 This example shows how to compute a three-dimensional transform.
 In this example, INC2X ≥ INC2Y and INC3X ≥ INC3Y,
 so that the same array can be used for both input and output. The
 STRIDE subroutine is called to select good values for the INC2Y and INC3Y strides.
 (As explained below, STRIDE is not called for INC2X and INC3X.)
 Using the transform lengths (N1 = 32, N2 = 64,
 and N3 = 40) along with the output data type
 (short-precision complex: 'C'), STRIDE is called
 once for each stride needed. First, it is called for INC2Y:
 CALL STRIDE (N2,N1,INC2Y,'C',0)

 The
 output value returned for INC2Y is 32. Then STRIDE
 is called again for INC3Y: CALL STRIDE (N3,N2*INC2Y,INC3Y,'C',0)

 The
 output value returned for INC3Y is 2056. Because INC3Y is
 not a multiple of INC2Y, Y is not
 declared as a three-dimensional array. It is declared as a two-dimensional
 array, Y(INC3Y,N3).

 To equivalence the X and Y arrays
 requires INC2X ≥ INC2Y and INC3X ≥ INC3Y.
 Therefore, INC2X is set equal to INC2Y(= 32).
 Also, to declare the X array as a three-dimensional
 array, INC3X must be a multiple of INC2X.
 Therefore, its value is set as INC3X = (65)(INC2X) = 2080.

 The
 arrays are declared as follows: COMPLEX*8 X(32,65,40),Y(2056,40)
 REAL*8 AUX(1)

 Arrays X and Y are
 made equivalent by the following statement, making them occupy the
 same storage: EQUIVALENCE (X,Y)

 Note: Because NAUX =
 0, this subroutine dynamically allocates the AUX working
 storage.

 Call Statement and Input:

 X INC2X INC3X Y INC2Y INC3Y N1 N2 N3 ISIGN SCALE AUX NAUX
 | | | | | | | | | | | | |
CALL SCFT3(X , 32 , 2080 , Y , 32 , 2056 , 32 , 64 , 40 , 1 , SCALE , AUX , 0)

 SCALE = 1.0

 X

 has (1.0,2.0) in location

 X(1,1,1)

 and (0.0,0.0) in all other locations.

 Output:

 Y has (1.0,2.0)
 in locations Y(ij,k),
 where ij = 1, 2048 and j = 1,
 40. It remains unchanged elsewhere.

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SRCFT3 and DRCFT3 (Real-to-Complex Fourier Transform in Three
 Dimensions)

 Purpose

 These subroutines compute the three-dimensional
 discrete Fourier transform of real data in a three-dimensional array.

 Table 212. Data Types.

 	X, scale

 	Y

 	Subroutine

 	Short-precision real

 	Short-precision complex

 	SRCFT3

 	Long-precision real

 	Long-precision complex

 	DRCFT3

 Note:

 	For each use, only one invocation of this subroutine is necessary.
 The initialization phase, preparing the working storage, is a relatively
 small part of the total computation, so it is performed on each invocation.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SRCFT3 | DRCFT3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux)

 	C and C++

 	srcft3 | drcft3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux);

 	On Entry

 	

 	 x

 	is the array X, containing the three-dimensional
 data to be transformed, where each element xj1,j2,j3,
 using zero-based indexing, is stored in X(j1+j2(inc2x)+j3(inc3x))
 for j1 = 0, 1, …, n1-1, j2 = 0,
 1, …, n2-1,
 and j3 = 0, 1, …, n3-1. The strides for
 the elements in the first, second, and third dimensions are assumed
 to be 1, inc2x(≥ n1),
 and inc3x(≥ (n2)(inc2x)),
 respectively.
 Specified as: an array, containing numbers of the
 data type indicated in Table 212.
 If the array is dimensioned X(LDA1,LDA2,LDA3), then LDA1 = inc2x,
 (LDA1)(LDA2) = inc3x, and LDA3 ≥ n3.
 For information on how to set up this array, see Setting Up Your Data. For more details,
 see Notes.

 	 inc2x

 	is the stride between the elements in array X for
 the second dimension.
 Specified as: an integer; inc2x ≥ n1.

 	 inc3x

 	is the stride between the elements in array X for
 the third dimension.
 Specified as: an integer; inc3x ≥ (n2)(inc2x).

 	 y

 	See On Return.

 	 inc2y

 	is the stride between the elements in array Y for
 the second dimension.
 Specified as: an integer; inc2y ≥ n1/2+1.

 	 inc3y

 	is the stride between the elements in array Y for
 the third dimension.
 Specified as: an integer; inc3y ≥ (n2)(inc2y).

 	 n1

 	is the length of the first dimension of the three-dimensional
 data in the array to be transformed.
 Specified as: an integer; n1 ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 n2

 	is the length of the second dimension of the three-dimensional
 data in the array to be transformed.
 Specified as: an integer; n2 ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 n3

 	is the length of the third dimension of the three-dimensional
 data in the array to be transformed.
 Specified as: an integer; n3 ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 isign

 	controls the direction of the transform, determining the sign Isign of
 the exponents of Wn1, Wn2,
 and Wn3, where:
 If isign = positive
 value, Isign = + (transforming time to frequency).

 If isign = negative
 value, Isign = - (transforming frequency to time).

 Specified
 as: an integer; isign > 0 or isign < 0.

 	 scale

 	is the scaling constant scale. See Function for its usage.
 Specified
 as: a number of the data type indicated in Table 212, where scale > 0.0 or scale < 0.0.

 	 aux

 	has the following meaning:
 If naux = 0
 and error 2015 is unrecoverable, aux is ignored.

 Otherwise,
 it is a storage work area used by this subroutine.

 Specified
 as: an area of storage, containing naux long-precision
 real numbers. On output, the contents are overwritten.

 	 naux

 	is the number of doublewords in the working storage specified
 in aux.
 Specified as: an integer, where:

 If naux = 0
 and error 2015 is unrecoverable, SRCFT3 and DRCFT3 dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise, naux ≥ (minimum
 value required for successful processing). To determine a sufficient
 value, use the processor-independent formulas. For all other values
 specified less than the minimum value, you have the option of having
 the minimum value returned in this argument. For details, see Using Auxiliary Storage in ESSL.

 	On Return

 	

 	 y

 	is the array Y, containing the elements resulting
 from the three-dimensional discrete Fourier transform of the data
 in X. Each element yk1,k2,k3,
 using zero-based indexing, is stored in Y(k1+k2(inc2y)+k3(inc3y))
 for k1 = 0, 1, …, n1/2, k2 = 0,
 1, …, n2-1,
 and k3 = 0, 1, …, n3-1. Due to complex
 conjugate symmetry, the output consists of only the first n1/2+1
 values along the first dimension of the array, for k1 = 0,
 1, …, n1/2.
 The strides for the elements in the first, second, and third dimensions
 are assumed to be 1, inc2y(≥ n1/2+1),
 and inc3y(≥ (n2)(inc2y)),
 respectively.
 Returned as: an array, containing numbers of the
 data type indicated in Table 212.
 If the array is dimensioned Y(LDA1,LDA2,LDA3), then LDA1 = inc2y,
 (LDA1)(LDA2) = inc3y, and LDA3 ≥ n3.
 For information on how to set up this array, see Setting Up Your Data. For more details,
 see Notes.

 Notes

 	If you specify the same array for X and Y,
 then inc2x must be greater than or equal to (2)(inc2y),
 and inc3x must be greater than or equal to (2)(inc3y).
 In this case, output overwrites input. When using the ESSL SMP Libraries
 in a multithreaded environment, if inc2x > (2)(inc2y)
 or inc3x > (2)(inc3y),
 these subroutines run on a single thread and issue an attention message.

 If you specify different arrays X and Y,
 they must have no common elements; otherwise, results are unpredictable.
 See Concepts.

 	The strides for your input array do not affect performance as
 long as they are even numbers. In addition, you should use STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines) to determine the optimal
 values for the strides inc2y and inc3y for
 your output array. Example 8 in the STRIDE subroutine description
 explains how it is used for these subroutines. For additional information
 on how to set up your data, see Setting Up Your Data.

 Formulas

 	[bookmark: am5gr_hsrcft3__am5gr_f12a166]
 Processor-Independent Formulas for SRCFT3 for NAUX

 	Use the following formulas for calculating naux:

 	For 32-bit integer arguments:

 	

 	If max(n2, n3) < 252
 and:

 If

 n1

 ≤

 16384, use

 naux

 =

 65000.

 If

 n1

 >

 16384, use

 naux

 =

 60000+1.39

 n1

 .

 	If n2 ≥ 252, n3 < 252,
 and:

 If

 n1

 ≤

 16384, use

 naux

 =

 65000+

 λ

 .

 If

 n1

 >

 16384, use

 naux

 =

 60000+1.39

 n1

 +

 λ

 ,

 where

 λ

 =

 (

 n2

 +256)(

 s

 +2.28) and

 s

 =

 min(64, 1+

 n1

 /2).

 	If n2 < 252, n3 ≥ 252, and:

 If

 n1

 ≤

 16384, use

 naux

 =

 65000+

 ψ

 .

 If

 n1

 >

 16384, use

 naux

 =

 60000+1.39

 n1

 +

 ψ

 ,

 where

 ψ

 =

 (

 n3

 +256)(

 s

 +2.28) and

 s

 =

 min(64, (

 n2

)(1+

 n1

 /2)).

 	If n2 ≥ 252 and n3 ≥ 252, use the
 larger of the values calculated for cases 2 and 3 above.

 	For 64-bit integer arguments:

 	

 	If max(n2, n3) < 252
 and:

 If

 n1

 ≤

 16384, use

 naux

 =

 95000.

 If

 n1

 >

 16384, use

 naux

 =

 90000+1.39

 n1

 .

 	If n2 ≥ 252, n3 < 252,
 and:

 If

 n1

 ≤

 16384, use

 naux

 =

 95000+

 λ

 .

 If

 n1

 >

 16384, use

 naux

 =

 90000+1.39

 n1

 +

 λ

 ,

 where

 λ

 =

 (

 n2

 +256)(

 s

 +2.28) and

 s

 =

 min(64, 1+

 n1

 /2).

 	If n2 < 252, n3 ≥ 252, and:

 If

 n1

 ≤

 16384, use

 naux

 =

 95000+

 ψ

 .

 If

 n1

 >

 16384, use

 naux

 =

 90000+1.39

 n1

 +

 ψ

 ,

 where

 ψ

 =

 (

 n3

 +256)(

 s

 +2.28) and

 s

 =

 min(64, (

 n2

)(1+

 n1

 /2)).

 	If n2 ≥ 252 and n3 ≥ 252, use the
 larger of the values calculated for cases 2 and 3 above.

 If inc2x or inc3x is
 an odd number, or if array X is not aligned on a
 doubleword boundary, you should add the following amount to all the
 formulas given above:

 n2

 (1+

 n1

 /2)

 	[bookmark: am5gr_hsrcft3__am5gr_f12a167]
 Processor-Independent Formulas for DRCFT3 for NAUX

 	Use the following formulas for calculating naux:

 	For 32-bit integer arguments:

 	

 	If max(n2, n3) < 252
 and:

 If

 n1

 ≤

 4096, use

 naux

 =

 62000.

 If

 n1

 >

 4096, use

 naux

 =

 60000+2.78

 n1

 .

 	If n2 ≥ 252, n3 < 252,
 and:

 If

 n1

 ≤

 4096, use

 naux

 =

 62000+

 λ

 .

 If

 n1

 >

 4096, use

 naux

 =

 60000+2.78

 n1

 +

 λ

 ,

 where

 λ

 =

 ((2)

 n2

 +256)(

 s

 +4.56)

 and

 s

 =

 min(64,

 n1

 /2).

 	If n2 < 252, n3 ≥ 252, and:

 If

 n1

 ≤

 4096, use

 naux

 =

 62000+

 ψ

 .

 If

 n1

 >

 4096, use

 naux

 =

 60000+2.78

 n1

 +

 ψ

 ,

 where

 ψ

 =

 ((2)

 n3

 +256)(

 s

 +4.56)

 and

 s

 =

 min(64,

 n2

 (1+

 n1

 /2)).

 	If n2 ≥ 252 and n3 ≥ 252, use the
 larger of the values calculated for cases 2 and 3 above.

 	For 64-bit integer arguments:

 	

 	If max(n2, n3) < 252
 and:

 If

 n1

 ≤

 4096, use

 naux

 =

 92000.

 If

 n1

 >

 4096, use

 naux

 =

 90000+2.78

 n1

 .

 	If n2 ≥ 252, n3 < 252,
 and:

 If

 n1

 ≤

 4096, use

 naux

 =

 92000+

 λ

 .

 If

 n1

 >

 4096, use

 naux

 =

 90000+2.78

 n1

 +

 λ

 ,

 where

 λ

 =

 ((2)

 n2

 +256)(

 s

 +4.56)

 and

 s

 =

 min(64,

 n1

 /2).

 	If n2 < 252, n3 ≥ 252, and:

 If

 n1

 ≤

 4096, use

 naux

 =

 92000+

 ψ

 .

 If

 n1

 >

 4096, use

 naux

 =

 90000+2.78

 n1

 +

 ψ

 ,

 where

 ψ

 =

 ((2)

 n3

 +256)(

 s

 +4.56)

 and

 s

 =

 min(64,

 n2

 (1+

 n1

 /2)).

 	If n2 ≥ 252 and n3 ≥ 252, use the
 larger of the values calculated for cases 2 and 3 above.

 Function

 The three-dimensional
 complex conjugate even discrete Fourier transform of real data in
 array X, with results going into array Y,
 is expressed as follows:

 [image: Three-Dimensional FFT Graphic]

 for:

 k1

 =

 0, 1,

 …

 ,

 n1

 -1

 k2

 =

 0, 1,

 …

 ,

 n2

 -1

 k3

 =

 0, 1,

 …

 ,

 n3

 -1

 where:

 [image: Three-Dimensional FFT Graphic]

 and where:

 x

 j1

 ,

 j2

 ,

 j3

 are elements of array

 X

 .

 y

 k1

 ,

 k2

 ,

 k3

 are elements of array

 Y

 .

 Isign

 is + or - (determined by argument

 isign

).

 scale

 is a scalar value.

 The output
 in array Y is complex. For scale = 1.0
 and isign being positive, you obtain the discrete
 Fourier transform, a function of frequency. The inverse Fourier transform
 is obtained with scale = 1.0/((n1)(n2)(n3))
 and isign being negative. See references [1], [4], [5], [26], and [27].

 Error conditions

 	[bookmark: am5gr_hsrcft3__am5gr_f12a168]
 Resource Errors

 	Error 2015 is unrecoverable, naux = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hsrcft3__am5gr_f12a169]
 Computational Errors

 	None

 	[bookmark: am5gr_hsrcft3__am5gr_f12a170]
 Input-Argument Errors

 	

 	n1 > 37748736

 	n2 > 37748736

 	n3 > 37748736

 	inc2x < n1

 	inc3x < (n2)(inc2x)

 	inc2y < n1/2+1

 	inc3y < (n2)(inc2y)

 	scale = 0.0

 	isign = 0

 	The length of one of the transforms in n1, n2,
 or n3 is not an allowable value. Return code 1
 is returned if error 2030 is recoverable.

 	Error 2015 is recoverable or naux≠0, and naux is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	[bookmark: am5gr_hsrcft3__am5gr_srcf2x3]
 Example

 	
 This example shows how to compute a three-dimensional transform.
 In this example, INC2X ≥ (2)(INC2Y)
 and INC3X ≥ (2)(INC3Y),
 so that the same array can be used for both input and output. The
 STRIDE subroutine is called to select good values for the INC2Y and INC3Y strides.
 Using the transform lengths (N1 = 32, N2 = 64,
 and N2 = 40) along with the output data type
 (short-precision complex: 'C'), STRIDE is called
 once for each stride needed. First, it is called for INC2Y:
 CALL STRIDE (N2,N1/2+1,INC2Y,'C',0)

 The
 output value returned for INC2Y is 17. (This value
 is equal to N1/2+1.) Then STRIDE is called again
 for INC3Y: CALL STRIDE (N3,N2*INC2Y,INC3Y,'C',0)

 The
 output value returned for INC3Y is 1088. Because INC3Y is
 a multiple of INC2Y—that is, INC3Y = (N2)(INC2Y)—Y is
 declared as a three-dimensional array, Y(17,64,40).
 (In general, for larger arrays, these types of values for INC2Y and INC3Y are
 not returned by STRIDE, and you are probably not able to declare Y as
 a three-dimensional array.)

 To equivalence the X and Y arrays
 requires INC2X ≥ (2)(INC2Y)
 and INC3X ≥ (2)(INC3Y).
 Therefore, the values INC2X = (2)(INC2Y) = 34
 and INC3X = (2)(INC3Y) = 2176
 are set, and X is declared as a three-dimensional
 array, X(34,64,40).

 The arrays are declared
 as follows: REAL*4 X(34,64,40)
 COMPLEX*8 Y(17,64,40)
 REAL*8 AUX(1)

 Arrays X and Y are
 made equivalent by the following statement, making them occupy the
 same storage: EQUIVALENCE (X,Y)

 Note: Because NAUX= 0, this subroutine
 dynamically allocates the AX working storage.

 Call Statement and Input:
 X INC2X INC3X Y INC2Y INC3Y N1 N2 N3 ISIGN SCALE AUX NAUX
 | | | | | | | | | | | | |
CALL SRCFT3(X , 34 , 2176 , Y , 17 , 1088 , 32 , 64 , 40 , 1 , SCALE , AUX , 0)

 SCALE = 1.0

 X

 has 1.0 in location

 X(1,1,1)

 and 0.0 in all other locations.

 Output:

 Y has (1.0,0.0)
 in all locations.

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SCRFT3 and DCRFT3 (Complex-to-Real Fourier Transform in Three
 Dimensions)

 Purpose

 These subroutines compute the three-dimensional
 discrete Fourier transform of complex conjugate even data in a three-dimensional
 array.

 Table 213. Data
 Types.

 	X

 	Y, scale

 	Subroutine

 	Short-precision complex

 	Short-precision real

 	SCRFT2

 	Long-precision complex

 	Long-precision real

 	DCRFT2

 Note:

 	For each use, only one invocation of this subroutine is necessary.
 The initialization phase, preparing the working storage, is a relatively
 small part of the total computation, so it is performed on each invocation.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SCRFT3 | DCRFT3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux)

 	C and C++

 	scrft3 | dcrft3 (x, inc2x, inc3x, y, inc2y, inc3y, n1, n2, n3, isign, scale, aux, naux);

 	On Entry

 	

 	 x

 	is the array X, containing the three-dimensional
 data to be transformed, where each element xj1,j2,j3,
 using zero-based indexing, is stored in X(j1+j2(inc2x)+j3(inc3x))
 for j1 = 0, 1, …, n1/2, j2 = 0,
 1, …, n2-1,
 and j3 = 0, 1, …, n3-1. Due to complex
 conjugate symmetry, the input consists of only the first n1/2+1
 values along the first dimension of the array, for j1 = 0,
 1, …, n1/2.
 The strides for the elements in the first, second, and third dimensions
 are assumed to be 1, inc2x(≥ n1/2+1),
 and inc3x(≥ (n2)(inc2x)),
 respectively.
 Specified as: an array, containing numbers of the
 data type indicated in Table 213.
 If the array is dimensioned X(LDA1,LDA2,LDA3), then LDA1 = inc2x,
 (LDA1)(LDA2) = inc3x, and LDA3 ≥ n3.
 For information on how to set up this array, see Setting Up Your Data. For more details,
 see Notes.

 	 inc2x

 	is the stride between the elements in array X for
 the second dimension.
 Specified as: an integer; inc2x ≥ n1/2+1.

 	 inc3x

 	is the stride between the elements in array X for
 the third dimension.
 Specified as: an integer; inc3x ≥ (n2)(inc2x).

 	 y

 	See On Return.

 	 inc2y

 	is the stride between the elements in array Y for
 the second dimension.
 Specified as: an integer; inc2y ≥ n1+2.

 	 inc3y

 	is the stride between the elements in array Y for
 the third dimension.
 Specified as: an integer; inc3y ≥ (n2)(inc2y).

 	 n1

 	is the length of the first dimension of the three-dimensional
 data in the array to be transformed.
 Specified as: an integer; n1 ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 n2

 	is the length of the second dimension of the three-dimensional
 data in the array to be transformed.
 Specified as: an integer; n2 ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 n3

 	is the length of the third dimension of the three-dimensional
 data in the array to be transformed.
 Specified as: an integer; n3 ≤ 37748736 and
 must be one of the values listed in Acceptable Lengths for the Transforms. For all other values
 specified less than 37748736, you have the option of having the next
 larger acceptable value returned in this argument. For details, see Providing a Correct Transform Length to ESSL.

 	 isign

 	controls the direction of the transform, determining the sign Isign of
 the exponents of Wn1, Wn2,
 and Wn3, where:
 If isign = positive
 value, Isign = + (transforming time to frequency).

 If isign = negative
 value, Isign = - (transforming frequency to time).

 Specified
 as: an integer; isign > 0 or isign < 0.

 	 scale

 	is the scaling constant scale. See Function for its usage.
 Specified
 as: a number of the data type indicated in Table 213, where scale > 0.0 or scale < 0.0.

 	 aux

 	has the following meaning:
 If naux = 0
 and error 2015 is unrecoverable, aux is ignored.

 Otherwise,
 it is a storage work area used by this subroutine.

 Specified
 as: an area of storage, containing naux long-precision
 real numbers. On output, the contents are overwritten.

 	 naux

 	is the number of doublewords in the working storage specified
 in aux.
 Specified as: an integer, where:

 If naux = 0
 and error 2015 is unrecoverable, SCRFT3 and DCRFT3 dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise, naux ≥ (minimum
 value required for successful processing). To determine a sufficient
 value, use the processor-independent formulas. For all other values
 specified less than the minimum value, you have the option of having
 the minimum value returned in this argument. For details, see Using Auxiliary Storage in ESSL.

 	On Return

 	

 	 y

 	is the array Y, containing the elements resulting
 from the three-dimensional discrete Fourier transform of the data
 in X. Each element yk1,k2,k3,
 using zero-based indexing, is stored in Y(k1+k2(inc2y)+k3(inc3y))
 for k1 = 0, 1, …, n1-1, k2 = 0,
 1, …, n2-1,
 and k3 = 0, 1, …, n3-1. The strides for
 the elements in the first, second, and third dimensions are assumed
 to be 1, inc2y(≥ n1+2),
 and inc3y(≥ (n2)(inc2y)),
 respectively.
 Returned as: an array, containing numbers of the
 data type indicated in Table 213.
 If the array is dimensioned Y(LDA1,LDA2,LDA3), then LDA1 = inc2y,
 (LDA1)(LDA2) = inc3y, and LDA3 ≥ n3.
 For information on how to set up this array, see Setting Up Your Data. For more details,
 see Notes.

 Notes

 	If you specify the same array for X and Y,
 then inc2y must equal (2)(inc2x)
 and inc3y must equal (2)(inc3x).
 In this case, output overwrites input. If you specify different arrays X and Y,
 they must have no common elements; otherwise, results are unpredictable.
 See Concepts.

 	You should use STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines) to
 determine the optimal values for the strides inc2y and inc3y for
 your output array. To obtain the best performance, you should use inc2x = inc2y/2
 and inc3x = inc3y/2. Example
 9 in the STRIDE subroutine description explains how it is used for
 these subroutines. For additional information on how to set up your
 data, see Setting Up Your Data.

 Formulas

 	[bookmark: am5gr_hscrft3__am5gr_f12a174]
 Processor-Independent Formulas for SCRFT3 for Calculating NAUX

 	Use the following formulas for calculating naux:

 	For 32-bit integer arguments:

 	

 	If max(n2, n3) < 252
 and:

 If

 n1

 ≤

 16384, use

 naux

 =

 65000.

 If

 n1

 >

 16384, use

 naux

 =

 60000+1.39

 n1

 .

 	If n2 ≥ 252, n3 < 252,
 and:

 If

 n1

 ≤

 16384, use

 naux

 =

 65000+

 λ

 .

 If

 n1

 >

 16384, use

 naux

 =

 60000+1.39

 n1

 +

 λ

 ,

 where

 λ

 =

 (

 n2

 +256)(

 s

 +2.28)

 and

 s

 =

 min(64, 1+

 n1

 /2).

 	If n2 < 252, n3 ≥ 252, and:

 If

 n1

 ≤

 16384, use

 naux

 =

 65000+

 ψ

 .

 If

 n1

 >

 16384, use

 naux

 =

 60000+1.39

 n1

 +

 ψ

 ,

 where

 ψ

 =

 (

 n3

 +256)(

 s

 +2.28)

 and

 s

 =

 min(64, (

 n2

)(1+

 n1

 /2)).

 	If n2 ≥ 252 and n3 ≥ 252, use the
 larger of the values calculated for cases 2 and 3 above.

 	For 64-bit integer arguments:

 	

 	If max(n2, n3) < 252
 and:

 If

 n1

 ≤

 16384, use

 naux

 =

 95000.

 If

 n1

 >

 16384, use

 naux

 =

 90000+1.39

 n1

 .

 	If n2 ≥ 252, n3 < 252,
 and:

 If

 n1

 ≤

 16384, use

 naux

 =

 95000+

 λ

 .

 If

 n1

 >

 16384, use

 naux

 =

 90000+1.39

 n1

 +

 λ

 ,

 where

 λ

 =

 (

 n2

 +256)(

 s

 +2.28)

 and

 s

 =

 min(64, 1+

 n1

 /2).

 	If n2 < 252, n3 ≥ 252, and:

 If

 n1

 ≤

 16384, use

 naux

 =

 95000+

 ψ

 .

 If

 n1

 >

 16384, use

 naux

 =

 90000+1.39

 n1

 +

 ψ

 ,

 where

 ψ

 =

 (

 n3

 +256)(

 s

 +2.28)

 and

 s

 =

 min(64, (

 n2

)(1+

 n1

 /2)).

 	If n2 ≥ 252 and n3 ≥ 252, use the
 larger of the values calculated for cases 2 and 3 above.

 If inc2y or inc3y is
 an odd number, or if array Y is not aligned on a
 doubleword boundary, you should add the following amount to all the
 formulas given above:

 (1+

 n1

 /2)(max(

 n2

 ,

 n3

))

 	[bookmark: am5gr_hscrft3__am5gr_f12a175]
 Processor-Independent Formulas for DCRFT3 for NAUX

 	Use the following formulas for calculating naux:

 	For 32-bit integer arguments:

 	

 	If max(n2, n3) < 252
 and:

 If

 n1

 ≤

 4096, use

 naux

 =

 62000.

 If

 n1

 >

 4096, use

 naux

 =

 60000+2.78

 n1

 .

 	If n2 ≥ 252, n3 < 252,
 and:

 If

 n1

 ≤

 4096, use

 naux

 =

 62000+

 λ

 .

 If

 n1

 >

 4096, use

 naux

 =

 60000+2.78

 n1

 +

 λ

 ,

 where

 λ

 =

 ((2)

 n2

 +256)(

 s

 +4.56)

 and

 s

 =

 min(64,

 n1

 /2).

 	If n2 < 252, n3 ≥ 252, and:

 If

 n1

 ≤

 4096, use

 naux

 =

 62000+

 ψ

 .

 If

 n1

 >

 4096, use

 naux

 =

 60000+2.78

 n1

 +

 ψ

 ,

 where

 ψ

 =

 ((2)

 n3

 +256)(

 s

 +4.56)

 and

 s

 =

 min(64,

 n2

 (1+

 n1

 /2)).

 	If n2 ≥ 252 and n3 ≥ 252, use the
 larger of the values calculated for cases 2 and 3 above.

 	For 64-bit integer arguments:

 	

 	If max(n2, n3) < 252
 and:

 If

 n1

 ≤

 4096, use

 naux

 =

 92000.

 If

 n1

 >

 4096, use

 naux

 =

 90000+2.78

 n1

 .

 	If n2 ≥ 252, n3 < 252,
 and:

 If

 n1

 ≤

 4096, use

 naux

 =

 92000+

 λ

 .

 If

 n1

 >

 4096, use

 naux

 =

 90000+2.78

 n1

 +

 λ

 ,

 where

 λ

 =

 ((2)

 n2

 +256)(

 s

 +4.56)

 and

 s

 =

 min(64,

 n1

 /2).

 	If n2 < 252, n3 ≥ 252, and:

 If

 n1

 ≤

 4096, use

 naux

 =

 92000+

 ψ

 .

 If

 n1

 >

 4096, use

 naux

 =

 90000+2.78

 n1

 +

 ψ

 ,

 where

 ψ

 =

 ((2)

 n3

 +256)(

 s

 +4.56)

 and

 s

 =

 min(64,

 n2

 (1+

 n1

 /2)).

 	If n2 ≥ 252 and n3 ≥ 252, use the
 larger of the values calculated for cases 2 and 3 above.

 Function

 The three-dimensional
 discrete Fourier transform of complex conjugate even data in array X,
 with results going into array Y, is expressed as
 follows:

 [image: Three-Dimensional FFT Graphic]

 for:

 k1

 =

 0, 1,

 …

 ,

 n1

 -1

 k2

 =

 0, 1,

 …

 ,

 n2

 -1

 k3

 =

 0, 1,

 …

 ,

 n3

 -1

 where:

 [image: Three-Dimensional FFT Graphic]

 and where:

 x

 j1

 ,

 j2

 ,

 j3

 are elements of array

 X

 .

 y

 k1

 ,

 k2

 ,

 k3

 are elements of array

 Y

 .

 Isign

 is + or - (determined by argument

 isign

).

 scale

 is a scalar value.

 Because
 of the complex conjugate symmetry, the output in array Y is
 real. For scale = 1.0 and isign being
 positive, you obtain the discrete Fourier transform, a function of
 frequency. The inverse Fourier transform is obtained with scale = 1.0/((n1)(n2)(n3))
 and isign being negative. See references [1], [4], [5], [26], and [27].

 Error conditions

 	[bookmark: am5gr_hscrft3__am5gr_f12a176]
 Resource Errors

 	Error 2015 is unrecoverable, naux = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hscrft3__am5gr_f12a177]
 Computational Errors

 	None

 	[bookmark: am5gr_hscrft3__am5gr_f12a178]
 Input-Argument Errors

 	

 	n1 > 37748736

 	n2 > 37748736

 	n3 > 37748736

 	inc2x < n1/2+1

 	inc3x < (n2)(inc2x)

 	inc2y < n1+2

 	inc3y < (n2)(inc2y)

 	scale = 0.0

 	isign = 0

 	The length of one of the transforms in n1, n2,
 or n3 is not an allowable value. Return code 1
 is returned if error 2030 is recoverable.

 	Error 2015 is recoverable or naux≠0, and naux is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	[bookmark: am5gr_hscrft3__am5gr_scrf2x3]
 Example

 	
 This example shows how to compute a three-dimensional transform.
 In this example, INC2Y = (2)(INC2X) and INC3Y = (2)(INC3X),
 so that the same array can be used for both input and output. The
 STRIDE subroutine is called to select good values for the INC2Y and INC3Y strides.
 (As explained below, STRIDE is not called for INC2X and INC3X.)
 Using the transform lengths (N1 = 32, N2 = 64,
 and N3 = 40) along with the output data type
 (short-precision real: 'S'), STRIDE is called once
 for each stride needed. First, it is called for INC2Y:
 CALL STRIDE (N2,N1+2,INC2Y,'S',0)

 The
 output value returned for INC2Y is 34. (This value
 is equal to N1+2.) Then STRIDE is called again for INC3Y:
 CALL STRIDE (N3,N2*INC2Y,INC3Y,'S',0)

 The
 output value returned for INC3Y is 2176. Because INC3Y is
 a multiple of INC2Y—that is, INC3Y = (N2)(INC2Y)—Y is
 declared as a three-dimensional array, Y(34,64,40).
 (In general, for larger arrays, these types of values for INC2Y and INC3Y are
 not returned by STRIDE, and you are probably not able to declare Y as
 a three-dimensional array.)

 A good stride value for INC2X is INC2Y/2,
 and a good stride value for INC3X is INC3Y/2.
 Also, to equivalence the X and Y arrays
 requires INC2Y = (2)(INC2X) and INC3Y = (2)(INC3X).
 Therefore, the values INC2X = INC2Y/2 = 17
 and INC3X = INC3Y/2 = 1088
 are set, and X is declared as a three-dimensional
 array, X(17,64,40).

 The arrays are declared
 as follows: COMPLEX*8 X(17,64,40)
 REAL*4 Y(34,64,40)
 REAL*8 AUX(1)

 Arrays X and Y are
 made equivalent by the following statement, making them occupy the
 same storage: EQUIVALENCE (X,Y)

 Note: Because NAUX= 0, this subroutine
 dynamically allocates the AX working storage.

 Call Statement and Input:
 X INC2X INC3X Y INC2Y INC3Y N1 N2 N3 ISIGN SCALE AUX NAUX
 | | | | | | | | | | | | |
CALL SCRFT3(X , 17 , 1088 , Y , 34 , 2176 , 32 , 64 , 40 , 1 , SCALE , AUX , 0)

 SCALE = 1.0

 X

 has (1.0,0.0) in location

 X(1,1,1)

 and (0.0,0.0) in all other locations.

 Output:

 Y has 1.0 in
 all locations.

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 Convolution and Correlation Subroutines

 This contains the convolution and correlation
 subroutine descriptions.

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SCON and SCOR (Convolution or Correlation of One Sequence with
 One or More Sequences)

 Purpose

 These subroutines compute the convolutions
 and correlations of a sequence with one or more sequences using a
 direct method. The input and output sequences contain short-precision
 real numbers.
 Note: These subroutines are considered obsolete. They
 are provided in ESSL only for compatibility with earlier releases.
 You should use SCOND, SCORD, SDCON, SDCOR, SCONF, and SCORF instead,
 because they provide better performance. For further details,
 see Convolution and Correlation Considerations.

 Syntax

 	Fortran

 	CALL SCON | SCOR (init, h, inc1h, x, inc1x, inc2x, y, inc1y, inc2y, nh, nx, m, iy0, ny, aux1, naux1, aux2, naux2)

 	C and C++

 	scon | scor (init, h, inc1h, x, inc1x, inc2x, y, inc1y, inc2y, nh, nx, m, iy0, ny, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 init

 	is a flag, where:
 If init ≠ 0, no computation
 is performed, error checking is performed, and the subroutine exits
 back to the calling program.

 If init = 0,
 the convolutions or correlations of the sequence in h with
 the sequences in x are computed.

 Specified
 as: an integer. It can have any value.

 	 h

 	is the array H, consisting of the sequence of
 length Nh to be convolved
 or correlated with the sequences in array X.
 Specified
 as: an array of (at least) length 1+(Nh-1)|inc1h|,
 containing short-precision real numbers.

 	 inc1h

 	is the stride between the elements within the sequence in array H.

 Specified as: an integer; inc1h > 0.

 	 x

 	is the array X, consisting of m input
 sequences of length Nx,
 each to be convolved or correlated with the sequence in array H.

 Specified as: an array of (at least) length 1 + (m-1)inc2x +
 (Nx-1)inc1x,
 containing short-precision real numbers.

 	 inc1x

 	is the stride between the elements within each sequence in array X.

 Specified as: an integer; inc1x > 0.

 	 inc2x

 	is the stride between the first elements of the sequences in array X.

 Specified as: an integer; inc2x > 0.

 	 y

 	See On Return.

 	 inc1y

 	is the stride between the elements within each sequence in output
 array Y.
 Specified as: an integer; inc1y > 0.

 	 inc2y

 	is the stride between the first elements of each sequence in output
 array Y.
 Specified as: an integer; inc2y > 0.

 	 nh

 	is the number of elements, Nh,
 in the sequence in array H.
 Specified as: an
 integer; Nh > 0.

 	 nx

 	is the number of elements, Nx,
 in each sequence in array X.
 Specified as: an
 integer; Nx > 0.

 	 m

 	is the number of sequences in array X to be convolved
 or correlated.
 Specified as: an integer; m > 0.

 	 iy0

 	is the convolution or correlation index of the element to be stored
 in the first position of each sequence in array Y.

 Specified as: an integer. It can have any value.

 	 ny

 	is the number of elements, Ny,
 in each sequence in array Y.
 Specified as: an
 integer; Ny > 0
 for SCON and Ny ≥ -Nh+1
 for SCOR.

 	 aux1

 	is no longer used in the computation, but must still be specified
 as a dummy argument (for migration purposes from Version 1 of ESSL).
 It can have any value.

 	 naux1

 	is no longer used in the computation, but must still be specified
 as a dummy argument (for migration purposes from Version 1 of ESSL).
 It can have any value.

 	 aux2

 	is no longer used in the computation, but must still be specified
 as a dummy argument (for migration purposes from Version 1 of ESSL).
 It can have any value.

 	 naux2

 	is no longer used in the computation, but must still be specified
 as a dummy argument (for migration purposes from Version 1 of ESSL).
 It can have any value.

 	On Return

 	

 	 y

 	is array Y, consisting of m output
 sequences of length Ny that
 are the result of the convolutions or correlations of the sequence
 in array H with the sequences in array X.
 Returned as: an array of (at least) length 1 + (m-1)inc2y +
 (Ny-1)inc1y,
 containing short-precision real numbers.

 Notes

 	Output should not overwrite input; that is, input arrays X and H must
 have no common elements with output array Y. Otherwise,
 results are unpredictable. See Concepts.

 	When using the ESSL SMP Libraries, for optimal performance, the
 number of threads specified should be the same for init ≠ 0 and init = 0.

 	Auxiliary storage is not needed, but the arguments aux1, naux1, aux2,
 and naux2 must still be specified. You can assign
 any values to these arguments.

 Function

 The convolutions and correlations
 of a sequence in array H with one or more sequences
 in array X are expressed as follows:

 Convolutions
 for SCON:

 [image: Convolutions for SCON Graphic]

 Correlations for SCOR:

 [image: Correlations for SCOR Graphic]

 for:

 k

 =

 iy0

 ,

 iy0

 +1,

 …

 ,

 iy0

 +

 N

 y

 -1

 i

 =

 1, 2,

 …

 ,

 m

 where:

 yki are
 elements of the m sequences of length Ny in
 array Y.

 xki are
 elements of the m sequences of length Nx in
 array X.

 hj are
 elements of the sequence of length Nh in
 array H.

 iy0 is the convolution
 or correlation index of the element to be stored in the first position
 of each sequence in array Y.

 min and max select
 the minimum and maximum values, respectively.

 It is assumed
 that elements outside the range of definition are zero. See references [24] and [102].

 Only
 one invocation of this subroutine is needed:

 	You do not need to invoke the subroutine with init ≠ 0. If you do, however,
 the subroutine performs error checking, exits back to the calling
 program, and no computation is performed.

 	With init = 0, the subroutine performs the calculation
 of the convolutions or correlations.

 Error conditions

 	[bookmark: am5gr_hscon__am5gr_f12b002]
 Computational Errors

 	None

 	[bookmark: am5gr_hscon__am5gr_f12b003]
 Input-Argument Errors

 	

 	nh, nx, ny,
 or m ≤ 0

 	inc1h, inc1x, inc2x, inc1y,
 or inc2y ≤ 0

 Examples

 	Example 1

 	
 This example shows how to compute a convolution of a sequence
 in H, which is a ramp function, and three sequences
 in X, a triangular function and its cyclic translates.
 It computes the full range of nonzero values of the convolution plus
 two extra points, which are set to 0. The arrays are declared as follows:
 REAL*4 H(0:4999), X(0:49999), Y(0:49999)
 REAL*8 AUX1, AUX2

 Call
 Statement and Input:
 INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | | | | |
CALL SCON(INIT, H , 1 , X , 1 , 10 , Y , 1 , 15 , 4, 10, 3, 0, 15, AUX1 , 0 , AUX2 , 0)

 INIT = 0

 (for computation)

 H = (1.0, 2.0, 3.0, 4.0)

 X contains
 the following three sequences: 1.0 2.0 3.0
2.0 1.0 2.0
3.0 2.0 1.0
4.0 3.0 2.0
5.0 4.0 3.0
6.0 5.0 4.0
5.0 6.0 5.0
4.0 5.0 6.0
3.0 4.0 5.0
2.0 3.0 4.0

 Output:

 Y contains the following three sequences: 1.0 2.0 3.0
 4.0 5.0 8.0
10.0 10.0 14.0
20.0 18.0 22.0
30.0 20.0 18.0
40.0 30.0 20.0
48.0 40.0 30.0
52.0 48.0 40.0
50.0 52.0 48.0
40.0 50.0 52.0
29.0 38.0 47.0
18.0 25.0 32.0
 8.0 12.0 16.0
 0.0 0.0 0.0
 0.0 0.0 0.0

 	Example 2

 	
 This example shows how the output from Example 1 differs
 when the values for NY and inc2y are
 10 rather than 15. The output is the same except that it consists
 of only the first 10 values produced in Example 1.

 Output:

 Y contains the
 following three sequences: 1.0 2.0 3.0
 4.0 5.0 8.0
10.0 10.0 14.0
20.0 18.0 22.0
30.0 20.0 18.0
40.0 30.0 20.0
48.0 40.0 30.0
52.0 48.0 40.0
50.0 52.0 48.0
40.0 50.0 52.0

 	Example 3

 	
 This example shows how the output from Example 2 differs
 if the value for IY0 is 3 rather than 0. The output
 is the same except it starts at element 3 of the convolution sequences
 rather than element 0.

 Output:

 Y contains
 the following three sequences: 20.0 18.0 22.0
30.0 20.0 18.0
40.0 30.0 20.0
48.0 40.0 30.0
52.0 48.0 40.0
50.0 52.0 48.0
40.0 50.0 52.0
29.0 38.0 47.0
18.0 25.0 32.0
 8.0 12.0 16.0

 	Example 4

 	
 This example shows how to compute a correlation of a sequence
 in H, which is a ramp function, and three sequences
 in X, a triangular function and its cyclic translates.
 It computes the full range of nonzero values of the correlation plus
 two extra points, which are set to 0. The arrays are declared as follows:
 REAL*4 H(0:4999), X(0:49999), Y(0:49999)
 REAL*8 AUX1, AUX2

 Call
 Statement and Input:
 INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | | | | |
CALL SCOR(INIT, H , 1 , X , 1 , 10 , Y , 1 , 15 , 4, 10, 3, -3, 15, AUX1 , 0 , AUX2 , 0)

 INIT = 0

 (for computation)

 H = (1.0, 2.0, 3.0, 4.0)

 X contains
 the following three sequences: 1.0 2.0 3.0
2.0 1.0 2.0
3.0 2.0 1.0
4.0 3.0 2.0
5.0 4.0 3.0
6.0 5.0 4.0
5.0 6.0 5.0
4.0 5.0 6.0
3.0 4.0 5.0
2.0 3.0 4.0

 Output:

 Y contains the following three sequences: 4.0 8.0 12.0
11.0 10.0 17.0
20.0 15.0 16.0
30.0 22.0 18.0
40.0 30.0 22.0
50.0 40.0 30.0
52.0 50.0 40.0
48.0 52.0 50.0
40.0 48.0 52.0
30.0 40.0 48.0
16.0 22.0 28.0
 7.0 10.0 13.0
 2.0 3.0 4.0
 0.0 0.0 0.0
 0.0 0.0 0.0

 	Example 5

 	
 This example shows how the output from Example 4 differs
 when the values for NY and INC2Y are
 10 rather than 15. The output is the same except that it consists
 of only the first 10 values produced in Example 4.

 Output:

 Y contains the
 following three sequences: 4.0 8.0 12.0
11.0 10.0 17.0
20.0 15.0 16.0
30.0 22.0 18.0
40.0 30.0 22.0
50.0 40.0 30.0
52.0 50.0 40.0
48.0 52.0 50.0
40.0 48.0 52.0
30.0 40.0 48.0

 	Example 6

 	 This example shows how the output from Example 5 differs if the
 value for IY0 is 0 rather than -3. The output is
 the same except it starts at element 0 of the correlation sequences
 rather than element -3.
 Output:

 Y contains
 the following three sequences: 30.0 22.0 18.0
40.0 30.0 22.0
50.0 40.0 30.0
52.0 50.0 40.0
48.0 52.0 50.0
40.0 48.0 52.0
30.0 40.0 48.0
16.0 22.0 28.0
 7.0 10.0 13.0
 2.0 3.0 4.0

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SCOND and SCORD (Convolution or Correlation of One Sequence
 with Another Sequence Using a Direct Method)

 Purpose

 These subroutines compute the convolution
 and correlation of a sequence with another sequence using a direct
 method. The input and output sequences contain short-precision real
 numbers.
 Note:

 	These subroutines compute the convolution and correlation using
 direct methods. In most cases, these subroutines provide better
 performance than using SCON or SCOR, if you determine that SCON
 or SCOR would have used a direct method for its computation. For information
 on how to make this determination, see reference [4].

 	For long-precision data, you should use DDCON or DDCOR with the
 decimation rate, id, equal to 1.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SCOND | SCORD (h, inch, x, incx, y, incy, nh, nx, iy0, ny)

 	C and C++

 	scond | scord (h, inch, x, incx, y, incy, nh, nx, iy0, ny);

 	On Entry

 	

 	 h

 	is the array H, consisting of the sequence of
 length Nh to be convolved
 or correlated with the sequence in array X.
 Specified
 as: an array of (at least) length 1+(Nh-1)|inch|,
 containing short-precision real numbers.

 	 inch

 	is the stride between the elements within the sequence in array H.

 Specified as: an integer; inch > 0
 or inch < 0.

 	 x

 	is the array X, consisting of the input sequence
 of length Nx, to
 be convolved or correlated with the sequence in array H.

 Specified as: an array of (at least) length 1+(Nx-1)|incx|,
 containing short-precision real numbers.

 	 incx

 	is the stride between the elements within the sequence in array X.

 Specified as: an integer; incx > 0
 or incx < 0.

 	 y

 	See On Return.

 	 incy

 	is the stride between the elements within the sequence in output
 array Y.
 Specified as: an integer; incy > 0
 or incy < 0.

 	 nh

 	is the number of elements, Nh,
 in the sequence in array H.
 Specified as: an
 integer; Nh > 0.

 	 nx

 	is the number of elements, Nx,
 in the sequence in array X.
 Specified as: an
 integer; Nx > 0.

 	 iy0

 	is the convolution or correlation index of the element to be stored
 in the first position of the sequence in array Y.

 Specified as: an integer. It can have any value.

 	 ny

 	is the number of elements, Ny,
 in the sequence in array Y.
 Specified as: an
 integer; Ny > 0.

 	On Return

 	

 	 y

 	is the array Y of length Ny,
 consisting of the output sequence that is the result of the convolution
 or correlation of the sequence in array H with the
 sequence in array X. Returned as: an array of (at
 least) length 1+(Ny-1)|incy|,
 containing short-precision real numbers.

 Notes

 	Output should not overwrite input—that is, input arrays X and H must
 have no common elements with output array Y. Otherwise,
 results are unpredictable. See Concepts.

 	If iy0 and ny are such that
 output outside the basic range is needed, where the basic range is
 0 ≤ k ≤ (nh+nx-2)
 for SCOND and (-nh+1) ≤ k ≤ (nx-1)
 for SCORD, the subroutine stores zeros using scalar code. It is not
 efficient to store many zeros in this manner. It is more efficient
 to set iy0 and ny so that the
 output is produced within the above range of k values.

 Function

 The convolution and correlation
 of a sequence in array H with a sequence in array X are
 expressed as follows:

 Convolution for SCOND:

 [image: Convolution for SCOND Graphic]

 Correlation for SCORD:

 [image: Correlation for SCORD Graphic]

 for k = iy0, iy0+1, …, iy0+Ny-1

 where:

 yk are
 elements of the sequence of length Ny in
 array Y.

 xk are
 elements of the sequence of length Nx in
 array X.hj are
 elements of the sequence of length Nh in
 array H.

 iy0 is the convolution
 or correlation index of the element to be stored in the first position
 of each sequence in array Y.

 min and max select
 the minimum and maximum values, respectively.

 It is
 assumed that elements outside the range of definition are zero. See
 reference [4].

 Special Usage

 SCORD can also perform the
 functions of SCON and SACOR; that is, it can compute convolutions
 and autocorrelations. To compute a convolution, you must specify
 a negative stride for H (see Example 9). To compute
 the autocorrelation, you must specify the two input sequences to be
 the same (see Example 10). In fact, you can also compute the autoconvolution
 by using both of these techniques together, letting the two input
 sequences be the same, and specifying a negative stride for the first
 input sequence.

 Error conditions

 	[bookmark: am5gr_hscond__am5gr_f12b019]
 Computational Errors

 	None

 	[bookmark: am5gr_hscond__am5gr_f12b020]
 Input-Argument Errors

 	

 	nh, nx, or ny ≤ 0

 	inch, incx, or incy = 0

 Examples

 	Example 1

 	
 This example shows how to compute a convolution of a sequence
 in H with a sequence in X, where
 both sequences are ramp functions.

 Call
 Statement and Input: H INCH X INCX Y INCY NH NX IY0 NY
 | | | | | | | | | |
CALL SCOND(H , 1 , X , 1 , Y , 1 , 4 , 8 , 0 , 11)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

 Output:

 Y = (11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0, 160.0,
 151.0, 122.0, 72.0)

 	Example 2

 	
 This example shows how the output from Example 1 differs
 when the value for IY0 is -2 rather than 0, and NY is
 15 rather than 11. The output has two zeros at the beginning and
 end of the sequence, for points outside the range of nonzero output.

 Call Statement and Input: H INCH X INCX Y INCY NH NX IY0 NY
 | | | | | | | | | |
CALL SCOND(H , 1 , X , 1 , Y , 1 , 4 , 8 , -2 , 15)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

 Output:

 Y = (0.0, 0.0, 11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0,
 160.0, 151.0, 122.0, 72.0, 0.0, 0.0)

 	Example 3

 	
 This example shows how the same output as Example 1 can be
 obtained when H and X are interchanged,
 because the convolution is symmetric in H and X.
 (The arguments are switched in the calling sequence.)

 Call Statement and Input: H INCH X INCX Y INCY NH NX IY0 NY
 | | | | | | | | | |
CALL SCOND(X , 1 , H , 1 , Y , 1 , 4 , 8 , 0 , 11)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

 Output:

 Y = (11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0, 160.0,
 151.0, 122.0, 72.0)

 	Example 4

 	
 This example shows how the output from Example 1 differs
 when a negative stride is specified for the sequence in H.
 By reversing the H sequence, the correlation is computed.

 Call Statement and Input: H INCH X INCX Y INCY NH NX IY0 NY
 | | | | | | | | | |
CALL SCOND(H , -1 , X , 1 , Y , 1 , 4 , 8 , 0 , 11)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

 Output:

 Y = (44.0, 81.0, 110.0, 130.0, 140.0, 150.0, 160.0, 170.0,
 104.0, 53.0, 18.0)

 	Example 5

 	
 This example shows how to compute the autoconvolution of
 a sequence by letting the two input sequences for H and X be
 the same. (X is specified for both arguments in the
 calling sequence.)

 Call Statement and
 Input: H INCH X INCX Y INCY NH NX IY0 NY
 | | | | | | | | | |
CALL SCOND(X , 1 , X , 1 , Y , 1 , 4 , 4 , 0 , 7)

X = (11.0, 12.0, 13.0, 14.0)

 Output:

 Y = (121.0, 264.0, 430.0, 620.0, 505.0, 364.0, 196.0)

 	Example 6

 	
 This example shows how to compute a correlation of a sequence
 in H with a sequence in X, where
 both sequences are ramp functions.

 Call
 Statement and Input: H INCH X INCX Y INCY NH NX IY0 NY
 | | | | | | | | | |
CALL SCORD(H , 1 , X , 1 , Y , 1 , 4 , 8 , -3 , 11)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

 Output: Y = (44.0, 81.0, 110.0, 130.0, 140.0, 150.0, 160.0, 170.0,
 104.0, 53.0, 18.0)

 	Example 7

 	
 This example shows how the output from Example 6 differs
 when the value for IY0 is -5 rather than -3 and NY is
 15 rather than 11. The output has two zeros at the beginning and
 end of the sequence, for points outside the range of nonzero output.

 Call Statement and Input: H INCH X INCX Y INCY NH NX IY0 NY
 | | | | | | | | | |
CALL SCORD(H , 1 , X , 1 , Y , 1 , 4 , 8 , -5 , 15)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

 Output:

 Y = (0.0, 0.0, 44.0, 81.0, 110.0, 130.0, 140.0, 150.0, 160.0,
 170.0, 104.0, 53.0, 18.0, 0.0, 0.0)

 	Example 8

 	
 This example shows how the output from Example 6 differs
 when H and X are interchanged (in
 the calling sequence). The output sequence is the reverse of that
 in Example 6. To get the full range of output, IY0 is
 set to -NX+1.

 Call Statement
 and Input: H INCH X INCX Y INCY NH NX IY0 NY
 | | | | | | | | | |
CALL SCORD(X , 1 , H , 1 , Y , 1 , 4 , 8 , -7 , 11)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

 Output:

 Y = (18.0, 53.0, 104.0, 170.0, 160.0, 150.0, 140.0, 130.0,
 110.0, 81.0, 44.0)

 	Example 9

 	
 This example shows how the output from Example 6 differs
 when a negative stride is specified for the sequence in H.
 By reversing the H sequence, the convolution is computed.

 Call Statement and Input: H INCH X INCX Y INCY NH NX IY0 NY
 | | | | | | | | | |
CALL SCORD(H , -1 , X , 1 , Y , 1 , 4 , 8 , -3 , 11)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

 Output:

 Y = (11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0, 160.0,
 151.0, 122.0, 72.0)

 	Example 10

 	
 This example shows how to compute the autocorrelation of
 a sequence by letting the two input sequences for H and X be
 the same. (X is specified for both arguments in the
 calling sequence.)

 Call Statement and
 Input: H INCH X INCX Y INCY NH NX IY0 NY
 | | | | | | | | | |
CALL SCORD(X , 1 , X , 1 , Y , 1 , 4 , 4 , -3 , 7)

X = (11.0, 12.0, 13.0, 14.0)

 Output:

 Y = (154.0, 311.0, 470.0, 630.0, 470.0, 311.0, 154.0)

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SCONF and SCORF (Convolution or Correlation of One Sequence
 with One or More Sequences Using the Mixed-Radix Fourier Method)

 Purpose

 These subroutines compute the convolutions
 and correlations, respectively, of a sequence with one or more sequences
 using the mixed-radix Fourier method. The input and output sequences
 contain short-precision real numbers.
 Note:

 	Two invocations of these subroutines are necessary: one to prepare
 the working storage for the subroutine, and the other to perform the
 computations.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SCONF | SCORF (init, h, inc1h, x, inc1x, inc2x, y, inc1y, inc2y, nh, nx, m, iy0, ny, aux1, naux1, aux2, naux2)

 	C and C++

 	sconf | scorf (init, h, inc1h, x, inc1x, inc2x, y, inc1y, inc2y, nh, nx, m, iy0, ny, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 init

 	is a flag, where:
 If init ≠ 0, trigonometric
 functions, the transform of the sequence in h,
 and other parameters, depending on arguments other than x,
 are computed and saved in aux1. The contents of x and y are
 not used or changed.

 If init = 0,
 the convolutions or correlations of the sequence that was in h at
 initialization with the sequences in x are computed. h is
 not used or changed. The only arguments that may change after initialization
 are x, y, and aux2.
 All scalar arguments must be the same as when the subroutine was called
 for initialization with init ≠ 0.

 Specified
 as: an integer. It can have any value.

 	 h

 	is the array H, consisting of the sequence of
 length Nh to be convolved
 or correlated with the sequences in array X.
 Specified
 as: an array of (at least) length 1+(Nh-1)|inc1h|,
 containing short-precision real numbers.

 	 inc1h

 	is the stride between the elements within the sequence in array H.

 Specified as: an integer; inc1h > 0.

 	 x

 	is the array X, consisting of m input
 sequences of length Nx,
 each to be convolved or correlated with the sequence in array H.

 Specified as: an array of (at least) length 1+(Nx-1)inc1x+(m-1)inc2x,
 containing short-precision real numbers.

 	 inc1x

 	is the stride between the elements within each sequence in array X.

 Specified as: an integer; inc1x > 0.

 	 inc2x

 	is the stride between the first elements of the sequences in array X.

 Specified as: an integer; inc2x > 0.

 	 y

 	See On Return.

 	 inc1y

 	is the stride between the elements within each sequence in output
 array Y.
 Specified as: an integer; inc1y > 0.

 	 inc2y

 	is the stride between the first elements of each sequence in output
 array Y.
 Specified as: an integer; inc2y > 0.

 	 nh

 	is the number of elements, Nh,
 in the sequence in array H.
 Specified as: an
 integer; Nh > 0.

 	 nx

 	is the number of elements, Nx,
 in each sequence in array X.
 Specified as: an
 integer; Nx > 0.

 	 m

 	is the number of sequences in array X to be convolved
 or correlated.
 Specified as: an integer; m > 0.

 	 iy0

 	is the convolution or correlation index of the element to be stored
 in the first position of each sequence in array Y.

 Specified as: an integer. It can have any value.

 	 ny

 	is the number of elements, Ny,
 in each sequence in array Y.
 Specified as: an
 integer; Ny > 0.

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, the working storage
 is computed.

 If init = 0, the working storage is used in
 the computation of the convolutions.

 Specified as: an area
 of storage, containing naux1 long-precision real
 numbers.

 	 naux1

 	is the number of doublewords in the working storage specified
 in aux1.
 Specified as: an integer; naux1 > 23
 (32-bit integer arguments) or 45 (64-bit integer arguments) and naux1 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For values between 23 (32-bit
 integer arguments) or 45 (64-bit integer arguments) and the minimum
 value, you have the option of having the minimum value returned in
 this argument. For details, see Using Auxiliary Storage in ESSL.

 	 aux2

 	has the following meaning:
 If naux2 = 0
 and error 2015 is unrecoverable, aux2 is ignored.

 Otherwise,
 it is the working storage used by this subroutine, which is available
 for use by the calling program between calls to this subroutine.

 Specified
 as: an area of storage, containing naux2 long-precision
 real numbers. On output, the contents are overwritten.

 	 naux2

 	is the number of doublewords in the working storage specified
 in aux2.
 Specified as: an integer, where:

 If naux2 = 0
 and error 2015 is unrecoverable, SCONF and SCORF dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise, naux2 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For all other values specified
 less than the minimum value, you have the option of having the minimum
 value returned in this argument. For details, see Using Auxiliary Storage in ESSL.

 	On Return

 	

 	 y

 	has the following meaning, where:
 If init ≠ 0, this argument
 is not used, and its contents remain unchanged.

 If init = 0,
 this is array Y, consisting of m output
 sequences of length Ny that
 are the result of the convolutions or correlations of the sequence
 in array H with the sequences in array X.

 Returned
 as: an array of (at least) length 1+(Ny-1)inc1y+(m-1)inc2y,
 containing short-precision real numbers.

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, it contains information
 ready to be passed in a subsequent invocation of this subroutine.

 If init = 0,
 its contents are unchanged.

 Returned as: the contents are
 not relevant.

 Notes

 	aux1 should not be used by the calling
 program between calls to this subroutine with init ≠ 0 and init = 0.
 However, it can be reused after intervening calls to this subroutine
 with different arguments.

 	When using the ESSL SMP Libraries, for optimal performance, the
 number of threads specified should be the same for init ≠ 0 and init = 0.

 	If you specify the same array for X and Y,
 then inc1x and inc1y must be
 equal, and inc2x and inc2y must
 be equal. In this case, output overwrites input.

 	If you specify different arrays for X and Y,
 they must have no common elements; otherwise, results are unpredictable.
 See Concepts.

 	If iy0 and ny are such that
 output outside the basic range is needed, the subroutine stores zeros.
 These ranges are: 0 ≤ k ≤ Nx+Nh-2
 for SCONF and 1-Nh ≤ k ≤ Nx-1
 for SCORF.

 Formulas

 	Formulas for the Length of the Fourier Transform

 	Before calculating the necessary sizes of naux1 and naux2,
 you must determine the length n of the Fourier
 transform. The value of n is based on nf.
 You can use one of two techniques to determine nf:

 	Use the simple overestimate of nf = nx+nh-1.
 (If iy0 = 0 and ny > nh+nx,
 this is the actual value, not an overestimate.)

 	Use the values of the arguments iy0, nh, nx,
 and ny inserted into the following formulas to
 get a value for the variable nf:

 iy0p

 =

 max(

 iy0

 , 0)

 ix0

 =

 max((

 iy0p

 +1)-

 nh

 , 0)

 ih0

 =

 max((

 iy0p

 +1)-

 nx

 , 0)

 nd

 =

 ix0

 +

 ih0

 n1

 =

 iy0

 +

 ny

 nxx

 =

 min(

 n1

 ,

 nx

)-

 ix0

 nhh

 =

 min(

 n1

 ,

 nh

)-

 ih0

 ntt

 =

 nxx

 +

 nhh

 -1

 nn1

 =

 n1

 -

 nd

 iyy0

 =

 iy0p

 -

 nd

 nzleft

 =

 max(0,

 nhh

 -

 iyy0

 -1)

 nzrt

 =

 min(

 nn1

 ,

 ntt

)-

 nxx

 nf

 =

 max(12,

 nxx

 +max(

 nzleft

 ,

 nzrt

))

 After calculating the value for nf, using
 one of these two techniques, refer to the formula or table of allowable
 values of n in Acceptable Lengths for the Transforms, selecting the value
 equal to or greater than nf.

 	[bookmark: am5gr_hsconf__am5gr_f12b050]
 Processor-Independent Formulas for NAUX1 and NAUX2

 	The required values of naux1 and naux2 depend
 on the value determined for n in Formulas for the Length of the Fourier
 Transform.

 	[bookmark: am5gr_hsconf__am5gr_f12b051]
 NAUX1 Formulas

 	

 	For 32-bit integer arguments:

 	

 If

 n

 ≤

 16384, use

 naux1

 =

 58000.

 If

 n

 >

 16384, use

 naux1

 =

 40000+2.14

 n

 .

 	For 64-bit integer arguments:

 	

 If

 n

 ≤

 16384, use

 naux1

 =

 78000.

 If

 n

 >

 16384, use

 naux1

 =

 60000+2.14

 n

 .

 	[bookmark: am5gr_hsconf__am5gr_f12b052]
 NAUX2 Formulas

 	

 If

 n

 ≤

 16384, use

 naux2

 =

 30000.

 If

 n

 >

 16384, use

 naux2

 =

 20000+1.07

 n

 .

 Function

 The convolutions and correlations
 of a sequence in array H with one or more sequences
 in array X are expressed as follows.

 Convolutions
 for SCONF:

 [image: Convolutions for SCONF Graphic]

 Correlations for SCORF:

 [image: Correlations for SCORF Graphic]

 for:

 k

 =

 iy0

 ,

 iy0

 +1,

 …

 ,

 iy0

 +

 N

 y

 -1

 i

 =

 1, 2,

 …

 ,

 m

 where:

 yki are
 elements of the m sequences of length Ny in
 array Y.

 xki are
 elements of the m sequences of length Nx in
 array X.

 hj are
 elements of the sequence of length Nh in
 array H.

 iy0 is the convolution
 or correlation index of the element to be stored in the first position
 of each sequence in array Y.

 min and max select
 the minimum and maximum values, respectively.

 These
 subroutines use a Fourier transform method with a mixed-radix capability.
 This provides maximum performance for your application. The length
 of the transform, n, that you must calculate to
 determine the correct sizes for naux1 and naux2 is
 the same length used by the Fourier transform subroutines called by
 this subroutine. It is assumed that elements outside the range of
 definition are zero. See references [24] and [102].

 Two
 invocations of this subroutine are necessary:

 	With init ≠ 0, the subroutine
 tests and initializes arguments of the program, setting up the aux1 working
 storage.

 	With init = 0, the subroutine checks that the
 initialization arguments in the aux1 working storage
 correspond to the present arguments, and if so, performs the calculation
 of the convolutions.

 Error conditions

 	[bookmark: am5gr_hsconf__am5gr_f12b053]
 Resource Errors

 	Error 2015 is unrecoverable, naux2 = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hsconf__am5gr_f12b054]
 Computational Errors

 	None

 	[bookmark: am5gr_hsconf__am5gr_f12b055]
 Input-Argument Errors

 	

 	nh, nx, ny,
 or m ≤ 0

 	inc1h, inc1x, inc2x, inc1y,
 or inc2y ≤ 0

 	The resulting internal Fourier transform length n,
 is too large. See Convolutions and Correlations by Fourier Methods.

 	The subroutine has not been initialized with the present arguments.

 	naux1 ≤ 23

 	naux1 is too small—that is, less than the minimum required value.
 Return code 1 is returned if error 2015 is recoverable.

 	Error 2015 is recoverable or naux2≠0, and naux2 is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows how to compute a convolution of a sequence
 in H, where H and X are
 ramp functions. It calculates all nonzero values of the convolution
 of the sequences in H and X. The
 arrays are declared as follows: REAL*4 H(8), X(10,1), Y(17)

 Because
 this convolution is symmetric in H and X,
 you can interchange the H and X sequences,
 leaving all other arguments the same, and you get the same output
 shown below. First, initialize AUX1 using the calling
 sequence shown below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | | | | |
CALL SCONF(INIT, H , 1 , X , 1 , 1 , Y, 1 , 1 , 8, 10, 1, 0, 17, AUX1, 128, AUX2, 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 H = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)

 X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0)

 Output:

 Y = (11.0, 34.0, 70.0, 120.0, 185.0, 266.0, 364.0, 480.0,
 516.0, 552.0, 567.0, 560.0, 530.0, 476.0, 397.0, 292.0,
 160.0)

 	Example 2

 	
 This example shows how the output from Example 1 differs
 when the value for NY is 21 rather than 17, and the
 value for IY0 is -2 rather than 0. This yields two
 zeros on each end of the convolution.

 Output:

 Y = (0.0, 0.0, 11.0, 34.0, 70.0, 120.0, 185.0, 266.0, 364.0,
 480.0, 516.0, 552.0, 567.0, 560.0, 530.0, 476.0, 397.0,
 292.0, 160.0, 0.0, 0.0)

 	Example 3

 	
 This example shows how to compute the autoconvolution by
 letting the two input sequences be the same for Example 2. First,
 initialize AUX1 using the calling sequence shown
 below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | | | | |
CALL SCONF(INIT, H , 1 , H , 1 , 1 , Y, 1 , 1 , 8, 10, 1, -2, 21, AUX1, 128, AUX2, 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 Output:

 Y = (1.0, 4.0, 10.0, 20.0, 35.0, 56.0, 84.0, 120.0, 147.0,
 164.0, 170.0, 164.0, 145.0, 112.0, 64.0)

 	Example 4

 	
 This example shows how to compute all nonzero values of the
 convolution of the sequence in H with the two sequences
 in X. First, initialize AUX1 using
 the calling sequence shown below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | | | | |
CALL SCONF(INIT, H , 1 , X, 1 , 10 , Y, 1 , 17 , 8, 10, 2, 0, 17, AUX1, 148, AUX2, 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 H = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)

 X contains
 the following two sequences: 11.0 12.0
12.0 13.0
13.0 14.0
14.0 15.0
15.0 16.0
16.0 17.0
17.0 18.0
18.0 19.0
19.0 20.0
20.0 11.0

 Output:

 Y contains
 the following two sequences: 11.0 12.0
 34.0 37.0
 70.0 76.0
120.0 130.0
185.0 200.0
266.0 287.0
364.0 392.0
480.0 516.0
516.0 552.0
552.0 578.0
567.0 582.0
560.0 563.0
530.0 520.0
476.0 452.0
397.0 358.0
292.0 237.0
160.0 88.0

 	Example 5

 	
 This example shows how to compute a correlation of a sequence
 in H, where H and X are
 ramp functions. It calculates all nonzero values of the correlation
 of the sequences in H and X. The
 arrays are declared as follows: REAL*4 H(8), X(10,1)

 First,
 initialize AUX1 using the calling sequence shown
 below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | | | | |
CALL SCORF(INIT, H , 1 , X, 1 , 1 , Y, 1 , 1 , 8, 10, 1, -7, 17, AUX1, 128, AUX2, 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 H =

 (same as input

 H

 in Example 1)

 X =

 (same as input

 X

 in Example 1)

 Output:

 Y = (88.0, 173.0, 254.0, 330.0, 400.0, 463.0, 518.0, 564.0,
 600.0, 636.0, 504.0, 385.0, 280.0, 190.0, 116.0,
 59.0, 20.0)

 	Example 6

 	
 This example shows how the output from Example 5 differs
 when the value for NY is 21 rather than 17, and the
 value for IY0 is -9 rather than 0. This yields two
 zeros on each end of the correlation.

 Output:

 Y = (0.0, 0.0, 88.0, 173.0, 254.0, 330.0, 400.0, 463.0, 518.0,
 564.0, 600.0, 636.0, 504.0, 385.0, 280.0, 190.0, 116.0,
 59.0, 20.0, 0.0, 0.0)

 	Example 7

 	
 This example shows the effect of interchanging H and X.
 It uses the same input as Example 5, with H and X switched
 in the calling sequence, and with IY0 with a value
 of -9. Unlike convolution, as noted in Example 1, the correlation
 is not symmetric in H and X. First,
 initialize AUX1 using the calling sequence shown
 below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | | | | |
CALL SCONF(INIT, X , 1 , H, 1 , 1 , Y, 1 , 1 , 8, 10, 1, -9, 17, AUX1, 128, AUX2, 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 Output:

 Y = (20.0, 59.0, 116.0, 190.0, 280.0, 385.0, 504.0, 636.0,
 600.0, 564.0, 518.0, 463.0, 400.0, 330.0, 254.0, 173.0,
 88.0)

 	Example 8

 	
 This example shows how to compute the autocorrelation by
 letting the two input sequences be the same. First, initialize AUX1 using
 the calling sequence shown below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation. Because
 there is only one H input sequence, only one autocorrelation
 can be computed. Furthermore, this usage does not take advantage
 of the fact that the output is symmetric. Therefore, you should use
 SACORF to compute autocorrelations, because it does not have either
 of these problems.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | | | | |
CALL SCONF(INIT, H , 1 , H, 1 , 1 , Y, 1 , 1 , 8, 8, 1, -7, 15, AUX1, 148, AUX2, 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 Output:

 Y = (8.0, 23.0, 44.0, 70.0, 100.0, 133.0, 168.0, 204.0, 168.0,
 133.0, 100.0 , 70.0, 44.0, 23.0, 8.0)

 	Example 9

 	
 This example shows how to compute all nonzero values of the
 correlation of the sequence in H with the two sequences
 in X. First, initialize AUX1 using
 the calling sequence shown below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:
 INIT H INC1H X INC1X INC2X Y INC1Y INC2Y NH NX M IY0 NY AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | | | | | |
CALL SCONF(INIT, H , 1 , X, 1 , 10 , Y, 1 , 17 , 8, 10, 2, -7, 17, AUX1, 148, AUX2, 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 H =

 (same as input

 H

 in Example 4)

 X =

 (same as input

 X

 in Example 4)

 Output:

 Y contains
 the following two sequences: 88.0 96.0
173.0 188.0
254.0 275.0
330.0 356.0
400.0 430.0
463.0 496.0
518.0 553.0
564.0 600.0
600.0 636.0
636.0 592.0
504.0 462.0
385.0 346.0
280.0 245.0
190.0 160.0
116.0 92.0
 59.0 42.0
 20.0 11.0

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SDCON, DDCON, SDCOR, and DDCOR (Convolution or Correlation
 with Decimated Output Using a Direct Method)

 Purpose

 These subroutines compute the convolution
 and correlation of a sequence with another sequence, with decimated
 output, using a direct method.

 Table 214. Data Types.

 	h, x, y

 	Subroutine

 	Short-precision real

 	SDCON

 	Long-precision real

 	DDCON

 	Short-precision real

 	SDCOR

 	Long-precision real

 	DDCOR

 Note:

 	These subroutines are the short- and long-precision equivalents
 of SCOND and SCORD when the decimation interval id is
 equal to 1. Because there is no long-precision version of SCOND and
 SCORD, you can use DDCON and DDCOR, respectively, with decimation
 interval id = 1 to perform the same function.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SDCON | DDCON | SDCOR | DDCOR (h, inch, x, incx, y, incy, nh, nx, iy0, ny, id)

 	C and C++

 	sdcon | ddcon | sdcor | ddcor (h, inch, x, incx, y, incy, nh, nx, iy0, ny, id);

 	On Entry

 	

 	 h

 	is the array H, consisting of the sequence of
 length Nh to be convolved
 or correlated with the sequence in array X.
 Specified
 as: an array of (at least) length 1+(Nh-1)|inch|,
 containing numbers of the data type indicated in Table 214.

 	 inch

 	is the stride between the elements within the sequence in array H.

 Specified as: an integer; inch > 0
 or inch < 0.

 	 x

 	is the array X, consisting of the input sequence
 of length Nx, to
 be convolved or correlated with the sequence in array H.

 Specified as: an array of (at least) length 1+(Nx-1)|incx|,
 containing numbers of the data type indicated in Table 214.

 	 incx

 	is the stride between the elements within the sequence in array X.

 Specified as: an integer; incx > 0
 or incx < 0.

 	 y

 	See On Return.

 	 incy

 	is the stride between the elements within the sequence in output
 array Y.
 Specified as: an integer; incy > 0
 or incy < 0.

 	 nh

 	is the number of elements, Nh,
 in the sequence in array H.
 Specified as: an
 integer; Nh > 0.

 	 nx

 	is the number of elements, Nx,
 in the sequence in array X.
 Specified as: an
 integer; Nx > 0.

 	 iy0

 	is the convolution or correlation index of the element to be stored
 in the first position of the sequence in array Y.

 Specified as: an integer. It can have any value.

 	 ny

 	is the number of elements, Ny,
 in the sequence in array Y.
 Specified as: an
 integer; Ny > 0.

 	 id

 	is the decimation interval id for the output
 sequence in array Y; that is, every id-th
 value of the convolution or correlation is produced.
 Specified
 as: an integer; id > 0.

 	On Return

 	

 	 y

 	is the array Y of length Ny,
 consisting of the output sequence that is the result of the convolution
 or correlation of the sequence in array H with the
 sequence in array X, given for every id-th
 value in the convolution or correlation.
 Returned as: an array
 of (at least) length 1+(Ny-1)|incy|,
 containing numbers of the data type indicated in Table 214.

 Notes

 	If you specify the same array for X and Y,
 the following conditions must be true: incx = incy, incx > 0, incy > 0, id = 1,
 and iy0 ≥ Nh-1
 for _DCON and iy0 ≥ 0 for _DCOR.
 In this case, output overwrites input. In all other cases, output
 should not overwrite input; that is, input arrays X and H must
 have no common elements with output array Y. Otherwise,
 results are unpredictable. See Concepts.

 	If iy0 and ny are such that
 output outside the basic range is needed, where the basic range is
 0 ≤ k ≤ (nh+nx-2)
 for SDCON and DDCON and is (-nh+1) ≤ k ≤ (nx-1)
 for SDCOR and DDCOR, the subroutine stores zeros using scalar code.
 It is not efficient to store many zeros in this manner. If you anticipate
 that this will happen, you may want to adjust iy0 and ny,
 so the subroutine computes only for k in the above
 range, or use the ESSL subroutine SSCAL or DSCAL to store the zeros,
 so you achieve better performance.

 Function

 The convolution and correlation
 of a sequence in array H with a sequence in array X,
 with decimated output, are expressed as follows:

 Convolution
 for SDCON and DDCON:

 [image: Convolution for SDCON and DDCON Graphic]

 Correlation for SDCOR and DDCOR:

 [image: Correlation for SDCOR and DDCOR Graphic]

 for k = iy0, iy0+id, iy0+(2)id, …, iy0+(Ny-1)id

 where:

 yk are
 elements of the sequence of length Ny in
 array Y.

 xk are
 elements of the sequence of length Nx in
 array X.

 hj are
 elements of the sequence of length Nh in
 array H.

 iy0 is the convolution
 or correlation index of the element to be stored in the first position
 of the sequence in array Y.

 min and max select
 the minimum and maximum values, respectively.

 It is
 assumed that elements outside the range of definition are zero. See
 reference [4].

 Special Usage

 SDCON and DDCON can also perform
 a correlation, autoconvolution, or autocorrelation. To compute a correlation,
 you must specify a negative stride for H. To compute
 the autoconvolution, you must specify the two input sequences to be
 the same. You can also compute the autocorrelation by using both of
 these techniques together, letting the two input sequences be the
 same, and specifying a negative stride for the first input sequence.
 (See SCOND Example
 1.) Because SCOND and SDCON are functionally the same, their
 results are the same as long as the decimation interval id = 1
 for SDCON.

 SDCOR and DDCOR can also perform a convolution,
 autocorrelation, or autoconvolution. To compute a convolution, you
 must specify a negative stride for H. To compute
 the autocorrelation, you must specify the two input sequences to be
 the same. You can also compute the autoconvolution by using both of
 these techniques together, letting the two input sequences be the
 same and specifying a negative stride for the first input sequence.
 For examples of these, see SCORD Example 6.
 Because SCORD and SDCOR are functionally the same, their results are
 the same as long as the decimation interval id = 1
 for SDCOR.

 Error conditions

 	[bookmark: am5gr_hsdcon__am5gr_f12b082]
 Computational Errors

 	None

 	[bookmark: am5gr_hsdcon__am5gr_f12b083]
 Input-Argument Errors

 	

 	nh, nx, or ny ≤ 0

 	inch, incx, or incy = 0

 	id ≤ 0

 Examples

 	Example 1

 	
 This example shows how to compute a convolution of a sequence
 in H with a sequence in X, where
 both sequences are ramp functions. It shows how a decimated output
 can be obtained, using the same input as Example 1 for
 SCOND and using a decimation interval ID = 2.

 Note: For further examples of use, see SCOND Example 1.
 Because SCOND and SDCON are functionally the same, their results are
 the same as long as the decimation interval ID = 1
 for SDCON.

 Call Statement and Input:
 H INCH X INCX Y INCY NH NX IY0 NY ID
 | | | | | | | | | | |
CALL SDCON(H , 1 , X , 1 , Y , 1 , 4 , 8 , 0 , 6 , 2)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

 Output:

 Y = (11.0, 70.0, 130.0, 150.0, 151.0, 72.0)

 	Example 2

 	
 This example shows how to compute a correlation of a sequence
 in H with a sequence in X, where
 both sequences are ramp functions. It shows how a decimated output
 can be obtained, using the same input as Example 6 for
 SCORD and using a decimation interval ID = 2.

 Note: For further examples of use, see SCORD Example 6.
 Because SCORD and SDCOR are functionally the same, their results are
 the same as long as the decimation interval ID = 1
 for SDCOR.

 Call Statement and Input:
 H INCH X INCX Y INCY NH NX IY0 NY ID
 | | | | | | | | | | |
CALL SDCOR(H , 1 , X , 1 , Y , 1 , 4 , 8 , -3 , 6 , 2)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

 Output:

 Y = (44.0, 110.0, 140.0, 160.0, 104.0, 18.0)

 	Example 3

 	
 This example shows how to compute the same function as computed
 in Example
 1 for SCOND. The input sequences and arguments are the same
 as that example, except a decimation interval ID = 1
 is specified here for SDCON.

 Call Statement
 and Input: H INCH X INCX Y INCY NH NX IY0 NY ID
 | | | | | | | | | | |
CALL SDCON(H , 1 , X , 1 , Y , 1 , 4 , 8 , 0 , 11 , 1)

H = (1.0, 2.0, 3.0, 4.0)
X = (11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0)

 Output:

 Y = (11.0, 34.0, 70.0, 120.0, 130.0, 140.0, 150.0, 160.0,
 151.0, 122.0, 72.0)

 	

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SACOR (Autocorrelation of One or More Sequences)

 Purpose

 This subroutine computes the autocorrelations
 of one or more sequences using a direct method. The input and output
 sequences contain short-precision real numbers.
 Note: This subroutine
 is considered obsolete. It is provided in ESSL only for compatibility
 with earlier releases. You should use SCORD, SDCOR, SCORF and SACORF
 instead, because they provide better performance. For further
 details, see reference [4].

 Syntax

 	Fortran

 	CALL SACOR (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, naux1, aux2, naux2)

 	C and C++

 	sacor (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 init

 	is a flag, where:
 If init ≠ 0, no computation
 is performed, error checking is performed, and the subroutine exits
 back to the calling program.

 If init = 0,
 the autocorrelations of the sequence in x are computed.

 Specified
 as: an integer. It can have any value.

 	 x

 	is the array X, consisting of m input
 sequences of length Nx,
 to be autocorrelated. Specified as: an array of (at least) length
 1+(Nx-1)inc1x+(m-1)inc2x,
 containing short-precision real numbers.

 	 inc1x

 	is the stride between the elements within each sequence in array X.

 Specified as: an integer; inc1x > 0.

 	 inc2x

 	is the stride between the first elements of the sequences in array X.

 Specified as: an integer; inc2x > 0.

 	 y

 	See On Return.

 	 inc1y

 	is the stride between the elements within each sequence in output
 array Y.
 Specified as: an integer; inc1y > 0.

 	 inc2y

 	is the stride between the first elements of each sequence in output
 array Y.
 Specified as: an integer; inc2y > 0.

 	 nx

 	is the number of elements, Nx,
 in each sequence in array X.
 Specified as: an
 integer; Nx > 0.

 	 m

 	is the number of sequences in array X to be correlated.

 Specified as: an integer; m > 0.

 	 ny

 	is the number of elements, Ny,
 in each sequence in array Y.
 Specified as: an
 integer; Ny > 0.

 	 aux1

 	is no longer used in the computation, but must still be specified
 as a dummy argument (for migration purposes from Version 1 of ESSL).
 It can have any value.

 	 naux1

 	is no longer used in the computation, but must still be specified
 as a dummy argument (for migration purposes from Version 1 of ESSL).
 It can have any value.

 	 aux2

 	is no longer used in the computation, but must still be specified
 as a dummy argument (for migration purposes from Version 1 of ESSL).
 It can have any value.

 	 naux2

 	is no longer used in the computation, but must still be specified
 as a dummy argument (for migration purposes from Version 1 of ESSL).
 It can have any value.

 	On Return

 	

 	 y

 	is array Y, consisting of m output
 sequences of length Ny that
 are the autocorrelation functions of the sequences in array X.
 Returned as: an array of (at least) length 1 + (Ny-1)inc1y +
 (m-1)inc2y, containing short-precision
 real numbers.

 Notes

 	Output should not overwrite input; that is, input arrays X and H must
 have no common elements with output array Y. Otherwise,
 results are unpredictable. See Concepts.

 	When using the ESSL SMP Libraries, for optimal performance, the
 number of threads specified should be the same for init ≠ 0 and init = 0.

 	Auxiliary storage is not needed, but the arguments aux1, naux1, aux2,
 and naux2 must still be specified. You can assign
 any values to these arguments.

 Function

 The autocorrelations of the sequences
 in array X are expressed as follows:

 [image: Autocorrelations of the Sequences Graphic]

 for:

 k

 =

 0, 1,

 …

 ,

 N

 y

 -1

 i

 =

 1, 2,

 …

 ,

 m

 where:

 y

 ki

 are elements of the

 m

 sequences of length

 N

 y

 in array

 Y

 .

 x

 ji

 and

 x

 j

 +

 k

 ,

 i

 are elements of the

 m

 sequences of length

 N

 x

 in array

 X

 .

 See
 references [24] and [102].

 Only
 one invocation of this subroutine is needed:

 	You do not need to invoke the subroutine with init ≠ 0. If you do, however,
 the subroutine performs error checking, exits back to the calling
 program, and no computation is performed.

 	With init = 0, the subroutine performs the calculation
 of the convolutions or correlations.

 Error conditions

 	[bookmark: am5gr_hsacor__am5gr_f12b092]
 Computational Errors

 	None

 	[bookmark: am5gr_hsacor__am5gr_f12b093]
 Input-Argument Errors

 	

 	nx, ny, or m ≤ 0

 	inc1x, inc2x, inc1y,
 or inc2y ≤ 0 (or incompatible)

 Examples

 	Example 1

 	
 This example shows how to compute an autocorrelation for three
 short sequences in array X, where the input sequence
 length NX is equal to the output sequence length NY.
 This gives all nonzero autocorrelation values.

 The arrays
 are declared as follows: REAL*4 X(0:49999), Y(0:49999)
 REAL*8 AUX1, AUX2

 Call
 Statement and Input:

 INIT X INC1X INC2X Y INC1Y INC2Y NX M NY AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | |
CALL SACOR(INIT, X , 1 , 7 , Y , 1 , 7 , 7 , 3 , 7 , AUX1 , 0 , AUX2 , 0)

 INIT = 0

 (for computation)

 X contains
 the following three sequences: 1.0 2.0 3.0
2.0 1.0 2.0
3.0 2.0 1.0
4.0 3.0 2.0
4.0 4.0 3.0
3.0 4.0 4.0
2.0 3.0 4.0

 Output:

 Y contains
 the following three sequences: 59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0
 7.0 11.0 20.0
 2.0 6.0 12.0

 	Example 2

 	
 This example shows how the output from Example 1 differs
 when the values for NY and INC2Y are
 9 rather than 7. This shows that when NY is greater
 than NX, the output array is longer, and that part
 is filled with zeros.

 Output:

 Y contains
 the following three sequences: 59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0
 7.0 11.0 20.0
 2.0 6.0 12.0
 0.0 0.0 0.0
 0.0 0.0 0.0

 	Example 3

 	
 This example shows how the output from Example 1 differs
 when the value for NY is 5 rather than 7. Also, the
 values for INC1X and INC1Y are 3,
 and the values for INC2X and INC2Y are
 1 rather than 7. This shows that when NY is less
 than NX, the output array is shortened.

 Output:

 Y contains the
 following three sequences: 59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SACORF (Autocorrelation of One or More Sequences Using the
 Mixed-Radix Fourier Method)

 Purpose

 This subroutine computes the autocorrelations
 of one or more sequences using the mixed-radix Fourier method. The
 input and output sequences contain short-precision real numbers.
 Note:

 	Two invocations of this subroutine are necessary: one to prepare
 the working storage for the subroutine, and the other to perform the
 computations.

 	On certain processors, SIMD algorithms may be used if alignment
 requirements are met. For further details, see Use of SIMD Algorithms by Some Subroutines in the Libraries Provided by ESSL.

 Syntax

 	Fortran

 	CALL SACORF (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, naux1, aux2, naux2)

 	C and C++

 	sacorf (init, x, inc1x, inc2x, y, inc1y, inc2y, nx, m, ny, aux1, naux1, aux2, naux2);

 	On Entry

 	

 	 init

 	is a flag, where:
 If init ≠ 0, trigonometric
 functions and other parameters, depending on arguments other than x,
 are computed and saved in aux1. The contents of x and y are
 not used or changed.

 If init = 0,
 the autocorrelations of the sequence in x are computed.
 The only arguments that may change after initialization are x, y,
 and aux2. All scalar arguments must be the same
 as when the subroutine was called for initialization with init ≠ 0.

 Specified
 as: an integer. It can have any value.

 	 x

 	is the array X, consisting of m input
 sequences of length Nx,
 to be autocorrelated. Specified as: an array of (at least) length
 1+(Nx-1)inc1x+(m-1)inc2x,
 containing short-precision real numbers.

 	 inc1x

 	is the stride between the elements within each sequence in array X.

 Specified as: an integer; inc1x > 0.

 	 inc2x

 	is the stride between the first elements of the sequences in array X.

 Specified as: an integer; inc2x > 0.

 	 y

 	See On Return.

 	 inc1y

 	is the stride between the elements within each sequence in output
 array Y.
 Specified as: an integer; inc1y > 0.

 	 inc2y

 	is the stride between the first elements of each sequence in output
 array Y.
 Specified as: an integer; inc2y > 0.

 	 nx

 	is the number of elements, Nx,
 in each sequence in array X.
 Specified as: an
 integer; Nx > 0.

 	 m

 	is the number of sequences in array X to be correlated.

 Specified as: an integer; m > 0.

 	 ny

 	is the number of elements, Ny,
 in each sequence in array Y.
 Specified as: an
 integer; Ny > 0.

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, the working storage
 is computed.

 If init = 0, the working storage is used in
 the computation of the autocorrelations.

 Specified as: an
 area of storage, containing naux1 long-precision
 real numbers.

 	 naux1

 	is the number of doublewords in the working storage specified
 in aux1.
 Specified as: an integer; naux1 > 21
 (32-bit integer arguments) or 43 (64-bit integer arguments) and naux1 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For values between 21 (32-bit
 integer arguments) or 43 (64-bit integer arguments) and the minimum
 value, you have the option of having the minimum value returned in
 this argument. For details, see Using Auxiliary Storage in ESSL.

 	 aux2

 	has the following meaning:
 If naux2 = 0
 and error 2015 is unrecoverable, aux2 is ignored.

 Otherwise,
 it is the working storage used by this subroutine, which is available
 for use by the calling program between calls to this subroutine.

 Specified
 as: an area of storage, containing naux2 long-precision
 real numbers. On output, the contents are overwritten.

 	 naux2

 	is the number of doublewords in the working storage specified
 in aux2.
 Specified as: an integer, where:

 If naux2 = 0
 and error 2015 is unrecoverable, SACORF dynamically allocates the
 work area used by this subroutine. The work area is deallocated before
 control is returned to the calling program.

 Otherwise, naux2 ≥ (minimum value
 required for successful processing). To determine a sufficient value,
 use the processor-independent formulas. For all other values specified
 less than the minimum value, you have the option of having the minimum
 value returned in this argument. For details, see Using Auxiliary Storage in ESSL.

 	On Return

 	

 	 y

 	has the following meaning, where:
 If init ≠ 0, this argument
 is not used, and its contents remain unchanged.

 If init = 0,
 this is array Y, consisting of m output
 sequences of length Ny that
 are the autocorrelation functions of the sequences in array X.

 Returned
 as: an array of (at least) length 1+(Ny-1)inc1y+(m-1)inc2y,
 containing short-precision real numbers.

 	 aux1

 	is the working storage for this subroutine, where:
 If init ≠ 0, it contains information
 ready to be passed in a subsequent invocation of this subroutine.

 If init = 0,
 its contents are unchanged.

 Returned as: the contents are
 not relevant.

 Notes

 	aux1 should not be used by the calling
 program between calls to this subroutine with init ≠ 0 and init = 0.
 However, it can be reused after intervening calls to this subroutine
 with different arguments.

 	When using the ESSL SMP Libraries, for optimal performance, the
 number of threads specified should be the same for init ≠ 0 and init = 0.

 	If you specify the same array for X and Y,
 then inc1x and inc1y must be
 equal and inc2x and inc2y must
 be equal. In this case, output overwrites input.

 	If you specify different arrays for X and Y,
 they must have no common elements; otherwise, results are unpredictable.
 See Concepts.

 	If ny is such that output outside the basic
 range is needed, the subroutine stores zeros. This range is: 0 ≤ k ≤ nx-1.

 Formulas

 	[bookmark: am5gr_hsacorf__am5gr_lenfft2]
 Formula for Calculating the Length of the Fourier Transform

 	Before calculating the necessary sizes of naux1 and naux2,
 you must determine the length n of the Fourier
 transform. To do this, you use the values of the arguments nx and ny,
 inserted into the following formula, to get a value for the variable nf.
 After calculating nf, reference the formula or
 table of allowable values of n in Acceptable Lengths for the Transforms, selecting the value
 equal to or greater than nf. Following is the formula
 for determining nf:

 nf

 =

 min(

 ny

 ,

 nx

)+

 nx

 +1

 	[bookmark: am5gr_hsacorf__am5gr_f12b103]
 Processor-Independent Formulas for NAUX1 and NAUX2

 	The required values of naux1 and naux2 depend
 on the value determined for n in Formula for Calculating the Length
 of the Fourier Transform and the argument m.

 NAUX1 Formulas:

 	For 32-bit integer arguments:

 	

 If

 n

 ≤

 16384, use

 naux1

 =

 55000.

 If

 n

 >

 16384, use

 naux1

 =

 40000+1.89

 n

 .

 	For 64-bit integer arguments:

 	

 If

 n

 ≤

 16384, use

 naux1

 =

 75000.

 If

 n

 >

 16384, use

 naux1

 =

 60000+1.89

 n

 .

 NAUX2 Formulas:

 If

 n

 ≤

 16384, use

 naux2

 =

 50000.

 If

 n

 >

 16384, use

 naux2

 =

 40000+1.64

 n

 .

 Function

 The autocorrelations of the sequences
 in array X are expressed as follows:

 [image: Autocorrelations of the Sequences Graphic]

 for:

 k

 =

 0, 1,

 …

 ,

 N

 y

 -1

 i

 =

 1, 2,

 …

 ,

 m

 where:

 y

 ki

 are elements of the

 m

 sequences of length

 N

 y

 in array

 Y

 .

 x

 ji

 and

 x

 j

 +

 k

 ,

 i

 are elements of the

 m

 sequences of length

 N

 x

 in array

 X

 .

 This
 subroutine uses a Fourier transform method with a mixed-radix capability.
 This provides maximum performance for your application. The length
 of the transform, n, that you must calculate to
 determine the correct sizes for naux1 and naux2 is
 the same length used by the Fourier transform subroutines called by
 this subroutine. See references [24] and [102].

 Two
 invocations of this subroutine are necessary:

 	With init ≠ 0, the subroutine
 tests and initializes arguments of the program, setting up the aux1 working
 storage.

 	With init = 0, the subroutine checks that the
 initialization arguments in the aux1 working storage
 correspond to the present arguments, and if so, performs the calculation
 of the autocorrelations.

 Error conditions

 	[bookmark: am5gr_hsacorf__am5gr_f12b106]
 Resource Errors

 	Error 2015 is unrecoverable, naux2 = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hsacorf__am5gr_f12b107]
 Computational Errors

 	None

 	[bookmark: am5gr_hsacorf__am5gr_f12b108]
 Input-Argument Errors

 	

 	nx, ny, or m ≤ 0

 	inc1x, inc2x, inc1y,
 or inc2y ≤ 0 (or incompatible)

 	The resulting correlation is too long.

 	The subroutine has not been initialized with the present arguments.

 	naux1 ≤ 21

 	naux1 is too small—that is, less than the minimum required value.
 Return code 1 is returned if error 2015 is recoverable.

 	Error 2015 is recoverable or naux2≠0, and naux2 is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows how to compute an autocorrelation for
 three short sequences in array X, where the input
 sequence length NX is equal to the output sequence
 length NY. This gives all nonzero autocorrelation
 values. The arrays are declared as follows: REAL*4 X(0:49999), Y(0:49999)
 REAL*8 AUX1(2959), AUX2(1)

 First, initialize AUX1 using
 the calling sequence shown below with INIT ≠ 0. Then use the same
 calling sequence with INIT = 0 to do the calculation.

 Note: Because NAUX2= 0, this subroutine
 dynamically allocates the AUX2 working storage.

 Call Statement and Input:

 INIT X INC1X INC2X Y INC1Y INC2Y NX M NY AUX1 NAUX1 AUX2 NAUX2
 | | | | | | | | | | | | | |
CALL SACORF(INIT, X , 1 , 7 , Y , 1 , 7 , 7 , 3 , 7 , AUX1, 2959, AUX2, 0)

 INIT = 1

 (for initialization)

 INIT = 0

 (for computation)

 X contains
 the following three sequences: 1.0 2.0 3.0
2.0 1.0 2.0
3.0 2.0 1.0
4.0 3.0 2.0
4.0 4.0 3.0
3.0 4.0 4.0
2.0 3.0 4.0

 Output:

 Y contains the following three sequences: 59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0
 7.0 11.0 20.0
 2.0 6.0 12.0

 	Example 2

 	
 This example shows how the output from Example 1 differs
 when the value for NY and INC2Y are
 9 rather than 7. This shows that when NY is greater
 than NX, the output array is longer and that part
 is filled with zeros.

 Output:

 Y contains
 the following three sequences: 59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0
 7.0 11.0 20.0
 2.0 6.0 12.0
 0.0 0.0 0.0
 0.0 0.0 0.0

 	Example 3

 	
 This example shows how the output from Example 1 differs
 when the value for NY is 5 rather than 7. Also, the
 values for INC1X and INC1Y are 3
 rather than 1, and the values for INC2X and INC2Y are
 1 rather than 7. This shows that when NY is less
 than NX, the output array is shortened.

 Output:

 Y contains the
 following three sequences: 59.0 59.0 59.0
54.0 50.0 44.0
43.0 39.0 30.0
29.0 27.0 24.0
16.0 18.0 21.0

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 Related-Computation Subroutines

 This contains the related-computation
 subroutine descriptions.

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SPOLY and DPOLY (Polynomial Evaluation)

 Purpose

 These subroutines evaluate a polynomial
 of degree k, using coefficient vector u,
 input vector x, and output vector y:

 [image: Polynomial Evaluation Graphic]

 where uk, xi,
 and yi are elements
 of u, x, and y, respectively.

 Table 215. Data Types.

 	u, x, y

 	Subroutine

 	Short-precision real

 	SPOLY

 	Long-precision real

 	DPOLY

 Syntax

 	Fortran

 	CALL SPOLY | DPOLY (u, incu, k, x, incx, y, incy, n)

 	C and C++

 	spoly | dpoly (u, incu, k, x, incx, y, incy, n);

 	On Entry

 	

 	 u

 	is the coefficient vector u of length k+1.
 It contains elements u0, u1, u0, u1, u2, …, uk,
 which are stored in this order. Specified as: a one-dimensional array
 of (at least) length 1+k|incu|,
 containing numbers of the data type indicated in Table 215.

 	 incu

 	is the stride for vector u.
 Specified as: an
 integer. It can have any value.

 	 k

 	is the degree k of the polynomial.
 Specified
 as: an integer; k ≥ 0.

 	 x

 	is the input vector x of length n.
 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 215.

 	 incx

 	is the stride for vector x.
 Specified as: an
 integer. It can have any value.

 	 y

 	See On Return.

 	 incy

 	is the stride for the output vector y. Specified
 as: an integer. It can have any value.

 	 n

 	is the number of elements in input vector x and
 the number of resulting elements in output vector y.

 Specified as: an integer; n ≥ 0.

 	On Return

 	

 	 y

 	is the output vector y of length n,
 containing the results of the polynomial evaluation. Returned as:
 a one-dimensional array of (at least) length 1+(n-1)|incy|,
 containing numbers of the data type indicated in Table 215.

 Notes

 Vectors u, x,
 and y must have no common elements; otherwise, results
 are unpredictable. See Concepts.

 Function

 The evaluation of the polynomial:

 [image: Polynomial Evaluation Graphic]

 is expressed as follows:

 y

 i

 =

 u

 0

 +

 x

 i

 (

 u

 1

 +

 x

 i

 (

 u

 2

 +

 …

 +

 x

 i

 (

 u

 k

 -1

 +

 x

 i

 u

 k

)

 …

)

 for

 i

 =

 1, 2,

 …

 ,

 n

 See
 reference [98] for Horner's
 Rule. If n is 0, no computation is performed. For
 SPOLY, intermediate results are accumulated in long precision.

 SPOLY
 provides the same function as the IBM® 3838
 function POLY, with restrictions removed. DPOLY provides a long-precision
 computation that is not included in the IBM 3838
 functions. See the IBM 3838
 Array Processor Functional Characteristics manual.

 Error conditions

 	[bookmark: am5gr_hspoly__am5gr_f12c002]
 Computational Errors

 	None

 	[bookmark: am5gr_hspoly__am5gr_f12c003]
 Input-Argument Errors

 	

 	k < 0

 	n < 0

 Examples

 	Example 1

 	
 This example shows a polynomial evaluation with the degree, K,
 equal to 0.

 Call Statement and Input:
 U INCU K X INCX Y INCY N
 | | | | | | | |
CALL SPOLY(U , INCU , 0 , X , INCX , Y , 1 , 3)

 U = (4.0)

 INCU =

 (not relevant)

 X =

 (not relevant)

 INCX =

 (not relevant)

 Output: Y = (4.0, 4.0, 4.0)

 	Example 2

 	
 This example shows a polynomial evaluation, using a negative
 stride INCU for vector u. For u,
 processing begins at element U(4) which is 1.0.

 Call Statement and Input: U INCU K X INCX Y INCY N
 | | | | | | | |
CALL SPOLY(U , -1 , 3 , X , 1 , Y , 1 , 3)

U = (4.0, 3.0, 2.0, 1.0)
X = (2.0, 1.0, -3.0)

 Output:
 Y = (49.0, 10.0, -86.0)

 	Example 3

 	
 This example shows a polynomial evaluation, using a stride INCX of
 0 for input vector x.

 Call
 Statement and Input: U INCU K X INCX Y INCY N
 | | | | | | | |
CALL SPOLY(U , 1 , 3 , X , 0 , Y , 1 , 3)

U = (4.0, 3.0, 2.0, 1.0)
X = (2.0, . , .)

 Output:
 Y = (26.0, 26.0, 26.0)

 	Example 4

 	
 This example shows a polynomial evaluation, using a stride INCX greater
 than 1 for input vector x, and a negative stride INCY for
 output vector y. For y, results are stored
 beginning at element Y(5).

 Call
 Statement and Input: U INCU K X INCX Y INCY N
 | | | | | | | |
CALL SPOLY(U , 1 , 3 , X , 2 , Y , -2 , 3)

U = (4.0, 3.0, 2.0, 1.0)
X = (2.0, . , -3.0, . , 1.0)

 Output: Y = (10.0, . , -14.0, . , 26.0)

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SIZC and DIZC (I-th Zero Crossing)

 Purpose

 These subroutines find the position
 of the i-th zero crossing in vector x.
 This is the i-th transition between positive and
 negative or negative and positive, where 0 is considered a positive
 value. It returns the position of the element in vector x where
 the i-th zero crossing is detected. The direction
 of the scan is either from the first element to the last or from the
 last element to the first, depending on the value you specify for
 the scan direction argument.

 Table 216. Data Types.

 	x

 	Subroutine

 	Short-precision real

 	SIZC

 	Long-precision real

 	DIZC

 Syntax

 	Fortran

 	CALL SIZC | DIZC (x, idrx, n, i, ky)

 	C and C++

 	sizc | dizc (x, idrx, n, i, ky);

 	On Entry

 	

 	 x

 	is the target vector x of length n.

 Specified as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 216.

 	 idrx

 	indicates the scan direction. If it is positive or 0, x is
 scanned from the first element to the last (1, n).
 If it is negative, x is scanned from the last element
 to the first (n, 1).
 Specified as: an integer.
 It can have any value.

 	 n

 	is the number of elements in vector x. Specified
 as: an integer; n > 1.

 	 i

 	is the number of the zero crossing to be identified.
 Specified
 as: an integer; i > 0.

 	 ky

 	See On Return.

 	On Return

 	

 	 ky

 	is the integer vector ky of length 2, containing
 elements ky1 and ky2,
 where:
 If the i-th zero crossing is found:

 	ky1 = j, where j is
 the position of the element xj at
 the point that the i-th zero crossing is found.
 The position is always relative to the beginning of the vector regardless
 of the scan direction.

 	ky2 = i

 If the i-th zero crossing is not
 found:

 	ky1 = 0

 	ky2 = the total number of zero crossings
 encountered in the scan.

 Returned as: an array of (at least) length 2, containing
 integers.

 Notes

 The aux and naux arguments,
 required in some earlier releases of ESSL, are no longer required
 by these subroutines. If your program still includes them, you do
 not have to change your program; it continues to run normally. It
 ignores these arguments. However, if you did any program checking
 for error code 2015, you may want to remove it, because this error
 no longer occurs. (You must not code these arguments in your C program.)

 Function

 The i-th zero
 crossing in vector x is found by scanning vector x for i occurrences
 of TRUE for the following logical expressions. A zero crossing is
 defined here as a crossing either from a positive value to a negative
 value or from a negative value to a positive value, where 0 is considered
 a positive value. If the i-th zero crossing is
 found, the value of j at that point is returned
 in ky1 as the position of the i-th
 zero crossing, and i is returned in ky2.

 If idrx ≥ 0:

 TRUE

 =

 (

 x

 j

 -1

 <

 0 and

 x

 j

 ≥

 0) or (

 x

 j

 -1

 ≥

 0 and

 x

 j

 <

 0) for

 j

 =

 2,

 n

 If idrx < 0:

 TRUE

 =

 (

 x

 j

 +1

 <

 0 and

 x

 j

 ≥

 0) or (

 x

 j

 +1

 ≥

 0 and

 x

 j

 <

 0) for

 j

 =

 n

 -1, 1

 If
 the position of the i-th zero crossing is not found,
 0 is returned in y1 and the number of
 zero crossings encountered in the scan is returned in y2.

 SIZC
 provides the same functions as the IBM® 3838
 functions NZCP and NZCN, with restrictions removed. It combines these
 functions into one ESSL subroutine. DIZC provides a long-precision
 computation that is not included in the IBM 3838
 functions. See the IBM 3838
 Array Processor Functional Characteristics manual.

 Error conditions

 	[bookmark: am5gr_hsizc__am5gr_f12c017]
 Computational Errors

 	None

 	[bookmark: am5gr_hsizc__am5gr_f12c018]
 Input-Argument Errors

 	

 	n ≤ 1

 	i ≤ 0

 Examples

 	Example 1

 	
 This example shows a scan of a vector x from
 the first element to the last. It is looking for the fifth zero crossing,
 which is encountered at position 9.

 Call
 Statement and Input: X IDRX N I KY
 | | | | |
CALL SIZC(X , 1 , 12 , 5 , KY)

X = (2.0, -1.0, -3.0, 3.0, 0.0, 8.0, -2.0, 0.0, -5.0, -3.0,
 2.0, -9.0)

 Output:
 KY = (9, 5)

 	Example 2

 	
 This example shows a scan of a vector x from
 the last element to the first. It is looking for the seventh zero
 crossing, which is encountered at position 3. Because IDRX is
 negative, X is scanned from the last element, X(12),
 to the first element, X(1).

 Call
 Statement and Input: X IDRX N I KY
 | | | | |
CALL SIZC(X , -1 , 12 , 7 , KY)

X = (2.0, -1.0, 3.0, -3.0, 0.0, -8.0, -2.0, 0.0, -5.0, -3.0,
 2.0, -9.0)

 Output:
 KY = (3, 7)

 	Example 3

 	
 This example shows a scan of a vector x when
 the i-th zero crossing is not found. It encounters
 seven zero crossings and returns this value in KY(2).

 Call Statement and Input: X IDRX N I KY
 | | | | |
CALL SIZC(X , 1 , 12 , 10 , KY)

X = (2.0, -1.0, -3.0, 3.0, 0.0, 8.0, -2.0, 0.0, -5.0, -3.0,
 2.0, -9.0)

 Output:
 KY = (0, 7)

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 STREC and DTREC (Time-Varying Recursive Filter)

 Purpose

 These subroutines implement the
 first-order time-varying recursive equation, using initial value s,
 target vectors u and x, and output vector y.

 Table 217. Data Types.

 	s, u, x, y

 	Subroutine

 	Short-precision real

 	STREC

 	Long-precision real

 	DTREC

 Syntax

 	Fortran

 	CALL STREC | DTREC (s, u, incu, x, incx, y, incy, n , iopt)

 	C and C++

 	strec | dtrec (s, u, incu, x, incx, y, incy, n, iopt);

 	On Entry

 	

 	 s

 	is the scalar s used in the initial computation
 for y1.
 Specified as: a number of
 the data type indicated in Table 217.

 	 u

 	is the target vector u of length n.

 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incu|,
 containing numbers of the data type indicated in Table 217.

 	 incu

 	is the stride for target vector u.
 Specified
 as: an integer. It can have any value.

 	 x

 	is the target vector x of length n.

 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 217.

 	 incx

 	is the stride for target vector x. Specified as:
 an integer. It can have any value.

 	 y

 	See On Return.

 	 incy

 	is the stride for output vector y. Specified as:
 an integer; incy > 0 or incy < 0.

 	 n

 	is the number of elements in vectors u and x and
 the number of resulting elements in output vector y.

 Specified as: an integer; n ≥ 0.

 	 iopt

 	this argument has no effect on the performance of the computation,
 but still must be Specified as: an integer; iopt = 0
 or 1.

 	On Return

 	

 	 y

 	is the vector y of length n,
 containing the results of the implementation of the first-order time-varying
 recursive equation. Returned as: a one-dimensional array of (at least)
 length 1+(n-1)|incy|, containing
 numbers of the data type indicated in Table 217.

 Notes

 Vectors u, x,
 and y must have no common elements; otherwise, results
 are unpredictable. See Concepts.

 Function

 The first-order
 time-varying recursive equation is expressed as follows:

 y

 1

 =

 s

 +

 u

 1

 x

 1

 y

 2

 =

 u

 2

 y

 1

 +

 u

 1

 x

 2

 .

 .

 .

 y

 i

 =

 u

 i

 y

 i

 -1

 +

 u

 1

 x

 i

 for

 i

 =

 3, 4,

 …

 ,

 n

 STREC
 provides the same function as the IBM® 3838
 function REC, with restrictions removed. DTREC provides a long-precision
 computation that is not included in the IBM 3838
 functions. See the IBM 3838
 Array Processor Functional Characteristics manual.

 Error conditions

 	[bookmark: am5gr_hstrec__am5gr_f12c029]
 Computational Errors

 	None

 	[bookmark: am5gr_hstrec__am5gr_f12c030]
 Input-Argument Errors

 	

 	incy = 0

 	n < 0

 	iopt ≠ 0 or 1

 Examples

 	Example 1

 	
 This example shows all strides INCU, INCX,
 and INCY equal to 1 for vectors u, x,
 and y, respectively.

 Call
 Statement and Input: S U INCU X INCX Y INCY N IOPT
 | | | | | | | | |
CALL STREC(1.0 , U , 1 , X , 1 , Y , 1 , 8 , 0)

U = (1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0, 2.0)
X = (3.0, 2.0, 1.0, 1.0, 2.0, 3.0, 3.0, 2.0)

 Output: Y = (4.0, 10.0, 31.0, 94.0, 190.0, 193.0, 196.0, 394.0)

 	Example 2

 	
 This example shows a stride, INCU, that
 is greater than 1 for vector u. The strides INCX and INCY for
 vectors x and y, respectively, are 1.

 Call Statement and Input: S U INCU X INCX Y INCY N IOPT
 | | | | | | | | |
CALL STREC(1.0 , U , 2 , X , 1 , Y , 1 , 4 , 0)

U = (1.0, . , 3.0, . , 2.0, . , 1.0, .)
X = (3.0, 2.0, 1.0, 1.0, 2.0, 3.0, 3.0, 2.0)

 Output: Y = (4.0, 14.0, 29.0, 30.0)

 	Example 3

 	
 This example shows a stride, INCU, of 1
 for vector u, a stride, INCX, that
 is greater than 1 for vector x, and a negative stride, INCY,
 for vector y. For y, results are stored
 beginning at element Y(4).

 Call
 Statement and Input: S U INCU X INCX Y INCY N IOPT
 | | | | | | | | |
CALL STREC(1.0 , U , 1 , X , 2 , Y , -1 , 4 , 1)

U = (1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0, 2.0)
X = (3.0, . , 1.0, . , 2.0, . , 3.0)

 Output: Y = (90.0, 29.0, 9.0, 4.0)

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SQINT and DQINT (Quadratic Interpolation)

 Purpose

 These subroutines perform a quadratic
 interpolation at specified points in the vector x, using
 initial linear displacement in the samples s, sample
 interval g, output scaling parameter Ω,
 and sample reflection times in vector t. The result
 is returned in vector y.

 Table 218. Data Types.

 	x, s, g, Ω, t, y

 	Subroutine

 	Short-precision real

 	SQINT

 	Long-precision real

 	DQINT

 Syntax

 	Fortran

 	CALL SQINT | DQINT (s, g, omega, x, incx, n, t, inct, y, incy, m)

 	C and C++

 	sqint | dqint (s, g, omega, x, incx, n, t, inct, y, incy, m);

 	On Entry

 	

 	 s

 	is the scalar s, containing the initial linear
 displacement in samples.
 Specified as: a number of the data type
 indicated in Table 218.

 	 g

 	is the scalar g, containing the sample interval.

 Specified as: a number of the data type indicated in Table 218; g > 0.0.

 	 omega

 	is the output scaling parameter Ω.
 Specified as: a number of the data
 type indicated in Table 218.

 	 x

 	is the vector x of length n,
 containing the trace data.
 Specified as: a one-dimensional array
 of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 218.

 	 incx

 	is the stride for vector x.
 Specified as: an
 integer; incx > 0 or incx < 0.

 	 n

 	is the number of elements in vector x.
 Specified
 as: an integer; n ≥ 3.

 	 t

 	is the vector t of length m,
 containing the sample reflection times to be processed.
 Specified
 as: a one-dimensional array of (at least) length 1+(m-1)|inct|,
 containing numbers of the data type indicated in Table 218.

 	 inct

 	is the stride for vector t.
 Specified as: an
 integer; inct > 0 or inct < 0.

 	 y

 	See On Return.

 	 incy

 	is the stride for output vector y.
 Specified
 as: an integer; incy > 0 or incy < 0.

 	 m

 	is the number of elements in vector t and the number
 of elements in output vector y.
 Specified as: an
 integer; m ≥ 0.

 	On Return

 	

 	 y

 	is the vector y of length m,
 containing the results of the quadratic interpolation. Returned as:
 a one-dimensional array of (at least) length 1+(m-1)|incy|,
 containing numbers of the data type indicated in Table 218.

 Function

 The quadratic
 interpolation, which is expressed as follows:

 [image: Quadratic Interpolation Graphic]

 for

 i

 =

 1, 2,

 …

 ,

 m

 uses the
 following values:

 x

 is the vector containing the specified points.

 s

 is the initial linear displacement in the samples.

 g

 is a sample interval.

 Ω

 is the output scaling parameter.

 t

 is the vector containing the sample reflection times.

 and where trace, k, f,
 and w are four working vectors, and so is
 a working scalar defined as:

 trace

 1

 = 3

 x

 1

 -3

 x

 2

 +

 x

 3

 trace

 i

 +1

 =

 x

 i

 for

 i

 =

 1, 2,

 …

 ,

 n

 so

 =

 s

 +2.0

 w

 i

 =

 so

 +

 t

 i

 /

 g

 for

 i

 =

 1, 2,

 …

 ,

 m

 f

 i

 = fraction part of

 w

 i

 k

 i

 +1 = integer part of

 w

 i

 Note: Allowing ki+1
 to have a value of 2 results in performance degradation. If possible,
 avoid specifying a point at which this occurs.

 If n or m is
 0, no computation is performed.

 SQINT provides the same function
 as the IBM® 3838 function INT,
 with restrictions removed. DQINT provides a long-precision computation
 that is not included in the IBM 3838
 functions. See the IBM 3838
 Array Processor Functional Characteristics manual.

 Error conditions

 	[bookmark: am5gr_hsqint__am5gr_f12c041]
 Computational Errors

 	The condition (ki+1 > n)
 or (ki+1 ≤ 2) has occurred,
 where n is the number of elements in vector x.
 See Function for how to calculate ki.

 	The lower range l and the upper range j of
 the vector are identified in the computational error message.

 	The return code is set to 1.

 	The ranges l and j of the
 vector can be determined at run time by using the ESSL error-handling
 facilities. To obtain this information, you must use ERRSET to change
 the number of allowable errors for error code 2100 in the ESSL error
 option table; otherwise, the default value causes your program to
 terminate when this error occurs. For details, see What Can You Do about ESSL Computational Errors?.

 	[bookmark: am5gr_hsqint__am5gr_f12c042]
 Input-Argument Errors

 	

 	n < 3

 	m < 0

 	g ≤ 0

 	incx = 0

 	inct = 0

 	incy = 0

 Examples

 	Example 1

 	
 This example shows a quadratic interpolation, using vectors
 with strides of 1.

 Call Statement and
 Input: S G OMEGA X INCX N T INCT Y INCY M
 | | | | | | | | | | |
CALL SQINT(2.0 , 1.0 , 1.0 , X , 1 , 8 , T , 1 , Y , 1 , 4)

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)
T = (1.5, 2.5, 3.5, 4.5)

 Output:
 Y = (9.0, 11.0, 13.0, 15.0)

 	Example 2

 	
 This example shows a quadratic interpolation, using vectors
 with a positive stride of 1 and negative strides of -1.

 Call Statement and Input: S G OMEGA X INCX N T INCT Y INCY M
 | | | | | | | | | | |
CALL SQINT(2.0 , 1.0 , 1.0 , X , -1 , 8 , T , -1 , Y , 1 , 4)

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)
T = (1.5, 2.5, 3.5, 4.5)

 Output:
 Y = (3.0, 5.0, 7.0, 9.0)

 	Example 3

 	
 This example shows a quadratic interpolation, using vectors
 with a positive stride greater than 1 and negative strides less than
 -1.

 Call Statement and Input: S G OMEGA X INCX N T INCT Y INCY M
 | | | | | | | | | | |
CALL SQINT(2.0 , 1.0 , 1.0 , X , -2 , 8 , T , -1 , Y , 2 , 4)

X = (1.0, . , 3.0, . , 5.0, . , 7.0, . , 9.0, . , 11.0, . ,
 13.0, . , 15.0)
T = (1.36, 2.36, 3.36, 4.36)

 Output: Y = (4.56, . , 8.56, . , 12.56, . , 16.56)

 	Example 4

 	
 This example shows a quadratic interpolation, using vectors
 with positive strides and larger values for S and G than
 shown in the previous examples.

 Call Statement
 and Input: S G OMEGA X INCX N T INCT Y INCY M
 | | | | | | | | | | |
CALL SQINT(3.0 , 10.0 , 1.0 , X , 1 , 8 , T , 2 , Y , 3 , 4)

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0)
T = (1.5, . , 2.5, . , 3.5, . , 4.5)

 Output: Y = (8.3, . , . , 8.5, . , . , 8.7, . , . , 8.9)

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 SWLEV, DWLEV, CWLEV, and ZWLEV (Wiener-Levinson Filter Coefficients)

 Purpose

 These subroutines compute the coefficients
 of an n-point Wiener-Levinson filter, using vector x,
 the trace for which the filter is to be designed, and vector u,
 the right-hand side of the system, chosen to remove reverberations
 or sharpen the wavelet. The result is returned in vector y.

 Table 219. Data Types.

 	x, u, y

 	aux

 	Subroutine

 	Short-precision real

 	Long-precision real

 	SWLEV

 	Long-precision real

 	Long-precision real

 	DWLEV

 	Short-precision complex

 	Long-precision complex

 	CWLEV

 	Long-precision complex

 	Long-precision complex

 	ZWLEV

 Syntax

 	Fortran

 	CALL SWLEV | DWLEV | CWLEV | ZWLEV | (x, incx, u, incu, y, incy, n, aux, naux)

 	C and C++

 	swlev | dwlev | cwlev | zwlev (x, incx, u, incu, y, incy, n, aux, naux);

 	On Entry

 	

 	 x

 	is the vector x of length n,
 containing the trace data for which the filter is to be designed.

 For SWLEV and DWLEV, x represents the first
 row (or the first column) of a positive definite or negative definite
 symmetric Toeplitz matrix, which is the autocorrelation matrix for
 which the filter is designed.

 For CWLEV and ZWLEV, x represents
 the first row of a positive definite or negative definite complex
 Hermitian Toeplitz matrix, which is the autocorrelation matrix for
 which the filter is designed.

 Specified as: a one-dimensional
 array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 219.

 	 incx

 	is the stride for vector x.
 Specified as: an
 integer; incx > 0.

 	 u

 	is the vector u of length n,
 containing the right-hand side of the system to be solved.
 Specified
 as: a one-dimensional array of (at least) length 1+(n-1)|incu|,
 containing numbers of the data type indicated in Table 219.

 	 incu

 	is the stride for vector u.
 Specified as: an
 integer. It can have any value.

 	 y

 	See On Return.

 	 incy

 	is the stride for vector y.
 Specified as: an
 integer; incy > 0 or incy < 0.

 	 n

 	is the number of elements in vectors x, u,
 and y.
 Specified as: an integer; n ≥ 0.

 	 aux

 	has the following meaning:
 If naux = 0
 and error 2015 is unrecoverable, aux is ignored.

 Otherwise,
 it is the storage work area used by these subroutines.

 Specified
 as: an area of storage of length naux, containing
 numbers of the data type indicated in Table 219.

 	 naux

 	is the size of the work area specified by aux—that
 is, the number of elements in aux.
 Specified
 as: an integer, where:

 If naux = 0
 and error 2015 is unrecoverable, SWLEV, DWLEV, CWLEV, and ZWLEV dynamically
 allocate the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise, naux ≥ 3n.

 You
 cannot use dynamic allocation if you need the information returned
 in AUX(1).

 	On Return

 	

 	 y

 	is the vector y of length n,
 containing the solution vector—that is, the coefficients of the n-point
 Wiener-Levinson filter. Returned as: a one-dimensional array of (at
 least) length 1+(n-1)|incy|,
 containing numbers of the data type indicated in Table 219.

 	 aux

 	is the storage work area used by these subroutines, where if naux ≠ 0:
 If AUX(1) = 0.0,
 the input Toeplitz matrix is positive definite or negative definite.

 If AUX(1) > 0.0,
 the input Toeplitz matrix is indefinite (that is, it is not positive
 definite and it is not negative definite). The value returned in AUX(1) is
 the order of the first submatrix of A that is indefinite.
 The subroutine continues processing. See reference [73] for information
 about under what circumstances your solution vector y would
 be valid.

 All other values in aux are overwritten
 and are not significant.

 Returned as: an area of storage of
 length naux, containing numbers of the data type
 indicated in Table 219, where AUX(1) ≥ 0.0.

 Notes

 	For a description of a positive definite or negative definite
 symmetric Toeplitz matrix, see Positive Definite or Negative Definite Symmetric Toeplitz Matrix.

 	For a description of a positive definite or negative definite
 complex Hermitian Toeplitz matrix, see Positive Definite or Negative Definite Complex Hermitian Toeplitz Matrix.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 The computation
 of the coefficients of an n-point Wiener-Levinson filter in vector y is
 expressed as solving the following system:

 Ay

 =

 u

 where:

 	For SWLEV and DWLEV, matrix A is a real symmetric
 Toeplitz matrix whose first row (or first column) is represented by
 vector x.
 For CWLEV and ZWLEV, matrix A is
 a complex Hermitian Toeplitz matrix whose first row is represented
 by vector x.

 	u is the vector specifying the right side of the
 system, chosen to remove reverberations or to sharpen the wavelet.

 	y is the solution vector.

 See reference [73], [35], and the IBM 3838 Array Processor Functional
 Characteristics.

 If n is 0, no computation
 is performed. For SWLEV and CWLEV, intermediate results are accumulated
 in long precision.

 SWLEV provides the same function as the IBM® 3838 function WLEV, with restrictions
 removed. See the IBM 3838
 Array Processor Functional Characteristics manual.

 Error conditions

 	[bookmark: am5gr_hswlev__am5gr_f12c56]
 Resource Errors

 	Error 2015 is unrecoverable, naux = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hswlev__am5gr_f12c057]
 Computational Errors

 	None

 	[bookmark: am5gr_hswlev__am5gr_f12c058]
 Input-Argument Errors

 	

 	n < 0

 	incx ≤ 0

 	incy = 0

 	Error 2015 is recoverable or naux≠0, and naux is
 too small—that
 is, less than the minimum required value specified in the syntax for
 this argument. Return code 1 is returned if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows how to compute filter coefficients in
 vector y by solving the system Ay = u.
 Matrix A is: ┌ ┐
 | 50.0 -8.0 7.0 -5.0 |
 | -8.0 50.0 -8.0 7.0 |
 | 7.0 -8.0 50.0 -8.0 |
 | -5.0 7.0 -8.0 50.0 |
 └ ┘

 This
 input Toeplitz matrix is positive definite, as indicated by the zero
 value in AUX(1) on output.

 Call
 Statement and Input: X INCX U INCU Y INCY N AUX NAUX
 | | | | | | | | |
CALL SWLEV(X , 1 , U , 1 , Y , 1 , 4 , AUX , 12)

 X = (50.0, -8.0, 7.0, -5.0)

 U = (40.0, -10.0, 30.0, 20.0)

 AUX =

 (not relevant)

 Output: Y = (0.7667, -0.0663, 0.5745, 0.5778)
AUX = (0.0, . , . , . , . , . , . , . , . , . , . , .)

 	Example 2

 	
 This example shows how to compute filter coefficients in
 vector y by solving the system Ay = u.
 Matrix A is: ┌ ┐
 | 10.0 -8.0 7.0 -5.0 |
 | -8.0 10.0 -8.0 7.0 |
 | 7.0 -8.0 10.0 -8.0 |
 | -5.0 7.0 -8.0 10.0 |
 └ ┘

 This
 input Toeplitz matrix is not positive definite, as indicated by the
 zero value in AUX(1) on output.

 Call Statement and Input: X INCX U INCU Y INCY N AUX NAUX
 | | | | | | | | |
CALL SWLEV(X , 1 , U , 1 , Y , 1 , 4 , AUX , 12)

 X = (10.0, -8.0, 7.0, -5.0)

 U = (40.0, -10.0, 30.0, 20.0)

 AUX =

 (not relevant)

 Output: Y = (5.1111, 5.5555, 12.2222, 10.4444)
AUX = (0.0, . , . , . , . , . , . , . , . , . , . , .)

 	Example 3

 	
 This example shows a vector x with a stride
 greater than 1, a vector u with a negative stride, and
 a vector y with a stride of 1. It uses the same input
 Toeplitz matrix as in Example 2, which is not positive definite.

 Call Statement and Input: X INCX U INCU Y INCY N AUX NAUX
 | | | | | | | | |
CALL SWLEV(X , 2 , U , -2 , Y , 1 , 4 , AUX , 12)

 X = (10.0, . , -8.0, . , 7.0, . , -5.0)

 U = (20.0, . , 30.0, . , -10.0, . , 40.0)

 AUX =

 (not relevant)

 Output: Y = (5.1111, 5.5555, 12.2222, 10.4444)
AUX = (0.0, . , . , . , . , . , . , . , . , . , . , .)

 	Example 4

 	
 This example shows how to compute filter coefficients in
 vector y by solving the system Ay = u.
 Matrix A is: ┌ ┐
 | (10.0, 0.0) (2.0, -3.0) (-3.0, 1.0) (1.0, 1.0) |
 | (2.0, 3.0) (10.0, 0.0) (2.0, -3.0) (-3.0, 1.0) |
 | (-3.0, -1.0) (2.0, 3.0) (10.0, 0.0) (2.0, -3.0) |
 | (1.0, -1.0) (-3.0, -1.0) (2.0, 3.0) (10.0, 0.0) |
 └ ┘

 This
 input complex Hermitian Toeplitz matrix is positive definite, as indicated
 by the zero value in AUX(1) on output.

 Call Statement and Input: X INCX U INCU Y INCY N AUX NAUX
 | | | | | | | | |
CALL ZWLEV(X , 1 , U , 1 , Y , 1 , 4 , AUX , 12)

 X = ((10.0, 0.0), (2.0, -3.0), (-3.0, 1.0), (1.0, 1.0))

 U = ((8.0, 3.0), (21.0, -5.0), (67.0, -13.0), (72.0, 11.0))

 AUX =

 (not relevant)

 Output: Y = ((1.0, 0.0), (3.0, 0.0), (5.0, 0.0), (7.0, 0.0))
AUX = ((0.0, 0.0), . , . , . , . , . , . , . , . , . , . , .)

 	Example 5

 	
 This example shows a vector x with a stride
 greater than 1, a vector u with a negative stride, and
 a vector y with a stride of 1. It uses the same input
 complex Hermitian Toeplitz matrix as in Example 4.

 This input
 complex Hermitian Toeplitz matrix is positive definite, as indicated
 by the zero value in AUX(1) on output.

 Call Statement and Input: X INCX U INCU Y INCY N AUX NAUX
 | | | | | | | | |
CALL ZWLEV(X , 2 , U , -2 , Y , 1 , 4 , AUX , 12)

 X = ((10.0, 0.0), . , (2.0, -3.0), . , (-3.0, 1.0), .

 ,

 (1.0, 1.0))

 U = ((72.0, 11.0), . , (67.0, -13.0), . , (21.0, -5.0), . ,

 (8.0, 3.0), .)

 AUX =

 (not relevant)

 Output: Y = ((1.0, 0.0), (3.0, 0.0), (5.0, 0.0), (7.0, 0.0))
AUX = ((0.0, 0.0), . , . , . , . , . , . , . , . , . , . , .)

 Parent topic: Fourier Transforms, Convolutions and Correlations, and Related Computations

 Sorting and Searching

 The sorting and searching subroutines are described here.

 	Overview of the Sorting and Searching Subroutines

 	Use Considerations

 	Performance and Accuracy Considerations

 	Sorting and Searching Subroutines

 	ISORT, SSORT, and DSORT (Sort the Elements of a Sequence)

 	ISORTX, SSORTX, and DSORTX (Sort the Elements of a Sequence and Note the Original Element Positions)

 	ISORTS, SSORTS, and DSORTS (Sort the Elements of a Sequence Using a Stable Sort and Note the Original Element Positions)

 	IBSRCH, SBSRCH, and DBSRCH (Binary Search for Elements of a Sequence X in a Sorted Sequence Y)

 	ISSRCH, SSSRCH, and DSSRCH (Sequential Search for Elements of a Sequence X in the Sequence Y)

 Parent topic: Reference Information

 Overview of the Sorting and Searching Subroutines

 The sorting and searching subroutines operate on three types of data: integer,
 short-precision real, and long-precision-real. The sorting subroutines perform
 sorts with or without index designations. The searching subroutines perform
 either a binary or sequential search.

 Table 220. List of Sorting and Searching Subroutines.

 	Integer Subroutine

 	Short-Precision Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	ISORT

 	SSORT

 	DSORT

 	ISORT, SSORT, and DSORT (Sort the Elements of a Sequence)

 	ISORTX

 	SSORTX

 	DSORTX

 	ISORTX, SSORTX, and DSORTX (Sort the Elements of a Sequence and Note the Original Element Positions)

 	ISORTS

 	SSORTS

 	DSORTS

 	ISORTS, SSORTS, and DSORTS (Sort the Elements of a Sequence Using a Stable Sort and Note the Original Element Positions)

 	IBSRCH

 	SBSRCH

 	DBSRCH

 	IBSRCH, SBSRCH, and DBSRCH (Binary Search for Elements of a Sequence X in a Sorted Sequence Y)

 	ISSRCH

 	SSSRCH

 	DSSRCH

 	ISSRCH, SSSRCH, and DSSRCH (Sequential Search for Elements of a Sequence X in the Sequence Y)

 Parent topic: Sorting and Searching

 Use Considerations

 It is important to understand the concept of stride for sequences when
 using these subroutines. For example, in the sort subroutines, a negative
 stride causes a sequence to be sorted into descending order in an array. In
 the search subroutines, a negative stride reverses the direction of the search.
 See How Stride Is Used for Vectors.

 Parent topic: Sorting and Searching

 Performance and Accuracy Considerations

 	The binary search subroutines provide better performance than
 the sequential search subroutines because of the nature of the searching
 algorithms. However, the binary search subroutines require that,
 before the subroutine is called, the sequence to be searched is sorted
 into ascending order. Therefore, if your data is already sorted, a
 binary search subroutine is faster. On the other hand, if your data
 is in random order and the number of elements being searched for is
 small, a sequential search subroutine is faster than doing a sort
 and binary search.

 	When doing multiple invocations of the binary search subroutines,
 you get better overall performance from the searching algorithms by
 doing fewer invocations and specifying larger search element arrays
 for argument x.

 	If you do not need the results provided in array RC by
 these subroutine, you get better performance if you do not request
 it. That is, specify 0 for the iopt argument.

 Parent topic: Sorting and Searching

 Sorting and Searching Subroutines

 This contains the sorting and searching subroutine
 descriptions.

 Parent topic: Sorting and Searching

 ISORT, SSORT, and DSORT (Sort the Elements of a Sequence)

 Purpose

 These subroutines sort the elements of sequence x.

 Table 221. Data Types.

 	x

 	Subroutine

 	Integer

 	ISORT

 	Short-precision real

 	SSORT

 	Long-precision real

 	DSORT

 Syntax

 	Fortran

 	CALL ISORT | SSORT | DSORT (x, incx, n)

 	C and C++

 	isort | ssort | dsort (x, incx, n);

 	On Entry

 	

 	 x

 	is the sequence x of length n,
 to be sorted.

 Specified as: a one-dimensional array of (at least) length
 1+(n-1)|incx|, containing numbers of the data type
 indicated in Table 221.

 	 incx

 	is the stride for both the input sequence x and the output sequence x. If it is positive,
 elements are sorted into ascending order in the array, and if it is negative,
 elements are sorted into descending order in the array.

 Specified as: an integer. It can have any value.

 	 n

 	is the number of elements in sequence x.
 Specified as: an integer; n ≥ 0.

 	On Return

 	

 	 x

 	is the sequence x of length n,
 with its elements sorted into designated order in the array. Returned as:
 a one-dimensional array, containing numbers of the data type indicated in Table 221.

 Function

 The elements of input sequence x are sorted
 into ascending order, in place and using a partition sort. The elements of
 output sequence x can be expressed as follows:

 x

 1

 ≤

 x

 2

 ≤

 x

 3

 ≤

 …

 ≤

 x

 n

 By specifying a negative stride for sequence x, the elements of sequence x are assumed
 to be reversed in the array, (xn, xn-1, … , x1), thus producing a sort into descending order within
 the array. If n is 0 or 1 or if incx is 0, no sort is performed.
 See reference [89].

 Error conditions

 	[bookmark: am5gr_hisort__am5gr_f13002]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hisort__am5gr_f13003]
 Computational Errors

 	None

 	[bookmark: am5gr_hisort__am5gr_f13004]
 Input-Argument Errors

 	n < 0

 Examples

 	Example 1

 	

 This example shows a sequence x with a positive
 stride.

 Call Statement and Input:

 X INCX N
 | | |
CALL ISORT(X , 2 , 5)

X = (2, . , -1, . , 5, . , 4, . , -2)

 Output:

 X = (-2, . , -1, . , 2, . , 4, . , 5)

 	Example 2

 	

 This example shows a sequence x with a negative
 stride.

 Call Statement and Input:

 X INCX N
 | | |
CALL ISORT(X , -1 , 5)

X = (2, -1, 5, 4, -2)

 Output:

 X = (5, 4, 2, -1, -2)

 Parent topic: Sorting and Searching

 ISORTX, SSORTX, and DSORTX (Sort the Elements of a Sequence and Note the Original Element Positions)

 Purpose

 These subroutines sort the elements of sequence x. The original positions of the elements in sequence x are returned in the indices array, INDX. Where equal elements
 occur in the input sequence, they do not necessarily remain in the same relative
 order in the output sequence.

 Note: If you need a stable sort, you
 should use ISORTS, SSORTS, or DSORTS rather than these subroutines.

 Table 222. Data Types.

 	x

 	Subroutine

 	Integer

 	ISORTX

 	Short-precision real

 	SSORTX

 	Long-precision real

 	DSORTX

 Syntax

 	Fortran

 	CALL ISORTX | SSORTX | DSORTX (x, incx, n, indx)

 	C and C++

 	isortx | ssortx | dsortx (x, incx, n, indx);

 	On Entry

 	

 	 x

 	is the sequence x of length n,
 to be sorted.

 Specified as: a one-dimensional array of (at least) length
 1+(n-1)|incx| elements, containing numbers of the
 data type indicated in Table 222.

 	 incx

 	is the stride for both the input sequence x and the output sequence x. If it is positive,
 elements are sorted into ascending order in the array, and if it is negative,
 elements are sorted into descending order in the array.

 Specified as: an integer. It can have any value.

 	 n

 	is the number of elements in sequence x.
 Specified as: an integer; n ≥ 0.

 	 indx

 	See On Return.

 	On Return

 	

 	 x

 	is the sequence x of length n,
 with its elements sorted into designated order in the array. Returned as:
 a one-dimensional array, containing numbers of the data type indicated in Table 222.

 	 indx

 	is the array, referred to as INDX, containing the n indices
 that indicate, for the elements in the sorted output sequence, the original
 positions of those elements in input sequence x.

 Note: It is important to remember that when you specify a negative stride,
 ESSL assumes that the order of the input and output sequence elements in the X array is reversed; however, the elements in INDX are not
 reversed. See Function.

 Returned
 as: a one-dimensional array of length n, containing integers; 1 ≤ (INDX elements) ≤ n.

 Function

 The elements of input sequence x are sorted
 into ascending order, in place and using a partition sort. The elements of
 output sequence x can be expressed as follows:

 x

 1

 ≤

 x

 2

 ≤

 x

 3

 ≤

 …

 ≤

 x

 n

 Where equal elements occur in the input sequence, they do not necessarily
 remain in the same relative order in the output sequence.

 By specifying a negative stride for x, the
 elements of input sequence x are assumed to be
 reversed in the array, (xn, xn-1, … , x1), thus producing a sort into descending order within
 the array.

 In addition, the INDX array contains the n indices
 that indicate, for the elements in the sorted output sequence, the original
 positions of those elements in input sequence x.
 (These are not the positions in the array, but rather the positions in the
 sequence.) For each element xj in
 the input sequence, becoming element xxk in the output sequence, the elements in INDX are defined
 as follows:

 INDX

 (

 k

)

 =

 j

 for

 j

 =

 1,

 n

 and

 k

 =

 1,

 n

 where

 xx

 k

 =

 x

 j

 To understand INDX when you specify a negative stride, you should
 remember that both the input and output sequences, x, are assumed to be in reverse order in array X, but INDX is not affected by stride. The sequence elements of x are assumed to be stored in your input array as follows:

 X

 =

 (

 x

 n

 ,

 x

 n

 -1

 ,

 …

 ,

 x

 1

)

 The sequence elements of x are stored in your
 output array by ESSL as follows:

 X

 =

 (

 xx

 n

 ,

 xx

 n

 -1

 ,

 …

 ,

 xx

 1

)

 where the elements xxk are
 the elements xj, sorted into
 descending order in X. As an example of how INDX is
 calculated, if xx1 = xn-1, then INDX(1) = n-1.

 If n is 0, no computation is performed. See reference [89].

 Error conditions

 	[bookmark: am5gr_hisortx__am5gr_f13012]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hisortx__am5gr_f13013]
 Computational Errors

 	None

 	[bookmark: am5gr_hisortx__am5gr_f13014]
 Input-Argument Errors

 	n < 0

 Examples

 	Example 1

 	

 This example shows how to sort a sequence x into
 ascending order by specifying a positive stride.

 Call Statement and Input:

 X INCX N INDX
 | | | |
CALL ISORTX(X , 2 , 5 , INDX)

X = (2, . , -1, . , 5, . , 1, . , -2)

 Output:

 X = (-2, . , -1, . , 1, . , 2, . , 5)
INDX = (5, 2, 4, 1, 3)

 	Example 2

 	

 This example shows how to sort a sequence x into
 descending order by specifying a negative stride. Therefore, both the input
 and output sequences are assumed to be reversed in the array X.
 The input sequence is assumed to be stored as follows:

 X

 =

 (

 x

 5

 ,

 x

 4

 ,

 x

 3

 ,

 x

 2

 ,

 x

 1

)

 =

 (2, -1, 5, 1, -2)

 The output sequence is stored by ESSL as follows:

 X

 =

 (

 xx

 5

 ,

 xx

 4

 ,

 xx

 3

 ,

 xx

 2

 ,

 xx

 1

)

 =

 (5, 2, 1, -1, -2)

 As a result, INDX is defined as follows:

 INDX

 =

 (

 indx

 1

 ,

 indx

 2

 ,

 indx

 3

 ,

 indx

 4

 ,

 indx

 5

)

 =

 (1, 4, 2, 5, 3)

 For example, because output sequence element xx4 = 2 is input sequence element x5,
 then INDX(4) = 5.

 Call Statement and Input:

 X INCX N INDX
 | | | |
CALL ISORTX(X , -1 , 5 , INDX)

X = (2, -1, 5, 1, -2)

 Output:

 X = (5, 2, 1, -1, -2)
INDX = (1, 4, 2, 5, 3)

 Parent topic: Sorting and Searching

 ISORTS, SSORTS, and DSORTS (Sort the Elements of a Sequence Using a Stable Sort and Note the Original Element Positions)

 Purpose

 These subroutines sort the elements of sequence x using a stable sort; that is, where equal elements occur in the input
 sequence, they remain in the same relative order in the output sequence. The
 original positions of the elements in sequence x are
 returned in the indices array INDX.

 Note: If you need
 a stable sort, then you should use these subroutines rather than ISORTX, SSORTX,
 or DSORTX.

 Table 223. Data Types.

 	x, work

 	Subroutine

 	Integer

 	ISORTS

 	Short-precision real

 	SSORTS

 	Long-precision real

 	DSORTS

 Syntax

 	Fortran

 	CALL ISORTS | SSORTS | DSORTS (x, incx, n, indx, work, lwork)

 	C and C++

 	isorts | ssorts | dsorts (x, incx, n, indx, work, lwork);

 	On Entry

 	

 	 x

 	is the sequence x of length n,
 to be sorted.

 Specified as: a one-dimensional array of (at least) length
 1+(n-1)|incx| elements, containing numbers of the
 data type indicated in Table 223.

 	 incx

 	is the stride for both the input sequence x and the output sequence x. If it is positive,
 elements are sorted into ascending order in the array, and if it is negative,
 elements are sorted into descending order in the array.

 Specified as: an integer. It can have any value.

 	 n

 	is the number of elements in sequence x.
 Specified as: an integer; n ≥ 0.

 	 indx

 	See On Return.

 	 work

 	is the storage work area used by this subroutine. Its size is specified
 by lwork.

 Specified as: an area of storage, containing numbers
 of the data type indicated in Table 223.

 	 lwork

 	is the size of the work area specified by work— that
 is, the number of elements in work.

 Specified as: an integer; lwork ≥ n/2.

 Note: This is
 the value to achieve optimal performance. The sort is performed regardless
 of the value you specify for lwork, but you may receive an attention
 message.

 	On Return

 	

 	 x

 	is the sequence x of length n,
 with its elements sorted into designated order in the array. Returned as:
 a one-dimensional array, containing numbers of the data type indicated in Table 223.

 	 indx

 	is the array, referred to as INDX, containing the n indices
 that indicate, for the elements in the sorted output sequence, the original
 positions of those elements in input sequence x.

 Note: It is important to remember that when you specify a negative stride,
 ESSL assumes that the order of the input and output sequence elements in the X array is reversed; however, the elements in INDX are not
 reversed. See Function.

 Returned
 as: a one-dimensional array of length n, containing integers; 1 ≤ (INDX elements) ≤ n.

 Function

 The elements of input sequence x are sorted
 into ascending order using a partition sort. The sorting is stable; that is,
 where equal elements occur in the input sequence, they remain in the same
 relative order in the output sequence. The elements of output sequence x can be expressed as follows:

 x

 1

 ≤

 x

 2

 ≤

 x

 3

 ≤

 …

 ≤

 x

 n

 By specifying a negative stride for x, the
 elements of input sequence x are assumed to be
 reversed in the array, (xn, xn-1, … , x1), thus producing a sort into descending order within
 the array.

 In addition, the INDX array contains the n indices
 that indicate, for the elements in the sorted output sequence, the original
 positions of those elements in input sequence x.
 (These are not the positions in the array, but rather the positions in the
 sequence.) For each element xj in
 the input sequence, becoming element xxk in the output sequence, the elements in INDX are defined
 as follows:

 INDX

 (

 k

)

 =

 j

 for

 j

 =

 1,

 n

 and

 k

 =

 1,

 n

 where

 xx

 k

 =

 x

 j

 To understand INDX when you specify a negative stride, you should
 remember that both the input and output sequences, x, are assumed to be in reverse order in array X, but INDX is not affected by stride. The sequence elements of x are assumed to be stored in your input array as follows:

 X

 =

 (

 x

 n

 ,

 x

 n

 -1

 ,

 …

 ,

 x

 1

)

 The sequence elements of x are stored in your
 output array by ESSL as follows:

 X

 =

 (

 xx

 n

 ,

 xx

 n

 -1

 ,

 …

 ,

 xx

 1

)

 where the elements xxk are
 the elements xj, sorted into
 descending order in X. As an example of how INDX is
 calculated, if xx1 = xn-1, then INDX(1) = n-1.

 If n is 0, no computation is performed. See references [36] and [89].

 Error conditions

 	[bookmark: am5gr_hisorts__am5gr_f13022]
 Resource Errors

 	Unable to allocate internal work area.

 	[bookmark: am5gr_hisorts__am5gr_f13023]
 Computational Errors

 	None

 	[bookmark: am5gr_hisorts__am5gr_f13024]
 Input-Argument Errors

 	
 n < 0

 Examples

 	Example 1

 	

 This example shows how to sort a sequence x into
 ascending order by specifying a positive stride. Because this is a stable
 sort, the -1 elements remain in the same relative order in the output
 sequence, indicated by INDX(2) = 2 and INDX(3) = 4.

 Call Statement and Input:

 X INCX N INDX WORK LWORK
 | | | | | |
CALL ISORTS(X , 2 , 5 , INDX , WORK , 5)

X = (2, . , -1, . , 5, . , -1, . , -2)

 Output:

 X = (-2, . , -1, . , -1, . , 2, . , 5)
INDX = (5, 2, 4, 1, 3)

 	Example 2

 	

 This example shows how to sort a sequence x into
 descending order by specifying a negative stride. Therefore, both the input
 and output sequences are assumed to be reversed in the array X.
 The input sequence is assumed to be stored as follows:

 X

 =

 (

 x

 5

 ,

 x

 4

 ,

 x

 3

 ,

 x

 2

 ,

 x

 1

)

 =

 (2, -1, 5, -1, -2)

 The output sequence is stored by ESSL as follows:

 X

 =

 (

 xx

 5

 ,

 xx

 4

 ,

 xx

 3

 ,

 xx

 2

 ,

 xx

 1

)

 =

 (5, 2, -1, -1, -2)

 As a result, INDX is defined as follows:

 INDX

 =

 (

 indx

 1

 ,

 indx

 2

 ,

 indx

 3

 ,

 indx

 4

 ,

 indx

 5

)

 =

 (1, 2, 4, 5, 3)

 For example, because output sequence element xx4 = 2 is input sequence element x5,
 then INDX(4) = 5. Also, because this is a stable sort, the -1
 elements remain in the same relative order in the output sequence, indicated
 by INDX(2) = 2 and INDX(3) = 4.

 Call Statement and Input:

 X INCX N INDX WORK LWORK
 | | | | | |
CALL ISORTS(X , -1 , 5 , INDX , WORK , 5)

X = (2, -1, 5, -1, -2)

 Output:

 X = (5, 2, -1, -1, -2)
INDX = (1, 2, 4, 5, 3)

 Parent topic: Sorting and Searching

 IBSRCH, SBSRCH, and DBSRCH (Binary Search for Elements of a
 Sequence X in a Sorted Sequence Y)

 Purpose

 These subroutines perform a binary
 search for the locations of the elements of sequence x in
 another sequence y, where y has been sorted
 into ascending order. The first occurrence of each element is found.
 When an exact match is not found, the position of the next larger
 element in y is indicated. The locations are returned
 in the indices array INDX, and, optionally, return
 codes indicating whether the exact elements were found are returned
 in array RC.

 Table 224. Data Types.

 	x, y

 	Subroutine

 	Integer

 	IBSRCH

 	Short-precision real

 	SBSRCH

 	Long-precision real

 	DBSRCH

 Syntax

 	Fortran

 	CALL IBSRCH | SBSRCH | DBSRCH (x, incx, n, y, incy, m, indx, rc, iopt)

 	C and C++

 	ibsrch | sbsrch | dbsrch (x, incx, n, y, incy, m, indx, rc, iopt);

 	On Entry

 	

 	 x

 	is the sequence x of length n,
 containing the elements for which sequence y is searched.

 Specified as: a one-dimensional array, containing numbers of the
 data type indicated in Table 224.
 It must have at least 1+(n-1)|incx|
 elements.

 	 incx

 	is the stride for sequence x.
 Specified as:
 an integer. It can have any value.

 	 n

 	is the number of elements in sequence x and arrays INDX and RC.

 Specified as: an integer; n ≥ 0.

 	 y

 	is the sequence y of length m,
 to be searched, where y must be sorted into ascending
 order.
 Note: Be careful in specifying the stride for sequence y.
 A negative stride reverses the direction of the search, because the
 order of the sequence elements is reversed in the array.

 Specified
 as: a one-dimensional array of (at least) length 1+(m-1)|incy|,
 containing numbers of the data type indicated in Table 224.

 	 incy

 	is the stride for sequence y.
 Specified as:
 an integer. It can have any value.

 	 m

 	is the number of elements in sequence y. Specified
 as: an integer; m ≥ 0.

 	 indx

 	See On Return.

 	 rc

 	See On Return.

 	 iopt

 	has the following meaning, where:
 If iopt = 0,
 the rc argument is not used in the computation.

 If iopt = 1,
 the rc argument is used in the computation.

 Specified
 as: an integer; iopt = 0 or 1.

 	On Return

 	

 	 indx

 	is the array, referred to as INDX, containing
 the n indices that indicate the positions of the
 elements of sequence x in sequence y.
 The first occurrence of the element found in sequence y is
 indicated in array INDX. When an exact match between
 an element of sequence x and an element of sequence y is
 not found, the position of the next larger element in sequence y is
 indicated. When the element in sequence x is larger
 than all the elements in sequence y, then m+1
 is indicated in array INDX.
 Returned as: a one-dimensional
 array of length n, containing integers; 1 ≤ (INDX elements) ≤ m+1.

 	 rc

 	has the following meaning, where:
 If iopt = 0,
 then rc is not used, and its contents remain unchanged.

 If iopt = 1,
 it is the array, referred to as RC, containing the n return
 codes that indicate whether the elements in sequence x were
 found in sequence y. For i = 1, n,
 elements RC(i) = 0 if xi matches
 an element in sequence y, and RC(i) = 1
 if an exact match is not found in sequence y.

 Returned
 as: a one-dimensional array of length n, containing
 integers; RC(i) = 0
 or 1.

 Notes

 	The elements of y must be sorted into ascending
 order; otherwise, results are unpredictable. For details on how to
 do this, see ISORT, SSORT, and DSORT (Sort the Elements of a Sequence).

 	If you do not need the results provided in array RC by
 these subroutines, you get better performance if you do not request
 it. That is, specify 0 for the iopt argument.

 Function

 These subroutines perform a binary
 search for the first occurrence (or last occurrence, using negative
 stride) of the locations of the elements of sequence x in
 another sequence y, where y must be sorted
 into ascending order before calling this subroutine. The first occurrence
 of each element is found. Two arrays are returned, containing the
 results of the binary searches:

 	INDX, the indices array, contains the positions
 of the elements of sequence x in sequence y.
 When an exact match between values of elements in sequences x and y is
 not found, the location of the next larger element in sequence y is
 indicated in array INDX.

 	RC, the return codes array, indicates for each
 element in sequence x whether the exact element was
 found in sequence y. If you do not need these results,
 you get better performance if you set iopt = 0.

 The results returned for the INDX and RC arrays
 are expressed as follows: For i = 1, n

for all yj ≥ xi, j = 1, m , INDX(i) = min(j)
if all yj < xi, j = 1, m , INDX(i) = m+1

And for i = 1, n

if xi = yINDX(i), RC(i) = 0
if xi ≠ yINDX(i), RC(i) = 1

 where:

 	x is a sequence of length n,
 containing the search elements

 	y is a sequence of length m to
 be searched. It must be sorted into ascending order

 	INDX is the array of length n of
 indices

 	RC is the array of length n of
 return codes

 	

 See reference [89]. If n is
 0, no search is performed. If m is 0, then:

 INDX

 (

 i

)

 =

 1 and

 RC

 (

 i

)

 =

 1

 for

 i

 =

 1,

 n

 It
 is important to note that a negative stride for sequence y reverses
 the direction of the search, because the order of the sequence elements
 is reversed in the array. For more details on sorting sequences, see Function.

 Error conditions

 	[bookmark: am5gr_hibsrch__am5gr_f13032]
 Computational Errors

 	None

 	[bookmark: am5gr_hibsrch__am5gr_f13033]
 Input-Argument Errors

 	

 	n < 0

 	m < 0

 	iopt ≠ 0 or 1

 Examples

 	Example 1

 	
 This example shows a search where sequences x and y have
 positive strides, and where the optional return codes are returned
 as part of the output.

 Call Statement and
 Input:

 X INCX N Y INCY M INDX RC IOPT
 | | | | | | | | |
CALL IBSRCH(X , 2 , 5 , Y , 1 , 10 , INDX , RC , 1)

X = (-3, . , 125, . , 30, . , 20, . , 70)
Y = (10, 20, 30, 30, 40, 50, 60, 80, 90, 100)

 Output:

 INDX = (1, 11, 3, 2, 8)
RC = (1, 1, 0, 0, 1)

 	Example 2

 	
 This example shows the same calling sequence as in Example
 1, except that it includes the IOPT argument, specified
 as 1. This is equivalent to using the calling sequence in Example
 1 and gives the same results.

 Call Statement
 and Input:

 X INCX N Y INCY M INDX RC IOPT
 | | | | | | | | |
CALL IBSRCH(X , 2 , 5 , Y , 1 , 10 , INDX , RC , 1)

 	Example 3

 	
 This example shows a search where sequence x has
 a negative stride, and sequence y has a positive stride.
 The optional return codes are not requested, because IOPT is
 specified as 0.

 Call Statement and Input:

 X INCX N Y INCY M INDX RC IOPT
 | | | | | | | | |
CALL IBSRCH(X , -2 , 5 , Y , 1 , 10 , INDX , RC , 0)

X = (-3, . , 125, . , 30, . , 20, . , 70)
Y = (10, 20, 30, 30, 40, 50, 60, 80, 90, 100)

 Output:

 INDX = (8, 2, 3, 11, 1)
RC =(not relevant)

 	Example 4

 	
 This example shows a search where sequence x has
 a positive stride, and sequence y has a negative stride.
 As shown below, elements of y are in descending order
 in array Y. The optional return codes are not requested,
 because IOPT is specified as 0.

 Call Statement and Input:

 X INCX N Y INCY M INDX RC IOPT
 | | | | | | | | |
CALL IBSRCH(X , 2 , 5 , Y , -1 , 10 , INDX , RC , 0)

 X = (-3, . , 125, . , 30, . , 20, . , 70)

 Y = (100, 90, 80, 60, 50, 40, 30, 30, 20, 10)

 RC =

 (not relevant)

 Output:

 INDX = (1, 11, 3, 2, 8)

 Parent topic: Sorting and Searching

 ISSRCH, SSSRCH, and DSSRCH (Sequential Search for Elements
 of a Sequence X in the Sequence Y)

 Purpose

 These subroutines perform a sequential
 search for the locations of the elements of sequence x in
 another sequence y. Depending on the sign of the idir argument,
 the search direction indicator, the location of either the first or
 last occurrence of each element is indicated in the resulting indices
 array INDX. When an exact match between elements
 is not found, the position is indicated as 0.

 Table 225. Data Types.

 	x, y

 	Subroutine

 	Integer

 	ISSRCH

 	Short-precision real

 	SSSRCH

 	Long-precision real

 	DSSRCH

 Syntax

 	Fortran

 	CALL ISSRCH | SSSRCH | DSSRCH (x, incx, n, y, incy, m, idir, indx)

 	C and C++

 	issrch | sssrch | dssrch (x, incx, n, y, incy, m, idir, indx);

 	On Entry

 	

 	 x

 	is the sequence x of length n,
 containing the elements for which sequence y is searched.

 Specified as: a one-dimensional array of (at least) length 1+(n-1)|incx|,
 containing numbers of the data type indicated in Table 225.

 	 incx

 	is the stride for sequence x.
 Specified as:
 an integer. It can have any value.

 	 n

 	is the number of elements in sequence x and array INDX.

 Specified as: an integer; n ≥ 0.

 	 y

 	is the sequence y of length m to
 be searched.
 Note: Be careful in specifying the stride for sequence y.
 A negative stride reverses the direction of the search, because the
 order of the sequence elements is reversed in the array.

 Specified
 as: a one-dimensional array of (at least) length 1+(m-1)|incy|,
 containing numbers of the data type indicated in Table 225.

 	 incy

 	is the stride for sequence y.
 Specified as:
 an integer. It can have any value.

 	 m

 	is the number of elements in sequence y. Specified
 as: an integer; m ≥ 0.

 	 idir

 	indicates the search direction, where:
 If idir ≥ 0, sequence y is
 searched from the first element to the last (1, n),
 thus finding the first occurrence of the element in the sequence.

 If idir < 0, sequence y is searched
 from the last element to the first (n, 1), thus
 finding the last occurrence of the element in the sequence.

 Specified
 as: an integer. It can have any value.

 	 indx

 	See On Return.

 	On Return

 	

 	 indx

 	is the array, referred to as INDX, containing
 the n indices that indicate the positions of the
 elements of sequence x in sequence y,
 where:
 If idir ≥ 0, the first
 occurrence of the element found in sequence y is indicated
 in array INDX.

 If idir < 0,
 the last occurrence of the element found in sequence y is
 indicated in array INDX.

 In all cases, if
 no match is found, 0 is indicated in array INDX.

 Returned
 as: a one-dimensional array of length n, containing
 integers; 0 ≤ (INDX elements) ≤ m.

 Function

 These subroutines perform a sequential
 search for the first occurrence (or last occurrence, using a negative idir)
 of the locations of the elements of sequence x in another
 sequence y. The results of the sequential searches are
 returned in the indices array INDX, indicating the
 positions of the elements of sequence x in sequence y.
 The positions indicated in array INDX are calculated
 relative to the first sequence element position—that is, the position of y1.
 When an exact match between values of elements in sequences x and y is
 not found, 0 is indicated in array INDX for that
 position.

 The results returned in array INDX are
 expressed as follows:

 For

 i

 =

 1,

 n

 for all

 y

 j

 =

 x

 i

 ,

 j

 =

 1,

 m

 INDX

 (

 i

)

 =

 min(

 j

), if

 idir

 ≥

 0

 INDX

 (

 i

)

 =

 max(

 j

), if

 idir

 <

 0

 if all

 y

 j

 ≠

 x

 i

 ,

 j

 =

 1,

 m

 INDX

 (

 i

)

 =

 0

 where:

 x

 is a sequence of length

 n

 , containing the search elements.

 y

 is a sequence of length

 m

 to be searched.

 INDX

 is the array of length

 n

 of indices.

 See
 reference [89]. If n is
 0, no search is performed.

 It is important to note that a negative
 stride for sequence y reverses the direction of the
 search, because the order of the sequence elements is reversed in
 the array.

 Error conditions

 	[bookmark: am5gr_hissrch__am5gr_f13047]
 Computational Errors

 	None

 	[bookmark: am5gr_hissrch__am5gr_f13048]
 Input-Argument Errors

 	

 	n < 0

 	m < 0

 Examples

 	Example 1

 	
 This example shows a search where sequences x and y have
 positive strides, and the search direction indicator, idir,
 is positive.

 Call Statement and Input:

 X INCX N Y INCY M IDIR INDX
 | | | | | | | |
CALL ISSRCH(X , 1 , 3 , Y , 2 , 8 , 1 , INDX)

X = (0, 12, 3)
Y = (0, . , 8, . , 12, . , 0, . , 1, . , 4, . , 0, . , 2)

 Output:

 INDX = (1, 3, 0)

 	Example 2

 	
 This example shows a search where sequences x and y have
 positive strides, and the search direction indicator, idir,
 is negative.

 Call Statement and Input:

 X INCX N Y INCY M IDIR INDX
 | | | | | | | |
CALL ISSRCH(X , 2 , 3 , Y , 2 , 8 , -1 , INDX)

X = (0, . , 12, . , 3)
Y = (0, . , 8, . , 12, . , 0, . , 1, . , 4, . , 0, . , 2)

 Output:

 INDX = (7, 3, 0)

 	Example 3

 	
 This example shows a search where sequences x and y have
 negative strides, and the search direction indicator, idir,
 is positive.

 Call Statement and Input:

 X INCX N Y INCY M IDIR INDX
 | | | | | | | |
CALL ISSRCH(X , -1 , 3 , Y , -2 , 8 , 1 , INDX)

X = (0, 12, 3)
Y = (0, . , 8, . , 12, . , 0, . , 1, . , 4, . , 0, . , 2)

 Output:

 INDX = (0, 6, 2)

 	Example 4

 	
 This example shows a search where sequences x and y have
 negative strides, and the search direction indicator, idir,
 is negative.

 Call Statement and Input:

 X INCX N Y INCY M IDIR INDX
 | | | | | | | |
CALL ISSRCH(X , -2 , 3 , Y , -1 , 8 , -1 , INDX)

X = (0, . , 12, . , 3)
Y = (0, 8, 12, 0, 1, 4, 0, 2)

 Output:

 INDX = (0, 6, 8)

 Parent topic: Sorting and Searching

 Interpolation

 The interpolation subroutines are described here.

 	Overview of the Interpolation Subroutines

 	Use Considerations

 	Performance and Accuracy Considerations

 	Interpolation Subroutines

 	SPINT and DPINT (Polynomial Interpolation)

 	STPINT and DTPINT (Local Polynomial Interpolation)

 	SCSINT and DCSINT (Cubic Spline Interpolation)

 	SCSIN2 and DCSIN2 (Two-Dimensional Cubic Spline Interpolation)

 Parent topic: Reference Information

 Overview of the Interpolation Subroutines

 The interpolation subroutines provide the capabilities
 of doing polynomial interpolation, local polynomial interpolation,
 and one- and two-dimensional cubic spline interpolation (Table 226).

 Table 226. List of Interpolation
 Subroutines.

 	Descriptive Name

 	Short-Precision Subroutine

 	Long-Precision Subroutine

 	Location

 	Polynomial Interpolation

 	SPINT

 	DPINT

 	SPINT and DPINT (Polynomial Interpolation)

 	Local Polynomial Interpolation

 	STPINT

 	DTPINT

 	STPINT and DTPINT (Local Polynomial Interpolation)

 	Cubic Spline Interpolation

 	SCSINT

 	DCSINT

 	SCSINT and DCSINT (Cubic Spline Interpolation)

 	Two-Dimensional Cubic Spline Interpolation

 	SCSIN2

 	DCSIN2

 	SCSIN2 and DCSIN2 (Two-Dimensional Cubic Spline Interpolation)

 Parent topic: Interpolation

 Use Considerations

 Polynomial interpolation (SPINT and DPINT) is a global
 scheme. As the number of data points increases, the degree of the
 interpolating polynomial is raised; therefore, the graph of the interpolating
 polynomial tends to be oscillatory.

 Local polynomial interpolation (STPINT and DTPINT) is
 a local scheme. The data generated is affected only by locally grouped
 data points. The degree of the local interpolating polynomial is
 usually lower than a global interpolating polynomial.

 Parent topic: Interpolation

 Performance and Accuracy Considerations

 	Doing extrapolation with SPINT and DPINT is not encouraged unless
 you know the consequences of doing polynomial extrapolation.

 	If performance is the overriding consideration, you should investigate
 using the general signal processing subroutines, DQINT and SQINT.

 	There are some ESSL-specific rules that apply to the results of
 computations on the workstation processors using the ANSI/IEEE standards.
 For details, see What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?.

 Parent topic: Interpolation

 Interpolation Subroutines

 This contains the interpolation subroutine
 descriptions.

 Parent topic: Interpolation

 SPINT and DPINT (Polynomial Interpolation)

 Purpose

 These subroutines compute the Newton
 divided difference coefficients and perform a polynomial interpolation
 through a set of data points at specified abscissas.

 Table 227. Data Types.

 	x, y, c, t, s

 	Subroutine

 	Short-precision real

 	SPINT

 	Long-precision real

 	DPINT

 Syntax

 	Fortran

 	CALL SPINT | DPINT (x, y, n, c, ninit, t, s, m)

 	C and C++

 	spint | dpint (x, y, n, c, ninit, t, s, m);

 	On Entry

 	

 	 x

 	is the vector x of length n,
 containing the abscissas of the data points used in the interpolations.
 The elements of x must be distinct.
 Specified as:
 a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 227.

 	 y

 	is the vector y of length n,
 containing the ordinates of the data points used in the interpolations.

 Specified as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 227.

 	 n

 	is the number of elements in vectors x, y, and c—that
 is, the number of data points. Specified as: an integer; n ≥ 0.

 	 c

 	is the vector c of length n,
 where:
 If ninit ≤ 0, all elements
 of c are undefined on entry.

 If ninit > 0, c contains
 the Newton divided difference coefficients, cj for j = 1, ninit,
 for the interpolating polynomial through the data points (xj,yj)
 for j = 1, ninit. If ninit < n,
 the values of cj for j = ninit+1, n are
 undefined.

 Specified as: a one-dimensional array of (at least)
 length n, containing numbers of the data type indicated
 in Table 227.

 	 ninit

 	indicates the following:
 If ninit ≤ 0, this is
 the first call to this subroutine with the data in x and y;
 therefore, none of the Newton divided difference coefficients in c have
 been initialized.

 If ninit > 0,
 a previous call to this subroutine was made with the data points (xj, yj)
 for j = 1, ninit, where:

 	If ninit = n, all the Newton
 divided difference coefficients in c were computed for
 the data points. No additional coefficients are computed on this entry.

 	If ninit < n, the first ninit Newton
 divided difference coefficients in c were computed for
 the data points (xj, yj)
 for j = 1, ninit. The
 coefficients are updated for the additional data points (xj, yj)
 for j = ninit+1, n on
 this entry.

 Specified as: an integer; ninit ≤ n.

 	 t

 	is the vector t of length m,
 containing the abscissas at which interpolation is to be done.
 Specified
 as: a one-dimensional array of (at least) length m,
 containing numbers of the data type indicated in Table 227.

 	 s

 	See On Return.

 	 m

 	is the number of elements in vectors t and s—that
 is, the number of interpolations to be performed.
 Specified as:
 an integer; m ≥ 0.

 	On Return

 	

 	 c

 	is the vector c of length n,
 containing the coefficients of the Newton divided difference form
 of the interpolating polynomial through the data points (xj,yj)
 for j = 1, n. Returned
 as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 227.

 	 ninit

 	is the number of coefficients, n, in output
 vector c. (If you call this subroutine again with the
 same data, this value should be specified for ninit.)
 Returned as: an integer; ninit = n.

 	 s

 	is the vector s of length m,
 containing the resulting interpolated values; that is, each si is
 the value of the interpolating polynomial evaluated at ti.
 Returned as: a one-dimensional array of (at least) length m,
 containing numbers of the data type indicated in Table 227.

 Notes

 	In your C program, argument ninit must be passed
 by reference.

 	Vectors x, y, and t must have no common
 elements with vectors c and s, and vector c must
 have no common element with vector s; otherwise, results
 are unpredictable.

 	The elements of vector x must be distinct; that
 is, xi ≠ xj if i ≠ j for i, j = 1, n.

 Function

 Polynomial interpolation
 is performed at specified abscissas, ti for i = 1, m,
 in vector t, using the method of Newton divided differences
 through the data points:

 (

 x

 j

 ,

 y

 j

) for

 j

 =

 1,

 n

 where:

 x

 j

 are elements of vector

 x

 .

 y

 j

 are elements of vector

 y

 .

 The
 interpolated value at each ti is
 returned in si for i = 1, m.
 See references [22] and [63]. The interpolating
 values returned in s are computed using the Newton divided
 difference coefficients, as defined here.

 The divided difference
 coefficients, cj for j = 1, n,
 are returned in vector c. These coefficients can then
 be reused on subsequent calls to this subroutine, using the same data
 points (xj, yj),
 but with new values of ti.
 If the number of data points is increased from one call this subroutine
 to the next, the new coefficients are computed, and the existing coefficients
 are updated (not recomputed). This feature can be used to test for
 the convergence of the interpolations through a sequence of an increasingly
 larger set of points.

 The values specified for ninit and m indicate
 which combination of functions are performed by this subroutine: computing
 the coefficients, performing the interpolation, or both. If m = 0,
 only the divided difference coefficients are computed. No interpolation
 is performed. If n = 0, no computation or interpolation
 is performed.

 For SPINT, the Newton divided differences and
 interpolating values are accumulated in long precision.

 Newton Divided Differences and Interpolating Values:

 The
 Newton divided differences of the following data points:

 (

 x

 j

 ,

 y

 j

)

 for

 j

 =

 1,

 n

 where

 x

 j

 ≠

 x

 l

 if

 j

 ≠

 l

 for

 j

 ,

 l

 =

 1,

 n

 are
 denoted by δkyj for k = 0,
 1, 2, …, n-1
 and j = 1, 2, …, n-k,
 and are defined as follows:

 For

 k

 =

 0 and 1:

 δ

 0

 y

 j

 =

 y

 j

 for

 j

 =

 1, 2,

 …

 ,

 n

 δ

 1

 y

 j

 = (

 y

 j

 +1

 -

 y

 j

) / (

 x

 j

 +1

 -

 x

 j

)

 for

 j

 =

 1, 2,

 …

 ,

 n

 -1

 For

 k

 =

 2, 3,

 …

 ,

 n

 -1:

 δ

 k

 y

 j

 = (

 δ

 k

 -1

 y

 j

 +1

 -

 δ

 k

 -1

 y

 j

) / (

 x

 j

 +

 k

 -

 x

 j

)

 for

 j

 =

 1, 2,

 …

 ,

 n

 -

 k

 The
 value s of the Newton divided difference form of
 the interpolating polynomial evaluated at an abscissa t is
 given by:

 s

 =

 y

 n

 + (

 t

 -

 x

 n

)

 δ

 1

 y

 n

 -1

 + (

 t

 -

 x

 n

 -1

) (

 t

 -

 x

 n

)

 δ

 2

 y

 n

 -2

 +

 …

 +(

 t

 -

 x

 2

) (

 t

 -

 x

 3

)

 …

 (

 t

 -

 x

 n

)

 δ

 n

 -1

 y

 1

 Therefore,
 on output, the coefficients in vector c are as follows:

 c

 n

 =

 y

 n

 c

 n

 -1

 =

 δ

 1

 y

 n

 -1

 c

 n

 -2

 =

 δ

 2

 y

 n

 -2

 .

 .

 .

 c

 1

 =

 δ

 n

 -1

 y

 1

 Also,
 the interpolating values in s, in terms of c,
 are as follows for i = 1, m:

 s

 i

 =

 c

 n

 + (

 t

 i

 -

 x

 n

)

 c

 n

 -1

 + (

 t

 i

 -

 x

 n

 -1

) (

 t

 i

 -

 x

 n

)

 c

 n

 -2

 +

 …

 + (

 t

 i

 -

 x

 2

) (

 t

 i

 -

 x

 3

)

 …

 (

 t

 i

 -

 x

 n

)

 c

 1

 Error conditions

 	[bookmark: am5gr_hspint__am5gr_f14003]
 Computational Errors

 	None

 	[bookmark: am5gr_hspint__am5gr_f14004]
 Input-Argument Errors

 	

 	n < 0

 	ninit > n

 	m < 0

 Examples

 	Example 1

 	
 This example shows a quadratic polynomial interpolation on
 the initial call with the specified data points; that is, NINIT = 0,
 and C contains all undefined values. On output, NINIT and C are
 updated with new values.

 Call Statement
 and Input:

 X Y N C NINIT T S M
 | | | | | | | |
CALL SPINT(X , Y , 3 , C , 0 , T , S , 2)

 X = (-0.50, 0.00, 1.00)
Y = (0.25, 0.00, 1.00)
C = (. , . , .)
T = (-0.2, 0.2)

 Output:
 C = (1.00, 1.00, 1.00)
NINIT = 3
S = (0.04, 0.04)

 	Example 2

 	
 This example shows a quadratic polynomial interpolation on
 a subsequent call with the same data points specified in Example 1,
 but using a different set of abscissas in T. In this
 case, NINIT = N = 3,
 and C contains the values defined on output in Example
 1. On output here, the values in NINIT and C are
 unchanged.

 Call Statement and Input:

 X Y N C NINIT T S M
 | | | | | | | |
CALL SPINT(X , Y , 3 , C , 3 , T , S , 2)

 X = (-0.50, 0.00, 1.00)
Y = (0.25, 0.00, 1.00)
C = (1.00, 1.00, 1.00)
T = (-0.10, 0.10)

 Output:
 C = (1.00, 1.00, 1.00)
NINIT = 3
S = (0.01, 0.01)

 	Example 3

 	
 This example is the same as Example 2 except that it specifies
 additional data points on the subsequent call to the subroutine. In
 this case, 0 < NINIT < N. On output here,
 the values in NINIT and C are updated.
 The interpolating polynomial is a degree of 4.

 Call
 Statement and Input:

 X Y N C NINIT T S M
 | | | | | | | |
CALL SPINT(X , Y , 5 , C , 3 , T , S , 2)

 X = (-0.50, 0.00, 1.00, -1.00, 0.50)
Y = (0.25, 0.00, 1.00, 1.10, 0.26)
C = (1.00, 1.00, 1.00, . , .)
T = (-0.10, 0.10)

 Output:
 C = (0.04, -0.06, 1.02, -0.56, 0.26)
NINIT = 5
S = (0.0072, 0.0130)

 Parent topic: Interpolation

 STPINT and DTPINT (Local Polynomial Interpolation)

 Purpose

 These subroutines perform a polynomial
 interpolation at specified abscissas, using data points selected from
 a table of data.

 Table 228. Data Types.

 	x, y, t, s, aux

 	Subroutine

 	Short-precision real

 	STPINT

 	Long-precision real

 	DTPINT

 Syntax

 	Fortran

 	CALL STPINT | DTPINT (x, y, n, nint, t, s, m, aux, naux)

 	C and C++

 	stpint | dtpint (x, y, n, nint, t, s, m, aux, naux);

 	On Entry

 	

 	 x

 	is the vector x of length n,
 containing the abscissas of the data points used in the interpolations.
 The elements of x must be distinct and sorted into ascending
 order.
 Specified as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 228.

 	 y

 	is the vector y of length n,
 containing the ordinates of the data points used in the interpolations.

 Specified as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 228.

 	 n

 	is the number of elements in vectors x and y—that
 is, the number of data points. Specified as: an integer; n ≥ 0.

 	 nint

 	is the number of data points to be used in the interpolation at
 any given point.
 Specified as: an integer; 0 ≤ nint ≤ n.

 	 t

 	is the vector t of length m,
 containing the abscissas at which interpolation is to be done. For
 optimal performance, t should be sorted into ascending
 order.
 Specified as: a one-dimensional array of (at least) length m,
 containing numbers of the data type indicated in Table 228.

 	 s

 	See On Return.

 	 m

 	is the number of elements in vectors t and s—that
 is, the number of interpolations to be performed.
 Specified as:
 an integer; m ≥ 0.

 	 aux

 	has the following meaning:
 If naux = 0
 and error 2015 is unrecoverable, aux is ignored.

 Otherwise,
 it is the storage work area used by this subroutine. Its size is specified
 by naux.

 Specified as: an area of storage,
 containing numbers of the data type indicated in Table 228. On output, the contents
 are overwritten.

 	 naux

 	is the size of the work area specified by aux—that
 is, the number of elements in aux.
 Specified
 as: an integer, where:

 If naux = 0
 and error 2015 is unrecoverable, STPINT and DTPINT dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise,
 it must have the following value:

 	For STPINT

 	

 	For 32-bit integer arguments

 	naux ≥ nint + m

 	For 64-bit integer arguments

 	naux ≥ nint +
 2m

 	For DTPINT

 	naux ≥ nint + m

 	On Return

 	

 	 s

 	is the vector s of length m,
 containing the resulting interpolated values; that is, each si is
 the value of the interpolating polynomial evaluated at ti.
 Returned as: a one-dimensional array of (at least) length m,
 containing numbers of the data type indicated in Table 228.

 Notes

 	Vectors x, y, and t must have no common
 elements with vector s or work area aux;
 otherwise, results are unpredictable. See Concepts.

 	The elements of vector x must be distinct and must
 be sorted into ascending order; that is, x1 < x2 < … < xn.
 Otherwise, results are unpredictable. For details on how to do this,
 see ISORT, SSORT, and DSORT (Sort the Elements of a Sequence).

 	The elements of vector t should be sorted into ascending
 order; that is, t1 ≤ t2 ≤ t3 ≤ … ≤ tm.
 Otherwise, performance is affected.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 Polynomial interpolation is performed
 at specified abscissas, ti for i = 1, m,
 in vector t, using nint points selected
 from the following data:

 (

 x

 j

 ,

 y

 j

)

 for

 j

 =

 1,

 n

 where:

 x

 1

 <

 x

 2

 <

 x

 3

 <

 …

 <

 x

 n

 x

 j

 are elements of vector

 x

 .

 y

 j

 are elements of vector

 y

 .

 The
 points (xj, yj),
 used in the interpolation at a given abscissa ti,
 are chosen as follows, where k = nint/2:

 For

 t

 i

 ≤

 x

 k

 +1

 , the first

 nint

 points are used.

 For

 t

 i

 >

 x

 n

 -

 nint

 +

 k

 , the last

 nint

 points are used.

 Otherwise, points

 h

 through

 h

 +

 nint

 -1 are used, where:

 x

 h

 +

 k

 -1

 <

 t

 i

 ≤

 x

 h

 +

 k

 The
 interpolated value at each ti is
 returned in si for i = 1, m.
 See references [22] and [63]. If n,
 nint, or m is 0, no computation is performed.
 For a definition of the polynomial interpolation function performed
 through a set of data points, see Function.

 For
 STPINT, the Newton divided differences and interpolating values are
 accumulated in long precision.

 Error conditions

 	[bookmark: am5gr_hstpint__am5gr_f14015]
 Resource Errors

 	Error 2015 is unrecoverable, naux = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hstpint__am5gr_f14016]
 Computational Errors

 	None

 	[bookmark: am5gr_hstpint__am5gr_f14017]
 Input-Argument Errors

 	

 	n < 0

 	nint < 0 or nint > n

 	m < 0

 	Error 2015 is recoverable or naux≠0, and naux is
 too small—that
 is, less than the minimum required value specified in the syntax for
 this argument. Return code 1 is returned if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows interpolation using two data points—that
 is, linear interpolation—at each ti value.

 Call Statement and Input:

 X Y N NINT T S M AUX NAUX
 | | | | | | | | |
CALL STPINT(X , Y , 10 , 2 , T , S , 5 , AUX , 7)

X = (0.0, 0.4, 1.0, 1.5, 2.1, 2.6, 3.0, 3.4, 3.9, 4.3)
Y = (1.0, 2.0, 3.0, 4.0, 5.0, 5.0, 4.0, 3.0, 2.0, 1.0)
T = (-1.0, 0.1, 1.1, 1.2, 3.9)

 Output:
 S = (-1.5000, 1.2500, 3.2000, 3.4000, 2.0000)

 	Example 2

 	
 This example shows interpolation using three data points—that
 is, quadratic interpolation—at each ti value.

 Call Statement and Input:

 X Y N NINT T S M AUX NAUX
 | | | | | | | | |
CALL STPINT(X , Y , 10 , 3 , T , S , 5 , AUX , 8)

X = (0.0, 0.4, 1.0, 1.5, 2.1, 2.6, 3.0, 3.4, 3.9, 4.3)
Y = (1.0, 2.0, 3.0, 4.0, 5.0, 5.0, 4.0, 3.0, 2.0, 1.0)
T = (-1.0, 0.1, 1.1, 1.2, 3.9)

 Output:
 S = (-2.6667, 1.2750, 3.2121, 3.4182, 2.0000)

 Parent topic: Interpolation

 SCSINT and DCSINT (Cubic Spline Interpolation)

 Purpose

 These subroutines compute the coefficients
 of the cubic spline through a set of data points and evaluate the
 spline at specified abscissas.

 Table 229. Data Types.

 	x, y, C, t, s

 	Subroutine

 	Short-precision real

 	SCSINT

 	Long-precision real

 	DCSINT

 Syntax

 	Fortran

 	CALL SCSINT | DCSINT (x, y, c, n, init, t, s, m)

 	C and C++

 	scsint | dcsint (x, y, c, n, init, t, s, m);

 	On Entry

 	

 	 x

 	is the vector x of length n,
 containing the abscissas of the data points that define the spline.
 The elements of x must be distinct and sorted into ascending
 order. Specified as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 229.

 	 y

 	is the vector y of length n,
 containing the ordinates of the data points that define the spline.

 Specified as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 229.

 	 c

 	is the matrix C with elements cjk for j = 1, n and k = 1,
 4 that contain the following:
 If init ≤ 0, all elements
 of c are undefined on entry.

 If init = 1, c11 contains
 the spline derivative at x1.

 If init = 2, c21 contains
 the spline derivative at xn.

 If init = 3, c11 contains
 the spline derivative at x1, and c21 contains
 the spline derivative at xn.

 If init > 3, c contains
 the coefficients of the spline computed for the data points (xj,yj)
 for j = 1, n on a previous
 call to this subroutine.

 Specified as: an n by
 (at least) 4 array, containing numbers of the data type indicated
 in Table 229.

 	 n

 	is the number of elements in vectors x and y and
 the number of rows in matrix C—that is, the number of data points.
 Specified
 as: an integer; n ≥ 0.

 	 init

 	indicates the following, where in those cases for uninitialized
 coefficients, this is the first call to this subroutine with the data
 in x and y:
 If init ≤ 0, the coefficients
 are uninitialized. The second derivatives of the spline at x1 and xn are
 set to zero. (These are free end conditions, also called natural boundary
 conditions.)

 If init = 1, the coefficients are uninitialized.
 The value in c11 is used as the spline
 derivative at x1.

 If init = 2,
 the coefficients are uninitialized. The value in c21 is
 used as the spline derivative at xn.

 If init = 3,
 the coefficients are uninitialized. The value in c11 is
 used as the spline derivative at x1 and
 the value in c21 is used as the spline
 derivative at xn.

 If init > 3,
 the coefficients in c were computed for data points
 (xj, yj)
 for j = 1, n on a previous
 call to this subroutine.

 Specified as: an integer. It can
 have any value.

 	 t

 	is the vector t of length m,
 containing the abscissas at which the spline is evaluated.
 Specified
 as: a one-dimensional array of (at least) length m,
 containing numbers of the data type indicated in Table 229.

 	 s

 	See On Return.

 	 m

 	is the number of elements in vectors t and s—that
 is, the number of points at which the spline interpolation is evaluated.

 Specified as: an integer; m ≥ 0.

 	On Return

 	

 	 c

 	is the matrix C, containing the coefficients of
 the spline through the data points (xj,yj)
 for j = 1, n. Returned
 as: an n by (at least) 4 array, containing numbers
 of the data type indicated in Table 229.

 	 init

 	is an indicator that is set to indicate that the coefficients
 have been initialized. (If you call this subroutine again with the
 same data, this value should be specified for init.)
 Returned as: an integer; init = 4.

 	 s

 	is the vector s of length m,
 containing the resulting values of the spline; that is, each si is
 the value of the spline evaluated at ti.
 Returned as: a one-dimensional array of (at least) length m,
 containing numbers of the data type indicated in Table 229.

 Notes

 	In your C program, argument init must be passed
 by reference.

 	Vectors x, y, and t must have no common
 elements with matrix C and vector s, and
 matrix C must have no common elements with vector s;
 otherwise, results are unpredictable.

 	The elements of vector x must be distinct and must
 be sorted into ascending order; that is, x1 < x2 < … < xn.
 Otherwise, results are unpredictable. For details on how to do this,
 see ISORT, SSORT, and DSORT (Sort the Elements of a Sequence).

 Function

 Interpolation
 is performed at specified abscissas, ti for i = 1, m,
 in vector t, using the cubic spline passing through
 the data points:

 (

 x

 j

 ,

 y

 j

)

 for

 j

 =

 1,

 n

 where:

 x

 1

 <

 x

 2

 <

 x

 3

 <

 …

 <

 x

 n

 x

 j

 are elements of vector

 x

 .

 y

 j

 are elements of vector

 y

 .

 The
 value of the cubic spline at each ti is
 returned in si for i = 1, m.
 See references [22] and [63]. The coefficients
 of the spline, cjk for j = 1, n and k = 1,
 4, are returned in matrix C. These coefficients can
 then be reused on subsequent calls to this subroutine, using the same
 data points (xj, yj),
 but with new values of ti.
 The cubic spline values returned in s are computed using
 the coefficients as follows:

 s

 i

 =

 c

 j

 1

 +

 c

 j

 2

 (

 x

 j

 -

 t

 i

) +

 c

 j

 3

 (

 x

 j

 -

 t

 i

)

 2

 +

 c

 j

 4

 (

 x

 j

 -

 t

 i

)

 3

 for

 i

 =

 1,

 m

 where:

 j

 =

 1

 for

 t

 i

 ≤

 x

 1

 j

 =

 k

 for

 x

 1

 <

 t

 i

 ≤

 x

 n

 , such that

 x

 k

 -1

 <

 t

 i

 ≤

 x

 k

 j

 =

 n

 for

 x

 n

 <

 t

 i

 The
 values specified for m and init indicate
 which combination of functions are performed by this subroutine:

 	If m = 0 and init > 3,
 no computation is performed.

 	If m = 0 and init ≤ 3, only the
 coefficients are computed, and no interpolation is performed.

 	If m ≠ 0 and init > 3,
 the coefficients are not computed, and the interpolation is performed.

 	If m ≠ 0 and init ≤ 3, the coefficients
 are computed, and the interpolation is performed.

 In addition, if n = 0, no computation is performed.

 The
 values specified for n and init determine
 the type of spline function:

 	If n = 1, the constructed spline is a constant
 function.

 	If n = 2 and init = 0,
 the constructed spline is a line through the points.

 	If n = 2 and init = 1,
 the constructed spline is a cubic function through the points whose
 derivative at x1 is c11.

 	If n = 2 and init = 2,
 the constructed spline is a cubic function through the points whose
 derivative at xn is c21.

 	If n = 2 and init = 3,
 the constructed spline is a cubic function through the points whose
 derivative at x1 is c11 and
 at xn is c21.

 Error conditions

 	[bookmark: am5gr_hscsint__am5gr_f14025]
 Computational Errors

 	None

 	[bookmark: am5gr_hscsint__am5gr_f14026]
 Input-Argument Errors

 	

 	n < 0

 	m < 0

 Examples

 	Example 1

 	
 This example computes the spline coefficients through a set
 of data points with no derivative value specified. It also evaluates
 the spline at the abscissas specified in T. On output, INIT and C are
 updated with new values.

 Call Statement
 and Input:

 X Y C N INIT T S M
 | | | | | | | |
CALL SCSINT(X , Y , C , 6 , 0 , T , S , 4)

 X = (1.000, 2.000, 3.000, 4.000, 5.000, 6.000)

 Y = (0.000, 1.000, 2.000, 1.100, 0.000, -1.000)

 C =

 (not relevant)

 T = (-1.000, 2.500, 4.000, 7.000)

 Output: ┌ ┐
 | 0.000 -0.868 0.000 -0.132 |
 | 1.000 -1.264 0.396 -0.132 |
C = | 2.000 -0.076 -1.585 0.660 |
 | 1.100 1.267 0.243 -0.609 |
 | 0.000 1.010 0.014 0.076 |
 | -1.000 0.995 0.000 0.005 |
 └ ┘

 INIT = 4
S = (-2.792, 1.649, 1.100, -2.000)

 	Example 2

 	
 This example computes the spline coefficients through a set
 of data points with a derivative value specified at the right endpoint.
 It also evaluates the spline at the abscissas specified in T.
 On output, INIT and C are updated
 with new values.

 Call Statement and Input:

 X Y C N INIT T S M
 | | | | | | | |
CALL SCSINT(X , Y , C , 6 , 2 , T , S , 4)

X = (1.000, 2.000, 3.000, 4.000, 5.000, 6.000)
Y = (0.000, 1.000, 2.000, 1.100, 0.000, -1.000)

 ┌ ┐
 | |
 | 0.1 . . . |
C = | |
 | |
 | |
 | |
 └ ┘

T = (-1.000, 2.500, 4.000, 7.000)

 Output: ┌ ┐
 | 0.000 -0.865 0.000 -0.135 |
 | 1.000 -1.270 0.405 -0.135 |
C = | 2.000 -0.054 -1.621 0.675 |
 | 1.100 1.188 0.379 -0.667 |
 | 0.000 1.303 -0.494 0.291 |
 | -1.000 0.100 1.897 -0.797 |
 └ ┘

INIT = 4
S = (-2.810, 1.652, 1.100, 1.794)

 	Example 3

 	
 This example computes the spline coefficients through a set
 of data points with a derivative value specified at both endpoints.
 It does not evaluate the spline at any points. On output, INIT and C are
 updated with new values. Because arrays are not needed for arguments t and s,
 the value 0 is specified in their place.

 Call
 Statement and Input:

 X Y C N INIT T S M
 | | | | | | | |
CALL SCSINT(X , Y , C , 6 , 3 , 0 , 0 , 0)

X = (1.000, 2.000, 3.000, 4.000, 5.000, 6.000)
Y = (0.000, 1.000, 2.000, 1.100, 0.000, -1.000)

 ┌ ┐
 | -1.0 . . . |
 | 0.1 . . . |
C = | |
 | |
 | |
 | |
 └ ┘

 Output: ┌ ┐
 | 0.000 1.000 3.230 1.230 |
 | 1.000 -1.770 -0.460 1.230 |
C = | 2.000 0.079 -1.389 0.310 |
 | 1.100 1.152 0.316 -0.568 |
 | 0.000 1.312 -0.476 0.264 |
 | -1.000 -0.100 1.888 -0.788 |
 └ ┘

INIT = 4

 	Example 4

 	
 This example evaluates the spline at a set of points, using
 the coefficients obtained in Example 3.

 Call
 Statement and Input:

 X Y C N INIT T S M
 | | | | | | | |
CALL SCSINT(X , Y , C , 6 , 4 , T , S , 4)

 X = (1.000, 2.000, 3.000, 4.000, 5.000, 6.000)

 Y = (0.000, 1.000, 2.000, 1.100, 0.000, -1.000)

 C =

 (same as output

 C

 in Example 3)

 T = (-1.000, 2.500, 4.000, 7.000)

 Output:

 C =

 (same as output

 C

 in Example 3)

 S = (24.762, 1.731, 1.100, 1.776)

 INIT = 4

 Parent topic: Interpolation

 SCSIN2 and DCSIN2 (Two-Dimensional Cubic Spline Interpolation)

 Purpose

 These subroutines compute the interpolation
 values at a specified set of points, using data defined on a rectangular
 mesh in the x-y plane.

 Table 230. Data Types.

 	x, y, Z, t, u, aux, S

 	Subroutine

 	Short-precision real

 	SCSIN2

 	Long-precision real

 	DCSIN2

 Syntax

 	Fortran

 	CALL SCSIN2 | DCSIN2 (x, y, z, n1, n2, ldz, t, u, m1, m2, s, lds, aux, naux)

 	C and C++

 	scsin2 | dcsin2 (x, y, z, n1, n2, ldz, t, u, m1, m2, s, lds, aux, naux);

 	On Entry

 	

 	 x

 	is the vector x of length n1,
 containing the x-coordinates of the data points that define the spline.
 The elements of x must be distinct and sorted into ascending
 order.
 Specified as: a one-dimensional array of (at least) length n1,
 containing numbers of the data type indicated in Table 230.

 	 y

 	is the vector y of length n2,
 containing the y-coordinates of the data points that define the spline.
 The elements of y must be distinct and sorted into ascending
 order.
 Specified as: a one-dimensional array of (at least) length n2,
 containing numbers of the data type indicated in Table 230.

 	 z

 	is the matrix Z, containing the data at (xi, yj)
 for i = 1, n1 and j = 1, n2 that
 defines the spline.
 Specified as: an ldz by
 (at least) n2 array, containing numbers of the
 data type indicated in Table 230.

 	 n1

 	is the number of elements in vector x and the number
 of rows in matrix Z—that is, the number of x-coordinates at which
 the spline is defined.
 Specified as: an integer; n1 ≥ 0.

 	 n2

 	is the number of elements in vector y and the number
 of columns in matrix Z—that is, the number of y-coordinates at which
 the spline is defined.
 Specified as: an integer; n2 ≥ 0.

 	 ldz

 	is the leading dimension of the array specified for z.

 Specified as: an integer; ldz > 0
 and ldz ≥ n1.

 	 t

 	is the vector t of length m1,
 containing the x-coordinates at which the spline is evaluated.
 Specified
 as: a one-dimensional array of (at least) length m1,
 containing numbers of the data type indicated in Table 230.

 	 u

 	is the vector u of length m2,
 containing the y-coordinates at which the spline is evaluated.
 Specified
 as: a one-dimensional array of (at least) length m2,
 containing numbers of the data type indicated in Table 230.

 	 m1

 	is the number of elements in vector t—that
 is, the number of x-coordinates at which the spline interpolation
 is evaluated. Specified as: an integer; m1 ≥ 0.

 	 m2

 	is the number of elements in vector u—that
 is, the number of y-coordinates at which the spline interpolation
 is evaluated. Specified as: an integer; m2 ≥ 0.

 	 s

 	See On Return.

 	 lds

 	is the leading dimension of the array specified for s.

 Specified as: an integer; lds > 0
 and lds ≥ m1.

 	 aux

 	has the following meaning:
 If naux = 0
 and error 2015 is unrecoverable, aux is ignored.

 Otherwise,
 it is the storage work area used by this subroutine. Its size is specified
 by naux.

 Specified as: an area of storage,
 containing numbers of the data type indicated in Table 228. On
 output, the contents are overwritten.

 	 naux

 	is the size of the work area specified by aux—that
 is, the number of elements in aux.
 Specified
 as: an integer, where:

 If naux = 0
 and error 2015 is unrecoverable, SCSIN2 and DCSIN2 dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise:

 	For SCSIN2

 	

 	For 32-bit integer arguments

 	naux ≥ (10)(max(n1, n2))
 + (n2 + 1)(m1) + 2(m2)

 	For 64-bit integer arguments

 	naux ≥ (10)(max(n1, n2))
 + (n2 + 2)(m1) + 3(m2)

 	For DCSIN2

 	naux ≥ (10)(max(n1, n2))
 + (n2 + 1)(m1) + 2(m2)

 	On Return

 	

 	 s

 	is the matrix S with elements skh that
 contain the interpolation values at (tk, uh)
 for k = 1, m1 and h = 1, m2.
 Returned as: an lds by (at least) m2 array,
 containing numbers of the data type indicated in Table 230.

 Notes

 	The cyclic reduction method used to solve the equations in this
 subroutine can generate underflows on well-scaled problems. This
 does not affect accuracy, but it may decrease performance. For this
 reason, you may want to disable underflow before calling this subroutine.

 	Vectors x, y, t, and u,
 matrix Z, and the aux work area must
 have no common elements with matrix S; otherwise, results
 are unpredictable.

 	The elements within vectors x and y must
 be distinct. In addition, the elements in the vectors must be sorted
 into ascending order; that is, x1 < x2 < … < xn1 and y1 < y2 < … < yn2.
 Otherwise, results are unpredictable. For details on how to do this,
 see ISORT, SSORT, and DSORT (Sort the Elements of a Sequence).

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 Interpolation
 is performed at a specified set of points:

 (

 t

 k

 ,

 u

 h

)

 for

 k

 =

 1,

 m1

 and

 h

 =

 1,

 m2

 by
 fitting bicubic spline functions with natural boundary conditions,
 using the following set of data, defined on a rectangular grid, (xi, yj)
 for i = 1, n1 and j = 1, n2:

 z

 ij

 for

 i

 =

 1,

 n1

 and

 j

 =

 1,

 n2

 where tk, uh, xi, yj,
 and zij are elements
 of vectors t, u, x, and y and
 matrix Z, respectively. In vectors x and y,
 elements are assumed to be sorted into ascending order.

 The
 interpolation involves two steps:

 	For each j from 1 to n2,
 the single variable cubic spline:

 [image: Cubic Spline Graphic]

 with natural boundary conditions, is constructed using
 the data points:

 (

 x

 i

 ,

 z

 ij

)

 for

 i

 =

 1,

 n1

 The
 following interpolation values are then computed:

 [image: Cubic Spline Graphic]

 	For each k from 1 to m1,
 the single variable cubic spline:

 [image: Cubic Spline Graphic]

 with natural boundary conditions, is constructed using
 the data points:

 [image: Cubic Spline Graphic]

 The following interpolation values are then computed:

 [image: Cubic Spline Graphic]

 See references [63] and [71]. Because natural
 boundary conditions (zero second derivatives at the end of the ranges)
 are used for the splines, unless the underlying function has these
 properties, interpolated values near the boundaries may be less satisfactory
 than elsewhere. If n1, n2, m1,
 or m2 is 0, no computation is performed.

 Error conditions

 	[bookmark: am5gr_hscsin2__am5gr_f14040]
 Resource Errors

 	Error 2015 is unrecoverable, naux = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hscsin2__am5gr_f14041]
 Computational Errors

 	None

 	[bookmark: am5gr_hscsin2__am5gr_f14042]
 Input-Argument Errors

 	

 	n1 < 0 or n1 > ldz

 	n2 < 0

 	m1 < 0 or m1 > lds

 	m2 < 0

 	ldz < 0

 	lds < 0

 	Error 2015 is recoverable or naux≠0, and naux is
 too small—that
 is, less than the minimum required value specified in the syntax for
 this argument. Return code 1 is returned if error 2015 is recoverable.

 Examples

 	[bookmark: am5gr_hscsin2__am5gr_f14043]
 Example

 	
 This example computes the interpolated values at a specified
 set of points, given by T and U,
 from a set of data points defined on a rectangular mesh in the x-y
 plane, using X, Y, and Z.

 Call Statement and Input:

 X Y Z N1 N2 LDZ T U M1 M2 S LDS AUX NAUX
 | | | | | | | | | | | | | |
CALL SCSIN2(X , Y , Z , 6 , 5 , 6 , T , U , 4 , 3 , S , 4 , AUX , 90)

X = (0.0, 0.2, 0.3, 0.4, 0.5, 0.7)
Y = (0.0, 0.2, 0.3, 0.4, 0.6)

 ┌ ┐
 | 0.000 0.008 0.027 0.064 0.216 |
 | 0.008 0.016 0.035 0.072 0.224 |
Z = | 0.027 0.035 0.054 0.091 0.243 |
 | 0.064 0.072 0.091 0.128 0.280 |
 | 0.125 0.133 0.152 0.189 0.341 |
 | 0.343 0.351 0.370 0.407 0.559 |
 └ ┘

 T = (0.10, 0.15, 0.25, 0.35)
U = (0.05, 0.25, 0.45)

 Output:
 ┌ ┐
 | 0.001 0.017 0.095 |
S = | 0.003 0.019 0.097 |
 | 0.016 0.031 0.110 |
 | 0.043 0.059 0.137 |
 └ ┘

 	

 Parent topic: Interpolation

 Numerical Quadrature

 The numerical quadrature subroutines are described.

 	Overview of the Numerical Quadrature Subroutines

 	Use Considerations

 	Performance and Accuracy Considerations

 	Programming Considerations for the SUBF Subroutine

 	Numerical Quadrature Subroutines

 	SPTNQ and DPTNQ (Numerical Quadrature Performed on a Set of Points)

 	SGLNQ and DGLNQ (Numerical Quadrature Performed on a Function Using Gauss-Legendre Quadrature)

 	SGLNQ2 and DGLNQ2 (Numerical Quadrature Performed on a Function Over a Rectangle Using Two-Dimensional Gauss-Legendre Quadrature)

 	SGLGQ and DGLGQ (Numerical Quadrature Performed on a Function Using Gauss-Laguerre Quadrature)

 	SGRAQ and DGRAQ (Numerical Quadrature Performed on a Function Using Gauss-Rational Quadrature)

 	SGHMQ and DGHMQ (Numerical Quadrature Performed on a Function Using Gauss-Hermite Quadrature)

 Parent topic: Reference Information

 Overview of the Numerical Quadrature Subroutines

 The numerical quadrature subroutines provide Gaussian
 quadrature methods for integrating a tabulated function and a user-supplied
 function over a finite, semi-infinite, or infinite region of integration.

 Table 231. List of Numerical Quadrature
 Subroutines.

 	Short-Precision
 Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	SPTNQ

 	DPTNQ

 	SPTNQ and DPTNQ (Numerical Quadrature Performed on a Set of Points)

 	SGLNQ†

 	DGLNQ†

 	SGLNQ and DGLNQ (Numerical Quadrature Performed on a Function Using Gauss-Legendre Quadrature)

 	SGLNQ2†

 	DGLNQ2†

 	SGLNQ2 and DGLNQ2 (Numerical Quadrature Performed on a Function Over a Rectangle Using Two-Dimensional Gauss-Legendre Quadrature)

 	SGLGQ†

 	DGLGQ†

 	SGLGQ and DGLGQ (Numerical Quadrature Performed on a Function Using Gauss-Laguerre Quadrature)

 	SGRAQ†

 	DGRAQ†

 	SGRAQ and DGRAQ (Numerical Quadrature Performed on a Function Using Gauss-Rational Quadrature)

 	SGHMQ†

 	DGHMQ†

 	SGHMQ and DGHMQ (Numerical Quadrature Performed on a Function Using Gauss-Hermite Quadrature)

 	
 † This subprogram is
 invoked as a function in a Fortran program.

 Parent topic: Numerical Quadrature

 Use Considerations

 This contains some key points about using the numerical
 quadrature subroutines.

 	Choosing the Method

 Parent topic: Numerical Quadrature

 Choosing the Method

 The theoretical aspects of choosing the method to use for integration can
 be found in the references [33], [72], and [111].

 Parent topic: Use Considerations

 Performance and Accuracy Considerations

 	There are n function evaluations for
 a method of order n. Because function evaluations
 are expensive in terms of computing time, you should weigh the considerations
 for computing time and accuracy in choosing a value for n.

 	To achieve optimal performance in the _GLNQ2 subroutines, specify
 the first variable integrated to be the variable having more points.
 This allows both the subroutine and the function evaluation to achieve
 optimal performance. Details on how to do this are given in Notes.

 	There are some ESSL-specific rules that apply to the results of
 computations on the workstation processors using the ANSI/IEEE standards.
 For details, see What Data Type Standards Are Used by ESSL, and What Exceptions Should You Know About?.

 Parent topic: Numerical Quadrature

 Programming Considerations for the SUBF Subroutine

 This describes how to design and code the subf subroutine for
 use by the numerical quadrature subrutines.

 	Designing SUBF

 	Coding and Setting Up SUBF in Your Program

 Parent topic: Numerical Quadrature

 Designing SUBF

 For the Gaussian quadrature subroutines, you must supply a separate subroutine
 that is callable by ESSL. You specify the name of the subroutine in the subf argument. This subroutine name is selected by you. You should design
 the subf subroutine so it receives, as input, a tabulated set of
 points at which the integrand is evaluated, and it returns, as output, the
 values of the integrand evaluated at these points.

 Depending on the numerical quadrature subroutine that you use, the subf subroutine is defined in one of the two following ways:

 	For _GLNQ, _GLGQ, _GRAQ, and _GHMQ, you define the subf subroutine
 with three arguments: t, y, and n, where:

 	t

 	is an input array, referred to as T, of tabulated Gaussian
 quadrature abscissas, containing n real numbers, ti, where ti is automatically
 provided by the ESSL subroutine and is determined by n and the Gaussian
 quadrature method chosen.

 	y

 	is an output array, referred to as Y, containing n real
 numbers, where for the integrand, the following is true: yi = f(ti)
 for i = 1, n.

 	n

 	is a positive integer indicating the number of elements in T and Y.

 	For _GLNQ2, you define the subf subroutine with six arguments: s, n1, t, n2, z, and ldz,
 where:

 	s

 	is an input array, referred to as S, of tabulated Gaussian
 quadrature abscissas, containing n1 real numbers, si, where si is automatically
 provided by the ESSL subroutine and is determined by n1 and the Gaussian
 quadrature method.

 	n1

 	is a positive integer indicating the number of elements in S and
 the number of rows to be used in array Z.

 	t

 	is an input array, referred to as T, of tabulated Gaussian
 quadrature abscissas, containing n2 real numbers, ti, where ti is automatically
 provided by the ESSL subroutine and is determined by n2 and the Gaussian
 quadrature method.

 	n2

 	is a positive integer indicating the number of elements in T and
 the number of columns to be used in array Z.

 	z

 	is an ldz by (at least) n2 output array, referred
 to as Z, of real numbers, where for the integrand, the following
 is true: zij = f(si, tj) for i = 1, n1 and j = 1, n2.

 	ldz

 	is a positive integer indicating the size of the leading dimension of
 the array Z.

 Parent topic: Programming Considerations for the SUBF Subroutine

 Coding and Setting Up SUBF in Your Program

 Examples of coding a subf subroutine in Fortran are provided for
 each subroutine here. Examples of coding a subf subroutine in C,
 and C++ are provided in Example 1.

 Depending on the programming language you use for your program that calls
 the numerical quadrature subroutines, you have a choice of one or more languages
 that you can use for writing subf. These rules and other language-related
 coding rules for setting up subf in your program are described in
 the following:

 	Setting Up a User-Supplied Subroutine for ESSL in Fortran

 	Setting Up a User-Supplied Subroutine for ESSL in C

 	Setting Up a User-Supplied Subroutine for ESSL in C++

 Parent topic: Programming Considerations for the SUBF Subroutine

 Numerical Quadrature Subroutines

 This contains the numerical quadrature
 subroutine descriptions.

 Parent topic: Numerical Quadrature

 SPTNQ and DPTNQ (Numerical Quadrature Performed on a Set of
 Points)

 Purpose

 These subroutines approximate the
 integral of a real valued function specified in tabular form, (xi, yi)
 for i = 1, n. For more
 than four points, an error estimate is returned along with the resulting
 value.

 Table 232. Data
 Types.

 	x, y, xyint, eest

 	Subroutine

 	Short-precision real

 	SPTNQ

 	Long-precision real

 	DPTNQ

 Syntax

 	Fortran

 	CALL SPTNQ | DPTNQ (x, y, n, xyint, eest)

 	C and C++

 	sptnq | dptnq (x, y, n, xyint, eest);

 	On Entry

 	

 	 x

 	is the vector x of length n,
 containing the abscissas of the data points to be integrated. The
 elements of x must be distinct and sorted into ascending
 or descending order.
 Specified as: a one-dimensional array of
 (at least) length n, containing numbers of the
 data type indicated in Table 232.

 	 y

 	is the vector y of length n,
 containing the ordinates of the data points to be integrated.
 Specified
 as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 232.

 	 n

 	is the number of elements in vectors x and y—that
 is, the number of data points. The value of n determines
 the algorithm used by this subroutine. For details, see Function.
 Specified as: an integer; n ≥ 2.

 	 xyint

 	See On Return.

 	 eest

 	See On Return.

 	On Return

 	

 	 xyint

 	is the approximation xyint of the integral.
 Returned as: a number of the data type indicated in Table 232.

 	 eest

 	has the following meaning, where:
 If n < 5,
 it is undefined and is set to 0.

 If n ≥ 5, it is an
 estimate, eest, of the error in the integral, where xyint+eest tends
 to give a better approximation to the integral than xyint.
 For details, see references [33] and [72].

 Returned
 as: a number of the data type indicated in Table 232.

 Notes

 	In your C program, arguments xyint and eest must
 be passed by reference.

 	The elements of vector x must be distinct—that
 is, xi ≠ xj for i ≠ j,—and they
 must be sorted into ascending or descending order; otherwise, results
 are unpredictable. For how to do this, see ISORT, SSORT, and DSORT (Sort the Elements of a Sequence).

 Function

 The integral
 is approximated for a real valued function specified in tabular form,
 (xi, yi)
 for i = 1, n, where xi are
 distinct and sorted into ascending or descending order, and n ≥ 2. If yi = f(xi)
 for i = 1, n, then on
 output, xyint is an approximation to the integral
 of the following form:

 [image: Integral Graphic]

 The algorithm used by this subroutine is based on the number
 of data points used in the computation, where:

 	If n = 2, the trapezoid rule is used to
 do the integration.

 	If n = 3, the parabola through the three
 points is integrated.

 	If n ≥ 4, the method
 of Gill and Miller is used to do the integration.

 For n ≥ 5, an estimate
 of the error eest is returned. For the method of
 Gill and Miller, it is shown that adding the estimate of the error eest to
 the result xyint often gives a better approximation
 to the integral than the result xyint by itself.
 For n < 5, an estimate of the error is not
 returned. In this case, a value of 0 is returned for eest.
 See references [72] and [33].

 Error conditions

 	[bookmark: am5gr_hsptnq__am5gr_f15002]
 Computational Errors

 	None

 	[bookmark: am5gr_hsptnq__am5gr_f15003]
 Input-Argument Errors

 	
 n < 2

 Examples

 	Example 1

 	
 This example shows the result of an integration, where the
 abscissas in X are sorted into ascending order.

 Call Statement and Input: X Y N XYINT EEST
 | | | | |
CALL SPTNQ(X , Y , 10 , XYINT , EEST)

X = (0.0, 0.4, 1.0, 1.5, 2.1, 2.6, 3.0, 3.4, 3.9, 4.3)
Y = (1.0, 2.0, 3.0, 4.0, 5.0, 4.5, 4.0, 3.0, 3.5, 3.3)

 Output: XYINT = 15.137
EEST = -0.003

 	Example 2

 	
 This example shows the result of an integration, where the
 abscissas in X are sorted into descending order.

 Call Statement and Input: X Y N XYINT EEST
 | | | | |
CALL SPTNQ(X , Y , 10 , XYINT , EEST)

X = (4.3, 3.9, 3.4, 3.0, 2.6, 2.1, 1.5, 1.0, 0.4, 0.0)
Y = (3.3, 3.5, 3.0, 4.0, 4.5, 5.0, 4.0, 3.0, 2.0, 1.0)

 Output: XYINT = -15.137
EEST = 0.003

 Parent topic: Numerical Quadrature

 SGLNQ and DGLNQ (Numerical Quadrature Performed on a Function
 Using Gauss-Legendre Quadrature)

 Purpose

 These functions approximate the
 integral of a real valued function over a finite interval, using the
 Gauss-Legendre Quadrature method of specified order.

 Table 233. Data Types.

 	a, b, Result

 	Subroutine

 	Short-precision real

 	SGLNQ

 	Long-precision real

 	DGLNQ

 Syntax

 	Fortran

 	SGLNQ | DGLNQ (subf, a, b, n)

 	C and C++

 	sglnq | dglnq (subf, a, b, n);

 	On Entry

 	

 	 subf

 	is the user-supplied subroutine that evaluates the integrand function.
 The subroutine should be defined with three arguments: t, y,
 and n. For details, see Programming Considerations for the SUBF Subroutine.
 Specified as: subf must
 be declared as an external subroutine in you application program.
 It can be whatever name you choose.

 	 a

 	is the lower limit of integration, a.
 Specified
 as: a number of the data type indicated in Table 233.

 	 b

 	is the upper limit of integration, b.
 Specified
 as: a number of the data type indicated in Table 233.

 	 n

 	is the order of the quadrature method to be used.
 Specified
 as: an integer; n = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14,
 16, 20, 24, 32, 40, 48, 64, 96, 128, or 256.

 	On Return

 	

 	Function value

 	is the approximation of the integral. Returned as: a number of
 the data type indicated in Table 233.

 Notes

 	Declare the DGLNQ function in your program as returning a long-precision
 real number. Declare the SGLNQ, if necessary, as returning a short-precision
 real number.

 	The subroutine specified for subf must be declared
 as external in your program. Also, data types used by subf must
 agree with the data types specified by this ESSL subroutine. The variable x,
 described under Function, and
 the argument n correspond to the subf arguments t and n,
 respectively. For details on how to set up the subroutine, see Programming Considerations for the SUBF Subroutine.

 Function

 The integral
 is approximated for a real valued function over a finite interval,
 using the Gauss-Legendre Quadrature method of specified order. The
 region of integration is from a to b.
 The method of order n is theoretically exact for
 integrals of the following form, where f is a polynomial
 of degree less than 2n:

 [image: Integral Graphic]

 The method of order n is a good approximation
 when your integrand is closely approximated by a function of the form f(x),
 where f is a polynomial of degree less than 2n.
 See references [33] and [111]. The result
 is returned as the function value.

 Error conditions

 	[bookmark: am5gr_hsglnq__am5gr_f15011]
 Computational Errors

 	None

 	[bookmark: am5gr_hsglnq__am5gr_f15012]
 Input-Argument Errors

 	
 n is not an allowable value, as listed
 in the syntax for this argument.

 Examples

 	[bookmark: am5gr_hsglnq__am5gr_f15013]
 Example

 	
 This example shows how to compute the integral of the function f given
 by:

 f

 (

 x

) =

 x

 2

 +

 e

 x

 over
 the interval (0.0, 2.0), using the Gauss-Legendre method with 10 points:

 [image: Integral Graphic]

 The user-supplied subroutine FUN1, which
 evaluates the integrand function, is coded in Fortran as follows:
 SUBROUTINE FUN1 (T,Y,N)
 INTEGER*4 N
 REAL*4 T(*),Y(*)
 DO 1 I=1,N
1 Y(I)=T(I)**2+EXP(T(I))
 RETURN
 END

 Program Statements and
 Input: EXTERNAL FUN1
 .
 .
 .
 SUBF A B N
 | | | |
XINT = SGLNQ(FUN1 , 0.0 , 2.0 , 10)
 .
 .
 .

 FUN1 =

 (see above)

 Output: XINT = 9.056

 Parent topic: Numerical Quadrature

 SGLNQ2 and DGLNQ2 (Numerical Quadrature Performed on a Function
 Over a Rectangle Using Two-Dimensional Gauss-Legendre Quadrature)

 Purpose

 These functions approximate the
 integral of a real valued function of two variables over a rectangular
 region, using the Gauss-Legendre Quadrature method of specified order
 in each variable.

 Table 234. Data Types.

 	a, b, c, d, Z, Result

 	Subroutine

 	Short-precision real

 	SGLNQ2

 	Long-precision real

 	DGLNQ2

 Syntax

 	Fortran

 	SGLNQ2 | DGLNQ2 (subf, a, b, n1, c, d, n2, z, ldz)

 	C and C++

 	sglnq2 | dglnq2 (subf, a, b, n1, c, d, n2, z, ldz);

 	On Entry

 	

 	 subf

 	is the user-supplied subroutine that evaluates the integrand function.
 The subroutine should be defined with six arguments: s, n1, t, n2, z,
 and ldz. For details, see Programming Considerations for the SUBF Subroutine.
 Specified as: subf must
 be declared as an external subroutine in your application program.
 It can be whatever name you choose.

 	 a

 	is the lower limit of integration, a, for the
 first variable integrated.
 Specified as: a number of the data
 type indicated in Table 234.

 	 b

 	is the upper limit of integration, b, for the
 first variable integrated.
 Specified as: a number of the data
 type indicated in Table 234.

 	 n1

 	is the order of the quadrature method to be used for the first
 variable integrated.
 Specified as: an integer; n1 = 1,
 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 40, 48, 64, 96, 128,
 or 256.

 	 c

 	is the lower limit of integration, c, for the
 second variable integrated.
 Specified as: a number of the data
 type indicated in Table 234.

 	 d

 	is the upper limit of integration, d, for the
 second variable integrated.
 Specified as: a number of the data
 type indicated in Table 234.

 	 n2

 	is the order of the quadrature method to be used for the second
 variable integrated.
 Specified as: an integer; n2 = 1,
 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 32, 40, 48, 64, 96, 128,
 or 256.

 	 z

 	is the matrix Z, containing the n1 rows
 and n2 columns of data used to evaluate the integrand
 function. (The output values from the subf subroutine
 are placed in Z.) Specified as: an ldz by
 (at least) n2 array, containing numbers of the
 data type indicated in Table 234.

 	 ldz

 	is the size of the leading dimension of the array specified for z.

 Specified as: an integer; ldz > 0
 and ldz ≥ n1.

 	On Return

 	

 	 Function value

 	is the approximation of the integral. Returned as: a number of
 the data type indicated in Table 234.

 Notes

 	Declare the DGLNQ2 function in your program as returning a long-precision
 real number. Declare the SGLNQ2 function, if necessary, as returning
 a short-precision real number.

 	The subroutine specified for subf must be declared
 as external in your program. Also, data types used by subf must
 agree with the data types specified by this ESSL subroutine. For details
 on how to set up the subroutine, see Programming Considerations for the SUBF Subroutine.

 Function

 The integral:

 [image: Integral Graphic]

 is approximated for a real valued function of two variables s and t,
 over a rectangular region, using the Gauss-Legendre Quadrature method
 of specified order in each variable. The region of integration is:

 (

 a

 ,

 b

)

 for

 s

 (

 c

 ,

 d

)

 for

 t

 The
 method gives a good approximation when your integrand is closely approximated
 by a function of the form f(s, t),
 where f is a polynomial of degree less than 2(n1)
 for s and 2(n2) for t.
 See the function description for SGLNQ and DGLNQ (Numerical Quadrature Performed on a Function Using Gauss-Legendre Quadrature) and references [33] and [111]. The result
 is returned as the function value.

 Special Usage

 To achieve optimal performance
 in this subroutine and in the functional evaluation, specify the first
 variable integrated in this subroutine as the variable having more
 points. The first variable integrated is the variable in the inner
 integral. For example, in the following integration, x is
 the first variable integrated:

 [image: Integral Graphic]

 This is the suggested order of integration if the x variable
 has more points than the y variable. On the other
 hand, if the y variable has more points, you make y the
 first variable integrated.

 Because the order of integration
 does not matter to the resulting approximation, you may be able to
 reverse the order that x and y are
 integrated and get better performance. This can be expressed as:

 [image: Integral Graphic]

 Results are mathematically equivalent. However, because
 the algorithm is computed in a different way, results may not be bitwise
 identical.

 Table 235 shows
 how to assign your variables to the _GLNQ2 and subf arguments
 for the x-y integration shown
 on the left and for the y-x integration
 shown on the right. For examples of how to do each of these, see Example 1 and Example 2.

 Table 235. How to Assign Your
 Variables for x-y Integration Versus y-x Integration.

 	

 _GLNQ2 and SUBF

 Arguments

 	

 Variables for

 x

 -

 y

 Integration

 	

 Variables for

 y

 -

 x

 Integration

 	

 For _GLNQ2:

 a

 b

 n1

 c

 d

 n2

 For

 subf

 :

 s

 t

 n1

 n2

 	

 r1

 r2

 (order for

 x

)

 u1

 u2

 (order for

 y

)

 x

 y

 (order for

 x

)

 (order for

 y

)

 	

 u1

 u2

 (order for

 y

)

 r1

 r2

 (order for

 x

)

 y

 x

 (order for

 y

)

 (order for

 x

)

 Error conditions

 	[bookmark: am5gr_hsglnq2__am5gr_f15017]
 Computational Errors

 	None

 	[bookmark: am5gr_hsglnq2__am5gr_f15018]
 Input-Argument Errors

 	

 	ldz ≤ 0

 	n1 > ldz

 	n1 or n2 is not an allowable
 value, as listed in the syntax for this argument.

 Examples

 	Example 1

 	
 This example shows how to compute the integral of the function f given
 by:

 f

 (

 x

 ,

 y

)

 =

 e

 x

 sin

 y

 over
 the intervals (0.0, 2.0) for the first variable x and
 (-2.0, -1.0) for the second variable y, using the
 Gauss-Legendre method with 10 points in the x variable
 and 5 points in the y variable:

 [image: Integral Graphic]

 Because the variable x has more points,
 it is the first variable integrated. This allows the SGLNQ2 subroutine
 and the FUN1 evaluation to achieve optimal performance.
 Therefore, the x and y variables
 correspond to S and T in the FUN1 subroutine.
 Also, the x and y variables
 correspond to the A, B, N1 and C, D, N2 sets
 of arguments, respectively, for SGLNQ2.

 Using
 Fortran for SUBF:

 The user-supplied subroutine FUN1,
 which evaluates the integrand function, is coded in Fortran as follows:
 SUBROUTINE FUN1 (S,N1,T,N2,Z,LDZ)
 INTEGER*4 N1,N2,LDZ
 REAL*4 S(*),T(*),Z(LDZ,*)
 DO 1 J=1,N2
 DO 2 I=1,N1
2 Z(I,J)=EXP(S(I))*SIN(T(J))
1 CONTINUE
 RETURN
 END

 Note: The computation for this user-supplied subroutine FUN1 can
 also be performed by using the following statements in place of the
 above DO loops, using T1 and T2 as
 temporary storage areas: .
 .
 .
 DO 1 I=1,N1
1 T1(I)=EXP(S(I))
 DO 2 J=1,N2
2 T2(J)=SIN(T(J))
 DO 3 J=1,N2
 DO 4 I=1,N1
4 Z(I,J)=T1(I)*T2(J)
3 CONTINUE
 .
 .
 .

 When coding your application, this
 is the preferred technique. It reduces the number of evaluations performed
 and, therefore, provides better performance.

 Using
 C for SUBF:

 The user-supplied subroutine FUN1,
 which evaluates the integrand function, is coded in C as follows:
 void fun1(s, n1, t, n2, z, ldz)
 float *s, *t, *z;
 int *n1, *n2, *ldz;
 {
 int i, j;
 for(j = 0; j < *n2; ++j, z += *ldz)
 {
 for(i = 0; i < *n1; ++i)
 z[i] = exp(s[i]) * sin(t[j]);
 }
 }

 Using C++ for SUBF:

 The
 user-supplied subroutine FUN1, which evaluates the
 integrand function, is coded in C++ as follows: void fun1(float *s, int *n1, float *t, int *n2, float *z, int *ldz)
 {
 int i, j;
 for(j = 0; j < *n2; ++j, z += *ldz)
 {
 for(i = 0; i < *n1; ++i)
 z[i] = exp(s[i]) * sin(t[j]);
 }
 }

 Program Statements and
 Input: EXTERNAL FUN1
 .
 .
 .
 SUBF A B N1 C D N2 Z LDZ
 | | | | | | | | |
XYINT = SGLNQ2(FUN1 , 0.0 , 2.0 , 10 , -2.0 , -1.0 , 5 , Z , 10)
 .
 .
 .

 FUN1 =

 (see above)

 Z =

 (not relevant)

 Output: XYINT = -6.1108

 	Example 2

 	
 This example shows how to reverse the order of integration
 of the variables x and y. It
 computes the integral of the function f given by:

 f

 (

 x

 ,

 y

)

 =

 cos

 x

 sin

 y

 over
 the intervals (0.0, 1.0) for the variable x and
 (0.0, 20.0) for the variable y, using the Gauss-Legendre
 method with 5 points in the x variable and 48 points
 in the y variable. Because the order of integration
 does not matter to the approximation:

 [image: Integral Graphic]

 the variable y, having more points,
 is the first variable integrated (performing the integration shown
 on the right.) This allows the SGLNQ2 subroutine and the FUN1 evaluation
 to achieve optimal performance. Therefore, the x and y variables
 correspond to T and S in the FUN2 subroutine.
 Also, the x and y variables
 correspond to the C, D, N2 and A, B, N1 sets
 of arguments, respectively, for SGLNQ2.

 The user-supplied
 subroutine FUN2, which evaluates the integrand function,
 is coded in Fortran as follows: SUBROUTINE FUN2 (S,N1,T,N2,Z,LDZ)
 INTEGER*4 N1,N2,LDZ
 REAL*4 S(*),T(*),Z(LDZ,*)
 DO 1 J=1,N2
 DO 2 I=1,N1
2 Z(I,J)=COS(T(J))*SIN(S(I))
1 CONTINUE
 RETURN
 END

 Note: The same coding principles for achieving
 good performance that are noted in Example 1 also apply to this
 user-supplied subroutine FUN2.

 Program Statements and Input: EXTERNAL FUN2.
 .
 .
 .
 SUBF A B N1 C D N2 Z LDZ
 | | | | | | | | |
YXINT = SGLNQ2(FUN2 , 0.0 , 20.0 , 48 , 0.0 , 1.0 , 5 , Z , 48)
 .
 .
 .

 FUN2 =

 (see above)

 Z =

 (not relevant)

 Output: YXINT = 0.4981

 Parent topic: Numerical Quadrature

 SGLGQ and DGLGQ (Numerical Quadrature Performed on a Function
 Using Gauss-Laguerre Quadrature)

 Purpose

 These functions approximate the
 integral of a real valued function over a semi-infinite interval,
 using the Gauss-Laguerre Quadrature method of specified order.

 Table 236. Data Types.

 	a, b, Result

 	Subroutine

 	Short-precision real

 	SGLGQ

 	Long-precision real

 	DGLGQ

 Syntax

 	Fortran

 	SGLGQ | DGLGQ (subf, a, b, n)

 	C and C++

 	sglgq | dglgq (subf, a, b, n);

 	On Entry

 	

 	 subf

 	is the user-supplied subroutine that evaluates the integrand function.
 The subroutine should be defined with three arguments: t, y,
 and n. For details, see Programming Considerations for the SUBF Subroutine.
 Specified as: subf must
 be declared as an external subroutine in your application program.
 It can be whatever name you choose.

 	 a

 	has the following meaning, where:
 If b > 0,
 it is the lower limit of integration.

 If b < 0,
 it is the upper limit of integration.

 Specified as: a number
 of the data type indicated in Table 236.

 	 b

 	is the scaling constant b for the exponential.

 Specified as: a number of the data type indicated in Table 236; b > 0
 or b < 0.

 	 n

 	is the order of the quadrature method to be used.
 Specified
 as: an integer; n = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14,
 16, 20, 24, 32, 40, 48, or 64.

 	On Return

 	

 	 Function value

 	is the approximation of the integral. Returned as: a number of
 the data type indicated in Table 236.

 Notes

 	Declare the DGLGQ function in your program as returning a long-precision
 real number. Declare the SGLGQ function, if necessary, as returning
 a short-precision real number.

 	The subroutine specified for subf must be declared
 as external in your program. Also, data types used by subf must
 agree with the data types specified by this ESSL subroutine. The variable x,
 described under Function, and
 the argument n correspond to the subf arguments t and n,
 respectively. For details on how to set up the subroutine, see Programming Considerations for the SUBF Subroutine.

 Function

 The integral
 is approximated for a real valued function over a semi-infinite interval,
 using the Gauss-Laguerre Quadrature method of specified order. The
 region of integration is:

 (

 a

 ,

 ∞

)

 if

 b

 >

 0

 (-

 ∞

 ,

 a

)

 if

 b

 <

 0

 The
 method of order n is theoretically exact for integrals
 of the following form, where f is a polynomial
 of degree less than 2n:

 [image: Integral Graphic]

 The method of order n is a good approximation
 when your integrand is closely approximated by a function of the form f(x)e-bx,
 where f is a polynomial of degree less than 2n.
 See references [33] and [111]. The result
 is returned as the function value.

 Error conditions

 	[bookmark: am5gr_hsglgq__am5gr_f15028]
 Computational Errors

 	None

 	[bookmark: am5gr_hsglgq__am5gr_f15029]
 Input-Argument Errors

 	

 	b = 0

 	n is not an allowable value, as listed in the
 syntax for this argument.

 Examples

 	Example 1

 	
 This example shows how to compute the integral of the function f given
 by:

 f

 (

 x

)

 =

 sin (3.0

 x

)

 e

 -1.5

 x

 over
 the interval (-2.0, ∞), using the Gauss-Laguerre method
 with 20 points:

 [image: Integral Graphic]

 The user-supplied subroutine FUN1, which
 evaluates the integrand function, is coded in Fortran as follows:
 SUBROUTINE FUN1 (T,Y,N)
 INTEGER*4 N
 REAL*4 T(*),Y(*)
 DO 1 I=1,N
1 Y(I)=SIN(3.0*T(I))*EXP(-1.5*T(I))
 RETURN
 END

 Program Statements and
 Input: EXTERNAL FUN1
 .
 .
 .
 SUBF A B N
 | | | |
XINT = SGLGQ(FUN1 , -2.0 , 1.5 , 20)
 .
 .
 .

 FUN1 =

 (see above)

 Output: XINT = 5.891

 	Example 2

 	
 This example shows how to compute the integral of the function f given
 by:

 f

 (

 x

)

 =

 sin (3.0

 x

)

 e

 1.5

 x

 over
 the interval (-∞,
 -2.0), using the Gauss-Laguerre method with 20 points:

 [image: Integral Graphic]

 The user-supplied subroutine FUN2, which
 evaluates the integrand function, is coded in Fortran as follows:
 SUBROUTINE FUN2 (T,Y,N)
 INTEGER*4 N
 REAL*4 T(*),Y(*),TEMP
 DO 1 I=1,N
1 Y(I)=SIN(3.0*T(I))*EXP(1.5*T(I))
 RETURN
 END

 Program Statements and
 Input: EXTERNAL FUN2
 .
 .
 .
 SUBF A B N
 | | | |
XINT = SGLGQ(FUN2 , -2.0 , -1.5 , 20)
 .
 .
 .
FUN2 = (see above)

 Output:
 XINT = -0.011

 Parent topic: Numerical Quadrature

 SGRAQ and DGRAQ (Numerical Quadrature Performed on a Function
 Using Gauss-Rational Quadrature)

 Purpose

 These functions approximate the
 integral of a real valued function over a semi-infinite interval,
 using the Gaussian-Rational quadrature method of specified order.

 Table 237. Data Types.

 	a, b, Result

 	Subroutine

 	Short-precision real

 	SGRAQ

 	Long-precision real

 	DGRAQ

 Syntax

 	Fortran

 	SGRAQ | DGRAQ (subf, a, b, n)

 	C and C++

 	sgraq | dgraq (subf, a, b, n);

 	On Entry

 	

 	 subf

 	is the user-supplied subroutine that evaluates the integrand function.
 The subroutine should be defined with three arguments: t, y,
 and n. For details, see Programming Considerations for the SUBF Subroutine.
 Specified as: subf must
 be declared as an external subroutine in your application program.
 It can be whatever name you choose.

 	 a

 	has the following meaning, where:
 If a+b > 0,
 it is the lower limit of integration.

 If a+b < 0,
 it is the upper limit of integration.

 Specified as: a number
 of the data type indicated in Table 237.

 	 b

 	is the centering constant b for the integrand.

 Specified as: a number of the data type indicated in Table 237.

 	 n

 	is the order of the quadrature method to be used.
 Specified
 as: an integer; n = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14,
 16, 20, 24, 32, 40, 48, 64, 96, 128, or 256.

 	On Return

 	

 	 Function value

 	

 	

 	is the approximation of the integral. Returned as: a number of
 the data type indicated in Table 237.

 Notes

 	Declare the DGRAQ function in your program as returning a long-precision
 real number. Declare the SGRAQ function, if necessary, as returning
 a short-precision real number.

 	The subroutine specified for subf must be declared
 as external in your program. Also, data types used by subf must
 agree with the data types specified by this ESSL subroutine. The variable x,
 described under Function, and
 the argument n correspond to the subf arguments t and n,
 respectively. For details on how to set up the subroutine, see Programming Considerations for the SUBF Subroutine.

 Function

 The integral
 is approximated for a real valued function over a semi-infinite interval,
 using the Gauss-Rational quadrature method of specified order. The
 region of integration is:

 (

 a

 ,

 ∞

)

 if

 a

 +

 b

 >

 0

 (-

 ∞

 ,

 a

)

 if

 a

 +

 b

 <

 0

 The
 method of order n is theoretically exact for integrals
 of the following form, where f is a polynomial
 of degree less than 2n:

 [image: Integral Graphic]

 The method of order n is a good approximation
 when your integrand is closely approximated by a function of the following
 form, where f is a polynomial of degree less than
 2n:

 [image: Integral Graphic]

 See references [33] and [111]. The result
 is returned as the function value to a Fortran, C, or C++ program.

 Error conditions

 	[bookmark: am5gr_hsgraq__am5gr_f15038]
 Computational Errors

 	None

 	[bookmark: am5gr_hsgraq__am5gr_f15039]
 Input-Argument Errors

 	

 	a+b = 0

 	n is not an allowable value, as listed in the
 syntax for this argument.

 Examples

 	Example 1

 	
 This example shows how to compute the integral of the function f given
 by:

 f

 (

 x

) = (

 e

 1.0

 /

 x

) /

 x

 2

 over
 the interval (-∞,
 -2.0), using the Gauss-Rational method with 10 points:

 [image: Integral Graphic]

 The user-supplied subroutine FUN1, which
 evaluates the integrand function, is coded in Fortran as follows:
 SUBROUTINE FUN1 (T,Y,N)
 INTEGER*4 N
 REAL*4 T(*),Y(*),TEMP
 DO 1 I=1,N
 TEMP=1.0/T(I)
1 Y(I)=EXP(TEMP)*TEMP**2
 RETURN
 END

 Program Statements and
 Input: EXTERNAL FUN1
 .
 .
 .
 SUBF A B N
 | | | |
XINT = SGRAQ(FUN1 , -2.0 , 0.0 , 10)
 .
 .
 .

 FUN1 =

 (see above)

 Output: XINT = 0.393

 	Example 2

 	
 This example shows how to compute the integral of the function f given
 by:

 f

 (

 x

) = (

 x

 -3.0)

 -2

 + 10(

 x

 -3.0)

 -11

 over
 the interval (4.0, ∞), using the Gauss-Rational method
 with 6 points:

 [image: Integral Graphic]

 The user-supplied subroutine FUN2, which
 evaluates the integrand function, is coded in Fortran as follows:
 SUBROUTINE FUN2 (T,Y,N)
 INTEGER*4 N
 REAL*4 T(*),Y(*),TEMP
 DO 1 I=1,N
 TEMP=1.0/(T(I)-3.0)
1 Y(I)=TEMP**2+10.0*TEMP**11
 RETURN
 END

 Program Statements and
 Input: EXTERNAL FUN2
 .
 .
 .
 SUBF A B N
 | | | |
XINT = SGRAQ(FUN2 , 4.0 , -3.0 , 6)
 .
 .
 .
FUN2 = (see above)

 Output:
 XINT = 2.00

 Parent topic: Numerical Quadrature

 SGHMQ and DGHMQ (Numerical Quadrature Performed on a Function
 Using Gauss-Hermite Quadrature)

 Purpose

 These functions approximate the
 integral of a real valued function over the entire real line, using
 the Gauss-Hermite Quadrature method of specified order.

 Table 238. Data Types.

 	a, b, Result

 	Subroutine

 	Short-precision real

 	SGHMQ

 	Long-precision real

 	DGHMQ

 Syntax

 	Fortran

 	SGHMQ | DGHMQ (subf, a, b, n)

 	C and C++

 	sghmq | dghmq (subf, a, b, n);

 	On Entry

 	

 	 subf

 	is the user-supplied subroutine that evaluates the integrand function.
 The subroutine should be defined with three arguments: t, y,
 and n. For details, see Programming Considerations for the SUBF Subroutine.
 Specified as: subf must
 be declared as an external subroutine in your application program.
 It can be whatever name you choose.

 	 a

 	is the centering constant a for the exponential.

 Specified as: a number of the data type indicated in Table 238.

 	 b

 	is the scaling constant b for the exponential.

 Specified as: a number of the data type indicated in Table 238; b > 0.

 	 n

 	is the order of the quadrature method to be used.
 Specified
 as: an integer; n = 1, 2, 3, 4, 5, 6, 8, 10, 12, 14,
 16, 20, 24, 32, 40, 48, 64, or 96.

 	On Return

 	

 	 Function value

 	

 	

 	is the approximation of the integral. Returned as: a number of
 the data type indicated in Table 238.

 Notes

 	Declare the DGHMQ function in your program as returning a long-precision
 real number. Declare the SGHMQ function, if necessary, as returning
 a short-precision real number.

 	The subroutine specified for subf must be declared
 as external in your program. Also, data types used by subf must
 agree with the data types specified by this ESSL subroutine. The variable x,
 described under Function, and
 the argument n correspond to the subf arguments t and n,
 respectively. For details on how to set up the subroutine, see Programming Considerations for the SUBF Subroutine.

 Function

 The integral
 is approximated for a real valued function over the entire real line,
 using the Gauss-Hermite Quadrature method of specified order. The
 region of integration is from -∞ to ∞. The method of order n is
 theoretically exact for integrals of the following form, where f is
 a polynomial of degree less than 2n:

 [image: Integral Graphic]

 The method of order n is a good approximation
 when your integrand is closely approximated by a function of the following
 form, where f is a polynomial of degree less than
 2n:

 [image: Integral Graphic]

 See references [33] and [111]. The result
 is returned as the function value to a Fortran, C, or C++ program.

 Error conditions

 	[bookmark: am5gr_hsghmq__am5gr_f15048]
 Computational Errors

 	None

 	[bookmark: am5gr_hsghmq__am5gr_f15049]
 Input-Argument Errors

 	

 	b ≤ 0

 	n is not an allowable value, as listed in the
 syntax for this argument.

 Examples

 	[bookmark: am5gr_hsghmq__am5gr_f15050]
 Example

 	
 This example shows how to compute the integral of the function f given
 by:

 [image: Integral Graphic]

 over the interval (-∞, ∞), using the Gauss-Hermite method with
 4 points:

 [image: Integral Graphic]

 The user-supplied subroutine FUN1, which
 evaluates the integrand function, is coded in Fortran as follows:
 SUBROUTINE FUN1 (T,Y,N)
 INTEGER*4 N
 REAL*4 T(*),Y(*)
 DO 1 I=1,N
1 Y(I)=T(I)**2*EXP(-2.0*(T(I)+5.0)**2)
 RETURN
 END

 Program Statements and
 Input: EXTERNAL FUN1
 .
 .
 .
 SUBF A B N
 | | | |
XINT = SGHMQ(FUN1 , -5.0 , 2.0 , 4)
 .
 .
 .

 FUN1 =

 (see above)

 Output: XINT = 31.646

 Parent topic: Numerical Quadrature

 Random Number Generation

 The random number generation subroutines are described here.

 	Overview of the Random Number Generation Subroutines

 	Use Considerations

 	Random Number Generation Subroutines

 	INITRNG (Initialize Random Number Generators)

 	SURNG and DURNG (Generate a Vector of Uniformly Distributed Pseudo-Random Numbers)

 	SNRNG and DNRNG (Generate a Vector of Normally Distributed Pseudo-Random numbers)

 	SURAND and DURAND (Generate a Vector of Uniformly Distributed Random Numbers)

 	SNRAND and DNRAND (Generate a Vector of Normally Distributed Random Numbers)

 	SURXOR and DURXOR (Generate a Vector of Long Period Uniformly Distributed Random Numbers)

 Parent topic: Reference Information

 Overview of the Random Number Generation Subroutines

 Random number generation subroutines generate uniformly
 distributed random numbers or normally distributed random numbers
 using one of the following algorithms:

 	SIMD-oriented Mersenne Twister algorithm

 	Multiplicative congruential methods

 	Polar methods

 	Tausworthe exclusive-or algorithm

 Table 239. List
 of Random Number Generation Initialization Subroutines.

 	Subroutine

 	Descriptive Name and Location

 	INITRNG

 	INITRNG (Initialize Random Number Generators)

 Table 240. List of Random Number
 Generation Subroutines.

 	Short-Precision Subroutine

 	Long-Precision Subroutine

 	Descriptive Name and Location

 	SURNG

 	DURNG

 	SURNG and DURNG (Generate a Vector of Uniformly Distributed Pseudo-Random Numbers)

 	SNRNG

 	DNRNG

 	SNRNG and DNRNG (Generate a Vector of Normally Distributed Pseudo-Random numbers)

 	SURAND

 	DURAND

 	SURAND and DURAND (Generate a Vector of Uniformly Distributed Random Numbers)

 	SNRAND

 	DNRAND

 	SNRAND and DNRAND (Generate a Vector of Normally Distributed Random Numbers)

 	SURXOR§

 	DURXOR§

 	SURXOR and DURXOR (Generate a Vector of Long Period Uniformly Distributed Random Numbers)

 	
 § This subroutine is provided
 for migration from earlier releases of ESSL and is not intended for
 use in new programs.

 Parent topic: Random Number Generation

 Use Considerations

 If you need a very long period random number
 generator, you should select the following subroutines:

 	SURNG rather than SURAND or SURXOR

 	DURNG rather than DURAND or DURXOR

 	SNRNG rather than SNRAND

 	DNRNG rather than DNRAND.

 Parent topic: Random Number Generation

 Random Number Generation Subroutines

 This contains the random number generation subroutine
 descriptions.

 Parent topic: Random Number Generation

 INITRNG (Initialize Random Number Generators)

 Purpose

 This subroutine initializes the
 selected pseudo-random number generator for use in subsequent calls
 to SURNG, DURNG, SNRNG or DNRNG. To generate a repeatable or non-repeatable
 vector of pseudo-random numbers, follow the call to INITRNG with one
 or more calls to SURNG, DURNG, SNRNG or DNRNG.

 Syntax

 	Fortran

 	CALL INITRNG (iopt, irepeat, iseed, liseed, istate, listate)

 	C and C++

 	initrng (iopt, irepeat, iseed, liseed, istate, listate);

 	On Entry

 	

 	iopt

 	indicates the random number generator desired for use, where:
 If iopt =
 1, a single-precision, SIMD-oriented Mersenne Twister pseudo-random
 number generator with a period of 219937-1 (SFMT19937)
 is used.

 If iopt = 2, a long-precision, SIMD-oriented
 Mersenne Twister pseudo-random number generator with a period of 219937-1
 (DSFMT19937) is used.

 Specified as: an integer; iopt =
 1 or 2.

 	irepeat

 	indicates whether repeatable or non-repeatable pseudo-random number
 sequences will be generated, where:
 If irepeat =
 0, the pseudo-random number generator uses values from iseed to
 generate repeatable pseudo-random number sequences.

 If irepeat =
 1, the pseudo-random number generator uses hardware-generated values
 to generate non-repeatable pseudo-random number sequences.

 Specified
 as: an integer; irepeat = 0 or 1.

 	iseed

 	If irepeat = 0, iseed is
 an array containing the initial seed values to use in initializing
 the pseudo-random number generator to generate repeatable pseudo-random
 number sequences.
 If irepeat = 1, iseed is
 ignored.

 Specified as: a one-dimensional integer array of (at
 least) length max(1,liseed).

 	liseed

 	is the number of elements in array ISEED, where:
 If irepeat =
 0, liseed is determined as follows:

 	32-bit integer environment

 	If iopt = 1 or 2, liseed ≥ 624.

 	64-bit integer environment

 	If iopt = 1 or 2, liseed ≥ 312.

 Note: If irepeat = 0 and insufficient
 seeds are provided, the seed values supplied in iseed are
 used and this subroutine initializes the remaining seed values on
 the basis of the supplied seed values.

 If irepeat =
 1, liseed is ignored.

 Specified as: If irepeat =
 0, an integer > 0.

 	istate

 	See "On Return".

 	listate

 	If listate ≠ -1, listate is the number of elements
 in the array istate, where listate depends
 on both the environment the subroutine is running in and the value
 of iopt, as follows:

 	32-bit integer environment

 	

 	If iopt = 1, listate ≥ 696.

 	If iopt = 2, listate ≥ 839.

 	64-bit integer environment

 	

 	If iopt = 1, listate ≥ 348.

 	If iopt = 2, listate ≥ 420.

 If listate = -1, an istate size
 query is assumed. The subroutine returns the minimum required size
 of istate in the output argument listate.

 Specified
 as: an integer; -1 or > 0.

 	On Return

 	

 	istate

 	If listate > 0 on entry, istate contains
 information about the pseudo-random number generator and the initial
 seeds for use in subsequent calls to SURNG, DURNG, SNRNG or DNRNG.
 If listate =
 -1 on entry, then istate is unchanged.

 Returned
 as: a one-dimensional integer array of (at least) length max(1,listate)

 	listate

 	If listate = -1 on entry, then on return it
 contains the minimum required size of istate.
 Otherwise,
 it remains unchanged.

 	Returned as: an integer.

 Notes

 	In your C program, argument listate must be
 passed by reference.

 	For a 64-bit integer environment where iopt =
 1 or iopt = 2, if liseed is
 larger than 231, only the first 231-1 iseed values
 are used to initialize the istate output value.

 	iseed and istate must have
 no common elements; otherwise, results are unpredictable.

 Function

 This subroutine initializes the selected pseudo-random
 number generator for use in subsequent calls to SURNG, DURNG, SNRNG
 or DNRNG. To generate a repeatable or non-repeatable vector of pseudo-random
 numbers, follow the call to INITRNG with one or more calls to SURNG,
 DURNG, SNRNG or DNRNG.

 The following pseudo-random number generators
 are supported:

 	SIMD-oriented fast Mersenne Twister pseudo-random number generator
 SFMT19937 (see [96]) with a period
 length equal to 219937-1 of the produced sequence.

 	Double precision floating point SFMT19937 pseudo-random number
 generator DSFMT19937 ((see [97]) with a period
 length equal to 219937-1 of the produced sequence.

 See references [95], [96] and [97].

 Error conditions

 	[bookmark: am5gr_initrng__am5gr_f16002]
 Computational Errors

 	None

 	[bookmark: am5gr_initrng__am5gr_f16003]
 Input-Argument Errors

 	

 	iopt ≠ 1 or 2

 	irepeat = 0 and liseed <
 1

 	In a 32-bit integer environment:

 	iopt = 1 and listate ≠ -1 and listate < 696.

 	iopt = 2 and listate ≠ -1 and listate < 839.

 	In a 64-bit integer environment:

 	iopt = 1 and listate ≠ -1 and listate < 348.

 	iopt = 2 and listate ≠ -1 and listate < 420.

 Examples

 	Example 1

 	
 This example shows a call to INITRNG to find the optimal
 size of the istate array needed by the SFMT19937
 pseudo-random number generator.

 Call Statement and Input:
 IOPT IREPEAT ISEED LISEED ISTATE LISTATE
 | | | | | |
CALL INITRNG(1 , IREPEAT , ISEED , LISEED , ISTATE , -1)

 Output: LISTATE = 696 (in a 32-bit integer environment)

LISTATE = 348 (in a 64-bit integer environment)

 	Example 2

 	
 This example shows a call to INITRNG to find the optimal
 size of the istate array needed by the DSFMT19937
 pseudo-random number generator.

 Call Statement and Input: IOPT IREPEAT ISEED LISEED ISTATE LISTATE
 | | | | | |
CALL INITRNG(2 , IREPEAT , ISEED , LISEED , ISTATE , -1)

 Output: LISTATE = 839 (in a 32-bit integer environment)

LISTATE = 420 (in a 64-bit integer environment)

 	[bookmark: am5gr_initrng__initrngex3]
 Example 3

 	
 This example shows how to initialize the istate array
 with the seed values for the SFMT19937 pseudo-random number generator
 to generate repeatable random sequences in a subsequent call to SURNG
 or SNRNG.

 Call Statement and Input: IOPT IREPEAT ISEED LISEED ISTATE LISTATE
 | | | | | |
CALL INITRNG(1 , 0 , ISEED , LISEED , ISTATE , 1000)

 In a 32-bit integer environment:ISEED(1) = 0
ISEED(2) = 1234
ISEED(3) = 0
ISEED(4) = 5678
LISEED = 4

 In a 64-bit integer environment:ISEED(1) = 1234
ISEED(2) = 5678
LISEED = 2

 Output:

 istate contains
 an array of seeds for the SFMT19937 pseudo-random number generator
 to generate repeatable random sequences, which can be used in a subsequent
 call to SURNG or SNRNG.

 	[bookmark: am5gr_initrng__initrngex4]
 Example 4

 	
 This example shows how to initialize the istate array
 with the seed values for the DSFMT19937 pseudo-random number generator
 to generate repeatable random sequences in a subsequent call to DURNG
 or DNRNG.

 Call Statement and Input: IOPT IREPEAT ISEED LISEED ISTATE LISTATE
 | | | | | |
CALL INITRNG(2 , 0 , ISEED , LISEED , ISTATE , 1000)

 In a 32-bit integer environment:ISEED(1) = 0
ISEED(2) = 1234
ISEED(3) = 0
ISEED(4) = 5678
LISEED = 4

 In a 64-bit integer
 environment:ISEED(1) = 1234
ISEED(2) = 5678
LISEED = 2

 Output:

 istate contains
 an array of seeds for the DSFMT19937 pseudo-random number generator,
 which can be used in a subsequent call to DURNG or DNRNG.

 	[bookmark: am5gr_initrng__initrngex5]
 Example 5

 	
 This example shows how to initialize the istate array
 with the seed values for the DSFMT19937 pseudo-random number generator
 to generate non-repeatable random sequences in a subsequent call to
 DURNG or DNRNG.

 Call Statement and Input: IOPT IREPEAT ISEED LISEED ISTATE LISTATE
 | | | | | |
CALL INITRNG(2 , 1 , ISEED , LISEED , ISTATE , 1000)

 Output:

 istate contains
 an array of seeds for the DSFMT19937 pseudo-random number generator,
 which can be used in a subsequent call to DURNG or DNRNG.

 Parent topic: Random Number Generation

 SURNG and DURNG (Generate a Vector of Uniformly Distributed
 Pseudo-Random Numbers)

 Purpose

 These subroutines generate a repeatable
 or non-repeatable vector x of uniform pseudo-random
 numbers uniformly distributed over the interval [a, b].

 For
 the initial call to these subroutines, you must initialize the pseudo-random
 number generator with a preceding call to INITRNG.

 Table 241. Data Types.

 	x, a, b

 	Subroutine

 	Short-precision real

 	SURNG

 	Long-precision real

 	DURNG

 Syntax

 	Fortran

 	CALL SURNG | DURNG (n, a, b, x, istate, listate)

 	C and C++

 	surng | durng (n, a, b, x, istate, listate);

 	On Entry

 	

 	 n

 	is the number of pseudo-random numbers to be generated.
 Specified
 as: an integer; n ≥ 0.

 	a

 	is the left boundary of the interval [a, b].
 Specified
 as: a number of the data type indicated in Table 241.

 	b

 	is the right boundary of the interval [a, b].
 Specified
 as: a number of the data type indicated in Table 241.

 	x

 	See "On Return".

 	istate

 	is an array containing information about the current state of
 the pseudo-random number generator.
 Note: If you are invoking this
 subroutine for the first time, istate must be the
 output of a preceding call to subroutine INITRNG, as follows:

 	For SURNG, INITRNG must have been invoked with iopt =
 1

 	For DURNG, INITRNG must have been invoked with iopt =
 2

 Specified as: a one-dimensional integer array of (at
 least) length listate.

 	listate

 	is the number of elements in the array istate and
 depends on both the environment the subroutine is running in and the
 value of iopt specified on the previous call to
 INITRNG, as follows:

 	32-bit integer environment

 	

 	If INITRNG was called with iopt = 1, listate ≥ 696.

 	If INITRNG was called with iopt = 2, listate ≥ 839.

 	64-bit integer environment

 	

 	If INITRNG was called with iopt = 1, listate ≥ 348.

 	If INITRNG was called with iopt = 2, listate ≥ 420.

 Specified as: an integer; listate >
 0.

 	On Return

 	

 	x

 	is a vector of length n, containing the uniformly distributed pseudo-random numbers.

 	Returned as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 241.

 	istate

 	is an array of length listate containing updated
 information about the state of the pseudo-random number generator
 for use in subsequent calls to this subroutine.

 	Returned as: a one-dimensional integer array of (at least) length listate.

 Notes

 x and istate must
 have no common elements; otherwise, results are unpredictable.

 Function

 These subroutines generate a repeatable
 or non-repeatable vector x of uniform pseudo-random
 numbers uniformly distributed over the interval [a, b].

 For
 the initial call to these subroutines, you must initialize the pseudo-random
 number generator with a preceding call to INITRNG.

 The computation
 involves the following steps:

 	Retrieve the information for the initialized pseudo-random
 number generator.

 	Generate the uniformly distributed sequence with the selected
 pseudo-random number generator.

 	Scale the sequence of pseudo-random numbers.

 See references [95], [96] and [97].

 If n is
 0, no computation is performed.

 Error conditions

 	[bookmark: am5gr_sdurng__am5gr_f16002]
 Computational Errors

 	None

 	[bookmark: am5gr_sdurng__am5gr_f16003]
 Input-Argument Errors

 	

 	n < 0

 	a ≥ b

 	istate is not initialized (by a preceding call
 to INITRNG)

 	istate is initialized (by a preceding call
 to INITRNG):

 	With iopt = 2 for a call to SURNG

 	With iopt = 1 for a call to DURNG

 	listate is less than the minimum required value.

 Examples

 	Example 1

 	
 This example shows a call to SURNG to generate 10 uniformly
 distributed short-precision pseudo-random numbers between 0.0 and
 1.0.

 Call Statement and Input: N A B X ISTATE LISTATE
 | | | | | |
CALL SURNG(10 , 0.0 , 1.0 , X , ISTATE , 1000)

 ISTATE =

 (same as ouput

 ISTATE

 in

 Example 3

)

 Note: For the initial call to SURNG, you must initialize
 the pseudo-random number generator with a preceding call to INITRNG
 (see Example
 3).

 Output: ┌ ┐
 | 0.439785 |
 | 0.064906 |
 | 0.385660 |
 | 0.695451 |
X = | 0.496463 |
 | 0.154272 |
 | 0.002247 |
 | 0.725402 |
 | 0.037238 |
 | 0.892588 |
 └ ┘

 ISTATE
 = contains the updated state of the pseudo-random number
 generator.

 	Example 2

 	
 This example shows a call to DURNG to generate 10 uniformly distributed
 long-precision pseudo-random numbers between 0.0 and 1.0.

 Call
 Statement and Input: N A B X ISTATE LISTATE
 | | | | | |
CALL DURNG(10 , 0.0 , 1.0 , X , ISTATE , 1000)

 ISTATE =

 (same as ouput

 ISTATE

 in

 Example 4

)

 Note: For the initial call to DURNG, you must initialize
 the pseudo-random number generator with a preceding call to INITRNG
 (see Example
 4).

 Output: ┌ ┐
 | 0.948207 |
 | 0.388311 |
 | 0.758121 |
 | 0.430842 |
X = | 0.261129 |
 | 0.693552 |
 | 0.113275 |
 | 0.607048 |
 | 0.192948 |
 | 0.669879 |
 └ ┘

 ISTATE
 = contains the updated state of the pseudo-random number
 generator.

 Parent topic: Random Number Generation

 SNRNG and DNRNG (Generate a Vector of Normally Distributed
 Pseudo-Random numbers)

 Purpose

 These subroutines generate a repeatable
 or non-repeatable vector x of normally distributed pseudo-random
 numbers normally distributed with a mean of rmean and
 a standard deviation of sigma, using the BoxMuller2
 method.

 For the initial call to these subroutines, you must
 initialize the pseudo-random number generator with a preceding call
 to INITRNG.

 Table 242. Data
 Types.

 	x, rmean, sigma

 	Subroutine

 	Short-precision real

 	SNRNG

 	Long-precision real

 	DNRNG

 Syntax

 	Fortran

 	CALL SNRNG | DNRNG (n, rmean, sigma, x, istate, listate)

 	C and C++

 	SNRNG | DNRNG (n, rmean, sigma, x, istate, listate);

 	On Entry

 	

 	 n

 	is the number of pseudo-random numbers to be generated.
 Specified
 as: an integer; n must be an even number and n ≥ 0.

 	rmean

 	is the mean value of the distribution.
 Specified as: a number
 of the data type indicated in Table 242.

 	sigma

 	is the standard deviation value of the distribution.
 Specified
 as: a number of the data type indicated in Table 242.

 	x

 	See "On Return".

 	istate

 	is an array containing information about the current state of
 the pseudo-random number generator.
 Note: If you are invoking this
 subroutine for the first time, istate must be the
 non-zero output of a preceding call to subroutine INITRNG, as follows:

 	For SNRNG, INITRNG must have been invoked with iopt =
 1

 	For DNRNG, INITRNG must have been invoked with iopt =
 2

 Specified as: a one-dimensional integer array of (at
 least) length listate.

 	listate

 	is the number of elements in the array istate and
 depends on both the environment the subroutine is running in and the
 value of iopt specified on the previous call to
 INITRNG, as follows:

 	32-bit pointer environment

 	

 	If INITRNG was called with iopt = 1, listate ≥ 696.

 	If INITRNG was called with iopt = 2, listate ≥ 839.

 	64-bit pointer environment

 	

 	If INITRNG was called with iopt = 1, listate ≥ 348.

 	If INITRNG was called with iopt = 2, listate ≥ 420.

 Specified as: an integer; listate >
 0.

 	On Return

 	

 	x

 	is a vector of length n, containing the normally
 distributed pseudo-random numbers.

 	Returned as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 242.

 	istate

 	is an array of length listate containing updated
 information about the state of the pseudo-random number generator
 for use in subsequent calls to this subroutine.

 	Returned as: a one-dimensional integer array of (at least) length listate.

 Notes

 x and istate must
 have no common elements; otherwise, results are unpredictable.

 Function

 These subroutines generate a repeatable
 or non-repeatable vector x of normally distributed pseudo-random
 numbers normally distributed with a mean of rmean and
 a standard deviation of sigma, using the BoxMuller2
 method.

 For the initial call to these subroutines, you must
 initialize the pseudo-random number generator with a preceding call
 to INITRNG.

 The computation involves the following steps:

 	Retrieve the information for the initialized pseudo-random
 number generator.

 	Generate the uniformly distributed sequence with the selected
 pseudo-random number generator.

 	Generate the normally distributed sequence using the BoxMuller2
 method.

 See references [13], [95], [96] and [97].

 If n is
 0, no computation is performed.

 Error conditions

 	Computational Errors

 	None

 	Input-Argument Errors

 	

 	n < 0 or n is an odd
 number

 	sigma ≤ 0

 	istate is not initialized (by a preceding call
 to INITRNG)

 	istate is initialized:

 	With iopt = 2 for a call to SNRNG

 	With iopt = 1 for a call to DNRNG

 	listate is less than the minimum required value.

 Examples

 	Example 1

 	
 This example shows a call to SNRNG to generate 10 normally
 distributed short-precision pseudo-random numbers with a mean value
 of 0.0 and a standard deviation of 1.0.

 Call Statement and
 Input: N RMEAN SIGMA X ISTATE LISTATE
 | | | | | |
CALL SNRNG(10 , 0.0 , 1.0 , X , ISTATE , 1000)

 ISTATE =

 (same as ouput

 ISTATE

 in

 Example 3

)

 Note: For the initial call to SNRNG, you must initialize
 the pseudo-random number generator with a preceding call to INITRNG
 (see Example
 3).

 Output:
 ┌ ┐
 | -0.426951 |
 | 0.988221 |
 | 0.929709 |
 | -0.331744 |
X = | -0.965826 |
 | 0.662854 |
 | 0.066279 |
 | -0.010326 |
 | 0.172133 |
 | 0.215101 |
 └ ┘

 ISTATE
 = contains the updated state of the pseudo-random number
 generator.

 	Example 2

 	
 This example shows a call to DNRNG to generate 10 normally
 distributed long-precision pseudo-random numbers with a mean value
 of 0.0 and a standard deviation of 1.0.

 Call Statement and
 Input: N RMEAN SIGMA X ISTATE LISTATE
 | | | | | |
CALL DNRNG(10 , 0.0 , 1.0 , X , ISTATE , 1000)

 ISTATE =

 (same as ouput

 ISTATE

 in

 Example 4

)

 Note: For the initial call to DNRNG, you must initialize
 the pseudo-random number generator with a preceding call to INITRNG
 (see Example
 4).

 Output:
 ┌ ┐
 | -0.426951 |
 | -1.570857 |
 | -1.858332 |
 | -0.709286 |
 | -1.528250 |
X = | 0.729566 |
 | -0.270181 |
 | 0.305498 |
 | -0.383550 |
 | 0.573548 |
 | -0.315877 |
 └ ┘

 ISTATE
 = contains the updated state of the pseudo-random number
 generator.

 Parent topic: Random Number Generation

 SURAND and DURAND (Generate a Vector of Uniformly Distributed
 Random Numbers)

 Purpose

 These subroutines generate vector x of
 uniform (0,1) pseudo-random numbers, using the multiplicative congruential
 method with a user-specified seed.

 Table 243. Data Types.

 	x

 	seed

 	Subroutine

 	Short-precision real

 	Long-precision real

 	SURAND

 	Long-precision real

 	Long-precision real

 	DURAND

 Note: If you need a very long period random number generator,
 use SURXOR and DURXOR instead of these subroutines.

 Syntax

 	Fortran

 	CALL SURAND | DURAND (seed, n, x)

 	C and C++

 	surand | durand (seed, n, x);

 	On Entry

 	

 	 seed

 	is the initial value used to generate the random numbers.
 Specified
 as: a number of the data type indicated in Table 243. It should be a whole
 number; that is, the fraction part should be 0. (If you specify a
 mixed number, it is truncated.) Its value must be 1.0 ≤ seed < (2147483647.0 = 231-1).

 Note: seed is always a long-precision real number,
 even in SURAND.

 	 n

 	is the number of random numbers to be generated.
 Specified
 as: an integer; n ≥ 0.

 	 x

 	See On Return.

 	On Return

 	

 	 seed

 	is the new seed that is to be used to generate additional random
 numbers in subsequent invocations of SURAND or DURAND. Returned as:
 a number of the data type indicated in Table 243. It is a whole number
 whose value is 1.0 ≤ seed < (2147483647.0 = 231-1).

 	 x

 	is a vector of length n, containing the uniform
 pseudo-random numbers with values between 0 and 1. Returned as: a
 one-dimensional array of (at least) length n, containing
 numbers of the data type indicated in Table 243.

 Notes

 In
 your C program, argument seed must be passed by
 reference.

 Function

 The uniform (0,1) pseudo-random
 numbers are generated as follows, using the multiplicative congruential
 method:

 s

 i

 = (

 a

 (

 s

 i

 -1

)) mod(

 m

) = (

 a

 i

 s

 0

) mod(

 m

)

 x

 i

 =

 s

 i

 /

 m

 for

 i

 =

 1, 2,

 …

 ,

 n

 where:

 s

 i

 is a random sequence.

 x

 i

 is a random number.

 s

 0

 is the initial seed provided by the caller.

 a

 =

 7

 5

 =

 16807.0

 m

 =

 2

 31

 -1

 =

 2147483647.0

 n

 is the number of random numbers to be generated.

 See
 references [90] and [94]. If n is
 0, no computation is performed, and the initial seed is unchanged.

 Error conditions

 	[bookmark: am5gr_hsurand__am5gr_f16002]
 Computational Errors

 	None

 	[bookmark: am5gr_hsurand__am5gr_f16003]
 Input-Argument Errors

 	

 	n < 0

 	seed < 1.0 or seed ≥ 2147483647.0

 Examples

 	Example 1

 	
 This example shows a call to SURAND to generate 10 random
 numbers.

 Call Statement and Input: SEED N X
 | | |
CALL SURAND(SEED , 10 , X)

SEED = 80629.0

 Note: It is important to note that SEED is
 a long-precision number, even though X contains short-precision
 numbers.

 Output: SEED = 759150100.0

X = (0.6310323,
 0.7603202,
 0.7015232,
 0.5014868,
 0.4895853,
 0.4602344,
 0.1603608,
 0.1832564,
 0.9899062,
 0.3535068)

 	Example 2

 	
 This example shows a call to DURAND to generate 10 random
 numbers.

 Call Statement and Input: SEED N X
 | | |
CALL DURAND(SEED , 10 , X)

SEED = 80629.0

 Output:

 SEED = 759150100.0

X = (0.6310323270182275,
 0.7603201953509451,
 0.7015232633340746,
 0.5014868557925740,
 0.4895853057920864,
 0.4602344475967038,
 0.1603607578018497,
 0.1832563756887132,
 0.9899062002030695,
 0.3535068129904134)

 	

 Parent topic: Random Number Generation

 SNRAND and DNRAND (Generate a Vector of Normally Distributed
 Random Numbers)

 Purpose

 These subroutines generate vector x of
 normally distributed pseudo-random numbers, with a mean of 0 and a
 standard deviation of 1, using Polar methods with a user-specified
 seed.

 Table 244. Data
 Types.

 	x, aux

 	seed

 	Subroutine

 	Short-precision real

 	Long-precision real

 	SNRAND

 	Long-precision real

 	Long-precision real

 	DNRAND

 Syntax

 	Fortran

 	CALL SNRAND | DNRAND (seed, n, x, aux, naux)

 	C and C++

 	snrand | dnrand (seed, n, x, aux, naux);

 	On Entry

 	

 	 seed

 	is the initial value used to generate the random numbers.
 Specified
 as: a number of the data type indicated in Table 244. It must be a whole number;
 that is, the fraction part must be 0. Its value must be 1.0 ≤ seed < (2147483647.0 = 231-1).

 Note: seed is always a long-precision real number,
 even in SNRAND.

 	 n

 	is the number of random numbers to be generated.
 Specified
 as: an integer; n must be an even number and n ≥ 0.

 	 x

 	See On Return.

 	 aux

 	has the following meaning:
 If naux = 0
 and error 2015 is unrecoverable, aux is ignored.

 Otherwise,
 it is the storage work area used by this subroutine. Its size must
 be greater than or equal to n/2.

 Specified
 as: an area of storage, containing numbers of the data type indicated
 in Table 244. They can have
 any value.

 	 naux

 	is the size of the work area specified by aux.

 Specified as: an integer, where:

 If naux = 0
 and error 2015 is unrecoverable, SNRAND and DNRAND dynamically allocate
 the work area used by the subroutine. The work area is deallocated
 before control is returned to the calling program.

 Otherwise, naux ≥ n/2.

 	On Return

 	

 	 seed

 	is the new seed that is to be used to generate additional random
 numbers in subsequent invocations of SNRAND or DNRAND. Returned as:
 a number of the data type indicated in Table 244. It is a whole number
 whose value is 1.0 ≤ seed < (2147483647.0 = 231-1).

 	 x

 	is a vector of length n, containing the normally
 distributed pseudo-random numbers. Returned as: a one-dimensional
 array of (at least) length n, containing numbers
 of the data type indicated in Table 244.

 Notes

 	In your C program, argument seed must be passed
 by reference.

 	Vector x must have no common elements with the storage
 area specified for aux; otherwise, results are
 unpredictable.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 The normally distributed pseudo-random
 numbers, with a mean of 0 and a standard deviation of 1, are generated
 as follows, using Polar methods with a user-specified seed. The Polar
 method, which this technique is based on, was developed by G. E. P.
 Box, M. E. Muller, and G. Marsaglia and is described in reference [90].

 	Using seed, a vector of uniform (0,1) pseudo-random
 numbers, ui for i = 1, n,
 is generated by calling SURAND or DURAND, respectively. These ui values
 are then used in the subsequent steps.

 	All (yj, zj)
 for j = 1, n/2 are set
 as follows, where each (y, z)
 is a point in the square -1 to 1:

 y

 j

 = 2

 u

 2

 j

 -1

 -1

 z

 j

 = 2

 u

 2

 j

 -1

 	All pj for j = 1, n/2
 are set as follows, where each p measures the square
 of the radius of (y, z):

 [image: Random Number Generator Graphic]

 If pj ≥ 1, then pj is
 discarded, and steps 1 through 3 are repeated until pj < 1.

 	All xi for i = 1, n are
 set as follows to produce the normally distributed random numbers:

 x

 2

 j

 -1

 =

 y

 j

 ((-2 ln

 p

 j

) /

 p

 j

)

 0.5

 x

 2

 j

 =

 z

 j

 ((-2 ln

 p

 j

) /

 p

 j

)

 0.5

 for

 j

 =

 1,

 n

 /2

 If n is 0, no computation is performed,
 and the initial seed is unchanged.

 Error conditions

 	[bookmark: am5gr_hsnrand__am5gr_f16011]
 Resource Errors

 	Error 2015 is unrecoverable, naux = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hsnrand__am5gr_f16012]
 Computational Errors

 	None

 	[bookmark: am5gr_hsnrand__am5gr_f16013]
 Input-Argument Errors

 	

 	n < 0 or n is an
 odd number

 	seed < 1.0 or seed ≥ 2147483647.0

 	Error 2015 is recoverable or naux≠0, and naux is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows a call to SNRAND to generate 10 random
 numbers.

 Call Statement and Input: SEED N X AUX NAUX
 | | | | |
CALL SNRAND(SEED , 10 , X , AUX , 5)

SEED = 80629.0

 Note: It is important to note that SEED is
 a long-precision number, even though X contains short-precision
 numbers.

 Output: SEED = 48669425.0

X = (0.660649538,
 1.312503695,
 1.906438112,
 0.014065863,
 -0.800935328,
 -3.058144093,
 -0.397426069,
 -0.370634943,
 -0.064151444,
 -0.275887042)

 	Example 2

 	
 This example shows a call to DNRAND to generate 10 random
 numbers.

 Call Statement and Input: SEED N X AUX NAUX
 | | | | |
CALL DNRAND(SEED , 10 , X , AUX , 5)

SEED = 80629.0

 Output:

 SEED = 48669425.0

X = (0.6606495655963802,
 1.3125037758861060,
 1.9064381379483730,
 0.0140658628770495,
 -0.8009353314494653,
 -3.0581441239248530,
 -0.3974260845722100,
 -0.3706349643478605,
 -0.0641514443372939,
 -0.2758870630332470)

 	

 Parent topic: Random Number Generation

 SURXOR and DURXOR (Generate a Vector of Long Period Uniformly
 Distributed Random Numbers)

 Purpose

 These subroutines generate a vector x of
 uniform [0,1)
 pseudo-random numbers, using the Tausworthe exclusive-or algorithm.

 Table 245. Data Types.

 	x, vseed

 	iseed

 	Subroutine

 	Short-precision real

 	Integer

 	SURXOR

 	Long-precision real

 	Integer

 	DURXOR

 Syntax

 	Fortran

 	CALL SURXOR | DURXOR (iseed, n, x, vseed)

 	C and C++

 	surxor | durxor (iseed, n, x, vseed);

 	On Entry

 	

 	 iseed

 	has the following meaning, where:
 If iseed ≠ 0, iseed is
 the initial value used to generate the random numbers. You specify iseed ≠ 0 when you call this
 subroutine for the first time or when you changed vseed between
 calls to this subroutine.

 If iseed = 0, vseed is
 used to generate the random numbers, where vseed was
 initialized by an earlier call to this subroutine. ESSL assumes you
 have not changed vseed between calls to this subroutine,
 when you specify iseed = 0.

 Specified as: an integer,
 as indicated in Table 245.

 	 n

 	is the number of random numbers to be generated.
 Specified
 as: an integer; n ≥ 0.

 	 x

 	See On Return.

 	 vseed

 	is the work area used by this subroutine and has the following
 meaning, where:
 If iseed ≠ 0, vseed is
 not used for input. The work area can contain anything.

 If iseed = 0, vseed contains
 the seed vector generated by a preceding call to this subroutine.
 vseed is used in this computation to generate
 the new random numbers. It should not be changed between calls to
 this subroutine.

 Specified as: a one-dimensional array of
 (at least) length 10000, containing numbers of the data type indicated
 in Table 245.

 	On Return

 	

 	 iseed

 	is set to 0 for subsequent calls to SURXOR or DURXOR. Returned
 as: an integer, as indicated in Table 245.

 	 x

 	is a vector of length n, containing the uniform
 pseudo-random numbers with the following values: 0 ≤ x < 1.
 Returned as: a one-dimensional array of (at least) length n,
 containing numbers of the data type indicated in Table 245.

 	 vseed

 	is the work area used by these subroutines, containing the new
 seed that is to be used in subsequent calls to this subroutine. Returned
 as: a one-dimensional array of (at least) length 10000, containing
 numbers of the data type indicated in Table 245.

 Notes

 	You can generate the same vector x of random
 numbers by starting over and specifying your original nonzero iseed value.

 	Multiple calls to these subroutines with mixed sizes generate
 the same sequence of numbers as a single call the total length, assuming
 you specify the same initial iseed in both cases.
 For example, you can generate the same vector x of
 random numbers by calling this subroutine twice and specifying n = 10
 or by calling this subroutine once and specifying n = 20.
 You need to specify the same iseed in the initial
 call in both cases, and iseed = 0 in the second call with n = 10.

 	Vector x must have no common elements with the storage
 area specified for vseed; otherwise, results are
 unpredictable.

 	In your C program, argument iseed must be passed
 by reference.

 Function

 The pseudo-random numbers uniformly
 distributed in the interval [0,1) are generated
 using the Tausworthe exclusive-or algorithm. This is based on a linear-feedback
 shift-register sequence. The very long period of the generator, 21279-1,
 makes it useful in modern statistical simulations where the shorter
 period of other generators could be exhausted during a single run.
 If you need a large number of random numbers, you can use these subroutines,
 because with this generator you do not request more than a small percentage
 of the entire period of the generator.

 This generator is based
 on two feedback positions to generate a new binary digit:

 [image: Random Number Generator Graphic]

 where:

 p

 >

 q

 k

 =

 1, 2,

 …

 z

 is a bit vector.

 and where:

 [image: Random Number Generator Graphic]

 For details, see references [62], [88], and [113]. The values
 of p and q are selected according
 to the criteria stated in reference [120].

 The
 algorithm initializes a seed vector of length p,
 starting with iseed. The seed vector is stored
 in vseed for use in subsequent calls to this subroutine
 with iseed = 0.

 If n is
 0, no computation is performed, and the initial seed is unchanged.

 Special Usage

 For some specialized applications,
 if you need multiple sources of random numbers, you can specify different vseed areas,
 which are initialized with different seeds on multiple calls to this
 subroutine. You then get multiple sequences of the random number sequence
 provided by the generator that are sufficiently far apart for most
 purposes.

 Error conditions

 	[bookmark: am5gr_hsurxor__am5gr_f16021]
 Computational Errors

 	None

 	[bookmark: am5gr_hsurxor__am5gr_f16022]
 Input-Argument Errors

 	

 	n < 0

 	iseed = 0 and vseed does
 not contain valid data.

 Examples

 	Example 1

 	
 This example shows a call to SURXOR to generate 10 random
 numbers.

 Call Statement and Input: ISEED N X VSEED
 | | | |
CALL SURXOR(ISEED , 10 , X , VSEED)

ISEED = 137

 Output: ISEED = 0

X = (0.6440868,
 0.5105118,
 0.4878680,
 0.3209075,
 0.6624528,
 0.2499877,
 0.0056630,
 0.7329214,
 0.7486335,
 0.8050517)

 	Example 2

 	
 This example shows a call to SURXOR to generate 10 random
 numbers. This example specifies iseed = 0
 and uses the vseed output generated from Example
 1.

 Call Statement and Input: ISEED N X VSEED
 | | | |
CALL SURXOR(ISEED , 10 , X , VSEED)

ISEED = 0

 Output: ISEED = 0

X = (0.9930249,
 0.0441873,
 0.6891295,
 0.3101060,
 0.6324178,
 0.3299408,
 0.3553145,
 0.0100013,
 0.0214620,
 0.8059390)

 	Example 3

 	
 This example shows a call to DURXOR to generate 20 random
 numbers. This sequence of numbers generated are like those generated
 in Examples 1 and 2.

 Call Statement and
 Input: ISEED N X VSEED
 | | | |
CALL DURXOR(ISEED , 20 , X , VSEED)

ISEED = 137

 Output:

 ISEED = 0

X = (0.64408693438956721,
 0.51051182536460882,
 0.48786801310787142,
 0.32090755617007050,
 0.66245283144861666,
 0.24998782843358081,
 0.00566308101257373,
 0.73292147005172925,
 0.74863359794102236,
 0.80505169697755319,
 0.99302499462139138,
 0.04418740640269125,
 0.68912952155409579,
 0.31010611495627916,
 0.63241786342211936,
 0.32994081459690583,
 0.35531452631408911,
 0.01000134413132581,
 0.02146199494672940,
 0.80593898487597615)

 	

 Parent topic: Random Number Generation

 Utilities

 The utility subroutines are described here.

 	Overview of the Utility Subroutines

 	Use Considerations

 	Utility Subroutines

 	EINFO (ESSL Error Information-Handler Subroutine)

 	ERRSAV (ESSL ERRSAV Subroutine)

 	ERRSET (ESSL ERRSET Subroutine)

 	ERRSTR (ESSL ERRSTR Subroutine)

 	IESSL (Determine the Level of ESSL Installed)

 	SETGPUS (Set the Number of GPUs and Identify Which GPUs ESSL Should Use)

 	STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines)

 	DSRSM (Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode)

 	DGKTRN (For a General Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode)

 	DSKTRN (For a Symmetric Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode)

 Parent topic: Reference Information

 Overview of the Utility Subroutines

 The utility subroutines perform general service functions
 that support ESSL, rather than mathematical computations.

 Table 246. List of Utility Subroutines.

 	Subroutine

 	Descriptive Name and Location

 	EINFO

 	EINFO (ESSL Error Information-Handler Subroutine)

 	ERRSAV

 	ERRSAV (ESSL ERRSAV Subroutine)

 	ERRSET

 	ERRSET (ESSL ERRSET Subroutine)

 	ERRSTR

 	ERRSTR (ESSL ERRSTR Subroutine)

 	IVSSET§

 	Set the Vector Section Size (VSS) for the ESSL/370
 Scalar Library

 	IEVOPS§

 	Set the Extended Vector Operations Indicator
 for the ESSL/370 Scalar Library

 	IESSL

 	IESSL (Determine the Level of ESSL Installed)

 	SETGPUS

 	SETGPUS (Set the Number of GPUs and Identify Which GPUs ESSL Should Use)

 	STRIDE

 	STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform Subroutines)

 	DSRSM

 	DSRSM (Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode)

 	DGKTRN

 	DGKTRN (For a General Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode)

 	DSKTRN

 	DSKTRN (For a Symmetric Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline Storage Mode)

 	
 § This subroutine is provided
 for migration from earlier releases of ESSL and is not intended for
 use in new programs. Documentation for this subroutine is no longer
 provided.

 Parent topic: Utilities

 Use Considerations

 This describes what you use the utility subroutines for.

 	Determining the Level of ESSL Installed

 	Finding the Optimal Stride(s) for Your Fourier Transforms

 	Converting Sparse Matrix Storage

 Parent topic: Utilities

 Determining the Level of ESSL Installed

 IESSL gets the level of ESSL and returns it to your program. The level
 consists of the following: version number, release number, modification number,
 and number of the most recently installed ESSL PTF. You can use this function
 to verify that you are running on or using the capabilities of the desired
 level.

 Parent topic: Use Considerations

 Finding the Optimal Stride(s) for Your Fourier Transforms

 STRIDE is used to determine optimal stride values for
 your Fourier transforms when using any of the Fourier transform subroutines,
 except _RCFT and _CRFT. You must invoke STRIDE for each optimal stride
 you want computed. Sometimes you need a separate stride for your
 input and output data. For the three-dimensional Fourier transforms,
 you need an optimal stride for both the second and third dimensions
 of the array. The examples provided for STRIDE explain how it is used
 for each of the subroutines listed above.

 After obtaining the optimal strides from STRIDE, you should
 arrange your data using these stride values. After the data is set
 up, call the Fourier transform subroutine. For additional information
 on how to set up your data, see Setting Up Your Data.

 Parent topic: Use Considerations

 Converting Sparse Matrix Storage

 DSRSM is used to migrate your existing program from sparse
 matrices stored by rows to sparse matrices stored in compressed-matrix
 storage mode. This converts the matrices into a storage format that
 is compatible with the input requirements for some ESSL sparse matrix
 subroutines, such as DSMMX.

 DGKTRN and DSKTRN are used to convert your sparse matrix
 from one skyline storage mode to another, if necessary, before calling
 the subroutines DGKFS/DGKFSP or DSKFS/DSKFSP, respectively.

 Parent topic: Use Considerations

 Utility Subroutines

 This contains the utility subroutine descriptions.

 Parent topic: Utilities

 EINFO (ESSL Error Information-Handler Subroutine)

 Purpose

 This subroutine returns information
 to your program about the data involved in a computational error that
 occurred in an ESSL subroutine. This is the same information that
 is provided in the ESSL messages; however, it allows you to check
 the information in your program at run time and continue processing.
 You pass the computational error code of interest to this subroutine
 in icode, and it passes back one or more pieces
 of information in the output arguments inf1 and,
 optionally, inf2, as defined in Table 247. You should use this
 subroutine only for those computational errors listed in the table.
 It does not apply to computational errors that do not return information.

 For
 multithreaded application programs, if you want the error handling
 capabilities that this subroutine provides to be implemented on each
 thread created by your program, this subroutine must be called from
 each thread. If your application creates multiple threads, the action
 performed by a call to this subroutine applies to the thread that
 this subroutine was invoked from. For an example, see Example of Handling Errors in a Multithreaded Application Program.

 Table 247. Computational Error Information
 Returned by EINFO.

 	Error Code

 	Receiver

 	Type of Information

 	2100

 	inf1
 inf2

 	Lower range of a vector
 Upper range of a vector

 	2101

 	inf1
 inf2

 	Index of the eigenvalue that failed to converge
 Number
 of iterations after which it failed to converge

 	2102

 	inf1
 inf2

 	Index of the last eigenvector that failed to converge
 Number
 of iterations after which it failed to converge

 	2103

 	inf1

 	Index of the pivot with zero value

 	2104

 	inf1

 	Index of the last pivot with nonpositive value

 	2105

 	inf1

 	Index of the pivot element near zero causing factorization
 to fail

 	2107

 	inf1
 inf2

 	Index of the singular value that failed to converge
 Number
 of iterations after which it failed to converge

 	2109

 	inf1

 	Iteration count when it was determined that the matrix was
 not definite

 	2114

 	inf1
 inf2

 	Index of the last eigenvalue that failed to converge
 Number
 of iterations after which it failed to converge

 	2115

 	inf1

 	Order of the leading minor that was discovered to have a nonpositive
 determinant

 	2117

 	inf1

 	Column number for which pivot value was near zero

 	2118

 	inf1

 	Row number for which pivot value was near zero

 	2120

 	inf1

 	Row number of empty row where factorization failed

 	2121

 	inf1

 	Column number of empty column where factorization failed

 	2126

 	inf1

 	Row number for which pivot value was unacceptable

 	2145

 	inf1

 	First diagonal element with zero value

 	2150

 	inf1

 	First diagonal element with zero value

 Syntax

 	Fortran

 	CALL EINFO (icode[, inf1[, inf2]])

 	C and C++

 	einfo (icode, inf1, inf2);

 	On Entry

 	

 	 icode

 	has the following meaning, where:
 If icode = 0,
 this indicates that the ESSL error option table is to be initialized.
 (You specify this value once in the beginning of your program before
 calls to ERRSET.)

 If icode has any of the
 allowable error code values listed in Table 247, this is the computational
 error code of interest. (You specify one of these values whenever
 you want information returned about a computational error.)

 Specified
 as: an integer; icode = 0 or an error code value indicated
 in Table 247.

 	 inf1

 	See On Return.

 	 inf2

 	See On Return.

 	On Return

 	

 	 inf1

 	has the following meaning, where:
 If icode = 0,
 this argument is not used in the computation. In this case, inf1 is
 an optional argument, except in C and C++ programs.

 If icode ≠ 0, then inf1 is
 the first information receiver, containing numerical information related
 to the computational error.

 Returned as: an integer.

 	 inf2

 	has the following meaning, where:
 If icode = 0,
 this argument is not used in the computation.

 If icode ≠ 0, then inf2 is
 the second information receiver, containing numerical information
 related to the computational error. It should be specified when the
 error code provides a second piece of information, and you want the
 information.

 In both of these cases, inf2 is
 an optional argument, except in C and C++ programs. For more details,
 see Notes.

 Returned
 as: an integer.

 Notes

 	If icode is not 0 and is not one of the error
 codes specified in Table 247,
 this subroutine returns to the caller, and no information is provided
 in inf1 and inf2.

 	If there are two pieces of information for the error and you specify
 one output argument, the second piece of information is not returned
 to the caller.

 	If there is one piece of information for the error and you specify
 two output arguments, the second output argument is not set by this
 subroutine.

 	In C and C++ programs you must code the inf1 and inf2 arguments,
 because they are not optional arguments.

 	In Fortran programs, inf1 and inf2 are
 optional arguments. This is an exception to the rule, because other
 ESSL subroutines do not allow optional arguments.

 	Examples of how to use EINFO are provided in Coding Your Program.

 Parent topic: Utilities

 ERRSAV (ESSL ERRSAV Subroutine)

 Purpose

 The ERRSAV subroutine copies an
 ESSL error option table entry into an 8-byte storage area that is
 accessible to your program.

 For multithreaded application programs,
 if you want the error handling capabilities that this subroutine provides
 to be implemented on each thread created by your program, this subroutine
 must be called from each thread. If your application creates multiple
 threads, the action performed by a call to this subroutine applies
 to the thread that this subroutine was invoked from. For an example,
 see Example of Handling Errors in a Multithreaded Application Program.

 Syntax

 	Fortran

 	CALL ERRSAV (ierno, tabent)

 	C and C++

 	errsav (ierno, tabent);

 	On Entry

 	

 	ierno

 	is the error number in the option table. The entry for ierno in
 the ESSL error option table is stored in the 8-byte storage area tabent.

 Specified as: an integer; ierno must be one
 of the error numbers in the option table. For a list of these numbers,
 see Table 45.

 	On Return

 	

 	tabent

 	is the storage area where the option table entry is stored.
 Specified
 as: an area of storage of length 8-bytes.

 Notes

 Examples
 of how to use ERRSAV are provided in Coding Your Program.

 Parent topic: Utilities

 ERRSET (ESSL ERRSET Subroutine)

 Purpose

 The ERRSET subroutine allows you
 to control execution when error conditions occur. It modifies the
 information in the ESSL error option table for the error number indicated.
 For a range of error messages, you can specify the following:

 	How many times a particular error is allowed to occur before the
 program is terminated

 	How many times a particular error message is printed before printing
 is suppressed

 	Whether the ESSL error exit routine is to be invoked

 For multithreaded application programs, if you want the
 error handling capabilities that this subroutine provides to be implemented
 on each thread created by your program, this subroutine must be called
 from each thread. If your application creates multiple threads, the
 action performed by a call to this subroutine applies to the thread
 that this subroutine was invoked from. For an example, see Example of Handling Errors in a Multithreaded Application Program.

 Syntax

 	Fortran

 	CALL ERRSET (ierno, inoal, inomes, itrace, iusadr, irange)

 	C and C++

 	errset (ierno, inoal, inomes, itrace, iusadr, irange);

 	On Entry

 	

 	 ierno

 	is the error number in the option table. The entry for ierno in
 the ESSL error option table is updated as indicated by the other arguments.
 Specified as: an integer; ierno must be one of
 the error numbers in the option table. For a list of these numbers,
 see Table 45.

 	 inoal

 	indicates the number of errors allowed before each execution is
 terminated, where:
 If inoal ≤ 0, the specification
 is ignored, and the number-of-errors option is not changed.

 If inoal = 1,
 execution is terminated after one error.

 If 2 ≤ inoal ≤ 255, then inoal specifies
 the number of errors allowed before each execution is terminated.

 If inoal > 255,
 an unlimited number of errors is allowed.

 Specified as: an
 integer, where:

 If iusadr = ENOTRM,
 then 2 ≤ inoal ≤ 255.

 	 inomes

 	indicates the number of messages to be printed, where:
 If inomes < 0,
 all messages are suppressed.

 If inomes = 0,
 the number-of-messages option is not changed.

 If 0 < inomes ≤ 255, then inomes specifies
 the number of messages to be printed.

 If inomes > 255,
 an unlimited number of error messages is allowed.

 Specified
 as: an integer.

 	 itrace

 	this argument is ignored, but must be specified.
 Specified
 as: an integer where, itrace = 0, 1, or 2 (for migration purposes).

 	 iusadr

 	indicates whether or not the ESSL error exit routine is to be
 invoked, where:
 If iusadr is zero, the option
 table is not altered.

 If iusadr is one,
 the option table is set to show no exit routine. Therefore, standard
 corrective action is to be used when continuing execution.

 If iusadr = ENOTRM,
 the option table entry is set to the ESSL error exit routine ENOTRM.
 Therefore, the ENOTRM subroutine is to be invoked after the occurrence
 of the indicated errors. (ENOTRM must appear in an EXTERNAL statement
 in your program.)

 Specified: as a 32-bit integer in a 32-bit
 integer, 32-bit pointer environment, or as the name of a subroutine; iusadr = 0,
 1, or ENOTRM.

 Specified: as a 64-bit integer in either a 32-bit
 integer, 64-bit pointer environment or a 64-bit integer, 64-bit pointer
 environment, or as the name of a subroutine; iusadr = 0_8,
 1_8, or ENOTRM.

 	 irange

 	indicates the range of errors to be updated in the ESSL error
 option table, where:
 If irange < ierno,
 the parameter is ignored.

 If irange ≥ ierno,
 the options specified for the other parameters are to be applied to
 the entire range of error conditions encompassed by ierno and irange.

 Specified
 as: an integer.

 Notes

 	Examples of how to use ERRSET are provided in Coding Your Program.

 	If you specify ENOTRM for iusadr, then inoal must
 be in the following range: 2 ≤ inoal ≤ 255.

 Parent topic: Utilities

 ERRSTR (ESSL ERRSTR Subroutine)

 Purpose

 The ERRSTR subroutine stores an
 entry in the ESSL error option table.

 For multithreaded application
 programs, if you want the error handling capabilities that this subroutine
 provides to be implemented on each thread created by your program,
 this subroutine must be called from each thread. If your application
 creates multiple threads, the action performed by a call to this subroutine
 applies to the thread that this subroutine was invoked from. For an
 example, see Example of Handling Errors in a Multithreaded Application Program.

 Syntax

 	Fortran

 	CALL ERRSTR (ierno, tabent)

 	C and C++

 	errstr (ierno, tabent);

 	On Entry

 	

 	 ierno

 	is the error number in the option table. The information in the
 8-byte storage area tabent is stored into the entry
 for ierno in the ESSL error option table.
 Specified
 as: an integer; ierno must be one of the error
 numbers in the option table. For a list of these numbers, see Table 45.

 	 tabent

 	is the storage area containing the table entry data.
 Specified
 as: an area of storage of length 8-bytes.

 Notes

 Examples
 of how to use ERRSTR are provided in Coding Your Program.

 Parent topic: Utilities

 IESSL (Determine the Level of ESSL Installed)

 Purpose

 This function returns the level
 of ESSL installed on your system, where the level consists of a version
 number, release number, and modification number, plus the fix number
 of the most recent PTF installed.

 Syntax

 	Fortran

 	IESSL ()

 	C and C++

 	iessl ();

 	On Return

 	

 	 Function value

 	

 	

 	is the level of ESSL installed on your system. It is provided
 as an integer in the form vvrrmmff, where each
 two digits represents a part of the level:

 	vv is the version number.

 	rr is the release number.

 	mm is the modification number.

 	ff is the fix number of the most recent PTF
 installed.

 Returned as: an integer; vvrrmmff > 0.

 Notes

 	To use IESSL effectively, you must install your ESSL PTFs in their
 proper sequential order. As part of the result, IESSL returns the
 value ff of the most recent PTF installed,
 rather than the highest number PTF installed. Therefore, if
 you do not install your PTFs sequentially, the ff value
 returned by IESSL does not reflect the actual level of ESSL.

 	Declare the IESSL function in your program as returning an integer
 value.

 Function

 The IESSL function
 enables you to determine the current level of ESSL installed on your
 system. It is useful to you in those instances where your program
 is using a subroutine or feature that exists only in certain levels
 of ESSL. It is also useful when your program is dependent upon certain
 PTFs being applied to ESSL.

 Examples

 	[bookmark: am5gr_hiessl__am5gr_f17006]
 Example 1

 	
 This example shows several ways to use the IESSL function.
 Most typically, you use IESSL for checking the version and release
 level of ESSL. Suppose you are dependent on a new capability in ESSL,
 such as a new subroutine or feature, provided for the first time in
 ESSL Version 3. You can add the following check in your program before
 using the new capability: IF IESSL() ≥ 3010000

 By
 specifying 0000 for mmff, the modification and
 fix level, you are independent of the order in which your modifications
 and PTFs are installed.

 Less typically, you use IESSL for
 checking the PTF level of ESSL. Suppose you are dependent on PTF 2
 being installed on your ESSL Version 3 system. You want to know whether
 to call a different user-callable subroutine to set up your array
 data. You can add the following check in your program before making
 the call: IF IESSL() ≥ 3010002

 If
 your system support group installed the ESSL PTFs in their proper
 sequential order, this test works properly; otherwise, it is unpredictable.

 Parent topic: Utilities

 SETGPUS (Set the Number of GPUs and Identify Which GPUs ESSL
 Should Use)

 Purpose

 SETGPUS allows you to set the number
 and specify which GPUs ESSL should use.

 Syntax

 	Fortran

 	SETGPUS (ngpus,ids)

 	C and C++

 	setgpus (ngpus,ids);

 	On Entry

 	

 	ngpus

 	is the number of GPUs ESSL should use.
 Specified as: an integer;
 0 < ngpus ≤ number of
 CUDA devices.

 	ids

 	is the array of length ngpus containing the
 IDs for the GPUs ESSL should use.
 Specified as: an integer; 0 ≤ idsi <
 (number of CUDA devices) for i = 1, ngpus.

 Function

 This subroutine
 allows you to set the number and specify which GPUs ESSL should use.

 Error conditions

 	Resource Errors

 	

 	The number of OpenMP Threads is less than ngpus.
 ESSL issues attention message 2538-2615 and uses the same number of
 GPUs as there are OpenMP threads.

 	Not all the CUDA devices specified by the ids array
 are in the same NVIDIA compute mode.

 	Input-Argument Errors

 	

 	SETGPUS has been called either:

 	More than once

 	After the first call to any ESSL subroutine that is GPU enabled.

 	ngpus ≤ 0 or ngpus >
 (number of CUDA devices).

 	idsi < 0 or idsi >
 (number of CUDA devices) - 1 for i = 1, ngpus.

 	NVIDIA compute mode is PROHIBITED for GPUs identified in the ids array.

 	Environment variable ESSL_CUDA_HYBRID is not 'yes', 'no', or unset.

 	Environment variable ESSL_CUDA_PIN is not 'yes', 'no', 'pinned',
 or unset.

 Examples

 	Example

 	
 This example shows setting 2 GPUs that ESSL should use. This
 call results in ESSL using GPUs 1 and 0 for CUDA applications.

 Call
 Statement and Input: NGPUS IDS
 | |
CALL SETGPUS(2 , IDS)

IDS = (1,0)

 Parent topic: Utilities

 STRIDE (Determine the Stride Value for Optimal Performance
 in Specified Fourier Transform Subroutines)

 Purpose

 This subroutine determines an optimal
 stride value for you to use for your input or output data when you
 are computing large row Fourier transforms in any of the Fourier transform
 subroutines, except _RCFT and _CRFT. The strides determined by this
 subroutine allow your arrays to fit comfortably in various levels
 of storage hierarchy on your particular processor, thus allowing you
 to improve your run-time performance.
 Note: This subroutine returns
 a single stride value. Where you need multiple strides, you must
 invoke this subroutine multiple times; for example, in the multidimensional
 Fourier transforms and, also, when input and output data types differ.
 For more details, see Function.

 Syntax

 	Fortran

 	CALL STRIDE (n, incd, incr, dt, iopt)

 	C and C++

 	stride (n, incd, incr, dt, iopt);

 	On Entry

 	

 	 n

 	is the length n of the Fourier transform for
 which the optimal stride is being determined. The transform corresponding
 to n is usually a row transform; that is, the data
 elements are stored using a stride value.
 Specified as: an integer; n > 0.

 	 incd

 	is the minimum allowable stride for the Fourier transform for
 which the optimal stride is being determined. For each situation in
 each subroutine, there is a specific way to compute this minimum value.
 This is explained in Example
 1—SCFT.
 Specified as: an integer; incd > 0
 or incd < 0.

 	 incr

 	See On Return.

 	 dt

 	is the data type of the numbers for the Fourier transform for
 which the optimal stride is being determined, where:
 If dt = 'S',
 the numbers are short-precision real.

 If dt = 'D',
 the numbers are long-precision real.

 If dt = 'C',
 the numbers are short-precision complex.

 If dt = 'Z',
 the numbers are long-precision complex.

 Specified as: a single
 character; dt = 'S', 'D', 'C', or 'Z'.

 	 iopt

 	is provided only for migration purposes from ESSL Version 1 and
 is no longer used; however, you must still specify it as a dummy argument.

 Specified as: an integer; iopt = 0,
 1, or 2.

 	On Return

 	

 	 incr

 	is the stride that allows you to improve your run-time performance
 in your Fourier transform computation on your particular processor.
 In general, this value differs for each processor you are running
 on.
 Returned as: an integer; incr > 0
 or incr < 0 and |incr| ≥ |incd|,
 where incr has the same sign (+ or -) as incd.

 Notes

 	In your C program, argument incr must be passed
 by reference.

 	All subroutines accept lowercase letters for the dt argument.

 	For each situation in each of the Fourier transform subroutines,
 there is a specific way to compute the value you should specify for
 the incd argument. Details on how to compute each
 of these values is given in Example
 1—SCFT. See the example corresponding to the Fourier
 transform subroutine you are using.

 	Where different data types are specified for the input and output
 data in your Fourier transform subroutine, you should be careful to
 indicate the correct data type in the dt argument
 in this subroutine.

 	For additional information on how to set up your data, see Setting Up Your Data.

 Function

 This subroutine
 determines an optimal stride, incr, for you to
 use for your input or output data when computing large row Fourier
 transforms. The stride value returned by this subroutine is based
 on the size and structure of your transform data, using:

 	The size of each data item (dt)

 	The minimum allowable stride for this transform (incd)

 	The length of the transform (n)

 This information is used in determining the optimal stride
 for the processor you are currently running on. The stride determined
 by this subroutine allows your arrays to fit comfortably in various
 levels of storage hierarchy for that processor, thus giving you the
 ability to improve your run-time performance.

 You get only
 one stride value returned by this subroutine on each invocation.
 Therefore, in many instances, you may need to invoke this subroutine
 multiple times to obtain several stride values to use in your Fourier
 transform computation:

 	For multidimensional Fourier transforms using several strides,
 this subroutine must be called once for each optimal stride you want
 to obtain. Successive invocations should go from the lower (earlier)
 dimensions to the higher (later) dimensions, because the results from
 the lower dimensions are used to calculate the incd values
 for the higher dimensions.

 	Where input and output data have different data types and you
 want to obtain optimal strides for each, this subroutine must be called
 once for each data type.

 Where multiple invocations are necessary, they are explained
 in Example 1—SCFT.
 The examples also explain how to calculate the incd values
 for each invocation. There are nine examples to cover the Fourier
 transform subroutines that can use the STRIDE subroutine.

 After
 calling this subroutine and obtaining the optimal stride value, you
 then set up your input or output array accordingly. This may involve
 movement of data for input arrays or increasing the sizes of input
 or output arrays. To accomplish this, you may want to set up a separate
 subroutine with the stride values passed into it as arguments. You
 can then dimension your arrays in that subroutine, depending on the
 values calculated by STRIDE. For additional information on how to
 set up your data, see Setting Up Your Data.

 Error conditions

 	[bookmark: am5gr_hstride__am5gr_f17008]
 Computational Errors

 	None

 	[bookmark: am5gr_hstride__am5gr_f17009]
 Input-Argument Errors

 	

 	n ≤ 0

 	incd = 0

 	iopt ≠ 0, 1, or 2

 	dt ≠ S,
 D, C, or Z

 Examples

 	Example 1—SCFT

 	
 This example shows the use of the STRIDE subroutine in computing
 one-dimensional row transforms using the SCFT subroutine.

 If inc2x = 1,
 the input sequences are stored in the transposed form as rows of a
 two-dimensional array X(INC1X,N). In this case,
 the STRIDE subroutine helps in determining a good value of inc1x for
 this array. The required minimum value of inc1x is m,
 the number of Fourier transforms being computed. To find a good value
 of inc1x, use STRIDE as follows: N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N , M , INC1X , 'C' , 0)

 Here,
 the arguments refer to the SCFT subroutine. In the following table,
 values of inc1x are given (as obtained from the
 STRIDE subroutine) for some combinations of n and m and
 for POWER3 with
 64KB level 1 cache: N M INC1X

 128 64 64
 240 32 32
 240 64 65
 256 256 264
 512 60 60
 1024 64 65

 The above example also
 applies when the output sequences are stored in the transposed form
 (inc2y = 1). In that case, in the above example, inc1x is
 replaced by inc1y.

 In computing column
 transforms (inc1x = inc1y = 1),
 the values of inc2x and inc2y are
 not very important. For these, any value over the required minimum
 of n can be used.

 	Example 2--DCOSF

 	
 This example shows the use of the STRIDE subroutine in computing
 one-dimensional row transforms using the DCOSF subroutine.

 If inc2x = 1,
 the input sequences are stored in the transposed form as rows of a
 two-dimensional array X(INC1X,N/2+1). In this case,
 the STRIDE subroutine helps in determining a good value of inc1x for
 this array. The required minimum value of inc1x is m,
 the number of Fourier transforms being computed. To find a good value
 of inc1x, use STRIDE as follows: N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N/2+1 , M , INC1X , 'D' , 0)

 Here,
 the arguments refer to the DCOSF subroutine. In the following table,
 values of inc1x are given (as obtained from the
 STRIDE subroutine) for some combinations of n and m and
 for POWER3 with
 64KB level 1 cache: N M INC1X

 128 64 64
 240 32 32
 240 64 64
 256 256 264
 512 60 60
 1024 64 65

 The above example also
 applies when the output sequences are stored in the transposed form
 (inc2y = 1). In that case, in the above example, inc1x is
 replaced by inc1y.

 In computing column
 transforms (inc1x = inc1y = 1),
 the values of inc2x and inc2y are
 not very important. For these, any value over the required minimum
 of n/2+1 can be used.

 	Example 3--DSINF

 	
 This example shows the use of the STRIDE subroutine in computing
 one-dimensional row transforms using the DSINF subroutine.

 If inc2x = 1,
 the input sequences are stored in the transposed form as rows of a
 two-dimensional array X(INC1X,N/2). In this case,
 the STRIDE subroutine helps in determining a good value of inc1x for
 this array. The required minimum value of inc1x is m,
 the number of Fourier transforms being computed. To find a good value
 of inc1x, use STRIDE as follows: N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N/2 , M , INC1X , 'D' , 0)

 Here,
 the arguments refer to the DSINF subroutine. In the following table,
 values of inc1x are given (as obtained from the
 STRIDE subroutine) for some combinations of n and m and
 for POWER3 with
 64KB level 1 cache: N M INC1X

 128 64 64
 240 32 32
 240 64 64
 256 256 264
 512 60 60
 1024 64 65

 The above example also
 applies when the output sequences are stored in the transposed form
 (inc2y = 1). In that case, in the above example, inc1x is
 replaced by inc1y.

 In computing column
 transforms (inc1x = inc1y = 1),
 the values of inc2x and inc2y are
 not very important. For these, any value over the required minimum
 of n/2 can be used.

 	Example 4--SCFT2

 	
 This example shows the use of the STRIDE subroutine in computing
 two-dimensional transforms using the SCFT2 subroutine.

 If inc1y = 1,
 the two-dimensional output array is stored in the normal form. In
 this case, the output array can be declared as Y(INC2Y,N2),
 where the required minimum value of inc2y is n1.
 The STRIDE subroutine helps in picking a good value of inc2y.
 To find a good value of inc2y, use STRIDE as follows:
 N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N2 , N1 , INC2Y , 'C' , 0)

 Here,
 the arguments refer to the SCFT2 subroutine. In the following table,
 values of inc2y are given (as obtained from the
 STRIDE subroutine) for some two-dimensional arrays with n1 = n2 and
 for POWER3 with
 64KB level 1 cache: N1 N2 INC2Y

 64 64 64
 128 128 136
 240 240 240
 512 512 520
 840 840 848

 If the input array is
 stored in the normal form (inc1x = 1),
 the value of inc2x is not important. However, if
 you want to use the same array for input and output, you should use inc2x = inc2y.

 If inc2y = 1,
 the two-dimensional output array is stored in the transposed form.
 In this case, the output array can be declared as Y(INC1Y,N1),
 where the required minimum value of inc1y is n2.
 The STRIDE subroutine helps in picking a good value of inc1y.
 To find a good value of inc1y, use STRIDE as follows:
 N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N1 , N2 , INC1Y , 'C' , 0)

 Here,
 the arguments refer to the SCFT2 subroutine. In the following table,
 values of inc1y are given (as obtained from the
 STRIDE subroutine) for some combinations of n1 and n2 and
 for POWER3 with
 64K level 1 cache: N1 N2 INC1Y

 60 64 64
 120 128 136
 256 240 240
 512 512 520
 840 840 848

 If the input array is stored
 in the transposed form (inc2x = 1), the value of inc1x is
 also important. The above example can be used to find a good value
 of inc1x, by replacing inc1y with inc1x.
 If both arrays are stored in the transposed form, a good value for inc1y is
 also a good value for inc1x. In that situation,
 the two arrays can also be made equivalent.

 	Example 5--SRCFT2

 	
 This example shows the use of the STRIDE subroutine in computing
 two-dimensional transforms using the SRCFT2 subroutine.

 For
 this subroutine, the output array is declared as Y(INC2Y,N2),
 where the required minimum value of inc2y is n1/2+1.
 The STRIDE subroutine helps in picking a good value of inc2y.
 To find a good value of inc2y, use STRIDE as follows:
 N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N2 , N1/2 + 1 , INC2Y , 'C' , 0)

 Here,
 the arguments refer to the SRCFT2 subroutine. In the following table,
 values of inc2y are given (as obtained from the
 STRIDE subroutine) for some two-dimensional arrays with n1 = n2 and
 for POWER3 with
 64KB level 1 cache: N1 N2 INC2Y

 240 240 121
 420 420 211
 512 512 257
 840 840 421
 1024 1024 513
 2048 2048 1032

 For this subroutine,
 the leading dimension of the input array (inc2x)
 is not important. If you want to use the same array for input and
 output, you should use inc2x ≥ 2(inc2y).

 	Example 6--SCRFT2

 	
 This example shows the use of the STRIDE subroutine in computing
 two-dimensional transforms using the SCRFT2 subroutine.

 For
 this subroutine, the output array is declared as Y(INC2Y,N2),
 where the required minimum value of inc2y is n1+2.
 The STRIDE subroutine helps in picking a good value of inc2y.
 To find a good value of inc2y, use STRIDE as follows:
 N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N2 , N1 + 2 , INC2Y , 'S' , 0)

 Here,
 the arguments refer to the SCRFT2 subroutine. In the following table,
 values of inc2y are given (as obtained from the
 STRIDE subroutine) for some two-dimensional arrays with n1 = n2 and
 for POWER3 with
 64KB level 1 cache: N1 N2 INC2Y

 240 240 242
 420 420 422
 512 512 514
 840 840 842
 1024 1024 1026
 2048 2048 2064

 For this subroutine,
 the leading dimension of the input array (inc2x)
 is also important. In general, inc2x = inc2y/2
 is a good choice. This is also the requirement if you want to use
 the same array for input and output.

 	Example 7--SCFT3

 	
 This example shows the use of the STRIDE subroutine in computing
 three-dimensional transforms using the SCFT3 subroutine.

 For
 this subroutine, the strides for the input array are not important.
 They are important for the output array. The STRIDE subroutine helps
 in picking good values of inc2y and inc3y.
 This requires two calls to the STRIDE subroutine as shown below.
 First, you should find a good value for inc2y.
 The minimum acceptable value for inc2y is n1.
 N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N2 , N1 , INC2Y , 'C' , 0)

 Here,
 the arguments refer to the SCFT3 subroutine. Next, you should find
 a good value for inc3y. The minimum acceptable
 value for inc3y is (n2)(inc2y).
 N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N3 , N2*INC2Y, INC3Y , 'C' , 0)

 If inc3y turns
 out to be a multiple of inc2y, then Y can
 be declared a three-dimensional array as Y(INC2Y,INC3Y/INC2Y,N3).
 For large problems, this may not happen. In that case, you can declare
 the Y array as a two-dimensional array Y(0:INC3Y-1,0:N3-1) or
 a one-dimensional array Y(0:INC3Y*N3-1). Using zero-based
 indexing, the element y(k1,k2,k3) is stored in
 the following location in these arrays:

 	For the two-dimensional array, location (k1+k2*inc2y,k3)

 	For the one-dimensional array, location (k1+k2*inc2y+k3*inc3y)

 In the following table, values of inc2y and inc3y are
 given (as obtained from the STRIDE subroutine) for some three-dimensional
 arrays with n1 = n2 = n3 and
 for POWER3 with
 64KB level 1 cache: N1,N2,N3 INC2Y INC3Y

 30 30 900
 32 32 1032
 64 64 4112
 120 120 14408
 128 136 17416
 240 240 57608
 256 264 67592
 420 420 176400

 As mentioned before,
 the strides of the input array are not important. The array can be
 declared as a three-dimensional array. If you want to use the same
 array for input and output, the requirements are inc2x ≥ inc2y and inc3x ≥ inc3y.
 A simple thing to do is to use inc2x = inc2y and
 make inc3x a multiple of inc2x not
 smaller than inc3y. Then X can
 be declared as a three-dimensional array X(INC2X,INC3X/INC2X,N3).

 	Example 8--SRCFT3

 	
 This example shows the use of the STRIDE subroutine in computing
 three-dimensional transforms using the SRCFT3 subroutine.

 For
 this subroutine, the strides for the input array are not important.
 They are important for the output array. The STRIDE subroutine helps
 in picking good values of inc2y and inc3y.
 This requires two calls to the STRIDE subroutine as shown below.
 First, you should find a good value for inc2y.
 The minimum acceptable value for inc2y is n1/2+1.
 N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N2 , N1/2 + 1 , INC2Y , 'C' , 0)

 Here,
 the arguments refer to the SRCFT3 subroutine. Next, you should find
 a good value for inc3y. The minimum acceptable
 value for inc3y is (n2)(inc2y).
 N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N3 , N2*INC2Y , INC3Y , 'C' , 0)

 If inc3y turns
 out to be a multiple of inc2y, then Y can
 be declared a three-dimensional array as Y(INC2Y,INC3Y/INC2Y,N3).
 For large problems, this may not happen. In that case, you can declare
 the Y array as a two-dimensional array Y(0:INC3Y-1,0:N3-1) or
 a one-dimensional array Y(0:INC3Y*N3-1). Using zero-based
 indexing, the element y(k1,k2,k3) is stored in
 the following location in these arrays:

 	For the two-dimensional array, location (k1+k2*inc2y,k3)

 	For the one-dimensional array, location (k1+k2*inc2y+k3*inc3y)

 In the following table, values of inc2y and inc3y are
 given (as obtained from the STRIDE subroutine) for some three-dimensional
 arrays with n1 = n2 = n3 and
 for POWER3 with
 64KB level 1 cache: N1,N2,N3 INC2Y INC3Y

 30 16 488
 32 17 552
 64 33 2128
 120 61 7320
 128 65 8328
 240 121 29064
 256 129 33032
 420 	 211 88620

 As mentioned before,
 the strides of the input array are not important. The array can be
 declared as a three-dimensional array. If you want to use the same
 array for input and output, the requirements are inc2x ≥ 2(inc2y)
 and inc3x ≥ 2(inc3y).
 A simple thing to do is to use inc2x = 2(inc2y)
 and make inc3x a multiple of inc2x not
 smaller than 2(inc3y). Then X can
 be declared as a three-dimensional array X(INC2X,INC3X/INC2X,N3).

 	Example 9--SCRFT3

 	
 This example shows the use of the STRIDE subroutine in computing
 three-dimensional transforms using the SCRFT3 subroutine.

 The
 STRIDE subroutine helps in picking good values of inc2y and inc3y.
 This requires two calls to the STRIDE subroutine as shown below.
 First, you should find a good value for inc2y.
 The minimum acceptable value for inc2y is n1+2.
 N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N2 , N1 + 2 , INC2Y , 'S' , 0)

 Here,
 the arguments refer to the SCRFT3 subroutine. Next, you should find
 a good value for inc3y. The minimum acceptable
 value for inc3y is (n2)(inc2y).
 N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N3 , N2*INC2Y , INC3Y , 'S' , 0)

 If inc3y turns
 out to be a multiple of inc2y, then Y can
 be declared a three-dimensional array as Y(INC2Y,INC3Y/INC2Y,N3).
 For large problems, this may not happen. In that case, you can declare
 the Y array as a two-dimensional array Y(0:INC3Y-1,0:N3-1) or
 a one-dimensional array Y(0:INC3Y*N3-1). Using zero-based
 indexing, the element y(k1,k2,k3) is stored in
 the following location in these arrays:

 	For the two-dimensional array, location (k1+k2*inc2y,k3)

 	For the one-dimensional array, location (k1+k2*inc2y+k3*inc3y)

 In the following table, values of inc2y and inc3y are
 given (as obtained from the STRIDE subroutine) for some three-dimensional
 arrays with n1 = n2 = n3 and
 for POWER3 with
 64KB level 1 cache: N1,N2,N3 INC2Y INC3Y

 30 32 976
 32 34 1104
 64 66 4256
 120 122 14640
 128 130 16656
 240 242 58128
 256 258 66064
 420 422 177240

 For this subroutine,
 the strides (inc2x and inc3x)
 of the input array are also important. In general, inc2x = inc2y/2
 and inc3x = inc3y/2 are good
 choices. These are also the requirement if you want to use the same
 array for input and output.

 	Example 10--SCFTD, D = 1

 	
 This example shows the use of the STRIDE subroutine in computing
 one-dimensional row transforms using the SCFTD subroutine.

 If incmx = 1,
 the input sequences are stored in the transposed form as rows of a
 two-dimensional array X(INCX(1),N(1)). In this case,
 the STRIDE subroutine helps in determining a good value of incx1 for
 this array. The required minimum value of incx1 is m,
 the number of Fourier transforms being computed. To find a good value
 of incx1, use STRIDE as follows: N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N(1) , M , INCX(1) , 'C' , 0)

 Here,
 the arguments refer to the SCFTD subroutine. In the following table,
 values of incx1 are given (as obtained
 from the STRIDE subroutine) for some combinations of n1 and m and
 for POWER6® with 64KB level
 1 cache: N M INC1X

 128 64 66
 240 32 34
 240 64 66
 256 256 264
 512 60 60
 1024 64 66

 The above example also
 applies when the output sequences are stored in the transposed form
 (incmy = 1). In that case, in the above example, incx1 is
 replaced by incy1.

 In computing
 column transforms (incx1 = incy1 = 1),
 the values of incmx and incmy are
 not very important. For these, any value over the required minimum
 of n1 can be used.

 	Example 11--SCFTD, D = 2

 	
 This example shows the use of the STRIDE subroutine in computing
 two-dimensional transforms using the SCFTD subroutine with m = 1.

 If incy1 = 1,
 the two-dimensional output array is stored in the normal form. In
 this case, the output array can be declared as Y(INCY(2),N(2)),
 where the required minimum value of incy2 is n1.
 The STRIDE subroutine helps in picking a good value of incy2.
 To find a good value of incy2, use STRIDE
 as follows: N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N(2) , N(1) , INCY(2) , 'C' , 0)

 Here,
 the arguments refer to the SCFTD subroutine. In the following table,
 values of incy2 are given (as obtained
 from the STRIDE subroutine) for some two-dimensional arrays with n1 = n2 and
 for POWER6 with 64KB level
 1 cache: N(1) N(2) INCY(2)

 64 64 64
 128 128 136
 240 240 240
 512 512 520
 840 840 840

 If the input array is stored
 in the normal form (incx1 = 1),
 the value of incx2 is not important.
 However, if you want to use the same array for input and output, you
 should use incx2 = incy2.

 If incy2 = 1,
 the two-dimensional output array is stored in the transposed form.
 In this case, the output array can be declared as Y(INCY(1),N(1)),
 where the required minimum value of incy1 is n2.
 The STRIDE subroutine helps in picking a good value of incy1.
 To find a good value of incy1, use STRIDE
 as follows: N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N(1) , N(2) , INCY(1) , 'C' , 0)

 Here,
 the arguments refer to the SCFTD subroutine. In the following table,
 values of incy1 are given (as obtained
 from the STRIDE subroutine) for some combinations of n1 and n2 and
 for POWER6 with 64KB level
 1 cache: N(1) N(2) INCY(1)

 60 64 64
 120 128 136
 256 240 240
 512 512 520
 840 840 840

 If the input array is stored
 in the transposed form (incx2 = 1),
 the value of incx1 is also important.
 The above example can be used to find a good value of incx1,
 by replacing incy1 with incx1.
 If both arrays are stored in the transposed form, a good value for incy1 is
 also a good value for incx1. In that
 situation, the two arrays can also be made equivalent.

 	Example 12--SCFTD, D = 3

 	
 This example shows the use of the STRIDE subroutine in computing
 three-dimensional transforms using the SCFTD subroutine with m = 1.

 For
 this subroutine, the strides for the input array are not important.
 They are important for the output array. The STRIDE subroutine helps
 in picking good values of incy2 and incy3.
 This requires two calls to the STRIDE subroutine as shown below. First,
 you should find a good value for incy2.
 The minimum acceptable value for incy2 is n1.
 N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N(2) , N(1) , INCY(2) , 'C' , 0)

 Here,
 the arguments refer to the SCFTD subroutine. Next, you should find
 a good value for incy3. The minimum
 acceptable value for incy3 is (n2)(incy2)
 assuming incy1 = 1. N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N(3) , N(2)*INCY(2), INCY(3) , 'C' , 0)

 If incy3 turns
 out to be a multiple of incy2, then Y can
 be declared a three-dimensional array as Y(INCY(2),INCY(3)/INCY(2),N(3)).
 For large problems, this may not happen. In that case, you can declare
 the Y array as a two-dimensional array Y(0:INCY(3)-1,0:N(3)-1) or
 a one-dimensional array Y(0:INCY(3)*N(3)-1). Using
 zero-based indexing, the element yk1,k2,k3 is
 stored in the following location in these arrays:

 	For the two-dimensional array, location (k1+k2*incy2,k3)

 	For the one-dimensional array, location (k1+k2*incy2+k3*incy3)

 In the following table, values of incy2
 and incy3 are given (as obtained from
 the STRIDE subroutine) for some three-dimensional arrays with n1 = n2 = n3
 and for POWER6 with 64KB
 level 1 cache: N1,N2,N3 INCY(2) INCY(3)

 30 30 900
 32 32 1032
 64 64 4104
 120 120 14400
 128 136 17416
 240 240 57608
 256 264 67592
 420 420 176400

 As mentioned before,
 the strides of the input array are not important. The array can
 be declared as a three-dimensional array. If you want to use the
 same array for input and output, the requirements are incx2 ≥ incy2
 and incx3 ≥ incy3.
 A simple thing to do is to use incx2 = incy2
 and make incx3 a multiple of incx2 not
 smaller than incy3. Then X can
 be declared as a three-dimensional array X(INCX(2),INCX(3)/INCX(2),N(3)).

 	Example 13--SRCFTD, D = 1

 	
 This example shows the use of the STRIDE subroutine in computing
 one-dimensional row transforms using the SRCFTD subroutine.

 If incmx equal
 to 1, the input sequences are stored in the transposed form as rows
 of a two-dimensional array X(INCX(1),N(1)). In this
 case, the STRIDE subroutine helps in determining a good value of incx1 for
 this array. The required minimum value of incx1 is m,
 the number of Fourier transforms being computed. To find a good value
 of incx1, use STRIDE as follows: N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N(1) , M , INCX(1) , 'S' , 0)

 Here,
 the arguments refer to the SRCFTD subroutine. In the following table,
 values of incx1 are given (as obtained
 from the STRIDE subroutine) for some combinations of n1 and m and
 for POWER6 with 64KB level
 1 cache: N(1) M INCX(1)

 128 64 64
 240 32 32
 240 64 68
 256 256 272
 512 60 60
 1024 64 64

 If incmy equal
 to 1, the output sequences are stored in the transposed form as rows
 of a two-dimensional array Y(INCY(1),N(1)/2+1).
 In this case, the STRIDE subroutine helps in determining a good value
 of incy1 for this array. The required
 minimum value of incy1 is m,
 the number of Fourier transforms being computed. To find a good value
 of incy1, use STRIDE as follows: N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N(1)/2+1 , M , INCY(1) , 'C' , 0)

 Here,
 the arguments refer to the SRCFTD subroutine. In the following table,
 values of incy1 are given (as obtained
 from the STRIDE subroutine) for some combinations of n1 and m and
 for POWER6 with 64KB level
 1 cache: N(1) M INCY(1)

 128 64 66
 240 32 32
 240 64 66
 256 256 264
 512 60 60
 1024 64 66

 In computing column transforms
 (incx1 equal to incy1 equal
 to 1), the values of incmx and incmy are
 not very important. For these, any value over the required minimum
 can be used.

 	Example 14--SRCFTD, D = 2

 	
 This example shows the use of the STRIDE subroutine in computing
 two-dimensional transforms using the SRCFTD subroutine with m equal
 to 1.

 If incy1 equal to 1, the
 two-dimensional output array is stored in the normal form. In this
 case, the output array can be declared as Y(INCY(2),N(2)),
 where the required minimum value of incy2 is n1/2+1.
 The STRIDE subroutine helps in picking a good value of incy2.
 To find a good value of incy2, use STRIDE
 as follows: N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N(2) , N(1)/2+1 , INCY(2) , 'C' , 0)

 Here,
 the arguments refer to the SRCFTD subroutine. In the following table,
 values of incy2 are given (as obtained
 from the STRIDE subroutine) for some two-dimensional arrays with n1 equal
 to n2 and for POWER6 with 64KB level 1 cache: N(1) N(2) INCY(2)

 240 240 122
 420 420 212
 512 512 258
 840 840 422
 1024 1024 514
 2048 2048 1026

 If the input array is stored
 in the normal form (incx1 equal to 1),
 the value of incx2 is not important.
 However, if you want to use the same array for input and output, you
 should use incx2 equal to 2(incy2).

 If incy2 equal
 to 1, the two-dimensional output array is stored in the transposed
 form. In this case, the output array can be declared as Y(INCY(1),N(1)/2+1),
 where the required minimum value of incy1 is n2.
 The STRIDE subroutine helps in picking a good value of incy1.
 To find a good value of incy1, use STRIDE
 as follows: N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N(1)/2+1 , N(2) , INCY(1) , 'C' , 0)

 Here,
 the arguments refer to the SRCFTD subroutine. In the following table,
 values of incy1 are given (as obtained
 from the STRIDE subroutine) for some combinations of n1 and n2 and
 for POWER6 with 64KB level
 1 cache: N(1) N(2) INCY(1)

 240 240 240
 420 420 420
 512 512 520
 840 840 840
 1024 1024 1032
 2048 2048 2056

 	Example 15--SRCFTD, D = 3

 	
 This example shows the use of the STRIDE subroutine in computing
 three-dimensional transforms using the SRCFTD subroutine with m equal
 to 1.

 For this subroutine, the strides for the input array are
 not important. They are important for the output array. The STRIDE
 subroutine helps in picking good values of incy2 and incy3.
 This requires two calls to the STRIDE subroutine as shown below. First,
 you should find a good value for incy2.
 The minimum acceptable value for incy2 is n1/2+1. N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N(2) , N(1)/2+1 , INCY(2) , 'C' , 0)

 Here,
 the arguments refer to the SRCFTD subroutine. Next, you should find
 a good value for incy3. The minimum
 acceptable value for incy3 is (n2)(incy2)
 assuming incy1 equal to 1. N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N(3) , N(2)*INCY(2), INCY(3) , 'C' , 0)

 If incy3 turns
 out to be a multiple of n2, then Y can
 be declared a three-dimensional array as Y(INCY(2),INCY(3)/INCY(2),N(3)).
 For large problems, this may not happen. In that case, you can declare
 the Y array as a two-dimensional array Y(0:INCY(3)-1,0:N(3)-1) or
 a one-dimensional array Y(0:INCY(3)*N(3)-1). Using
 zero-based indexing, the element yk1,k2,k3 is
 stored in the following location in these arrays:

 	For the two-dimensional array, location (k1+k2*incy2,k3)

 	For the one-dimensional array, location (k1+k2*incy2+k3*incy3)

 In the following table, values of incy2 and incy3 are
 given (as obtained from the STRIDE subroutine) for some three-dimensional
 arrays with n1 equal to n2 equal
 to n3 and for POWER6 with 64KB level 1 cache:N(1),N(2),N(3) INCY(2) INCY(3)

 30 16 480
 32 18 576
 64 34 2176
 120 62 7440
 128 66 8456
 240 122 29280
 256 130 33288
 420 212 89040

 As mentioned before,
 the strides of the input array are not important. The array can be
 declared as a three-dimensional array. If you want to use the same
 array for input and output, the requirements are incx2 equal
 to 2(incy2) and incx3 equal
 to 2(incy3).

 	Example 16--SCRFTD, D = 1

 	
 This example shows the use of the STRIDE subroutine in computing
 one-dimensional row transforms using the SCRFTD subroutine.

 If incmx equal
 to 1, the input sequences are stored in the transposed form as rows
 of a two-dimensional array X(INCX(1),N(1)). In this
 case, the STRIDE subroutine helps in determining a good value of incx1 for
 this array. The required minimum value of incx1 is m,
 the number of Fourier transforms being computed. To find a good value
 of incx1, use STRIDE as follows: N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N(1)/2+1 , M , INCX(1) , 'C' , 0)

 Here,
 the arguments refer to the SCRFTD subroutine. In the following table,
 values of incx1 are given (as obtained
 from the STRIDE subroutine) for some combinations of n1 and m and
 for POWER6 with 64KB level
 1 cache: N(1) M INCX(1)

 128 64 66
 240 32 32
 240 64 66
 256 256 264
 512 60 60
 1024 64 66

 If incmy equal
 to 1, the output sequences are stored in the transposed form as rows
 of a two-dimensional array Y(INCY(1),N(1)). In this
 case, the STRIDE subroutine helps in determining a good value of incy1 for
 this array. The required minimum value of incy1 is
 m, the number of Fourier transforms being computed. To find a good
 value of incy1, use STRIDE as follows: N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N(1) , M , INCY(1) , 'S' , 0)

 Here,
 the arguments refer to the SCRFTD subroutine. In the following table,
 values of incy1 are given (as obtained
 from the STRIDE subroutine) for some combinations of n1 and m and
 for POWER6 with 64KB level
 1 cache: N(1) M INCY(1)

 128 64 64
 240 32 32
 240 64 68
 256 256 272
 512 60 60
 1024 64 64

 In computing column transforms
 (incx1 equal to incy1 equal
 to 1), the values of incmx and incmy are
 not very important. For these, any value over the required minimum
 can be used.

 	Example 17--SCRFTD, D = 2

 	
 This example shows the use of the STRIDE subroutine in computing
 two-dimensional transforms using the SCRFTD subroutine with m equal
 to 1.

 If incy1 equal to 1, the
 two-dimensional output array is stored in the normal form. In this
 case, the output array can be declared as Y(INCY(2),N(2)),
 where the required minimum value of incy2 is n1+2.
 The STRIDE subroutine helps in picking a good value of incy2.
 To find a good value of incy2, use STRIDE
 as follows: N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N(2) , N(1)+2 , INCY(2) , 'S' , 0)

 Here,
 the arguments refer to the SCRFTD subroutine. In the following table,
 values of incy2 are given (as obtained
 from the STRIDE subroutine) for some two-dimensional arrays with n1 equal
 to n2 and for POWER6 with 64KB level 1 cache: N(1) N(2) INCY(2)

 240 240 244
 420 420 424
 512 512 516
 840 840 844
 1024 1024 1028
 2048 2048 2052

 If the input array is stored
 in the normal form (incx1 equal to 1),
 the value of incx2 is not important.
 However, if you want to use the same array for input and output, you
 should use incy2 equal to 2(incx2).

 If incy2 equal
 to 1, the two-dimensional output array is stored in the transposed
 form. In this case, the output array can be declared as Y(INCY(1),N(1)+2),
 where the required minimum value of incy1 is n2.
 The STRIDE subroutine helps in picking a good value of incy1.
 To find a good value of incy1, use STRIDE
 as follows: N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N(1)+2 , N(2) , INCY(1) , 'S' , 0)

 Here,
 the arguments refer to the SCRFTD subroutine. In the following table,
 values of incy1 are given (as obtained
 from the STRIDE subroutine) for some combinations of n1 and n2 and
 for POWER6 with 64KB level
 1 cache: N(1) N(2) INCY(1)

 240 240 240
 420 420 420
 512 512 528
 840 840 840
 1024 1024 1040
 2048 2048 2064

 	Example 18--SCRFTD, D = 3

 	
 This example shows the use of the STRIDE subroutine in computing
 three-dimensional transforms using the SCRFTD subroutine with m equal
 to 1.

 For this subroutine, the strides for the input array are
 not important. They are important for the output array. The STRIDE
 subroutine helps in picking good values of incy2 and incy3.
 This requires two calls to the STRIDE subroutine as shown below. First,
 you should find a good value for incy2.
 The minimum acceptable value for incy2 is n1+2. N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N(2) , N(1)+2 , INCY(2) , 'S' , 0)

 Here,
 the arguments refer to the SCRFTD subroutine. Next, you should find
 a good value for incy3. The minimum
 acceptable value for incy3 is (n2)(incy2)
 assuming incy1 equal to 1. N INCD INCR DT IOPT
 | | | | |
CALL STRIDE(N(3) , N(2)*INCY(2), INCY(3) , 'S' , 0)

 If incy3 turns
 out to be a multiple of incy2, then
 Y can be declared a three-dimensional array as Y(INCY(2),INCY(3)/INCY(2),N(3)).
 For large problems, this may not happen. In that case, you can declare
 the Y array as a two-dimensional array Y(0:INCY(3)-1,0:N(3)-1) or
 a one-dimensional array Y(0:INCY(3)*N(3)-1). Using
 zero-based indexing, the element yk1,k2,k3 is
 stored in the following location in these arrays:

 	For the two-dimensional array, location (k1+k2*incy2,k3)

 	For the one-dimensional array, location (k1+k2*incy2+k3*incy3)

 In the following table, values of incy2 and incy3 are
 given (as obtained from the STRIDE subroutine) for some three-dimensional
 arrays with n1 equal to n2 equal
 to n3 and for POWER6 with 64KB level 1 cache:N(1),N(2),N(3) INCY(2) INCY(3)

 30 32 960
 32 36 1152
 64 68 4352
 120 124 14880
 128 132 16912
 240 244 58560
 256 260 66576
 420 424 178080

 As mentioned before,
 the strides of the input array are not important. The array can be
 declared as a three-dimensional array. If you want to use the same
 array for input and output, the requirements are incy2 equal
 to 2(incx2) and incy3 equal
 to 2(incx3).

 Parent topic: Utilities

 DSRSM (Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix
 Storage Mode)

 Purpose

 This subroutine converts either m by n general
 sparse matrix A or symmetric sparse matrix A of
 order n from storage-by-rows to compressed-matrix
 storage mode, where matrix A contains long-precision
 real numbers.

 Syntax

 	Fortran

 	CALL DSRSM (iopt, ar, ja, ia, m, nz, ac, ka, lda)

 	C and C++

 	dsrsm (iopt, ar, ja, ia, m, nz, ac, ka, lda);

 	On Entry

 	

 	 iopt

 	indicates the storage variation used for sparse matrix A storage-by-rows:

 If iopt = 0, matrix A is a general
 sparse matrix, where all the nonzero elements in matrix A are
 used to set up the storage arrays.

 If iopt = 1,
 matrix A is a symmetric sparse matrix, where only the
 upper triangle and diagonal elements are used to set up the storage
 arrays.

 Specified as: an integer; iopt = 0
 or 1.

 	 ar

 	is the sparse matrix A, stored by rows in an array,
 referred to as AR. The iopt argument
 indicates the storage variation used for storing matrix A.
 Specified as: a one-dimensional array, containing long-precision real
 numbers. The number of elements, ne, in this array
 can be determined by subtracting 1 from the value in IA(m+1).

 	 ja

 	is the array, referred to as JA, containing the
 column numbers of each nonzero element in sparse matrix A.

 Specified as: a one-dimensional array, containing integers; 1 ≤ (JA elements) ≤ n.
 The number of elements, ne, in this array can be
 determined by subtracting 1 from the value in IA(m+1).

 	 ia

 	is the row pointer array, referred to as IA,
 containing the starting positions of each row of matrix A in
 array AR and one position past the end of array AR.
 Specified as: a one-dimensional array of (at least) length m+1,
 containing integers; IA(i+1) ≥ IA(i)
 for i = 1, m+1.

 	 m

 	is the number of rows in sparse matrix A. Specified
 as: an integer; m ≥ 0.

 	 nz

 	is the number of columns in output arrays AC and KA that
 are available for use.
 Specified as: an integer; nz > 0.

 	 ac

 	See On Return.

 	 ka

 	See On Return.

 	 lda

 	is the size of the leading dimension of the arrays specified for ac and ka.

 Specified as: an integer; 0 < lda ≤ m.

 	On Return

 	

 	 nz

 	is the maximum number of nonzero elements, nz,
 in each row of matrix A, which is stored in compressed-matrix
 storage mode. Returned as: an integer; (input argument) nz ≤ (output argument) nz.

 	 ac

 	is the m by n general sparse
 matrix A or symmetric matrix A of order n stored
 in compressed-matrix storage mode in an array, referred to as AC.
 Returned as: an lda by at least (input argument) nz array,
 containing long-precision real numbers, where only the first (output
 argument) nz columns are used to store the matrix.

 	 ka

 	is the array, referred to as KA, containing the
 column numbers of the matrix A elements that are stored
 in the corresponding positions in array AC. Returned
 as: an lda by at least (input argument) nz array,
 containing integers, where only the first (output argument) nz columns
 are used to store the column numbers.

 Notes

 	In your C program, argument nz must be passed
 by reference.

 	The value specified for input argument nz should
 be greater than or equal to the number of nonzero elements you estimate
 to be in each row of sparse matrix A. The value returned
 in output argument nz corresponds to the nz value
 defined for compressed-matrix storage mode. This value is less than
 or equal to the value specified for input argument nz.

 	For a description of the storage modes for sparse matrices, see Compressed-Matrix Storage Mode and Storage-by-Rows.

 Function

 A sparse matrix A is
 converted from storage-by-rows (using arrays AR, JA,
 and IA) to compressed-matrix storage mode (using
 arrays AC and KA). The argument iopt indicates
 whether the input matrix A is stored by rows using the
 storage variation for general sparse matrices or for symmetric sparse
 matrices. See reference [87].

 This
 subroutine is meant for existing programs that need to convert their
 sparse matrices to a storage mode compatible with some of the ESSL
 sparse matrix subroutines, such as DSMMX.

 Error conditions

 	[bookmark: am5gr_hdsrsm__am5gr_f17011]
 Computational Errors

 	None

 	[bookmark: am5gr_hdsrsm__am5gr_f17012]
 Input-Argument Errors

 	

 	iopt ≠ 0 or 1

 	m < 0

 	lda < 1

 	lda < m

 	nz ≤ 0

 	IA(m+1) < 1

 	IA(i+1)-IA(i) < 0,
 for any i = 1, m

 	nz is too small to store matrix A in
 array AC, where:

 	If iopt = 0 , AC and KA are
 not modified.

 	If iopt = 1 , AC and KA are
 modified.

 Examples

 	Example 1

 	
 This example shows a general sparse matrix A,
 which is stored by rows and converted to compressed-matrix storage
 mode, where sparse matrix A is: ┌ ┐
 | 11.0 0.0 0.0 14.0 |
 | 0.0 22.0 0.0 24.0 |
 | 0.0 0.0 33.0 34.0 |
 | 0.0 0.0 0.0 44.0 |
 └ ┘

 Because
 there is a maximum of only two nonzero elements in each row of A,
 and argument nz is specified as 5, columns 3 through
 5 of arrays AC and KA are not used.

 Call Statement and Input: IOPT AR JA IA M NZ AC KA LDA
 | | | | | | | | |
CALL DSRSM(0 , AR , JA , IA , 4 , 5 , AC , KA , 4)

AR = (11.0, 14.0, 22.0, 24.0, 33.0, 34.0, 44.0)
JA = (1, 4, 2, 4, 3, 4, 4)
IA = (1, 3, 5, 7, 8)

 Output:
 NZ = 2

 ┌ ┐
 | 11.0 14.0 . . . |
AC = | 22.0 24.0 . . . |
 | 33.0 34.0 . . . |
 | 44.0 0.0 . . . |
 └ ┘

 ┌ ┐
 | 1 4 . . . |
KA = | 2 4 . . . |
 | 3 4 . . . |
 | 4 4 . . . |
 └ ┘

 	Example 2

 	
 This example shows a symmetric sparse matrix A,
 which is stored by rows and converted to compressed-matrix storage
 mode, where sparse matrix A is: ┌ ┐
 | 11.0 0.0 0.0 14.0 |
 | 0.0 22.0 0.0 24.0 |
 | 0.0 0.0 33.0 34.0 |
 | 14.0 24.0 34.0 44.0 |
 └ ┘

 Because
 there is a maximum of only four nonzero elements in each row of A,
 and argument nz is specified as 6, columns 5 and
 6 of arrays AC and KA are not used.

 Call Statement and Input: IOPT AR JA IA M NZ AC KA LDA
 | | | | | | | | |
CALL DSRSM(1 , AR , JA , IA , 4 , 6 , AC , KA , 4)

AR = (11.0, 14.0, 22.0, 24.0, 33.0, 34.0, 44.0)
JA = (1, 4, 2, 4, 3, 4, 4)
IA = (1, 3, 5, 7, 8)

 Output:
 NZ = 4

 ┌ ┐
 | 11.0 14.0 0.0 0.0 . . |
AC = | 22.0 24.0 0.0 0.0 . . |
 | 33.0 34.0 0.0 0.0 . . |
 | 44.0 24.0 34.0 14.0 . . |
 └ ┘

 ┌ ┐
 | 1 4 4 4 . . |
KA = | 2 4 4 4 . . |
 | 3 4 4 4 . . |
 | 4 2 3 1 . . |
 └ ┘

 	

 Parent topic: Utilities

 DGKTRN (For a General Sparse Matrix, Convert Between Diagonal-Out
 and Profile-In Skyline Storage Mode)

 Purpose

 This subroutine converts general
 sparse matrix A of order n from one
 skyline storage mode to another—that is, between the following:

 	Diagonal-out skyline storage mode

 	Profile-in skyline storage mode

 Syntax

 	Fortran

 	CALL DGKTRN (n, au, nu, idu, al, nl, idl, itran, aux, naux)

 	C and C++

 	dgktrn (n, au, nu, idu, al, nl, idl, itran, aux, naux);

 	On Entry

 	

 	 n

 	is the order of general sparse matrix A. Specified
 as: an integer; n ≥ 0.

 	 au

 	is the array, referred to as AU, containing the
 upper triangular part of general sparse matrix A, stored
 as follows, where:
 If ITRAN(1) = 0, A is
 stored in diagonal-out skyline storage mode.

 If ITRAN(1) = 1, A is
 stored in profile-in skyline storage mode.

 Specified as: a
 one-dimensional array of (at least) length nu,
 containing long-precision real numbers.

 	 nu

 	is the length of array AU.
 Specified as:
 an integer; nu ≥ 0 and nu ≥ (IDU(n+1)-1).

 	 idu

 	is the array, referred to as IDU, containing
 the relative positions of the diagonal elements of matrix A in
 input array AU.
 Specified as: a one-dimensional
 array of (at least) length n+1, containing integers.

 	 al

 	is the array, referred to as AL, containing the
 lower triangular part of general sparse matrix A, stored
 as follows, where:
 If ITRAN(1) = 0, A is
 stored in diagonal-out skyline storage mode.

 If ITRAN(1) = 1, A is
 stored in profile-in skyline storage mode.
 Note: Entries in AL for
 diagonal elements of A are assumed not to have meaningful
 values.

 Specified as: a one-dimensional array of (at
 least) length nl, containing long-precision real
 numbers.

 	 nl

 	is the length of array AL.
 Specified as:
 an integer; nl ≥ 0 and nl ≥ (IDL(n+1)-1).

 	 idl

 	is the array, referred to as IDL, containing
 the relative positions of the diagonal elements of matrix A in
 input array AL.
 Specified as: a one-dimensional
 array of (at least) length n+1, containing integers.

 	 itran

 	is an array of parameters, ITRAN(i),
 where:

 	ITRAN(1) indicates the input storage mode used
 for matrix A. This determines the arrangement of data
 in arrays AU, IDU, AL,
 and IDL on input, where:
 If ITRAN(1) = 0,
 diagonal-out skyline storage mode is used.

 If ITRAN(1) = 1,
 profile-in skyline storage mode is used.

 	ITRAN(2) indicates the output storage mode used
 for matrix A. This determines the arrangement of data
 in arrays AU, IDU, AL,
 and IDL on output, where:
 If ITRAN(2) = 0,
 diagonal-out skyline storage mode is used.

 If ITRAN(2) = 1,
 profile-in skyline storage mode is used.

 	ITRAN(3) indicates the direction of sweep that
 ESSL uses through the matrix A, allowing you to optimize
 performance (see Notes),
 where:
 If ITRAN(3) = 1, matrix A is transformed
 in the positive direction, starting in row or column 1 and ending
 in row or column n.

 If ITRAN(3) = -1,
 matrix A is transformed in the negative direction, starting
 in row or column n and ending in row or column
 1.

 Specified as: a one-dimensional array of (at least) length
 3, containing integers, where:

 ITRAN(1)

 =

 0 or 1

 ITRAN(2)

 =

 0 or 1

 ITRAN(3)

 =

 -1 or 1

 	 aux

 	has the following meaning:
 If naux = 0
 and error 2015 is unrecoverable, aux is ignored.

 Otherwise,
 it is the storage work area used by this subroutine. Its size is specified
 by naux.

 Specified as: an area of storage,
 containing naux long-precision real numbers.

 	 naux

 	is the size of the work area specified by aux—that
 is, the number of elements in aux.
 Specified
 as: an integer, where:

 If naux = 0
 and error 2015 is unrecoverable, DGKTRN dynamically allocates the
 work area used by this subroutine. The work area is deallocated before
 control is returned to the calling program.

 Otherwise, it
 must have one of the following values:

 	For 32-bit integer arguments

 	naux ≥ 2n

 	For 64-bit integer arguments

 	naux ≥ 4n

 	On Return

 	

 	 au

 	is the array, referred to as AU, containing the
 upper triangular part of general sparse matrix A, stored
 as follows, where:
 If ITRAN(2) = 0, A is
 stored in diagonal-out skyline storage mode.

 If ITRAN(2) = 1, A is
 stored in profile-in skyline storage mode.

 Returned as: a
 one-dimensional array of (at least) length nu,
 containing long-precision real numbers.

 	 idu

 	is the array, referred to as IDU, containing
 the relative positions of the diagonal elements of matrix A in
 output array AU. Returned as: a one-dimensional array
 of (at least) length n+1, containing integers.

 	 al

 	is the array, referred to as AL, containing the
 lower triangular part of general sparse matrix A, stored
 as follows, where:
 If ITRAN(2) = 0, A is
 stored in diagonal-out skyline storage mode.

 If ITRAN(2) = 1, A is
 stored in profile-in skyline storage mode.
 Note: You should assume
 that entries in AL for diagonal elements of A do
 not have meaningful values.

 Returned as: a one-dimensional
 array of (at least) length nl, containing long-precision
 real numbers.

 	 idl

 	is the array, referred to as IDL, containing
 the relative positions of the diagonal elements of matrix A in
 output array AL. Returned as: a one-dimensional array
 of (at least) length n+1, containing integers.

 Notes

 	Your various arrays must have no common elements; otherwise, results
 are unpredictable.

 	The ITRAN(3) argument allows you to specify the
 direction of travel through matrix A that ESSL takes
 during the transformation. By properly specifying ITRAN(3),
 you can optimize the performance of the transformation, which is especially
 beneficial when transforming large matrices.
 The direction specified
 by ITRAN(3) should be opposite the most recent direction
 of access through the matrix performed by the DGKFS or DGKFSP subroutine,
 as indicated in the following table:

 	Most Recent Computation Performed by DGKFS/DGKFSP

 	Direction Used by DGKFS/DGKFSP

 	Direction to Specify in ITRAN(3)

 	Factor and Solve

 	Negative

 	Positive (ITRAN(3) = 1)

 	Factor Only

 	Positive

 	Negative (ITRAN(3) = -1)

 	Solve Only

 	Negative

 	Positive (ITRAN(3) = 1)

 	For a description of how sparse matrices are stored in skyline
 storage mode, see Profile-In Skyline Storage Mode and Diagonal-Out Skyline Storage Mode.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 A general sparse matrix A,
 stored in diagonal-out or profile-in skyline storage mode is converted
 to either of these same two storage modes. (Generally, you convert
 from one to the other, but the capability exists to specify the same
 storage mode for input and output.) The argument ITRAN(3) indicates
 the direction in which you want the transformation performed on matrix A,
 allowing you to optimize your performance in this subroutine. This
 is especially beneficial for large matrices.

 This subroutine
 is meant to be used in conjunction with DGKFS and DGKFSP, which process
 matrices stored in these skyline storage modes.

 Error conditions

 	[bookmark: am5gr_hdgktrn__am5gr_f17019]
 Resource Errors

 	Error 2015 is unrecoverable, naux = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hdgktrn__am5gr_f17020]
 Computational Errors

 	None

 	[bookmark: am5gr_hdgktrn__am5gr_f17021]
 Input-Argument Errors

 	

 	n < 0

 	nu < 0

 	IDU(n+1) > nu+1

 	IDU(i+1) ≤ IDU(i)
 for i = 1, n

 	IDU(i+1) > IDU(i)+i and ITRAN(1) = 0
 for i = 1, n

 	IDU(i) > IDU(i-1)+i and ITRAN(1) = 1
 for i = 2, n

 	nl < 0

 	IDL(n+1) > nl+1

 	IDL(i+1) ≤ IDL(i)
 for i = 1, n

 	IDL(i+1) > IDL(i)+i and ITRAN(1) = 0
 for i = 1, n

 	IDL(i) > IDL(i-1)+i and ITRAN(1) = 1
 for i = 2, n

 	ITRAN(1) ≠ 0 or 1

 	ITRAN(2) ≠ 0 or 1

 	ITRAN(3) ≠ -1 or 1

 	Error 2015 is recoverable or naux≠0, and naux is
 too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows how to convert a 9 by 9 general sparse
 matrix A from diagonal-out skyline storage mode to profile-in
 skyline storage mode. Matrix A is: ┌ ┐
 | 11.0 12.0 13.0 0.0 0.0 0.0 0.0 0.0 0.0 |
 | 21.0 22.0 23.0 24.0 25.0 0.0 0.0 0.0 29.0 |
 | 31.0 32.0 33.0 34.0 35.0 0.0 37.0 0.0 39.0 |
 | 41.0 42.0 43.0 44.0 45.0 46.0 47.0 0.0 49.0 |
 | 0.0 0.0 0.0 54.0 55.0 56.0 57.0 58.0 59.0 |
 | 0.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 |
 | 0.0 0.0 0.0 74.0 75.0 76.0 77.0 78.0 79.0 |
 | 0.0 0.0 0.0 84.0 85.0 86.0 87.0 88.0 89.0 |
 | 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 |
 └ ┘

 Assuming
 that DGKFS last performed a solve on matrix A, the direction
 of the transformation is positive; that is, ITRAN(3) is
 1. This provides the best performance here.
 Note: On input and output,
 the diagonal elements in AL do not have meaningful
 values.

 Call Statement and Input:

 N AU NU IDU AL NL IDL ITRAN AUX NAUX
 | | | | | | | | | |
CALL DGKTRN(9 , AU , 33 , IDU , AL , 35 , IDL , ITRAN , AUX , 18

 AU = (11.0, 22.0, 12.0, 33.0, 23.0, 13.0, 44.0, 34.0, 24.0,
 55.0, 45.0, 35.0, 25.0, 66.0, 56.0, 46.0, 77.0, 67.0,
 57.0, 47.0, 37.0, 88.0, 78.0, 68.0, 58.0, 99.0, 89.0,
 79.0, 69.0, 59.0, 49.0, 39.0, 29.0)
IDU = (1, 2, 4, 7, 10, 14, 17, 22, 26, 34)
AL = (. , . , 21.0, . , 32.0, 31.0, . , 43.0, 42.0, 41.0, . ,
 54.0, . , 65.0, 64.0, 63.0, 62.0, . , 76.0, 75.0, 74.0,
 . , 87.0, 86.0, 85.0, 84.0, . , 98.0, 97.0, 96.0, 95.0,
 94.0, 93.0, 92.0, 91.0)
IDL = (1, 2, 4, 7, 11, 13, 18, 22, 27, 36)
ITRAN = (0, 1, 1)

 Output:
 AU = (11.0, 12.0, 22.0, 13.0, 23.0, 33.0, 24.0, 34.0, 44.0,
 25.0, 35.0, 45.0, 55.0, 46.0, 56.0, 66.0, 37.0, 47.0,
 57.0, 67.0, 77.0, 58.0, 68.0, 78.0, 88.0, 29.0, 39.0,
 49.0, 59.0, 69.0, 79.0, 89.0, 99.0)
IDU = (1, 3, 6, 9, 13, 16, 21, 25, 33, 34)
AL = (. , 21.0, . , 31.0, 32.0, . , 41.0, 42.0, 43.0, . , 54.0,
 . , 62.0, 63.0, 64.0, 65.0, . , 74.0, 75.0, 76.0, . ,
 84.0, 85.0, 86.0, 87.0, . , 91.0, 92.0, 93.0, 94.0, 95.0,
 96.0, 97.0, 98.0, .)
IDL = (1, 3, 6, 10, 12, 17, 21, 26, 35, 36)

 	Example 2

 	
 This example shows how to convert the same 9 by 9 general
 sparse matrix A in Example 1 from profile-in skyline
 storage mode to diagonal-out skyline storage mode.

 Assuming
 that DGKFS last performed a factorization on matrix A,
 the direction of the transformation is negative; that is, ITRAN(3) is
 -1. This provides the best performance here.
 Note: On input and output,
 the diagonal elements in AL do not have meaningful
 values.

 Call Statement and Input:

 N AU NU IDU AL NL IDL ITRAN AUX NAUX
 | | | | | | | | | |
CALL DGKTRN(9 , AU , 33 , IDU , AL , 35 , IDL , ITRAN , AUX , 18

 AU =

 (same as output

 AU

 in Example 1)

 IDU =

 (same as output

 IDU

 in Example 1)

 AL =

 (same as output

 AL

 in Example 1)

 IDL =

 (same as output

 IDL

 in Example 1)

 ITRAN = (1, 0, -1)

 Output:

 AU =

 (same as input

 AU

 in Example 1)

 IDU =

 (same as input

 IDU

 in Example 1)

 AL =

 (same as input

 AL

 in Example 1)

 IDL =

 (same as input

 IDL

 in Example 1)

 Parent topic: Utilities

 DSKTRN (For a Symmetric Sparse Matrix, Convert Between Diagonal-Out
 and Profile-In Skyline Storage Mode)

 Purpose

 This subroutine converts symmetric
 sparse matrix A of order n from one
 skyline storage mode to another—that is, between the following:

 	Diagonal-out skyline storage mode

 	Profile-in skyline storage mode

 Syntax

 	Fortran

 	CALL DSKTRN (n, a, na, idiag, itran, aux, naux)

 	C and C++

 	dsktrn (n, a, na, idiag, itran, aux, naux);

 	On Entry

 	

 	 n

 	is the order of symmetric sparse matrix A. Specified
 as: an integer; n ≥ 0.

 	 a

 	is the array, referred to as A, containing the
 upper triangular part of symmetric sparse matrix A,
 stored as follows, where:
 If ITRAN(1) = 0, A is
 stored in diagonal-out skyline storage mode.

 If ITRAN(1) = 1, A is
 stored in profile-in skyline storage mode.

 Specified as: a
 one-dimensional array of (at least) length na,
 containing long-precision real numbers.

 	 na

 	is the length of array A.
 Specified as: an
 integer; na ≥ 0 and na ≥ (IDIAG(n+1)-1).

 	 idiag

 	is the array, referred to as IDIAG, containing
 the relative positions of the diagonal elements of matrix A in
 input array A.
 Specified as: a one-dimensional
 array of (at least) length n+1, containing integers.

 	 itran

 	is an array of parameters, ITRAN(i),
 where:

 	ITRAN(1) indicates the input storage mode used
 for matrix A. This determines the arrangement of data
 in arrays A and IDIAG on input,
 where:
 If ITRAN(1) = 0, diagonal-out skyline storage mode
 is used.

 If ITRAN(1) = 1, profile-in skyline storage mode
 is used.

 	ITRAN(2) indicates the output storage mode used
 for matrix A. This determines the arrangement of data
 in arrays A and IDAIG on output,
 where:
 If ITRAN(2) = 0, diagonal-out skyline storage mode
 is used.

 If ITRAN(2) = 1, profile-in skyline storage mode
 is used.

 	ITRAN(3) indicates the direction of sweep that
 ESSL uses through the matrix A, allowing you to optimize
 performance (see Notes),
 where:
 If ITRAN(3) = 1, matrix A is transformed
 in the positive direction, starting in row or column 1 and ending
 in row or column n.

 If ITRAN(3) = -1,
 matrix A is transformed in the negative direction, starting
 in row or column n and ending in row or column
 1.

 Specified as: a one-dimensional array of (at least) length
 3, containing integers, where:

 ITRAN(1)

 =

 0 or 1

 ITRAN(2)

 =

 0 or 1

 ITRAN(3)

 =

 -1 or 1

 	 aux

 	has the following meaning:
 If naux = 0
 and error 2015 is unrecoverable, aux is ignored.

 Otherwise,
 it is the storage work area used by this subroutine. Its size is specified
 by naux.

 Specified as: an area of storage,
 containing naux long-precision real numbers.

 	 naux

 	is the size of the work area specified by aux—that
 is, the number of elements in aux.
 Specified
 as: an integer, where:

 If naux = 0
 and error 2015 is unrecoverable, DSKTRN dynamically allocates the
 work area used by this subroutine. The work area is deallocated before
 control is returned to the calling program.

 Otherwise

 	For 32-bit integer arguments

 	naux ≥ n

 	For 64-bit integer arguments

 	naux ≥ 2n

 	On Return

 	

 	 a

 	is the array, referred to as A, containing the
 upper triangular part of symmetric sparse matrix A,
 stored as follows, where:
 If ITRAN(2) = 0, A is
 stored in diagonal-out skyline storage mode.

 If ITRAN(2) = 1, A is
 stored in profile-in skyline storage mode.

 Returned as: a
 one-dimensional array of (at least) length na,
 containing long-precision real numbers.

 	 idiag

 	is the array, referred to as IDIAG, containing
 the relative positions of the diagonal elements of matrix A in
 output array A. Returned as: a one-dimensional array
 of (at least) length n+1, containing integers.

 Notes

 	Your various arrays must have no common elements; otherwise, results
 are unpredictable.

 	The ITRAN(3) argument allows you to specify the
 direction of travel through matrix A that ESSL takes
 during the transformation. By properly specifying ITRAN(3),
 you can optimize the performance of the transformation, which is especially
 beneficial when transforming large matrices.
 The direction specified
 by ITRAN(3) should be opposite the most recent direction
 of access through the matrix performed by the DSKFS or DSKFSP subroutine,
 as indicated in the following table:

 	Most Recent Computation Performed by DSKFS/DSKFSP

 	Direction Used by DSKFS/DSKFSP

 	Direction to Specify in ITRAN(3)

 	Factor and Solve

 	Negative

 	Positive (ITRAN(3) = 1)

 	Factor Only

 	Positive

 	Negative (ITRAN(3) = -1)

 	Solve Only

 	Negative

 	Positive (ITRAN(3) = 1)

 	For a description of how sparse matrices are stored in skyline
 storage mode, see Profile-In Skyline Storage Mode and Diagonal-Out Skyline Storage Mode.

 	You have the option of having the minimum required value for naux dynamically
 returned to your program. For details, see Using Auxiliary Storage in ESSL.

 Function

 A symmetric sparse matrix A,
 stored in diagonal-out or profile-in skyline storage mode is converted
 to either of these same two storage modes. (Generally, you convert
 from one to the other, but the capability exists to specify the same
 storage mode for input and output.) The argument ITRAN(3) indicates
 the direction in which you want the transformation performed on matrix A,
 allowing you to optimize your performance in this subroutine. This
 is especially beneficial for large matrices.

 This subroutine
 is meant to be used in conjunction with DSKFS and DSKFSP, which process
 matrices stored in these skyline storage modes.

 Error conditions

 	[bookmark: am5gr_hdsktrn__am5gr_f17029]
 Resource Errors

 	Error 2015 is unrecoverable, naux = 0,
 and unable to allocate work area.

 	[bookmark: am5gr_hdsktrn__am5gr_f17030]
 Computational Errors

 	None

 	[bookmark: am5gr_hdsktrn__am5gr_f17031]
 Input-Argument Errors

 	

 	n < 0

 	na < 0

 	IDIAG(n+1) > na+1

 	IDIAG(i+1) ≤ IDIAG(i)
 for i = 1, n

 	IDIAG(i+1) > IDIAG(i)+i and ITRAN(1) = 0
 for i = 1, n

 	IDIAG(i) > IDIAG(i-1)+i and ITRAN(1) = 1
 for i = 2, n

 	ITRAN(1) ≠ 0 or 1

 	ITRAN(2) ≠ 0 or 1

 	ITRAN(3) ≠ -1 or 1

 	naux Error 2015 is recoverable or naux≠0,
 and is too small—that
 is, less than the minimum required value. Return code 1 is returned
 if error 2015 is recoverable.

 Examples

 	Example 1

 	
 This example shows how to convert a 9 by 9 symmetric sparse
 matrix A from diagonal-out skyline storage mode to profile-in
 skyline storage mode. Matrix A is: ┌ ┐
 | 11.0 12.0 13.0 14.0 0.0 0.0 0.0 0.0 0.0 |
 | 12.0 22.0 23.0 24.0 25.0 26.0 0.0 28.0 0.0 |
 | 13.0 23.0 33.0 34.0 35.0 36.0 0.0 38.0 0.0 |
 | 14.0 24.0 34.0 44.0 45.0 46.0 0.0 48.0 0.0 |
 | 0.0 25.0 35.0 45.0 55.0 56.0 57.0 58.0 0.0 |
 | 0.0 26.0 36.0 46.0 56.0 66.0 67.0 68.0 69.0 |
 | 0.0 0.0 0.0 0.0 57.0 67.0 77.0 78.0 79.0 |
 | 0.0 28.0 38.0 48.0 58.0 68.0 78.0 88.0 89.0 |
 | 0.0 0.0 0.0 0.0 0.0 69.0 79.0 89.0 99.0 |
 └ ┘

 Assuming
 that DSKFS last performed a factorization on matrix A,
 the direction of the transformation is negative; that is, ITRAN(3) is
 -1. This provides the best performance here.

 Call
 Statement and Input:
 N A NA IDIAG ITRAN AUX NAUX
 | | | | | | |
CALL DSKTRN(9 , A , 33 , IDIAG , ITRAN , AUX , 9)

 A = (11.0, 22.0, 12.0, 33.0, 23.0, 13.0, 44.0, 34.0, 24.0,
 14.0, 55.0, 45.0, 35.0, 25.0, 66.0, 56.0, 46.0, 36.0,
 26.0, 77.0, 67.0, 57.0, 88.0, 78.0, 68.0, 58.0, 48.0,
 38.0, 28.0, 99.0, 89.0, 79.0, 69.0)
IDIAG = (1, 2, 4, 7, 11, 15, 20, 23, 30, 34)
ITRAN = (0, 1, -1)

 Output:
 A = (11.0, 12.0, 22.0, 13.0, 23.0, 33.0, 14.0, 24.0, 34.0,
 44.0, 25.0, 35.0, 45.0, 55.0, 26.0, 36.0, 46.0, 56.0,
 66.0, 57.0, 67.0, 77.0, 28.0, 38.0, 48.0, 58.0, 68.0,
 78.0, 88.0, 69.0, 79.0, 89.0, 99.0)
IDIAG = (1, 3, 6, 10, 14, 19, 22, 29, 33, 34)

 	Example 2

 	
 This example shows how to convert the same 9 by 9 symmetric
 sparse matrix A in Example 1 from profile-in skyline
 storage mode to diagonal-out skyline storage mode.

 Assuming
 that DSKFS last performed a solve on matrix A, the direction
 of the transformation is positive; that is, ITRAN(3) is
 1. This provides the best performance here.

 Call
 Statement and Input:
 N A NA IDIAG ITRAN AUX NAUX
 | | | | | | |
CALL DSKTRN(9 , A , 33 , IDIAG , ITRAN , AUX , 9

 A =

 (same as output

 A

 in Example 1)

 IDIAG =

 (same as output

 IDIAG

 in Example 1)

 ITRAN = (1, 0, 1)

 Output:

 A =

 (same as input

 A

 in Example 1)

 IDIAG =

 (same as input

 IDIAG

 in Example 1)

 Parent topic: Utilities

 Basic Linear Algebra Subprograms (BLAS) and Complex BLAS (CBLAS)

 This appendix lists the ESSL subprograms corresponding to a subprogram in the standard
 set of BLAS [image: Start of change]and CBLAS[image: End of change].

 Level 1 BLAS

 Table 248. Level 1 BLAS Included in ESSL.

 	Descriptive Name

 	Short-Precision Subprogram

 	Long-Precision Subprogram

 	ISAMAX, IDAMAX, ICAMAX, and IZAMAX (Position of the First or Last Occurrence of the Vector Element Having the Largest Magnitude)

 	

 ISAMAX

 ICAMAX

 cblas_isamax

 cblas_idamax

 	

 IDAMAX

 IZAMAX

 cblas_icamax

 cblas_izamax

 	SASUM, DASUM, SCASUM, and DZASUM (Sum of the Magnitudes of the Elements in a Vector)

 	

 SASUM

 SCASUM

 cblas_sasum

 cblas_scasum

 	

 DASUM

 DZASUM

 cblas_dasum

 cblas_dcasum

 	SAXPY, DAXPY, CAXPY, and ZAXPY (Multiply a Vector X by a Scalar, Add to a Vector Y, and Store in the Vector Y)

 	

 SAXPY

 CAXPY

 cblas_saxpy

 cblas_caxpy

 	

 DAXPY

 ZAXPY

 cblas_daxpy

 cblas_zaxpy

 	SCOPY, DCOPY, CCOPY, and ZCOPY (Copy a Vector)

 	

 SCOPY

 CCOPY

 cblas_scopy

 cblas_ccopy

 	

 DCOPY

 ZCOPY

 cblas_dcopy

 cblas_zcopy

 	SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and ZDOTC (Dot Product of Two Vectors)

 	

 SDOT

 CDOTU

 CDOTC

 cblas_sdot

 cblas_cdotu_sub

 cblas_cdotc_sub

 	

 DDOT

 ZDOTU

 ZDOTC

 cblas_ddot

 cblas_zdotu_sub

 cblas_zdotc_sub

 	SNRM2, DNRM2, SCNRM2, and DZNRM2 (Euclidean Length of a Vector with Scaling of Input to Avoid Destructive Underflow and Overflow)

 	

 SNRM2

 SCNRM2

 cblas_snrm2

 cblas_scnrm2

 	

 DNRM2

 DZNRM2

 cblas_dnrm2

 cblas_dznrm2

 	SROTG, DROTG, CROTG, and ZROTG (Construct a Givens Plane Rotation)

 	

 SROTG

 CROTG

 cblas_srotg

 [image: Start of change]cblas_crotg

 [image: End of change]

 	

 DROTG

 ZROTG

 cblas_drotg

 [image: Start of change]cblas_zrotg

 [image: End of change]

 	SROT, DROT, CROT, ZROT, CSROT, and ZDROT (Apply a Plane Rotation)

 	

 SROT

 CROT

 CSROT

 cblas_srot

 [image: Start of change]cblas_crot

 cblas_csrot

 [image: End of change]

 	

 DROT

 ZROT

 ZDROT

 cblas_drot

 [image: Start of change]cblas_zrot

 cblas_zdrot

 [image: End of change]

 	[image: Start of change]SROTMG and DROTMG (Construct a modified Givens Transformation)[image: End of change]

 	[image: Start of change]
 SROTMG

 cblas_srotmg

 [image: End of change]

 	

 DROTMG

 cblas_drotmg

 	[image: Start of change]SROTM and DROTM (Apply a modified Givens Transformation)[image: End of change]

 	[image: Start of change]
 SROTM

 cblas_srotm

 [image: End of change]

 	

 DROTM

 cblas_drotm

 	SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and ZDSCAL (Multiply a Vector X by a Scalar and Store in the Vector X)

 	

 SSCAL

 CSCAL

 CSSCAL

 cblas_sscal

 cblas_cscal

 cblas_csscal

 	

 DSCAL

 ZSCAL

 ZDSCAL

 cblas_dscal

 cblas_zscal

 cblas_zdscal

 	SSWAP, DSWAP, CSWAP, and ZSWAP (Interchange the Elements of Two Vectors)

 	

 SSWAP

 CSWAP

 cblas_sswap

 cblas_cswap

 	

 DSWAP

 ZSWAP

 cblas_dswap

 cblas_zswap

 Level 2 BLAS

 Table 249. Level 2 BLAS Included in ESSL.

 	Descriptive Name

 	Short-Precision Subprogram

 	Long-Precision Subprogram

 	SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and DGEMTX (Matrix-Vector Product for a General Matrix, Its Transpose, or
 Its Conjugate Transpose)

 	

 SGEMV

 CGEMV

 cblas_sgemv

 cblas_cgemv

 	

 DGEMV

 ZGEMV

 cblas_dgemv

 cblas_zgemv

 	SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC (Rank-One Update of a General Matrix)

 	

 SGER

 CGERU

 CGERC

 cblas_sger

 cblas_cgeru

 cblas_cgerc

 	

 DGER

 ZGERU

 ZGERC

 cblas_dger

 cblas_zgeru

 cblas_zgerc

 	SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV, SSLMX, and DSLMX (Matrix-Vector Product for a Real Symmetric or Complex
 Hermitian Matrix)

 	

 SSPMV

 CHPMV

 SSYMV

 CHEMV

 cblas_sspmv

 cblas_chpmv

 cblas_ssymv

 cblas_chemv

 	

 DSPMV

 ZHPMV

 DSYMV

 ZHEMV

 cblas_dspmv

 cblas_zhpmv

 cblas_dsymv

 cblas_zhemv

 	SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1 (Rank-One Update of a Real Symmetric or Complex Hermitian
 Matrix)

 	

 SSPR

 CHPR

 SSYR

 CHER

 cblas_sspr

 cblas_chpr

 cblas_ssyr

 cblas_cher

 	

 DSPR

 ZHPR

 DSYR

 ZHER

 cblas_dspr

 cblas_zhpr

 cblas_dsyr

 cblas_zher

 	SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2, and DSLR2 (Rank-Two Update of a Real Symmetric or Complex Hermitian
 Matrix)

 	

 SSPR2

 CHPR2

 SSYR2

 CHER2

 cblas_sspr2

 cblas_chpr2

 cblas_ssyr2

 cblas_cher2

 	

 DSPR2

 ZHPR2

 DSYR2

 ZHER2

 cblas_dspr2

 cblas_zhpr2

 cblas_dsyr2

 cblas_zher2

 	SGBMV, DGBMV, CGBMV, and ZGBMV (Matrix-Vector Product for a General Band Matrix, Its Transpose, or Its Conjugate Transpose)

 	

 SGBMV

 CGBMV

 cblas_sgbmv

 cblas_cgbmv

 	

 DGBMV

 ZGBMV

 cblas_dgbmv

 cblas_zgbmv

 	SSBMV, DSBMV, CHBMV, and ZHBMV (Matrix-Vector Product for a Real Symmetric or Complex Hermitian Band Matrix)

 	

 SSBMV

 CHBMV

 cblas_ssbmv

 cblas_chbmv

 	

 DSBMV

 ZHBMV

 cblas_dsbmv

 cblas_zhbmv

 	STRMV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMV, and ZTPMV (Matrix-Vector Product for a Triangular Matrix, Its Transpose,
 or Its Conjugate Transpose)

 	

 STPMV

 CTPMV

 STRMV

 CTRMV

 cblas_stpmv

 cblas_ctpmv

 cblas_strmv

 cblas_ctrmv

 	

 DTPMV

 ZTPMV

 DTRMV

 ZTRMV

 cblas_dtpmv

 cblas_ztpmv

 cblas_dtrmv

 cblas_ztrmv

 	STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and ZTPSV (Solution of a Triangular System of Equations with a Single Right-Hand
 Side)

 	

 STPSV

 CTPSV

 STRSV

 CTRSV

 cblas_stpsv

 cblas_ctpsv

 cblas_strsv

 cblas_ctrsv

 	

 DTPSV

 ZTPSV

 DTRSV

 ZTRSV

 cblas_dtpsv

 cblas_ztpsv

 cblas_dtrsv

 cblas_ztrsv

 	STBMV, DTBMV, CTBMV, and ZTBMV (Matrix-Vector Product for a Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose)

 	

 STBMV

 CTBMV

 cblas_stbmv

 cblas_ctbmv

 	

 DTBMV

 ZTBMV

 cblas_dtbmv

 cblas_ztbmv

 	STBSV, DTBSV, CTBSV, and ZTBSV (Triangular Band Equation Solve)

 	

 STBSV

 CTBSV

 cblas_stbsv

 cblas_ctbsv

 	

 DTBSV

 ZTBSV

 cblas_dtbsv

 cblas_ztbsv

 Level 3 BLAS

 Table 250. Level 3 BLAS Included in ESSL.

 	Descriptive Name

 	Short-Precision Subprogram

 	Long-Precision Subprogram

 	SGEMM, DGEMM, CGEMM, and ZGEMM (Combined Matrix Multiplication and Addition for General Matrices, Their Transposes, or Conjugate
 Transposes)

 	

 SGEMM

 CGEMM

 cblas_sgemm

 cblas_cgemm

 	

 DGEMM

 ZGEMM

 cblas_dgemm

 cblas_zgemm

 	SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM (Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric or Complex
 Hermitian)

 	

 SSYMM

 CSYMM

 CHEMM

 cblas_ssymm

 cblas_csymm

 cblas_chemm

 	

 DSYMM

 ZSYMM

 ZHEMM

 cblas_dsymm

 cblas_zsymm

 cblas_zhemm

 	STRMM, DTRMM, CTRMM, and ZTRMM (Triangular Matrix-Matrix Product)

 	

 STRMM

 CTRMM

 cblas_strmm

 cblas_ctrmm

 	

 DTRMM

 ZTRMM

 cblas_dtrmm

 cblas_ztrmm

 	STRSM, DTRSM, CTRSM, and ZTRSM (Solution of Triangular Systems of Equations with Multiple Right-Hand Sides)

 	

 STRSM

 CTRSM

 cblas_strsm

 cblas_ctrsm

 	

 DTRSM

 ZTRSM

 cblas_dtrsm

 cblas_ztrsm

 	SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK (Rank-K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix)

 	

 SSYRK

 CSYRK

 CHERK

 cblas_ssyrk

 cblas_csyrk

 cblas_cherk

 	

 DSYRK

 ZSYRK

 ZHERK

 cblas_dsyrk

 cblas_zsyrk

 cblas_zherk

 	SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K (Rank-2K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix)

 	

 SSYR2K

 CSYR2K

 CHER2K

 cblas_ssyr2k

 cblas_csyr2k

 cblas_cher2k

 	

 DSYR2K

 ZSYR2K

 ZHER2K

 cblas_dsyr2k

 cblas_zsyr2k

 cblas_zher2k

 Note: [image: Start of change]xerbla is not used by ESSL but is included in the ESSL libraries for use in other
 programming environments (for example, Python).[image: End of change]

 [image: Start of change]CBLAS Subroutines

 Note the following about the CBLAS subroutines:

 	 The definitions of the CBLAS data types and prototypes are included in the ESSL header files.
 In the beginning of your program, before you call any of the CBLAS subroutines, you must code the
 following statement for the ESSL header file: #include <essl.h>

 	CBLAS enumerated types have changed to type definitions for ESSL Version 5 Release 5 and changes
 are required if you used enumerated types. See Migrating Programs from ESSL for Linux on Power Version 5 Release 4 to Version 5 Release 5 for the
 required changes to your existing programs

 	 For information about CBLAS calling sequences, see Syntax and [10].

 [image: End of change]

 LAPACK and LAPACKE

 The following table lists the ESSL subroutines corresponding to subroutines in the
 standard set of LAPACK [image: Start of change]and LAPACKE[image: End of change].

 [image: Start of change]
 Table 251. LAPACK [image: Start of change]and LAPACKE[image: End of change] subroutines included in ESSL.

 	Short-Precision Subprogram

 	Long-Precision Subprogram

 	Descriptive Name and Location

 	

 SGESV

 CGESV

 [image: Start of change]LAPACKE_sgesv

 LAPACKE_cgesv

 [image: End of change]

 	

 DGESV

 ZGESV

 [image: Start of change]LAPACKE_dgesv

 LAPACKE_zgesv

 [image: End of change]

 	SGESV, DGESV, CGESV, ZGESV (General Matrix Factorization and Multiple Right-Hand Side Solve)

 	

 SGETRF

 CGETRF

 [image: Start of change]LAPACKE_sgetrf

 LAPACKE_cgetrf

 [image: End of change]

 	

 DGETRF

 ZGETRF

 [image: Start of change]LAPACKE_dgetrf

 LAPACKE_zgetrf

 [image: End of change]

 	SGETRF, DGETRF, CGETRF and ZGETRF (General Matrix Factorization)

 	

 SGETRS

 CGETRS

 [image: Start of change]LAPACKE_sgetrs

 LAPACKE_cgetrs

 [image: End of change]

 	

 DGETRS

 ZGETRS

 [image: Start of change]LAPACKE_dgetrs

 LAPACKE_zgetrs

 [image: End of change]

 	SGETRS, DGETRS, CGETRS, and ZGETRS (General Matrix Multiple Right-Hand Side Solve)

 	

 SGECON

 CGECON

 [image: Start of change]LAPACKE_sgecon

 LAPACKE_cgecon

 [image: End of change]

 	

 DGECON

 ZGECON

 [image: Start of change]LAPACKE_dgecon

 LAPACKE_zgecon

 [image: End of change]

 	SGECON, DGECON, CGECON, and ZGECON (Estimate the Reciprocal of the Condition Number of a General Matrix)

 	

 SGETRI

 CGETRI

 [image: Start of change]LAPACKE_sgetri

 LAPACKE_cgetri

 [image: End of change]

 	

 DGETRI

 ZGETRI

 [image: Start of change]LAPACKE_dgetri

 LAPACKE_zgetri

 [image: End of change]

 	SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and DGEICD (General Matrix Inverse, Condition Number Reciprocal, and Determinant)

 	

 SLANGE

 CLANGE

 [image: Start of change]LAPACKE_slange

 LAPACKE_clange

 [image: End of change]

 	

 DLANGE

 ZLANGE

 [image: Start of change]LAPACKE_dlange

 LAPACKE_zlange

 [image: End of change]

 	SLANGE, DLANGE, CLANGE, and ZLANGE (General Matrix Norm)

 	

 SPPSV

 CPPSV

 [image: Start of change]LAPACKE_sppsv

 LAPACKE_cppsv

 [image: End of change]

 	

 DPPSV

 ZPPSV

 [image: Start of change]LAPACKE_dppsv

 LAPACKE_zppsv

 [image: End of change]

 	SPPSV, DPPSV, CPPSV, and ZPPSV (Positive Definite Real Symmetric and Complex Hermitian Matrix Factorization and Multiple Right-Hand
 Side Solve)

 	

 SPOSV

 CPOSV

 [image: Start of change]LAPACKE_sposv

 LAPACKE_cposv

 [image: End of change]

 	

 DPOSV

 ZPOSV

 [image: Start of change]LAPACKE_dposv

 LAPACKE_zposv

 [image: End of change]

 	SPOSV, DPOSV, CPOSV, and ZPOSV (Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization and Multiple Right-Hand
 Side Solve)

 	

 SPOTRF

 CPOTRF

 SPPTRF

 CPPTRF

 [image: Start of change]LAPACKE_spotrf

 LAPACKE_cpotrf

 LAPACKE_spptrf

 LAPACKE_cpptrf

 [image: End of change]

 	

 DPOTRF

 ZPOTRF

 DPPTRF

 ZPPTRF

 [image: Start of change]LAPACKE_dpotrf

 LAPACKE_zpotrf

 LAPACKE_dpptrf

 LAPACKE_zpptrf

 [image: End of change]

 	SPOTRF, DPOTRF, CPOTRF, ZPOTRF, SPOF, DPOF, CPOF, ZPOF, SPPTRF, DPPTRF, CPPTRF, ZPPTRF, SPPF, and DPPF (Positive Definite
 Real Symmetric or Complex Hermitian Matrix Factorization)

 	

 SPOTRS

 CPOTRS

 SPPTRS

 CPPTRS

 [image: Start of change]LAPACKE_spotrs

 LAPACKE_cpotrs

 LAPACKE_spptrs

 LAPACKE_cpptrs

 [image: End of change]

 	

 DPOTRS

 ZPOTRS

 DPPTRS

 ZPPTRS

 [image: Start of change]LAPACKE_dpotrs

 LAPACKE_zpotrs

 LAPACKE_dpptrs

 LAPACKE_zpptrs

 [image: End of change]

 	SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM, ZPOSM, SPPTRS, DPPTRS, CPPTRS, and ZPPTRS (Positive Definite Real Symmetric
 or Complex Hermitian Matrix Multiple Right-Hand Side Solve)

 	

 SPOCON

 CPOCON

 SPPCON

 CPPCON

 [image: Start of change]LAPACKE_spocon

 LAPACKE_cpocon

 LAPACKE_sppcon

 LAPACKE_cppcon

 [image: End of change]

 	

 DPOCON

 ZPOCON

 DPPCON

 ZPPCON

 [image: Start of change]LAPACKE_dpocon

 LAPACKE_zpocon

 LAPACKE_dppcon

 LAPACKE_zppcon

 [image: End of change]

 	SPOCON, DPOCON, CPOCON, ZPOCON, SPPCON, DPPCON, CPPCON, and ZPPCON (Estimate the Reciprocal of the Condition Number of a Positive
 Definite Real Symmetric or Complex Hermitian Matrix)

 	

 SPOTRI

 CPOTRI

 SPPTRI

 CPPTRI

 [image: Start of change]LAPACKE_spotri

 LAPACKE_cpotri

 LAPACKE_spptri

 LAPACKE_cpptri

 [image: End of change]

 	

 DPOTRI

 ZPOTRI

 DPPTRI

 ZPPTRI

 [image: Start of change]LAPACKE_dpotri

 LAPACKE_zpotri

 LAPACKE_dpptri

 LAPACKE_zpptri

 [image: End of change]

 	SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, DPOICD, SPPTRI, DPPTRI, CPPTRI, ZPPTRI, SPPICD, and DPPICD (Positive Definite Real
 Symmetric or Complex Hermitian Matrix Inverse, Condition Number Reciprocal, and Determinant)

 	

 SLANSY

 CLANHE

 SLANSP

 CLANHP

 LAPACKE_slansy

 LAPACKE_clanhe

 LAPACKE_slansp

 LAPACKE_clanhp

 	

 DLANSY

 ZLANHE

 DLANSP

 ZLANHP

 LAPACKE_dlansy

 LAPACKE_zlanhe

 LAPACKE_dlansp

 LAPACKE_zlanhp

 	SLANSY, DLANSY, CLANHE, ZLANHE, SLANSP, DLANSP, CLANHP, and ZLANHP (Real Symmetric or Complex Hermitian Matrix Norm)

 	

 SSYSV

 CSYSV

 CHESV

 SSPSV

 CSPSV

 CHPSV

 LAPACKE_ssysv

 LAPACKE_csysv

 LAPACKE_chesv

 LAPACKE_sspsv

 LAPACKE_cspsv

 LAPACKE_chpsv

 	

 DSYSV

 ZSYSV

 ZHESV

 DSPSV

 ZSPSV

 ZHPSV

 LAPACKE_dsysv

 LAPACKE_zsysv

 LAPACKE_zhesv

 LAPACKE_dspsv

 LAPACKE_zspsv

 LAPACKE_zhpsv

 	SSYSV, DSYSV, CSYSV, ZSYSV, CHESV, ZHESV, SSPSV, DSPSV, CSPSV, ZSPSV, CHPSV, and ZHPSV (Indefinite Real or Complex Symmetric
 or Complex Hermitian Matrix Factorization and Multiple Right-Hand Side Solve)

 	

 SSYTRF

 CSYTRF

 CHETRF

 SSPTRF

 CSPTRF

 CHPTRF

 LAPACKE_ssytrf

 LAPACKE_csytrf

 LAPACKE_chetrf

 LAPACKE_ssptrf

 LAPACKE_csptrf

 LAPACKE_chptrf

 	

 DSYTRF

 ZSYTRF

 ZHETRF

 DSPTRF

 ZSPTRF

 ZHPTRF

 LAPACKE_dsytrf

 LAPACKE_zsytrf

 LAPACKE_zhetrf

 LAPACKE_dsptrf

 LAPACKE_zsptrf

 LAPACKE_zhptrf

 	SSYTRF, DSYTRF, CSYTRF, ZSYTRF, CHETRF, ZHETRF, SSPTRF, DSPTRF, CSPTRF, ZSPTRF, CHPTRF, and ZHPTRF (Indefinite Real or Complex
 Symmetric or Complex Hermitian Matrix Factorization)

 	

 SSYTRS

 CSYTRS

 CHETRS

 SSPTRS

 CSPTRS

 CHPTRS

 LAPACKE_ssytrs

 LAPACKE_csytrs

 LAPACKE_chetrs

 LAPACKE_ssptrs

 LAPACKE_csptrs

 LAPACKE_chptrs

 	

 DSYTRS

 ZSYTRS

 ZHETRS

 DSPTRS

 ZSPTRS

 ZHPTRS

 LAPACKE_dsytrs

 LAPACKE_zsytrs

 LAPACKE_zhetrs

 LAPACKE_dsptrs

 LAPACKE_zsptrs

 LAPACKE_zhptrs

 	SSYTRS, DSYTRS, CSYTRS, ZSYTRS, CHETRS, ZHETRS, SSPTRS, DSPTRS, CSPTRS, ZSPTRS, CHPTRS, and ZHPTRS (Indefinite Real or Complex
 Symmetric or Complex Hermitian Matrix Multiple Right-Hand Side Solve)

 	

 STRTRI

 STPTRI

 CTRTRI

 CTPTRI

 LAPACKE_strtri

 LAPACKE_stptri

 LAPACKE_ctrtri

 LAPACKE_ctptri

 	

 DTRTRI

 DTPTRI

 ZTRTRI

 ZTPTRI

 LAPACKE_dtrtri

 LAPACKE_dtptri

 LAPACKE_ztrtri

 LAPACKE_ztptri

 	STRTRI, DTRTRI, CTRTRI, ZTRTRI, STPTRI, DTPTRI, CTPTRI, and ZTPTRI (Triangular Matrix Inverse)

 	

 SLANTR	

 CLANTR

 SLANTP

 CLANTP

 LAPACKE_slantr	

 LAPACKE_clantr

 LAPACKE_slantp

 LAPACKE_clantp

 	

 DLANTR

 ZLANTR

 DLANTP

 ZLANTP

 LAPACKE_dlantr	

 LAPACKE_zlantr

 LAPACKE_dlantp

 LAPACKE_zlantp

 	SLANTR, DLANTR, CLANTR, ZLANTR, SLANTP, DLANTP, CLANTP, and ZLANTP (Trapezoidal or Triangular Matrix Norm)

 	

 SGBSV

 CGBSV

 LAPACKE_sgbsv

 LAPACKE_cgbsv

 	

 DGBSV

 ZGBSV

 LAPACKE_dgbsv

 LAPACKE_zgbsv

 	SGBSV, DGBSV, CGBSV, and ZGBSV (General Band Matrix Factorization and Multiple Right-Hand Side Solve)

 	

 SGBTRF

 CGBTRF

 LAPACKE_sgbtrf

 LAPACKE_cgbtrf

 	

 DGBTRF

 ZGBTRF

 LAPACKE_dgbtrf

 LAPACKE_zgbtrf

 	SGBTRF, DGBTRF, CGBTRF and ZGBTRF (General Band Matrix Factorization)

 	

 SGBTRS

 CGBTRS

 LAPACKE_sgbtrs

 LAPACKE_cgbtrs

 	

 DGBTRS

 ZGBTRS

 LAPACKE_dgbtrs

 LAPACKE_zgbtrs

 	SGBTRS, DGBTRS, CGBTRS, and ZGBTRS (General Band Matrix Multiple Right-Hand Side Solve)

 	

 SPBSV

 CPBSV

 LAPACKE_spbsv

 LAPACKE_cpbsv

 	

 DPBSV

 ZPBSV

 LAPACKE_dpbsv

 LAPACKE_zpbsv

 	SPBSV, DPBSV, CPBSV, and ZPBSV (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Factorization and Multiple
 Right-Hand Side Solve)

 	

 SPBTRF

 CPBTRF

 LAPACKE_spbtrf

 LAPACKE_cpbtrf

 	

 DPBTRF

 ZPBTRF

 LAPACKE_dpbtrf

 LAPACKE_zpbtrf

 	SPBTRF, DPBTRF, CPBTRF, and ZPBTRF (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Factorization)

 	

 SPBTRS

 CPBTRS

 LAPACKE_spbtrs

 LAPACKE_cpbtrs

 	

 DPBTRS

 ZPBTRS

 LAPACKE_dpbtrs

 LAPACKE_zpbtrs

 	SPBTRS, DPBTRS, CPBTRS, and ZPBTRS (Positive Definite Real Symmetric or Complex Hermitian Band Matrix Multiple Right-Hand
 Side Solve)

 	

 SGTSV

 CGTSV

 LAPACKE_sgtsv

 LAPACKE_cgtsv

 	

 DGTSV

 ZGTSV

 LAPACKE_dgtsv

 LAPACKE_zgtsv

 	SGTSV, DGTSV, CGTSV, and ZGTSV (General Tridiagonal Matrix Factorization and Multiple Right-Hand Side Solve)

 	

 SGTTRF

 CGTTRF

 LAPACKE_sgttrf

 LAPACKE_cgttrf

 	

 DGTTRF

 ZGTTRF

 LAPACKE_dgttrf

 LAPACKE_zgttrf

 	SGTTRF, DGTTRF, CGTTRF, and ZGTTRF (General Tridiagonal Matrix Factorization)

 	

 SGTTRS

 CGTTRS

 LAPACKE_sgttrs

 LAPACKE_cgttrs

 	

 DGTTRS

 ZGTTRS

 LAPACKE_dgttrs

 LAPACKE_zgttrs

 	SGTTRS, DGTTRS, CGTTRS, and ZGTTRS (General Tridiagonal Matrix Multiple Right-Hand Side Solve)

 	

 SPTSV

 CPTSV

 LAPACKE_sptsv

 LAPACKE_cptsv

 	

 DPTSV

 ZPTSV

 LAPACKE_dptsv

 LAPACKE_zptsv

 	SPTSV, DPTSV, CPTSV, and ZPTSV (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Factorization and
 Multiple Right-Hand Side Solve)

 	

 SPTTRF

 CPTTRF

 LAPACKE_spttrf

 LAPACKE_cpttrf

 	

 DPTTRF

 ZPTTRF

 LAPACKE_dpttrf

 LAPACKE_zpttrf

 	SPTTRF, DPTTRF, CPTTRF, and ZPTTRF (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Factorization)

 	

 SPTTRS

 CPTTRS

 LAPACKE_spttrs

 LAPACKE_cpttrs

 	

 DPTTRS

 ZPTTRS

 LAPACKE_dpttrs

 LAPACKE_zpttrs

 	SPTTRS, DPTTRS, CPTTRS, and ZPTTRS (Positive Definite Real Symmetric or Complex Hermitian Tridiagonal Matrix Multiple Right-Hand
 Solve)

 	

 SGESVD

 CGESVD

 [image: Start of change]SGESDD

 CGESDD

 LAPACKE_sgesvd

 LAPACKE_cgesvd

 LAPACKE_sgesdd

 LAPACKE_cgesdd

 [image: End of change]

 	

 DGESVD

 ZGESVD

 [image: Start of change]DGESDD

 ZGESDD

 LAPACKE_dgesvd

 LAPACKE_zgesvd

 LAPACKE_dgesdd

 LAPACKE_zgesdd

 [image: End of change]

 	SGESVD, DGESVD, CGESVD, ZGESVD, SGESDD, DGESDD, CGESDD, and ZGESDD (Singular Value Decomposition for a General Matrix)

 	

 SGEQRF

 CGEQRF

 LAPACKE_sgeqrf

 LAPACKE_cgeqrf

 	

 DGEQRF

 ZGEQRF

 LAPACKE_dgeqrf

 LAPACKE_zgeqrf

 	SGEQRF, DGEQRF, CGEQRF, and ZGEQRF (General Matrix QR Factorization)

 	

 SGELS

 CGELS

 LAPACKE_sgels

 LAPACKE_cgels

 	

 DGELS

 ZGELS

 LAPACKE_dgels

 LAPACKE_zgels

 	SGELS, DGELS, CGELS, and ZGELS (Linear Least Squares Solution for a General Matrix)

 	

 SGELSD

 CGELSD

 LAPACKE_sgelsd

 LAPACKE_cgelsd

 	

 DGELSD

 ZGELSD

 LAPACKE_dgelsd

 LAPACKE_zgelsd

 	SGELSD, DGELSD, CGELSD, and ZGELSD (Linear Least Squares Solution for a General Matrix Using the Singular Value Decomposition)

 	
 [image: Start of change]SGEEV

 CGEEV

 [image: End of change]

 SGEEVX

 CGEEVX

 [image: Start of change]LAPACKE_sgeev

 LAPACKE_cgeev

 LAPACKE_sgeevx

 LAPACKE_cgeevx

 [image: End of change]

 	
 [image: Start of change]DGEEV

 ZGEEV

 [image: End of change]

 DGEEVX

 ZGEEVX

 [image: Start of change]LAPACKE_dgeev

 LAPACKE_zgeev

 LAPACKE_dgeevx

 LAPACKE_zgeevx

 [image: End of change]

 	SGEEV, DGEEV, CGEEV, ZGEEV, SGEEVX, DGEEVX, CGEEVX, and ZGEEVX (Eigenvalues and, Optionally, Right Eigenvectors, Left Eigenvectors,
 Reciprocal Condition Numbers for Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a General Matrix)

 	

 SSYEV

 CHEEV

 SSPEVX

 CHPEVX

 SSYEVX

 CHEEVX

 [image: Start of change]LAPACKE_ssyev

 LAPACKE_cheev

 LAPACKE_sspevx

 LAPACKE_chpevx

 LAPACKE_ssyevx

 LAPACKE_cheevx

 [image: End of change]

 	

 DYSEV

 ZHEEV

 DSPEVX

 ZHPEVX

 DSYEVX

 ZHEEVX

 [image: Start of change]LAPACKE_dsyev

 LAPACKE_zheev

 LAPACKE_dspevx

 LAPACKE_zhpevx

 LAPACKE_dsyevx

 LAPACKE_zheevx

 [image: End of change]

 	SSYEV, DSYEV, CHEEV, ZHEEV, SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX, DSYEVX, CHEEVX, and ZHEEVX (Eigenvalues and, Optionally,
 the Eigenvectors of a Real Symmetric or Complex Hermitian Matrix)

 	
 [image: Start of change]SSPEVD

 [image: End of change]

 CHPEVD

 SSYEVD

 CHEEVD

 [image: Start of change]LAPACKE_sspevd

 LAPACKE_chpevd

 LAPACKE_ssyevd

 LAPACKE_cheevd

 [image: End of change]

 	
 [image: Start of change]DSPEVD

 [image: End of change]

 ZHPEVD

 DSYEVD

 ZHEEVD

 [image: Start of change]LAPACKE_dspevd

 LAPACKE_zhpevd

 LAPACKE_dsyevd

 LAPACKE_zheevd

 [image: End of change]

 	SSPEVD, DSPEVD, CHPEVD, ZHPEVD, SSYEVD, DSYEVD, CHEEVD, and ZHEEVD (Eigenvalues and, Optionally the Eigenvectors, of a Real
 Symmetric or Complex Hermitian Matrix Using a Divide-and-Conquer Algorithm)

 	

 SGGEV

 CGGEV

 [image: Start of change]SGGEVX

 CGGEVX

 LAPACKE_sggev

 LAPACKE_cggev

 LAPACKE_sggevx

 LAPACKE_cggevx

 [image: End of change]

 	

 DGGEV

 ZGGEV

 [image: Start of change]DGGEVX

 ZGGEVX

 LAPACKE_dggev

 LAPACKE_zggev

 LAPACKE_dggevx

 LAPACKE_zggevx

 [image: End of change]

 	SGGEV, DGGEV, CGGEV, ZGGEV, SGGEVX, DGGEVX, CGGEVX, and ZGGEVX (Eigenvalues and, Optionally, Right Eigenvectors, Left Eigenvectors,
 Reciprocal Condition Numbers for Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a General Matrix
 Generalized Eigenproblem)

 	
 [image: Start of change]SSPGVX

 [image: End of change]

 CHPGVX

 SSYGVX

 CHEGVX

 [image: Start of change]LAPACKE_sspgvx

 LAPACKE_chpgvx

 LAPACKE_ssygvx

 LAPACKE_chegvx

 [image: End of change]

 	
 [image: Start of change]DSPGVX

 [image: End of change]

 ZHPGVX

 DSYGVX

 ZHEGVX

 [image: Start of change]LAPACKE_dspgvx

 LAPACKE_zhpgvx

 LAPACKE_dsygvx

 LAPACKE_zhegvx

 [image: End of change]

 	SSPGVX, DSPGVX, CHPGVX, ZHPGVX, SSYGVX, DSYGVX, CHEGVX, and ZHEGVX (Eigenvalues and, Optionally, the Eigenvectors of a Positive
 Definite Real Symmetric or Complex Hermitian Generalized Eigenproblem)

 [image: End of change]

 LAPACKE Subroutines

 [image: Start of change]Note the following about the LAPACKE subroutines:

 	ESSL includes only the high level C Interface to LAPACK.

 	The definitions of the LAPACKE data types and prototypes are included in the ESSL header files.
 In the beginning of your program, before you call any of the LAPACKE subroutines, you must code the
 following statement for the ESSL header file:#include <essl.h>

 	The optional LAPACKE NaN checking is not supported.

 	ESSL supports only C99 complex data types for C programs and C99 or STL complex data types for
 C++ programs. There is no support provided for custom complex data types. The default for ESSL is to
 use C99 complex dataypes for C programs and STL complex data types for C++ programs. If you wish to
 use C99 data types for C++ programs code the #include statement for the C99 complex floating point
 types (#include <complex.h>) in your program prior to coding the #include statement for the ESSL
 header file.

 	For information about LAPACKE calling sequences, see Syntax

 [image: End of change]

 FFTW Version 3.1.2 to ESSL Wrapper Libraries

 This appendix lists the FFTW Version 3.1.2 wrappers that
 can be used for calling functions from the ESSL libraries.

 Documentation for FFTW Version 3.1.2 can be found at the
 following URL:

 http://www.fftw.org

 Additional information about the FFTW Wrapper libraries
 can be found in the following files: 	

 	AIX®

 	/usr/lpp/essl.rte.common/FFTW3/README

 	Linux

 	/opt/ibmmath/essl/version.release/FFTW3/README

 C and Fortran Wrappers

 The
 following tables list the available C and Fortran wrappers.

 Table 252. List of available C and Fortran wrappers.

 	Category

 	C Wrapper

 	Fortran Wrapper

 	Plan usage

 	

 fftw_execute

 fftwf_execute

 fftw_destroy_plan

 fftwf_destroy_plan

 fftw_cleanup

 fftwf_cleanup

 	

 DFFTW_EXECUTE

 SFFTW_EXECUTE

 DFFTW_DESTROY_PLAN

 SFFTW_DESTROY_PLAN

 DFFTW_CLEANUP

 SFFTW_CLEANUP

 	Basic interface (Complex DFTs)

 	

 fftw_plan_dft_1d

 fftwf_plan_dft_1d

 fftw_plan_dft_2d

 fftwf_plan_dft_2d

 fftw_plan_dft_3d

 fftwf_plan_dft_3d

 fftw_plan_dft

 fftwf_plan_dft

 	

 DFFTW_PLAN_DFT_1D

 SFFTW_PLAN_DFT_1D

 DFFTW_PLAN_DFT_2D

 SFFTW_PLAN_DFT_2D

 DFFTW_PLAN_DFT_3D

 SFFTW_PLAN_DFT_3D

 DFFTW_PLAN_DFT

 SFFTW_PLAN_DFT

 	Basic interface (Real-data DFTs)

 	

 fftw_plan_dft_r2c_1d

 fftwf_plan_dft_r2c_1d

 fftw_plan_dft_r2c_2d

 fftwf_plan_dft_r2c_2d

 fftw_plan_dft_r2c_3d

 fftwf_plan_dft_r2c_3d

 fftw_plan_dft_r2c

 fftwf_plan_dft_r2c

 fftw_plan_dft_c2r_1d

 fftwf_plan_dft_c2r_1d

 fftw_plan_dft_c2r_2d

 fftwf_plan_dft_c2r_2d

 fftw_plan_dft_c2r_3d

 fftwf_plan_dft_c2r_3d

 fftw_plan_dft_c2r

 fftwf_plan_dft_c2r

 	

 DFFTW_PLAN_DFT_R2C_1D

 SFFTW_PLAN_DFT_R2C_1D

 DFFTW_PLAN_DFT_R2C_2D

 SFFTW_PLAN_DFT_R2C_2D

 DFFTW_PLAN_DFT_R2C_3D

 SFFTW_PLAN_DFT_R2C_3D

 DFFTW_PLAN_DFT_R2C

 SFFTW_PLAN_DFT_R2C

 DFFTW_PLAN_DFT_C2R_1D

 SFFTW_PLAN_DFT_C2R_1D

 DFFTW_PLAN_DFT_C2R_2D

 SFFTW_PLAN_DFT_C2R_2D

 DFFTW_PLAN_DFT_C2R_3D

 SFFTW_PLAN_DFT_C2R_3D

 DFFTW_PLAN_DFT_C2R

 SFFTW_PLAN_DFT_C2R

 	Advanced interface (Complex DFTs)

 	

 fftw_plan_many_dft

 fftwf_plan_many_dft

 	

 DFFTW_PLAN_MANY_DFT

 SFFTW_PLAN_MANY_DFT

 	Advanced interface (Real-data DFTs)

 	

 fftw_plan_many_dft_r2c

 fftwf_plan_many_dft_r2c

 fftw_plan_many_dft_c2r

 fftwf_plan_many_dft_c2r

 	

 DFFTW_PLAN_MANY_DFT_R2C

 SFFTW_PLAN_MANY_DFT_R2C

 DFFTW_PLAN_MANY_DFT_C2R

 SFFTW_PLAN_MANY_DFT_C2R

 	Guru interface (Complex DFTs)

 	

 fftw_plan_guru_dft

 fftwf_plan_guru_dft

 fftw_execute_dft

 fftwf_execute_dft

 	

 DFFTW_PLAN_GURU_DFT

 SFFTW_PLAN_GURU_DFT

 DFFTW_EXECUTE_DFT

 SFFTW_EXECUTE_DFT

 	Guru interface (Real-data DFTs)

 	

 fftw_plan_guru_dft_r2c

 fftwf_plan_guru_dft_r2c

 fftw_plan_guru_dft_c2r

 fftwf_plan_guru_dft_c2r

 fftw_execute_dft_r2c

 fftwf_execute_dft_r2c

 fftw_execute_dft_c2r

 fftwf_execute_dft_c2r

 	

 DFFTW_PLAN_GURU_DFT_R2C

 SFFTW_PLAN_GURU_DFT_R2C

 DFFTW_PLAN_GURU_DFT_C2R

 SFFTW_PLAN_GURU_DFT_C2R

 DFFTW_EXECUTE_DFT_R2C

 SFFTW_EXECUTE_DFT_R2C

 DFFTW_EXECUTE_DFT_C2R

 SFFTW_EXECUTE_DFT_C2R

 	Memory allocation

 	

 fftw_malloc

 fftwf_malloc

 fftw_free

 fftwf_free

 	

 (Not applicable)

 Use of the ESSL FFTW Wrapper library has the
 following restrictions:

 	No functions for real-to-real transforms are provided.

 	No wrappers for the FFTW Wisdom functions are provided.

 	The following flags are treated as equivalent: FFTW_ESTIMATE,
 FFTW_MEASURE, FFTW_PATIENT, FFTW_EXHAUSTIVE

 	The FFTW Wrapper libraries use the same method to specify SMP
 parallelism as does ESSL instead of using the fftw_threads_init, fftw_plan_with_threads
 and fftw_cleanup_threads functions. These functions are not provided
 as part of the FFTW Wrapper libraries.

 Using the FFTW Wrapper libraries

 Applications
 using the FFTW Wrapper library can be linked with either the ESSL
 Serial Library or the ESSL SMP library in the following environments:

 	[image: Start of change]32-bit integer, 32-bit pointer (AIX only)[image: End of change]

 	32-bit integer, 64-bit pointer

 For
 additional information about how to use the FFTW Wrapper libraries,
 see Processing Your Program.

 Building the FFTW Wrapper libraries
 on AIX

 The C and Fortran
 wrappers are provided as source code to be compiled using the IBM® C/C++ Compiler. The source
 code, header files and makefiles can be found in the /usr/lpp/essl.rte.common/FFTW3
 directory.

 To build and install the FFTW Wrapper libraries:

 	Change to a writable directory with approximately 512kb of free
 space.

 	Do one of the following:

 	Enter:

 cp /usr/lpp/essl.rte.common/FFTW3/src/Makefile

 .

 make install

 —or—

 	Enter:

 make -f /usr/lpp/essl.rte.common/FFTW3/src/Makefile

 install

 Building the FFTW Wrapper libraries
 on Linux

 The C and
 Fortran wrappers are provided as source code to be compiled using
 the IBM C/C++ Compiler or the
 gcc compiler. If ESSL was installed in the default location, the
 source code, header files and makefiles can be found in the /opt/ibmmath/essl/version.release/FFTW3
 directory.

 Note: For little endian mode only, by default the FFTW
 Wrapper libraries are installed in /usr/local/lib64. If you wish
 to install them to /usr/local/lib instead, you can change the value
 of LIBSUBDIR in Makefile or Makefile.gcc.

 To build and install
 the FFTW Wrapper libraries using IBM XL
 C:

 	Change to a writable directory with approximately 512kb of free
 space.

 	Do one of the following:

 	Enter:

 [image: Start of change]
 cp /opt/ibmmath/essl/

 version.release

 /FFTW3/src/Makefile.gcc

 make install

 [image: End of change]

 —or—

 	 Enter:

 make -f /opt/ibmmath/essl/

 version.release

 /FFTW3/src/Makefile install

 To build and install the FFTW Wrapper libraries using
 gcc:

 	Change to a writable directory with approximately 512kb of free
 space.

 	Do one of the following:

 	Enter:

 cp /opt/ibmmath/essl/

 version.release

 /FFTW3/src/Makefile.gcc

 make -f ./Makefile.gcc install

 —or—

 	 Enter:

 make -f /opt/ibmmath/essl/

 version.release

 /FFTW3/src/Makefile.gcc install

 [image: Start of change]Using ESSL with netlib-java and Python

 The ESSL libraries provide the BLAS and CBLAS subroutines which can be used by some other
 programming languages such as:

 	netlib-java

 	Python (Numpy and Scipy)

 This appendix shows how to use the ESSL libraries with these programming languages in RHEL7
 (little endian mode), assuming you installed the ESSL packages with a symbolic link in the
 /usr directory. If you installed the ESSL package without creating the
 symbolic link in the /usr directory, you must set the correct path for the
 ESSL runtime libraries, as shown in the example
 below:/opt/ibmmath/essl/5.5/lib64/libessl.so

 Setting the BLAS runtime library for netlib-java and Python

 Do one of the following to set up the BLAS runtime library for netlib-java and Python:

 	To run with the 32-bit integer, 64-bit pointer environment ESSL Serial library as root set, the
 symbolic link as follows:
 ln –s /usr/lib64/libessl.so /usr/lib64/libblas.so.3

 	To run with the 32-bit integer, 64-bit pointer environment ESSL SMP library as root, set the
 symbolic link as
 follows:ln –s /usr/lib64/libesslsmp.so /usr/lib64/libblas.so.3

 	To run with the 32-bit integer, 64-bit pointer environment ESSL SMP CUDA library, as root set
 the symbolic link as
 follows:ln –s /usr/lib64/libesslsmpcuda.so /usr/lib64/libblas.so.3

 Set the
 options as suggested Using the ESSL SMP CUDA Library to get the best performance.

 Apache Spark and netlib-java Example
 netlib-java is a JAVA API used by
 Apache Spark for linear algebra subroutines such as BLAS, LAPACK, and ARPACK. Use the instructions
 listed at the following URL to enable the Native Optimized BLAS/CBLAS library for
 netlib-java:https://developer.ibm.com/linuxonpower/2016/10/13/enable-system-native-blas-library-for-netlib-java-on-openpower-linux-systems-2/

 You
 can then run the following sample Java application using ESSL:

 Figure 16. ddot_example.javaimport com.github.fommil.netlib.BLAS;
public class ddot_example {
 public static void main(String[] args) {
 System.out.println(BLAS.getInstance().getClass().getName());
 double[] x = {1.0, 2.0, -3.0, 4.0, 5.0};
 double[] y = {9.0, 8.0, 7.0, -6.0, 5.0};

 int n;
 int nx = x.length;
 int ny = y.length;

 if (nx != ny) {
 System.err.println("Size of array X is not the same as size of array Y.\nAborting...");
 System.exit(-1);
 }

 n = nx;
 System.out.println("Answer = " + BLAS.getInstance().ddot(n, x, 1, y, 1));
 }
}

 Compile and run the example code as
 follows:javac –cp <PATH_TO_netlib-java Jar files> ddot_example.java
java –cp <PATH_TO_netlib-java Jar files>:. ddot_example

 Figure 17. shows the output:
 Figure 17. Output from ddot_example.java$ java -cp /mnt/workspace/essl_netlib_example.jar:. ddot_example

Oct 13, 2016 2:45:11 AM com.github.fommil.jni.JniLoader liberalLoad

INFO: successfully loaded /tmp/jniloader4688291511028652171netlib-native_system-linux-ppc64le.so
com.github.fommil.netlib.NativeSystemBLAS

Answer = 5.0

 Scalca and netlib-java Example
 MLlib uses the linear algebra package Breeze
 (see http//www.scalanlp.org/), which depends on netlib-java (see
 http:github.com/fommil/netlib-java for optimized numerical processing. Once you
 have enabled the system native BLAS library such as ESSL for netlib-java, you can run your
 application using ESSL, as shown in the example below:
 Figure 18. ddot_example.scalaimport com.github.fommil.netlib.BLAS.{getInstance => blas}

println(blas.getClass().getName())

var x = Array(1.0, 2.0, -3.0, 4.0, 5.0)

var y = Array(9.0, 8.0, 7.0, -6.0, 5.0)

var nx = x.length

var ny = y.length

if (nx != ny) {

println("Size of array X is not the same as size of array Y.\nAborting...")

System.exit(1)

}

var n = nx

val res = blas.ddot(n, x, 1, y, 1)

println("Answer = " + res)

System.exit(0)

 Figure 19. shows the output:
 Figure 19. Ouput from ddot_example.scala16/10/13 03:25:46 INFO JniLoader: successfully loaded
/tmp/jniloader5596681969452523481netlib-native_system-linux-ppc64le.so
com.github.fommil.netlib.NativeSystemBLAS
x: Array[Double] = Array(1.0, 2.0, -3.0, 4.0, 5.0)
y: Array[Double] = Array(9.0, 8.0, 7.0, -6.0, 5.0)
nx: Int = 5
ny: Int = 5
n: Int = 5
res: Double = 5.0
Answer = 5.0

 Python numpy Example

 numpy is an open-source add-on module to Python that provides common mathematical and numerical
 subroutines in pre-compiled, fast functions. After setting the symbolic link for the BLAS library,
 you can also run the python application using ESSL, as shown in the example below.
 Figure 20. ddot_example.py#!/usr/bin/python
import numpy as np

x=np.array([1.0, 2.0, -3.0, 4.0, 5.0])
y=np.array([9.0, 8.0, 7.0, -6.0, 5.0])
print np.dot(x, y)

 Figure 21. shows the output:

 Figure 21. Ouput from ddot_example.py16/10/13 03:25:46 INFO JniLoader: successfully loaded
/tmp/jniloader5596681969452523481netlib-native_system-linux-ppc64le.so
com.github.fommil.netlib.NativeSystemBLAS
x: Array[Double] = Array(1.0, 2.0, -3.0, 4.0, 5.0)
y: Array[Double] = Array(9.0, 8.0, 7.0, -6.0, 5.0)
nx: Int = 5
ny: Int = 5
n: Int = 5
res: Double = 5.0
Answer = 5.0

 [image: End of change]

 Accessibility Features for ESSL

 Accessibility features help a user who has a physical disability,
 such as restricted mobility or limited vision, to use information
 technology products successfully.

 	Accessibility Features

 	IBM and Accessibility

 Accessibility Features

 The following list includes the major accessibility features
 in IBM® ESSL. These features support:

 	Keyboard-only operation.

 	Interfaces that are commonly used by screen readers.

 	Keys that are tactilely discernible and do not activate just by
 touching them.

 	Industry-standard devices for ports and connectors.

 	The attachment of alternative input and output devices.

 IBM Knowledge
 Center and its related publications, are accessibility-enabled.
 The accessibility features of IBM Knowledge Center are described in
 the Accessibility topic at the following URL: http://www.ibm.com/support/knowledgecenter/

 Parent topic: Accessibility Features for ESSL

 IBM and Accessibility

 See the IBM® Human
 Ability and Accessibility Center for more information about the commitment
 that IBM has to accessibility:
 http://www.ibm.com/able/

 Parent topic: Accessibility Features for ESSL

 Notices

 This information was developed for products and services offered
 in the U.S.A.

 IBM® may not offer the products,
 services, or features discussed in this document in other countries.
 Consult your local IBM representative
 for information on the products and services currently available in
 your area. Any reference to an IBM product,
 program, or service is not intended to state or imply that only that IBM product, program, or service
 may be used. Any functionally equivalent product, program, or service
 that does not infringe any IBM intellectual
 property right may be used instead. However, it is the user's responsibility
 to evaluate and verify the operation of any non-IBM product, program,
 or service.

 IBM may have patents or pending
 patent applications covering subject matter described in this document.
 The furnishing of this document does not grant you any license to
 these patents. You can send license inquiries, in writing, to:

 IBM Director of Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 U.S.A.

 For license inquiries regarding double-byte (DBCS) information,
 contact the IBM Intellectual
 Property Department in your country or send inquiries, in writing,
 to:

 Intellectual Property Licensing

 Legal and Intellectual Property Law

 IBM Japan Ltd.

 1623-14, Shimotsuruma, Yamato-shi

 Kanagawa 242-8502 Japan

 The following paragraph does not apply to the United Kingdom or
 any other country where such provisions are inconsistent with local
 law:

 INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION
 "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
 BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
 OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
 of express or implied warranties in certain transactions, therefore,
 this statement may not apply to you.

 This information could include technical inaccuracies or typographical
 errors. Changes are periodically made to the information herein; these
 changes will be incorporated in new editions of the publication. IBM may make improvements and/or
 changes in the product(s) and/or the program(s) described in this
 publication at any time without notice.

 Any references in this information to non-IBM Web sites are provided
 for convenience only and do not in any manner serve as an endorsement
 of those Web sites. The materials at those Web sites are not part
 of the materials for this IBM product
 and use of those Web sites is at your own risk.

 IBM may use or distribute
 any of the information you supply in any way it believes appropriate
 without incurring any obligation to you.

 Licensees of this program who wish to have information about it
 for the purpose of enabling: (i) the exchange of information between
 independently created programs and other programs (including this
 one) and (ii) the mutual use of the information which has been exchanged,
 should contact:

 IBM Corporation

 Intellectual Property Law

 2455 South Road, P386

 Poughkeepsie, New York 12601-5400

 U.S.A.

 Such information may be available, subject to appropriate terms
 and conditions, including in some cases, payment of a fee.

 The licensed program described in this document and all licensed
 material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License
 Agreement or
 any equivalent agreement between us.

 Information concerning non-IBM products was obtained from the suppliers
 of those products, their published announcements or other publicly
 available sources. IBM has not
 tested those products and cannot confirm the accuracy of performance,
 compatibility or any other claims related to non-IBM products. Questions
 on the capabilities of non-IBM products should be addressed to the
 suppliers of those products.

 This information contains examples of data and reports used in
 daily business operations. To illustrate them as completely as possible,
 the examples include the names of individuals, companies, brands,
 and products. All of these names are fictitious and any similarity
 to the names and addresses used by an actual business enterprise is
 entirely coincidental.

 COPYRIGHT LICENSE:

 This information contains sample application programs in source
 language, which illustrates programming techniques on various operating
 platforms. You may copy, modify, and distribute these sample programs
 in any form without payment to IBM,
 for the purposes of developing, using, marketing or distributing application
 programs conforming to the application programming interface for the
 operating platform for which the sample programs are written. These
 examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee
 or imply reliability, serviceability, or function of these programs.
 The sample programs are provided "AS IS", without warranty of any
 kind. IBM shall
 not be liable for any damages arising out of your use of the sample
 programs.

 If you are viewing this information softcopy, the photographs and
 color illustrations may not appear.

 	Trademarks

 	Software Update Protocol

 	Programming Interfaces

 Trademarks

 IBM, the IBM logo, and ibm.com are
 trademarks or registered trademarks of International Business Machines
 Corp., registered in many jurisdictions worldwide. Other product and
 service names might be trademarks of IBM or other companies. A current list of IBM trademarks
 is available on the Web at "Copyright
 and trademark information" at www.ibm.com/legal/copytrade.shtml.

 Acrobat, Adobe, and the Adobe logo are either registered
 trademarks or trademarks of Adobe Systems
 Incorporated in the United States, and/or other countries.

 Linux is a trademark of
 Linus Torvalds in the United States, other countries, or both.

 Microsoft is a trademark
 of Microsoft Corporation
 in the United States, other countries, or both.

 Other company, product, and service names may be trademarks or
 service marks of others.

 Parent topic: Notices

 Software Update Protocol

 IBM® has provided modifications
 to this software. The resulting software is provided to you on an
 "AS IS" basis and WITHOUT A WARRANTY OF ANY KIND, WHETHER EXPRESS
 OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 FITNESS FOR A PARTICULAR PURPOSE.

 Parent topic: Notices

 Programming Interfaces

 This ESSL Guide and Reference manual is intended to help the
 customer do application programming. This manual documents General-use Programming
 Interface and Associated Guidance Information provided by ESSL.

 General-use programming interfaces allow the customer to write programs
 that obtain the services of ESSL.

 Parent topic: Notices

 Bibiography

 References

 Text books
 and articles covering the mathematical aspects of ESSL are listed
 here, as well as several software libraries available from other companies.
 They are listed alphabetically as follows:

 	Publications are listed by the author's name. IBM® publications that include an order number,
 other than an IBM Technical
 Report can be ordered through the Subscription Library Services
 System (SLSS). The non-IBM publications listed here should be obtained
 through publishers, bookstores, or professional computing organizations.

 	Software libraries are listed by their product name. Each reference
 includes the names, addresses, and phone numbers of the companies
 from which they can be obtained.

 To find ESSL publications available on the Internet, see Where to Find Related Publications.

 Each citation is shown as a number enclosed in square brackets. It indicates the number of the
 item listed in the bibliography. For example, reference [1]
 cites the first item listed below.

 	Agarwal, R. C. Dec. 1984. "An Efficient Formulation of the Mixed-Radix FFT
 Algorithm."
 Proceedings of the International Conference on Computers, Systems, and Signal
 Processing, 769–772. Bangalore, India.

 	Agarwal, R. C. August 1988. "A Vector and Parallel Implementation of the FFT
 Algorithm on the IBM
 3090."
 Proceedings from the IFIP WG 2.5 (International Federation for Information Processing Working
 Conference 5) , Stanford University.

 	Agarwal, R. C. 1989. "A Vector and Parallel Implementation of the FFT
 Algorithm on the IBM
 3090."
 Aspects of Computation on Asynchronous Parallel Processors , 45–54. Edited by M.
 H. Wright. Elsevier Science Publishers, New York, N. Y.

 	Agarwal, R. C.; Cooley, J. W. March 1986. "Fourier Transform and Convolution
 Subroutines for the IBM
 3090 Vector Facility."
 IBM Journal of Research and Development ,
 30(2):145–162 (Order no. G322-0146).

 	Agarwal, R. C.; Cooley, J. W. September 1987. "Vectorized Mixed-Radix
 Discrete Fourier Transform Algorithms"
 IEEE Proceedings , 75:1283–1292.

 	Agarwal, R.; Cooley, J.; Gustavson F.; Shearer J.; Slishman G.; Tuckerman B.
 March 1986. "New Scalar and Vector Elementary Functions for the IBM
 System/370."
 IBM Journal of Research and Development ,
 30(2):126–144 (Order no. G322-0146).

 	Agarwal, R.; Gustavson F.; Zubair, M. May 1994. "An Efficient Parallel
 Algorithm for the 3-D FFT NAS Parallel Benchmark."
 Proceedings of IEEE SHPCC 94 :129–133.

 	Anderson, E.; Bai, Z.; Bischof, C.; Demmel, J.; Dongarra, J.; DuCroz, J.;
 Greenbaum, A.; Hammarling, S.; McKenney, A.; Ostrouchov, S.; Sorensen, D. 1999. LAPACK User's
 Guide (third edition), SIAM Publications, Philadelphia, Pa.
 For more information, see:
 http://www.netlib.org/lapack/index.html

 	Anderson, E.; Bai, Z.; Bischof, C.; Demmel, J.; Dongarra, J.; DuCroz, J.;
 Greenbaum, A.; Hammarling, S.; McKenney, A.; Sorensen, D. May 1990. LAPACK: A Portable Linear
 Algebra Library for High-Performance Computers. University of Tennessee, Technical Report
 CS-90-105.

 	Basic Linear Algebra Subprograms Technical (BLAST) Forum. August 21,
 2001."C Interface to the Legacy BLAS."
 Basic Linear Algebra Subprograms Technical (BLAST) Forum. 180 – 195. University
 of Tennessee.

 	Bathe, K.; Wilson, E. L. 1976. Numerical Methods in Finite Element
 Analysis , 249–258.

 	Bluestein, L. I. 1968. "A linear filtering approach to the computation of
 the discrete Fourier transform."
 Northeast Electronics Research and Engineering Meeting Record 10, 218-219.

 	Box, G. E. P.; Muller, Mervin E. 1958. "A Note on the Generation of Random Normal
 Deviates."
 Annals of Mathematical Statistics 29(2), 610-611.

 	Braman, K.; Byers, R.; Mathias, R. 2002 "The Multi-Shift QR Algorithm, Part
 I: Maintaining Well-focused Shifts and Level 3 Performance."
 SIAM Journal on Matrix Analysis and Applications 23(4):929–947.

 	Braman, K.; Byers, R.; Mathias, R. 2002 "The Multi-Shift QR Algorithm, Part
 II: Aggressive Early Deflation Maintaining Well-focused Shifts, and Level 3 Performance."
 SIAM Journal on Matrix Analysis and Applications 23(4):948–973.

 	Brayton, R. K.; Gustavson F. G.; Willoughby, R. A.; 1970. "Some Results on
 Sparse Matrices."
 Mathematics of Computation , 24(112):937–954.

 	Borodin, A.; Munro, I. 1975. The Computational Complexity of Algebraic
 and Numeric Problems American Elsevier, New York, N. Y.

 	Bunch, James R.; Kaufman, Linda. 1977. "Some Stable Methods for Calculating Inertia
 and Solving Symmetric Linear Systems"Mathematics of Computation,
 31(137):163-179

 	Carey, G. F.; Oden, J. T. 1984. Finite Elements: Computational Aspects,
 Vol 3 , 144–147. Prentice Hall, Englewood Cliffs, N. J.

 	Chan, T. F. March 1982. "An Improved Algorithm for Computing the Singular
 Value Decomposition."
 ACM Transactions on Mathematical Software 8(1):72–83.

 	Cline, A. K.; Moler, C. B.; Stewart, G. W.; Wilkinson, J. H. 1979. "An
 Estimate for the Condition Number of a Matrix."
 SIAM Journal of Numerical Analysis 16:368–375.

 	Conte, S. D.; DeBoor, C. 1972. Elementary Numerical Analysis: An
 Algorithmic Approach® (second edition),
 McGraw-Hill, New York, N. Y.

 	Cooley, J. W. 1976. "Fast Fourier Transform."
 Encyclopedia of Computer Sciences Edited by A. Ralston. Auerbach Publishers.

 	Cooley, J. W.; Lewis, P. A. W.; Welch, P. D. June 1967. "Application of the
 Fast Fourier Transform to Computation of Fourier Integrals, Fourier Series, and Convolution
 Integrals."
 IEEE Transactions Audio Electroacoustics AU-15:79–84.

 	Cooley, J. W.; Lewis, P. A. W.; Welch, P. D. June 1967. "Historical Notes on the Fast Fourier Transform."
 IEEE Transactions Audio Electroacoustics AU-15:76–79. (Also published Oct. 1967
 in Proceedings of IEEE 55(10):1675–1677.)

 	Cooley, J. W.; Lewis, P. A. W.; Welch, P. D. March 1969. "The Fast Fourier
 Transform Algorithm and its Applications."
 IEEE Transactions on Education E12:27–34.

 	Cooley, J. W.; Lewis, P. A. W.; Welch, P. D. June 1969. "The Finite Fast
 Fourier Transform."
 IEEE Transactions Audio Electroacoustics AU-17:77–85.

 	Cooley, J. W.; Lewis, P. A. W.; Welch, P. D. July 1970. "The Fast Fourier
 Transform: Programming Considerations in the Calculation of Sine, Cosine, and LaPlace
 Transforms."
 Journal of Sound Vibration and Analysis 12(3):315–337.

 	Cooley, J. W.; Lewis, P. A. W.; Welch, P. D. July 1970. "The Application of
 the Fast Fourier Transform Algorithm to the Estimation of Spectra and Cross-Spectra."
 Journal of Sound Vibration and Analysis 12(3):339–352.

 	Cooley, J. W.; Lewis, P. A. W.; Welch, P. D. 1977. "Statistical Methods for
 Digital Computers."
 Mathematical Methods for Digital Computers Chapter 14. Edited by Ensein, Ralston and
 Wilf, Wiley-Interscience. John Wiley, New York.

 	Cooley, J. W.; Tukey, J. W. April 1965. "An Algorithm for the Machine
 Calculation of Complex Fourier Series."
 Mathematics of Computation 19:297.

 	Dahlquist, G.; Bjorck, A.; (Translated by Anderson, N.). 1974.
 Numerical Methods , Prentice Hall, Englewoods Cliffs, N. J. (For skyline subroutines,
 see 169–170.)

 	Davis, P. J.; Rabinowitz, P. 1984. Methods of Numerical
 Integration , (second edition), Academic Press, Orlando, Florida.

 	Demmel, J.; Kahan, W. February 1988. "Computing Small Singular Values of
 Bidiagonal Matrices with Guaranteed High Relative Accuracy", LAPACK Working Note 3, ANL,
 MCS-TM-110. You can dowload this document from the following URL:
 http://www.netlib.org/lapack/lawns/lawn03.ps

 	Delsarte, P.; Genin, Y. V. June 1986. "The Split Levinson Algorithm."
 IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-34(3):472.

 	Di Chio, P.; Filippone, S. January 1992. "A Stable Partition Sorting
 Algorithm."
 Report No. ICE-0045
 IBM European Center for Scientific and Engineering Computing,
 Rome, Italy.

 	Dodson, D. S.; Lewis, J. G. Jan. 1985. "Proposed Sparse Extensions to the
 Basic Linear Algebra Subprograms."
 ACM SIGNUM Newsletter , 20(1).

 	Dongarra, J. J. July 1997. "Performance of Various Computers Using Standard
 Linear Equations Software." University of Tennessee, CS-89-85.
 You can download this document
 from: http://www.netlib.org/benchmark/performance.ps

 	Dongarra, J. J.; Bunch, J. R.; Moler C. B.; Stewart, G. W. 1986. LINPACK
 User's Guide , SIAM Publications, Philadelphia, Pa.
 For more information, see:
 http://www.netlib.org/linpack/index.html

 	Dongarra, J. J.; DuCroz, J.; Hammarling, S.; Duff, I. March 1990. "A Set of
 Level 3 Basic Linear Algebra Subprograms."
 ACM Transactions on Mathematical Software , 16(1):1–17.

 	Dongarra, J. J.; DuCroz, J.; Hammarling, S.; Duff, I. March 1990. "Algorithm
 679. A Set of Level 3 Basic Linear Algebra Subprograms: Model Implementation and Test Programs."
 ACM Tranactions on Mathematical Software , 16(1):18–28.

 	Dongarra, J. J.; DuCroz, J.; Hammarling, S.; Hanson, R. J. March 1988. "An
 Extended Set of Fortran Basic Linear Algebra Subprograms."
 ACM Transactions on Mathematical Software , 14(1):1–17.

 	Dongarra, J. J.; DuCroz, J.; Hammarling, S.; Hanson, R. J. March 1988.
 "Algorithm 656. An Extended Set of Basic Linear Algebra Subprograms: Model Implementation and Test
 Programs."
 ACM Tranactions on Mathematical Software , 14(1):18–32.

 	Dongarra, J. J.; Duff, I. S.; Sorensen, D. C.; Van der Vorst, H. 1991.
 Solving Linear Systems on Vector and Shared Memory Computers , SIAM Publications, ISBN
 0-89871-270-X.

 	Dongarra, J. J.; Eisenstat, S. C. May 1983. "Squeezing the Most Out of an
 Algorithm in Cray Fortran."
 Technical Memorandum 9 Argonne National Laboratory, 9700 South Cass Avenue, Argonne,
 Illinois 60439.

 	Dongarra, J. J.; Gustavson, F. G.; Karp, A. Jan. 1984. "Implementing Linear
 Algebra Algorithms for Dense Matrices on a Vector Pipeline Machine."
 SIAM Review , 26(1).

 	Dongarra, J. J.; Kaufman, L.; Hammarling, S. Jan. 1985. "Squeezing the Most
 Out of Eigenvalue Solvers on High-Performance Computers."
 Technical Memorandum 46 Argonne National Laboratory, 9700 South Cass Avenue, Argonne,
 Illinois 60439.

 	Dongarra, J. J.; Kolatis M. October 1994. "Call Conversion Interface (CCI) for
 LAPACK/ESSL." LAPACK Working Note 82, Department of Computer Science University of Tennessee,
 Knoxville, Tennessee.
 You can download this document from:
 http://www.netlib.org/lapack/lawns/lawn82.ps

 	Dongarra, J. J.; Kolatis M. May 1994. "IBM RS/6000-550 & -590 Performance for Selected Routines in ESSL/LAPACK/NAG/IMSL",
 LAPACK Working Note 71, Department of Computer Science University of Tennessee, Knoxville,
 Tennessee.
 You can download this document from:
 http://www.netlib.org/lapack/lawns/lawn71.ps

 	Dongarra, J. J; Meuer, H. W.; Strohmaier, E. June 1997. "Top500
 Supercomputer Sites." University of Tennessee, UT-CS-97-365.; University of Mannheim, RUM 50/97.

 You can view this document from:
 http://www.netlib.org/benchmark/top500.html

 	Dongarra, J. J.; Moler, C. B. August 1983. "EISPACK—A Package for Solving Matrix Eigenvalue Problems."
 Technical Memorandum 12 Argonne National Laboratory, 9700 South Cass Avenue, Argonne,
 Illinois 60439.

 	Dongarra, J. J.; Moler, C. B; Bunch, J. R.; Stewart, G. W. 1979.
 LINPACK Users' Guide , SIAM, Philadelphia, Pa.

 	Dubrulle, A. A. 1971. "QR Algorithm with Implicit Shift."
 IBM licensed program: PL/MATH.

 	Dubrulle, A. A. November 1979. "The Design of Matrix Algorithms for Fortran
 and Virtual Storage."
 IBM Palo Alto Scientific Center Technical Report
 (Order no. G320-3396).

 	Dubrulle, A. A. November 1988. "A Version of EISPACK for the IBM 3090VF", IBM
 Palo Alto Scientific Center Technical Report (Order no. G320-3510).

 	Duff, I. S.; Erisman, A. M.; Reid, J. K. 1986. Direct Methods for
 Sparse Matrices Oxford University Press (Claredon), Oxford. (For skyline subroutines, see
 151–153.)

 	Eisenstat, S. C. March 1981. "Efficient Implementation of a Class of
 Preconditioned Conjugate Gradient Methods."
 SIAM Journal of Scientific Statistical Computing , 2(1).

 	EISPACK software library; National Energy Software Center, Argonne National
 Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (312-972-7250); International Mathematical and
 Statistical Libraries, Inc., Sixth Floor, GNB Building, 7500 Bellaire Boulevard, Houston, Texas
 77036 (713-772-1927)

 	Elmroth, E.; Gustavson, F. "Applying Recursion to Serial and Parallel QR
 Factorization Leads to Better Performance." To be Published.IBM J. Res. Develop. 44, No. 5.

 	Elmroth, E.; Gustavson, F. "A High-Performance Algorithm for the Linear Least
 Squares Problem on SMP Systems." Submitted for Publication. Lecture Notes in Computer Science Springer-Verlag, Berlin,
 2000.

 	Elmroth, E.; Gustavson, F. June 1998. "New Serial and Parallel Recursive
 QR Factorization Algorithms for SMP Systems." Applied Parallel
 Computing Large Scale Scientific and Industrial Problems , 4th International Workshop,
 PARA'98 Umea, Sweden, June 14-17, 1998 Proceedings:120—128.

 	Filippone, S.; Santangelo, P.; Vitaletti M. Nov. 1990. "A Vectorized
 Long-Period Shift Register Random Number Generation."
 Proceedings of Supercomputing '90 , 676–684, New York.

 	Forsythe, G. E.; Malcolm, M. A. 1977. Computer Methods for Mathematical
 Computations , Prentice Hall, Englewoods Cliffs, N. J.

 	Forsythe, G.E.; Moler, C. 1967. Computer Solution of Linear Algebra
 Systems , Prentice Hall, Englewoods Cliffs, N. J.

 	Francis, J. G. F. 1961. "The QR Tranformation A Unitary Analogue to the LR
 Transformation—Part 1", The Computer Journal Volume 4 Number 3, 265-271,
 British Computer Society, London.

 	Francis, J. G. F. 1962. "The QR Tranformation—Part 2", The
 Computer Journal Volume 4 Number 4, 332–345, British Computer Society, London.

 	Freund, R. W. July 28, 1992. "Transpose-Free Quasi-Minimal Residual Methods
 for Non-Hermitian Linear Systems."
 Numerical Analysis Manuscript 92-07 , AT&T Bell Laboratories. (To appear in
 SIAM Journal of Scientific Statistical Computing , 1993, Vol. 14.)

 	Gans, D. 1969. Transformations and Geometries Appleton Century
 Crofts, New York.

 	Garbow, B. S.; Boyle, J. M.; Dongarra, J. J.; Moler, C. B. 1977. "Matrix
 Eigensystem Routines."
 EISPACK Guide Extension Lecture Notes
 in Computer Science, Vol. 51 Springer-Verlag, New York, Heidelberg, Berlin.

 	George, A.; Liu, J. W. 1981. "Computer Solution of Large Sparse Positive
 Definite Systems."
 Series in Computational Mathematics Prentice-Hall, Englewood Cliffs, New Jersey.

 	Gerald, C. F.; Wheatley, P. O. 1985. Applied Numerical Analysis
 (third edition), Addison-Wesley, Reading, Mass.

 	Gill, P. E.; Miller, G. R. 1972. "An Algorithm for the Integration of
 Unequally Spaced Data."
 Computer Journal 15:80–83.

 	Golub, G. H.; Van Loan, C. F. 1996. Matrix Computations , John
 Hopkins University Press, Baltimore, Maryland.

 	Gregory, R. T.; Karney, D. L. 1969. A Collection of Matrices for Testing
 Computational Algorithms , Wiley-Interscience, New York, London, Sydney, Toronto.

 	Grimes, R. C.; Kincaid, D. R.; Young, D. M. 1979. ITPACK 2.0 User's
 Guide , CNA-150. Center for Numerical Analysis, University of Texas at Austin.

 	Gustavson, Fred.; Alexander Karaivanov, Minka I. Marinova, Jerzy Wasniewski,
 Plamen Yalamov. "A new block packed storage for symmetric indefinite matrices." Lecture Notes in Computer Science Fifth International Workshop,
 Bergen, Norway.

 	Gustavson, F.G. Nov. 1997. "Recursion leads to automatic variable blocking for
 dense linear-algebra algorithms." IBM Journal of
 Research and Development, Volume 41 Number 6:737—755.

 	Gustavson, F.G. Jan. 1997. "High Performance Linear Algebra Algorithms Using
 New Generalized Data Structures for Matrices." IBM
 Journal of Research and Development, Volume 47 Number 1.

 	Gustavson, F.; Henriksson, A.; Jonsson, I.; Kagstrom, B.; Ling, P. June 1998.
 "Recursive Blocked Data Formats and BLAS's for Dense Linear Algebra Algorithms." Applied
 Parallel Computing Large Scale Scientific and Industrial Problems , 4th International
 Workshop, PARA'98 Umea, Sweden, June 14-17, 1998 Proceedings:195—215.

 	Hageman, L. A.; Young, D. M.. 1981. Applied Iterative Methods
 Academic Press, New York, N. Y.

 	Higham, N. J. 1996. Accuracy and Stability of Numerical Algorithms
 , SIAM Publications, Philadelphia, Pa.

 	Higham, N. J. December 1988. Fortran Codes for Estimating the One-Norm
 of a Real or Complex Matrix, with Application to Condition Estimating ACM Transactions on
 Mathematical Software, 14(4):381–396.

 	Jennings, A. 1977. Matrix Computation for Engineers and Scientists
 , 153–158, John Wiley and Sons, Ltd., New York, N. Y.

 	Kagstrom, B.; Ling, P.; Van Loan, C. 1993. "Portable High Performance
 GEMM-Based Level 3 BLAS", Proceedings of the Sixth SIAM Conference on
 Parallel Processing for Scientific Computing
 , 339–346. Edited by: R. Sincovec, D. Keyes, M. Leize, L. Petzold, and D. Reed. SIAM
 Publications.

 	[image: Start of change]Kagstrom, B. 1993. "A Direct Method for Reordering Eigenvalues
 in the Generalized Real Schur Form of a Regular Matrix Pair (A,B)", Linear Algebra for
 Large Scale and Real-Time Applications , 195–218. Edited by: Moonen, M.S., Golub, Gene
 H., de Moor, B.L. Kluwer Academic Publishing.[image: End of change]

 	[image: Start of change]Kagstrom, B.; Poromaa, P. 1994. "Computing Eigenspaces with
 Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms
 and Software", Report UMINF - 94.04 , University of Umea.[image: End of change]

 	Kincaid, D. R.; Oppe, T. C.; Respess, J. R.; Young, D. M. 1984. ITPACKV
 2C User's Guide , CNA-191. Center for Numerical Analysis, University of Texas at Austin.

 	Kirkpatrick, S.; Stoll, E. P. 1981. "A Very Fast Shift-Register Sequence
 Random Number Generation."
 Journal of Computational Physics , 40:517–526.

 	Knuth, D. E. 1973. The Art of Computer Programming, Vol. 3: Sorting and
 Searching , Addison-Wesley, Reading, Mass.

 	Knuth, D. E. 1981. The Art of Computer Programming, Vol. 2:
 Seminumerical Algorithms , (second edition), Addison-Wesley, Reading, Mass.

 	Lambiotte, J. J.; Voigt, R. G. December 1975. "The Solution of Tridiagonal
 Linear Systems on the CDC STAR-100 Computer."
 ACM Transactions on Mathematical Software 1(4):308–329.

 	Lawson, C. L.; Hanson, R. J. 1974. Solving Least Squares Problems
 Prentice-Hall, Englewood Cliffs, New Jersey.

 	Lawson, C. L.; Hanson, R. J.; Kincaid, D. R.; Krough, F. T. Sept. 1979.
 "Basic Linear Algebra Subprograms for Fortran Usage."
 ACM Transactions on Mathematical Software 5(3):308–323.

 	Lewis, P. A. W.; Goodman, A. S.; Miller, J. M. 1969. "A Pseudo-Random Number
 Generator for the System/360."
 IBM System Journal , 8(2).

 	Matsumoto, M.; Nishimura, T., 1998. "Mersenne Twister: A 623-Dimensionally
 Equidistributed Uniform Pseudo-Random Number Generator."
 ACM Transactions on Modeling and Computer Simulations, 8(1):3-30.

 	Mutsuo, S.; Makoto, M. 2006. "SIMD-Oriented Fast Mersenne Twister: a 128-bit
 Pseudorandom Number Generator"
 Monte Carlo and Quasi-Monte Carlo Methods, 2006: 607-622.

 	Mutsuo, S.; Makoto, M. 2009. "A PRNG Specialized in Double Precision Floating
 Point Number Using an Affine Transition"
 Monte Carlo and Quasi-Monte Carlo Methods, 2009: 589-602.

 	McCracken, D. D.; Dorn, W. S. 1964. Numerical Methods and Fortran
 Programming , John Wiley and Sons, New York.

 	Melhem, R. 1987. "Toward Efficient Implementation of Preconditioned Conjugate
 Gradient Methods on Vector Supercomputers."
 Journal of Supercomputer Applications , Vol. 1.

 	Moler, C. B.; Stewart, G. W. 1973. "An Algorithm for the Generalized Matrix
 Eigenvalue Problem."
 SIAM Journal of Numerical Analysis , 10:241–256.

 	Nichols, B.; Farrell, J.; Buttlar, D. 1996. Pthreads Programming: Using
 POSIX Threads O'Reilly & Associates, Inc.

 	Oppenheim, A. V.; Schafer, R. W. 1975. Digital Signal Processing
 Prentice-Hall, Englewood Cliffs, New Jersey.

 	Oppenheim, A. V.; Weinstein, C. August 1972. "Effects of Finite Register
 Length in Digital Filtering and the Fast Fourier Transform."
 IEEE Proceedings , AU-17:209–215.

 	Parlett, B.; Marques, O. "An implementation of the dqds Algorithm (Positive
 Case),"
 LAPACK Working Note 155.
 You can download this document from:
 http://www.netlib.org/lapack/lawns/lawn155.ps

 	Saad, Y.; Schultz, M. H. 1986. "GMRES: A Generalized Minimum Residual
 Algorithm for Solving Nonsymmetric Linear Systems."
 SIAM Journal of Scientific and Statistical Computing , 7:856–869. Philadelphia,
 Pa.

 	Smith, B. T.; Boyle, J. M.; Dongarra, J. J.; Garbow, B. S.; Ikebe, Y.; Klema,
 V. C.; Moler, C. B. 1976. "Matrix Eigensystem Routines."
 EISPACK Guide Lecture Notes in Computer Science, Vol.
 6 Springer-Verlag, New York, Heidelberg, Berlin.

 	Sonneveld; Wesseling; DeZeeuv. 1985. Multigrid and Conjugate Gradient
 Methods as Convergence Acceleration Techniques in Multigrid Methods for Integral and Differential
 Equations , 117–167. Edited by D.J. Paddon and M. Holstein. Oxford University Press
 (Claredon), Oxford.

 	Sonneveld, P. January 1989. "CGS, a Fast Lanczos-Type Solver for Nonsymmetric
 Linear Systems."
 SIAM Journal of Scientific and Statistical Computing , 10(1):36–52.

 	Stewart, G. 1973. Introduction to Matrix Computations Academic
 Press, New York, N. Y.

 	Stewart, G. W. 1976. "The Economical Storage of Plane Rotations."
 Numerische Mathematik , 25(2):137–139.

 	Stroud, A. H.; Secrest, D. 1966. Gaussian Quadrature Formulas
 Prentice-Hall, Englewood Cliffs, New Jersey.

 	Suhl, U. H.; Aittoniemi, L. 1987. "Computing Sparse LU-Factorization for
 Large-Scale Linear Programming Bases."
 Report Number 58 Freie University, Berlin.

 	Tausworthe, R. C. 1965. "Random Numbers Generated by Linear Recurrence Modulo
 Two."
 Mathematical Computing, Vol. 19

 	Van der Vorst, H. A. 1992. "Bi-CGSTAB: A Fast and Smoothly Converging Variant
 of Bi-CG for the Solution of Nonsymmetric Linear Systems."
 SIAM Journal of Scientific Statistical Computing , 13:631–644.

 	Weinstein, C. September 1969. "Round-off Noise in Floating Point Fast Fourier
 Transform Calculation."
 IEEE Transactions on Audio Electroacoustics AU-17:209–215.

 	Wilkinson, J. H. 1965. The Algebraic Eigenvalue Problem , Oxford
 University Press (Claredon), Oxford.

 	Wilkinson, J. H. 1963. Rounding Errors in Algebraic Processes ,
 Prentice-Hall, Englewood Cliffs, New Jersey.

 	Wilkinson, J. H.; Reinsch, C. 1971. Handbook for Automatic Computation,
 Vol. II, Linear Algebra , Springer-Verlag, New York, Heidelberg, Berlin.

 	[image: Start of change]Wilkonson, J.H. 1979. "Kronecker's Canonical Form and the QZ
 Algorithm"
 Linear Algebra and its Applications , 28:285–303.[image: End of change]

 	Zierler, N. 1969 "Primitive Trinomials Whose Degree Is a Mersenne
 Exponent."
 Information and Control , 15:67–69.

 	Zlatev, Z. 1980. "On Some Pivotal Strategies in Gaussian Elimination by
 Sparse Technique."
 SIAM Journal of Numerical Analysis , 17(1):18–30.

 images/am5gr165.gif

images/am5gr166.gif

images/am5gr168.gif

images/am5gr167.gif

images/am5gr172.gif

images/am5gr171.gif

images/delta.gif

images/deltaend.gif

images/am5gr017.gif
.[jf {x) dx

images/am5gr018.gif

images/am5gr020.gif

images/am5gr056x.gif

images/am5gr019.gif

images/am5gr003.gif
User Program ESSL Subroutine

Is N=
acceptable

transform
length?

Issue message 2538-2030 ‘

Call ESSL) yes wiith next larger
subroutine J acceptable transform
length

JE I

Teminate

Perform ESSL
computation

images/am5gr004.gif
Make eror
2030 recoverable acceptable

> transform
length?

Call ESSL Issue message 2538-2030
subroutine with next larger
acoeplable transform
length

Perform ESSL
computation
Is retumn code

=r?

Update N argument
with next larger
- acceptable fransfom
to updated length
Nvalue

images/am5gr001.gif
user

rogram

Call ESSL
subroutine

Is NAUX=0
and

dynamic allocation

is allowed

Is NAUX >
minimum
required
value?

yes

ertom ES!
computation

(" lssue message 2538-2015

with lower limit

S

Teminate

with minimum

|ssue message 2538-2015 ‘

required value

Terminate

e)

images/am5gr002.gif
User Program

I

{ Make emor
2015 recoverable

.

Call ESSL
subroutine

React to updated
NAUX value

utine

Is NAUX =
lower limit
o

(' Issue message 2538-2015
with lower limit

fa——

minimum
required
value?

with minimum

Issue messa
requied value

Perform ESSL
computation

with minimum

(/ Updated NAUX argument
required value

Set retum code

images/am5gr006.gif
Does error

Make eror % .
21nn recoverable 21 nr:hzcggrsclunng

computation?

Call ESSL]
subroutine

Issue message 2538-21nn
with information on inf? |
and, optionally, ini2 |

Set retum code
=r

Is return code

N

Call EINFO fo obtain
information on inf{

and, optionally, inf2

React to this.
information

images/am5gr021.gif

images/am5gr005.gif
Jser Program

Does ertor
21nn occur during
the ESSL
computation?

R

Call ESSL
subroutine

Issue message 2536-21nn)
with information on inf?
\ and, optional

N~ -

Teminate

images/am5gr023.gif

images/am5gr024.gif

images/am5gr022.gif

images/am5gr027.gif

images/am5gr025.gif

images/am5gr026.gif

images/am5gr030.gif
Gy Gy 33
@18y G
G318y dny

@1
314y Ay

images/am5gr031.gif

images/am5gr028.gif
17.0
180

190
200

images/am5gr029.gif

images/am5gr034.gif

images/am5gr032.gif
418y 43
G281 4y
G3dp dy

3
_ %
3 dyp Gy

images/am5gr033.gif

images/am5gr035.gif

images/am5gr183.gif
Uyl . .oy, I, 00 . 0

0 Uy, . Ll 0

00w, . by by 1

. L= . .0

0 0, Ly o1,

0 . 0 TP e
AT

0 . 0 B
1 o

images/am5gr184.gif
R T T R 7
0w, S I,

e B

0 . .. 0, . o I3

images/am5gr036.gif
|« mu >

Gl Gz - - Gy,
@18 &4

images/am5gr037.gif
«— mu —>

Gl Gz - - G

ay ay a,

images/am5gr185.gif
1oty

01 u,
001

T 100 0
. L 1o
Lyl 1

L=| . 0

01 I, o1

0 I} Ry

B,

images/am5gr186.gif
=
= =

o —

u,

Ui
s

u,

u,
u,

—o

—c e

images/am5gr040.gif

images/am5gr038.gif
|« mu >

Gl Gz - - 4y,
@18 &

images/am5gr039.gif
a a

na—ml

+mup

images/am5gr041.gif
\(—k—>\

by 83 - - 4n
Gy &
3183

images/am5gr042.gif

images/am5gr043.gif

images/am5gr087.gif

images/am5gr086.gif

images/am5gr089.gif
7
Z X VINDX(r) = ¥1VINDx(1) + %2 VmND: F oot X VINDX(r2)
iz1

images/am5gr088.gif

images/am5gr091.gif
X isthe complex conjugate of a sparse vector, stored in compressed - vector

storage mode.

images/am5gr090.gif
SVINDKG) = X1VinDxy + X23in0k2) - F X VINDK ()

images/am5gr093.gif

images/am5gr092.gif

images/am5gr094.gif

images/am5gr114.gif

images/am5gr115.gif
3. C « 0A4B" + aBA™ + pC

4. C « aA"B +aB 4+ pC

images/am5gr181.gif
a torig, j=1,n

images/am5gr169.gif
C « od"B+aB 4+ pC

images/am5gr120.gif

images/am5gr182.gif

images/am5gr007.gif
—RPARM{10) RPARM(10)
1) 2) 5.

Region:

images/am5gr180.gif

images/am5gr121.gif
‘ <« factored — |« to be factored —

Ao s gy B e s Oy

where j = IPARM(3)

images/am5gr123.gif

images/am5gr122.gif
‘ <« factored — |« to be factored —

e s Gy B e e Oy

where j = IPARM(3)

images/am5gr125.gif
[rz € (\7)] ma_\:(sf)

images/am5gr124.gif

images/am5gr126.gif
Z + is the diagonal matrix with elements G}', where:
oy =10/5, ifo;,>tands, =0

S 0 for all other cases

i
+
i

images/am5gr012x.gif

images/am5gr127.gif

images/am5gr129a3.jpg
)y
ST
(o

271

e

w,

"

images/am5gr129a2.jpg
mel el gl
N - r (Jsigm)(IDED prr - Tsigny)(72)(k2) (Isigng)(jd)(kd)
Virgr. s =SCAIY X e Xy ga I, O, R Ly,

=0 j2=0 ia=0

images/am5gr095.gif

images/am5gr097.gif

images/am5gr096.gif
ay Gy || X%

a4, ... 4

mn

images/am5gr099.gif

images/am5gr098.gif
ay +oxy ...oa,toxy,

1t ox,y,

Ay

images/am5gr101.gif

images/am5gr100.gif
1+ ox, P

Ay

images/am5gr103.gif

images/am5gr102.gif

images/am5gr104.gif

images/am5gr105.gif

images/am5gr107.gif

images/am5gr106.gif

images/am5gr109.gif
Ay - 4,

mn

images/am5gr108.gif

images/am5gr111.gif

images/am5gr110.gif

images/am5gr113.gif
m
e} Z ay by
k=1)
m
e} Z ag by
k=1)
m
e} Z ag by
k=1)

m

UZ(J“ by
k=1),

m

e} Z ayby
1)

m
UZ(JAL,» by
1)

m

UZ(J“ by

uZaA‘ibﬂ

UZ(JAL,» by
)

1, 7 and

for

for

for

for

for

C < o0dB+pC
C < ad” B+pC
C < ad™ B+ pC
C <04 B" +pC

C «—od" B" + pBC

r C < ad™ BT + BC

r C < ad B® + BC

r € < ad” BY + pC

r € « od™ BY + BC

images/am5gr112.gif
for C<~ A B

for C <~ 4" B

for C < 4% B

for C < A B”

for € < A" BT

for € < A% BT

for C < 4 BY

for C < A" B®

for € < A% B®

images/am5gr146.gif

images/am5gr148.gif

images/am5gr147.gif
/148, (tk)) for j=1,n2

images/am5gr150.gif
.[j 1 {x)dx

images/am5gr149.gif

images/am5gr152.gif
-[-d ff (s.t) ds dt

images/am5gr151.gif

images/am5gr154.gif

images/am5gr153.gif
.[‘1 flx,y)dx dy

images/am5gr155.gif

images/am5gr156.gif

images/am5gr158.gif

images/am5gr157.gif
J": FxePde it b0

J' Hx)etde if b<0

images/am5gr160.gif
1Y 1
x+b, (x+b)1

if a+b>0

if a+b <0

images/am5gr159.gif

images/am5gr162.gif

images/am5gr161.gif

images/am5gr164.gif

images/am5gr163.gif
c—30Y7 +10(x—30

images/am5gr130.gif

images/am5gr129.gif

images/am5gr128.gif
=1

— crrle o Isign) ik
= scale ZA,,IT”
0

i

images/am5gr132.gif
e

Vi = scale Z ¢ sin{ jk{2m/ n))

0

images/am5gr131.gif
\
= scale | .5x,; +.5(71)hx codl jk(2m/ n))

)

¥,

ki

images/am5gr133.gif
,(ZIsign) j1k1

nl

images/am5gr135.gif
nl-1 n2-1 n3-1

ale (Tsign)iIH g Isign)i22 7 (sign)i3i
= scale Z Z Z\ﬂ 2.3 War' (s Wz

images/am5gr134.gif
2n(1)inl

images/am5gr136.gif

images/am5gr138.gif

images/am5gr137.gif

images/am5gr140.gif

images/am5gr139.gif

images/am5gr142.gif

images/am5gr141.gif

images/am5gr144.gif

images/am5gr143.gif
Q (trace, (r2- 1)+ 2 race, (1- 72)

images/am5gr145.gif

images/am5gr013.gif

images/am5gr046.gif

images/am5gr012.gif

images/am5gr047.gif

images/am5gr011.gif
a, a,

Donip G2p- + - Conp

images/am5gr044.gif
\(—k—)\

Uty M . Uy
0

images/am5gr010.gif
ay ap .. o.ay,

ay a4y a,

22 2n

images/am5gr045.gif

images/am5gr050.gif
dy d, d,

a5 8
”11 l?::

a3y a3

images/am5gr016.gif

images/am5gr051.gif
Q10 Fm-11 "

images/am5gr015.gif

images/am5gr048.gif
ay Ay
1 Gy
0 agp ap

images/am5gr014.gif

images/am5gr049.gif
ay ay 0

1 Gy
0 a,
[}

images/am5gr009.gif

images/am5gr052.gif
COp-1a-10

Plane (p—1)

Aop,p-1

10,51

images/am5gr008.gif

images/am5gr054.gif

images/am5gr057.gif

images/am5gr058.gif

images/am5gr055.gif
2ollad+ [bd) = el + i) + (s + [pal) + -+ {fr] + ,])

i=1

where x;=(a;,5;)

images/am5gr056.gif

images/am5gr061.gif

images/am5gr059.gif

images/am5gr060.gif

images/am5gr064.gif

images/am5gr062.gif

images/am5gr063.gif

images/am5gr067.gif
r=y \Ma“ +[3)

if a0

r=b ifld=0

images/am5gr068.gif
if a0

images/am5gr065.gif

images/am5gr066.gif

images/am5gr069.gif
s = “4’717 if ‘[l‘#()
Vlal” +[af”

=(1000) if |a|=0

images/am5gr070.gif

images/am5gr071.gif

images/am5gr074.gif
r=y \Ma“ +[3)

if a0

r=b ifld=0

images/am5gr072.gif
= U(‘(l‘ﬂb‘)

images/am5gr073.gif
F 1,
For |4 <1 c= v

images/am5gr077.gif

images/am5gr078.gif
=y (d +)

images/am5gr075.gif
if a0

images/am5gr076.gif
s = “4’717 if ‘[l‘#()
Vlal” +[af”

=(1000) if |a|=0

images/am5gr079.gif

images/am5gr080.gif

images/am5gr081.gif

images/am5gr_form_of_H.gif
PARAM,
-1.0

images/am5gr_srotm_1.gif

images/am5gr082.gif

images/am5gr_srotmg_sqr.gif

images/am5gr084.gif

images/am5gr085.gif

images/am5gr083.gif

